Daily bump.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992-2012 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "regs.h"
46 #include "hard-reg-set.h"
47 #include "hashtab.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "bitmap.h"
51 #include "basic-block.h"
52 #include "ggc.h"
53 #include "debug.h"
54 #include "langhooks.h"
55 #include "df.h"
56 #include "params.h"
57 #include "target.h"
58
59 struct target_rtl default_target_rtl;
60 #if SWITCHABLE_TARGET
61 struct target_rtl *this_target_rtl = &default_target_rtl;
62 #endif
63
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
65
66 /* Commonly used modes. */
67
68 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
72
73 /* Datastructures maintained for currently processed function in RTL form. */
74
75 struct rtl_data x_rtl;
76
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
81
82 rtx * regno_reg_rtx;
83
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
86
87 static GTY(()) int label_num = 1;
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
93
94 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
95
96 rtx const_true_rtx;
97
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconstm1;
102 REAL_VALUE_TYPE dconsthalf;
103
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
106 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
107
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
111 integers. */
112
113 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
114
115 /* Standard pieces of rtx, to be substituted directly into things. */
116 rtx pc_rtx;
117 rtx ret_rtx;
118 rtx simple_return_rtx;
119 rtx cc0_rtx;
120
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
123
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
125 htab_t const_int_htab;
126
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
129 htab_t mem_attrs_htab;
130
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
133 htab_t reg_attrs_htab;
134
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
137 htab_t const_double_htab;
138
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
141 htab_t const_fixed_htab;
142
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
146
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs *get_reg_attrs (tree, int);
163 static rtx gen_const_vector (enum machine_mode, int);
164 static void copy_rtx_if_shared_1 (rtx *orig);
165
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability = -1;
169 \f
170 /* Returns a hash code for X (which is a really a CONST_INT). */
171
172 static hashval_t
173 const_int_htab_hash (const void *x)
174 {
175 return (hashval_t) INTVAL ((const_rtx) x);
176 }
177
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
180 HOST_WIDE_INT *). */
181
182 static int
183 const_int_htab_eq (const void *x, const void *y)
184 {
185 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
186 }
187
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
189 static hashval_t
190 const_double_htab_hash (const void *x)
191 {
192 const_rtx const value = (const_rtx) x;
193 hashval_t h;
194
195 if (GET_MODE (value) == VOIDmode)
196 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
197 else
198 {
199 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h ^= GET_MODE (value);
202 }
203 return h;
204 }
205
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
208 static int
209 const_double_htab_eq (const void *x, const void *y)
210 {
211 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
212
213 if (GET_MODE (a) != GET_MODE (b))
214 return 0;
215 if (GET_MODE (a) == VOIDmode)
216 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
217 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
218 else
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
220 CONST_DOUBLE_REAL_VALUE (b));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
224
225 static hashval_t
226 const_fixed_htab_hash (const void *x)
227 {
228 const_rtx const value = (const_rtx) x;
229 hashval_t h;
230
231 h = fixed_hash (CONST_FIXED_VALUE (value));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h ^= GET_MODE (value);
234 return h;
235 }
236
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
239
240 static int
241 const_fixed_htab_eq (const void *x, const void *y)
242 {
243 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
244
245 if (GET_MODE (a) != GET_MODE (b))
246 return 0;
247 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
248 }
249
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
251
252 static hashval_t
253 mem_attrs_htab_hash (const void *x)
254 {
255 const mem_attrs *const p = (const mem_attrs *) x;
256
257 return (p->alias ^ (p->align * 1000)
258 ^ (p->addrspace * 4000)
259 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
260 ^ ((p->size_known_p ? p->size : 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p->expr, 0));
262 }
263
264 /* Return true if the given memory attributes are equal. */
265
266 static bool
267 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
268 {
269 return (p->alias == q->alias
270 && p->offset_known_p == q->offset_known_p
271 && (!p->offset_known_p || p->offset == q->offset)
272 && p->size_known_p == q->size_known_p
273 && (!p->size_known_p || p->size == q->size)
274 && p->align == q->align
275 && p->addrspace == q->addrspace
276 && (p->expr == q->expr
277 || (p->expr != NULL_TREE && q->expr != NULL_TREE
278 && operand_equal_p (p->expr, q->expr, 0))));
279 }
280
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
283 mem_attrs *). */
284
285 static int
286 mem_attrs_htab_eq (const void *x, const void *y)
287 {
288 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
289 }
290
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
292
293 static void
294 set_mem_attrs (rtx mem, mem_attrs *attrs)
295 {
296 void **slot;
297
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
300 {
301 MEM_ATTRS (mem) = 0;
302 return;
303 }
304
305 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
306 if (*slot == 0)
307 {
308 *slot = ggc_alloc_mem_attrs ();
309 memcpy (*slot, attrs, sizeof (mem_attrs));
310 }
311
312 MEM_ATTRS (mem) = (mem_attrs *) *slot;
313 }
314
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
316
317 static hashval_t
318 reg_attrs_htab_hash (const void *x)
319 {
320 const reg_attrs *const p = (const reg_attrs *) x;
321
322 return ((p->offset * 1000) ^ (intptr_t) p->decl);
323 }
324
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
327 reg_attrs *). */
328
329 static int
330 reg_attrs_htab_eq (const void *x, const void *y)
331 {
332 const reg_attrs *const p = (const reg_attrs *) x;
333 const reg_attrs *const q = (const reg_attrs *) y;
334
335 return (p->decl == q->decl && p->offset == q->offset);
336 }
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
339 MEM of mode MODE. */
340
341 static reg_attrs *
342 get_reg_attrs (tree decl, int offset)
343 {
344 reg_attrs attrs;
345 void **slot;
346
347 /* If everything is the default, we can just return zero. */
348 if (decl == 0 && offset == 0)
349 return 0;
350
351 attrs.decl = decl;
352 attrs.offset = offset;
353
354 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
355 if (*slot == 0)
356 {
357 *slot = ggc_alloc_reg_attrs ();
358 memcpy (*slot, &attrs, sizeof (reg_attrs));
359 }
360
361 return (reg_attrs *) *slot;
362 }
363
364
365 #if !HAVE_blockage
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
367 and to block register equivalences to be seen across this insn. */
368
369 rtx
370 gen_blockage (void)
371 {
372 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
373 MEM_VOLATILE_P (x) = true;
374 return x;
375 }
376 #endif
377
378
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
382
383 rtx
384 gen_raw_REG (enum machine_mode mode, int regno)
385 {
386 rtx x = gen_rtx_raw_REG (mode, regno);
387 ORIGINAL_REGNO (x) = regno;
388 return x;
389 }
390
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
394
395 rtx
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
397 {
398 void **slot;
399
400 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
401 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
402
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx && arg == STORE_FLAG_VALUE)
405 return const_true_rtx;
406 #endif
407
408 /* Look up the CONST_INT in the hash table. */
409 slot = htab_find_slot_with_hash (const_int_htab, &arg,
410 (hashval_t) arg, INSERT);
411 if (*slot == 0)
412 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
413
414 return (rtx) *slot;
415 }
416
417 rtx
418 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
419 {
420 return GEN_INT (trunc_int_for_mode (c, mode));
421 }
422
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
426
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
430 static rtx
431 lookup_const_double (rtx real)
432 {
433 void **slot = htab_find_slot (const_double_htab, real, INSERT);
434 if (*slot == 0)
435 *slot = real;
436
437 return (rtx) *slot;
438 }
439
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
442 rtx
443 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
444 {
445 rtx real = rtx_alloc (CONST_DOUBLE);
446 PUT_MODE (real, mode);
447
448 real->u.rv = value;
449
450 return lookup_const_double (real);
451 }
452
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
456
457 static rtx
458 lookup_const_fixed (rtx fixed)
459 {
460 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
461 if (*slot == 0)
462 *slot = fixed;
463
464 return (rtx) *slot;
465 }
466
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
469
470 rtx
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
472 {
473 rtx fixed = rtx_alloc (CONST_FIXED);
474 PUT_MODE (fixed, mode);
475
476 fixed->u.fv = value;
477
478 return lookup_const_fixed (fixed);
479 }
480
481 /* Constructs double_int from rtx CST. */
482
483 double_int
484 rtx_to_double_int (const_rtx cst)
485 {
486 double_int r;
487
488 if (CONST_INT_P (cst))
489 r = double_int::from_shwi (INTVAL (cst));
490 else if (CONST_DOUBLE_AS_INT_P (cst))
491 {
492 r.low = CONST_DOUBLE_LOW (cst);
493 r.high = CONST_DOUBLE_HIGH (cst);
494 }
495 else
496 gcc_unreachable ();
497
498 return r;
499 }
500
501
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
503 a double_int. */
504
505 rtx
506 immed_double_int_const (double_int i, enum machine_mode mode)
507 {
508 return immed_double_const (i.low, i.high, mode);
509 }
510
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
518
519 rtx
520 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
521 {
522 rtx value;
523 unsigned int i;
524
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
527
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
529 gen_int_mode.
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode != VOIDmode)
535 {
536 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
537 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
541
542 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
543 return gen_int_mode (i0, mode);
544 }
545
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
548 return GEN_INT (i0);
549
550 /* We use VOIDmode for integers. */
551 value = rtx_alloc (CONST_DOUBLE);
552 PUT_MODE (value, VOIDmode);
553
554 CONST_DOUBLE_LOW (value) = i0;
555 CONST_DOUBLE_HIGH (value) = i1;
556
557 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
558 XWINT (value, i) = 0;
559
560 return lookup_const_double (value);
561 }
562
563 rtx
564 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
565 {
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
570 assigned to them.
571
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
576
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
579
580 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
581 {
582 if (regno == FRAME_POINTER_REGNUM
583 && (!reload_completed || frame_pointer_needed))
584 return frame_pointer_rtx;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno == HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return hard_frame_pointer_rtx;
589 #endif
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno == ARG_POINTER_REGNUM)
592 return arg_pointer_rtx;
593 #endif
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
596 return return_address_pointer_rtx;
597 #endif
598 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
600 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
601 return pic_offset_table_rtx;
602 if (regno == STACK_POINTER_REGNUM)
603 return stack_pointer_rtx;
604 }
605
606 #if 0
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
609
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
614
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
617
618 if (cfun
619 && cfun->emit
620 && regno_reg_rtx
621 && regno < FIRST_PSEUDO_REGISTER
622 && reg_raw_mode[regno] == mode)
623 return regno_reg_rtx[regno];
624 #endif
625
626 return gen_raw_REG (mode, regno);
627 }
628
629 rtx
630 gen_rtx_MEM (enum machine_mode mode, rtx addr)
631 {
632 rtx rt = gen_rtx_raw_MEM (mode, addr);
633
634 /* This field is not cleared by the mere allocation of the rtx, so
635 we clear it here. */
636 MEM_ATTRS (rt) = 0;
637
638 return rt;
639 }
640
641 /* Generate a memory referring to non-trapping constant memory. */
642
643 rtx
644 gen_const_mem (enum machine_mode mode, rtx addr)
645 {
646 rtx mem = gen_rtx_MEM (mode, addr);
647 MEM_READONLY_P (mem) = 1;
648 MEM_NOTRAP_P (mem) = 1;
649 return mem;
650 }
651
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
653 save areas. */
654
655 rtx
656 gen_frame_mem (enum machine_mode mode, rtx addr)
657 {
658 rtx mem = gen_rtx_MEM (mode, addr);
659 MEM_NOTRAP_P (mem) = 1;
660 set_mem_alias_set (mem, get_frame_alias_set ());
661 return mem;
662 }
663
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
667 rtx
668 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
669 {
670 rtx mem = gen_rtx_MEM (mode, addr);
671 MEM_NOTRAP_P (mem) = 1;
672 if (!cfun->calls_alloca)
673 set_mem_alias_set (mem, get_frame_alias_set ());
674 return mem;
675 }
676
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
679
680 bool
681 validate_subreg (enum machine_mode omode, enum machine_mode imode,
682 const_rtx reg, unsigned int offset)
683 {
684 unsigned int isize = GET_MODE_SIZE (imode);
685 unsigned int osize = GET_MODE_SIZE (omode);
686
687 /* All subregs must be aligned. */
688 if (offset % osize != 0)
689 return false;
690
691 /* The subreg offset cannot be outside the inner object. */
692 if (offset >= isize)
693 return false;
694
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
698 fix them all. */
699 if (omode == word_mode)
700 ;
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize >= UNITS_PER_WORD && isize >= osize)
704 ;
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
708 && GET_MODE_INNER (imode) == omode)
709 ;
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
716 ;
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
721 {
722 if (! (isize == osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
729 || lra_in_progress))
730 return false;
731 }
732
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
736
737 /* This is a normal subreg. Verify that the offset is representable. */
738
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
742 {
743 unsigned int regno = REGNO (reg);
744
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
748 ;
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
752
753 return subreg_offset_representable_p (regno, imode, offset, omode);
754 }
755
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD
763 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
764 {
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
769 }
770 return true;
771 }
772
773 rtx
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 {
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777 return gen_rtx_raw_SUBREG (mode, reg, offset);
778 }
779
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
782
783 rtx
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 {
786 enum machine_mode inmode;
787
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
793 }
794 \f
795
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797
798 rtvec
799 gen_rtvec (int n, ...)
800 {
801 int i;
802 rtvec rt_val;
803 va_list p;
804
805 va_start (p, n);
806
807 /* Don't allocate an empty rtvec... */
808 if (n == 0)
809 {
810 va_end (p);
811 return NULL_RTVEC;
812 }
813
814 rt_val = rtvec_alloc (n);
815
816 for (i = 0; i < n; i++)
817 rt_val->elem[i] = va_arg (p, rtx);
818
819 va_end (p);
820 return rt_val;
821 }
822
823 rtvec
824 gen_rtvec_v (int n, rtx *argp)
825 {
826 int i;
827 rtvec rt_val;
828
829 /* Don't allocate an empty rtvec... */
830 if (n == 0)
831 return NULL_RTVEC;
832
833 rt_val = rtvec_alloc (n);
834
835 for (i = 0; i < n; i++)
836 rt_val->elem[i] = *argp++;
837
838 return rt_val;
839 }
840 \f
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
846
847 int
848 byte_lowpart_offset (enum machine_mode outer_mode,
849 enum machine_mode inner_mode)
850 {
851 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
852 return subreg_lowpart_offset (outer_mode, inner_mode);
853 else
854 return -subreg_lowpart_offset (inner_mode, outer_mode);
855 }
856 \f
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
859
860 rtx
861 gen_reg_rtx (enum machine_mode mode)
862 {
863 rtx val;
864 unsigned int align = GET_MODE_ALIGNMENT (mode);
865
866 gcc_assert (can_create_pseudo_p ());
867
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
870 to stack later. */
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl->stack_alignment_estimated < align
873 && !crtl->stack_realign_processed)
874 {
875 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
876 if (crtl->stack_alignment_estimated < min_align)
877 crtl->stack_alignment_estimated = min_align;
878 }
879
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
883 {
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart, imagpart;
890 enum machine_mode partmode = GET_MODE_INNER (mode);
891
892 realpart = gen_reg_rtx (partmode);
893 imagpart = gen_reg_rtx (partmode);
894 return gen_rtx_CONCAT (mode, realpart, imagpart);
895 }
896
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
899
900 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
901 {
902 int old_size = crtl->emit.regno_pointer_align_length;
903 char *tmp;
904 rtx *new1;
905
906 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
907 memset (tmp + old_size, 0, old_size);
908 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
909
910 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
911 memset (new1 + old_size, 0, old_size * sizeof (rtx));
912 regno_reg_rtx = new1;
913
914 crtl->emit.regno_pointer_align_length = old_size * 2;
915 }
916
917 val = gen_raw_REG (mode, reg_rtx_no);
918 regno_reg_rtx[reg_rtx_no++] = val;
919 return val;
920 }
921
922 /* Update NEW with the same attributes as REG, but with OFFSET added
923 to the REG_OFFSET. */
924
925 static void
926 update_reg_offset (rtx new_rtx, rtx reg, int offset)
927 {
928 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
929 REG_OFFSET (reg) + offset);
930 }
931
932 /* Generate a register with same attributes as REG, but with OFFSET
933 added to the REG_OFFSET. */
934
935 rtx
936 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
937 int offset)
938 {
939 rtx new_rtx = gen_rtx_REG (mode, regno);
940
941 update_reg_offset (new_rtx, reg, offset);
942 return new_rtx;
943 }
944
945 /* Generate a new pseudo-register with the same attributes as REG, but
946 with OFFSET added to the REG_OFFSET. */
947
948 rtx
949 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
950 {
951 rtx new_rtx = gen_reg_rtx (mode);
952
953 update_reg_offset (new_rtx, reg, offset);
954 return new_rtx;
955 }
956
957 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
958 new register is a (possibly paradoxical) lowpart of the old one. */
959
960 void
961 adjust_reg_mode (rtx reg, enum machine_mode mode)
962 {
963 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
964 PUT_MODE (reg, mode);
965 }
966
967 /* Copy REG's attributes from X, if X has any attributes. If REG and X
968 have different modes, REG is a (possibly paradoxical) lowpart of X. */
969
970 void
971 set_reg_attrs_from_value (rtx reg, rtx x)
972 {
973 int offset;
974 bool can_be_reg_pointer = true;
975
976 /* Don't call mark_reg_pointer for incompatible pointer sign
977 extension. */
978 while (GET_CODE (x) == SIGN_EXTEND
979 || GET_CODE (x) == ZERO_EXTEND
980 || GET_CODE (x) == TRUNCATE
981 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
982 {
983 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
984 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
985 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
986 can_be_reg_pointer = false;
987 #endif
988 x = XEXP (x, 0);
989 }
990
991 /* Hard registers can be reused for multiple purposes within the same
992 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
993 on them is wrong. */
994 if (HARD_REGISTER_P (reg))
995 return;
996
997 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
998 if (MEM_P (x))
999 {
1000 if (MEM_OFFSET_KNOWN_P (x))
1001 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1002 MEM_OFFSET (x) + offset);
1003 if (can_be_reg_pointer && MEM_POINTER (x))
1004 mark_reg_pointer (reg, 0);
1005 }
1006 else if (REG_P (x))
1007 {
1008 if (REG_ATTRS (x))
1009 update_reg_offset (reg, x, offset);
1010 if (can_be_reg_pointer && REG_POINTER (x))
1011 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1012 }
1013 }
1014
1015 /* Generate a REG rtx for a new pseudo register, copying the mode
1016 and attributes from X. */
1017
1018 rtx
1019 gen_reg_rtx_and_attrs (rtx x)
1020 {
1021 rtx reg = gen_reg_rtx (GET_MODE (x));
1022 set_reg_attrs_from_value (reg, x);
1023 return reg;
1024 }
1025
1026 /* Set the register attributes for registers contained in PARM_RTX.
1027 Use needed values from memory attributes of MEM. */
1028
1029 void
1030 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1031 {
1032 if (REG_P (parm_rtx))
1033 set_reg_attrs_from_value (parm_rtx, mem);
1034 else if (GET_CODE (parm_rtx) == PARALLEL)
1035 {
1036 /* Check for a NULL entry in the first slot, used to indicate that the
1037 parameter goes both on the stack and in registers. */
1038 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1039 for (; i < XVECLEN (parm_rtx, 0); i++)
1040 {
1041 rtx x = XVECEXP (parm_rtx, 0, i);
1042 if (REG_P (XEXP (x, 0)))
1043 REG_ATTRS (XEXP (x, 0))
1044 = get_reg_attrs (MEM_EXPR (mem),
1045 INTVAL (XEXP (x, 1)));
1046 }
1047 }
1048 }
1049
1050 /* Set the REG_ATTRS for registers in value X, given that X represents
1051 decl T. */
1052
1053 void
1054 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1055 {
1056 if (GET_CODE (x) == SUBREG)
1057 {
1058 gcc_assert (subreg_lowpart_p (x));
1059 x = SUBREG_REG (x);
1060 }
1061 if (REG_P (x))
1062 REG_ATTRS (x)
1063 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1064 DECL_MODE (t)));
1065 if (GET_CODE (x) == CONCAT)
1066 {
1067 if (REG_P (XEXP (x, 0)))
1068 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1069 if (REG_P (XEXP (x, 1)))
1070 REG_ATTRS (XEXP (x, 1))
1071 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1072 }
1073 if (GET_CODE (x) == PARALLEL)
1074 {
1075 int i, start;
1076
1077 /* Check for a NULL entry, used to indicate that the parameter goes
1078 both on the stack and in registers. */
1079 if (XEXP (XVECEXP (x, 0, 0), 0))
1080 start = 0;
1081 else
1082 start = 1;
1083
1084 for (i = start; i < XVECLEN (x, 0); i++)
1085 {
1086 rtx y = XVECEXP (x, 0, i);
1087 if (REG_P (XEXP (y, 0)))
1088 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1089 }
1090 }
1091 }
1092
1093 /* Assign the RTX X to declaration T. */
1094
1095 void
1096 set_decl_rtl (tree t, rtx x)
1097 {
1098 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1099 if (x)
1100 set_reg_attrs_for_decl_rtl (t, x);
1101 }
1102
1103 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1104 if the ABI requires the parameter to be passed by reference. */
1105
1106 void
1107 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1108 {
1109 DECL_INCOMING_RTL (t) = x;
1110 if (x && !by_reference_p)
1111 set_reg_attrs_for_decl_rtl (t, x);
1112 }
1113
1114 /* Identify REG (which may be a CONCAT) as a user register. */
1115
1116 void
1117 mark_user_reg (rtx reg)
1118 {
1119 if (GET_CODE (reg) == CONCAT)
1120 {
1121 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1122 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1123 }
1124 else
1125 {
1126 gcc_assert (REG_P (reg));
1127 REG_USERVAR_P (reg) = 1;
1128 }
1129 }
1130
1131 /* Identify REG as a probable pointer register and show its alignment
1132 as ALIGN, if nonzero. */
1133
1134 void
1135 mark_reg_pointer (rtx reg, int align)
1136 {
1137 if (! REG_POINTER (reg))
1138 {
1139 REG_POINTER (reg) = 1;
1140
1141 if (align)
1142 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1143 }
1144 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1145 /* We can no-longer be sure just how aligned this pointer is. */
1146 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1147 }
1148
1149 /* Return 1 plus largest pseudo reg number used in the current function. */
1150
1151 int
1152 max_reg_num (void)
1153 {
1154 return reg_rtx_no;
1155 }
1156
1157 /* Return 1 + the largest label number used so far in the current function. */
1158
1159 int
1160 max_label_num (void)
1161 {
1162 return label_num;
1163 }
1164
1165 /* Return first label number used in this function (if any were used). */
1166
1167 int
1168 get_first_label_num (void)
1169 {
1170 return first_label_num;
1171 }
1172
1173 /* If the rtx for label was created during the expansion of a nested
1174 function, then first_label_num won't include this label number.
1175 Fix this now so that array indices work later. */
1176
1177 void
1178 maybe_set_first_label_num (rtx x)
1179 {
1180 if (CODE_LABEL_NUMBER (x) < first_label_num)
1181 first_label_num = CODE_LABEL_NUMBER (x);
1182 }
1183 \f
1184 /* Return a value representing some low-order bits of X, where the number
1185 of low-order bits is given by MODE. Note that no conversion is done
1186 between floating-point and fixed-point values, rather, the bit
1187 representation is returned.
1188
1189 This function handles the cases in common between gen_lowpart, below,
1190 and two variants in cse.c and combine.c. These are the cases that can
1191 be safely handled at all points in the compilation.
1192
1193 If this is not a case we can handle, return 0. */
1194
1195 rtx
1196 gen_lowpart_common (enum machine_mode mode, rtx x)
1197 {
1198 int msize = GET_MODE_SIZE (mode);
1199 int xsize;
1200 int offset = 0;
1201 enum machine_mode innermode;
1202
1203 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1204 so we have to make one up. Yuk. */
1205 innermode = GET_MODE (x);
1206 if (CONST_INT_P (x)
1207 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1208 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1209 else if (innermode == VOIDmode)
1210 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1211
1212 xsize = GET_MODE_SIZE (innermode);
1213
1214 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1215
1216 if (innermode == mode)
1217 return x;
1218
1219 /* MODE must occupy no more words than the mode of X. */
1220 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1221 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1222 return 0;
1223
1224 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1225 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1226 return 0;
1227
1228 offset = subreg_lowpart_offset (mode, innermode);
1229
1230 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1231 && (GET_MODE_CLASS (mode) == MODE_INT
1232 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1233 {
1234 /* If we are getting the low-order part of something that has been
1235 sign- or zero-extended, we can either just use the object being
1236 extended or make a narrower extension. If we want an even smaller
1237 piece than the size of the object being extended, call ourselves
1238 recursively.
1239
1240 This case is used mostly by combine and cse. */
1241
1242 if (GET_MODE (XEXP (x, 0)) == mode)
1243 return XEXP (x, 0);
1244 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1245 return gen_lowpart_common (mode, XEXP (x, 0));
1246 else if (msize < xsize)
1247 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1248 }
1249 else if (GET_CODE (x) == SUBREG || REG_P (x)
1250 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1251 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1252 return simplify_gen_subreg (mode, x, innermode, offset);
1253
1254 /* Otherwise, we can't do this. */
1255 return 0;
1256 }
1257 \f
1258 rtx
1259 gen_highpart (enum machine_mode mode, rtx x)
1260 {
1261 unsigned int msize = GET_MODE_SIZE (mode);
1262 rtx result;
1263
1264 /* This case loses if X is a subreg. To catch bugs early,
1265 complain if an invalid MODE is used even in other cases. */
1266 gcc_assert (msize <= UNITS_PER_WORD
1267 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1268
1269 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1270 subreg_highpart_offset (mode, GET_MODE (x)));
1271 gcc_assert (result);
1272
1273 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1274 the target if we have a MEM. gen_highpart must return a valid operand,
1275 emitting code if necessary to do so. */
1276 if (MEM_P (result))
1277 {
1278 result = validize_mem (result);
1279 gcc_assert (result);
1280 }
1281
1282 return result;
1283 }
1284
1285 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1286 be VOIDmode constant. */
1287 rtx
1288 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1289 {
1290 if (GET_MODE (exp) != VOIDmode)
1291 {
1292 gcc_assert (GET_MODE (exp) == innermode);
1293 return gen_highpart (outermode, exp);
1294 }
1295 return simplify_gen_subreg (outermode, exp, innermode,
1296 subreg_highpart_offset (outermode, innermode));
1297 }
1298
1299 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1300
1301 unsigned int
1302 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303 {
1304 unsigned int offset = 0;
1305 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306
1307 if (difference > 0)
1308 {
1309 if (WORDS_BIG_ENDIAN)
1310 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1311 if (BYTES_BIG_ENDIAN)
1312 offset += difference % UNITS_PER_WORD;
1313 }
1314
1315 return offset;
1316 }
1317
1318 /* Return offset in bytes to get OUTERMODE high part
1319 of the value in mode INNERMODE stored in memory in target format. */
1320 unsigned int
1321 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1322 {
1323 unsigned int offset = 0;
1324 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1325
1326 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1327
1328 if (difference > 0)
1329 {
1330 if (! WORDS_BIG_ENDIAN)
1331 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1332 if (! BYTES_BIG_ENDIAN)
1333 offset += difference % UNITS_PER_WORD;
1334 }
1335
1336 return offset;
1337 }
1338
1339 /* Return 1 iff X, assumed to be a SUBREG,
1340 refers to the least significant part of its containing reg.
1341 If X is not a SUBREG, always return 1 (it is its own low part!). */
1342
1343 int
1344 subreg_lowpart_p (const_rtx x)
1345 {
1346 if (GET_CODE (x) != SUBREG)
1347 return 1;
1348 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1349 return 0;
1350
1351 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1352 == SUBREG_BYTE (x));
1353 }
1354
1355 /* Return true if X is a paradoxical subreg, false otherwise. */
1356 bool
1357 paradoxical_subreg_p (const_rtx x)
1358 {
1359 if (GET_CODE (x) != SUBREG)
1360 return false;
1361 return (GET_MODE_PRECISION (GET_MODE (x))
1362 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1363 }
1364 \f
1365 /* Return subword OFFSET of operand OP.
1366 The word number, OFFSET, is interpreted as the word number starting
1367 at the low-order address. OFFSET 0 is the low-order word if not
1368 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1369
1370 If we cannot extract the required word, we return zero. Otherwise,
1371 an rtx corresponding to the requested word will be returned.
1372
1373 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1374 reload has completed, a valid address will always be returned. After
1375 reload, if a valid address cannot be returned, we return zero.
1376
1377 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1378 it is the responsibility of the caller.
1379
1380 MODE is the mode of OP in case it is a CONST_INT.
1381
1382 ??? This is still rather broken for some cases. The problem for the
1383 moment is that all callers of this thing provide no 'goal mode' to
1384 tell us to work with. This exists because all callers were written
1385 in a word based SUBREG world.
1386 Now use of this function can be deprecated by simplify_subreg in most
1387 cases.
1388 */
1389
1390 rtx
1391 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1392 {
1393 if (mode == VOIDmode)
1394 mode = GET_MODE (op);
1395
1396 gcc_assert (mode != VOIDmode);
1397
1398 /* If OP is narrower than a word, fail. */
1399 if (mode != BLKmode
1400 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1401 return 0;
1402
1403 /* If we want a word outside OP, return zero. */
1404 if (mode != BLKmode
1405 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1406 return const0_rtx;
1407
1408 /* Form a new MEM at the requested address. */
1409 if (MEM_P (op))
1410 {
1411 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1412
1413 if (! validate_address)
1414 return new_rtx;
1415
1416 else if (reload_completed)
1417 {
1418 if (! strict_memory_address_addr_space_p (word_mode,
1419 XEXP (new_rtx, 0),
1420 MEM_ADDR_SPACE (op)))
1421 return 0;
1422 }
1423 else
1424 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1425 }
1426
1427 /* Rest can be handled by simplify_subreg. */
1428 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1429 }
1430
1431 /* Similar to `operand_subword', but never return 0. If we can't
1432 extract the required subword, put OP into a register and try again.
1433 The second attempt must succeed. We always validate the address in
1434 this case.
1435
1436 MODE is the mode of OP, in case it is CONST_INT. */
1437
1438 rtx
1439 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1440 {
1441 rtx result = operand_subword (op, offset, 1, mode);
1442
1443 if (result)
1444 return result;
1445
1446 if (mode != BLKmode && mode != VOIDmode)
1447 {
1448 /* If this is a register which can not be accessed by words, copy it
1449 to a pseudo register. */
1450 if (REG_P (op))
1451 op = copy_to_reg (op);
1452 else
1453 op = force_reg (mode, op);
1454 }
1455
1456 result = operand_subword (op, offset, 1, mode);
1457 gcc_assert (result);
1458
1459 return result;
1460 }
1461 \f
1462 /* Returns 1 if both MEM_EXPR can be considered equal
1463 and 0 otherwise. */
1464
1465 int
1466 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1467 {
1468 if (expr1 == expr2)
1469 return 1;
1470
1471 if (! expr1 || ! expr2)
1472 return 0;
1473
1474 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1475 return 0;
1476
1477 return operand_equal_p (expr1, expr2, 0);
1478 }
1479
1480 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1481 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1482 -1 if not known. */
1483
1484 int
1485 get_mem_align_offset (rtx mem, unsigned int align)
1486 {
1487 tree expr;
1488 unsigned HOST_WIDE_INT offset;
1489
1490 /* This function can't use
1491 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1492 || (MAX (MEM_ALIGN (mem),
1493 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1494 < align))
1495 return -1;
1496 else
1497 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1498 for two reasons:
1499 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1500 for <variable>. get_inner_reference doesn't handle it and
1501 even if it did, the alignment in that case needs to be determined
1502 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1503 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1504 isn't sufficiently aligned, the object it is in might be. */
1505 gcc_assert (MEM_P (mem));
1506 expr = MEM_EXPR (mem);
1507 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1508 return -1;
1509
1510 offset = MEM_OFFSET (mem);
1511 if (DECL_P (expr))
1512 {
1513 if (DECL_ALIGN (expr) < align)
1514 return -1;
1515 }
1516 else if (INDIRECT_REF_P (expr))
1517 {
1518 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1519 return -1;
1520 }
1521 else if (TREE_CODE (expr) == COMPONENT_REF)
1522 {
1523 while (1)
1524 {
1525 tree inner = TREE_OPERAND (expr, 0);
1526 tree field = TREE_OPERAND (expr, 1);
1527 tree byte_offset = component_ref_field_offset (expr);
1528 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1529
1530 if (!byte_offset
1531 || !host_integerp (byte_offset, 1)
1532 || !host_integerp (bit_offset, 1))
1533 return -1;
1534
1535 offset += tree_low_cst (byte_offset, 1);
1536 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1537
1538 if (inner == NULL_TREE)
1539 {
1540 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1541 < (unsigned int) align)
1542 return -1;
1543 break;
1544 }
1545 else if (DECL_P (inner))
1546 {
1547 if (DECL_ALIGN (inner) < align)
1548 return -1;
1549 break;
1550 }
1551 else if (TREE_CODE (inner) != COMPONENT_REF)
1552 return -1;
1553 expr = inner;
1554 }
1555 }
1556 else
1557 return -1;
1558
1559 return offset & ((align / BITS_PER_UNIT) - 1);
1560 }
1561
1562 /* Given REF (a MEM) and T, either the type of X or the expression
1563 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1564 if we are making a new object of this type. BITPOS is nonzero if
1565 there is an offset outstanding on T that will be applied later. */
1566
1567 void
1568 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1569 HOST_WIDE_INT bitpos)
1570 {
1571 HOST_WIDE_INT apply_bitpos = 0;
1572 tree type;
1573 struct mem_attrs attrs, *defattrs, *refattrs;
1574 addr_space_t as;
1575
1576 /* It can happen that type_for_mode was given a mode for which there
1577 is no language-level type. In which case it returns NULL, which
1578 we can see here. */
1579 if (t == NULL_TREE)
1580 return;
1581
1582 type = TYPE_P (t) ? t : TREE_TYPE (t);
1583 if (type == error_mark_node)
1584 return;
1585
1586 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1587 wrong answer, as it assumes that DECL_RTL already has the right alias
1588 info. Callers should not set DECL_RTL until after the call to
1589 set_mem_attributes. */
1590 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1591
1592 memset (&attrs, 0, sizeof (attrs));
1593
1594 /* Get the alias set from the expression or type (perhaps using a
1595 front-end routine) and use it. */
1596 attrs.alias = get_alias_set (t);
1597
1598 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1599 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1600
1601 /* Default values from pre-existing memory attributes if present. */
1602 refattrs = MEM_ATTRS (ref);
1603 if (refattrs)
1604 {
1605 /* ??? Can this ever happen? Calling this routine on a MEM that
1606 already carries memory attributes should probably be invalid. */
1607 attrs.expr = refattrs->expr;
1608 attrs.offset_known_p = refattrs->offset_known_p;
1609 attrs.offset = refattrs->offset;
1610 attrs.size_known_p = refattrs->size_known_p;
1611 attrs.size = refattrs->size;
1612 attrs.align = refattrs->align;
1613 }
1614
1615 /* Otherwise, default values from the mode of the MEM reference. */
1616 else
1617 {
1618 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1619 gcc_assert (!defattrs->expr);
1620 gcc_assert (!defattrs->offset_known_p);
1621
1622 /* Respect mode size. */
1623 attrs.size_known_p = defattrs->size_known_p;
1624 attrs.size = defattrs->size;
1625 /* ??? Is this really necessary? We probably should always get
1626 the size from the type below. */
1627
1628 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1629 if T is an object, always compute the object alignment below. */
1630 if (TYPE_P (t))
1631 attrs.align = defattrs->align;
1632 else
1633 attrs.align = BITS_PER_UNIT;
1634 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1635 e.g. if the type carries an alignment attribute. Should we be
1636 able to simply always use TYPE_ALIGN? */
1637 }
1638
1639 /* We can set the alignment from the type if we are making an object,
1640 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1641 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1642 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1643
1644 else if (TREE_CODE (t) == MEM_REF)
1645 {
1646 tree op0 = TREE_OPERAND (t, 0);
1647 if (TREE_CODE (op0) == ADDR_EXPR
1648 && (DECL_P (TREE_OPERAND (op0, 0))
1649 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1650 {
1651 if (DECL_P (TREE_OPERAND (op0, 0)))
1652 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1653 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1654 {
1655 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1656 #ifdef CONSTANT_ALIGNMENT
1657 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1658 attrs.align);
1659 #endif
1660 }
1661 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1662 {
1663 unsigned HOST_WIDE_INT ioff
1664 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1665 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1666 attrs.align = MIN (aoff, attrs.align);
1667 }
1668 }
1669 else
1670 /* ??? This isn't fully correct, we can't set the alignment from the
1671 type in all cases. */
1672 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1673 }
1674
1675 else if (TREE_CODE (t) == TARGET_MEM_REF)
1676 /* ??? This isn't fully correct, we can't set the alignment from the
1677 type in all cases. */
1678 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1679
1680 /* If the size is known, we can set that. */
1681 tree new_size = TYPE_SIZE_UNIT (type);
1682
1683 /* If T is not a type, we may be able to deduce some more information about
1684 the expression. */
1685 if (! TYPE_P (t))
1686 {
1687 tree base;
1688 bool align_computed = false;
1689
1690 if (TREE_THIS_VOLATILE (t))
1691 MEM_VOLATILE_P (ref) = 1;
1692
1693 /* Now remove any conversions: they don't change what the underlying
1694 object is. Likewise for SAVE_EXPR. */
1695 while (CONVERT_EXPR_P (t)
1696 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1697 || TREE_CODE (t) == SAVE_EXPR)
1698 t = TREE_OPERAND (t, 0);
1699
1700 /* Note whether this expression can trap. */
1701 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1702
1703 base = get_base_address (t);
1704 if (base)
1705 {
1706 if (DECL_P (base)
1707 && TREE_READONLY (base)
1708 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1709 && !TREE_THIS_VOLATILE (base))
1710 MEM_READONLY_P (ref) = 1;
1711
1712 /* Mark static const strings readonly as well. */
1713 if (TREE_CODE (base) == STRING_CST
1714 && TREE_READONLY (base)
1715 && TREE_STATIC (base))
1716 MEM_READONLY_P (ref) = 1;
1717
1718 if (TREE_CODE (base) == MEM_REF
1719 || TREE_CODE (base) == TARGET_MEM_REF)
1720 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1721 0))));
1722 else
1723 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1724 }
1725 else
1726 as = TYPE_ADDR_SPACE (type);
1727
1728 /* If this expression uses it's parent's alias set, mark it such
1729 that we won't change it. */
1730 if (component_uses_parent_alias_set (t))
1731 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1732
1733 /* If this is a decl, set the attributes of the MEM from it. */
1734 if (DECL_P (t))
1735 {
1736 attrs.expr = t;
1737 attrs.offset_known_p = true;
1738 attrs.offset = 0;
1739 apply_bitpos = bitpos;
1740 new_size = DECL_SIZE_UNIT (t);
1741 attrs.align = DECL_ALIGN (t);
1742 align_computed = true;
1743 }
1744
1745 /* If this is a constant, we know the alignment. */
1746 else if (CONSTANT_CLASS_P (t))
1747 {
1748 attrs.align = TYPE_ALIGN (type);
1749 #ifdef CONSTANT_ALIGNMENT
1750 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1751 #endif
1752 align_computed = true;
1753 }
1754
1755 /* If this is a field reference, record it. */
1756 else if (TREE_CODE (t) == COMPONENT_REF)
1757 {
1758 attrs.expr = t;
1759 attrs.offset_known_p = true;
1760 attrs.offset = 0;
1761 apply_bitpos = bitpos;
1762 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1763 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1764 }
1765
1766 /* If this is an array reference, look for an outer field reference. */
1767 else if (TREE_CODE (t) == ARRAY_REF)
1768 {
1769 tree off_tree = size_zero_node;
1770 /* We can't modify t, because we use it at the end of the
1771 function. */
1772 tree t2 = t;
1773
1774 do
1775 {
1776 tree index = TREE_OPERAND (t2, 1);
1777 tree low_bound = array_ref_low_bound (t2);
1778 tree unit_size = array_ref_element_size (t2);
1779
1780 /* We assume all arrays have sizes that are a multiple of a byte.
1781 First subtract the lower bound, if any, in the type of the
1782 index, then convert to sizetype and multiply by the size of
1783 the array element. */
1784 if (! integer_zerop (low_bound))
1785 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1786 index, low_bound);
1787
1788 off_tree = size_binop (PLUS_EXPR,
1789 size_binop (MULT_EXPR,
1790 fold_convert (sizetype,
1791 index),
1792 unit_size),
1793 off_tree);
1794 t2 = TREE_OPERAND (t2, 0);
1795 }
1796 while (TREE_CODE (t2) == ARRAY_REF);
1797
1798 if (DECL_P (t2))
1799 {
1800 attrs.expr = t2;
1801 attrs.offset_known_p = false;
1802 if (host_integerp (off_tree, 1))
1803 {
1804 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1805 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1806 attrs.align = DECL_ALIGN (t2);
1807 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1808 attrs.align = aoff;
1809 align_computed = true;
1810 attrs.offset_known_p = true;
1811 attrs.offset = ioff;
1812 apply_bitpos = bitpos;
1813 }
1814 }
1815 else if (TREE_CODE (t2) == COMPONENT_REF)
1816 {
1817 attrs.expr = t2;
1818 attrs.offset_known_p = false;
1819 if (host_integerp (off_tree, 1))
1820 {
1821 attrs.offset_known_p = true;
1822 attrs.offset = tree_low_cst (off_tree, 1);
1823 apply_bitpos = bitpos;
1824 }
1825 /* ??? Any reason the field size would be different than
1826 the size we got from the type? */
1827 }
1828 }
1829
1830 /* If this is an indirect reference, record it. */
1831 else if (TREE_CODE (t) == MEM_REF
1832 || TREE_CODE (t) == TARGET_MEM_REF)
1833 {
1834 attrs.expr = t;
1835 attrs.offset_known_p = true;
1836 attrs.offset = 0;
1837 apply_bitpos = bitpos;
1838 }
1839
1840 if (!align_computed)
1841 {
1842 unsigned int obj_align = get_object_alignment (t);
1843 attrs.align = MAX (attrs.align, obj_align);
1844 }
1845 }
1846 else
1847 as = TYPE_ADDR_SPACE (type);
1848
1849 if (host_integerp (new_size, 1))
1850 {
1851 attrs.size_known_p = true;
1852 attrs.size = tree_low_cst (new_size, 1);
1853 }
1854
1855 /* If we modified OFFSET based on T, then subtract the outstanding
1856 bit position offset. Similarly, increase the size of the accessed
1857 object to contain the negative offset. */
1858 if (apply_bitpos)
1859 {
1860 gcc_assert (attrs.offset_known_p);
1861 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1862 if (attrs.size_known_p)
1863 attrs.size += apply_bitpos / BITS_PER_UNIT;
1864 }
1865
1866 /* Now set the attributes we computed above. */
1867 attrs.addrspace = as;
1868 set_mem_attrs (ref, &attrs);
1869 }
1870
1871 void
1872 set_mem_attributes (rtx ref, tree t, int objectp)
1873 {
1874 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1875 }
1876
1877 /* Set the alias set of MEM to SET. */
1878
1879 void
1880 set_mem_alias_set (rtx mem, alias_set_type set)
1881 {
1882 struct mem_attrs attrs;
1883
1884 /* If the new and old alias sets don't conflict, something is wrong. */
1885 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1886 attrs = *get_mem_attrs (mem);
1887 attrs.alias = set;
1888 set_mem_attrs (mem, &attrs);
1889 }
1890
1891 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1892
1893 void
1894 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1895 {
1896 struct mem_attrs attrs;
1897
1898 attrs = *get_mem_attrs (mem);
1899 attrs.addrspace = addrspace;
1900 set_mem_attrs (mem, &attrs);
1901 }
1902
1903 /* Set the alignment of MEM to ALIGN bits. */
1904
1905 void
1906 set_mem_align (rtx mem, unsigned int align)
1907 {
1908 struct mem_attrs attrs;
1909
1910 attrs = *get_mem_attrs (mem);
1911 attrs.align = align;
1912 set_mem_attrs (mem, &attrs);
1913 }
1914
1915 /* Set the expr for MEM to EXPR. */
1916
1917 void
1918 set_mem_expr (rtx mem, tree expr)
1919 {
1920 struct mem_attrs attrs;
1921
1922 attrs = *get_mem_attrs (mem);
1923 attrs.expr = expr;
1924 set_mem_attrs (mem, &attrs);
1925 }
1926
1927 /* Set the offset of MEM to OFFSET. */
1928
1929 void
1930 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1931 {
1932 struct mem_attrs attrs;
1933
1934 attrs = *get_mem_attrs (mem);
1935 attrs.offset_known_p = true;
1936 attrs.offset = offset;
1937 set_mem_attrs (mem, &attrs);
1938 }
1939
1940 /* Clear the offset of MEM. */
1941
1942 void
1943 clear_mem_offset (rtx mem)
1944 {
1945 struct mem_attrs attrs;
1946
1947 attrs = *get_mem_attrs (mem);
1948 attrs.offset_known_p = false;
1949 set_mem_attrs (mem, &attrs);
1950 }
1951
1952 /* Set the size of MEM to SIZE. */
1953
1954 void
1955 set_mem_size (rtx mem, HOST_WIDE_INT size)
1956 {
1957 struct mem_attrs attrs;
1958
1959 attrs = *get_mem_attrs (mem);
1960 attrs.size_known_p = true;
1961 attrs.size = size;
1962 set_mem_attrs (mem, &attrs);
1963 }
1964
1965 /* Clear the size of MEM. */
1966
1967 void
1968 clear_mem_size (rtx mem)
1969 {
1970 struct mem_attrs attrs;
1971
1972 attrs = *get_mem_attrs (mem);
1973 attrs.size_known_p = false;
1974 set_mem_attrs (mem, &attrs);
1975 }
1976 \f
1977 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1978 and its address changed to ADDR. (VOIDmode means don't change the mode.
1979 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1980 returned memory location is required to be valid. The memory
1981 attributes are not changed. */
1982
1983 static rtx
1984 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1985 {
1986 addr_space_t as;
1987 rtx new_rtx;
1988
1989 gcc_assert (MEM_P (memref));
1990 as = MEM_ADDR_SPACE (memref);
1991 if (mode == VOIDmode)
1992 mode = GET_MODE (memref);
1993 if (addr == 0)
1994 addr = XEXP (memref, 0);
1995 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1996 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1997 return memref;
1998
1999 if (validate)
2000 {
2001 if (reload_in_progress || reload_completed)
2002 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2003 else
2004 addr = memory_address_addr_space (mode, addr, as);
2005 }
2006
2007 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2008 return memref;
2009
2010 new_rtx = gen_rtx_MEM (mode, addr);
2011 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2012 return new_rtx;
2013 }
2014
2015 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2016 way we are changing MEMREF, so we only preserve the alias set. */
2017
2018 rtx
2019 change_address (rtx memref, enum machine_mode mode, rtx addr)
2020 {
2021 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2022 enum machine_mode mmode = GET_MODE (new_rtx);
2023 struct mem_attrs attrs, *defattrs;
2024
2025 attrs = *get_mem_attrs (memref);
2026 defattrs = mode_mem_attrs[(int) mmode];
2027 attrs.expr = NULL_TREE;
2028 attrs.offset_known_p = false;
2029 attrs.size_known_p = defattrs->size_known_p;
2030 attrs.size = defattrs->size;
2031 attrs.align = defattrs->align;
2032
2033 /* If there are no changes, just return the original memory reference. */
2034 if (new_rtx == memref)
2035 {
2036 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2037 return new_rtx;
2038
2039 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2040 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2041 }
2042
2043 set_mem_attrs (new_rtx, &attrs);
2044 return new_rtx;
2045 }
2046
2047 /* Return a memory reference like MEMREF, but with its mode changed
2048 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2049 nonzero, the memory address is forced to be valid.
2050 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2051 and the caller is responsible for adjusting MEMREF base register.
2052 If ADJUST_OBJECT is zero, the underlying object associated with the
2053 memory reference is left unchanged and the caller is responsible for
2054 dealing with it. Otherwise, if the new memory reference is outside
2055 the underlying object, even partially, then the object is dropped.
2056 SIZE, if nonzero, is the size of an access in cases where MODE
2057 has no inherent size. */
2058
2059 rtx
2060 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2061 int validate, int adjust_address, int adjust_object,
2062 HOST_WIDE_INT size)
2063 {
2064 rtx addr = XEXP (memref, 0);
2065 rtx new_rtx;
2066 enum machine_mode address_mode;
2067 int pbits;
2068 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2069 unsigned HOST_WIDE_INT max_align;
2070 #ifdef POINTERS_EXTEND_UNSIGNED
2071 enum machine_mode pointer_mode
2072 = targetm.addr_space.pointer_mode (attrs.addrspace);
2073 #endif
2074
2075 /* VOIDmode means no mode change for change_address_1. */
2076 if (mode == VOIDmode)
2077 mode = GET_MODE (memref);
2078
2079 /* Take the size of non-BLKmode accesses from the mode. */
2080 defattrs = mode_mem_attrs[(int) mode];
2081 if (defattrs->size_known_p)
2082 size = defattrs->size;
2083
2084 /* If there are no changes, just return the original memory reference. */
2085 if (mode == GET_MODE (memref) && !offset
2086 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2087 && (!validate || memory_address_addr_space_p (mode, addr,
2088 attrs.addrspace)))
2089 return memref;
2090
2091 /* ??? Prefer to create garbage instead of creating shared rtl.
2092 This may happen even if offset is nonzero -- consider
2093 (plus (plus reg reg) const_int) -- so do this always. */
2094 addr = copy_rtx (addr);
2095
2096 /* Convert a possibly large offset to a signed value within the
2097 range of the target address space. */
2098 address_mode = get_address_mode (memref);
2099 pbits = GET_MODE_BITSIZE (address_mode);
2100 if (HOST_BITS_PER_WIDE_INT > pbits)
2101 {
2102 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2103 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2104 >> shift);
2105 }
2106
2107 if (adjust_address)
2108 {
2109 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2110 object, we can merge it into the LO_SUM. */
2111 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2112 && offset >= 0
2113 && (unsigned HOST_WIDE_INT) offset
2114 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2115 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2116 plus_constant (address_mode,
2117 XEXP (addr, 1), offset));
2118 #ifdef POINTERS_EXTEND_UNSIGNED
2119 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2120 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2121 the fact that pointers are not allowed to overflow. */
2122 else if (POINTERS_EXTEND_UNSIGNED > 0
2123 && GET_CODE (addr) == ZERO_EXTEND
2124 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2125 && trunc_int_for_mode (offset, pointer_mode) == offset)
2126 addr = gen_rtx_ZERO_EXTEND (address_mode,
2127 plus_constant (pointer_mode,
2128 XEXP (addr, 0), offset));
2129 #endif
2130 else
2131 addr = plus_constant (address_mode, addr, offset);
2132 }
2133
2134 new_rtx = change_address_1 (memref, mode, addr, validate);
2135
2136 /* If the address is a REG, change_address_1 rightfully returns memref,
2137 but this would destroy memref's MEM_ATTRS. */
2138 if (new_rtx == memref && offset != 0)
2139 new_rtx = copy_rtx (new_rtx);
2140
2141 /* Conservatively drop the object if we don't know where we start from. */
2142 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2143 {
2144 attrs.expr = NULL_TREE;
2145 attrs.alias = 0;
2146 }
2147
2148 /* Compute the new values of the memory attributes due to this adjustment.
2149 We add the offsets and update the alignment. */
2150 if (attrs.offset_known_p)
2151 {
2152 attrs.offset += offset;
2153
2154 /* Drop the object if the new left end is not within its bounds. */
2155 if (adjust_object && attrs.offset < 0)
2156 {
2157 attrs.expr = NULL_TREE;
2158 attrs.alias = 0;
2159 }
2160 }
2161
2162 /* Compute the new alignment by taking the MIN of the alignment and the
2163 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2164 if zero. */
2165 if (offset != 0)
2166 {
2167 max_align = (offset & -offset) * BITS_PER_UNIT;
2168 attrs.align = MIN (attrs.align, max_align);
2169 }
2170
2171 if (size)
2172 {
2173 /* Drop the object if the new right end is not within its bounds. */
2174 if (adjust_object && (offset + size) > attrs.size)
2175 {
2176 attrs.expr = NULL_TREE;
2177 attrs.alias = 0;
2178 }
2179 attrs.size_known_p = true;
2180 attrs.size = size;
2181 }
2182 else if (attrs.size_known_p)
2183 {
2184 gcc_assert (!adjust_object);
2185 attrs.size -= offset;
2186 /* ??? The store_by_pieces machinery generates negative sizes,
2187 so don't assert for that here. */
2188 }
2189
2190 set_mem_attrs (new_rtx, &attrs);
2191
2192 return new_rtx;
2193 }
2194
2195 /* Return a memory reference like MEMREF, but with its mode changed
2196 to MODE and its address changed to ADDR, which is assumed to be
2197 MEMREF offset by OFFSET bytes. If VALIDATE is
2198 nonzero, the memory address is forced to be valid. */
2199
2200 rtx
2201 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2202 HOST_WIDE_INT offset, int validate)
2203 {
2204 memref = change_address_1 (memref, VOIDmode, addr, validate);
2205 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2206 }
2207
2208 /* Return a memory reference like MEMREF, but whose address is changed by
2209 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2210 known to be in OFFSET (possibly 1). */
2211
2212 rtx
2213 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2214 {
2215 rtx new_rtx, addr = XEXP (memref, 0);
2216 enum machine_mode address_mode;
2217 struct mem_attrs attrs, *defattrs;
2218
2219 attrs = *get_mem_attrs (memref);
2220 address_mode = get_address_mode (memref);
2221 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2222
2223 /* At this point we don't know _why_ the address is invalid. It
2224 could have secondary memory references, multiplies or anything.
2225
2226 However, if we did go and rearrange things, we can wind up not
2227 being able to recognize the magic around pic_offset_table_rtx.
2228 This stuff is fragile, and is yet another example of why it is
2229 bad to expose PIC machinery too early. */
2230 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2231 attrs.addrspace)
2232 && GET_CODE (addr) == PLUS
2233 && XEXP (addr, 0) == pic_offset_table_rtx)
2234 {
2235 addr = force_reg (GET_MODE (addr), addr);
2236 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2237 }
2238
2239 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2240 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2241
2242 /* If there are no changes, just return the original memory reference. */
2243 if (new_rtx == memref)
2244 return new_rtx;
2245
2246 /* Update the alignment to reflect the offset. Reset the offset, which
2247 we don't know. */
2248 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2249 attrs.offset_known_p = false;
2250 attrs.size_known_p = defattrs->size_known_p;
2251 attrs.size = defattrs->size;
2252 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2253 set_mem_attrs (new_rtx, &attrs);
2254 return new_rtx;
2255 }
2256
2257 /* Return a memory reference like MEMREF, but with its address changed to
2258 ADDR. The caller is asserting that the actual piece of memory pointed
2259 to is the same, just the form of the address is being changed, such as
2260 by putting something into a register. */
2261
2262 rtx
2263 replace_equiv_address (rtx memref, rtx addr)
2264 {
2265 /* change_address_1 copies the memory attribute structure without change
2266 and that's exactly what we want here. */
2267 update_temp_slot_address (XEXP (memref, 0), addr);
2268 return change_address_1 (memref, VOIDmode, addr, 1);
2269 }
2270
2271 /* Likewise, but the reference is not required to be valid. */
2272
2273 rtx
2274 replace_equiv_address_nv (rtx memref, rtx addr)
2275 {
2276 return change_address_1 (memref, VOIDmode, addr, 0);
2277 }
2278
2279 /* Return a memory reference like MEMREF, but with its mode widened to
2280 MODE and offset by OFFSET. This would be used by targets that e.g.
2281 cannot issue QImode memory operations and have to use SImode memory
2282 operations plus masking logic. */
2283
2284 rtx
2285 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2286 {
2287 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2288 struct mem_attrs attrs;
2289 unsigned int size = GET_MODE_SIZE (mode);
2290
2291 /* If there are no changes, just return the original memory reference. */
2292 if (new_rtx == memref)
2293 return new_rtx;
2294
2295 attrs = *get_mem_attrs (new_rtx);
2296
2297 /* If we don't know what offset we were at within the expression, then
2298 we can't know if we've overstepped the bounds. */
2299 if (! attrs.offset_known_p)
2300 attrs.expr = NULL_TREE;
2301
2302 while (attrs.expr)
2303 {
2304 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2305 {
2306 tree field = TREE_OPERAND (attrs.expr, 1);
2307 tree offset = component_ref_field_offset (attrs.expr);
2308
2309 if (! DECL_SIZE_UNIT (field))
2310 {
2311 attrs.expr = NULL_TREE;
2312 break;
2313 }
2314
2315 /* Is the field at least as large as the access? If so, ok,
2316 otherwise strip back to the containing structure. */
2317 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2318 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2319 && attrs.offset >= 0)
2320 break;
2321
2322 if (! host_integerp (offset, 1))
2323 {
2324 attrs.expr = NULL_TREE;
2325 break;
2326 }
2327
2328 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2329 attrs.offset += tree_low_cst (offset, 1);
2330 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2331 / BITS_PER_UNIT);
2332 }
2333 /* Similarly for the decl. */
2334 else if (DECL_P (attrs.expr)
2335 && DECL_SIZE_UNIT (attrs.expr)
2336 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2337 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2338 && (! attrs.offset_known_p || attrs.offset >= 0))
2339 break;
2340 else
2341 {
2342 /* The widened memory access overflows the expression, which means
2343 that it could alias another expression. Zap it. */
2344 attrs.expr = NULL_TREE;
2345 break;
2346 }
2347 }
2348
2349 if (! attrs.expr)
2350 attrs.offset_known_p = false;
2351
2352 /* The widened memory may alias other stuff, so zap the alias set. */
2353 /* ??? Maybe use get_alias_set on any remaining expression. */
2354 attrs.alias = 0;
2355 attrs.size_known_p = true;
2356 attrs.size = size;
2357 set_mem_attrs (new_rtx, &attrs);
2358 return new_rtx;
2359 }
2360 \f
2361 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2362 static GTY(()) tree spill_slot_decl;
2363
2364 tree
2365 get_spill_slot_decl (bool force_build_p)
2366 {
2367 tree d = spill_slot_decl;
2368 rtx rd;
2369 struct mem_attrs attrs;
2370
2371 if (d || !force_build_p)
2372 return d;
2373
2374 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2375 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2376 DECL_ARTIFICIAL (d) = 1;
2377 DECL_IGNORED_P (d) = 1;
2378 TREE_USED (d) = 1;
2379 spill_slot_decl = d;
2380
2381 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2382 MEM_NOTRAP_P (rd) = 1;
2383 attrs = *mode_mem_attrs[(int) BLKmode];
2384 attrs.alias = new_alias_set ();
2385 attrs.expr = d;
2386 set_mem_attrs (rd, &attrs);
2387 SET_DECL_RTL (d, rd);
2388
2389 return d;
2390 }
2391
2392 /* Given MEM, a result from assign_stack_local, fill in the memory
2393 attributes as appropriate for a register allocator spill slot.
2394 These slots are not aliasable by other memory. We arrange for
2395 them all to use a single MEM_EXPR, so that the aliasing code can
2396 work properly in the case of shared spill slots. */
2397
2398 void
2399 set_mem_attrs_for_spill (rtx mem)
2400 {
2401 struct mem_attrs attrs;
2402 rtx addr;
2403
2404 attrs = *get_mem_attrs (mem);
2405 attrs.expr = get_spill_slot_decl (true);
2406 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2407 attrs.addrspace = ADDR_SPACE_GENERIC;
2408
2409 /* We expect the incoming memory to be of the form:
2410 (mem:MODE (plus (reg sfp) (const_int offset)))
2411 with perhaps the plus missing for offset = 0. */
2412 addr = XEXP (mem, 0);
2413 attrs.offset_known_p = true;
2414 attrs.offset = 0;
2415 if (GET_CODE (addr) == PLUS
2416 && CONST_INT_P (XEXP (addr, 1)))
2417 attrs.offset = INTVAL (XEXP (addr, 1));
2418
2419 set_mem_attrs (mem, &attrs);
2420 MEM_NOTRAP_P (mem) = 1;
2421 }
2422 \f
2423 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2424
2425 rtx
2426 gen_label_rtx (void)
2427 {
2428 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2429 NULL, label_num++, NULL);
2430 }
2431 \f
2432 /* For procedure integration. */
2433
2434 /* Install new pointers to the first and last insns in the chain.
2435 Also, set cur_insn_uid to one higher than the last in use.
2436 Used for an inline-procedure after copying the insn chain. */
2437
2438 void
2439 set_new_first_and_last_insn (rtx first, rtx last)
2440 {
2441 rtx insn;
2442
2443 set_first_insn (first);
2444 set_last_insn (last);
2445 cur_insn_uid = 0;
2446
2447 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2448 {
2449 int debug_count = 0;
2450
2451 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2452 cur_debug_insn_uid = 0;
2453
2454 for (insn = first; insn; insn = NEXT_INSN (insn))
2455 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2456 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2457 else
2458 {
2459 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2460 if (DEBUG_INSN_P (insn))
2461 debug_count++;
2462 }
2463
2464 if (debug_count)
2465 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2466 else
2467 cur_debug_insn_uid++;
2468 }
2469 else
2470 for (insn = first; insn; insn = NEXT_INSN (insn))
2471 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2472
2473 cur_insn_uid++;
2474 }
2475 \f
2476 /* Go through all the RTL insn bodies and copy any invalid shared
2477 structure. This routine should only be called once. */
2478
2479 static void
2480 unshare_all_rtl_1 (rtx insn)
2481 {
2482 /* Unshare just about everything else. */
2483 unshare_all_rtl_in_chain (insn);
2484
2485 /* Make sure the addresses of stack slots found outside the insn chain
2486 (such as, in DECL_RTL of a variable) are not shared
2487 with the insn chain.
2488
2489 This special care is necessary when the stack slot MEM does not
2490 actually appear in the insn chain. If it does appear, its address
2491 is unshared from all else at that point. */
2492 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2493 }
2494
2495 /* Go through all the RTL insn bodies and copy any invalid shared
2496 structure, again. This is a fairly expensive thing to do so it
2497 should be done sparingly. */
2498
2499 void
2500 unshare_all_rtl_again (rtx insn)
2501 {
2502 rtx p;
2503 tree decl;
2504
2505 for (p = insn; p; p = NEXT_INSN (p))
2506 if (INSN_P (p))
2507 {
2508 reset_used_flags (PATTERN (p));
2509 reset_used_flags (REG_NOTES (p));
2510 if (CALL_P (p))
2511 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2512 }
2513
2514 /* Make sure that virtual stack slots are not shared. */
2515 set_used_decls (DECL_INITIAL (cfun->decl));
2516
2517 /* Make sure that virtual parameters are not shared. */
2518 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2519 set_used_flags (DECL_RTL (decl));
2520
2521 reset_used_flags (stack_slot_list);
2522
2523 unshare_all_rtl_1 (insn);
2524 }
2525
2526 unsigned int
2527 unshare_all_rtl (void)
2528 {
2529 unshare_all_rtl_1 (get_insns ());
2530 return 0;
2531 }
2532
2533
2534 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2535 Recursively does the same for subexpressions. */
2536
2537 static void
2538 verify_rtx_sharing (rtx orig, rtx insn)
2539 {
2540 rtx x = orig;
2541 int i;
2542 enum rtx_code code;
2543 const char *format_ptr;
2544
2545 if (x == 0)
2546 return;
2547
2548 code = GET_CODE (x);
2549
2550 /* These types may be freely shared. */
2551
2552 switch (code)
2553 {
2554 case REG:
2555 case DEBUG_EXPR:
2556 case VALUE:
2557 CASE_CONST_ANY:
2558 case SYMBOL_REF:
2559 case LABEL_REF:
2560 case CODE_LABEL:
2561 case PC:
2562 case CC0:
2563 case RETURN:
2564 case SIMPLE_RETURN:
2565 case SCRATCH:
2566 return;
2567 /* SCRATCH must be shared because they represent distinct values. */
2568 case CLOBBER:
2569 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2570 return;
2571 break;
2572
2573 case CONST:
2574 if (shared_const_p (orig))
2575 return;
2576 break;
2577
2578 case MEM:
2579 /* A MEM is allowed to be shared if its address is constant. */
2580 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2581 || reload_completed || reload_in_progress)
2582 return;
2583
2584 break;
2585
2586 default:
2587 break;
2588 }
2589
2590 /* This rtx may not be shared. If it has already been seen,
2591 replace it with a copy of itself. */
2592 #ifdef ENABLE_CHECKING
2593 if (RTX_FLAG (x, used))
2594 {
2595 error ("invalid rtl sharing found in the insn");
2596 debug_rtx (insn);
2597 error ("shared rtx");
2598 debug_rtx (x);
2599 internal_error ("internal consistency failure");
2600 }
2601 #endif
2602 gcc_assert (!RTX_FLAG (x, used));
2603
2604 RTX_FLAG (x, used) = 1;
2605
2606 /* Now scan the subexpressions recursively. */
2607
2608 format_ptr = GET_RTX_FORMAT (code);
2609
2610 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2611 {
2612 switch (*format_ptr++)
2613 {
2614 case 'e':
2615 verify_rtx_sharing (XEXP (x, i), insn);
2616 break;
2617
2618 case 'E':
2619 if (XVEC (x, i) != NULL)
2620 {
2621 int j;
2622 int len = XVECLEN (x, i);
2623
2624 for (j = 0; j < len; j++)
2625 {
2626 /* We allow sharing of ASM_OPERANDS inside single
2627 instruction. */
2628 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2629 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2630 == ASM_OPERANDS))
2631 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2632 else
2633 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2634 }
2635 }
2636 break;
2637 }
2638 }
2639 return;
2640 }
2641
2642 /* Go through all the RTL insn bodies and check that there is no unexpected
2643 sharing in between the subexpressions. */
2644
2645 DEBUG_FUNCTION void
2646 verify_rtl_sharing (void)
2647 {
2648 rtx p;
2649
2650 timevar_push (TV_VERIFY_RTL_SHARING);
2651
2652 for (p = get_insns (); p; p = NEXT_INSN (p))
2653 if (INSN_P (p))
2654 {
2655 reset_used_flags (PATTERN (p));
2656 reset_used_flags (REG_NOTES (p));
2657 if (CALL_P (p))
2658 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2659 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2660 {
2661 int i;
2662 rtx q, sequence = PATTERN (p);
2663
2664 for (i = 0; i < XVECLEN (sequence, 0); i++)
2665 {
2666 q = XVECEXP (sequence, 0, i);
2667 gcc_assert (INSN_P (q));
2668 reset_used_flags (PATTERN (q));
2669 reset_used_flags (REG_NOTES (q));
2670 if (CALL_P (q))
2671 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2672 }
2673 }
2674 }
2675
2676 for (p = get_insns (); p; p = NEXT_INSN (p))
2677 if (INSN_P (p))
2678 {
2679 verify_rtx_sharing (PATTERN (p), p);
2680 verify_rtx_sharing (REG_NOTES (p), p);
2681 if (CALL_P (p))
2682 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2683 }
2684
2685 timevar_pop (TV_VERIFY_RTL_SHARING);
2686 }
2687
2688 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2689 Assumes the mark bits are cleared at entry. */
2690
2691 void
2692 unshare_all_rtl_in_chain (rtx insn)
2693 {
2694 for (; insn; insn = NEXT_INSN (insn))
2695 if (INSN_P (insn))
2696 {
2697 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2698 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2699 if (CALL_P (insn))
2700 CALL_INSN_FUNCTION_USAGE (insn)
2701 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2702 }
2703 }
2704
2705 /* Go through all virtual stack slots of a function and mark them as
2706 shared. We never replace the DECL_RTLs themselves with a copy,
2707 but expressions mentioned into a DECL_RTL cannot be shared with
2708 expressions in the instruction stream.
2709
2710 Note that reload may convert pseudo registers into memories in-place.
2711 Pseudo registers are always shared, but MEMs never are. Thus if we
2712 reset the used flags on MEMs in the instruction stream, we must set
2713 them again on MEMs that appear in DECL_RTLs. */
2714
2715 static void
2716 set_used_decls (tree blk)
2717 {
2718 tree t;
2719
2720 /* Mark decls. */
2721 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2722 if (DECL_RTL_SET_P (t))
2723 set_used_flags (DECL_RTL (t));
2724
2725 /* Now process sub-blocks. */
2726 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2727 set_used_decls (t);
2728 }
2729
2730 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2731 Recursively does the same for subexpressions. Uses
2732 copy_rtx_if_shared_1 to reduce stack space. */
2733
2734 rtx
2735 copy_rtx_if_shared (rtx orig)
2736 {
2737 copy_rtx_if_shared_1 (&orig);
2738 return orig;
2739 }
2740
2741 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2742 use. Recursively does the same for subexpressions. */
2743
2744 static void
2745 copy_rtx_if_shared_1 (rtx *orig1)
2746 {
2747 rtx x;
2748 int i;
2749 enum rtx_code code;
2750 rtx *last_ptr;
2751 const char *format_ptr;
2752 int copied = 0;
2753 int length;
2754
2755 /* Repeat is used to turn tail-recursion into iteration. */
2756 repeat:
2757 x = *orig1;
2758
2759 if (x == 0)
2760 return;
2761
2762 code = GET_CODE (x);
2763
2764 /* These types may be freely shared. */
2765
2766 switch (code)
2767 {
2768 case REG:
2769 case DEBUG_EXPR:
2770 case VALUE:
2771 CASE_CONST_ANY:
2772 case SYMBOL_REF:
2773 case LABEL_REF:
2774 case CODE_LABEL:
2775 case PC:
2776 case CC0:
2777 case RETURN:
2778 case SIMPLE_RETURN:
2779 case SCRATCH:
2780 /* SCRATCH must be shared because they represent distinct values. */
2781 return;
2782 case CLOBBER:
2783 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2784 return;
2785 break;
2786
2787 case CONST:
2788 if (shared_const_p (x))
2789 return;
2790 break;
2791
2792 case DEBUG_INSN:
2793 case INSN:
2794 case JUMP_INSN:
2795 case CALL_INSN:
2796 case NOTE:
2797 case BARRIER:
2798 /* The chain of insns is not being copied. */
2799 return;
2800
2801 default:
2802 break;
2803 }
2804
2805 /* This rtx may not be shared. If it has already been seen,
2806 replace it with a copy of itself. */
2807
2808 if (RTX_FLAG (x, used))
2809 {
2810 x = shallow_copy_rtx (x);
2811 copied = 1;
2812 }
2813 RTX_FLAG (x, used) = 1;
2814
2815 /* Now scan the subexpressions recursively.
2816 We can store any replaced subexpressions directly into X
2817 since we know X is not shared! Any vectors in X
2818 must be copied if X was copied. */
2819
2820 format_ptr = GET_RTX_FORMAT (code);
2821 length = GET_RTX_LENGTH (code);
2822 last_ptr = NULL;
2823
2824 for (i = 0; i < length; i++)
2825 {
2826 switch (*format_ptr++)
2827 {
2828 case 'e':
2829 if (last_ptr)
2830 copy_rtx_if_shared_1 (last_ptr);
2831 last_ptr = &XEXP (x, i);
2832 break;
2833
2834 case 'E':
2835 if (XVEC (x, i) != NULL)
2836 {
2837 int j;
2838 int len = XVECLEN (x, i);
2839
2840 /* Copy the vector iff I copied the rtx and the length
2841 is nonzero. */
2842 if (copied && len > 0)
2843 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2844
2845 /* Call recursively on all inside the vector. */
2846 for (j = 0; j < len; j++)
2847 {
2848 if (last_ptr)
2849 copy_rtx_if_shared_1 (last_ptr);
2850 last_ptr = &XVECEXP (x, i, j);
2851 }
2852 }
2853 break;
2854 }
2855 }
2856 *orig1 = x;
2857 if (last_ptr)
2858 {
2859 orig1 = last_ptr;
2860 goto repeat;
2861 }
2862 return;
2863 }
2864
2865 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2866
2867 static void
2868 mark_used_flags (rtx x, int flag)
2869 {
2870 int i, j;
2871 enum rtx_code code;
2872 const char *format_ptr;
2873 int length;
2874
2875 /* Repeat is used to turn tail-recursion into iteration. */
2876 repeat:
2877 if (x == 0)
2878 return;
2879
2880 code = GET_CODE (x);
2881
2882 /* These types may be freely shared so we needn't do any resetting
2883 for them. */
2884
2885 switch (code)
2886 {
2887 case REG:
2888 case DEBUG_EXPR:
2889 case VALUE:
2890 CASE_CONST_ANY:
2891 case SYMBOL_REF:
2892 case CODE_LABEL:
2893 case PC:
2894 case CC0:
2895 case RETURN:
2896 case SIMPLE_RETURN:
2897 return;
2898
2899 case DEBUG_INSN:
2900 case INSN:
2901 case JUMP_INSN:
2902 case CALL_INSN:
2903 case NOTE:
2904 case LABEL_REF:
2905 case BARRIER:
2906 /* The chain of insns is not being copied. */
2907 return;
2908
2909 default:
2910 break;
2911 }
2912
2913 RTX_FLAG (x, used) = flag;
2914
2915 format_ptr = GET_RTX_FORMAT (code);
2916 length = GET_RTX_LENGTH (code);
2917
2918 for (i = 0; i < length; i++)
2919 {
2920 switch (*format_ptr++)
2921 {
2922 case 'e':
2923 if (i == length-1)
2924 {
2925 x = XEXP (x, i);
2926 goto repeat;
2927 }
2928 mark_used_flags (XEXP (x, i), flag);
2929 break;
2930
2931 case 'E':
2932 for (j = 0; j < XVECLEN (x, i); j++)
2933 mark_used_flags (XVECEXP (x, i, j), flag);
2934 break;
2935 }
2936 }
2937 }
2938
2939 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2940 to look for shared sub-parts. */
2941
2942 void
2943 reset_used_flags (rtx x)
2944 {
2945 mark_used_flags (x, 0);
2946 }
2947
2948 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2949 to look for shared sub-parts. */
2950
2951 void
2952 set_used_flags (rtx x)
2953 {
2954 mark_used_flags (x, 1);
2955 }
2956 \f
2957 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2958 Return X or the rtx for the pseudo reg the value of X was copied into.
2959 OTHER must be valid as a SET_DEST. */
2960
2961 rtx
2962 make_safe_from (rtx x, rtx other)
2963 {
2964 while (1)
2965 switch (GET_CODE (other))
2966 {
2967 case SUBREG:
2968 other = SUBREG_REG (other);
2969 break;
2970 case STRICT_LOW_PART:
2971 case SIGN_EXTEND:
2972 case ZERO_EXTEND:
2973 other = XEXP (other, 0);
2974 break;
2975 default:
2976 goto done;
2977 }
2978 done:
2979 if ((MEM_P (other)
2980 && ! CONSTANT_P (x)
2981 && !REG_P (x)
2982 && GET_CODE (x) != SUBREG)
2983 || (REG_P (other)
2984 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2985 || reg_mentioned_p (other, x))))
2986 {
2987 rtx temp = gen_reg_rtx (GET_MODE (x));
2988 emit_move_insn (temp, x);
2989 return temp;
2990 }
2991 return x;
2992 }
2993 \f
2994 /* Emission of insns (adding them to the doubly-linked list). */
2995
2996 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2997
2998 rtx
2999 get_last_insn_anywhere (void)
3000 {
3001 struct sequence_stack *stack;
3002 if (get_last_insn ())
3003 return get_last_insn ();
3004 for (stack = seq_stack; stack; stack = stack->next)
3005 if (stack->last != 0)
3006 return stack->last;
3007 return 0;
3008 }
3009
3010 /* Return the first nonnote insn emitted in current sequence or current
3011 function. This routine looks inside SEQUENCEs. */
3012
3013 rtx
3014 get_first_nonnote_insn (void)
3015 {
3016 rtx insn = get_insns ();
3017
3018 if (insn)
3019 {
3020 if (NOTE_P (insn))
3021 for (insn = next_insn (insn);
3022 insn && NOTE_P (insn);
3023 insn = next_insn (insn))
3024 continue;
3025 else
3026 {
3027 if (NONJUMP_INSN_P (insn)
3028 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3029 insn = XVECEXP (PATTERN (insn), 0, 0);
3030 }
3031 }
3032
3033 return insn;
3034 }
3035
3036 /* Return the last nonnote insn emitted in current sequence or current
3037 function. This routine looks inside SEQUENCEs. */
3038
3039 rtx
3040 get_last_nonnote_insn (void)
3041 {
3042 rtx insn = get_last_insn ();
3043
3044 if (insn)
3045 {
3046 if (NOTE_P (insn))
3047 for (insn = previous_insn (insn);
3048 insn && NOTE_P (insn);
3049 insn = previous_insn (insn))
3050 continue;
3051 else
3052 {
3053 if (NONJUMP_INSN_P (insn)
3054 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3055 insn = XVECEXP (PATTERN (insn), 0,
3056 XVECLEN (PATTERN (insn), 0) - 1);
3057 }
3058 }
3059
3060 return insn;
3061 }
3062
3063 /* Return the number of actual (non-debug) insns emitted in this
3064 function. */
3065
3066 int
3067 get_max_insn_count (void)
3068 {
3069 int n = cur_insn_uid;
3070
3071 /* The table size must be stable across -g, to avoid codegen
3072 differences due to debug insns, and not be affected by
3073 -fmin-insn-uid, to avoid excessive table size and to simplify
3074 debugging of -fcompare-debug failures. */
3075 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3076 n -= cur_debug_insn_uid;
3077 else
3078 n -= MIN_NONDEBUG_INSN_UID;
3079
3080 return n;
3081 }
3082
3083 \f
3084 /* Return the next insn. If it is a SEQUENCE, return the first insn
3085 of the sequence. */
3086
3087 rtx
3088 next_insn (rtx insn)
3089 {
3090 if (insn)
3091 {
3092 insn = NEXT_INSN (insn);
3093 if (insn && NONJUMP_INSN_P (insn)
3094 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3095 insn = XVECEXP (PATTERN (insn), 0, 0);
3096 }
3097
3098 return insn;
3099 }
3100
3101 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3102 of the sequence. */
3103
3104 rtx
3105 previous_insn (rtx insn)
3106 {
3107 if (insn)
3108 {
3109 insn = PREV_INSN (insn);
3110 if (insn && NONJUMP_INSN_P (insn)
3111 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3112 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3113 }
3114
3115 return insn;
3116 }
3117
3118 /* Return the next insn after INSN that is not a NOTE. This routine does not
3119 look inside SEQUENCEs. */
3120
3121 rtx
3122 next_nonnote_insn (rtx insn)
3123 {
3124 while (insn)
3125 {
3126 insn = NEXT_INSN (insn);
3127 if (insn == 0 || !NOTE_P (insn))
3128 break;
3129 }
3130
3131 return insn;
3132 }
3133
3134 /* Return the next insn after INSN that is not a NOTE, but stop the
3135 search before we enter another basic block. This routine does not
3136 look inside SEQUENCEs. */
3137
3138 rtx
3139 next_nonnote_insn_bb (rtx insn)
3140 {
3141 while (insn)
3142 {
3143 insn = NEXT_INSN (insn);
3144 if (insn == 0 || !NOTE_P (insn))
3145 break;
3146 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3147 return NULL_RTX;
3148 }
3149
3150 return insn;
3151 }
3152
3153 /* Return the previous insn before INSN that is not a NOTE. This routine does
3154 not look inside SEQUENCEs. */
3155
3156 rtx
3157 prev_nonnote_insn (rtx insn)
3158 {
3159 while (insn)
3160 {
3161 insn = PREV_INSN (insn);
3162 if (insn == 0 || !NOTE_P (insn))
3163 break;
3164 }
3165
3166 return insn;
3167 }
3168
3169 /* Return the previous insn before INSN that is not a NOTE, but stop
3170 the search before we enter another basic block. This routine does
3171 not look inside SEQUENCEs. */
3172
3173 rtx
3174 prev_nonnote_insn_bb (rtx insn)
3175 {
3176 while (insn)
3177 {
3178 insn = PREV_INSN (insn);
3179 if (insn == 0 || !NOTE_P (insn))
3180 break;
3181 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3182 return NULL_RTX;
3183 }
3184
3185 return insn;
3186 }
3187
3188 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3189 routine does not look inside SEQUENCEs. */
3190
3191 rtx
3192 next_nondebug_insn (rtx insn)
3193 {
3194 while (insn)
3195 {
3196 insn = NEXT_INSN (insn);
3197 if (insn == 0 || !DEBUG_INSN_P (insn))
3198 break;
3199 }
3200
3201 return insn;
3202 }
3203
3204 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3205 This routine does not look inside SEQUENCEs. */
3206
3207 rtx
3208 prev_nondebug_insn (rtx insn)
3209 {
3210 while (insn)
3211 {
3212 insn = PREV_INSN (insn);
3213 if (insn == 0 || !DEBUG_INSN_P (insn))
3214 break;
3215 }
3216
3217 return insn;
3218 }
3219
3220 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3221 This routine does not look inside SEQUENCEs. */
3222
3223 rtx
3224 next_nonnote_nondebug_insn (rtx insn)
3225 {
3226 while (insn)
3227 {
3228 insn = NEXT_INSN (insn);
3229 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3230 break;
3231 }
3232
3233 return insn;
3234 }
3235
3236 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3237 This routine does not look inside SEQUENCEs. */
3238
3239 rtx
3240 prev_nonnote_nondebug_insn (rtx insn)
3241 {
3242 while (insn)
3243 {
3244 insn = PREV_INSN (insn);
3245 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3246 break;
3247 }
3248
3249 return insn;
3250 }
3251
3252 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3253 or 0, if there is none. This routine does not look inside
3254 SEQUENCEs. */
3255
3256 rtx
3257 next_real_insn (rtx insn)
3258 {
3259 while (insn)
3260 {
3261 insn = NEXT_INSN (insn);
3262 if (insn == 0 || INSN_P (insn))
3263 break;
3264 }
3265
3266 return insn;
3267 }
3268
3269 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3270 or 0, if there is none. This routine does not look inside
3271 SEQUENCEs. */
3272
3273 rtx
3274 prev_real_insn (rtx insn)
3275 {
3276 while (insn)
3277 {
3278 insn = PREV_INSN (insn);
3279 if (insn == 0 || INSN_P (insn))
3280 break;
3281 }
3282
3283 return insn;
3284 }
3285
3286 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3287 This routine does not look inside SEQUENCEs. */
3288
3289 rtx
3290 last_call_insn (void)
3291 {
3292 rtx insn;
3293
3294 for (insn = get_last_insn ();
3295 insn && !CALL_P (insn);
3296 insn = PREV_INSN (insn))
3297 ;
3298
3299 return insn;
3300 }
3301
3302 /* Find the next insn after INSN that really does something. This routine
3303 does not look inside SEQUENCEs. After reload this also skips over
3304 standalone USE and CLOBBER insn. */
3305
3306 int
3307 active_insn_p (const_rtx insn)
3308 {
3309 return (CALL_P (insn) || JUMP_P (insn)
3310 || (NONJUMP_INSN_P (insn)
3311 && (! reload_completed
3312 || (GET_CODE (PATTERN (insn)) != USE
3313 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3314 }
3315
3316 rtx
3317 next_active_insn (rtx insn)
3318 {
3319 while (insn)
3320 {
3321 insn = NEXT_INSN (insn);
3322 if (insn == 0 || active_insn_p (insn))
3323 break;
3324 }
3325
3326 return insn;
3327 }
3328
3329 /* Find the last insn before INSN that really does something. This routine
3330 does not look inside SEQUENCEs. After reload this also skips over
3331 standalone USE and CLOBBER insn. */
3332
3333 rtx
3334 prev_active_insn (rtx insn)
3335 {
3336 while (insn)
3337 {
3338 insn = PREV_INSN (insn);
3339 if (insn == 0 || active_insn_p (insn))
3340 break;
3341 }
3342
3343 return insn;
3344 }
3345
3346 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3347
3348 rtx
3349 next_label (rtx insn)
3350 {
3351 while (insn)
3352 {
3353 insn = NEXT_INSN (insn);
3354 if (insn == 0 || LABEL_P (insn))
3355 break;
3356 }
3357
3358 return insn;
3359 }
3360
3361 /* Return the last label to mark the same position as LABEL. Return LABEL
3362 itself if it is null or any return rtx. */
3363
3364 rtx
3365 skip_consecutive_labels (rtx label)
3366 {
3367 rtx insn;
3368
3369 if (label && ANY_RETURN_P (label))
3370 return label;
3371
3372 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3373 if (LABEL_P (insn))
3374 label = insn;
3375
3376 return label;
3377 }
3378 \f
3379 #ifdef HAVE_cc0
3380 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3381 and REG_CC_USER notes so we can find it. */
3382
3383 void
3384 link_cc0_insns (rtx insn)
3385 {
3386 rtx user = next_nonnote_insn (insn);
3387
3388 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3389 user = XVECEXP (PATTERN (user), 0, 0);
3390
3391 add_reg_note (user, REG_CC_SETTER, insn);
3392 add_reg_note (insn, REG_CC_USER, user);
3393 }
3394
3395 /* Return the next insn that uses CC0 after INSN, which is assumed to
3396 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3397 applied to the result of this function should yield INSN).
3398
3399 Normally, this is simply the next insn. However, if a REG_CC_USER note
3400 is present, it contains the insn that uses CC0.
3401
3402 Return 0 if we can't find the insn. */
3403
3404 rtx
3405 next_cc0_user (rtx insn)
3406 {
3407 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3408
3409 if (note)
3410 return XEXP (note, 0);
3411
3412 insn = next_nonnote_insn (insn);
3413 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3414 insn = XVECEXP (PATTERN (insn), 0, 0);
3415
3416 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3417 return insn;
3418
3419 return 0;
3420 }
3421
3422 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3423 note, it is the previous insn. */
3424
3425 rtx
3426 prev_cc0_setter (rtx insn)
3427 {
3428 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3429
3430 if (note)
3431 return XEXP (note, 0);
3432
3433 insn = prev_nonnote_insn (insn);
3434 gcc_assert (sets_cc0_p (PATTERN (insn)));
3435
3436 return insn;
3437 }
3438 #endif
3439
3440 #ifdef AUTO_INC_DEC
3441 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3442
3443 static int
3444 find_auto_inc (rtx *xp, void *data)
3445 {
3446 rtx x = *xp;
3447 rtx reg = (rtx) data;
3448
3449 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3450 return 0;
3451
3452 switch (GET_CODE (x))
3453 {
3454 case PRE_DEC:
3455 case PRE_INC:
3456 case POST_DEC:
3457 case POST_INC:
3458 case PRE_MODIFY:
3459 case POST_MODIFY:
3460 if (rtx_equal_p (reg, XEXP (x, 0)))
3461 return 1;
3462 break;
3463
3464 default:
3465 gcc_unreachable ();
3466 }
3467 return -1;
3468 }
3469 #endif
3470
3471 /* Increment the label uses for all labels present in rtx. */
3472
3473 static void
3474 mark_label_nuses (rtx x)
3475 {
3476 enum rtx_code code;
3477 int i, j;
3478 const char *fmt;
3479
3480 code = GET_CODE (x);
3481 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3482 LABEL_NUSES (XEXP (x, 0))++;
3483
3484 fmt = GET_RTX_FORMAT (code);
3485 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3486 {
3487 if (fmt[i] == 'e')
3488 mark_label_nuses (XEXP (x, i));
3489 else if (fmt[i] == 'E')
3490 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3491 mark_label_nuses (XVECEXP (x, i, j));
3492 }
3493 }
3494
3495 \f
3496 /* Try splitting insns that can be split for better scheduling.
3497 PAT is the pattern which might split.
3498 TRIAL is the insn providing PAT.
3499 LAST is nonzero if we should return the last insn of the sequence produced.
3500
3501 If this routine succeeds in splitting, it returns the first or last
3502 replacement insn depending on the value of LAST. Otherwise, it
3503 returns TRIAL. If the insn to be returned can be split, it will be. */
3504
3505 rtx
3506 try_split (rtx pat, rtx trial, int last)
3507 {
3508 rtx before = PREV_INSN (trial);
3509 rtx after = NEXT_INSN (trial);
3510 int has_barrier = 0;
3511 rtx note, seq, tem;
3512 int probability;
3513 rtx insn_last, insn;
3514 int njumps = 0;
3515
3516 /* We're not good at redistributing frame information. */
3517 if (RTX_FRAME_RELATED_P (trial))
3518 return trial;
3519
3520 if (any_condjump_p (trial)
3521 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3522 split_branch_probability = INTVAL (XEXP (note, 0));
3523 probability = split_branch_probability;
3524
3525 seq = split_insns (pat, trial);
3526
3527 split_branch_probability = -1;
3528
3529 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3530 We may need to handle this specially. */
3531 if (after && BARRIER_P (after))
3532 {
3533 has_barrier = 1;
3534 after = NEXT_INSN (after);
3535 }
3536
3537 if (!seq)
3538 return trial;
3539
3540 /* Avoid infinite loop if any insn of the result matches
3541 the original pattern. */
3542 insn_last = seq;
3543 while (1)
3544 {
3545 if (INSN_P (insn_last)
3546 && rtx_equal_p (PATTERN (insn_last), pat))
3547 return trial;
3548 if (!NEXT_INSN (insn_last))
3549 break;
3550 insn_last = NEXT_INSN (insn_last);
3551 }
3552
3553 /* We will be adding the new sequence to the function. The splitters
3554 may have introduced invalid RTL sharing, so unshare the sequence now. */
3555 unshare_all_rtl_in_chain (seq);
3556
3557 /* Mark labels. */
3558 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3559 {
3560 if (JUMP_P (insn))
3561 {
3562 mark_jump_label (PATTERN (insn), insn, 0);
3563 njumps++;
3564 if (probability != -1
3565 && any_condjump_p (insn)
3566 && !find_reg_note (insn, REG_BR_PROB, 0))
3567 {
3568 /* We can preserve the REG_BR_PROB notes only if exactly
3569 one jump is created, otherwise the machine description
3570 is responsible for this step using
3571 split_branch_probability variable. */
3572 gcc_assert (njumps == 1);
3573 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3574 }
3575 }
3576 }
3577
3578 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3579 in SEQ and copy any additional information across. */
3580 if (CALL_P (trial))
3581 {
3582 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3583 if (CALL_P (insn))
3584 {
3585 rtx next, *p;
3586
3587 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3588 target may have explicitly specified. */
3589 p = &CALL_INSN_FUNCTION_USAGE (insn);
3590 while (*p)
3591 p = &XEXP (*p, 1);
3592 *p = CALL_INSN_FUNCTION_USAGE (trial);
3593
3594 /* If the old call was a sibling call, the new one must
3595 be too. */
3596 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3597
3598 /* If the new call is the last instruction in the sequence,
3599 it will effectively replace the old call in-situ. Otherwise
3600 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3601 so that it comes immediately after the new call. */
3602 if (NEXT_INSN (insn))
3603 for (next = NEXT_INSN (trial);
3604 next && NOTE_P (next);
3605 next = NEXT_INSN (next))
3606 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3607 {
3608 remove_insn (next);
3609 add_insn_after (next, insn, NULL);
3610 break;
3611 }
3612 }
3613 }
3614
3615 /* Copy notes, particularly those related to the CFG. */
3616 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3617 {
3618 switch (REG_NOTE_KIND (note))
3619 {
3620 case REG_EH_REGION:
3621 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3622 break;
3623
3624 case REG_NORETURN:
3625 case REG_SETJMP:
3626 case REG_TM:
3627 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3628 {
3629 if (CALL_P (insn))
3630 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3631 }
3632 break;
3633
3634 case REG_NON_LOCAL_GOTO:
3635 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3636 {
3637 if (JUMP_P (insn))
3638 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3639 }
3640 break;
3641
3642 #ifdef AUTO_INC_DEC
3643 case REG_INC:
3644 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3645 {
3646 rtx reg = XEXP (note, 0);
3647 if (!FIND_REG_INC_NOTE (insn, reg)
3648 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3649 add_reg_note (insn, REG_INC, reg);
3650 }
3651 break;
3652 #endif
3653
3654 case REG_ARGS_SIZE:
3655 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3656 break;
3657
3658 default:
3659 break;
3660 }
3661 }
3662
3663 /* If there are LABELS inside the split insns increment the
3664 usage count so we don't delete the label. */
3665 if (INSN_P (trial))
3666 {
3667 insn = insn_last;
3668 while (insn != NULL_RTX)
3669 {
3670 /* JUMP_P insns have already been "marked" above. */
3671 if (NONJUMP_INSN_P (insn))
3672 mark_label_nuses (PATTERN (insn));
3673
3674 insn = PREV_INSN (insn);
3675 }
3676 }
3677
3678 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3679
3680 delete_insn (trial);
3681 if (has_barrier)
3682 emit_barrier_after (tem);
3683
3684 /* Recursively call try_split for each new insn created; by the
3685 time control returns here that insn will be fully split, so
3686 set LAST and continue from the insn after the one returned.
3687 We can't use next_active_insn here since AFTER may be a note.
3688 Ignore deleted insns, which can be occur if not optimizing. */
3689 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3690 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3691 tem = try_split (PATTERN (tem), tem, 1);
3692
3693 /* Return either the first or the last insn, depending on which was
3694 requested. */
3695 return last
3696 ? (after ? PREV_INSN (after) : get_last_insn ())
3697 : NEXT_INSN (before);
3698 }
3699 \f
3700 /* Make and return an INSN rtx, initializing all its slots.
3701 Store PATTERN in the pattern slots. */
3702
3703 rtx
3704 make_insn_raw (rtx pattern)
3705 {
3706 rtx insn;
3707
3708 insn = rtx_alloc (INSN);
3709
3710 INSN_UID (insn) = cur_insn_uid++;
3711 PATTERN (insn) = pattern;
3712 INSN_CODE (insn) = -1;
3713 REG_NOTES (insn) = NULL;
3714 INSN_LOCATION (insn) = curr_insn_location ();
3715 BLOCK_FOR_INSN (insn) = NULL;
3716
3717 #ifdef ENABLE_RTL_CHECKING
3718 if (insn
3719 && INSN_P (insn)
3720 && (returnjump_p (insn)
3721 || (GET_CODE (insn) == SET
3722 && SET_DEST (insn) == pc_rtx)))
3723 {
3724 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3725 debug_rtx (insn);
3726 }
3727 #endif
3728
3729 return insn;
3730 }
3731
3732 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3733
3734 static rtx
3735 make_debug_insn_raw (rtx pattern)
3736 {
3737 rtx insn;
3738
3739 insn = rtx_alloc (DEBUG_INSN);
3740 INSN_UID (insn) = cur_debug_insn_uid++;
3741 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3742 INSN_UID (insn) = cur_insn_uid++;
3743
3744 PATTERN (insn) = pattern;
3745 INSN_CODE (insn) = -1;
3746 REG_NOTES (insn) = NULL;
3747 INSN_LOCATION (insn) = curr_insn_location ();
3748 BLOCK_FOR_INSN (insn) = NULL;
3749
3750 return insn;
3751 }
3752
3753 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3754
3755 static rtx
3756 make_jump_insn_raw (rtx pattern)
3757 {
3758 rtx insn;
3759
3760 insn = rtx_alloc (JUMP_INSN);
3761 INSN_UID (insn) = cur_insn_uid++;
3762
3763 PATTERN (insn) = pattern;
3764 INSN_CODE (insn) = -1;
3765 REG_NOTES (insn) = NULL;
3766 JUMP_LABEL (insn) = NULL;
3767 INSN_LOCATION (insn) = curr_insn_location ();
3768 BLOCK_FOR_INSN (insn) = NULL;
3769
3770 return insn;
3771 }
3772
3773 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3774
3775 static rtx
3776 make_call_insn_raw (rtx pattern)
3777 {
3778 rtx insn;
3779
3780 insn = rtx_alloc (CALL_INSN);
3781 INSN_UID (insn) = cur_insn_uid++;
3782
3783 PATTERN (insn) = pattern;
3784 INSN_CODE (insn) = -1;
3785 REG_NOTES (insn) = NULL;
3786 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3787 INSN_LOCATION (insn) = curr_insn_location ();
3788 BLOCK_FOR_INSN (insn) = NULL;
3789
3790 return insn;
3791 }
3792 \f
3793 /* Add INSN to the end of the doubly-linked list.
3794 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3795
3796 void
3797 add_insn (rtx insn)
3798 {
3799 PREV_INSN (insn) = get_last_insn();
3800 NEXT_INSN (insn) = 0;
3801
3802 if (NULL != get_last_insn())
3803 NEXT_INSN (get_last_insn ()) = insn;
3804
3805 if (NULL == get_insns ())
3806 set_first_insn (insn);
3807
3808 set_last_insn (insn);
3809 }
3810
3811 /* Add INSN into the doubly-linked list after insn AFTER. This and
3812 the next should be the only functions called to insert an insn once
3813 delay slots have been filled since only they know how to update a
3814 SEQUENCE. */
3815
3816 void
3817 add_insn_after (rtx insn, rtx after, basic_block bb)
3818 {
3819 rtx next = NEXT_INSN (after);
3820
3821 gcc_assert (!optimize || !INSN_DELETED_P (after));
3822
3823 NEXT_INSN (insn) = next;
3824 PREV_INSN (insn) = after;
3825
3826 if (next)
3827 {
3828 PREV_INSN (next) = insn;
3829 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3830 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3831 }
3832 else if (get_last_insn () == after)
3833 set_last_insn (insn);
3834 else
3835 {
3836 struct sequence_stack *stack = seq_stack;
3837 /* Scan all pending sequences too. */
3838 for (; stack; stack = stack->next)
3839 if (after == stack->last)
3840 {
3841 stack->last = insn;
3842 break;
3843 }
3844
3845 gcc_assert (stack);
3846 }
3847
3848 if (!BARRIER_P (after)
3849 && !BARRIER_P (insn)
3850 && (bb = BLOCK_FOR_INSN (after)))
3851 {
3852 set_block_for_insn (insn, bb);
3853 if (INSN_P (insn))
3854 df_insn_rescan (insn);
3855 /* Should not happen as first in the BB is always
3856 either NOTE or LABEL. */
3857 if (BB_END (bb) == after
3858 /* Avoid clobbering of structure when creating new BB. */
3859 && !BARRIER_P (insn)
3860 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3861 BB_END (bb) = insn;
3862 }
3863
3864 NEXT_INSN (after) = insn;
3865 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3866 {
3867 rtx sequence = PATTERN (after);
3868 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3869 }
3870 }
3871
3872 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3873 the previous should be the only functions called to insert an insn
3874 once delay slots have been filled since only they know how to
3875 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3876 bb from before. */
3877
3878 void
3879 add_insn_before (rtx insn, rtx before, basic_block bb)
3880 {
3881 rtx prev = PREV_INSN (before);
3882
3883 gcc_assert (!optimize || !INSN_DELETED_P (before));
3884
3885 PREV_INSN (insn) = prev;
3886 NEXT_INSN (insn) = before;
3887
3888 if (prev)
3889 {
3890 NEXT_INSN (prev) = insn;
3891 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3892 {
3893 rtx sequence = PATTERN (prev);
3894 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3895 }
3896 }
3897 else if (get_insns () == before)
3898 set_first_insn (insn);
3899 else
3900 {
3901 struct sequence_stack *stack = seq_stack;
3902 /* Scan all pending sequences too. */
3903 for (; stack; stack = stack->next)
3904 if (before == stack->first)
3905 {
3906 stack->first = insn;
3907 break;
3908 }
3909
3910 gcc_assert (stack);
3911 }
3912
3913 if (!bb
3914 && !BARRIER_P (before)
3915 && !BARRIER_P (insn))
3916 bb = BLOCK_FOR_INSN (before);
3917
3918 if (bb)
3919 {
3920 set_block_for_insn (insn, bb);
3921 if (INSN_P (insn))
3922 df_insn_rescan (insn);
3923 /* Should not happen as first in the BB is always either NOTE or
3924 LABEL. */
3925 gcc_assert (BB_HEAD (bb) != insn
3926 /* Avoid clobbering of structure when creating new BB. */
3927 || BARRIER_P (insn)
3928 || NOTE_INSN_BASIC_BLOCK_P (insn));
3929 }
3930
3931 PREV_INSN (before) = insn;
3932 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3933 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3934 }
3935
3936
3937 /* Replace insn with an deleted instruction note. */
3938
3939 void
3940 set_insn_deleted (rtx insn)
3941 {
3942 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3943 PUT_CODE (insn, NOTE);
3944 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3945 }
3946
3947
3948 /* Remove an insn from its doubly-linked list. This function knows how
3949 to handle sequences. */
3950 void
3951 remove_insn (rtx insn)
3952 {
3953 rtx next = NEXT_INSN (insn);
3954 rtx prev = PREV_INSN (insn);
3955 basic_block bb;
3956
3957 /* Later in the code, the block will be marked dirty. */
3958 df_insn_delete (NULL, INSN_UID (insn));
3959
3960 if (prev)
3961 {
3962 NEXT_INSN (prev) = next;
3963 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3964 {
3965 rtx sequence = PATTERN (prev);
3966 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3967 }
3968 }
3969 else if (get_insns () == insn)
3970 {
3971 if (next)
3972 PREV_INSN (next) = NULL;
3973 set_first_insn (next);
3974 }
3975 else
3976 {
3977 struct sequence_stack *stack = seq_stack;
3978 /* Scan all pending sequences too. */
3979 for (; stack; stack = stack->next)
3980 if (insn == stack->first)
3981 {
3982 stack->first = next;
3983 break;
3984 }
3985
3986 gcc_assert (stack);
3987 }
3988
3989 if (next)
3990 {
3991 PREV_INSN (next) = prev;
3992 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3993 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3994 }
3995 else if (get_last_insn () == insn)
3996 set_last_insn (prev);
3997 else
3998 {
3999 struct sequence_stack *stack = seq_stack;
4000 /* Scan all pending sequences too. */
4001 for (; stack; stack = stack->next)
4002 if (insn == stack->last)
4003 {
4004 stack->last = prev;
4005 break;
4006 }
4007
4008 gcc_assert (stack);
4009 }
4010 if (!BARRIER_P (insn)
4011 && (bb = BLOCK_FOR_INSN (insn)))
4012 {
4013 if (NONDEBUG_INSN_P (insn))
4014 df_set_bb_dirty (bb);
4015 if (BB_HEAD (bb) == insn)
4016 {
4017 /* Never ever delete the basic block note without deleting whole
4018 basic block. */
4019 gcc_assert (!NOTE_P (insn));
4020 BB_HEAD (bb) = next;
4021 }
4022 if (BB_END (bb) == insn)
4023 BB_END (bb) = prev;
4024 }
4025 }
4026
4027 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4028
4029 void
4030 add_function_usage_to (rtx call_insn, rtx call_fusage)
4031 {
4032 gcc_assert (call_insn && CALL_P (call_insn));
4033
4034 /* Put the register usage information on the CALL. If there is already
4035 some usage information, put ours at the end. */
4036 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4037 {
4038 rtx link;
4039
4040 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4041 link = XEXP (link, 1))
4042 ;
4043
4044 XEXP (link, 1) = call_fusage;
4045 }
4046 else
4047 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4048 }
4049
4050 /* Delete all insns made since FROM.
4051 FROM becomes the new last instruction. */
4052
4053 void
4054 delete_insns_since (rtx from)
4055 {
4056 if (from == 0)
4057 set_first_insn (0);
4058 else
4059 NEXT_INSN (from) = 0;
4060 set_last_insn (from);
4061 }
4062
4063 /* This function is deprecated, please use sequences instead.
4064
4065 Move a consecutive bunch of insns to a different place in the chain.
4066 The insns to be moved are those between FROM and TO.
4067 They are moved to a new position after the insn AFTER.
4068 AFTER must not be FROM or TO or any insn in between.
4069
4070 This function does not know about SEQUENCEs and hence should not be
4071 called after delay-slot filling has been done. */
4072
4073 void
4074 reorder_insns_nobb (rtx from, rtx to, rtx after)
4075 {
4076 #ifdef ENABLE_CHECKING
4077 rtx x;
4078 for (x = from; x != to; x = NEXT_INSN (x))
4079 gcc_assert (after != x);
4080 gcc_assert (after != to);
4081 #endif
4082
4083 /* Splice this bunch out of where it is now. */
4084 if (PREV_INSN (from))
4085 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4086 if (NEXT_INSN (to))
4087 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4088 if (get_last_insn () == to)
4089 set_last_insn (PREV_INSN (from));
4090 if (get_insns () == from)
4091 set_first_insn (NEXT_INSN (to));
4092
4093 /* Make the new neighbors point to it and it to them. */
4094 if (NEXT_INSN (after))
4095 PREV_INSN (NEXT_INSN (after)) = to;
4096
4097 NEXT_INSN (to) = NEXT_INSN (after);
4098 PREV_INSN (from) = after;
4099 NEXT_INSN (after) = from;
4100 if (after == get_last_insn())
4101 set_last_insn (to);
4102 }
4103
4104 /* Same as function above, but take care to update BB boundaries. */
4105 void
4106 reorder_insns (rtx from, rtx to, rtx after)
4107 {
4108 rtx prev = PREV_INSN (from);
4109 basic_block bb, bb2;
4110
4111 reorder_insns_nobb (from, to, after);
4112
4113 if (!BARRIER_P (after)
4114 && (bb = BLOCK_FOR_INSN (after)))
4115 {
4116 rtx x;
4117 df_set_bb_dirty (bb);
4118
4119 if (!BARRIER_P (from)
4120 && (bb2 = BLOCK_FOR_INSN (from)))
4121 {
4122 if (BB_END (bb2) == to)
4123 BB_END (bb2) = prev;
4124 df_set_bb_dirty (bb2);
4125 }
4126
4127 if (BB_END (bb) == after)
4128 BB_END (bb) = to;
4129
4130 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4131 if (!BARRIER_P (x))
4132 df_insn_change_bb (x, bb);
4133 }
4134 }
4135
4136 \f
4137 /* Emit insn(s) of given code and pattern
4138 at a specified place within the doubly-linked list.
4139
4140 All of the emit_foo global entry points accept an object
4141 X which is either an insn list or a PATTERN of a single
4142 instruction.
4143
4144 There are thus a few canonical ways to generate code and
4145 emit it at a specific place in the instruction stream. For
4146 example, consider the instruction named SPOT and the fact that
4147 we would like to emit some instructions before SPOT. We might
4148 do it like this:
4149
4150 start_sequence ();
4151 ... emit the new instructions ...
4152 insns_head = get_insns ();
4153 end_sequence ();
4154
4155 emit_insn_before (insns_head, SPOT);
4156
4157 It used to be common to generate SEQUENCE rtl instead, but that
4158 is a relic of the past which no longer occurs. The reason is that
4159 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4160 generated would almost certainly die right after it was created. */
4161
4162 static rtx
4163 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4164 rtx (*make_raw) (rtx))
4165 {
4166 rtx insn;
4167
4168 gcc_assert (before);
4169
4170 if (x == NULL_RTX)
4171 return last;
4172
4173 switch (GET_CODE (x))
4174 {
4175 case DEBUG_INSN:
4176 case INSN:
4177 case JUMP_INSN:
4178 case CALL_INSN:
4179 case CODE_LABEL:
4180 case BARRIER:
4181 case NOTE:
4182 insn = x;
4183 while (insn)
4184 {
4185 rtx next = NEXT_INSN (insn);
4186 add_insn_before (insn, before, bb);
4187 last = insn;
4188 insn = next;
4189 }
4190 break;
4191
4192 #ifdef ENABLE_RTL_CHECKING
4193 case SEQUENCE:
4194 gcc_unreachable ();
4195 break;
4196 #endif
4197
4198 default:
4199 last = (*make_raw) (x);
4200 add_insn_before (last, before, bb);
4201 break;
4202 }
4203
4204 return last;
4205 }
4206
4207 /* Make X be output before the instruction BEFORE. */
4208
4209 rtx
4210 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4211 {
4212 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4213 }
4214
4215 /* Make an instruction with body X and code JUMP_INSN
4216 and output it before the instruction BEFORE. */
4217
4218 rtx
4219 emit_jump_insn_before_noloc (rtx x, rtx before)
4220 {
4221 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4222 make_jump_insn_raw);
4223 }
4224
4225 /* Make an instruction with body X and code CALL_INSN
4226 and output it before the instruction BEFORE. */
4227
4228 rtx
4229 emit_call_insn_before_noloc (rtx x, rtx before)
4230 {
4231 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4232 make_call_insn_raw);
4233 }
4234
4235 /* Make an instruction with body X and code DEBUG_INSN
4236 and output it before the instruction BEFORE. */
4237
4238 rtx
4239 emit_debug_insn_before_noloc (rtx x, rtx before)
4240 {
4241 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4242 make_debug_insn_raw);
4243 }
4244
4245 /* Make an insn of code BARRIER
4246 and output it before the insn BEFORE. */
4247
4248 rtx
4249 emit_barrier_before (rtx before)
4250 {
4251 rtx insn = rtx_alloc (BARRIER);
4252
4253 INSN_UID (insn) = cur_insn_uid++;
4254
4255 add_insn_before (insn, before, NULL);
4256 return insn;
4257 }
4258
4259 /* Emit the label LABEL before the insn BEFORE. */
4260
4261 rtx
4262 emit_label_before (rtx label, rtx before)
4263 {
4264 gcc_checking_assert (INSN_UID (label) == 0);
4265 INSN_UID (label) = cur_insn_uid++;
4266 add_insn_before (label, before, NULL);
4267 return label;
4268 }
4269
4270 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4271
4272 rtx
4273 emit_note_before (enum insn_note subtype, rtx before)
4274 {
4275 rtx note = rtx_alloc (NOTE);
4276 INSN_UID (note) = cur_insn_uid++;
4277 NOTE_KIND (note) = subtype;
4278 BLOCK_FOR_INSN (note) = NULL;
4279 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4280
4281 add_insn_before (note, before, NULL);
4282 return note;
4283 }
4284 \f
4285 /* Helper for emit_insn_after, handles lists of instructions
4286 efficiently. */
4287
4288 static rtx
4289 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4290 {
4291 rtx last;
4292 rtx after_after;
4293 if (!bb && !BARRIER_P (after))
4294 bb = BLOCK_FOR_INSN (after);
4295
4296 if (bb)
4297 {
4298 df_set_bb_dirty (bb);
4299 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4300 if (!BARRIER_P (last))
4301 {
4302 set_block_for_insn (last, bb);
4303 df_insn_rescan (last);
4304 }
4305 if (!BARRIER_P (last))
4306 {
4307 set_block_for_insn (last, bb);
4308 df_insn_rescan (last);
4309 }
4310 if (BB_END (bb) == after)
4311 BB_END (bb) = last;
4312 }
4313 else
4314 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4315 continue;
4316
4317 after_after = NEXT_INSN (after);
4318
4319 NEXT_INSN (after) = first;
4320 PREV_INSN (first) = after;
4321 NEXT_INSN (last) = after_after;
4322 if (after_after)
4323 PREV_INSN (after_after) = last;
4324
4325 if (after == get_last_insn())
4326 set_last_insn (last);
4327
4328 return last;
4329 }
4330
4331 static rtx
4332 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4333 rtx (*make_raw)(rtx))
4334 {
4335 rtx last = after;
4336
4337 gcc_assert (after);
4338
4339 if (x == NULL_RTX)
4340 return last;
4341
4342 switch (GET_CODE (x))
4343 {
4344 case DEBUG_INSN:
4345 case INSN:
4346 case JUMP_INSN:
4347 case CALL_INSN:
4348 case CODE_LABEL:
4349 case BARRIER:
4350 case NOTE:
4351 last = emit_insn_after_1 (x, after, bb);
4352 break;
4353
4354 #ifdef ENABLE_RTL_CHECKING
4355 case SEQUENCE:
4356 gcc_unreachable ();
4357 break;
4358 #endif
4359
4360 default:
4361 last = (*make_raw) (x);
4362 add_insn_after (last, after, bb);
4363 break;
4364 }
4365
4366 return last;
4367 }
4368
4369 /* Make X be output after the insn AFTER and set the BB of insn. If
4370 BB is NULL, an attempt is made to infer the BB from AFTER. */
4371
4372 rtx
4373 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4374 {
4375 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4376 }
4377
4378
4379 /* Make an insn of code JUMP_INSN with body X
4380 and output it after the insn AFTER. */
4381
4382 rtx
4383 emit_jump_insn_after_noloc (rtx x, rtx after)
4384 {
4385 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4386 }
4387
4388 /* Make an instruction with body X and code CALL_INSN
4389 and output it after the instruction AFTER. */
4390
4391 rtx
4392 emit_call_insn_after_noloc (rtx x, rtx after)
4393 {
4394 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4395 }
4396
4397 /* Make an instruction with body X and code CALL_INSN
4398 and output it after the instruction AFTER. */
4399
4400 rtx
4401 emit_debug_insn_after_noloc (rtx x, rtx after)
4402 {
4403 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4404 }
4405
4406 /* Make an insn of code BARRIER
4407 and output it after the insn AFTER. */
4408
4409 rtx
4410 emit_barrier_after (rtx after)
4411 {
4412 rtx insn = rtx_alloc (BARRIER);
4413
4414 INSN_UID (insn) = cur_insn_uid++;
4415
4416 add_insn_after (insn, after, NULL);
4417 return insn;
4418 }
4419
4420 /* Emit the label LABEL after the insn AFTER. */
4421
4422 rtx
4423 emit_label_after (rtx label, rtx after)
4424 {
4425 gcc_checking_assert (INSN_UID (label) == 0);
4426 INSN_UID (label) = cur_insn_uid++;
4427 add_insn_after (label, after, NULL);
4428 return label;
4429 }
4430
4431 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4432
4433 rtx
4434 emit_note_after (enum insn_note subtype, rtx after)
4435 {
4436 rtx note = rtx_alloc (NOTE);
4437 INSN_UID (note) = cur_insn_uid++;
4438 NOTE_KIND (note) = subtype;
4439 BLOCK_FOR_INSN (note) = NULL;
4440 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4441 add_insn_after (note, after, NULL);
4442 return note;
4443 }
4444 \f
4445 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4446 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4447
4448 static rtx
4449 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4450 rtx (*make_raw) (rtx))
4451 {
4452 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4453
4454 if (pattern == NULL_RTX || !loc)
4455 return last;
4456
4457 after = NEXT_INSN (after);
4458 while (1)
4459 {
4460 if (active_insn_p (after) && !INSN_LOCATION (after))
4461 INSN_LOCATION (after) = loc;
4462 if (after == last)
4463 break;
4464 after = NEXT_INSN (after);
4465 }
4466 return last;
4467 }
4468
4469 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4470 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4471 any DEBUG_INSNs. */
4472
4473 static rtx
4474 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4475 rtx (*make_raw) (rtx))
4476 {
4477 rtx prev = after;
4478
4479 if (skip_debug_insns)
4480 while (DEBUG_INSN_P (prev))
4481 prev = PREV_INSN (prev);
4482
4483 if (INSN_P (prev))
4484 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4485 make_raw);
4486 else
4487 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4488 }
4489
4490 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4491 rtx
4492 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4493 {
4494 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4495 }
4496
4497 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4498 rtx
4499 emit_insn_after (rtx pattern, rtx after)
4500 {
4501 return emit_pattern_after (pattern, after, true, make_insn_raw);
4502 }
4503
4504 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4505 rtx
4506 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4507 {
4508 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4509 }
4510
4511 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4512 rtx
4513 emit_jump_insn_after (rtx pattern, rtx after)
4514 {
4515 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4516 }
4517
4518 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4519 rtx
4520 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4521 {
4522 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4523 }
4524
4525 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4526 rtx
4527 emit_call_insn_after (rtx pattern, rtx after)
4528 {
4529 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4530 }
4531
4532 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4533 rtx
4534 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4535 {
4536 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4537 }
4538
4539 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4540 rtx
4541 emit_debug_insn_after (rtx pattern, rtx after)
4542 {
4543 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4544 }
4545
4546 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4547 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4548 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4549 CALL_INSN, etc. */
4550
4551 static rtx
4552 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4553 rtx (*make_raw) (rtx))
4554 {
4555 rtx first = PREV_INSN (before);
4556 rtx last = emit_pattern_before_noloc (pattern, before,
4557 insnp ? before : NULL_RTX,
4558 NULL, make_raw);
4559
4560 if (pattern == NULL_RTX || !loc)
4561 return last;
4562
4563 if (!first)
4564 first = get_insns ();
4565 else
4566 first = NEXT_INSN (first);
4567 while (1)
4568 {
4569 if (active_insn_p (first) && !INSN_LOCATION (first))
4570 INSN_LOCATION (first) = loc;
4571 if (first == last)
4572 break;
4573 first = NEXT_INSN (first);
4574 }
4575 return last;
4576 }
4577
4578 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4579 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4580 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4581 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4582
4583 static rtx
4584 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4585 bool insnp, rtx (*make_raw) (rtx))
4586 {
4587 rtx next = before;
4588
4589 if (skip_debug_insns)
4590 while (DEBUG_INSN_P (next))
4591 next = PREV_INSN (next);
4592
4593 if (INSN_P (next))
4594 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4595 insnp, make_raw);
4596 else
4597 return emit_pattern_before_noloc (pattern, before,
4598 insnp ? before : NULL_RTX,
4599 NULL, make_raw);
4600 }
4601
4602 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4603 rtx
4604 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4605 {
4606 return emit_pattern_before_setloc (pattern, before, loc, true,
4607 make_insn_raw);
4608 }
4609
4610 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4611 rtx
4612 emit_insn_before (rtx pattern, rtx before)
4613 {
4614 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4615 }
4616
4617 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4618 rtx
4619 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4620 {
4621 return emit_pattern_before_setloc (pattern, before, loc, false,
4622 make_jump_insn_raw);
4623 }
4624
4625 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4626 rtx
4627 emit_jump_insn_before (rtx pattern, rtx before)
4628 {
4629 return emit_pattern_before (pattern, before, true, false,
4630 make_jump_insn_raw);
4631 }
4632
4633 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4634 rtx
4635 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4636 {
4637 return emit_pattern_before_setloc (pattern, before, loc, false,
4638 make_call_insn_raw);
4639 }
4640
4641 /* Like emit_call_insn_before_noloc,
4642 but set insn_location according to BEFORE. */
4643 rtx
4644 emit_call_insn_before (rtx pattern, rtx before)
4645 {
4646 return emit_pattern_before (pattern, before, true, false,
4647 make_call_insn_raw);
4648 }
4649
4650 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4651 rtx
4652 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4653 {
4654 return emit_pattern_before_setloc (pattern, before, loc, false,
4655 make_debug_insn_raw);
4656 }
4657
4658 /* Like emit_debug_insn_before_noloc,
4659 but set insn_location according to BEFORE. */
4660 rtx
4661 emit_debug_insn_before (rtx pattern, rtx before)
4662 {
4663 return emit_pattern_before (pattern, before, false, false,
4664 make_debug_insn_raw);
4665 }
4666 \f
4667 /* Take X and emit it at the end of the doubly-linked
4668 INSN list.
4669
4670 Returns the last insn emitted. */
4671
4672 rtx
4673 emit_insn (rtx x)
4674 {
4675 rtx last = get_last_insn();
4676 rtx insn;
4677
4678 if (x == NULL_RTX)
4679 return last;
4680
4681 switch (GET_CODE (x))
4682 {
4683 case DEBUG_INSN:
4684 case INSN:
4685 case JUMP_INSN:
4686 case CALL_INSN:
4687 case CODE_LABEL:
4688 case BARRIER:
4689 case NOTE:
4690 insn = x;
4691 while (insn)
4692 {
4693 rtx next = NEXT_INSN (insn);
4694 add_insn (insn);
4695 last = insn;
4696 insn = next;
4697 }
4698 break;
4699
4700 #ifdef ENABLE_RTL_CHECKING
4701 case SEQUENCE:
4702 gcc_unreachable ();
4703 break;
4704 #endif
4705
4706 default:
4707 last = make_insn_raw (x);
4708 add_insn (last);
4709 break;
4710 }
4711
4712 return last;
4713 }
4714
4715 /* Make an insn of code DEBUG_INSN with pattern X
4716 and add it to the end of the doubly-linked list. */
4717
4718 rtx
4719 emit_debug_insn (rtx x)
4720 {
4721 rtx last = get_last_insn();
4722 rtx insn;
4723
4724 if (x == NULL_RTX)
4725 return last;
4726
4727 switch (GET_CODE (x))
4728 {
4729 case DEBUG_INSN:
4730 case INSN:
4731 case JUMP_INSN:
4732 case CALL_INSN:
4733 case CODE_LABEL:
4734 case BARRIER:
4735 case NOTE:
4736 insn = x;
4737 while (insn)
4738 {
4739 rtx next = NEXT_INSN (insn);
4740 add_insn (insn);
4741 last = insn;
4742 insn = next;
4743 }
4744 break;
4745
4746 #ifdef ENABLE_RTL_CHECKING
4747 case SEQUENCE:
4748 gcc_unreachable ();
4749 break;
4750 #endif
4751
4752 default:
4753 last = make_debug_insn_raw (x);
4754 add_insn (last);
4755 break;
4756 }
4757
4758 return last;
4759 }
4760
4761 /* Make an insn of code JUMP_INSN with pattern X
4762 and add it to the end of the doubly-linked list. */
4763
4764 rtx
4765 emit_jump_insn (rtx x)
4766 {
4767 rtx last = NULL_RTX, insn;
4768
4769 switch (GET_CODE (x))
4770 {
4771 case DEBUG_INSN:
4772 case INSN:
4773 case JUMP_INSN:
4774 case CALL_INSN:
4775 case CODE_LABEL:
4776 case BARRIER:
4777 case NOTE:
4778 insn = x;
4779 while (insn)
4780 {
4781 rtx next = NEXT_INSN (insn);
4782 add_insn (insn);
4783 last = insn;
4784 insn = next;
4785 }
4786 break;
4787
4788 #ifdef ENABLE_RTL_CHECKING
4789 case SEQUENCE:
4790 gcc_unreachable ();
4791 break;
4792 #endif
4793
4794 default:
4795 last = make_jump_insn_raw (x);
4796 add_insn (last);
4797 break;
4798 }
4799
4800 return last;
4801 }
4802
4803 /* Make an insn of code CALL_INSN with pattern X
4804 and add it to the end of the doubly-linked list. */
4805
4806 rtx
4807 emit_call_insn (rtx x)
4808 {
4809 rtx insn;
4810
4811 switch (GET_CODE (x))
4812 {
4813 case DEBUG_INSN:
4814 case INSN:
4815 case JUMP_INSN:
4816 case CALL_INSN:
4817 case CODE_LABEL:
4818 case BARRIER:
4819 case NOTE:
4820 insn = emit_insn (x);
4821 break;
4822
4823 #ifdef ENABLE_RTL_CHECKING
4824 case SEQUENCE:
4825 gcc_unreachable ();
4826 break;
4827 #endif
4828
4829 default:
4830 insn = make_call_insn_raw (x);
4831 add_insn (insn);
4832 break;
4833 }
4834
4835 return insn;
4836 }
4837
4838 /* Add the label LABEL to the end of the doubly-linked list. */
4839
4840 rtx
4841 emit_label (rtx label)
4842 {
4843 gcc_checking_assert (INSN_UID (label) == 0);
4844 INSN_UID (label) = cur_insn_uid++;
4845 add_insn (label);
4846 return label;
4847 }
4848
4849 /* Make an insn of code BARRIER
4850 and add it to the end of the doubly-linked list. */
4851
4852 rtx
4853 emit_barrier (void)
4854 {
4855 rtx barrier = rtx_alloc (BARRIER);
4856 INSN_UID (barrier) = cur_insn_uid++;
4857 add_insn (barrier);
4858 return barrier;
4859 }
4860
4861 /* Emit a copy of note ORIG. */
4862
4863 rtx
4864 emit_note_copy (rtx orig)
4865 {
4866 rtx note;
4867
4868 note = rtx_alloc (NOTE);
4869
4870 INSN_UID (note) = cur_insn_uid++;
4871 NOTE_DATA (note) = NOTE_DATA (orig);
4872 NOTE_KIND (note) = NOTE_KIND (orig);
4873 BLOCK_FOR_INSN (note) = NULL;
4874 add_insn (note);
4875
4876 return note;
4877 }
4878
4879 /* Make an insn of code NOTE or type NOTE_NO
4880 and add it to the end of the doubly-linked list. */
4881
4882 rtx
4883 emit_note (enum insn_note kind)
4884 {
4885 rtx note;
4886
4887 note = rtx_alloc (NOTE);
4888 INSN_UID (note) = cur_insn_uid++;
4889 NOTE_KIND (note) = kind;
4890 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4891 BLOCK_FOR_INSN (note) = NULL;
4892 add_insn (note);
4893 return note;
4894 }
4895
4896 /* Emit a clobber of lvalue X. */
4897
4898 rtx
4899 emit_clobber (rtx x)
4900 {
4901 /* CONCATs should not appear in the insn stream. */
4902 if (GET_CODE (x) == CONCAT)
4903 {
4904 emit_clobber (XEXP (x, 0));
4905 return emit_clobber (XEXP (x, 1));
4906 }
4907 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4908 }
4909
4910 /* Return a sequence of insns to clobber lvalue X. */
4911
4912 rtx
4913 gen_clobber (rtx x)
4914 {
4915 rtx seq;
4916
4917 start_sequence ();
4918 emit_clobber (x);
4919 seq = get_insns ();
4920 end_sequence ();
4921 return seq;
4922 }
4923
4924 /* Emit a use of rvalue X. */
4925
4926 rtx
4927 emit_use (rtx x)
4928 {
4929 /* CONCATs should not appear in the insn stream. */
4930 if (GET_CODE (x) == CONCAT)
4931 {
4932 emit_use (XEXP (x, 0));
4933 return emit_use (XEXP (x, 1));
4934 }
4935 return emit_insn (gen_rtx_USE (VOIDmode, x));
4936 }
4937
4938 /* Return a sequence of insns to use rvalue X. */
4939
4940 rtx
4941 gen_use (rtx x)
4942 {
4943 rtx seq;
4944
4945 start_sequence ();
4946 emit_use (x);
4947 seq = get_insns ();
4948 end_sequence ();
4949 return seq;
4950 }
4951
4952 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4953 note of this type already exists, remove it first. */
4954
4955 rtx
4956 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4957 {
4958 rtx note = find_reg_note (insn, kind, NULL_RTX);
4959
4960 switch (kind)
4961 {
4962 case REG_EQUAL:
4963 case REG_EQUIV:
4964 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4965 has multiple sets (some callers assume single_set
4966 means the insn only has one set, when in fact it
4967 means the insn only has one * useful * set). */
4968 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4969 {
4970 gcc_assert (!note);
4971 return NULL_RTX;
4972 }
4973
4974 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4975 It serves no useful purpose and breaks eliminate_regs. */
4976 if (GET_CODE (datum) == ASM_OPERANDS)
4977 return NULL_RTX;
4978
4979 if (note)
4980 {
4981 XEXP (note, 0) = datum;
4982 df_notes_rescan (insn);
4983 return note;
4984 }
4985 break;
4986
4987 default:
4988 if (note)
4989 {
4990 XEXP (note, 0) = datum;
4991 return note;
4992 }
4993 break;
4994 }
4995
4996 add_reg_note (insn, kind, datum);
4997
4998 switch (kind)
4999 {
5000 case REG_EQUAL:
5001 case REG_EQUIV:
5002 df_notes_rescan (insn);
5003 break;
5004 default:
5005 break;
5006 }
5007
5008 return REG_NOTES (insn);
5009 }
5010
5011 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5012 rtx
5013 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5014 {
5015 rtx set = single_set (insn);
5016
5017 if (set && SET_DEST (set) == dst)
5018 return set_unique_reg_note (insn, kind, datum);
5019 return NULL_RTX;
5020 }
5021 \f
5022 /* Return an indication of which type of insn should have X as a body.
5023 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5024
5025 static enum rtx_code
5026 classify_insn (rtx x)
5027 {
5028 if (LABEL_P (x))
5029 return CODE_LABEL;
5030 if (GET_CODE (x) == CALL)
5031 return CALL_INSN;
5032 if (ANY_RETURN_P (x))
5033 return JUMP_INSN;
5034 if (GET_CODE (x) == SET)
5035 {
5036 if (SET_DEST (x) == pc_rtx)
5037 return JUMP_INSN;
5038 else if (GET_CODE (SET_SRC (x)) == CALL)
5039 return CALL_INSN;
5040 else
5041 return INSN;
5042 }
5043 if (GET_CODE (x) == PARALLEL)
5044 {
5045 int j;
5046 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5047 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5048 return CALL_INSN;
5049 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5050 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5051 return JUMP_INSN;
5052 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5053 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5054 return CALL_INSN;
5055 }
5056 return INSN;
5057 }
5058
5059 /* Emit the rtl pattern X as an appropriate kind of insn.
5060 If X is a label, it is simply added into the insn chain. */
5061
5062 rtx
5063 emit (rtx x)
5064 {
5065 enum rtx_code code = classify_insn (x);
5066
5067 switch (code)
5068 {
5069 case CODE_LABEL:
5070 return emit_label (x);
5071 case INSN:
5072 return emit_insn (x);
5073 case JUMP_INSN:
5074 {
5075 rtx insn = emit_jump_insn (x);
5076 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5077 return emit_barrier ();
5078 return insn;
5079 }
5080 case CALL_INSN:
5081 return emit_call_insn (x);
5082 case DEBUG_INSN:
5083 return emit_debug_insn (x);
5084 default:
5085 gcc_unreachable ();
5086 }
5087 }
5088 \f
5089 /* Space for free sequence stack entries. */
5090 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5091
5092 /* Begin emitting insns to a sequence. If this sequence will contain
5093 something that might cause the compiler to pop arguments to function
5094 calls (because those pops have previously been deferred; see
5095 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5096 before calling this function. That will ensure that the deferred
5097 pops are not accidentally emitted in the middle of this sequence. */
5098
5099 void
5100 start_sequence (void)
5101 {
5102 struct sequence_stack *tem;
5103
5104 if (free_sequence_stack != NULL)
5105 {
5106 tem = free_sequence_stack;
5107 free_sequence_stack = tem->next;
5108 }
5109 else
5110 tem = ggc_alloc_sequence_stack ();
5111
5112 tem->next = seq_stack;
5113 tem->first = get_insns ();
5114 tem->last = get_last_insn ();
5115
5116 seq_stack = tem;
5117
5118 set_first_insn (0);
5119 set_last_insn (0);
5120 }
5121
5122 /* Set up the insn chain starting with FIRST as the current sequence,
5123 saving the previously current one. See the documentation for
5124 start_sequence for more information about how to use this function. */
5125
5126 void
5127 push_to_sequence (rtx first)
5128 {
5129 rtx last;
5130
5131 start_sequence ();
5132
5133 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5134 ;
5135
5136 set_first_insn (first);
5137 set_last_insn (last);
5138 }
5139
5140 /* Like push_to_sequence, but take the last insn as an argument to avoid
5141 looping through the list. */
5142
5143 void
5144 push_to_sequence2 (rtx first, rtx last)
5145 {
5146 start_sequence ();
5147
5148 set_first_insn (first);
5149 set_last_insn (last);
5150 }
5151
5152 /* Set up the outer-level insn chain
5153 as the current sequence, saving the previously current one. */
5154
5155 void
5156 push_topmost_sequence (void)
5157 {
5158 struct sequence_stack *stack, *top = NULL;
5159
5160 start_sequence ();
5161
5162 for (stack = seq_stack; stack; stack = stack->next)
5163 top = stack;
5164
5165 set_first_insn (top->first);
5166 set_last_insn (top->last);
5167 }
5168
5169 /* After emitting to the outer-level insn chain, update the outer-level
5170 insn chain, and restore the previous saved state. */
5171
5172 void
5173 pop_topmost_sequence (void)
5174 {
5175 struct sequence_stack *stack, *top = NULL;
5176
5177 for (stack = seq_stack; stack; stack = stack->next)
5178 top = stack;
5179
5180 top->first = get_insns ();
5181 top->last = get_last_insn ();
5182
5183 end_sequence ();
5184 }
5185
5186 /* After emitting to a sequence, restore previous saved state.
5187
5188 To get the contents of the sequence just made, you must call
5189 `get_insns' *before* calling here.
5190
5191 If the compiler might have deferred popping arguments while
5192 generating this sequence, and this sequence will not be immediately
5193 inserted into the instruction stream, use do_pending_stack_adjust
5194 before calling get_insns. That will ensure that the deferred
5195 pops are inserted into this sequence, and not into some random
5196 location in the instruction stream. See INHIBIT_DEFER_POP for more
5197 information about deferred popping of arguments. */
5198
5199 void
5200 end_sequence (void)
5201 {
5202 struct sequence_stack *tem = seq_stack;
5203
5204 set_first_insn (tem->first);
5205 set_last_insn (tem->last);
5206 seq_stack = tem->next;
5207
5208 memset (tem, 0, sizeof (*tem));
5209 tem->next = free_sequence_stack;
5210 free_sequence_stack = tem;
5211 }
5212
5213 /* Return 1 if currently emitting into a sequence. */
5214
5215 int
5216 in_sequence_p (void)
5217 {
5218 return seq_stack != 0;
5219 }
5220 \f
5221 /* Put the various virtual registers into REGNO_REG_RTX. */
5222
5223 static void
5224 init_virtual_regs (void)
5225 {
5226 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5227 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5228 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5229 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5230 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5231 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5232 = virtual_preferred_stack_boundary_rtx;
5233 }
5234
5235 \f
5236 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5237 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5238 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5239 static int copy_insn_n_scratches;
5240
5241 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5242 copied an ASM_OPERANDS.
5243 In that case, it is the original input-operand vector. */
5244 static rtvec orig_asm_operands_vector;
5245
5246 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5247 copied an ASM_OPERANDS.
5248 In that case, it is the copied input-operand vector. */
5249 static rtvec copy_asm_operands_vector;
5250
5251 /* Likewise for the constraints vector. */
5252 static rtvec orig_asm_constraints_vector;
5253 static rtvec copy_asm_constraints_vector;
5254
5255 /* Recursively create a new copy of an rtx for copy_insn.
5256 This function differs from copy_rtx in that it handles SCRATCHes and
5257 ASM_OPERANDs properly.
5258 Normally, this function is not used directly; use copy_insn as front end.
5259 However, you could first copy an insn pattern with copy_insn and then use
5260 this function afterwards to properly copy any REG_NOTEs containing
5261 SCRATCHes. */
5262
5263 rtx
5264 copy_insn_1 (rtx orig)
5265 {
5266 rtx copy;
5267 int i, j;
5268 RTX_CODE code;
5269 const char *format_ptr;
5270
5271 if (orig == NULL)
5272 return NULL;
5273
5274 code = GET_CODE (orig);
5275
5276 switch (code)
5277 {
5278 case REG:
5279 case DEBUG_EXPR:
5280 CASE_CONST_ANY:
5281 case SYMBOL_REF:
5282 case CODE_LABEL:
5283 case PC:
5284 case CC0:
5285 case RETURN:
5286 case SIMPLE_RETURN:
5287 return orig;
5288 case CLOBBER:
5289 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5290 return orig;
5291 break;
5292
5293 case SCRATCH:
5294 for (i = 0; i < copy_insn_n_scratches; i++)
5295 if (copy_insn_scratch_in[i] == orig)
5296 return copy_insn_scratch_out[i];
5297 break;
5298
5299 case CONST:
5300 if (shared_const_p (orig))
5301 return orig;
5302 break;
5303
5304 /* A MEM with a constant address is not sharable. The problem is that
5305 the constant address may need to be reloaded. If the mem is shared,
5306 then reloading one copy of this mem will cause all copies to appear
5307 to have been reloaded. */
5308
5309 default:
5310 break;
5311 }
5312
5313 /* Copy the various flags, fields, and other information. We assume
5314 that all fields need copying, and then clear the fields that should
5315 not be copied. That is the sensible default behavior, and forces
5316 us to explicitly document why we are *not* copying a flag. */
5317 copy = shallow_copy_rtx (orig);
5318
5319 /* We do not copy the USED flag, which is used as a mark bit during
5320 walks over the RTL. */
5321 RTX_FLAG (copy, used) = 0;
5322
5323 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5324 if (INSN_P (orig))
5325 {
5326 RTX_FLAG (copy, jump) = 0;
5327 RTX_FLAG (copy, call) = 0;
5328 RTX_FLAG (copy, frame_related) = 0;
5329 }
5330
5331 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5332
5333 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5334 switch (*format_ptr++)
5335 {
5336 case 'e':
5337 if (XEXP (orig, i) != NULL)
5338 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5339 break;
5340
5341 case 'E':
5342 case 'V':
5343 if (XVEC (orig, i) == orig_asm_constraints_vector)
5344 XVEC (copy, i) = copy_asm_constraints_vector;
5345 else if (XVEC (orig, i) == orig_asm_operands_vector)
5346 XVEC (copy, i) = copy_asm_operands_vector;
5347 else if (XVEC (orig, i) != NULL)
5348 {
5349 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5350 for (j = 0; j < XVECLEN (copy, i); j++)
5351 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5352 }
5353 break;
5354
5355 case 't':
5356 case 'w':
5357 case 'i':
5358 case 's':
5359 case 'S':
5360 case 'u':
5361 case '0':
5362 /* These are left unchanged. */
5363 break;
5364
5365 default:
5366 gcc_unreachable ();
5367 }
5368
5369 if (code == SCRATCH)
5370 {
5371 i = copy_insn_n_scratches++;
5372 gcc_assert (i < MAX_RECOG_OPERANDS);
5373 copy_insn_scratch_in[i] = orig;
5374 copy_insn_scratch_out[i] = copy;
5375 }
5376 else if (code == ASM_OPERANDS)
5377 {
5378 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5379 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5380 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5381 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5382 }
5383
5384 return copy;
5385 }
5386
5387 /* Create a new copy of an rtx.
5388 This function differs from copy_rtx in that it handles SCRATCHes and
5389 ASM_OPERANDs properly.
5390 INSN doesn't really have to be a full INSN; it could be just the
5391 pattern. */
5392 rtx
5393 copy_insn (rtx insn)
5394 {
5395 copy_insn_n_scratches = 0;
5396 orig_asm_operands_vector = 0;
5397 orig_asm_constraints_vector = 0;
5398 copy_asm_operands_vector = 0;
5399 copy_asm_constraints_vector = 0;
5400 return copy_insn_1 (insn);
5401 }
5402
5403 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5404 on that assumption that INSN itself remains in its original place. */
5405
5406 rtx
5407 copy_delay_slot_insn (rtx insn)
5408 {
5409 /* Copy INSN with its rtx_code, all its notes, location etc. */
5410 insn = copy_rtx (insn);
5411 INSN_UID (insn) = cur_insn_uid++;
5412 return insn;
5413 }
5414
5415 /* Initialize data structures and variables in this file
5416 before generating rtl for each function. */
5417
5418 void
5419 init_emit (void)
5420 {
5421 set_first_insn (NULL);
5422 set_last_insn (NULL);
5423 if (MIN_NONDEBUG_INSN_UID)
5424 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5425 else
5426 cur_insn_uid = 1;
5427 cur_debug_insn_uid = 1;
5428 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5429 first_label_num = label_num;
5430 seq_stack = NULL;
5431
5432 /* Init the tables that describe all the pseudo regs. */
5433
5434 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5435
5436 crtl->emit.regno_pointer_align
5437 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5438
5439 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5440
5441 /* Put copies of all the hard registers into regno_reg_rtx. */
5442 memcpy (regno_reg_rtx,
5443 initial_regno_reg_rtx,
5444 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5445
5446 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5447 init_virtual_regs ();
5448
5449 /* Indicate that the virtual registers and stack locations are
5450 all pointers. */
5451 REG_POINTER (stack_pointer_rtx) = 1;
5452 REG_POINTER (frame_pointer_rtx) = 1;
5453 REG_POINTER (hard_frame_pointer_rtx) = 1;
5454 REG_POINTER (arg_pointer_rtx) = 1;
5455
5456 REG_POINTER (virtual_incoming_args_rtx) = 1;
5457 REG_POINTER (virtual_stack_vars_rtx) = 1;
5458 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5459 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5460 REG_POINTER (virtual_cfa_rtx) = 1;
5461
5462 #ifdef STACK_BOUNDARY
5463 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5464 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5465 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5466 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5467
5468 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5469 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5470 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5471 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5472 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5473 #endif
5474
5475 #ifdef INIT_EXPANDERS
5476 INIT_EXPANDERS;
5477 #endif
5478 }
5479
5480 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5481
5482 static rtx
5483 gen_const_vector (enum machine_mode mode, int constant)
5484 {
5485 rtx tem;
5486 rtvec v;
5487 int units, i;
5488 enum machine_mode inner;
5489
5490 units = GET_MODE_NUNITS (mode);
5491 inner = GET_MODE_INNER (mode);
5492
5493 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5494
5495 v = rtvec_alloc (units);
5496
5497 /* We need to call this function after we set the scalar const_tiny_rtx
5498 entries. */
5499 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5500
5501 for (i = 0; i < units; ++i)
5502 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5503
5504 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5505 return tem;
5506 }
5507
5508 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5509 all elements are zero, and the one vector when all elements are one. */
5510 rtx
5511 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5512 {
5513 enum machine_mode inner = GET_MODE_INNER (mode);
5514 int nunits = GET_MODE_NUNITS (mode);
5515 rtx x;
5516 int i;
5517
5518 /* Check to see if all of the elements have the same value. */
5519 x = RTVEC_ELT (v, nunits - 1);
5520 for (i = nunits - 2; i >= 0; i--)
5521 if (RTVEC_ELT (v, i) != x)
5522 break;
5523
5524 /* If the values are all the same, check to see if we can use one of the
5525 standard constant vectors. */
5526 if (i == -1)
5527 {
5528 if (x == CONST0_RTX (inner))
5529 return CONST0_RTX (mode);
5530 else if (x == CONST1_RTX (inner))
5531 return CONST1_RTX (mode);
5532 else if (x == CONSTM1_RTX (inner))
5533 return CONSTM1_RTX (mode);
5534 }
5535
5536 return gen_rtx_raw_CONST_VECTOR (mode, v);
5537 }
5538
5539 /* Initialise global register information required by all functions. */
5540
5541 void
5542 init_emit_regs (void)
5543 {
5544 int i;
5545 enum machine_mode mode;
5546 mem_attrs *attrs;
5547
5548 /* Reset register attributes */
5549 htab_empty (reg_attrs_htab);
5550
5551 /* We need reg_raw_mode, so initialize the modes now. */
5552 init_reg_modes_target ();
5553
5554 /* Assign register numbers to the globally defined register rtx. */
5555 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5556 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5557 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5558 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5559 virtual_incoming_args_rtx =
5560 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5561 virtual_stack_vars_rtx =
5562 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5563 virtual_stack_dynamic_rtx =
5564 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5565 virtual_outgoing_args_rtx =
5566 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5567 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5568 virtual_preferred_stack_boundary_rtx =
5569 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5570
5571 /* Initialize RTL for commonly used hard registers. These are
5572 copied into regno_reg_rtx as we begin to compile each function. */
5573 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5574 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5575
5576 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5577 return_address_pointer_rtx
5578 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5579 #endif
5580
5581 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5582 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5583 else
5584 pic_offset_table_rtx = NULL_RTX;
5585
5586 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5587 {
5588 mode = (enum machine_mode) i;
5589 attrs = ggc_alloc_cleared_mem_attrs ();
5590 attrs->align = BITS_PER_UNIT;
5591 attrs->addrspace = ADDR_SPACE_GENERIC;
5592 if (mode != BLKmode)
5593 {
5594 attrs->size_known_p = true;
5595 attrs->size = GET_MODE_SIZE (mode);
5596 if (STRICT_ALIGNMENT)
5597 attrs->align = GET_MODE_ALIGNMENT (mode);
5598 }
5599 mode_mem_attrs[i] = attrs;
5600 }
5601 }
5602
5603 /* Create some permanent unique rtl objects shared between all functions. */
5604
5605 void
5606 init_emit_once (void)
5607 {
5608 int i;
5609 enum machine_mode mode;
5610 enum machine_mode double_mode;
5611
5612 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5613 hash tables. */
5614 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5615 const_int_htab_eq, NULL);
5616
5617 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5618 const_double_htab_eq, NULL);
5619
5620 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5621 const_fixed_htab_eq, NULL);
5622
5623 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5624 mem_attrs_htab_eq, NULL);
5625 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5626 reg_attrs_htab_eq, NULL);
5627
5628 /* Compute the word and byte modes. */
5629
5630 byte_mode = VOIDmode;
5631 word_mode = VOIDmode;
5632 double_mode = VOIDmode;
5633
5634 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5635 mode != VOIDmode;
5636 mode = GET_MODE_WIDER_MODE (mode))
5637 {
5638 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5639 && byte_mode == VOIDmode)
5640 byte_mode = mode;
5641
5642 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5643 && word_mode == VOIDmode)
5644 word_mode = mode;
5645 }
5646
5647 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5648 mode != VOIDmode;
5649 mode = GET_MODE_WIDER_MODE (mode))
5650 {
5651 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5652 && double_mode == VOIDmode)
5653 double_mode = mode;
5654 }
5655
5656 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5657
5658 #ifdef INIT_EXPANDERS
5659 /* This is to initialize {init|mark|free}_machine_status before the first
5660 call to push_function_context_to. This is needed by the Chill front
5661 end which calls push_function_context_to before the first call to
5662 init_function_start. */
5663 INIT_EXPANDERS;
5664 #endif
5665
5666 /* Create the unique rtx's for certain rtx codes and operand values. */
5667
5668 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5669 tries to use these variables. */
5670 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5671 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5672 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5673
5674 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5675 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5676 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5677 else
5678 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5679
5680 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5681 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5682 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5683
5684 dconstm1 = dconst1;
5685 dconstm1.sign = 1;
5686
5687 dconsthalf = dconst1;
5688 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5689
5690 for (i = 0; i < 3; i++)
5691 {
5692 const REAL_VALUE_TYPE *const r =
5693 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5694
5695 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5696 mode != VOIDmode;
5697 mode = GET_MODE_WIDER_MODE (mode))
5698 const_tiny_rtx[i][(int) mode] =
5699 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5700
5701 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5702 mode != VOIDmode;
5703 mode = GET_MODE_WIDER_MODE (mode))
5704 const_tiny_rtx[i][(int) mode] =
5705 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5706
5707 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5708
5709 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5710 mode != VOIDmode;
5711 mode = GET_MODE_WIDER_MODE (mode))
5712 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5713
5714 for (mode = MIN_MODE_PARTIAL_INT;
5715 mode <= MAX_MODE_PARTIAL_INT;
5716 mode = (enum machine_mode)((int)(mode) + 1))
5717 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5718 }
5719
5720 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5721
5722 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5723 mode != VOIDmode;
5724 mode = GET_MODE_WIDER_MODE (mode))
5725 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5726
5727 for (mode = MIN_MODE_PARTIAL_INT;
5728 mode <= MAX_MODE_PARTIAL_INT;
5729 mode = (enum machine_mode)((int)(mode) + 1))
5730 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5731
5732 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5733 mode != VOIDmode;
5734 mode = GET_MODE_WIDER_MODE (mode))
5735 {
5736 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5737 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5738 }
5739
5740 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5741 mode != VOIDmode;
5742 mode = GET_MODE_WIDER_MODE (mode))
5743 {
5744 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5745 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5746 }
5747
5748 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5749 mode != VOIDmode;
5750 mode = GET_MODE_WIDER_MODE (mode))
5751 {
5752 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5753 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5754 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5755 }
5756
5757 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5758 mode != VOIDmode;
5759 mode = GET_MODE_WIDER_MODE (mode))
5760 {
5761 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5762 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5763 }
5764
5765 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5766 mode != VOIDmode;
5767 mode = GET_MODE_WIDER_MODE (mode))
5768 {
5769 FCONST0(mode).data.high = 0;
5770 FCONST0(mode).data.low = 0;
5771 FCONST0(mode).mode = mode;
5772 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5773 FCONST0 (mode), mode);
5774 }
5775
5776 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5777 mode != VOIDmode;
5778 mode = GET_MODE_WIDER_MODE (mode))
5779 {
5780 FCONST0(mode).data.high = 0;
5781 FCONST0(mode).data.low = 0;
5782 FCONST0(mode).mode = mode;
5783 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5784 FCONST0 (mode), mode);
5785 }
5786
5787 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5788 mode != VOIDmode;
5789 mode = GET_MODE_WIDER_MODE (mode))
5790 {
5791 FCONST0(mode).data.high = 0;
5792 FCONST0(mode).data.low = 0;
5793 FCONST0(mode).mode = mode;
5794 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5795 FCONST0 (mode), mode);
5796
5797 /* We store the value 1. */
5798 FCONST1(mode).data.high = 0;
5799 FCONST1(mode).data.low = 0;
5800 FCONST1(mode).mode = mode;
5801 FCONST1(mode).data
5802 = double_int_one.lshift (GET_MODE_FBIT (mode),
5803 HOST_BITS_PER_DOUBLE_INT,
5804 SIGNED_FIXED_POINT_MODE_P (mode));
5805 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5806 FCONST1 (mode), mode);
5807 }
5808
5809 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5810 mode != VOIDmode;
5811 mode = GET_MODE_WIDER_MODE (mode))
5812 {
5813 FCONST0(mode).data.high = 0;
5814 FCONST0(mode).data.low = 0;
5815 FCONST0(mode).mode = mode;
5816 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5817 FCONST0 (mode), mode);
5818
5819 /* We store the value 1. */
5820 FCONST1(mode).data.high = 0;
5821 FCONST1(mode).data.low = 0;
5822 FCONST1(mode).mode = mode;
5823 FCONST1(mode).data
5824 = double_int_one.lshift (GET_MODE_FBIT (mode),
5825 HOST_BITS_PER_DOUBLE_INT,
5826 SIGNED_FIXED_POINT_MODE_P (mode));
5827 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5828 FCONST1 (mode), mode);
5829 }
5830
5831 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5832 mode != VOIDmode;
5833 mode = GET_MODE_WIDER_MODE (mode))
5834 {
5835 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5836 }
5837
5838 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5839 mode != VOIDmode;
5840 mode = GET_MODE_WIDER_MODE (mode))
5841 {
5842 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5843 }
5844
5845 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5846 mode != VOIDmode;
5847 mode = GET_MODE_WIDER_MODE (mode))
5848 {
5849 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5850 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5851 }
5852
5853 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5854 mode != VOIDmode;
5855 mode = GET_MODE_WIDER_MODE (mode))
5856 {
5857 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5858 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5859 }
5860
5861 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5862 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5863 const_tiny_rtx[0][i] = const0_rtx;
5864
5865 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5866 if (STORE_FLAG_VALUE == 1)
5867 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5868
5869 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5870 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5871 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5872 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5873 }
5874 \f
5875 /* Produce exact duplicate of insn INSN after AFTER.
5876 Care updating of libcall regions if present. */
5877
5878 rtx
5879 emit_copy_of_insn_after (rtx insn, rtx after)
5880 {
5881 rtx new_rtx, link;
5882
5883 switch (GET_CODE (insn))
5884 {
5885 case INSN:
5886 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5887 break;
5888
5889 case JUMP_INSN:
5890 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5891 break;
5892
5893 case DEBUG_INSN:
5894 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5895 break;
5896
5897 case CALL_INSN:
5898 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5899 if (CALL_INSN_FUNCTION_USAGE (insn))
5900 CALL_INSN_FUNCTION_USAGE (new_rtx)
5901 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5902 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5903 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5904 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5905 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5906 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5907 break;
5908
5909 default:
5910 gcc_unreachable ();
5911 }
5912
5913 /* Update LABEL_NUSES. */
5914 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5915
5916 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
5917
5918 /* If the old insn is frame related, then so is the new one. This is
5919 primarily needed for IA-64 unwind info which marks epilogue insns,
5920 which may be duplicated by the basic block reordering code. */
5921 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5922
5923 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5924 will make them. REG_LABEL_TARGETs are created there too, but are
5925 supposed to be sticky, so we copy them. */
5926 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5927 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5928 {
5929 if (GET_CODE (link) == EXPR_LIST)
5930 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5931 copy_insn_1 (XEXP (link, 0)));
5932 else
5933 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5934 }
5935
5936 INSN_CODE (new_rtx) = INSN_CODE (insn);
5937 return new_rtx;
5938 }
5939
5940 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5941 rtx
5942 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5943 {
5944 if (hard_reg_clobbers[mode][regno])
5945 return hard_reg_clobbers[mode][regno];
5946 else
5947 return (hard_reg_clobbers[mode][regno] =
5948 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5949 }
5950
5951 location_t prologue_location;
5952 location_t epilogue_location;
5953
5954 /* Hold current location information and last location information, so the
5955 datastructures are built lazily only when some instructions in given
5956 place are needed. */
5957 static location_t curr_location;
5958
5959 /* Allocate insn location datastructure. */
5960 void
5961 insn_locations_init (void)
5962 {
5963 prologue_location = epilogue_location = 0;
5964 curr_location = UNKNOWN_LOCATION;
5965 }
5966
5967 /* At the end of emit stage, clear current location. */
5968 void
5969 insn_locations_finalize (void)
5970 {
5971 epilogue_location = curr_location;
5972 curr_location = UNKNOWN_LOCATION;
5973 }
5974
5975 /* Set current location. */
5976 void
5977 set_curr_insn_location (location_t location)
5978 {
5979 curr_location = location;
5980 }
5981
5982 /* Get current location. */
5983 location_t
5984 curr_insn_location (void)
5985 {
5986 return curr_location;
5987 }
5988
5989 /* Return lexical scope block insn belongs to. */
5990 tree
5991 insn_scope (const_rtx insn)
5992 {
5993 return LOCATION_BLOCK (INSN_LOCATION (insn));
5994 }
5995
5996 /* Return line number of the statement that produced this insn. */
5997 int
5998 insn_line (const_rtx insn)
5999 {
6000 return LOCATION_LINE (INSN_LOCATION (insn));
6001 }
6002
6003 /* Return source file of the statement that produced this insn. */
6004 const char *
6005 insn_file (const_rtx insn)
6006 {
6007 return LOCATION_FILE (INSN_LOCATION (insn));
6008 }
6009
6010 /* Return true if memory model MODEL requires a pre-operation (release-style)
6011 barrier or a post-operation (acquire-style) barrier. While not universal,
6012 this function matches behavior of several targets. */
6013
6014 bool
6015 need_atomic_barrier_p (enum memmodel model, bool pre)
6016 {
6017 switch (model)
6018 {
6019 case MEMMODEL_RELAXED:
6020 case MEMMODEL_CONSUME:
6021 return false;
6022 case MEMMODEL_RELEASE:
6023 return pre;
6024 case MEMMODEL_ACQUIRE:
6025 return !pre;
6026 case MEMMODEL_ACQ_REL:
6027 case MEMMODEL_SEQ_CST:
6028 return true;
6029 default:
6030 gcc_unreachable ();
6031 }
6032 }
6033 \f
6034 #include "gt-emit-rtl.h"