alloc-pool.c: Fix comment formatting.
[gcc.git] / gcc / dwarfout.c
1 /* Output Dwarf format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /*
24
25 Notes on the GNU Implementation of DWARF Debugging Information
26 --------------------------------------------------------------
27 Last Major Update: Sun Jul 17 08:17:42 PDT 1994 by rfg@segfault.us.com
28 ------------------------------------------------------------
29
30 This file describes special and unique aspects of the GNU implementation of
31 the DWARF Version 1 debugging information language, as provided in the GNU
32 version 2.x compiler(s).
33
34 For general information about the DWARF debugging information language,
35 you should obtain the DWARF version 1.1 specification document (and perhaps
36 also the DWARF version 2 draft specification document) developed by the
37 (now defunct) UNIX International Programming Languages Special Interest Group.
38
39 To obtain a copy of the DWARF Version 1 and/or DWARF Version 2
40 specification, visit the web page for the DWARF Version 2 committee, at
41
42 http://www.eagercon.com/dwarf/dwarf2std.htm
43
44 The generation of DWARF debugging information by the GNU version 2.x C
45 compiler has now been tested rather extensively for m88k, i386, i860, and
46 SPARC targets. The DWARF output of the GNU C compiler appears to inter-
47 operate well with the standard SVR4 SDB debugger on these kinds of target
48 systems (but of course, there are no guarantees).
49
50 DWARF 1 generation for the GNU g++ compiler is implemented, but limited.
51 C++ users should definitely use DWARF 2 instead.
52
53 Future plans for the dwarfout.c module of the GNU compiler(s) includes the
54 addition of full support for GNU FORTRAN. (This should, in theory, be a
55 lot simpler to add than adding support for g++... but we'll see.)
56
57 Many features of the DWARF version 2 specification have been adapted to
58 (and used in) the GNU implementation of DWARF (version 1). In most of
59 these cases, a DWARF version 2 approach is used in place of (or in addition
60 to) DWARF version 1 stuff simply because it is apparent that DWARF version
61 1 is not sufficiently expressive to provide the kinds of information which
62 may be necessary to support really robust debugging. In all of these cases
63 however, the use of DWARF version 2 features should not interfere in any
64 way with the interoperability (of GNU compilers) with generally available
65 "classic" (pre version 1) DWARF consumer tools (e.g. SVR4 SDB).
66
67 The DWARF generation enhancement for the GNU compiler(s) was initially
68 donated to the Free Software Foundation by Network Computing Devices.
69 (Thanks NCD!) Additional development and maintenance of dwarfout.c has
70 been largely supported (i.e. funded) by Intel Corporation. (Thanks Intel!)
71
72 If you have questions or comments about the DWARF generation feature, please
73 send mail to me <rfg@netcom.com>. I will be happy to investigate any bugs
74 reported and I may even provide fixes (but of course, I can make no promises).
75
76 The DWARF debugging information produced by GCC may deviate in a few minor
77 (but perhaps significant) respects from the DWARF debugging information
78 currently produced by other C compilers. A serious attempt has been made
79 however to conform to the published specifications, to existing practice,
80 and to generally accepted norms in the GNU implementation of DWARF.
81
82 ** IMPORTANT NOTE ** ** IMPORTANT NOTE ** ** IMPORTANT NOTE **
83
84 Under normal circumstances, the DWARF information generated by the GNU
85 compilers (in an assembly language file) is essentially impossible for
86 a human being to read. This fact can make it very difficult to debug
87 certain DWARF-related problems. In order to overcome this difficulty,
88 a feature has been added to dwarfout.c (enabled by the -dA
89 option) which causes additional comments to be placed into the assembly
90 language output file, out to the right-hand side of most bits of DWARF
91 material. The comments indicate (far more clearly that the obscure
92 DWARF hex codes do) what is actually being encoded in DWARF. Thus, the
93 -dA option can be highly useful for those who must study the
94 DWARF output from the GNU compilers in detail.
95
96 ---------
97
98 (Footnote: Within this file, the term `Debugging Information Entry' will
99 be abbreviated as `DIE'.)
100
101
102 Release Notes (aka known bugs)
103 -------------------------------
104
105 In one very obscure case involving dynamically sized arrays, the DWARF
106 "location information" for such an array may make it appear that the
107 array has been totally optimized out of existence, when in fact it
108 *must* actually exist. (This only happens when you are using *both* -g
109 *and* -O.) This is due to aggressive dead store elimination in the
110 compiler, and to the fact that the DECL_RTL expressions associated with
111 variables are not always updated to correctly reflect the effects of
112 GCC's aggressive dead store elimination.
113
114 -------------------------------
115
116 When attempting to set a breakpoint at the "start" of a function compiled
117 with -g1, the debugger currently has no way of knowing exactly where the
118 end of the prologue code for the function is. Thus, for most targets,
119 all the debugger can do is to set the breakpoint at the AT_low_pc address
120 for the function. But if you stop there and then try to look at one or
121 more of the formal parameter values, they may not have been "homed" yet,
122 so you may get inaccurate answers (or perhaps even addressing errors).
123
124 Some people may consider this simply a non-feature, but I consider it a
125 bug, and I hope to provide some GNU-specific attributes (on function
126 DIEs) which will specify the address of the end of the prologue and the
127 address of the beginning of the epilogue in a future release.
128
129 -------------------------------
130
131 It is believed at this time that old bugs relating to the AT_bit_offset
132 values for bit-fields have been fixed.
133
134 There may still be some very obscure bugs relating to the DWARF description
135 of type `long long' bit-fields for target machines (e.g. 80x86 machines)
136 where the alignment of type `long long' data objects is different from
137 (and less than) the size of a type `long long' data object.
138
139 Please report any problems with the DWARF description of bit-fields as you
140 would any other GCC bug. (Procedures for bug reporting are given in the
141 GNU C compiler manual.)
142
143 --------------------------------
144
145 At this time, GCC does not know how to handle the GNU C "nested functions"
146 extension. (See the GCC manual for more info on this extension to ANSI C.)
147
148 --------------------------------
149
150 The GNU compilers now represent inline functions (and inlined instances
151 thereof) in exactly the manner described by the current DWARF version 2
152 (draft) specification. The version 1 specification for handling inline
153 functions (and inlined instances) was known to be brain-damaged (by the
154 PLSIG) when the version 1 spec was finalized, but it was simply too late
155 in the cycle to get it removed before the version 1 spec was formally
156 released to the public (by UI).
157
158 --------------------------------
159
160 At this time, GCC does not generate the kind of really precise information
161 about the exact declared types of entities with signed integral types which
162 is required by the current DWARF draft specification.
163
164 Specifically, the current DWARF draft specification seems to require that
165 the type of a non-unsigned integral bit-field member of a struct or union
166 type be represented as either a "signed" type or as a "plain" type,
167 depending upon the exact set of keywords that were used in the
168 type specification for the given bit-field member. It was felt (by the
169 UI/PLSIG) that this distinction between "plain" and "signed" integral types
170 could have some significance (in the case of bit-fields) because ANSI C
171 does not constrain the signedness of a plain bit-field, whereas it does
172 constrain the signedness of an explicitly "signed" bit-field. For this
173 reason, the current DWARF specification calls for compilers to produce
174 type information (for *all* integral typed entities... not just bit-fields)
175 which explicitly indicates the signedness of the relevant type to be
176 "signed" or "plain" or "unsigned".
177
178 Unfortunately, the GNU DWARF implementation is currently incapable of making
179 such distinctions.
180
181 --------------------------------
182
183
184 Known Interoperability Problems
185 -------------------------------
186
187 Although the GNU implementation of DWARF conforms (for the most part) with
188 the current UI/PLSIG DWARF version 1 specification (with many compatible
189 version 2 features added in as "vendor specific extensions" just for good
190 measure) there are a few known cases where GCC's DWARF output can cause
191 some confusion for "classic" (pre version 1) DWARF consumers such as the
192 System V Release 4 SDB debugger. These cases are described in this section.
193
194 --------------------------------
195
196 The DWARF version 1 specification includes the fundamental type codes
197 FT_ext_prec_float, FT_complex, FT_dbl_prec_complex, and FT_ext_prec_complex.
198 Since GNU C is only a C compiler (and since C doesn't provide any "complex"
199 data types) the only one of these fundamental type codes which GCC ever
200 generates is FT_ext_prec_float. This fundamental type code is generated
201 by GCC for the `long double' data type. Unfortunately, due to an apparent
202 bug in the SVR4 SDB debugger, SDB can become very confused wherever any
203 attempt is made to print a variable, parameter, or field whose type was
204 given in terms of FT_ext_prec_float.
205
206 (Actually, SVR4 SDB fails to understand *any* of the four fundamental type
207 codes mentioned here. This will fact will cause additional problems when
208 there is a GNU FORTRAN front-end.)
209
210 --------------------------------
211
212 In general, it appears that SVR4 SDB is not able to effectively ignore
213 fundamental type codes in the "implementation defined" range. This can
214 cause problems when a program being debugged uses the `long long' data
215 type (or the signed or unsigned varieties thereof) because these types
216 are not defined by ANSI C, and thus, GCC must use its own private fundamental
217 type codes (from the implementation-defined range) to represent these types.
218
219 --------------------------------
220
221
222 General GNU DWARF extensions
223 ----------------------------
224
225 In the current DWARF version 1 specification, no mechanism is specified by
226 which accurate information about executable code from include files can be
227 properly (and fully) described. (The DWARF version 2 specification *does*
228 specify such a mechanism, but it is about 10 times more complicated than
229 it needs to be so I'm not terribly anxious to try to implement it right
230 away.)
231
232 In the GNU implementation of DWARF version 1, a fully downward-compatible
233 extension has been implemented which permits the GNU compilers to specify
234 which executable lines come from which files. This extension places
235 additional information (about source file names) in GNU-specific sections
236 (which should be totally ignored by all non-GNU DWARF consumers) so that
237 this extended information can be provided (to GNU DWARF consumers) in a way
238 which is totally transparent (and invisible) to non-GNU DWARF consumers
239 (e.g. the SVR4 SDB debugger). The additional information is placed *only*
240 in specialized GNU-specific sections, where it should never even be seen
241 by non-GNU DWARF consumers.
242
243 To understand this GNU DWARF extension, imagine that the sequence of entries
244 in the .lines section is broken up into several subsections. Each contiguous
245 sequence of .line entries which relates to a sequence of lines (or statements)
246 from one particular file (either a `base' file or an `include' file) could
247 be called a `line entries chunk' (LEC).
248
249 For each LEC there is one entry in the .debug_srcinfo section.
250
251 Each normal entry in the .debug_srcinfo section consists of two 4-byte
252 words of data as follows:
253
254 (1) The starting address (relative to the entire .line section)
255 of the first .line entry in the relevant LEC.
256
257 (2) The starting address (relative to the entire .debug_sfnames
258 section) of a NUL terminated string representing the
259 relevant filename. (This filename name be either a
260 relative or an absolute filename, depending upon how the
261 given source file was located during compilation.)
262
263 Obviously, each .debug_srcinfo entry allows you to find the relevant filename,
264 and it also points you to the first .line entry that was generated as a result
265 of having compiled a given source line from the given source file.
266
267 Each subsequent .line entry should also be assumed to have been produced
268 as a result of compiling yet more lines from the same file. The end of
269 any given LEC is easily found by looking at the first 4-byte pointer in
270 the *next* .debug_srcinfo entry. That next .debug_srcinfo entry points
271 to a new and different LEC, so the preceding LEC (implicitly) must have
272 ended with the last .line section entry which occurs at the 2 1/2 words
273 just before the address given in the first pointer of the new .debug_srcinfo
274 entry.
275
276 The following picture may help to clarify this feature. Let's assume that
277 `LE' stands for `.line entry'. Also, assume that `* 'stands for a pointer.
278
279
280 .line section .debug_srcinfo section .debug_sfnames section
281 ----------------------------------------------------------------
282
283 LE <---------------------- *
284 LE * -----------------> "foobar.c" <---
285 LE |
286 LE |
287 LE <---------------------- * |
288 LE * -----------------> "foobar.h" <| |
289 LE | |
290 LE | |
291 LE <---------------------- * | |
292 LE * -----------------> "inner.h" | |
293 LE | |
294 LE <---------------------- * | |
295 LE * ------------------------------- |
296 LE |
297 LE |
298 LE |
299 LE |
300 LE <---------------------- * |
301 LE * -----------------------------------
302 LE
303 LE
304 LE
305
306 In effect, each entry in the .debug_srcinfo section points to *both* a
307 filename (in the .debug_sfnames section) and to the start of a block of
308 consecutive LEs (in the .line section).
309
310 Note that just like in the .line section, there are specialized first and
311 last entries in the .debug_srcinfo section for each object file. These
312 special first and last entries for the .debug_srcinfo section are very
313 different from the normal .debug_srcinfo section entries. They provide
314 additional information which may be helpful to a debugger when it is
315 interpreting the data in the .debug_srcinfo, .debug_sfnames, and .line
316 sections.
317
318 The first entry in the .debug_srcinfo section for each compilation unit
319 consists of five 4-byte words of data. The contents of these five words
320 should be interpreted (by debuggers) as follows:
321
322 (1) The starting address (relative to the entire .line section)
323 of the .line section for this compilation unit.
324
325 (2) The starting address (relative to the entire .debug_sfnames
326 section) of the .debug_sfnames section for this compilation
327 unit.
328
329 (3) The starting address (in the execution virtual address space)
330 of the .text section for this compilation unit.
331
332 (4) The ending address plus one (in the execution virtual address
333 space) of the .text section for this compilation unit.
334
335 (5) The date/time (in seconds since midnight 1/1/70) at which the
336 compilation of this compilation unit occurred. This value
337 should be interpreted as an unsigned quantity because gcc
338 might be configured to generate a default value of 0xffffffff
339 in this field (in cases where it is desired to have object
340 files created at different times from identical source files
341 be byte-for-byte identical). By default, these timestamps
342 are *not* generated by dwarfout.c (so that object files
343 compiled at different times will be byte-for-byte identical).
344 If you wish to enable this "timestamp" feature however, you
345 can simply place a #define for the symbol `DWARF_TIMESTAMPS'
346 in your target configuration file and then rebuild the GNU
347 compiler(s).
348
349 Note that the first string placed into the .debug_sfnames section for each
350 compilation unit is the name of the directory in which compilation occurred.
351 This string ends with a `/' (to help indicate that it is the pathname of a
352 directory). Thus, the second word of each specialized initial .debug_srcinfo
353 entry for each compilation unit may be used as a pointer to the (string)
354 name of the compilation directory, and that string may in turn be used to
355 "absolutize" any relative pathnames which may appear later on in the
356 .debug_sfnames section entries for the same compilation unit.
357
358 The fifth and last word of each specialized starting entry for a compilation
359 unit in the .debug_srcinfo section may (depending upon your configuration)
360 indicate the date/time of compilation, and this may be used (by a debugger)
361 to determine if any of the source files which contributed code to this
362 compilation unit are newer than the object code for the compilation unit
363 itself. If so, the debugger may wish to print an "out-of-date" warning
364 about the compilation unit.
365
366 The .debug_srcinfo section associated with each compilation will also have
367 a specialized terminating entry. This terminating .debug_srcinfo section
368 entry will consist of the following two 4-byte words of data:
369
370 (1) The offset, measured from the start of the .line section to
371 the beginning of the terminating entry for the .line section.
372
373 (2) A word containing the value 0xffffffff.
374
375 --------------------------------
376
377 In the current DWARF version 1 specification, no mechanism is specified by
378 which information about macro definitions and un-definitions may be provided
379 to the DWARF consumer.
380
381 The DWARF version 2 (draft) specification does specify such a mechanism.
382 That specification was based on the GNU ("vendor specific extension")
383 which provided some support for macro definitions and un-definitions,
384 but the "official" DWARF version 2 (draft) specification mechanism for
385 handling macros and the GNU implementation have diverged somewhat. I
386 plan to update the GNU implementation to conform to the "official"
387 DWARF version 2 (draft) specification as soon as I get time to do that.
388
389 Note that in the GNU implementation, additional information about macro
390 definitions and un-definitions is *only* provided when the -g3 level of
391 debug-info production is selected. (The default level is -g2 and the
392 plain old -g option is considered to be identical to -g2.)
393
394 GCC records information about macro definitions and undefinitions primarily
395 in a section called the .debug_macinfo section. Normal entries in the
396 .debug_macinfo section consist of the following three parts:
397
398 (1) A special "type" byte.
399
400 (2) A 3-byte line-number/filename-offset field.
401
402 (3) A NUL terminated string.
403
404 The interpretation of the second and third parts is dependent upon the
405 value of the leading (type) byte.
406
407 The type byte may have one of four values depending upon the type of the
408 .debug_macinfo entry which follows. The 1-byte MACINFO type codes presently
409 used, and their meanings are as follows:
410
411 MACINFO_start A base file or an include file starts here.
412 MACINFO_resume The current base or include file ends here.
413 MACINFO_define A #define directive occurs here.
414 MACINFO_undef A #undef directive occur here.
415
416 (Note that the MACINFO_... codes mentioned here are simply symbolic names
417 for constants which are defined in the GNU dwarf.h file.)
418
419 For MACINFO_define and MACINFO_undef entries, the second (3-byte) field
420 contains the number of the source line (relative to the start of the current
421 base source file or the current include files) when the #define or #undef
422 directive appears. For a MACINFO_define entry, the following string field
423 contains the name of the macro which is defined, followed by its definition.
424 Note that the definition is always separated from the name of the macro
425 by at least one whitespace character. For a MACINFO_undef entry, the
426 string which follows the 3-byte line number field contains just the name
427 of the macro which is being undef'ed.
428
429 For a MACINFO_start entry, the 3-byte field following the type byte contains
430 the offset, relative to the start of the .debug_sfnames section for the
431 current compilation unit, of a string which names the new source file which
432 is beginning its inclusion at this point. Following that 3-byte field,
433 each MACINFO_start entry always contains a zero length NUL terminated
434 string.
435
436 For a MACINFO_resume entry, the 3-byte field following the type byte contains
437 the line number WITHIN THE INCLUDING FILE at which the inclusion of the
438 current file (whose inclusion ends here) was initiated. Following that
439 3-byte field, each MACINFO_resume entry always contains a zero length NUL
440 terminated string.
441
442 Each set of .debug_macinfo entries for each compilation unit is terminated
443 by a special .debug_macinfo entry consisting of a 4-byte zero value followed
444 by a single NUL byte.
445
446 --------------------------------
447
448 In the current DWARF draft specification, no provision is made for providing
449 a separate level of (limited) debugging information necessary to support
450 tracebacks (only) through fully-debugged code (e.g. code in system libraries).
451
452 A proposal to define such a level was submitted (by me) to the UI/PLSIG.
453 This proposal was rejected by the UI/PLSIG for inclusion into the DWARF
454 version 1 specification for two reasons. First, it was felt (by the PLSIG)
455 that the issues involved in supporting a "traceback only" subset of DWARF
456 were not well understood. Second, and perhaps more importantly, the PLSIG
457 is already having enough trouble agreeing on what it means to be "conforming"
458 to the DWARF specification, and it was felt that trying to specify multiple
459 different *levels* of conformance would only complicate our discussions of
460 this already divisive issue. Nonetheless, the GNU implementation of DWARF
461 provides an abbreviated "traceback only" level of debug-info production for
462 use with fully-debugged "system library" code. This level should only be
463 used for fully debugged system library code, and even then, it should only
464 be used where there is a very strong need to conserve disk space. This
465 abbreviated level of debug-info production can be used by specifying the
466 -g1 option on the compilation command line.
467
468 --------------------------------
469
470 As mentioned above, the GNU implementation of DWARF currently uses the DWARF
471 version 2 (draft) approach for inline functions (and inlined instances
472 thereof). This is used in preference to the version 1 approach because
473 (quite simply) the version 1 approach is highly brain-damaged and probably
474 unworkable.
475
476 --------------------------------
477
478
479 GNU DWARF Representation of GNU C Extensions to ANSI C
480 ------------------------------------------------------
481
482 The file dwarfout.c has been designed and implemented so as to provide
483 some reasonable DWARF representation for each and every declarative
484 construct which is accepted by the GNU C compiler. Since the GNU C
485 compiler accepts a superset of ANSI C, this means that there are some
486 cases in which the DWARF information produced by GCC must take some
487 liberties in improvising DWARF representations for declarations which
488 are only valid in (extended) GNU C.
489
490 In particular, GNU C provides at least three significant extensions to
491 ANSI C when it comes to declarations. These are (1) inline functions,
492 and (2) dynamic arrays, and (3) incomplete enum types. (See the GCC
493 manual for more information on these GNU extensions to ANSI C.) When
494 used, these GNU C extensions are represented (in the generated DWARF
495 output of GCC) in the most natural and intuitively obvious ways.
496
497 In the case of inline functions, the DWARF representation is exactly as
498 called for in the DWARF version 2 (draft) specification for an identical
499 function written in C++; i.e. we "reuse" the representation of inline
500 functions which has been defined for C++ to support this GNU C extension.
501
502 In the case of dynamic arrays, we use the most obvious representational
503 mechanism available; i.e. an array type in which the upper bound of
504 some dimension (usually the first and only dimension) is a variable
505 rather than a constant. (See the DWARF version 1 specification for more
506 details.)
507
508 In the case of incomplete enum types, such types are represented simply
509 as TAG_enumeration_type DIEs which DO NOT contain either AT_byte_size
510 attributes or AT_element_list attributes.
511
512 --------------------------------
513
514
515 Future Directions
516 -----------------
517
518 The codes, formats, and other paraphernalia necessary to provide proper
519 support for symbolic debugging for the C++ language are still being worked
520 on by the UI/PLSIG. The vast majority of the additions to DWARF which will
521 be needed to completely support C++ have already been hashed out and agreed
522 upon, but a few small issues (e.g. anonymous unions, access declarations)
523 are still being discussed. Also, we in the PLSIG are still discussing
524 whether or not we need to do anything special for C++ templates. (At this
525 time it is not yet clear whether we even need to do anything special for
526 these.)
527
528 With regard to FORTRAN, the UI/PLSIG has defined what is believed to be a
529 complete and sufficient set of codes and rules for adequately representing
530 all of FORTRAN 77, and most of Fortran 90 in DWARF. While some support for
531 this has been implemented in dwarfout.c, further implementation and testing
532 is needed.
533
534 GNU DWARF support for other languages (i.e. Pascal and Modula) is a moot
535 issue until there are GNU front-ends for these other languages.
536
537 As currently defined, DWARF only describes a (binary) language which can
538 be used to communicate symbolic debugging information from a compiler
539 through an assembler and a linker, to a debugger. There is no clear
540 specification of what processing should be (or must be) done by the
541 assembler and/or the linker. Fortunately, the role of the assembler
542 is easily inferred (by anyone knowledgeable about assemblers) just by
543 looking at examples of assembly-level DWARF code. Sadly though, the
544 allowable (or required) processing steps performed by a linker are
545 harder to infer and (perhaps) even harder to agree upon. There are
546 several forms of very useful `post-processing' steps which intelligent
547 linkers *could* (in theory) perform on object files containing DWARF,
548 but any and all such link-time transformations are currently both disallowed
549 and unspecified.
550
551 In particular, possible link-time transformations of DWARF code which could
552 provide significant benefits include (but are not limited to):
553
554 Commonization of duplicate DIEs obtained from multiple input
555 (object) files.
556
557 Cross-compilation type checking based upon DWARF type information
558 for objects and functions.
559
560 Other possible `compacting' transformations designed to save disk
561 space and to reduce linker & debugger I/O activity.
562
563 */
564
565 #include "config.h"
566 #include "system.h"
567 #include "coretypes.h"
568 #include "tm.h"
569
570 #ifdef DWARF_DEBUGGING_INFO
571 #include "dwarf.h"
572 #include "tree.h"
573 #include "flags.h"
574 #include "function.h"
575 #include "rtl.h"
576 #include "hard-reg-set.h"
577 #include "insn-config.h"
578 #include "reload.h"
579 #include "output.h"
580 #include "dwarf2asm.h"
581 #include "toplev.h"
582 #include "tm_p.h"
583 #include "debug.h"
584 #include "target.h"
585 #include "langhooks.h"
586
587 /* NOTE: In the comments in this file, many references are made to
588 so called "Debugging Information Entries". For the sake of brevity,
589 this term is abbreviated to `DIE' throughout the remainder of this
590 file. */
591
592 /* Note that the implementation of C++ support herein is (as yet) unfinished.
593 If you want to try to complete it, more power to you. */
594
595 /* How to start an assembler comment. */
596 #ifndef ASM_COMMENT_START
597 #define ASM_COMMENT_START ";#"
598 #endif
599
600 /* How to print out a register name. */
601 #ifndef PRINT_REG
602 #define PRINT_REG(RTX, CODE, FILE) \
603 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
604 #endif
605
606 /* Define a macro which returns nonzero for any tagged type which is
607 used (directly or indirectly) in the specification of either some
608 function's return type or some formal parameter of some function.
609 We use this macro when we are operating in "terse" mode to help us
610 know what tagged types have to be represented in Dwarf (even in
611 terse mode) and which ones don't.
612
613 A flag bit with this meaning really should be a part of the normal
614 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
615 for these nodes. For now, we have to just fake it. It it safe for
616 us to simply return zero for all complete tagged types (which will
617 get forced out anyway if they were used in the specification of some
618 formal or return type) and nonzero for all incomplete tagged types.
619 */
620
621 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
622
623 /* Define a macro which returns nonzero for a TYPE_DECL which was
624 implicitly generated for a tagged type.
625
626 Note that unlike the gcc front end (which generates a NULL named
627 TYPE_DECL node for each complete tagged type, each array type, and
628 each function type node created) the g++ front end generates a
629 _named_ TYPE_DECL node for each tagged type node created.
630 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
631 generate a DW_TAG_typedef DIE for them. */
632 #define TYPE_DECL_IS_STUB(decl) \
633 (DECL_NAME (decl) == NULL \
634 || (DECL_ARTIFICIAL (decl) \
635 && is_tagged_type (TREE_TYPE (decl)) \
636 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
637
638 /* Maximum size (in bytes) of an artificially generated label. */
639
640 #define MAX_ARTIFICIAL_LABEL_BYTES 30
641 \f
642 /* Structure to keep track of source filenames. */
643
644 struct filename_entry {
645 unsigned number;
646 const char * name;
647 };
648
649 typedef struct filename_entry filename_entry;
650
651 /* Pointer to an array of elements, each one having the structure above. */
652
653 static filename_entry *filename_table;
654
655 /* Total number of entries in the table (i.e. array) pointed to by
656 `filename_table'. This is the *total* and includes both used and
657 unused slots. */
658
659 static unsigned ft_entries_allocated;
660
661 /* Number of entries in the filename_table which are actually in use. */
662
663 static unsigned ft_entries;
664
665 /* Size (in elements) of increments by which we may expand the filename
666 table. Actually, a single hunk of space of this size should be enough
667 for most typical programs. */
668
669 #define FT_ENTRIES_INCREMENT 64
670
671 /* Local pointer to the name of the main input file. Initialized in
672 dwarfout_init. */
673
674 static const char *primary_filename;
675
676 /* Counter to generate unique names for DIEs. */
677
678 static unsigned next_unused_dienum = 1;
679
680 /* Number of the DIE which is currently being generated. */
681
682 static unsigned current_dienum;
683
684 /* Number to use for the special "pubname" label on the next DIE which
685 represents a function or data object defined in this compilation
686 unit which has "extern" linkage. */
687
688 static int next_pubname_number = 0;
689
690 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
691
692 /* Pointer to a dynamically allocated list of pre-reserved and still
693 pending sibling DIE numbers. Note that this list will grow as needed. */
694
695 static unsigned *pending_sibling_stack;
696
697 /* Counter to keep track of the number of pre-reserved and still pending
698 sibling DIE numbers. */
699
700 static unsigned pending_siblings;
701
702 /* The currently allocated size of the above list (expressed in number of
703 list elements). */
704
705 static unsigned pending_siblings_allocated;
706
707 /* Size (in elements) of increments by which we may expand the pending
708 sibling stack. Actually, a single hunk of space of this size should
709 be enough for most typical programs. */
710
711 #define PENDING_SIBLINGS_INCREMENT 64
712
713 /* Nonzero if we are performing our file-scope finalization pass and if
714 we should force out Dwarf descriptions of any and all file-scope
715 tagged types which are still incomplete types. */
716
717 static int finalizing = 0;
718
719 /* A pointer to the base of a list of pending types which we haven't
720 generated DIEs for yet, but which we will have to come back to
721 later on. */
722
723 static tree *pending_types_list;
724
725 /* Number of elements currently allocated for the pending_types_list. */
726
727 static unsigned pending_types_allocated;
728
729 /* Number of elements of pending_types_list currently in use. */
730
731 static unsigned pending_types;
732
733 /* Size (in elements) of increments by which we may expand the pending
734 types list. Actually, a single hunk of space of this size should
735 be enough for most typical programs. */
736
737 #define PENDING_TYPES_INCREMENT 64
738
739 /* A pointer to the base of a list of incomplete types which might be
740 completed at some later time. */
741
742 static tree *incomplete_types_list;
743
744 /* Number of elements currently allocated for the incomplete_types_list. */
745 static unsigned incomplete_types_allocated;
746
747 /* Number of elements of incomplete_types_list currently in use. */
748 static unsigned incomplete_types;
749
750 /* Size (in elements) of increments by which we may expand the incomplete
751 types list. Actually, a single hunk of space of this size should
752 be enough for most typical programs. */
753 #define INCOMPLETE_TYPES_INCREMENT 64
754
755 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
756 This is used in a hack to help us get the DIEs describing types of
757 formal parameters to come *after* all of the DIEs describing the formal
758 parameters themselves. That's necessary in order to be compatible
759 with what the brain-damaged svr4 SDB debugger requires. */
760
761 static tree fake_containing_scope;
762
763 /* A pointer to the ..._DECL node which we have most recently been working
764 on. We keep this around just in case something about it looks screwy
765 and we want to tell the user what the source coordinates for the actual
766 declaration are. */
767
768 static tree dwarf_last_decl;
769
770 /* A flag indicating that we are emitting the member declarations of a
771 class, so member functions and variables should not be entirely emitted.
772 This is a kludge to avoid passing a second argument to output_*_die. */
773
774 static int in_class;
775
776 /* Forward declarations for functions defined in this file. */
777
778 static void dwarfout_init PARAMS ((const char *));
779 static void dwarfout_finish PARAMS ((const char *));
780 static void dwarfout_define PARAMS ((unsigned int, const char *));
781 static void dwarfout_undef PARAMS ((unsigned int, const char *));
782 static void dwarfout_start_source_file PARAMS ((unsigned, const char *));
783 static void dwarfout_start_source_file_check PARAMS ((unsigned, const char *));
784 static void dwarfout_end_source_file PARAMS ((unsigned));
785 static void dwarfout_end_source_file_check PARAMS ((unsigned));
786 static void dwarfout_begin_block PARAMS ((unsigned, unsigned));
787 static void dwarfout_end_block PARAMS ((unsigned, unsigned));
788 static void dwarfout_end_epilogue PARAMS ((unsigned int, const char *));
789 static void dwarfout_source_line PARAMS ((unsigned int, const char *));
790 static void dwarfout_end_prologue PARAMS ((unsigned int, const char *));
791 static void dwarfout_end_function PARAMS ((unsigned int));
792 static void dwarfout_function_decl PARAMS ((tree));
793 static void dwarfout_global_decl PARAMS ((tree));
794 static void dwarfout_deferred_inline_function PARAMS ((tree));
795 static void dwarfout_file_scope_decl PARAMS ((tree , int));
796 static const char *dwarf_tag_name PARAMS ((unsigned));
797 static const char *dwarf_attr_name PARAMS ((unsigned));
798 static const char *dwarf_stack_op_name PARAMS ((unsigned));
799 static const char *dwarf_typemod_name PARAMS ((unsigned));
800 static const char *dwarf_fmt_byte_name PARAMS ((unsigned));
801 static const char *dwarf_fund_type_name PARAMS ((unsigned));
802 static tree decl_ultimate_origin PARAMS ((tree));
803 static tree block_ultimate_origin PARAMS ((tree));
804 static tree decl_class_context PARAMS ((tree));
805 #if 0
806 static void output_unsigned_leb128 PARAMS ((unsigned long));
807 static void output_signed_leb128 PARAMS ((long));
808 #endif
809 static int fundamental_type_code PARAMS ((tree));
810 static tree root_type_1 PARAMS ((tree, int));
811 static tree root_type PARAMS ((tree));
812 static void write_modifier_bytes_1 PARAMS ((tree, int, int, int));
813 static void write_modifier_bytes PARAMS ((tree, int, int));
814 static inline int type_is_fundamental PARAMS ((tree));
815 static void equate_decl_number_to_die_number PARAMS ((tree));
816 static inline void equate_type_number_to_die_number PARAMS ((tree));
817 static void output_reg_number PARAMS ((rtx));
818 static void output_mem_loc_descriptor PARAMS ((rtx));
819 static void output_loc_descriptor PARAMS ((rtx));
820 static void output_bound_representation PARAMS ((tree, unsigned, int));
821 static void output_enumeral_list PARAMS ((tree));
822 static inline HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
823 static inline tree field_type PARAMS ((tree));
824 static inline unsigned int simple_type_align_in_bits PARAMS ((tree));
825 static inline unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
826 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
827 static inline void sibling_attribute PARAMS ((void));
828 static void location_attribute PARAMS ((rtx));
829 static void data_member_location_attribute PARAMS ((tree));
830 static void const_value_attribute PARAMS ((rtx));
831 static void location_or_const_value_attribute PARAMS ((tree));
832 static inline void name_attribute PARAMS ((const char *));
833 static inline void fund_type_attribute PARAMS ((unsigned));
834 static void mod_fund_type_attribute PARAMS ((tree, int, int));
835 static inline void user_def_type_attribute PARAMS ((tree));
836 static void mod_u_d_type_attribute PARAMS ((tree, int, int));
837 #ifdef USE_ORDERING_ATTRIBUTE
838 static inline void ordering_attribute PARAMS ((unsigned));
839 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
840 static void subscript_data_attribute PARAMS ((tree));
841 static void byte_size_attribute PARAMS ((tree));
842 static inline void bit_offset_attribute PARAMS ((tree));
843 static inline void bit_size_attribute PARAMS ((tree));
844 static inline void element_list_attribute PARAMS ((tree));
845 static inline void stmt_list_attribute PARAMS ((const char *));
846 static inline void low_pc_attribute PARAMS ((const char *));
847 static inline void high_pc_attribute PARAMS ((const char *));
848 static inline void body_begin_attribute PARAMS ((const char *));
849 static inline void body_end_attribute PARAMS ((const char *));
850 static inline void language_attribute PARAMS ((unsigned));
851 static inline void member_attribute PARAMS ((tree));
852 #if 0
853 static inline void string_length_attribute PARAMS ((tree));
854 #endif
855 static inline void comp_dir_attribute PARAMS ((const char *));
856 static inline void sf_names_attribute PARAMS ((const char *));
857 static inline void src_info_attribute PARAMS ((const char *));
858 static inline void mac_info_attribute PARAMS ((const char *));
859 static inline void prototyped_attribute PARAMS ((tree));
860 static inline void producer_attribute PARAMS ((const char *));
861 static inline void inline_attribute PARAMS ((tree));
862 static inline void containing_type_attribute PARAMS ((tree));
863 static inline void abstract_origin_attribute PARAMS ((tree));
864 #ifdef DWARF_DECL_COORDINATES
865 static inline void src_coords_attribute PARAMS ((unsigned, unsigned));
866 #endif /* defined(DWARF_DECL_COORDINATES) */
867 static inline void pure_or_virtual_attribute PARAMS ((tree));
868 static void name_and_src_coords_attributes PARAMS ((tree));
869 static void type_attribute PARAMS ((tree, int, int));
870 static const char *type_tag PARAMS ((tree));
871 static inline void dienum_push PARAMS ((void));
872 static inline void dienum_pop PARAMS ((void));
873 static inline tree member_declared_type PARAMS ((tree));
874 static const char *function_start_label PARAMS ((tree));
875 static void output_array_type_die PARAMS ((void *));
876 static void output_set_type_die PARAMS ((void *));
877 #if 0
878 static void output_entry_point_die PARAMS ((void *));
879 #endif
880 static void output_inlined_enumeration_type_die PARAMS ((void *));
881 static void output_inlined_structure_type_die PARAMS ((void *));
882 static void output_inlined_union_type_die PARAMS ((void *));
883 static void output_enumeration_type_die PARAMS ((void *));
884 static void output_formal_parameter_die PARAMS ((void *));
885 static void output_global_subroutine_die PARAMS ((void *));
886 static void output_global_variable_die PARAMS ((void *));
887 static void output_label_die PARAMS ((void *));
888 static void output_lexical_block_die PARAMS ((void *));
889 static void output_inlined_subroutine_die PARAMS ((void *));
890 static void output_local_variable_die PARAMS ((void *));
891 static void output_member_die PARAMS ((void *));
892 #if 0
893 static void output_pointer_type_die PARAMS ((void *));
894 static void output_reference_type_die PARAMS ((void *));
895 #endif
896 static void output_ptr_to_mbr_type_die PARAMS ((void *));
897 static void output_compile_unit_die PARAMS ((void *));
898 static void output_string_type_die PARAMS ((void *));
899 static void output_inheritance_die PARAMS ((void *));
900 static void output_structure_type_die PARAMS ((void *));
901 static void output_local_subroutine_die PARAMS ((void *));
902 static void output_subroutine_type_die PARAMS ((void *));
903 static void output_typedef_die PARAMS ((void *));
904 static void output_union_type_die PARAMS ((void *));
905 static void output_unspecified_parameters_die PARAMS ((void *));
906 static void output_padded_null_die PARAMS ((void *));
907 static void output_die PARAMS ((void (*)(void *), void *));
908 static void end_sibling_chain PARAMS ((void));
909 static void output_formal_types PARAMS ((tree));
910 static void pend_type PARAMS ((tree));
911 static int type_ok_for_scope PARAMS ((tree, tree));
912 static void output_pending_types_for_scope PARAMS ((tree));
913 static void output_type PARAMS ((tree, tree));
914 static void output_tagged_type_instantiation PARAMS ((tree));
915 static void output_block PARAMS ((tree, int));
916 static void output_decls_for_scope PARAMS ((tree, int));
917 static void output_decl PARAMS ((tree, tree));
918 static void shuffle_filename_entry PARAMS ((filename_entry *));
919 static void generate_new_sfname_entry PARAMS ((void));
920 static unsigned lookup_filename PARAMS ((const char *));
921 static void generate_srcinfo_entry PARAMS ((unsigned, unsigned));
922 static void generate_macinfo_entry PARAMS ((unsigned int, rtx,
923 const char *));
924 static int is_pseudo_reg PARAMS ((rtx));
925 static tree type_main_variant PARAMS ((tree));
926 static int is_tagged_type PARAMS ((tree));
927 static int is_redundant_typedef PARAMS ((tree));
928 static void add_incomplete_type PARAMS ((tree));
929 static void retry_incomplete_types PARAMS ((void));
930 \f
931 /* Definitions of defaults for assembler-dependent names of various
932 pseudo-ops and section names.
933
934 Theses may be overridden in your tm.h file (if necessary) for your
935 particular assembler. The default values provided here correspond to
936 what is expected by "standard" AT&T System V.4 assemblers. */
937
938 #ifndef FILE_ASM_OP
939 #define FILE_ASM_OP "\t.file\t"
940 #endif
941 #ifndef SET_ASM_OP
942 #define SET_ASM_OP "\t.set\t"
943 #endif
944
945 /* Pseudo-ops for pushing the current section onto the section stack (and
946 simultaneously changing to a new section) and for poping back to the
947 section we were in immediately before this one. Note that most svr4
948 assemblers only maintain a one level stack... you can push all the
949 sections you want, but you can only pop out one level. (The sparc
950 svr4 assembler is an exception to this general rule.) That's
951 OK because we only use at most one level of the section stack herein. */
952
953 #ifndef PUSHSECTION_ASM_OP
954 #define PUSHSECTION_ASM_OP "\t.section\t"
955 #endif
956 #ifndef POPSECTION_ASM_OP
957 #define POPSECTION_ASM_OP "\t.previous"
958 #endif
959
960 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
961 to print the PUSHSECTION_ASM_OP and the section name. The default here
962 works for almost all svr4 assemblers, except for the sparc, where the
963 section name must be enclosed in double quotes. (See sparcv4.h.) */
964
965 #ifndef PUSHSECTION_FORMAT
966 #define PUSHSECTION_FORMAT "%s%s\n"
967 #endif
968
969 #ifndef DEBUG_SECTION
970 #define DEBUG_SECTION ".debug"
971 #endif
972 #ifndef LINE_SECTION
973 #define LINE_SECTION ".line"
974 #endif
975 #ifndef DEBUG_SFNAMES_SECTION
976 #define DEBUG_SFNAMES_SECTION ".debug_sfnames"
977 #endif
978 #ifndef DEBUG_SRCINFO_SECTION
979 #define DEBUG_SRCINFO_SECTION ".debug_srcinfo"
980 #endif
981 #ifndef DEBUG_MACINFO_SECTION
982 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
983 #endif
984 #ifndef DEBUG_PUBNAMES_SECTION
985 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
986 #endif
987 #ifndef DEBUG_ARANGES_SECTION
988 #define DEBUG_ARANGES_SECTION ".debug_aranges"
989 #endif
990 #ifndef TEXT_SECTION_NAME
991 #define TEXT_SECTION_NAME ".text"
992 #endif
993 #ifndef DATA_SECTION_NAME
994 #define DATA_SECTION_NAME ".data"
995 #endif
996 #ifndef DATA1_SECTION_NAME
997 #define DATA1_SECTION_NAME ".data1"
998 #endif
999 #ifndef RODATA_SECTION_NAME
1000 #define RODATA_SECTION_NAME ".rodata"
1001 #endif
1002 #ifndef RODATA1_SECTION_NAME
1003 #define RODATA1_SECTION_NAME ".rodata1"
1004 #endif
1005 #ifndef BSS_SECTION_NAME
1006 #define BSS_SECTION_NAME ".bss"
1007 #endif
1008 \f
1009 /* Definitions of defaults for formats and names of various special
1010 (artificial) labels which may be generated within this file (when
1011 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
1012
1013 If necessary, these may be overridden from within your tm.h file,
1014 but typically, you should never need to override these.
1015
1016 These labels have been hacked (temporarily) so that they all begin with
1017 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
1018 stock m88k/svr4 assembler, both of which need to see .L at the start of
1019 a label in order to prevent that label from going into the linker symbol
1020 table). When I get time, I'll have to fix this the right way so that we
1021 will use ASM_GENERATE_INTERNAL_LABEL and (*targetm.asm_out.internal_label) herein,
1022 but that will require a rather massive set of changes. For the moment,
1023 the following definitions out to produce the right results for all svr4
1024 and svr3 assemblers. -- rfg
1025 */
1026
1027 #ifndef TEXT_BEGIN_LABEL
1028 #define TEXT_BEGIN_LABEL "*.L_text_b"
1029 #endif
1030 #ifndef TEXT_END_LABEL
1031 #define TEXT_END_LABEL "*.L_text_e"
1032 #endif
1033
1034 #ifndef DATA_BEGIN_LABEL
1035 #define DATA_BEGIN_LABEL "*.L_data_b"
1036 #endif
1037 #ifndef DATA_END_LABEL
1038 #define DATA_END_LABEL "*.L_data_e"
1039 #endif
1040
1041 #ifndef DATA1_BEGIN_LABEL
1042 #define DATA1_BEGIN_LABEL "*.L_data1_b"
1043 #endif
1044 #ifndef DATA1_END_LABEL
1045 #define DATA1_END_LABEL "*.L_data1_e"
1046 #endif
1047
1048 #ifndef RODATA_BEGIN_LABEL
1049 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
1050 #endif
1051 #ifndef RODATA_END_LABEL
1052 #define RODATA_END_LABEL "*.L_rodata_e"
1053 #endif
1054
1055 #ifndef RODATA1_BEGIN_LABEL
1056 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
1057 #endif
1058 #ifndef RODATA1_END_LABEL
1059 #define RODATA1_END_LABEL "*.L_rodata1_e"
1060 #endif
1061
1062 #ifndef BSS_BEGIN_LABEL
1063 #define BSS_BEGIN_LABEL "*.L_bss_b"
1064 #endif
1065 #ifndef BSS_END_LABEL
1066 #define BSS_END_LABEL "*.L_bss_e"
1067 #endif
1068
1069 #ifndef LINE_BEGIN_LABEL
1070 #define LINE_BEGIN_LABEL "*.L_line_b"
1071 #endif
1072 #ifndef LINE_LAST_ENTRY_LABEL
1073 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
1074 #endif
1075 #ifndef LINE_END_LABEL
1076 #define LINE_END_LABEL "*.L_line_e"
1077 #endif
1078
1079 #ifndef DEBUG_BEGIN_LABEL
1080 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
1081 #endif
1082 #ifndef SFNAMES_BEGIN_LABEL
1083 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
1084 #endif
1085 #ifndef SRCINFO_BEGIN_LABEL
1086 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
1087 #endif
1088 #ifndef MACINFO_BEGIN_LABEL
1089 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
1090 #endif
1091
1092 #ifndef DEBUG_ARANGES_BEGIN_LABEL
1093 #define DEBUG_ARANGES_BEGIN_LABEL "*.L_debug_aranges_begin"
1094 #endif
1095 #ifndef DEBUG_ARANGES_END_LABEL
1096 #define DEBUG_ARANGES_END_LABEL "*.L_debug_aranges_end"
1097 #endif
1098
1099 #ifndef DIE_BEGIN_LABEL_FMT
1100 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
1101 #endif
1102 #ifndef DIE_END_LABEL_FMT
1103 #define DIE_END_LABEL_FMT "*.L_D%u_e"
1104 #endif
1105 #ifndef PUB_DIE_LABEL_FMT
1106 #define PUB_DIE_LABEL_FMT "*.L_P%u"
1107 #endif
1108 #ifndef BLOCK_BEGIN_LABEL_FMT
1109 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
1110 #endif
1111 #ifndef BLOCK_END_LABEL_FMT
1112 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
1113 #endif
1114 #ifndef SS_BEGIN_LABEL_FMT
1115 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
1116 #endif
1117 #ifndef SS_END_LABEL_FMT
1118 #define SS_END_LABEL_FMT "*.L_s%u_e"
1119 #endif
1120 #ifndef EE_BEGIN_LABEL_FMT
1121 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
1122 #endif
1123 #ifndef EE_END_LABEL_FMT
1124 #define EE_END_LABEL_FMT "*.L_e%u_e"
1125 #endif
1126 #ifndef MT_BEGIN_LABEL_FMT
1127 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
1128 #endif
1129 #ifndef MT_END_LABEL_FMT
1130 #define MT_END_LABEL_FMT "*.L_t%u_e"
1131 #endif
1132 #ifndef LOC_BEGIN_LABEL_FMT
1133 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
1134 #endif
1135 #ifndef LOC_END_LABEL_FMT
1136 #define LOC_END_LABEL_FMT "*.L_l%u_e"
1137 #endif
1138 #ifndef BOUND_BEGIN_LABEL_FMT
1139 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
1140 #endif
1141 #ifndef BOUND_END_LABEL_FMT
1142 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
1143 #endif
1144 #ifndef BODY_BEGIN_LABEL_FMT
1145 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
1146 #endif
1147 #ifndef BODY_END_LABEL_FMT
1148 #define BODY_END_LABEL_FMT "*.L_b%u_e"
1149 #endif
1150 #ifndef FUNC_END_LABEL_FMT
1151 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
1152 #endif
1153 #ifndef TYPE_NAME_FMT
1154 #define TYPE_NAME_FMT "*.L_T%u"
1155 #endif
1156 #ifndef DECL_NAME_FMT
1157 #define DECL_NAME_FMT "*.L_E%u"
1158 #endif
1159 #ifndef LINE_CODE_LABEL_FMT
1160 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
1161 #endif
1162 #ifndef SFNAMES_ENTRY_LABEL_FMT
1163 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
1164 #endif
1165 #ifndef LINE_ENTRY_LABEL_FMT
1166 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
1167 #endif
1168 \f
1169 /* Definitions of defaults for various types of primitive assembly language
1170 output operations.
1171
1172 If necessary, these may be overridden from within your tm.h file,
1173 but typically, you shouldn't need to override these. */
1174
1175 #ifndef ASM_OUTPUT_PUSH_SECTION
1176 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
1177 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
1178 #endif
1179
1180 #ifndef ASM_OUTPUT_POP_SECTION
1181 #define ASM_OUTPUT_POP_SECTION(FILE) \
1182 fprintf ((FILE), "%s\n", POPSECTION_ASM_OP)
1183 #endif
1184
1185 #ifndef ASM_OUTPUT_DWARF_DELTA2
1186 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
1187 dw2_asm_output_delta (2, LABEL1, LABEL2, NULL)
1188 #endif
1189
1190 #ifndef ASM_OUTPUT_DWARF_DELTA4
1191 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
1192 dw2_asm_output_delta (4, LABEL1, LABEL2, NULL)
1193 #endif
1194
1195 #ifndef ASM_OUTPUT_DWARF_TAG
1196 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
1197 dw2_asm_output_data (2, TAG, "%s", dwarf_tag_name (TAG));
1198 #endif
1199
1200 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
1201 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
1202 dw2_asm_output_data (2, ATTR, "%s", dwarf_attr_name (ATTR))
1203 #endif
1204
1205 #ifndef ASM_OUTPUT_DWARF_STACK_OP
1206 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
1207 dw2_asm_output_data (1, OP, "%s", dwarf_stack_op_name (OP))
1208 #endif
1209
1210 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
1211 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
1212 dw2_asm_output_data (2, FT, "%s", dwarf_fund_type_name (FT))
1213 #endif
1214
1215 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
1216 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
1217 dw2_asm_output_data (1, FMT, "%s", dwarf_fmt_byte_name (FMT));
1218 #endif
1219
1220 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
1221 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
1222 dw2_asm_output_data (1, MOD, "%s", dwarf_typemod_name (MOD));
1223 #endif
1224 \f
1225 #ifndef ASM_OUTPUT_DWARF_ADDR
1226 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
1227 dw2_asm_output_addr (4, LABEL, NULL)
1228 #endif
1229
1230 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
1231 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
1232 dw2_asm_output_addr_rtx (4, RTX, NULL)
1233 #endif
1234
1235 #ifndef ASM_OUTPUT_DWARF_REF
1236 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
1237 dw2_asm_output_addr (4, LABEL, NULL)
1238 #endif
1239
1240 #ifndef ASM_OUTPUT_DWARF_DATA1
1241 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
1242 dw2_asm_output_data (1, VALUE, NULL)
1243 #endif
1244
1245 #ifndef ASM_OUTPUT_DWARF_DATA2
1246 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
1247 dw2_asm_output_data (2, VALUE, NULL)
1248 #endif
1249
1250 #ifndef ASM_OUTPUT_DWARF_DATA4
1251 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
1252 dw2_asm_output_data (4, VALUE, NULL)
1253 #endif
1254
1255 #ifndef ASM_OUTPUT_DWARF_DATA8
1256 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
1257 dw2_asm_output_data (8, VALUE, NULL)
1258 #endif
1259
1260 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
1261 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
1262 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
1263 defined, we call it, then issue the line feed. If not, we supply a
1264 default definition of calling ASM_OUTPUT_ASCII */
1265
1266 #ifndef ASM_OUTPUT_DWARF_STRING
1267 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1268 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
1269 #else
1270 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1271 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
1272 #endif
1273
1274 \f
1275 /* The debug hooks structure. */
1276 const struct gcc_debug_hooks dwarf_debug_hooks =
1277 {
1278 dwarfout_init,
1279 dwarfout_finish,
1280 dwarfout_define,
1281 dwarfout_undef,
1282 dwarfout_start_source_file_check,
1283 dwarfout_end_source_file_check,
1284 dwarfout_begin_block,
1285 dwarfout_end_block,
1286 debug_true_tree, /* ignore_block */
1287 dwarfout_source_line, /* source_line */
1288 dwarfout_source_line, /* begin_prologue */
1289 dwarfout_end_prologue,
1290 dwarfout_end_epilogue,
1291 debug_nothing_tree, /* begin_function */
1292 dwarfout_end_function,
1293 dwarfout_function_decl,
1294 dwarfout_global_decl,
1295 dwarfout_deferred_inline_function,
1296 debug_nothing_tree, /* outlining_inline_function */
1297 debug_nothing_rtx, /* label */
1298 debug_nothing_int /* handle_pch */
1299 };
1300 \f
1301 /************************ general utility functions **************************/
1302
1303 static inline int
1304 is_pseudo_reg (rtl)
1305 rtx rtl;
1306 {
1307 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
1308 || ((GET_CODE (rtl) == SUBREG)
1309 && (REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER)));
1310 }
1311
1312 static inline tree
1313 type_main_variant (type)
1314 tree type;
1315 {
1316 type = TYPE_MAIN_VARIANT (type);
1317
1318 /* There really should be only one main variant among any group of variants
1319 of a given type (and all of the MAIN_VARIANT values for all members of
1320 the group should point to that one type) but sometimes the C front-end
1321 messes this up for array types, so we work around that bug here. */
1322
1323 if (TREE_CODE (type) == ARRAY_TYPE)
1324 {
1325 while (type != TYPE_MAIN_VARIANT (type))
1326 type = TYPE_MAIN_VARIANT (type);
1327 }
1328
1329 return type;
1330 }
1331
1332 /* Return nonzero if the given type node represents a tagged type. */
1333
1334 static inline int
1335 is_tagged_type (type)
1336 tree type;
1337 {
1338 enum tree_code code = TREE_CODE (type);
1339
1340 return (code == RECORD_TYPE || code == UNION_TYPE
1341 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
1342 }
1343
1344 static const char *
1345 dwarf_tag_name (tag)
1346 unsigned tag;
1347 {
1348 switch (tag)
1349 {
1350 case TAG_padding: return "TAG_padding";
1351 case TAG_array_type: return "TAG_array_type";
1352 case TAG_class_type: return "TAG_class_type";
1353 case TAG_entry_point: return "TAG_entry_point";
1354 case TAG_enumeration_type: return "TAG_enumeration_type";
1355 case TAG_formal_parameter: return "TAG_formal_parameter";
1356 case TAG_global_subroutine: return "TAG_global_subroutine";
1357 case TAG_global_variable: return "TAG_global_variable";
1358 case TAG_label: return "TAG_label";
1359 case TAG_lexical_block: return "TAG_lexical_block";
1360 case TAG_local_variable: return "TAG_local_variable";
1361 case TAG_member: return "TAG_member";
1362 case TAG_pointer_type: return "TAG_pointer_type";
1363 case TAG_reference_type: return "TAG_reference_type";
1364 case TAG_compile_unit: return "TAG_compile_unit";
1365 case TAG_string_type: return "TAG_string_type";
1366 case TAG_structure_type: return "TAG_structure_type";
1367 case TAG_subroutine: return "TAG_subroutine";
1368 case TAG_subroutine_type: return "TAG_subroutine_type";
1369 case TAG_typedef: return "TAG_typedef";
1370 case TAG_union_type: return "TAG_union_type";
1371 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
1372 case TAG_variant: return "TAG_variant";
1373 case TAG_common_block: return "TAG_common_block";
1374 case TAG_common_inclusion: return "TAG_common_inclusion";
1375 case TAG_inheritance: return "TAG_inheritance";
1376 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
1377 case TAG_module: return "TAG_module";
1378 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
1379 case TAG_set_type: return "TAG_set_type";
1380 case TAG_subrange_type: return "TAG_subrange_type";
1381 case TAG_with_stmt: return "TAG_with_stmt";
1382
1383 /* GNU extensions. */
1384
1385 case TAG_format_label: return "TAG_format_label";
1386 case TAG_namelist: return "TAG_namelist";
1387 case TAG_function_template: return "TAG_function_template";
1388 case TAG_class_template: return "TAG_class_template";
1389
1390 default: return "TAG_<unknown>";
1391 }
1392 }
1393
1394 static const char *
1395 dwarf_attr_name (attr)
1396 unsigned attr;
1397 {
1398 switch (attr)
1399 {
1400 case AT_sibling: return "AT_sibling";
1401 case AT_location: return "AT_location";
1402 case AT_name: return "AT_name";
1403 case AT_fund_type: return "AT_fund_type";
1404 case AT_mod_fund_type: return "AT_mod_fund_type";
1405 case AT_user_def_type: return "AT_user_def_type";
1406 case AT_mod_u_d_type: return "AT_mod_u_d_type";
1407 case AT_ordering: return "AT_ordering";
1408 case AT_subscr_data: return "AT_subscr_data";
1409 case AT_byte_size: return "AT_byte_size";
1410 case AT_bit_offset: return "AT_bit_offset";
1411 case AT_bit_size: return "AT_bit_size";
1412 case AT_element_list: return "AT_element_list";
1413 case AT_stmt_list: return "AT_stmt_list";
1414 case AT_low_pc: return "AT_low_pc";
1415 case AT_high_pc: return "AT_high_pc";
1416 case AT_language: return "AT_language";
1417 case AT_member: return "AT_member";
1418 case AT_discr: return "AT_discr";
1419 case AT_discr_value: return "AT_discr_value";
1420 case AT_string_length: return "AT_string_length";
1421 case AT_common_reference: return "AT_common_reference";
1422 case AT_comp_dir: return "AT_comp_dir";
1423 case AT_const_value_string: return "AT_const_value_string";
1424 case AT_const_value_data2: return "AT_const_value_data2";
1425 case AT_const_value_data4: return "AT_const_value_data4";
1426 case AT_const_value_data8: return "AT_const_value_data8";
1427 case AT_const_value_block2: return "AT_const_value_block2";
1428 case AT_const_value_block4: return "AT_const_value_block4";
1429 case AT_containing_type: return "AT_containing_type";
1430 case AT_default_value_addr: return "AT_default_value_addr";
1431 case AT_default_value_data2: return "AT_default_value_data2";
1432 case AT_default_value_data4: return "AT_default_value_data4";
1433 case AT_default_value_data8: return "AT_default_value_data8";
1434 case AT_default_value_string: return "AT_default_value_string";
1435 case AT_friends: return "AT_friends";
1436 case AT_inline: return "AT_inline";
1437 case AT_is_optional: return "AT_is_optional";
1438 case AT_lower_bound_ref: return "AT_lower_bound_ref";
1439 case AT_lower_bound_data2: return "AT_lower_bound_data2";
1440 case AT_lower_bound_data4: return "AT_lower_bound_data4";
1441 case AT_lower_bound_data8: return "AT_lower_bound_data8";
1442 case AT_private: return "AT_private";
1443 case AT_producer: return "AT_producer";
1444 case AT_program: return "AT_program";
1445 case AT_protected: return "AT_protected";
1446 case AT_prototyped: return "AT_prototyped";
1447 case AT_public: return "AT_public";
1448 case AT_pure_virtual: return "AT_pure_virtual";
1449 case AT_return_addr: return "AT_return_addr";
1450 case AT_abstract_origin: return "AT_abstract_origin";
1451 case AT_start_scope: return "AT_start_scope";
1452 case AT_stride_size: return "AT_stride_size";
1453 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1454 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1455 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1456 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1457 case AT_virtual: return "AT_virtual";
1458
1459 /* GNU extensions */
1460
1461 case AT_sf_names: return "AT_sf_names";
1462 case AT_src_info: return "AT_src_info";
1463 case AT_mac_info: return "AT_mac_info";
1464 case AT_src_coords: return "AT_src_coords";
1465 case AT_body_begin: return "AT_body_begin";
1466 case AT_body_end: return "AT_body_end";
1467
1468 default: return "AT_<unknown>";
1469 }
1470 }
1471
1472 static const char *
1473 dwarf_stack_op_name (op)
1474 unsigned op;
1475 {
1476 switch (op)
1477 {
1478 case OP_REG: return "OP_REG";
1479 case OP_BASEREG: return "OP_BASEREG";
1480 case OP_ADDR: return "OP_ADDR";
1481 case OP_CONST: return "OP_CONST";
1482 case OP_DEREF2: return "OP_DEREF2";
1483 case OP_DEREF4: return "OP_DEREF4";
1484 case OP_ADD: return "OP_ADD";
1485 default: return "OP_<unknown>";
1486 }
1487 }
1488
1489 static const char *
1490 dwarf_typemod_name (mod)
1491 unsigned mod;
1492 {
1493 switch (mod)
1494 {
1495 case MOD_pointer_to: return "MOD_pointer_to";
1496 case MOD_reference_to: return "MOD_reference_to";
1497 case MOD_const: return "MOD_const";
1498 case MOD_volatile: return "MOD_volatile";
1499 default: return "MOD_<unknown>";
1500 }
1501 }
1502
1503 static const char *
1504 dwarf_fmt_byte_name (fmt)
1505 unsigned fmt;
1506 {
1507 switch (fmt)
1508 {
1509 case FMT_FT_C_C: return "FMT_FT_C_C";
1510 case FMT_FT_C_X: return "FMT_FT_C_X";
1511 case FMT_FT_X_C: return "FMT_FT_X_C";
1512 case FMT_FT_X_X: return "FMT_FT_X_X";
1513 case FMT_UT_C_C: return "FMT_UT_C_C";
1514 case FMT_UT_C_X: return "FMT_UT_C_X";
1515 case FMT_UT_X_C: return "FMT_UT_X_C";
1516 case FMT_UT_X_X: return "FMT_UT_X_X";
1517 case FMT_ET: return "FMT_ET";
1518 default: return "FMT_<unknown>";
1519 }
1520 }
1521
1522 static const char *
1523 dwarf_fund_type_name (ft)
1524 unsigned ft;
1525 {
1526 switch (ft)
1527 {
1528 case FT_char: return "FT_char";
1529 case FT_signed_char: return "FT_signed_char";
1530 case FT_unsigned_char: return "FT_unsigned_char";
1531 case FT_short: return "FT_short";
1532 case FT_signed_short: return "FT_signed_short";
1533 case FT_unsigned_short: return "FT_unsigned_short";
1534 case FT_integer: return "FT_integer";
1535 case FT_signed_integer: return "FT_signed_integer";
1536 case FT_unsigned_integer: return "FT_unsigned_integer";
1537 case FT_long: return "FT_long";
1538 case FT_signed_long: return "FT_signed_long";
1539 case FT_unsigned_long: return "FT_unsigned_long";
1540 case FT_pointer: return "FT_pointer";
1541 case FT_float: return "FT_float";
1542 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1543 case FT_ext_prec_float: return "FT_ext_prec_float";
1544 case FT_complex: return "FT_complex";
1545 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1546 case FT_void: return "FT_void";
1547 case FT_boolean: return "FT_boolean";
1548 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1549 case FT_label: return "FT_label";
1550
1551 /* GNU extensions. */
1552
1553 case FT_long_long: return "FT_long_long";
1554 case FT_signed_long_long: return "FT_signed_long_long";
1555 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1556
1557 case FT_int8: return "FT_int8";
1558 case FT_signed_int8: return "FT_signed_int8";
1559 case FT_unsigned_int8: return "FT_unsigned_int8";
1560 case FT_int16: return "FT_int16";
1561 case FT_signed_int16: return "FT_signed_int16";
1562 case FT_unsigned_int16: return "FT_unsigned_int16";
1563 case FT_int32: return "FT_int32";
1564 case FT_signed_int32: return "FT_signed_int32";
1565 case FT_unsigned_int32: return "FT_unsigned_int32";
1566 case FT_int64: return "FT_int64";
1567 case FT_signed_int64: return "FT_signed_int64";
1568 case FT_unsigned_int64: return "FT_unsigned_int64";
1569 case FT_int128: return "FT_int128";
1570 case FT_signed_int128: return "FT_signed_int128";
1571 case FT_unsigned_int128: return "FT_unsigned_int128";
1572
1573 case FT_real32: return "FT_real32";
1574 case FT_real64: return "FT_real64";
1575 case FT_real96: return "FT_real96";
1576 case FT_real128: return "FT_real128";
1577
1578 default: return "FT_<unknown>";
1579 }
1580 }
1581
1582 /* Determine the "ultimate origin" of a decl. The decl may be an
1583 inlined instance of an inlined instance of a decl which is local
1584 to an inline function, so we have to trace all of the way back
1585 through the origin chain to find out what sort of node actually
1586 served as the original seed for the given block. */
1587
1588 static tree
1589 decl_ultimate_origin (decl)
1590 tree decl;
1591 {
1592 #ifdef ENABLE_CHECKING
1593 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1594 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1595 most distant ancestor, this should never happen. */
1596 abort ();
1597 #endif
1598
1599 return DECL_ABSTRACT_ORIGIN (decl);
1600 }
1601
1602 /* Determine the "ultimate origin" of a block. The block may be an
1603 inlined instance of an inlined instance of a block which is local
1604 to an inline function, so we have to trace all of the way back
1605 through the origin chain to find out what sort of node actually
1606 served as the original seed for the given block. */
1607
1608 static tree
1609 block_ultimate_origin (block)
1610 tree block;
1611 {
1612 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1613
1614 if (immediate_origin == NULL)
1615 return NULL;
1616 else
1617 {
1618 tree ret_val;
1619 tree lookahead = immediate_origin;
1620
1621 do
1622 {
1623 ret_val = lookahead;
1624 lookahead = (TREE_CODE (ret_val) == BLOCK)
1625 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1626 : NULL;
1627 }
1628 while (lookahead != NULL && lookahead != ret_val);
1629 return ret_val;
1630 }
1631 }
1632
1633 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1634 of a virtual function may refer to a base class, so we check the 'this'
1635 parameter. */
1636
1637 static tree
1638 decl_class_context (decl)
1639 tree decl;
1640 {
1641 tree context = NULL_TREE;
1642 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1643 context = DECL_CONTEXT (decl);
1644 else
1645 context = TYPE_MAIN_VARIANT
1646 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1647
1648 if (context && !TYPE_P (context))
1649 context = NULL_TREE;
1650
1651 return context;
1652 }
1653
1654 #if 0
1655 static void
1656 output_unsigned_leb128 (value)
1657 unsigned long value;
1658 {
1659 unsigned long orig_value = value;
1660
1661 do
1662 {
1663 unsigned byte = (value & 0x7f);
1664
1665 value >>= 7;
1666 if (value != 0) /* more bytes to follow */
1667 byte |= 0x80;
1668 dw2_asm_output_data (1, byte, "\t%s ULEB128 number - value = %lu",
1669 orig_value);
1670 }
1671 while (value != 0);
1672 }
1673
1674 static void
1675 output_signed_leb128 (value)
1676 long value;
1677 {
1678 long orig_value = value;
1679 int negative = (value < 0);
1680 int more;
1681
1682 do
1683 {
1684 unsigned byte = (value & 0x7f);
1685
1686 value >>= 7;
1687 if (negative)
1688 value |= 0xfe000000; /* manually sign extend */
1689 if (((value == 0) && ((byte & 0x40) == 0))
1690 || ((value == -1) && ((byte & 0x40) == 1)))
1691 more = 0;
1692 else
1693 {
1694 byte |= 0x80;
1695 more = 1;
1696 }
1697 dw2_asm_output_data (1, byte, "\t%s SLEB128 number - value = %ld",
1698 orig_value);
1699 }
1700 while (more);
1701 }
1702 #endif
1703 \f
1704 /**************** utility functions for attribute functions ******************/
1705
1706 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1707 type code for the given type.
1708
1709 This routine must only be called for GCC type nodes that correspond to
1710 Dwarf fundamental types.
1711
1712 The current Dwarf draft specification calls for Dwarf fundamental types
1713 to accurately reflect the fact that a given type was either a "plain"
1714 integral type or an explicitly "signed" integral type. Unfortunately,
1715 we can't always do this, because GCC may already have thrown away the
1716 information about the precise way in which the type was originally
1717 specified, as in:
1718
1719 typedef signed int my_type;
1720
1721 struct s { my_type f; };
1722
1723 Since we may be stuck here without enough information to do exactly
1724 what is called for in the Dwarf draft specification, we do the best
1725 that we can under the circumstances and always use the "plain" integral
1726 fundamental type codes for int, short, and long types. That's probably
1727 good enough. The additional accuracy called for in the current DWARF
1728 draft specification is probably never even useful in practice. */
1729
1730 static int
1731 fundamental_type_code (type)
1732 tree type;
1733 {
1734 if (TREE_CODE (type) == ERROR_MARK)
1735 return 0;
1736
1737 switch (TREE_CODE (type))
1738 {
1739 case ERROR_MARK:
1740 return FT_void;
1741
1742 case VOID_TYPE:
1743 return FT_void;
1744
1745 case INTEGER_TYPE:
1746 /* Carefully distinguish all the standard types of C,
1747 without messing up if the language is not C.
1748 Note that we check only for the names that contain spaces;
1749 other names might occur by coincidence in other languages. */
1750 if (TYPE_NAME (type) != 0
1751 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1752 && DECL_NAME (TYPE_NAME (type)) != 0
1753 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1754 {
1755 const char *const name =
1756 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1757
1758 if (!strcmp (name, "unsigned char"))
1759 return FT_unsigned_char;
1760 if (!strcmp (name, "signed char"))
1761 return FT_signed_char;
1762 if (!strcmp (name, "unsigned int"))
1763 return FT_unsigned_integer;
1764 if (!strcmp (name, "short int"))
1765 return FT_short;
1766 if (!strcmp (name, "short unsigned int"))
1767 return FT_unsigned_short;
1768 if (!strcmp (name, "long int"))
1769 return FT_long;
1770 if (!strcmp (name, "long unsigned int"))
1771 return FT_unsigned_long;
1772 if (!strcmp (name, "long long int"))
1773 return FT_long_long; /* Not grok'ed by svr4 SDB */
1774 if (!strcmp (name, "long long unsigned int"))
1775 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1776 }
1777
1778 /* Most integer types will be sorted out above, however, for the
1779 sake of special `array index' integer types, the following code
1780 is also provided. */
1781
1782 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1783 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1784
1785 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1786 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1787
1788 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1789 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1790
1791 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1792 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1793
1794 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1795 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1796
1797 if (TYPE_MODE (type) == TImode)
1798 return (TREE_UNSIGNED (type) ? FT_unsigned_int128 : FT_int128);
1799
1800 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1801 if (TYPE_PRECISION (type) == 1)
1802 return FT_boolean;
1803
1804 abort ();
1805
1806 case REAL_TYPE:
1807 /* Carefully distinguish all the standard types of C,
1808 without messing up if the language is not C. */
1809 if (TYPE_NAME (type) != 0
1810 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1811 && DECL_NAME (TYPE_NAME (type)) != 0
1812 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1813 {
1814 const char *const name =
1815 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1816
1817 /* Note that here we can run afoul of a serious bug in "classic"
1818 svr4 SDB debuggers. They don't seem to understand the
1819 FT_ext_prec_float type (even though they should). */
1820
1821 if (!strcmp (name, "long double"))
1822 return FT_ext_prec_float;
1823 }
1824
1825 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1826 {
1827 /* On the SH, when compiling with -m3e or -m4-single-only, both
1828 float and double are 32 bits. But since the debugger doesn't
1829 know about the subtarget, it always thinks double is 64 bits.
1830 So we have to tell the debugger that the type is float to
1831 make the output of the 'print' command etc. readable. */
1832 if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
1833 return FT_float;
1834 return FT_dbl_prec_float;
1835 }
1836 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1837 return FT_float;
1838
1839 /* Note that here we can run afoul of a serious bug in "classic"
1840 svr4 SDB debuggers. They don't seem to understand the
1841 FT_ext_prec_float type (even though they should). */
1842
1843 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1844 return FT_ext_prec_float;
1845 abort ();
1846
1847 case COMPLEX_TYPE:
1848 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1849
1850 case CHAR_TYPE:
1851 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1852
1853 case BOOLEAN_TYPE:
1854 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1855
1856 default:
1857 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1858 }
1859 return 0;
1860 }
1861 \f
1862 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1863 the Dwarf "root" type for the given input type. The Dwarf "root" type
1864 of a given type is generally the same as the given type, except that if
1865 the given type is a pointer or reference type, then the root type of
1866 the given type is the root type of the "basis" type for the pointer or
1867 reference type. (This definition of the "root" type is recursive.)
1868 Also, the root type of a `const' qualified type or a `volatile'
1869 qualified type is the root type of the given type without the
1870 qualifiers. */
1871
1872 static tree
1873 root_type_1 (type, count)
1874 tree type;
1875 int count;
1876 {
1877 /* Give up after searching 1000 levels, in case this is a recursive
1878 pointer type. Such types are possible in Ada, but it is not possible
1879 to represent them in DWARF1 debug info. */
1880 if (count > 1000)
1881 return error_mark_node;
1882
1883 switch (TREE_CODE (type))
1884 {
1885 case ERROR_MARK:
1886 return error_mark_node;
1887
1888 case POINTER_TYPE:
1889 case REFERENCE_TYPE:
1890 return root_type_1 (TREE_TYPE (type), count+1);
1891
1892 default:
1893 return type;
1894 }
1895 }
1896
1897 static tree
1898 root_type (type)
1899 tree type;
1900 {
1901 type = root_type_1 (type, 0);
1902 if (type != error_mark_node)
1903 type = type_main_variant (type);
1904 return type;
1905 }
1906
1907 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1908 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1909
1910 static void
1911 write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1912 tree type;
1913 int decl_const;
1914 int decl_volatile;
1915 int count;
1916 {
1917 if (TREE_CODE (type) == ERROR_MARK)
1918 return;
1919
1920 /* Give up after searching 1000 levels, in case this is a recursive
1921 pointer type. Such types are possible in Ada, but it is not possible
1922 to represent them in DWARF1 debug info. */
1923 if (count > 1000)
1924 return;
1925
1926 if (TYPE_READONLY (type) || decl_const)
1927 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1928 if (TYPE_VOLATILE (type) || decl_volatile)
1929 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1930 switch (TREE_CODE (type))
1931 {
1932 case POINTER_TYPE:
1933 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1934 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1935 return;
1936
1937 case REFERENCE_TYPE:
1938 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1939 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1940 return;
1941
1942 case ERROR_MARK:
1943 default:
1944 return;
1945 }
1946 }
1947
1948 static void
1949 write_modifier_bytes (type, decl_const, decl_volatile)
1950 tree type;
1951 int decl_const;
1952 int decl_volatile;
1953 {
1954 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1955 }
1956 \f
1957 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
1958 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1959
1960 static inline int
1961 type_is_fundamental (type)
1962 tree type;
1963 {
1964 switch (TREE_CODE (type))
1965 {
1966 case ERROR_MARK:
1967 case VOID_TYPE:
1968 case INTEGER_TYPE:
1969 case REAL_TYPE:
1970 case COMPLEX_TYPE:
1971 case BOOLEAN_TYPE:
1972 case CHAR_TYPE:
1973 return 1;
1974
1975 case SET_TYPE:
1976 case ARRAY_TYPE:
1977 case RECORD_TYPE:
1978 case UNION_TYPE:
1979 case QUAL_UNION_TYPE:
1980 case ENUMERAL_TYPE:
1981 case FUNCTION_TYPE:
1982 case METHOD_TYPE:
1983 case POINTER_TYPE:
1984 case REFERENCE_TYPE:
1985 case FILE_TYPE:
1986 case OFFSET_TYPE:
1987 case LANG_TYPE:
1988 case VECTOR_TYPE:
1989 return 0;
1990
1991 default:
1992 abort ();
1993 }
1994 return 0;
1995 }
1996
1997 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1998 equate directive which will associate a symbolic name with the current DIE.
1999
2000 The name used is an artificial label generated from the DECL_UID number
2001 associated with the given decl node. The name it gets equated to is the
2002 symbolic label that we (previously) output at the start of the DIE that
2003 we are currently generating.
2004
2005 Calling this function while generating some "decl related" form of DIE
2006 makes it possible to later refer to the DIE which represents the given
2007 decl simply by re-generating the symbolic name from the ..._DECL node's
2008 UID number. */
2009
2010 static void
2011 equate_decl_number_to_die_number (decl)
2012 tree decl;
2013 {
2014 /* In the case where we are generating a DIE for some ..._DECL node
2015 which represents either some inline function declaration or some
2016 entity declared within an inline function declaration/definition,
2017 setup a symbolic name for the current DIE so that we have a name
2018 for this DIE that we can easily refer to later on within
2019 AT_abstract_origin attributes. */
2020
2021 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
2022 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
2023
2024 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
2025 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
2026 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
2027 }
2028
2029 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
2030 equate directive which will associate a symbolic name with the current DIE.
2031
2032 The name used is an artificial label generated from the TYPE_UID number
2033 associated with the given type node. The name it gets equated to is the
2034 symbolic label that we (previously) output at the start of the DIE that
2035 we are currently generating.
2036
2037 Calling this function while generating some "type related" form of DIE
2038 makes it easy to later refer to the DIE which represents the given type
2039 simply by re-generating the alternative name from the ..._TYPE node's
2040 UID number. */
2041
2042 static inline void
2043 equate_type_number_to_die_number (type)
2044 tree type;
2045 {
2046 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
2047 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
2048
2049 /* We are generating a DIE to represent the main variant of this type
2050 (i.e the type without any const or volatile qualifiers) so in order
2051 to get the equate to come out right, we need to get the main variant
2052 itself here. */
2053
2054 type = type_main_variant (type);
2055
2056 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
2057 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
2058 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
2059 }
2060
2061 static void
2062 output_reg_number (rtl)
2063 rtx rtl;
2064 {
2065 unsigned regno = REGNO (rtl);
2066
2067 if (regno >= DWARF_FRAME_REGISTERS)
2068 {
2069 warning_with_decl (dwarf_last_decl,
2070 "internal regno botch: `%s' has regno = %d\n",
2071 regno);
2072 regno = 0;
2073 }
2074 dw2_assemble_integer (4, GEN_INT (DBX_REGISTER_NUMBER (regno)));
2075 if (flag_debug_asm)
2076 {
2077 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
2078 PRINT_REG (rtl, 0, asm_out_file);
2079 }
2080 fputc ('\n', asm_out_file);
2081 }
2082
2083 /* The following routine is a nice and simple transducer. It converts the
2084 RTL for a variable or parameter (resident in memory) into an equivalent
2085 Dwarf representation of a mechanism for getting the address of that same
2086 variable onto the top of a hypothetical "address evaluation" stack.
2087
2088 When creating memory location descriptors, we are effectively trans-
2089 forming the RTL for a memory-resident object into its Dwarf postfix
2090 expression equivalent. This routine just recursively descends an
2091 RTL tree, turning it into Dwarf postfix code as it goes. */
2092
2093 static void
2094 output_mem_loc_descriptor (rtl)
2095 rtx rtl;
2096 {
2097 /* Note that for a dynamically sized array, the location we will
2098 generate a description of here will be the lowest numbered location
2099 which is actually within the array. That's *not* necessarily the
2100 same as the zeroth element of the array. */
2101
2102 rtl = (*targetm.delegitimize_address) (rtl);
2103
2104 switch (GET_CODE (rtl))
2105 {
2106 case SUBREG:
2107
2108 /* The case of a subreg may arise when we have a local (register)
2109 variable or a formal (register) parameter which doesn't quite
2110 fill up an entire register. For now, just assume that it is
2111 legitimate to make the Dwarf info refer to the whole register
2112 which contains the given subreg. */
2113
2114 rtl = SUBREG_REG (rtl);
2115 /* Drop thru. */
2116
2117 case REG:
2118
2119 /* Whenever a register number forms a part of the description of
2120 the method for calculating the (dynamic) address of a memory
2121 resident object, DWARF rules require the register number to
2122 be referred to as a "base register". This distinction is not
2123 based in any way upon what category of register the hardware
2124 believes the given register belongs to. This is strictly
2125 DWARF terminology we're dealing with here.
2126
2127 Note that in cases where the location of a memory-resident data
2128 object could be expressed as:
2129
2130 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
2131
2132 the actual DWARF location descriptor that we generate may just
2133 be OP_BASEREG (basereg). This may look deceptively like the
2134 object in question was allocated to a register (rather than
2135 in memory) so DWARF consumers need to be aware of the subtle
2136 distinction between OP_REG and OP_BASEREG. */
2137
2138 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
2139 output_reg_number (rtl);
2140 break;
2141
2142 case MEM:
2143 output_mem_loc_descriptor (XEXP (rtl, 0));
2144 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
2145 break;
2146
2147 case CONST:
2148 case SYMBOL_REF:
2149 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
2150 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2151 break;
2152
2153 case PLUS:
2154 output_mem_loc_descriptor (XEXP (rtl, 0));
2155 output_mem_loc_descriptor (XEXP (rtl, 1));
2156 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2157 break;
2158
2159 case CONST_INT:
2160 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2161 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
2162 break;
2163
2164 case MULT:
2165 /* If a pseudo-reg is optimized away, it is possible for it to
2166 be replaced with a MEM containing a multiply. Use a GNU extension
2167 to describe it. */
2168 output_mem_loc_descriptor (XEXP (rtl, 0));
2169 output_mem_loc_descriptor (XEXP (rtl, 1));
2170 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
2171 break;
2172
2173 default:
2174 abort ();
2175 }
2176 }
2177
2178 /* Output a proper Dwarf location descriptor for a variable or parameter
2179 which is either allocated in a register or in a memory location. For
2180 a register, we just generate an OP_REG and the register number. For a
2181 memory location we provide a Dwarf postfix expression describing how to
2182 generate the (dynamic) address of the object onto the address stack. */
2183
2184 static void
2185 output_loc_descriptor (rtl)
2186 rtx rtl;
2187 {
2188 switch (GET_CODE (rtl))
2189 {
2190 case SUBREG:
2191
2192 /* The case of a subreg may arise when we have a local (register)
2193 variable or a formal (register) parameter which doesn't quite
2194 fill up an entire register. For now, just assume that it is
2195 legitimate to make the Dwarf info refer to the whole register
2196 which contains the given subreg. */
2197
2198 rtl = SUBREG_REG (rtl);
2199 /* Drop thru. */
2200
2201 case REG:
2202 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
2203 output_reg_number (rtl);
2204 break;
2205
2206 case MEM:
2207 output_mem_loc_descriptor (XEXP (rtl, 0));
2208 break;
2209
2210 default:
2211 abort (); /* Should never happen */
2212 }
2213 }
2214
2215 /* Given a tree node describing an array bound (either lower or upper)
2216 output a representation for that bound. */
2217
2218 static void
2219 output_bound_representation (bound, dim_num, u_or_l)
2220 tree bound;
2221 unsigned dim_num; /* For multi-dimensional arrays. */
2222 char u_or_l; /* Designates upper or lower bound. */
2223 {
2224 switch (TREE_CODE (bound))
2225 {
2226
2227 case ERROR_MARK:
2228 return;
2229
2230 /* All fixed-bounds are represented by INTEGER_CST nodes. */
2231
2232 case INTEGER_CST:
2233 if (host_integerp (bound, 0))
2234 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, tree_low_cst (bound, 0));
2235 break;
2236
2237 default:
2238
2239 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
2240 SAVE_EXPR nodes, in which case we can do something, or as
2241 an expression, which we cannot represent. */
2242 {
2243 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2244 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2245
2246 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
2247 current_dienum, dim_num, u_or_l);
2248
2249 sprintf (end_label, BOUND_END_LABEL_FMT,
2250 current_dienum, dim_num, u_or_l);
2251
2252 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2253 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2254
2255 /* If optimization is turned on, the SAVE_EXPRs that describe
2256 how to access the upper bound values are essentially bogus.
2257 They only describe (at best) how to get at these values at
2258 the points in the generated code right after they have just
2259 been computed. Worse yet, in the typical case, the upper
2260 bound values will not even *be* computed in the optimized
2261 code, so these SAVE_EXPRs are entirely bogus.
2262
2263 In order to compensate for this fact, we check here to see
2264 if optimization is enabled, and if so, we effectively create
2265 an empty location description for the (unknown and unknowable)
2266 upper bound.
2267
2268 This should not cause too much trouble for existing (stupid?)
2269 debuggers because they have to deal with empty upper bounds
2270 location descriptions anyway in order to be able to deal with
2271 incomplete array types.
2272
2273 Of course an intelligent debugger (GDB?) should be able to
2274 comprehend that a missing upper bound specification in a
2275 array type used for a storage class `auto' local array variable
2276 indicates that the upper bound is both unknown (at compile-
2277 time) and unknowable (at run-time) due to optimization. */
2278
2279 if (! optimize)
2280 {
2281 while (TREE_CODE (bound) == NOP_EXPR
2282 || TREE_CODE (bound) == CONVERT_EXPR)
2283 bound = TREE_OPERAND (bound, 0);
2284
2285 if (TREE_CODE (bound) == SAVE_EXPR
2286 && SAVE_EXPR_RTL (bound))
2287 output_loc_descriptor
2288 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
2289 }
2290
2291 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2292 }
2293 break;
2294
2295 }
2296 }
2297
2298 /* Recursive function to output a sequence of value/name pairs for
2299 enumeration constants in reversed order. This is called from
2300 enumeration_type_die. */
2301
2302 static void
2303 output_enumeral_list (link)
2304 tree link;
2305 {
2306 if (link)
2307 {
2308 output_enumeral_list (TREE_CHAIN (link));
2309
2310 if (host_integerp (TREE_VALUE (link), 0))
2311 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2312 tree_low_cst (TREE_VALUE (link), 0));
2313
2314 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
2315 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
2316 }
2317 }
2318
2319 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
2320 which is not less than the value itself. */
2321
2322 static inline HOST_WIDE_INT
2323 ceiling (value, boundary)
2324 HOST_WIDE_INT value;
2325 unsigned int boundary;
2326 {
2327 return (((value + boundary - 1) / boundary) * boundary);
2328 }
2329
2330 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
2331 pointer to the declared type for the relevant field variable, or return
2332 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
2333
2334 static inline tree
2335 field_type (decl)
2336 tree decl;
2337 {
2338 tree type;
2339
2340 if (TREE_CODE (decl) == ERROR_MARK)
2341 return integer_type_node;
2342
2343 type = DECL_BIT_FIELD_TYPE (decl);
2344 if (type == NULL)
2345 type = TREE_TYPE (decl);
2346 return type;
2347 }
2348
2349 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2350 node, return the alignment in bits for the type, or else return
2351 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
2352
2353 static inline unsigned int
2354 simple_type_align_in_bits (type)
2355 tree type;
2356 {
2357 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
2358 }
2359
2360 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2361 node, return the size in bits for the type if it is a constant, or
2362 else return the alignment for the type if the type's size is not
2363 constant, or else return BITS_PER_WORD if the type actually turns out
2364 to be an ERROR_MARK node. */
2365
2366 static inline unsigned HOST_WIDE_INT
2367 simple_type_size_in_bits (type)
2368 tree type;
2369 {
2370 tree type_size_tree;
2371
2372 if (TREE_CODE (type) == ERROR_MARK)
2373 return BITS_PER_WORD;
2374 type_size_tree = TYPE_SIZE (type);
2375
2376 if (type_size_tree == NULL_TREE)
2377 return 0;
2378 if (! host_integerp (type_size_tree, 1))
2379 return TYPE_ALIGN (type);
2380 return tree_low_cst (type_size_tree, 1);
2381 }
2382
2383 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
2384 return the byte offset of the lowest addressed byte of the "containing
2385 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
2386 mine what that offset is, either because the argument turns out to be a
2387 pointer to an ERROR_MARK node, or because the offset is actually variable.
2388 (We can't handle the latter case just yet.) */
2389
2390 static HOST_WIDE_INT
2391 field_byte_offset (decl)
2392 tree decl;
2393 {
2394 unsigned int type_align_in_bytes;
2395 unsigned int type_align_in_bits;
2396 unsigned HOST_WIDE_INT type_size_in_bits;
2397 HOST_WIDE_INT object_offset_in_align_units;
2398 HOST_WIDE_INT object_offset_in_bits;
2399 HOST_WIDE_INT object_offset_in_bytes;
2400 tree type;
2401 tree field_size_tree;
2402 HOST_WIDE_INT bitpos_int;
2403 HOST_WIDE_INT deepest_bitpos;
2404 unsigned HOST_WIDE_INT field_size_in_bits;
2405
2406 if (TREE_CODE (decl) == ERROR_MARK)
2407 return 0;
2408
2409 if (TREE_CODE (decl) != FIELD_DECL)
2410 abort ();
2411
2412 type = field_type (decl);
2413 field_size_tree = DECL_SIZE (decl);
2414
2415 /* The size could be unspecified if there was an error, or for
2416 a flexible array member. */
2417 if (! field_size_tree)
2418 field_size_tree = bitsize_zero_node;
2419
2420 /* We cannot yet cope with fields whose positions or sizes are variable,
2421 so for now, when we see such things, we simply return 0. Someday,
2422 we may be able to handle such cases, but it will be damn difficult. */
2423
2424 if (! host_integerp (bit_position (decl), 0)
2425 || ! host_integerp (field_size_tree, 1))
2426 return 0;
2427
2428 bitpos_int = int_bit_position (decl);
2429 field_size_in_bits = tree_low_cst (field_size_tree, 1);
2430
2431 type_size_in_bits = simple_type_size_in_bits (type);
2432 type_align_in_bits = simple_type_align_in_bits (type);
2433 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2434
2435 /* Note that the GCC front-end doesn't make any attempt to keep track
2436 of the starting bit offset (relative to the start of the containing
2437 structure type) of the hypothetical "containing object" for a bit-
2438 field. Thus, when computing the byte offset value for the start of
2439 the "containing object" of a bit-field, we must deduce this infor-
2440 mation on our own.
2441
2442 This can be rather tricky to do in some cases. For example, handling
2443 the following structure type definition when compiling for an i386/i486
2444 target (which only aligns long long's to 32-bit boundaries) can be very
2445 tricky:
2446
2447 struct S {
2448 int field1;
2449 long long field2:31;
2450 };
2451
2452 Fortunately, there is a simple rule-of-thumb which can be used in such
2453 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2454 the structure shown above. It decides to do this based upon one simple
2455 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2456 taining object" for each bit-field at the first (i.e. lowest addressed)
2457 legitimate alignment boundary (based upon the required minimum alignment
2458 for the declared type of the field) which it can possibly use, subject
2459 to the condition that there is still enough available space remaining
2460 in the containing object (when allocated at the selected point) to
2461 fully accommodate all of the bits of the bit-field itself.
2462
2463 This simple rule makes it obvious why GCC allocates 8 bytes for each
2464 object of the structure type shown above. When looking for a place to
2465 allocate the "containing object" for `field2', the compiler simply tries
2466 to allocate a 64-bit "containing object" at each successive 32-bit
2467 boundary (starting at zero) until it finds a place to allocate that 64-
2468 bit field such that at least 31 contiguous (and previously unallocated)
2469 bits remain within that selected 64 bit field. (As it turns out, for
2470 the example above, the compiler finds that it is OK to allocate the
2471 "containing object" 64-bit field at bit-offset zero within the
2472 structure type.)
2473
2474 Here we attempt to work backwards from the limited set of facts we're
2475 given, and we try to deduce from those facts, where GCC must have
2476 believed that the containing object started (within the structure type).
2477
2478 The value we deduce is then used (by the callers of this routine) to
2479 generate AT_location and AT_bit_offset attributes for fields (both
2480 bit-fields and, in the case of AT_location, regular fields as well). */
2481
2482 /* Figure out the bit-distance from the start of the structure to the
2483 "deepest" bit of the bit-field. */
2484 deepest_bitpos = bitpos_int + field_size_in_bits;
2485
2486 /* This is the tricky part. Use some fancy footwork to deduce where the
2487 lowest addressed bit of the containing object must be. */
2488 object_offset_in_bits
2489 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2490
2491 /* Compute the offset of the containing object in "alignment units". */
2492 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2493
2494 /* Compute the offset of the containing object in bytes. */
2495 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2496
2497 /* The above code assumes that the field does not cross an alignment
2498 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2499 or if the structure is packed. If this happens, then we get an object
2500 which starts after the bitfield, which means that the bit offset is
2501 negative. Gdb fails when given negative bit offsets. We avoid this
2502 by recomputing using the first bit of the bitfield. This will give
2503 us an object which does not completely contain the bitfield, but it
2504 will be aligned, and it will contain the first bit of the bitfield.
2505
2506 However, only do this for a BYTES_BIG_ENDIAN target. For a
2507 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2508 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2509 then we end up computing the object byte offset for the wrong word of the
2510 desired bitfield, which in turn causes the field offset to be negative
2511 in bit_offset_attribute. */
2512 if (BYTES_BIG_ENDIAN
2513 && object_offset_in_bits > bitpos_int)
2514 {
2515 deepest_bitpos = bitpos_int + 1;
2516 object_offset_in_bits
2517 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2518 object_offset_in_align_units = (object_offset_in_bits
2519 / type_align_in_bits);
2520 object_offset_in_bytes = (object_offset_in_align_units
2521 * type_align_in_bytes);
2522 }
2523
2524 return object_offset_in_bytes;
2525 }
2526
2527 /****************************** attributes *********************************/
2528
2529 /* The following routines are responsible for writing out the various types
2530 of Dwarf attributes (and any following data bytes associated with them).
2531 These routines are listed in order based on the numerical codes of their
2532 associated attributes. */
2533
2534 /* Generate an AT_sibling attribute. */
2535
2536 static inline void
2537 sibling_attribute ()
2538 {
2539 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2540
2541 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2542 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2543 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2544 }
2545
2546 /* Output the form of location attributes suitable for whole variables and
2547 whole parameters. Note that the location attributes for struct fields
2548 are generated by the routine `data_member_location_attribute' below. */
2549
2550 static void
2551 location_attribute (rtl)
2552 rtx rtl;
2553 {
2554 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2555 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2556
2557 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2558 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2559 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2560 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2561 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2562
2563 /* Handle a special case. If we are about to output a location descriptor
2564 for a variable or parameter which has been optimized out of existence,
2565 don't do that. Instead we output a zero-length location descriptor
2566 value as part of the location attribute.
2567
2568 A variable which has been optimized out of existence will have a
2569 DECL_RTL value which denotes a pseudo-reg.
2570
2571 Currently, in some rare cases, variables can have DECL_RTL values
2572 which look like (MEM (REG pseudo-reg#)). These cases are due to
2573 bugs elsewhere in the compiler. We treat such cases
2574 as if the variable(s) in question had been optimized out of existence.
2575
2576 Note that in all cases where we wish to express the fact that a
2577 variable has been optimized out of existence, we do not simply
2578 suppress the generation of the entire location attribute because
2579 the absence of a location attribute in certain kinds of DIEs is
2580 used to indicate something else entirely... i.e. that the DIE
2581 represents an object declaration, but not a definition. So saith
2582 the PLSIG.
2583 */
2584
2585 if (! is_pseudo_reg (rtl)
2586 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2587 output_loc_descriptor (rtl);
2588
2589 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2590 }
2591
2592 /* Output the specialized form of location attribute used for data members
2593 of struct and union types.
2594
2595 In the special case of a FIELD_DECL node which represents a bit-field,
2596 the "offset" part of this special location descriptor must indicate the
2597 distance in bytes from the lowest-addressed byte of the containing
2598 struct or union type to the lowest-addressed byte of the "containing
2599 object" for the bit-field. (See the `field_byte_offset' function above.)
2600
2601 For any given bit-field, the "containing object" is a hypothetical
2602 object (of some integral or enum type) within which the given bit-field
2603 lives. The type of this hypothetical "containing object" is always the
2604 same as the declared type of the individual bit-field itself (for GCC
2605 anyway... the DWARF spec doesn't actually mandate this).
2606
2607 Note that it is the size (in bytes) of the hypothetical "containing
2608 object" which will be given in the AT_byte_size attribute for this
2609 bit-field. (See the `byte_size_attribute' function below.) It is
2610 also used when calculating the value of the AT_bit_offset attribute.
2611 (See the `bit_offset_attribute' function below.) */
2612
2613 static void
2614 data_member_location_attribute (t)
2615 tree t;
2616 {
2617 unsigned object_offset_in_bytes;
2618 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2619 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2620
2621 if (TREE_CODE (t) == TREE_VEC)
2622 object_offset_in_bytes = tree_low_cst (BINFO_OFFSET (t), 0);
2623 else
2624 object_offset_in_bytes = field_byte_offset (t);
2625
2626 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2627 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2628 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2629 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2630 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2631 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2632 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2633 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2634 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2635 }
2636
2637 /* Output an AT_const_value attribute for a variable or a parameter which
2638 does not have a "location" either in memory or in a register. These
2639 things can arise in GNU C when a constant is passed as an actual
2640 parameter to an inlined function. They can also arise in C++ where
2641 declared constants do not necessarily get memory "homes". */
2642
2643 static void
2644 const_value_attribute (rtl)
2645 rtx rtl;
2646 {
2647 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2648 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2649
2650 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2651 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2652 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2653 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2654 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2655
2656 switch (GET_CODE (rtl))
2657 {
2658 case CONST_INT:
2659 /* Note that a CONST_INT rtx could represent either an integer or
2660 a floating-point constant. A CONST_INT is used whenever the
2661 constant will fit into a single word. In all such cases, the
2662 original mode of the constant value is wiped out, and the
2663 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2664 precise mode information for these constants, we always just
2665 output them using 4 bytes. */
2666
2667 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2668 break;
2669
2670 case CONST_DOUBLE:
2671 /* Note that a CONST_DOUBLE rtx could represent either an integer
2672 or a floating-point constant. A CONST_DOUBLE is used whenever
2673 the constant requires more than one word in order to be adequately
2674 represented. In all such cases, the original mode of the constant
2675 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2676 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2677
2678 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2679 (unsigned int) CONST_DOUBLE_HIGH (rtl),
2680 (unsigned int) CONST_DOUBLE_LOW (rtl));
2681 break;
2682
2683 case CONST_STRING:
2684 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
2685 break;
2686
2687 case SYMBOL_REF:
2688 case LABEL_REF:
2689 case CONST:
2690 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2691 break;
2692
2693 case PLUS:
2694 /* In cases where an inlined instance of an inline function is passed
2695 the address of an `auto' variable (which is local to the caller)
2696 we can get a situation where the DECL_RTL of the artificial
2697 local variable (for the inlining) which acts as a stand-in for
2698 the corresponding formal parameter (of the inline function)
2699 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2700 This is not exactly a compile-time constant expression, but it
2701 isn't the address of the (artificial) local variable either.
2702 Rather, it represents the *value* which the artificial local
2703 variable always has during its lifetime. We currently have no
2704 way to represent such quasi-constant values in Dwarf, so for now
2705 we just punt and generate an AT_const_value attribute with form
2706 FORM_BLOCK4 and a length of zero. */
2707 break;
2708
2709 default:
2710 abort (); /* No other kinds of rtx should be possible here. */
2711 }
2712
2713 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2714 }
2715
2716 /* Generate *either* an AT_location attribute or else an AT_const_value
2717 data attribute for a variable or a parameter. We generate the
2718 AT_const_value attribute only in those cases where the given
2719 variable or parameter does not have a true "location" either in
2720 memory or in a register. This can happen (for example) when a
2721 constant is passed as an actual argument in a call to an inline
2722 function. (It's possible that these things can crop up in other
2723 ways also.) Note that one type of constant value which can be
2724 passed into an inlined function is a constant pointer. This can
2725 happen for example if an actual argument in an inlined function
2726 call evaluates to a compile-time constant address. */
2727
2728 static void
2729 location_or_const_value_attribute (decl)
2730 tree decl;
2731 {
2732 rtx rtl;
2733
2734 if (TREE_CODE (decl) == ERROR_MARK)
2735 return;
2736
2737 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2738 {
2739 /* Should never happen. */
2740 abort ();
2741 return;
2742 }
2743
2744 /* Here we have to decide where we are going to say the parameter "lives"
2745 (as far as the debugger is concerned). We only have a couple of choices.
2746 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2747 normally indicates where the parameter lives during most of the activa-
2748 tion of the function. If optimization is enabled however, this could
2749 be either NULL or else a pseudo-reg. Both of those cases indicate that
2750 the parameter doesn't really live anywhere (as far as the code generation
2751 parts of GCC are concerned) during most of the function's activation.
2752 That will happen (for example) if the parameter is never referenced
2753 within the function.
2754
2755 We could just generate a location descriptor here for all non-NULL
2756 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2757 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2758 cases where DECL_RTL is NULL or is a pseudo-reg.
2759
2760 Note however that we can only get away with using DECL_INCOMING_RTL as
2761 a backup substitute for DECL_RTL in certain limited cases. In cases
2762 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2763 we can be sure that the parameter was passed using the same type as it
2764 is declared to have within the function, and that its DECL_INCOMING_RTL
2765 points us to a place where a value of that type is passed. In cases
2766 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2767 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2768 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2769 points us to a value of some type which is *different* from the type
2770 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2771 to generate a location attribute in such cases, the debugger would
2772 end up (for example) trying to fetch a `float' from a place which
2773 actually contains the first part of a `double'. That would lead to
2774 really incorrect and confusing output at debug-time, and we don't
2775 want that now do we?
2776
2777 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2778 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2779 couple of cute exceptions however. On little-endian machines we can
2780 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2781 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2782 an integral type which is smaller than TREE_TYPE(decl). These cases
2783 arise when (on a little-endian machine) a non-prototyped function has
2784 a parameter declared to be of type `short' or `char'. In such cases,
2785 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2786 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2787 passed `int' value. If the debugger then uses that address to fetch a
2788 `short' or a `char' (on a little-endian machine) the result will be the
2789 correct data, so we allow for such exceptional cases below.
2790
2791 Note that our goal here is to describe the place where the given formal
2792 parameter lives during most of the function's activation (i.e. between
2793 the end of the prologue and the start of the epilogue). We'll do that
2794 as best as we can. Note however that if the given formal parameter is
2795 modified sometime during the execution of the function, then a stack
2796 backtrace (at debug-time) will show the function as having been called
2797 with the *new* value rather than the value which was originally passed
2798 in. This happens rarely enough that it is not a major problem, but it
2799 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2800 may generate two additional attributes for any given TAG_formal_parameter
2801 DIE which will describe the "passed type" and the "passed location" for
2802 the given formal parameter in addition to the attributes we now generate
2803 to indicate the "declared type" and the "active location" for each
2804 parameter. This additional set of attributes could be used by debuggers
2805 for stack backtraces.
2806
2807 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2808 can be NULL also. This happens (for example) for inlined-instances of
2809 inline function formal parameters which are never referenced. This really
2810 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2811 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2812 these values for inlined instances of inline function parameters, so
2813 when we see such cases, we are just out-of-luck for the time
2814 being (until integrate.c gets fixed).
2815 */
2816
2817 /* Use DECL_RTL as the "location" unless we find something better. */
2818 rtl = DECL_RTL (decl);
2819
2820 if (TREE_CODE (decl) == PARM_DECL)
2821 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2822 {
2823 /* This decl represents a formal parameter which was optimized out. */
2824 tree declared_type = type_main_variant (TREE_TYPE (decl));
2825 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2826
2827 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2828 *all* cases where (rtl == NULL_RTX) just below. */
2829
2830 if (declared_type == passed_type)
2831 rtl = DECL_INCOMING_RTL (decl);
2832 else if (! BYTES_BIG_ENDIAN)
2833 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2834 /* NMS WTF? */
2835 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2836 rtl = DECL_INCOMING_RTL (decl);
2837 }
2838
2839 if (rtl == NULL_RTX)
2840 return;
2841
2842 rtl = eliminate_regs (rtl, 0, NULL_RTX);
2843 #ifdef LEAF_REG_REMAP
2844 if (current_function_uses_only_leaf_regs)
2845 leaf_renumber_regs_insn (rtl);
2846 #endif
2847
2848 switch (GET_CODE (rtl))
2849 {
2850 case ADDRESSOF:
2851 /* The address of a variable that was optimized away; don't emit
2852 anything. */
2853 break;
2854
2855 case CONST_INT:
2856 case CONST_DOUBLE:
2857 case CONST_STRING:
2858 case SYMBOL_REF:
2859 case LABEL_REF:
2860 case CONST:
2861 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2862 const_value_attribute (rtl);
2863 break;
2864
2865 case MEM:
2866 case REG:
2867 case SUBREG:
2868 location_attribute (rtl);
2869 break;
2870
2871 case CONCAT:
2872 /* ??? CONCAT is used for complex variables, which may have the real
2873 part stored in one place and the imag part stored somewhere else.
2874 DWARF1 has no way to describe a variable that lives in two different
2875 places, so we just describe where the first part lives, and hope that
2876 the second part is stored after it. */
2877 location_attribute (XEXP (rtl, 0));
2878 break;
2879
2880 default:
2881 abort (); /* Should never happen. */
2882 }
2883 }
2884
2885 /* Generate an AT_name attribute given some string value to be included as
2886 the value of the attribute. */
2887
2888 static inline void
2889 name_attribute (name_string)
2890 const char *name_string;
2891 {
2892 if (name_string && *name_string)
2893 {
2894 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2895 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
2896 }
2897 }
2898
2899 static inline void
2900 fund_type_attribute (ft_code)
2901 unsigned ft_code;
2902 {
2903 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2904 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2905 }
2906
2907 static void
2908 mod_fund_type_attribute (type, decl_const, decl_volatile)
2909 tree type;
2910 int decl_const;
2911 int decl_volatile;
2912 {
2913 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2914 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2915
2916 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2917 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2918 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2919 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2920 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2921 write_modifier_bytes (type, decl_const, decl_volatile);
2922 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2923 fundamental_type_code (root_type (type)));
2924 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2925 }
2926
2927 static inline void
2928 user_def_type_attribute (type)
2929 tree type;
2930 {
2931 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2932
2933 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2934 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2935 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2936 }
2937
2938 static void
2939 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2940 tree type;
2941 int decl_const;
2942 int decl_volatile;
2943 {
2944 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2945 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2946 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2947
2948 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2949 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2950 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2951 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2952 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2953 write_modifier_bytes (type, decl_const, decl_volatile);
2954 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2955 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2956 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2957 }
2958
2959 #ifdef USE_ORDERING_ATTRIBUTE
2960 static inline void
2961 ordering_attribute (ordering)
2962 unsigned ordering;
2963 {
2964 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2965 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2966 }
2967 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2968
2969 /* Note that the block of subscript information for an array type also
2970 includes information about the element type of type given array type. */
2971
2972 static void
2973 subscript_data_attribute (type)
2974 tree type;
2975 {
2976 unsigned dimension_number;
2977 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2978 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2979
2980 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2981 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2982 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2983 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2984 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2985
2986 /* The GNU compilers represent multidimensional array types as sequences
2987 of one dimensional array types whose element types are themselves array
2988 types. Here we squish that down, so that each multidimensional array
2989 type gets only one array_type DIE in the Dwarf debugging info. The
2990 draft Dwarf specification say that we are allowed to do this kind
2991 of compression in C (because there is no difference between an
2992 array or arrays and a multidimensional array in C) but for other
2993 source languages (e.g. Ada) we probably shouldn't do this. */
2994
2995 for (dimension_number = 0;
2996 TREE_CODE (type) == ARRAY_TYPE;
2997 type = TREE_TYPE (type), dimension_number++)
2998 {
2999 tree domain = TYPE_DOMAIN (type);
3000
3001 /* Arrays come in three flavors. Unspecified bounds, fixed
3002 bounds, and (in GNU C only) variable bounds. Handle all
3003 three forms here. */
3004
3005 if (domain)
3006 {
3007 /* We have an array type with specified bounds. */
3008
3009 tree lower = TYPE_MIN_VALUE (domain);
3010 tree upper = TYPE_MAX_VALUE (domain);
3011
3012 /* Handle only fundamental types as index types for now. */
3013 if (! type_is_fundamental (domain))
3014 abort ();
3015
3016 /* Output the representation format byte for this dimension. */
3017 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
3018 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
3019 upper && TREE_CODE (upper) == INTEGER_CST));
3020
3021 /* Output the index type for this dimension. */
3022 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
3023 fundamental_type_code (domain));
3024
3025 /* Output the representation for the lower bound. */
3026 output_bound_representation (lower, dimension_number, 'l');
3027
3028 /* Output the representation for the upper bound. */
3029 if (upper)
3030 output_bound_representation (upper, dimension_number, 'u');
3031 else
3032 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
3033 }
3034 else
3035 {
3036 /* We have an array type with an unspecified length. For C and
3037 C++ we can assume that this really means that (a) the index
3038 type is an integral type, and (b) the lower bound is zero.
3039 Note that Dwarf defines the representation of an unspecified
3040 (upper) bound as being a zero-length location description. */
3041
3042 /* Output the array-bounds format byte. */
3043
3044 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
3045
3046 /* Output the (assumed) index type. */
3047
3048 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
3049
3050 /* Output the (assumed) lower bound (constant) value. */
3051
3052 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
3053
3054 /* Output the (empty) location description for the upper bound. */
3055
3056 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
3057 }
3058 }
3059
3060 /* Output the prefix byte that says that the element type is coming up. */
3061
3062 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
3063
3064 /* Output a representation of the type of the elements of this array type. */
3065
3066 type_attribute (type, 0, 0);
3067
3068 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3069 }
3070
3071 static void
3072 byte_size_attribute (tree_node)
3073 tree tree_node;
3074 {
3075 unsigned size;
3076
3077 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
3078 switch (TREE_CODE (tree_node))
3079 {
3080 case ERROR_MARK:
3081 size = 0;
3082 break;
3083
3084 case ENUMERAL_TYPE:
3085 case RECORD_TYPE:
3086 case UNION_TYPE:
3087 case QUAL_UNION_TYPE:
3088 case ARRAY_TYPE:
3089 size = int_size_in_bytes (tree_node);
3090 break;
3091
3092 case FIELD_DECL:
3093 /* For a data member of a struct or union, the AT_byte_size is
3094 generally given as the number of bytes normally allocated for
3095 an object of the *declared* type of the member itself. This
3096 is true even for bit-fields. */
3097 size = simple_type_size_in_bits (field_type (tree_node))
3098 / BITS_PER_UNIT;
3099 break;
3100
3101 default:
3102 abort ();
3103 }
3104
3105 /* Note that `size' might be -1 when we get to this point. If it
3106 is, that indicates that the byte size of the entity in question
3107 is variable. We have no good way of expressing this fact in Dwarf
3108 at the present time, so just let the -1 pass on through. */
3109
3110 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
3111 }
3112
3113 /* For a FIELD_DECL node which represents a bit-field, output an attribute
3114 which specifies the distance in bits from the highest order bit of the
3115 "containing object" for the bit-field to the highest order bit of the
3116 bit-field itself.
3117
3118 For any given bit-field, the "containing object" is a hypothetical
3119 object (of some integral or enum type) within which the given bit-field
3120 lives. The type of this hypothetical "containing object" is always the
3121 same as the declared type of the individual bit-field itself.
3122
3123 The determination of the exact location of the "containing object" for
3124 a bit-field is rather complicated. It's handled by the `field_byte_offset'
3125 function (above).
3126
3127 Note that it is the size (in bytes) of the hypothetical "containing
3128 object" which will be given in the AT_byte_size attribute for this
3129 bit-field. (See `byte_size_attribute' above.) */
3130
3131 static inline void
3132 bit_offset_attribute (decl)
3133 tree decl;
3134 {
3135 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
3136 tree type = DECL_BIT_FIELD_TYPE (decl);
3137 HOST_WIDE_INT bitpos_int;
3138 HOST_WIDE_INT highest_order_object_bit_offset;
3139 HOST_WIDE_INT highest_order_field_bit_offset;
3140 HOST_WIDE_INT bit_offset;
3141
3142 /* Must be a bit field. */
3143 if (!type
3144 || TREE_CODE (decl) != FIELD_DECL)
3145 abort ();
3146
3147 /* We can't yet handle bit-fields whose offsets or sizes are variable, so
3148 if we encounter such things, just return without generating any
3149 attribute whatsoever. */
3150
3151 if (! host_integerp (bit_position (decl), 0)
3152 || ! host_integerp (DECL_SIZE (decl), 1))
3153 return;
3154
3155 bitpos_int = int_bit_position (decl);
3156
3157 /* Note that the bit offset is always the distance (in bits) from the
3158 highest-order bit of the "containing object" to the highest-order
3159 bit of the bit-field itself. Since the "high-order end" of any
3160 object or field is different on big-endian and little-endian machines,
3161 the computation below must take account of these differences. */
3162
3163 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
3164 highest_order_field_bit_offset = bitpos_int;
3165
3166 if (! BYTES_BIG_ENDIAN)
3167 {
3168 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 1);
3169 highest_order_object_bit_offset += simple_type_size_in_bits (type);
3170 }
3171
3172 bit_offset =
3173 (! BYTES_BIG_ENDIAN
3174 ? highest_order_object_bit_offset - highest_order_field_bit_offset
3175 : highest_order_field_bit_offset - highest_order_object_bit_offset);
3176
3177 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
3178 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
3179 }
3180
3181 /* For a FIELD_DECL node which represents a bit field, output an attribute
3182 which specifies the length in bits of the given field. */
3183
3184 static inline void
3185 bit_size_attribute (decl)
3186 tree decl;
3187 {
3188 /* Must be a field and a bit field. */
3189 if (TREE_CODE (decl) != FIELD_DECL
3190 || ! DECL_BIT_FIELD_TYPE (decl))
3191 abort ();
3192
3193 if (host_integerp (DECL_SIZE (decl), 1))
3194 {
3195 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
3196 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
3197 tree_low_cst (DECL_SIZE (decl), 1));
3198 }
3199 }
3200
3201 /* The following routine outputs the `element_list' attribute for enumeration
3202 type DIEs. The element_lits attribute includes the names and values of
3203 all of the enumeration constants associated with the given enumeration
3204 type. */
3205
3206 static inline void
3207 element_list_attribute (element)
3208 tree element;
3209 {
3210 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3211 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3212
3213 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
3214 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
3215 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
3216 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3217 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3218
3219 /* Here we output a list of value/name pairs for each enumeration constant
3220 defined for this enumeration type (as required), but we do it in REVERSE
3221 order. The order is the one required by the draft #5 Dwarf specification
3222 published by the UI/PLSIG. */
3223
3224 output_enumeral_list (element); /* Recursively output the whole list. */
3225
3226 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3227 }
3228
3229 /* Generate an AT_stmt_list attribute. These are normally present only in
3230 DIEs with a TAG_compile_unit tag. */
3231
3232 static inline void
3233 stmt_list_attribute (label)
3234 const char *label;
3235 {
3236 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
3237 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3238 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
3239 }
3240
3241 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
3242 for a subroutine DIE. */
3243
3244 static inline void
3245 low_pc_attribute (asm_low_label)
3246 const char *asm_low_label;
3247 {
3248 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
3249 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
3250 }
3251
3252 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
3253 subroutine DIE. */
3254
3255 static inline void
3256 high_pc_attribute (asm_high_label)
3257 const char *asm_high_label;
3258 {
3259 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
3260 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
3261 }
3262
3263 /* Generate an AT_body_begin attribute for a subroutine DIE. */
3264
3265 static inline void
3266 body_begin_attribute (asm_begin_label)
3267 const char *asm_begin_label;
3268 {
3269 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
3270 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
3271 }
3272
3273 /* Generate an AT_body_end attribute for a subroutine DIE. */
3274
3275 static inline void
3276 body_end_attribute (asm_end_label)
3277 const char *asm_end_label;
3278 {
3279 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
3280 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
3281 }
3282
3283 /* Generate an AT_language attribute given a LANG value. These attributes
3284 are used only within TAG_compile_unit DIEs. */
3285
3286 static inline void
3287 language_attribute (language_code)
3288 unsigned language_code;
3289 {
3290 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
3291 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
3292 }
3293
3294 static inline void
3295 member_attribute (context)
3296 tree context;
3297 {
3298 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3299
3300 /* Generate this attribute only for members in C++. */
3301
3302 if (context != NULL && is_tagged_type (context))
3303 {
3304 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
3305 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
3306 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3307 }
3308 }
3309
3310 #if 0
3311 #ifndef SL_BEGIN_LABEL_FMT
3312 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
3313 #endif
3314 #ifndef SL_END_LABEL_FMT
3315 #define SL_END_LABEL_FMT "*.L_sl%u_e"
3316 #endif
3317
3318 static inline void
3319 string_length_attribute (upper_bound)
3320 tree upper_bound;
3321 {
3322 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3323 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3324
3325 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
3326 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
3327 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
3328 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
3329 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3330 output_bound_representation (upper_bound, 0, 'u');
3331 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3332 }
3333 #endif
3334
3335 static inline void
3336 comp_dir_attribute (dirname)
3337 const char *dirname;
3338 {
3339 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
3340 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
3341 }
3342
3343 static inline void
3344 sf_names_attribute (sf_names_start_label)
3345 const char *sf_names_start_label;
3346 {
3347 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
3348 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3349 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
3350 }
3351
3352 static inline void
3353 src_info_attribute (src_info_start_label)
3354 const char *src_info_start_label;
3355 {
3356 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
3357 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3358 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
3359 }
3360
3361 static inline void
3362 mac_info_attribute (mac_info_start_label)
3363 const char *mac_info_start_label;
3364 {
3365 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
3366 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3367 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
3368 }
3369
3370 static inline void
3371 prototyped_attribute (func_type)
3372 tree func_type;
3373 {
3374 if ((strcmp (lang_hooks.name, "GNU C") == 0)
3375 && (TYPE_ARG_TYPES (func_type) != NULL))
3376 {
3377 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
3378 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3379 }
3380 }
3381
3382 static inline void
3383 producer_attribute (producer)
3384 const char *producer;
3385 {
3386 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
3387 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
3388 }
3389
3390 static inline void
3391 inline_attribute (decl)
3392 tree decl;
3393 {
3394 if (DECL_INLINE (decl))
3395 {
3396 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
3397 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3398 }
3399 }
3400
3401 static inline void
3402 containing_type_attribute (containing_type)
3403 tree containing_type;
3404 {
3405 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3406
3407 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
3408 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
3409 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3410 }
3411
3412 static inline void
3413 abstract_origin_attribute (origin)
3414 tree origin;
3415 {
3416 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3417
3418 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
3419 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
3420 {
3421 case 'd':
3422 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
3423 break;
3424
3425 case 't':
3426 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3427 break;
3428
3429 default:
3430 abort (); /* Should never happen. */
3431
3432 }
3433 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3434 }
3435
3436 #ifdef DWARF_DECL_COORDINATES
3437 static inline void
3438 src_coords_attribute (src_fileno, src_lineno)
3439 unsigned src_fileno;
3440 unsigned src_lineno;
3441 {
3442 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3443 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3444 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3445 }
3446 #endif /* defined(DWARF_DECL_COORDINATES) */
3447
3448 static inline void
3449 pure_or_virtual_attribute (func_decl)
3450 tree func_decl;
3451 {
3452 if (DECL_VIRTUAL_P (func_decl))
3453 {
3454 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3455 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3456 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3457 else
3458 #endif
3459 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3460 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3461 }
3462 }
3463
3464 /************************* end of attributes *****************************/
3465
3466 /********************* utility routines for DIEs *************************/
3467
3468 /* Output an AT_name attribute and an AT_src_coords attribute for the
3469 given decl, but only if it actually has a name. */
3470
3471 static void
3472 name_and_src_coords_attributes (decl)
3473 tree decl;
3474 {
3475 tree decl_name = DECL_NAME (decl);
3476
3477 if (decl_name && IDENTIFIER_POINTER (decl_name))
3478 {
3479 name_attribute (IDENTIFIER_POINTER (decl_name));
3480 #ifdef DWARF_DECL_COORDINATES
3481 {
3482 register unsigned file_index;
3483
3484 /* This is annoying, but we have to pop out of the .debug section
3485 for a moment while we call `lookup_filename' because calling it
3486 may cause a temporary switch into the .debug_sfnames section and
3487 most svr4 assemblers are not smart enough to be able to nest
3488 section switches to any depth greater than one. Note that we
3489 also can't skirt this issue by delaying all output to the
3490 .debug_sfnames section unit the end of compilation because that
3491 would cause us to have inter-section forward references and
3492 Fred Fish sez that m68k/svr4 assemblers botch those. */
3493
3494 ASM_OUTPUT_POP_SECTION (asm_out_file);
3495 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3496 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3497
3498 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3499 }
3500 #endif /* defined(DWARF_DECL_COORDINATES) */
3501 }
3502 }
3503
3504 /* Many forms of DIEs contain a "type description" part. The following
3505 routine writes out these "type descriptor" parts. */
3506
3507 static void
3508 type_attribute (type, decl_const, decl_volatile)
3509 tree type;
3510 int decl_const;
3511 int decl_volatile;
3512 {
3513 enum tree_code code = TREE_CODE (type);
3514 int root_type_modified;
3515
3516 if (code == ERROR_MARK)
3517 return;
3518
3519 /* Handle a special case. For functions whose return type is void,
3520 we generate *no* type attribute. (Note that no object may have
3521 type `void', so this only applies to function return types. */
3522
3523 if (code == VOID_TYPE)
3524 return;
3525
3526 /* If this is a subtype, find the underlying type. Eventually,
3527 this should write out the appropriate subtype info. */
3528 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3529 && TREE_TYPE (type) != 0)
3530 type = TREE_TYPE (type), code = TREE_CODE (type);
3531
3532 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3533 || decl_const || decl_volatile
3534 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3535
3536 if (type_is_fundamental (root_type (type)))
3537 {
3538 if (root_type_modified)
3539 mod_fund_type_attribute (type, decl_const, decl_volatile);
3540 else
3541 fund_type_attribute (fundamental_type_code (type));
3542 }
3543 else
3544 {
3545 if (root_type_modified)
3546 mod_u_d_type_attribute (type, decl_const, decl_volatile);
3547 else
3548 /* We have to get the type_main_variant here (and pass that to the
3549 `user_def_type_attribute' routine) because the ..._TYPE node we
3550 have might simply be a *copy* of some original type node (where
3551 the copy was created to help us keep track of typedef names)
3552 and that copy might have a different TYPE_UID from the original
3553 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3554 is labeling a given type DIE for future reference, it always and
3555 only creates labels for DIEs representing *main variants*, and it
3556 never even knows about non-main-variants.) */
3557 user_def_type_attribute (type_main_variant (type));
3558 }
3559 }
3560
3561 /* Given a tree pointer to a struct, class, union, or enum type node, return
3562 a pointer to the (string) tag name for the given type, or zero if the
3563 type was declared without a tag. */
3564
3565 static const char *
3566 type_tag (type)
3567 tree type;
3568 {
3569 const char *name = 0;
3570
3571 if (TYPE_NAME (type) != 0)
3572 {
3573 tree t = 0;
3574
3575 /* Find the IDENTIFIER_NODE for the type name. */
3576 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3577 t = TYPE_NAME (type);
3578
3579 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3580 a TYPE_DECL node, regardless of whether or not a `typedef' was
3581 involved. */
3582 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3583 && ! DECL_IGNORED_P (TYPE_NAME (type)))
3584 t = DECL_NAME (TYPE_NAME (type));
3585
3586 /* Now get the name as a string, or invent one. */
3587 if (t != 0)
3588 name = IDENTIFIER_POINTER (t);
3589 }
3590
3591 return (name == 0 || *name == '\0') ? 0 : name;
3592 }
3593
3594 static inline void
3595 dienum_push ()
3596 {
3597 /* Start by checking if the pending_sibling_stack needs to be expanded.
3598 If necessary, expand it. */
3599
3600 if (pending_siblings == pending_siblings_allocated)
3601 {
3602 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3603 pending_sibling_stack
3604 = (unsigned *) xrealloc (pending_sibling_stack,
3605 pending_siblings_allocated * sizeof(unsigned));
3606 }
3607
3608 pending_siblings++;
3609 NEXT_DIE_NUM = next_unused_dienum++;
3610 }
3611
3612 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3613 NEXT_DIE_NUM. */
3614
3615 static inline void
3616 dienum_pop ()
3617 {
3618 pending_siblings--;
3619 }
3620
3621 static inline tree
3622 member_declared_type (member)
3623 tree member;
3624 {
3625 return (DECL_BIT_FIELD_TYPE (member))
3626 ? DECL_BIT_FIELD_TYPE (member)
3627 : TREE_TYPE (member);
3628 }
3629
3630 /* Get the function's label, as described by its RTL.
3631 This may be different from the DECL_NAME name used
3632 in the source file. */
3633
3634 static const char *
3635 function_start_label (decl)
3636 tree decl;
3637 {
3638 rtx x;
3639 const char *fnname;
3640
3641 x = DECL_RTL (decl);
3642 if (GET_CODE (x) != MEM)
3643 abort ();
3644 x = XEXP (x, 0);
3645 if (GET_CODE (x) != SYMBOL_REF)
3646 abort ();
3647 fnname = XSTR (x, 0);
3648 return fnname;
3649 }
3650
3651
3652 /******************************* DIEs ************************************/
3653
3654 /* Output routines for individual types of DIEs. */
3655
3656 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3657
3658 static void
3659 output_array_type_die (arg)
3660 void *arg;
3661 {
3662 tree type = arg;
3663
3664 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3665 sibling_attribute ();
3666 equate_type_number_to_die_number (type);
3667 member_attribute (TYPE_CONTEXT (type));
3668
3669 /* I believe that we can default the array ordering. SDB will probably
3670 do the right things even if AT_ordering is not present. It's not
3671 even an issue until we start to get into multidimensional arrays
3672 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3673 dimensional arrays, then we'll have to put the AT_ordering attribute
3674 back in. (But if and when we find out that we need to put these in,
3675 we will only do so for multidimensional arrays. After all, we don't
3676 want to waste space in the .debug section now do we?) */
3677
3678 #ifdef USE_ORDERING_ATTRIBUTE
3679 ordering_attribute (ORD_row_major);
3680 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3681
3682 subscript_data_attribute (type);
3683 }
3684
3685 static void
3686 output_set_type_die (arg)
3687 void *arg;
3688 {
3689 tree type = arg;
3690
3691 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3692 sibling_attribute ();
3693 equate_type_number_to_die_number (type);
3694 member_attribute (TYPE_CONTEXT (type));
3695 type_attribute (TREE_TYPE (type), 0, 0);
3696 }
3697
3698 #if 0
3699 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3700
3701 static void
3702 output_entry_point_die (arg)
3703 void *arg;
3704 {
3705 tree decl = arg;
3706 tree origin = decl_ultimate_origin (decl);
3707
3708 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3709 sibling_attribute ();
3710 dienum_push ();
3711 if (origin != NULL)
3712 abstract_origin_attribute (origin);
3713 else
3714 {
3715 name_and_src_coords_attributes (decl);
3716 member_attribute (DECL_CONTEXT (decl));
3717 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3718 }
3719 if (DECL_ABSTRACT (decl))
3720 equate_decl_number_to_die_number (decl);
3721 else
3722 low_pc_attribute (function_start_label (decl));
3723 }
3724 #endif
3725
3726 /* Output a DIE to represent an inlined instance of an enumeration type. */
3727
3728 static void
3729 output_inlined_enumeration_type_die (arg)
3730 void *arg;
3731 {
3732 tree type = arg;
3733
3734 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3735 sibling_attribute ();
3736 if (!TREE_ASM_WRITTEN (type))
3737 abort ();
3738 abstract_origin_attribute (type);
3739 }
3740
3741 /* Output a DIE to represent an inlined instance of a structure type. */
3742
3743 static void
3744 output_inlined_structure_type_die (arg)
3745 void *arg;
3746 {
3747 tree type = arg;
3748
3749 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3750 sibling_attribute ();
3751 if (!TREE_ASM_WRITTEN (type))
3752 abort ();
3753 abstract_origin_attribute (type);
3754 }
3755
3756 /* Output a DIE to represent an inlined instance of a union type. */
3757
3758 static void
3759 output_inlined_union_type_die (arg)
3760 void *arg;
3761 {
3762 tree type = arg;
3763
3764 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3765 sibling_attribute ();
3766 if (!TREE_ASM_WRITTEN (type))
3767 abort ();
3768 abstract_origin_attribute (type);
3769 }
3770
3771 /* Output a DIE to represent an enumeration type. Note that these DIEs
3772 include all of the information about the enumeration values also.
3773 This information is encoded into the element_list attribute. */
3774
3775 static void
3776 output_enumeration_type_die (arg)
3777 void *arg;
3778 {
3779 tree type = arg;
3780
3781 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3782 sibling_attribute ();
3783 equate_type_number_to_die_number (type);
3784 name_attribute (type_tag (type));
3785 member_attribute (TYPE_CONTEXT (type));
3786
3787 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3788 given enum type is incomplete, do not generate the AT_byte_size
3789 attribute or the AT_element_list attribute. */
3790
3791 if (COMPLETE_TYPE_P (type))
3792 {
3793 byte_size_attribute (type);
3794 element_list_attribute (TYPE_FIELDS (type));
3795 }
3796 }
3797
3798 /* Output a DIE to represent either a real live formal parameter decl or
3799 to represent just the type of some formal parameter position in some
3800 function type.
3801
3802 Note that this routine is a bit unusual because its argument may be
3803 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3804 represents an inlining of some PARM_DECL) or else some sort of a
3805 ..._TYPE node. If it's the former then this function is being called
3806 to output a DIE to represent a formal parameter object (or some inlining
3807 thereof). If it's the latter, then this function is only being called
3808 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3809 formal argument type of some subprogram type. */
3810
3811 static void
3812 output_formal_parameter_die (arg)
3813 void *arg;
3814 {
3815 tree node = arg;
3816
3817 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3818 sibling_attribute ();
3819
3820 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3821 {
3822 case 'd': /* We were called with some kind of a ..._DECL node. */
3823 {
3824 register tree origin = decl_ultimate_origin (node);
3825
3826 if (origin != NULL)
3827 abstract_origin_attribute (origin);
3828 else
3829 {
3830 name_and_src_coords_attributes (node);
3831 type_attribute (TREE_TYPE (node),
3832 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3833 }
3834 if (DECL_ABSTRACT (node))
3835 equate_decl_number_to_die_number (node);
3836 else
3837 location_or_const_value_attribute (node);
3838 }
3839 break;
3840
3841 case 't': /* We were called with some kind of a ..._TYPE node. */
3842 type_attribute (node, 0, 0);
3843 break;
3844
3845 default:
3846 abort (); /* Should never happen. */
3847 }
3848 }
3849
3850 /* Output a DIE to represent a declared function (either file-scope
3851 or block-local) which has "external linkage" (according to ANSI-C). */
3852
3853 static void
3854 output_global_subroutine_die (arg)
3855 void *arg;
3856 {
3857 tree decl = arg;
3858 tree origin = decl_ultimate_origin (decl);
3859
3860 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3861 sibling_attribute ();
3862 dienum_push ();
3863 if (origin != NULL)
3864 abstract_origin_attribute (origin);
3865 else
3866 {
3867 tree type = TREE_TYPE (decl);
3868
3869 name_and_src_coords_attributes (decl);
3870 inline_attribute (decl);
3871 prototyped_attribute (type);
3872 member_attribute (DECL_CONTEXT (decl));
3873 type_attribute (TREE_TYPE (type), 0, 0);
3874 pure_or_virtual_attribute (decl);
3875 }
3876 if (DECL_ABSTRACT (decl))
3877 equate_decl_number_to_die_number (decl);
3878 else
3879 {
3880 if (! DECL_EXTERNAL (decl) && ! in_class
3881 && decl == current_function_decl)
3882 {
3883 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3884
3885 low_pc_attribute (function_start_label (decl));
3886 sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
3887 high_pc_attribute (label);
3888 if (use_gnu_debug_info_extensions)
3889 {
3890 sprintf (label, BODY_BEGIN_LABEL_FMT,
3891 current_function_funcdef_no);
3892 body_begin_attribute (label);
3893 sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
3894 body_end_attribute (label);
3895 }
3896 }
3897 }
3898 }
3899
3900 /* Output a DIE to represent a declared data object (either file-scope
3901 or block-local) which has "external linkage" (according to ANSI-C). */
3902
3903 static void
3904 output_global_variable_die (arg)
3905 void *arg;
3906 {
3907 tree decl = arg;
3908 tree origin = decl_ultimate_origin (decl);
3909
3910 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3911 sibling_attribute ();
3912 if (origin != NULL)
3913 abstract_origin_attribute (origin);
3914 else
3915 {
3916 name_and_src_coords_attributes (decl);
3917 member_attribute (DECL_CONTEXT (decl));
3918 type_attribute (TREE_TYPE (decl),
3919 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3920 }
3921 if (DECL_ABSTRACT (decl))
3922 equate_decl_number_to_die_number (decl);
3923 else
3924 {
3925 if (! DECL_EXTERNAL (decl) && ! in_class
3926 && current_function_decl == decl_function_context (decl))
3927 location_or_const_value_attribute (decl);
3928 }
3929 }
3930
3931 static void
3932 output_label_die (arg)
3933 void *arg;
3934 {
3935 tree decl = arg;
3936 tree origin = decl_ultimate_origin (decl);
3937
3938 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3939 sibling_attribute ();
3940 if (origin != NULL)
3941 abstract_origin_attribute (origin);
3942 else
3943 name_and_src_coords_attributes (decl);
3944 if (DECL_ABSTRACT (decl))
3945 equate_decl_number_to_die_number (decl);
3946 else
3947 {
3948 rtx insn = DECL_RTL (decl);
3949
3950 /* Deleted labels are programmer specified labels which have been
3951 eliminated because of various optimizations. We still emit them
3952 here so that it is possible to put breakpoints on them. */
3953 if (GET_CODE (insn) == CODE_LABEL
3954 || ((GET_CODE (insn) == NOTE
3955 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
3956 {
3957 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3958
3959 /* When optimization is enabled (via -O) some parts of the compiler
3960 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3961 represent source-level labels which were explicitly declared by
3962 the user. This really shouldn't be happening though, so catch
3963 it if it ever does happen. */
3964
3965 if (INSN_DELETED_P (insn))
3966 abort (); /* Should never happen. */
3967
3968 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
3969 low_pc_attribute (label);
3970 }
3971 }
3972 }
3973
3974 static void
3975 output_lexical_block_die (arg)
3976 void *arg;
3977 {
3978 tree stmt = arg;
3979
3980 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3981 sibling_attribute ();
3982 dienum_push ();
3983 if (! BLOCK_ABSTRACT (stmt))
3984 {
3985 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3986 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3987
3988 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
3989 low_pc_attribute (begin_label);
3990 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
3991 high_pc_attribute (end_label);
3992 }
3993 }
3994
3995 static void
3996 output_inlined_subroutine_die (arg)
3997 void *arg;
3998 {
3999 tree stmt = arg;
4000
4001 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
4002 sibling_attribute ();
4003 dienum_push ();
4004 abstract_origin_attribute (block_ultimate_origin (stmt));
4005 if (! BLOCK_ABSTRACT (stmt))
4006 {
4007 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4008 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4009
4010 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
4011 low_pc_attribute (begin_label);
4012 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
4013 high_pc_attribute (end_label);
4014 }
4015 }
4016
4017 /* Output a DIE to represent a declared data object (either file-scope
4018 or block-local) which has "internal linkage" (according to ANSI-C). */
4019
4020 static void
4021 output_local_variable_die (arg)
4022 void *arg;
4023 {
4024 tree decl = arg;
4025 tree origin = decl_ultimate_origin (decl);
4026
4027 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
4028 sibling_attribute ();
4029 if (origin != NULL)
4030 abstract_origin_attribute (origin);
4031 else
4032 {
4033 name_and_src_coords_attributes (decl);
4034 member_attribute (DECL_CONTEXT (decl));
4035 type_attribute (TREE_TYPE (decl),
4036 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4037 }
4038 if (DECL_ABSTRACT (decl))
4039 equate_decl_number_to_die_number (decl);
4040 else
4041 location_or_const_value_attribute (decl);
4042 }
4043
4044 static void
4045 output_member_die (arg)
4046 void *arg;
4047 {
4048 tree decl = arg;
4049
4050 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
4051 sibling_attribute ();
4052 name_and_src_coords_attributes (decl);
4053 member_attribute (DECL_CONTEXT (decl));
4054 type_attribute (member_declared_type (decl),
4055 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4056 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
4057 {
4058 byte_size_attribute (decl);
4059 bit_size_attribute (decl);
4060 bit_offset_attribute (decl);
4061 }
4062 data_member_location_attribute (decl);
4063 }
4064
4065 #if 0
4066 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
4067 modified types instead.
4068
4069 We keep this code here just in case these types of DIEs may be
4070 needed to represent certain things in other languages (e.g. Pascal)
4071 someday. */
4072
4073 static void
4074 output_pointer_type_die (arg)
4075 void *arg;
4076 {
4077 tree type = arg;
4078
4079 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
4080 sibling_attribute ();
4081 equate_type_number_to_die_number (type);
4082 member_attribute (TYPE_CONTEXT (type));
4083 type_attribute (TREE_TYPE (type), 0, 0);
4084 }
4085
4086 static void
4087 output_reference_type_die (arg)
4088 void *arg;
4089 {
4090 tree type = arg;
4091
4092 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
4093 sibling_attribute ();
4094 equate_type_number_to_die_number (type);
4095 member_attribute (TYPE_CONTEXT (type));
4096 type_attribute (TREE_TYPE (type), 0, 0);
4097 }
4098 #endif
4099
4100 static void
4101 output_ptr_to_mbr_type_die (arg)
4102 void *arg;
4103 {
4104 tree type = arg;
4105
4106 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
4107 sibling_attribute ();
4108 equate_type_number_to_die_number (type);
4109 member_attribute (TYPE_CONTEXT (type));
4110 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
4111 type_attribute (TREE_TYPE (type), 0, 0);
4112 }
4113
4114 static void
4115 output_compile_unit_die (arg)
4116 void *arg;
4117 {
4118 const char *main_input_filename = arg;
4119 const char *language_string = lang_hooks.name;
4120
4121 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
4122 sibling_attribute ();
4123 dienum_push ();
4124 name_attribute (main_input_filename);
4125
4126 {
4127 char producer[250];
4128
4129 sprintf (producer, "%s %s", language_string, version_string);
4130 producer_attribute (producer);
4131 }
4132
4133 if (strcmp (language_string, "GNU C++") == 0)
4134 language_attribute (LANG_C_PLUS_PLUS);
4135 else if (strcmp (language_string, "GNU Ada") == 0)
4136 language_attribute (LANG_ADA83);
4137 else if (strcmp (language_string, "GNU F77") == 0)
4138 language_attribute (LANG_FORTRAN77);
4139 else if (strcmp (language_string, "GNU Pascal") == 0)
4140 language_attribute (LANG_PASCAL83);
4141 else if (strcmp (language_string, "GNU Java") == 0)
4142 language_attribute (LANG_JAVA);
4143 else
4144 language_attribute (LANG_C89);
4145 low_pc_attribute (TEXT_BEGIN_LABEL);
4146 high_pc_attribute (TEXT_END_LABEL);
4147 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4148 stmt_list_attribute (LINE_BEGIN_LABEL);
4149
4150 {
4151 const char *wd = getpwd ();
4152 if (wd)
4153 comp_dir_attribute (wd);
4154 }
4155
4156 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
4157 {
4158 sf_names_attribute (SFNAMES_BEGIN_LABEL);
4159 src_info_attribute (SRCINFO_BEGIN_LABEL);
4160 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
4161 mac_info_attribute (MACINFO_BEGIN_LABEL);
4162 }
4163 }
4164
4165 static void
4166 output_string_type_die (arg)
4167 void *arg;
4168 {
4169 tree type = arg;
4170
4171 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
4172 sibling_attribute ();
4173 equate_type_number_to_die_number (type);
4174 member_attribute (TYPE_CONTEXT (type));
4175 /* this is a fixed length string */
4176 byte_size_attribute (type);
4177 }
4178
4179 static void
4180 output_inheritance_die (arg)
4181 void *arg;
4182 {
4183 tree binfo = ((tree *)arg)[0];
4184 tree access = ((tree *)arg)[1];
4185
4186 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
4187 sibling_attribute ();
4188 type_attribute (BINFO_TYPE (binfo), 0, 0);
4189 data_member_location_attribute (binfo);
4190 if (TREE_VIA_VIRTUAL (binfo))
4191 {
4192 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
4193 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4194 }
4195 if (access == access_public_node)
4196 {
4197 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
4198 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4199 }
4200 else if (access == access_protected_node)
4201 {
4202 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
4203 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4204 }
4205 }
4206
4207 static void
4208 output_structure_type_die (arg)
4209 void *arg;
4210 {
4211 tree type = arg;
4212
4213 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
4214 sibling_attribute ();
4215 equate_type_number_to_die_number (type);
4216 name_attribute (type_tag (type));
4217 member_attribute (TYPE_CONTEXT (type));
4218
4219 /* If this type has been completed, then give it a byte_size attribute
4220 and prepare to give a list of members. Otherwise, don't do either of
4221 these things. In the latter case, we will not be generating a list
4222 of members (since we don't have any idea what they might be for an
4223 incomplete type). */
4224
4225 if (COMPLETE_TYPE_P (type))
4226 {
4227 dienum_push ();
4228 byte_size_attribute (type);
4229 }
4230 }
4231
4232 /* Output a DIE to represent a declared function (either file-scope
4233 or block-local) which has "internal linkage" (according to ANSI-C). */
4234
4235 static void
4236 output_local_subroutine_die (arg)
4237 void *arg;
4238 {
4239 tree decl = arg;
4240 tree origin = decl_ultimate_origin (decl);
4241
4242 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
4243 sibling_attribute ();
4244 dienum_push ();
4245 if (origin != NULL)
4246 abstract_origin_attribute (origin);
4247 else
4248 {
4249 tree type = TREE_TYPE (decl);
4250
4251 name_and_src_coords_attributes (decl);
4252 inline_attribute (decl);
4253 prototyped_attribute (type);
4254 member_attribute (DECL_CONTEXT (decl));
4255 type_attribute (TREE_TYPE (type), 0, 0);
4256 pure_or_virtual_attribute (decl);
4257 }
4258 if (DECL_ABSTRACT (decl))
4259 equate_decl_number_to_die_number (decl);
4260 else
4261 {
4262 /* Avoid getting screwed up in cases where a function was declared
4263 static but where no definition was ever given for it. */
4264
4265 if (TREE_ASM_WRITTEN (decl))
4266 {
4267 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4268 low_pc_attribute (function_start_label (decl));
4269 sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
4270 high_pc_attribute (label);
4271 if (use_gnu_debug_info_extensions)
4272 {
4273 sprintf (label, BODY_BEGIN_LABEL_FMT,
4274 current_function_funcdef_no);
4275 body_begin_attribute (label);
4276 sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
4277 body_end_attribute (label);
4278 }
4279 }
4280 }
4281 }
4282
4283 static void
4284 output_subroutine_type_die (arg)
4285 void *arg;
4286 {
4287 tree type = arg;
4288 tree return_type = TREE_TYPE (type);
4289
4290 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
4291 sibling_attribute ();
4292 dienum_push ();
4293 equate_type_number_to_die_number (type);
4294 prototyped_attribute (type);
4295 member_attribute (TYPE_CONTEXT (type));
4296 type_attribute (return_type, 0, 0);
4297 }
4298
4299 static void
4300 output_typedef_die (arg)
4301 void *arg;
4302 {
4303 tree decl = arg;
4304 tree origin = decl_ultimate_origin (decl);
4305
4306 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
4307 sibling_attribute ();
4308 if (origin != NULL)
4309 abstract_origin_attribute (origin);
4310 else
4311 {
4312 name_and_src_coords_attributes (decl);
4313 member_attribute (DECL_CONTEXT (decl));
4314 type_attribute (TREE_TYPE (decl),
4315 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4316 }
4317 if (DECL_ABSTRACT (decl))
4318 equate_decl_number_to_die_number (decl);
4319 }
4320
4321 static void
4322 output_union_type_die (arg)
4323 void *arg;
4324 {
4325 tree type = arg;
4326
4327 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
4328 sibling_attribute ();
4329 equate_type_number_to_die_number (type);
4330 name_attribute (type_tag (type));
4331 member_attribute (TYPE_CONTEXT (type));
4332
4333 /* If this type has been completed, then give it a byte_size attribute
4334 and prepare to give a list of members. Otherwise, don't do either of
4335 these things. In the latter case, we will not be generating a list
4336 of members (since we don't have any idea what they might be for an
4337 incomplete type). */
4338
4339 if (COMPLETE_TYPE_P (type))
4340 {
4341 dienum_push ();
4342 byte_size_attribute (type);
4343 }
4344 }
4345
4346 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
4347 at the end of an (ANSI prototyped) formal parameters list. */
4348
4349 static void
4350 output_unspecified_parameters_die (arg)
4351 void *arg;
4352 {
4353 tree decl_or_type = arg;
4354
4355 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
4356 sibling_attribute ();
4357
4358 /* This kludge is here only for the sake of being compatible with what
4359 the USL CI5 C compiler does. The specification of Dwarf Version 1
4360 doesn't say that TAG_unspecified_parameters DIEs should contain any
4361 attributes other than the AT_sibling attribute, but they are certainly
4362 allowed to contain additional attributes, and the CI5 compiler
4363 generates AT_name, AT_fund_type, and AT_location attributes within
4364 TAG_unspecified_parameters DIEs which appear in the child lists for
4365 DIEs representing function definitions, so we do likewise here. */
4366
4367 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
4368 {
4369 name_attribute ("...");
4370 fund_type_attribute (FT_pointer);
4371 /* location_attribute (?); */
4372 }
4373 }
4374
4375 static void
4376 output_padded_null_die (arg)
4377 void *arg ATTRIBUTE_UNUSED;
4378 {
4379 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
4380 }
4381
4382 /*************************** end of DIEs *********************************/
4383
4384 /* Generate some type of DIE. This routine generates the generic outer
4385 wrapper stuff which goes around all types of DIE's (regardless of their
4386 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
4387 DIE-length word, followed by the guts of the DIE itself. After the guts
4388 of the DIE, there must always be a terminator label for the DIE. */
4389
4390 static void
4391 output_die (die_specific_output_function, param)
4392 void (*die_specific_output_function) PARAMS ((void *));
4393 void *param;
4394 {
4395 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4396 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4397
4398 current_dienum = NEXT_DIE_NUM;
4399 NEXT_DIE_NUM = next_unused_dienum;
4400
4401 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4402 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
4403
4404 /* Write a label which will act as the name for the start of this DIE. */
4405
4406 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4407
4408 /* Write the DIE-length word. */
4409
4410 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
4411
4412 /* Fill in the guts of the DIE. */
4413
4414 next_unused_dienum++;
4415 die_specific_output_function (param);
4416
4417 /* Write a label which will act as the name for the end of this DIE. */
4418
4419 ASM_OUTPUT_LABEL (asm_out_file, end_label);
4420 }
4421
4422 static void
4423 end_sibling_chain ()
4424 {
4425 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4426
4427 current_dienum = NEXT_DIE_NUM;
4428 NEXT_DIE_NUM = next_unused_dienum;
4429
4430 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4431
4432 /* Write a label which will act as the name for the start of this DIE. */
4433
4434 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4435
4436 /* Write the DIE-length word. */
4437
4438 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4439
4440 dienum_pop ();
4441 }
4442 \f
4443 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4444 TAG_unspecified_parameters DIE) to represent the types of the formal
4445 parameters as specified in some function type specification (except
4446 for those which appear as part of a function *definition*).
4447
4448 Note that we must be careful here to output all of the parameter
4449 DIEs *before* we output any DIEs needed to represent the types of
4450 the formal parameters. This keeps svr4 SDB happy because it
4451 (incorrectly) thinks that the first non-parameter DIE it sees ends
4452 the formal parameter list. */
4453
4454 static void
4455 output_formal_types (function_or_method_type)
4456 tree function_or_method_type;
4457 {
4458 tree link;
4459 tree formal_type = NULL;
4460 tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4461
4462 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4463 get bogus recursion when outputting tagged types local to a
4464 function declaration. */
4465 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4466 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4467
4468 /* In the case where we are generating a formal types list for a C++
4469 non-static member function type, skip over the first thing on the
4470 TYPE_ARG_TYPES list because it only represents the type of the
4471 hidden `this pointer'. The debugger should be able to figure
4472 out (without being explicitly told) that this non-static member
4473 function type takes a `this pointer' and should be able to figure
4474 what the type of that hidden parameter is from the AT_member
4475 attribute of the parent TAG_subroutine_type DIE. */
4476
4477 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4478 first_parm_type = TREE_CHAIN (first_parm_type);
4479
4480 /* Make our first pass over the list of formal parameter types and output
4481 a TAG_formal_parameter DIE for each one. */
4482
4483 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4484 {
4485 formal_type = TREE_VALUE (link);
4486 if (formal_type == void_type_node)
4487 break;
4488
4489 /* Output a (nameless) DIE to represent the formal parameter itself. */
4490
4491 output_die (output_formal_parameter_die, formal_type);
4492 }
4493
4494 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4495 DIE to the end of the parameter list. */
4496
4497 if (formal_type != void_type_node)
4498 output_die (output_unspecified_parameters_die, function_or_method_type);
4499
4500 /* Make our second (and final) pass over the list of formal parameter types
4501 and output DIEs to represent those types (as necessary). */
4502
4503 for (link = TYPE_ARG_TYPES (function_or_method_type);
4504 link;
4505 link = TREE_CHAIN (link))
4506 {
4507 formal_type = TREE_VALUE (link);
4508 if (formal_type == void_type_node)
4509 break;
4510
4511 output_type (formal_type, function_or_method_type);
4512 }
4513
4514 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4515 }
4516 \f
4517 /* Remember a type in the pending_types_list. */
4518
4519 static void
4520 pend_type (type)
4521 tree type;
4522 {
4523 if (pending_types == pending_types_allocated)
4524 {
4525 pending_types_allocated += PENDING_TYPES_INCREMENT;
4526 pending_types_list
4527 = (tree *) xrealloc (pending_types_list,
4528 sizeof (tree) * pending_types_allocated);
4529 }
4530 pending_types_list[pending_types++] = type;
4531
4532 /* Mark the pending type as having been output already (even though
4533 it hasn't been). This prevents the type from being added to the
4534 pending_types_list more than once. */
4535
4536 TREE_ASM_WRITTEN (type) = 1;
4537 }
4538
4539 /* Return nonzero if it is legitimate to output DIEs to represent a
4540 given type while we are generating the list of child DIEs for some
4541 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4542
4543 See the comments within the function for a description of when it is
4544 considered legitimate to output DIEs for various kinds of types.
4545
4546 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4547 or it may point to a BLOCK node (for types local to a block), or to a
4548 FUNCTION_DECL node (for types local to the heading of some function
4549 definition), or to a FUNCTION_TYPE node (for types local to the
4550 prototyped parameter list of a function type specification), or to a
4551 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4552 (in the case of C++ nested types).
4553
4554 The `scope' parameter should likewise be NULL or should point to a
4555 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4556 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4557
4558 This function is used only for deciding when to "pend" and when to
4559 "un-pend" types to/from the pending_types_list.
4560
4561 Note that we sometimes make use of this "type pending" feature in a
4562 rather twisted way to temporarily delay the production of DIEs for the
4563 types of formal parameters. (We do this just to make svr4 SDB happy.)
4564 It order to delay the production of DIEs representing types of formal
4565 parameters, callers of this function supply `fake_containing_scope' as
4566 the `scope' parameter to this function. Given that fake_containing_scope
4567 is a tagged type which is *not* the containing scope for *any* other type,
4568 the desired effect is achieved, i.e. output of DIEs representing types
4569 is temporarily suspended, and any type DIEs which would have otherwise
4570 been output are instead placed onto the pending_types_list. Later on,
4571 we force these (temporarily pended) types to be output simply by calling
4572 `output_pending_types_for_scope' with an actual argument equal to the
4573 true scope of the types we temporarily pended. */
4574
4575 static inline int
4576 type_ok_for_scope (type, scope)
4577 tree type;
4578 tree scope;
4579 {
4580 /* Tagged types (i.e. struct, union, and enum types) must always be
4581 output only in the scopes where they actually belong (or else the
4582 scoping of their own tag names and the scoping of their member
4583 names will be incorrect). Non-tagged-types on the other hand can
4584 generally be output anywhere, except that svr4 SDB really doesn't
4585 want to see them nested within struct or union types, so here we
4586 say it is always OK to immediately output any such a (non-tagged)
4587 type, so long as we are not within such a context. Note that the
4588 only kinds of non-tagged types which we will be dealing with here
4589 (for C and C++ anyway) will be array types and function types. */
4590
4591 return is_tagged_type (type)
4592 ? (TYPE_CONTEXT (type) == scope
4593 /* Ignore namespaces for the moment. */
4594 || (scope == NULL_TREE
4595 && TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4596 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4597 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4598 : (scope == NULL_TREE || ! is_tagged_type (scope));
4599 }
4600
4601 /* Output any pending types (from the pending_types list) which we can output
4602 now (taking into account the scope that we are working on now).
4603
4604 For each type output, remove the given type from the pending_types_list
4605 *before* we try to output it.
4606
4607 Note that we have to process the list in beginning-to-end order,
4608 because the call made here to output_type may cause yet more types
4609 to be added to the end of the list, and we may have to output some
4610 of them too. */
4611
4612 static void
4613 output_pending_types_for_scope (containing_scope)
4614 tree containing_scope;
4615 {
4616 unsigned i;
4617
4618 for (i = 0; i < pending_types; )
4619 {
4620 tree type = pending_types_list[i];
4621
4622 if (type_ok_for_scope (type, containing_scope))
4623 {
4624 tree *mover;
4625 tree *limit;
4626
4627 pending_types--;
4628 limit = &pending_types_list[pending_types];
4629 for (mover = &pending_types_list[i]; mover < limit; mover++)
4630 *mover = *(mover+1);
4631
4632 /* Un-mark the type as having been output already (because it
4633 hasn't been, really). Then call output_type to generate a
4634 Dwarf representation of it. */
4635
4636 TREE_ASM_WRITTEN (type) = 0;
4637 output_type (type, containing_scope);
4638
4639 /* Don't increment the loop counter in this case because we
4640 have shifted all of the subsequent pending types down one
4641 element in the pending_types_list array. */
4642 }
4643 else
4644 i++;
4645 }
4646 }
4647
4648 /* Remember a type in the incomplete_types_list. */
4649
4650 static void
4651 add_incomplete_type (type)
4652 tree type;
4653 {
4654 if (incomplete_types == incomplete_types_allocated)
4655 {
4656 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4657 incomplete_types_list
4658 = (tree *) xrealloc (incomplete_types_list,
4659 sizeof (tree) * incomplete_types_allocated);
4660 }
4661
4662 incomplete_types_list[incomplete_types++] = type;
4663 }
4664
4665 /* Walk through the list of incomplete types again, trying once more to
4666 emit full debugging info for them. */
4667
4668 static void
4669 retry_incomplete_types ()
4670 {
4671 tree type;
4672
4673 finalizing = 1;
4674 while (incomplete_types)
4675 {
4676 --incomplete_types;
4677 type = incomplete_types_list[incomplete_types];
4678 output_type (type, NULL_TREE);
4679 }
4680 }
4681
4682 static void
4683 output_type (type, containing_scope)
4684 tree type;
4685 tree containing_scope;
4686 {
4687 if (type == 0 || type == error_mark_node)
4688 return;
4689
4690 /* We are going to output a DIE to represent the unqualified version of
4691 this type (i.e. without any const or volatile qualifiers) so get
4692 the main variant (i.e. the unqualified version) of this type now. */
4693
4694 type = type_main_variant (type);
4695
4696 if (TREE_ASM_WRITTEN (type))
4697 {
4698 if (finalizing && AGGREGATE_TYPE_P (type))
4699 {
4700 tree member;
4701
4702 /* Some of our nested types might not have been defined when we
4703 were written out before; force them out now. */
4704
4705 for (member = TYPE_FIELDS (type); member;
4706 member = TREE_CHAIN (member))
4707 if (TREE_CODE (member) == TYPE_DECL
4708 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4709 output_type (TREE_TYPE (member), containing_scope);
4710 }
4711 return;
4712 }
4713
4714 /* If this is a nested type whose containing class hasn't been
4715 written out yet, writing it out will cover this one, too. */
4716
4717 if (TYPE_CONTEXT (type)
4718 && TYPE_P (TYPE_CONTEXT (type))
4719 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4720 {
4721 output_type (TYPE_CONTEXT (type), containing_scope);
4722 return;
4723 }
4724
4725 /* Don't generate any DIEs for this type now unless it is OK to do so
4726 (based upon what `type_ok_for_scope' tells us). */
4727
4728 if (! type_ok_for_scope (type, containing_scope))
4729 {
4730 pend_type (type);
4731 return;
4732 }
4733
4734 switch (TREE_CODE (type))
4735 {
4736 case ERROR_MARK:
4737 break;
4738
4739 case VECTOR_TYPE:
4740 output_type (TYPE_DEBUG_REPRESENTATION_TYPE (type), containing_scope);
4741 break;
4742
4743 case POINTER_TYPE:
4744 case REFERENCE_TYPE:
4745 /* Prevent infinite recursion in cases where this is a recursive
4746 type. Recursive types are possible in Ada. */
4747 TREE_ASM_WRITTEN (type) = 1;
4748 /* For these types, all that is required is that we output a DIE
4749 (or a set of DIEs) to represent the "basis" type. */
4750 output_type (TREE_TYPE (type), containing_scope);
4751 break;
4752
4753 case OFFSET_TYPE:
4754 /* This code is used for C++ pointer-to-data-member types. */
4755 /* Output a description of the relevant class type. */
4756 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4757 /* Output a description of the type of the object pointed to. */
4758 output_type (TREE_TYPE (type), containing_scope);
4759 /* Now output a DIE to represent this pointer-to-data-member type
4760 itself. */
4761 output_die (output_ptr_to_mbr_type_die, type);
4762 break;
4763
4764 case SET_TYPE:
4765 output_type (TYPE_DOMAIN (type), containing_scope);
4766 output_die (output_set_type_die, type);
4767 break;
4768
4769 case FILE_TYPE:
4770 output_type (TREE_TYPE (type), containing_scope);
4771 abort (); /* No way to represent these in Dwarf yet! */
4772 break;
4773
4774 case FUNCTION_TYPE:
4775 /* Force out return type (in case it wasn't forced out already). */
4776 output_type (TREE_TYPE (type), containing_scope);
4777 output_die (output_subroutine_type_die, type);
4778 output_formal_types (type);
4779 end_sibling_chain ();
4780 break;
4781
4782 case METHOD_TYPE:
4783 /* Force out return type (in case it wasn't forced out already). */
4784 output_type (TREE_TYPE (type), containing_scope);
4785 output_die (output_subroutine_type_die, type);
4786 output_formal_types (type);
4787 end_sibling_chain ();
4788 break;
4789
4790 case ARRAY_TYPE:
4791 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4792 {
4793 output_type (TREE_TYPE (type), containing_scope);
4794 output_die (output_string_type_die, type);
4795 }
4796 else
4797 {
4798 tree element_type;
4799
4800 element_type = TREE_TYPE (type);
4801 while (TREE_CODE (element_type) == ARRAY_TYPE)
4802 element_type = TREE_TYPE (element_type);
4803
4804 output_type (element_type, containing_scope);
4805 output_die (output_array_type_die, type);
4806 }
4807 break;
4808
4809 case ENUMERAL_TYPE:
4810 case RECORD_TYPE:
4811 case UNION_TYPE:
4812 case QUAL_UNION_TYPE:
4813
4814 /* For a non-file-scope tagged type, we can always go ahead and
4815 output a Dwarf description of this type right now, even if
4816 the type in question is still incomplete, because if this
4817 local type *was* ever completed anywhere within its scope,
4818 that complete definition would already have been attached to
4819 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4820 node by the time we reach this point. That's true because of the
4821 way the front-end does its processing of file-scope declarations (of
4822 functions and class types) within which other types might be
4823 nested. The C and C++ front-ends always gobble up such "local
4824 scope" things en-mass before they try to output *any* debugging
4825 information for any of the stuff contained inside them and thus,
4826 we get the benefit here of what is (in effect) a pre-resolution
4827 of forward references to tagged types in local scopes.
4828
4829 Note however that for file-scope tagged types we cannot assume
4830 that such pre-resolution of forward references has taken place.
4831 A given file-scope tagged type may appear to be incomplete when
4832 we reach this point, but it may yet be given a full definition
4833 (at file-scope) later on during compilation. In order to avoid
4834 generating a premature (and possibly incorrect) set of Dwarf
4835 DIEs for such (as yet incomplete) file-scope tagged types, we
4836 generate nothing at all for as-yet incomplete file-scope tagged
4837 types here unless we are making our special "finalization" pass
4838 for file-scope things at the very end of compilation. At that
4839 time, we will certainly know as much about each file-scope tagged
4840 type as we are ever going to know, so at that point in time, we
4841 can safely generate correct Dwarf descriptions for these file-
4842 scope tagged types. */
4843
4844 if (!COMPLETE_TYPE_P (type)
4845 && (TYPE_CONTEXT (type) == NULL
4846 || AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
4847 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4848 && !finalizing)
4849 {
4850 /* We don't need to do this for function-local types. */
4851 if (! decl_function_context (TYPE_STUB_DECL (type)))
4852 add_incomplete_type (type);
4853 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4854 }
4855
4856 /* Prevent infinite recursion in cases where the type of some
4857 member of this type is expressed in terms of this type itself. */
4858
4859 TREE_ASM_WRITTEN (type) = 1;
4860
4861 /* Output a DIE to represent the tagged type itself. */
4862
4863 switch (TREE_CODE (type))
4864 {
4865 case ENUMERAL_TYPE:
4866 output_die (output_enumeration_type_die, type);
4867 return; /* a special case -- nothing left to do so just return */
4868
4869 case RECORD_TYPE:
4870 output_die (output_structure_type_die, type);
4871 break;
4872
4873 case UNION_TYPE:
4874 case QUAL_UNION_TYPE:
4875 output_die (output_union_type_die, type);
4876 break;
4877
4878 default:
4879 abort (); /* Should never happen. */
4880 }
4881
4882 /* If this is not an incomplete type, output descriptions of
4883 each of its members.
4884
4885 Note that as we output the DIEs necessary to represent the
4886 members of this record or union type, we will also be trying
4887 to output DIEs to represent the *types* of those members.
4888 However the `output_type' function (above) will specifically
4889 avoid generating type DIEs for member types *within* the list
4890 of member DIEs for this (containing) type except for those
4891 types (of members) which are explicitly marked as also being
4892 members of this (containing) type themselves. The g++ front-
4893 end can force any given type to be treated as a member of some
4894 other (containing) type by setting the TYPE_CONTEXT of the
4895 given (member) type to point to the TREE node representing the
4896 appropriate (containing) type.
4897 */
4898
4899 if (COMPLETE_TYPE_P (type))
4900 {
4901 tree binfo = TYPE_BINFO (type);
4902
4903 /* First output info about the base classes. */
4904 if (binfo)
4905 {
4906 tree bases = BINFO_BASETYPES (binfo);
4907 tree accesses = BINFO_BASEACCESSES (binfo);
4908 register int n_bases = BINFO_N_BASETYPES (binfo);
4909 register int i;
4910
4911 for (i = 0; i < n_bases; i++)
4912 {
4913 tree arg[2];
4914
4915 arg[0] = TREE_VEC_ELT (bases, i);
4916 arg[1] = (accesses ? TREE_VEC_ELT (accesses, i)
4917 : access_public_node);
4918 output_type (BINFO_TYPE (binfo), containing_scope);
4919 output_die (output_inheritance_die, arg);
4920 }
4921 }
4922
4923 ++in_class;
4924
4925 {
4926 tree normal_member;
4927
4928 /* Now output info about the data members and type members. */
4929
4930 for (normal_member = TYPE_FIELDS (type);
4931 normal_member;
4932 normal_member = TREE_CHAIN (normal_member))
4933 output_decl (normal_member, type);
4934 }
4935
4936 {
4937 tree func_member;
4938
4939 /* Now output info about the function members (if any). */
4940
4941 for (func_member = TYPE_METHODS (type);
4942 func_member;
4943 func_member = TREE_CHAIN (func_member))
4944 {
4945 /* Don't include clones in the member list. */
4946 if (DECL_ABSTRACT_ORIGIN (func_member))
4947 continue;
4948
4949 output_decl (func_member, type);
4950 }
4951 }
4952
4953 --in_class;
4954
4955 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4956 scopes (at least in C++) so we must now output any nested
4957 pending types which are local just to this type. */
4958
4959 output_pending_types_for_scope (type);
4960
4961 end_sibling_chain (); /* Terminate member chain. */
4962 }
4963
4964 break;
4965
4966 case VOID_TYPE:
4967 case INTEGER_TYPE:
4968 case REAL_TYPE:
4969 case COMPLEX_TYPE:
4970 case BOOLEAN_TYPE:
4971 case CHAR_TYPE:
4972 break; /* No DIEs needed for fundamental types. */
4973
4974 case LANG_TYPE: /* No Dwarf representation currently defined. */
4975 break;
4976
4977 default:
4978 abort ();
4979 }
4980
4981 TREE_ASM_WRITTEN (type) = 1;
4982 }
4983
4984 static void
4985 output_tagged_type_instantiation (type)
4986 tree type;
4987 {
4988 if (type == 0 || type == error_mark_node)
4989 return;
4990
4991 /* We are going to output a DIE to represent the unqualified version of
4992 this type (i.e. without any const or volatile qualifiers) so make
4993 sure that we have the main variant (i.e. the unqualified version) of
4994 this type now. */
4995
4996 if (type != type_main_variant (type))
4997 abort ();
4998
4999 if (!TREE_ASM_WRITTEN (type))
5000 abort ();
5001
5002 switch (TREE_CODE (type))
5003 {
5004 case ERROR_MARK:
5005 break;
5006
5007 case ENUMERAL_TYPE:
5008 output_die (output_inlined_enumeration_type_die, type);
5009 break;
5010
5011 case RECORD_TYPE:
5012 output_die (output_inlined_structure_type_die, type);
5013 break;
5014
5015 case UNION_TYPE:
5016 case QUAL_UNION_TYPE:
5017 output_die (output_inlined_union_type_die, type);
5018 break;
5019
5020 default:
5021 abort (); /* Should never happen. */
5022 }
5023 }
5024 \f
5025 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
5026 the things which are local to the given block. */
5027
5028 static void
5029 output_block (stmt, depth)
5030 tree stmt;
5031 int depth;
5032 {
5033 int must_output_die = 0;
5034 tree origin;
5035 enum tree_code origin_code;
5036
5037 /* Ignore blocks never really used to make RTL. */
5038
5039 if (! stmt || ! TREE_USED (stmt)
5040 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
5041 return;
5042
5043 /* Determine the "ultimate origin" of this block. This block may be an
5044 inlined instance of an inlined instance of inline function, so we
5045 have to trace all of the way back through the origin chain to find
5046 out what sort of node actually served as the original seed for the
5047 creation of the current block. */
5048
5049 origin = block_ultimate_origin (stmt);
5050 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
5051
5052 /* Determine if we need to output any Dwarf DIEs at all to represent this
5053 block. */
5054
5055 if (origin_code == FUNCTION_DECL)
5056 /* The outer scopes for inlinings *must* always be represented. We
5057 generate TAG_inlined_subroutine DIEs for them. (See below.) */
5058 must_output_die = 1;
5059 else
5060 {
5061 /* In the case where the current block represents an inlining of the
5062 "body block" of an inline function, we must *NOT* output any DIE
5063 for this block because we have already output a DIE to represent
5064 the whole inlined function scope and the "body block" of any
5065 function doesn't really represent a different scope according to
5066 ANSI C rules. So we check here to make sure that this block does
5067 not represent a "body block inlining" before trying to set the
5068 `must_output_die' flag. */
5069
5070 if (! is_body_block (origin ? origin : stmt))
5071 {
5072 /* Determine if this block directly contains any "significant"
5073 local declarations which we will need to output DIEs for. */
5074
5075 if (debug_info_level > DINFO_LEVEL_TERSE)
5076 /* We are not in terse mode so *any* local declaration counts
5077 as being a "significant" one. */
5078 must_output_die = (BLOCK_VARS (stmt) != NULL);
5079 else
5080 {
5081 tree decl;
5082
5083 /* We are in terse mode, so only local (nested) function
5084 definitions count as "significant" local declarations. */
5085
5086 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
5087 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
5088 {
5089 must_output_die = 1;
5090 break;
5091 }
5092 }
5093 }
5094 }
5095
5096 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
5097 DIE for any block which contains no significant local declarations
5098 at all. Rather, in such cases we just call `output_decls_for_scope'
5099 so that any needed Dwarf info for any sub-blocks will get properly
5100 generated. Note that in terse mode, our definition of what constitutes
5101 a "significant" local declaration gets restricted to include only
5102 inlined function instances and local (nested) function definitions. */
5103
5104 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
5105 /* We don't care about an abstract inlined subroutine. */;
5106 else if (must_output_die)
5107 {
5108 output_die ((origin_code == FUNCTION_DECL)
5109 ? output_inlined_subroutine_die
5110 : output_lexical_block_die,
5111 stmt);
5112 output_decls_for_scope (stmt, depth);
5113 end_sibling_chain ();
5114 }
5115 else
5116 output_decls_for_scope (stmt, depth);
5117 }
5118
5119 /* Output all of the decls declared within a given scope (also called
5120 a `binding contour') and (recursively) all of it's sub-blocks. */
5121
5122 static void
5123 output_decls_for_scope (stmt, depth)
5124 tree stmt;
5125 int depth;
5126 {
5127 /* Ignore blocks never really used to make RTL. */
5128
5129 if (! stmt || ! TREE_USED (stmt))
5130 return;
5131
5132 /* Output the DIEs to represent all of the data objects, functions,
5133 typedefs, and tagged types declared directly within this block
5134 but not within any nested sub-blocks. */
5135
5136 {
5137 tree decl;
5138
5139 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
5140 output_decl (decl, stmt);
5141 }
5142
5143 output_pending_types_for_scope (stmt);
5144
5145 /* Output the DIEs to represent all sub-blocks (and the items declared
5146 therein) of this block. */
5147
5148 {
5149 tree subblocks;
5150
5151 for (subblocks = BLOCK_SUBBLOCKS (stmt);
5152 subblocks;
5153 subblocks = BLOCK_CHAIN (subblocks))
5154 output_block (subblocks, depth + 1);
5155 }
5156 }
5157
5158 /* Is this a typedef we can avoid emitting? */
5159
5160 static inline int
5161 is_redundant_typedef (decl)
5162 tree decl;
5163 {
5164 if (TYPE_DECL_IS_STUB (decl))
5165 return 1;
5166 if (DECL_ARTIFICIAL (decl)
5167 && DECL_CONTEXT (decl)
5168 && is_tagged_type (DECL_CONTEXT (decl))
5169 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
5170 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
5171 /* Also ignore the artificial member typedef for the class name. */
5172 return 1;
5173 return 0;
5174 }
5175
5176 /* Output Dwarf .debug information for a decl described by DECL. */
5177
5178 static void
5179 output_decl (decl, containing_scope)
5180 tree decl;
5181 tree containing_scope;
5182 {
5183 /* Make a note of the decl node we are going to be working on. We may
5184 need to give the user the source coordinates of where it appeared in
5185 case we notice (later on) that something about it looks screwy. */
5186
5187 dwarf_last_decl = decl;
5188
5189 if (TREE_CODE (decl) == ERROR_MARK)
5190 return;
5191
5192 /* If a structure is declared within an initialization, e.g. as the
5193 operand of a sizeof, then it will not have a name. We don't want
5194 to output a DIE for it, as the tree nodes are in the temporary obstack */
5195
5196 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5197 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
5198 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
5199 || (TYPE_FIELDS (TREE_TYPE (decl))
5200 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
5201 return;
5202
5203 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5204
5205 if (DECL_IGNORED_P (decl))
5206 return;
5207
5208 switch (TREE_CODE (decl))
5209 {
5210 case CONST_DECL:
5211 /* The individual enumerators of an enum type get output when we
5212 output the Dwarf representation of the relevant enum type itself. */
5213 break;
5214
5215 case FUNCTION_DECL:
5216 /* If we are in terse mode, don't output any DIEs to represent
5217 mere function declarations. Also, if we are conforming
5218 to the DWARF version 1 specification, don't output DIEs for
5219 mere function declarations. */
5220
5221 if (DECL_INITIAL (decl) == NULL_TREE)
5222 #if (DWARF_VERSION > 1)
5223 if (debug_info_level <= DINFO_LEVEL_TERSE)
5224 #endif
5225 break;
5226
5227 /* Before we describe the FUNCTION_DECL itself, make sure that we
5228 have described its return type. */
5229
5230 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
5231
5232 {
5233 /* And its containing type. */
5234 register tree origin = decl_class_context (decl);
5235 if (origin)
5236 output_type (origin, containing_scope);
5237 }
5238
5239 /* If we're emitting an out-of-line copy of an inline function,
5240 set up to refer to the abstract instance emitted from
5241 dwarfout_deferred_inline_function. */
5242 if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
5243 && ! (containing_scope && TYPE_P (containing_scope)))
5244 set_decl_origin_self (decl);
5245
5246 /* If the following DIE will represent a function definition for a
5247 function with "extern" linkage, output a special "pubnames" DIE
5248 label just ahead of the actual DIE. A reference to this label
5249 was already generated in the .debug_pubnames section sub-entry
5250 for this function definition. */
5251
5252 if (TREE_PUBLIC (decl))
5253 {
5254 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5255
5256 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5257 ASM_OUTPUT_LABEL (asm_out_file, label);
5258 }
5259
5260 /* Now output a DIE to represent the function itself. */
5261
5262 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
5263 ? output_global_subroutine_die
5264 : output_local_subroutine_die,
5265 decl);
5266
5267 /* Now output descriptions of the arguments for this function.
5268 This gets (unnecessarily?) complex because of the fact that
5269 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
5270 cases where there was a trailing `...' at the end of the formal
5271 parameter list. In order to find out if there was a trailing
5272 ellipsis or not, we must instead look at the type associated
5273 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
5274 If the chain of type nodes hanging off of this FUNCTION_TYPE node
5275 ends with a void_type_node then there should *not* be an ellipsis
5276 at the end. */
5277
5278 /* In the case where we are describing a mere function declaration, all
5279 we need to do here (and all we *can* do here) is to describe
5280 the *types* of its formal parameters. */
5281
5282 if (decl != current_function_decl || in_class)
5283 output_formal_types (TREE_TYPE (decl));
5284 else
5285 {
5286 /* Generate DIEs to represent all known formal parameters. */
5287
5288 tree arg_decls = DECL_ARGUMENTS (decl);
5289 tree parm;
5290
5291 /* WARNING! Kludge zone ahead! Here we have a special
5292 hack for svr4 SDB compatibility. Instead of passing the
5293 current FUNCTION_DECL node as the second parameter (i.e.
5294 the `containing_scope' parameter) to `output_decl' (as
5295 we ought to) we instead pass a pointer to our own private
5296 fake_containing_scope node. That node is a RECORD_TYPE
5297 node which NO OTHER TYPE may ever actually be a member of.
5298
5299 This pointer will ultimately get passed into `output_type'
5300 as its `containing_scope' parameter. `Output_type' will
5301 then perform its part in the hack... i.e. it will pend
5302 the type of the formal parameter onto the pending_types
5303 list. Later on, when we are done generating the whole
5304 sequence of formal parameter DIEs for this function
5305 definition, we will un-pend all previously pended types
5306 of formal parameters for this function definition.
5307
5308 This whole kludge prevents any type DIEs from being
5309 mixed in with the formal parameter DIEs. That's good
5310 because svr4 SDB believes that the list of formal
5311 parameter DIEs for a function ends wherever the first
5312 non-formal-parameter DIE appears. Thus, we have to
5313 keep the formal parameter DIEs segregated. They must
5314 all appear (consecutively) at the start of the list of
5315 children for the DIE representing the function definition.
5316 Then (and only then) may we output any additional DIEs
5317 needed to represent the types of these formal parameters.
5318 */
5319
5320 /*
5321 When generating DIEs, generate the unspecified_parameters
5322 DIE instead if we come across the arg "__builtin_va_alist"
5323 */
5324
5325 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
5326 if (TREE_CODE (parm) == PARM_DECL)
5327 {
5328 if (DECL_NAME(parm) &&
5329 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
5330 "__builtin_va_alist") )
5331 output_die (output_unspecified_parameters_die, decl);
5332 else
5333 output_decl (parm, fake_containing_scope);
5334 }
5335
5336 /*
5337 Now that we have finished generating all of the DIEs to
5338 represent the formal parameters themselves, force out
5339 any DIEs needed to represent their types. We do this
5340 simply by un-pending all previously pended types which
5341 can legitimately go into the chain of children DIEs for
5342 the current FUNCTION_DECL.
5343 */
5344
5345 output_pending_types_for_scope (decl);
5346
5347 /*
5348 Decide whether we need an unspecified_parameters DIE at the end.
5349 There are 2 more cases to do this for:
5350 1) the ansi ... declaration - this is detectable when the end
5351 of the arg list is not a void_type_node
5352 2) an unprototyped function declaration (not a definition). This
5353 just means that we have no info about the parameters at all.
5354 */
5355
5356 {
5357 tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
5358
5359 if (fn_arg_types)
5360 {
5361 /* this is the prototyped case, check for ... */
5362 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
5363 output_die (output_unspecified_parameters_die, decl);
5364 }
5365 else
5366 {
5367 /* this is unprototyped, check for undefined (just declaration) */
5368 if (!DECL_INITIAL (decl))
5369 output_die (output_unspecified_parameters_die, decl);
5370 }
5371 }
5372
5373 /* Output Dwarf info for all of the stuff within the body of the
5374 function (if it has one - it may be just a declaration). */
5375
5376 {
5377 tree outer_scope = DECL_INITIAL (decl);
5378
5379 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
5380 {
5381 /* Note that here, `outer_scope' is a pointer to the outermost
5382 BLOCK node created to represent a function.
5383 This outermost BLOCK actually represents the outermost
5384 binding contour for the function, i.e. the contour in which
5385 the function's formal parameters and labels get declared.
5386
5387 Curiously, it appears that the front end doesn't actually
5388 put the PARM_DECL nodes for the current function onto the
5389 BLOCK_VARS list for this outer scope. (They are strung
5390 off of the DECL_ARGUMENTS list for the function instead.)
5391 The BLOCK_VARS list for the `outer_scope' does provide us
5392 with a list of the LABEL_DECL nodes for the function however,
5393 and we output DWARF info for those here.
5394
5395 Just within the `outer_scope' there will be a BLOCK node
5396 representing the function's outermost pair of curly braces,
5397 and any blocks used for the base and member initializers of
5398 a C++ constructor function. */
5399
5400 output_decls_for_scope (outer_scope, 0);
5401
5402 /* Finally, force out any pending types which are local to the
5403 outermost block of this function definition. These will
5404 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
5405 node itself. */
5406
5407 output_pending_types_for_scope (decl);
5408 }
5409 }
5410 }
5411
5412 /* Generate a terminator for the list of stuff `owned' by this
5413 function. */
5414
5415 end_sibling_chain ();
5416
5417 break;
5418
5419 case TYPE_DECL:
5420 /* If we are in terse mode, don't generate any DIEs to represent
5421 any actual typedefs. Note that even when we are in terse mode,
5422 we must still output DIEs to represent those tagged types which
5423 are used (directly or indirectly) in the specification of either
5424 a return type or a formal parameter type of some function. */
5425
5426 if (debug_info_level <= DINFO_LEVEL_TERSE)
5427 if (! TYPE_DECL_IS_STUB (decl)
5428 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
5429 return;
5430
5431 /* In the special case of a TYPE_DECL node representing
5432 the declaration of some type tag, if the given TYPE_DECL is
5433 marked as having been instantiated from some other (original)
5434 TYPE_DECL node (e.g. one which was generated within the original
5435 definition of an inline function) we have to generate a special
5436 (abbreviated) TAG_structure_type, TAG_union_type, or
5437 TAG_enumeration-type DIE here. */
5438
5439 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
5440 {
5441 output_tagged_type_instantiation (TREE_TYPE (decl));
5442 return;
5443 }
5444
5445 output_type (TREE_TYPE (decl), containing_scope);
5446
5447 if (! is_redundant_typedef (decl))
5448 /* Output a DIE to represent the typedef itself. */
5449 output_die (output_typedef_die, decl);
5450 break;
5451
5452 case LABEL_DECL:
5453 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5454 output_die (output_label_die, decl);
5455 break;
5456
5457 case VAR_DECL:
5458 /* If we are conforming to the DWARF version 1 specification, don't
5459 generated any DIEs to represent mere external object declarations. */
5460
5461 #if (DWARF_VERSION <= 1)
5462 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
5463 break;
5464 #endif
5465
5466 /* If we are in terse mode, don't generate any DIEs to represent
5467 any variable declarations or definitions. */
5468
5469 if (debug_info_level <= DINFO_LEVEL_TERSE)
5470 break;
5471
5472 /* Output any DIEs that are needed to specify the type of this data
5473 object. */
5474
5475 output_type (TREE_TYPE (decl), containing_scope);
5476
5477 {
5478 /* And its containing type. */
5479 register tree origin = decl_class_context (decl);
5480 if (origin)
5481 output_type (origin, containing_scope);
5482 }
5483
5484 /* If the following DIE will represent a data object definition for a
5485 data object with "extern" linkage, output a special "pubnames" DIE
5486 label just ahead of the actual DIE. A reference to this label
5487 was already generated in the .debug_pubnames section sub-entry
5488 for this data object definition. */
5489
5490 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
5491 {
5492 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5493
5494 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5495 ASM_OUTPUT_LABEL (asm_out_file, label);
5496 }
5497
5498 /* Now output the DIE to represent the data object itself. This gets
5499 complicated because of the possibility that the VAR_DECL really
5500 represents an inlined instance of a formal parameter for an inline
5501 function. */
5502
5503 {
5504 void (*func) PARAMS ((void *));
5505 register tree origin = decl_ultimate_origin (decl);
5506
5507 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5508 func = output_formal_parameter_die;
5509 else
5510 {
5511 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5512 func = output_global_variable_die;
5513 else
5514 func = output_local_variable_die;
5515 }
5516 output_die (func, decl);
5517 }
5518 break;
5519
5520 case FIELD_DECL:
5521 /* Ignore the nameless fields that are used to skip bits. */
5522 if (DECL_NAME (decl) != 0)
5523 {
5524 output_type (member_declared_type (decl), containing_scope);
5525 output_die (output_member_die, decl);
5526 }
5527 break;
5528
5529 case PARM_DECL:
5530 /* Force out the type of this formal, if it was not forced out yet.
5531 Note that here we can run afoul of a bug in "classic" svr4 SDB.
5532 It should be able to grok the presence of type DIEs within a list
5533 of TAG_formal_parameter DIEs, but it doesn't. */
5534
5535 output_type (TREE_TYPE (decl), containing_scope);
5536 output_die (output_formal_parameter_die, decl);
5537 break;
5538
5539 case NAMESPACE_DECL:
5540 /* Ignore for now. */
5541 break;
5542
5543 default:
5544 abort ();
5545 }
5546 }
5547 \f
5548 /* Output debug information for a function. */
5549 static void
5550 dwarfout_function_decl (decl)
5551 tree decl;
5552 {
5553 dwarfout_file_scope_decl (decl, 0);
5554 }
5555
5556 /* Debug information for a global DECL. Called from toplev.c after
5557 compilation proper has finished. */
5558 static void
5559 dwarfout_global_decl (decl)
5560 tree decl;
5561 {
5562 /* Output DWARF information for file-scope tentative data object
5563 declarations, file-scope (extern) function declarations (which
5564 had no corresponding body) and file-scope tagged type
5565 declarations and definitions which have not yet been forced out. */
5566
5567 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
5568 dwarfout_file_scope_decl (decl, 1);
5569 }
5570
5571 /* DECL is an inline function, whose body is present, but which is not
5572 being output at this point. (We're putting that off until we need
5573 to do it.) */
5574 static void
5575 dwarfout_deferred_inline_function (decl)
5576 tree decl;
5577 {
5578 /* Generate the DWARF info for the "abstract" instance of a function
5579 which we may later generate inlined and/or out-of-line instances
5580 of. */
5581 if ((DECL_INLINE (decl) || DECL_ABSTRACT (decl))
5582 && ! DECL_ABSTRACT_ORIGIN (decl))
5583 {
5584 /* The front-end may not have set CURRENT_FUNCTION_DECL, but the
5585 DWARF code expects it to be set in this case. Intuitively,
5586 DECL is the function we just finished defining, so setting
5587 CURRENT_FUNCTION_DECL is sensible. */
5588 tree saved_cfd = current_function_decl;
5589 int was_abstract = DECL_ABSTRACT (decl);
5590 current_function_decl = decl;
5591
5592 /* Let the DWARF code do its work. */
5593 set_decl_abstract_flags (decl, 1);
5594 dwarfout_file_scope_decl (decl, 0);
5595 if (! was_abstract)
5596 set_decl_abstract_flags (decl, 0);
5597
5598 /* Reset CURRENT_FUNCTION_DECL. */
5599 current_function_decl = saved_cfd;
5600 }
5601 }
5602
5603 static void
5604 dwarfout_file_scope_decl (decl, set_finalizing)
5605 tree decl;
5606 int set_finalizing;
5607 {
5608 if (TREE_CODE (decl) == ERROR_MARK)
5609 return;
5610
5611 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5612
5613 if (DECL_IGNORED_P (decl))
5614 return;
5615
5616 switch (TREE_CODE (decl))
5617 {
5618 case FUNCTION_DECL:
5619
5620 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5621 a builtin function. Explicit programmer-supplied declarations of
5622 these same functions should NOT be ignored however. */
5623
5624 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5625 return;
5626
5627 /* What we would really like to do here is to filter out all mere
5628 file-scope declarations of file-scope functions which are never
5629 referenced later within this translation unit (and keep all of
5630 ones that *are* referenced later on) but we aren't clairvoyant,
5631 so we have no idea which functions will be referenced in the
5632 future (i.e. later on within the current translation unit).
5633 So here we just ignore all file-scope function declarations
5634 which are not also definitions. If and when the debugger needs
5635 to know something about these functions, it will have to hunt
5636 around and find the DWARF information associated with the
5637 *definition* of the function.
5638
5639 Note that we can't just check `DECL_EXTERNAL' to find out which
5640 FUNCTION_DECL nodes represent definitions and which ones represent
5641 mere declarations. We have to check `DECL_INITIAL' instead. That's
5642 because the C front-end supports some weird semantics for "extern
5643 inline" function definitions. These can get inlined within the
5644 current translation unit (an thus, we need to generate DWARF info
5645 for their abstract instances so that the DWARF info for the
5646 concrete inlined instances can have something to refer to) but
5647 the compiler never generates any out-of-lines instances of such
5648 things (despite the fact that they *are* definitions). The
5649 important point is that the C front-end marks these "extern inline"
5650 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5651 anyway.
5652
5653 Note that the C++ front-end also plays some similar games for inline
5654 function definitions appearing within include files which also
5655 contain `#pragma interface' pragmas. */
5656
5657 if (DECL_INITIAL (decl) == NULL_TREE)
5658 return;
5659
5660 if (TREE_PUBLIC (decl)
5661 && ! DECL_EXTERNAL (decl)
5662 && ! DECL_ABSTRACT (decl))
5663 {
5664 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5665
5666 /* Output a .debug_pubnames entry for a public function
5667 defined in this compilation unit. */
5668
5669 fputc ('\n', asm_out_file);
5670 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5671 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5672 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5673 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5674 IDENTIFIER_POINTER (DECL_NAME (decl)));
5675 ASM_OUTPUT_POP_SECTION (asm_out_file);
5676 }
5677
5678 break;
5679
5680 case VAR_DECL:
5681
5682 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5683 object declaration and if the declaration was never even
5684 referenced from within this entire compilation unit. We
5685 suppress these DIEs in order to save space in the .debug section
5686 (by eliminating entries which are probably useless). Note that
5687 we must not suppress block-local extern declarations (whether
5688 used or not) because that would screw-up the debugger's name
5689 lookup mechanism and cause it to miss things which really ought
5690 to be in scope at a given point. */
5691
5692 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5693 return;
5694
5695 if (TREE_PUBLIC (decl)
5696 && ! DECL_EXTERNAL (decl)
5697 && GET_CODE (DECL_RTL (decl)) == MEM
5698 && ! DECL_ABSTRACT (decl))
5699 {
5700 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5701
5702 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5703 {
5704 /* Output a .debug_pubnames entry for a public variable
5705 defined in this compilation unit. */
5706
5707 fputc ('\n', asm_out_file);
5708 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5709 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5710 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5711 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5712 IDENTIFIER_POINTER (DECL_NAME (decl)));
5713 ASM_OUTPUT_POP_SECTION (asm_out_file);
5714 }
5715
5716 if (DECL_INITIAL (decl) == NULL)
5717 {
5718 /* Output a .debug_aranges entry for a public variable
5719 which is tentatively defined in this compilation unit. */
5720
5721 fputc ('\n', asm_out_file);
5722 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
5723 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5724 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5725 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5726 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5727 ASM_OUTPUT_POP_SECTION (asm_out_file);
5728 }
5729 }
5730
5731 /* If we are in terse mode, don't generate any DIEs to represent
5732 any variable declarations or definitions. */
5733
5734 if (debug_info_level <= DINFO_LEVEL_TERSE)
5735 return;
5736
5737 break;
5738
5739 case TYPE_DECL:
5740 /* Don't bother trying to generate any DIEs to represent any of the
5741 normal built-in types for the language we are compiling, except
5742 in cases where the types in question are *not* DWARF fundamental
5743 types. We make an exception in the case of non-fundamental types
5744 for the sake of Objective-C (and perhaps C++) because the GNU
5745 front-ends for these languages may in fact create certain "built-in"
5746 types which are (for example) RECORD_TYPEs. In such cases, we
5747 really need to output these (non-fundamental) types because other
5748 DIEs may contain references to them. */
5749
5750 /* Also ignore language dependent types here, because they are probably
5751 also built-in types. If we didn't ignore them, then we would get
5752 references to undefined labels because output_type doesn't support
5753 them. So, for now, we need to ignore them to avoid assembler
5754 errors. */
5755
5756 /* ??? This code is different than the equivalent code in dwarf2out.c.
5757 The dwarf2out.c code is probably more correct. */
5758
5759 if (DECL_SOURCE_LINE (decl) == 0
5760 && (type_is_fundamental (TREE_TYPE (decl))
5761 || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
5762 return;
5763
5764 /* If we are in terse mode, don't generate any DIEs to represent
5765 any actual typedefs. Note that even when we are in terse mode,
5766 we must still output DIEs to represent those tagged types which
5767 are used (directly or indirectly) in the specification of either
5768 a return type or a formal parameter type of some function. */
5769
5770 if (debug_info_level <= DINFO_LEVEL_TERSE)
5771 if (! TYPE_DECL_IS_STUB (decl)
5772 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5773 return;
5774
5775 break;
5776
5777 default:
5778 return;
5779 }
5780
5781 fputc ('\n', asm_out_file);
5782 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5783 finalizing = set_finalizing;
5784 output_decl (decl, NULL_TREE);
5785
5786 /* NOTE: The call above to `output_decl' may have caused one or more
5787 file-scope named types (i.e. tagged types) to be placed onto the
5788 pending_types_list. We have to get those types off of that list
5789 at some point, and this is the perfect time to do it. If we didn't
5790 take them off now, they might still be on the list when cc1 finally
5791 exits. That might be OK if it weren't for the fact that when we put
5792 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5793 for these types, and that causes them never to be output unless
5794 `output_pending_types_for_scope' takes them off of the list and un-sets
5795 their TREE_ASM_WRITTEN flags. */
5796
5797 output_pending_types_for_scope (NULL_TREE);
5798
5799 /* The above call should have totally emptied the pending_types_list
5800 if this is not a nested function or class. If this is a nested type,
5801 then the remaining pending_types will be emitted when the containing type
5802 is handled. */
5803
5804 if (! DECL_CONTEXT (decl))
5805 {
5806 if (pending_types != 0)
5807 abort ();
5808 }
5809
5810 ASM_OUTPUT_POP_SECTION (asm_out_file);
5811 }
5812 \f
5813 /* Output a marker (i.e. a label) for the beginning of the generated code
5814 for a lexical block. */
5815
5816 static void
5817 dwarfout_begin_block (line, blocknum)
5818 unsigned int line ATTRIBUTE_UNUSED;
5819 unsigned int blocknum;
5820 {
5821 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5822
5823 function_section (current_function_decl);
5824 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5825 ASM_OUTPUT_LABEL (asm_out_file, label);
5826 }
5827
5828 /* Output a marker (i.e. a label) for the end of the generated code
5829 for a lexical block. */
5830
5831 static void
5832 dwarfout_end_block (line, blocknum)
5833 unsigned int line ATTRIBUTE_UNUSED;
5834 unsigned int blocknum;
5835 {
5836 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5837
5838 function_section (current_function_decl);
5839 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5840 ASM_OUTPUT_LABEL (asm_out_file, label);
5841 }
5842
5843 /* Output a marker (i.e. a label) for the point in the generated code where
5844 the real body of the function begins (after parameters have been moved
5845 to their home locations). */
5846
5847 static void
5848 dwarfout_end_prologue (line, file)
5849 unsigned int line ATTRIBUTE_UNUSED;
5850 const char *file ATTRIBUTE_UNUSED;
5851 {
5852 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5853
5854 if (! use_gnu_debug_info_extensions)
5855 return;
5856
5857 function_section (current_function_decl);
5858 sprintf (label, BODY_BEGIN_LABEL_FMT, current_function_funcdef_no);
5859 ASM_OUTPUT_LABEL (asm_out_file, label);
5860 }
5861
5862 /* Output a marker (i.e. a label) for the point in the generated code where
5863 the real body of the function ends (just before the epilogue code). */
5864
5865 static void
5866 dwarfout_end_function (line)
5867 unsigned int line ATTRIBUTE_UNUSED;
5868 {
5869 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5870
5871 if (! use_gnu_debug_info_extensions)
5872 return;
5873 function_section (current_function_decl);
5874 sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
5875 ASM_OUTPUT_LABEL (asm_out_file, label);
5876 }
5877
5878 /* Output a marker (i.e. a label) for the absolute end of the generated code
5879 for a function definition. This gets called *after* the epilogue code
5880 has been generated. */
5881
5882 static void
5883 dwarfout_end_epilogue (line, file)
5884 unsigned int line ATTRIBUTE_UNUSED;
5885 const char *file ATTRIBUTE_UNUSED;
5886 {
5887 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5888
5889 /* Output a label to mark the endpoint of the code generated for this
5890 function. */
5891
5892 sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
5893 ASM_OUTPUT_LABEL (asm_out_file, label);
5894 }
5895
5896 static void
5897 shuffle_filename_entry (new_zeroth)
5898 filename_entry *new_zeroth;
5899 {
5900 filename_entry temp_entry;
5901 filename_entry *limit_p;
5902 filename_entry *move_p;
5903
5904 if (new_zeroth == &filename_table[0])
5905 return;
5906
5907 temp_entry = *new_zeroth;
5908
5909 /* Shift entries up in the table to make room at [0]. */
5910
5911 limit_p = &filename_table[0];
5912 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5913 *move_p = *(move_p-1);
5914
5915 /* Install the found entry at [0]. */
5916
5917 filename_table[0] = temp_entry;
5918 }
5919
5920 /* Create a new (string) entry for the .debug_sfnames section. */
5921
5922 static void
5923 generate_new_sfname_entry ()
5924 {
5925 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5926
5927 fputc ('\n', asm_out_file);
5928 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
5929 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5930 ASM_OUTPUT_LABEL (asm_out_file, label);
5931 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5932 filename_table[0].name
5933 ? filename_table[0].name
5934 : "");
5935 ASM_OUTPUT_POP_SECTION (asm_out_file);
5936 }
5937
5938 /* Lookup a filename (in the list of filenames that we know about here in
5939 dwarfout.c) and return its "index". The index of each (known) filename
5940 is just a unique number which is associated with only that one filename.
5941 We need such numbers for the sake of generating labels (in the
5942 .debug_sfnames section) and references to those unique labels (in the
5943 .debug_srcinfo and .debug_macinfo sections).
5944
5945 If the filename given as an argument is not found in our current list,
5946 add it to the list and assign it the next available unique index number.
5947
5948 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5949 one), we shuffle the filename found (or added) up to the zeroth entry of
5950 our list of filenames (which is always searched linearly). We do this so
5951 as to optimize the most common case for these filename lookups within
5952 dwarfout.c. The most common case by far is the case where we call
5953 lookup_filename to lookup the very same filename that we did a lookup
5954 on the last time we called lookup_filename. We make sure that this
5955 common case is fast because such cases will constitute 99.9% of the
5956 lookups we ever do (in practice).
5957
5958 If we add a new filename entry to our table, we go ahead and generate
5959 the corresponding entry in the .debug_sfnames section right away.
5960 Doing so allows us to avoid tickling an assembler bug (present in some
5961 m68k assemblers) which yields assembly-time errors in cases where the
5962 difference of two label addresses is taken and where the two labels
5963 are in a section *other* than the one where the difference is being
5964 calculated, and where at least one of the two symbol references is a
5965 forward reference. (This bug could be tickled by our .debug_srcinfo
5966 entries if we don't output their corresponding .debug_sfnames entries
5967 before them.) */
5968
5969 static unsigned
5970 lookup_filename (file_name)
5971 const char *file_name;
5972 {
5973 filename_entry *search_p;
5974 filename_entry *limit_p = &filename_table[ft_entries];
5975
5976 for (search_p = filename_table; search_p < limit_p; search_p++)
5977 if (!strcmp (file_name, search_p->name))
5978 {
5979 /* When we get here, we have found the filename that we were
5980 looking for in the filename_table. Now we want to make sure
5981 that it gets moved to the zero'th entry in the table (if it
5982 is not already there) so that subsequent attempts to find the
5983 same filename will find it as quickly as possible. */
5984
5985 shuffle_filename_entry (search_p);
5986 return filename_table[0].number;
5987 }
5988
5989 /* We come here whenever we have a new filename which is not registered
5990 in the current table. Here we add it to the table. */
5991
5992 /* Prepare to add a new table entry by making sure there is enough space
5993 in the table to do so. If not, expand the current table. */
5994
5995 if (ft_entries == ft_entries_allocated)
5996 {
5997 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5998 filename_table
5999 = (filename_entry *)
6000 xrealloc (filename_table,
6001 ft_entries_allocated * sizeof (filename_entry));
6002 }
6003
6004 /* Initially, add the new entry at the end of the filename table. */
6005
6006 filename_table[ft_entries].number = ft_entries;
6007 filename_table[ft_entries].name = xstrdup (file_name);
6008
6009 /* Shuffle the new entry into filename_table[0]. */
6010
6011 shuffle_filename_entry (&filename_table[ft_entries]);
6012
6013 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6014 generate_new_sfname_entry ();
6015
6016 ft_entries++;
6017 return filename_table[0].number;
6018 }
6019
6020 static void
6021 generate_srcinfo_entry (line_entry_num, files_entry_num)
6022 unsigned line_entry_num;
6023 unsigned files_entry_num;
6024 {
6025 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6026
6027 fputc ('\n', asm_out_file);
6028 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6029 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
6030 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
6031 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
6032 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
6033 ASM_OUTPUT_POP_SECTION (asm_out_file);
6034 }
6035
6036 static void
6037 dwarfout_source_line (line, filename)
6038 unsigned int line;
6039 const char *filename;
6040 {
6041 if (debug_info_level >= DINFO_LEVEL_NORMAL
6042 /* We can't emit line number info for functions in separate sections,
6043 because the assembler can't subtract labels in different sections. */
6044 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
6045 {
6046 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6047 static unsigned last_line_entry_num = 0;
6048 static unsigned prev_file_entry_num = (unsigned) -1;
6049 unsigned this_file_entry_num;
6050
6051 function_section (current_function_decl);
6052 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
6053 ASM_OUTPUT_LABEL (asm_out_file, label);
6054
6055 fputc ('\n', asm_out_file);
6056
6057 if (use_gnu_debug_info_extensions)
6058 this_file_entry_num = lookup_filename (filename);
6059 else
6060 this_file_entry_num = (unsigned) -1;
6061
6062 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6063 if (this_file_entry_num != prev_file_entry_num)
6064 {
6065 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
6066
6067 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
6068 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
6069 }
6070
6071 {
6072 const char *tail = strrchr (filename, '/');
6073
6074 if (tail != NULL)
6075 filename = tail;
6076 }
6077
6078 dw2_asm_output_data (4, line, "%s:%u", filename, line);
6079 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6080 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
6081 ASM_OUTPUT_POP_SECTION (asm_out_file);
6082
6083 if (this_file_entry_num != prev_file_entry_num)
6084 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
6085 prev_file_entry_num = this_file_entry_num;
6086 }
6087 }
6088
6089 /* Generate an entry in the .debug_macinfo section. */
6090
6091 static void
6092 generate_macinfo_entry (type, offset, string)
6093 unsigned int type;
6094 rtx offset;
6095 const char *string;
6096 {
6097 if (! use_gnu_debug_info_extensions)
6098 return;
6099
6100 fputc ('\n', asm_out_file);
6101 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6102 assemble_integer (gen_rtx_PLUS (SImode, GEN_INT (type << 24), offset),
6103 4, BITS_PER_UNIT, 1);
6104 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
6105 ASM_OUTPUT_POP_SECTION (asm_out_file);
6106 }
6107
6108 /* Wrapper for toplev.c callback to check debug info level. */
6109 static void
6110 dwarfout_start_source_file_check (line, filename)
6111 unsigned int line;
6112 const char *filename;
6113 {
6114 if (debug_info_level == DINFO_LEVEL_VERBOSE)
6115 dwarfout_start_source_file (line, filename);
6116 }
6117
6118 static void
6119 dwarfout_start_source_file (line, filename)
6120 unsigned int line ATTRIBUTE_UNUSED;
6121 const char *filename;
6122 {
6123 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6124 const char *label1, *label2;
6125
6126 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
6127 label1 = (*label == '*') + label;
6128 label2 = (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL;
6129 generate_macinfo_entry (MACINFO_start,
6130 gen_rtx_MINUS (Pmode,
6131 gen_rtx_SYMBOL_REF (Pmode, label1),
6132 gen_rtx_SYMBOL_REF (Pmode, label2)),
6133 "");
6134 }
6135
6136 /* Wrapper for toplev.c callback to check debug info level. */
6137 static void
6138 dwarfout_end_source_file_check (lineno)
6139 unsigned lineno;
6140 {
6141 if (debug_info_level == DINFO_LEVEL_VERBOSE)
6142 dwarfout_end_source_file (lineno);
6143 }
6144
6145 static void
6146 dwarfout_end_source_file (lineno)
6147 unsigned lineno;
6148 {
6149 generate_macinfo_entry (MACINFO_resume, GEN_INT (lineno), "");
6150 }
6151
6152 /* Called from check_newline in c-parse.y. The `buffer' parameter
6153 contains the tail part of the directive line, i.e. the part which
6154 is past the initial whitespace, #, whitespace, directive-name,
6155 whitespace part. */
6156
6157 static void
6158 dwarfout_define (lineno, buffer)
6159 unsigned lineno;
6160 const char *buffer;
6161 {
6162 static int initialized = 0;
6163
6164 if (!initialized)
6165 {
6166 dwarfout_start_source_file (0, primary_filename);
6167 initialized = 1;
6168 }
6169 generate_macinfo_entry (MACINFO_define, GEN_INT (lineno), buffer);
6170 }
6171
6172 /* Called from check_newline in c-parse.y. The `buffer' parameter
6173 contains the tail part of the directive line, i.e. the part which
6174 is past the initial whitespace, #, whitespace, directive-name,
6175 whitespace part. */
6176
6177 static void
6178 dwarfout_undef (lineno, buffer)
6179 unsigned lineno;
6180 const char *buffer;
6181 {
6182 generate_macinfo_entry (MACINFO_undef, GEN_INT (lineno), buffer);
6183 }
6184
6185 /* Set up for Dwarf output at the start of compilation. */
6186
6187 static void
6188 dwarfout_init (main_input_filename)
6189 const char *main_input_filename;
6190 {
6191 warning ("support for the DWARF1 debugging format is deprecated");
6192
6193 /* Remember the name of the primary input file. */
6194
6195 primary_filename = main_input_filename;
6196
6197 /* Allocate the initial hunk of the pending_sibling_stack. */
6198
6199 pending_sibling_stack
6200 = (unsigned *)
6201 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
6202 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
6203 pending_siblings = 1;
6204
6205 /* Allocate the initial hunk of the filename_table. */
6206
6207 filename_table
6208 = (filename_entry *)
6209 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
6210 ft_entries_allocated = FT_ENTRIES_INCREMENT;
6211 ft_entries = 0;
6212
6213 /* Allocate the initial hunk of the pending_types_list. */
6214
6215 pending_types_list
6216 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
6217 pending_types_allocated = PENDING_TYPES_INCREMENT;
6218 pending_types = 0;
6219
6220 /* Create an artificial RECORD_TYPE node which we can use in our hack
6221 to get the DIEs representing types of formal parameters to come out
6222 only *after* the DIEs for the formal parameters themselves. */
6223
6224 fake_containing_scope = make_node (RECORD_TYPE);
6225
6226 /* Output a starting label for the .text section. */
6227
6228 fputc ('\n', asm_out_file);
6229 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6230 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
6231 ASM_OUTPUT_POP_SECTION (asm_out_file);
6232
6233 /* Output a starting label for the .data section. */
6234
6235 fputc ('\n', asm_out_file);
6236 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6237 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
6238 ASM_OUTPUT_POP_SECTION (asm_out_file);
6239
6240 #if 0 /* GNU C doesn't currently use .data1. */
6241 /* Output a starting label for the .data1 section. */
6242
6243 fputc ('\n', asm_out_file);
6244 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6245 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
6246 ASM_OUTPUT_POP_SECTION (asm_out_file);
6247 #endif
6248
6249 /* Output a starting label for the .rodata section. */
6250
6251 fputc ('\n', asm_out_file);
6252 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6253 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
6254 ASM_OUTPUT_POP_SECTION (asm_out_file);
6255
6256 #if 0 /* GNU C doesn't currently use .rodata1. */
6257 /* Output a starting label for the .rodata1 section. */
6258
6259 fputc ('\n', asm_out_file);
6260 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6261 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
6262 ASM_OUTPUT_POP_SECTION (asm_out_file);
6263 #endif
6264
6265 /* Output a starting label for the .bss section. */
6266
6267 fputc ('\n', asm_out_file);
6268 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6269 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
6270 ASM_OUTPUT_POP_SECTION (asm_out_file);
6271
6272 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6273 {
6274 if (use_gnu_debug_info_extensions)
6275 {
6276 /* Output a starting label and an initial (compilation directory)
6277 entry for the .debug_sfnames section. The starting label will be
6278 referenced by the initial entry in the .debug_srcinfo section. */
6279
6280 fputc ('\n', asm_out_file);
6281 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
6282 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
6283 {
6284 const char *pwd = getpwd ();
6285 char *dirname;
6286
6287 if (!pwd)
6288 fatal_error ("can't get current directory: %m");
6289
6290 dirname = concat (pwd, "/", NULL);
6291 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
6292 free (dirname);
6293 }
6294 ASM_OUTPUT_POP_SECTION (asm_out_file);
6295 }
6296
6297 if (debug_info_level >= DINFO_LEVEL_VERBOSE
6298 && use_gnu_debug_info_extensions)
6299 {
6300 /* Output a starting label for the .debug_macinfo section. This
6301 label will be referenced by the AT_mac_info attribute in the
6302 TAG_compile_unit DIE. */
6303
6304 fputc ('\n', asm_out_file);
6305 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6306 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
6307 ASM_OUTPUT_POP_SECTION (asm_out_file);
6308 }
6309
6310 /* Generate the initial entry for the .line section. */
6311
6312 fputc ('\n', asm_out_file);
6313 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6314 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
6315 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
6316 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6317 ASM_OUTPUT_POP_SECTION (asm_out_file);
6318
6319 if (use_gnu_debug_info_extensions)
6320 {
6321 /* Generate the initial entry for the .debug_srcinfo section. */
6322
6323 fputc ('\n', asm_out_file);
6324 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6325 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
6326 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
6327 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
6328 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6329 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
6330 #ifdef DWARF_TIMESTAMPS
6331 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
6332 #else
6333 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6334 #endif
6335 ASM_OUTPUT_POP_SECTION (asm_out_file);
6336 }
6337
6338 /* Generate the initial entry for the .debug_pubnames section. */
6339
6340 fputc ('\n', asm_out_file);
6341 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6342 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6343 ASM_OUTPUT_POP_SECTION (asm_out_file);
6344
6345 /* Generate the initial entry for the .debug_aranges section. */
6346
6347 fputc ('\n', asm_out_file);
6348 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6349 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6350 DEBUG_ARANGES_END_LABEL,
6351 DEBUG_ARANGES_BEGIN_LABEL);
6352 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_BEGIN_LABEL);
6353 ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 1);
6354 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6355 ASM_OUTPUT_POP_SECTION (asm_out_file);
6356 }
6357
6358 /* Setup first DIE number == 1. */
6359 NEXT_DIE_NUM = next_unused_dienum++;
6360
6361 /* Generate the initial DIE for the .debug section. Note that the
6362 (string) value given in the AT_name attribute of the TAG_compile_unit
6363 DIE will (typically) be a relative pathname and that this pathname
6364 should be taken as being relative to the directory from which the
6365 compiler was invoked when the given (base) source file was compiled. */
6366
6367 fputc ('\n', asm_out_file);
6368 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6369 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
6370 output_die (output_compile_unit_die, (void *) main_input_filename);
6371 ASM_OUTPUT_POP_SECTION (asm_out_file);
6372
6373 fputc ('\n', asm_out_file);
6374 }
6375
6376 /* Output stuff that dwarf requires at the end of every file. */
6377
6378 static void
6379 dwarfout_finish (main_input_filename)
6380 const char *main_input_filename ATTRIBUTE_UNUSED;
6381 {
6382 char label[MAX_ARTIFICIAL_LABEL_BYTES];
6383
6384 fputc ('\n', asm_out_file);
6385 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6386 retry_incomplete_types ();
6387 fputc ('\n', asm_out_file);
6388
6389 /* Mark the end of the chain of siblings which represent all file-scope
6390 declarations in this compilation unit. */
6391
6392 /* The (null) DIE which represents the terminator for the (sibling linked)
6393 list of file-scope items is *special*. Normally, we would just call
6394 end_sibling_chain at this point in order to output a word with the
6395 value `4' and that word would act as the terminator for the list of
6396 DIEs describing file-scope items. Unfortunately, if we were to simply
6397 do that, the label that would follow this DIE in the .debug section
6398 (i.e. `..D2') would *not* be properly aligned (as it must be on some
6399 machines) to a 4 byte boundary.
6400
6401 In order to force the label `..D2' to get aligned to a 4 byte boundary,
6402 the trick used is to insert extra (otherwise useless) padding bytes
6403 into the (null) DIE that we know must precede the ..D2 label in the
6404 .debug section. The amount of padding required can be anywhere between
6405 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
6406 with the padding) would normally contain the value 4, but now it will
6407 also have to include the padding bytes, so it will instead have some
6408 value in the range 4..7.
6409
6410 Fortunately, the rules of Dwarf say that any DIE whose length word
6411 contains *any* value less than 8 should be treated as a null DIE, so
6412 this trick works out nicely. Clever, eh? Don't give me any credit
6413 (or blame). I didn't think of this scheme. I just conformed to it.
6414 */
6415
6416 output_die (output_padded_null_die, (void *) 0);
6417 dienum_pop ();
6418
6419 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
6420 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
6421 ASM_OUTPUT_POP_SECTION (asm_out_file);
6422
6423 /* Output a terminator label for the .text section. */
6424
6425 fputc ('\n', asm_out_file);
6426 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6427 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
6428 ASM_OUTPUT_POP_SECTION (asm_out_file);
6429
6430 /* Output a terminator label for the .data section. */
6431
6432 fputc ('\n', asm_out_file);
6433 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6434 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
6435 ASM_OUTPUT_POP_SECTION (asm_out_file);
6436
6437 #if 0 /* GNU C doesn't currently use .data1. */
6438 /* Output a terminator label for the .data1 section. */
6439
6440 fputc ('\n', asm_out_file);
6441 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6442 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
6443 ASM_OUTPUT_POP_SECTION (asm_out_file);
6444 #endif
6445
6446 /* Output a terminator label for the .rodata section. */
6447
6448 fputc ('\n', asm_out_file);
6449 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6450 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
6451 ASM_OUTPUT_POP_SECTION (asm_out_file);
6452
6453 #if 0 /* GNU C doesn't currently use .rodata1. */
6454 /* Output a terminator label for the .rodata1 section. */
6455
6456 fputc ('\n', asm_out_file);
6457 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6458 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
6459 ASM_OUTPUT_POP_SECTION (asm_out_file);
6460 #endif
6461
6462 /* Output a terminator label for the .bss section. */
6463
6464 fputc ('\n', asm_out_file);
6465 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6466 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
6467 ASM_OUTPUT_POP_SECTION (asm_out_file);
6468
6469 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6470 {
6471 /* Output a terminating entry for the .line section. */
6472
6473 fputc ('\n', asm_out_file);
6474 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6475 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
6476 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6477 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6478 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6479 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
6480 ASM_OUTPUT_POP_SECTION (asm_out_file);
6481
6482 if (use_gnu_debug_info_extensions)
6483 {
6484 /* Output a terminating entry for the .debug_srcinfo section. */
6485
6486 fputc ('\n', asm_out_file);
6487 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6488 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6489 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
6490 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6491 ASM_OUTPUT_POP_SECTION (asm_out_file);
6492 }
6493
6494 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
6495 {
6496 /* Output terminating entries for the .debug_macinfo section. */
6497
6498 dwarfout_end_source_file (0);
6499
6500 fputc ('\n', asm_out_file);
6501 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6502 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6503 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6504 ASM_OUTPUT_POP_SECTION (asm_out_file);
6505 }
6506
6507 /* Generate the terminating entry for the .debug_pubnames section. */
6508
6509 fputc ('\n', asm_out_file);
6510 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6511 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6512 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6513 ASM_OUTPUT_POP_SECTION (asm_out_file);
6514
6515 /* Generate the terminating entries for the .debug_aranges section.
6516
6517 Note that we want to do this only *after* we have output the end
6518 labels (for the various program sections) which we are going to
6519 refer to here. This allows us to work around a bug in the m68k
6520 svr4 assembler. That assembler gives bogus assembly-time errors
6521 if (within any given section) you try to take the difference of
6522 two relocatable symbols, both of which are located within some
6523 other section, and if one (or both?) of the symbols involved is
6524 being forward-referenced. By generating the .debug_aranges
6525 entries at this late point in the assembly output, we skirt the
6526 issue simply by avoiding forward-references.
6527 */
6528
6529 fputc ('\n', asm_out_file);
6530 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6531
6532 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6533 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6534
6535 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6536 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6537
6538 #if 0 /* GNU C doesn't currently use .data1. */
6539 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6540 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6541 DATA1_BEGIN_LABEL);
6542 #endif
6543
6544 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6545 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6546 RODATA_BEGIN_LABEL);
6547
6548 #if 0 /* GNU C doesn't currently use .rodata1. */
6549 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6550 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6551 RODATA1_BEGIN_LABEL);
6552 #endif
6553
6554 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6555 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6556
6557 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6558 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6559
6560 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_END_LABEL);
6561 ASM_OUTPUT_POP_SECTION (asm_out_file);
6562 }
6563
6564 /* There should not be any pending types left at the end. We need
6565 this now because it may not have been checked on the last call to
6566 dwarfout_file_scope_decl. */
6567 if (pending_types != 0)
6568 abort ();
6569 }
6570
6571 #endif /* DWARF_DEBUGGING_INFO */