alias.c: Fix typos in comments.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these except perhaps the floating-point CONST_DOUBLEs
90 are unique; no other rtx-object will be equal to any of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
97
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106
107 /* All references to the following fixed hard registers go through
108 these unique rtl objects. On machines where the frame-pointer and
109 arg-pointer are the same register, they use the same unique object.
110
111 After register allocation, other rtl objects which used to be pseudo-regs
112 may be clobbered to refer to the frame-pointer register.
113 But references that were originally to the frame-pointer can be
114 distinguished from the others because they contain frame_pointer_rtx.
115
116 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
117 tricky: until register elimination has taken place hard_frame_pointer_rtx
118 should be used if it is being set, and frame_pointer_rtx otherwise. After
119 register elimination hard_frame_pointer_rtx should always be used.
120 On machines where the two registers are same (most) then these are the
121 same.
122
123 In an inline procedure, the stack and frame pointer rtxs may not be
124 used for anything else. */
125 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
126 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145 static htab_t const_int_htab;
146
147 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
148 shortly thrown away. We use two mechanisms to prevent this waste:
149
150 For sizes up to 5 elements, we keep a SEQUENCE and its associated
151 rtvec for use by gen_sequence. One entry for each size is
152 sufficient because most cases are calls to gen_sequence followed by
153 immediately emitting the SEQUENCE. Reuse is safe since emitting a
154 sequence is destructive on the insn in it anyway and hence can't be
155 redone.
156
157 We do not bother to save this cached data over nested function calls.
158 Instead, we just reinitialize them. */
159
160 #define SEQUENCE_RESULT_SIZE 5
161
162 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
163
164 /* During RTL generation, we also keep a list of free INSN rtl codes. */
165 static rtx free_insn;
166
167 #define first_insn (cfun->emit->x_first_insn)
168 #define last_insn (cfun->emit->x_last_insn)
169 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
170 #define last_linenum (cfun->emit->x_last_linenum)
171 #define last_filename (cfun->emit->x_last_filename)
172 #define first_label_num (cfun->emit->x_first_label_num)
173
174 static rtx make_jump_insn_raw PARAMS ((rtx));
175 static rtx make_call_insn_raw PARAMS ((rtx));
176 static rtx find_line_note PARAMS ((rtx));
177 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
178 static void unshare_all_rtl_1 PARAMS ((rtx));
179 static void unshare_all_decls PARAMS ((tree));
180 static void reset_used_decls PARAMS ((tree));
181 static void mark_label_nuses PARAMS ((rtx));
182 static hashval_t const_int_htab_hash PARAMS ((const void *));
183 static int const_int_htab_eq PARAMS ((const void *,
184 const void *));
185 static int rtx_htab_mark_1 PARAMS ((void **, void *));
186 static void rtx_htab_mark PARAMS ((void *));
187
188 /* Probability of the conditional branch currently proceeded by try_split.
189 Set to -1 otherwise. */
190 int split_branch_probability = -1;
191
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (x)
197 const void *x;
198 {
199 return (hashval_t) INTVAL ((const struct rtx_def *) x);
200 }
201
202 /* Returns non-zero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
204 HOST_WIDE_INT *). */
205
206 static int
207 const_int_htab_eq (x, y)
208 const void *x;
209 const void *y;
210 {
211 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
212 }
213
214 /* Mark the hash-table element X (which is really a pointer to an
215 rtx). */
216
217 static int
218 rtx_htab_mark_1 (x, data)
219 void **x;
220 void *data ATTRIBUTE_UNUSED;
221 {
222 ggc_mark_rtx (*x);
223 return 1;
224 }
225
226 /* Mark all the elements of HTAB (which is really an htab_t full of
227 rtxs). */
228
229 static void
230 rtx_htab_mark (htab)
231 void *htab;
232 {
233 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
234 }
235
236 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
237 don't attempt to share with the various global pieces of rtl (such as
238 frame_pointer_rtx). */
239
240 rtx
241 gen_raw_REG (mode, regno)
242 enum machine_mode mode;
243 int regno;
244 {
245 rtx x = gen_rtx_raw_REG (mode, regno);
246 ORIGINAL_REGNO (x) = regno;
247 return x;
248 }
249
250 /* There are some RTL codes that require special attention; the generation
251 functions do the raw handling. If you add to this list, modify
252 special_rtx in gengenrtl.c as well. */
253
254 rtx
255 gen_rtx_CONST_INT (mode, arg)
256 enum machine_mode mode ATTRIBUTE_UNUSED;
257 HOST_WIDE_INT arg;
258 {
259 void **slot;
260
261 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
262 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
263
264 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
265 if (const_true_rtx && arg == STORE_FLAG_VALUE)
266 return const_true_rtx;
267 #endif
268
269 /* Look up the CONST_INT in the hash table. */
270 slot = htab_find_slot_with_hash (const_int_htab, &arg,
271 (hashval_t) arg, INSERT);
272 if (*slot == 0)
273 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
274
275 return (rtx) *slot;
276 }
277
278 /* CONST_DOUBLEs needs special handling because their length is known
279 only at run-time. */
280
281 rtx
282 gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
283 enum machine_mode mode;
284 rtx arg0;
285 HOST_WIDE_INT arg1, arg2;
286 {
287 rtx r = rtx_alloc (CONST_DOUBLE);
288 int i;
289
290 PUT_MODE (r, mode);
291 XEXP (r, 0) = arg0;
292 X0EXP (r, 1) = NULL_RTX;
293 XWINT (r, 2) = arg1;
294 XWINT (r, 3) = arg2;
295
296 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
297 XWINT (r, i) = 0;
298
299 return r;
300 }
301
302 rtx
303 gen_rtx_REG (mode, regno)
304 enum machine_mode mode;
305 int regno;
306 {
307 /* In case the MD file explicitly references the frame pointer, have
308 all such references point to the same frame pointer. This is
309 used during frame pointer elimination to distinguish the explicit
310 references to these registers from pseudos that happened to be
311 assigned to them.
312
313 If we have eliminated the frame pointer or arg pointer, we will
314 be using it as a normal register, for example as a spill
315 register. In such cases, we might be accessing it in a mode that
316 is not Pmode and therefore cannot use the pre-allocated rtx.
317
318 Also don't do this when we are making new REGs in reload, since
319 we don't want to get confused with the real pointers. */
320
321 if (mode == Pmode && !reload_in_progress)
322 {
323 if (regno == FRAME_POINTER_REGNUM)
324 return frame_pointer_rtx;
325 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
326 if (regno == HARD_FRAME_POINTER_REGNUM)
327 return hard_frame_pointer_rtx;
328 #endif
329 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
330 if (regno == ARG_POINTER_REGNUM)
331 return arg_pointer_rtx;
332 #endif
333 #ifdef RETURN_ADDRESS_POINTER_REGNUM
334 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
335 return return_address_pointer_rtx;
336 #endif
337 if (regno == STACK_POINTER_REGNUM)
338 return stack_pointer_rtx;
339 }
340
341 return gen_raw_REG (mode, regno);
342 }
343
344 rtx
345 gen_rtx_MEM (mode, addr)
346 enum machine_mode mode;
347 rtx addr;
348 {
349 rtx rt = gen_rtx_raw_MEM (mode, addr);
350
351 /* This field is not cleared by the mere allocation of the rtx, so
352 we clear it here. */
353 MEM_ALIAS_SET (rt) = 0;
354
355 return rt;
356 }
357
358 rtx
359 gen_rtx_SUBREG (mode, reg, offset)
360 enum machine_mode mode;
361 rtx reg;
362 int offset;
363 {
364 /* This is the most common failure type.
365 Catch it early so we can see who does it. */
366 if ((offset % GET_MODE_SIZE (mode)) != 0)
367 abort ();
368
369 /* This check isn't usable right now because combine will
370 throw arbitrary crap like a CALL into a SUBREG in
371 gen_lowpart_for_combine so we must just eat it. */
372 #if 0
373 /* Check for this too. */
374 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
375 abort ();
376 #endif
377 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
378 }
379
380 /* Generate a SUBREG representing the least-significant part
381 * of REG if MODE is smaller than mode of REG, otherwise
382 * paradoxical SUBREG. */
383 rtx
384 gen_lowpart_SUBREG (mode, reg)
385 enum machine_mode mode;
386 rtx reg;
387 {
388 enum machine_mode inmode;
389
390 inmode = GET_MODE (reg);
391 if (inmode == VOIDmode)
392 inmode = mode;
393 return gen_rtx_SUBREG (mode, reg,
394 subreg_lowpart_offset (mode, inmode));
395 }
396 \f
397 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
398 **
399 ** This routine generates an RTX of the size specified by
400 ** <code>, which is an RTX code. The RTX structure is initialized
401 ** from the arguments <element1> through <elementn>, which are
402 ** interpreted according to the specific RTX type's format. The
403 ** special machine mode associated with the rtx (if any) is specified
404 ** in <mode>.
405 **
406 ** gen_rtx can be invoked in a way which resembles the lisp-like
407 ** rtx it will generate. For example, the following rtx structure:
408 **
409 ** (plus:QI (mem:QI (reg:SI 1))
410 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
411 **
412 ** ...would be generated by the following C code:
413 **
414 ** gen_rtx (PLUS, QImode,
415 ** gen_rtx (MEM, QImode,
416 ** gen_rtx (REG, SImode, 1)),
417 ** gen_rtx (MEM, QImode,
418 ** gen_rtx (PLUS, SImode,
419 ** gen_rtx (REG, SImode, 2),
420 ** gen_rtx (REG, SImode, 3)))),
421 */
422
423 /*VARARGS2*/
424 rtx
425 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
426 {
427 register int i; /* Array indices... */
428 register const char *fmt; /* Current rtx's format... */
429 register rtx rt_val; /* RTX to return to caller... */
430
431 VA_OPEN (p, mode);
432 VA_FIXEDARG (p, enum rtx_code, code);
433 VA_FIXEDARG (p, enum machine_mode, mode);
434
435 switch (code)
436 {
437 case CONST_INT:
438 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
439 break;
440
441 case CONST_DOUBLE:
442 {
443 rtx arg0 = va_arg (p, rtx);
444 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
445 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
446 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
447 }
448 break;
449
450 case REG:
451 rt_val = gen_rtx_REG (mode, va_arg (p, int));
452 break;
453
454 case MEM:
455 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
456 break;
457
458 default:
459 rt_val = rtx_alloc (code); /* Allocate the storage space. */
460 rt_val->mode = mode; /* Store the machine mode... */
461
462 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
463 for (i = 0; i < GET_RTX_LENGTH (code); i++)
464 {
465 switch (*fmt++)
466 {
467 case '0': /* Unused field. */
468 break;
469
470 case 'i': /* An integer? */
471 XINT (rt_val, i) = va_arg (p, int);
472 break;
473
474 case 'w': /* A wide integer? */
475 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
476 break;
477
478 case 's': /* A string? */
479 XSTR (rt_val, i) = va_arg (p, char *);
480 break;
481
482 case 'e': /* An expression? */
483 case 'u': /* An insn? Same except when printing. */
484 XEXP (rt_val, i) = va_arg (p, rtx);
485 break;
486
487 case 'E': /* An RTX vector? */
488 XVEC (rt_val, i) = va_arg (p, rtvec);
489 break;
490
491 case 'b': /* A bitmap? */
492 XBITMAP (rt_val, i) = va_arg (p, bitmap);
493 break;
494
495 case 't': /* A tree? */
496 XTREE (rt_val, i) = va_arg (p, tree);
497 break;
498
499 default:
500 abort ();
501 }
502 }
503 break;
504 }
505
506 VA_CLOSE (p);
507 return rt_val;
508 }
509
510 /* gen_rtvec (n, [rt1, ..., rtn])
511 **
512 ** This routine creates an rtvec and stores within it the
513 ** pointers to rtx's which are its arguments.
514 */
515
516 /*VARARGS1*/
517 rtvec
518 gen_rtvec VPARAMS ((int n, ...))
519 {
520 int i, save_n;
521 rtx *vector;
522
523 VA_OPEN (p, n);
524 VA_FIXEDARG (p, int, n);
525
526 if (n == 0)
527 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
528
529 vector = (rtx *) alloca (n * sizeof (rtx));
530
531 for (i = 0; i < n; i++)
532 vector[i] = va_arg (p, rtx);
533
534 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
535 save_n = n;
536 VA_CLOSE (p);
537
538 return gen_rtvec_v (save_n, vector);
539 }
540
541 rtvec
542 gen_rtvec_v (n, argp)
543 int n;
544 rtx *argp;
545 {
546 register int i;
547 register rtvec rt_val;
548
549 if (n == 0)
550 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
551
552 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
553
554 for (i = 0; i < n; i++)
555 rt_val->elem[i] = *argp++;
556
557 return rt_val;
558 }
559
560 \f
561 /* Generate a REG rtx for a new pseudo register of mode MODE.
562 This pseudo is assigned the next sequential register number. */
563
564 rtx
565 gen_reg_rtx (mode)
566 enum machine_mode mode;
567 {
568 struct function *f = cfun;
569 register rtx val;
570
571 /* Don't let anything called after initial flow analysis create new
572 registers. */
573 if (no_new_pseudos)
574 abort ();
575
576 if (generating_concat_p
577 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
578 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
579 {
580 /* For complex modes, don't make a single pseudo.
581 Instead, make a CONCAT of two pseudos.
582 This allows noncontiguous allocation of the real and imaginary parts,
583 which makes much better code. Besides, allocating DCmode
584 pseudos overstrains reload on some machines like the 386. */
585 rtx realpart, imagpart;
586 int size = GET_MODE_UNIT_SIZE (mode);
587 enum machine_mode partmode
588 = mode_for_size (size * BITS_PER_UNIT,
589 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
590 ? MODE_FLOAT : MODE_INT),
591 0);
592
593 realpart = gen_reg_rtx (partmode);
594 imagpart = gen_reg_rtx (partmode);
595 return gen_rtx_CONCAT (mode, realpart, imagpart);
596 }
597
598 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
599 to have an element for this pseudo reg number. */
600
601 if (reg_rtx_no == f->emit->regno_pointer_align_length)
602 {
603 int old_size = f->emit->regno_pointer_align_length;
604 rtx *new1;
605 char *new;
606 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
607 memset (new + old_size, 0, old_size);
608 f->emit->regno_pointer_align = (unsigned char *) new;
609
610 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
611 old_size * 2 * sizeof (rtx));
612 memset (new1 + old_size, 0, old_size * sizeof (rtx));
613 regno_reg_rtx = new1;
614
615 f->emit->regno_pointer_align_length = old_size * 2;
616 }
617
618 val = gen_raw_REG (mode, reg_rtx_no);
619 regno_reg_rtx[reg_rtx_no++] = val;
620 return val;
621 }
622
623 /* Identify REG (which may be a CONCAT) as a user register. */
624
625 void
626 mark_user_reg (reg)
627 rtx reg;
628 {
629 if (GET_CODE (reg) == CONCAT)
630 {
631 REG_USERVAR_P (XEXP (reg, 0)) = 1;
632 REG_USERVAR_P (XEXP (reg, 1)) = 1;
633 }
634 else if (GET_CODE (reg) == REG)
635 REG_USERVAR_P (reg) = 1;
636 else
637 abort ();
638 }
639
640 /* Identify REG as a probable pointer register and show its alignment
641 as ALIGN, if nonzero. */
642
643 void
644 mark_reg_pointer (reg, align)
645 rtx reg;
646 int align;
647 {
648 if (! REG_POINTER (reg))
649 {
650 REG_POINTER (reg) = 1;
651
652 if (align)
653 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
654 }
655 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
656 /* We can no-longer be sure just how aligned this pointer is */
657 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
658 }
659
660 /* Return 1 plus largest pseudo reg number used in the current function. */
661
662 int
663 max_reg_num ()
664 {
665 return reg_rtx_no;
666 }
667
668 /* Return 1 + the largest label number used so far in the current function. */
669
670 int
671 max_label_num ()
672 {
673 if (last_label_num && label_num == base_label_num)
674 return last_label_num;
675 return label_num;
676 }
677
678 /* Return first label number used in this function (if any were used). */
679
680 int
681 get_first_label_num ()
682 {
683 return first_label_num;
684 }
685 \f
686 /* Return the final regno of X, which is a SUBREG of a hard
687 register. */
688 int
689 subreg_hard_regno (x, check_mode)
690 register rtx x;
691 int check_mode;
692 {
693 enum machine_mode mode = GET_MODE (x);
694 unsigned int byte_offset, base_regno, final_regno;
695 rtx reg = SUBREG_REG (x);
696
697 /* This is where we attempt to catch illegal subregs
698 created by the compiler. */
699 if (GET_CODE (x) != SUBREG
700 || GET_CODE (reg) != REG)
701 abort ();
702 base_regno = REGNO (reg);
703 if (base_regno >= FIRST_PSEUDO_REGISTER)
704 abort ();
705 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
706 abort ();
707
708 /* Catch non-congruent offsets too. */
709 byte_offset = SUBREG_BYTE (x);
710 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
711 abort ();
712
713 final_regno = subreg_regno (x);
714
715 return final_regno;
716 }
717
718 /* Return a value representing some low-order bits of X, where the number
719 of low-order bits is given by MODE. Note that no conversion is done
720 between floating-point and fixed-point values, rather, the bit
721 representation is returned.
722
723 This function handles the cases in common between gen_lowpart, below,
724 and two variants in cse.c and combine.c. These are the cases that can
725 be safely handled at all points in the compilation.
726
727 If this is not a case we can handle, return 0. */
728
729 rtx
730 gen_lowpart_common (mode, x)
731 enum machine_mode mode;
732 register rtx x;
733 {
734 int msize = GET_MODE_SIZE (mode);
735 int xsize = GET_MODE_SIZE (GET_MODE (x));
736 int offset = 0;
737
738 if (GET_MODE (x) == mode)
739 return x;
740
741 /* MODE must occupy no more words than the mode of X. */
742 if (GET_MODE (x) != VOIDmode
743 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
744 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
745 return 0;
746
747 offset = subreg_lowpart_offset (mode, GET_MODE (x));
748
749 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
750 && (GET_MODE_CLASS (mode) == MODE_INT
751 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
752 {
753 /* If we are getting the low-order part of something that has been
754 sign- or zero-extended, we can either just use the object being
755 extended or make a narrower extension. If we want an even smaller
756 piece than the size of the object being extended, call ourselves
757 recursively.
758
759 This case is used mostly by combine and cse. */
760
761 if (GET_MODE (XEXP (x, 0)) == mode)
762 return XEXP (x, 0);
763 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
764 return gen_lowpart_common (mode, XEXP (x, 0));
765 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
766 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
767 }
768 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
769 || GET_CODE (x) == CONCAT)
770 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
771 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
772 from the low-order part of the constant. */
773 else if ((GET_MODE_CLASS (mode) == MODE_INT
774 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
775 && GET_MODE (x) == VOIDmode
776 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
777 {
778 /* If MODE is twice the host word size, X is already the desired
779 representation. Otherwise, if MODE is wider than a word, we can't
780 do this. If MODE is exactly a word, return just one CONST_INT. */
781
782 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
783 return x;
784 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
785 return 0;
786 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
787 return (GET_CODE (x) == CONST_INT ? x
788 : GEN_INT (CONST_DOUBLE_LOW (x)));
789 else
790 {
791 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
792 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
793 : CONST_DOUBLE_LOW (x));
794
795 /* Sign extend to HOST_WIDE_INT. */
796 val = trunc_int_for_mode (val, mode);
797
798 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
799 : GEN_INT (val));
800 }
801 }
802
803 #ifndef REAL_ARITHMETIC
804 /* If X is an integral constant but we want it in floating-point, it
805 must be the case that we have a union of an integer and a floating-point
806 value. If the machine-parameters allow it, simulate that union here
807 and return the result. The two-word and single-word cases are
808 different. */
809
810 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
811 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
812 || flag_pretend_float)
813 && GET_MODE_CLASS (mode) == MODE_FLOAT
814 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
815 && GET_CODE (x) == CONST_INT
816 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
817 {
818 union {HOST_WIDE_INT i; float d; } u;
819
820 u.i = INTVAL (x);
821 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
822 }
823 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
824 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
825 || flag_pretend_float)
826 && GET_MODE_CLASS (mode) == MODE_FLOAT
827 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
828 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
829 && GET_MODE (x) == VOIDmode
830 && (sizeof (double) * HOST_BITS_PER_CHAR
831 == 2 * HOST_BITS_PER_WIDE_INT))
832 {
833 union {HOST_WIDE_INT i[2]; double d; } u;
834 HOST_WIDE_INT low, high;
835
836 if (GET_CODE (x) == CONST_INT)
837 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
838 else
839 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
840
841 #ifdef HOST_WORDS_BIG_ENDIAN
842 u.i[0] = high, u.i[1] = low;
843 #else
844 u.i[0] = low, u.i[1] = high;
845 #endif
846
847 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
848 }
849
850 /* Similarly, if this is converting a floating-point value into a
851 single-word integer. Only do this is the host and target parameters are
852 compatible. */
853
854 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
855 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
856 || flag_pretend_float)
857 && (GET_MODE_CLASS (mode) == MODE_INT
858 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
859 && GET_CODE (x) == CONST_DOUBLE
860 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
861 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
862 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
863
864 /* Similarly, if this is converting a floating-point value into a
865 two-word integer, we can do this one word at a time and make an
866 integer. Only do this is the host and target parameters are
867 compatible. */
868
869 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
870 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
871 || flag_pretend_float)
872 && (GET_MODE_CLASS (mode) == MODE_INT
873 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
874 && GET_CODE (x) == CONST_DOUBLE
875 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
876 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
877 {
878 rtx lowpart, highpart;
879
880 lowpart = constant_subword (x,
881 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
882 GET_MODE (x));
883 highpart = constant_subword (x,
884 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
885 GET_MODE (x));
886 if (lowpart && GET_CODE (lowpart) == CONST_INT
887 && highpart && GET_CODE (highpart) == CONST_INT)
888 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
889 }
890 #else /* ifndef REAL_ARITHMETIC */
891
892 /* When we have a FP emulator, we can handle all conversions between
893 FP and integer operands. This simplifies reload because it
894 doesn't have to deal with constructs like (subreg:DI
895 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
896 /* Single-precision floats are always 32-bits and double-precision
897 floats are always 64-bits. */
898
899 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
900 && GET_MODE_BITSIZE (mode) == 32
901 && GET_CODE (x) == CONST_INT)
902 {
903 REAL_VALUE_TYPE r;
904 HOST_WIDE_INT i;
905
906 i = INTVAL (x);
907 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
908 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
909 }
910 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
911 && GET_MODE_BITSIZE (mode) == 64
912 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
913 && GET_MODE (x) == VOIDmode)
914 {
915 REAL_VALUE_TYPE r;
916 HOST_WIDE_INT i[2];
917 HOST_WIDE_INT low, high;
918
919 if (GET_CODE (x) == CONST_INT)
920 {
921 low = INTVAL (x);
922 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
923 }
924 else
925 {
926 low = CONST_DOUBLE_LOW (x);
927 high = CONST_DOUBLE_HIGH (x);
928 }
929
930 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
931 target machine. */
932 if (WORDS_BIG_ENDIAN)
933 i[0] = high, i[1] = low;
934 else
935 i[0] = low, i[1] = high;
936
937 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
938 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
939 }
940 else if ((GET_MODE_CLASS (mode) == MODE_INT
941 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
942 && GET_CODE (x) == CONST_DOUBLE
943 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
944 {
945 REAL_VALUE_TYPE r;
946 long i[4]; /* Only the low 32 bits of each 'long' are used. */
947 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
948
949 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
950 switch (GET_MODE_BITSIZE (GET_MODE (x)))
951 {
952 case 32:
953 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
954 i[1 - endian] = 0;
955 break;
956 case 64:
957 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
958 break;
959 case 96:
960 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
961 i[3-3*endian] = 0;
962 break;
963 case 128:
964 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
965 break;
966 default:
967 abort ();
968 }
969
970 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
971 and return it. */
972 #if HOST_BITS_PER_WIDE_INT == 32
973 return immed_double_const (i[endian], i[1 - endian], mode);
974 #else
975 {
976 int c;
977
978 if (HOST_BITS_PER_WIDE_INT != 64)
979 abort ();
980
981 for (c = 0; c < 4; c++)
982 i[c] &= ~ (0L);
983
984 switch (GET_MODE_BITSIZE (GET_MODE (x)))
985 {
986 case 32:
987 case 64:
988 return immed_double_const (((unsigned long) i[endian]) |
989 (((HOST_WIDE_INT) i[1-endian]) << 32),
990 0, mode);
991 case 96:
992 case 128:
993 return immed_double_const (((unsigned long) i[endian*3]) |
994 (((HOST_WIDE_INT) i[1+endian]) << 32),
995 ((unsigned long) i[2-endian]) |
996 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
997 mode);
998 default:
999 abort ();
1000 }
1001 }
1002 #endif
1003 }
1004 #endif /* ifndef REAL_ARITHMETIC */
1005
1006 /* Otherwise, we can't do this. */
1007 return 0;
1008 }
1009 \f
1010 /* Return the real part (which has mode MODE) of a complex value X.
1011 This always comes at the low address in memory. */
1012
1013 rtx
1014 gen_realpart (mode, x)
1015 enum machine_mode mode;
1016 register rtx x;
1017 {
1018 if (WORDS_BIG_ENDIAN
1019 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1020 && REG_P (x)
1021 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1022 internal_error
1023 ("Can't access real part of complex value in hard register");
1024 else if (WORDS_BIG_ENDIAN)
1025 return gen_highpart (mode, x);
1026 else
1027 return gen_lowpart (mode, x);
1028 }
1029
1030 /* Return the imaginary part (which has mode MODE) of a complex value X.
1031 This always comes at the high address in memory. */
1032
1033 rtx
1034 gen_imagpart (mode, x)
1035 enum machine_mode mode;
1036 register rtx x;
1037 {
1038 if (WORDS_BIG_ENDIAN)
1039 return gen_lowpart (mode, x);
1040 else if (! WORDS_BIG_ENDIAN
1041 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1042 && REG_P (x)
1043 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1044 internal_error
1045 ("can't access imaginary part of complex value in hard register");
1046 else
1047 return gen_highpart (mode, x);
1048 }
1049
1050 /* Return 1 iff X, assumed to be a SUBREG,
1051 refers to the real part of the complex value in its containing reg.
1052 Complex values are always stored with the real part in the first word,
1053 regardless of WORDS_BIG_ENDIAN. */
1054
1055 int
1056 subreg_realpart_p (x)
1057 rtx x;
1058 {
1059 if (GET_CODE (x) != SUBREG)
1060 abort ();
1061
1062 return ((unsigned int) SUBREG_BYTE (x)
1063 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1064 }
1065 \f
1066 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1067 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1068 least-significant part of X.
1069 MODE specifies how big a part of X to return;
1070 it usually should not be larger than a word.
1071 If X is a MEM whose address is a QUEUED, the value may be so also. */
1072
1073 rtx
1074 gen_lowpart (mode, x)
1075 enum machine_mode mode;
1076 register rtx x;
1077 {
1078 rtx result = gen_lowpart_common (mode, x);
1079
1080 if (result)
1081 return result;
1082 else if (GET_CODE (x) == REG)
1083 {
1084 /* Must be a hard reg that's not valid in MODE. */
1085 result = gen_lowpart_common (mode, copy_to_reg (x));
1086 if (result == 0)
1087 abort ();
1088 return result;
1089 }
1090 else if (GET_CODE (x) == MEM)
1091 {
1092 /* The only additional case we can do is MEM. */
1093 register int offset = 0;
1094 if (WORDS_BIG_ENDIAN)
1095 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1096 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1097
1098 if (BYTES_BIG_ENDIAN)
1099 /* Adjust the address so that the address-after-the-data
1100 is unchanged. */
1101 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1102 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1103
1104 return adjust_address (x, mode, offset);
1105 }
1106 else if (GET_CODE (x) == ADDRESSOF)
1107 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1108 else
1109 abort ();
1110 }
1111
1112 /* Like `gen_lowpart', but refer to the most significant part.
1113 This is used to access the imaginary part of a complex number. */
1114
1115 rtx
1116 gen_highpart (mode, x)
1117 enum machine_mode mode;
1118 register rtx x;
1119 {
1120 unsigned int msize = GET_MODE_SIZE (mode);
1121 rtx result;
1122
1123 /* This case loses if X is a subreg. To catch bugs early,
1124 complain if an invalid MODE is used even in other cases. */
1125 if (msize > UNITS_PER_WORD
1126 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1127 abort ();
1128
1129 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1130 subreg_highpart_offset (mode, GET_MODE (x)));
1131
1132 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1133 the target if we have a MEM. gen_highpart must return a valid operand,
1134 emitting code if necessary to do so. */
1135 if (GET_CODE (result) == MEM)
1136 result = validize_mem (result);
1137
1138 if (!result)
1139 abort ();
1140 return result;
1141 }
1142
1143 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1144 be VOIDmode constant. */
1145 rtx
1146 gen_highpart_mode (outermode, innermode, exp)
1147 enum machine_mode outermode, innermode;
1148 rtx exp;
1149 {
1150 if (GET_MODE (exp) != VOIDmode)
1151 {
1152 if (GET_MODE (exp) != innermode)
1153 abort ();
1154 return gen_highpart (outermode, exp);
1155 }
1156 return simplify_gen_subreg (outermode, exp, innermode,
1157 subreg_highpart_offset (outermode, innermode));
1158 }
1159 /* Return offset in bytes to get OUTERMODE low part
1160 of the value in mode INNERMODE stored in memory in target format. */
1161
1162 unsigned int
1163 subreg_lowpart_offset (outermode, innermode)
1164 enum machine_mode outermode, innermode;
1165 {
1166 unsigned int offset = 0;
1167 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1168
1169 if (difference > 0)
1170 {
1171 if (WORDS_BIG_ENDIAN)
1172 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1173 if (BYTES_BIG_ENDIAN)
1174 offset += difference % UNITS_PER_WORD;
1175 }
1176
1177 return offset;
1178 }
1179
1180 /* Return offset in bytes to get OUTERMODE high part
1181 of the value in mode INNERMODE stored in memory in target format. */
1182 unsigned int
1183 subreg_highpart_offset (outermode, innermode)
1184 enum machine_mode outermode, innermode;
1185 {
1186 unsigned int offset = 0;
1187 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1188
1189 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1190 abort ();
1191
1192 if (difference > 0)
1193 {
1194 if (! WORDS_BIG_ENDIAN)
1195 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1196 if (! BYTES_BIG_ENDIAN)
1197 offset += difference % UNITS_PER_WORD;
1198 }
1199
1200 return offset;
1201 }
1202
1203 /* Return 1 iff X, assumed to be a SUBREG,
1204 refers to the least significant part of its containing reg.
1205 If X is not a SUBREG, always return 1 (it is its own low part!). */
1206
1207 int
1208 subreg_lowpart_p (x)
1209 rtx x;
1210 {
1211 if (GET_CODE (x) != SUBREG)
1212 return 1;
1213 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1214 return 0;
1215
1216 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1217 == SUBREG_BYTE (x));
1218 }
1219 \f
1220
1221 /* Helper routine for all the constant cases of operand_subword.
1222 Some places invoke this directly. */
1223
1224 rtx
1225 constant_subword (op, offset, mode)
1226 rtx op;
1227 int offset;
1228 enum machine_mode mode;
1229 {
1230 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1231 HOST_WIDE_INT val;
1232
1233 /* If OP is already an integer word, return it. */
1234 if (GET_MODE_CLASS (mode) == MODE_INT
1235 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1236 return op;
1237
1238 #ifdef REAL_ARITHMETIC
1239 /* The output is some bits, the width of the target machine's word.
1240 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1241 host can't. */
1242 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1243 && GET_MODE_CLASS (mode) == MODE_FLOAT
1244 && GET_MODE_BITSIZE (mode) == 64
1245 && GET_CODE (op) == CONST_DOUBLE)
1246 {
1247 long k[2];
1248 REAL_VALUE_TYPE rv;
1249
1250 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1251 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1252
1253 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1254 which the words are written depends on the word endianness.
1255 ??? This is a potential portability problem and should
1256 be fixed at some point.
1257
1258 We must excercise caution with the sign bit. By definition there
1259 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1260 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1261 So we explicitly mask and sign-extend as necessary. */
1262 if (BITS_PER_WORD == 32)
1263 {
1264 val = k[offset];
1265 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1266 return GEN_INT (val);
1267 }
1268 #if HOST_BITS_PER_WIDE_INT >= 64
1269 else if (BITS_PER_WORD >= 64 && offset == 0)
1270 {
1271 val = k[! WORDS_BIG_ENDIAN];
1272 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1273 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1274 return GEN_INT (val);
1275 }
1276 #endif
1277 else if (BITS_PER_WORD == 16)
1278 {
1279 val = k[offset >> 1];
1280 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1281 val >>= 16;
1282 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1283 return GEN_INT (val);
1284 }
1285 else
1286 abort ();
1287 }
1288 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1289 && GET_MODE_CLASS (mode) == MODE_FLOAT
1290 && GET_MODE_BITSIZE (mode) > 64
1291 && GET_CODE (op) == CONST_DOUBLE)
1292 {
1293 long k[4];
1294 REAL_VALUE_TYPE rv;
1295
1296 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1297 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1298
1299 if (BITS_PER_WORD == 32)
1300 {
1301 val = k[offset];
1302 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1303 return GEN_INT (val);
1304 }
1305 #if HOST_BITS_PER_WIDE_INT >= 64
1306 else if (BITS_PER_WORD >= 64 && offset <= 1)
1307 {
1308 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1309 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1310 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1311 return GEN_INT (val);
1312 }
1313 #endif
1314 else
1315 abort ();
1316 }
1317 #else /* no REAL_ARITHMETIC */
1318 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1319 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1320 || flag_pretend_float)
1321 && GET_MODE_CLASS (mode) == MODE_FLOAT
1322 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1323 && GET_CODE (op) == CONST_DOUBLE)
1324 {
1325 /* The constant is stored in the host's word-ordering,
1326 but we want to access it in the target's word-ordering. Some
1327 compilers don't like a conditional inside macro args, so we have two
1328 copies of the return. */
1329 #ifdef HOST_WORDS_BIG_ENDIAN
1330 return GEN_INT (offset == WORDS_BIG_ENDIAN
1331 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1332 #else
1333 return GEN_INT (offset != WORDS_BIG_ENDIAN
1334 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1335 #endif
1336 }
1337 #endif /* no REAL_ARITHMETIC */
1338
1339 /* Single word float is a little harder, since single- and double-word
1340 values often do not have the same high-order bits. We have already
1341 verified that we want the only defined word of the single-word value. */
1342 #ifdef REAL_ARITHMETIC
1343 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1344 && GET_MODE_BITSIZE (mode) == 32
1345 && GET_CODE (op) == CONST_DOUBLE)
1346 {
1347 long l;
1348 REAL_VALUE_TYPE rv;
1349
1350 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1351 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1352
1353 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1354 val = l;
1355 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1356
1357 if (BITS_PER_WORD == 16)
1358 {
1359 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1360 val >>= 16;
1361 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1362 }
1363
1364 return GEN_INT (val);
1365 }
1366 #else
1367 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1368 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1369 || flag_pretend_float)
1370 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1371 && GET_MODE_CLASS (mode) == MODE_FLOAT
1372 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1373 && GET_CODE (op) == CONST_DOUBLE)
1374 {
1375 double d;
1376 union {float f; HOST_WIDE_INT i; } u;
1377
1378 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1379
1380 u.f = d;
1381 return GEN_INT (u.i);
1382 }
1383 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1384 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1385 || flag_pretend_float)
1386 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1387 && GET_MODE_CLASS (mode) == MODE_FLOAT
1388 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1389 && GET_CODE (op) == CONST_DOUBLE)
1390 {
1391 double d;
1392 union {double d; HOST_WIDE_INT i; } u;
1393
1394 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1395
1396 u.d = d;
1397 return GEN_INT (u.i);
1398 }
1399 #endif /* no REAL_ARITHMETIC */
1400
1401 /* The only remaining cases that we can handle are integers.
1402 Convert to proper endianness now since these cases need it.
1403 At this point, offset == 0 means the low-order word.
1404
1405 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1406 in general. However, if OP is (const_int 0), we can just return
1407 it for any word. */
1408
1409 if (op == const0_rtx)
1410 return op;
1411
1412 if (GET_MODE_CLASS (mode) != MODE_INT
1413 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1414 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1415 return 0;
1416
1417 if (WORDS_BIG_ENDIAN)
1418 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1419
1420 /* Find out which word on the host machine this value is in and get
1421 it from the constant. */
1422 val = (offset / size_ratio == 0
1423 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1424 : (GET_CODE (op) == CONST_INT
1425 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1426
1427 /* Get the value we want into the low bits of val. */
1428 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1429 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1430
1431 val = trunc_int_for_mode (val, word_mode);
1432
1433 return GEN_INT (val);
1434 }
1435
1436 /* Return subword OFFSET of operand OP.
1437 The word number, OFFSET, is interpreted as the word number starting
1438 at the low-order address. OFFSET 0 is the low-order word if not
1439 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1440
1441 If we cannot extract the required word, we return zero. Otherwise,
1442 an rtx corresponding to the requested word will be returned.
1443
1444 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1445 reload has completed, a valid address will always be returned. After
1446 reload, if a valid address cannot be returned, we return zero.
1447
1448 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1449 it is the responsibility of the caller.
1450
1451 MODE is the mode of OP in case it is a CONST_INT.
1452
1453 ??? This is still rather broken for some cases. The problem for the
1454 moment is that all callers of this thing provide no 'goal mode' to
1455 tell us to work with. This exists because all callers were written
1456 in a word based SUBREG world.
1457 Now use of this function can be deprecated by simplify_subreg in most
1458 cases.
1459 */
1460
1461 rtx
1462 operand_subword (op, offset, validate_address, mode)
1463 rtx op;
1464 unsigned int offset;
1465 int validate_address;
1466 enum machine_mode mode;
1467 {
1468 if (mode == VOIDmode)
1469 mode = GET_MODE (op);
1470
1471 if (mode == VOIDmode)
1472 abort ();
1473
1474 /* If OP is narrower than a word, fail. */
1475 if (mode != BLKmode
1476 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1477 return 0;
1478
1479 /* If we want a word outside OP, return zero. */
1480 if (mode != BLKmode
1481 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1482 return const0_rtx;
1483
1484 /* Form a new MEM at the requested address. */
1485 if (GET_CODE (op) == MEM)
1486 {
1487 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1488
1489 if (! validate_address)
1490 return new;
1491
1492 else if (reload_completed)
1493 {
1494 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1495 return 0;
1496 }
1497 else
1498 return replace_equiv_address (new, XEXP (new, 0));
1499 }
1500
1501 /* Rest can be handled by simplify_subreg. */
1502 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1503 }
1504
1505 /* Similar to `operand_subword', but never return 0. If we can't extract
1506 the required subword, put OP into a register and try again. If that fails,
1507 abort. We always validate the address in this case.
1508
1509 MODE is the mode of OP, in case it is CONST_INT. */
1510
1511 rtx
1512 operand_subword_force (op, offset, mode)
1513 rtx op;
1514 unsigned int offset;
1515 enum machine_mode mode;
1516 {
1517 rtx result = operand_subword (op, offset, 1, mode);
1518
1519 if (result)
1520 return result;
1521
1522 if (mode != BLKmode && mode != VOIDmode)
1523 {
1524 /* If this is a register which can not be accessed by words, copy it
1525 to a pseudo register. */
1526 if (GET_CODE (op) == REG)
1527 op = copy_to_reg (op);
1528 else
1529 op = force_reg (mode, op);
1530 }
1531
1532 result = operand_subword (op, offset, 1, mode);
1533 if (result == 0)
1534 abort ();
1535
1536 return result;
1537 }
1538 \f
1539 /* Given a compare instruction, swap the operands.
1540 A test instruction is changed into a compare of 0 against the operand. */
1541
1542 void
1543 reverse_comparison (insn)
1544 rtx insn;
1545 {
1546 rtx body = PATTERN (insn);
1547 rtx comp;
1548
1549 if (GET_CODE (body) == SET)
1550 comp = SET_SRC (body);
1551 else
1552 comp = SET_SRC (XVECEXP (body, 0, 0));
1553
1554 if (GET_CODE (comp) == COMPARE)
1555 {
1556 rtx op0 = XEXP (comp, 0);
1557 rtx op1 = XEXP (comp, 1);
1558 XEXP (comp, 0) = op1;
1559 XEXP (comp, 1) = op0;
1560 }
1561 else
1562 {
1563 rtx new = gen_rtx_COMPARE (VOIDmode,
1564 CONST0_RTX (GET_MODE (comp)), comp);
1565 if (GET_CODE (body) == SET)
1566 SET_SRC (body) = new;
1567 else
1568 SET_SRC (XVECEXP (body, 0, 0)) = new;
1569 }
1570 }
1571 \f
1572 /* Return a memory reference like MEMREF, but with its mode changed
1573 to MODE and its address changed to ADDR.
1574 (VOIDmode means don't change the mode.
1575 NULL for ADDR means don't change the address.)
1576 VALIDATE is nonzero if the returned memory location is required to be
1577 valid. */
1578
1579 rtx
1580 change_address_1 (memref, mode, addr, validate)
1581 rtx memref;
1582 enum machine_mode mode;
1583 rtx addr;
1584 int validate;
1585 {
1586 rtx new;
1587
1588 if (GET_CODE (memref) != MEM)
1589 abort ();
1590 if (mode == VOIDmode)
1591 mode = GET_MODE (memref);
1592 if (addr == 0)
1593 addr = XEXP (memref, 0);
1594
1595 if (validate)
1596 {
1597 if (reload_in_progress || reload_completed)
1598 {
1599 if (! memory_address_p (mode, addr))
1600 abort ();
1601 }
1602 else
1603 addr = memory_address (mode, addr);
1604 }
1605
1606 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1607 return memref;
1608
1609 new = gen_rtx_MEM (mode, addr);
1610 MEM_COPY_ATTRIBUTES (new, memref);
1611 return new;
1612 }
1613
1614 /* Return a memory reference like MEMREF, but with its mode changed
1615 to MODE and its address offset by OFFSET bytes. */
1616
1617 rtx
1618 adjust_address (memref, mode, offset)
1619 rtx memref;
1620 enum machine_mode mode;
1621 HOST_WIDE_INT offset;
1622 {
1623 /* For now, this is just a wrapper for change_address, but eventually
1624 will do memref tracking. */
1625 rtx addr = XEXP (memref, 0);
1626
1627 /* ??? Prefer to create garbage instead of creating shared rtl. */
1628 addr = copy_rtx (addr);
1629
1630 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1631 object, we can merge it into the LO_SUM. */
1632 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1633 && offset >= 0
1634 && (unsigned HOST_WIDE_INT) offset
1635 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1636 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1637 plus_constant (XEXP (addr, 1), offset));
1638 else
1639 addr = plus_constant (addr, offset);
1640
1641 return change_address (memref, mode, addr);
1642 }
1643
1644 /* Likewise, but the reference is not required to be valid. */
1645
1646 rtx
1647 adjust_address_nv (memref, mode, offset)
1648 rtx memref;
1649 enum machine_mode mode;
1650 HOST_WIDE_INT offset;
1651 {
1652 /* For now, this is just a wrapper for change_address, but eventually
1653 will do memref tracking. */
1654 rtx addr = XEXP (memref, 0);
1655
1656 /* If MEMREF is a LO_SUM and the offset is within the size of the
1657 object, we can merge it into the LO_SUM. */
1658 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1659 && offset >= 0
1660 && (unsigned HOST_WIDE_INT) offset
1661 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1662 addr = gen_rtx_LO_SUM (mode, XEXP (addr, 0),
1663 plus_constant (XEXP (addr, 1), offset));
1664 else
1665 addr = plus_constant (addr, offset);
1666
1667 return change_address_1 (memref, mode, addr, 0);
1668 }
1669
1670 /* Return a memory reference like MEMREF, but with its address changed to
1671 ADDR. The caller is asserting that the actual piece of memory pointed
1672 to is the same, just the form of the address is being changed, such as
1673 by putting something into a register. */
1674
1675 rtx
1676 replace_equiv_address (memref, addr)
1677 rtx memref;
1678 rtx addr;
1679 {
1680 /* For now, this is just a wrapper for change_address, but eventually
1681 will do memref tracking. */
1682 return change_address (memref, VOIDmode, addr);
1683 }
1684 /* Likewise, but the reference is not required to be valid. */
1685
1686 rtx
1687 replace_equiv_address_nv (memref, addr)
1688 rtx memref;
1689 rtx addr;
1690 {
1691 /* For now, this is just a wrapper for change_address, but eventually
1692 will do memref tracking. */
1693 return change_address_1 (memref, VOIDmode, addr, 0);
1694 }
1695 \f
1696 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1697
1698 rtx
1699 gen_label_rtx ()
1700 {
1701 register rtx label;
1702
1703 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
1704 NULL_RTX, label_num++, NULL, NULL);
1705
1706 LABEL_NUSES (label) = 0;
1707 LABEL_ALTERNATE_NAME (label) = NULL;
1708 return label;
1709 }
1710 \f
1711 /* For procedure integration. */
1712
1713 /* Install new pointers to the first and last insns in the chain.
1714 Also, set cur_insn_uid to one higher than the last in use.
1715 Used for an inline-procedure after copying the insn chain. */
1716
1717 void
1718 set_new_first_and_last_insn (first, last)
1719 rtx first, last;
1720 {
1721 rtx insn;
1722
1723 first_insn = first;
1724 last_insn = last;
1725 cur_insn_uid = 0;
1726
1727 for (insn = first; insn; insn = NEXT_INSN (insn))
1728 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1729
1730 cur_insn_uid++;
1731 }
1732
1733 /* Set the range of label numbers found in the current function.
1734 This is used when belatedly compiling an inline function. */
1735
1736 void
1737 set_new_first_and_last_label_num (first, last)
1738 int first, last;
1739 {
1740 base_label_num = label_num;
1741 first_label_num = first;
1742 last_label_num = last;
1743 }
1744
1745 /* Set the last label number found in the current function.
1746 This is used when belatedly compiling an inline function. */
1747
1748 void
1749 set_new_last_label_num (last)
1750 int last;
1751 {
1752 base_label_num = label_num;
1753 last_label_num = last;
1754 }
1755 \f
1756 /* Restore all variables describing the current status from the structure *P.
1757 This is used after a nested function. */
1758
1759 void
1760 restore_emit_status (p)
1761 struct function *p ATTRIBUTE_UNUSED;
1762 {
1763 last_label_num = 0;
1764 clear_emit_caches ();
1765 }
1766
1767 /* Clear out all parts of the state in F that can safely be discarded
1768 after the function has been compiled, to let garbage collection
1769 reclaim the memory. */
1770
1771 void
1772 free_emit_status (f)
1773 struct function *f;
1774 {
1775 free (f->emit->x_regno_reg_rtx);
1776 free (f->emit->regno_pointer_align);
1777 free (f->emit);
1778 f->emit = NULL;
1779 }
1780 \f
1781 /* Go through all the RTL insn bodies and copy any invalid shared
1782 structure. This routine should only be called once. */
1783
1784 void
1785 unshare_all_rtl (fndecl, insn)
1786 tree fndecl;
1787 rtx insn;
1788 {
1789 tree decl;
1790
1791 /* Make sure that virtual parameters are not shared. */
1792 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1793 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
1794
1795 /* Make sure that virtual stack slots are not shared. */
1796 unshare_all_decls (DECL_INITIAL (fndecl));
1797
1798 /* Unshare just about everything else. */
1799 unshare_all_rtl_1 (insn);
1800
1801 /* Make sure the addresses of stack slots found outside the insn chain
1802 (such as, in DECL_RTL of a variable) are not shared
1803 with the insn chain.
1804
1805 This special care is necessary when the stack slot MEM does not
1806 actually appear in the insn chain. If it does appear, its address
1807 is unshared from all else at that point. */
1808 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
1809 }
1810
1811 /* Go through all the RTL insn bodies and copy any invalid shared
1812 structure, again. This is a fairly expensive thing to do so it
1813 should be done sparingly. */
1814
1815 void
1816 unshare_all_rtl_again (insn)
1817 rtx insn;
1818 {
1819 rtx p;
1820 tree decl;
1821
1822 for (p = insn; p; p = NEXT_INSN (p))
1823 if (INSN_P (p))
1824 {
1825 reset_used_flags (PATTERN (p));
1826 reset_used_flags (REG_NOTES (p));
1827 reset_used_flags (LOG_LINKS (p));
1828 }
1829
1830 /* Make sure that virtual stack slots are not shared. */
1831 reset_used_decls (DECL_INITIAL (cfun->decl));
1832
1833 /* Make sure that virtual parameters are not shared. */
1834 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1835 reset_used_flags (DECL_RTL (decl));
1836
1837 reset_used_flags (stack_slot_list);
1838
1839 unshare_all_rtl (cfun->decl, insn);
1840 }
1841
1842 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1843 Assumes the mark bits are cleared at entry. */
1844
1845 static void
1846 unshare_all_rtl_1 (insn)
1847 rtx insn;
1848 {
1849 for (; insn; insn = NEXT_INSN (insn))
1850 if (INSN_P (insn))
1851 {
1852 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1853 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1854 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1855 }
1856 }
1857
1858 /* Go through all virtual stack slots of a function and copy any
1859 shared structure. */
1860 static void
1861 unshare_all_decls (blk)
1862 tree blk;
1863 {
1864 tree t;
1865
1866 /* Copy shared decls. */
1867 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1868 if (DECL_RTL_SET_P (t))
1869 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
1870
1871 /* Now process sub-blocks. */
1872 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1873 unshare_all_decls (t);
1874 }
1875
1876 /* Go through all virtual stack slots of a function and mark them as
1877 not shared. */
1878 static void
1879 reset_used_decls (blk)
1880 tree blk;
1881 {
1882 tree t;
1883
1884 /* Mark decls. */
1885 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1886 if (DECL_RTL_SET_P (t))
1887 reset_used_flags (DECL_RTL (t));
1888
1889 /* Now process sub-blocks. */
1890 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1891 reset_used_decls (t);
1892 }
1893
1894 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1895 Recursively does the same for subexpressions. */
1896
1897 rtx
1898 copy_rtx_if_shared (orig)
1899 rtx orig;
1900 {
1901 register rtx x = orig;
1902 register int i;
1903 register enum rtx_code code;
1904 register const char *format_ptr;
1905 int copied = 0;
1906
1907 if (x == 0)
1908 return 0;
1909
1910 code = GET_CODE (x);
1911
1912 /* These types may be freely shared. */
1913
1914 switch (code)
1915 {
1916 case REG:
1917 case QUEUED:
1918 case CONST_INT:
1919 case CONST_DOUBLE:
1920 case SYMBOL_REF:
1921 case CODE_LABEL:
1922 case PC:
1923 case CC0:
1924 case SCRATCH:
1925 /* SCRATCH must be shared because they represent distinct values. */
1926 return x;
1927
1928 case CONST:
1929 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1930 a LABEL_REF, it isn't sharable. */
1931 if (GET_CODE (XEXP (x, 0)) == PLUS
1932 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1933 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1934 return x;
1935 break;
1936
1937 case INSN:
1938 case JUMP_INSN:
1939 case CALL_INSN:
1940 case NOTE:
1941 case BARRIER:
1942 /* The chain of insns is not being copied. */
1943 return x;
1944
1945 case MEM:
1946 /* A MEM is allowed to be shared if its address is constant.
1947
1948 We used to allow sharing of MEMs which referenced
1949 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1950 that can lose. instantiate_virtual_regs will not unshare
1951 the MEMs, and combine may change the structure of the address
1952 because it looks safe and profitable in one context, but
1953 in some other context it creates unrecognizable RTL. */
1954 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
1955 return x;
1956
1957 break;
1958
1959 default:
1960 break;
1961 }
1962
1963 /* This rtx may not be shared. If it has already been seen,
1964 replace it with a copy of itself. */
1965
1966 if (x->used)
1967 {
1968 register rtx copy;
1969
1970 copy = rtx_alloc (code);
1971 memcpy (copy, x,
1972 (sizeof (*copy) - sizeof (copy->fld)
1973 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
1974 x = copy;
1975 copied = 1;
1976 }
1977 x->used = 1;
1978
1979 /* Now scan the subexpressions recursively.
1980 We can store any replaced subexpressions directly into X
1981 since we know X is not shared! Any vectors in X
1982 must be copied if X was copied. */
1983
1984 format_ptr = GET_RTX_FORMAT (code);
1985
1986 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1987 {
1988 switch (*format_ptr++)
1989 {
1990 case 'e':
1991 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1992 break;
1993
1994 case 'E':
1995 if (XVEC (x, i) != NULL)
1996 {
1997 register int j;
1998 int len = XVECLEN (x, i);
1999
2000 if (copied && len > 0)
2001 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2002 for (j = 0; j < len; j++)
2003 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2004 }
2005 break;
2006 }
2007 }
2008 return x;
2009 }
2010
2011 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2012 to look for shared sub-parts. */
2013
2014 void
2015 reset_used_flags (x)
2016 rtx x;
2017 {
2018 register int i, j;
2019 register enum rtx_code code;
2020 register const char *format_ptr;
2021
2022 if (x == 0)
2023 return;
2024
2025 code = GET_CODE (x);
2026
2027 /* These types may be freely shared so we needn't do any resetting
2028 for them. */
2029
2030 switch (code)
2031 {
2032 case REG:
2033 case QUEUED:
2034 case CONST_INT:
2035 case CONST_DOUBLE:
2036 case SYMBOL_REF:
2037 case CODE_LABEL:
2038 case PC:
2039 case CC0:
2040 return;
2041
2042 case INSN:
2043 case JUMP_INSN:
2044 case CALL_INSN:
2045 case NOTE:
2046 case LABEL_REF:
2047 case BARRIER:
2048 /* The chain of insns is not being copied. */
2049 return;
2050
2051 default:
2052 break;
2053 }
2054
2055 x->used = 0;
2056
2057 format_ptr = GET_RTX_FORMAT (code);
2058 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2059 {
2060 switch (*format_ptr++)
2061 {
2062 case 'e':
2063 reset_used_flags (XEXP (x, i));
2064 break;
2065
2066 case 'E':
2067 for (j = 0; j < XVECLEN (x, i); j++)
2068 reset_used_flags (XVECEXP (x, i, j));
2069 break;
2070 }
2071 }
2072 }
2073 \f
2074 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2075 Return X or the rtx for the pseudo reg the value of X was copied into.
2076 OTHER must be valid as a SET_DEST. */
2077
2078 rtx
2079 make_safe_from (x, other)
2080 rtx x, other;
2081 {
2082 while (1)
2083 switch (GET_CODE (other))
2084 {
2085 case SUBREG:
2086 other = SUBREG_REG (other);
2087 break;
2088 case STRICT_LOW_PART:
2089 case SIGN_EXTEND:
2090 case ZERO_EXTEND:
2091 other = XEXP (other, 0);
2092 break;
2093 default:
2094 goto done;
2095 }
2096 done:
2097 if ((GET_CODE (other) == MEM
2098 && ! CONSTANT_P (x)
2099 && GET_CODE (x) != REG
2100 && GET_CODE (x) != SUBREG)
2101 || (GET_CODE (other) == REG
2102 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2103 || reg_mentioned_p (other, x))))
2104 {
2105 rtx temp = gen_reg_rtx (GET_MODE (x));
2106 emit_move_insn (temp, x);
2107 return temp;
2108 }
2109 return x;
2110 }
2111 \f
2112 /* Emission of insns (adding them to the doubly-linked list). */
2113
2114 /* Return the first insn of the current sequence or current function. */
2115
2116 rtx
2117 get_insns ()
2118 {
2119 return first_insn;
2120 }
2121
2122 /* Return the last insn emitted in current sequence or current function. */
2123
2124 rtx
2125 get_last_insn ()
2126 {
2127 return last_insn;
2128 }
2129
2130 /* Specify a new insn as the last in the chain. */
2131
2132 void
2133 set_last_insn (insn)
2134 rtx insn;
2135 {
2136 if (NEXT_INSN (insn) != 0)
2137 abort ();
2138 last_insn = insn;
2139 }
2140
2141 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2142
2143 rtx
2144 get_last_insn_anywhere ()
2145 {
2146 struct sequence_stack *stack;
2147 if (last_insn)
2148 return last_insn;
2149 for (stack = seq_stack; stack; stack = stack->next)
2150 if (stack->last != 0)
2151 return stack->last;
2152 return 0;
2153 }
2154
2155 /* Return a number larger than any instruction's uid in this function. */
2156
2157 int
2158 get_max_uid ()
2159 {
2160 return cur_insn_uid;
2161 }
2162
2163 /* Renumber instructions so that no instruction UIDs are wasted. */
2164
2165 void
2166 renumber_insns (stream)
2167 FILE *stream;
2168 {
2169 rtx insn;
2170
2171 /* If we're not supposed to renumber instructions, don't. */
2172 if (!flag_renumber_insns)
2173 return;
2174
2175 /* If there aren't that many instructions, then it's not really
2176 worth renumbering them. */
2177 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2178 return;
2179
2180 cur_insn_uid = 1;
2181
2182 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2183 {
2184 if (stream)
2185 fprintf (stream, "Renumbering insn %d to %d\n",
2186 INSN_UID (insn), cur_insn_uid);
2187 INSN_UID (insn) = cur_insn_uid++;
2188 }
2189 }
2190 \f
2191 /* Return the next insn. If it is a SEQUENCE, return the first insn
2192 of the sequence. */
2193
2194 rtx
2195 next_insn (insn)
2196 rtx insn;
2197 {
2198 if (insn)
2199 {
2200 insn = NEXT_INSN (insn);
2201 if (insn && GET_CODE (insn) == INSN
2202 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2203 insn = XVECEXP (PATTERN (insn), 0, 0);
2204 }
2205
2206 return insn;
2207 }
2208
2209 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2210 of the sequence. */
2211
2212 rtx
2213 previous_insn (insn)
2214 rtx insn;
2215 {
2216 if (insn)
2217 {
2218 insn = PREV_INSN (insn);
2219 if (insn && GET_CODE (insn) == INSN
2220 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2221 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2222 }
2223
2224 return insn;
2225 }
2226
2227 /* Return the next insn after INSN that is not a NOTE. This routine does not
2228 look inside SEQUENCEs. */
2229
2230 rtx
2231 next_nonnote_insn (insn)
2232 rtx insn;
2233 {
2234 while (insn)
2235 {
2236 insn = NEXT_INSN (insn);
2237 if (insn == 0 || GET_CODE (insn) != NOTE)
2238 break;
2239 }
2240
2241 return insn;
2242 }
2243
2244 /* Return the previous insn before INSN that is not a NOTE. This routine does
2245 not look inside SEQUENCEs. */
2246
2247 rtx
2248 prev_nonnote_insn (insn)
2249 rtx insn;
2250 {
2251 while (insn)
2252 {
2253 insn = PREV_INSN (insn);
2254 if (insn == 0 || GET_CODE (insn) != NOTE)
2255 break;
2256 }
2257
2258 return insn;
2259 }
2260
2261 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2262 or 0, if there is none. This routine does not look inside
2263 SEQUENCEs. */
2264
2265 rtx
2266 next_real_insn (insn)
2267 rtx insn;
2268 {
2269 while (insn)
2270 {
2271 insn = NEXT_INSN (insn);
2272 if (insn == 0 || GET_CODE (insn) == INSN
2273 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2274 break;
2275 }
2276
2277 return insn;
2278 }
2279
2280 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2281 or 0, if there is none. This routine does not look inside
2282 SEQUENCEs. */
2283
2284 rtx
2285 prev_real_insn (insn)
2286 rtx insn;
2287 {
2288 while (insn)
2289 {
2290 insn = PREV_INSN (insn);
2291 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2292 || GET_CODE (insn) == JUMP_INSN)
2293 break;
2294 }
2295
2296 return insn;
2297 }
2298
2299 /* Find the next insn after INSN that really does something. This routine
2300 does not look inside SEQUENCEs. Until reload has completed, this is the
2301 same as next_real_insn. */
2302
2303 int
2304 active_insn_p (insn)
2305 rtx insn;
2306 {
2307 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2308 || (GET_CODE (insn) == INSN
2309 && (! reload_completed
2310 || (GET_CODE (PATTERN (insn)) != USE
2311 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2312 }
2313
2314 rtx
2315 next_active_insn (insn)
2316 rtx insn;
2317 {
2318 while (insn)
2319 {
2320 insn = NEXT_INSN (insn);
2321 if (insn == 0 || active_insn_p (insn))
2322 break;
2323 }
2324
2325 return insn;
2326 }
2327
2328 /* Find the last insn before INSN that really does something. This routine
2329 does not look inside SEQUENCEs. Until reload has completed, this is the
2330 same as prev_real_insn. */
2331
2332 rtx
2333 prev_active_insn (insn)
2334 rtx insn;
2335 {
2336 while (insn)
2337 {
2338 insn = PREV_INSN (insn);
2339 if (insn == 0 || active_insn_p (insn))
2340 break;
2341 }
2342
2343 return insn;
2344 }
2345
2346 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2347
2348 rtx
2349 next_label (insn)
2350 rtx insn;
2351 {
2352 while (insn)
2353 {
2354 insn = NEXT_INSN (insn);
2355 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2356 break;
2357 }
2358
2359 return insn;
2360 }
2361
2362 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2363
2364 rtx
2365 prev_label (insn)
2366 rtx insn;
2367 {
2368 while (insn)
2369 {
2370 insn = PREV_INSN (insn);
2371 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2372 break;
2373 }
2374
2375 return insn;
2376 }
2377 \f
2378 #ifdef HAVE_cc0
2379 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2380 and REG_CC_USER notes so we can find it. */
2381
2382 void
2383 link_cc0_insns (insn)
2384 rtx insn;
2385 {
2386 rtx user = next_nonnote_insn (insn);
2387
2388 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2389 user = XVECEXP (PATTERN (user), 0, 0);
2390
2391 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2392 REG_NOTES (user));
2393 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2394 }
2395
2396 /* Return the next insn that uses CC0 after INSN, which is assumed to
2397 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2398 applied to the result of this function should yield INSN).
2399
2400 Normally, this is simply the next insn. However, if a REG_CC_USER note
2401 is present, it contains the insn that uses CC0.
2402
2403 Return 0 if we can't find the insn. */
2404
2405 rtx
2406 next_cc0_user (insn)
2407 rtx insn;
2408 {
2409 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2410
2411 if (note)
2412 return XEXP (note, 0);
2413
2414 insn = next_nonnote_insn (insn);
2415 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2416 insn = XVECEXP (PATTERN (insn), 0, 0);
2417
2418 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2419 return insn;
2420
2421 return 0;
2422 }
2423
2424 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2425 note, it is the previous insn. */
2426
2427 rtx
2428 prev_cc0_setter (insn)
2429 rtx insn;
2430 {
2431 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2432
2433 if (note)
2434 return XEXP (note, 0);
2435
2436 insn = prev_nonnote_insn (insn);
2437 if (! sets_cc0_p (PATTERN (insn)))
2438 abort ();
2439
2440 return insn;
2441 }
2442 #endif
2443
2444 /* Increment the label uses for all labels present in rtx. */
2445
2446 static void
2447 mark_label_nuses(x)
2448 rtx x;
2449 {
2450 register enum rtx_code code;
2451 register int i, j;
2452 register const char *fmt;
2453
2454 code = GET_CODE (x);
2455 if (code == LABEL_REF)
2456 LABEL_NUSES (XEXP (x, 0))++;
2457
2458 fmt = GET_RTX_FORMAT (code);
2459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2460 {
2461 if (fmt[i] == 'e')
2462 mark_label_nuses (XEXP (x, i));
2463 else if (fmt[i] == 'E')
2464 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2465 mark_label_nuses (XVECEXP (x, i, j));
2466 }
2467 }
2468
2469 \f
2470 /* Try splitting insns that can be split for better scheduling.
2471 PAT is the pattern which might split.
2472 TRIAL is the insn providing PAT.
2473 LAST is non-zero if we should return the last insn of the sequence produced.
2474
2475 If this routine succeeds in splitting, it returns the first or last
2476 replacement insn depending on the value of LAST. Otherwise, it
2477 returns TRIAL. If the insn to be returned can be split, it will be. */
2478
2479 rtx
2480 try_split (pat, trial, last)
2481 rtx pat, trial;
2482 int last;
2483 {
2484 rtx before = PREV_INSN (trial);
2485 rtx after = NEXT_INSN (trial);
2486 int has_barrier = 0;
2487 rtx tem;
2488 rtx note, seq;
2489 int probability;
2490
2491 if (any_condjump_p (trial)
2492 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2493 split_branch_probability = INTVAL (XEXP (note, 0));
2494 probability = split_branch_probability;
2495
2496 seq = split_insns (pat, trial);
2497
2498 split_branch_probability = -1;
2499
2500 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2501 We may need to handle this specially. */
2502 if (after && GET_CODE (after) == BARRIER)
2503 {
2504 has_barrier = 1;
2505 after = NEXT_INSN (after);
2506 }
2507
2508 if (seq)
2509 {
2510 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2511 The latter case will normally arise only when being done so that
2512 it, in turn, will be split (SFmode on the 29k is an example). */
2513 if (GET_CODE (seq) == SEQUENCE)
2514 {
2515 int i, njumps = 0;
2516
2517 /* Avoid infinite loop if any insn of the result matches
2518 the original pattern. */
2519 for (i = 0; i < XVECLEN (seq, 0); i++)
2520 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2521 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2522 return trial;
2523
2524 /* Mark labels. */
2525 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2526 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2527 {
2528 rtx insn = XVECEXP (seq, 0, i);
2529 mark_jump_label (PATTERN (insn),
2530 XVECEXP (seq, 0, i), 0);
2531 njumps++;
2532 if (probability != -1
2533 && any_condjump_p (insn)
2534 && !find_reg_note (insn, REG_BR_PROB, 0))
2535 {
2536 /* We can preserve the REG_BR_PROB notes only if exactly
2537 one jump is created, otherwise the machinde description
2538 is responsible for this step using
2539 split_branch_probability variable. */
2540 if (njumps != 1)
2541 abort ();
2542 REG_NOTES (insn)
2543 = gen_rtx_EXPR_LIST (REG_BR_PROB,
2544 GEN_INT (probability),
2545 REG_NOTES (insn));
2546 }
2547 }
2548
2549 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2550 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2551 if (GET_CODE (trial) == CALL_INSN)
2552 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2553 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2554 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2555 = CALL_INSN_FUNCTION_USAGE (trial);
2556
2557 /* Copy notes, particularly those related to the CFG. */
2558 for (note = REG_NOTES (trial); note ; note = XEXP (note, 1))
2559 {
2560 switch (REG_NOTE_KIND (note))
2561 {
2562 case REG_EH_REGION:
2563 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2564 {
2565 rtx insn = XVECEXP (seq, 0, i);
2566 if (GET_CODE (insn) == CALL_INSN
2567 || (flag_non_call_exceptions
2568 && may_trap_p (PATTERN (insn))))
2569 REG_NOTES (insn)
2570 = gen_rtx_EXPR_LIST (REG_EH_REGION,
2571 XEXP (note, 0),
2572 REG_NOTES (insn));
2573 }
2574 break;
2575
2576 case REG_NORETURN:
2577 case REG_SETJMP:
2578 case REG_ALWAYS_RETURN:
2579 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2580 {
2581 rtx insn = XVECEXP (seq, 0, i);
2582 if (GET_CODE (insn) == CALL_INSN)
2583 REG_NOTES (insn)
2584 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2585 XEXP (note, 0),
2586 REG_NOTES (insn));
2587 }
2588 break;
2589
2590 case REG_NON_LOCAL_GOTO:
2591 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2592 {
2593 rtx insn = XVECEXP (seq, 0, i);
2594 if (GET_CODE (insn) == JUMP_INSN)
2595 REG_NOTES (insn)
2596 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2597 XEXP (note, 0),
2598 REG_NOTES (insn));
2599 }
2600 break;
2601
2602 default:
2603 break;
2604 }
2605 }
2606
2607 /* If there are LABELS inside the split insns increment the
2608 usage count so we don't delete the label. */
2609 if (GET_CODE (trial) == INSN)
2610 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2611 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2612 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2613
2614 tem = emit_insn_after (seq, trial);
2615
2616 delete_insn (trial);
2617 if (has_barrier)
2618 emit_barrier_after (tem);
2619
2620 /* Recursively call try_split for each new insn created; by the
2621 time control returns here that insn will be fully split, so
2622 set LAST and continue from the insn after the one returned.
2623 We can't use next_active_insn here since AFTER may be a note.
2624 Ignore deleted insns, which can be occur if not optimizing. */
2625 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2626 if (! INSN_DELETED_P (tem) && INSN_P (tem))
2627 tem = try_split (PATTERN (tem), tem, 1);
2628 }
2629 /* Avoid infinite loop if the result matches the original pattern. */
2630 else if (rtx_equal_p (seq, pat))
2631 return trial;
2632 else
2633 {
2634 PATTERN (trial) = seq;
2635 INSN_CODE (trial) = -1;
2636 try_split (seq, trial, last);
2637 }
2638
2639 /* Return either the first or the last insn, depending on which was
2640 requested. */
2641 return last
2642 ? (after ? PREV_INSN (after) : last_insn)
2643 : NEXT_INSN (before);
2644 }
2645
2646 return trial;
2647 }
2648 \f
2649 /* Make and return an INSN rtx, initializing all its slots.
2650 Store PATTERN in the pattern slots. */
2651
2652 rtx
2653 make_insn_raw (pattern)
2654 rtx pattern;
2655 {
2656 register rtx insn;
2657
2658 insn = rtx_alloc (INSN);
2659
2660 INSN_UID (insn) = cur_insn_uid++;
2661 PATTERN (insn) = pattern;
2662 INSN_CODE (insn) = -1;
2663 LOG_LINKS (insn) = NULL;
2664 REG_NOTES (insn) = NULL;
2665
2666 #ifdef ENABLE_RTL_CHECKING
2667 if (insn
2668 && INSN_P (insn)
2669 && (returnjump_p (insn)
2670 || (GET_CODE (insn) == SET
2671 && SET_DEST (insn) == pc_rtx)))
2672 {
2673 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2674 debug_rtx (insn);
2675 }
2676 #endif
2677
2678 return insn;
2679 }
2680
2681 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2682
2683 static rtx
2684 make_jump_insn_raw (pattern)
2685 rtx pattern;
2686 {
2687 register rtx insn;
2688
2689 insn = rtx_alloc (JUMP_INSN);
2690 INSN_UID (insn) = cur_insn_uid++;
2691
2692 PATTERN (insn) = pattern;
2693 INSN_CODE (insn) = -1;
2694 LOG_LINKS (insn) = NULL;
2695 REG_NOTES (insn) = NULL;
2696 JUMP_LABEL (insn) = NULL;
2697
2698 return insn;
2699 }
2700
2701 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2702
2703 static rtx
2704 make_call_insn_raw (pattern)
2705 rtx pattern;
2706 {
2707 register rtx insn;
2708
2709 insn = rtx_alloc (CALL_INSN);
2710 INSN_UID (insn) = cur_insn_uid++;
2711
2712 PATTERN (insn) = pattern;
2713 INSN_CODE (insn) = -1;
2714 LOG_LINKS (insn) = NULL;
2715 REG_NOTES (insn) = NULL;
2716 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2717
2718 return insn;
2719 }
2720 \f
2721 /* Add INSN to the end of the doubly-linked list.
2722 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2723
2724 void
2725 add_insn (insn)
2726 register rtx insn;
2727 {
2728 PREV_INSN (insn) = last_insn;
2729 NEXT_INSN (insn) = 0;
2730
2731 if (NULL != last_insn)
2732 NEXT_INSN (last_insn) = insn;
2733
2734 if (NULL == first_insn)
2735 first_insn = insn;
2736
2737 last_insn = insn;
2738 }
2739
2740 /* Add INSN into the doubly-linked list after insn AFTER. This and
2741 the next should be the only functions called to insert an insn once
2742 delay slots have been filled since only they know how to update a
2743 SEQUENCE. */
2744
2745 void
2746 add_insn_after (insn, after)
2747 rtx insn, after;
2748 {
2749 rtx next = NEXT_INSN (after);
2750 basic_block bb;
2751
2752 if (optimize && INSN_DELETED_P (after))
2753 abort ();
2754
2755 NEXT_INSN (insn) = next;
2756 PREV_INSN (insn) = after;
2757
2758 if (next)
2759 {
2760 PREV_INSN (next) = insn;
2761 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2762 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2763 }
2764 else if (last_insn == after)
2765 last_insn = insn;
2766 else
2767 {
2768 struct sequence_stack *stack = seq_stack;
2769 /* Scan all pending sequences too. */
2770 for (; stack; stack = stack->next)
2771 if (after == stack->last)
2772 {
2773 stack->last = insn;
2774 break;
2775 }
2776
2777 if (stack == 0)
2778 abort ();
2779 }
2780
2781 if (basic_block_for_insn
2782 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
2783 && (bb = BLOCK_FOR_INSN (after)))
2784 {
2785 set_block_for_insn (insn, bb);
2786 /* Should not happen as first in the BB is always
2787 eigther NOTE or LABEL. */
2788 if (bb->end == after
2789 /* Avoid clobbering of structure when creating new BB. */
2790 && GET_CODE (insn) != BARRIER
2791 && (GET_CODE (insn) != NOTE
2792 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
2793 bb->end = insn;
2794 }
2795
2796 NEXT_INSN (after) = insn;
2797 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2798 {
2799 rtx sequence = PATTERN (after);
2800 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2801 }
2802 }
2803
2804 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2805 the previous should be the only functions called to insert an insn once
2806 delay slots have been filled since only they know how to update a
2807 SEQUENCE. */
2808
2809 void
2810 add_insn_before (insn, before)
2811 rtx insn, before;
2812 {
2813 rtx prev = PREV_INSN (before);
2814 basic_block bb;
2815
2816 if (optimize && INSN_DELETED_P (before))
2817 abort ();
2818
2819 PREV_INSN (insn) = prev;
2820 NEXT_INSN (insn) = before;
2821
2822 if (prev)
2823 {
2824 NEXT_INSN (prev) = insn;
2825 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2826 {
2827 rtx sequence = PATTERN (prev);
2828 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2829 }
2830 }
2831 else if (first_insn == before)
2832 first_insn = insn;
2833 else
2834 {
2835 struct sequence_stack *stack = seq_stack;
2836 /* Scan all pending sequences too. */
2837 for (; stack; stack = stack->next)
2838 if (before == stack->first)
2839 {
2840 stack->first = insn;
2841 break;
2842 }
2843
2844 if (stack == 0)
2845 abort ();
2846 }
2847
2848 if (basic_block_for_insn
2849 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
2850 && (bb = BLOCK_FOR_INSN (before)))
2851 {
2852 set_block_for_insn (insn, bb);
2853 /* Should not happen as first in the BB is always
2854 eigther NOTE or LABEl. */
2855 if (bb->head == insn
2856 /* Avoid clobbering of structure when creating new BB. */
2857 && GET_CODE (insn) != BARRIER
2858 && (GET_CODE (insn) != NOTE
2859 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
2860 abort ();
2861 }
2862
2863 PREV_INSN (before) = insn;
2864 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2865 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2866 }
2867
2868 /* Remove an insn from its doubly-linked list. This function knows how
2869 to handle sequences. */
2870 void
2871 remove_insn (insn)
2872 rtx insn;
2873 {
2874 rtx next = NEXT_INSN (insn);
2875 rtx prev = PREV_INSN (insn);
2876 if (prev)
2877 {
2878 NEXT_INSN (prev) = next;
2879 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2880 {
2881 rtx sequence = PATTERN (prev);
2882 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2883 }
2884 }
2885 else if (first_insn == insn)
2886 first_insn = next;
2887 else
2888 {
2889 struct sequence_stack *stack = seq_stack;
2890 /* Scan all pending sequences too. */
2891 for (; stack; stack = stack->next)
2892 if (insn == stack->first)
2893 {
2894 stack->first = next;
2895 break;
2896 }
2897
2898 if (stack == 0)
2899 abort ();
2900 }
2901
2902 if (next)
2903 {
2904 PREV_INSN (next) = prev;
2905 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2906 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2907 }
2908 else if (last_insn == insn)
2909 last_insn = prev;
2910 else
2911 {
2912 struct sequence_stack *stack = seq_stack;
2913 /* Scan all pending sequences too. */
2914 for (; stack; stack = stack->next)
2915 if (insn == stack->last)
2916 {
2917 stack->last = prev;
2918 break;
2919 }
2920
2921 if (stack == 0)
2922 abort ();
2923 }
2924 }
2925
2926 /* Delete all insns made since FROM.
2927 FROM becomes the new last instruction. */
2928
2929 void
2930 delete_insns_since (from)
2931 rtx from;
2932 {
2933 if (from == 0)
2934 first_insn = 0;
2935 else
2936 NEXT_INSN (from) = 0;
2937 last_insn = from;
2938 }
2939
2940 /* This function is deprecated, please use sequences instead.
2941
2942 Move a consecutive bunch of insns to a different place in the chain.
2943 The insns to be moved are those between FROM and TO.
2944 They are moved to a new position after the insn AFTER.
2945 AFTER must not be FROM or TO or any insn in between.
2946
2947 This function does not know about SEQUENCEs and hence should not be
2948 called after delay-slot filling has been done. */
2949
2950 void
2951 reorder_insns_nobb (from, to, after)
2952 rtx from, to, after;
2953 {
2954 /* Splice this bunch out of where it is now. */
2955 if (PREV_INSN (from))
2956 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2957 if (NEXT_INSN (to))
2958 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2959 if (last_insn == to)
2960 last_insn = PREV_INSN (from);
2961 if (first_insn == from)
2962 first_insn = NEXT_INSN (to);
2963
2964 /* Make the new neighbors point to it and it to them. */
2965 if (NEXT_INSN (after))
2966 PREV_INSN (NEXT_INSN (after)) = to;
2967
2968 NEXT_INSN (to) = NEXT_INSN (after);
2969 PREV_INSN (from) = after;
2970 NEXT_INSN (after) = from;
2971 if (after == last_insn)
2972 last_insn = to;
2973 }
2974
2975 /* Same as function above, but take care to update BB boundaries. */
2976 void
2977 reorder_insns (from, to, after)
2978 rtx from, to, after;
2979 {
2980 rtx prev = PREV_INSN (from);
2981 basic_block bb, bb2;
2982
2983 reorder_insns_nobb (from, to, after);
2984
2985 if (basic_block_for_insn
2986 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
2987 && (bb = BLOCK_FOR_INSN (after)))
2988 {
2989 rtx x;
2990
2991 if (basic_block_for_insn
2992 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
2993 && (bb2 = BLOCK_FOR_INSN (from)))
2994 {
2995 if (bb2->end == to)
2996 bb2->end = prev;
2997 }
2998
2999 if (bb->end == after)
3000 bb->end = to;
3001
3002 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3003 set_block_for_insn (x, bb);
3004 }
3005 }
3006
3007 /* Return the line note insn preceding INSN. */
3008
3009 static rtx
3010 find_line_note (insn)
3011 rtx insn;
3012 {
3013 if (no_line_numbers)
3014 return 0;
3015
3016 for (; insn; insn = PREV_INSN (insn))
3017 if (GET_CODE (insn) == NOTE
3018 && NOTE_LINE_NUMBER (insn) >= 0)
3019 break;
3020
3021 return insn;
3022 }
3023
3024 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3025 of the moved insns when debugging. This may insert a note between AFTER
3026 and FROM, and another one after TO. */
3027
3028 void
3029 reorder_insns_with_line_notes (from, to, after)
3030 rtx from, to, after;
3031 {
3032 rtx from_line = find_line_note (from);
3033 rtx after_line = find_line_note (after);
3034
3035 reorder_insns (from, to, after);
3036
3037 if (from_line == after_line)
3038 return;
3039
3040 if (from_line)
3041 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3042 NOTE_LINE_NUMBER (from_line),
3043 after);
3044 if (after_line)
3045 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3046 NOTE_LINE_NUMBER (after_line),
3047 to);
3048 }
3049
3050 /* Remove unnecessary notes from the instruction stream. */
3051
3052 void
3053 remove_unnecessary_notes ()
3054 {
3055 rtx block_stack = NULL_RTX;
3056 rtx eh_stack = NULL_RTX;
3057 rtx insn;
3058 rtx next;
3059 rtx tmp;
3060
3061 /* We must not remove the first instruction in the function because
3062 the compiler depends on the first instruction being a note. */
3063 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3064 {
3065 /* Remember what's next. */
3066 next = NEXT_INSN (insn);
3067
3068 /* We're only interested in notes. */
3069 if (GET_CODE (insn) != NOTE)
3070 continue;
3071
3072 switch (NOTE_LINE_NUMBER (insn))
3073 {
3074 case NOTE_INSN_DELETED:
3075 remove_insn (insn);
3076 break;
3077
3078 case NOTE_INSN_EH_REGION_BEG:
3079 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3080 break;
3081
3082 case NOTE_INSN_EH_REGION_END:
3083 /* Too many end notes. */
3084 if (eh_stack == NULL_RTX)
3085 abort ();
3086 /* Mismatched nesting. */
3087 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3088 abort ();
3089 tmp = eh_stack;
3090 eh_stack = XEXP (eh_stack, 1);
3091 free_INSN_LIST_node (tmp);
3092 break;
3093
3094 case NOTE_INSN_BLOCK_BEG:
3095 /* By now, all notes indicating lexical blocks should have
3096 NOTE_BLOCK filled in. */
3097 if (NOTE_BLOCK (insn) == NULL_TREE)
3098 abort ();
3099 block_stack = alloc_INSN_LIST (insn, block_stack);
3100 break;
3101
3102 case NOTE_INSN_BLOCK_END:
3103 /* Too many end notes. */
3104 if (block_stack == NULL_RTX)
3105 abort ();
3106 /* Mismatched nesting. */
3107 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3108 abort ();
3109 tmp = block_stack;
3110 block_stack = XEXP (block_stack, 1);
3111 free_INSN_LIST_node (tmp);
3112
3113 /* Scan back to see if there are any non-note instructions
3114 between INSN and the beginning of this block. If not,
3115 then there is no PC range in the generated code that will
3116 actually be in this block, so there's no point in
3117 remembering the existence of the block. */
3118 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
3119 {
3120 /* This block contains a real instruction. Note that we
3121 don't include labels; if the only thing in the block
3122 is a label, then there are still no PC values that
3123 lie within the block. */
3124 if (INSN_P (tmp))
3125 break;
3126
3127 /* We're only interested in NOTEs. */
3128 if (GET_CODE (tmp) != NOTE)
3129 continue;
3130
3131 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3132 {
3133 /* We just verified that this BLOCK matches us with
3134 the block_stack check above. Never delete the
3135 BLOCK for the outermost scope of the function; we
3136 can refer to names from that scope even if the
3137 block notes are messed up. */
3138 if (! is_body_block (NOTE_BLOCK (insn))
3139 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3140 {
3141 remove_insn (tmp);
3142 remove_insn (insn);
3143 }
3144 break;
3145 }
3146 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3147 /* There's a nested block. We need to leave the
3148 current block in place since otherwise the debugger
3149 wouldn't be able to show symbols from our block in
3150 the nested block. */
3151 break;
3152 }
3153 }
3154 }
3155
3156 /* Too many begin notes. */
3157 if (block_stack || eh_stack)
3158 abort ();
3159 }
3160
3161 \f
3162 /* Emit an insn of given code and pattern
3163 at a specified place within the doubly-linked list. */
3164
3165 /* Make an instruction with body PATTERN
3166 and output it before the instruction BEFORE. */
3167
3168 rtx
3169 emit_insn_before (pattern, before)
3170 register rtx pattern, before;
3171 {
3172 register rtx insn = before;
3173
3174 if (GET_CODE (pattern) == SEQUENCE)
3175 {
3176 register int i;
3177
3178 for (i = 0; i < XVECLEN (pattern, 0); i++)
3179 {
3180 insn = XVECEXP (pattern, 0, i);
3181 add_insn_before (insn, before);
3182 }
3183 }
3184 else
3185 {
3186 insn = make_insn_raw (pattern);
3187 add_insn_before (insn, before);
3188 }
3189
3190 return insn;
3191 }
3192
3193 /* Make an instruction with body PATTERN and code JUMP_INSN
3194 and output it before the instruction BEFORE. */
3195
3196 rtx
3197 emit_jump_insn_before (pattern, before)
3198 register rtx pattern, before;
3199 {
3200 register rtx insn;
3201
3202 if (GET_CODE (pattern) == SEQUENCE)
3203 insn = emit_insn_before (pattern, before);
3204 else
3205 {
3206 insn = make_jump_insn_raw (pattern);
3207 add_insn_before (insn, before);
3208 }
3209
3210 return insn;
3211 }
3212
3213 /* Make an instruction with body PATTERN and code CALL_INSN
3214 and output it before the instruction BEFORE. */
3215
3216 rtx
3217 emit_call_insn_before (pattern, before)
3218 register rtx pattern, before;
3219 {
3220 register rtx insn;
3221
3222 if (GET_CODE (pattern) == SEQUENCE)
3223 insn = emit_insn_before (pattern, before);
3224 else
3225 {
3226 insn = make_call_insn_raw (pattern);
3227 add_insn_before (insn, before);
3228 PUT_CODE (insn, CALL_INSN);
3229 }
3230
3231 return insn;
3232 }
3233
3234 /* Make an insn of code BARRIER
3235 and output it before the insn BEFORE. */
3236
3237 rtx
3238 emit_barrier_before (before)
3239 register rtx before;
3240 {
3241 register rtx insn = rtx_alloc (BARRIER);
3242
3243 INSN_UID (insn) = cur_insn_uid++;
3244
3245 add_insn_before (insn, before);
3246 return insn;
3247 }
3248
3249 /* Emit the label LABEL before the insn BEFORE. */
3250
3251 rtx
3252 emit_label_before (label, before)
3253 rtx label, before;
3254 {
3255 /* This can be called twice for the same label as a result of the
3256 confusion that follows a syntax error! So make it harmless. */
3257 if (INSN_UID (label) == 0)
3258 {
3259 INSN_UID (label) = cur_insn_uid++;
3260 add_insn_before (label, before);
3261 }
3262
3263 return label;
3264 }
3265
3266 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3267
3268 rtx
3269 emit_note_before (subtype, before)
3270 int subtype;
3271 rtx before;
3272 {
3273 register rtx note = rtx_alloc (NOTE);
3274 INSN_UID (note) = cur_insn_uid++;
3275 NOTE_SOURCE_FILE (note) = 0;
3276 NOTE_LINE_NUMBER (note) = subtype;
3277
3278 add_insn_before (note, before);
3279 return note;
3280 }
3281 \f
3282 /* Make an insn of code INSN with body PATTERN
3283 and output it after the insn AFTER. */
3284
3285 rtx
3286 emit_insn_after (pattern, after)
3287 register rtx pattern, after;
3288 {
3289 register rtx insn = after;
3290
3291 if (GET_CODE (pattern) == SEQUENCE)
3292 {
3293 register int i;
3294
3295 for (i = 0; i < XVECLEN (pattern, 0); i++)
3296 {
3297 insn = XVECEXP (pattern, 0, i);
3298 add_insn_after (insn, after);
3299 after = insn;
3300 }
3301 }
3302 else
3303 {
3304 insn = make_insn_raw (pattern);
3305 add_insn_after (insn, after);
3306 }
3307
3308 return insn;
3309 }
3310
3311 /* Similar to emit_insn_after, except that line notes are to be inserted so
3312 as to act as if this insn were at FROM. */
3313
3314 void
3315 emit_insn_after_with_line_notes (pattern, after, from)
3316 rtx pattern, after, from;
3317 {
3318 rtx from_line = find_line_note (from);
3319 rtx after_line = find_line_note (after);
3320 rtx insn = emit_insn_after (pattern, after);
3321
3322 if (from_line)
3323 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3324 NOTE_LINE_NUMBER (from_line),
3325 after);
3326
3327 if (after_line)
3328 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3329 NOTE_LINE_NUMBER (after_line),
3330 insn);
3331 }
3332
3333 /* Make an insn of code JUMP_INSN with body PATTERN
3334 and output it after the insn AFTER. */
3335
3336 rtx
3337 emit_jump_insn_after (pattern, after)
3338 register rtx pattern, after;
3339 {
3340 register rtx insn;
3341
3342 if (GET_CODE (pattern) == SEQUENCE)
3343 insn = emit_insn_after (pattern, after);
3344 else
3345 {
3346 insn = make_jump_insn_raw (pattern);
3347 add_insn_after (insn, after);
3348 }
3349
3350 return insn;
3351 }
3352
3353 /* Make an insn of code BARRIER
3354 and output it after the insn AFTER. */
3355
3356 rtx
3357 emit_barrier_after (after)
3358 register rtx after;
3359 {
3360 register rtx insn = rtx_alloc (BARRIER);
3361
3362 INSN_UID (insn) = cur_insn_uid++;
3363
3364 add_insn_after (insn, after);
3365 return insn;
3366 }
3367
3368 /* Emit the label LABEL after the insn AFTER. */
3369
3370 rtx
3371 emit_label_after (label, after)
3372 rtx label, after;
3373 {
3374 /* This can be called twice for the same label
3375 as a result of the confusion that follows a syntax error!
3376 So make it harmless. */
3377 if (INSN_UID (label) == 0)
3378 {
3379 INSN_UID (label) = cur_insn_uid++;
3380 add_insn_after (label, after);
3381 }
3382
3383 return label;
3384 }
3385
3386 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3387
3388 rtx
3389 emit_note_after (subtype, after)
3390 int subtype;
3391 rtx after;
3392 {
3393 register rtx note = rtx_alloc (NOTE);
3394 INSN_UID (note) = cur_insn_uid++;
3395 NOTE_SOURCE_FILE (note) = 0;
3396 NOTE_LINE_NUMBER (note) = subtype;
3397 add_insn_after (note, after);
3398 return note;
3399 }
3400
3401 /* Emit a line note for FILE and LINE after the insn AFTER. */
3402
3403 rtx
3404 emit_line_note_after (file, line, after)
3405 const char *file;
3406 int line;
3407 rtx after;
3408 {
3409 register rtx note;
3410
3411 if (no_line_numbers && line > 0)
3412 {
3413 cur_insn_uid++;
3414 return 0;
3415 }
3416
3417 note = rtx_alloc (NOTE);
3418 INSN_UID (note) = cur_insn_uid++;
3419 NOTE_SOURCE_FILE (note) = file;
3420 NOTE_LINE_NUMBER (note) = line;
3421 add_insn_after (note, after);
3422 return note;
3423 }
3424 \f
3425 /* Make an insn of code INSN with pattern PATTERN
3426 and add it to the end of the doubly-linked list.
3427 If PATTERN is a SEQUENCE, take the elements of it
3428 and emit an insn for each element.
3429
3430 Returns the last insn emitted. */
3431
3432 rtx
3433 emit_insn (pattern)
3434 rtx pattern;
3435 {
3436 rtx insn = last_insn;
3437
3438 if (GET_CODE (pattern) == SEQUENCE)
3439 {
3440 register int i;
3441
3442 for (i = 0; i < XVECLEN (pattern, 0); i++)
3443 {
3444 insn = XVECEXP (pattern, 0, i);
3445 add_insn (insn);
3446 }
3447 }
3448 else
3449 {
3450 insn = make_insn_raw (pattern);
3451 add_insn (insn);
3452 }
3453
3454 return insn;
3455 }
3456
3457 /* Emit the insns in a chain starting with INSN.
3458 Return the last insn emitted. */
3459
3460 rtx
3461 emit_insns (insn)
3462 rtx insn;
3463 {
3464 rtx last = 0;
3465
3466 while (insn)
3467 {
3468 rtx next = NEXT_INSN (insn);
3469 add_insn (insn);
3470 last = insn;
3471 insn = next;
3472 }
3473
3474 return last;
3475 }
3476
3477 /* Emit the insns in a chain starting with INSN and place them in front of
3478 the insn BEFORE. Return the last insn emitted. */
3479
3480 rtx
3481 emit_insns_before (insn, before)
3482 rtx insn;
3483 rtx before;
3484 {
3485 rtx last = 0;
3486
3487 while (insn)
3488 {
3489 rtx next = NEXT_INSN (insn);
3490 add_insn_before (insn, before);
3491 last = insn;
3492 insn = next;
3493 }
3494
3495 return last;
3496 }
3497
3498 /* Emit the insns in a chain starting with FIRST and place them in back of
3499 the insn AFTER. Return the last insn emitted. */
3500
3501 rtx
3502 emit_insns_after (first, after)
3503 register rtx first;
3504 register rtx after;
3505 {
3506 register rtx last;
3507 register rtx after_after;
3508 basic_block bb;
3509
3510 if (!after)
3511 abort ();
3512
3513 if (!first)
3514 return first;
3515
3516 if (basic_block_for_insn
3517 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3518 && (bb = BLOCK_FOR_INSN (after)))
3519 {
3520 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3521 set_block_for_insn (last, bb);
3522 set_block_for_insn (last, bb);
3523 if (bb->end == after)
3524 bb->end = last;
3525 }
3526 else
3527 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3528 continue;
3529
3530 after_after = NEXT_INSN (after);
3531
3532 NEXT_INSN (after) = first;
3533 PREV_INSN (first) = after;
3534 NEXT_INSN (last) = after_after;
3535 if (after_after)
3536 PREV_INSN (after_after) = last;
3537
3538 if (after == last_insn)
3539 last_insn = last;
3540 return last;
3541 }
3542
3543 /* Make an insn of code JUMP_INSN with pattern PATTERN
3544 and add it to the end of the doubly-linked list. */
3545
3546 rtx
3547 emit_jump_insn (pattern)
3548 rtx pattern;
3549 {
3550 if (GET_CODE (pattern) == SEQUENCE)
3551 return emit_insn (pattern);
3552 else
3553 {
3554 register rtx insn = make_jump_insn_raw (pattern);
3555 add_insn (insn);
3556 return insn;
3557 }
3558 }
3559
3560 /* Make an insn of code CALL_INSN with pattern PATTERN
3561 and add it to the end of the doubly-linked list. */
3562
3563 rtx
3564 emit_call_insn (pattern)
3565 rtx pattern;
3566 {
3567 if (GET_CODE (pattern) == SEQUENCE)
3568 return emit_insn (pattern);
3569 else
3570 {
3571 register rtx insn = make_call_insn_raw (pattern);
3572 add_insn (insn);
3573 PUT_CODE (insn, CALL_INSN);
3574 return insn;
3575 }
3576 }
3577
3578 /* Add the label LABEL to the end of the doubly-linked list. */
3579
3580 rtx
3581 emit_label (label)
3582 rtx label;
3583 {
3584 /* This can be called twice for the same label
3585 as a result of the confusion that follows a syntax error!
3586 So make it harmless. */
3587 if (INSN_UID (label) == 0)
3588 {
3589 INSN_UID (label) = cur_insn_uid++;
3590 add_insn (label);
3591 }
3592 return label;
3593 }
3594
3595 /* Make an insn of code BARRIER
3596 and add it to the end of the doubly-linked list. */
3597
3598 rtx
3599 emit_barrier ()
3600 {
3601 register rtx barrier = rtx_alloc (BARRIER);
3602 INSN_UID (barrier) = cur_insn_uid++;
3603 add_insn (barrier);
3604 return barrier;
3605 }
3606
3607 /* Make an insn of code NOTE
3608 with data-fields specified by FILE and LINE
3609 and add it to the end of the doubly-linked list,
3610 but only if line-numbers are desired for debugging info. */
3611
3612 rtx
3613 emit_line_note (file, line)
3614 const char *file;
3615 int line;
3616 {
3617 set_file_and_line_for_stmt (file, line);
3618
3619 #if 0
3620 if (no_line_numbers)
3621 return 0;
3622 #endif
3623
3624 return emit_note (file, line);
3625 }
3626
3627 /* Make an insn of code NOTE
3628 with data-fields specified by FILE and LINE
3629 and add it to the end of the doubly-linked list.
3630 If it is a line-number NOTE, omit it if it matches the previous one. */
3631
3632 rtx
3633 emit_note (file, line)
3634 const char *file;
3635 int line;
3636 {
3637 register rtx note;
3638
3639 if (line > 0)
3640 {
3641 if (file && last_filename && !strcmp (file, last_filename)
3642 && line == last_linenum)
3643 return 0;
3644 last_filename = file;
3645 last_linenum = line;
3646 }
3647
3648 if (no_line_numbers && line > 0)
3649 {
3650 cur_insn_uid++;
3651 return 0;
3652 }
3653
3654 note = rtx_alloc (NOTE);
3655 INSN_UID (note) = cur_insn_uid++;
3656 NOTE_SOURCE_FILE (note) = file;
3657 NOTE_LINE_NUMBER (note) = line;
3658 add_insn (note);
3659 return note;
3660 }
3661
3662 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3663
3664 rtx
3665 emit_line_note_force (file, line)
3666 const char *file;
3667 int line;
3668 {
3669 last_linenum = -1;
3670 return emit_line_note (file, line);
3671 }
3672
3673 /* Cause next statement to emit a line note even if the line number
3674 has not changed. This is used at the beginning of a function. */
3675
3676 void
3677 force_next_line_note ()
3678 {
3679 last_linenum = -1;
3680 }
3681
3682 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3683 note of this type already exists, remove it first. */
3684
3685 void
3686 set_unique_reg_note (insn, kind, datum)
3687 rtx insn;
3688 enum reg_note kind;
3689 rtx datum;
3690 {
3691 rtx note = find_reg_note (insn, kind, NULL_RTX);
3692
3693 /* First remove the note if there already is one. */
3694 if (note)
3695 remove_note (insn, note);
3696
3697 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3698 }
3699 \f
3700 /* Return an indication of which type of insn should have X as a body.
3701 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3702
3703 enum rtx_code
3704 classify_insn (x)
3705 rtx x;
3706 {
3707 if (GET_CODE (x) == CODE_LABEL)
3708 return CODE_LABEL;
3709 if (GET_CODE (x) == CALL)
3710 return CALL_INSN;
3711 if (GET_CODE (x) == RETURN)
3712 return JUMP_INSN;
3713 if (GET_CODE (x) == SET)
3714 {
3715 if (SET_DEST (x) == pc_rtx)
3716 return JUMP_INSN;
3717 else if (GET_CODE (SET_SRC (x)) == CALL)
3718 return CALL_INSN;
3719 else
3720 return INSN;
3721 }
3722 if (GET_CODE (x) == PARALLEL)
3723 {
3724 register int j;
3725 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3726 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3727 return CALL_INSN;
3728 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3729 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3730 return JUMP_INSN;
3731 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3732 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3733 return CALL_INSN;
3734 }
3735 return INSN;
3736 }
3737
3738 /* Emit the rtl pattern X as an appropriate kind of insn.
3739 If X is a label, it is simply added into the insn chain. */
3740
3741 rtx
3742 emit (x)
3743 rtx x;
3744 {
3745 enum rtx_code code = classify_insn (x);
3746
3747 if (code == CODE_LABEL)
3748 return emit_label (x);
3749 else if (code == INSN)
3750 return emit_insn (x);
3751 else if (code == JUMP_INSN)
3752 {
3753 register rtx insn = emit_jump_insn (x);
3754 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
3755 return emit_barrier ();
3756 return insn;
3757 }
3758 else if (code == CALL_INSN)
3759 return emit_call_insn (x);
3760 else
3761 abort ();
3762 }
3763 \f
3764 /* Begin emitting insns to a sequence which can be packaged in an
3765 RTL_EXPR. If this sequence will contain something that might cause
3766 the compiler to pop arguments to function calls (because those
3767 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3768 details), use do_pending_stack_adjust before calling this function.
3769 That will ensure that the deferred pops are not accidentally
3770 emitted in the middle of this sequence. */
3771
3772 void
3773 start_sequence ()
3774 {
3775 struct sequence_stack *tem;
3776
3777 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
3778
3779 tem->next = seq_stack;
3780 tem->first = first_insn;
3781 tem->last = last_insn;
3782 tem->sequence_rtl_expr = seq_rtl_expr;
3783
3784 seq_stack = tem;
3785
3786 first_insn = 0;
3787 last_insn = 0;
3788 }
3789
3790 /* Similarly, but indicate that this sequence will be placed in T, an
3791 RTL_EXPR. See the documentation for start_sequence for more
3792 information about how to use this function. */
3793
3794 void
3795 start_sequence_for_rtl_expr (t)
3796 tree t;
3797 {
3798 start_sequence ();
3799
3800 seq_rtl_expr = t;
3801 }
3802
3803 /* Set up the insn chain starting with FIRST as the current sequence,
3804 saving the previously current one. See the documentation for
3805 start_sequence for more information about how to use this function. */
3806
3807 void
3808 push_to_sequence (first)
3809 rtx first;
3810 {
3811 rtx last;
3812
3813 start_sequence ();
3814
3815 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3816
3817 first_insn = first;
3818 last_insn = last;
3819 }
3820
3821 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3822
3823 void
3824 push_to_full_sequence (first, last)
3825 rtx first, last;
3826 {
3827 start_sequence ();
3828 first_insn = first;
3829 last_insn = last;
3830 /* We really should have the end of the insn chain here. */
3831 if (last && NEXT_INSN (last))
3832 abort ();
3833 }
3834
3835 /* Set up the outer-level insn chain
3836 as the current sequence, saving the previously current one. */
3837
3838 void
3839 push_topmost_sequence ()
3840 {
3841 struct sequence_stack *stack, *top = NULL;
3842
3843 start_sequence ();
3844
3845 for (stack = seq_stack; stack; stack = stack->next)
3846 top = stack;
3847
3848 first_insn = top->first;
3849 last_insn = top->last;
3850 seq_rtl_expr = top->sequence_rtl_expr;
3851 }
3852
3853 /* After emitting to the outer-level insn chain, update the outer-level
3854 insn chain, and restore the previous saved state. */
3855
3856 void
3857 pop_topmost_sequence ()
3858 {
3859 struct sequence_stack *stack, *top = NULL;
3860
3861 for (stack = seq_stack; stack; stack = stack->next)
3862 top = stack;
3863
3864 top->first = first_insn;
3865 top->last = last_insn;
3866 /* ??? Why don't we save seq_rtl_expr here? */
3867
3868 end_sequence ();
3869 }
3870
3871 /* After emitting to a sequence, restore previous saved state.
3872
3873 To get the contents of the sequence just made, you must call
3874 `gen_sequence' *before* calling here.
3875
3876 If the compiler might have deferred popping arguments while
3877 generating this sequence, and this sequence will not be immediately
3878 inserted into the instruction stream, use do_pending_stack_adjust
3879 before calling gen_sequence. That will ensure that the deferred
3880 pops are inserted into this sequence, and not into some random
3881 location in the instruction stream. See INHIBIT_DEFER_POP for more
3882 information about deferred popping of arguments. */
3883
3884 void
3885 end_sequence ()
3886 {
3887 struct sequence_stack *tem = seq_stack;
3888
3889 first_insn = tem->first;
3890 last_insn = tem->last;
3891 seq_rtl_expr = tem->sequence_rtl_expr;
3892 seq_stack = tem->next;
3893
3894 free (tem);
3895 }
3896
3897 /* This works like end_sequence, but records the old sequence in FIRST
3898 and LAST. */
3899
3900 void
3901 end_full_sequence (first, last)
3902 rtx *first, *last;
3903 {
3904 *first = first_insn;
3905 *last = last_insn;
3906 end_sequence();
3907 }
3908
3909 /* Return 1 if currently emitting into a sequence. */
3910
3911 int
3912 in_sequence_p ()
3913 {
3914 return seq_stack != 0;
3915 }
3916
3917 /* Generate a SEQUENCE rtx containing the insns already emitted
3918 to the current sequence.
3919
3920 This is how the gen_... function from a DEFINE_EXPAND
3921 constructs the SEQUENCE that it returns. */
3922
3923 rtx
3924 gen_sequence ()
3925 {
3926 rtx result;
3927 rtx tem;
3928 int i;
3929 int len;
3930
3931 /* Count the insns in the chain. */
3932 len = 0;
3933 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3934 len++;
3935
3936 /* If only one insn, return it rather than a SEQUENCE.
3937 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3938 the case of an empty list.)
3939 We only return the pattern of an insn if its code is INSN and it
3940 has no notes. This ensures that no information gets lost. */
3941 if (len == 1
3942 && ! RTX_FRAME_RELATED_P (first_insn)
3943 && GET_CODE (first_insn) == INSN
3944 /* Don't throw away any reg notes. */
3945 && REG_NOTES (first_insn) == 0)
3946 return PATTERN (first_insn);
3947
3948 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
3949
3950 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3951 XVECEXP (result, 0, i) = tem;
3952
3953 return result;
3954 }
3955 \f
3956 /* Put the various virtual registers into REGNO_REG_RTX. */
3957
3958 void
3959 init_virtual_regs (es)
3960 struct emit_status *es;
3961 {
3962 rtx *ptr = es->x_regno_reg_rtx;
3963 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3964 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3965 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3966 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3967 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3968 }
3969
3970 void
3971 clear_emit_caches ()
3972 {
3973 int i;
3974
3975 /* Clear the start_sequence/gen_sequence cache. */
3976 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3977 sequence_result[i] = 0;
3978 free_insn = 0;
3979 }
3980 \f
3981 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3982 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3983 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3984 static int copy_insn_n_scratches;
3985
3986 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3987 copied an ASM_OPERANDS.
3988 In that case, it is the original input-operand vector. */
3989 static rtvec orig_asm_operands_vector;
3990
3991 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3992 copied an ASM_OPERANDS.
3993 In that case, it is the copied input-operand vector. */
3994 static rtvec copy_asm_operands_vector;
3995
3996 /* Likewise for the constraints vector. */
3997 static rtvec orig_asm_constraints_vector;
3998 static rtvec copy_asm_constraints_vector;
3999
4000 /* Recursively create a new copy of an rtx for copy_insn.
4001 This function differs from copy_rtx in that it handles SCRATCHes and
4002 ASM_OPERANDs properly.
4003 Normally, this function is not used directly; use copy_insn as front end.
4004 However, you could first copy an insn pattern with copy_insn and then use
4005 this function afterwards to properly copy any REG_NOTEs containing
4006 SCRATCHes. */
4007
4008 rtx
4009 copy_insn_1 (orig)
4010 register rtx orig;
4011 {
4012 register rtx copy;
4013 register int i, j;
4014 register RTX_CODE code;
4015 register const char *format_ptr;
4016
4017 code = GET_CODE (orig);
4018
4019 switch (code)
4020 {
4021 case REG:
4022 case QUEUED:
4023 case CONST_INT:
4024 case CONST_DOUBLE:
4025 case SYMBOL_REF:
4026 case CODE_LABEL:
4027 case PC:
4028 case CC0:
4029 case ADDRESSOF:
4030 return orig;
4031
4032 case SCRATCH:
4033 for (i = 0; i < copy_insn_n_scratches; i++)
4034 if (copy_insn_scratch_in[i] == orig)
4035 return copy_insn_scratch_out[i];
4036 break;
4037
4038 case CONST:
4039 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4040 a LABEL_REF, it isn't sharable. */
4041 if (GET_CODE (XEXP (orig, 0)) == PLUS
4042 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4043 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4044 return orig;
4045 break;
4046
4047 /* A MEM with a constant address is not sharable. The problem is that
4048 the constant address may need to be reloaded. If the mem is shared,
4049 then reloading one copy of this mem will cause all copies to appear
4050 to have been reloaded. */
4051
4052 default:
4053 break;
4054 }
4055
4056 copy = rtx_alloc (code);
4057
4058 /* Copy the various flags, and other information. We assume that
4059 all fields need copying, and then clear the fields that should
4060 not be copied. That is the sensible default behavior, and forces
4061 us to explicitly document why we are *not* copying a flag. */
4062 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4063
4064 /* We do not copy the USED flag, which is used as a mark bit during
4065 walks over the RTL. */
4066 copy->used = 0;
4067
4068 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4069 if (GET_RTX_CLASS (code) == 'i')
4070 {
4071 copy->jump = 0;
4072 copy->call = 0;
4073 copy->frame_related = 0;
4074 }
4075
4076 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4077
4078 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4079 {
4080 copy->fld[i] = orig->fld[i];
4081 switch (*format_ptr++)
4082 {
4083 case 'e':
4084 if (XEXP (orig, i) != NULL)
4085 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4086 break;
4087
4088 case 'E':
4089 case 'V':
4090 if (XVEC (orig, i) == orig_asm_constraints_vector)
4091 XVEC (copy, i) = copy_asm_constraints_vector;
4092 else if (XVEC (orig, i) == orig_asm_operands_vector)
4093 XVEC (copy, i) = copy_asm_operands_vector;
4094 else if (XVEC (orig, i) != NULL)
4095 {
4096 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4097 for (j = 0; j < XVECLEN (copy, i); j++)
4098 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4099 }
4100 break;
4101
4102 case 't':
4103 case 'w':
4104 case 'i':
4105 case 's':
4106 case 'S':
4107 case 'u':
4108 case '0':
4109 /* These are left unchanged. */
4110 break;
4111
4112 default:
4113 abort ();
4114 }
4115 }
4116
4117 if (code == SCRATCH)
4118 {
4119 i = copy_insn_n_scratches++;
4120 if (i >= MAX_RECOG_OPERANDS)
4121 abort ();
4122 copy_insn_scratch_in[i] = orig;
4123 copy_insn_scratch_out[i] = copy;
4124 }
4125 else if (code == ASM_OPERANDS)
4126 {
4127 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4128 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4129 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4130 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4131 }
4132
4133 return copy;
4134 }
4135
4136 /* Create a new copy of an rtx.
4137 This function differs from copy_rtx in that it handles SCRATCHes and
4138 ASM_OPERANDs properly.
4139 INSN doesn't really have to be a full INSN; it could be just the
4140 pattern. */
4141 rtx
4142 copy_insn (insn)
4143 rtx insn;
4144 {
4145 copy_insn_n_scratches = 0;
4146 orig_asm_operands_vector = 0;
4147 orig_asm_constraints_vector = 0;
4148 copy_asm_operands_vector = 0;
4149 copy_asm_constraints_vector = 0;
4150 return copy_insn_1 (insn);
4151 }
4152
4153 /* Initialize data structures and variables in this file
4154 before generating rtl for each function. */
4155
4156 void
4157 init_emit ()
4158 {
4159 struct function *f = cfun;
4160
4161 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
4162 first_insn = NULL;
4163 last_insn = NULL;
4164 seq_rtl_expr = NULL;
4165 cur_insn_uid = 1;
4166 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4167 last_linenum = 0;
4168 last_filename = 0;
4169 first_label_num = label_num;
4170 last_label_num = 0;
4171 seq_stack = NULL;
4172
4173 clear_emit_caches ();
4174
4175 /* Init the tables that describe all the pseudo regs. */
4176
4177 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4178
4179 f->emit->regno_pointer_align
4180 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4181 sizeof (unsigned char));
4182
4183 regno_reg_rtx
4184 = (rtx *) xcalloc (f->emit->regno_pointer_align_length * sizeof (rtx),
4185 sizeof (rtx));
4186
4187 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4188 init_virtual_regs (f->emit);
4189
4190 /* Indicate that the virtual registers and stack locations are
4191 all pointers. */
4192 REG_POINTER (stack_pointer_rtx) = 1;
4193 REG_POINTER (frame_pointer_rtx) = 1;
4194 REG_POINTER (hard_frame_pointer_rtx) = 1;
4195 REG_POINTER (arg_pointer_rtx) = 1;
4196
4197 REG_POINTER (virtual_incoming_args_rtx) = 1;
4198 REG_POINTER (virtual_stack_vars_rtx) = 1;
4199 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4200 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4201 REG_POINTER (virtual_cfa_rtx) = 1;
4202
4203 #ifdef STACK_BOUNDARY
4204 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4205 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4206 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4207 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4208
4209 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4210 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4211 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4212 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4213 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4214 #endif
4215
4216 #ifdef INIT_EXPANDERS
4217 INIT_EXPANDERS;
4218 #endif
4219 }
4220
4221 /* Mark SS for GC. */
4222
4223 static void
4224 mark_sequence_stack (ss)
4225 struct sequence_stack *ss;
4226 {
4227 while (ss)
4228 {
4229 ggc_mark_rtx (ss->first);
4230 ggc_mark_tree (ss->sequence_rtl_expr);
4231 ss = ss->next;
4232 }
4233 }
4234
4235 /* Mark ES for GC. */
4236
4237 void
4238 mark_emit_status (es)
4239 struct emit_status *es;
4240 {
4241 rtx *r;
4242 int i;
4243
4244 if (es == 0)
4245 return;
4246
4247 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx;
4248 i > 0; --i, ++r)
4249 ggc_mark_rtx (*r);
4250
4251 mark_sequence_stack (es->sequence_stack);
4252 ggc_mark_tree (es->sequence_rtl_expr);
4253 ggc_mark_rtx (es->x_first_insn);
4254 }
4255
4256 /* Create some permanent unique rtl objects shared between all functions.
4257 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4258
4259 void
4260 init_emit_once (line_numbers)
4261 int line_numbers;
4262 {
4263 int i;
4264 enum machine_mode mode;
4265 enum machine_mode double_mode;
4266
4267 /* Initialize the CONST_INT hash table. */
4268 const_int_htab = htab_create (37, const_int_htab_hash,
4269 const_int_htab_eq, NULL);
4270 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4271 rtx_htab_mark);
4272
4273 no_line_numbers = ! line_numbers;
4274
4275 /* Compute the word and byte modes. */
4276
4277 byte_mode = VOIDmode;
4278 word_mode = VOIDmode;
4279 double_mode = VOIDmode;
4280
4281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4282 mode = GET_MODE_WIDER_MODE (mode))
4283 {
4284 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4285 && byte_mode == VOIDmode)
4286 byte_mode = mode;
4287
4288 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4289 && word_mode == VOIDmode)
4290 word_mode = mode;
4291 }
4292
4293 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4294 mode = GET_MODE_WIDER_MODE (mode))
4295 {
4296 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4297 && double_mode == VOIDmode)
4298 double_mode = mode;
4299 }
4300
4301 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4302
4303 /* Assign register numbers to the globally defined register rtx.
4304 This must be done at runtime because the register number field
4305 is in a union and some compilers can't initialize unions. */
4306
4307 pc_rtx = gen_rtx (PC, VOIDmode);
4308 cc0_rtx = gen_rtx (CC0, VOIDmode);
4309 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4310 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4311 if (hard_frame_pointer_rtx == 0)
4312 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4313 HARD_FRAME_POINTER_REGNUM);
4314 if (arg_pointer_rtx == 0)
4315 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4316 virtual_incoming_args_rtx =
4317 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4318 virtual_stack_vars_rtx =
4319 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4320 virtual_stack_dynamic_rtx =
4321 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4322 virtual_outgoing_args_rtx =
4323 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4324 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4325
4326 /* These rtx must be roots if GC is enabled. */
4327 ggc_add_rtx_root (global_rtl, GR_MAX);
4328
4329 #ifdef INIT_EXPANDERS
4330 /* This is to initialize {init|mark|free}_machine_status before the first
4331 call to push_function_context_to. This is needed by the Chill front
4332 end which calls push_function_context_to before the first cal to
4333 init_function_start. */
4334 INIT_EXPANDERS;
4335 #endif
4336
4337 /* Create the unique rtx's for certain rtx codes and operand values. */
4338
4339 /* Don't use gen_rtx here since gen_rtx in this case
4340 tries to use these variables. */
4341 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4342 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4343 gen_rtx_raw_CONST_INT (VOIDmode, i);
4344 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4345
4346 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4347 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4348 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4349 else
4350 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4351
4352 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4353 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4354 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4355 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4356
4357 for (i = 0; i <= 2; i++)
4358 {
4359 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4360 mode = GET_MODE_WIDER_MODE (mode))
4361 {
4362 rtx tem = rtx_alloc (CONST_DOUBLE);
4363 union real_extract u;
4364
4365 /* Zero any holes in a structure. */
4366 memset ((char *) &u, 0, sizeof u);
4367 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4368
4369 /* Avoid trailing garbage in the rtx. */
4370 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4371 CONST_DOUBLE_LOW (tem) = 0;
4372 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4373 CONST_DOUBLE_HIGH (tem) = 0;
4374
4375 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4376 CONST_DOUBLE_MEM (tem) = cc0_rtx;
4377 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4378 PUT_MODE (tem, mode);
4379
4380 const_tiny_rtx[i][(int) mode] = tem;
4381 }
4382
4383 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4384
4385 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4386 mode = GET_MODE_WIDER_MODE (mode))
4387 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4388
4389 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4390 mode != VOIDmode;
4391 mode = GET_MODE_WIDER_MODE (mode))
4392 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4393 }
4394
4395 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4396 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4397 const_tiny_rtx[0][i] = const0_rtx;
4398
4399 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4400 if (STORE_FLAG_VALUE == 1)
4401 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4402
4403 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4404 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4405 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4406 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4407 ggc_add_rtx_root (&const_true_rtx, 1);
4408
4409 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4410 return_address_pointer_rtx
4411 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4412 #endif
4413
4414 #ifdef STRUCT_VALUE
4415 struct_value_rtx = STRUCT_VALUE;
4416 #else
4417 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4418 #endif
4419
4420 #ifdef STRUCT_VALUE_INCOMING
4421 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4422 #else
4423 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4424 struct_value_incoming_rtx
4425 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4426 #else
4427 struct_value_incoming_rtx = struct_value_rtx;
4428 #endif
4429 #endif
4430
4431 #ifdef STATIC_CHAIN_REGNUM
4432 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4433
4434 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4435 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4436 static_chain_incoming_rtx
4437 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4438 else
4439 #endif
4440 static_chain_incoming_rtx = static_chain_rtx;
4441 #endif
4442
4443 #ifdef STATIC_CHAIN
4444 static_chain_rtx = STATIC_CHAIN;
4445
4446 #ifdef STATIC_CHAIN_INCOMING
4447 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4448 #else
4449 static_chain_incoming_rtx = static_chain_rtx;
4450 #endif
4451 #endif
4452
4453 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4454 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4455
4456 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4457 ggc_add_rtx_root (&struct_value_rtx, 1);
4458 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4459 ggc_add_rtx_root (&static_chain_rtx, 1);
4460 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4461 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4462 }
4463 \f
4464 /* Query and clear/ restore no_line_numbers. This is used by the
4465 switch / case handling in stmt.c to give proper line numbers in
4466 warnings about unreachable code. */
4467
4468 int
4469 force_line_numbers ()
4470 {
4471 int old = no_line_numbers;
4472
4473 no_line_numbers = 0;
4474 if (old)
4475 force_next_line_note ();
4476 return old;
4477 }
4478
4479 void
4480 restore_line_number_status (old_value)
4481 int old_value;
4482 {
4483 no_line_numbers = old_value;
4484 }