real.h (struct real_format): Split the signbit field into two two fields, signbit_ro...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Nonzero means do not generate NOTEs for source line numbers. */
73
74 static int no_line_numbers;
75
76 /* Commonly used rtx's, so that we only need space for one copy.
77 These are initialized once for the entire compilation.
78 All of these are unique; no other rtx-object will be equal to any
79 of these. */
80
81 rtx global_rtl[GR_MAX];
82
83 /* Commonly used RTL for hard registers. These objects are not necessarily
84 unique, so we allocate them separately from global_rtl. They are
85 initialized once per compilation unit, then copied into regno_reg_rtx
86 at the beginning of each function. */
87 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx. */
92
93 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
94
95 rtx const_true_rtx;
96
97 REAL_VALUE_TYPE dconst0;
98 REAL_VALUE_TYPE dconst1;
99 REAL_VALUE_TYPE dconst2;
100 REAL_VALUE_TYPE dconst3;
101 REAL_VALUE_TYPE dconst10;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconstm2;
104 REAL_VALUE_TYPE dconsthalf;
105 REAL_VALUE_TYPE dconstthird;
106 REAL_VALUE_TYPE dconstpi;
107 REAL_VALUE_TYPE dconste;
108
109 /* All references to the following fixed hard registers go through
110 these unique rtl objects. On machines where the frame-pointer and
111 arg-pointer are the same register, they use the same unique object.
112
113 After register allocation, other rtl objects which used to be pseudo-regs
114 may be clobbered to refer to the frame-pointer register.
115 But references that were originally to the frame-pointer can be
116 distinguished from the others because they contain frame_pointer_rtx.
117
118 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
119 tricky: until register elimination has taken place hard_frame_pointer_rtx
120 should be used if it is being set, and frame_pointer_rtx otherwise. After
121 register elimination hard_frame_pointer_rtx should always be used.
122 On machines where the two registers are same (most) then these are the
123 same.
124
125 In an inline procedure, the stack and frame pointer rtxs may not be
126 used for anything else. */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
146 htab_t const_int_htab;
147
148 /* A hash table storing memory attribute structures. */
149 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
150 htab_t mem_attrs_htab;
151
152 /* A hash table storing register attribute structures. */
153 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
154 htab_t reg_attrs_htab;
155
156 /* A hash table storing all CONST_DOUBLEs. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
158 htab_t const_double_htab;
159
160 #define first_insn (cfun->emit->x_first_insn)
161 #define last_insn (cfun->emit->x_last_insn)
162 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
163 #define last_location (cfun->emit->x_last_location)
164 #define first_label_num (cfun->emit->x_first_label_num)
165
166 static rtx make_jump_insn_raw (rtx);
167 static rtx make_call_insn_raw (rtx);
168 static rtx find_line_note (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
188
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (const void *x)
197 {
198 return (hashval_t) INTVAL ((rtx) x);
199 }
200
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
204
205 static int
206 const_int_htab_eq (const void *x, const void *y)
207 {
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
209 }
210
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
214 {
215 rtx value = (rtx) x;
216 hashval_t h;
217
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
221 {
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
225 }
226 return h;
227 }
228
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
233 {
234 rtx a = (rtx)x, b = (rtx)y;
235
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
244 }
245
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
247
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
250 {
251 mem_attrs *p = (mem_attrs *) x;
252
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) p->expr);
257 }
258
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
262
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
265 {
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
268
269 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
270 && p->size == q->size && p->align == q->align);
271 }
272
273 /* Allocate a new mem_attrs structure and insert it into the hash table if
274 one identical to it is not already in the table. We are doing this for
275 MEM of mode MODE. */
276
277 static mem_attrs *
278 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
279 unsigned int align, enum machine_mode mode)
280 {
281 mem_attrs attrs;
282 void **slot;
283
284 /* If everything is the default, we can just return zero.
285 This must match what the corresponding MEM_* macros return when the
286 field is not present. */
287 if (alias == 0 && expr == 0 && offset == 0
288 && (size == 0
289 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
290 && (STRICT_ALIGNMENT && mode != BLKmode
291 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
292 return 0;
293
294 attrs.alias = alias;
295 attrs.expr = expr;
296 attrs.offset = offset;
297 attrs.size = size;
298 attrs.align = align;
299
300 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
301 if (*slot == 0)
302 {
303 *slot = ggc_alloc (sizeof (mem_attrs));
304 memcpy (*slot, &attrs, sizeof (mem_attrs));
305 }
306
307 return *slot;
308 }
309
310 /* Returns a hash code for X (which is a really a reg_attrs *). */
311
312 static hashval_t
313 reg_attrs_htab_hash (const void *x)
314 {
315 reg_attrs *p = (reg_attrs *) x;
316
317 return ((p->offset * 1000) ^ (long) p->decl);
318 }
319
320 /* Returns nonzero if the value represented by X (which is really a
321 reg_attrs *) is the same as that given by Y (which is also really a
322 reg_attrs *). */
323
324 static int
325 reg_attrs_htab_eq (const void *x, const void *y)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328 reg_attrs *q = (reg_attrs *) y;
329
330 return (p->decl == q->decl && p->offset == q->offset);
331 }
332 /* Allocate a new reg_attrs structure and insert it into the hash table if
333 one identical to it is not already in the table. We are doing this for
334 MEM of mode MODE. */
335
336 static reg_attrs *
337 get_reg_attrs (tree decl, int offset)
338 {
339 reg_attrs attrs;
340 void **slot;
341
342 /* If everything is the default, we can just return zero. */
343 if (decl == 0 && offset == 0)
344 return 0;
345
346 attrs.decl = decl;
347 attrs.offset = offset;
348
349 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
350 if (*slot == 0)
351 {
352 *slot = ggc_alloc (sizeof (reg_attrs));
353 memcpy (*slot, &attrs, sizeof (reg_attrs));
354 }
355
356 return *slot;
357 }
358
359 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
360 don't attempt to share with the various global pieces of rtl (such as
361 frame_pointer_rtx). */
362
363 rtx
364 gen_raw_REG (enum machine_mode mode, int regno)
365 {
366 rtx x = gen_rtx_raw_REG (mode, regno);
367 ORIGINAL_REGNO (x) = regno;
368 return x;
369 }
370
371 /* There are some RTL codes that require special attention; the generation
372 functions do the raw handling. If you add to this list, modify
373 special_rtx in gengenrtl.c as well. */
374
375 rtx
376 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
377 {
378 void **slot;
379
380 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
381 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
382
383 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
384 if (const_true_rtx && arg == STORE_FLAG_VALUE)
385 return const_true_rtx;
386 #endif
387
388 /* Look up the CONST_INT in the hash table. */
389 slot = htab_find_slot_with_hash (const_int_htab, &arg,
390 (hashval_t) arg, INSERT);
391 if (*slot == 0)
392 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
393
394 return (rtx) *slot;
395 }
396
397 rtx
398 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
399 {
400 return GEN_INT (trunc_int_for_mode (c, mode));
401 }
402
403 /* CONST_DOUBLEs might be created from pairs of integers, or from
404 REAL_VALUE_TYPEs. Also, their length is known only at run time,
405 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
406
407 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
408 hash table. If so, return its counterpart; otherwise add it
409 to the hash table and return it. */
410 static rtx
411 lookup_const_double (rtx real)
412 {
413 void **slot = htab_find_slot (const_double_htab, real, INSERT);
414 if (*slot == 0)
415 *slot = real;
416
417 return (rtx) *slot;
418 }
419
420 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
421 VALUE in mode MODE. */
422 rtx
423 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
424 {
425 rtx real = rtx_alloc (CONST_DOUBLE);
426 PUT_MODE (real, mode);
427
428 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
429
430 return lookup_const_double (real);
431 }
432
433 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
434 of ints: I0 is the low-order word and I1 is the high-order word.
435 Do not use this routine for non-integer modes; convert to
436 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
437
438 rtx
439 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
440 {
441 rtx value;
442 unsigned int i;
443
444 if (mode != VOIDmode)
445 {
446 int width;
447
448 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
449 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
450 /* We can get a 0 for an error mark. */
451 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
452 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
453
454 /* We clear out all bits that don't belong in MODE, unless they and
455 our sign bit are all one. So we get either a reasonable negative
456 value or a reasonable unsigned value for this mode. */
457 width = GET_MODE_BITSIZE (mode);
458 if (width < HOST_BITS_PER_WIDE_INT
459 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
460 != ((HOST_WIDE_INT) (-1) << (width - 1))))
461 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
462 else if (width == HOST_BITS_PER_WIDE_INT
463 && ! (i1 == ~0 && i0 < 0))
464 i1 = 0;
465 else
466 /* We should be able to represent this value as a constant. */
467 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
468
469 /* If this would be an entire word for the target, but is not for
470 the host, then sign-extend on the host so that the number will
471 look the same way on the host that it would on the target.
472
473 For example, when building a 64 bit alpha hosted 32 bit sparc
474 targeted compiler, then we want the 32 bit unsigned value -1 to be
475 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
476 The latter confuses the sparc backend. */
477
478 if (width < HOST_BITS_PER_WIDE_INT
479 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
480 i0 |= ((HOST_WIDE_INT) (-1) << width);
481
482 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
483 CONST_INT.
484
485 ??? Strictly speaking, this is wrong if we create a CONST_INT for
486 a large unsigned constant with the size of MODE being
487 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
488 in a wider mode. In that case we will mis-interpret it as a
489 negative number.
490
491 Unfortunately, the only alternative is to make a CONST_DOUBLE for
492 any constant in any mode if it is an unsigned constant larger
493 than the maximum signed integer in an int on the host. However,
494 doing this will break everyone that always expects to see a
495 CONST_INT for SImode and smaller.
496
497 We have always been making CONST_INTs in this case, so nothing
498 new is being broken. */
499
500 if (width <= HOST_BITS_PER_WIDE_INT)
501 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
502 }
503
504 /* If this integer fits in one word, return a CONST_INT. */
505 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
506 return GEN_INT (i0);
507
508 /* We use VOIDmode for integers. */
509 value = rtx_alloc (CONST_DOUBLE);
510 PUT_MODE (value, VOIDmode);
511
512 CONST_DOUBLE_LOW (value) = i0;
513 CONST_DOUBLE_HIGH (value) = i1;
514
515 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
516 XWINT (value, i) = 0;
517
518 return lookup_const_double (value);
519 }
520
521 rtx
522 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
523 {
524 /* In case the MD file explicitly references the frame pointer, have
525 all such references point to the same frame pointer. This is
526 used during frame pointer elimination to distinguish the explicit
527 references to these registers from pseudos that happened to be
528 assigned to them.
529
530 If we have eliminated the frame pointer or arg pointer, we will
531 be using it as a normal register, for example as a spill
532 register. In such cases, we might be accessing it in a mode that
533 is not Pmode and therefore cannot use the pre-allocated rtx.
534
535 Also don't do this when we are making new REGs in reload, since
536 we don't want to get confused with the real pointers. */
537
538 if (mode == Pmode && !reload_in_progress)
539 {
540 if (regno == FRAME_POINTER_REGNUM
541 && (!reload_completed || frame_pointer_needed))
542 return frame_pointer_rtx;
543 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
544 if (regno == HARD_FRAME_POINTER_REGNUM
545 && (!reload_completed || frame_pointer_needed))
546 return hard_frame_pointer_rtx;
547 #endif
548 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
549 if (regno == ARG_POINTER_REGNUM)
550 return arg_pointer_rtx;
551 #endif
552 #ifdef RETURN_ADDRESS_POINTER_REGNUM
553 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
554 return return_address_pointer_rtx;
555 #endif
556 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
557 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
558 return pic_offset_table_rtx;
559 if (regno == STACK_POINTER_REGNUM)
560 return stack_pointer_rtx;
561 }
562
563 #if 0
564 /* If the per-function register table has been set up, try to re-use
565 an existing entry in that table to avoid useless generation of RTL.
566
567 This code is disabled for now until we can fix the various backends
568 which depend on having non-shared hard registers in some cases. Long
569 term we want to re-enable this code as it can significantly cut down
570 on the amount of useless RTL that gets generated.
571
572 We'll also need to fix some code that runs after reload that wants to
573 set ORIGINAL_REGNO. */
574
575 if (cfun
576 && cfun->emit
577 && regno_reg_rtx
578 && regno < FIRST_PSEUDO_REGISTER
579 && reg_raw_mode[regno] == mode)
580 return regno_reg_rtx[regno];
581 #endif
582
583 return gen_raw_REG (mode, regno);
584 }
585
586 rtx
587 gen_rtx_MEM (enum machine_mode mode, rtx addr)
588 {
589 rtx rt = gen_rtx_raw_MEM (mode, addr);
590
591 /* This field is not cleared by the mere allocation of the rtx, so
592 we clear it here. */
593 MEM_ATTRS (rt) = 0;
594
595 return rt;
596 }
597
598 /* Generate a memory referring to non-trapping constant memory. */
599
600 rtx
601 gen_const_mem (enum machine_mode mode, rtx addr)
602 {
603 rtx mem = gen_rtx_MEM (mode, addr);
604 MEM_READONLY_P (mem) = 1;
605 MEM_NOTRAP_P (mem) = 1;
606 return mem;
607 }
608
609 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
610 this construct would be valid, and false otherwise. */
611
612 bool
613 validate_subreg (enum machine_mode omode, enum machine_mode imode,
614 rtx reg, unsigned int offset)
615 {
616 unsigned int isize = GET_MODE_SIZE (imode);
617 unsigned int osize = GET_MODE_SIZE (omode);
618
619 /* All subregs must be aligned. */
620 if (offset % osize != 0)
621 return false;
622
623 /* The subreg offset cannot be outside the inner object. */
624 if (offset >= isize)
625 return false;
626
627 /* ??? This should not be here. Temporarily continue to allow word_mode
628 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
629 Generally, backends are doing something sketchy but it'll take time to
630 fix them all. */
631 if (omode == word_mode)
632 ;
633 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
634 is the culprit here, and not the backends. */
635 else if (osize >= UNITS_PER_WORD && isize >= osize)
636 ;
637 /* Allow component subregs of complex and vector. Though given the below
638 extraction rules, it's not always clear what that means. */
639 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
640 && GET_MODE_INNER (imode) == omode)
641 ;
642 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
643 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
644 represent this. It's questionable if this ought to be represented at
645 all -- why can't this all be hidden in post-reload splitters that make
646 arbitrarily mode changes to the registers themselves. */
647 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
648 ;
649 /* Subregs involving floating point modes are not allowed to
650 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
651 (subreg:SI (reg:DF) 0) isn't. */
652 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
653 {
654 if (isize != osize)
655 return false;
656 }
657
658 /* Paradoxical subregs must have offset zero. */
659 if (osize > isize)
660 return offset == 0;
661
662 /* This is a normal subreg. Verify that the offset is representable. */
663
664 /* For hard registers, we already have most of these rules collected in
665 subreg_offset_representable_p. */
666 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
667 {
668 unsigned int regno = REGNO (reg);
669
670 #ifdef CANNOT_CHANGE_MODE_CLASS
671 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
672 && GET_MODE_INNER (imode) == omode)
673 ;
674 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
675 return false;
676 #endif
677
678 return subreg_offset_representable_p (regno, imode, offset, omode);
679 }
680
681 /* For pseudo registers, we want most of the same checks. Namely:
682 If the register no larger than a word, the subreg must be lowpart.
683 If the register is larger than a word, the subreg must be the lowpart
684 of a subword. A subreg does *not* perform arbitrary bit extraction.
685 Given that we've already checked mode/offset alignment, we only have
686 to check subword subregs here. */
687 if (osize < UNITS_PER_WORD)
688 {
689 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
690 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
691 if (offset % UNITS_PER_WORD != low_off)
692 return false;
693 }
694 return true;
695 }
696
697 rtx
698 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
699 {
700 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
701 return gen_rtx_raw_SUBREG (mode, reg, offset);
702 }
703
704 /* Generate a SUBREG representing the least-significant part of REG if MODE
705 is smaller than mode of REG, otherwise paradoxical SUBREG. */
706
707 rtx
708 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
709 {
710 enum machine_mode inmode;
711
712 inmode = GET_MODE (reg);
713 if (inmode == VOIDmode)
714 inmode = mode;
715 return gen_rtx_SUBREG (mode, reg,
716 subreg_lowpart_offset (mode, inmode));
717 }
718 \f
719 /* gen_rtvec (n, [rt1, ..., rtn])
720 **
721 ** This routine creates an rtvec and stores within it the
722 ** pointers to rtx's which are its arguments.
723 */
724
725 /*VARARGS1*/
726 rtvec
727 gen_rtvec (int n, ...)
728 {
729 int i, save_n;
730 rtx *vector;
731 va_list p;
732
733 va_start (p, n);
734
735 if (n == 0)
736 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
737
738 vector = alloca (n * sizeof (rtx));
739
740 for (i = 0; i < n; i++)
741 vector[i] = va_arg (p, rtx);
742
743 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
744 save_n = n;
745 va_end (p);
746
747 return gen_rtvec_v (save_n, vector);
748 }
749
750 rtvec
751 gen_rtvec_v (int n, rtx *argp)
752 {
753 int i;
754 rtvec rt_val;
755
756 if (n == 0)
757 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
758
759 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
760
761 for (i = 0; i < n; i++)
762 rt_val->elem[i] = *argp++;
763
764 return rt_val;
765 }
766 \f
767 /* Generate a REG rtx for a new pseudo register of mode MODE.
768 This pseudo is assigned the next sequential register number. */
769
770 rtx
771 gen_reg_rtx (enum machine_mode mode)
772 {
773 struct function *f = cfun;
774 rtx val;
775
776 /* Don't let anything called after initial flow analysis create new
777 registers. */
778 gcc_assert (!no_new_pseudos);
779
780 if (generating_concat_p
781 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
782 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
783 {
784 /* For complex modes, don't make a single pseudo.
785 Instead, make a CONCAT of two pseudos.
786 This allows noncontiguous allocation of the real and imaginary parts,
787 which makes much better code. Besides, allocating DCmode
788 pseudos overstrains reload on some machines like the 386. */
789 rtx realpart, imagpart;
790 enum machine_mode partmode = GET_MODE_INNER (mode);
791
792 realpart = gen_reg_rtx (partmode);
793 imagpart = gen_reg_rtx (partmode);
794 return gen_rtx_CONCAT (mode, realpart, imagpart);
795 }
796
797 /* Make sure regno_pointer_align, and regno_reg_rtx are large
798 enough to have an element for this pseudo reg number. */
799
800 if (reg_rtx_no == f->emit->regno_pointer_align_length)
801 {
802 int old_size = f->emit->regno_pointer_align_length;
803 char *new;
804 rtx *new1;
805
806 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
807 memset (new + old_size, 0, old_size);
808 f->emit->regno_pointer_align = (unsigned char *) new;
809
810 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
811 old_size * 2 * sizeof (rtx));
812 memset (new1 + old_size, 0, old_size * sizeof (rtx));
813 regno_reg_rtx = new1;
814
815 f->emit->regno_pointer_align_length = old_size * 2;
816 }
817
818 val = gen_raw_REG (mode, reg_rtx_no);
819 regno_reg_rtx[reg_rtx_no++] = val;
820 return val;
821 }
822
823 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
824 Do the big endian correction if needed. */
825
826 rtx
827 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
828 {
829 rtx new = gen_rtx_REG (mode, regno);
830 tree decl;
831 HOST_WIDE_INT var_size;
832
833 /* PR middle-end/14084
834 The problem appears when a variable is stored in a larger register
835 and later it is used in the original mode or some mode in between
836 or some part of variable is accessed.
837
838 On little endian machines there is no problem because
839 the REG_OFFSET of the start of the variable is the same when
840 accessed in any mode (it is 0).
841
842 However, this is not true on big endian machines.
843 The offset of the start of the variable is different when accessed
844 in different modes.
845 When we are taking a part of the REG we have to change the OFFSET
846 from offset WRT size of mode of REG to offset WRT size of variable.
847
848 If we would not do the big endian correction the resulting REG_OFFSET
849 would be larger than the size of the DECL.
850
851 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
852
853 REG.mode MODE DECL size old offset new offset description
854 DI SI 4 4 0 int32 in SImode
855 DI SI 1 4 0 char in SImode
856 DI QI 1 7 0 char in QImode
857 DI QI 4 5 1 1st element in QImode
858 of char[4]
859 DI HI 4 6 2 1st element in HImode
860 of int16[2]
861
862 If the size of DECL is equal or greater than the size of REG
863 we can't do this correction because the register holds the
864 whole variable or a part of the variable and thus the REG_OFFSET
865 is already correct. */
866
867 decl = REG_EXPR (reg);
868 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
869 && decl != NULL
870 && offset > 0
871 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
872 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
873 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
874 {
875 int offset_le;
876
877 /* Convert machine endian to little endian WRT size of mode of REG. */
878 if (WORDS_BIG_ENDIAN)
879 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
880 / UNITS_PER_WORD) * UNITS_PER_WORD;
881 else
882 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
883
884 if (BYTES_BIG_ENDIAN)
885 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
886 % UNITS_PER_WORD);
887 else
888 offset_le += offset % UNITS_PER_WORD;
889
890 if (offset_le >= var_size)
891 {
892 /* MODE is wider than the variable so the new reg will cover
893 the whole variable so the resulting OFFSET should be 0. */
894 offset = 0;
895 }
896 else
897 {
898 /* Convert little endian to machine endian WRT size of variable. */
899 if (WORDS_BIG_ENDIAN)
900 offset = ((var_size - 1 - offset_le)
901 / UNITS_PER_WORD) * UNITS_PER_WORD;
902 else
903 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
904
905 if (BYTES_BIG_ENDIAN)
906 offset += ((var_size - 1 - offset_le)
907 % UNITS_PER_WORD);
908 else
909 offset += offset_le % UNITS_PER_WORD;
910 }
911 }
912
913 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
914 REG_OFFSET (reg) + offset);
915 return new;
916 }
917
918 /* Set the decl for MEM to DECL. */
919
920 void
921 set_reg_attrs_from_mem (rtx reg, rtx mem)
922 {
923 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
924 REG_ATTRS (reg)
925 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
926 }
927
928 /* Set the register attributes for registers contained in PARM_RTX.
929 Use needed values from memory attributes of MEM. */
930
931 void
932 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
933 {
934 if (REG_P (parm_rtx))
935 set_reg_attrs_from_mem (parm_rtx, mem);
936 else if (GET_CODE (parm_rtx) == PARALLEL)
937 {
938 /* Check for a NULL entry in the first slot, used to indicate that the
939 parameter goes both on the stack and in registers. */
940 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
941 for (; i < XVECLEN (parm_rtx, 0); i++)
942 {
943 rtx x = XVECEXP (parm_rtx, 0, i);
944 if (REG_P (XEXP (x, 0)))
945 REG_ATTRS (XEXP (x, 0))
946 = get_reg_attrs (MEM_EXPR (mem),
947 INTVAL (XEXP (x, 1)));
948 }
949 }
950 }
951
952 /* Assign the RTX X to declaration T. */
953 void
954 set_decl_rtl (tree t, rtx x)
955 {
956 DECL_CHECK (t)->decl.rtl = x;
957
958 if (!x)
959 return;
960 /* For register, we maintain the reverse information too. */
961 if (REG_P (x))
962 REG_ATTRS (x) = get_reg_attrs (t, 0);
963 else if (GET_CODE (x) == SUBREG)
964 REG_ATTRS (SUBREG_REG (x))
965 = get_reg_attrs (t, -SUBREG_BYTE (x));
966 if (GET_CODE (x) == CONCAT)
967 {
968 if (REG_P (XEXP (x, 0)))
969 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
970 if (REG_P (XEXP (x, 1)))
971 REG_ATTRS (XEXP (x, 1))
972 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
973 }
974 if (GET_CODE (x) == PARALLEL)
975 {
976 int i;
977 for (i = 0; i < XVECLEN (x, 0); i++)
978 {
979 rtx y = XVECEXP (x, 0, i);
980 if (REG_P (XEXP (y, 0)))
981 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
982 }
983 }
984 }
985
986 /* Assign the RTX X to parameter declaration T. */
987 void
988 set_decl_incoming_rtl (tree t, rtx x)
989 {
990 DECL_INCOMING_RTL (t) = x;
991
992 if (!x)
993 return;
994 /* For register, we maintain the reverse information too. */
995 if (REG_P (x))
996 REG_ATTRS (x) = get_reg_attrs (t, 0);
997 else if (GET_CODE (x) == SUBREG)
998 REG_ATTRS (SUBREG_REG (x))
999 = get_reg_attrs (t, -SUBREG_BYTE (x));
1000 if (GET_CODE (x) == CONCAT)
1001 {
1002 if (REG_P (XEXP (x, 0)))
1003 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1004 if (REG_P (XEXP (x, 1)))
1005 REG_ATTRS (XEXP (x, 1))
1006 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1007 }
1008 if (GET_CODE (x) == PARALLEL)
1009 {
1010 int i, start;
1011
1012 /* Check for a NULL entry, used to indicate that the parameter goes
1013 both on the stack and in registers. */
1014 if (XEXP (XVECEXP (x, 0, 0), 0))
1015 start = 0;
1016 else
1017 start = 1;
1018
1019 for (i = start; i < XVECLEN (x, 0); i++)
1020 {
1021 rtx y = XVECEXP (x, 0, i);
1022 if (REG_P (XEXP (y, 0)))
1023 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1024 }
1025 }
1026 }
1027
1028 /* Identify REG (which may be a CONCAT) as a user register. */
1029
1030 void
1031 mark_user_reg (rtx reg)
1032 {
1033 if (GET_CODE (reg) == CONCAT)
1034 {
1035 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1036 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1037 }
1038 else
1039 {
1040 gcc_assert (REG_P (reg));
1041 REG_USERVAR_P (reg) = 1;
1042 }
1043 }
1044
1045 /* Identify REG as a probable pointer register and show its alignment
1046 as ALIGN, if nonzero. */
1047
1048 void
1049 mark_reg_pointer (rtx reg, int align)
1050 {
1051 if (! REG_POINTER (reg))
1052 {
1053 REG_POINTER (reg) = 1;
1054
1055 if (align)
1056 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1057 }
1058 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1059 /* We can no-longer be sure just how aligned this pointer is. */
1060 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1061 }
1062
1063 /* Return 1 plus largest pseudo reg number used in the current function. */
1064
1065 int
1066 max_reg_num (void)
1067 {
1068 return reg_rtx_no;
1069 }
1070
1071 /* Return 1 + the largest label number used so far in the current function. */
1072
1073 int
1074 max_label_num (void)
1075 {
1076 return label_num;
1077 }
1078
1079 /* Return first label number used in this function (if any were used). */
1080
1081 int
1082 get_first_label_num (void)
1083 {
1084 return first_label_num;
1085 }
1086
1087 /* If the rtx for label was created during the expansion of a nested
1088 function, then first_label_num won't include this label number.
1089 Fix this now so that array indicies work later. */
1090
1091 void
1092 maybe_set_first_label_num (rtx x)
1093 {
1094 if (CODE_LABEL_NUMBER (x) < first_label_num)
1095 first_label_num = CODE_LABEL_NUMBER (x);
1096 }
1097 \f
1098 /* Return a value representing some low-order bits of X, where the number
1099 of low-order bits is given by MODE. Note that no conversion is done
1100 between floating-point and fixed-point values, rather, the bit
1101 representation is returned.
1102
1103 This function handles the cases in common between gen_lowpart, below,
1104 and two variants in cse.c and combine.c. These are the cases that can
1105 be safely handled at all points in the compilation.
1106
1107 If this is not a case we can handle, return 0. */
1108
1109 rtx
1110 gen_lowpart_common (enum machine_mode mode, rtx x)
1111 {
1112 int msize = GET_MODE_SIZE (mode);
1113 int xsize;
1114 int offset = 0;
1115 enum machine_mode innermode;
1116
1117 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1118 so we have to make one up. Yuk. */
1119 innermode = GET_MODE (x);
1120 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1121 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1122 else if (innermode == VOIDmode)
1123 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1124
1125 xsize = GET_MODE_SIZE (innermode);
1126
1127 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1128
1129 if (innermode == mode)
1130 return x;
1131
1132 /* MODE must occupy no more words than the mode of X. */
1133 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1134 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1135 return 0;
1136
1137 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1138 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1139 return 0;
1140
1141 offset = subreg_lowpart_offset (mode, innermode);
1142
1143 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1144 && (GET_MODE_CLASS (mode) == MODE_INT
1145 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1146 {
1147 /* If we are getting the low-order part of something that has been
1148 sign- or zero-extended, we can either just use the object being
1149 extended or make a narrower extension. If we want an even smaller
1150 piece than the size of the object being extended, call ourselves
1151 recursively.
1152
1153 This case is used mostly by combine and cse. */
1154
1155 if (GET_MODE (XEXP (x, 0)) == mode)
1156 return XEXP (x, 0);
1157 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1158 return gen_lowpart_common (mode, XEXP (x, 0));
1159 else if (msize < xsize)
1160 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1161 }
1162 else if (GET_CODE (x) == SUBREG || REG_P (x)
1163 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1164 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1165 return simplify_gen_subreg (mode, x, innermode, offset);
1166
1167 /* Otherwise, we can't do this. */
1168 return 0;
1169 }
1170 \f
1171 rtx
1172 gen_highpart (enum machine_mode mode, rtx x)
1173 {
1174 unsigned int msize = GET_MODE_SIZE (mode);
1175 rtx result;
1176
1177 /* This case loses if X is a subreg. To catch bugs early,
1178 complain if an invalid MODE is used even in other cases. */
1179 gcc_assert (msize <= UNITS_PER_WORD
1180 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1181
1182 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1183 subreg_highpart_offset (mode, GET_MODE (x)));
1184 gcc_assert (result);
1185
1186 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1187 the target if we have a MEM. gen_highpart must return a valid operand,
1188 emitting code if necessary to do so. */
1189 if (MEM_P (result))
1190 {
1191 result = validize_mem (result);
1192 gcc_assert (result);
1193 }
1194
1195 return result;
1196 }
1197
1198 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1199 be VOIDmode constant. */
1200 rtx
1201 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1202 {
1203 if (GET_MODE (exp) != VOIDmode)
1204 {
1205 gcc_assert (GET_MODE (exp) == innermode);
1206 return gen_highpart (outermode, exp);
1207 }
1208 return simplify_gen_subreg (outermode, exp, innermode,
1209 subreg_highpart_offset (outermode, innermode));
1210 }
1211
1212 /* Return offset in bytes to get OUTERMODE low part
1213 of the value in mode INNERMODE stored in memory in target format. */
1214
1215 unsigned int
1216 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1217 {
1218 unsigned int offset = 0;
1219 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1220
1221 if (difference > 0)
1222 {
1223 if (WORDS_BIG_ENDIAN)
1224 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1225 if (BYTES_BIG_ENDIAN)
1226 offset += difference % UNITS_PER_WORD;
1227 }
1228
1229 return offset;
1230 }
1231
1232 /* Return offset in bytes to get OUTERMODE high part
1233 of the value in mode INNERMODE stored in memory in target format. */
1234 unsigned int
1235 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1236 {
1237 unsigned int offset = 0;
1238 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1239
1240 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1241
1242 if (difference > 0)
1243 {
1244 if (! WORDS_BIG_ENDIAN)
1245 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1246 if (! BYTES_BIG_ENDIAN)
1247 offset += difference % UNITS_PER_WORD;
1248 }
1249
1250 return offset;
1251 }
1252
1253 /* Return 1 iff X, assumed to be a SUBREG,
1254 refers to the least significant part of its containing reg.
1255 If X is not a SUBREG, always return 1 (it is its own low part!). */
1256
1257 int
1258 subreg_lowpart_p (rtx x)
1259 {
1260 if (GET_CODE (x) != SUBREG)
1261 return 1;
1262 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1263 return 0;
1264
1265 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1266 == SUBREG_BYTE (x));
1267 }
1268 \f
1269 /* Return subword OFFSET of operand OP.
1270 The word number, OFFSET, is interpreted as the word number starting
1271 at the low-order address. OFFSET 0 is the low-order word if not
1272 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1273
1274 If we cannot extract the required word, we return zero. Otherwise,
1275 an rtx corresponding to the requested word will be returned.
1276
1277 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1278 reload has completed, a valid address will always be returned. After
1279 reload, if a valid address cannot be returned, we return zero.
1280
1281 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1282 it is the responsibility of the caller.
1283
1284 MODE is the mode of OP in case it is a CONST_INT.
1285
1286 ??? This is still rather broken for some cases. The problem for the
1287 moment is that all callers of this thing provide no 'goal mode' to
1288 tell us to work with. This exists because all callers were written
1289 in a word based SUBREG world.
1290 Now use of this function can be deprecated by simplify_subreg in most
1291 cases.
1292 */
1293
1294 rtx
1295 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1296 {
1297 if (mode == VOIDmode)
1298 mode = GET_MODE (op);
1299
1300 gcc_assert (mode != VOIDmode);
1301
1302 /* If OP is narrower than a word, fail. */
1303 if (mode != BLKmode
1304 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1305 return 0;
1306
1307 /* If we want a word outside OP, return zero. */
1308 if (mode != BLKmode
1309 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1310 return const0_rtx;
1311
1312 /* Form a new MEM at the requested address. */
1313 if (MEM_P (op))
1314 {
1315 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1316
1317 if (! validate_address)
1318 return new;
1319
1320 else if (reload_completed)
1321 {
1322 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1323 return 0;
1324 }
1325 else
1326 return replace_equiv_address (new, XEXP (new, 0));
1327 }
1328
1329 /* Rest can be handled by simplify_subreg. */
1330 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1331 }
1332
1333 /* Similar to `operand_subword', but never return 0. If we can't extract
1334 the required subword, put OP into a register and try again. If that fails,
1335 abort. We always validate the address in this case.
1336
1337 MODE is the mode of OP, in case it is CONST_INT. */
1338
1339 rtx
1340 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1341 {
1342 rtx result = operand_subword (op, offset, 1, mode);
1343
1344 if (result)
1345 return result;
1346
1347 if (mode != BLKmode && mode != VOIDmode)
1348 {
1349 /* If this is a register which can not be accessed by words, copy it
1350 to a pseudo register. */
1351 if (REG_P (op))
1352 op = copy_to_reg (op);
1353 else
1354 op = force_reg (mode, op);
1355 }
1356
1357 result = operand_subword (op, offset, 1, mode);
1358 gcc_assert (result);
1359
1360 return result;
1361 }
1362 \f
1363 /* Given a compare instruction, swap the operands.
1364 A test instruction is changed into a compare of 0 against the operand. */
1365
1366 void
1367 reverse_comparison (rtx insn)
1368 {
1369 rtx body = PATTERN (insn);
1370 rtx comp;
1371
1372 if (GET_CODE (body) == SET)
1373 comp = SET_SRC (body);
1374 else
1375 comp = SET_SRC (XVECEXP (body, 0, 0));
1376
1377 if (GET_CODE (comp) == COMPARE)
1378 {
1379 rtx op0 = XEXP (comp, 0);
1380 rtx op1 = XEXP (comp, 1);
1381 XEXP (comp, 0) = op1;
1382 XEXP (comp, 1) = op0;
1383 }
1384 else
1385 {
1386 rtx new = gen_rtx_COMPARE (VOIDmode,
1387 CONST0_RTX (GET_MODE (comp)), comp);
1388 if (GET_CODE (body) == SET)
1389 SET_SRC (body) = new;
1390 else
1391 SET_SRC (XVECEXP (body, 0, 0)) = new;
1392 }
1393 }
1394 \f
1395 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1396 or (2) a component ref of something variable. Represent the later with
1397 a NULL expression. */
1398
1399 static tree
1400 component_ref_for_mem_expr (tree ref)
1401 {
1402 tree inner = TREE_OPERAND (ref, 0);
1403
1404 if (TREE_CODE (inner) == COMPONENT_REF)
1405 inner = component_ref_for_mem_expr (inner);
1406 else
1407 {
1408 /* Now remove any conversions: they don't change what the underlying
1409 object is. Likewise for SAVE_EXPR. */
1410 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1411 || TREE_CODE (inner) == NON_LVALUE_EXPR
1412 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1413 || TREE_CODE (inner) == SAVE_EXPR)
1414 inner = TREE_OPERAND (inner, 0);
1415
1416 if (! DECL_P (inner))
1417 inner = NULL_TREE;
1418 }
1419
1420 if (inner == TREE_OPERAND (ref, 0))
1421 return ref;
1422 else
1423 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1424 TREE_OPERAND (ref, 1), NULL_TREE);
1425 }
1426
1427 /* Returns 1 if both MEM_EXPR can be considered equal
1428 and 0 otherwise. */
1429
1430 int
1431 mem_expr_equal_p (tree expr1, tree expr2)
1432 {
1433 if (expr1 == expr2)
1434 return 1;
1435
1436 if (! expr1 || ! expr2)
1437 return 0;
1438
1439 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1440 return 0;
1441
1442 if (TREE_CODE (expr1) == COMPONENT_REF)
1443 return
1444 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1445 TREE_OPERAND (expr2, 0))
1446 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1447 TREE_OPERAND (expr2, 1));
1448
1449 if (INDIRECT_REF_P (expr1))
1450 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1451 TREE_OPERAND (expr2, 0));
1452
1453 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1454 have been resolved here. */
1455 gcc_assert (DECL_P (expr1));
1456
1457 /* Decls with different pointers can't be equal. */
1458 return 0;
1459 }
1460
1461 /* Given REF, a MEM, and T, either the type of X or the expression
1462 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1463 if we are making a new object of this type. BITPOS is nonzero if
1464 there is an offset outstanding on T that will be applied later. */
1465
1466 void
1467 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1468 HOST_WIDE_INT bitpos)
1469 {
1470 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1471 tree expr = MEM_EXPR (ref);
1472 rtx offset = MEM_OFFSET (ref);
1473 rtx size = MEM_SIZE (ref);
1474 unsigned int align = MEM_ALIGN (ref);
1475 HOST_WIDE_INT apply_bitpos = 0;
1476 tree type;
1477
1478 /* It can happen that type_for_mode was given a mode for which there
1479 is no language-level type. In which case it returns NULL, which
1480 we can see here. */
1481 if (t == NULL_TREE)
1482 return;
1483
1484 type = TYPE_P (t) ? t : TREE_TYPE (t);
1485 if (type == error_mark_node)
1486 return;
1487
1488 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1489 wrong answer, as it assumes that DECL_RTL already has the right alias
1490 info. Callers should not set DECL_RTL until after the call to
1491 set_mem_attributes. */
1492 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1493
1494 /* Get the alias set from the expression or type (perhaps using a
1495 front-end routine) and use it. */
1496 alias = get_alias_set (t);
1497
1498 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1499 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1500 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1501 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1502
1503 /* If we are making an object of this type, or if this is a DECL, we know
1504 that it is a scalar if the type is not an aggregate. */
1505 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1506 MEM_SCALAR_P (ref) = 1;
1507
1508 /* We can set the alignment from the type if we are making an object,
1509 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1510 if (objectp || TREE_CODE (t) == INDIRECT_REF
1511 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1512 || TYPE_ALIGN_OK (type))
1513 align = MAX (align, TYPE_ALIGN (type));
1514 else
1515 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1516 {
1517 if (integer_zerop (TREE_OPERAND (t, 1)))
1518 /* We don't know anything about the alignment. */
1519 align = BITS_PER_UNIT;
1520 else
1521 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1522 }
1523
1524 /* If the size is known, we can set that. */
1525 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1526 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1527
1528 /* If T is not a type, we may be able to deduce some more information about
1529 the expression. */
1530 if (! TYPE_P (t))
1531 {
1532 tree base = get_base_address (t);
1533 if (base && DECL_P (base)
1534 && TREE_READONLY (base)
1535 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1536 {
1537 tree base_type = TREE_TYPE (base);
1538 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1539 || DECL_ARTIFICIAL (base));
1540 MEM_READONLY_P (ref) = 1;
1541 }
1542
1543 if (TREE_THIS_VOLATILE (t))
1544 MEM_VOLATILE_P (ref) = 1;
1545
1546 /* Now remove any conversions: they don't change what the underlying
1547 object is. Likewise for SAVE_EXPR. */
1548 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1549 || TREE_CODE (t) == NON_LVALUE_EXPR
1550 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1551 || TREE_CODE (t) == SAVE_EXPR)
1552 t = TREE_OPERAND (t, 0);
1553
1554 /* If this expression uses it's parent's alias set, mark it such
1555 that we won't change it. */
1556 if (component_uses_parent_alias_set (t))
1557 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1558
1559 /* If this is a decl, set the attributes of the MEM from it. */
1560 if (DECL_P (t))
1561 {
1562 expr = t;
1563 offset = const0_rtx;
1564 apply_bitpos = bitpos;
1565 size = (DECL_SIZE_UNIT (t)
1566 && host_integerp (DECL_SIZE_UNIT (t), 1)
1567 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1568 align = DECL_ALIGN (t);
1569 }
1570
1571 /* If this is a constant, we know the alignment. */
1572 else if (CONSTANT_CLASS_P (t))
1573 {
1574 align = TYPE_ALIGN (type);
1575 #ifdef CONSTANT_ALIGNMENT
1576 align = CONSTANT_ALIGNMENT (t, align);
1577 #endif
1578 }
1579
1580 /* If this is a field reference and not a bit-field, record it. */
1581 /* ??? There is some information that can be gleened from bit-fields,
1582 such as the word offset in the structure that might be modified.
1583 But skip it for now. */
1584 else if (TREE_CODE (t) == COMPONENT_REF
1585 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1586 {
1587 expr = component_ref_for_mem_expr (t);
1588 offset = const0_rtx;
1589 apply_bitpos = bitpos;
1590 /* ??? Any reason the field size would be different than
1591 the size we got from the type? */
1592 }
1593
1594 /* If this is an array reference, look for an outer field reference. */
1595 else if (TREE_CODE (t) == ARRAY_REF)
1596 {
1597 tree off_tree = size_zero_node;
1598 /* We can't modify t, because we use it at the end of the
1599 function. */
1600 tree t2 = t;
1601
1602 do
1603 {
1604 tree index = TREE_OPERAND (t2, 1);
1605 tree low_bound = array_ref_low_bound (t2);
1606 tree unit_size = array_ref_element_size (t2);
1607
1608 /* We assume all arrays have sizes that are a multiple of a byte.
1609 First subtract the lower bound, if any, in the type of the
1610 index, then convert to sizetype and multiply by the size of
1611 the array element. */
1612 if (! integer_zerop (low_bound))
1613 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1614 index, low_bound));
1615
1616 off_tree = size_binop (PLUS_EXPR,
1617 size_binop (MULT_EXPR, convert (sizetype,
1618 index),
1619 unit_size),
1620 off_tree);
1621 t2 = TREE_OPERAND (t2, 0);
1622 }
1623 while (TREE_CODE (t2) == ARRAY_REF);
1624
1625 if (DECL_P (t2))
1626 {
1627 expr = t2;
1628 offset = NULL;
1629 if (host_integerp (off_tree, 1))
1630 {
1631 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1632 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1633 align = DECL_ALIGN (t2);
1634 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1635 align = aoff;
1636 offset = GEN_INT (ioff);
1637 apply_bitpos = bitpos;
1638 }
1639 }
1640 else if (TREE_CODE (t2) == COMPONENT_REF)
1641 {
1642 expr = component_ref_for_mem_expr (t2);
1643 if (host_integerp (off_tree, 1))
1644 {
1645 offset = GEN_INT (tree_low_cst (off_tree, 1));
1646 apply_bitpos = bitpos;
1647 }
1648 /* ??? Any reason the field size would be different than
1649 the size we got from the type? */
1650 }
1651 else if (flag_argument_noalias > 1
1652 && (INDIRECT_REF_P (t2))
1653 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1654 {
1655 expr = t2;
1656 offset = NULL;
1657 }
1658 }
1659
1660 /* If this is a Fortran indirect argument reference, record the
1661 parameter decl. */
1662 else if (flag_argument_noalias > 1
1663 && (INDIRECT_REF_P (t))
1664 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1665 {
1666 expr = t;
1667 offset = NULL;
1668 }
1669 }
1670
1671 /* If we modified OFFSET based on T, then subtract the outstanding
1672 bit position offset. Similarly, increase the size of the accessed
1673 object to contain the negative offset. */
1674 if (apply_bitpos)
1675 {
1676 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1677 if (size)
1678 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1679 }
1680
1681 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1682 {
1683 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1684 we're overlapping. */
1685 offset = NULL;
1686 expr = NULL;
1687 }
1688
1689 /* Now set the attributes we computed above. */
1690 MEM_ATTRS (ref)
1691 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1692
1693 /* If this is already known to be a scalar or aggregate, we are done. */
1694 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1695 return;
1696
1697 /* If it is a reference into an aggregate, this is part of an aggregate.
1698 Otherwise we don't know. */
1699 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1700 || TREE_CODE (t) == ARRAY_RANGE_REF
1701 || TREE_CODE (t) == BIT_FIELD_REF)
1702 MEM_IN_STRUCT_P (ref) = 1;
1703 }
1704
1705 void
1706 set_mem_attributes (rtx ref, tree t, int objectp)
1707 {
1708 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1709 }
1710
1711 /* Set the decl for MEM to DECL. */
1712
1713 void
1714 set_mem_attrs_from_reg (rtx mem, rtx reg)
1715 {
1716 MEM_ATTRS (mem)
1717 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1718 GEN_INT (REG_OFFSET (reg)),
1719 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1720 }
1721
1722 /* Set the alias set of MEM to SET. */
1723
1724 void
1725 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1726 {
1727 #ifdef ENABLE_CHECKING
1728 /* If the new and old alias sets don't conflict, something is wrong. */
1729 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1730 #endif
1731
1732 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1733 MEM_SIZE (mem), MEM_ALIGN (mem),
1734 GET_MODE (mem));
1735 }
1736
1737 /* Set the alignment of MEM to ALIGN bits. */
1738
1739 void
1740 set_mem_align (rtx mem, unsigned int align)
1741 {
1742 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1743 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1744 GET_MODE (mem));
1745 }
1746
1747 /* Set the expr for MEM to EXPR. */
1748
1749 void
1750 set_mem_expr (rtx mem, tree expr)
1751 {
1752 MEM_ATTRS (mem)
1753 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1754 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1755 }
1756
1757 /* Set the offset of MEM to OFFSET. */
1758
1759 void
1760 set_mem_offset (rtx mem, rtx offset)
1761 {
1762 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1763 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1764 GET_MODE (mem));
1765 }
1766
1767 /* Set the size of MEM to SIZE. */
1768
1769 void
1770 set_mem_size (rtx mem, rtx size)
1771 {
1772 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1773 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1774 GET_MODE (mem));
1775 }
1776 \f
1777 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1778 and its address changed to ADDR. (VOIDmode means don't change the mode.
1779 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1780 returned memory location is required to be valid. The memory
1781 attributes are not changed. */
1782
1783 static rtx
1784 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1785 {
1786 rtx new;
1787
1788 gcc_assert (MEM_P (memref));
1789 if (mode == VOIDmode)
1790 mode = GET_MODE (memref);
1791 if (addr == 0)
1792 addr = XEXP (memref, 0);
1793 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1794 && (!validate || memory_address_p (mode, addr)))
1795 return memref;
1796
1797 if (validate)
1798 {
1799 if (reload_in_progress || reload_completed)
1800 gcc_assert (memory_address_p (mode, addr));
1801 else
1802 addr = memory_address (mode, addr);
1803 }
1804
1805 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1806 return memref;
1807
1808 new = gen_rtx_MEM (mode, addr);
1809 MEM_COPY_ATTRIBUTES (new, memref);
1810 return new;
1811 }
1812
1813 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1814 way we are changing MEMREF, so we only preserve the alias set. */
1815
1816 rtx
1817 change_address (rtx memref, enum machine_mode mode, rtx addr)
1818 {
1819 rtx new = change_address_1 (memref, mode, addr, 1), size;
1820 enum machine_mode mmode = GET_MODE (new);
1821 unsigned int align;
1822
1823 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1824 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1825
1826 /* If there are no changes, just return the original memory reference. */
1827 if (new == memref)
1828 {
1829 if (MEM_ATTRS (memref) == 0
1830 || (MEM_EXPR (memref) == NULL
1831 && MEM_OFFSET (memref) == NULL
1832 && MEM_SIZE (memref) == size
1833 && MEM_ALIGN (memref) == align))
1834 return new;
1835
1836 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1837 MEM_COPY_ATTRIBUTES (new, memref);
1838 }
1839
1840 MEM_ATTRS (new)
1841 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1842
1843 return new;
1844 }
1845
1846 /* Return a memory reference like MEMREF, but with its mode changed
1847 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1848 nonzero, the memory address is forced to be valid.
1849 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1850 and caller is responsible for adjusting MEMREF base register. */
1851
1852 rtx
1853 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1854 int validate, int adjust)
1855 {
1856 rtx addr = XEXP (memref, 0);
1857 rtx new;
1858 rtx memoffset = MEM_OFFSET (memref);
1859 rtx size = 0;
1860 unsigned int memalign = MEM_ALIGN (memref);
1861
1862 /* If there are no changes, just return the original memory reference. */
1863 if (mode == GET_MODE (memref) && !offset
1864 && (!validate || memory_address_p (mode, addr)))
1865 return memref;
1866
1867 /* ??? Prefer to create garbage instead of creating shared rtl.
1868 This may happen even if offset is nonzero -- consider
1869 (plus (plus reg reg) const_int) -- so do this always. */
1870 addr = copy_rtx (addr);
1871
1872 if (adjust)
1873 {
1874 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1875 object, we can merge it into the LO_SUM. */
1876 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1877 && offset >= 0
1878 && (unsigned HOST_WIDE_INT) offset
1879 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1880 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1881 plus_constant (XEXP (addr, 1), offset));
1882 else
1883 addr = plus_constant (addr, offset);
1884 }
1885
1886 new = change_address_1 (memref, mode, addr, validate);
1887
1888 /* Compute the new values of the memory attributes due to this adjustment.
1889 We add the offsets and update the alignment. */
1890 if (memoffset)
1891 memoffset = GEN_INT (offset + INTVAL (memoffset));
1892
1893 /* Compute the new alignment by taking the MIN of the alignment and the
1894 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1895 if zero. */
1896 if (offset != 0)
1897 memalign
1898 = MIN (memalign,
1899 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1900
1901 /* We can compute the size in a number of ways. */
1902 if (GET_MODE (new) != BLKmode)
1903 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1904 else if (MEM_SIZE (memref))
1905 size = plus_constant (MEM_SIZE (memref), -offset);
1906
1907 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1908 memoffset, size, memalign, GET_MODE (new));
1909
1910 /* At some point, we should validate that this offset is within the object,
1911 if all the appropriate values are known. */
1912 return new;
1913 }
1914
1915 /* Return a memory reference like MEMREF, but with its mode changed
1916 to MODE and its address changed to ADDR, which is assumed to be
1917 MEMREF offseted by OFFSET bytes. If VALIDATE is
1918 nonzero, the memory address is forced to be valid. */
1919
1920 rtx
1921 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1922 HOST_WIDE_INT offset, int validate)
1923 {
1924 memref = change_address_1 (memref, VOIDmode, addr, validate);
1925 return adjust_address_1 (memref, mode, offset, validate, 0);
1926 }
1927
1928 /* Return a memory reference like MEMREF, but whose address is changed by
1929 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1930 known to be in OFFSET (possibly 1). */
1931
1932 rtx
1933 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1934 {
1935 rtx new, addr = XEXP (memref, 0);
1936
1937 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1938
1939 /* At this point we don't know _why_ the address is invalid. It
1940 could have secondary memory references, multiplies or anything.
1941
1942 However, if we did go and rearrange things, we can wind up not
1943 being able to recognize the magic around pic_offset_table_rtx.
1944 This stuff is fragile, and is yet another example of why it is
1945 bad to expose PIC machinery too early. */
1946 if (! memory_address_p (GET_MODE (memref), new)
1947 && GET_CODE (addr) == PLUS
1948 && XEXP (addr, 0) == pic_offset_table_rtx)
1949 {
1950 addr = force_reg (GET_MODE (addr), addr);
1951 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1952 }
1953
1954 update_temp_slot_address (XEXP (memref, 0), new);
1955 new = change_address_1 (memref, VOIDmode, new, 1);
1956
1957 /* If there are no changes, just return the original memory reference. */
1958 if (new == memref)
1959 return new;
1960
1961 /* Update the alignment to reflect the offset. Reset the offset, which
1962 we don't know. */
1963 MEM_ATTRS (new)
1964 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1965 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1966 GET_MODE (new));
1967 return new;
1968 }
1969
1970 /* Return a memory reference like MEMREF, but with its address changed to
1971 ADDR. The caller is asserting that the actual piece of memory pointed
1972 to is the same, just the form of the address is being changed, such as
1973 by putting something into a register. */
1974
1975 rtx
1976 replace_equiv_address (rtx memref, rtx addr)
1977 {
1978 /* change_address_1 copies the memory attribute structure without change
1979 and that's exactly what we want here. */
1980 update_temp_slot_address (XEXP (memref, 0), addr);
1981 return change_address_1 (memref, VOIDmode, addr, 1);
1982 }
1983
1984 /* Likewise, but the reference is not required to be valid. */
1985
1986 rtx
1987 replace_equiv_address_nv (rtx memref, rtx addr)
1988 {
1989 return change_address_1 (memref, VOIDmode, addr, 0);
1990 }
1991
1992 /* Return a memory reference like MEMREF, but with its mode widened to
1993 MODE and offset by OFFSET. This would be used by targets that e.g.
1994 cannot issue QImode memory operations and have to use SImode memory
1995 operations plus masking logic. */
1996
1997 rtx
1998 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1999 {
2000 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2001 tree expr = MEM_EXPR (new);
2002 rtx memoffset = MEM_OFFSET (new);
2003 unsigned int size = GET_MODE_SIZE (mode);
2004
2005 /* If there are no changes, just return the original memory reference. */
2006 if (new == memref)
2007 return new;
2008
2009 /* If we don't know what offset we were at within the expression, then
2010 we can't know if we've overstepped the bounds. */
2011 if (! memoffset)
2012 expr = NULL_TREE;
2013
2014 while (expr)
2015 {
2016 if (TREE_CODE (expr) == COMPONENT_REF)
2017 {
2018 tree field = TREE_OPERAND (expr, 1);
2019 tree offset = component_ref_field_offset (expr);
2020
2021 if (! DECL_SIZE_UNIT (field))
2022 {
2023 expr = NULL_TREE;
2024 break;
2025 }
2026
2027 /* Is the field at least as large as the access? If so, ok,
2028 otherwise strip back to the containing structure. */
2029 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2030 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2031 && INTVAL (memoffset) >= 0)
2032 break;
2033
2034 if (! host_integerp (offset, 1))
2035 {
2036 expr = NULL_TREE;
2037 break;
2038 }
2039
2040 expr = TREE_OPERAND (expr, 0);
2041 memoffset
2042 = (GEN_INT (INTVAL (memoffset)
2043 + tree_low_cst (offset, 1)
2044 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2045 / BITS_PER_UNIT)));
2046 }
2047 /* Similarly for the decl. */
2048 else if (DECL_P (expr)
2049 && DECL_SIZE_UNIT (expr)
2050 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2051 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2052 && (! memoffset || INTVAL (memoffset) >= 0))
2053 break;
2054 else
2055 {
2056 /* The widened memory access overflows the expression, which means
2057 that it could alias another expression. Zap it. */
2058 expr = NULL_TREE;
2059 break;
2060 }
2061 }
2062
2063 if (! expr)
2064 memoffset = NULL_RTX;
2065
2066 /* The widened memory may alias other stuff, so zap the alias set. */
2067 /* ??? Maybe use get_alias_set on any remaining expression. */
2068
2069 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2070 MEM_ALIGN (new), mode);
2071
2072 return new;
2073 }
2074 \f
2075 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2076
2077 rtx
2078 gen_label_rtx (void)
2079 {
2080 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2081 NULL, label_num++, NULL);
2082 }
2083 \f
2084 /* For procedure integration. */
2085
2086 /* Install new pointers to the first and last insns in the chain.
2087 Also, set cur_insn_uid to one higher than the last in use.
2088 Used for an inline-procedure after copying the insn chain. */
2089
2090 void
2091 set_new_first_and_last_insn (rtx first, rtx last)
2092 {
2093 rtx insn;
2094
2095 first_insn = first;
2096 last_insn = last;
2097 cur_insn_uid = 0;
2098
2099 for (insn = first; insn; insn = NEXT_INSN (insn))
2100 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2101
2102 cur_insn_uid++;
2103 }
2104 \f
2105 /* Go through all the RTL insn bodies and copy any invalid shared
2106 structure. This routine should only be called once. */
2107
2108 static void
2109 unshare_all_rtl_1 (tree fndecl, rtx insn)
2110 {
2111 tree decl;
2112
2113 /* Make sure that virtual parameters are not shared. */
2114 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2115 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2116
2117 /* Make sure that virtual stack slots are not shared. */
2118 unshare_all_decls (DECL_INITIAL (fndecl));
2119
2120 /* Unshare just about everything else. */
2121 unshare_all_rtl_in_chain (insn);
2122
2123 /* Make sure the addresses of stack slots found outside the insn chain
2124 (such as, in DECL_RTL of a variable) are not shared
2125 with the insn chain.
2126
2127 This special care is necessary when the stack slot MEM does not
2128 actually appear in the insn chain. If it does appear, its address
2129 is unshared from all else at that point. */
2130 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2131 }
2132
2133 /* Go through all the RTL insn bodies and copy any invalid shared
2134 structure, again. This is a fairly expensive thing to do so it
2135 should be done sparingly. */
2136
2137 void
2138 unshare_all_rtl_again (rtx insn)
2139 {
2140 rtx p;
2141 tree decl;
2142
2143 for (p = insn; p; p = NEXT_INSN (p))
2144 if (INSN_P (p))
2145 {
2146 reset_used_flags (PATTERN (p));
2147 reset_used_flags (REG_NOTES (p));
2148 reset_used_flags (LOG_LINKS (p));
2149 }
2150
2151 /* Make sure that virtual stack slots are not shared. */
2152 reset_used_decls (DECL_INITIAL (cfun->decl));
2153
2154 /* Make sure that virtual parameters are not shared. */
2155 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2156 reset_used_flags (DECL_RTL (decl));
2157
2158 reset_used_flags (stack_slot_list);
2159
2160 unshare_all_rtl_1 (cfun->decl, insn);
2161 }
2162
2163 void
2164 unshare_all_rtl (void)
2165 {
2166 unshare_all_rtl_1 (current_function_decl, get_insns ());
2167 }
2168
2169 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2170 Recursively does the same for subexpressions. */
2171
2172 static void
2173 verify_rtx_sharing (rtx orig, rtx insn)
2174 {
2175 rtx x = orig;
2176 int i;
2177 enum rtx_code code;
2178 const char *format_ptr;
2179
2180 if (x == 0)
2181 return;
2182
2183 code = GET_CODE (x);
2184
2185 /* These types may be freely shared. */
2186
2187 switch (code)
2188 {
2189 case REG:
2190 case CONST_INT:
2191 case CONST_DOUBLE:
2192 case CONST_VECTOR:
2193 case SYMBOL_REF:
2194 case LABEL_REF:
2195 case CODE_LABEL:
2196 case PC:
2197 case CC0:
2198 case SCRATCH:
2199 return;
2200 /* SCRATCH must be shared because they represent distinct values. */
2201 case CLOBBER:
2202 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2203 return;
2204 break;
2205
2206 case CONST:
2207 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2208 a LABEL_REF, it isn't sharable. */
2209 if (GET_CODE (XEXP (x, 0)) == PLUS
2210 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2211 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2212 return;
2213 break;
2214
2215 case MEM:
2216 /* A MEM is allowed to be shared if its address is constant. */
2217 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2218 || reload_completed || reload_in_progress)
2219 return;
2220
2221 break;
2222
2223 default:
2224 break;
2225 }
2226
2227 /* This rtx may not be shared. If it has already been seen,
2228 replace it with a copy of itself. */
2229 #ifdef ENABLE_CHECKING
2230 if (RTX_FLAG (x, used))
2231 {
2232 error ("Invalid rtl sharing found in the insn");
2233 debug_rtx (insn);
2234 error ("Shared rtx");
2235 debug_rtx (x);
2236 internal_error ("Internal consistency failure");
2237 }
2238 #endif
2239 gcc_assert (!RTX_FLAG (x, used));
2240
2241 RTX_FLAG (x, used) = 1;
2242
2243 /* Now scan the subexpressions recursively. */
2244
2245 format_ptr = GET_RTX_FORMAT (code);
2246
2247 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2248 {
2249 switch (*format_ptr++)
2250 {
2251 case 'e':
2252 verify_rtx_sharing (XEXP (x, i), insn);
2253 break;
2254
2255 case 'E':
2256 if (XVEC (x, i) != NULL)
2257 {
2258 int j;
2259 int len = XVECLEN (x, i);
2260
2261 for (j = 0; j < len; j++)
2262 {
2263 /* We allow sharing of ASM_OPERANDS inside single
2264 instruction. */
2265 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2266 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2267 == ASM_OPERANDS))
2268 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2269 else
2270 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2271 }
2272 }
2273 break;
2274 }
2275 }
2276 return;
2277 }
2278
2279 /* Go through all the RTL insn bodies and check that there is no unexpected
2280 sharing in between the subexpressions. */
2281
2282 void
2283 verify_rtl_sharing (void)
2284 {
2285 rtx p;
2286
2287 for (p = get_insns (); p; p = NEXT_INSN (p))
2288 if (INSN_P (p))
2289 {
2290 reset_used_flags (PATTERN (p));
2291 reset_used_flags (REG_NOTES (p));
2292 reset_used_flags (LOG_LINKS (p));
2293 }
2294
2295 for (p = get_insns (); p; p = NEXT_INSN (p))
2296 if (INSN_P (p))
2297 {
2298 verify_rtx_sharing (PATTERN (p), p);
2299 verify_rtx_sharing (REG_NOTES (p), p);
2300 verify_rtx_sharing (LOG_LINKS (p), p);
2301 }
2302 }
2303
2304 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2305 Assumes the mark bits are cleared at entry. */
2306
2307 void
2308 unshare_all_rtl_in_chain (rtx insn)
2309 {
2310 for (; insn; insn = NEXT_INSN (insn))
2311 if (INSN_P (insn))
2312 {
2313 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2314 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2315 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2316 }
2317 }
2318
2319 /* Go through all virtual stack slots of a function and copy any
2320 shared structure. */
2321 static void
2322 unshare_all_decls (tree blk)
2323 {
2324 tree t;
2325
2326 /* Copy shared decls. */
2327 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2328 if (DECL_RTL_SET_P (t))
2329 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2330
2331 /* Now process sub-blocks. */
2332 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2333 unshare_all_decls (t);
2334 }
2335
2336 /* Go through all virtual stack slots of a function and mark them as
2337 not shared. */
2338 static void
2339 reset_used_decls (tree blk)
2340 {
2341 tree t;
2342
2343 /* Mark decls. */
2344 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2345 if (DECL_RTL_SET_P (t))
2346 reset_used_flags (DECL_RTL (t));
2347
2348 /* Now process sub-blocks. */
2349 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2350 reset_used_decls (t);
2351 }
2352
2353 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2354 Recursively does the same for subexpressions. Uses
2355 copy_rtx_if_shared_1 to reduce stack space. */
2356
2357 rtx
2358 copy_rtx_if_shared (rtx orig)
2359 {
2360 copy_rtx_if_shared_1 (&orig);
2361 return orig;
2362 }
2363
2364 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2365 use. Recursively does the same for subexpressions. */
2366
2367 static void
2368 copy_rtx_if_shared_1 (rtx *orig1)
2369 {
2370 rtx x;
2371 int i;
2372 enum rtx_code code;
2373 rtx *last_ptr;
2374 const char *format_ptr;
2375 int copied = 0;
2376 int length;
2377
2378 /* Repeat is used to turn tail-recursion into iteration. */
2379 repeat:
2380 x = *orig1;
2381
2382 if (x == 0)
2383 return;
2384
2385 code = GET_CODE (x);
2386
2387 /* These types may be freely shared. */
2388
2389 switch (code)
2390 {
2391 case REG:
2392 case CONST_INT:
2393 case CONST_DOUBLE:
2394 case CONST_VECTOR:
2395 case SYMBOL_REF:
2396 case LABEL_REF:
2397 case CODE_LABEL:
2398 case PC:
2399 case CC0:
2400 case SCRATCH:
2401 /* SCRATCH must be shared because they represent distinct values. */
2402 return;
2403 case CLOBBER:
2404 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2405 return;
2406 break;
2407
2408 case CONST:
2409 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2410 a LABEL_REF, it isn't sharable. */
2411 if (GET_CODE (XEXP (x, 0)) == PLUS
2412 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2413 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2414 return;
2415 break;
2416
2417 case INSN:
2418 case JUMP_INSN:
2419 case CALL_INSN:
2420 case NOTE:
2421 case BARRIER:
2422 /* The chain of insns is not being copied. */
2423 return;
2424
2425 default:
2426 break;
2427 }
2428
2429 /* This rtx may not be shared. If it has already been seen,
2430 replace it with a copy of itself. */
2431
2432 if (RTX_FLAG (x, used))
2433 {
2434 rtx copy;
2435
2436 copy = rtx_alloc (code);
2437 memcpy (copy, x, RTX_SIZE (code));
2438 x = copy;
2439 copied = 1;
2440 }
2441 RTX_FLAG (x, used) = 1;
2442
2443 /* Now scan the subexpressions recursively.
2444 We can store any replaced subexpressions directly into X
2445 since we know X is not shared! Any vectors in X
2446 must be copied if X was copied. */
2447
2448 format_ptr = GET_RTX_FORMAT (code);
2449 length = GET_RTX_LENGTH (code);
2450 last_ptr = NULL;
2451
2452 for (i = 0; i < length; i++)
2453 {
2454 switch (*format_ptr++)
2455 {
2456 case 'e':
2457 if (last_ptr)
2458 copy_rtx_if_shared_1 (last_ptr);
2459 last_ptr = &XEXP (x, i);
2460 break;
2461
2462 case 'E':
2463 if (XVEC (x, i) != NULL)
2464 {
2465 int j;
2466 int len = XVECLEN (x, i);
2467
2468 /* Copy the vector iff I copied the rtx and the length
2469 is nonzero. */
2470 if (copied && len > 0)
2471 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2472
2473 /* Call recursively on all inside the vector. */
2474 for (j = 0; j < len; j++)
2475 {
2476 if (last_ptr)
2477 copy_rtx_if_shared_1 (last_ptr);
2478 last_ptr = &XVECEXP (x, i, j);
2479 }
2480 }
2481 break;
2482 }
2483 }
2484 *orig1 = x;
2485 if (last_ptr)
2486 {
2487 orig1 = last_ptr;
2488 goto repeat;
2489 }
2490 return;
2491 }
2492
2493 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2494 to look for shared sub-parts. */
2495
2496 void
2497 reset_used_flags (rtx x)
2498 {
2499 int i, j;
2500 enum rtx_code code;
2501 const char *format_ptr;
2502 int length;
2503
2504 /* Repeat is used to turn tail-recursion into iteration. */
2505 repeat:
2506 if (x == 0)
2507 return;
2508
2509 code = GET_CODE (x);
2510
2511 /* These types may be freely shared so we needn't do any resetting
2512 for them. */
2513
2514 switch (code)
2515 {
2516 case REG:
2517 case CONST_INT:
2518 case CONST_DOUBLE:
2519 case CONST_VECTOR:
2520 case SYMBOL_REF:
2521 case CODE_LABEL:
2522 case PC:
2523 case CC0:
2524 return;
2525
2526 case INSN:
2527 case JUMP_INSN:
2528 case CALL_INSN:
2529 case NOTE:
2530 case LABEL_REF:
2531 case BARRIER:
2532 /* The chain of insns is not being copied. */
2533 return;
2534
2535 default:
2536 break;
2537 }
2538
2539 RTX_FLAG (x, used) = 0;
2540
2541 format_ptr = GET_RTX_FORMAT (code);
2542 length = GET_RTX_LENGTH (code);
2543
2544 for (i = 0; i < length; i++)
2545 {
2546 switch (*format_ptr++)
2547 {
2548 case 'e':
2549 if (i == length-1)
2550 {
2551 x = XEXP (x, i);
2552 goto repeat;
2553 }
2554 reset_used_flags (XEXP (x, i));
2555 break;
2556
2557 case 'E':
2558 for (j = 0; j < XVECLEN (x, i); j++)
2559 reset_used_flags (XVECEXP (x, i, j));
2560 break;
2561 }
2562 }
2563 }
2564
2565 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2566 to look for shared sub-parts. */
2567
2568 void
2569 set_used_flags (rtx x)
2570 {
2571 int i, j;
2572 enum rtx_code code;
2573 const char *format_ptr;
2574
2575 if (x == 0)
2576 return;
2577
2578 code = GET_CODE (x);
2579
2580 /* These types may be freely shared so we needn't do any resetting
2581 for them. */
2582
2583 switch (code)
2584 {
2585 case REG:
2586 case CONST_INT:
2587 case CONST_DOUBLE:
2588 case CONST_VECTOR:
2589 case SYMBOL_REF:
2590 case CODE_LABEL:
2591 case PC:
2592 case CC0:
2593 return;
2594
2595 case INSN:
2596 case JUMP_INSN:
2597 case CALL_INSN:
2598 case NOTE:
2599 case LABEL_REF:
2600 case BARRIER:
2601 /* The chain of insns is not being copied. */
2602 return;
2603
2604 default:
2605 break;
2606 }
2607
2608 RTX_FLAG (x, used) = 1;
2609
2610 format_ptr = GET_RTX_FORMAT (code);
2611 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2612 {
2613 switch (*format_ptr++)
2614 {
2615 case 'e':
2616 set_used_flags (XEXP (x, i));
2617 break;
2618
2619 case 'E':
2620 for (j = 0; j < XVECLEN (x, i); j++)
2621 set_used_flags (XVECEXP (x, i, j));
2622 break;
2623 }
2624 }
2625 }
2626 \f
2627 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2628 Return X or the rtx for the pseudo reg the value of X was copied into.
2629 OTHER must be valid as a SET_DEST. */
2630
2631 rtx
2632 make_safe_from (rtx x, rtx other)
2633 {
2634 while (1)
2635 switch (GET_CODE (other))
2636 {
2637 case SUBREG:
2638 other = SUBREG_REG (other);
2639 break;
2640 case STRICT_LOW_PART:
2641 case SIGN_EXTEND:
2642 case ZERO_EXTEND:
2643 other = XEXP (other, 0);
2644 break;
2645 default:
2646 goto done;
2647 }
2648 done:
2649 if ((MEM_P (other)
2650 && ! CONSTANT_P (x)
2651 && !REG_P (x)
2652 && GET_CODE (x) != SUBREG)
2653 || (REG_P (other)
2654 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2655 || reg_mentioned_p (other, x))))
2656 {
2657 rtx temp = gen_reg_rtx (GET_MODE (x));
2658 emit_move_insn (temp, x);
2659 return temp;
2660 }
2661 return x;
2662 }
2663 \f
2664 /* Emission of insns (adding them to the doubly-linked list). */
2665
2666 /* Return the first insn of the current sequence or current function. */
2667
2668 rtx
2669 get_insns (void)
2670 {
2671 return first_insn;
2672 }
2673
2674 /* Specify a new insn as the first in the chain. */
2675
2676 void
2677 set_first_insn (rtx insn)
2678 {
2679 gcc_assert (!PREV_INSN (insn));
2680 first_insn = insn;
2681 }
2682
2683 /* Return the last insn emitted in current sequence or current function. */
2684
2685 rtx
2686 get_last_insn (void)
2687 {
2688 return last_insn;
2689 }
2690
2691 /* Specify a new insn as the last in the chain. */
2692
2693 void
2694 set_last_insn (rtx insn)
2695 {
2696 gcc_assert (!NEXT_INSN (insn));
2697 last_insn = insn;
2698 }
2699
2700 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2701
2702 rtx
2703 get_last_insn_anywhere (void)
2704 {
2705 struct sequence_stack *stack;
2706 if (last_insn)
2707 return last_insn;
2708 for (stack = seq_stack; stack; stack = stack->next)
2709 if (stack->last != 0)
2710 return stack->last;
2711 return 0;
2712 }
2713
2714 /* Return the first nonnote insn emitted in current sequence or current
2715 function. This routine looks inside SEQUENCEs. */
2716
2717 rtx
2718 get_first_nonnote_insn (void)
2719 {
2720 rtx insn = first_insn;
2721
2722 if (insn)
2723 {
2724 if (NOTE_P (insn))
2725 for (insn = next_insn (insn);
2726 insn && NOTE_P (insn);
2727 insn = next_insn (insn))
2728 continue;
2729 else
2730 {
2731 if (GET_CODE (insn) == INSN
2732 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2733 insn = XVECEXP (PATTERN (insn), 0, 0);
2734 }
2735 }
2736
2737 return insn;
2738 }
2739
2740 /* Return the last nonnote insn emitted in current sequence or current
2741 function. This routine looks inside SEQUENCEs. */
2742
2743 rtx
2744 get_last_nonnote_insn (void)
2745 {
2746 rtx insn = last_insn;
2747
2748 if (insn)
2749 {
2750 if (NOTE_P (insn))
2751 for (insn = previous_insn (insn);
2752 insn && NOTE_P (insn);
2753 insn = previous_insn (insn))
2754 continue;
2755 else
2756 {
2757 if (GET_CODE (insn) == INSN
2758 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2759 insn = XVECEXP (PATTERN (insn), 0,
2760 XVECLEN (PATTERN (insn), 0) - 1);
2761 }
2762 }
2763
2764 return insn;
2765 }
2766
2767 /* Return a number larger than any instruction's uid in this function. */
2768
2769 int
2770 get_max_uid (void)
2771 {
2772 return cur_insn_uid;
2773 }
2774
2775 /* Renumber instructions so that no instruction UIDs are wasted. */
2776
2777 void
2778 renumber_insns (FILE *stream)
2779 {
2780 rtx insn;
2781
2782 /* If we're not supposed to renumber instructions, don't. */
2783 if (!flag_renumber_insns)
2784 return;
2785
2786 /* If there aren't that many instructions, then it's not really
2787 worth renumbering them. */
2788 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2789 return;
2790
2791 cur_insn_uid = 1;
2792
2793 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2794 {
2795 if (stream)
2796 fprintf (stream, "Renumbering insn %d to %d\n",
2797 INSN_UID (insn), cur_insn_uid);
2798 INSN_UID (insn) = cur_insn_uid++;
2799 }
2800 }
2801 \f
2802 /* Return the next insn. If it is a SEQUENCE, return the first insn
2803 of the sequence. */
2804
2805 rtx
2806 next_insn (rtx insn)
2807 {
2808 if (insn)
2809 {
2810 insn = NEXT_INSN (insn);
2811 if (insn && NONJUMP_INSN_P (insn)
2812 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2813 insn = XVECEXP (PATTERN (insn), 0, 0);
2814 }
2815
2816 return insn;
2817 }
2818
2819 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2820 of the sequence. */
2821
2822 rtx
2823 previous_insn (rtx insn)
2824 {
2825 if (insn)
2826 {
2827 insn = PREV_INSN (insn);
2828 if (insn && NONJUMP_INSN_P (insn)
2829 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2830 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2831 }
2832
2833 return insn;
2834 }
2835
2836 /* Return the next insn after INSN that is not a NOTE. This routine does not
2837 look inside SEQUENCEs. */
2838
2839 rtx
2840 next_nonnote_insn (rtx insn)
2841 {
2842 while (insn)
2843 {
2844 insn = NEXT_INSN (insn);
2845 if (insn == 0 || !NOTE_P (insn))
2846 break;
2847 }
2848
2849 return insn;
2850 }
2851
2852 /* Return the previous insn before INSN that is not a NOTE. This routine does
2853 not look inside SEQUENCEs. */
2854
2855 rtx
2856 prev_nonnote_insn (rtx insn)
2857 {
2858 while (insn)
2859 {
2860 insn = PREV_INSN (insn);
2861 if (insn == 0 || !NOTE_P (insn))
2862 break;
2863 }
2864
2865 return insn;
2866 }
2867
2868 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2869 or 0, if there is none. This routine does not look inside
2870 SEQUENCEs. */
2871
2872 rtx
2873 next_real_insn (rtx insn)
2874 {
2875 while (insn)
2876 {
2877 insn = NEXT_INSN (insn);
2878 if (insn == 0 || INSN_P (insn))
2879 break;
2880 }
2881
2882 return insn;
2883 }
2884
2885 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2886 or 0, if there is none. This routine does not look inside
2887 SEQUENCEs. */
2888
2889 rtx
2890 prev_real_insn (rtx insn)
2891 {
2892 while (insn)
2893 {
2894 insn = PREV_INSN (insn);
2895 if (insn == 0 || INSN_P (insn))
2896 break;
2897 }
2898
2899 return insn;
2900 }
2901
2902 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2903 This routine does not look inside SEQUENCEs. */
2904
2905 rtx
2906 last_call_insn (void)
2907 {
2908 rtx insn;
2909
2910 for (insn = get_last_insn ();
2911 insn && !CALL_P (insn);
2912 insn = PREV_INSN (insn))
2913 ;
2914
2915 return insn;
2916 }
2917
2918 /* Find the next insn after INSN that really does something. This routine
2919 does not look inside SEQUENCEs. Until reload has completed, this is the
2920 same as next_real_insn. */
2921
2922 int
2923 active_insn_p (rtx insn)
2924 {
2925 return (CALL_P (insn) || JUMP_P (insn)
2926 || (NONJUMP_INSN_P (insn)
2927 && (! reload_completed
2928 || (GET_CODE (PATTERN (insn)) != USE
2929 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2930 }
2931
2932 rtx
2933 next_active_insn (rtx insn)
2934 {
2935 while (insn)
2936 {
2937 insn = NEXT_INSN (insn);
2938 if (insn == 0 || active_insn_p (insn))
2939 break;
2940 }
2941
2942 return insn;
2943 }
2944
2945 /* Find the last insn before INSN that really does something. This routine
2946 does not look inside SEQUENCEs. Until reload has completed, this is the
2947 same as prev_real_insn. */
2948
2949 rtx
2950 prev_active_insn (rtx insn)
2951 {
2952 while (insn)
2953 {
2954 insn = PREV_INSN (insn);
2955 if (insn == 0 || active_insn_p (insn))
2956 break;
2957 }
2958
2959 return insn;
2960 }
2961
2962 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2963
2964 rtx
2965 next_label (rtx insn)
2966 {
2967 while (insn)
2968 {
2969 insn = NEXT_INSN (insn);
2970 if (insn == 0 || LABEL_P (insn))
2971 break;
2972 }
2973
2974 return insn;
2975 }
2976
2977 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2978
2979 rtx
2980 prev_label (rtx insn)
2981 {
2982 while (insn)
2983 {
2984 insn = PREV_INSN (insn);
2985 if (insn == 0 || LABEL_P (insn))
2986 break;
2987 }
2988
2989 return insn;
2990 }
2991
2992 /* Return the last label to mark the same position as LABEL. Return null
2993 if LABEL itself is null. */
2994
2995 rtx
2996 skip_consecutive_labels (rtx label)
2997 {
2998 rtx insn;
2999
3000 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3001 if (LABEL_P (insn))
3002 label = insn;
3003
3004 return label;
3005 }
3006 \f
3007 #ifdef HAVE_cc0
3008 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3009 and REG_CC_USER notes so we can find it. */
3010
3011 void
3012 link_cc0_insns (rtx insn)
3013 {
3014 rtx user = next_nonnote_insn (insn);
3015
3016 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3017 user = XVECEXP (PATTERN (user), 0, 0);
3018
3019 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3020 REG_NOTES (user));
3021 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3022 }
3023
3024 /* Return the next insn that uses CC0 after INSN, which is assumed to
3025 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3026 applied to the result of this function should yield INSN).
3027
3028 Normally, this is simply the next insn. However, if a REG_CC_USER note
3029 is present, it contains the insn that uses CC0.
3030
3031 Return 0 if we can't find the insn. */
3032
3033 rtx
3034 next_cc0_user (rtx insn)
3035 {
3036 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3037
3038 if (note)
3039 return XEXP (note, 0);
3040
3041 insn = next_nonnote_insn (insn);
3042 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3043 insn = XVECEXP (PATTERN (insn), 0, 0);
3044
3045 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3046 return insn;
3047
3048 return 0;
3049 }
3050
3051 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3052 note, it is the previous insn. */
3053
3054 rtx
3055 prev_cc0_setter (rtx insn)
3056 {
3057 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3058
3059 if (note)
3060 return XEXP (note, 0);
3061
3062 insn = prev_nonnote_insn (insn);
3063 gcc_assert (sets_cc0_p (PATTERN (insn)));
3064
3065 return insn;
3066 }
3067 #endif
3068
3069 /* Increment the label uses for all labels present in rtx. */
3070
3071 static void
3072 mark_label_nuses (rtx x)
3073 {
3074 enum rtx_code code;
3075 int i, j;
3076 const char *fmt;
3077
3078 code = GET_CODE (x);
3079 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3080 LABEL_NUSES (XEXP (x, 0))++;
3081
3082 fmt = GET_RTX_FORMAT (code);
3083 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3084 {
3085 if (fmt[i] == 'e')
3086 mark_label_nuses (XEXP (x, i));
3087 else if (fmt[i] == 'E')
3088 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3089 mark_label_nuses (XVECEXP (x, i, j));
3090 }
3091 }
3092
3093 \f
3094 /* Try splitting insns that can be split for better scheduling.
3095 PAT is the pattern which might split.
3096 TRIAL is the insn providing PAT.
3097 LAST is nonzero if we should return the last insn of the sequence produced.
3098
3099 If this routine succeeds in splitting, it returns the first or last
3100 replacement insn depending on the value of LAST. Otherwise, it
3101 returns TRIAL. If the insn to be returned can be split, it will be. */
3102
3103 rtx
3104 try_split (rtx pat, rtx trial, int last)
3105 {
3106 rtx before = PREV_INSN (trial);
3107 rtx after = NEXT_INSN (trial);
3108 int has_barrier = 0;
3109 rtx tem;
3110 rtx note, seq;
3111 int probability;
3112 rtx insn_last, insn;
3113 int njumps = 0;
3114
3115 if (any_condjump_p (trial)
3116 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3117 split_branch_probability = INTVAL (XEXP (note, 0));
3118 probability = split_branch_probability;
3119
3120 seq = split_insns (pat, trial);
3121
3122 split_branch_probability = -1;
3123
3124 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3125 We may need to handle this specially. */
3126 if (after && BARRIER_P (after))
3127 {
3128 has_barrier = 1;
3129 after = NEXT_INSN (after);
3130 }
3131
3132 if (!seq)
3133 return trial;
3134
3135 /* Avoid infinite loop if any insn of the result matches
3136 the original pattern. */
3137 insn_last = seq;
3138 while (1)
3139 {
3140 if (INSN_P (insn_last)
3141 && rtx_equal_p (PATTERN (insn_last), pat))
3142 return trial;
3143 if (!NEXT_INSN (insn_last))
3144 break;
3145 insn_last = NEXT_INSN (insn_last);
3146 }
3147
3148 /* Mark labels. */
3149 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3150 {
3151 if (JUMP_P (insn))
3152 {
3153 mark_jump_label (PATTERN (insn), insn, 0);
3154 njumps++;
3155 if (probability != -1
3156 && any_condjump_p (insn)
3157 && !find_reg_note (insn, REG_BR_PROB, 0))
3158 {
3159 /* We can preserve the REG_BR_PROB notes only if exactly
3160 one jump is created, otherwise the machine description
3161 is responsible for this step using
3162 split_branch_probability variable. */
3163 gcc_assert (njumps == 1);
3164 REG_NOTES (insn)
3165 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3166 GEN_INT (probability),
3167 REG_NOTES (insn));
3168 }
3169 }
3170 }
3171
3172 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3173 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3174 if (CALL_P (trial))
3175 {
3176 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3177 if (CALL_P (insn))
3178 {
3179 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3180 while (*p)
3181 p = &XEXP (*p, 1);
3182 *p = CALL_INSN_FUNCTION_USAGE (trial);
3183 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3184 }
3185 }
3186
3187 /* Copy notes, particularly those related to the CFG. */
3188 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3189 {
3190 switch (REG_NOTE_KIND (note))
3191 {
3192 case REG_EH_REGION:
3193 insn = insn_last;
3194 while (insn != NULL_RTX)
3195 {
3196 if (CALL_P (insn)
3197 || (flag_non_call_exceptions && INSN_P (insn)
3198 && may_trap_p (PATTERN (insn))))
3199 REG_NOTES (insn)
3200 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3201 XEXP (note, 0),
3202 REG_NOTES (insn));
3203 insn = PREV_INSN (insn);
3204 }
3205 break;
3206
3207 case REG_NORETURN:
3208 case REG_SETJMP:
3209 insn = insn_last;
3210 while (insn != NULL_RTX)
3211 {
3212 if (CALL_P (insn))
3213 REG_NOTES (insn)
3214 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3215 XEXP (note, 0),
3216 REG_NOTES (insn));
3217 insn = PREV_INSN (insn);
3218 }
3219 break;
3220
3221 case REG_NON_LOCAL_GOTO:
3222 insn = insn_last;
3223 while (insn != NULL_RTX)
3224 {
3225 if (JUMP_P (insn))
3226 REG_NOTES (insn)
3227 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3228 XEXP (note, 0),
3229 REG_NOTES (insn));
3230 insn = PREV_INSN (insn);
3231 }
3232 break;
3233
3234 default:
3235 break;
3236 }
3237 }
3238
3239 /* If there are LABELS inside the split insns increment the
3240 usage count so we don't delete the label. */
3241 if (NONJUMP_INSN_P (trial))
3242 {
3243 insn = insn_last;
3244 while (insn != NULL_RTX)
3245 {
3246 if (NONJUMP_INSN_P (insn))
3247 mark_label_nuses (PATTERN (insn));
3248
3249 insn = PREV_INSN (insn);
3250 }
3251 }
3252
3253 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3254
3255 delete_insn (trial);
3256 if (has_barrier)
3257 emit_barrier_after (tem);
3258
3259 /* Recursively call try_split for each new insn created; by the
3260 time control returns here that insn will be fully split, so
3261 set LAST and continue from the insn after the one returned.
3262 We can't use next_active_insn here since AFTER may be a note.
3263 Ignore deleted insns, which can be occur if not optimizing. */
3264 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3265 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3266 tem = try_split (PATTERN (tem), tem, 1);
3267
3268 /* Return either the first or the last insn, depending on which was
3269 requested. */
3270 return last
3271 ? (after ? PREV_INSN (after) : last_insn)
3272 : NEXT_INSN (before);
3273 }
3274 \f
3275 /* Make and return an INSN rtx, initializing all its slots.
3276 Store PATTERN in the pattern slots. */
3277
3278 rtx
3279 make_insn_raw (rtx pattern)
3280 {
3281 rtx insn;
3282
3283 insn = rtx_alloc (INSN);
3284
3285 INSN_UID (insn) = cur_insn_uid++;
3286 PATTERN (insn) = pattern;
3287 INSN_CODE (insn) = -1;
3288 LOG_LINKS (insn) = NULL;
3289 REG_NOTES (insn) = NULL;
3290 INSN_LOCATOR (insn) = 0;
3291 BLOCK_FOR_INSN (insn) = NULL;
3292
3293 #ifdef ENABLE_RTL_CHECKING
3294 if (insn
3295 && INSN_P (insn)
3296 && (returnjump_p (insn)
3297 || (GET_CODE (insn) == SET
3298 && SET_DEST (insn) == pc_rtx)))
3299 {
3300 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3301 debug_rtx (insn);
3302 }
3303 #endif
3304
3305 return insn;
3306 }
3307
3308 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3309
3310 static rtx
3311 make_jump_insn_raw (rtx pattern)
3312 {
3313 rtx insn;
3314
3315 insn = rtx_alloc (JUMP_INSN);
3316 INSN_UID (insn) = cur_insn_uid++;
3317
3318 PATTERN (insn) = pattern;
3319 INSN_CODE (insn) = -1;
3320 LOG_LINKS (insn) = NULL;
3321 REG_NOTES (insn) = NULL;
3322 JUMP_LABEL (insn) = NULL;
3323 INSN_LOCATOR (insn) = 0;
3324 BLOCK_FOR_INSN (insn) = NULL;
3325
3326 return insn;
3327 }
3328
3329 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3330
3331 static rtx
3332 make_call_insn_raw (rtx pattern)
3333 {
3334 rtx insn;
3335
3336 insn = rtx_alloc (CALL_INSN);
3337 INSN_UID (insn) = cur_insn_uid++;
3338
3339 PATTERN (insn) = pattern;
3340 INSN_CODE (insn) = -1;
3341 LOG_LINKS (insn) = NULL;
3342 REG_NOTES (insn) = NULL;
3343 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3344 INSN_LOCATOR (insn) = 0;
3345 BLOCK_FOR_INSN (insn) = NULL;
3346
3347 return insn;
3348 }
3349 \f
3350 /* Add INSN to the end of the doubly-linked list.
3351 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3352
3353 void
3354 add_insn (rtx insn)
3355 {
3356 PREV_INSN (insn) = last_insn;
3357 NEXT_INSN (insn) = 0;
3358
3359 if (NULL != last_insn)
3360 NEXT_INSN (last_insn) = insn;
3361
3362 if (NULL == first_insn)
3363 first_insn = insn;
3364
3365 last_insn = insn;
3366 }
3367
3368 /* Add INSN into the doubly-linked list after insn AFTER. This and
3369 the next should be the only functions called to insert an insn once
3370 delay slots have been filled since only they know how to update a
3371 SEQUENCE. */
3372
3373 void
3374 add_insn_after (rtx insn, rtx after)
3375 {
3376 rtx next = NEXT_INSN (after);
3377 basic_block bb;
3378
3379 gcc_assert (!optimize || !INSN_DELETED_P (after));
3380
3381 NEXT_INSN (insn) = next;
3382 PREV_INSN (insn) = after;
3383
3384 if (next)
3385 {
3386 PREV_INSN (next) = insn;
3387 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3388 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3389 }
3390 else if (last_insn == after)
3391 last_insn = insn;
3392 else
3393 {
3394 struct sequence_stack *stack = seq_stack;
3395 /* Scan all pending sequences too. */
3396 for (; stack; stack = stack->next)
3397 if (after == stack->last)
3398 {
3399 stack->last = insn;
3400 break;
3401 }
3402
3403 gcc_assert (stack);
3404 }
3405
3406 if (!BARRIER_P (after)
3407 && !BARRIER_P (insn)
3408 && (bb = BLOCK_FOR_INSN (after)))
3409 {
3410 set_block_for_insn (insn, bb);
3411 if (INSN_P (insn))
3412 bb->flags |= BB_DIRTY;
3413 /* Should not happen as first in the BB is always
3414 either NOTE or LABEL. */
3415 if (BB_END (bb) == after
3416 /* Avoid clobbering of structure when creating new BB. */
3417 && !BARRIER_P (insn)
3418 && (!NOTE_P (insn)
3419 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3420 BB_END (bb) = insn;
3421 }
3422
3423 NEXT_INSN (after) = insn;
3424 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3425 {
3426 rtx sequence = PATTERN (after);
3427 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3428 }
3429 }
3430
3431 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3432 the previous should be the only functions called to insert an insn once
3433 delay slots have been filled since only they know how to update a
3434 SEQUENCE. */
3435
3436 void
3437 add_insn_before (rtx insn, rtx before)
3438 {
3439 rtx prev = PREV_INSN (before);
3440 basic_block bb;
3441
3442 gcc_assert (!optimize || !INSN_DELETED_P (before));
3443
3444 PREV_INSN (insn) = prev;
3445 NEXT_INSN (insn) = before;
3446
3447 if (prev)
3448 {
3449 NEXT_INSN (prev) = insn;
3450 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3451 {
3452 rtx sequence = PATTERN (prev);
3453 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3454 }
3455 }
3456 else if (first_insn == before)
3457 first_insn = insn;
3458 else
3459 {
3460 struct sequence_stack *stack = seq_stack;
3461 /* Scan all pending sequences too. */
3462 for (; stack; stack = stack->next)
3463 if (before == stack->first)
3464 {
3465 stack->first = insn;
3466 break;
3467 }
3468
3469 gcc_assert (stack);
3470 }
3471
3472 if (!BARRIER_P (before)
3473 && !BARRIER_P (insn)
3474 && (bb = BLOCK_FOR_INSN (before)))
3475 {
3476 set_block_for_insn (insn, bb);
3477 if (INSN_P (insn))
3478 bb->flags |= BB_DIRTY;
3479 /* Should not happen as first in the BB is always either NOTE or
3480 LABEL. */
3481 gcc_assert (BB_HEAD (bb) != insn
3482 /* Avoid clobbering of structure when creating new BB. */
3483 || BARRIER_P (insn)
3484 || (NOTE_P (insn)
3485 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3486 }
3487
3488 PREV_INSN (before) = insn;
3489 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3490 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3491 }
3492
3493 /* Remove an insn from its doubly-linked list. This function knows how
3494 to handle sequences. */
3495 void
3496 remove_insn (rtx insn)
3497 {
3498 rtx next = NEXT_INSN (insn);
3499 rtx prev = PREV_INSN (insn);
3500 basic_block bb;
3501
3502 if (prev)
3503 {
3504 NEXT_INSN (prev) = next;
3505 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3506 {
3507 rtx sequence = PATTERN (prev);
3508 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3509 }
3510 }
3511 else if (first_insn == insn)
3512 first_insn = next;
3513 else
3514 {
3515 struct sequence_stack *stack = seq_stack;
3516 /* Scan all pending sequences too. */
3517 for (; stack; stack = stack->next)
3518 if (insn == stack->first)
3519 {
3520 stack->first = next;
3521 break;
3522 }
3523
3524 gcc_assert (stack);
3525 }
3526
3527 if (next)
3528 {
3529 PREV_INSN (next) = prev;
3530 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3531 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3532 }
3533 else if (last_insn == insn)
3534 last_insn = prev;
3535 else
3536 {
3537 struct sequence_stack *stack = seq_stack;
3538 /* Scan all pending sequences too. */
3539 for (; stack; stack = stack->next)
3540 if (insn == stack->last)
3541 {
3542 stack->last = prev;
3543 break;
3544 }
3545
3546 gcc_assert (stack);
3547 }
3548 if (!BARRIER_P (insn)
3549 && (bb = BLOCK_FOR_INSN (insn)))
3550 {
3551 if (INSN_P (insn))
3552 bb->flags |= BB_DIRTY;
3553 if (BB_HEAD (bb) == insn)
3554 {
3555 /* Never ever delete the basic block note without deleting whole
3556 basic block. */
3557 gcc_assert (!NOTE_P (insn));
3558 BB_HEAD (bb) = next;
3559 }
3560 if (BB_END (bb) == insn)
3561 BB_END (bb) = prev;
3562 }
3563 }
3564
3565 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3566
3567 void
3568 add_function_usage_to (rtx call_insn, rtx call_fusage)
3569 {
3570 gcc_assert (call_insn && CALL_P (call_insn));
3571
3572 /* Put the register usage information on the CALL. If there is already
3573 some usage information, put ours at the end. */
3574 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3575 {
3576 rtx link;
3577
3578 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3579 link = XEXP (link, 1))
3580 ;
3581
3582 XEXP (link, 1) = call_fusage;
3583 }
3584 else
3585 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3586 }
3587
3588 /* Delete all insns made since FROM.
3589 FROM becomes the new last instruction. */
3590
3591 void
3592 delete_insns_since (rtx from)
3593 {
3594 if (from == 0)
3595 first_insn = 0;
3596 else
3597 NEXT_INSN (from) = 0;
3598 last_insn = from;
3599 }
3600
3601 /* This function is deprecated, please use sequences instead.
3602
3603 Move a consecutive bunch of insns to a different place in the chain.
3604 The insns to be moved are those between FROM and TO.
3605 They are moved to a new position after the insn AFTER.
3606 AFTER must not be FROM or TO or any insn in between.
3607
3608 This function does not know about SEQUENCEs and hence should not be
3609 called after delay-slot filling has been done. */
3610
3611 void
3612 reorder_insns_nobb (rtx from, rtx to, rtx after)
3613 {
3614 /* Splice this bunch out of where it is now. */
3615 if (PREV_INSN (from))
3616 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3617 if (NEXT_INSN (to))
3618 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3619 if (last_insn == to)
3620 last_insn = PREV_INSN (from);
3621 if (first_insn == from)
3622 first_insn = NEXT_INSN (to);
3623
3624 /* Make the new neighbors point to it and it to them. */
3625 if (NEXT_INSN (after))
3626 PREV_INSN (NEXT_INSN (after)) = to;
3627
3628 NEXT_INSN (to) = NEXT_INSN (after);
3629 PREV_INSN (from) = after;
3630 NEXT_INSN (after) = from;
3631 if (after == last_insn)
3632 last_insn = to;
3633 }
3634
3635 /* Same as function above, but take care to update BB boundaries. */
3636 void
3637 reorder_insns (rtx from, rtx to, rtx after)
3638 {
3639 rtx prev = PREV_INSN (from);
3640 basic_block bb, bb2;
3641
3642 reorder_insns_nobb (from, to, after);
3643
3644 if (!BARRIER_P (after)
3645 && (bb = BLOCK_FOR_INSN (after)))
3646 {
3647 rtx x;
3648 bb->flags |= BB_DIRTY;
3649
3650 if (!BARRIER_P (from)
3651 && (bb2 = BLOCK_FOR_INSN (from)))
3652 {
3653 if (BB_END (bb2) == to)
3654 BB_END (bb2) = prev;
3655 bb2->flags |= BB_DIRTY;
3656 }
3657
3658 if (BB_END (bb) == after)
3659 BB_END (bb) = to;
3660
3661 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3662 if (!BARRIER_P (x))
3663 set_block_for_insn (x, bb);
3664 }
3665 }
3666
3667 /* Return the line note insn preceding INSN. */
3668
3669 static rtx
3670 find_line_note (rtx insn)
3671 {
3672 if (no_line_numbers)
3673 return 0;
3674
3675 for (; insn; insn = PREV_INSN (insn))
3676 if (NOTE_P (insn)
3677 && NOTE_LINE_NUMBER (insn) >= 0)
3678 break;
3679
3680 return insn;
3681 }
3682
3683 /* Remove unnecessary notes from the instruction stream. */
3684
3685 void
3686 remove_unnecessary_notes (void)
3687 {
3688 rtx eh_stack = NULL_RTX;
3689 rtx insn;
3690 rtx next;
3691 rtx tmp;
3692
3693 /* We must not remove the first instruction in the function because
3694 the compiler depends on the first instruction being a note. */
3695 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3696 {
3697 /* Remember what's next. */
3698 next = NEXT_INSN (insn);
3699
3700 /* We're only interested in notes. */
3701 if (!NOTE_P (insn))
3702 continue;
3703
3704 switch (NOTE_LINE_NUMBER (insn))
3705 {
3706 case NOTE_INSN_DELETED:
3707 remove_insn (insn);
3708 break;
3709
3710 case NOTE_INSN_EH_REGION_BEG:
3711 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3712 break;
3713
3714 case NOTE_INSN_EH_REGION_END:
3715 /* Too many end notes. */
3716 gcc_assert (eh_stack);
3717 /* Mismatched nesting. */
3718 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3719 == NOTE_EH_HANDLER (insn));
3720 tmp = eh_stack;
3721 eh_stack = XEXP (eh_stack, 1);
3722 free_INSN_LIST_node (tmp);
3723 break;
3724
3725 case NOTE_INSN_BLOCK_BEG:
3726 case NOTE_INSN_BLOCK_END:
3727 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3728 gcc_unreachable ();
3729
3730 default:
3731 break;
3732 }
3733 }
3734
3735 /* Too many EH_REGION_BEG notes. */
3736 gcc_assert (!eh_stack);
3737 }
3738
3739 \f
3740 /* Emit insn(s) of given code and pattern
3741 at a specified place within the doubly-linked list.
3742
3743 All of the emit_foo global entry points accept an object
3744 X which is either an insn list or a PATTERN of a single
3745 instruction.
3746
3747 There are thus a few canonical ways to generate code and
3748 emit it at a specific place in the instruction stream. For
3749 example, consider the instruction named SPOT and the fact that
3750 we would like to emit some instructions before SPOT. We might
3751 do it like this:
3752
3753 start_sequence ();
3754 ... emit the new instructions ...
3755 insns_head = get_insns ();
3756 end_sequence ();
3757
3758 emit_insn_before (insns_head, SPOT);
3759
3760 It used to be common to generate SEQUENCE rtl instead, but that
3761 is a relic of the past which no longer occurs. The reason is that
3762 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3763 generated would almost certainly die right after it was created. */
3764
3765 /* Make X be output before the instruction BEFORE. */
3766
3767 rtx
3768 emit_insn_before_noloc (rtx x, rtx before)
3769 {
3770 rtx last = before;
3771 rtx insn;
3772
3773 gcc_assert (before);
3774
3775 if (x == NULL_RTX)
3776 return last;
3777
3778 switch (GET_CODE (x))
3779 {
3780 case INSN:
3781 case JUMP_INSN:
3782 case CALL_INSN:
3783 case CODE_LABEL:
3784 case BARRIER:
3785 case NOTE:
3786 insn = x;
3787 while (insn)
3788 {
3789 rtx next = NEXT_INSN (insn);
3790 add_insn_before (insn, before);
3791 last = insn;
3792 insn = next;
3793 }
3794 break;
3795
3796 #ifdef ENABLE_RTL_CHECKING
3797 case SEQUENCE:
3798 gcc_unreachable ();
3799 break;
3800 #endif
3801
3802 default:
3803 last = make_insn_raw (x);
3804 add_insn_before (last, before);
3805 break;
3806 }
3807
3808 return last;
3809 }
3810
3811 /* Make an instruction with body X and code JUMP_INSN
3812 and output it before the instruction BEFORE. */
3813
3814 rtx
3815 emit_jump_insn_before_noloc (rtx x, rtx before)
3816 {
3817 rtx insn, last = NULL_RTX;
3818
3819 gcc_assert (before);
3820
3821 switch (GET_CODE (x))
3822 {
3823 case INSN:
3824 case JUMP_INSN:
3825 case CALL_INSN:
3826 case CODE_LABEL:
3827 case BARRIER:
3828 case NOTE:
3829 insn = x;
3830 while (insn)
3831 {
3832 rtx next = NEXT_INSN (insn);
3833 add_insn_before (insn, before);
3834 last = insn;
3835 insn = next;
3836 }
3837 break;
3838
3839 #ifdef ENABLE_RTL_CHECKING
3840 case SEQUENCE:
3841 gcc_unreachable ();
3842 break;
3843 #endif
3844
3845 default:
3846 last = make_jump_insn_raw (x);
3847 add_insn_before (last, before);
3848 break;
3849 }
3850
3851 return last;
3852 }
3853
3854 /* Make an instruction with body X and code CALL_INSN
3855 and output it before the instruction BEFORE. */
3856
3857 rtx
3858 emit_call_insn_before_noloc (rtx x, rtx before)
3859 {
3860 rtx last = NULL_RTX, insn;
3861
3862 gcc_assert (before);
3863
3864 switch (GET_CODE (x))
3865 {
3866 case INSN:
3867 case JUMP_INSN:
3868 case CALL_INSN:
3869 case CODE_LABEL:
3870 case BARRIER:
3871 case NOTE:
3872 insn = x;
3873 while (insn)
3874 {
3875 rtx next = NEXT_INSN (insn);
3876 add_insn_before (insn, before);
3877 last = insn;
3878 insn = next;
3879 }
3880 break;
3881
3882 #ifdef ENABLE_RTL_CHECKING
3883 case SEQUENCE:
3884 gcc_unreachable ();
3885 break;
3886 #endif
3887
3888 default:
3889 last = make_call_insn_raw (x);
3890 add_insn_before (last, before);
3891 break;
3892 }
3893
3894 return last;
3895 }
3896
3897 /* Make an insn of code BARRIER
3898 and output it before the insn BEFORE. */
3899
3900 rtx
3901 emit_barrier_before (rtx before)
3902 {
3903 rtx insn = rtx_alloc (BARRIER);
3904
3905 INSN_UID (insn) = cur_insn_uid++;
3906
3907 add_insn_before (insn, before);
3908 return insn;
3909 }
3910
3911 /* Emit the label LABEL before the insn BEFORE. */
3912
3913 rtx
3914 emit_label_before (rtx label, rtx before)
3915 {
3916 /* This can be called twice for the same label as a result of the
3917 confusion that follows a syntax error! So make it harmless. */
3918 if (INSN_UID (label) == 0)
3919 {
3920 INSN_UID (label) = cur_insn_uid++;
3921 add_insn_before (label, before);
3922 }
3923
3924 return label;
3925 }
3926
3927 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3928
3929 rtx
3930 emit_note_before (int subtype, rtx before)
3931 {
3932 rtx note = rtx_alloc (NOTE);
3933 INSN_UID (note) = cur_insn_uid++;
3934 #ifndef USE_MAPPED_LOCATION
3935 NOTE_SOURCE_FILE (note) = 0;
3936 #endif
3937 NOTE_LINE_NUMBER (note) = subtype;
3938 BLOCK_FOR_INSN (note) = NULL;
3939
3940 add_insn_before (note, before);
3941 return note;
3942 }
3943 \f
3944 /* Helper for emit_insn_after, handles lists of instructions
3945 efficiently. */
3946
3947 static rtx emit_insn_after_1 (rtx, rtx);
3948
3949 static rtx
3950 emit_insn_after_1 (rtx first, rtx after)
3951 {
3952 rtx last;
3953 rtx after_after;
3954 basic_block bb;
3955
3956 if (!BARRIER_P (after)
3957 && (bb = BLOCK_FOR_INSN (after)))
3958 {
3959 bb->flags |= BB_DIRTY;
3960 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3961 if (!BARRIER_P (last))
3962 set_block_for_insn (last, bb);
3963 if (!BARRIER_P (last))
3964 set_block_for_insn (last, bb);
3965 if (BB_END (bb) == after)
3966 BB_END (bb) = last;
3967 }
3968 else
3969 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3970 continue;
3971
3972 after_after = NEXT_INSN (after);
3973
3974 NEXT_INSN (after) = first;
3975 PREV_INSN (first) = after;
3976 NEXT_INSN (last) = after_after;
3977 if (after_after)
3978 PREV_INSN (after_after) = last;
3979
3980 if (after == last_insn)
3981 last_insn = last;
3982 return last;
3983 }
3984
3985 /* Make X be output after the insn AFTER. */
3986
3987 rtx
3988 emit_insn_after_noloc (rtx x, rtx after)
3989 {
3990 rtx last = after;
3991
3992 gcc_assert (after);
3993
3994 if (x == NULL_RTX)
3995 return last;
3996
3997 switch (GET_CODE (x))
3998 {
3999 case INSN:
4000 case JUMP_INSN:
4001 case CALL_INSN:
4002 case CODE_LABEL:
4003 case BARRIER:
4004 case NOTE:
4005 last = emit_insn_after_1 (x, after);
4006 break;
4007
4008 #ifdef ENABLE_RTL_CHECKING
4009 case SEQUENCE:
4010 gcc_unreachable ();
4011 break;
4012 #endif
4013
4014 default:
4015 last = make_insn_raw (x);
4016 add_insn_after (last, after);
4017 break;
4018 }
4019
4020 return last;
4021 }
4022
4023 /* Similar to emit_insn_after, except that line notes are to be inserted so
4024 as to act as if this insn were at FROM. */
4025
4026 void
4027 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4028 {
4029 rtx from_line = find_line_note (from);
4030 rtx after_line = find_line_note (after);
4031 rtx insn = emit_insn_after (x, after);
4032
4033 if (from_line)
4034 emit_note_copy_after (from_line, after);
4035
4036 if (after_line)
4037 emit_note_copy_after (after_line, insn);
4038 }
4039
4040 /* Make an insn of code JUMP_INSN with body X
4041 and output it after the insn AFTER. */
4042
4043 rtx
4044 emit_jump_insn_after_noloc (rtx x, rtx after)
4045 {
4046 rtx last;
4047
4048 gcc_assert (after);
4049
4050 switch (GET_CODE (x))
4051 {
4052 case INSN:
4053 case JUMP_INSN:
4054 case CALL_INSN:
4055 case CODE_LABEL:
4056 case BARRIER:
4057 case NOTE:
4058 last = emit_insn_after_1 (x, after);
4059 break;
4060
4061 #ifdef ENABLE_RTL_CHECKING
4062 case SEQUENCE:
4063 gcc_unreachable ();
4064 break;
4065 #endif
4066
4067 default:
4068 last = make_jump_insn_raw (x);
4069 add_insn_after (last, after);
4070 break;
4071 }
4072
4073 return last;
4074 }
4075
4076 /* Make an instruction with body X and code CALL_INSN
4077 and output it after the instruction AFTER. */
4078
4079 rtx
4080 emit_call_insn_after_noloc (rtx x, rtx after)
4081 {
4082 rtx last;
4083
4084 gcc_assert (after);
4085
4086 switch (GET_CODE (x))
4087 {
4088 case INSN:
4089 case JUMP_INSN:
4090 case CALL_INSN:
4091 case CODE_LABEL:
4092 case BARRIER:
4093 case NOTE:
4094 last = emit_insn_after_1 (x, after);
4095 break;
4096
4097 #ifdef ENABLE_RTL_CHECKING
4098 case SEQUENCE:
4099 gcc_unreachable ();
4100 break;
4101 #endif
4102
4103 default:
4104 last = make_call_insn_raw (x);
4105 add_insn_after (last, after);
4106 break;
4107 }
4108
4109 return last;
4110 }
4111
4112 /* Make an insn of code BARRIER
4113 and output it after the insn AFTER. */
4114
4115 rtx
4116 emit_barrier_after (rtx after)
4117 {
4118 rtx insn = rtx_alloc (BARRIER);
4119
4120 INSN_UID (insn) = cur_insn_uid++;
4121
4122 add_insn_after (insn, after);
4123 return insn;
4124 }
4125
4126 /* Emit the label LABEL after the insn AFTER. */
4127
4128 rtx
4129 emit_label_after (rtx label, rtx after)
4130 {
4131 /* This can be called twice for the same label
4132 as a result of the confusion that follows a syntax error!
4133 So make it harmless. */
4134 if (INSN_UID (label) == 0)
4135 {
4136 INSN_UID (label) = cur_insn_uid++;
4137 add_insn_after (label, after);
4138 }
4139
4140 return label;
4141 }
4142
4143 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4144
4145 rtx
4146 emit_note_after (int subtype, rtx after)
4147 {
4148 rtx note = rtx_alloc (NOTE);
4149 INSN_UID (note) = cur_insn_uid++;
4150 #ifndef USE_MAPPED_LOCATION
4151 NOTE_SOURCE_FILE (note) = 0;
4152 #endif
4153 NOTE_LINE_NUMBER (note) = subtype;
4154 BLOCK_FOR_INSN (note) = NULL;
4155 add_insn_after (note, after);
4156 return note;
4157 }
4158
4159 /* Emit a copy of note ORIG after the insn AFTER. */
4160
4161 rtx
4162 emit_note_copy_after (rtx orig, rtx after)
4163 {
4164 rtx note;
4165
4166 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4167 {
4168 cur_insn_uid++;
4169 return 0;
4170 }
4171
4172 note = rtx_alloc (NOTE);
4173 INSN_UID (note) = cur_insn_uid++;
4174 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4175 NOTE_DATA (note) = NOTE_DATA (orig);
4176 BLOCK_FOR_INSN (note) = NULL;
4177 add_insn_after (note, after);
4178 return note;
4179 }
4180 \f
4181 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4182 rtx
4183 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4184 {
4185 rtx last = emit_insn_after_noloc (pattern, after);
4186
4187 if (pattern == NULL_RTX || !loc)
4188 return last;
4189
4190 after = NEXT_INSN (after);
4191 while (1)
4192 {
4193 if (active_insn_p (after) && !INSN_LOCATOR (after))
4194 INSN_LOCATOR (after) = loc;
4195 if (after == last)
4196 break;
4197 after = NEXT_INSN (after);
4198 }
4199 return last;
4200 }
4201
4202 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4203 rtx
4204 emit_insn_after (rtx pattern, rtx after)
4205 {
4206 if (INSN_P (after))
4207 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4208 else
4209 return emit_insn_after_noloc (pattern, after);
4210 }
4211
4212 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4213 rtx
4214 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4215 {
4216 rtx last = emit_jump_insn_after_noloc (pattern, after);
4217
4218 if (pattern == NULL_RTX || !loc)
4219 return last;
4220
4221 after = NEXT_INSN (after);
4222 while (1)
4223 {
4224 if (active_insn_p (after) && !INSN_LOCATOR (after))
4225 INSN_LOCATOR (after) = loc;
4226 if (after == last)
4227 break;
4228 after = NEXT_INSN (after);
4229 }
4230 return last;
4231 }
4232
4233 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4234 rtx
4235 emit_jump_insn_after (rtx pattern, rtx after)
4236 {
4237 if (INSN_P (after))
4238 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4239 else
4240 return emit_jump_insn_after_noloc (pattern, after);
4241 }
4242
4243 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4244 rtx
4245 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4246 {
4247 rtx last = emit_call_insn_after_noloc (pattern, after);
4248
4249 if (pattern == NULL_RTX || !loc)
4250 return last;
4251
4252 after = NEXT_INSN (after);
4253 while (1)
4254 {
4255 if (active_insn_p (after) && !INSN_LOCATOR (after))
4256 INSN_LOCATOR (after) = loc;
4257 if (after == last)
4258 break;
4259 after = NEXT_INSN (after);
4260 }
4261 return last;
4262 }
4263
4264 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4265 rtx
4266 emit_call_insn_after (rtx pattern, rtx after)
4267 {
4268 if (INSN_P (after))
4269 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4270 else
4271 return emit_call_insn_after_noloc (pattern, after);
4272 }
4273
4274 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4275 rtx
4276 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4277 {
4278 rtx first = PREV_INSN (before);
4279 rtx last = emit_insn_before_noloc (pattern, before);
4280
4281 if (pattern == NULL_RTX || !loc)
4282 return last;
4283
4284 first = NEXT_INSN (first);
4285 while (1)
4286 {
4287 if (active_insn_p (first) && !INSN_LOCATOR (first))
4288 INSN_LOCATOR (first) = loc;
4289 if (first == last)
4290 break;
4291 first = NEXT_INSN (first);
4292 }
4293 return last;
4294 }
4295
4296 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4297 rtx
4298 emit_insn_before (rtx pattern, rtx before)
4299 {
4300 if (INSN_P (before))
4301 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4302 else
4303 return emit_insn_before_noloc (pattern, before);
4304 }
4305
4306 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4307 rtx
4308 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4309 {
4310 rtx first = PREV_INSN (before);
4311 rtx last = emit_jump_insn_before_noloc (pattern, before);
4312
4313 if (pattern == NULL_RTX)
4314 return last;
4315
4316 first = NEXT_INSN (first);
4317 while (1)
4318 {
4319 if (active_insn_p (first) && !INSN_LOCATOR (first))
4320 INSN_LOCATOR (first) = loc;
4321 if (first == last)
4322 break;
4323 first = NEXT_INSN (first);
4324 }
4325 return last;
4326 }
4327
4328 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4329 rtx
4330 emit_jump_insn_before (rtx pattern, rtx before)
4331 {
4332 if (INSN_P (before))
4333 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4334 else
4335 return emit_jump_insn_before_noloc (pattern, before);
4336 }
4337
4338 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4339 rtx
4340 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4341 {
4342 rtx first = PREV_INSN (before);
4343 rtx last = emit_call_insn_before_noloc (pattern, before);
4344
4345 if (pattern == NULL_RTX)
4346 return last;
4347
4348 first = NEXT_INSN (first);
4349 while (1)
4350 {
4351 if (active_insn_p (first) && !INSN_LOCATOR (first))
4352 INSN_LOCATOR (first) = loc;
4353 if (first == last)
4354 break;
4355 first = NEXT_INSN (first);
4356 }
4357 return last;
4358 }
4359
4360 /* like emit_call_insn_before_noloc,
4361 but set insn_locator according to before. */
4362 rtx
4363 emit_call_insn_before (rtx pattern, rtx before)
4364 {
4365 if (INSN_P (before))
4366 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4367 else
4368 return emit_call_insn_before_noloc (pattern, before);
4369 }
4370 \f
4371 /* Take X and emit it at the end of the doubly-linked
4372 INSN list.
4373
4374 Returns the last insn emitted. */
4375
4376 rtx
4377 emit_insn (rtx x)
4378 {
4379 rtx last = last_insn;
4380 rtx insn;
4381
4382 if (x == NULL_RTX)
4383 return last;
4384
4385 switch (GET_CODE (x))
4386 {
4387 case INSN:
4388 case JUMP_INSN:
4389 case CALL_INSN:
4390 case CODE_LABEL:
4391 case BARRIER:
4392 case NOTE:
4393 insn = x;
4394 while (insn)
4395 {
4396 rtx next = NEXT_INSN (insn);
4397 add_insn (insn);
4398 last = insn;
4399 insn = next;
4400 }
4401 break;
4402
4403 #ifdef ENABLE_RTL_CHECKING
4404 case SEQUENCE:
4405 gcc_unreachable ();
4406 break;
4407 #endif
4408
4409 default:
4410 last = make_insn_raw (x);
4411 add_insn (last);
4412 break;
4413 }
4414
4415 return last;
4416 }
4417
4418 /* Make an insn of code JUMP_INSN with pattern X
4419 and add it to the end of the doubly-linked list. */
4420
4421 rtx
4422 emit_jump_insn (rtx x)
4423 {
4424 rtx last = NULL_RTX, insn;
4425
4426 switch (GET_CODE (x))
4427 {
4428 case INSN:
4429 case JUMP_INSN:
4430 case CALL_INSN:
4431 case CODE_LABEL:
4432 case BARRIER:
4433 case NOTE:
4434 insn = x;
4435 while (insn)
4436 {
4437 rtx next = NEXT_INSN (insn);
4438 add_insn (insn);
4439 last = insn;
4440 insn = next;
4441 }
4442 break;
4443
4444 #ifdef ENABLE_RTL_CHECKING
4445 case SEQUENCE:
4446 gcc_unreachable ();
4447 break;
4448 #endif
4449
4450 default:
4451 last = make_jump_insn_raw (x);
4452 add_insn (last);
4453 break;
4454 }
4455
4456 return last;
4457 }
4458
4459 /* Make an insn of code CALL_INSN with pattern X
4460 and add it to the end of the doubly-linked list. */
4461
4462 rtx
4463 emit_call_insn (rtx x)
4464 {
4465 rtx insn;
4466
4467 switch (GET_CODE (x))
4468 {
4469 case INSN:
4470 case JUMP_INSN:
4471 case CALL_INSN:
4472 case CODE_LABEL:
4473 case BARRIER:
4474 case NOTE:
4475 insn = emit_insn (x);
4476 break;
4477
4478 #ifdef ENABLE_RTL_CHECKING
4479 case SEQUENCE:
4480 gcc_unreachable ();
4481 break;
4482 #endif
4483
4484 default:
4485 insn = make_call_insn_raw (x);
4486 add_insn (insn);
4487 break;
4488 }
4489
4490 return insn;
4491 }
4492
4493 /* Add the label LABEL to the end of the doubly-linked list. */
4494
4495 rtx
4496 emit_label (rtx label)
4497 {
4498 /* This can be called twice for the same label
4499 as a result of the confusion that follows a syntax error!
4500 So make it harmless. */
4501 if (INSN_UID (label) == 0)
4502 {
4503 INSN_UID (label) = cur_insn_uid++;
4504 add_insn (label);
4505 }
4506 return label;
4507 }
4508
4509 /* Make an insn of code BARRIER
4510 and add it to the end of the doubly-linked list. */
4511
4512 rtx
4513 emit_barrier (void)
4514 {
4515 rtx barrier = rtx_alloc (BARRIER);
4516 INSN_UID (barrier) = cur_insn_uid++;
4517 add_insn (barrier);
4518 return barrier;
4519 }
4520
4521 /* Make line numbering NOTE insn for LOCATION add it to the end
4522 of the doubly-linked list, but only if line-numbers are desired for
4523 debugging info and it doesn't match the previous one. */
4524
4525 rtx
4526 emit_line_note (location_t location)
4527 {
4528 rtx note;
4529
4530 #ifdef USE_MAPPED_LOCATION
4531 if (location == last_location)
4532 return NULL_RTX;
4533 #else
4534 if (location.file && last_location.file
4535 && !strcmp (location.file, last_location.file)
4536 && location.line == last_location.line)
4537 return NULL_RTX;
4538 #endif
4539 last_location = location;
4540
4541 if (no_line_numbers)
4542 {
4543 cur_insn_uid++;
4544 return NULL_RTX;
4545 }
4546
4547 #ifdef USE_MAPPED_LOCATION
4548 note = emit_note ((int) location);
4549 #else
4550 note = emit_note (location.line);
4551 NOTE_SOURCE_FILE (note) = location.file;
4552 #endif
4553
4554 return note;
4555 }
4556
4557 /* Emit a copy of note ORIG. */
4558
4559 rtx
4560 emit_note_copy (rtx orig)
4561 {
4562 rtx note;
4563
4564 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4565 {
4566 cur_insn_uid++;
4567 return NULL_RTX;
4568 }
4569
4570 note = rtx_alloc (NOTE);
4571
4572 INSN_UID (note) = cur_insn_uid++;
4573 NOTE_DATA (note) = NOTE_DATA (orig);
4574 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4575 BLOCK_FOR_INSN (note) = NULL;
4576 add_insn (note);
4577
4578 return note;
4579 }
4580
4581 /* Make an insn of code NOTE or type NOTE_NO
4582 and add it to the end of the doubly-linked list. */
4583
4584 rtx
4585 emit_note (int note_no)
4586 {
4587 rtx note;
4588
4589 note = rtx_alloc (NOTE);
4590 INSN_UID (note) = cur_insn_uid++;
4591 NOTE_LINE_NUMBER (note) = note_no;
4592 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4593 BLOCK_FOR_INSN (note) = NULL;
4594 add_insn (note);
4595 return note;
4596 }
4597
4598 /* Cause next statement to emit a line note even if the line number
4599 has not changed. */
4600
4601 void
4602 force_next_line_note (void)
4603 {
4604 #ifdef USE_MAPPED_LOCATION
4605 last_location = -1;
4606 #else
4607 last_location.line = -1;
4608 #endif
4609 }
4610
4611 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4612 note of this type already exists, remove it first. */
4613
4614 rtx
4615 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4616 {
4617 rtx note = find_reg_note (insn, kind, NULL_RTX);
4618
4619 switch (kind)
4620 {
4621 case REG_EQUAL:
4622 case REG_EQUIV:
4623 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4624 has multiple sets (some callers assume single_set
4625 means the insn only has one set, when in fact it
4626 means the insn only has one * useful * set). */
4627 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4628 {
4629 gcc_assert (!note);
4630 return NULL_RTX;
4631 }
4632
4633 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4634 It serves no useful purpose and breaks eliminate_regs. */
4635 if (GET_CODE (datum) == ASM_OPERANDS)
4636 return NULL_RTX;
4637 break;
4638
4639 default:
4640 break;
4641 }
4642
4643 if (note)
4644 {
4645 XEXP (note, 0) = datum;
4646 return note;
4647 }
4648
4649 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4650 return REG_NOTES (insn);
4651 }
4652 \f
4653 /* Return an indication of which type of insn should have X as a body.
4654 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4655
4656 static enum rtx_code
4657 classify_insn (rtx x)
4658 {
4659 if (LABEL_P (x))
4660 return CODE_LABEL;
4661 if (GET_CODE (x) == CALL)
4662 return CALL_INSN;
4663 if (GET_CODE (x) == RETURN)
4664 return JUMP_INSN;
4665 if (GET_CODE (x) == SET)
4666 {
4667 if (SET_DEST (x) == pc_rtx)
4668 return JUMP_INSN;
4669 else if (GET_CODE (SET_SRC (x)) == CALL)
4670 return CALL_INSN;
4671 else
4672 return INSN;
4673 }
4674 if (GET_CODE (x) == PARALLEL)
4675 {
4676 int j;
4677 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4678 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4679 return CALL_INSN;
4680 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4681 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4682 return JUMP_INSN;
4683 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4684 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4685 return CALL_INSN;
4686 }
4687 return INSN;
4688 }
4689
4690 /* Emit the rtl pattern X as an appropriate kind of insn.
4691 If X is a label, it is simply added into the insn chain. */
4692
4693 rtx
4694 emit (rtx x)
4695 {
4696 enum rtx_code code = classify_insn (x);
4697
4698 switch (code)
4699 {
4700 case CODE_LABEL:
4701 return emit_label (x);
4702 case INSN:
4703 return emit_insn (x);
4704 case JUMP_INSN:
4705 {
4706 rtx insn = emit_jump_insn (x);
4707 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4708 return emit_barrier ();
4709 return insn;
4710 }
4711 case CALL_INSN:
4712 return emit_call_insn (x);
4713 default:
4714 gcc_unreachable ();
4715 }
4716 }
4717 \f
4718 /* Space for free sequence stack entries. */
4719 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4720
4721 /* Begin emitting insns to a sequence. If this sequence will contain
4722 something that might cause the compiler to pop arguments to function
4723 calls (because those pops have previously been deferred; see
4724 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4725 before calling this function. That will ensure that the deferred
4726 pops are not accidentally emitted in the middle of this sequence. */
4727
4728 void
4729 start_sequence (void)
4730 {
4731 struct sequence_stack *tem;
4732
4733 if (free_sequence_stack != NULL)
4734 {
4735 tem = free_sequence_stack;
4736 free_sequence_stack = tem->next;
4737 }
4738 else
4739 tem = ggc_alloc (sizeof (struct sequence_stack));
4740
4741 tem->next = seq_stack;
4742 tem->first = first_insn;
4743 tem->last = last_insn;
4744
4745 seq_stack = tem;
4746
4747 first_insn = 0;
4748 last_insn = 0;
4749 }
4750
4751 /* Set up the insn chain starting with FIRST as the current sequence,
4752 saving the previously current one. See the documentation for
4753 start_sequence for more information about how to use this function. */
4754
4755 void
4756 push_to_sequence (rtx first)
4757 {
4758 rtx last;
4759
4760 start_sequence ();
4761
4762 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4763
4764 first_insn = first;
4765 last_insn = last;
4766 }
4767
4768 /* Set up the outer-level insn chain
4769 as the current sequence, saving the previously current one. */
4770
4771 void
4772 push_topmost_sequence (void)
4773 {
4774 struct sequence_stack *stack, *top = NULL;
4775
4776 start_sequence ();
4777
4778 for (stack = seq_stack; stack; stack = stack->next)
4779 top = stack;
4780
4781 first_insn = top->first;
4782 last_insn = top->last;
4783 }
4784
4785 /* After emitting to the outer-level insn chain, update the outer-level
4786 insn chain, and restore the previous saved state. */
4787
4788 void
4789 pop_topmost_sequence (void)
4790 {
4791 struct sequence_stack *stack, *top = NULL;
4792
4793 for (stack = seq_stack; stack; stack = stack->next)
4794 top = stack;
4795
4796 top->first = first_insn;
4797 top->last = last_insn;
4798
4799 end_sequence ();
4800 }
4801
4802 /* After emitting to a sequence, restore previous saved state.
4803
4804 To get the contents of the sequence just made, you must call
4805 `get_insns' *before* calling here.
4806
4807 If the compiler might have deferred popping arguments while
4808 generating this sequence, and this sequence will not be immediately
4809 inserted into the instruction stream, use do_pending_stack_adjust
4810 before calling get_insns. That will ensure that the deferred
4811 pops are inserted into this sequence, and not into some random
4812 location in the instruction stream. See INHIBIT_DEFER_POP for more
4813 information about deferred popping of arguments. */
4814
4815 void
4816 end_sequence (void)
4817 {
4818 struct sequence_stack *tem = seq_stack;
4819
4820 first_insn = tem->first;
4821 last_insn = tem->last;
4822 seq_stack = tem->next;
4823
4824 memset (tem, 0, sizeof (*tem));
4825 tem->next = free_sequence_stack;
4826 free_sequence_stack = tem;
4827 }
4828
4829 /* Return 1 if currently emitting into a sequence. */
4830
4831 int
4832 in_sequence_p (void)
4833 {
4834 return seq_stack != 0;
4835 }
4836 \f
4837 /* Put the various virtual registers into REGNO_REG_RTX. */
4838
4839 void
4840 init_virtual_regs (struct emit_status *es)
4841 {
4842 rtx *ptr = es->x_regno_reg_rtx;
4843 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4844 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4845 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4846 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4847 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4848 }
4849
4850 \f
4851 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4852 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4853 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4854 static int copy_insn_n_scratches;
4855
4856 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4857 copied an ASM_OPERANDS.
4858 In that case, it is the original input-operand vector. */
4859 static rtvec orig_asm_operands_vector;
4860
4861 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4862 copied an ASM_OPERANDS.
4863 In that case, it is the copied input-operand vector. */
4864 static rtvec copy_asm_operands_vector;
4865
4866 /* Likewise for the constraints vector. */
4867 static rtvec orig_asm_constraints_vector;
4868 static rtvec copy_asm_constraints_vector;
4869
4870 /* Recursively create a new copy of an rtx for copy_insn.
4871 This function differs from copy_rtx in that it handles SCRATCHes and
4872 ASM_OPERANDs properly.
4873 Normally, this function is not used directly; use copy_insn as front end.
4874 However, you could first copy an insn pattern with copy_insn and then use
4875 this function afterwards to properly copy any REG_NOTEs containing
4876 SCRATCHes. */
4877
4878 rtx
4879 copy_insn_1 (rtx orig)
4880 {
4881 rtx copy;
4882 int i, j;
4883 RTX_CODE code;
4884 const char *format_ptr;
4885
4886 code = GET_CODE (orig);
4887
4888 switch (code)
4889 {
4890 case REG:
4891 case CONST_INT:
4892 case CONST_DOUBLE:
4893 case CONST_VECTOR:
4894 case SYMBOL_REF:
4895 case CODE_LABEL:
4896 case PC:
4897 case CC0:
4898 return orig;
4899 case CLOBBER:
4900 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4901 return orig;
4902 break;
4903
4904 case SCRATCH:
4905 for (i = 0; i < copy_insn_n_scratches; i++)
4906 if (copy_insn_scratch_in[i] == orig)
4907 return copy_insn_scratch_out[i];
4908 break;
4909
4910 case CONST:
4911 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4912 a LABEL_REF, it isn't sharable. */
4913 if (GET_CODE (XEXP (orig, 0)) == PLUS
4914 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4915 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4916 return orig;
4917 break;
4918
4919 /* A MEM with a constant address is not sharable. The problem is that
4920 the constant address may need to be reloaded. If the mem is shared,
4921 then reloading one copy of this mem will cause all copies to appear
4922 to have been reloaded. */
4923
4924 default:
4925 break;
4926 }
4927
4928 copy = rtx_alloc (code);
4929
4930 /* Copy the various flags, and other information. We assume that
4931 all fields need copying, and then clear the fields that should
4932 not be copied. That is the sensible default behavior, and forces
4933 us to explicitly document why we are *not* copying a flag. */
4934 memcpy (copy, orig, RTX_HDR_SIZE);
4935
4936 /* We do not copy the USED flag, which is used as a mark bit during
4937 walks over the RTL. */
4938 RTX_FLAG (copy, used) = 0;
4939
4940 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4941 if (INSN_P (orig))
4942 {
4943 RTX_FLAG (copy, jump) = 0;
4944 RTX_FLAG (copy, call) = 0;
4945 RTX_FLAG (copy, frame_related) = 0;
4946 }
4947
4948 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4949
4950 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4951 {
4952 copy->u.fld[i] = orig->u.fld[i];
4953 switch (*format_ptr++)
4954 {
4955 case 'e':
4956 if (XEXP (orig, i) != NULL)
4957 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4958 break;
4959
4960 case 'E':
4961 case 'V':
4962 if (XVEC (orig, i) == orig_asm_constraints_vector)
4963 XVEC (copy, i) = copy_asm_constraints_vector;
4964 else if (XVEC (orig, i) == orig_asm_operands_vector)
4965 XVEC (copy, i) = copy_asm_operands_vector;
4966 else if (XVEC (orig, i) != NULL)
4967 {
4968 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4969 for (j = 0; j < XVECLEN (copy, i); j++)
4970 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4971 }
4972 break;
4973
4974 case 't':
4975 case 'w':
4976 case 'i':
4977 case 's':
4978 case 'S':
4979 case 'u':
4980 case '0':
4981 /* These are left unchanged. */
4982 break;
4983
4984 default:
4985 gcc_unreachable ();
4986 }
4987 }
4988
4989 if (code == SCRATCH)
4990 {
4991 i = copy_insn_n_scratches++;
4992 gcc_assert (i < MAX_RECOG_OPERANDS);
4993 copy_insn_scratch_in[i] = orig;
4994 copy_insn_scratch_out[i] = copy;
4995 }
4996 else if (code == ASM_OPERANDS)
4997 {
4998 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4999 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5000 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5001 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5002 }
5003
5004 return copy;
5005 }
5006
5007 /* Create a new copy of an rtx.
5008 This function differs from copy_rtx in that it handles SCRATCHes and
5009 ASM_OPERANDs properly.
5010 INSN doesn't really have to be a full INSN; it could be just the
5011 pattern. */
5012 rtx
5013 copy_insn (rtx insn)
5014 {
5015 copy_insn_n_scratches = 0;
5016 orig_asm_operands_vector = 0;
5017 orig_asm_constraints_vector = 0;
5018 copy_asm_operands_vector = 0;
5019 copy_asm_constraints_vector = 0;
5020 return copy_insn_1 (insn);
5021 }
5022
5023 /* Initialize data structures and variables in this file
5024 before generating rtl for each function. */
5025
5026 void
5027 init_emit (void)
5028 {
5029 struct function *f = cfun;
5030
5031 f->emit = ggc_alloc (sizeof (struct emit_status));
5032 first_insn = NULL;
5033 last_insn = NULL;
5034 cur_insn_uid = 1;
5035 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5036 last_location = UNKNOWN_LOCATION;
5037 first_label_num = label_num;
5038 seq_stack = NULL;
5039
5040 /* Init the tables that describe all the pseudo regs. */
5041
5042 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5043
5044 f->emit->regno_pointer_align
5045 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5046 * sizeof (unsigned char));
5047
5048 regno_reg_rtx
5049 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5050
5051 /* Put copies of all the hard registers into regno_reg_rtx. */
5052 memcpy (regno_reg_rtx,
5053 static_regno_reg_rtx,
5054 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5055
5056 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5057 init_virtual_regs (f->emit);
5058
5059 /* Indicate that the virtual registers and stack locations are
5060 all pointers. */
5061 REG_POINTER (stack_pointer_rtx) = 1;
5062 REG_POINTER (frame_pointer_rtx) = 1;
5063 REG_POINTER (hard_frame_pointer_rtx) = 1;
5064 REG_POINTER (arg_pointer_rtx) = 1;
5065
5066 REG_POINTER (virtual_incoming_args_rtx) = 1;
5067 REG_POINTER (virtual_stack_vars_rtx) = 1;
5068 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5069 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5070 REG_POINTER (virtual_cfa_rtx) = 1;
5071
5072 #ifdef STACK_BOUNDARY
5073 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5074 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5075 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5076 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5077
5078 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5079 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5080 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5081 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5082 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5083 #endif
5084
5085 #ifdef INIT_EXPANDERS
5086 INIT_EXPANDERS;
5087 #endif
5088 }
5089
5090 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5091
5092 static rtx
5093 gen_const_vector (enum machine_mode mode, int constant)
5094 {
5095 rtx tem;
5096 rtvec v;
5097 int units, i;
5098 enum machine_mode inner;
5099
5100 units = GET_MODE_NUNITS (mode);
5101 inner = GET_MODE_INNER (mode);
5102
5103 v = rtvec_alloc (units);
5104
5105 /* We need to call this function after we set the scalar const_tiny_rtx
5106 entries. */
5107 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5108
5109 for (i = 0; i < units; ++i)
5110 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5111
5112 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5113 return tem;
5114 }
5115
5116 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5117 all elements are zero, and the one vector when all elements are one. */
5118 rtx
5119 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5120 {
5121 enum machine_mode inner = GET_MODE_INNER (mode);
5122 int nunits = GET_MODE_NUNITS (mode);
5123 rtx x;
5124 int i;
5125
5126 /* Check to see if all of the elements have the same value. */
5127 x = RTVEC_ELT (v, nunits - 1);
5128 for (i = nunits - 2; i >= 0; i--)
5129 if (RTVEC_ELT (v, i) != x)
5130 break;
5131
5132 /* If the values are all the same, check to see if we can use one of the
5133 standard constant vectors. */
5134 if (i == -1)
5135 {
5136 if (x == CONST0_RTX (inner))
5137 return CONST0_RTX (mode);
5138 else if (x == CONST1_RTX (inner))
5139 return CONST1_RTX (mode);
5140 }
5141
5142 return gen_rtx_raw_CONST_VECTOR (mode, v);
5143 }
5144
5145 /* Create some permanent unique rtl objects shared between all functions.
5146 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5147
5148 void
5149 init_emit_once (int line_numbers)
5150 {
5151 int i;
5152 enum machine_mode mode;
5153 enum machine_mode double_mode;
5154
5155 /* We need reg_raw_mode, so initialize the modes now. */
5156 init_reg_modes_once ();
5157
5158 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5159 tables. */
5160 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5161 const_int_htab_eq, NULL);
5162
5163 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5164 const_double_htab_eq, NULL);
5165
5166 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5167 mem_attrs_htab_eq, NULL);
5168 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5169 reg_attrs_htab_eq, NULL);
5170
5171 no_line_numbers = ! line_numbers;
5172
5173 /* Compute the word and byte modes. */
5174
5175 byte_mode = VOIDmode;
5176 word_mode = VOIDmode;
5177 double_mode = VOIDmode;
5178
5179 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5180 mode = GET_MODE_WIDER_MODE (mode))
5181 {
5182 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5183 && byte_mode == VOIDmode)
5184 byte_mode = mode;
5185
5186 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5187 && word_mode == VOIDmode)
5188 word_mode = mode;
5189 }
5190
5191 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5192 mode = GET_MODE_WIDER_MODE (mode))
5193 {
5194 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5195 && double_mode == VOIDmode)
5196 double_mode = mode;
5197 }
5198
5199 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5200
5201 /* Assign register numbers to the globally defined register rtx.
5202 This must be done at runtime because the register number field
5203 is in a union and some compilers can't initialize unions. */
5204
5205 pc_rtx = gen_rtx_PC (VOIDmode);
5206 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5207 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5208 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5209 if (hard_frame_pointer_rtx == 0)
5210 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5211 HARD_FRAME_POINTER_REGNUM);
5212 if (arg_pointer_rtx == 0)
5213 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5214 virtual_incoming_args_rtx =
5215 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5216 virtual_stack_vars_rtx =
5217 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5218 virtual_stack_dynamic_rtx =
5219 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5220 virtual_outgoing_args_rtx =
5221 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5222 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5223
5224 /* Initialize RTL for commonly used hard registers. These are
5225 copied into regno_reg_rtx as we begin to compile each function. */
5226 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5227 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5228
5229 #ifdef INIT_EXPANDERS
5230 /* This is to initialize {init|mark|free}_machine_status before the first
5231 call to push_function_context_to. This is needed by the Chill front
5232 end which calls push_function_context_to before the first call to
5233 init_function_start. */
5234 INIT_EXPANDERS;
5235 #endif
5236
5237 /* Create the unique rtx's for certain rtx codes and operand values. */
5238
5239 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5240 tries to use these variables. */
5241 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5242 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5243 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5244
5245 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5246 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5247 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5248 else
5249 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5250
5251 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5252 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5253 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5254 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5255 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5256 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5257 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5258
5259 dconsthalf = dconst1;
5260 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5261
5262 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5263
5264 /* Initialize mathematical constants for constant folding builtins.
5265 These constants need to be given to at least 160 bits precision. */
5266 real_from_string (&dconstpi,
5267 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5268 real_from_string (&dconste,
5269 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5270
5271 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5272 {
5273 REAL_VALUE_TYPE *r =
5274 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5275
5276 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5277 mode = GET_MODE_WIDER_MODE (mode))
5278 const_tiny_rtx[i][(int) mode] =
5279 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5280
5281 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5282
5283 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5284 mode = GET_MODE_WIDER_MODE (mode))
5285 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5286
5287 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5288 mode != VOIDmode;
5289 mode = GET_MODE_WIDER_MODE (mode))
5290 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5291 }
5292
5293 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5294 mode != VOIDmode;
5295 mode = GET_MODE_WIDER_MODE (mode))
5296 {
5297 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5298 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5299 }
5300
5301 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5302 mode != VOIDmode;
5303 mode = GET_MODE_WIDER_MODE (mode))
5304 {
5305 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5306 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5307 }
5308
5309 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5310 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5311 const_tiny_rtx[0][i] = const0_rtx;
5312
5313 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5314 if (STORE_FLAG_VALUE == 1)
5315 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5316
5317 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5318 return_address_pointer_rtx
5319 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5320 #endif
5321
5322 #ifdef STATIC_CHAIN_REGNUM
5323 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5324
5325 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5326 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5327 static_chain_incoming_rtx
5328 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5329 else
5330 #endif
5331 static_chain_incoming_rtx = static_chain_rtx;
5332 #endif
5333
5334 #ifdef STATIC_CHAIN
5335 static_chain_rtx = STATIC_CHAIN;
5336
5337 #ifdef STATIC_CHAIN_INCOMING
5338 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5339 #else
5340 static_chain_incoming_rtx = static_chain_rtx;
5341 #endif
5342 #endif
5343
5344 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5345 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5346 }
5347 \f
5348 /* Produce exact duplicate of insn INSN after AFTER.
5349 Care updating of libcall regions if present. */
5350
5351 rtx
5352 emit_copy_of_insn_after (rtx insn, rtx after)
5353 {
5354 rtx new;
5355 rtx note1, note2, link;
5356
5357 switch (GET_CODE (insn))
5358 {
5359 case INSN:
5360 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5361 break;
5362
5363 case JUMP_INSN:
5364 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5365 break;
5366
5367 case CALL_INSN:
5368 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5369 if (CALL_INSN_FUNCTION_USAGE (insn))
5370 CALL_INSN_FUNCTION_USAGE (new)
5371 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5372 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5373 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5374 break;
5375
5376 default:
5377 gcc_unreachable ();
5378 }
5379
5380 /* Update LABEL_NUSES. */
5381 mark_jump_label (PATTERN (new), new, 0);
5382
5383 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5384
5385 /* If the old insn is frame related, then so is the new one. This is
5386 primarily needed for IA-64 unwind info which marks epilogue insns,
5387 which may be duplicated by the basic block reordering code. */
5388 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5389
5390 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5391 make them. */
5392 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5393 if (REG_NOTE_KIND (link) != REG_LABEL)
5394 {
5395 if (GET_CODE (link) == EXPR_LIST)
5396 REG_NOTES (new)
5397 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5398 XEXP (link, 0),
5399 REG_NOTES (new)));
5400 else
5401 REG_NOTES (new)
5402 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5403 XEXP (link, 0),
5404 REG_NOTES (new)));
5405 }
5406
5407 /* Fix the libcall sequences. */
5408 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5409 {
5410 rtx p = new;
5411 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5412 p = PREV_INSN (p);
5413 XEXP (note1, 0) = p;
5414 XEXP (note2, 0) = new;
5415 }
5416 INSN_CODE (new) = INSN_CODE (insn);
5417 return new;
5418 }
5419
5420 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5421 rtx
5422 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5423 {
5424 if (hard_reg_clobbers[mode][regno])
5425 return hard_reg_clobbers[mode][regno];
5426 else
5427 return (hard_reg_clobbers[mode][regno] =
5428 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5429 }
5430
5431 #include "gt-emit-rtl.h"