tree.h (PHI_CHAIN): New.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconst3;
112 REAL_VALUE_TYPE dconst10;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116 REAL_VALUE_TYPE dconstthird;
117 REAL_VALUE_TYPE dconstpi;
118 REAL_VALUE_TYPE dconste;
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
176
177 static rtx make_jump_insn_raw (rtx);
178 static rtx make_call_insn_raw (rtx);
179 static rtx find_line_note (rtx);
180 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector_0 (enum machine_mode);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199 static void copy_rtx_if_shared_1 (rtx *orig);
200
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
204 \f
205 /* Returns a hash code for X (which is a really a CONST_INT). */
206
207 static hashval_t
208 const_int_htab_hash (const void *x)
209 {
210 return (hashval_t) INTVAL ((rtx) x);
211 }
212
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217 static int
218 const_int_htab_eq (const void *x, const void *y)
219 {
220 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
224 static hashval_t
225 const_double_htab_hash (const void *x)
226 {
227 rtx value = (rtx) x;
228 hashval_t h;
229
230 if (GET_MODE (value) == VOIDmode)
231 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
232 else
233 {
234 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h ^= GET_MODE (value);
237 }
238 return h;
239 }
240
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
243 static int
244 const_double_htab_eq (const void *x, const void *y)
245 {
246 rtx a = (rtx)x, b = (rtx)y;
247
248 if (GET_MODE (a) != GET_MODE (b))
249 return 0;
250 if (GET_MODE (a) == VOIDmode)
251 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
252 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
253 else
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
255 CONST_DOUBLE_REAL_VALUE (b));
256 }
257
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
259
260 static hashval_t
261 mem_attrs_htab_hash (const void *x)
262 {
263 mem_attrs *p = (mem_attrs *) x;
264
265 return (p->alias ^ (p->align * 1000)
266 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
267 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
268 ^ (size_t) p->expr);
269 }
270
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
273 mem_attrs *). */
274
275 static int
276 mem_attrs_htab_eq (const void *x, const void *y)
277 {
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
280
281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
282 && p->size == q->size && p->align == q->align);
283 }
284
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
287 MEM of mode MODE. */
288
289 static mem_attrs *
290 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
291 unsigned int align, enum machine_mode mode)
292 {
293 mem_attrs attrs;
294 void **slot;
295
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (STRICT_ALIGNMENT && mode != BLKmode
303 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
304 return 0;
305
306 attrs.alias = alias;
307 attrs.expr = expr;
308 attrs.offset = offset;
309 attrs.size = size;
310 attrs.align = align;
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
315 *slot = ggc_alloc (sizeof (mem_attrs));
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
319 return *slot;
320 }
321
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
323
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330 }
331
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
338 {
339 reg_attrs *p = (reg_attrs *) x;
340 reg_attrs *q = (reg_attrs *) y;
341
342 return (p->decl == q->decl && p->offset == q->offset);
343 }
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
350 {
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
364 *slot = ggc_alloc (sizeof (reg_attrs));
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
368 return *slot;
369 }
370
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
374
375 rtx
376 gen_raw_REG (enum machine_mode mode, int regno)
377 {
378 rtx x = gen_rtx_raw_REG (mode, regno);
379 ORIGINAL_REGNO (x) = regno;
380 return x;
381 }
382
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
386
387 rtx
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
389 {
390 void **slot;
391
392 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
393 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
394
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx && arg == STORE_FLAG_VALUE)
397 return const_true_rtx;
398 #endif
399
400 /* Look up the CONST_INT in the hash table. */
401 slot = htab_find_slot_with_hash (const_int_htab, &arg,
402 (hashval_t) arg, INSERT);
403 if (*slot == 0)
404 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
405
406 return (rtx) *slot;
407 }
408
409 rtx
410 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
411 {
412 return GEN_INT (trunc_int_for_mode (c, mode));
413 }
414
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
418
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
422 static rtx
423 lookup_const_double (rtx real)
424 {
425 void **slot = htab_find_slot (const_double_htab, real, INSERT);
426 if (*slot == 0)
427 *slot = real;
428
429 return (rtx) *slot;
430 }
431
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
434 rtx
435 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
436 {
437 rtx real = rtx_alloc (CONST_DOUBLE);
438 PUT_MODE (real, mode);
439
440 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
441
442 return lookup_const_double (real);
443 }
444
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
449
450 rtx
451 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
452 {
453 rtx value;
454 unsigned int i;
455
456 if (mode != VOIDmode)
457 {
458 int width;
459 if (GET_MODE_CLASS (mode) != MODE_INT
460 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
463 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
464 abort ();
465
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width = GET_MODE_BITSIZE (mode);
470 if (width < HOST_BITS_PER_WIDE_INT
471 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
472 != ((HOST_WIDE_INT) (-1) << (width - 1))))
473 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
474 else if (width == HOST_BITS_PER_WIDE_INT
475 && ! (i1 == ~0 && i0 < 0))
476 i1 = 0;
477 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
478 /* We cannot represent this value as a constant. */
479 abort ();
480
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
484
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
489
490 if (width < HOST_BITS_PER_WIDE_INT
491 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
492 i0 |= ((HOST_WIDE_INT) (-1) << width);
493
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
495 CONST_INT.
496
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
501 negative number.
502
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
508
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
511
512 if (width <= HOST_BITS_PER_WIDE_INT)
513 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
514 }
515
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
518 return GEN_INT (i0);
519
520 /* We use VOIDmode for integers. */
521 value = rtx_alloc (CONST_DOUBLE);
522 PUT_MODE (value, VOIDmode);
523
524 CONST_DOUBLE_LOW (value) = i0;
525 CONST_DOUBLE_HIGH (value) = i1;
526
527 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
528 XWINT (value, i) = 0;
529
530 return lookup_const_double (value);
531 }
532
533 rtx
534 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
535 {
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
540 assigned to them.
541
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
546
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
549
550 if (mode == Pmode && !reload_in_progress)
551 {
552 if (regno == FRAME_POINTER_REGNUM
553 && (!reload_completed || frame_pointer_needed))
554 return frame_pointer_rtx;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno == HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return hard_frame_pointer_rtx;
559 #endif
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno == ARG_POINTER_REGNUM)
562 return arg_pointer_rtx;
563 #endif
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
566 return return_address_pointer_rtx;
567 #endif
568 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
570 return pic_offset_table_rtx;
571 if (regno == STACK_POINTER_REGNUM)
572 return stack_pointer_rtx;
573 }
574
575 #if 0
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
578
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
583
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
586
587 if (cfun
588 && cfun->emit
589 && regno_reg_rtx
590 && regno < FIRST_PSEUDO_REGISTER
591 && reg_raw_mode[regno] == mode)
592 return regno_reg_rtx[regno];
593 #endif
594
595 return gen_raw_REG (mode, regno);
596 }
597
598 rtx
599 gen_rtx_MEM (enum machine_mode mode, rtx addr)
600 {
601 rtx rt = gen_rtx_raw_MEM (mode, addr);
602
603 /* This field is not cleared by the mere allocation of the rtx, so
604 we clear it here. */
605 MEM_ATTRS (rt) = 0;
606
607 return rt;
608 }
609
610 rtx
611 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
612 {
613 /* This is the most common failure type.
614 Catch it early so we can see who does it. */
615 if ((offset % GET_MODE_SIZE (mode)) != 0)
616 abort ();
617
618 /* This check isn't usable right now because combine will
619 throw arbitrary crap like a CALL into a SUBREG in
620 gen_lowpart_for_combine so we must just eat it. */
621 #if 0
622 /* Check for this too. */
623 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
624 abort ();
625 #endif
626 return gen_rtx_raw_SUBREG (mode, reg, offset);
627 }
628
629 /* Generate a SUBREG representing the least-significant part of REG if MODE
630 is smaller than mode of REG, otherwise paradoxical SUBREG. */
631
632 rtx
633 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
634 {
635 enum machine_mode inmode;
636
637 inmode = GET_MODE (reg);
638 if (inmode == VOIDmode)
639 inmode = mode;
640 return gen_rtx_SUBREG (mode, reg,
641 subreg_lowpart_offset (mode, inmode));
642 }
643 \f
644 /* gen_rtvec (n, [rt1, ..., rtn])
645 **
646 ** This routine creates an rtvec and stores within it the
647 ** pointers to rtx's which are its arguments.
648 */
649
650 /*VARARGS1*/
651 rtvec
652 gen_rtvec (int n, ...)
653 {
654 int i, save_n;
655 rtx *vector;
656 va_list p;
657
658 va_start (p, n);
659
660 if (n == 0)
661 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
662
663 vector = alloca (n * sizeof (rtx));
664
665 for (i = 0; i < n; i++)
666 vector[i] = va_arg (p, rtx);
667
668 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
669 save_n = n;
670 va_end (p);
671
672 return gen_rtvec_v (save_n, vector);
673 }
674
675 rtvec
676 gen_rtvec_v (int n, rtx *argp)
677 {
678 int i;
679 rtvec rt_val;
680
681 if (n == 0)
682 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
683
684 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
685
686 for (i = 0; i < n; i++)
687 rt_val->elem[i] = *argp++;
688
689 return rt_val;
690 }
691 \f
692 /* Generate a REG rtx for a new pseudo register of mode MODE.
693 This pseudo is assigned the next sequential register number. */
694
695 rtx
696 gen_reg_rtx (enum machine_mode mode)
697 {
698 struct function *f = cfun;
699 rtx val;
700
701 /* Don't let anything called after initial flow analysis create new
702 registers. */
703 if (no_new_pseudos)
704 abort ();
705
706 if (generating_concat_p
707 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
708 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
709 {
710 /* For complex modes, don't make a single pseudo.
711 Instead, make a CONCAT of two pseudos.
712 This allows noncontiguous allocation of the real and imaginary parts,
713 which makes much better code. Besides, allocating DCmode
714 pseudos overstrains reload on some machines like the 386. */
715 rtx realpart, imagpart;
716 enum machine_mode partmode = GET_MODE_INNER (mode);
717
718 realpart = gen_reg_rtx (partmode);
719 imagpart = gen_reg_rtx (partmode);
720 return gen_rtx_CONCAT (mode, realpart, imagpart);
721 }
722
723 /* Make sure regno_pointer_align, and regno_reg_rtx are large
724 enough to have an element for this pseudo reg number. */
725
726 if (reg_rtx_no == f->emit->regno_pointer_align_length)
727 {
728 int old_size = f->emit->regno_pointer_align_length;
729 char *new;
730 rtx *new1;
731
732 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
733 memset (new + old_size, 0, old_size);
734 f->emit->regno_pointer_align = (unsigned char *) new;
735
736 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
737 old_size * 2 * sizeof (rtx));
738 memset (new1 + old_size, 0, old_size * sizeof (rtx));
739 regno_reg_rtx = new1;
740
741 f->emit->regno_pointer_align_length = old_size * 2;
742 }
743
744 val = gen_raw_REG (mode, reg_rtx_no);
745 regno_reg_rtx[reg_rtx_no++] = val;
746 return val;
747 }
748
749 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
750 Do the big endian correction if needed. */
751
752 rtx
753 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
754 {
755 rtx new = gen_rtx_REG (mode, regno);
756 tree decl;
757 HOST_WIDE_INT var_size;
758
759 /* PR middle-end/14084
760 The problem appears when a variable is stored in a larger register
761 and later it is used in the original mode or some mode in between
762 or some part of variable is accessed.
763
764 On little endian machines there is no problem because
765 the REG_OFFSET of the start of the variable is the same when
766 accessed in any mode (it is 0).
767
768 However, this is not true on big endian machines.
769 The offset of the start of the variable is different when accessed
770 in different modes.
771 When we are taking a part of the REG we have to change the OFFSET
772 from offset WRT size of mode of REG to offset WRT size of variable.
773
774 If we would not do the big endian correction the resulting REG_OFFSET
775 would be larger than the size of the DECL.
776
777 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
778
779 REG.mode MODE DECL size old offset new offset description
780 DI SI 4 4 0 int32 in SImode
781 DI SI 1 4 0 char in SImode
782 DI QI 1 7 0 char in QImode
783 DI QI 4 5 1 1st element in QImode
784 of char[4]
785 DI HI 4 6 2 1st element in HImode
786 of int16[2]
787
788 If the size of DECL is equal or greater than the size of REG
789 we can't do this correction because the register holds the
790 whole variable or a part of the variable and thus the REG_OFFSET
791 is already correct. */
792
793 decl = REG_EXPR (reg);
794 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
795 && decl != NULL
796 && offset > 0
797 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
798 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
799 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
800 {
801 int offset_le;
802
803 /* Convert machine endian to little endian WRT size of mode of REG. */
804 if (WORDS_BIG_ENDIAN)
805 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
806 / UNITS_PER_WORD) * UNITS_PER_WORD;
807 else
808 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
809
810 if (BYTES_BIG_ENDIAN)
811 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
812 % UNITS_PER_WORD);
813 else
814 offset_le += offset % UNITS_PER_WORD;
815
816 if (offset_le >= var_size)
817 {
818 /* MODE is wider than the variable so the new reg will cover
819 the whole variable so the resulting OFFSET should be 0. */
820 offset = 0;
821 }
822 else
823 {
824 /* Convert little endian to machine endian WRT size of variable. */
825 if (WORDS_BIG_ENDIAN)
826 offset = ((var_size - 1 - offset_le)
827 / UNITS_PER_WORD) * UNITS_PER_WORD;
828 else
829 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
830
831 if (BYTES_BIG_ENDIAN)
832 offset += ((var_size - 1 - offset_le)
833 % UNITS_PER_WORD);
834 else
835 offset += offset_le % UNITS_PER_WORD;
836 }
837 }
838
839 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
840 REG_OFFSET (reg) + offset);
841 return new;
842 }
843
844 /* Set the decl for MEM to DECL. */
845
846 void
847 set_reg_attrs_from_mem (rtx reg, rtx mem)
848 {
849 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
850 REG_ATTRS (reg)
851 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
852 }
853
854 /* Set the register attributes for registers contained in PARM_RTX.
855 Use needed values from memory attributes of MEM. */
856
857 void
858 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
859 {
860 if (REG_P (parm_rtx))
861 set_reg_attrs_from_mem (parm_rtx, mem);
862 else if (GET_CODE (parm_rtx) == PARALLEL)
863 {
864 /* Check for a NULL entry in the first slot, used to indicate that the
865 parameter goes both on the stack and in registers. */
866 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
867 for (; i < XVECLEN (parm_rtx, 0); i++)
868 {
869 rtx x = XVECEXP (parm_rtx, 0, i);
870 if (REG_P (XEXP (x, 0)))
871 REG_ATTRS (XEXP (x, 0))
872 = get_reg_attrs (MEM_EXPR (mem),
873 INTVAL (XEXP (x, 1)));
874 }
875 }
876 }
877
878 /* Assign the RTX X to declaration T. */
879 void
880 set_decl_rtl (tree t, rtx x)
881 {
882 DECL_CHECK (t)->decl.rtl = x;
883
884 if (!x)
885 return;
886 /* For register, we maintain the reverse information too. */
887 if (REG_P (x))
888 REG_ATTRS (x) = get_reg_attrs (t, 0);
889 else if (GET_CODE (x) == SUBREG)
890 REG_ATTRS (SUBREG_REG (x))
891 = get_reg_attrs (t, -SUBREG_BYTE (x));
892 if (GET_CODE (x) == CONCAT)
893 {
894 if (REG_P (XEXP (x, 0)))
895 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
896 if (REG_P (XEXP (x, 1)))
897 REG_ATTRS (XEXP (x, 1))
898 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
899 }
900 if (GET_CODE (x) == PARALLEL)
901 {
902 int i;
903 for (i = 0; i < XVECLEN (x, 0); i++)
904 {
905 rtx y = XVECEXP (x, 0, i);
906 if (REG_P (XEXP (y, 0)))
907 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
908 }
909 }
910 }
911
912 /* Assign the RTX X to parameter declaration T. */
913 void
914 set_decl_incoming_rtl (tree t, rtx x)
915 {
916 DECL_INCOMING_RTL (t) = x;
917
918 if (!x)
919 return;
920 /* For register, we maintain the reverse information too. */
921 if (REG_P (x))
922 REG_ATTRS (x) = get_reg_attrs (t, 0);
923 else if (GET_CODE (x) == SUBREG)
924 REG_ATTRS (SUBREG_REG (x))
925 = get_reg_attrs (t, -SUBREG_BYTE (x));
926 if (GET_CODE (x) == CONCAT)
927 {
928 if (REG_P (XEXP (x, 0)))
929 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
930 if (REG_P (XEXP (x, 1)))
931 REG_ATTRS (XEXP (x, 1))
932 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
933 }
934 if (GET_CODE (x) == PARALLEL)
935 {
936 int i, start;
937
938 /* Check for a NULL entry, used to indicate that the parameter goes
939 both on the stack and in registers. */
940 if (XEXP (XVECEXP (x, 0, 0), 0))
941 start = 0;
942 else
943 start = 1;
944
945 for (i = start; i < XVECLEN (x, 0); i++)
946 {
947 rtx y = XVECEXP (x, 0, i);
948 if (REG_P (XEXP (y, 0)))
949 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
950 }
951 }
952 }
953
954 /* Identify REG (which may be a CONCAT) as a user register. */
955
956 void
957 mark_user_reg (rtx reg)
958 {
959 if (GET_CODE (reg) == CONCAT)
960 {
961 REG_USERVAR_P (XEXP (reg, 0)) = 1;
962 REG_USERVAR_P (XEXP (reg, 1)) = 1;
963 }
964 else if (REG_P (reg))
965 REG_USERVAR_P (reg) = 1;
966 else
967 abort ();
968 }
969
970 /* Identify REG as a probable pointer register and show its alignment
971 as ALIGN, if nonzero. */
972
973 void
974 mark_reg_pointer (rtx reg, int align)
975 {
976 if (! REG_POINTER (reg))
977 {
978 REG_POINTER (reg) = 1;
979
980 if (align)
981 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
982 }
983 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
984 /* We can no-longer be sure just how aligned this pointer is. */
985 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
986 }
987
988 /* Return 1 plus largest pseudo reg number used in the current function. */
989
990 int
991 max_reg_num (void)
992 {
993 return reg_rtx_no;
994 }
995
996 /* Return 1 + the largest label number used so far in the current function. */
997
998 int
999 max_label_num (void)
1000 {
1001 if (last_label_num && label_num == base_label_num)
1002 return last_label_num;
1003 return label_num;
1004 }
1005
1006 /* Return first label number used in this function (if any were used). */
1007
1008 int
1009 get_first_label_num (void)
1010 {
1011 return first_label_num;
1012 }
1013
1014 /* If the rtx for label was created during the expansion of a nested
1015 function, then first_label_num won't include this label number.
1016 Fix this now so that array indicies work later. */
1017
1018 void
1019 maybe_set_first_label_num (rtx x)
1020 {
1021 if (CODE_LABEL_NUMBER (x) < first_label_num)
1022 first_label_num = CODE_LABEL_NUMBER (x);
1023 }
1024 \f
1025 /* Return the final regno of X, which is a SUBREG of a hard
1026 register. */
1027 int
1028 subreg_hard_regno (rtx x, int check_mode)
1029 {
1030 enum machine_mode mode = GET_MODE (x);
1031 unsigned int byte_offset, base_regno, final_regno;
1032 rtx reg = SUBREG_REG (x);
1033
1034 /* This is where we attempt to catch illegal subregs
1035 created by the compiler. */
1036 if (GET_CODE (x) != SUBREG
1037 || !REG_P (reg))
1038 abort ();
1039 base_regno = REGNO (reg);
1040 if (base_regno >= FIRST_PSEUDO_REGISTER)
1041 abort ();
1042 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1043 abort ();
1044 #ifdef ENABLE_CHECKING
1045 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1046 SUBREG_BYTE (x), mode))
1047 abort ();
1048 #endif
1049 /* Catch non-congruent offsets too. */
1050 byte_offset = SUBREG_BYTE (x);
1051 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1052 abort ();
1053
1054 final_regno = subreg_regno (x);
1055
1056 return final_regno;
1057 }
1058
1059 /* Return a value representing some low-order bits of X, where the number
1060 of low-order bits is given by MODE. Note that no conversion is done
1061 between floating-point and fixed-point values, rather, the bit
1062 representation is returned.
1063
1064 This function handles the cases in common between gen_lowpart, below,
1065 and two variants in cse.c and combine.c. These are the cases that can
1066 be safely handled at all points in the compilation.
1067
1068 If this is not a case we can handle, return 0. */
1069
1070 rtx
1071 gen_lowpart_common (enum machine_mode mode, rtx x)
1072 {
1073 int msize = GET_MODE_SIZE (mode);
1074 int xsize;
1075 int offset = 0;
1076 enum machine_mode innermode;
1077
1078 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1079 so we have to make one up. Yuk. */
1080 innermode = GET_MODE (x);
1081 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1082 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1083 else if (innermode == VOIDmode)
1084 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1085
1086 xsize = GET_MODE_SIZE (innermode);
1087
1088 if (innermode == VOIDmode || innermode == BLKmode)
1089 abort ();
1090
1091 if (innermode == mode)
1092 return x;
1093
1094 /* MODE must occupy no more words than the mode of X. */
1095 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1096 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1097 return 0;
1098
1099 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1100 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1101 return 0;
1102
1103 offset = subreg_lowpart_offset (mode, innermode);
1104
1105 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1106 && (GET_MODE_CLASS (mode) == MODE_INT
1107 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1108 {
1109 /* If we are getting the low-order part of something that has been
1110 sign- or zero-extended, we can either just use the object being
1111 extended or make a narrower extension. If we want an even smaller
1112 piece than the size of the object being extended, call ourselves
1113 recursively.
1114
1115 This case is used mostly by combine and cse. */
1116
1117 if (GET_MODE (XEXP (x, 0)) == mode)
1118 return XEXP (x, 0);
1119 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1120 return gen_lowpart_common (mode, XEXP (x, 0));
1121 else if (msize < xsize)
1122 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1123 }
1124 else if (GET_CODE (x) == SUBREG || REG_P (x)
1125 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1126 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1127 return simplify_gen_subreg (mode, x, innermode, offset);
1128
1129 /* Otherwise, we can't do this. */
1130 return 0;
1131 }
1132 \f
1133 /* Return the constant real or imaginary part (which has mode MODE)
1134 of a complex value X. The IMAGPART_P argument determines whether
1135 the real or complex component should be returned. This function
1136 returns NULL_RTX if the component isn't a constant. */
1137
1138 static rtx
1139 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1140 {
1141 tree decl, part;
1142
1143 if (GET_CODE (x) == MEM
1144 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1145 {
1146 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1147 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1148 {
1149 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1150 if (TREE_CODE (part) == REAL_CST
1151 || TREE_CODE (part) == INTEGER_CST)
1152 return expand_expr (part, NULL_RTX, mode, 0);
1153 }
1154 }
1155 return NULL_RTX;
1156 }
1157
1158 /* Return the real part (which has mode MODE) of a complex value X.
1159 This always comes at the low address in memory. */
1160
1161 rtx
1162 gen_realpart (enum machine_mode mode, rtx x)
1163 {
1164 rtx part;
1165
1166 /* Handle complex constants. */
1167 part = gen_complex_constant_part (mode, x, 0);
1168 if (part != NULL_RTX)
1169 return part;
1170
1171 if (WORDS_BIG_ENDIAN
1172 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1173 && REG_P (x)
1174 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1175 internal_error
1176 ("can't access real part of complex value in hard register");
1177 else if (WORDS_BIG_ENDIAN)
1178 return gen_highpart (mode, x);
1179 else
1180 return gen_lowpart (mode, x);
1181 }
1182
1183 /* Return the imaginary part (which has mode MODE) of a complex value X.
1184 This always comes at the high address in memory. */
1185
1186 rtx
1187 gen_imagpart (enum machine_mode mode, rtx x)
1188 {
1189 rtx part;
1190
1191 /* Handle complex constants. */
1192 part = gen_complex_constant_part (mode, x, 1);
1193 if (part != NULL_RTX)
1194 return part;
1195
1196 if (WORDS_BIG_ENDIAN)
1197 return gen_lowpart (mode, x);
1198 else if (! WORDS_BIG_ENDIAN
1199 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1200 && REG_P (x)
1201 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1202 internal_error
1203 ("can't access imaginary part of complex value in hard register");
1204 else
1205 return gen_highpart (mode, x);
1206 }
1207 \f
1208 rtx
1209 gen_highpart (enum machine_mode mode, rtx x)
1210 {
1211 unsigned int msize = GET_MODE_SIZE (mode);
1212 rtx result;
1213
1214 /* This case loses if X is a subreg. To catch bugs early,
1215 complain if an invalid MODE is used even in other cases. */
1216 if (msize > UNITS_PER_WORD
1217 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1218 abort ();
1219
1220 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1221 subreg_highpart_offset (mode, GET_MODE (x)));
1222
1223 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1224 the target if we have a MEM. gen_highpart must return a valid operand,
1225 emitting code if necessary to do so. */
1226 if (result != NULL_RTX && GET_CODE (result) == MEM)
1227 result = validize_mem (result);
1228
1229 if (!result)
1230 abort ();
1231 return result;
1232 }
1233
1234 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1235 be VOIDmode constant. */
1236 rtx
1237 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1238 {
1239 if (GET_MODE (exp) != VOIDmode)
1240 {
1241 if (GET_MODE (exp) != innermode)
1242 abort ();
1243 return gen_highpart (outermode, exp);
1244 }
1245 return simplify_gen_subreg (outermode, exp, innermode,
1246 subreg_highpart_offset (outermode, innermode));
1247 }
1248
1249 /* Return offset in bytes to get OUTERMODE low part
1250 of the value in mode INNERMODE stored in memory in target format. */
1251
1252 unsigned int
1253 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1254 {
1255 unsigned int offset = 0;
1256 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1257
1258 if (difference > 0)
1259 {
1260 if (WORDS_BIG_ENDIAN)
1261 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1262 if (BYTES_BIG_ENDIAN)
1263 offset += difference % UNITS_PER_WORD;
1264 }
1265
1266 return offset;
1267 }
1268
1269 /* Return offset in bytes to get OUTERMODE high part
1270 of the value in mode INNERMODE stored in memory in target format. */
1271 unsigned int
1272 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1273 {
1274 unsigned int offset = 0;
1275 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1276
1277 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1278 abort ();
1279
1280 if (difference > 0)
1281 {
1282 if (! WORDS_BIG_ENDIAN)
1283 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1284 if (! BYTES_BIG_ENDIAN)
1285 offset += difference % UNITS_PER_WORD;
1286 }
1287
1288 return offset;
1289 }
1290
1291 /* Return 1 iff X, assumed to be a SUBREG,
1292 refers to the least significant part of its containing reg.
1293 If X is not a SUBREG, always return 1 (it is its own low part!). */
1294
1295 int
1296 subreg_lowpart_p (rtx x)
1297 {
1298 if (GET_CODE (x) != SUBREG)
1299 return 1;
1300 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1301 return 0;
1302
1303 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1304 == SUBREG_BYTE (x));
1305 }
1306 \f
1307 /* Return subword OFFSET of operand OP.
1308 The word number, OFFSET, is interpreted as the word number starting
1309 at the low-order address. OFFSET 0 is the low-order word if not
1310 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1311
1312 If we cannot extract the required word, we return zero. Otherwise,
1313 an rtx corresponding to the requested word will be returned.
1314
1315 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1316 reload has completed, a valid address will always be returned. After
1317 reload, if a valid address cannot be returned, we return zero.
1318
1319 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1320 it is the responsibility of the caller.
1321
1322 MODE is the mode of OP in case it is a CONST_INT.
1323
1324 ??? This is still rather broken for some cases. The problem for the
1325 moment is that all callers of this thing provide no 'goal mode' to
1326 tell us to work with. This exists because all callers were written
1327 in a word based SUBREG world.
1328 Now use of this function can be deprecated by simplify_subreg in most
1329 cases.
1330 */
1331
1332 rtx
1333 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1334 {
1335 if (mode == VOIDmode)
1336 mode = GET_MODE (op);
1337
1338 if (mode == VOIDmode)
1339 abort ();
1340
1341 /* If OP is narrower than a word, fail. */
1342 if (mode != BLKmode
1343 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1344 return 0;
1345
1346 /* If we want a word outside OP, return zero. */
1347 if (mode != BLKmode
1348 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1349 return const0_rtx;
1350
1351 /* Form a new MEM at the requested address. */
1352 if (GET_CODE (op) == MEM)
1353 {
1354 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1355
1356 if (! validate_address)
1357 return new;
1358
1359 else if (reload_completed)
1360 {
1361 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1362 return 0;
1363 }
1364 else
1365 return replace_equiv_address (new, XEXP (new, 0));
1366 }
1367
1368 /* Rest can be handled by simplify_subreg. */
1369 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1370 }
1371
1372 /* Similar to `operand_subword', but never return 0. If we can't extract
1373 the required subword, put OP into a register and try again. If that fails,
1374 abort. We always validate the address in this case.
1375
1376 MODE is the mode of OP, in case it is CONST_INT. */
1377
1378 rtx
1379 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1380 {
1381 rtx result = operand_subword (op, offset, 1, mode);
1382
1383 if (result)
1384 return result;
1385
1386 if (mode != BLKmode && mode != VOIDmode)
1387 {
1388 /* If this is a register which can not be accessed by words, copy it
1389 to a pseudo register. */
1390 if (REG_P (op))
1391 op = copy_to_reg (op);
1392 else
1393 op = force_reg (mode, op);
1394 }
1395
1396 result = operand_subword (op, offset, 1, mode);
1397 if (result == 0)
1398 abort ();
1399
1400 return result;
1401 }
1402 \f
1403 /* Given a compare instruction, swap the operands.
1404 A test instruction is changed into a compare of 0 against the operand. */
1405
1406 void
1407 reverse_comparison (rtx insn)
1408 {
1409 rtx body = PATTERN (insn);
1410 rtx comp;
1411
1412 if (GET_CODE (body) == SET)
1413 comp = SET_SRC (body);
1414 else
1415 comp = SET_SRC (XVECEXP (body, 0, 0));
1416
1417 if (GET_CODE (comp) == COMPARE)
1418 {
1419 rtx op0 = XEXP (comp, 0);
1420 rtx op1 = XEXP (comp, 1);
1421 XEXP (comp, 0) = op1;
1422 XEXP (comp, 1) = op0;
1423 }
1424 else
1425 {
1426 rtx new = gen_rtx_COMPARE (VOIDmode,
1427 CONST0_RTX (GET_MODE (comp)), comp);
1428 if (GET_CODE (body) == SET)
1429 SET_SRC (body) = new;
1430 else
1431 SET_SRC (XVECEXP (body, 0, 0)) = new;
1432 }
1433 }
1434 \f
1435 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1436 or (2) a component ref of something variable. Represent the later with
1437 a NULL expression. */
1438
1439 static tree
1440 component_ref_for_mem_expr (tree ref)
1441 {
1442 tree inner = TREE_OPERAND (ref, 0);
1443
1444 if (TREE_CODE (inner) == COMPONENT_REF)
1445 inner = component_ref_for_mem_expr (inner);
1446 else
1447 {
1448 /* Now remove any conversions: they don't change what the underlying
1449 object is. Likewise for SAVE_EXPR. */
1450 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1451 || TREE_CODE (inner) == NON_LVALUE_EXPR
1452 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1453 || TREE_CODE (inner) == SAVE_EXPR)
1454 inner = TREE_OPERAND (inner, 0);
1455
1456 if (! DECL_P (inner))
1457 inner = NULL_TREE;
1458 }
1459
1460 if (inner == TREE_OPERAND (ref, 0))
1461 return ref;
1462 else
1463 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1464 TREE_OPERAND (ref, 1));
1465 }
1466
1467 /* Returns 1 if both MEM_EXPR can be considered equal
1468 and 0 otherwise. */
1469
1470 int
1471 mem_expr_equal_p (tree expr1, tree expr2)
1472 {
1473 if (expr1 == expr2)
1474 return 1;
1475
1476 if (! expr1 || ! expr2)
1477 return 0;
1478
1479 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1480 return 0;
1481
1482 if (TREE_CODE (expr1) == COMPONENT_REF)
1483 return
1484 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1485 TREE_OPERAND (expr2, 0))
1486 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1487 TREE_OPERAND (expr2, 1));
1488
1489 if (TREE_CODE (expr1) == INDIRECT_REF)
1490 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1491 TREE_OPERAND (expr2, 0));
1492
1493 /* Decls with different pointers can't be equal. */
1494 if (DECL_P (expr1))
1495 return 0;
1496
1497 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1498 have been resolved here. */
1499 }
1500
1501 /* Given REF, a MEM, and T, either the type of X or the expression
1502 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1503 if we are making a new object of this type. BITPOS is nonzero if
1504 there is an offset outstanding on T that will be applied later. */
1505
1506 void
1507 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1508 HOST_WIDE_INT bitpos)
1509 {
1510 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1511 tree expr = MEM_EXPR (ref);
1512 rtx offset = MEM_OFFSET (ref);
1513 rtx size = MEM_SIZE (ref);
1514 unsigned int align = MEM_ALIGN (ref);
1515 HOST_WIDE_INT apply_bitpos = 0;
1516 tree type;
1517
1518 /* It can happen that type_for_mode was given a mode for which there
1519 is no language-level type. In which case it returns NULL, which
1520 we can see here. */
1521 if (t == NULL_TREE)
1522 return;
1523
1524 type = TYPE_P (t) ? t : TREE_TYPE (t);
1525 if (type == error_mark_node)
1526 return;
1527
1528 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1529 wrong answer, as it assumes that DECL_RTL already has the right alias
1530 info. Callers should not set DECL_RTL until after the call to
1531 set_mem_attributes. */
1532 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1533 abort ();
1534
1535 /* Get the alias set from the expression or type (perhaps using a
1536 front-end routine) and use it. */
1537 alias = get_alias_set (t);
1538
1539 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1540 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1541 RTX_UNCHANGING_P (ref)
1542 |= ((lang_hooks.honor_readonly
1543 && (TYPE_READONLY (type) || (t != type && TREE_READONLY (t))))
1544 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1545 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1546
1547 /* If we are making an object of this type, or if this is a DECL, we know
1548 that it is a scalar if the type is not an aggregate. */
1549 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1550 MEM_SCALAR_P (ref) = 1;
1551
1552 /* We can set the alignment from the type if we are making an object,
1553 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1554 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1555 align = MAX (align, TYPE_ALIGN (type));
1556
1557 /* If the size is known, we can set that. */
1558 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1559 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1560
1561 /* If T is not a type, we may be able to deduce some more information about
1562 the expression. */
1563 if (! TYPE_P (t))
1564 {
1565 maybe_set_unchanging (ref, t);
1566 if (TREE_THIS_VOLATILE (t))
1567 MEM_VOLATILE_P (ref) = 1;
1568
1569 /* Now remove any conversions: they don't change what the underlying
1570 object is. Likewise for SAVE_EXPR. */
1571 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1572 || TREE_CODE (t) == NON_LVALUE_EXPR
1573 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1574 || TREE_CODE (t) == SAVE_EXPR)
1575 t = TREE_OPERAND (t, 0);
1576
1577 /* If this expression can't be addressed (e.g., it contains a reference
1578 to a non-addressable field), show we don't change its alias set. */
1579 if (! can_address_p (t))
1580 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1581
1582 /* If this is a decl, set the attributes of the MEM from it. */
1583 if (DECL_P (t))
1584 {
1585 expr = t;
1586 offset = const0_rtx;
1587 apply_bitpos = bitpos;
1588 size = (DECL_SIZE_UNIT (t)
1589 && host_integerp (DECL_SIZE_UNIT (t), 1)
1590 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1591 align = DECL_ALIGN (t);
1592 }
1593
1594 /* If this is a constant, we know the alignment. */
1595 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1596 {
1597 align = TYPE_ALIGN (type);
1598 #ifdef CONSTANT_ALIGNMENT
1599 align = CONSTANT_ALIGNMENT (t, align);
1600 #endif
1601 }
1602
1603 /* If this is a field reference and not a bit-field, record it. */
1604 /* ??? There is some information that can be gleened from bit-fields,
1605 such as the word offset in the structure that might be modified.
1606 But skip it for now. */
1607 else if (TREE_CODE (t) == COMPONENT_REF
1608 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1609 {
1610 expr = component_ref_for_mem_expr (t);
1611 offset = const0_rtx;
1612 apply_bitpos = bitpos;
1613 /* ??? Any reason the field size would be different than
1614 the size we got from the type? */
1615 }
1616
1617 /* If this is an array reference, look for an outer field reference. */
1618 else if (TREE_CODE (t) == ARRAY_REF)
1619 {
1620 tree off_tree = size_zero_node;
1621 /* We can't modify t, because we use it at the end of the
1622 function. */
1623 tree t2 = t;
1624
1625 do
1626 {
1627 tree index = TREE_OPERAND (t2, 1);
1628 tree array = TREE_OPERAND (t2, 0);
1629 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1630 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1631 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1632
1633 /* We assume all arrays have sizes that are a multiple of a byte.
1634 First subtract the lower bound, if any, in the type of the
1635 index, then convert to sizetype and multiply by the size of the
1636 array element. */
1637 if (low_bound != 0 && ! integer_zerop (low_bound))
1638 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1639 index, low_bound));
1640
1641 /* If the index has a self-referential type, instantiate it;
1642 likewise for the component size. */
1643 index = SUBSTITUTE_PLACEHOLDER_IN_EXPR (index, t2);
1644 unit_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (unit_size, array);
1645 off_tree
1646 = fold (build (PLUS_EXPR, sizetype,
1647 fold (build (MULT_EXPR, sizetype,
1648 index, unit_size)),
1649 off_tree));
1650 t2 = TREE_OPERAND (t2, 0);
1651 }
1652 while (TREE_CODE (t2) == ARRAY_REF);
1653
1654 if (DECL_P (t2))
1655 {
1656 expr = t2;
1657 offset = NULL;
1658 if (host_integerp (off_tree, 1))
1659 {
1660 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1661 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1662 align = DECL_ALIGN (t2);
1663 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1664 align = aoff;
1665 offset = GEN_INT (ioff);
1666 apply_bitpos = bitpos;
1667 }
1668 }
1669 else if (TREE_CODE (t2) == COMPONENT_REF)
1670 {
1671 expr = component_ref_for_mem_expr (t2);
1672 if (host_integerp (off_tree, 1))
1673 {
1674 offset = GEN_INT (tree_low_cst (off_tree, 1));
1675 apply_bitpos = bitpos;
1676 }
1677 /* ??? Any reason the field size would be different than
1678 the size we got from the type? */
1679 }
1680 else if (flag_argument_noalias > 1
1681 && TREE_CODE (t2) == INDIRECT_REF
1682 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1683 {
1684 expr = t2;
1685 offset = NULL;
1686 }
1687 }
1688
1689 /* If this is a Fortran indirect argument reference, record the
1690 parameter decl. */
1691 else if (flag_argument_noalias > 1
1692 && TREE_CODE (t) == INDIRECT_REF
1693 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1694 {
1695 expr = t;
1696 offset = NULL;
1697 }
1698 }
1699
1700 /* If we modified OFFSET based on T, then subtract the outstanding
1701 bit position offset. Similarly, increase the size of the accessed
1702 object to contain the negative offset. */
1703 if (apply_bitpos)
1704 {
1705 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1706 if (size)
1707 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1708 }
1709
1710 /* Now set the attributes we computed above. */
1711 MEM_ATTRS (ref)
1712 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1713
1714 /* If this is already known to be a scalar or aggregate, we are done. */
1715 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1716 return;
1717
1718 /* If it is a reference into an aggregate, this is part of an aggregate.
1719 Otherwise we don't know. */
1720 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1721 || TREE_CODE (t) == ARRAY_RANGE_REF
1722 || TREE_CODE (t) == BIT_FIELD_REF)
1723 MEM_IN_STRUCT_P (ref) = 1;
1724 }
1725
1726 void
1727 set_mem_attributes (rtx ref, tree t, int objectp)
1728 {
1729 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1730 }
1731
1732 /* Set the decl for MEM to DECL. */
1733
1734 void
1735 set_mem_attrs_from_reg (rtx mem, rtx reg)
1736 {
1737 MEM_ATTRS (mem)
1738 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1739 GEN_INT (REG_OFFSET (reg)),
1740 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1741 }
1742
1743 /* Set the alias set of MEM to SET. */
1744
1745 void
1746 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1747 {
1748 #ifdef ENABLE_CHECKING
1749 /* If the new and old alias sets don't conflict, something is wrong. */
1750 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1751 abort ();
1752 #endif
1753
1754 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1755 MEM_SIZE (mem), MEM_ALIGN (mem),
1756 GET_MODE (mem));
1757 }
1758
1759 /* Set the alignment of MEM to ALIGN bits. */
1760
1761 void
1762 set_mem_align (rtx mem, unsigned int align)
1763 {
1764 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1765 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1766 GET_MODE (mem));
1767 }
1768
1769 /* Set the expr for MEM to EXPR. */
1770
1771 void
1772 set_mem_expr (rtx mem, tree expr)
1773 {
1774 MEM_ATTRS (mem)
1775 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1776 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1777 }
1778
1779 /* Set the offset of MEM to OFFSET. */
1780
1781 void
1782 set_mem_offset (rtx mem, rtx offset)
1783 {
1784 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1785 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1786 GET_MODE (mem));
1787 }
1788
1789 /* Set the size of MEM to SIZE. */
1790
1791 void
1792 set_mem_size (rtx mem, rtx size)
1793 {
1794 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1795 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1796 GET_MODE (mem));
1797 }
1798 \f
1799 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1800 and its address changed to ADDR. (VOIDmode means don't change the mode.
1801 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1802 returned memory location is required to be valid. The memory
1803 attributes are not changed. */
1804
1805 static rtx
1806 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1807 {
1808 rtx new;
1809
1810 if (GET_CODE (memref) != MEM)
1811 abort ();
1812 if (mode == VOIDmode)
1813 mode = GET_MODE (memref);
1814 if (addr == 0)
1815 addr = XEXP (memref, 0);
1816 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1817 && (!validate || memory_address_p (mode, addr)))
1818 return memref;
1819
1820 if (validate)
1821 {
1822 if (reload_in_progress || reload_completed)
1823 {
1824 if (! memory_address_p (mode, addr))
1825 abort ();
1826 }
1827 else
1828 addr = memory_address (mode, addr);
1829 }
1830
1831 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1832 return memref;
1833
1834 new = gen_rtx_MEM (mode, addr);
1835 MEM_COPY_ATTRIBUTES (new, memref);
1836 return new;
1837 }
1838
1839 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1840 way we are changing MEMREF, so we only preserve the alias set. */
1841
1842 rtx
1843 change_address (rtx memref, enum machine_mode mode, rtx addr)
1844 {
1845 rtx new = change_address_1 (memref, mode, addr, 1), size;
1846 enum machine_mode mmode = GET_MODE (new);
1847 unsigned int align;
1848
1849 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1850 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1851
1852 /* If there are no changes, just return the original memory reference. */
1853 if (new == memref)
1854 {
1855 if (MEM_ATTRS (memref) == 0
1856 || (MEM_EXPR (memref) == NULL
1857 && MEM_OFFSET (memref) == NULL
1858 && MEM_SIZE (memref) == size
1859 && MEM_ALIGN (memref) == align))
1860 return new;
1861
1862 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1863 MEM_COPY_ATTRIBUTES (new, memref);
1864 }
1865
1866 MEM_ATTRS (new)
1867 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1868
1869 return new;
1870 }
1871
1872 /* Return a memory reference like MEMREF, but with its mode changed
1873 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1874 nonzero, the memory address is forced to be valid.
1875 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1876 and caller is responsible for adjusting MEMREF base register. */
1877
1878 rtx
1879 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1880 int validate, int adjust)
1881 {
1882 rtx addr = XEXP (memref, 0);
1883 rtx new;
1884 rtx memoffset = MEM_OFFSET (memref);
1885 rtx size = 0;
1886 unsigned int memalign = MEM_ALIGN (memref);
1887
1888 /* If there are no changes, just return the original memory reference. */
1889 if (mode == GET_MODE (memref) && !offset
1890 && (!validate || memory_address_p (mode, addr)))
1891 return memref;
1892
1893 /* ??? Prefer to create garbage instead of creating shared rtl.
1894 This may happen even if offset is nonzero -- consider
1895 (plus (plus reg reg) const_int) -- so do this always. */
1896 addr = copy_rtx (addr);
1897
1898 if (adjust)
1899 {
1900 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1901 object, we can merge it into the LO_SUM. */
1902 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1903 && offset >= 0
1904 && (unsigned HOST_WIDE_INT) offset
1905 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1906 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1907 plus_constant (XEXP (addr, 1), offset));
1908 else
1909 addr = plus_constant (addr, offset);
1910 }
1911
1912 new = change_address_1 (memref, mode, addr, validate);
1913
1914 /* Compute the new values of the memory attributes due to this adjustment.
1915 We add the offsets and update the alignment. */
1916 if (memoffset)
1917 memoffset = GEN_INT (offset + INTVAL (memoffset));
1918
1919 /* Compute the new alignment by taking the MIN of the alignment and the
1920 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1921 if zero. */
1922 if (offset != 0)
1923 memalign
1924 = MIN (memalign,
1925 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1926
1927 /* We can compute the size in a number of ways. */
1928 if (GET_MODE (new) != BLKmode)
1929 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1930 else if (MEM_SIZE (memref))
1931 size = plus_constant (MEM_SIZE (memref), -offset);
1932
1933 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1934 memoffset, size, memalign, GET_MODE (new));
1935
1936 /* At some point, we should validate that this offset is within the object,
1937 if all the appropriate values are known. */
1938 return new;
1939 }
1940
1941 /* Return a memory reference like MEMREF, but with its mode changed
1942 to MODE and its address changed to ADDR, which is assumed to be
1943 MEMREF offseted by OFFSET bytes. If VALIDATE is
1944 nonzero, the memory address is forced to be valid. */
1945
1946 rtx
1947 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1948 HOST_WIDE_INT offset, int validate)
1949 {
1950 memref = change_address_1 (memref, VOIDmode, addr, validate);
1951 return adjust_address_1 (memref, mode, offset, validate, 0);
1952 }
1953
1954 /* Return a memory reference like MEMREF, but whose address is changed by
1955 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1956 known to be in OFFSET (possibly 1). */
1957
1958 rtx
1959 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1960 {
1961 rtx new, addr = XEXP (memref, 0);
1962
1963 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1964
1965 /* At this point we don't know _why_ the address is invalid. It
1966 could have secondary memory references, multiplies or anything.
1967
1968 However, if we did go and rearrange things, we can wind up not
1969 being able to recognize the magic around pic_offset_table_rtx.
1970 This stuff is fragile, and is yet another example of why it is
1971 bad to expose PIC machinery too early. */
1972 if (! memory_address_p (GET_MODE (memref), new)
1973 && GET_CODE (addr) == PLUS
1974 && XEXP (addr, 0) == pic_offset_table_rtx)
1975 {
1976 addr = force_reg (GET_MODE (addr), addr);
1977 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1978 }
1979
1980 update_temp_slot_address (XEXP (memref, 0), new);
1981 new = change_address_1 (memref, VOIDmode, new, 1);
1982
1983 /* If there are no changes, just return the original memory reference. */
1984 if (new == memref)
1985 return new;
1986
1987 /* Update the alignment to reflect the offset. Reset the offset, which
1988 we don't know. */
1989 MEM_ATTRS (new)
1990 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1991 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1992 GET_MODE (new));
1993 return new;
1994 }
1995
1996 /* Return a memory reference like MEMREF, but with its address changed to
1997 ADDR. The caller is asserting that the actual piece of memory pointed
1998 to is the same, just the form of the address is being changed, such as
1999 by putting something into a register. */
2000
2001 rtx
2002 replace_equiv_address (rtx memref, rtx addr)
2003 {
2004 /* change_address_1 copies the memory attribute structure without change
2005 and that's exactly what we want here. */
2006 update_temp_slot_address (XEXP (memref, 0), addr);
2007 return change_address_1 (memref, VOIDmode, addr, 1);
2008 }
2009
2010 /* Likewise, but the reference is not required to be valid. */
2011
2012 rtx
2013 replace_equiv_address_nv (rtx memref, rtx addr)
2014 {
2015 return change_address_1 (memref, VOIDmode, addr, 0);
2016 }
2017
2018 /* Return a memory reference like MEMREF, but with its mode widened to
2019 MODE and offset by OFFSET. This would be used by targets that e.g.
2020 cannot issue QImode memory operations and have to use SImode memory
2021 operations plus masking logic. */
2022
2023 rtx
2024 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2025 {
2026 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2027 tree expr = MEM_EXPR (new);
2028 rtx memoffset = MEM_OFFSET (new);
2029 unsigned int size = GET_MODE_SIZE (mode);
2030
2031 /* If there are no changes, just return the original memory reference. */
2032 if (new == memref)
2033 return new;
2034
2035 /* If we don't know what offset we were at within the expression, then
2036 we can't know if we've overstepped the bounds. */
2037 if (! memoffset)
2038 expr = NULL_TREE;
2039
2040 while (expr)
2041 {
2042 if (TREE_CODE (expr) == COMPONENT_REF)
2043 {
2044 tree field = TREE_OPERAND (expr, 1);
2045
2046 if (! DECL_SIZE_UNIT (field))
2047 {
2048 expr = NULL_TREE;
2049 break;
2050 }
2051
2052 /* Is the field at least as large as the access? If so, ok,
2053 otherwise strip back to the containing structure. */
2054 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2055 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2056 && INTVAL (memoffset) >= 0)
2057 break;
2058
2059 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2060 {
2061 expr = NULL_TREE;
2062 break;
2063 }
2064
2065 expr = TREE_OPERAND (expr, 0);
2066 memoffset = (GEN_INT (INTVAL (memoffset)
2067 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2068 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2069 / BITS_PER_UNIT)));
2070 }
2071 /* Similarly for the decl. */
2072 else if (DECL_P (expr)
2073 && DECL_SIZE_UNIT (expr)
2074 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2075 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2076 && (! memoffset || INTVAL (memoffset) >= 0))
2077 break;
2078 else
2079 {
2080 /* The widened memory access overflows the expression, which means
2081 that it could alias another expression. Zap it. */
2082 expr = NULL_TREE;
2083 break;
2084 }
2085 }
2086
2087 if (! expr)
2088 memoffset = NULL_RTX;
2089
2090 /* The widened memory may alias other stuff, so zap the alias set. */
2091 /* ??? Maybe use get_alias_set on any remaining expression. */
2092
2093 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2094 MEM_ALIGN (new), mode);
2095
2096 return new;
2097 }
2098 \f
2099 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2100
2101 rtx
2102 gen_label_rtx (void)
2103 {
2104 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2105 NULL, label_num++, NULL);
2106 }
2107 \f
2108 /* For procedure integration. */
2109
2110 /* Install new pointers to the first and last insns in the chain.
2111 Also, set cur_insn_uid to one higher than the last in use.
2112 Used for an inline-procedure after copying the insn chain. */
2113
2114 void
2115 set_new_first_and_last_insn (rtx first, rtx last)
2116 {
2117 rtx insn;
2118
2119 first_insn = first;
2120 last_insn = last;
2121 cur_insn_uid = 0;
2122
2123 for (insn = first; insn; insn = NEXT_INSN (insn))
2124 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2125
2126 cur_insn_uid++;
2127 }
2128
2129 /* Set the last label number found in the current function.
2130 This is used when belatedly compiling an inline function. */
2131
2132 void
2133 set_new_last_label_num (int last)
2134 {
2135 base_label_num = label_num;
2136 last_label_num = last;
2137 }
2138 \f
2139 /* Restore all variables describing the current status from the structure *P.
2140 This is used after a nested function. */
2141
2142 void
2143 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2144 {
2145 last_label_num = 0;
2146 }
2147 \f
2148 /* Go through all the RTL insn bodies and copy any invalid shared
2149 structure. This routine should only be called once. */
2150
2151 void
2152 unshare_all_rtl (tree fndecl, rtx insn)
2153 {
2154 tree decl;
2155
2156 /* Make sure that virtual parameters are not shared. */
2157 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2158 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2159
2160 /* Make sure that virtual stack slots are not shared. */
2161 unshare_all_decls (DECL_INITIAL (fndecl));
2162
2163 /* Unshare just about everything else. */
2164 unshare_all_rtl_in_chain (insn);
2165
2166 /* Make sure the addresses of stack slots found outside the insn chain
2167 (such as, in DECL_RTL of a variable) are not shared
2168 with the insn chain.
2169
2170 This special care is necessary when the stack slot MEM does not
2171 actually appear in the insn chain. If it does appear, its address
2172 is unshared from all else at that point. */
2173 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2174 }
2175
2176 /* Go through all the RTL insn bodies and copy any invalid shared
2177 structure, again. This is a fairly expensive thing to do so it
2178 should be done sparingly. */
2179
2180 void
2181 unshare_all_rtl_again (rtx insn)
2182 {
2183 rtx p;
2184 tree decl;
2185
2186 for (p = insn; p; p = NEXT_INSN (p))
2187 if (INSN_P (p))
2188 {
2189 reset_used_flags (PATTERN (p));
2190 reset_used_flags (REG_NOTES (p));
2191 reset_used_flags (LOG_LINKS (p));
2192 }
2193
2194 /* Make sure that virtual stack slots are not shared. */
2195 reset_used_decls (DECL_INITIAL (cfun->decl));
2196
2197 /* Make sure that virtual parameters are not shared. */
2198 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2199 reset_used_flags (DECL_RTL (decl));
2200
2201 reset_used_flags (stack_slot_list);
2202
2203 unshare_all_rtl (cfun->decl, insn);
2204 }
2205
2206 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2207 Recursively does the same for subexpressions. */
2208
2209 static void
2210 verify_rtx_sharing (rtx orig, rtx insn)
2211 {
2212 rtx x = orig;
2213 int i;
2214 enum rtx_code code;
2215 const char *format_ptr;
2216
2217 if (x == 0)
2218 return;
2219
2220 code = GET_CODE (x);
2221
2222 /* These types may be freely shared. */
2223
2224 switch (code)
2225 {
2226 case REG:
2227 case QUEUED:
2228 case CONST_INT:
2229 case CONST_DOUBLE:
2230 case CONST_VECTOR:
2231 case SYMBOL_REF:
2232 case LABEL_REF:
2233 case CODE_LABEL:
2234 case PC:
2235 case CC0:
2236 case SCRATCH:
2237 return;
2238 /* SCRATCH must be shared because they represent distinct values. */
2239 case CLOBBER:
2240 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2241 return;
2242 break;
2243
2244 case CONST:
2245 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2246 a LABEL_REF, it isn't sharable. */
2247 if (GET_CODE (XEXP (x, 0)) == PLUS
2248 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2249 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2250 return;
2251 break;
2252
2253 case MEM:
2254 /* A MEM is allowed to be shared if its address is constant. */
2255 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2256 || reload_completed || reload_in_progress)
2257 return;
2258
2259 break;
2260
2261 default:
2262 break;
2263 }
2264
2265 /* This rtx may not be shared. If it has already been seen,
2266 replace it with a copy of itself. */
2267
2268 if (RTX_FLAG (x, used))
2269 {
2270 error ("Invalid rtl sharing found in the insn");
2271 debug_rtx (insn);
2272 error ("Shared rtx");
2273 debug_rtx (x);
2274 abort ();
2275 }
2276 RTX_FLAG (x, used) = 1;
2277
2278 /* Now scan the subexpressions recursively. */
2279
2280 format_ptr = GET_RTX_FORMAT (code);
2281
2282 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2283 {
2284 switch (*format_ptr++)
2285 {
2286 case 'e':
2287 verify_rtx_sharing (XEXP (x, i), insn);
2288 break;
2289
2290 case 'E':
2291 if (XVEC (x, i) != NULL)
2292 {
2293 int j;
2294 int len = XVECLEN (x, i);
2295
2296 for (j = 0; j < len; j++)
2297 {
2298 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2299 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2300 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2301 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2302 else
2303 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2304 }
2305 }
2306 break;
2307 }
2308 }
2309 return;
2310 }
2311
2312 /* Go through all the RTL insn bodies and check that there is no unexpected
2313 sharing in between the subexpressions. */
2314
2315 void
2316 verify_rtl_sharing (void)
2317 {
2318 rtx p;
2319
2320 for (p = get_insns (); p; p = NEXT_INSN (p))
2321 if (INSN_P (p))
2322 {
2323 reset_used_flags (PATTERN (p));
2324 reset_used_flags (REG_NOTES (p));
2325 reset_used_flags (LOG_LINKS (p));
2326 }
2327
2328 for (p = get_insns (); p; p = NEXT_INSN (p))
2329 if (INSN_P (p))
2330 {
2331 verify_rtx_sharing (PATTERN (p), p);
2332 verify_rtx_sharing (REG_NOTES (p), p);
2333 verify_rtx_sharing (LOG_LINKS (p), p);
2334 }
2335 }
2336
2337 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2338 Assumes the mark bits are cleared at entry. */
2339
2340 void
2341 unshare_all_rtl_in_chain (rtx insn)
2342 {
2343 for (; insn; insn = NEXT_INSN (insn))
2344 if (INSN_P (insn))
2345 {
2346 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2347 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2348 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2349 }
2350 }
2351
2352 /* Go through all virtual stack slots of a function and copy any
2353 shared structure. */
2354 static void
2355 unshare_all_decls (tree blk)
2356 {
2357 tree t;
2358
2359 /* Copy shared decls. */
2360 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2361 if (DECL_RTL_SET_P (t))
2362 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2363
2364 /* Now process sub-blocks. */
2365 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2366 unshare_all_decls (t);
2367 }
2368
2369 /* Go through all virtual stack slots of a function and mark them as
2370 not shared. */
2371 static void
2372 reset_used_decls (tree blk)
2373 {
2374 tree t;
2375
2376 /* Mark decls. */
2377 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2378 if (DECL_RTL_SET_P (t))
2379 reset_used_flags (DECL_RTL (t));
2380
2381 /* Now process sub-blocks. */
2382 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2383 reset_used_decls (t);
2384 }
2385
2386 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2387 placed in the result directly, rather than being copied. MAY_SHARE is
2388 either a MEM of an EXPR_LIST of MEMs. */
2389
2390 rtx
2391 copy_most_rtx (rtx orig, rtx may_share)
2392 {
2393 rtx copy;
2394 int i, j;
2395 RTX_CODE code;
2396 const char *format_ptr;
2397
2398 if (orig == may_share
2399 || (GET_CODE (may_share) == EXPR_LIST
2400 && in_expr_list_p (may_share, orig)))
2401 return orig;
2402
2403 code = GET_CODE (orig);
2404
2405 switch (code)
2406 {
2407 case REG:
2408 case QUEUED:
2409 case CONST_INT:
2410 case CONST_DOUBLE:
2411 case CONST_VECTOR:
2412 case SYMBOL_REF:
2413 case CODE_LABEL:
2414 case PC:
2415 case CC0:
2416 return orig;
2417 default:
2418 break;
2419 }
2420
2421 copy = rtx_alloc (code);
2422 PUT_MODE (copy, GET_MODE (orig));
2423 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2424 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2425 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2426 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2427 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2428
2429 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2430
2431 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2432 {
2433 switch (*format_ptr++)
2434 {
2435 case 'e':
2436 XEXP (copy, i) = XEXP (orig, i);
2437 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2438 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2439 break;
2440
2441 case 'u':
2442 XEXP (copy, i) = XEXP (orig, i);
2443 break;
2444
2445 case 'E':
2446 case 'V':
2447 XVEC (copy, i) = XVEC (orig, i);
2448 if (XVEC (orig, i) != NULL)
2449 {
2450 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2451 for (j = 0; j < XVECLEN (copy, i); j++)
2452 XVECEXP (copy, i, j)
2453 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2454 }
2455 break;
2456
2457 case 'w':
2458 XWINT (copy, i) = XWINT (orig, i);
2459 break;
2460
2461 case 'n':
2462 case 'i':
2463 XINT (copy, i) = XINT (orig, i);
2464 break;
2465
2466 case 't':
2467 XTREE (copy, i) = XTREE (orig, i);
2468 break;
2469
2470 case 's':
2471 case 'S':
2472 XSTR (copy, i) = XSTR (orig, i);
2473 break;
2474
2475 case '0':
2476 X0ANY (copy, i) = X0ANY (orig, i);
2477 break;
2478
2479 default:
2480 abort ();
2481 }
2482 }
2483 return copy;
2484 }
2485
2486 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2487 Recursively does the same for subexpressions. Uses
2488 copy_rtx_if_shared_1 to reduce stack space. */
2489
2490 rtx
2491 copy_rtx_if_shared (rtx orig)
2492 {
2493 copy_rtx_if_shared_1 (&orig);
2494 return orig;
2495 }
2496
2497 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2498 use. Recursively does the same for subexpressions. */
2499
2500 static void
2501 copy_rtx_if_shared_1 (rtx *orig1)
2502 {
2503 rtx x;
2504 int i;
2505 enum rtx_code code;
2506 rtx *last_ptr;
2507 const char *format_ptr;
2508 int copied = 0;
2509 int length;
2510
2511 /* Repeat is used to turn tail-recursion into iteration. */
2512 repeat:
2513 x = *orig1;
2514
2515 if (x == 0)
2516 return;
2517
2518 code = GET_CODE (x);
2519
2520 /* These types may be freely shared. */
2521
2522 switch (code)
2523 {
2524 case REG:
2525 case QUEUED:
2526 case CONST_INT:
2527 case CONST_DOUBLE:
2528 case CONST_VECTOR:
2529 case SYMBOL_REF:
2530 case LABEL_REF:
2531 case CODE_LABEL:
2532 case PC:
2533 case CC0:
2534 case SCRATCH:
2535 /* SCRATCH must be shared because they represent distinct values. */
2536 return;
2537 case CLOBBER:
2538 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2539 return;
2540 break;
2541
2542 case CONST:
2543 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2544 a LABEL_REF, it isn't sharable. */
2545 if (GET_CODE (XEXP (x, 0)) == PLUS
2546 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2547 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2548 return;
2549 break;
2550
2551 case INSN:
2552 case JUMP_INSN:
2553 case CALL_INSN:
2554 case NOTE:
2555 case BARRIER:
2556 /* The chain of insns is not being copied. */
2557 return;
2558
2559 default:
2560 break;
2561 }
2562
2563 /* This rtx may not be shared. If it has already been seen,
2564 replace it with a copy of itself. */
2565
2566 if (RTX_FLAG (x, used))
2567 {
2568 rtx copy;
2569
2570 copy = rtx_alloc (code);
2571 memcpy (copy, x, RTX_SIZE (code));
2572 x = copy;
2573 copied = 1;
2574 }
2575 RTX_FLAG (x, used) = 1;
2576
2577 /* Now scan the subexpressions recursively.
2578 We can store any replaced subexpressions directly into X
2579 since we know X is not shared! Any vectors in X
2580 must be copied if X was copied. */
2581
2582 format_ptr = GET_RTX_FORMAT (code);
2583 length = GET_RTX_LENGTH (code);
2584 last_ptr = NULL;
2585
2586 for (i = 0; i < length; i++)
2587 {
2588 switch (*format_ptr++)
2589 {
2590 case 'e':
2591 if (last_ptr)
2592 copy_rtx_if_shared_1 (last_ptr);
2593 last_ptr = &XEXP (x, i);
2594 break;
2595
2596 case 'E':
2597 if (XVEC (x, i) != NULL)
2598 {
2599 int j;
2600 int len = XVECLEN (x, i);
2601
2602 /* Copy the vector iff I copied the rtx and the length
2603 is nonzero. */
2604 if (copied && len > 0)
2605 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2606
2607 /* Call recursively on all inside the vector. */
2608 for (j = 0; j < len; j++)
2609 {
2610 if (last_ptr)
2611 copy_rtx_if_shared_1 (last_ptr);
2612 last_ptr = &XVECEXP (x, i, j);
2613 }
2614 }
2615 break;
2616 }
2617 }
2618 *orig1 = x;
2619 if (last_ptr)
2620 {
2621 orig1 = last_ptr;
2622 goto repeat;
2623 }
2624 return;
2625 }
2626
2627 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2628 to look for shared sub-parts. */
2629
2630 void
2631 reset_used_flags (rtx x)
2632 {
2633 int i, j;
2634 enum rtx_code code;
2635 const char *format_ptr;
2636 int length;
2637
2638 /* Repeat is used to turn tail-recursion into iteration. */
2639 repeat:
2640 if (x == 0)
2641 return;
2642
2643 code = GET_CODE (x);
2644
2645 /* These types may be freely shared so we needn't do any resetting
2646 for them. */
2647
2648 switch (code)
2649 {
2650 case REG:
2651 case QUEUED:
2652 case CONST_INT:
2653 case CONST_DOUBLE:
2654 case CONST_VECTOR:
2655 case SYMBOL_REF:
2656 case CODE_LABEL:
2657 case PC:
2658 case CC0:
2659 return;
2660
2661 case INSN:
2662 case JUMP_INSN:
2663 case CALL_INSN:
2664 case NOTE:
2665 case LABEL_REF:
2666 case BARRIER:
2667 /* The chain of insns is not being copied. */
2668 return;
2669
2670 default:
2671 break;
2672 }
2673
2674 RTX_FLAG (x, used) = 0;
2675
2676 format_ptr = GET_RTX_FORMAT (code);
2677 length = GET_RTX_LENGTH (code);
2678
2679 for (i = 0; i < length; i++)
2680 {
2681 switch (*format_ptr++)
2682 {
2683 case 'e':
2684 if (i == length-1)
2685 {
2686 x = XEXP (x, i);
2687 goto repeat;
2688 }
2689 reset_used_flags (XEXP (x, i));
2690 break;
2691
2692 case 'E':
2693 for (j = 0; j < XVECLEN (x, i); j++)
2694 reset_used_flags (XVECEXP (x, i, j));
2695 break;
2696 }
2697 }
2698 }
2699
2700 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2701 to look for shared sub-parts. */
2702
2703 void
2704 set_used_flags (rtx x)
2705 {
2706 int i, j;
2707 enum rtx_code code;
2708 const char *format_ptr;
2709
2710 if (x == 0)
2711 return;
2712
2713 code = GET_CODE (x);
2714
2715 /* These types may be freely shared so we needn't do any resetting
2716 for them. */
2717
2718 switch (code)
2719 {
2720 case REG:
2721 case QUEUED:
2722 case CONST_INT:
2723 case CONST_DOUBLE:
2724 case CONST_VECTOR:
2725 case SYMBOL_REF:
2726 case CODE_LABEL:
2727 case PC:
2728 case CC0:
2729 return;
2730
2731 case INSN:
2732 case JUMP_INSN:
2733 case CALL_INSN:
2734 case NOTE:
2735 case LABEL_REF:
2736 case BARRIER:
2737 /* The chain of insns is not being copied. */
2738 return;
2739
2740 default:
2741 break;
2742 }
2743
2744 RTX_FLAG (x, used) = 1;
2745
2746 format_ptr = GET_RTX_FORMAT (code);
2747 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2748 {
2749 switch (*format_ptr++)
2750 {
2751 case 'e':
2752 set_used_flags (XEXP (x, i));
2753 break;
2754
2755 case 'E':
2756 for (j = 0; j < XVECLEN (x, i); j++)
2757 set_used_flags (XVECEXP (x, i, j));
2758 break;
2759 }
2760 }
2761 }
2762 \f
2763 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2764 Return X or the rtx for the pseudo reg the value of X was copied into.
2765 OTHER must be valid as a SET_DEST. */
2766
2767 rtx
2768 make_safe_from (rtx x, rtx other)
2769 {
2770 while (1)
2771 switch (GET_CODE (other))
2772 {
2773 case SUBREG:
2774 other = SUBREG_REG (other);
2775 break;
2776 case STRICT_LOW_PART:
2777 case SIGN_EXTEND:
2778 case ZERO_EXTEND:
2779 other = XEXP (other, 0);
2780 break;
2781 default:
2782 goto done;
2783 }
2784 done:
2785 if ((GET_CODE (other) == MEM
2786 && ! CONSTANT_P (x)
2787 && !REG_P (x)
2788 && GET_CODE (x) != SUBREG)
2789 || (REG_P (other)
2790 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2791 || reg_mentioned_p (other, x))))
2792 {
2793 rtx temp = gen_reg_rtx (GET_MODE (x));
2794 emit_move_insn (temp, x);
2795 return temp;
2796 }
2797 return x;
2798 }
2799 \f
2800 /* Emission of insns (adding them to the doubly-linked list). */
2801
2802 /* Return the first insn of the current sequence or current function. */
2803
2804 rtx
2805 get_insns (void)
2806 {
2807 return first_insn;
2808 }
2809
2810 /* Specify a new insn as the first in the chain. */
2811
2812 void
2813 set_first_insn (rtx insn)
2814 {
2815 if (PREV_INSN (insn) != 0)
2816 abort ();
2817 first_insn = insn;
2818 }
2819
2820 /* Return the last insn emitted in current sequence or current function. */
2821
2822 rtx
2823 get_last_insn (void)
2824 {
2825 return last_insn;
2826 }
2827
2828 /* Specify a new insn as the last in the chain. */
2829
2830 void
2831 set_last_insn (rtx insn)
2832 {
2833 if (NEXT_INSN (insn) != 0)
2834 abort ();
2835 last_insn = insn;
2836 }
2837
2838 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2839
2840 rtx
2841 get_last_insn_anywhere (void)
2842 {
2843 struct sequence_stack *stack;
2844 if (last_insn)
2845 return last_insn;
2846 for (stack = seq_stack; stack; stack = stack->next)
2847 if (stack->last != 0)
2848 return stack->last;
2849 return 0;
2850 }
2851
2852 /* Return the first nonnote insn emitted in current sequence or current
2853 function. This routine looks inside SEQUENCEs. */
2854
2855 rtx
2856 get_first_nonnote_insn (void)
2857 {
2858 rtx insn = first_insn;
2859
2860 while (insn)
2861 {
2862 insn = next_insn (insn);
2863 if (insn == 0 || GET_CODE (insn) != NOTE)
2864 break;
2865 }
2866
2867 return insn;
2868 }
2869
2870 /* Return the last nonnote insn emitted in current sequence or current
2871 function. This routine looks inside SEQUENCEs. */
2872
2873 rtx
2874 get_last_nonnote_insn (void)
2875 {
2876 rtx insn = last_insn;
2877
2878 while (insn)
2879 {
2880 insn = previous_insn (insn);
2881 if (insn == 0 || GET_CODE (insn) != NOTE)
2882 break;
2883 }
2884
2885 return insn;
2886 }
2887
2888 /* Return a number larger than any instruction's uid in this function. */
2889
2890 int
2891 get_max_uid (void)
2892 {
2893 return cur_insn_uid;
2894 }
2895
2896 /* Renumber instructions so that no instruction UIDs are wasted. */
2897
2898 void
2899 renumber_insns (FILE *stream)
2900 {
2901 rtx insn;
2902
2903 /* If we're not supposed to renumber instructions, don't. */
2904 if (!flag_renumber_insns)
2905 return;
2906
2907 /* If there aren't that many instructions, then it's not really
2908 worth renumbering them. */
2909 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2910 return;
2911
2912 cur_insn_uid = 1;
2913
2914 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2915 {
2916 if (stream)
2917 fprintf (stream, "Renumbering insn %d to %d\n",
2918 INSN_UID (insn), cur_insn_uid);
2919 INSN_UID (insn) = cur_insn_uid++;
2920 }
2921 }
2922 \f
2923 /* Return the next insn. If it is a SEQUENCE, return the first insn
2924 of the sequence. */
2925
2926 rtx
2927 next_insn (rtx insn)
2928 {
2929 if (insn)
2930 {
2931 insn = NEXT_INSN (insn);
2932 if (insn && GET_CODE (insn) == INSN
2933 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2934 insn = XVECEXP (PATTERN (insn), 0, 0);
2935 }
2936
2937 return insn;
2938 }
2939
2940 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2941 of the sequence. */
2942
2943 rtx
2944 previous_insn (rtx insn)
2945 {
2946 if (insn)
2947 {
2948 insn = PREV_INSN (insn);
2949 if (insn && GET_CODE (insn) == INSN
2950 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2951 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2952 }
2953
2954 return insn;
2955 }
2956
2957 /* Return the next insn after INSN that is not a NOTE. This routine does not
2958 look inside SEQUENCEs. */
2959
2960 rtx
2961 next_nonnote_insn (rtx insn)
2962 {
2963 while (insn)
2964 {
2965 insn = NEXT_INSN (insn);
2966 if (insn == 0 || GET_CODE (insn) != NOTE)
2967 break;
2968 }
2969
2970 return insn;
2971 }
2972
2973 /* Return the previous insn before INSN that is not a NOTE. This routine does
2974 not look inside SEQUENCEs. */
2975
2976 rtx
2977 prev_nonnote_insn (rtx insn)
2978 {
2979 while (insn)
2980 {
2981 insn = PREV_INSN (insn);
2982 if (insn == 0 || GET_CODE (insn) != NOTE)
2983 break;
2984 }
2985
2986 return insn;
2987 }
2988
2989 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2990 or 0, if there is none. This routine does not look inside
2991 SEQUENCEs. */
2992
2993 rtx
2994 next_real_insn (rtx insn)
2995 {
2996 while (insn)
2997 {
2998 insn = NEXT_INSN (insn);
2999 if (insn == 0 || INSN_P (insn))
3000 break;
3001 }
3002
3003 return insn;
3004 }
3005
3006 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3007 or 0, if there is none. This routine does not look inside
3008 SEQUENCEs. */
3009
3010 rtx
3011 prev_real_insn (rtx insn)
3012 {
3013 while (insn)
3014 {
3015 insn = PREV_INSN (insn);
3016 if (insn == 0 || INSN_P (insn))
3017 break;
3018 }
3019
3020 return insn;
3021 }
3022
3023 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3024 This routine does not look inside SEQUENCEs. */
3025
3026 rtx
3027 last_call_insn (void)
3028 {
3029 rtx insn;
3030
3031 for (insn = get_last_insn ();
3032 insn && GET_CODE (insn) != CALL_INSN;
3033 insn = PREV_INSN (insn))
3034 ;
3035
3036 return insn;
3037 }
3038
3039 /* Find the next insn after INSN that really does something. This routine
3040 does not look inside SEQUENCEs. Until reload has completed, this is the
3041 same as next_real_insn. */
3042
3043 int
3044 active_insn_p (rtx insn)
3045 {
3046 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3047 || (GET_CODE (insn) == INSN
3048 && (! reload_completed
3049 || (GET_CODE (PATTERN (insn)) != USE
3050 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3051 }
3052
3053 rtx
3054 next_active_insn (rtx insn)
3055 {
3056 while (insn)
3057 {
3058 insn = NEXT_INSN (insn);
3059 if (insn == 0 || active_insn_p (insn))
3060 break;
3061 }
3062
3063 return insn;
3064 }
3065
3066 /* Find the last insn before INSN that really does something. This routine
3067 does not look inside SEQUENCEs. Until reload has completed, this is the
3068 same as prev_real_insn. */
3069
3070 rtx
3071 prev_active_insn (rtx insn)
3072 {
3073 while (insn)
3074 {
3075 insn = PREV_INSN (insn);
3076 if (insn == 0 || active_insn_p (insn))
3077 break;
3078 }
3079
3080 return insn;
3081 }
3082
3083 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3084
3085 rtx
3086 next_label (rtx insn)
3087 {
3088 while (insn)
3089 {
3090 insn = NEXT_INSN (insn);
3091 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3092 break;
3093 }
3094
3095 return insn;
3096 }
3097
3098 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3099
3100 rtx
3101 prev_label (rtx insn)
3102 {
3103 while (insn)
3104 {
3105 insn = PREV_INSN (insn);
3106 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3107 break;
3108 }
3109
3110 return insn;
3111 }
3112
3113 /* Return the last label to mark the same position as LABEL. Return null
3114 if LABEL itself is null. */
3115
3116 rtx
3117 skip_consecutive_labels (rtx label)
3118 {
3119 rtx insn;
3120
3121 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3122 if (LABEL_P (insn))
3123 label = insn;
3124
3125 return label;
3126 }
3127 \f
3128 #ifdef HAVE_cc0
3129 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3130 and REG_CC_USER notes so we can find it. */
3131
3132 void
3133 link_cc0_insns (rtx insn)
3134 {
3135 rtx user = next_nonnote_insn (insn);
3136
3137 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3138 user = XVECEXP (PATTERN (user), 0, 0);
3139
3140 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3141 REG_NOTES (user));
3142 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3143 }
3144
3145 /* Return the next insn that uses CC0 after INSN, which is assumed to
3146 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3147 applied to the result of this function should yield INSN).
3148
3149 Normally, this is simply the next insn. However, if a REG_CC_USER note
3150 is present, it contains the insn that uses CC0.
3151
3152 Return 0 if we can't find the insn. */
3153
3154 rtx
3155 next_cc0_user (rtx insn)
3156 {
3157 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3158
3159 if (note)
3160 return XEXP (note, 0);
3161
3162 insn = next_nonnote_insn (insn);
3163 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3164 insn = XVECEXP (PATTERN (insn), 0, 0);
3165
3166 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3167 return insn;
3168
3169 return 0;
3170 }
3171
3172 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3173 note, it is the previous insn. */
3174
3175 rtx
3176 prev_cc0_setter (rtx insn)
3177 {
3178 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3179
3180 if (note)
3181 return XEXP (note, 0);
3182
3183 insn = prev_nonnote_insn (insn);
3184 if (! sets_cc0_p (PATTERN (insn)))
3185 abort ();
3186
3187 return insn;
3188 }
3189 #endif
3190
3191 /* Increment the label uses for all labels present in rtx. */
3192
3193 static void
3194 mark_label_nuses (rtx x)
3195 {
3196 enum rtx_code code;
3197 int i, j;
3198 const char *fmt;
3199
3200 code = GET_CODE (x);
3201 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3202 LABEL_NUSES (XEXP (x, 0))++;
3203
3204 fmt = GET_RTX_FORMAT (code);
3205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3206 {
3207 if (fmt[i] == 'e')
3208 mark_label_nuses (XEXP (x, i));
3209 else if (fmt[i] == 'E')
3210 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3211 mark_label_nuses (XVECEXP (x, i, j));
3212 }
3213 }
3214
3215 \f
3216 /* Try splitting insns that can be split for better scheduling.
3217 PAT is the pattern which might split.
3218 TRIAL is the insn providing PAT.
3219 LAST is nonzero if we should return the last insn of the sequence produced.
3220
3221 If this routine succeeds in splitting, it returns the first or last
3222 replacement insn depending on the value of LAST. Otherwise, it
3223 returns TRIAL. If the insn to be returned can be split, it will be. */
3224
3225 rtx
3226 try_split (rtx pat, rtx trial, int last)
3227 {
3228 rtx before = PREV_INSN (trial);
3229 rtx after = NEXT_INSN (trial);
3230 int has_barrier = 0;
3231 rtx tem;
3232 rtx note, seq;
3233 int probability;
3234 rtx insn_last, insn;
3235 int njumps = 0;
3236
3237 if (any_condjump_p (trial)
3238 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3239 split_branch_probability = INTVAL (XEXP (note, 0));
3240 probability = split_branch_probability;
3241
3242 seq = split_insns (pat, trial);
3243
3244 split_branch_probability = -1;
3245
3246 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3247 We may need to handle this specially. */
3248 if (after && GET_CODE (after) == BARRIER)
3249 {
3250 has_barrier = 1;
3251 after = NEXT_INSN (after);
3252 }
3253
3254 if (!seq)
3255 return trial;
3256
3257 /* Avoid infinite loop if any insn of the result matches
3258 the original pattern. */
3259 insn_last = seq;
3260 while (1)
3261 {
3262 if (INSN_P (insn_last)
3263 && rtx_equal_p (PATTERN (insn_last), pat))
3264 return trial;
3265 if (!NEXT_INSN (insn_last))
3266 break;
3267 insn_last = NEXT_INSN (insn_last);
3268 }
3269
3270 /* Mark labels. */
3271 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3272 {
3273 if (GET_CODE (insn) == JUMP_INSN)
3274 {
3275 mark_jump_label (PATTERN (insn), insn, 0);
3276 njumps++;
3277 if (probability != -1
3278 && any_condjump_p (insn)
3279 && !find_reg_note (insn, REG_BR_PROB, 0))
3280 {
3281 /* We can preserve the REG_BR_PROB notes only if exactly
3282 one jump is created, otherwise the machine description
3283 is responsible for this step using
3284 split_branch_probability variable. */
3285 if (njumps != 1)
3286 abort ();
3287 REG_NOTES (insn)
3288 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3289 GEN_INT (probability),
3290 REG_NOTES (insn));
3291 }
3292 }
3293 }
3294
3295 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3296 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3297 if (GET_CODE (trial) == CALL_INSN)
3298 {
3299 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3300 if (GET_CODE (insn) == CALL_INSN)
3301 {
3302 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3303 while (*p)
3304 p = &XEXP (*p, 1);
3305 *p = CALL_INSN_FUNCTION_USAGE (trial);
3306 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3307 }
3308 }
3309
3310 /* Copy notes, particularly those related to the CFG. */
3311 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3312 {
3313 switch (REG_NOTE_KIND (note))
3314 {
3315 case REG_EH_REGION:
3316 insn = insn_last;
3317 while (insn != NULL_RTX)
3318 {
3319 if (GET_CODE (insn) == CALL_INSN
3320 || (flag_non_call_exceptions
3321 && may_trap_p (PATTERN (insn))))
3322 REG_NOTES (insn)
3323 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3324 XEXP (note, 0),
3325 REG_NOTES (insn));
3326 insn = PREV_INSN (insn);
3327 }
3328 break;
3329
3330 case REG_NORETURN:
3331 case REG_SETJMP:
3332 case REG_ALWAYS_RETURN:
3333 insn = insn_last;
3334 while (insn != NULL_RTX)
3335 {
3336 if (GET_CODE (insn) == CALL_INSN)
3337 REG_NOTES (insn)
3338 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3339 XEXP (note, 0),
3340 REG_NOTES (insn));
3341 insn = PREV_INSN (insn);
3342 }
3343 break;
3344
3345 case REG_NON_LOCAL_GOTO:
3346 insn = insn_last;
3347 while (insn != NULL_RTX)
3348 {
3349 if (GET_CODE (insn) == JUMP_INSN)
3350 REG_NOTES (insn)
3351 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3352 XEXP (note, 0),
3353 REG_NOTES (insn));
3354 insn = PREV_INSN (insn);
3355 }
3356 break;
3357
3358 default:
3359 break;
3360 }
3361 }
3362
3363 /* If there are LABELS inside the split insns increment the
3364 usage count so we don't delete the label. */
3365 if (GET_CODE (trial) == INSN)
3366 {
3367 insn = insn_last;
3368 while (insn != NULL_RTX)
3369 {
3370 if (GET_CODE (insn) == INSN)
3371 mark_label_nuses (PATTERN (insn));
3372
3373 insn = PREV_INSN (insn);
3374 }
3375 }
3376
3377 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3378
3379 delete_insn (trial);
3380 if (has_barrier)
3381 emit_barrier_after (tem);
3382
3383 /* Recursively call try_split for each new insn created; by the
3384 time control returns here that insn will be fully split, so
3385 set LAST and continue from the insn after the one returned.
3386 We can't use next_active_insn here since AFTER may be a note.
3387 Ignore deleted insns, which can be occur if not optimizing. */
3388 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3389 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3390 tem = try_split (PATTERN (tem), tem, 1);
3391
3392 /* Return either the first or the last insn, depending on which was
3393 requested. */
3394 return last
3395 ? (after ? PREV_INSN (after) : last_insn)
3396 : NEXT_INSN (before);
3397 }
3398 \f
3399 /* Make and return an INSN rtx, initializing all its slots.
3400 Store PATTERN in the pattern slots. */
3401
3402 rtx
3403 make_insn_raw (rtx pattern)
3404 {
3405 rtx insn;
3406
3407 insn = rtx_alloc (INSN);
3408
3409 INSN_UID (insn) = cur_insn_uid++;
3410 PATTERN (insn) = pattern;
3411 INSN_CODE (insn) = -1;
3412 LOG_LINKS (insn) = NULL;
3413 REG_NOTES (insn) = NULL;
3414 INSN_LOCATOR (insn) = 0;
3415 BLOCK_FOR_INSN (insn) = NULL;
3416
3417 #ifdef ENABLE_RTL_CHECKING
3418 if (insn
3419 && INSN_P (insn)
3420 && (returnjump_p (insn)
3421 || (GET_CODE (insn) == SET
3422 && SET_DEST (insn) == pc_rtx)))
3423 {
3424 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3425 debug_rtx (insn);
3426 }
3427 #endif
3428
3429 return insn;
3430 }
3431
3432 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3433
3434 static rtx
3435 make_jump_insn_raw (rtx pattern)
3436 {
3437 rtx insn;
3438
3439 insn = rtx_alloc (JUMP_INSN);
3440 INSN_UID (insn) = cur_insn_uid++;
3441
3442 PATTERN (insn) = pattern;
3443 INSN_CODE (insn) = -1;
3444 LOG_LINKS (insn) = NULL;
3445 REG_NOTES (insn) = NULL;
3446 JUMP_LABEL (insn) = NULL;
3447 INSN_LOCATOR (insn) = 0;
3448 BLOCK_FOR_INSN (insn) = NULL;
3449
3450 return insn;
3451 }
3452
3453 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3454
3455 static rtx
3456 make_call_insn_raw (rtx pattern)
3457 {
3458 rtx insn;
3459
3460 insn = rtx_alloc (CALL_INSN);
3461 INSN_UID (insn) = cur_insn_uid++;
3462
3463 PATTERN (insn) = pattern;
3464 INSN_CODE (insn) = -1;
3465 LOG_LINKS (insn) = NULL;
3466 REG_NOTES (insn) = NULL;
3467 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3468 INSN_LOCATOR (insn) = 0;
3469 BLOCK_FOR_INSN (insn) = NULL;
3470
3471 return insn;
3472 }
3473 \f
3474 /* Add INSN to the end of the doubly-linked list.
3475 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3476
3477 void
3478 add_insn (rtx insn)
3479 {
3480 PREV_INSN (insn) = last_insn;
3481 NEXT_INSN (insn) = 0;
3482
3483 if (NULL != last_insn)
3484 NEXT_INSN (last_insn) = insn;
3485
3486 if (NULL == first_insn)
3487 first_insn = insn;
3488
3489 last_insn = insn;
3490 }
3491
3492 /* Add INSN into the doubly-linked list after insn AFTER. This and
3493 the next should be the only functions called to insert an insn once
3494 delay slots have been filled since only they know how to update a
3495 SEQUENCE. */
3496
3497 void
3498 add_insn_after (rtx insn, rtx after)
3499 {
3500 rtx next = NEXT_INSN (after);
3501 basic_block bb;
3502
3503 if (optimize && INSN_DELETED_P (after))
3504 abort ();
3505
3506 NEXT_INSN (insn) = next;
3507 PREV_INSN (insn) = after;
3508
3509 if (next)
3510 {
3511 PREV_INSN (next) = insn;
3512 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3513 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3514 }
3515 else if (last_insn == after)
3516 last_insn = insn;
3517 else
3518 {
3519 struct sequence_stack *stack = seq_stack;
3520 /* Scan all pending sequences too. */
3521 for (; stack; stack = stack->next)
3522 if (after == stack->last)
3523 {
3524 stack->last = insn;
3525 break;
3526 }
3527
3528 if (stack == 0)
3529 abort ();
3530 }
3531
3532 if (GET_CODE (after) != BARRIER
3533 && GET_CODE (insn) != BARRIER
3534 && (bb = BLOCK_FOR_INSN (after)))
3535 {
3536 set_block_for_insn (insn, bb);
3537 if (INSN_P (insn))
3538 bb->flags |= BB_DIRTY;
3539 /* Should not happen as first in the BB is always
3540 either NOTE or LABEL. */
3541 if (BB_END (bb) == after
3542 /* Avoid clobbering of structure when creating new BB. */
3543 && GET_CODE (insn) != BARRIER
3544 && (GET_CODE (insn) != NOTE
3545 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3546 BB_END (bb) = insn;
3547 }
3548
3549 NEXT_INSN (after) = insn;
3550 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3551 {
3552 rtx sequence = PATTERN (after);
3553 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3554 }
3555 }
3556
3557 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3558 the previous should be the only functions called to insert an insn once
3559 delay slots have been filled since only they know how to update a
3560 SEQUENCE. */
3561
3562 void
3563 add_insn_before (rtx insn, rtx before)
3564 {
3565 rtx prev = PREV_INSN (before);
3566 basic_block bb;
3567
3568 if (optimize && INSN_DELETED_P (before))
3569 abort ();
3570
3571 PREV_INSN (insn) = prev;
3572 NEXT_INSN (insn) = before;
3573
3574 if (prev)
3575 {
3576 NEXT_INSN (prev) = insn;
3577 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3578 {
3579 rtx sequence = PATTERN (prev);
3580 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3581 }
3582 }
3583 else if (first_insn == before)
3584 first_insn = insn;
3585 else
3586 {
3587 struct sequence_stack *stack = seq_stack;
3588 /* Scan all pending sequences too. */
3589 for (; stack; stack = stack->next)
3590 if (before == stack->first)
3591 {
3592 stack->first = insn;
3593 break;
3594 }
3595
3596 if (stack == 0)
3597 abort ();
3598 }
3599
3600 if (GET_CODE (before) != BARRIER
3601 && GET_CODE (insn) != BARRIER
3602 && (bb = BLOCK_FOR_INSN (before)))
3603 {
3604 set_block_for_insn (insn, bb);
3605 if (INSN_P (insn))
3606 bb->flags |= BB_DIRTY;
3607 /* Should not happen as first in the BB is always
3608 either NOTE or LABEl. */
3609 if (BB_HEAD (bb) == insn
3610 /* Avoid clobbering of structure when creating new BB. */
3611 && GET_CODE (insn) != BARRIER
3612 && (GET_CODE (insn) != NOTE
3613 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3614 abort ();
3615 }
3616
3617 PREV_INSN (before) = insn;
3618 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3619 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3620 }
3621
3622 /* Remove an insn from its doubly-linked list. This function knows how
3623 to handle sequences. */
3624 void
3625 remove_insn (rtx insn)
3626 {
3627 rtx next = NEXT_INSN (insn);
3628 rtx prev = PREV_INSN (insn);
3629 basic_block bb;
3630
3631 if (prev)
3632 {
3633 NEXT_INSN (prev) = next;
3634 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3635 {
3636 rtx sequence = PATTERN (prev);
3637 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3638 }
3639 }
3640 else if (first_insn == insn)
3641 first_insn = next;
3642 else
3643 {
3644 struct sequence_stack *stack = seq_stack;
3645 /* Scan all pending sequences too. */
3646 for (; stack; stack = stack->next)
3647 if (insn == stack->first)
3648 {
3649 stack->first = next;
3650 break;
3651 }
3652
3653 if (stack == 0)
3654 abort ();
3655 }
3656
3657 if (next)
3658 {
3659 PREV_INSN (next) = prev;
3660 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3661 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3662 }
3663 else if (last_insn == insn)
3664 last_insn = prev;
3665 else
3666 {
3667 struct sequence_stack *stack = seq_stack;
3668 /* Scan all pending sequences too. */
3669 for (; stack; stack = stack->next)
3670 if (insn == stack->last)
3671 {
3672 stack->last = prev;
3673 break;
3674 }
3675
3676 if (stack == 0)
3677 abort ();
3678 }
3679 if (GET_CODE (insn) != BARRIER
3680 && (bb = BLOCK_FOR_INSN (insn)))
3681 {
3682 if (INSN_P (insn))
3683 bb->flags |= BB_DIRTY;
3684 if (BB_HEAD (bb) == insn)
3685 {
3686 /* Never ever delete the basic block note without deleting whole
3687 basic block. */
3688 if (GET_CODE (insn) == NOTE)
3689 abort ();
3690 BB_HEAD (bb) = next;
3691 }
3692 if (BB_END (bb) == insn)
3693 BB_END (bb) = prev;
3694 }
3695 }
3696
3697 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3698
3699 void
3700 add_function_usage_to (rtx call_insn, rtx call_fusage)
3701 {
3702 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3703 abort ();
3704
3705 /* Put the register usage information on the CALL. If there is already
3706 some usage information, put ours at the end. */
3707 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3708 {
3709 rtx link;
3710
3711 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3712 link = XEXP (link, 1))
3713 ;
3714
3715 XEXP (link, 1) = call_fusage;
3716 }
3717 else
3718 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3719 }
3720
3721 /* Delete all insns made since FROM.
3722 FROM becomes the new last instruction. */
3723
3724 void
3725 delete_insns_since (rtx from)
3726 {
3727 if (from == 0)
3728 first_insn = 0;
3729 else
3730 NEXT_INSN (from) = 0;
3731 last_insn = from;
3732 }
3733
3734 /* This function is deprecated, please use sequences instead.
3735
3736 Move a consecutive bunch of insns to a different place in the chain.
3737 The insns to be moved are those between FROM and TO.
3738 They are moved to a new position after the insn AFTER.
3739 AFTER must not be FROM or TO or any insn in between.
3740
3741 This function does not know about SEQUENCEs and hence should not be
3742 called after delay-slot filling has been done. */
3743
3744 void
3745 reorder_insns_nobb (rtx from, rtx to, rtx after)
3746 {
3747 /* Splice this bunch out of where it is now. */
3748 if (PREV_INSN (from))
3749 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3750 if (NEXT_INSN (to))
3751 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3752 if (last_insn == to)
3753 last_insn = PREV_INSN (from);
3754 if (first_insn == from)
3755 first_insn = NEXT_INSN (to);
3756
3757 /* Make the new neighbors point to it and it to them. */
3758 if (NEXT_INSN (after))
3759 PREV_INSN (NEXT_INSN (after)) = to;
3760
3761 NEXT_INSN (to) = NEXT_INSN (after);
3762 PREV_INSN (from) = after;
3763 NEXT_INSN (after) = from;
3764 if (after == last_insn)
3765 last_insn = to;
3766 }
3767
3768 /* Same as function above, but take care to update BB boundaries. */
3769 void
3770 reorder_insns (rtx from, rtx to, rtx after)
3771 {
3772 rtx prev = PREV_INSN (from);
3773 basic_block bb, bb2;
3774
3775 reorder_insns_nobb (from, to, after);
3776
3777 if (GET_CODE (after) != BARRIER
3778 && (bb = BLOCK_FOR_INSN (after)))
3779 {
3780 rtx x;
3781 bb->flags |= BB_DIRTY;
3782
3783 if (GET_CODE (from) != BARRIER
3784 && (bb2 = BLOCK_FOR_INSN (from)))
3785 {
3786 if (BB_END (bb2) == to)
3787 BB_END (bb2) = prev;
3788 bb2->flags |= BB_DIRTY;
3789 }
3790
3791 if (BB_END (bb) == after)
3792 BB_END (bb) = to;
3793
3794 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3795 set_block_for_insn (x, bb);
3796 }
3797 }
3798
3799 /* Return the line note insn preceding INSN. */
3800
3801 static rtx
3802 find_line_note (rtx insn)
3803 {
3804 if (no_line_numbers)
3805 return 0;
3806
3807 for (; insn; insn = PREV_INSN (insn))
3808 if (GET_CODE (insn) == NOTE
3809 && NOTE_LINE_NUMBER (insn) >= 0)
3810 break;
3811
3812 return insn;
3813 }
3814
3815 /* Remove unnecessary notes from the instruction stream. */
3816
3817 void
3818 remove_unnecessary_notes (void)
3819 {
3820 rtx block_stack = NULL_RTX;
3821 rtx eh_stack = NULL_RTX;
3822 rtx insn;
3823 rtx next;
3824 rtx tmp;
3825
3826 /* We must not remove the first instruction in the function because
3827 the compiler depends on the first instruction being a note. */
3828 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3829 {
3830 /* Remember what's next. */
3831 next = NEXT_INSN (insn);
3832
3833 /* We're only interested in notes. */
3834 if (GET_CODE (insn) != NOTE)
3835 continue;
3836
3837 switch (NOTE_LINE_NUMBER (insn))
3838 {
3839 case NOTE_INSN_DELETED:
3840 case NOTE_INSN_LOOP_END_TOP_COND:
3841 remove_insn (insn);
3842 break;
3843
3844 case NOTE_INSN_EH_REGION_BEG:
3845 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3846 break;
3847
3848 case NOTE_INSN_EH_REGION_END:
3849 /* Too many end notes. */
3850 if (eh_stack == NULL_RTX)
3851 abort ();
3852 /* Mismatched nesting. */
3853 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3854 abort ();
3855 tmp = eh_stack;
3856 eh_stack = XEXP (eh_stack, 1);
3857 free_INSN_LIST_node (tmp);
3858 break;
3859
3860 case NOTE_INSN_BLOCK_BEG:
3861 /* By now, all notes indicating lexical blocks should have
3862 NOTE_BLOCK filled in. */
3863 if (NOTE_BLOCK (insn) == NULL_TREE)
3864 abort ();
3865 block_stack = alloc_INSN_LIST (insn, block_stack);
3866 break;
3867
3868 case NOTE_INSN_BLOCK_END:
3869 /* Too many end notes. */
3870 if (block_stack == NULL_RTX)
3871 abort ();
3872 /* Mismatched nesting. */
3873 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3874 abort ();
3875 tmp = block_stack;
3876 block_stack = XEXP (block_stack, 1);
3877 free_INSN_LIST_node (tmp);
3878
3879 /* Scan back to see if there are any non-note instructions
3880 between INSN and the beginning of this block. If not,
3881 then there is no PC range in the generated code that will
3882 actually be in this block, so there's no point in
3883 remembering the existence of the block. */
3884 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3885 {
3886 /* This block contains a real instruction. Note that we
3887 don't include labels; if the only thing in the block
3888 is a label, then there are still no PC values that
3889 lie within the block. */
3890 if (INSN_P (tmp))
3891 break;
3892
3893 /* We're only interested in NOTEs. */
3894 if (GET_CODE (tmp) != NOTE)
3895 continue;
3896
3897 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3898 {
3899 /* We just verified that this BLOCK matches us with
3900 the block_stack check above. Never delete the
3901 BLOCK for the outermost scope of the function; we
3902 can refer to names from that scope even if the
3903 block notes are messed up. */
3904 if (! is_body_block (NOTE_BLOCK (insn))
3905 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3906 {
3907 remove_insn (tmp);
3908 remove_insn (insn);
3909 }
3910 break;
3911 }
3912 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3913 /* There's a nested block. We need to leave the
3914 current block in place since otherwise the debugger
3915 wouldn't be able to show symbols from our block in
3916 the nested block. */
3917 break;
3918 }
3919 }
3920 }
3921
3922 /* Too many begin notes. */
3923 if (block_stack || eh_stack)
3924 abort ();
3925 }
3926
3927 \f
3928 /* Emit insn(s) of given code and pattern
3929 at a specified place within the doubly-linked list.
3930
3931 All of the emit_foo global entry points accept an object
3932 X which is either an insn list or a PATTERN of a single
3933 instruction.
3934
3935 There are thus a few canonical ways to generate code and
3936 emit it at a specific place in the instruction stream. For
3937 example, consider the instruction named SPOT and the fact that
3938 we would like to emit some instructions before SPOT. We might
3939 do it like this:
3940
3941 start_sequence ();
3942 ... emit the new instructions ...
3943 insns_head = get_insns ();
3944 end_sequence ();
3945
3946 emit_insn_before (insns_head, SPOT);
3947
3948 It used to be common to generate SEQUENCE rtl instead, but that
3949 is a relic of the past which no longer occurs. The reason is that
3950 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3951 generated would almost certainly die right after it was created. */
3952
3953 /* Make X be output before the instruction BEFORE. */
3954
3955 rtx
3956 emit_insn_before (rtx x, rtx before)
3957 {
3958 rtx last = before;
3959 rtx insn;
3960
3961 #ifdef ENABLE_RTL_CHECKING
3962 if (before == NULL_RTX)
3963 abort ();
3964 #endif
3965
3966 if (x == NULL_RTX)
3967 return last;
3968
3969 switch (GET_CODE (x))
3970 {
3971 case INSN:
3972 case JUMP_INSN:
3973 case CALL_INSN:
3974 case CODE_LABEL:
3975 case BARRIER:
3976 case NOTE:
3977 insn = x;
3978 while (insn)
3979 {
3980 rtx next = NEXT_INSN (insn);
3981 add_insn_before (insn, before);
3982 last = insn;
3983 insn = next;
3984 }
3985 break;
3986
3987 #ifdef ENABLE_RTL_CHECKING
3988 case SEQUENCE:
3989 abort ();
3990 break;
3991 #endif
3992
3993 default:
3994 last = make_insn_raw (x);
3995 add_insn_before (last, before);
3996 break;
3997 }
3998
3999 return last;
4000 }
4001
4002 /* Make an instruction with body X and code JUMP_INSN
4003 and output it before the instruction BEFORE. */
4004
4005 rtx
4006 emit_jump_insn_before (rtx x, rtx before)
4007 {
4008 rtx insn, last = NULL_RTX;
4009
4010 #ifdef ENABLE_RTL_CHECKING
4011 if (before == NULL_RTX)
4012 abort ();
4013 #endif
4014
4015 switch (GET_CODE (x))
4016 {
4017 case INSN:
4018 case JUMP_INSN:
4019 case CALL_INSN:
4020 case CODE_LABEL:
4021 case BARRIER:
4022 case NOTE:
4023 insn = x;
4024 while (insn)
4025 {
4026 rtx next = NEXT_INSN (insn);
4027 add_insn_before (insn, before);
4028 last = insn;
4029 insn = next;
4030 }
4031 break;
4032
4033 #ifdef ENABLE_RTL_CHECKING
4034 case SEQUENCE:
4035 abort ();
4036 break;
4037 #endif
4038
4039 default:
4040 last = make_jump_insn_raw (x);
4041 add_insn_before (last, before);
4042 break;
4043 }
4044
4045 return last;
4046 }
4047
4048 /* Make an instruction with body X and code CALL_INSN
4049 and output it before the instruction BEFORE. */
4050
4051 rtx
4052 emit_call_insn_before (rtx x, rtx before)
4053 {
4054 rtx last = NULL_RTX, insn;
4055
4056 #ifdef ENABLE_RTL_CHECKING
4057 if (before == NULL_RTX)
4058 abort ();
4059 #endif
4060
4061 switch (GET_CODE (x))
4062 {
4063 case INSN:
4064 case JUMP_INSN:
4065 case CALL_INSN:
4066 case CODE_LABEL:
4067 case BARRIER:
4068 case NOTE:
4069 insn = x;
4070 while (insn)
4071 {
4072 rtx next = NEXT_INSN (insn);
4073 add_insn_before (insn, before);
4074 last = insn;
4075 insn = next;
4076 }
4077 break;
4078
4079 #ifdef ENABLE_RTL_CHECKING
4080 case SEQUENCE:
4081 abort ();
4082 break;
4083 #endif
4084
4085 default:
4086 last = make_call_insn_raw (x);
4087 add_insn_before (last, before);
4088 break;
4089 }
4090
4091 return last;
4092 }
4093
4094 /* Make an insn of code BARRIER
4095 and output it before the insn BEFORE. */
4096
4097 rtx
4098 emit_barrier_before (rtx before)
4099 {
4100 rtx insn = rtx_alloc (BARRIER);
4101
4102 INSN_UID (insn) = cur_insn_uid++;
4103
4104 add_insn_before (insn, before);
4105 return insn;
4106 }
4107
4108 /* Emit the label LABEL before the insn BEFORE. */
4109
4110 rtx
4111 emit_label_before (rtx label, rtx before)
4112 {
4113 /* This can be called twice for the same label as a result of the
4114 confusion that follows a syntax error! So make it harmless. */
4115 if (INSN_UID (label) == 0)
4116 {
4117 INSN_UID (label) = cur_insn_uid++;
4118 add_insn_before (label, before);
4119 }
4120
4121 return label;
4122 }
4123
4124 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4125
4126 rtx
4127 emit_note_before (int subtype, rtx before)
4128 {
4129 rtx note = rtx_alloc (NOTE);
4130 INSN_UID (note) = cur_insn_uid++;
4131 NOTE_SOURCE_FILE (note) = 0;
4132 NOTE_LINE_NUMBER (note) = subtype;
4133 BLOCK_FOR_INSN (note) = NULL;
4134
4135 add_insn_before (note, before);
4136 return note;
4137 }
4138 \f
4139 /* Helper for emit_insn_after, handles lists of instructions
4140 efficiently. */
4141
4142 static rtx emit_insn_after_1 (rtx, rtx);
4143
4144 static rtx
4145 emit_insn_after_1 (rtx first, rtx after)
4146 {
4147 rtx last;
4148 rtx after_after;
4149 basic_block bb;
4150
4151 if (GET_CODE (after) != BARRIER
4152 && (bb = BLOCK_FOR_INSN (after)))
4153 {
4154 bb->flags |= BB_DIRTY;
4155 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4156 if (GET_CODE (last) != BARRIER)
4157 set_block_for_insn (last, bb);
4158 if (GET_CODE (last) != BARRIER)
4159 set_block_for_insn (last, bb);
4160 if (BB_END (bb) == after)
4161 BB_END (bb) = last;
4162 }
4163 else
4164 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4165 continue;
4166
4167 after_after = NEXT_INSN (after);
4168
4169 NEXT_INSN (after) = first;
4170 PREV_INSN (first) = after;
4171 NEXT_INSN (last) = after_after;
4172 if (after_after)
4173 PREV_INSN (after_after) = last;
4174
4175 if (after == last_insn)
4176 last_insn = last;
4177 return last;
4178 }
4179
4180 /* Make X be output after the insn AFTER. */
4181
4182 rtx
4183 emit_insn_after (rtx x, rtx after)
4184 {
4185 rtx last = after;
4186
4187 #ifdef ENABLE_RTL_CHECKING
4188 if (after == NULL_RTX)
4189 abort ();
4190 #endif
4191
4192 if (x == NULL_RTX)
4193 return last;
4194
4195 switch (GET_CODE (x))
4196 {
4197 case INSN:
4198 case JUMP_INSN:
4199 case CALL_INSN:
4200 case CODE_LABEL:
4201 case BARRIER:
4202 case NOTE:
4203 last = emit_insn_after_1 (x, after);
4204 break;
4205
4206 #ifdef ENABLE_RTL_CHECKING
4207 case SEQUENCE:
4208 abort ();
4209 break;
4210 #endif
4211
4212 default:
4213 last = make_insn_raw (x);
4214 add_insn_after (last, after);
4215 break;
4216 }
4217
4218 return last;
4219 }
4220
4221 /* Similar to emit_insn_after, except that line notes are to be inserted so
4222 as to act as if this insn were at FROM. */
4223
4224 void
4225 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4226 {
4227 rtx from_line = find_line_note (from);
4228 rtx after_line = find_line_note (after);
4229 rtx insn = emit_insn_after (x, after);
4230
4231 if (from_line)
4232 emit_note_copy_after (from_line, after);
4233
4234 if (after_line)
4235 emit_note_copy_after (after_line, insn);
4236 }
4237
4238 /* Make an insn of code JUMP_INSN with body X
4239 and output it after the insn AFTER. */
4240
4241 rtx
4242 emit_jump_insn_after (rtx x, rtx after)
4243 {
4244 rtx last;
4245
4246 #ifdef ENABLE_RTL_CHECKING
4247 if (after == NULL_RTX)
4248 abort ();
4249 #endif
4250
4251 switch (GET_CODE (x))
4252 {
4253 case INSN:
4254 case JUMP_INSN:
4255 case CALL_INSN:
4256 case CODE_LABEL:
4257 case BARRIER:
4258 case NOTE:
4259 last = emit_insn_after_1 (x, after);
4260 break;
4261
4262 #ifdef ENABLE_RTL_CHECKING
4263 case SEQUENCE:
4264 abort ();
4265 break;
4266 #endif
4267
4268 default:
4269 last = make_jump_insn_raw (x);
4270 add_insn_after (last, after);
4271 break;
4272 }
4273
4274 return last;
4275 }
4276
4277 /* Make an instruction with body X and code CALL_INSN
4278 and output it after the instruction AFTER. */
4279
4280 rtx
4281 emit_call_insn_after (rtx x, rtx after)
4282 {
4283 rtx last;
4284
4285 #ifdef ENABLE_RTL_CHECKING
4286 if (after == NULL_RTX)
4287 abort ();
4288 #endif
4289
4290 switch (GET_CODE (x))
4291 {
4292 case INSN:
4293 case JUMP_INSN:
4294 case CALL_INSN:
4295 case CODE_LABEL:
4296 case BARRIER:
4297 case NOTE:
4298 last = emit_insn_after_1 (x, after);
4299 break;
4300
4301 #ifdef ENABLE_RTL_CHECKING
4302 case SEQUENCE:
4303 abort ();
4304 break;
4305 #endif
4306
4307 default:
4308 last = make_call_insn_raw (x);
4309 add_insn_after (last, after);
4310 break;
4311 }
4312
4313 return last;
4314 }
4315
4316 /* Make an insn of code BARRIER
4317 and output it after the insn AFTER. */
4318
4319 rtx
4320 emit_barrier_after (rtx after)
4321 {
4322 rtx insn = rtx_alloc (BARRIER);
4323
4324 INSN_UID (insn) = cur_insn_uid++;
4325
4326 add_insn_after (insn, after);
4327 return insn;
4328 }
4329
4330 /* Emit the label LABEL after the insn AFTER. */
4331
4332 rtx
4333 emit_label_after (rtx label, rtx after)
4334 {
4335 /* This can be called twice for the same label
4336 as a result of the confusion that follows a syntax error!
4337 So make it harmless. */
4338 if (INSN_UID (label) == 0)
4339 {
4340 INSN_UID (label) = cur_insn_uid++;
4341 add_insn_after (label, after);
4342 }
4343
4344 return label;
4345 }
4346
4347 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4348
4349 rtx
4350 emit_note_after (int subtype, rtx after)
4351 {
4352 rtx note = rtx_alloc (NOTE);
4353 INSN_UID (note) = cur_insn_uid++;
4354 NOTE_SOURCE_FILE (note) = 0;
4355 NOTE_LINE_NUMBER (note) = subtype;
4356 BLOCK_FOR_INSN (note) = NULL;
4357 add_insn_after (note, after);
4358 return note;
4359 }
4360
4361 /* Emit a copy of note ORIG after the insn AFTER. */
4362
4363 rtx
4364 emit_note_copy_after (rtx orig, rtx after)
4365 {
4366 rtx note;
4367
4368 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4369 {
4370 cur_insn_uid++;
4371 return 0;
4372 }
4373
4374 note = rtx_alloc (NOTE);
4375 INSN_UID (note) = cur_insn_uid++;
4376 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4377 NOTE_DATA (note) = NOTE_DATA (orig);
4378 BLOCK_FOR_INSN (note) = NULL;
4379 add_insn_after (note, after);
4380 return note;
4381 }
4382 \f
4383 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4384 rtx
4385 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4386 {
4387 rtx last = emit_insn_after (pattern, after);
4388
4389 if (pattern == NULL_RTX)
4390 return last;
4391
4392 after = NEXT_INSN (after);
4393 while (1)
4394 {
4395 if (active_insn_p (after))
4396 INSN_LOCATOR (after) = loc;
4397 if (after == last)
4398 break;
4399 after = NEXT_INSN (after);
4400 }
4401 return last;
4402 }
4403
4404 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4405 rtx
4406 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4407 {
4408 rtx last = emit_jump_insn_after (pattern, after);
4409
4410 if (pattern == NULL_RTX)
4411 return last;
4412
4413 after = NEXT_INSN (after);
4414 while (1)
4415 {
4416 if (active_insn_p (after))
4417 INSN_LOCATOR (after) = loc;
4418 if (after == last)
4419 break;
4420 after = NEXT_INSN (after);
4421 }
4422 return last;
4423 }
4424
4425 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4426 rtx
4427 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4428 {
4429 rtx last = emit_call_insn_after (pattern, after);
4430
4431 if (pattern == NULL_RTX)
4432 return last;
4433
4434 after = NEXT_INSN (after);
4435 while (1)
4436 {
4437 if (active_insn_p (after))
4438 INSN_LOCATOR (after) = loc;
4439 if (after == last)
4440 break;
4441 after = NEXT_INSN (after);
4442 }
4443 return last;
4444 }
4445
4446 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4447 rtx
4448 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4449 {
4450 rtx first = PREV_INSN (before);
4451 rtx last = emit_insn_before (pattern, before);
4452
4453 if (pattern == NULL_RTX)
4454 return last;
4455
4456 first = NEXT_INSN (first);
4457 while (1)
4458 {
4459 if (active_insn_p (first))
4460 INSN_LOCATOR (first) = loc;
4461 if (first == last)
4462 break;
4463 first = NEXT_INSN (first);
4464 }
4465 return last;
4466 }
4467 \f
4468 /* Take X and emit it at the end of the doubly-linked
4469 INSN list.
4470
4471 Returns the last insn emitted. */
4472
4473 rtx
4474 emit_insn (rtx x)
4475 {
4476 rtx last = last_insn;
4477 rtx insn;
4478
4479 if (x == NULL_RTX)
4480 return last;
4481
4482 switch (GET_CODE (x))
4483 {
4484 case INSN:
4485 case JUMP_INSN:
4486 case CALL_INSN:
4487 case CODE_LABEL:
4488 case BARRIER:
4489 case NOTE:
4490 insn = x;
4491 while (insn)
4492 {
4493 rtx next = NEXT_INSN (insn);
4494 add_insn (insn);
4495 last = insn;
4496 insn = next;
4497 }
4498 break;
4499
4500 #ifdef ENABLE_RTL_CHECKING
4501 case SEQUENCE:
4502 abort ();
4503 break;
4504 #endif
4505
4506 default:
4507 last = make_insn_raw (x);
4508 add_insn (last);
4509 break;
4510 }
4511
4512 return last;
4513 }
4514
4515 /* Make an insn of code JUMP_INSN with pattern X
4516 and add it to the end of the doubly-linked list. */
4517
4518 rtx
4519 emit_jump_insn (rtx x)
4520 {
4521 rtx last = NULL_RTX, insn;
4522
4523 switch (GET_CODE (x))
4524 {
4525 case INSN:
4526 case JUMP_INSN:
4527 case CALL_INSN:
4528 case CODE_LABEL:
4529 case BARRIER:
4530 case NOTE:
4531 insn = x;
4532 while (insn)
4533 {
4534 rtx next = NEXT_INSN (insn);
4535 add_insn (insn);
4536 last = insn;
4537 insn = next;
4538 }
4539 break;
4540
4541 #ifdef ENABLE_RTL_CHECKING
4542 case SEQUENCE:
4543 abort ();
4544 break;
4545 #endif
4546
4547 default:
4548 last = make_jump_insn_raw (x);
4549 add_insn (last);
4550 break;
4551 }
4552
4553 return last;
4554 }
4555
4556 /* Make an insn of code CALL_INSN with pattern X
4557 and add it to the end of the doubly-linked list. */
4558
4559 rtx
4560 emit_call_insn (rtx x)
4561 {
4562 rtx insn;
4563
4564 switch (GET_CODE (x))
4565 {
4566 case INSN:
4567 case JUMP_INSN:
4568 case CALL_INSN:
4569 case CODE_LABEL:
4570 case BARRIER:
4571 case NOTE:
4572 insn = emit_insn (x);
4573 break;
4574
4575 #ifdef ENABLE_RTL_CHECKING
4576 case SEQUENCE:
4577 abort ();
4578 break;
4579 #endif
4580
4581 default:
4582 insn = make_call_insn_raw (x);
4583 add_insn (insn);
4584 break;
4585 }
4586
4587 return insn;
4588 }
4589
4590 /* Add the label LABEL to the end of the doubly-linked list. */
4591
4592 rtx
4593 emit_label (rtx label)
4594 {
4595 /* This can be called twice for the same label
4596 as a result of the confusion that follows a syntax error!
4597 So make it harmless. */
4598 if (INSN_UID (label) == 0)
4599 {
4600 INSN_UID (label) = cur_insn_uid++;
4601 add_insn (label);
4602 }
4603 return label;
4604 }
4605
4606 /* Make an insn of code BARRIER
4607 and add it to the end of the doubly-linked list. */
4608
4609 rtx
4610 emit_barrier (void)
4611 {
4612 rtx barrier = rtx_alloc (BARRIER);
4613 INSN_UID (barrier) = cur_insn_uid++;
4614 add_insn (barrier);
4615 return barrier;
4616 }
4617
4618 /* Make line numbering NOTE insn for LOCATION add it to the end
4619 of the doubly-linked list, but only if line-numbers are desired for
4620 debugging info and it doesn't match the previous one. */
4621
4622 rtx
4623 emit_line_note (location_t location)
4624 {
4625 rtx note;
4626
4627 set_file_and_line_for_stmt (location);
4628
4629 if (location.file && last_location.file
4630 && !strcmp (location.file, last_location.file)
4631 && location.line == last_location.line)
4632 return NULL_RTX;
4633 last_location = location;
4634
4635 if (no_line_numbers)
4636 {
4637 cur_insn_uid++;
4638 return NULL_RTX;
4639 }
4640
4641 note = emit_note (location.line);
4642 NOTE_SOURCE_FILE (note) = location.file;
4643
4644 return note;
4645 }
4646
4647 /* Emit a copy of note ORIG. */
4648
4649 rtx
4650 emit_note_copy (rtx orig)
4651 {
4652 rtx note;
4653
4654 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4655 {
4656 cur_insn_uid++;
4657 return NULL_RTX;
4658 }
4659
4660 note = rtx_alloc (NOTE);
4661
4662 INSN_UID (note) = cur_insn_uid++;
4663 NOTE_DATA (note) = NOTE_DATA (orig);
4664 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4665 BLOCK_FOR_INSN (note) = NULL;
4666 add_insn (note);
4667
4668 return note;
4669 }
4670
4671 /* Make an insn of code NOTE or type NOTE_NO
4672 and add it to the end of the doubly-linked list. */
4673
4674 rtx
4675 emit_note (int note_no)
4676 {
4677 rtx note;
4678
4679 note = rtx_alloc (NOTE);
4680 INSN_UID (note) = cur_insn_uid++;
4681 NOTE_LINE_NUMBER (note) = note_no;
4682 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4683 BLOCK_FOR_INSN (note) = NULL;
4684 add_insn (note);
4685 return note;
4686 }
4687
4688 /* Cause next statement to emit a line note even if the line number
4689 has not changed. */
4690
4691 void
4692 force_next_line_note (void)
4693 {
4694 last_location.line = -1;
4695 }
4696
4697 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4698 note of this type already exists, remove it first. */
4699
4700 rtx
4701 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4702 {
4703 rtx note = find_reg_note (insn, kind, NULL_RTX);
4704
4705 switch (kind)
4706 {
4707 case REG_EQUAL:
4708 case REG_EQUIV:
4709 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4710 has multiple sets (some callers assume single_set
4711 means the insn only has one set, when in fact it
4712 means the insn only has one * useful * set). */
4713 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4714 {
4715 if (note)
4716 abort ();
4717 return NULL_RTX;
4718 }
4719
4720 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4721 It serves no useful purpose and breaks eliminate_regs. */
4722 if (GET_CODE (datum) == ASM_OPERANDS)
4723 return NULL_RTX;
4724 break;
4725
4726 default:
4727 break;
4728 }
4729
4730 if (note)
4731 {
4732 XEXP (note, 0) = datum;
4733 return note;
4734 }
4735
4736 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4737 return REG_NOTES (insn);
4738 }
4739 \f
4740 /* Return an indication of which type of insn should have X as a body.
4741 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4742
4743 enum rtx_code
4744 classify_insn (rtx x)
4745 {
4746 if (GET_CODE (x) == CODE_LABEL)
4747 return CODE_LABEL;
4748 if (GET_CODE (x) == CALL)
4749 return CALL_INSN;
4750 if (GET_CODE (x) == RETURN)
4751 return JUMP_INSN;
4752 if (GET_CODE (x) == SET)
4753 {
4754 if (SET_DEST (x) == pc_rtx)
4755 return JUMP_INSN;
4756 else if (GET_CODE (SET_SRC (x)) == CALL)
4757 return CALL_INSN;
4758 else
4759 return INSN;
4760 }
4761 if (GET_CODE (x) == PARALLEL)
4762 {
4763 int j;
4764 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4765 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4766 return CALL_INSN;
4767 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4768 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4769 return JUMP_INSN;
4770 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4771 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4772 return CALL_INSN;
4773 }
4774 return INSN;
4775 }
4776
4777 /* Emit the rtl pattern X as an appropriate kind of insn.
4778 If X is a label, it is simply added into the insn chain. */
4779
4780 rtx
4781 emit (rtx x)
4782 {
4783 enum rtx_code code = classify_insn (x);
4784
4785 if (code == CODE_LABEL)
4786 return emit_label (x);
4787 else if (code == INSN)
4788 return emit_insn (x);
4789 else if (code == JUMP_INSN)
4790 {
4791 rtx insn = emit_jump_insn (x);
4792 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4793 return emit_barrier ();
4794 return insn;
4795 }
4796 else if (code == CALL_INSN)
4797 return emit_call_insn (x);
4798 else
4799 abort ();
4800 }
4801 \f
4802 /* Space for free sequence stack entries. */
4803 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4804
4805 /* Begin emitting insns to a sequence which can be packaged in an
4806 RTL_EXPR. If this sequence will contain something that might cause
4807 the compiler to pop arguments to function calls (because those
4808 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4809 details), use do_pending_stack_adjust before calling this function.
4810 That will ensure that the deferred pops are not accidentally
4811 emitted in the middle of this sequence. */
4812
4813 void
4814 start_sequence (void)
4815 {
4816 struct sequence_stack *tem;
4817
4818 if (free_sequence_stack != NULL)
4819 {
4820 tem = free_sequence_stack;
4821 free_sequence_stack = tem->next;
4822 }
4823 else
4824 tem = ggc_alloc (sizeof (struct sequence_stack));
4825
4826 tem->next = seq_stack;
4827 tem->first = first_insn;
4828 tem->last = last_insn;
4829 tem->sequence_rtl_expr = seq_rtl_expr;
4830
4831 seq_stack = tem;
4832
4833 first_insn = 0;
4834 last_insn = 0;
4835 }
4836
4837 /* Similarly, but indicate that this sequence will be placed in T, an
4838 RTL_EXPR. See the documentation for start_sequence for more
4839 information about how to use this function. */
4840
4841 void
4842 start_sequence_for_rtl_expr (tree t)
4843 {
4844 start_sequence ();
4845
4846 seq_rtl_expr = t;
4847 }
4848
4849 /* Set up the insn chain starting with FIRST as the current sequence,
4850 saving the previously current one. See the documentation for
4851 start_sequence for more information about how to use this function. */
4852
4853 void
4854 push_to_sequence (rtx first)
4855 {
4856 rtx last;
4857
4858 start_sequence ();
4859
4860 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4861
4862 first_insn = first;
4863 last_insn = last;
4864 }
4865
4866 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4867
4868 void
4869 push_to_full_sequence (rtx first, rtx last)
4870 {
4871 start_sequence ();
4872 first_insn = first;
4873 last_insn = last;
4874 /* We really should have the end of the insn chain here. */
4875 if (last && NEXT_INSN (last))
4876 abort ();
4877 }
4878
4879 /* Set up the outer-level insn chain
4880 as the current sequence, saving the previously current one. */
4881
4882 void
4883 push_topmost_sequence (void)
4884 {
4885 struct sequence_stack *stack, *top = NULL;
4886
4887 start_sequence ();
4888
4889 for (stack = seq_stack; stack; stack = stack->next)
4890 top = stack;
4891
4892 first_insn = top->first;
4893 last_insn = top->last;
4894 seq_rtl_expr = top->sequence_rtl_expr;
4895 }
4896
4897 /* After emitting to the outer-level insn chain, update the outer-level
4898 insn chain, and restore the previous saved state. */
4899
4900 void
4901 pop_topmost_sequence (void)
4902 {
4903 struct sequence_stack *stack, *top = NULL;
4904
4905 for (stack = seq_stack; stack; stack = stack->next)
4906 top = stack;
4907
4908 top->first = first_insn;
4909 top->last = last_insn;
4910 /* ??? Why don't we save seq_rtl_expr here? */
4911
4912 end_sequence ();
4913 }
4914
4915 /* After emitting to a sequence, restore previous saved state.
4916
4917 To get the contents of the sequence just made, you must call
4918 `get_insns' *before* calling here.
4919
4920 If the compiler might have deferred popping arguments while
4921 generating this sequence, and this sequence will not be immediately
4922 inserted into the instruction stream, use do_pending_stack_adjust
4923 before calling get_insns. That will ensure that the deferred
4924 pops are inserted into this sequence, and not into some random
4925 location in the instruction stream. See INHIBIT_DEFER_POP for more
4926 information about deferred popping of arguments. */
4927
4928 void
4929 end_sequence (void)
4930 {
4931 struct sequence_stack *tem = seq_stack;
4932
4933 first_insn = tem->first;
4934 last_insn = tem->last;
4935 seq_rtl_expr = tem->sequence_rtl_expr;
4936 seq_stack = tem->next;
4937
4938 memset (tem, 0, sizeof (*tem));
4939 tem->next = free_sequence_stack;
4940 free_sequence_stack = tem;
4941 }
4942
4943 /* Return 1 if currently emitting into a sequence. */
4944
4945 int
4946 in_sequence_p (void)
4947 {
4948 return seq_stack != 0;
4949 }
4950 \f
4951 /* Put the various virtual registers into REGNO_REG_RTX. */
4952
4953 void
4954 init_virtual_regs (struct emit_status *es)
4955 {
4956 rtx *ptr = es->x_regno_reg_rtx;
4957 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4958 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4959 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4960 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4961 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4962 }
4963
4964 \f
4965 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4966 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4967 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4968 static int copy_insn_n_scratches;
4969
4970 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4971 copied an ASM_OPERANDS.
4972 In that case, it is the original input-operand vector. */
4973 static rtvec orig_asm_operands_vector;
4974
4975 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4976 copied an ASM_OPERANDS.
4977 In that case, it is the copied input-operand vector. */
4978 static rtvec copy_asm_operands_vector;
4979
4980 /* Likewise for the constraints vector. */
4981 static rtvec orig_asm_constraints_vector;
4982 static rtvec copy_asm_constraints_vector;
4983
4984 /* Recursively create a new copy of an rtx for copy_insn.
4985 This function differs from copy_rtx in that it handles SCRATCHes and
4986 ASM_OPERANDs properly.
4987 Normally, this function is not used directly; use copy_insn as front end.
4988 However, you could first copy an insn pattern with copy_insn and then use
4989 this function afterwards to properly copy any REG_NOTEs containing
4990 SCRATCHes. */
4991
4992 rtx
4993 copy_insn_1 (rtx orig)
4994 {
4995 rtx copy;
4996 int i, j;
4997 RTX_CODE code;
4998 const char *format_ptr;
4999
5000 code = GET_CODE (orig);
5001
5002 switch (code)
5003 {
5004 case REG:
5005 case QUEUED:
5006 case CONST_INT:
5007 case CONST_DOUBLE:
5008 case CONST_VECTOR:
5009 case SYMBOL_REF:
5010 case CODE_LABEL:
5011 case PC:
5012 case CC0:
5013 case ADDRESSOF:
5014 return orig;
5015 case CLOBBER:
5016 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5017 return orig;
5018 break;
5019
5020 case SCRATCH:
5021 for (i = 0; i < copy_insn_n_scratches; i++)
5022 if (copy_insn_scratch_in[i] == orig)
5023 return copy_insn_scratch_out[i];
5024 break;
5025
5026 case CONST:
5027 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5028 a LABEL_REF, it isn't sharable. */
5029 if (GET_CODE (XEXP (orig, 0)) == PLUS
5030 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5031 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5032 return orig;
5033 break;
5034
5035 /* A MEM with a constant address is not sharable. The problem is that
5036 the constant address may need to be reloaded. If the mem is shared,
5037 then reloading one copy of this mem will cause all copies to appear
5038 to have been reloaded. */
5039
5040 default:
5041 break;
5042 }
5043
5044 copy = rtx_alloc (code);
5045
5046 /* Copy the various flags, and other information. We assume that
5047 all fields need copying, and then clear the fields that should
5048 not be copied. That is the sensible default behavior, and forces
5049 us to explicitly document why we are *not* copying a flag. */
5050 memcpy (copy, orig, RTX_HDR_SIZE);
5051
5052 /* We do not copy the USED flag, which is used as a mark bit during
5053 walks over the RTL. */
5054 RTX_FLAG (copy, used) = 0;
5055
5056 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5057 if (INSN_P (orig))
5058 {
5059 RTX_FLAG (copy, jump) = 0;
5060 RTX_FLAG (copy, call) = 0;
5061 RTX_FLAG (copy, frame_related) = 0;
5062 }
5063
5064 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5065
5066 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5067 {
5068 copy->u.fld[i] = orig->u.fld[i];
5069 switch (*format_ptr++)
5070 {
5071 case 'e':
5072 if (XEXP (orig, i) != NULL)
5073 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5074 break;
5075
5076 case 'E':
5077 case 'V':
5078 if (XVEC (orig, i) == orig_asm_constraints_vector)
5079 XVEC (copy, i) = copy_asm_constraints_vector;
5080 else if (XVEC (orig, i) == orig_asm_operands_vector)
5081 XVEC (copy, i) = copy_asm_operands_vector;
5082 else if (XVEC (orig, i) != NULL)
5083 {
5084 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5085 for (j = 0; j < XVECLEN (copy, i); j++)
5086 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5087 }
5088 break;
5089
5090 case 't':
5091 case 'w':
5092 case 'i':
5093 case 's':
5094 case 'S':
5095 case 'u':
5096 case '0':
5097 /* These are left unchanged. */
5098 break;
5099
5100 default:
5101 abort ();
5102 }
5103 }
5104
5105 if (code == SCRATCH)
5106 {
5107 i = copy_insn_n_scratches++;
5108 if (i >= MAX_RECOG_OPERANDS)
5109 abort ();
5110 copy_insn_scratch_in[i] = orig;
5111 copy_insn_scratch_out[i] = copy;
5112 }
5113 else if (code == ASM_OPERANDS)
5114 {
5115 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5116 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5117 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5118 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5119 }
5120
5121 return copy;
5122 }
5123
5124 /* Create a new copy of an rtx.
5125 This function differs from copy_rtx in that it handles SCRATCHes and
5126 ASM_OPERANDs properly.
5127 INSN doesn't really have to be a full INSN; it could be just the
5128 pattern. */
5129 rtx
5130 copy_insn (rtx insn)
5131 {
5132 copy_insn_n_scratches = 0;
5133 orig_asm_operands_vector = 0;
5134 orig_asm_constraints_vector = 0;
5135 copy_asm_operands_vector = 0;
5136 copy_asm_constraints_vector = 0;
5137 return copy_insn_1 (insn);
5138 }
5139
5140 /* Initialize data structures and variables in this file
5141 before generating rtl for each function. */
5142
5143 void
5144 init_emit (void)
5145 {
5146 struct function *f = cfun;
5147
5148 f->emit = ggc_alloc (sizeof (struct emit_status));
5149 first_insn = NULL;
5150 last_insn = NULL;
5151 seq_rtl_expr = NULL;
5152 cur_insn_uid = 1;
5153 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5154 last_location.line = 0;
5155 last_location.file = 0;
5156 first_label_num = label_num;
5157 last_label_num = 0;
5158 seq_stack = NULL;
5159
5160 /* Init the tables that describe all the pseudo regs. */
5161
5162 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5163
5164 f->emit->regno_pointer_align
5165 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5166 * sizeof (unsigned char));
5167
5168 regno_reg_rtx
5169 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5170
5171 /* Put copies of all the hard registers into regno_reg_rtx. */
5172 memcpy (regno_reg_rtx,
5173 static_regno_reg_rtx,
5174 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5175
5176 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5177 init_virtual_regs (f->emit);
5178
5179 /* Indicate that the virtual registers and stack locations are
5180 all pointers. */
5181 REG_POINTER (stack_pointer_rtx) = 1;
5182 REG_POINTER (frame_pointer_rtx) = 1;
5183 REG_POINTER (hard_frame_pointer_rtx) = 1;
5184 REG_POINTER (arg_pointer_rtx) = 1;
5185
5186 REG_POINTER (virtual_incoming_args_rtx) = 1;
5187 REG_POINTER (virtual_stack_vars_rtx) = 1;
5188 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5189 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5190 REG_POINTER (virtual_cfa_rtx) = 1;
5191
5192 #ifdef STACK_BOUNDARY
5193 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5194 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5195 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5196 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5197
5198 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5199 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5200 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5201 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5202 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5203 #endif
5204
5205 #ifdef INIT_EXPANDERS
5206 INIT_EXPANDERS;
5207 #endif
5208 }
5209
5210 /* Generate the constant 0. */
5211
5212 static rtx
5213 gen_const_vector_0 (enum machine_mode mode)
5214 {
5215 rtx tem;
5216 rtvec v;
5217 int units, i;
5218 enum machine_mode inner;
5219
5220 units = GET_MODE_NUNITS (mode);
5221 inner = GET_MODE_INNER (mode);
5222
5223 v = rtvec_alloc (units);
5224
5225 /* We need to call this function after we to set CONST0_RTX first. */
5226 if (!CONST0_RTX (inner))
5227 abort ();
5228
5229 for (i = 0; i < units; ++i)
5230 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5231
5232 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5233 return tem;
5234 }
5235
5236 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5237 all elements are zero. */
5238 rtx
5239 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5240 {
5241 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5242 int i;
5243
5244 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5245 if (RTVEC_ELT (v, i) != inner_zero)
5246 return gen_rtx_raw_CONST_VECTOR (mode, v);
5247 return CONST0_RTX (mode);
5248 }
5249
5250 /* Create some permanent unique rtl objects shared between all functions.
5251 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5252
5253 void
5254 init_emit_once (int line_numbers)
5255 {
5256 int i;
5257 enum machine_mode mode;
5258 enum machine_mode double_mode;
5259
5260 /* We need reg_raw_mode, so initialize the modes now. */
5261 init_reg_modes_once ();
5262
5263 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5264 tables. */
5265 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5266 const_int_htab_eq, NULL);
5267
5268 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5269 const_double_htab_eq, NULL);
5270
5271 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5272 mem_attrs_htab_eq, NULL);
5273 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5274 reg_attrs_htab_eq, NULL);
5275
5276 no_line_numbers = ! line_numbers;
5277
5278 /* Compute the word and byte modes. */
5279
5280 byte_mode = VOIDmode;
5281 word_mode = VOIDmode;
5282 double_mode = VOIDmode;
5283
5284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5285 mode = GET_MODE_WIDER_MODE (mode))
5286 {
5287 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5288 && byte_mode == VOIDmode)
5289 byte_mode = mode;
5290
5291 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5292 && word_mode == VOIDmode)
5293 word_mode = mode;
5294 }
5295
5296 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5297 mode = GET_MODE_WIDER_MODE (mode))
5298 {
5299 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5300 && double_mode == VOIDmode)
5301 double_mode = mode;
5302 }
5303
5304 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5305
5306 /* Assign register numbers to the globally defined register rtx.
5307 This must be done at runtime because the register number field
5308 is in a union and some compilers can't initialize unions. */
5309
5310 pc_rtx = gen_rtx_PC (VOIDmode);
5311 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5312 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5313 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5314 if (hard_frame_pointer_rtx == 0)
5315 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5316 HARD_FRAME_POINTER_REGNUM);
5317 if (arg_pointer_rtx == 0)
5318 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5319 virtual_incoming_args_rtx =
5320 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5321 virtual_stack_vars_rtx =
5322 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5323 virtual_stack_dynamic_rtx =
5324 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5325 virtual_outgoing_args_rtx =
5326 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5327 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5328
5329 /* Initialize RTL for commonly used hard registers. These are
5330 copied into regno_reg_rtx as we begin to compile each function. */
5331 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5332 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5333
5334 #ifdef INIT_EXPANDERS
5335 /* This is to initialize {init|mark|free}_machine_status before the first
5336 call to push_function_context_to. This is needed by the Chill front
5337 end which calls push_function_context_to before the first call to
5338 init_function_start. */
5339 INIT_EXPANDERS;
5340 #endif
5341
5342 /* Create the unique rtx's for certain rtx codes and operand values. */
5343
5344 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5345 tries to use these variables. */
5346 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5347 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5348 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5349
5350 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5351 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5352 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5353 else
5354 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5355
5356 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5357 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5358 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5359 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5360 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5361 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5362 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5363
5364 dconsthalf = dconst1;
5365 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5366
5367 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5368
5369 /* Initialize mathematical constants for constant folding builtins.
5370 These constants need to be given to at least 160 bits precision. */
5371 real_from_string (&dconstpi,
5372 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5373 real_from_string (&dconste,
5374 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5375
5376 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5377 {
5378 REAL_VALUE_TYPE *r =
5379 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5380
5381 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5382 mode = GET_MODE_WIDER_MODE (mode))
5383 const_tiny_rtx[i][(int) mode] =
5384 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5385
5386 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5387
5388 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5389 mode = GET_MODE_WIDER_MODE (mode))
5390 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5391
5392 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5393 mode != VOIDmode;
5394 mode = GET_MODE_WIDER_MODE (mode))
5395 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5396 }
5397
5398 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5399 mode != VOIDmode;
5400 mode = GET_MODE_WIDER_MODE (mode))
5401 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5402
5403 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5404 mode != VOIDmode;
5405 mode = GET_MODE_WIDER_MODE (mode))
5406 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5407
5408 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5409 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5410 const_tiny_rtx[0][i] = const0_rtx;
5411
5412 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5413 if (STORE_FLAG_VALUE == 1)
5414 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5415
5416 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5417 return_address_pointer_rtx
5418 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5419 #endif
5420
5421 #ifdef STATIC_CHAIN_REGNUM
5422 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5423
5424 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5425 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5426 static_chain_incoming_rtx
5427 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5428 else
5429 #endif
5430 static_chain_incoming_rtx = static_chain_rtx;
5431 #endif
5432
5433 #ifdef STATIC_CHAIN
5434 static_chain_rtx = STATIC_CHAIN;
5435
5436 #ifdef STATIC_CHAIN_INCOMING
5437 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5438 #else
5439 static_chain_incoming_rtx = static_chain_rtx;
5440 #endif
5441 #endif
5442
5443 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5444 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5445 }
5446 \f
5447 /* Query and clear/ restore no_line_numbers. This is used by the
5448 switch / case handling in stmt.c to give proper line numbers in
5449 warnings about unreachable code. */
5450
5451 int
5452 force_line_numbers (void)
5453 {
5454 int old = no_line_numbers;
5455
5456 no_line_numbers = 0;
5457 if (old)
5458 force_next_line_note ();
5459 return old;
5460 }
5461
5462 void
5463 restore_line_number_status (int old_value)
5464 {
5465 no_line_numbers = old_value;
5466 }
5467
5468 /* Produce exact duplicate of insn INSN after AFTER.
5469 Care updating of libcall regions if present. */
5470
5471 rtx
5472 emit_copy_of_insn_after (rtx insn, rtx after)
5473 {
5474 rtx new;
5475 rtx note1, note2, link;
5476
5477 switch (GET_CODE (insn))
5478 {
5479 case INSN:
5480 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5481 break;
5482
5483 case JUMP_INSN:
5484 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5485 break;
5486
5487 case CALL_INSN:
5488 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5489 if (CALL_INSN_FUNCTION_USAGE (insn))
5490 CALL_INSN_FUNCTION_USAGE (new)
5491 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5492 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5493 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5494 break;
5495
5496 default:
5497 abort ();
5498 }
5499
5500 /* Update LABEL_NUSES. */
5501 mark_jump_label (PATTERN (new), new, 0);
5502
5503 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5504
5505 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5506 make them. */
5507 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5508 if (REG_NOTE_KIND (link) != REG_LABEL)
5509 {
5510 if (GET_CODE (link) == EXPR_LIST)
5511 REG_NOTES (new)
5512 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5513 XEXP (link, 0),
5514 REG_NOTES (new)));
5515 else
5516 REG_NOTES (new)
5517 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5518 XEXP (link, 0),
5519 REG_NOTES (new)));
5520 }
5521
5522 /* Fix the libcall sequences. */
5523 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5524 {
5525 rtx p = new;
5526 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5527 p = PREV_INSN (p);
5528 XEXP (note1, 0) = p;
5529 XEXP (note2, 0) = new;
5530 }
5531 INSN_CODE (new) = INSN_CODE (insn);
5532 return new;
5533 }
5534
5535 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5536 rtx
5537 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5538 {
5539 if (hard_reg_clobbers[mode][regno])
5540 return hard_reg_clobbers[mode][regno];
5541 else
5542 return (hard_reg_clobbers[mode][regno] =
5543 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5544 }
5545
5546 #include "gt-emit-rtl.h"