3deefe8218fcd34006d695e57a627e1966f1ca5c
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_last_label_num was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 rtx (*gen_lowpart) (enum machine_mode mode, rtx x) = gen_lowpart_general;
103
104 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
105 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
106 record a copy of const[012]_rtx. */
107
108 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
109
110 rtx const_true_rtx;
111
112 REAL_VALUE_TYPE dconst0;
113 REAL_VALUE_TYPE dconst1;
114 REAL_VALUE_TYPE dconst2;
115 REAL_VALUE_TYPE dconst3;
116 REAL_VALUE_TYPE dconst10;
117 REAL_VALUE_TYPE dconstm1;
118 REAL_VALUE_TYPE dconstm2;
119 REAL_VALUE_TYPE dconsthalf;
120 REAL_VALUE_TYPE dconstthird;
121 REAL_VALUE_TYPE dconstpi;
122 REAL_VALUE_TYPE dconste;
123
124 /* All references to the following fixed hard registers go through
125 these unique rtl objects. On machines where the frame-pointer and
126 arg-pointer are the same register, they use the same unique object.
127
128 After register allocation, other rtl objects which used to be pseudo-regs
129 may be clobbered to refer to the frame-pointer register.
130 But references that were originally to the frame-pointer can be
131 distinguished from the others because they contain frame_pointer_rtx.
132
133 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
134 tricky: until register elimination has taken place hard_frame_pointer_rtx
135 should be used if it is being set, and frame_pointer_rtx otherwise. After
136 register elimination hard_frame_pointer_rtx should always be used.
137 On machines where the two registers are same (most) then these are the
138 same.
139
140 In an inline procedure, the stack and frame pointer rtxs may not be
141 used for anything else. */
142 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
143 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
144 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
145
146 /* This is used to implement __builtin_return_address for some machines.
147 See for instance the MIPS port. */
148 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
149
150 /* We make one copy of (const_int C) where C is in
151 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
152 to save space during the compilation and simplify comparisons of
153 integers. */
154
155 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
156
157 /* A hash table storing CONST_INTs whose absolute value is greater
158 than MAX_SAVED_CONST_INT. */
159
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
161 htab_t const_int_htab;
162
163 /* A hash table storing memory attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
165 htab_t mem_attrs_htab;
166
167 /* A hash table storing register attribute structures. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
169 htab_t reg_attrs_htab;
170
171 /* A hash table storing all CONST_DOUBLEs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_double_htab;
174
175 #define first_insn (cfun->emit->x_first_insn)
176 #define last_insn (cfun->emit->x_last_insn)
177 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
178 #define last_location (cfun->emit->x_last_location)
179 #define first_label_num (cfun->emit->x_first_label_num)
180
181 static rtx make_jump_insn_raw (rtx);
182 static rtx make_call_insn_raw (rtx);
183 static rtx find_line_note (rtx);
184 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
185 static void unshare_all_decls (tree);
186 static void reset_used_decls (tree);
187 static void mark_label_nuses (rtx);
188 static hashval_t const_int_htab_hash (const void *);
189 static int const_int_htab_eq (const void *, const void *);
190 static hashval_t const_double_htab_hash (const void *);
191 static int const_double_htab_eq (const void *, const void *);
192 static rtx lookup_const_double (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector_0 (enum machine_mode);
202 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
203 static void copy_rtx_if_shared_1 (rtx *orig);
204
205 /* Probability of the conditional branch currently proceeded by try_split.
206 Set to -1 otherwise. */
207 int split_branch_probability = -1;
208 \f
209 /* Returns a hash code for X (which is a really a CONST_INT). */
210
211 static hashval_t
212 const_int_htab_hash (const void *x)
213 {
214 return (hashval_t) INTVAL ((rtx) x);
215 }
216
217 /* Returns nonzero if the value represented by X (which is really a
218 CONST_INT) is the same as that given by Y (which is really a
219 HOST_WIDE_INT *). */
220
221 static int
222 const_int_htab_eq (const void *x, const void *y)
223 {
224 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
225 }
226
227 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
228 static hashval_t
229 const_double_htab_hash (const void *x)
230 {
231 rtx value = (rtx) x;
232 hashval_t h;
233
234 if (GET_MODE (value) == VOIDmode)
235 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
236 else
237 {
238 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
239 /* MODE is used in the comparison, so it should be in the hash. */
240 h ^= GET_MODE (value);
241 }
242 return h;
243 }
244
245 /* Returns nonzero if the value represented by X (really a ...)
246 is the same as that represented by Y (really a ...) */
247 static int
248 const_double_htab_eq (const void *x, const void *y)
249 {
250 rtx a = (rtx)x, b = (rtx)y;
251
252 if (GET_MODE (a) != GET_MODE (b))
253 return 0;
254 if (GET_MODE (a) == VOIDmode)
255 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
256 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
257 else
258 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
259 CONST_DOUBLE_REAL_VALUE (b));
260 }
261
262 /* Returns a hash code for X (which is a really a mem_attrs *). */
263
264 static hashval_t
265 mem_attrs_htab_hash (const void *x)
266 {
267 mem_attrs *p = (mem_attrs *) x;
268
269 return (p->alias ^ (p->align * 1000)
270 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
271 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
272 ^ (size_t) p->expr);
273 }
274
275 /* Returns nonzero if the value represented by X (which is really a
276 mem_attrs *) is the same as that given by Y (which is also really a
277 mem_attrs *). */
278
279 static int
280 mem_attrs_htab_eq (const void *x, const void *y)
281 {
282 mem_attrs *p = (mem_attrs *) x;
283 mem_attrs *q = (mem_attrs *) y;
284
285 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
286 && p->size == q->size && p->align == q->align);
287 }
288
289 /* Allocate a new mem_attrs structure and insert it into the hash table if
290 one identical to it is not already in the table. We are doing this for
291 MEM of mode MODE. */
292
293 static mem_attrs *
294 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
295 unsigned int align, enum machine_mode mode)
296 {
297 mem_attrs attrs;
298 void **slot;
299
300 /* If everything is the default, we can just return zero.
301 This must match what the corresponding MEM_* macros return when the
302 field is not present. */
303 if (alias == 0 && expr == 0 && offset == 0
304 && (size == 0
305 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
306 && (STRICT_ALIGNMENT && mode != BLKmode
307 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
308 return 0;
309
310 attrs.alias = alias;
311 attrs.expr = expr;
312 attrs.offset = offset;
313 attrs.size = size;
314 attrs.align = align;
315
316 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
317 if (*slot == 0)
318 {
319 *slot = ggc_alloc (sizeof (mem_attrs));
320 memcpy (*slot, &attrs, sizeof (mem_attrs));
321 }
322
323 return *slot;
324 }
325
326 /* Returns a hash code for X (which is a really a reg_attrs *). */
327
328 static hashval_t
329 reg_attrs_htab_hash (const void *x)
330 {
331 reg_attrs *p = (reg_attrs *) x;
332
333 return ((p->offset * 1000) ^ (long) p->decl);
334 }
335
336 /* Returns nonzero if the value represented by X (which is really a
337 reg_attrs *) is the same as that given by Y (which is also really a
338 reg_attrs *). */
339
340 static int
341 reg_attrs_htab_eq (const void *x, const void *y)
342 {
343 reg_attrs *p = (reg_attrs *) x;
344 reg_attrs *q = (reg_attrs *) y;
345
346 return (p->decl == q->decl && p->offset == q->offset);
347 }
348 /* Allocate a new reg_attrs structure and insert it into the hash table if
349 one identical to it is not already in the table. We are doing this for
350 MEM of mode MODE. */
351
352 static reg_attrs *
353 get_reg_attrs (tree decl, int offset)
354 {
355 reg_attrs attrs;
356 void **slot;
357
358 /* If everything is the default, we can just return zero. */
359 if (decl == 0 && offset == 0)
360 return 0;
361
362 attrs.decl = decl;
363 attrs.offset = offset;
364
365 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
366 if (*slot == 0)
367 {
368 *slot = ggc_alloc (sizeof (reg_attrs));
369 memcpy (*slot, &attrs, sizeof (reg_attrs));
370 }
371
372 return *slot;
373 }
374
375 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
376 don't attempt to share with the various global pieces of rtl (such as
377 frame_pointer_rtx). */
378
379 rtx
380 gen_raw_REG (enum machine_mode mode, int regno)
381 {
382 rtx x = gen_rtx_raw_REG (mode, regno);
383 ORIGINAL_REGNO (x) = regno;
384 return x;
385 }
386
387 /* There are some RTL codes that require special attention; the generation
388 functions do the raw handling. If you add to this list, modify
389 special_rtx in gengenrtl.c as well. */
390
391 rtx
392 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
393 {
394 void **slot;
395
396 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
397 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
398
399 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
400 if (const_true_rtx && arg == STORE_FLAG_VALUE)
401 return const_true_rtx;
402 #endif
403
404 /* Look up the CONST_INT in the hash table. */
405 slot = htab_find_slot_with_hash (const_int_htab, &arg,
406 (hashval_t) arg, INSERT);
407 if (*slot == 0)
408 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
409
410 return (rtx) *slot;
411 }
412
413 rtx
414 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
415 {
416 return GEN_INT (trunc_int_for_mode (c, mode));
417 }
418
419 /* CONST_DOUBLEs might be created from pairs of integers, or from
420 REAL_VALUE_TYPEs. Also, their length is known only at run time,
421 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
422
423 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
424 hash table. If so, return its counterpart; otherwise add it
425 to the hash table and return it. */
426 static rtx
427 lookup_const_double (rtx real)
428 {
429 void **slot = htab_find_slot (const_double_htab, real, INSERT);
430 if (*slot == 0)
431 *slot = real;
432
433 return (rtx) *slot;
434 }
435
436 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
437 VALUE in mode MODE. */
438 rtx
439 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
440 {
441 rtx real = rtx_alloc (CONST_DOUBLE);
442 PUT_MODE (real, mode);
443
444 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
445
446 return lookup_const_double (real);
447 }
448
449 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
450 of ints: I0 is the low-order word and I1 is the high-order word.
451 Do not use this routine for non-integer modes; convert to
452 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
453
454 rtx
455 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
456 {
457 rtx value;
458 unsigned int i;
459
460 if (mode != VOIDmode)
461 {
462 int width;
463 if (GET_MODE_CLASS (mode) != MODE_INT
464 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
465 /* We can get a 0 for an error mark. */
466 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
467 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
468 abort ();
469
470 /* We clear out all bits that don't belong in MODE, unless they and
471 our sign bit are all one. So we get either a reasonable negative
472 value or a reasonable unsigned value for this mode. */
473 width = GET_MODE_BITSIZE (mode);
474 if (width < HOST_BITS_PER_WIDE_INT
475 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
476 != ((HOST_WIDE_INT) (-1) << (width - 1))))
477 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
478 else if (width == HOST_BITS_PER_WIDE_INT
479 && ! (i1 == ~0 && i0 < 0))
480 i1 = 0;
481 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
482 /* We cannot represent this value as a constant. */
483 abort ();
484
485 /* If this would be an entire word for the target, but is not for
486 the host, then sign-extend on the host so that the number will
487 look the same way on the host that it would on the target.
488
489 For example, when building a 64 bit alpha hosted 32 bit sparc
490 targeted compiler, then we want the 32 bit unsigned value -1 to be
491 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
492 The latter confuses the sparc backend. */
493
494 if (width < HOST_BITS_PER_WIDE_INT
495 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
496 i0 |= ((HOST_WIDE_INT) (-1) << width);
497
498 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
499 CONST_INT.
500
501 ??? Strictly speaking, this is wrong if we create a CONST_INT for
502 a large unsigned constant with the size of MODE being
503 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
504 in a wider mode. In that case we will mis-interpret it as a
505 negative number.
506
507 Unfortunately, the only alternative is to make a CONST_DOUBLE for
508 any constant in any mode if it is an unsigned constant larger
509 than the maximum signed integer in an int on the host. However,
510 doing this will break everyone that always expects to see a
511 CONST_INT for SImode and smaller.
512
513 We have always been making CONST_INTs in this case, so nothing
514 new is being broken. */
515
516 if (width <= HOST_BITS_PER_WIDE_INT)
517 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
518 }
519
520 /* If this integer fits in one word, return a CONST_INT. */
521 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
522 return GEN_INT (i0);
523
524 /* We use VOIDmode for integers. */
525 value = rtx_alloc (CONST_DOUBLE);
526 PUT_MODE (value, VOIDmode);
527
528 CONST_DOUBLE_LOW (value) = i0;
529 CONST_DOUBLE_HIGH (value) = i1;
530
531 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
532 XWINT (value, i) = 0;
533
534 return lookup_const_double (value);
535 }
536
537 rtx
538 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
539 {
540 /* In case the MD file explicitly references the frame pointer, have
541 all such references point to the same frame pointer. This is
542 used during frame pointer elimination to distinguish the explicit
543 references to these registers from pseudos that happened to be
544 assigned to them.
545
546 If we have eliminated the frame pointer or arg pointer, we will
547 be using it as a normal register, for example as a spill
548 register. In such cases, we might be accessing it in a mode that
549 is not Pmode and therefore cannot use the pre-allocated rtx.
550
551 Also don't do this when we are making new REGs in reload, since
552 we don't want to get confused with the real pointers. */
553
554 if (mode == Pmode && !reload_in_progress)
555 {
556 if (regno == FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return frame_pointer_rtx;
559 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
560 if (regno == HARD_FRAME_POINTER_REGNUM
561 && (!reload_completed || frame_pointer_needed))
562 return hard_frame_pointer_rtx;
563 #endif
564 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
565 if (regno == ARG_POINTER_REGNUM)
566 return arg_pointer_rtx;
567 #endif
568 #ifdef RETURN_ADDRESS_POINTER_REGNUM
569 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
570 return return_address_pointer_rtx;
571 #endif
572 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
573 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
574 return pic_offset_table_rtx;
575 if (regno == STACK_POINTER_REGNUM)
576 return stack_pointer_rtx;
577 }
578
579 #if 0
580 /* If the per-function register table has been set up, try to re-use
581 an existing entry in that table to avoid useless generation of RTL.
582
583 This code is disabled for now until we can fix the various backends
584 which depend on having non-shared hard registers in some cases. Long
585 term we want to re-enable this code as it can significantly cut down
586 on the amount of useless RTL that gets generated.
587
588 We'll also need to fix some code that runs after reload that wants to
589 set ORIGINAL_REGNO. */
590
591 if (cfun
592 && cfun->emit
593 && regno_reg_rtx
594 && regno < FIRST_PSEUDO_REGISTER
595 && reg_raw_mode[regno] == mode)
596 return regno_reg_rtx[regno];
597 #endif
598
599 return gen_raw_REG (mode, regno);
600 }
601
602 rtx
603 gen_rtx_MEM (enum machine_mode mode, rtx addr)
604 {
605 rtx rt = gen_rtx_raw_MEM (mode, addr);
606
607 /* This field is not cleared by the mere allocation of the rtx, so
608 we clear it here. */
609 MEM_ATTRS (rt) = 0;
610
611 return rt;
612 }
613
614 rtx
615 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
616 {
617 /* This is the most common failure type.
618 Catch it early so we can see who does it. */
619 if ((offset % GET_MODE_SIZE (mode)) != 0)
620 abort ();
621
622 /* This check isn't usable right now because combine will
623 throw arbitrary crap like a CALL into a SUBREG in
624 gen_lowpart_for_combine so we must just eat it. */
625 #if 0
626 /* Check for this too. */
627 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
628 abort ();
629 #endif
630 return gen_rtx_raw_SUBREG (mode, reg, offset);
631 }
632
633 /* Generate a SUBREG representing the least-significant part of REG if MODE
634 is smaller than mode of REG, otherwise paradoxical SUBREG. */
635
636 rtx
637 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
638 {
639 enum machine_mode inmode;
640
641 inmode = GET_MODE (reg);
642 if (inmode == VOIDmode)
643 inmode = mode;
644 return gen_rtx_SUBREG (mode, reg,
645 subreg_lowpart_offset (mode, inmode));
646 }
647 \f
648 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
649 **
650 ** This routine generates an RTX of the size specified by
651 ** <code>, which is an RTX code. The RTX structure is initialized
652 ** from the arguments <element1> through <elementn>, which are
653 ** interpreted according to the specific RTX type's format. The
654 ** special machine mode associated with the rtx (if any) is specified
655 ** in <mode>.
656 **
657 ** gen_rtx can be invoked in a way which resembles the lisp-like
658 ** rtx it will generate. For example, the following rtx structure:
659 **
660 ** (plus:QI (mem:QI (reg:SI 1))
661 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
662 **
663 ** ...would be generated by the following C code:
664 **
665 ** gen_rtx_PLUS (QImode,
666 ** gen_rtx_MEM (QImode,
667 ** gen_rtx_REG (SImode, 1)),
668 ** gen_rtx_MEM (QImode,
669 ** gen_rtx_PLUS (SImode,
670 ** gen_rtx_REG (SImode, 2),
671 ** gen_rtx_REG (SImode, 3)))),
672 */
673
674 /*VARARGS2*/
675 rtx
676 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
677 {
678 int i; /* Array indices... */
679 const char *fmt; /* Current rtx's format... */
680 rtx rt_val; /* RTX to return to caller... */
681 va_list p;
682
683 va_start (p, mode);
684
685 switch (code)
686 {
687 case CONST_INT:
688 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
689 break;
690
691 case CONST_DOUBLE:
692 {
693 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
694 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
695
696 rt_val = immed_double_const (arg0, arg1, mode);
697 }
698 break;
699
700 case REG:
701 rt_val = gen_rtx_REG (mode, va_arg (p, int));
702 break;
703
704 case MEM:
705 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
706 break;
707
708 default:
709 rt_val = rtx_alloc (code); /* Allocate the storage space. */
710 rt_val->mode = mode; /* Store the machine mode... */
711
712 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
713 for (i = 0; i < GET_RTX_LENGTH (code); i++)
714 {
715 switch (*fmt++)
716 {
717 case '0': /* Field with unknown use. Zero it. */
718 X0EXP (rt_val, i) = NULL_RTX;
719 break;
720
721 case 'i': /* An integer? */
722 XINT (rt_val, i) = va_arg (p, int);
723 break;
724
725 case 'w': /* A wide integer? */
726 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
727 break;
728
729 case 's': /* A string? */
730 XSTR (rt_val, i) = va_arg (p, char *);
731 break;
732
733 case 'e': /* An expression? */
734 case 'u': /* An insn? Same except when printing. */
735 XEXP (rt_val, i) = va_arg (p, rtx);
736 break;
737
738 case 'E': /* An RTX vector? */
739 XVEC (rt_val, i) = va_arg (p, rtvec);
740 break;
741
742 case 'b': /* A bitmap? */
743 XBITMAP (rt_val, i) = va_arg (p, bitmap);
744 break;
745
746 case 't': /* A tree? */
747 XTREE (rt_val, i) = va_arg (p, tree);
748 break;
749
750 default:
751 abort ();
752 }
753 }
754 break;
755 }
756
757 va_end (p);
758 return rt_val;
759 }
760
761 /* gen_rtvec (n, [rt1, ..., rtn])
762 **
763 ** This routine creates an rtvec and stores within it the
764 ** pointers to rtx's which are its arguments.
765 */
766
767 /*VARARGS1*/
768 rtvec
769 gen_rtvec (int n, ...)
770 {
771 int i, save_n;
772 rtx *vector;
773 va_list p;
774
775 va_start (p, n);
776
777 if (n == 0)
778 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
779
780 vector = alloca (n * sizeof (rtx));
781
782 for (i = 0; i < n; i++)
783 vector[i] = va_arg (p, rtx);
784
785 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
786 save_n = n;
787 va_end (p);
788
789 return gen_rtvec_v (save_n, vector);
790 }
791
792 rtvec
793 gen_rtvec_v (int n, rtx *argp)
794 {
795 int i;
796 rtvec rt_val;
797
798 if (n == 0)
799 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
800
801 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
802
803 for (i = 0; i < n; i++)
804 rt_val->elem[i] = *argp++;
805
806 return rt_val;
807 }
808 \f
809 /* Generate a REG rtx for a new pseudo register of mode MODE.
810 This pseudo is assigned the next sequential register number. */
811
812 rtx
813 gen_reg_rtx (enum machine_mode mode)
814 {
815 struct function *f = cfun;
816 rtx val;
817
818 /* Don't let anything called after initial flow analysis create new
819 registers. */
820 if (no_new_pseudos)
821 abort ();
822
823 if (generating_concat_p
824 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
825 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
826 {
827 /* For complex modes, don't make a single pseudo.
828 Instead, make a CONCAT of two pseudos.
829 This allows noncontiguous allocation of the real and imaginary parts,
830 which makes much better code. Besides, allocating DCmode
831 pseudos overstrains reload on some machines like the 386. */
832 rtx realpart, imagpart;
833 enum machine_mode partmode = GET_MODE_INNER (mode);
834
835 realpart = gen_reg_rtx (partmode);
836 imagpart = gen_reg_rtx (partmode);
837 return gen_rtx_CONCAT (mode, realpart, imagpart);
838 }
839
840 /* Make sure regno_pointer_align, and regno_reg_rtx are large
841 enough to have an element for this pseudo reg number. */
842
843 if (reg_rtx_no == f->emit->regno_pointer_align_length)
844 {
845 int old_size = f->emit->regno_pointer_align_length;
846 char *new;
847 rtx *new1;
848
849 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
850 memset (new + old_size, 0, old_size);
851 f->emit->regno_pointer_align = (unsigned char *) new;
852
853 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
854 old_size * 2 * sizeof (rtx));
855 memset (new1 + old_size, 0, old_size * sizeof (rtx));
856 regno_reg_rtx = new1;
857
858 f->emit->regno_pointer_align_length = old_size * 2;
859 }
860
861 val = gen_raw_REG (mode, reg_rtx_no);
862 regno_reg_rtx[reg_rtx_no++] = val;
863 return val;
864 }
865
866 /* Generate a register with same attributes as REG,
867 but offsetted by OFFSET. */
868
869 rtx
870 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
871 {
872 rtx new = gen_rtx_REG (mode, regno);
873 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
874 REG_OFFSET (reg) + offset);
875 return new;
876 }
877
878 /* Set the decl for MEM to DECL. */
879
880 void
881 set_reg_attrs_from_mem (rtx reg, rtx mem)
882 {
883 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
884 REG_ATTRS (reg)
885 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
886 }
887
888 /* Set the register attributes for registers contained in PARM_RTX.
889 Use needed values from memory attributes of MEM. */
890
891 void
892 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
893 {
894 if (GET_CODE (parm_rtx) == REG)
895 set_reg_attrs_from_mem (parm_rtx, mem);
896 else if (GET_CODE (parm_rtx) == PARALLEL)
897 {
898 /* Check for a NULL entry in the first slot, used to indicate that the
899 parameter goes both on the stack and in registers. */
900 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
901 for (; i < XVECLEN (parm_rtx, 0); i++)
902 {
903 rtx x = XVECEXP (parm_rtx, 0, i);
904 if (GET_CODE (XEXP (x, 0)) == REG)
905 REG_ATTRS (XEXP (x, 0))
906 = get_reg_attrs (MEM_EXPR (mem),
907 INTVAL (XEXP (x, 1)));
908 }
909 }
910 }
911
912 /* Assign the RTX X to declaration T. */
913 void
914 set_decl_rtl (tree t, rtx x)
915 {
916 DECL_CHECK (t)->decl.rtl = x;
917
918 if (!x)
919 return;
920 /* For register, we maintain the reverse information too. */
921 if (GET_CODE (x) == REG)
922 REG_ATTRS (x) = get_reg_attrs (t, 0);
923 else if (GET_CODE (x) == SUBREG)
924 REG_ATTRS (SUBREG_REG (x))
925 = get_reg_attrs (t, -SUBREG_BYTE (x));
926 if (GET_CODE (x) == CONCAT)
927 {
928 if (REG_P (XEXP (x, 0)))
929 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
930 if (REG_P (XEXP (x, 1)))
931 REG_ATTRS (XEXP (x, 1))
932 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
933 }
934 if (GET_CODE (x) == PARALLEL)
935 {
936 int i;
937 for (i = 0; i < XVECLEN (x, 0); i++)
938 {
939 rtx y = XVECEXP (x, 0, i);
940 if (REG_P (XEXP (y, 0)))
941 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
942 }
943 }
944 }
945
946 /* Identify REG (which may be a CONCAT) as a user register. */
947
948 void
949 mark_user_reg (rtx reg)
950 {
951 if (GET_CODE (reg) == CONCAT)
952 {
953 REG_USERVAR_P (XEXP (reg, 0)) = 1;
954 REG_USERVAR_P (XEXP (reg, 1)) = 1;
955 }
956 else if (GET_CODE (reg) == REG)
957 REG_USERVAR_P (reg) = 1;
958 else
959 abort ();
960 }
961
962 /* Identify REG as a probable pointer register and show its alignment
963 as ALIGN, if nonzero. */
964
965 void
966 mark_reg_pointer (rtx reg, int align)
967 {
968 if (! REG_POINTER (reg))
969 {
970 REG_POINTER (reg) = 1;
971
972 if (align)
973 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
974 }
975 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
976 /* We can no-longer be sure just how aligned this pointer is. */
977 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
978 }
979
980 /* Return 1 plus largest pseudo reg number used in the current function. */
981
982 int
983 max_reg_num (void)
984 {
985 return reg_rtx_no;
986 }
987
988 /* Return 1 + the largest label number used so far in the current function. */
989
990 int
991 max_label_num (void)
992 {
993 if (last_label_num && label_num == base_label_num)
994 return last_label_num;
995 return label_num;
996 }
997
998 /* Return first label number used in this function (if any were used). */
999
1000 int
1001 get_first_label_num (void)
1002 {
1003 return first_label_num;
1004 }
1005 \f
1006 /* Return the final regno of X, which is a SUBREG of a hard
1007 register. */
1008 int
1009 subreg_hard_regno (rtx x, int check_mode)
1010 {
1011 enum machine_mode mode = GET_MODE (x);
1012 unsigned int byte_offset, base_regno, final_regno;
1013 rtx reg = SUBREG_REG (x);
1014
1015 /* This is where we attempt to catch illegal subregs
1016 created by the compiler. */
1017 if (GET_CODE (x) != SUBREG
1018 || GET_CODE (reg) != REG)
1019 abort ();
1020 base_regno = REGNO (reg);
1021 if (base_regno >= FIRST_PSEUDO_REGISTER)
1022 abort ();
1023 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1024 abort ();
1025 #ifdef ENABLE_CHECKING
1026 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1027 SUBREG_BYTE (x), mode))
1028 abort ();
1029 #endif
1030 /* Catch non-congruent offsets too. */
1031 byte_offset = SUBREG_BYTE (x);
1032 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1033 abort ();
1034
1035 final_regno = subreg_regno (x);
1036
1037 return final_regno;
1038 }
1039
1040 /* Return a value representing some low-order bits of X, where the number
1041 of low-order bits is given by MODE. Note that no conversion is done
1042 between floating-point and fixed-point values, rather, the bit
1043 representation is returned.
1044
1045 This function handles the cases in common between gen_lowpart, below,
1046 and two variants in cse.c and combine.c. These are the cases that can
1047 be safely handled at all points in the compilation.
1048
1049 If this is not a case we can handle, return 0. */
1050
1051 rtx
1052 gen_lowpart_common (enum machine_mode mode, rtx x)
1053 {
1054 int msize = GET_MODE_SIZE (mode);
1055 int xsize;
1056 int offset = 0;
1057 enum machine_mode innermode;
1058
1059 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1060 so we have to make one up. Yuk. */
1061 innermode = GET_MODE (x);
1062 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1063 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1064 else if (innermode == VOIDmode)
1065 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1066
1067 xsize = GET_MODE_SIZE (innermode);
1068
1069 if (innermode == VOIDmode || innermode == BLKmode)
1070 abort ();
1071
1072 if (innermode == mode)
1073 return x;
1074
1075 /* MODE must occupy no more words than the mode of X. */
1076 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1077 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1078 return 0;
1079
1080 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1081 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1082 return 0;
1083
1084 offset = subreg_lowpart_offset (mode, innermode);
1085
1086 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1087 && (GET_MODE_CLASS (mode) == MODE_INT
1088 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1089 {
1090 /* If we are getting the low-order part of something that has been
1091 sign- or zero-extended, we can either just use the object being
1092 extended or make a narrower extension. If we want an even smaller
1093 piece than the size of the object being extended, call ourselves
1094 recursively.
1095
1096 This case is used mostly by combine and cse. */
1097
1098 if (GET_MODE (XEXP (x, 0)) == mode)
1099 return XEXP (x, 0);
1100 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1101 return gen_lowpart_common (mode, XEXP (x, 0));
1102 else if (msize < xsize)
1103 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1104 }
1105 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1106 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1107 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1108 return simplify_gen_subreg (mode, x, innermode, offset);
1109
1110 /* Otherwise, we can't do this. */
1111 return 0;
1112 }
1113 \f
1114 /* Return the constant real or imaginary part (which has mode MODE)
1115 of a complex value X. The IMAGPART_P argument determines whether
1116 the real or complex component should be returned. This function
1117 returns NULL_RTX if the component isn't a constant. */
1118
1119 static rtx
1120 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1121 {
1122 tree decl, part;
1123
1124 if (GET_CODE (x) == MEM
1125 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1126 {
1127 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1128 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1129 {
1130 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1131 if (TREE_CODE (part) == REAL_CST
1132 || TREE_CODE (part) == INTEGER_CST)
1133 return expand_expr (part, NULL_RTX, mode, 0);
1134 }
1135 }
1136 return NULL_RTX;
1137 }
1138
1139 /* Return the real part (which has mode MODE) of a complex value X.
1140 This always comes at the low address in memory. */
1141
1142 rtx
1143 gen_realpart (enum machine_mode mode, rtx x)
1144 {
1145 rtx part;
1146
1147 /* Handle complex constants. */
1148 part = gen_complex_constant_part (mode, x, 0);
1149 if (part != NULL_RTX)
1150 return part;
1151
1152 if (WORDS_BIG_ENDIAN
1153 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1154 && REG_P (x)
1155 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1156 internal_error
1157 ("can't access real part of complex value in hard register");
1158 else if (WORDS_BIG_ENDIAN)
1159 return gen_highpart (mode, x);
1160 else
1161 return gen_lowpart (mode, x);
1162 }
1163
1164 /* Return the imaginary part (which has mode MODE) of a complex value X.
1165 This always comes at the high address in memory. */
1166
1167 rtx
1168 gen_imagpart (enum machine_mode mode, rtx x)
1169 {
1170 rtx part;
1171
1172 /* Handle complex constants. */
1173 part = gen_complex_constant_part (mode, x, 1);
1174 if (part != NULL_RTX)
1175 return part;
1176
1177 if (WORDS_BIG_ENDIAN)
1178 return gen_lowpart (mode, x);
1179 else if (! WORDS_BIG_ENDIAN
1180 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1181 && REG_P (x)
1182 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1183 internal_error
1184 ("can't access imaginary part of complex value in hard register");
1185 else
1186 return gen_highpart (mode, x);
1187 }
1188
1189 /* Return 1 iff X, assumed to be a SUBREG,
1190 refers to the real part of the complex value in its containing reg.
1191 Complex values are always stored with the real part in the first word,
1192 regardless of WORDS_BIG_ENDIAN. */
1193
1194 int
1195 subreg_realpart_p (rtx x)
1196 {
1197 if (GET_CODE (x) != SUBREG)
1198 abort ();
1199
1200 return ((unsigned int) SUBREG_BYTE (x)
1201 < (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1202 }
1203 \f
1204 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1205 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1206 least-significant part of X.
1207 MODE specifies how big a part of X to return;
1208 it usually should not be larger than a word.
1209 If X is a MEM whose address is a QUEUED, the value may be so also. */
1210
1211 rtx
1212 gen_lowpart_general (enum machine_mode mode, rtx x)
1213 {
1214 rtx result = gen_lowpart_common (mode, x);
1215
1216 if (result)
1217 return result;
1218 else if (GET_CODE (x) == REG)
1219 {
1220 /* Must be a hard reg that's not valid in MODE. */
1221 result = gen_lowpart_common (mode, copy_to_reg (x));
1222 if (result == 0)
1223 abort ();
1224 return result;
1225 }
1226 else if (GET_CODE (x) == MEM)
1227 {
1228 /* The only additional case we can do is MEM. */
1229 int offset = 0;
1230
1231 /* The following exposes the use of "x" to CSE. */
1232 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1233 && SCALAR_INT_MODE_P (GET_MODE (x))
1234 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1235 GET_MODE_BITSIZE (GET_MODE (x)))
1236 && ! no_new_pseudos)
1237 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1238
1239 if (WORDS_BIG_ENDIAN)
1240 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1241 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1242
1243 if (BYTES_BIG_ENDIAN)
1244 /* Adjust the address so that the address-after-the-data
1245 is unchanged. */
1246 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1247 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1248
1249 return adjust_address (x, mode, offset);
1250 }
1251 else if (GET_CODE (x) == ADDRESSOF)
1252 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1253 else
1254 abort ();
1255 }
1256
1257 /* Like `gen_lowpart', but refer to the most significant part.
1258 This is used to access the imaginary part of a complex number. */
1259
1260 rtx
1261 gen_highpart (enum machine_mode mode, rtx x)
1262 {
1263 unsigned int msize = GET_MODE_SIZE (mode);
1264 rtx result;
1265
1266 /* This case loses if X is a subreg. To catch bugs early,
1267 complain if an invalid MODE is used even in other cases. */
1268 if (msize > UNITS_PER_WORD
1269 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1270 abort ();
1271
1272 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1273 subreg_highpart_offset (mode, GET_MODE (x)));
1274
1275 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1276 the target if we have a MEM. gen_highpart must return a valid operand,
1277 emitting code if necessary to do so. */
1278 if (result != NULL_RTX && GET_CODE (result) == MEM)
1279 result = validize_mem (result);
1280
1281 if (!result)
1282 abort ();
1283 return result;
1284 }
1285
1286 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1287 be VOIDmode constant. */
1288 rtx
1289 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1290 {
1291 if (GET_MODE (exp) != VOIDmode)
1292 {
1293 if (GET_MODE (exp) != innermode)
1294 abort ();
1295 return gen_highpart (outermode, exp);
1296 }
1297 return simplify_gen_subreg (outermode, exp, innermode,
1298 subreg_highpart_offset (outermode, innermode));
1299 }
1300
1301 /* Return offset in bytes to get OUTERMODE low part
1302 of the value in mode INNERMODE stored in memory in target format. */
1303
1304 unsigned int
1305 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1306 {
1307 unsigned int offset = 0;
1308 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1309
1310 if (difference > 0)
1311 {
1312 if (WORDS_BIG_ENDIAN)
1313 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1314 if (BYTES_BIG_ENDIAN)
1315 offset += difference % UNITS_PER_WORD;
1316 }
1317
1318 return offset;
1319 }
1320
1321 /* Return offset in bytes to get OUTERMODE high part
1322 of the value in mode INNERMODE stored in memory in target format. */
1323 unsigned int
1324 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1325 {
1326 unsigned int offset = 0;
1327 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1328
1329 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1330 abort ();
1331
1332 if (difference > 0)
1333 {
1334 if (! WORDS_BIG_ENDIAN)
1335 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1336 if (! BYTES_BIG_ENDIAN)
1337 offset += difference % UNITS_PER_WORD;
1338 }
1339
1340 return offset;
1341 }
1342
1343 /* Return 1 iff X, assumed to be a SUBREG,
1344 refers to the least significant part of its containing reg.
1345 If X is not a SUBREG, always return 1 (it is its own low part!). */
1346
1347 int
1348 subreg_lowpart_p (rtx x)
1349 {
1350 if (GET_CODE (x) != SUBREG)
1351 return 1;
1352 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1353 return 0;
1354
1355 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1356 == SUBREG_BYTE (x));
1357 }
1358 \f
1359 /* Return subword OFFSET of operand OP.
1360 The word number, OFFSET, is interpreted as the word number starting
1361 at the low-order address. OFFSET 0 is the low-order word if not
1362 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1363
1364 If we cannot extract the required word, we return zero. Otherwise,
1365 an rtx corresponding to the requested word will be returned.
1366
1367 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1368 reload has completed, a valid address will always be returned. After
1369 reload, if a valid address cannot be returned, we return zero.
1370
1371 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1372 it is the responsibility of the caller.
1373
1374 MODE is the mode of OP in case it is a CONST_INT.
1375
1376 ??? This is still rather broken for some cases. The problem for the
1377 moment is that all callers of this thing provide no 'goal mode' to
1378 tell us to work with. This exists because all callers were written
1379 in a word based SUBREG world.
1380 Now use of this function can be deprecated by simplify_subreg in most
1381 cases.
1382 */
1383
1384 rtx
1385 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1386 {
1387 if (mode == VOIDmode)
1388 mode = GET_MODE (op);
1389
1390 if (mode == VOIDmode)
1391 abort ();
1392
1393 /* If OP is narrower than a word, fail. */
1394 if (mode != BLKmode
1395 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1396 return 0;
1397
1398 /* If we want a word outside OP, return zero. */
1399 if (mode != BLKmode
1400 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1401 return const0_rtx;
1402
1403 /* Form a new MEM at the requested address. */
1404 if (GET_CODE (op) == MEM)
1405 {
1406 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1407
1408 if (! validate_address)
1409 return new;
1410
1411 else if (reload_completed)
1412 {
1413 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1414 return 0;
1415 }
1416 else
1417 return replace_equiv_address (new, XEXP (new, 0));
1418 }
1419
1420 /* Rest can be handled by simplify_subreg. */
1421 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1422 }
1423
1424 /* Similar to `operand_subword', but never return 0. If we can't extract
1425 the required subword, put OP into a register and try again. If that fails,
1426 abort. We always validate the address in this case.
1427
1428 MODE is the mode of OP, in case it is CONST_INT. */
1429
1430 rtx
1431 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1432 {
1433 rtx result = operand_subword (op, offset, 1, mode);
1434
1435 if (result)
1436 return result;
1437
1438 if (mode != BLKmode && mode != VOIDmode)
1439 {
1440 /* If this is a register which can not be accessed by words, copy it
1441 to a pseudo register. */
1442 if (GET_CODE (op) == REG)
1443 op = copy_to_reg (op);
1444 else
1445 op = force_reg (mode, op);
1446 }
1447
1448 result = operand_subword (op, offset, 1, mode);
1449 if (result == 0)
1450 abort ();
1451
1452 return result;
1453 }
1454 \f
1455 /* Given a compare instruction, swap the operands.
1456 A test instruction is changed into a compare of 0 against the operand. */
1457
1458 void
1459 reverse_comparison (rtx insn)
1460 {
1461 rtx body = PATTERN (insn);
1462 rtx comp;
1463
1464 if (GET_CODE (body) == SET)
1465 comp = SET_SRC (body);
1466 else
1467 comp = SET_SRC (XVECEXP (body, 0, 0));
1468
1469 if (GET_CODE (comp) == COMPARE)
1470 {
1471 rtx op0 = XEXP (comp, 0);
1472 rtx op1 = XEXP (comp, 1);
1473 XEXP (comp, 0) = op1;
1474 XEXP (comp, 1) = op0;
1475 }
1476 else
1477 {
1478 rtx new = gen_rtx_COMPARE (VOIDmode,
1479 CONST0_RTX (GET_MODE (comp)), comp);
1480 if (GET_CODE (body) == SET)
1481 SET_SRC (body) = new;
1482 else
1483 SET_SRC (XVECEXP (body, 0, 0)) = new;
1484 }
1485 }
1486 \f
1487 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1488 or (2) a component ref of something variable. Represent the later with
1489 a NULL expression. */
1490
1491 static tree
1492 component_ref_for_mem_expr (tree ref)
1493 {
1494 tree inner = TREE_OPERAND (ref, 0);
1495
1496 if (TREE_CODE (inner) == COMPONENT_REF)
1497 inner = component_ref_for_mem_expr (inner);
1498 else
1499 {
1500 tree placeholder_ptr = 0;
1501
1502 /* Now remove any conversions: they don't change what the underlying
1503 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1504 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1505 || TREE_CODE (inner) == NON_LVALUE_EXPR
1506 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1507 || TREE_CODE (inner) == SAVE_EXPR
1508 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1509 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1510 inner = find_placeholder (inner, &placeholder_ptr);
1511 else
1512 inner = TREE_OPERAND (inner, 0);
1513
1514 if (! DECL_P (inner))
1515 inner = NULL_TREE;
1516 }
1517
1518 if (inner == TREE_OPERAND (ref, 0))
1519 return ref;
1520 else
1521 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1522 TREE_OPERAND (ref, 1));
1523 }
1524
1525 /* Given REF, a MEM, and T, either the type of X or the expression
1526 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1527 if we are making a new object of this type. BITPOS is nonzero if
1528 there is an offset outstanding on T that will be applied later. */
1529
1530 void
1531 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1532 HOST_WIDE_INT bitpos)
1533 {
1534 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1535 tree expr = MEM_EXPR (ref);
1536 rtx offset = MEM_OFFSET (ref);
1537 rtx size = MEM_SIZE (ref);
1538 unsigned int align = MEM_ALIGN (ref);
1539 HOST_WIDE_INT apply_bitpos = 0;
1540 tree type;
1541
1542 /* It can happen that type_for_mode was given a mode for which there
1543 is no language-level type. In which case it returns NULL, which
1544 we can see here. */
1545 if (t == NULL_TREE)
1546 return;
1547
1548 type = TYPE_P (t) ? t : TREE_TYPE (t);
1549 if (type == error_mark_node)
1550 return;
1551
1552 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1553 wrong answer, as it assumes that DECL_RTL already has the right alias
1554 info. Callers should not set DECL_RTL until after the call to
1555 set_mem_attributes. */
1556 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1557 abort ();
1558
1559 /* Get the alias set from the expression or type (perhaps using a
1560 front-end routine) and use it. */
1561 alias = get_alias_set (t);
1562
1563 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1564 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1565 RTX_UNCHANGING_P (ref)
1566 |= ((lang_hooks.honor_readonly
1567 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1568 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1569
1570 /* If we are making an object of this type, or if this is a DECL, we know
1571 that it is a scalar if the type is not an aggregate. */
1572 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1573 MEM_SCALAR_P (ref) = 1;
1574
1575 /* We can set the alignment from the type if we are making an object,
1576 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1577 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1578 align = MAX (align, TYPE_ALIGN (type));
1579
1580 /* If the size is known, we can set that. */
1581 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1582 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1583
1584 /* If T is not a type, we may be able to deduce some more information about
1585 the expression. */
1586 if (! TYPE_P (t))
1587 {
1588 maybe_set_unchanging (ref, t);
1589 if (TREE_THIS_VOLATILE (t))
1590 MEM_VOLATILE_P (ref) = 1;
1591
1592 /* Now remove any conversions: they don't change what the underlying
1593 object is. Likewise for SAVE_EXPR. */
1594 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1595 || TREE_CODE (t) == NON_LVALUE_EXPR
1596 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1597 || TREE_CODE (t) == SAVE_EXPR)
1598 t = TREE_OPERAND (t, 0);
1599
1600 /* If this expression can't be addressed (e.g., it contains a reference
1601 to a non-addressable field), show we don't change its alias set. */
1602 if (! can_address_p (t))
1603 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1604
1605 /* If this is a decl, set the attributes of the MEM from it. */
1606 if (DECL_P (t))
1607 {
1608 expr = t;
1609 offset = const0_rtx;
1610 apply_bitpos = bitpos;
1611 size = (DECL_SIZE_UNIT (t)
1612 && host_integerp (DECL_SIZE_UNIT (t), 1)
1613 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1614 align = DECL_ALIGN (t);
1615 }
1616
1617 /* If this is a constant, we know the alignment. */
1618 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1619 {
1620 align = TYPE_ALIGN (type);
1621 #ifdef CONSTANT_ALIGNMENT
1622 align = CONSTANT_ALIGNMENT (t, align);
1623 #endif
1624 }
1625
1626 /* If this is a field reference and not a bit-field, record it. */
1627 /* ??? There is some information that can be gleened from bit-fields,
1628 such as the word offset in the structure that might be modified.
1629 But skip it for now. */
1630 else if (TREE_CODE (t) == COMPONENT_REF
1631 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1632 {
1633 expr = component_ref_for_mem_expr (t);
1634 offset = const0_rtx;
1635 apply_bitpos = bitpos;
1636 /* ??? Any reason the field size would be different than
1637 the size we got from the type? */
1638 }
1639
1640 /* If this is an array reference, look for an outer field reference. */
1641 else if (TREE_CODE (t) == ARRAY_REF)
1642 {
1643 tree off_tree = size_zero_node;
1644 /* We can't modify t, because we use it at the end of the
1645 function. */
1646 tree t2 = t;
1647
1648 do
1649 {
1650 tree index = TREE_OPERAND (t2, 1);
1651 tree array = TREE_OPERAND (t2, 0);
1652 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1653 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1654 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1655
1656 /* We assume all arrays have sizes that are a multiple of a byte.
1657 First subtract the lower bound, if any, in the type of the
1658 index, then convert to sizetype and multiply by the size of the
1659 array element. */
1660 if (low_bound != 0 && ! integer_zerop (low_bound))
1661 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1662 index, low_bound));
1663
1664 /* If the index has a self-referential type, pass it to a
1665 WITH_RECORD_EXPR; if the component size is, pass our
1666 component to one. */
1667 if (CONTAINS_PLACEHOLDER_P (index))
1668 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1669 if (CONTAINS_PLACEHOLDER_P (unit_size))
1670 unit_size = build (WITH_RECORD_EXPR, sizetype,
1671 unit_size, array);
1672
1673 off_tree
1674 = fold (build (PLUS_EXPR, sizetype,
1675 fold (build (MULT_EXPR, sizetype,
1676 index,
1677 unit_size)),
1678 off_tree));
1679 t2 = TREE_OPERAND (t2, 0);
1680 }
1681 while (TREE_CODE (t2) == ARRAY_REF);
1682
1683 if (DECL_P (t2))
1684 {
1685 expr = t2;
1686 offset = NULL;
1687 if (host_integerp (off_tree, 1))
1688 {
1689 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1690 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1691 align = DECL_ALIGN (t2);
1692 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1693 align = aoff;
1694 offset = GEN_INT (ioff);
1695 apply_bitpos = bitpos;
1696 }
1697 }
1698 else if (TREE_CODE (t2) == COMPONENT_REF)
1699 {
1700 expr = component_ref_for_mem_expr (t2);
1701 if (host_integerp (off_tree, 1))
1702 {
1703 offset = GEN_INT (tree_low_cst (off_tree, 1));
1704 apply_bitpos = bitpos;
1705 }
1706 /* ??? Any reason the field size would be different than
1707 the size we got from the type? */
1708 }
1709 else if (flag_argument_noalias > 1
1710 && TREE_CODE (t2) == INDIRECT_REF
1711 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1712 {
1713 expr = t2;
1714 offset = NULL;
1715 }
1716 }
1717
1718 /* If this is a Fortran indirect argument reference, record the
1719 parameter decl. */
1720 else if (flag_argument_noalias > 1
1721 && TREE_CODE (t) == INDIRECT_REF
1722 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1723 {
1724 expr = t;
1725 offset = NULL;
1726 }
1727 }
1728
1729 /* If we modified OFFSET based on T, then subtract the outstanding
1730 bit position offset. Similarly, increase the size of the accessed
1731 object to contain the negative offset. */
1732 if (apply_bitpos)
1733 {
1734 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1735 if (size)
1736 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1737 }
1738
1739 /* Now set the attributes we computed above. */
1740 MEM_ATTRS (ref)
1741 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1742
1743 /* If this is already known to be a scalar or aggregate, we are done. */
1744 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1745 return;
1746
1747 /* If it is a reference into an aggregate, this is part of an aggregate.
1748 Otherwise we don't know. */
1749 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1750 || TREE_CODE (t) == ARRAY_RANGE_REF
1751 || TREE_CODE (t) == BIT_FIELD_REF)
1752 MEM_IN_STRUCT_P (ref) = 1;
1753 }
1754
1755 void
1756 set_mem_attributes (rtx ref, tree t, int objectp)
1757 {
1758 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1759 }
1760
1761 /* Set the decl for MEM to DECL. */
1762
1763 void
1764 set_mem_attrs_from_reg (rtx mem, rtx reg)
1765 {
1766 MEM_ATTRS (mem)
1767 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1768 GEN_INT (REG_OFFSET (reg)),
1769 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1770 }
1771
1772 /* Set the alias set of MEM to SET. */
1773
1774 void
1775 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1776 {
1777 #ifdef ENABLE_CHECKING
1778 /* If the new and old alias sets don't conflict, something is wrong. */
1779 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1780 abort ();
1781 #endif
1782
1783 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1784 MEM_SIZE (mem), MEM_ALIGN (mem),
1785 GET_MODE (mem));
1786 }
1787
1788 /* Set the alignment of MEM to ALIGN bits. */
1789
1790 void
1791 set_mem_align (rtx mem, unsigned int align)
1792 {
1793 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1794 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1795 GET_MODE (mem));
1796 }
1797
1798 /* Set the expr for MEM to EXPR. */
1799
1800 void
1801 set_mem_expr (rtx mem, tree expr)
1802 {
1803 MEM_ATTRS (mem)
1804 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1805 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1806 }
1807
1808 /* Set the offset of MEM to OFFSET. */
1809
1810 void
1811 set_mem_offset (rtx mem, rtx offset)
1812 {
1813 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1814 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1815 GET_MODE (mem));
1816 }
1817
1818 /* Set the size of MEM to SIZE. */
1819
1820 void
1821 set_mem_size (rtx mem, rtx size)
1822 {
1823 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1824 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1825 GET_MODE (mem));
1826 }
1827 \f
1828 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1829 and its address changed to ADDR. (VOIDmode means don't change the mode.
1830 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1831 returned memory location is required to be valid. The memory
1832 attributes are not changed. */
1833
1834 static rtx
1835 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1836 {
1837 rtx new;
1838
1839 if (GET_CODE (memref) != MEM)
1840 abort ();
1841 if (mode == VOIDmode)
1842 mode = GET_MODE (memref);
1843 if (addr == 0)
1844 addr = XEXP (memref, 0);
1845 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1846 && (!validate || memory_address_p (mode, addr)))
1847 return memref;
1848
1849 if (validate)
1850 {
1851 if (reload_in_progress || reload_completed)
1852 {
1853 if (! memory_address_p (mode, addr))
1854 abort ();
1855 }
1856 else
1857 addr = memory_address (mode, addr);
1858 }
1859
1860 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1861 return memref;
1862
1863 new = gen_rtx_MEM (mode, addr);
1864 MEM_COPY_ATTRIBUTES (new, memref);
1865 return new;
1866 }
1867
1868 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1869 way we are changing MEMREF, so we only preserve the alias set. */
1870
1871 rtx
1872 change_address (rtx memref, enum machine_mode mode, rtx addr)
1873 {
1874 rtx new = change_address_1 (memref, mode, addr, 1), size;
1875 enum machine_mode mmode = GET_MODE (new);
1876 unsigned int align;
1877
1878 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1879 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1880
1881 /* If there are no changes, just return the original memory reference. */
1882 if (new == memref)
1883 {
1884 if (MEM_ATTRS (memref) == 0
1885 || (MEM_EXPR (memref) == NULL
1886 && MEM_OFFSET (memref) == NULL
1887 && MEM_SIZE (memref) == size
1888 && MEM_ALIGN (memref) == align))
1889 return new;
1890
1891 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1892 MEM_COPY_ATTRIBUTES (new, memref);
1893 }
1894
1895 MEM_ATTRS (new)
1896 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1897
1898 return new;
1899 }
1900
1901 /* Return a memory reference like MEMREF, but with its mode changed
1902 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1903 nonzero, the memory address is forced to be valid.
1904 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1905 and caller is responsible for adjusting MEMREF base register. */
1906
1907 rtx
1908 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1909 int validate, int adjust)
1910 {
1911 rtx addr = XEXP (memref, 0);
1912 rtx new;
1913 rtx memoffset = MEM_OFFSET (memref);
1914 rtx size = 0;
1915 unsigned int memalign = MEM_ALIGN (memref);
1916
1917 /* If there are no changes, just return the original memory reference. */
1918 if (mode == GET_MODE (memref) && !offset
1919 && (!validate || memory_address_p (mode, addr)))
1920 return memref;
1921
1922 /* ??? Prefer to create garbage instead of creating shared rtl.
1923 This may happen even if offset is nonzero -- consider
1924 (plus (plus reg reg) const_int) -- so do this always. */
1925 addr = copy_rtx (addr);
1926
1927 if (adjust)
1928 {
1929 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1930 object, we can merge it into the LO_SUM. */
1931 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1932 && offset >= 0
1933 && (unsigned HOST_WIDE_INT) offset
1934 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1935 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1936 plus_constant (XEXP (addr, 1), offset));
1937 else
1938 addr = plus_constant (addr, offset);
1939 }
1940
1941 new = change_address_1 (memref, mode, addr, validate);
1942
1943 /* Compute the new values of the memory attributes due to this adjustment.
1944 We add the offsets and update the alignment. */
1945 if (memoffset)
1946 memoffset = GEN_INT (offset + INTVAL (memoffset));
1947
1948 /* Compute the new alignment by taking the MIN of the alignment and the
1949 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1950 if zero. */
1951 if (offset != 0)
1952 memalign
1953 = MIN (memalign,
1954 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1955
1956 /* We can compute the size in a number of ways. */
1957 if (GET_MODE (new) != BLKmode)
1958 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1959 else if (MEM_SIZE (memref))
1960 size = plus_constant (MEM_SIZE (memref), -offset);
1961
1962 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1963 memoffset, size, memalign, GET_MODE (new));
1964
1965 /* At some point, we should validate that this offset is within the object,
1966 if all the appropriate values are known. */
1967 return new;
1968 }
1969
1970 /* Return a memory reference like MEMREF, but with its mode changed
1971 to MODE and its address changed to ADDR, which is assumed to be
1972 MEMREF offseted by OFFSET bytes. If VALIDATE is
1973 nonzero, the memory address is forced to be valid. */
1974
1975 rtx
1976 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1977 HOST_WIDE_INT offset, int validate)
1978 {
1979 memref = change_address_1 (memref, VOIDmode, addr, validate);
1980 return adjust_address_1 (memref, mode, offset, validate, 0);
1981 }
1982
1983 /* Return a memory reference like MEMREF, but whose address is changed by
1984 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1985 known to be in OFFSET (possibly 1). */
1986
1987 rtx
1988 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1989 {
1990 rtx new, addr = XEXP (memref, 0);
1991
1992 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1993
1994 /* At this point we don't know _why_ the address is invalid. It
1995 could have secondary memory references, multiplies or anything.
1996
1997 However, if we did go and rearrange things, we can wind up not
1998 being able to recognize the magic around pic_offset_table_rtx.
1999 This stuff is fragile, and is yet another example of why it is
2000 bad to expose PIC machinery too early. */
2001 if (! memory_address_p (GET_MODE (memref), new)
2002 && GET_CODE (addr) == PLUS
2003 && XEXP (addr, 0) == pic_offset_table_rtx)
2004 {
2005 addr = force_reg (GET_MODE (addr), addr);
2006 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2007 }
2008
2009 update_temp_slot_address (XEXP (memref, 0), new);
2010 new = change_address_1 (memref, VOIDmode, new, 1);
2011
2012 /* If there are no changes, just return the original memory reference. */
2013 if (new == memref)
2014 return new;
2015
2016 /* Update the alignment to reflect the offset. Reset the offset, which
2017 we don't know. */
2018 MEM_ATTRS (new)
2019 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2020 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2021 GET_MODE (new));
2022 return new;
2023 }
2024
2025 /* Return a memory reference like MEMREF, but with its address changed to
2026 ADDR. The caller is asserting that the actual piece of memory pointed
2027 to is the same, just the form of the address is being changed, such as
2028 by putting something into a register. */
2029
2030 rtx
2031 replace_equiv_address (rtx memref, rtx addr)
2032 {
2033 /* change_address_1 copies the memory attribute structure without change
2034 and that's exactly what we want here. */
2035 update_temp_slot_address (XEXP (memref, 0), addr);
2036 return change_address_1 (memref, VOIDmode, addr, 1);
2037 }
2038
2039 /* Likewise, but the reference is not required to be valid. */
2040
2041 rtx
2042 replace_equiv_address_nv (rtx memref, rtx addr)
2043 {
2044 return change_address_1 (memref, VOIDmode, addr, 0);
2045 }
2046
2047 /* Return a memory reference like MEMREF, but with its mode widened to
2048 MODE and offset by OFFSET. This would be used by targets that e.g.
2049 cannot issue QImode memory operations and have to use SImode memory
2050 operations plus masking logic. */
2051
2052 rtx
2053 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2054 {
2055 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2056 tree expr = MEM_EXPR (new);
2057 rtx memoffset = MEM_OFFSET (new);
2058 unsigned int size = GET_MODE_SIZE (mode);
2059
2060 /* If there are no changes, just return the original memory reference. */
2061 if (new == memref)
2062 return new;
2063
2064 /* If we don't know what offset we were at within the expression, then
2065 we can't know if we've overstepped the bounds. */
2066 if (! memoffset)
2067 expr = NULL_TREE;
2068
2069 while (expr)
2070 {
2071 if (TREE_CODE (expr) == COMPONENT_REF)
2072 {
2073 tree field = TREE_OPERAND (expr, 1);
2074
2075 if (! DECL_SIZE_UNIT (field))
2076 {
2077 expr = NULL_TREE;
2078 break;
2079 }
2080
2081 /* Is the field at least as large as the access? If so, ok,
2082 otherwise strip back to the containing structure. */
2083 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2084 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2085 && INTVAL (memoffset) >= 0)
2086 break;
2087
2088 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2089 {
2090 expr = NULL_TREE;
2091 break;
2092 }
2093
2094 expr = TREE_OPERAND (expr, 0);
2095 memoffset = (GEN_INT (INTVAL (memoffset)
2096 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2097 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2098 / BITS_PER_UNIT)));
2099 }
2100 /* Similarly for the decl. */
2101 else if (DECL_P (expr)
2102 && DECL_SIZE_UNIT (expr)
2103 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2104 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2105 && (! memoffset || INTVAL (memoffset) >= 0))
2106 break;
2107 else
2108 {
2109 /* The widened memory access overflows the expression, which means
2110 that it could alias another expression. Zap it. */
2111 expr = NULL_TREE;
2112 break;
2113 }
2114 }
2115
2116 if (! expr)
2117 memoffset = NULL_RTX;
2118
2119 /* The widened memory may alias other stuff, so zap the alias set. */
2120 /* ??? Maybe use get_alias_set on any remaining expression. */
2121
2122 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2123 MEM_ALIGN (new), mode);
2124
2125 return new;
2126 }
2127 \f
2128 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2129
2130 rtx
2131 gen_label_rtx (void)
2132 {
2133 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2134 NULL, label_num++, NULL);
2135 }
2136 \f
2137 /* For procedure integration. */
2138
2139 /* Install new pointers to the first and last insns in the chain.
2140 Also, set cur_insn_uid to one higher than the last in use.
2141 Used for an inline-procedure after copying the insn chain. */
2142
2143 void
2144 set_new_first_and_last_insn (rtx first, rtx last)
2145 {
2146 rtx insn;
2147
2148 first_insn = first;
2149 last_insn = last;
2150 cur_insn_uid = 0;
2151
2152 for (insn = first; insn; insn = NEXT_INSN (insn))
2153 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2154
2155 cur_insn_uid++;
2156 }
2157
2158 /* Set the last label number found in the current function.
2159 This is used when belatedly compiling an inline function. */
2160
2161 void
2162 set_new_last_label_num (int last)
2163 {
2164 base_label_num = label_num;
2165 last_label_num = last;
2166 }
2167 \f
2168 /* Restore all variables describing the current status from the structure *P.
2169 This is used after a nested function. */
2170
2171 void
2172 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2173 {
2174 last_label_num = 0;
2175 }
2176 \f
2177 /* Go through all the RTL insn bodies and copy any invalid shared
2178 structure. This routine should only be called once. */
2179
2180 void
2181 unshare_all_rtl (tree fndecl, rtx insn)
2182 {
2183 tree decl;
2184
2185 /* Make sure that virtual parameters are not shared. */
2186 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2187 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2188
2189 /* Make sure that virtual stack slots are not shared. */
2190 unshare_all_decls (DECL_INITIAL (fndecl));
2191
2192 /* Unshare just about everything else. */
2193 unshare_all_rtl_in_chain (insn);
2194
2195 /* Make sure the addresses of stack slots found outside the insn chain
2196 (such as, in DECL_RTL of a variable) are not shared
2197 with the insn chain.
2198
2199 This special care is necessary when the stack slot MEM does not
2200 actually appear in the insn chain. If it does appear, its address
2201 is unshared from all else at that point. */
2202 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2203 }
2204
2205 /* Go through all the RTL insn bodies and copy any invalid shared
2206 structure, again. This is a fairly expensive thing to do so it
2207 should be done sparingly. */
2208
2209 void
2210 unshare_all_rtl_again (rtx insn)
2211 {
2212 rtx p;
2213 tree decl;
2214
2215 for (p = insn; p; p = NEXT_INSN (p))
2216 if (INSN_P (p))
2217 {
2218 reset_used_flags (PATTERN (p));
2219 reset_used_flags (REG_NOTES (p));
2220 reset_used_flags (LOG_LINKS (p));
2221 }
2222
2223 /* Make sure that virtual stack slots are not shared. */
2224 reset_used_decls (DECL_INITIAL (cfun->decl));
2225
2226 /* Make sure that virtual parameters are not shared. */
2227 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2228 reset_used_flags (DECL_RTL (decl));
2229
2230 reset_used_flags (stack_slot_list);
2231
2232 unshare_all_rtl (cfun->decl, insn);
2233 }
2234
2235 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2236 Recursively does the same for subexpressions. */
2237
2238 static void
2239 verify_rtx_sharing (rtx orig, rtx insn)
2240 {
2241 rtx x = orig;
2242 int i;
2243 enum rtx_code code;
2244 const char *format_ptr;
2245
2246 if (x == 0)
2247 return;
2248
2249 code = GET_CODE (x);
2250
2251 /* These types may be freely shared. */
2252
2253 switch (code)
2254 {
2255 case REG:
2256 case QUEUED:
2257 case CONST_INT:
2258 case CONST_DOUBLE:
2259 case CONST_VECTOR:
2260 case SYMBOL_REF:
2261 case LABEL_REF:
2262 case CODE_LABEL:
2263 case PC:
2264 case CC0:
2265 case SCRATCH:
2266 return;
2267 /* SCRATCH must be shared because they represent distinct values. */
2268 case CLOBBER:
2269 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2270 return;
2271 break;
2272
2273 case CONST:
2274 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2275 a LABEL_REF, it isn't sharable. */
2276 if (GET_CODE (XEXP (x, 0)) == PLUS
2277 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2278 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2279 return;
2280 break;
2281
2282 case MEM:
2283 /* A MEM is allowed to be shared if its address is constant. */
2284 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2285 || reload_completed || reload_in_progress)
2286 return;
2287
2288 break;
2289
2290 default:
2291 break;
2292 }
2293
2294 /* This rtx may not be shared. If it has already been seen,
2295 replace it with a copy of itself. */
2296
2297 if (RTX_FLAG (x, used))
2298 {
2299 error ("Invalid rtl sharing found in the insn");
2300 debug_rtx (insn);
2301 error ("Shared rtx");
2302 debug_rtx (x);
2303 abort ();
2304 }
2305 RTX_FLAG (x, used) = 1;
2306
2307 /* Now scan the subexpressions recursively. */
2308
2309 format_ptr = GET_RTX_FORMAT (code);
2310
2311 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2312 {
2313 switch (*format_ptr++)
2314 {
2315 case 'e':
2316 verify_rtx_sharing (XEXP (x, i), insn);
2317 break;
2318
2319 case 'E':
2320 if (XVEC (x, i) != NULL)
2321 {
2322 int j;
2323 int len = XVECLEN (x, i);
2324
2325 for (j = 0; j < len; j++)
2326 {
2327 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2328 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2329 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2330 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2331 else
2332 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2333 }
2334 }
2335 break;
2336 }
2337 }
2338 return;
2339 }
2340
2341 /* Go through all the RTL insn bodies and check that there is no unexpected
2342 sharing in between the subexpressions. */
2343
2344 void
2345 verify_rtl_sharing (void)
2346 {
2347 rtx p;
2348
2349 for (p = get_insns (); p; p = NEXT_INSN (p))
2350 if (INSN_P (p))
2351 {
2352 reset_used_flags (PATTERN (p));
2353 reset_used_flags (REG_NOTES (p));
2354 reset_used_flags (LOG_LINKS (p));
2355 }
2356
2357 for (p = get_insns (); p; p = NEXT_INSN (p))
2358 if (INSN_P (p))
2359 {
2360 verify_rtx_sharing (PATTERN (p), p);
2361 verify_rtx_sharing (REG_NOTES (p), p);
2362 verify_rtx_sharing (LOG_LINKS (p), p);
2363 }
2364 }
2365
2366 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2367 Assumes the mark bits are cleared at entry. */
2368
2369 void
2370 unshare_all_rtl_in_chain (rtx insn)
2371 {
2372 for (; insn; insn = NEXT_INSN (insn))
2373 if (INSN_P (insn))
2374 {
2375 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2376 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2377 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2378 }
2379 }
2380
2381 /* Go through all virtual stack slots of a function and copy any
2382 shared structure. */
2383 static void
2384 unshare_all_decls (tree blk)
2385 {
2386 tree t;
2387
2388 /* Copy shared decls. */
2389 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2390 if (DECL_RTL_SET_P (t))
2391 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2392
2393 /* Now process sub-blocks. */
2394 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2395 unshare_all_decls (t);
2396 }
2397
2398 /* Go through all virtual stack slots of a function and mark them as
2399 not shared. */
2400 static void
2401 reset_used_decls (tree blk)
2402 {
2403 tree t;
2404
2405 /* Mark decls. */
2406 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2407 if (DECL_RTL_SET_P (t))
2408 reset_used_flags (DECL_RTL (t));
2409
2410 /* Now process sub-blocks. */
2411 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2412 reset_used_decls (t);
2413 }
2414
2415 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2416 placed in the result directly, rather than being copied. MAY_SHARE is
2417 either a MEM of an EXPR_LIST of MEMs. */
2418
2419 rtx
2420 copy_most_rtx (rtx orig, rtx may_share)
2421 {
2422 rtx copy;
2423 int i, j;
2424 RTX_CODE code;
2425 const char *format_ptr;
2426
2427 if (orig == may_share
2428 || (GET_CODE (may_share) == EXPR_LIST
2429 && in_expr_list_p (may_share, orig)))
2430 return orig;
2431
2432 code = GET_CODE (orig);
2433
2434 switch (code)
2435 {
2436 case REG:
2437 case QUEUED:
2438 case CONST_INT:
2439 case CONST_DOUBLE:
2440 case CONST_VECTOR:
2441 case SYMBOL_REF:
2442 case CODE_LABEL:
2443 case PC:
2444 case CC0:
2445 return orig;
2446 default:
2447 break;
2448 }
2449
2450 copy = rtx_alloc (code);
2451 PUT_MODE (copy, GET_MODE (orig));
2452 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2453 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2454 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2455 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2456 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2457
2458 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2459
2460 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2461 {
2462 switch (*format_ptr++)
2463 {
2464 case 'e':
2465 XEXP (copy, i) = XEXP (orig, i);
2466 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2467 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2468 break;
2469
2470 case 'u':
2471 XEXP (copy, i) = XEXP (orig, i);
2472 break;
2473
2474 case 'E':
2475 case 'V':
2476 XVEC (copy, i) = XVEC (orig, i);
2477 if (XVEC (orig, i) != NULL)
2478 {
2479 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2480 for (j = 0; j < XVECLEN (copy, i); j++)
2481 XVECEXP (copy, i, j)
2482 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2483 }
2484 break;
2485
2486 case 'w':
2487 XWINT (copy, i) = XWINT (orig, i);
2488 break;
2489
2490 case 'n':
2491 case 'i':
2492 XINT (copy, i) = XINT (orig, i);
2493 break;
2494
2495 case 't':
2496 XTREE (copy, i) = XTREE (orig, i);
2497 break;
2498
2499 case 's':
2500 case 'S':
2501 XSTR (copy, i) = XSTR (orig, i);
2502 break;
2503
2504 case '0':
2505 X0ANY (copy, i) = X0ANY (orig, i);
2506 break;
2507
2508 default:
2509 abort ();
2510 }
2511 }
2512 return copy;
2513 }
2514
2515 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2516 Recursively does the same for subexpressions. Uses
2517 copy_rtx_if_shared_1 to reduce stack space. */
2518
2519 rtx
2520 copy_rtx_if_shared (rtx orig)
2521 {
2522 copy_rtx_if_shared_1 (&orig);
2523 return orig;
2524 }
2525
2526 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2527 use. Recursively does the same for subexpressions. */
2528
2529 static void
2530 copy_rtx_if_shared_1 (rtx *orig1)
2531 {
2532 rtx x;
2533 int i;
2534 enum rtx_code code;
2535 rtx *last_ptr;
2536 const char *format_ptr;
2537 int copied = 0;
2538 int length;
2539
2540 /* Repeat is used to turn tail-recursion into iteration. */
2541 repeat:
2542 x = *orig1;
2543
2544 if (x == 0)
2545 return;
2546
2547 code = GET_CODE (x);
2548
2549 /* These types may be freely shared. */
2550
2551 switch (code)
2552 {
2553 case REG:
2554 case QUEUED:
2555 case CONST_INT:
2556 case CONST_DOUBLE:
2557 case CONST_VECTOR:
2558 case SYMBOL_REF:
2559 case LABEL_REF:
2560 case CODE_LABEL:
2561 case PC:
2562 case CC0:
2563 case SCRATCH:
2564 /* SCRATCH must be shared because they represent distinct values. */
2565 return;
2566 case CLOBBER:
2567 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2568 return;
2569 break;
2570
2571 case CONST:
2572 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2573 a LABEL_REF, it isn't sharable. */
2574 if (GET_CODE (XEXP (x, 0)) == PLUS
2575 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2576 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2577 return;
2578 break;
2579
2580 case INSN:
2581 case JUMP_INSN:
2582 case CALL_INSN:
2583 case NOTE:
2584 case BARRIER:
2585 /* The chain of insns is not being copied. */
2586 return;
2587
2588 default:
2589 break;
2590 }
2591
2592 /* This rtx may not be shared. If it has already been seen,
2593 replace it with a copy of itself. */
2594
2595 if (RTX_FLAG (x, used))
2596 {
2597 rtx copy;
2598
2599 copy = rtx_alloc (code);
2600 memcpy (copy, x, RTX_SIZE (code));
2601 x = copy;
2602 copied = 1;
2603 }
2604 RTX_FLAG (x, used) = 1;
2605
2606 /* Now scan the subexpressions recursively.
2607 We can store any replaced subexpressions directly into X
2608 since we know X is not shared! Any vectors in X
2609 must be copied if X was copied. */
2610
2611 format_ptr = GET_RTX_FORMAT (code);
2612 length = GET_RTX_LENGTH (code);
2613 last_ptr = NULL;
2614
2615 for (i = 0; i < length; i++)
2616 {
2617 switch (*format_ptr++)
2618 {
2619 case 'e':
2620 if (last_ptr)
2621 copy_rtx_if_shared_1 (last_ptr);
2622 last_ptr = &XEXP (x, i);
2623 break;
2624
2625 case 'E':
2626 if (XVEC (x, i) != NULL)
2627 {
2628 int j;
2629 int len = XVECLEN (x, i);
2630
2631 /* Copy the vector iff I copied the rtx and the length
2632 is nonzero. */
2633 if (copied && len > 0)
2634 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2635
2636 /* Call recursively on all inside the vector. */
2637 for (j = 0; j < len; j++)
2638 {
2639 if (last_ptr)
2640 copy_rtx_if_shared_1 (last_ptr);
2641 last_ptr = &XVECEXP (x, i, j);
2642 }
2643 }
2644 break;
2645 }
2646 }
2647 *orig1 = x;
2648 if (last_ptr)
2649 {
2650 orig1 = last_ptr;
2651 goto repeat;
2652 }
2653 return;
2654 }
2655
2656 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2657 to look for shared sub-parts. */
2658
2659 void
2660 reset_used_flags (rtx x)
2661 {
2662 int i, j;
2663 enum rtx_code code;
2664 const char *format_ptr;
2665 int length;
2666
2667 /* Repeat is used to turn tail-recursion into iteration. */
2668 repeat:
2669 if (x == 0)
2670 return;
2671
2672 code = GET_CODE (x);
2673
2674 /* These types may be freely shared so we needn't do any resetting
2675 for them. */
2676
2677 switch (code)
2678 {
2679 case REG:
2680 case QUEUED:
2681 case CONST_INT:
2682 case CONST_DOUBLE:
2683 case CONST_VECTOR:
2684 case SYMBOL_REF:
2685 case CODE_LABEL:
2686 case PC:
2687 case CC0:
2688 return;
2689
2690 case INSN:
2691 case JUMP_INSN:
2692 case CALL_INSN:
2693 case NOTE:
2694 case LABEL_REF:
2695 case BARRIER:
2696 /* The chain of insns is not being copied. */
2697 return;
2698
2699 default:
2700 break;
2701 }
2702
2703 RTX_FLAG (x, used) = 0;
2704
2705 format_ptr = GET_RTX_FORMAT (code);
2706 length = GET_RTX_LENGTH (code);
2707
2708 for (i = 0; i < length; i++)
2709 {
2710 switch (*format_ptr++)
2711 {
2712 case 'e':
2713 if (i == length-1)
2714 {
2715 x = XEXP (x, i);
2716 goto repeat;
2717 }
2718 reset_used_flags (XEXP (x, i));
2719 break;
2720
2721 case 'E':
2722 for (j = 0; j < XVECLEN (x, i); j++)
2723 reset_used_flags (XVECEXP (x, i, j));
2724 break;
2725 }
2726 }
2727 }
2728
2729 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2730 to look for shared sub-parts. */
2731
2732 void
2733 set_used_flags (rtx x)
2734 {
2735 int i, j;
2736 enum rtx_code code;
2737 const char *format_ptr;
2738
2739 if (x == 0)
2740 return;
2741
2742 code = GET_CODE (x);
2743
2744 /* These types may be freely shared so we needn't do any resetting
2745 for them. */
2746
2747 switch (code)
2748 {
2749 case REG:
2750 case QUEUED:
2751 case CONST_INT:
2752 case CONST_DOUBLE:
2753 case CONST_VECTOR:
2754 case SYMBOL_REF:
2755 case CODE_LABEL:
2756 case PC:
2757 case CC0:
2758 return;
2759
2760 case INSN:
2761 case JUMP_INSN:
2762 case CALL_INSN:
2763 case NOTE:
2764 case LABEL_REF:
2765 case BARRIER:
2766 /* The chain of insns is not being copied. */
2767 return;
2768
2769 default:
2770 break;
2771 }
2772
2773 RTX_FLAG (x, used) = 1;
2774
2775 format_ptr = GET_RTX_FORMAT (code);
2776 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2777 {
2778 switch (*format_ptr++)
2779 {
2780 case 'e':
2781 set_used_flags (XEXP (x, i));
2782 break;
2783
2784 case 'E':
2785 for (j = 0; j < XVECLEN (x, i); j++)
2786 set_used_flags (XVECEXP (x, i, j));
2787 break;
2788 }
2789 }
2790 }
2791 \f
2792 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2793 Return X or the rtx for the pseudo reg the value of X was copied into.
2794 OTHER must be valid as a SET_DEST. */
2795
2796 rtx
2797 make_safe_from (rtx x, rtx other)
2798 {
2799 while (1)
2800 switch (GET_CODE (other))
2801 {
2802 case SUBREG:
2803 other = SUBREG_REG (other);
2804 break;
2805 case STRICT_LOW_PART:
2806 case SIGN_EXTEND:
2807 case ZERO_EXTEND:
2808 other = XEXP (other, 0);
2809 break;
2810 default:
2811 goto done;
2812 }
2813 done:
2814 if ((GET_CODE (other) == MEM
2815 && ! CONSTANT_P (x)
2816 && GET_CODE (x) != REG
2817 && GET_CODE (x) != SUBREG)
2818 || (GET_CODE (other) == REG
2819 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2820 || reg_mentioned_p (other, x))))
2821 {
2822 rtx temp = gen_reg_rtx (GET_MODE (x));
2823 emit_move_insn (temp, x);
2824 return temp;
2825 }
2826 return x;
2827 }
2828 \f
2829 /* Emission of insns (adding them to the doubly-linked list). */
2830
2831 /* Return the first insn of the current sequence or current function. */
2832
2833 rtx
2834 get_insns (void)
2835 {
2836 return first_insn;
2837 }
2838
2839 /* Specify a new insn as the first in the chain. */
2840
2841 void
2842 set_first_insn (rtx insn)
2843 {
2844 if (PREV_INSN (insn) != 0)
2845 abort ();
2846 first_insn = insn;
2847 }
2848
2849 /* Return the last insn emitted in current sequence or current function. */
2850
2851 rtx
2852 get_last_insn (void)
2853 {
2854 return last_insn;
2855 }
2856
2857 /* Specify a new insn as the last in the chain. */
2858
2859 void
2860 set_last_insn (rtx insn)
2861 {
2862 if (NEXT_INSN (insn) != 0)
2863 abort ();
2864 last_insn = insn;
2865 }
2866
2867 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2868
2869 rtx
2870 get_last_insn_anywhere (void)
2871 {
2872 struct sequence_stack *stack;
2873 if (last_insn)
2874 return last_insn;
2875 for (stack = seq_stack; stack; stack = stack->next)
2876 if (stack->last != 0)
2877 return stack->last;
2878 return 0;
2879 }
2880
2881 /* Return the first nonnote insn emitted in current sequence or current
2882 function. This routine looks inside SEQUENCEs. */
2883
2884 rtx
2885 get_first_nonnote_insn (void)
2886 {
2887 rtx insn = first_insn;
2888
2889 while (insn)
2890 {
2891 insn = next_insn (insn);
2892 if (insn == 0 || GET_CODE (insn) != NOTE)
2893 break;
2894 }
2895
2896 return insn;
2897 }
2898
2899 /* Return the last nonnote insn emitted in current sequence or current
2900 function. This routine looks inside SEQUENCEs. */
2901
2902 rtx
2903 get_last_nonnote_insn (void)
2904 {
2905 rtx insn = last_insn;
2906
2907 while (insn)
2908 {
2909 insn = previous_insn (insn);
2910 if (insn == 0 || GET_CODE (insn) != NOTE)
2911 break;
2912 }
2913
2914 return insn;
2915 }
2916
2917 /* Return a number larger than any instruction's uid in this function. */
2918
2919 int
2920 get_max_uid (void)
2921 {
2922 return cur_insn_uid;
2923 }
2924
2925 /* Renumber instructions so that no instruction UIDs are wasted. */
2926
2927 void
2928 renumber_insns (FILE *stream)
2929 {
2930 rtx insn;
2931
2932 /* If we're not supposed to renumber instructions, don't. */
2933 if (!flag_renumber_insns)
2934 return;
2935
2936 /* If there aren't that many instructions, then it's not really
2937 worth renumbering them. */
2938 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2939 return;
2940
2941 cur_insn_uid = 1;
2942
2943 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2944 {
2945 if (stream)
2946 fprintf (stream, "Renumbering insn %d to %d\n",
2947 INSN_UID (insn), cur_insn_uid);
2948 INSN_UID (insn) = cur_insn_uid++;
2949 }
2950 }
2951 \f
2952 /* Return the next insn. If it is a SEQUENCE, return the first insn
2953 of the sequence. */
2954
2955 rtx
2956 next_insn (rtx insn)
2957 {
2958 if (insn)
2959 {
2960 insn = NEXT_INSN (insn);
2961 if (insn && GET_CODE (insn) == INSN
2962 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2963 insn = XVECEXP (PATTERN (insn), 0, 0);
2964 }
2965
2966 return insn;
2967 }
2968
2969 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2970 of the sequence. */
2971
2972 rtx
2973 previous_insn (rtx insn)
2974 {
2975 if (insn)
2976 {
2977 insn = PREV_INSN (insn);
2978 if (insn && GET_CODE (insn) == INSN
2979 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2980 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2981 }
2982
2983 return insn;
2984 }
2985
2986 /* Return the next insn after INSN that is not a NOTE. This routine does not
2987 look inside SEQUENCEs. */
2988
2989 rtx
2990 next_nonnote_insn (rtx insn)
2991 {
2992 while (insn)
2993 {
2994 insn = NEXT_INSN (insn);
2995 if (insn == 0 || GET_CODE (insn) != NOTE)
2996 break;
2997 }
2998
2999 return insn;
3000 }
3001
3002 /* Return the previous insn before INSN that is not a NOTE. This routine does
3003 not look inside SEQUENCEs. */
3004
3005 rtx
3006 prev_nonnote_insn (rtx insn)
3007 {
3008 while (insn)
3009 {
3010 insn = PREV_INSN (insn);
3011 if (insn == 0 || GET_CODE (insn) != NOTE)
3012 break;
3013 }
3014
3015 return insn;
3016 }
3017
3018 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3019 or 0, if there is none. This routine does not look inside
3020 SEQUENCEs. */
3021
3022 rtx
3023 next_real_insn (rtx insn)
3024 {
3025 while (insn)
3026 {
3027 insn = NEXT_INSN (insn);
3028 if (insn == 0 || GET_CODE (insn) == INSN
3029 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3030 break;
3031 }
3032
3033 return insn;
3034 }
3035
3036 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3037 or 0, if there is none. This routine does not look inside
3038 SEQUENCEs. */
3039
3040 rtx
3041 prev_real_insn (rtx insn)
3042 {
3043 while (insn)
3044 {
3045 insn = PREV_INSN (insn);
3046 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3047 || GET_CODE (insn) == JUMP_INSN)
3048 break;
3049 }
3050
3051 return insn;
3052 }
3053
3054 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3055 This routine does not look inside SEQUENCEs. */
3056
3057 rtx
3058 last_call_insn (void)
3059 {
3060 rtx insn;
3061
3062 for (insn = get_last_insn ();
3063 insn && GET_CODE (insn) != CALL_INSN;
3064 insn = PREV_INSN (insn))
3065 ;
3066
3067 return insn;
3068 }
3069
3070 /* Find the next insn after INSN that really does something. This routine
3071 does not look inside SEQUENCEs. Until reload has completed, this is the
3072 same as next_real_insn. */
3073
3074 int
3075 active_insn_p (rtx insn)
3076 {
3077 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3078 || (GET_CODE (insn) == INSN
3079 && (! reload_completed
3080 || (GET_CODE (PATTERN (insn)) != USE
3081 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3082 }
3083
3084 rtx
3085 next_active_insn (rtx insn)
3086 {
3087 while (insn)
3088 {
3089 insn = NEXT_INSN (insn);
3090 if (insn == 0 || active_insn_p (insn))
3091 break;
3092 }
3093
3094 return insn;
3095 }
3096
3097 /* Find the last insn before INSN that really does something. This routine
3098 does not look inside SEQUENCEs. Until reload has completed, this is the
3099 same as prev_real_insn. */
3100
3101 rtx
3102 prev_active_insn (rtx insn)
3103 {
3104 while (insn)
3105 {
3106 insn = PREV_INSN (insn);
3107 if (insn == 0 || active_insn_p (insn))
3108 break;
3109 }
3110
3111 return insn;
3112 }
3113
3114 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3115
3116 rtx
3117 next_label (rtx insn)
3118 {
3119 while (insn)
3120 {
3121 insn = NEXT_INSN (insn);
3122 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3123 break;
3124 }
3125
3126 return insn;
3127 }
3128
3129 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3130
3131 rtx
3132 prev_label (rtx insn)
3133 {
3134 while (insn)
3135 {
3136 insn = PREV_INSN (insn);
3137 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3138 break;
3139 }
3140
3141 return insn;
3142 }
3143 \f
3144 #ifdef HAVE_cc0
3145 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3146 and REG_CC_USER notes so we can find it. */
3147
3148 void
3149 link_cc0_insns (rtx insn)
3150 {
3151 rtx user = next_nonnote_insn (insn);
3152
3153 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3154 user = XVECEXP (PATTERN (user), 0, 0);
3155
3156 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3157 REG_NOTES (user));
3158 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3159 }
3160
3161 /* Return the next insn that uses CC0 after INSN, which is assumed to
3162 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3163 applied to the result of this function should yield INSN).
3164
3165 Normally, this is simply the next insn. However, if a REG_CC_USER note
3166 is present, it contains the insn that uses CC0.
3167
3168 Return 0 if we can't find the insn. */
3169
3170 rtx
3171 next_cc0_user (rtx insn)
3172 {
3173 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3174
3175 if (note)
3176 return XEXP (note, 0);
3177
3178 insn = next_nonnote_insn (insn);
3179 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3180 insn = XVECEXP (PATTERN (insn), 0, 0);
3181
3182 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3183 return insn;
3184
3185 return 0;
3186 }
3187
3188 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3189 note, it is the previous insn. */
3190
3191 rtx
3192 prev_cc0_setter (rtx insn)
3193 {
3194 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3195
3196 if (note)
3197 return XEXP (note, 0);
3198
3199 insn = prev_nonnote_insn (insn);
3200 if (! sets_cc0_p (PATTERN (insn)))
3201 abort ();
3202
3203 return insn;
3204 }
3205 #endif
3206
3207 /* Increment the label uses for all labels present in rtx. */
3208
3209 static void
3210 mark_label_nuses (rtx x)
3211 {
3212 enum rtx_code code;
3213 int i, j;
3214 const char *fmt;
3215
3216 code = GET_CODE (x);
3217 if (code == LABEL_REF)
3218 LABEL_NUSES (XEXP (x, 0))++;
3219
3220 fmt = GET_RTX_FORMAT (code);
3221 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3222 {
3223 if (fmt[i] == 'e')
3224 mark_label_nuses (XEXP (x, i));
3225 else if (fmt[i] == 'E')
3226 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3227 mark_label_nuses (XVECEXP (x, i, j));
3228 }
3229 }
3230
3231 \f
3232 /* Try splitting insns that can be split for better scheduling.
3233 PAT is the pattern which might split.
3234 TRIAL is the insn providing PAT.
3235 LAST is nonzero if we should return the last insn of the sequence produced.
3236
3237 If this routine succeeds in splitting, it returns the first or last
3238 replacement insn depending on the value of LAST. Otherwise, it
3239 returns TRIAL. If the insn to be returned can be split, it will be. */
3240
3241 rtx
3242 try_split (rtx pat, rtx trial, int last)
3243 {
3244 rtx before = PREV_INSN (trial);
3245 rtx after = NEXT_INSN (trial);
3246 int has_barrier = 0;
3247 rtx tem;
3248 rtx note, seq;
3249 int probability;
3250 rtx insn_last, insn;
3251 int njumps = 0;
3252
3253 if (any_condjump_p (trial)
3254 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3255 split_branch_probability = INTVAL (XEXP (note, 0));
3256 probability = split_branch_probability;
3257
3258 seq = split_insns (pat, trial);
3259
3260 split_branch_probability = -1;
3261
3262 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3263 We may need to handle this specially. */
3264 if (after && GET_CODE (after) == BARRIER)
3265 {
3266 has_barrier = 1;
3267 after = NEXT_INSN (after);
3268 }
3269
3270 if (!seq)
3271 return trial;
3272
3273 /* Avoid infinite loop if any insn of the result matches
3274 the original pattern. */
3275 insn_last = seq;
3276 while (1)
3277 {
3278 if (INSN_P (insn_last)
3279 && rtx_equal_p (PATTERN (insn_last), pat))
3280 return trial;
3281 if (!NEXT_INSN (insn_last))
3282 break;
3283 insn_last = NEXT_INSN (insn_last);
3284 }
3285
3286 /* Mark labels. */
3287 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3288 {
3289 if (GET_CODE (insn) == JUMP_INSN)
3290 {
3291 mark_jump_label (PATTERN (insn), insn, 0);
3292 njumps++;
3293 if (probability != -1
3294 && any_condjump_p (insn)
3295 && !find_reg_note (insn, REG_BR_PROB, 0))
3296 {
3297 /* We can preserve the REG_BR_PROB notes only if exactly
3298 one jump is created, otherwise the machine description
3299 is responsible for this step using
3300 split_branch_probability variable. */
3301 if (njumps != 1)
3302 abort ();
3303 REG_NOTES (insn)
3304 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3305 GEN_INT (probability),
3306 REG_NOTES (insn));
3307 }
3308 }
3309 }
3310
3311 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3312 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3313 if (GET_CODE (trial) == CALL_INSN)
3314 {
3315 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3316 if (GET_CODE (insn) == CALL_INSN)
3317 {
3318 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3319 while (*p)
3320 p = &XEXP (*p, 1);
3321 *p = CALL_INSN_FUNCTION_USAGE (trial);
3322 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3323 }
3324 }
3325
3326 /* Copy notes, particularly those related to the CFG. */
3327 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3328 {
3329 switch (REG_NOTE_KIND (note))
3330 {
3331 case REG_EH_REGION:
3332 insn = insn_last;
3333 while (insn != NULL_RTX)
3334 {
3335 if (GET_CODE (insn) == CALL_INSN
3336 || (flag_non_call_exceptions
3337 && may_trap_p (PATTERN (insn))))
3338 REG_NOTES (insn)
3339 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3340 XEXP (note, 0),
3341 REG_NOTES (insn));
3342 insn = PREV_INSN (insn);
3343 }
3344 break;
3345
3346 case REG_NORETURN:
3347 case REG_SETJMP:
3348 case REG_ALWAYS_RETURN:
3349 insn = insn_last;
3350 while (insn != NULL_RTX)
3351 {
3352 if (GET_CODE (insn) == CALL_INSN)
3353 REG_NOTES (insn)
3354 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3355 XEXP (note, 0),
3356 REG_NOTES (insn));
3357 insn = PREV_INSN (insn);
3358 }
3359 break;
3360
3361 case REG_NON_LOCAL_GOTO:
3362 insn = insn_last;
3363 while (insn != NULL_RTX)
3364 {
3365 if (GET_CODE (insn) == JUMP_INSN)
3366 REG_NOTES (insn)
3367 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3368 XEXP (note, 0),
3369 REG_NOTES (insn));
3370 insn = PREV_INSN (insn);
3371 }
3372 break;
3373
3374 default:
3375 break;
3376 }
3377 }
3378
3379 /* If there are LABELS inside the split insns increment the
3380 usage count so we don't delete the label. */
3381 if (GET_CODE (trial) == INSN)
3382 {
3383 insn = insn_last;
3384 while (insn != NULL_RTX)
3385 {
3386 if (GET_CODE (insn) == INSN)
3387 mark_label_nuses (PATTERN (insn));
3388
3389 insn = PREV_INSN (insn);
3390 }
3391 }
3392
3393 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3394
3395 delete_insn (trial);
3396 if (has_barrier)
3397 emit_barrier_after (tem);
3398
3399 /* Recursively call try_split for each new insn created; by the
3400 time control returns here that insn will be fully split, so
3401 set LAST and continue from the insn after the one returned.
3402 We can't use next_active_insn here since AFTER may be a note.
3403 Ignore deleted insns, which can be occur if not optimizing. */
3404 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3405 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3406 tem = try_split (PATTERN (tem), tem, 1);
3407
3408 /* Return either the first or the last insn, depending on which was
3409 requested. */
3410 return last
3411 ? (after ? PREV_INSN (after) : last_insn)
3412 : NEXT_INSN (before);
3413 }
3414 \f
3415 /* Make and return an INSN rtx, initializing all its slots.
3416 Store PATTERN in the pattern slots. */
3417
3418 rtx
3419 make_insn_raw (rtx pattern)
3420 {
3421 rtx insn;
3422
3423 insn = rtx_alloc (INSN);
3424
3425 INSN_UID (insn) = cur_insn_uid++;
3426 PATTERN (insn) = pattern;
3427 INSN_CODE (insn) = -1;
3428 LOG_LINKS (insn) = NULL;
3429 REG_NOTES (insn) = NULL;
3430 INSN_LOCATOR (insn) = 0;
3431 BLOCK_FOR_INSN (insn) = NULL;
3432
3433 #ifdef ENABLE_RTL_CHECKING
3434 if (insn
3435 && INSN_P (insn)
3436 && (returnjump_p (insn)
3437 || (GET_CODE (insn) == SET
3438 && SET_DEST (insn) == pc_rtx)))
3439 {
3440 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3441 debug_rtx (insn);
3442 }
3443 #endif
3444
3445 return insn;
3446 }
3447
3448 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3449
3450 static rtx
3451 make_jump_insn_raw (rtx pattern)
3452 {
3453 rtx insn;
3454
3455 insn = rtx_alloc (JUMP_INSN);
3456 INSN_UID (insn) = cur_insn_uid++;
3457
3458 PATTERN (insn) = pattern;
3459 INSN_CODE (insn) = -1;
3460 LOG_LINKS (insn) = NULL;
3461 REG_NOTES (insn) = NULL;
3462 JUMP_LABEL (insn) = NULL;
3463 INSN_LOCATOR (insn) = 0;
3464 BLOCK_FOR_INSN (insn) = NULL;
3465
3466 return insn;
3467 }
3468
3469 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3470
3471 static rtx
3472 make_call_insn_raw (rtx pattern)
3473 {
3474 rtx insn;
3475
3476 insn = rtx_alloc (CALL_INSN);
3477 INSN_UID (insn) = cur_insn_uid++;
3478
3479 PATTERN (insn) = pattern;
3480 INSN_CODE (insn) = -1;
3481 LOG_LINKS (insn) = NULL;
3482 REG_NOTES (insn) = NULL;
3483 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3484 INSN_LOCATOR (insn) = 0;
3485 BLOCK_FOR_INSN (insn) = NULL;
3486
3487 return insn;
3488 }
3489 \f
3490 /* Add INSN to the end of the doubly-linked list.
3491 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3492
3493 void
3494 add_insn (rtx insn)
3495 {
3496 PREV_INSN (insn) = last_insn;
3497 NEXT_INSN (insn) = 0;
3498
3499 if (NULL != last_insn)
3500 NEXT_INSN (last_insn) = insn;
3501
3502 if (NULL == first_insn)
3503 first_insn = insn;
3504
3505 last_insn = insn;
3506 }
3507
3508 /* Add INSN into the doubly-linked list after insn AFTER. This and
3509 the next should be the only functions called to insert an insn once
3510 delay slots have been filled since only they know how to update a
3511 SEQUENCE. */
3512
3513 void
3514 add_insn_after (rtx insn, rtx after)
3515 {
3516 rtx next = NEXT_INSN (after);
3517 basic_block bb;
3518
3519 if (optimize && INSN_DELETED_P (after))
3520 abort ();
3521
3522 NEXT_INSN (insn) = next;
3523 PREV_INSN (insn) = after;
3524
3525 if (next)
3526 {
3527 PREV_INSN (next) = insn;
3528 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3529 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3530 }
3531 else if (last_insn == after)
3532 last_insn = insn;
3533 else
3534 {
3535 struct sequence_stack *stack = seq_stack;
3536 /* Scan all pending sequences too. */
3537 for (; stack; stack = stack->next)
3538 if (after == stack->last)
3539 {
3540 stack->last = insn;
3541 break;
3542 }
3543
3544 if (stack == 0)
3545 abort ();
3546 }
3547
3548 if (GET_CODE (after) != BARRIER
3549 && GET_CODE (insn) != BARRIER
3550 && (bb = BLOCK_FOR_INSN (after)))
3551 {
3552 set_block_for_insn (insn, bb);
3553 if (INSN_P (insn))
3554 bb->flags |= BB_DIRTY;
3555 /* Should not happen as first in the BB is always
3556 either NOTE or LABEL. */
3557 if (BB_END (bb) == after
3558 /* Avoid clobbering of structure when creating new BB. */
3559 && GET_CODE (insn) != BARRIER
3560 && (GET_CODE (insn) != NOTE
3561 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3562 BB_END (bb) = insn;
3563 }
3564
3565 NEXT_INSN (after) = insn;
3566 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3567 {
3568 rtx sequence = PATTERN (after);
3569 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3570 }
3571 }
3572
3573 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3574 the previous should be the only functions called to insert an insn once
3575 delay slots have been filled since only they know how to update a
3576 SEQUENCE. */
3577
3578 void
3579 add_insn_before (rtx insn, rtx before)
3580 {
3581 rtx prev = PREV_INSN (before);
3582 basic_block bb;
3583
3584 if (optimize && INSN_DELETED_P (before))
3585 abort ();
3586
3587 PREV_INSN (insn) = prev;
3588 NEXT_INSN (insn) = before;
3589
3590 if (prev)
3591 {
3592 NEXT_INSN (prev) = insn;
3593 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3594 {
3595 rtx sequence = PATTERN (prev);
3596 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3597 }
3598 }
3599 else if (first_insn == before)
3600 first_insn = insn;
3601 else
3602 {
3603 struct sequence_stack *stack = seq_stack;
3604 /* Scan all pending sequences too. */
3605 for (; stack; stack = stack->next)
3606 if (before == stack->first)
3607 {
3608 stack->first = insn;
3609 break;
3610 }
3611
3612 if (stack == 0)
3613 abort ();
3614 }
3615
3616 if (GET_CODE (before) != BARRIER
3617 && GET_CODE (insn) != BARRIER
3618 && (bb = BLOCK_FOR_INSN (before)))
3619 {
3620 set_block_for_insn (insn, bb);
3621 if (INSN_P (insn))
3622 bb->flags |= BB_DIRTY;
3623 /* Should not happen as first in the BB is always
3624 either NOTE or LABEl. */
3625 if (BB_HEAD (bb) == insn
3626 /* Avoid clobbering of structure when creating new BB. */
3627 && GET_CODE (insn) != BARRIER
3628 && (GET_CODE (insn) != NOTE
3629 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3630 abort ();
3631 }
3632
3633 PREV_INSN (before) = insn;
3634 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3635 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3636 }
3637
3638 /* Remove an insn from its doubly-linked list. This function knows how
3639 to handle sequences. */
3640 void
3641 remove_insn (rtx insn)
3642 {
3643 rtx next = NEXT_INSN (insn);
3644 rtx prev = PREV_INSN (insn);
3645 basic_block bb;
3646
3647 if (prev)
3648 {
3649 NEXT_INSN (prev) = next;
3650 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3651 {
3652 rtx sequence = PATTERN (prev);
3653 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3654 }
3655 }
3656 else if (first_insn == insn)
3657 first_insn = next;
3658 else
3659 {
3660 struct sequence_stack *stack = seq_stack;
3661 /* Scan all pending sequences too. */
3662 for (; stack; stack = stack->next)
3663 if (insn == stack->first)
3664 {
3665 stack->first = next;
3666 break;
3667 }
3668
3669 if (stack == 0)
3670 abort ();
3671 }
3672
3673 if (next)
3674 {
3675 PREV_INSN (next) = prev;
3676 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3677 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3678 }
3679 else if (last_insn == insn)
3680 last_insn = prev;
3681 else
3682 {
3683 struct sequence_stack *stack = seq_stack;
3684 /* Scan all pending sequences too. */
3685 for (; stack; stack = stack->next)
3686 if (insn == stack->last)
3687 {
3688 stack->last = prev;
3689 break;
3690 }
3691
3692 if (stack == 0)
3693 abort ();
3694 }
3695 if (GET_CODE (insn) != BARRIER
3696 && (bb = BLOCK_FOR_INSN (insn)))
3697 {
3698 if (INSN_P (insn))
3699 bb->flags |= BB_DIRTY;
3700 if (BB_HEAD (bb) == insn)
3701 {
3702 /* Never ever delete the basic block note without deleting whole
3703 basic block. */
3704 if (GET_CODE (insn) == NOTE)
3705 abort ();
3706 BB_HEAD (bb) = next;
3707 }
3708 if (BB_END (bb) == insn)
3709 BB_END (bb) = prev;
3710 }
3711 }
3712
3713 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3714
3715 void
3716 add_function_usage_to (rtx call_insn, rtx call_fusage)
3717 {
3718 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3719 abort ();
3720
3721 /* Put the register usage information on the CALL. If there is already
3722 some usage information, put ours at the end. */
3723 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3724 {
3725 rtx link;
3726
3727 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3728 link = XEXP (link, 1))
3729 ;
3730
3731 XEXP (link, 1) = call_fusage;
3732 }
3733 else
3734 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3735 }
3736
3737 /* Delete all insns made since FROM.
3738 FROM becomes the new last instruction. */
3739
3740 void
3741 delete_insns_since (rtx from)
3742 {
3743 if (from == 0)
3744 first_insn = 0;
3745 else
3746 NEXT_INSN (from) = 0;
3747 last_insn = from;
3748 }
3749
3750 /* This function is deprecated, please use sequences instead.
3751
3752 Move a consecutive bunch of insns to a different place in the chain.
3753 The insns to be moved are those between FROM and TO.
3754 They are moved to a new position after the insn AFTER.
3755 AFTER must not be FROM or TO or any insn in between.
3756
3757 This function does not know about SEQUENCEs and hence should not be
3758 called after delay-slot filling has been done. */
3759
3760 void
3761 reorder_insns_nobb (rtx from, rtx to, rtx after)
3762 {
3763 /* Splice this bunch out of where it is now. */
3764 if (PREV_INSN (from))
3765 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3766 if (NEXT_INSN (to))
3767 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3768 if (last_insn == to)
3769 last_insn = PREV_INSN (from);
3770 if (first_insn == from)
3771 first_insn = NEXT_INSN (to);
3772
3773 /* Make the new neighbors point to it and it to them. */
3774 if (NEXT_INSN (after))
3775 PREV_INSN (NEXT_INSN (after)) = to;
3776
3777 NEXT_INSN (to) = NEXT_INSN (after);
3778 PREV_INSN (from) = after;
3779 NEXT_INSN (after) = from;
3780 if (after == last_insn)
3781 last_insn = to;
3782 }
3783
3784 /* Same as function above, but take care to update BB boundaries. */
3785 void
3786 reorder_insns (rtx from, rtx to, rtx after)
3787 {
3788 rtx prev = PREV_INSN (from);
3789 basic_block bb, bb2;
3790
3791 reorder_insns_nobb (from, to, after);
3792
3793 if (GET_CODE (after) != BARRIER
3794 && (bb = BLOCK_FOR_INSN (after)))
3795 {
3796 rtx x;
3797 bb->flags |= BB_DIRTY;
3798
3799 if (GET_CODE (from) != BARRIER
3800 && (bb2 = BLOCK_FOR_INSN (from)))
3801 {
3802 if (BB_END (bb2) == to)
3803 BB_END (bb2) = prev;
3804 bb2->flags |= BB_DIRTY;
3805 }
3806
3807 if (BB_END (bb) == after)
3808 BB_END (bb) = to;
3809
3810 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3811 set_block_for_insn (x, bb);
3812 }
3813 }
3814
3815 /* Return the line note insn preceding INSN. */
3816
3817 static rtx
3818 find_line_note (rtx insn)
3819 {
3820 if (no_line_numbers)
3821 return 0;
3822
3823 for (; insn; insn = PREV_INSN (insn))
3824 if (GET_CODE (insn) == NOTE
3825 && NOTE_LINE_NUMBER (insn) >= 0)
3826 break;
3827
3828 return insn;
3829 }
3830
3831 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3832 of the moved insns when debugging. This may insert a note between AFTER
3833 and FROM, and another one after TO. */
3834
3835 void
3836 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
3837 {
3838 rtx from_line = find_line_note (from);
3839 rtx after_line = find_line_note (after);
3840
3841 reorder_insns (from, to, after);
3842
3843 if (from_line == after_line)
3844 return;
3845
3846 if (from_line)
3847 emit_note_copy_after (from_line, after);
3848 if (after_line)
3849 emit_note_copy_after (after_line, to);
3850 }
3851
3852 /* Remove unnecessary notes from the instruction stream. */
3853
3854 void
3855 remove_unnecessary_notes (void)
3856 {
3857 rtx block_stack = NULL_RTX;
3858 rtx eh_stack = NULL_RTX;
3859 rtx insn;
3860 rtx next;
3861 rtx tmp;
3862
3863 /* We must not remove the first instruction in the function because
3864 the compiler depends on the first instruction being a note. */
3865 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3866 {
3867 /* Remember what's next. */
3868 next = NEXT_INSN (insn);
3869
3870 /* We're only interested in notes. */
3871 if (GET_CODE (insn) != NOTE)
3872 continue;
3873
3874 switch (NOTE_LINE_NUMBER (insn))
3875 {
3876 case NOTE_INSN_DELETED:
3877 case NOTE_INSN_LOOP_END_TOP_COND:
3878 remove_insn (insn);
3879 break;
3880
3881 case NOTE_INSN_EH_REGION_BEG:
3882 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3883 break;
3884
3885 case NOTE_INSN_EH_REGION_END:
3886 /* Too many end notes. */
3887 if (eh_stack == NULL_RTX)
3888 abort ();
3889 /* Mismatched nesting. */
3890 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3891 abort ();
3892 tmp = eh_stack;
3893 eh_stack = XEXP (eh_stack, 1);
3894 free_INSN_LIST_node (tmp);
3895 break;
3896
3897 case NOTE_INSN_BLOCK_BEG:
3898 /* By now, all notes indicating lexical blocks should have
3899 NOTE_BLOCK filled in. */
3900 if (NOTE_BLOCK (insn) == NULL_TREE)
3901 abort ();
3902 block_stack = alloc_INSN_LIST (insn, block_stack);
3903 break;
3904
3905 case NOTE_INSN_BLOCK_END:
3906 /* Too many end notes. */
3907 if (block_stack == NULL_RTX)
3908 abort ();
3909 /* Mismatched nesting. */
3910 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3911 abort ();
3912 tmp = block_stack;
3913 block_stack = XEXP (block_stack, 1);
3914 free_INSN_LIST_node (tmp);
3915
3916 /* Scan back to see if there are any non-note instructions
3917 between INSN and the beginning of this block. If not,
3918 then there is no PC range in the generated code that will
3919 actually be in this block, so there's no point in
3920 remembering the existence of the block. */
3921 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3922 {
3923 /* This block contains a real instruction. Note that we
3924 don't include labels; if the only thing in the block
3925 is a label, then there are still no PC values that
3926 lie within the block. */
3927 if (INSN_P (tmp))
3928 break;
3929
3930 /* We're only interested in NOTEs. */
3931 if (GET_CODE (tmp) != NOTE)
3932 continue;
3933
3934 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3935 {
3936 /* We just verified that this BLOCK matches us with
3937 the block_stack check above. Never delete the
3938 BLOCK for the outermost scope of the function; we
3939 can refer to names from that scope even if the
3940 block notes are messed up. */
3941 if (! is_body_block (NOTE_BLOCK (insn))
3942 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3943 {
3944 remove_insn (tmp);
3945 remove_insn (insn);
3946 }
3947 break;
3948 }
3949 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3950 /* There's a nested block. We need to leave the
3951 current block in place since otherwise the debugger
3952 wouldn't be able to show symbols from our block in
3953 the nested block. */
3954 break;
3955 }
3956 }
3957 }
3958
3959 /* Too many begin notes. */
3960 if (block_stack || eh_stack)
3961 abort ();
3962 }
3963
3964 \f
3965 /* Emit insn(s) of given code and pattern
3966 at a specified place within the doubly-linked list.
3967
3968 All of the emit_foo global entry points accept an object
3969 X which is either an insn list or a PATTERN of a single
3970 instruction.
3971
3972 There are thus a few canonical ways to generate code and
3973 emit it at a specific place in the instruction stream. For
3974 example, consider the instruction named SPOT and the fact that
3975 we would like to emit some instructions before SPOT. We might
3976 do it like this:
3977
3978 start_sequence ();
3979 ... emit the new instructions ...
3980 insns_head = get_insns ();
3981 end_sequence ();
3982
3983 emit_insn_before (insns_head, SPOT);
3984
3985 It used to be common to generate SEQUENCE rtl instead, but that
3986 is a relic of the past which no longer occurs. The reason is that
3987 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3988 generated would almost certainly die right after it was created. */
3989
3990 /* Make X be output before the instruction BEFORE. */
3991
3992 rtx
3993 emit_insn_before (rtx x, rtx before)
3994 {
3995 rtx last = before;
3996 rtx insn;
3997
3998 #ifdef ENABLE_RTL_CHECKING
3999 if (before == NULL_RTX)
4000 abort ();
4001 #endif
4002
4003 if (x == NULL_RTX)
4004 return last;
4005
4006 switch (GET_CODE (x))
4007 {
4008 case INSN:
4009 case JUMP_INSN:
4010 case CALL_INSN:
4011 case CODE_LABEL:
4012 case BARRIER:
4013 case NOTE:
4014 insn = x;
4015 while (insn)
4016 {
4017 rtx next = NEXT_INSN (insn);
4018 add_insn_before (insn, before);
4019 last = insn;
4020 insn = next;
4021 }
4022 break;
4023
4024 #ifdef ENABLE_RTL_CHECKING
4025 case SEQUENCE:
4026 abort ();
4027 break;
4028 #endif
4029
4030 default:
4031 last = make_insn_raw (x);
4032 add_insn_before (last, before);
4033 break;
4034 }
4035
4036 return last;
4037 }
4038
4039 /* Make an instruction with body X and code JUMP_INSN
4040 and output it before the instruction BEFORE. */
4041
4042 rtx
4043 emit_jump_insn_before (rtx x, rtx before)
4044 {
4045 rtx insn, last = NULL_RTX;
4046
4047 #ifdef ENABLE_RTL_CHECKING
4048 if (before == NULL_RTX)
4049 abort ();
4050 #endif
4051
4052 switch (GET_CODE (x))
4053 {
4054 case INSN:
4055 case JUMP_INSN:
4056 case CALL_INSN:
4057 case CODE_LABEL:
4058 case BARRIER:
4059 case NOTE:
4060 insn = x;
4061 while (insn)
4062 {
4063 rtx next = NEXT_INSN (insn);
4064 add_insn_before (insn, before);
4065 last = insn;
4066 insn = next;
4067 }
4068 break;
4069
4070 #ifdef ENABLE_RTL_CHECKING
4071 case SEQUENCE:
4072 abort ();
4073 break;
4074 #endif
4075
4076 default:
4077 last = make_jump_insn_raw (x);
4078 add_insn_before (last, before);
4079 break;
4080 }
4081
4082 return last;
4083 }
4084
4085 /* Make an instruction with body X and code CALL_INSN
4086 and output it before the instruction BEFORE. */
4087
4088 rtx
4089 emit_call_insn_before (rtx x, rtx before)
4090 {
4091 rtx last = NULL_RTX, insn;
4092
4093 #ifdef ENABLE_RTL_CHECKING
4094 if (before == NULL_RTX)
4095 abort ();
4096 #endif
4097
4098 switch (GET_CODE (x))
4099 {
4100 case INSN:
4101 case JUMP_INSN:
4102 case CALL_INSN:
4103 case CODE_LABEL:
4104 case BARRIER:
4105 case NOTE:
4106 insn = x;
4107 while (insn)
4108 {
4109 rtx next = NEXT_INSN (insn);
4110 add_insn_before (insn, before);
4111 last = insn;
4112 insn = next;
4113 }
4114 break;
4115
4116 #ifdef ENABLE_RTL_CHECKING
4117 case SEQUENCE:
4118 abort ();
4119 break;
4120 #endif
4121
4122 default:
4123 last = make_call_insn_raw (x);
4124 add_insn_before (last, before);
4125 break;
4126 }
4127
4128 return last;
4129 }
4130
4131 /* Make an insn of code BARRIER
4132 and output it before the insn BEFORE. */
4133
4134 rtx
4135 emit_barrier_before (rtx before)
4136 {
4137 rtx insn = rtx_alloc (BARRIER);
4138
4139 INSN_UID (insn) = cur_insn_uid++;
4140
4141 add_insn_before (insn, before);
4142 return insn;
4143 }
4144
4145 /* Emit the label LABEL before the insn BEFORE. */
4146
4147 rtx
4148 emit_label_before (rtx label, rtx before)
4149 {
4150 /* This can be called twice for the same label as a result of the
4151 confusion that follows a syntax error! So make it harmless. */
4152 if (INSN_UID (label) == 0)
4153 {
4154 INSN_UID (label) = cur_insn_uid++;
4155 add_insn_before (label, before);
4156 }
4157
4158 return label;
4159 }
4160
4161 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4162
4163 rtx
4164 emit_note_before (int subtype, rtx before)
4165 {
4166 rtx note = rtx_alloc (NOTE);
4167 INSN_UID (note) = cur_insn_uid++;
4168 NOTE_SOURCE_FILE (note) = 0;
4169 NOTE_LINE_NUMBER (note) = subtype;
4170 BLOCK_FOR_INSN (note) = NULL;
4171
4172 add_insn_before (note, before);
4173 return note;
4174 }
4175 \f
4176 /* Helper for emit_insn_after, handles lists of instructions
4177 efficiently. */
4178
4179 static rtx emit_insn_after_1 (rtx, rtx);
4180
4181 static rtx
4182 emit_insn_after_1 (rtx first, rtx after)
4183 {
4184 rtx last;
4185 rtx after_after;
4186 basic_block bb;
4187
4188 if (GET_CODE (after) != BARRIER
4189 && (bb = BLOCK_FOR_INSN (after)))
4190 {
4191 bb->flags |= BB_DIRTY;
4192 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4193 if (GET_CODE (last) != BARRIER)
4194 set_block_for_insn (last, bb);
4195 if (GET_CODE (last) != BARRIER)
4196 set_block_for_insn (last, bb);
4197 if (BB_END (bb) == after)
4198 BB_END (bb) = last;
4199 }
4200 else
4201 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4202 continue;
4203
4204 after_after = NEXT_INSN (after);
4205
4206 NEXT_INSN (after) = first;
4207 PREV_INSN (first) = after;
4208 NEXT_INSN (last) = after_after;
4209 if (after_after)
4210 PREV_INSN (after_after) = last;
4211
4212 if (after == last_insn)
4213 last_insn = last;
4214 return last;
4215 }
4216
4217 /* Make X be output after the insn AFTER. */
4218
4219 rtx
4220 emit_insn_after (rtx x, rtx after)
4221 {
4222 rtx last = after;
4223
4224 #ifdef ENABLE_RTL_CHECKING
4225 if (after == NULL_RTX)
4226 abort ();
4227 #endif
4228
4229 if (x == NULL_RTX)
4230 return last;
4231
4232 switch (GET_CODE (x))
4233 {
4234 case INSN:
4235 case JUMP_INSN:
4236 case CALL_INSN:
4237 case CODE_LABEL:
4238 case BARRIER:
4239 case NOTE:
4240 last = emit_insn_after_1 (x, after);
4241 break;
4242
4243 #ifdef ENABLE_RTL_CHECKING
4244 case SEQUENCE:
4245 abort ();
4246 break;
4247 #endif
4248
4249 default:
4250 last = make_insn_raw (x);
4251 add_insn_after (last, after);
4252 break;
4253 }
4254
4255 return last;
4256 }
4257
4258 /* Similar to emit_insn_after, except that line notes are to be inserted so
4259 as to act as if this insn were at FROM. */
4260
4261 void
4262 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4263 {
4264 rtx from_line = find_line_note (from);
4265 rtx after_line = find_line_note (after);
4266 rtx insn = emit_insn_after (x, after);
4267
4268 if (from_line)
4269 emit_note_copy_after (from_line, after);
4270
4271 if (after_line)
4272 emit_note_copy_after (after_line, insn);
4273 }
4274
4275 /* Make an insn of code JUMP_INSN with body X
4276 and output it after the insn AFTER. */
4277
4278 rtx
4279 emit_jump_insn_after (rtx x, rtx after)
4280 {
4281 rtx last;
4282
4283 #ifdef ENABLE_RTL_CHECKING
4284 if (after == NULL_RTX)
4285 abort ();
4286 #endif
4287
4288 switch (GET_CODE (x))
4289 {
4290 case INSN:
4291 case JUMP_INSN:
4292 case CALL_INSN:
4293 case CODE_LABEL:
4294 case BARRIER:
4295 case NOTE:
4296 last = emit_insn_after_1 (x, after);
4297 break;
4298
4299 #ifdef ENABLE_RTL_CHECKING
4300 case SEQUENCE:
4301 abort ();
4302 break;
4303 #endif
4304
4305 default:
4306 last = make_jump_insn_raw (x);
4307 add_insn_after (last, after);
4308 break;
4309 }
4310
4311 return last;
4312 }
4313
4314 /* Make an instruction with body X and code CALL_INSN
4315 and output it after the instruction AFTER. */
4316
4317 rtx
4318 emit_call_insn_after (rtx x, rtx after)
4319 {
4320 rtx last;
4321
4322 #ifdef ENABLE_RTL_CHECKING
4323 if (after == NULL_RTX)
4324 abort ();
4325 #endif
4326
4327 switch (GET_CODE (x))
4328 {
4329 case INSN:
4330 case JUMP_INSN:
4331 case CALL_INSN:
4332 case CODE_LABEL:
4333 case BARRIER:
4334 case NOTE:
4335 last = emit_insn_after_1 (x, after);
4336 break;
4337
4338 #ifdef ENABLE_RTL_CHECKING
4339 case SEQUENCE:
4340 abort ();
4341 break;
4342 #endif
4343
4344 default:
4345 last = make_call_insn_raw (x);
4346 add_insn_after (last, after);
4347 break;
4348 }
4349
4350 return last;
4351 }
4352
4353 /* Make an insn of code BARRIER
4354 and output it after the insn AFTER. */
4355
4356 rtx
4357 emit_barrier_after (rtx after)
4358 {
4359 rtx insn = rtx_alloc (BARRIER);
4360
4361 INSN_UID (insn) = cur_insn_uid++;
4362
4363 add_insn_after (insn, after);
4364 return insn;
4365 }
4366
4367 /* Emit the label LABEL after the insn AFTER. */
4368
4369 rtx
4370 emit_label_after (rtx label, rtx after)
4371 {
4372 /* This can be called twice for the same label
4373 as a result of the confusion that follows a syntax error!
4374 So make it harmless. */
4375 if (INSN_UID (label) == 0)
4376 {
4377 INSN_UID (label) = cur_insn_uid++;
4378 add_insn_after (label, after);
4379 }
4380
4381 return label;
4382 }
4383
4384 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4385
4386 rtx
4387 emit_note_after (int subtype, rtx after)
4388 {
4389 rtx note = rtx_alloc (NOTE);
4390 INSN_UID (note) = cur_insn_uid++;
4391 NOTE_SOURCE_FILE (note) = 0;
4392 NOTE_LINE_NUMBER (note) = subtype;
4393 BLOCK_FOR_INSN (note) = NULL;
4394 add_insn_after (note, after);
4395 return note;
4396 }
4397
4398 /* Emit a copy of note ORIG after the insn AFTER. */
4399
4400 rtx
4401 emit_note_copy_after (rtx orig, rtx after)
4402 {
4403 rtx note;
4404
4405 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4406 {
4407 cur_insn_uid++;
4408 return 0;
4409 }
4410
4411 note = rtx_alloc (NOTE);
4412 INSN_UID (note) = cur_insn_uid++;
4413 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4414 NOTE_DATA (note) = NOTE_DATA (orig);
4415 BLOCK_FOR_INSN (note) = NULL;
4416 add_insn_after (note, after);
4417 return note;
4418 }
4419 \f
4420 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4421 rtx
4422 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4423 {
4424 rtx last = emit_insn_after (pattern, after);
4425
4426 if (pattern == NULL_RTX)
4427 return last;
4428
4429 after = NEXT_INSN (after);
4430 while (1)
4431 {
4432 if (active_insn_p (after))
4433 INSN_LOCATOR (after) = loc;
4434 if (after == last)
4435 break;
4436 after = NEXT_INSN (after);
4437 }
4438 return last;
4439 }
4440
4441 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4442 rtx
4443 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4444 {
4445 rtx last = emit_jump_insn_after (pattern, after);
4446
4447 if (pattern == NULL_RTX)
4448 return last;
4449
4450 after = NEXT_INSN (after);
4451 while (1)
4452 {
4453 if (active_insn_p (after))
4454 INSN_LOCATOR (after) = loc;
4455 if (after == last)
4456 break;
4457 after = NEXT_INSN (after);
4458 }
4459 return last;
4460 }
4461
4462 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4463 rtx
4464 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4465 {
4466 rtx last = emit_call_insn_after (pattern, after);
4467
4468 if (pattern == NULL_RTX)
4469 return last;
4470
4471 after = NEXT_INSN (after);
4472 while (1)
4473 {
4474 if (active_insn_p (after))
4475 INSN_LOCATOR (after) = loc;
4476 if (after == last)
4477 break;
4478 after = NEXT_INSN (after);
4479 }
4480 return last;
4481 }
4482
4483 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4484 rtx
4485 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4486 {
4487 rtx first = PREV_INSN (before);
4488 rtx last = emit_insn_before (pattern, before);
4489
4490 if (pattern == NULL_RTX)
4491 return last;
4492
4493 first = NEXT_INSN (first);
4494 while (1)
4495 {
4496 if (active_insn_p (first))
4497 INSN_LOCATOR (first) = loc;
4498 if (first == last)
4499 break;
4500 first = NEXT_INSN (first);
4501 }
4502 return last;
4503 }
4504 \f
4505 /* Take X and emit it at the end of the doubly-linked
4506 INSN list.
4507
4508 Returns the last insn emitted. */
4509
4510 rtx
4511 emit_insn (rtx x)
4512 {
4513 rtx last = last_insn;
4514 rtx insn;
4515
4516 if (x == NULL_RTX)
4517 return last;
4518
4519 switch (GET_CODE (x))
4520 {
4521 case INSN:
4522 case JUMP_INSN:
4523 case CALL_INSN:
4524 case CODE_LABEL:
4525 case BARRIER:
4526 case NOTE:
4527 insn = x;
4528 while (insn)
4529 {
4530 rtx next = NEXT_INSN (insn);
4531 add_insn (insn);
4532 last = insn;
4533 insn = next;
4534 }
4535 break;
4536
4537 #ifdef ENABLE_RTL_CHECKING
4538 case SEQUENCE:
4539 abort ();
4540 break;
4541 #endif
4542
4543 default:
4544 last = make_insn_raw (x);
4545 add_insn (last);
4546 break;
4547 }
4548
4549 return last;
4550 }
4551
4552 /* Make an insn of code JUMP_INSN with pattern X
4553 and add it to the end of the doubly-linked list. */
4554
4555 rtx
4556 emit_jump_insn (rtx x)
4557 {
4558 rtx last = NULL_RTX, insn;
4559
4560 switch (GET_CODE (x))
4561 {
4562 case INSN:
4563 case JUMP_INSN:
4564 case CALL_INSN:
4565 case CODE_LABEL:
4566 case BARRIER:
4567 case NOTE:
4568 insn = x;
4569 while (insn)
4570 {
4571 rtx next = NEXT_INSN (insn);
4572 add_insn (insn);
4573 last = insn;
4574 insn = next;
4575 }
4576 break;
4577
4578 #ifdef ENABLE_RTL_CHECKING
4579 case SEQUENCE:
4580 abort ();
4581 break;
4582 #endif
4583
4584 default:
4585 last = make_jump_insn_raw (x);
4586 add_insn (last);
4587 break;
4588 }
4589
4590 return last;
4591 }
4592
4593 /* Make an insn of code CALL_INSN with pattern X
4594 and add it to the end of the doubly-linked list. */
4595
4596 rtx
4597 emit_call_insn (rtx x)
4598 {
4599 rtx insn;
4600
4601 switch (GET_CODE (x))
4602 {
4603 case INSN:
4604 case JUMP_INSN:
4605 case CALL_INSN:
4606 case CODE_LABEL:
4607 case BARRIER:
4608 case NOTE:
4609 insn = emit_insn (x);
4610 break;
4611
4612 #ifdef ENABLE_RTL_CHECKING
4613 case SEQUENCE:
4614 abort ();
4615 break;
4616 #endif
4617
4618 default:
4619 insn = make_call_insn_raw (x);
4620 add_insn (insn);
4621 break;
4622 }
4623
4624 return insn;
4625 }
4626
4627 /* Add the label LABEL to the end of the doubly-linked list. */
4628
4629 rtx
4630 emit_label (rtx label)
4631 {
4632 /* This can be called twice for the same label
4633 as a result of the confusion that follows a syntax error!
4634 So make it harmless. */
4635 if (INSN_UID (label) == 0)
4636 {
4637 INSN_UID (label) = cur_insn_uid++;
4638 add_insn (label);
4639 }
4640 return label;
4641 }
4642
4643 /* Make an insn of code BARRIER
4644 and add it to the end of the doubly-linked list. */
4645
4646 rtx
4647 emit_barrier (void)
4648 {
4649 rtx barrier = rtx_alloc (BARRIER);
4650 INSN_UID (barrier) = cur_insn_uid++;
4651 add_insn (barrier);
4652 return barrier;
4653 }
4654
4655 /* Make line numbering NOTE insn for LOCATION add it to the end
4656 of the doubly-linked list, but only if line-numbers are desired for
4657 debugging info and it doesn't match the previous one. */
4658
4659 rtx
4660 emit_line_note (location_t location)
4661 {
4662 rtx note;
4663
4664 set_file_and_line_for_stmt (location);
4665
4666 if (location.file && last_location.file
4667 && !strcmp (location.file, last_location.file)
4668 && location.line == last_location.line)
4669 return NULL_RTX;
4670 last_location = location;
4671
4672 if (no_line_numbers)
4673 {
4674 cur_insn_uid++;
4675 return NULL_RTX;
4676 }
4677
4678 note = emit_note (location.line);
4679 NOTE_SOURCE_FILE (note) = location.file;
4680
4681 return note;
4682 }
4683
4684 /* Emit a copy of note ORIG. */
4685
4686 rtx
4687 emit_note_copy (rtx orig)
4688 {
4689 rtx note;
4690
4691 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4692 {
4693 cur_insn_uid++;
4694 return NULL_RTX;
4695 }
4696
4697 note = rtx_alloc (NOTE);
4698
4699 INSN_UID (note) = cur_insn_uid++;
4700 NOTE_DATA (note) = NOTE_DATA (orig);
4701 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4702 BLOCK_FOR_INSN (note) = NULL;
4703 add_insn (note);
4704
4705 return note;
4706 }
4707
4708 /* Make an insn of code NOTE or type NOTE_NO
4709 and add it to the end of the doubly-linked list. */
4710
4711 rtx
4712 emit_note (int note_no)
4713 {
4714 rtx note;
4715
4716 note = rtx_alloc (NOTE);
4717 INSN_UID (note) = cur_insn_uid++;
4718 NOTE_LINE_NUMBER (note) = note_no;
4719 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4720 BLOCK_FOR_INSN (note) = NULL;
4721 add_insn (note);
4722 return note;
4723 }
4724
4725 /* Cause next statement to emit a line note even if the line number
4726 has not changed. */
4727
4728 void
4729 force_next_line_note (void)
4730 {
4731 last_location.line = -1;
4732 }
4733
4734 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4735 note of this type already exists, remove it first. */
4736
4737 rtx
4738 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4739 {
4740 rtx note = find_reg_note (insn, kind, NULL_RTX);
4741
4742 switch (kind)
4743 {
4744 case REG_EQUAL:
4745 case REG_EQUIV:
4746 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4747 has multiple sets (some callers assume single_set
4748 means the insn only has one set, when in fact it
4749 means the insn only has one * useful * set). */
4750 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4751 {
4752 if (note)
4753 abort ();
4754 return NULL_RTX;
4755 }
4756
4757 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4758 It serves no useful purpose and breaks eliminate_regs. */
4759 if (GET_CODE (datum) == ASM_OPERANDS)
4760 return NULL_RTX;
4761 break;
4762
4763 default:
4764 break;
4765 }
4766
4767 if (note)
4768 {
4769 XEXP (note, 0) = datum;
4770 return note;
4771 }
4772
4773 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4774 return REG_NOTES (insn);
4775 }
4776 \f
4777 /* Return an indication of which type of insn should have X as a body.
4778 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4779
4780 enum rtx_code
4781 classify_insn (rtx x)
4782 {
4783 if (GET_CODE (x) == CODE_LABEL)
4784 return CODE_LABEL;
4785 if (GET_CODE (x) == CALL)
4786 return CALL_INSN;
4787 if (GET_CODE (x) == RETURN)
4788 return JUMP_INSN;
4789 if (GET_CODE (x) == SET)
4790 {
4791 if (SET_DEST (x) == pc_rtx)
4792 return JUMP_INSN;
4793 else if (GET_CODE (SET_SRC (x)) == CALL)
4794 return CALL_INSN;
4795 else
4796 return INSN;
4797 }
4798 if (GET_CODE (x) == PARALLEL)
4799 {
4800 int j;
4801 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4802 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4803 return CALL_INSN;
4804 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4805 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4806 return JUMP_INSN;
4807 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4808 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4809 return CALL_INSN;
4810 }
4811 return INSN;
4812 }
4813
4814 /* Emit the rtl pattern X as an appropriate kind of insn.
4815 If X is a label, it is simply added into the insn chain. */
4816
4817 rtx
4818 emit (rtx x)
4819 {
4820 enum rtx_code code = classify_insn (x);
4821
4822 if (code == CODE_LABEL)
4823 return emit_label (x);
4824 else if (code == INSN)
4825 return emit_insn (x);
4826 else if (code == JUMP_INSN)
4827 {
4828 rtx insn = emit_jump_insn (x);
4829 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4830 return emit_barrier ();
4831 return insn;
4832 }
4833 else if (code == CALL_INSN)
4834 return emit_call_insn (x);
4835 else
4836 abort ();
4837 }
4838 \f
4839 /* Space for free sequence stack entries. */
4840 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4841
4842 /* Begin emitting insns to a sequence which can be packaged in an
4843 RTL_EXPR. If this sequence will contain something that might cause
4844 the compiler to pop arguments to function calls (because those
4845 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4846 details), use do_pending_stack_adjust before calling this function.
4847 That will ensure that the deferred pops are not accidentally
4848 emitted in the middle of this sequence. */
4849
4850 void
4851 start_sequence (void)
4852 {
4853 struct sequence_stack *tem;
4854
4855 if (free_sequence_stack != NULL)
4856 {
4857 tem = free_sequence_stack;
4858 free_sequence_stack = tem->next;
4859 }
4860 else
4861 tem = ggc_alloc (sizeof (struct sequence_stack));
4862
4863 tem->next = seq_stack;
4864 tem->first = first_insn;
4865 tem->last = last_insn;
4866 tem->sequence_rtl_expr = seq_rtl_expr;
4867
4868 seq_stack = tem;
4869
4870 first_insn = 0;
4871 last_insn = 0;
4872 }
4873
4874 /* Similarly, but indicate that this sequence will be placed in T, an
4875 RTL_EXPR. See the documentation for start_sequence for more
4876 information about how to use this function. */
4877
4878 void
4879 start_sequence_for_rtl_expr (tree t)
4880 {
4881 start_sequence ();
4882
4883 seq_rtl_expr = t;
4884 }
4885
4886 /* Set up the insn chain starting with FIRST as the current sequence,
4887 saving the previously current one. See the documentation for
4888 start_sequence for more information about how to use this function. */
4889
4890 void
4891 push_to_sequence (rtx first)
4892 {
4893 rtx last;
4894
4895 start_sequence ();
4896
4897 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4898
4899 first_insn = first;
4900 last_insn = last;
4901 }
4902
4903 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4904
4905 void
4906 push_to_full_sequence (rtx first, rtx last)
4907 {
4908 start_sequence ();
4909 first_insn = first;
4910 last_insn = last;
4911 /* We really should have the end of the insn chain here. */
4912 if (last && NEXT_INSN (last))
4913 abort ();
4914 }
4915
4916 /* Set up the outer-level insn chain
4917 as the current sequence, saving the previously current one. */
4918
4919 void
4920 push_topmost_sequence (void)
4921 {
4922 struct sequence_stack *stack, *top = NULL;
4923
4924 start_sequence ();
4925
4926 for (stack = seq_stack; stack; stack = stack->next)
4927 top = stack;
4928
4929 first_insn = top->first;
4930 last_insn = top->last;
4931 seq_rtl_expr = top->sequence_rtl_expr;
4932 }
4933
4934 /* After emitting to the outer-level insn chain, update the outer-level
4935 insn chain, and restore the previous saved state. */
4936
4937 void
4938 pop_topmost_sequence (void)
4939 {
4940 struct sequence_stack *stack, *top = NULL;
4941
4942 for (stack = seq_stack; stack; stack = stack->next)
4943 top = stack;
4944
4945 top->first = first_insn;
4946 top->last = last_insn;
4947 /* ??? Why don't we save seq_rtl_expr here? */
4948
4949 end_sequence ();
4950 }
4951
4952 /* After emitting to a sequence, restore previous saved state.
4953
4954 To get the contents of the sequence just made, you must call
4955 `get_insns' *before* calling here.
4956
4957 If the compiler might have deferred popping arguments while
4958 generating this sequence, and this sequence will not be immediately
4959 inserted into the instruction stream, use do_pending_stack_adjust
4960 before calling get_insns. That will ensure that the deferred
4961 pops are inserted into this sequence, and not into some random
4962 location in the instruction stream. See INHIBIT_DEFER_POP for more
4963 information about deferred popping of arguments. */
4964
4965 void
4966 end_sequence (void)
4967 {
4968 struct sequence_stack *tem = seq_stack;
4969
4970 first_insn = tem->first;
4971 last_insn = tem->last;
4972 seq_rtl_expr = tem->sequence_rtl_expr;
4973 seq_stack = tem->next;
4974
4975 memset (tem, 0, sizeof (*tem));
4976 tem->next = free_sequence_stack;
4977 free_sequence_stack = tem;
4978 }
4979
4980 /* This works like end_sequence, but records the old sequence in FIRST
4981 and LAST. */
4982
4983 void
4984 end_full_sequence (rtx *first, rtx *last)
4985 {
4986 *first = first_insn;
4987 *last = last_insn;
4988 end_sequence ();
4989 }
4990
4991 /* Return 1 if currently emitting into a sequence. */
4992
4993 int
4994 in_sequence_p (void)
4995 {
4996 return seq_stack != 0;
4997 }
4998 \f
4999 /* Put the various virtual registers into REGNO_REG_RTX. */
5000
5001 void
5002 init_virtual_regs (struct emit_status *es)
5003 {
5004 rtx *ptr = es->x_regno_reg_rtx;
5005 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5006 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5007 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5008 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5009 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5010 }
5011
5012 \f
5013 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5014 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5015 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5016 static int copy_insn_n_scratches;
5017
5018 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5019 copied an ASM_OPERANDS.
5020 In that case, it is the original input-operand vector. */
5021 static rtvec orig_asm_operands_vector;
5022
5023 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5024 copied an ASM_OPERANDS.
5025 In that case, it is the copied input-operand vector. */
5026 static rtvec copy_asm_operands_vector;
5027
5028 /* Likewise for the constraints vector. */
5029 static rtvec orig_asm_constraints_vector;
5030 static rtvec copy_asm_constraints_vector;
5031
5032 /* Recursively create a new copy of an rtx for copy_insn.
5033 This function differs from copy_rtx in that it handles SCRATCHes and
5034 ASM_OPERANDs properly.
5035 Normally, this function is not used directly; use copy_insn as front end.
5036 However, you could first copy an insn pattern with copy_insn and then use
5037 this function afterwards to properly copy any REG_NOTEs containing
5038 SCRATCHes. */
5039
5040 rtx
5041 copy_insn_1 (rtx orig)
5042 {
5043 rtx copy;
5044 int i, j;
5045 RTX_CODE code;
5046 const char *format_ptr;
5047
5048 code = GET_CODE (orig);
5049
5050 switch (code)
5051 {
5052 case REG:
5053 case QUEUED:
5054 case CONST_INT:
5055 case CONST_DOUBLE:
5056 case CONST_VECTOR:
5057 case SYMBOL_REF:
5058 case CODE_LABEL:
5059 case PC:
5060 case CC0:
5061 case ADDRESSOF:
5062 return orig;
5063 case CLOBBER:
5064 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5065 return orig;
5066 break;
5067
5068 case SCRATCH:
5069 for (i = 0; i < copy_insn_n_scratches; i++)
5070 if (copy_insn_scratch_in[i] == orig)
5071 return copy_insn_scratch_out[i];
5072 break;
5073
5074 case CONST:
5075 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5076 a LABEL_REF, it isn't sharable. */
5077 if (GET_CODE (XEXP (orig, 0)) == PLUS
5078 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5079 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5080 return orig;
5081 break;
5082
5083 /* A MEM with a constant address is not sharable. The problem is that
5084 the constant address may need to be reloaded. If the mem is shared,
5085 then reloading one copy of this mem will cause all copies to appear
5086 to have been reloaded. */
5087
5088 default:
5089 break;
5090 }
5091
5092 copy = rtx_alloc (code);
5093
5094 /* Copy the various flags, and other information. We assume that
5095 all fields need copying, and then clear the fields that should
5096 not be copied. That is the sensible default behavior, and forces
5097 us to explicitly document why we are *not* copying a flag. */
5098 memcpy (copy, orig, RTX_HDR_SIZE);
5099
5100 /* We do not copy the USED flag, which is used as a mark bit during
5101 walks over the RTL. */
5102 RTX_FLAG (copy, used) = 0;
5103
5104 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5105 if (GET_RTX_CLASS (code) == 'i')
5106 {
5107 RTX_FLAG (copy, jump) = 0;
5108 RTX_FLAG (copy, call) = 0;
5109 RTX_FLAG (copy, frame_related) = 0;
5110 }
5111
5112 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5113
5114 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5115 {
5116 copy->u.fld[i] = orig->u.fld[i];
5117 switch (*format_ptr++)
5118 {
5119 case 'e':
5120 if (XEXP (orig, i) != NULL)
5121 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5122 break;
5123
5124 case 'E':
5125 case 'V':
5126 if (XVEC (orig, i) == orig_asm_constraints_vector)
5127 XVEC (copy, i) = copy_asm_constraints_vector;
5128 else if (XVEC (orig, i) == orig_asm_operands_vector)
5129 XVEC (copy, i) = copy_asm_operands_vector;
5130 else if (XVEC (orig, i) != NULL)
5131 {
5132 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5133 for (j = 0; j < XVECLEN (copy, i); j++)
5134 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5135 }
5136 break;
5137
5138 case 't':
5139 case 'w':
5140 case 'i':
5141 case 's':
5142 case 'S':
5143 case 'u':
5144 case '0':
5145 /* These are left unchanged. */
5146 break;
5147
5148 default:
5149 abort ();
5150 }
5151 }
5152
5153 if (code == SCRATCH)
5154 {
5155 i = copy_insn_n_scratches++;
5156 if (i >= MAX_RECOG_OPERANDS)
5157 abort ();
5158 copy_insn_scratch_in[i] = orig;
5159 copy_insn_scratch_out[i] = copy;
5160 }
5161 else if (code == ASM_OPERANDS)
5162 {
5163 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5164 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5165 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5166 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5167 }
5168
5169 return copy;
5170 }
5171
5172 /* Create a new copy of an rtx.
5173 This function differs from copy_rtx in that it handles SCRATCHes and
5174 ASM_OPERANDs properly.
5175 INSN doesn't really have to be a full INSN; it could be just the
5176 pattern. */
5177 rtx
5178 copy_insn (rtx insn)
5179 {
5180 copy_insn_n_scratches = 0;
5181 orig_asm_operands_vector = 0;
5182 orig_asm_constraints_vector = 0;
5183 copy_asm_operands_vector = 0;
5184 copy_asm_constraints_vector = 0;
5185 return copy_insn_1 (insn);
5186 }
5187
5188 /* Initialize data structures and variables in this file
5189 before generating rtl for each function. */
5190
5191 void
5192 init_emit (void)
5193 {
5194 struct function *f = cfun;
5195
5196 f->emit = ggc_alloc (sizeof (struct emit_status));
5197 first_insn = NULL;
5198 last_insn = NULL;
5199 seq_rtl_expr = NULL;
5200 cur_insn_uid = 1;
5201 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5202 last_location.line = 0;
5203 last_location.file = 0;
5204 first_label_num = label_num;
5205 last_label_num = 0;
5206 seq_stack = NULL;
5207
5208 /* Init the tables that describe all the pseudo regs. */
5209
5210 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5211
5212 f->emit->regno_pointer_align
5213 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5214 * sizeof (unsigned char));
5215
5216 regno_reg_rtx
5217 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5218
5219 /* Put copies of all the hard registers into regno_reg_rtx. */
5220 memcpy (regno_reg_rtx,
5221 static_regno_reg_rtx,
5222 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5223
5224 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5225 init_virtual_regs (f->emit);
5226
5227 /* Indicate that the virtual registers and stack locations are
5228 all pointers. */
5229 REG_POINTER (stack_pointer_rtx) = 1;
5230 REG_POINTER (frame_pointer_rtx) = 1;
5231 REG_POINTER (hard_frame_pointer_rtx) = 1;
5232 REG_POINTER (arg_pointer_rtx) = 1;
5233
5234 REG_POINTER (virtual_incoming_args_rtx) = 1;
5235 REG_POINTER (virtual_stack_vars_rtx) = 1;
5236 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5237 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5238 REG_POINTER (virtual_cfa_rtx) = 1;
5239
5240 #ifdef STACK_BOUNDARY
5241 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5242 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5243 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5244 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5245
5246 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5247 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5248 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5249 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5250 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5251 #endif
5252
5253 #ifdef INIT_EXPANDERS
5254 INIT_EXPANDERS;
5255 #endif
5256 }
5257
5258 /* Generate the constant 0. */
5259
5260 static rtx
5261 gen_const_vector_0 (enum machine_mode mode)
5262 {
5263 rtx tem;
5264 rtvec v;
5265 int units, i;
5266 enum machine_mode inner;
5267
5268 units = GET_MODE_NUNITS (mode);
5269 inner = GET_MODE_INNER (mode);
5270
5271 v = rtvec_alloc (units);
5272
5273 /* We need to call this function after we to set CONST0_RTX first. */
5274 if (!CONST0_RTX (inner))
5275 abort ();
5276
5277 for (i = 0; i < units; ++i)
5278 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5279
5280 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5281 return tem;
5282 }
5283
5284 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5285 all elements are zero. */
5286 rtx
5287 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5288 {
5289 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5290 int i;
5291
5292 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5293 if (RTVEC_ELT (v, i) != inner_zero)
5294 return gen_rtx_raw_CONST_VECTOR (mode, v);
5295 return CONST0_RTX (mode);
5296 }
5297
5298 /* Create some permanent unique rtl objects shared between all functions.
5299 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5300
5301 void
5302 init_emit_once (int line_numbers)
5303 {
5304 int i;
5305 enum machine_mode mode;
5306 enum machine_mode double_mode;
5307
5308 /* We need reg_raw_mode, so initialize the modes now. */
5309 init_reg_modes_once ();
5310
5311 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5312 tables. */
5313 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5314 const_int_htab_eq, NULL);
5315
5316 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5317 const_double_htab_eq, NULL);
5318
5319 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5320 mem_attrs_htab_eq, NULL);
5321 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5322 reg_attrs_htab_eq, NULL);
5323
5324 no_line_numbers = ! line_numbers;
5325
5326 /* Compute the word and byte modes. */
5327
5328 byte_mode = VOIDmode;
5329 word_mode = VOIDmode;
5330 double_mode = VOIDmode;
5331
5332 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5333 mode = GET_MODE_WIDER_MODE (mode))
5334 {
5335 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5336 && byte_mode == VOIDmode)
5337 byte_mode = mode;
5338
5339 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5340 && word_mode == VOIDmode)
5341 word_mode = mode;
5342 }
5343
5344 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5345 mode = GET_MODE_WIDER_MODE (mode))
5346 {
5347 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5348 && double_mode == VOIDmode)
5349 double_mode = mode;
5350 }
5351
5352 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5353
5354 /* Assign register numbers to the globally defined register rtx.
5355 This must be done at runtime because the register number field
5356 is in a union and some compilers can't initialize unions. */
5357
5358 pc_rtx = gen_rtx_PC (VOIDmode);
5359 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5360 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5361 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5362 if (hard_frame_pointer_rtx == 0)
5363 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5364 HARD_FRAME_POINTER_REGNUM);
5365 if (arg_pointer_rtx == 0)
5366 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5367 virtual_incoming_args_rtx =
5368 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5369 virtual_stack_vars_rtx =
5370 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5371 virtual_stack_dynamic_rtx =
5372 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5373 virtual_outgoing_args_rtx =
5374 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5375 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5376
5377 /* Initialize RTL for commonly used hard registers. These are
5378 copied into regno_reg_rtx as we begin to compile each function. */
5379 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5380 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5381
5382 #ifdef INIT_EXPANDERS
5383 /* This is to initialize {init|mark|free}_machine_status before the first
5384 call to push_function_context_to. This is needed by the Chill front
5385 end which calls push_function_context_to before the first call to
5386 init_function_start. */
5387 INIT_EXPANDERS;
5388 #endif
5389
5390 /* Create the unique rtx's for certain rtx codes and operand values. */
5391
5392 /* Don't use gen_rtx here since gen_rtx in this case
5393 tries to use these variables. */
5394 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5395 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5396 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5397
5398 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5399 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5400 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5401 else
5402 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5403
5404 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5405 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5406 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5407 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5408 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5409 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5410 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5411
5412 dconsthalf = dconst1;
5413 dconsthalf.exp--;
5414
5415 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5416
5417 /* Initialize mathematical constants for constant folding builtins.
5418 These constants need to be given to at least 160 bits precision. */
5419 real_from_string (&dconstpi,
5420 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5421 real_from_string (&dconste,
5422 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5423
5424 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5425 {
5426 REAL_VALUE_TYPE *r =
5427 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5428
5429 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5430 mode = GET_MODE_WIDER_MODE (mode))
5431 const_tiny_rtx[i][(int) mode] =
5432 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5433
5434 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5435
5436 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5437 mode = GET_MODE_WIDER_MODE (mode))
5438 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5439
5440 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5441 mode != VOIDmode;
5442 mode = GET_MODE_WIDER_MODE (mode))
5443 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5444 }
5445
5446 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5447 mode != VOIDmode;
5448 mode = GET_MODE_WIDER_MODE (mode))
5449 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5450
5451 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5452 mode != VOIDmode;
5453 mode = GET_MODE_WIDER_MODE (mode))
5454 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5455
5456 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5457 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5458 const_tiny_rtx[0][i] = const0_rtx;
5459
5460 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5461 if (STORE_FLAG_VALUE == 1)
5462 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5463
5464 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5465 return_address_pointer_rtx
5466 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5467 #endif
5468
5469 #ifdef STATIC_CHAIN_REGNUM
5470 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5471
5472 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5473 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5474 static_chain_incoming_rtx
5475 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5476 else
5477 #endif
5478 static_chain_incoming_rtx = static_chain_rtx;
5479 #endif
5480
5481 #ifdef STATIC_CHAIN
5482 static_chain_rtx = STATIC_CHAIN;
5483
5484 #ifdef STATIC_CHAIN_INCOMING
5485 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5486 #else
5487 static_chain_incoming_rtx = static_chain_rtx;
5488 #endif
5489 #endif
5490
5491 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5492 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5493 }
5494 \f
5495 /* Query and clear/ restore no_line_numbers. This is used by the
5496 switch / case handling in stmt.c to give proper line numbers in
5497 warnings about unreachable code. */
5498
5499 int
5500 force_line_numbers (void)
5501 {
5502 int old = no_line_numbers;
5503
5504 no_line_numbers = 0;
5505 if (old)
5506 force_next_line_note ();
5507 return old;
5508 }
5509
5510 void
5511 restore_line_number_status (int old_value)
5512 {
5513 no_line_numbers = old_value;
5514 }
5515
5516 /* Produce exact duplicate of insn INSN after AFTER.
5517 Care updating of libcall regions if present. */
5518
5519 rtx
5520 emit_copy_of_insn_after (rtx insn, rtx after)
5521 {
5522 rtx new;
5523 rtx note1, note2, link;
5524
5525 switch (GET_CODE (insn))
5526 {
5527 case INSN:
5528 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5529 break;
5530
5531 case JUMP_INSN:
5532 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5533 break;
5534
5535 case CALL_INSN:
5536 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5537 if (CALL_INSN_FUNCTION_USAGE (insn))
5538 CALL_INSN_FUNCTION_USAGE (new)
5539 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5540 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5541 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5542 break;
5543
5544 default:
5545 abort ();
5546 }
5547
5548 /* Update LABEL_NUSES. */
5549 mark_jump_label (PATTERN (new), new, 0);
5550
5551 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5552
5553 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5554 make them. */
5555 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5556 if (REG_NOTE_KIND (link) != REG_LABEL)
5557 {
5558 if (GET_CODE (link) == EXPR_LIST)
5559 REG_NOTES (new)
5560 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5561 XEXP (link, 0),
5562 REG_NOTES (new)));
5563 else
5564 REG_NOTES (new)
5565 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5566 XEXP (link, 0),
5567 REG_NOTES (new)));
5568 }
5569
5570 /* Fix the libcall sequences. */
5571 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5572 {
5573 rtx p = new;
5574 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5575 p = PREV_INSN (p);
5576 XEXP (note1, 0) = p;
5577 XEXP (note2, 0) = new;
5578 }
5579 INSN_CODE (new) = INSN_CODE (insn);
5580 return new;
5581 }
5582
5583 static GTY((deletable(""))) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5584 rtx
5585 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5586 {
5587 if (hard_reg_clobbers[mode][regno])
5588 return hard_reg_clobbers[mode][regno];
5589 else
5590 return (hard_reg_clobbers[mode][regno] =
5591 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5592 }
5593
5594 #include "gt-emit-rtl.h"