4ff5d4edc8a12d3032471c642567b335b995af23
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* Middle-to-low level generation of rtx code and insns.
25
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
28
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
62 #include "tree-flow.h"
63
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
68
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
71 /* Commonly used modes. */
72
73 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
77
78 /* Datastructures maintained for currently processed function in RTL form. */
79
80 struct rtl_data x_rtl;
81
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
86
87 rtx * regno_reg_rtx;
88
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
91
92 static GTY(()) int label_num = 1;
93
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
97
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
121
122 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
123 htab_t const_int_htab;
124
125 /* A hash table storing memory attribute structures. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
127 htab_t mem_attrs_htab;
128
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
131 htab_t reg_attrs_htab;
132
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
135 htab_t const_double_htab;
136
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_fixed_htab;
140
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define last_location (crtl->emit.x_last_location)
144 #define first_label_num (crtl->emit.x_first_label_num)
145
146 static rtx make_call_insn_raw (rtx);
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
161 addr_space_t, enum machine_mode);
162 static hashval_t reg_attrs_htab_hash (const void *);
163 static int reg_attrs_htab_eq (const void *, const void *);
164 static reg_attrs *get_reg_attrs (tree, int);
165 static rtx gen_const_vector (enum machine_mode, int);
166 static void copy_rtx_if_shared_1 (rtx *orig);
167
168 /* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170 int split_branch_probability = -1;
171 \f
172 /* Returns a hash code for X (which is a really a CONST_INT). */
173
174 static hashval_t
175 const_int_htab_hash (const void *x)
176 {
177 return (hashval_t) INTVAL ((const_rtx) x);
178 }
179
180 /* Returns nonzero if the value represented by X (which is really a
181 CONST_INT) is the same as that given by Y (which is really a
182 HOST_WIDE_INT *). */
183
184 static int
185 const_int_htab_eq (const void *x, const void *y)
186 {
187 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
188 }
189
190 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
191 static hashval_t
192 const_double_htab_hash (const void *x)
193 {
194 const_rtx const value = (const_rtx) x;
195 hashval_t h;
196
197 if (GET_MODE (value) == VOIDmode)
198 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
199 else
200 {
201 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h ^= GET_MODE (value);
204 }
205 return h;
206 }
207
208 /* Returns nonzero if the value represented by X (really a ...)
209 is the same as that represented by Y (really a ...) */
210 static int
211 const_double_htab_eq (const void *x, const void *y)
212 {
213 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
214
215 if (GET_MODE (a) != GET_MODE (b))
216 return 0;
217 if (GET_MODE (a) == VOIDmode)
218 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
219 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
220 else
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
222 CONST_DOUBLE_REAL_VALUE (b));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_FIXED). */
226
227 static hashval_t
228 const_fixed_htab_hash (const void *x)
229 {
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
232
233 h = fixed_hash (CONST_FIXED_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 return h;
237 }
238
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
241
242 static int
243 const_fixed_htab_eq (const void *x, const void *y)
244 {
245 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
246
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
250 }
251
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
253
254 static hashval_t
255 mem_attrs_htab_hash (const void *x)
256 {
257 const mem_attrs *const p = (const mem_attrs *) x;
258
259 return (p->alias ^ (p->align * 1000)
260 ^ (p->addrspace * 4000)
261 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
262 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
263 ^ (size_t) iterative_hash_expr (p->expr, 0));
264 }
265
266 /* Returns nonzero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
268 mem_attrs *). */
269
270 static int
271 mem_attrs_htab_eq (const void *x, const void *y)
272 {
273 const mem_attrs *const p = (const mem_attrs *) x;
274 const mem_attrs *const q = (const mem_attrs *) y;
275
276 return (p->alias == q->alias && p->offset == q->offset
277 && p->size == q->size && p->align == q->align
278 && p->addrspace == q->addrspace
279 && (p->expr == q->expr
280 || (p->expr != NULL_TREE && q->expr != NULL_TREE
281 && operand_equal_p (p->expr, q->expr, 0))));
282 }
283
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
287
288 static mem_attrs *
289 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
290 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
291 {
292 mem_attrs attrs;
293 void **slot;
294
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
298 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
299 && (size == 0
300 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
301 && (STRICT_ALIGNMENT && mode != BLKmode
302 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
303 return 0;
304
305 attrs.alias = alias;
306 attrs.expr = expr;
307 attrs.offset = offset;
308 attrs.size = size;
309 attrs.align = align;
310 attrs.addrspace = addrspace;
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
315 *slot = ggc_alloc_mem_attrs ();
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
319 return (mem_attrs *) *slot;
320 }
321
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
323
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
326 {
327 const reg_attrs *const p = (const reg_attrs *) x;
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330 }
331
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
338 {
339 const reg_attrs *const p = (const reg_attrs *) x;
340 const reg_attrs *const q = (const reg_attrs *) y;
341
342 return (p->decl == q->decl && p->offset == q->offset);
343 }
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
350 {
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
364 *slot = ggc_alloc_reg_attrs ();
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
368 return (reg_attrs *) *slot;
369 }
370
371
372 #if !HAVE_blockage
373 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
374 across this insn. */
375
376 rtx
377 gen_blockage (void)
378 {
379 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
380 MEM_VOLATILE_P (x) = true;
381 return x;
382 }
383 #endif
384
385
386 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
389
390 rtx
391 gen_raw_REG (enum machine_mode mode, int regno)
392 {
393 rtx x = gen_rtx_raw_REG (mode, regno);
394 ORIGINAL_REGNO (x) = regno;
395 return x;
396 }
397
398 /* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
401
402 rtx
403 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
404 {
405 void **slot;
406
407 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
408 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
409
410 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx && arg == STORE_FLAG_VALUE)
412 return const_true_rtx;
413 #endif
414
415 /* Look up the CONST_INT in the hash table. */
416 slot = htab_find_slot_with_hash (const_int_htab, &arg,
417 (hashval_t) arg, INSERT);
418 if (*slot == 0)
419 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
420
421 return (rtx) *slot;
422 }
423
424 rtx
425 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
426 {
427 return GEN_INT (trunc_int_for_mode (c, mode));
428 }
429
430 /* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
433
434 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
437 static rtx
438 lookup_const_double (rtx real)
439 {
440 void **slot = htab_find_slot (const_double_htab, real, INSERT);
441 if (*slot == 0)
442 *slot = real;
443
444 return (rtx) *slot;
445 }
446
447 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
449 rtx
450 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
451 {
452 rtx real = rtx_alloc (CONST_DOUBLE);
453 PUT_MODE (real, mode);
454
455 real->u.rv = value;
456
457 return lookup_const_double (real);
458 }
459
460 /* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
463
464 static rtx
465 lookup_const_fixed (rtx fixed)
466 {
467 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
468 if (*slot == 0)
469 *slot = fixed;
470
471 return (rtx) *slot;
472 }
473
474 /* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
476
477 rtx
478 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
479 {
480 rtx fixed = rtx_alloc (CONST_FIXED);
481 PUT_MODE (fixed, mode);
482
483 fixed->u.fv = value;
484
485 return lookup_const_fixed (fixed);
486 }
487
488 /* Constructs double_int from rtx CST. */
489
490 double_int
491 rtx_to_double_int (const_rtx cst)
492 {
493 double_int r;
494
495 if (CONST_INT_P (cst))
496 r = shwi_to_double_int (INTVAL (cst));
497 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
498 {
499 r.low = CONST_DOUBLE_LOW (cst);
500 r.high = CONST_DOUBLE_HIGH (cst);
501 }
502 else
503 gcc_unreachable ();
504
505 return r;
506 }
507
508
509 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
510 a double_int. */
511
512 rtx
513 immed_double_int_const (double_int i, enum machine_mode mode)
514 {
515 return immed_double_const (i.low, i.high, mode);
516 }
517
518 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
522
523 rtx
524 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
525 {
526 rtx value;
527 unsigned int i;
528
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
531
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
536 from copies of the sign bit, and sign of i0 and i1 are the same), then
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
539 if (mode != VOIDmode)
540 {
541 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
542 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
546
547 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
548 return gen_int_mode (i0, mode);
549
550 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
551 }
552
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
555 return GEN_INT (i0);
556
557 /* We use VOIDmode for integers. */
558 value = rtx_alloc (CONST_DOUBLE);
559 PUT_MODE (value, VOIDmode);
560
561 CONST_DOUBLE_LOW (value) = i0;
562 CONST_DOUBLE_HIGH (value) = i1;
563
564 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
565 XWINT (value, i) = 0;
566
567 return lookup_const_double (value);
568 }
569
570 rtx
571 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
572 {
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
577 assigned to them.
578
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
583
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
586
587 if (mode == Pmode && !reload_in_progress)
588 {
589 if (regno == FRAME_POINTER_REGNUM
590 && (!reload_completed || frame_pointer_needed))
591 return frame_pointer_rtx;
592 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
593 if (regno == HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed || frame_pointer_needed))
595 return hard_frame_pointer_rtx;
596 #endif
597 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
598 if (regno == ARG_POINTER_REGNUM)
599 return arg_pointer_rtx;
600 #endif
601 #ifdef RETURN_ADDRESS_POINTER_REGNUM
602 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
603 return return_address_pointer_rtx;
604 #endif
605 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
606 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
607 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
608 return pic_offset_table_rtx;
609 if (regno == STACK_POINTER_REGNUM)
610 return stack_pointer_rtx;
611 }
612
613 #if 0
614 /* If the per-function register table has been set up, try to re-use
615 an existing entry in that table to avoid useless generation of RTL.
616
617 This code is disabled for now until we can fix the various backends
618 which depend on having non-shared hard registers in some cases. Long
619 term we want to re-enable this code as it can significantly cut down
620 on the amount of useless RTL that gets generated.
621
622 We'll also need to fix some code that runs after reload that wants to
623 set ORIGINAL_REGNO. */
624
625 if (cfun
626 && cfun->emit
627 && regno_reg_rtx
628 && regno < FIRST_PSEUDO_REGISTER
629 && reg_raw_mode[regno] == mode)
630 return regno_reg_rtx[regno];
631 #endif
632
633 return gen_raw_REG (mode, regno);
634 }
635
636 rtx
637 gen_rtx_MEM (enum machine_mode mode, rtx addr)
638 {
639 rtx rt = gen_rtx_raw_MEM (mode, addr);
640
641 /* This field is not cleared by the mere allocation of the rtx, so
642 we clear it here. */
643 MEM_ATTRS (rt) = 0;
644
645 return rt;
646 }
647
648 /* Generate a memory referring to non-trapping constant memory. */
649
650 rtx
651 gen_const_mem (enum machine_mode mode, rtx addr)
652 {
653 rtx mem = gen_rtx_MEM (mode, addr);
654 MEM_READONLY_P (mem) = 1;
655 MEM_NOTRAP_P (mem) = 1;
656 return mem;
657 }
658
659 /* Generate a MEM referring to fixed portions of the frame, e.g., register
660 save areas. */
661
662 rtx
663 gen_frame_mem (enum machine_mode mode, rtx addr)
664 {
665 rtx mem = gen_rtx_MEM (mode, addr);
666 MEM_NOTRAP_P (mem) = 1;
667 set_mem_alias_set (mem, get_frame_alias_set ());
668 return mem;
669 }
670
671 /* Generate a MEM referring to a temporary use of the stack, not part
672 of the fixed stack frame. For example, something which is pushed
673 by a target splitter. */
674 rtx
675 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
676 {
677 rtx mem = gen_rtx_MEM (mode, addr);
678 MEM_NOTRAP_P (mem) = 1;
679 if (!cfun->calls_alloca)
680 set_mem_alias_set (mem, get_frame_alias_set ());
681 return mem;
682 }
683
684 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
685 this construct would be valid, and false otherwise. */
686
687 bool
688 validate_subreg (enum machine_mode omode, enum machine_mode imode,
689 const_rtx reg, unsigned int offset)
690 {
691 unsigned int isize = GET_MODE_SIZE (imode);
692 unsigned int osize = GET_MODE_SIZE (omode);
693
694 /* All subregs must be aligned. */
695 if (offset % osize != 0)
696 return false;
697
698 /* The subreg offset cannot be outside the inner object. */
699 if (offset >= isize)
700 return false;
701
702 /* ??? This should not be here. Temporarily continue to allow word_mode
703 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
704 Generally, backends are doing something sketchy but it'll take time to
705 fix them all. */
706 if (omode == word_mode)
707 ;
708 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
709 is the culprit here, and not the backends. */
710 else if (osize >= UNITS_PER_WORD && isize >= osize)
711 ;
712 /* Allow component subregs of complex and vector. Though given the below
713 extraction rules, it's not always clear what that means. */
714 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
715 && GET_MODE_INNER (imode) == omode)
716 ;
717 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
718 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
719 represent this. It's questionable if this ought to be represented at
720 all -- why can't this all be hidden in post-reload splitters that make
721 arbitrarily mode changes to the registers themselves. */
722 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
723 ;
724 /* Subregs involving floating point modes are not allowed to
725 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
726 (subreg:SI (reg:DF) 0) isn't. */
727 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
728 {
729 if (isize != osize)
730 return false;
731 }
732
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
736
737 /* This is a normal subreg. Verify that the offset is representable. */
738
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
742 {
743 unsigned int regno = REGNO (reg);
744
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
748 ;
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
752
753 return subreg_offset_representable_p (regno, imode, offset, omode);
754 }
755
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD)
763 {
764 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
765 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
766 if (offset % UNITS_PER_WORD != low_off)
767 return false;
768 }
769 return true;
770 }
771
772 rtx
773 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
774 {
775 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
776 return gen_rtx_raw_SUBREG (mode, reg, offset);
777 }
778
779 /* Generate a SUBREG representing the least-significant part of REG if MODE
780 is smaller than mode of REG, otherwise paradoxical SUBREG. */
781
782 rtx
783 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
784 {
785 enum machine_mode inmode;
786
787 inmode = GET_MODE (reg);
788 if (inmode == VOIDmode)
789 inmode = mode;
790 return gen_rtx_SUBREG (mode, reg,
791 subreg_lowpart_offset (mode, inmode));
792 }
793 \f
794
795 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
796
797 rtvec
798 gen_rtvec (int n, ...)
799 {
800 int i;
801 rtvec rt_val;
802 va_list p;
803
804 va_start (p, n);
805
806 /* Don't allocate an empty rtvec... */
807 if (n == 0)
808 return NULL_RTVEC;
809
810 rt_val = rtvec_alloc (n);
811
812 for (i = 0; i < n; i++)
813 rt_val->elem[i] = va_arg (p, rtx);
814
815 va_end (p);
816 return rt_val;
817 }
818
819 rtvec
820 gen_rtvec_v (int n, rtx *argp)
821 {
822 int i;
823 rtvec rt_val;
824
825 /* Don't allocate an empty rtvec... */
826 if (n == 0)
827 return NULL_RTVEC;
828
829 rt_val = rtvec_alloc (n);
830
831 for (i = 0; i < n; i++)
832 rt_val->elem[i] = *argp++;
833
834 return rt_val;
835 }
836 \f
837 /* Return the number of bytes between the start of an OUTER_MODE
838 in-memory value and the start of an INNER_MODE in-memory value,
839 given that the former is a lowpart of the latter. It may be a
840 paradoxical lowpart, in which case the offset will be negative
841 on big-endian targets. */
842
843 int
844 byte_lowpart_offset (enum machine_mode outer_mode,
845 enum machine_mode inner_mode)
846 {
847 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
848 return subreg_lowpart_offset (outer_mode, inner_mode);
849 else
850 return -subreg_lowpart_offset (inner_mode, outer_mode);
851 }
852 \f
853 /* Generate a REG rtx for a new pseudo register of mode MODE.
854 This pseudo is assigned the next sequential register number. */
855
856 rtx
857 gen_reg_rtx (enum machine_mode mode)
858 {
859 rtx val;
860 unsigned int align = GET_MODE_ALIGNMENT (mode);
861
862 gcc_assert (can_create_pseudo_p ());
863
864 /* If a virtual register with bigger mode alignment is generated,
865 increase stack alignment estimation because it might be spilled
866 to stack later. */
867 if (SUPPORTS_STACK_ALIGNMENT
868 && crtl->stack_alignment_estimated < align
869 && !crtl->stack_realign_processed)
870 {
871 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
872 if (crtl->stack_alignment_estimated < min_align)
873 crtl->stack_alignment_estimated = min_align;
874 }
875
876 if (generating_concat_p
877 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
878 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
879 {
880 /* For complex modes, don't make a single pseudo.
881 Instead, make a CONCAT of two pseudos.
882 This allows noncontiguous allocation of the real and imaginary parts,
883 which makes much better code. Besides, allocating DCmode
884 pseudos overstrains reload on some machines like the 386. */
885 rtx realpart, imagpart;
886 enum machine_mode partmode = GET_MODE_INNER (mode);
887
888 realpart = gen_reg_rtx (partmode);
889 imagpart = gen_reg_rtx (partmode);
890 return gen_rtx_CONCAT (mode, realpart, imagpart);
891 }
892
893 /* Make sure regno_pointer_align, and regno_reg_rtx are large
894 enough to have an element for this pseudo reg number. */
895
896 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
897 {
898 int old_size = crtl->emit.regno_pointer_align_length;
899 char *tmp;
900 rtx *new1;
901
902 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
903 memset (tmp + old_size, 0, old_size);
904 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
905
906 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
907 memset (new1 + old_size, 0, old_size * sizeof (rtx));
908 regno_reg_rtx = new1;
909
910 crtl->emit.regno_pointer_align_length = old_size * 2;
911 }
912
913 val = gen_raw_REG (mode, reg_rtx_no);
914 regno_reg_rtx[reg_rtx_no++] = val;
915 return val;
916 }
917
918 /* Update NEW with the same attributes as REG, but with OFFSET added
919 to the REG_OFFSET. */
920
921 static void
922 update_reg_offset (rtx new_rtx, rtx reg, int offset)
923 {
924 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
925 REG_OFFSET (reg) + offset);
926 }
927
928 /* Generate a register with same attributes as REG, but with OFFSET
929 added to the REG_OFFSET. */
930
931 rtx
932 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
933 int offset)
934 {
935 rtx new_rtx = gen_rtx_REG (mode, regno);
936
937 update_reg_offset (new_rtx, reg, offset);
938 return new_rtx;
939 }
940
941 /* Generate a new pseudo-register with the same attributes as REG, but
942 with OFFSET added to the REG_OFFSET. */
943
944 rtx
945 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
946 {
947 rtx new_rtx = gen_reg_rtx (mode);
948
949 update_reg_offset (new_rtx, reg, offset);
950 return new_rtx;
951 }
952
953 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
954 new register is a (possibly paradoxical) lowpart of the old one. */
955
956 void
957 adjust_reg_mode (rtx reg, enum machine_mode mode)
958 {
959 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
960 PUT_MODE (reg, mode);
961 }
962
963 /* Copy REG's attributes from X, if X has any attributes. If REG and X
964 have different modes, REG is a (possibly paradoxical) lowpart of X. */
965
966 void
967 set_reg_attrs_from_value (rtx reg, rtx x)
968 {
969 int offset;
970
971 /* Hard registers can be reused for multiple purposes within the same
972 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
973 on them is wrong. */
974 if (HARD_REGISTER_P (reg))
975 return;
976
977 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
978 if (MEM_P (x))
979 {
980 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
981 REG_ATTRS (reg)
982 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
983 if (MEM_POINTER (x))
984 mark_reg_pointer (reg, 0);
985 }
986 else if (REG_P (x))
987 {
988 if (REG_ATTRS (x))
989 update_reg_offset (reg, x, offset);
990 if (REG_POINTER (x))
991 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
992 }
993 }
994
995 /* Generate a REG rtx for a new pseudo register, copying the mode
996 and attributes from X. */
997
998 rtx
999 gen_reg_rtx_and_attrs (rtx x)
1000 {
1001 rtx reg = gen_reg_rtx (GET_MODE (x));
1002 set_reg_attrs_from_value (reg, x);
1003 return reg;
1004 }
1005
1006 /* Set the register attributes for registers contained in PARM_RTX.
1007 Use needed values from memory attributes of MEM. */
1008
1009 void
1010 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1011 {
1012 if (REG_P (parm_rtx))
1013 set_reg_attrs_from_value (parm_rtx, mem);
1014 else if (GET_CODE (parm_rtx) == PARALLEL)
1015 {
1016 /* Check for a NULL entry in the first slot, used to indicate that the
1017 parameter goes both on the stack and in registers. */
1018 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1019 for (; i < XVECLEN (parm_rtx, 0); i++)
1020 {
1021 rtx x = XVECEXP (parm_rtx, 0, i);
1022 if (REG_P (XEXP (x, 0)))
1023 REG_ATTRS (XEXP (x, 0))
1024 = get_reg_attrs (MEM_EXPR (mem),
1025 INTVAL (XEXP (x, 1)));
1026 }
1027 }
1028 }
1029
1030 /* Set the REG_ATTRS for registers in value X, given that X represents
1031 decl T. */
1032
1033 void
1034 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1035 {
1036 if (GET_CODE (x) == SUBREG)
1037 {
1038 gcc_assert (subreg_lowpart_p (x));
1039 x = SUBREG_REG (x);
1040 }
1041 if (REG_P (x))
1042 REG_ATTRS (x)
1043 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1044 DECL_MODE (t)));
1045 if (GET_CODE (x) == CONCAT)
1046 {
1047 if (REG_P (XEXP (x, 0)))
1048 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1049 if (REG_P (XEXP (x, 1)))
1050 REG_ATTRS (XEXP (x, 1))
1051 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1052 }
1053 if (GET_CODE (x) == PARALLEL)
1054 {
1055 int i, start;
1056
1057 /* Check for a NULL entry, used to indicate that the parameter goes
1058 both on the stack and in registers. */
1059 if (XEXP (XVECEXP (x, 0, 0), 0))
1060 start = 0;
1061 else
1062 start = 1;
1063
1064 for (i = start; i < XVECLEN (x, 0); i++)
1065 {
1066 rtx y = XVECEXP (x, 0, i);
1067 if (REG_P (XEXP (y, 0)))
1068 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1069 }
1070 }
1071 }
1072
1073 /* Assign the RTX X to declaration T. */
1074
1075 void
1076 set_decl_rtl (tree t, rtx x)
1077 {
1078 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1079 if (x)
1080 set_reg_attrs_for_decl_rtl (t, x);
1081 }
1082
1083 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1084 if the ABI requires the parameter to be passed by reference. */
1085
1086 void
1087 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1088 {
1089 DECL_INCOMING_RTL (t) = x;
1090 if (x && !by_reference_p)
1091 set_reg_attrs_for_decl_rtl (t, x);
1092 }
1093
1094 /* Identify REG (which may be a CONCAT) as a user register. */
1095
1096 void
1097 mark_user_reg (rtx reg)
1098 {
1099 if (GET_CODE (reg) == CONCAT)
1100 {
1101 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1102 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1103 }
1104 else
1105 {
1106 gcc_assert (REG_P (reg));
1107 REG_USERVAR_P (reg) = 1;
1108 }
1109 }
1110
1111 /* Identify REG as a probable pointer register and show its alignment
1112 as ALIGN, if nonzero. */
1113
1114 void
1115 mark_reg_pointer (rtx reg, int align)
1116 {
1117 if (! REG_POINTER (reg))
1118 {
1119 REG_POINTER (reg) = 1;
1120
1121 if (align)
1122 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1123 }
1124 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1125 /* We can no-longer be sure just how aligned this pointer is. */
1126 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1127 }
1128
1129 /* Return 1 plus largest pseudo reg number used in the current function. */
1130
1131 int
1132 max_reg_num (void)
1133 {
1134 return reg_rtx_no;
1135 }
1136
1137 /* Return 1 + the largest label number used so far in the current function. */
1138
1139 int
1140 max_label_num (void)
1141 {
1142 return label_num;
1143 }
1144
1145 /* Return first label number used in this function (if any were used). */
1146
1147 int
1148 get_first_label_num (void)
1149 {
1150 return first_label_num;
1151 }
1152
1153 /* If the rtx for label was created during the expansion of a nested
1154 function, then first_label_num won't include this label number.
1155 Fix this now so that array indices work later. */
1156
1157 void
1158 maybe_set_first_label_num (rtx x)
1159 {
1160 if (CODE_LABEL_NUMBER (x) < first_label_num)
1161 first_label_num = CODE_LABEL_NUMBER (x);
1162 }
1163 \f
1164 /* Return a value representing some low-order bits of X, where the number
1165 of low-order bits is given by MODE. Note that no conversion is done
1166 between floating-point and fixed-point values, rather, the bit
1167 representation is returned.
1168
1169 This function handles the cases in common between gen_lowpart, below,
1170 and two variants in cse.c and combine.c. These are the cases that can
1171 be safely handled at all points in the compilation.
1172
1173 If this is not a case we can handle, return 0. */
1174
1175 rtx
1176 gen_lowpart_common (enum machine_mode mode, rtx x)
1177 {
1178 int msize = GET_MODE_SIZE (mode);
1179 int xsize;
1180 int offset = 0;
1181 enum machine_mode innermode;
1182
1183 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1184 so we have to make one up. Yuk. */
1185 innermode = GET_MODE (x);
1186 if (CONST_INT_P (x)
1187 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1188 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1189 else if (innermode == VOIDmode)
1190 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1191
1192 xsize = GET_MODE_SIZE (innermode);
1193
1194 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1195
1196 if (innermode == mode)
1197 return x;
1198
1199 /* MODE must occupy no more words than the mode of X. */
1200 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1201 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1202 return 0;
1203
1204 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1205 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1206 return 0;
1207
1208 offset = subreg_lowpart_offset (mode, innermode);
1209
1210 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1211 && (GET_MODE_CLASS (mode) == MODE_INT
1212 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1213 {
1214 /* If we are getting the low-order part of something that has been
1215 sign- or zero-extended, we can either just use the object being
1216 extended or make a narrower extension. If we want an even smaller
1217 piece than the size of the object being extended, call ourselves
1218 recursively.
1219
1220 This case is used mostly by combine and cse. */
1221
1222 if (GET_MODE (XEXP (x, 0)) == mode)
1223 return XEXP (x, 0);
1224 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1225 return gen_lowpart_common (mode, XEXP (x, 0));
1226 else if (msize < xsize)
1227 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1228 }
1229 else if (GET_CODE (x) == SUBREG || REG_P (x)
1230 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1231 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1232 return simplify_gen_subreg (mode, x, innermode, offset);
1233
1234 /* Otherwise, we can't do this. */
1235 return 0;
1236 }
1237 \f
1238 rtx
1239 gen_highpart (enum machine_mode mode, rtx x)
1240 {
1241 unsigned int msize = GET_MODE_SIZE (mode);
1242 rtx result;
1243
1244 /* This case loses if X is a subreg. To catch bugs early,
1245 complain if an invalid MODE is used even in other cases. */
1246 gcc_assert (msize <= UNITS_PER_WORD
1247 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1248
1249 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1250 subreg_highpart_offset (mode, GET_MODE (x)));
1251 gcc_assert (result);
1252
1253 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1254 the target if we have a MEM. gen_highpart must return a valid operand,
1255 emitting code if necessary to do so. */
1256 if (MEM_P (result))
1257 {
1258 result = validize_mem (result);
1259 gcc_assert (result);
1260 }
1261
1262 return result;
1263 }
1264
1265 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1266 be VOIDmode constant. */
1267 rtx
1268 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1269 {
1270 if (GET_MODE (exp) != VOIDmode)
1271 {
1272 gcc_assert (GET_MODE (exp) == innermode);
1273 return gen_highpart (outermode, exp);
1274 }
1275 return simplify_gen_subreg (outermode, exp, innermode,
1276 subreg_highpart_offset (outermode, innermode));
1277 }
1278
1279 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1280
1281 unsigned int
1282 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1283 {
1284 unsigned int offset = 0;
1285 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1286
1287 if (difference > 0)
1288 {
1289 if (WORDS_BIG_ENDIAN)
1290 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1291 if (BYTES_BIG_ENDIAN)
1292 offset += difference % UNITS_PER_WORD;
1293 }
1294
1295 return offset;
1296 }
1297
1298 /* Return offset in bytes to get OUTERMODE high part
1299 of the value in mode INNERMODE stored in memory in target format. */
1300 unsigned int
1301 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1302 {
1303 unsigned int offset = 0;
1304 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1305
1306 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1307
1308 if (difference > 0)
1309 {
1310 if (! WORDS_BIG_ENDIAN)
1311 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1312 if (! BYTES_BIG_ENDIAN)
1313 offset += difference % UNITS_PER_WORD;
1314 }
1315
1316 return offset;
1317 }
1318
1319 /* Return 1 iff X, assumed to be a SUBREG,
1320 refers to the least significant part of its containing reg.
1321 If X is not a SUBREG, always return 1 (it is its own low part!). */
1322
1323 int
1324 subreg_lowpart_p (const_rtx x)
1325 {
1326 if (GET_CODE (x) != SUBREG)
1327 return 1;
1328 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1329 return 0;
1330
1331 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1332 == SUBREG_BYTE (x));
1333 }
1334 \f
1335 /* Return subword OFFSET of operand OP.
1336 The word number, OFFSET, is interpreted as the word number starting
1337 at the low-order address. OFFSET 0 is the low-order word if not
1338 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1339
1340 If we cannot extract the required word, we return zero. Otherwise,
1341 an rtx corresponding to the requested word will be returned.
1342
1343 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1344 reload has completed, a valid address will always be returned. After
1345 reload, if a valid address cannot be returned, we return zero.
1346
1347 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1348 it is the responsibility of the caller.
1349
1350 MODE is the mode of OP in case it is a CONST_INT.
1351
1352 ??? This is still rather broken for some cases. The problem for the
1353 moment is that all callers of this thing provide no 'goal mode' to
1354 tell us to work with. This exists because all callers were written
1355 in a word based SUBREG world.
1356 Now use of this function can be deprecated by simplify_subreg in most
1357 cases.
1358 */
1359
1360 rtx
1361 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1362 {
1363 if (mode == VOIDmode)
1364 mode = GET_MODE (op);
1365
1366 gcc_assert (mode != VOIDmode);
1367
1368 /* If OP is narrower than a word, fail. */
1369 if (mode != BLKmode
1370 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1371 return 0;
1372
1373 /* If we want a word outside OP, return zero. */
1374 if (mode != BLKmode
1375 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1376 return const0_rtx;
1377
1378 /* Form a new MEM at the requested address. */
1379 if (MEM_P (op))
1380 {
1381 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1382
1383 if (! validate_address)
1384 return new_rtx;
1385
1386 else if (reload_completed)
1387 {
1388 if (! strict_memory_address_addr_space_p (word_mode,
1389 XEXP (new_rtx, 0),
1390 MEM_ADDR_SPACE (op)))
1391 return 0;
1392 }
1393 else
1394 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1395 }
1396
1397 /* Rest can be handled by simplify_subreg. */
1398 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1399 }
1400
1401 /* Similar to `operand_subword', but never return 0. If we can't
1402 extract the required subword, put OP into a register and try again.
1403 The second attempt must succeed. We always validate the address in
1404 this case.
1405
1406 MODE is the mode of OP, in case it is CONST_INT. */
1407
1408 rtx
1409 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1410 {
1411 rtx result = operand_subword (op, offset, 1, mode);
1412
1413 if (result)
1414 return result;
1415
1416 if (mode != BLKmode && mode != VOIDmode)
1417 {
1418 /* If this is a register which can not be accessed by words, copy it
1419 to a pseudo register. */
1420 if (REG_P (op))
1421 op = copy_to_reg (op);
1422 else
1423 op = force_reg (mode, op);
1424 }
1425
1426 result = operand_subword (op, offset, 1, mode);
1427 gcc_assert (result);
1428
1429 return result;
1430 }
1431 \f
1432 /* Returns 1 if both MEM_EXPR can be considered equal
1433 and 0 otherwise. */
1434
1435 int
1436 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1437 {
1438 if (expr1 == expr2)
1439 return 1;
1440
1441 if (! expr1 || ! expr2)
1442 return 0;
1443
1444 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1445 return 0;
1446
1447 return operand_equal_p (expr1, expr2, 0);
1448 }
1449
1450 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1451 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1452 -1 if not known. */
1453
1454 int
1455 get_mem_align_offset (rtx mem, unsigned int align)
1456 {
1457 tree expr;
1458 unsigned HOST_WIDE_INT offset;
1459
1460 /* This function can't use
1461 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1462 || !CONST_INT_P (MEM_OFFSET (mem))
1463 || (MAX (MEM_ALIGN (mem),
1464 get_object_alignment (MEM_EXPR (mem), align))
1465 < align))
1466 return -1;
1467 else
1468 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469 for two reasons:
1470 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471 for <variable>. get_inner_reference doesn't handle it and
1472 even if it did, the alignment in that case needs to be determined
1473 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475 isn't sufficiently aligned, the object it is in might be. */
1476 gcc_assert (MEM_P (mem));
1477 expr = MEM_EXPR (mem);
1478 if (expr == NULL_TREE
1479 || MEM_OFFSET (mem) == NULL_RTX
1480 || !CONST_INT_P (MEM_OFFSET (mem)))
1481 return -1;
1482
1483 offset = INTVAL (MEM_OFFSET (mem));
1484 if (DECL_P (expr))
1485 {
1486 if (DECL_ALIGN (expr) < align)
1487 return -1;
1488 }
1489 else if (INDIRECT_REF_P (expr))
1490 {
1491 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1492 return -1;
1493 }
1494 else if (TREE_CODE (expr) == COMPONENT_REF)
1495 {
1496 while (1)
1497 {
1498 tree inner = TREE_OPERAND (expr, 0);
1499 tree field = TREE_OPERAND (expr, 1);
1500 tree byte_offset = component_ref_field_offset (expr);
1501 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1502
1503 if (!byte_offset
1504 || !host_integerp (byte_offset, 1)
1505 || !host_integerp (bit_offset, 1))
1506 return -1;
1507
1508 offset += tree_low_cst (byte_offset, 1);
1509 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1510
1511 if (inner == NULL_TREE)
1512 {
1513 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1514 < (unsigned int) align)
1515 return -1;
1516 break;
1517 }
1518 else if (DECL_P (inner))
1519 {
1520 if (DECL_ALIGN (inner) < align)
1521 return -1;
1522 break;
1523 }
1524 else if (TREE_CODE (inner) != COMPONENT_REF)
1525 return -1;
1526 expr = inner;
1527 }
1528 }
1529 else
1530 return -1;
1531
1532 return offset & ((align / BITS_PER_UNIT) - 1);
1533 }
1534
1535 /* Given REF (a MEM) and T, either the type of X or the expression
1536 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1537 if we are making a new object of this type. BITPOS is nonzero if
1538 there is an offset outstanding on T that will be applied later. */
1539
1540 void
1541 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1542 HOST_WIDE_INT bitpos)
1543 {
1544 alias_set_type alias;
1545 tree expr = NULL;
1546 rtx offset = NULL_RTX;
1547 rtx size = NULL_RTX;
1548 unsigned int align = BITS_PER_UNIT;
1549 HOST_WIDE_INT apply_bitpos = 0;
1550 tree type;
1551
1552 /* It can happen that type_for_mode was given a mode for which there
1553 is no language-level type. In which case it returns NULL, which
1554 we can see here. */
1555 if (t == NULL_TREE)
1556 return;
1557
1558 type = TYPE_P (t) ? t : TREE_TYPE (t);
1559 if (type == error_mark_node)
1560 return;
1561
1562 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563 wrong answer, as it assumes that DECL_RTL already has the right alias
1564 info. Callers should not set DECL_RTL until after the call to
1565 set_mem_attributes. */
1566 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1567
1568 /* Get the alias set from the expression or type (perhaps using a
1569 front-end routine) and use it. */
1570 alias = get_alias_set (t);
1571
1572 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1573 MEM_IN_STRUCT_P (ref)
1574 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1575 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1576
1577 /* If we are making an object of this type, or if this is a DECL, we know
1578 that it is a scalar if the type is not an aggregate. */
1579 if ((objectp || DECL_P (t))
1580 && ! AGGREGATE_TYPE_P (type)
1581 && TREE_CODE (type) != COMPLEX_TYPE)
1582 MEM_SCALAR_P (ref) = 1;
1583
1584 /* Default values from pre-existing memory attributes if present. */
1585 if (MEM_ATTRS (ref))
1586 {
1587 /* ??? Can this ever happen? Calling this routine on a MEM that
1588 already carries memory attributes should probably be invalid. */
1589 expr = MEM_EXPR (ref);
1590 offset = MEM_OFFSET (ref);
1591 size = MEM_SIZE (ref);
1592 align = MEM_ALIGN (ref);
1593 }
1594
1595 /* Otherwise, default values from the mode of the MEM reference. */
1596 else if (GET_MODE (ref) != BLKmode)
1597 {
1598 /* Respect mode size. */
1599 size = GEN_INT (GET_MODE_SIZE (GET_MODE (ref)));
1600 /* ??? Is this really necessary? We probably should always get
1601 the size from the type below. */
1602
1603 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1604 if T is an object, always compute the object alignment below. */
1605 if (STRICT_ALIGNMENT && TYPE_P (t))
1606 align = GET_MODE_ALIGNMENT (GET_MODE (ref));
1607 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1608 e.g. if the type carries an alignment attribute. Should we be
1609 able to simply always use TYPE_ALIGN? */
1610 }
1611
1612 /* We can set the alignment from the type if we are making an object,
1613 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1614 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1615 align = MAX (align, TYPE_ALIGN (type));
1616
1617 else if (TREE_CODE (t) == MEM_REF)
1618 {
1619 tree op0 = TREE_OPERAND (t, 0);
1620 if (TREE_CODE (op0) == ADDR_EXPR
1621 && (DECL_P (TREE_OPERAND (op0, 0))
1622 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1623 {
1624 if (DECL_P (TREE_OPERAND (op0, 0)))
1625 align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1626 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1627 {
1628 align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1629 #ifdef CONSTANT_ALIGNMENT
1630 align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0), align);
1631 #endif
1632 }
1633 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1634 {
1635 unsigned HOST_WIDE_INT ioff
1636 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1637 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1638 align = MIN (aoff, align);
1639 }
1640 }
1641 else
1642 /* ??? This isn't fully correct, we can't set the alignment from the
1643 type in all cases. */
1644 align = MAX (align, TYPE_ALIGN (type));
1645 }
1646
1647 else if (TREE_CODE (t) == TARGET_MEM_REF)
1648 /* ??? This isn't fully correct, we can't set the alignment from the
1649 type in all cases. */
1650 align = MAX (align, TYPE_ALIGN (type));
1651
1652 /* If the size is known, we can set that. */
1653 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1654 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1655
1656 /* If T is not a type, we may be able to deduce some more information about
1657 the expression. */
1658 if (! TYPE_P (t))
1659 {
1660 tree base;
1661 bool align_computed = false;
1662
1663 if (TREE_THIS_VOLATILE (t))
1664 MEM_VOLATILE_P (ref) = 1;
1665
1666 /* Now remove any conversions: they don't change what the underlying
1667 object is. Likewise for SAVE_EXPR. */
1668 while (CONVERT_EXPR_P (t)
1669 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1670 || TREE_CODE (t) == SAVE_EXPR)
1671 t = TREE_OPERAND (t, 0);
1672
1673 /* Note whether this expression can trap. */
1674 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1675
1676 base = get_base_address (t);
1677 if (base && DECL_P (base)
1678 && TREE_READONLY (base)
1679 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1680 && !TREE_THIS_VOLATILE (base))
1681 MEM_READONLY_P (ref) = 1;
1682
1683 /* If this expression uses it's parent's alias set, mark it such
1684 that we won't change it. */
1685 if (component_uses_parent_alias_set (t))
1686 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1687
1688 /* If this is a decl, set the attributes of the MEM from it. */
1689 if (DECL_P (t))
1690 {
1691 expr = t;
1692 offset = const0_rtx;
1693 apply_bitpos = bitpos;
1694 size = (DECL_SIZE_UNIT (t)
1695 && host_integerp (DECL_SIZE_UNIT (t), 1)
1696 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1697 align = DECL_ALIGN (t);
1698 align_computed = true;
1699 }
1700
1701 /* If this is a constant, we know the alignment. */
1702 else if (CONSTANT_CLASS_P (t))
1703 {
1704 align = TYPE_ALIGN (type);
1705 #ifdef CONSTANT_ALIGNMENT
1706 align = CONSTANT_ALIGNMENT (t, align);
1707 #endif
1708 align_computed = true;
1709 }
1710
1711 /* If this is a field reference and not a bit-field, record it. */
1712 /* ??? There is some information that can be gleaned from bit-fields,
1713 such as the word offset in the structure that might be modified.
1714 But skip it for now. */
1715 else if (TREE_CODE (t) == COMPONENT_REF
1716 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1717 {
1718 expr = t;
1719 offset = const0_rtx;
1720 apply_bitpos = bitpos;
1721 /* ??? Any reason the field size would be different than
1722 the size we got from the type? */
1723 }
1724
1725 /* If this is an array reference, look for an outer field reference. */
1726 else if (TREE_CODE (t) == ARRAY_REF)
1727 {
1728 tree off_tree = size_zero_node;
1729 /* We can't modify t, because we use it at the end of the
1730 function. */
1731 tree t2 = t;
1732
1733 do
1734 {
1735 tree index = TREE_OPERAND (t2, 1);
1736 tree low_bound = array_ref_low_bound (t2);
1737 tree unit_size = array_ref_element_size (t2);
1738
1739 /* We assume all arrays have sizes that are a multiple of a byte.
1740 First subtract the lower bound, if any, in the type of the
1741 index, then convert to sizetype and multiply by the size of
1742 the array element. */
1743 if (! integer_zerop (low_bound))
1744 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1745 index, low_bound);
1746
1747 off_tree = size_binop (PLUS_EXPR,
1748 size_binop (MULT_EXPR,
1749 fold_convert (sizetype,
1750 index),
1751 unit_size),
1752 off_tree);
1753 t2 = TREE_OPERAND (t2, 0);
1754 }
1755 while (TREE_CODE (t2) == ARRAY_REF);
1756
1757 if (DECL_P (t2))
1758 {
1759 expr = t2;
1760 offset = NULL;
1761 if (host_integerp (off_tree, 1))
1762 {
1763 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1764 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1765 align = DECL_ALIGN (t2);
1766 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1767 align = aoff;
1768 align_computed = true;
1769 offset = GEN_INT (ioff);
1770 apply_bitpos = bitpos;
1771 }
1772 }
1773 else if (TREE_CODE (t2) == COMPONENT_REF)
1774 {
1775 expr = t2;
1776 offset = NULL;
1777 if (host_integerp (off_tree, 1))
1778 {
1779 offset = GEN_INT (tree_low_cst (off_tree, 1));
1780 apply_bitpos = bitpos;
1781 }
1782 /* ??? Any reason the field size would be different than
1783 the size we got from the type? */
1784 }
1785
1786 /* If this is an indirect reference, record it. */
1787 else if (TREE_CODE (t) == MEM_REF)
1788 {
1789 expr = t;
1790 offset = const0_rtx;
1791 apply_bitpos = bitpos;
1792 }
1793 }
1794
1795 /* If this is an indirect reference, record it. */
1796 else if (TREE_CODE (t) == MEM_REF
1797 || TREE_CODE (t) == TARGET_MEM_REF)
1798 {
1799 expr = t;
1800 offset = const0_rtx;
1801 apply_bitpos = bitpos;
1802 }
1803
1804 if (!align_computed && !INDIRECT_REF_P (t))
1805 {
1806 unsigned int obj_align = get_object_alignment (t, BIGGEST_ALIGNMENT);
1807 align = MAX (align, obj_align);
1808 }
1809 }
1810
1811 /* If we modified OFFSET based on T, then subtract the outstanding
1812 bit position offset. Similarly, increase the size of the accessed
1813 object to contain the negative offset. */
1814 if (apply_bitpos)
1815 {
1816 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1817 if (size)
1818 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1819 }
1820
1821 /* Now set the attributes we computed above. */
1822 MEM_ATTRS (ref)
1823 = get_mem_attrs (alias, expr, offset, size, align,
1824 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1825
1826 /* If this is already known to be a scalar or aggregate, we are done. */
1827 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1828 return;
1829
1830 /* If it is a reference into an aggregate, this is part of an aggregate.
1831 Otherwise we don't know. */
1832 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1833 || TREE_CODE (t) == ARRAY_RANGE_REF
1834 || TREE_CODE (t) == BIT_FIELD_REF)
1835 MEM_IN_STRUCT_P (ref) = 1;
1836 }
1837
1838 void
1839 set_mem_attributes (rtx ref, tree t, int objectp)
1840 {
1841 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1842 }
1843
1844 /* Set the alias set of MEM to SET. */
1845
1846 void
1847 set_mem_alias_set (rtx mem, alias_set_type set)
1848 {
1849 /* If the new and old alias sets don't conflict, something is wrong. */
1850 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1851
1852 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1853 MEM_SIZE (mem), MEM_ALIGN (mem),
1854 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1855 }
1856
1857 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1858
1859 void
1860 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1861 {
1862 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1863 MEM_OFFSET (mem), MEM_SIZE (mem),
1864 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1865 }
1866
1867 /* Set the alignment of MEM to ALIGN bits. */
1868
1869 void
1870 set_mem_align (rtx mem, unsigned int align)
1871 {
1872 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1873 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1874 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1875 }
1876
1877 /* Set the expr for MEM to EXPR. */
1878
1879 void
1880 set_mem_expr (rtx mem, tree expr)
1881 {
1882 MEM_ATTRS (mem)
1883 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1884 MEM_SIZE (mem), MEM_ALIGN (mem),
1885 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1886 }
1887
1888 /* Set the offset of MEM to OFFSET. */
1889
1890 void
1891 set_mem_offset (rtx mem, rtx offset)
1892 {
1893 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1894 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1895 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1896 }
1897
1898 /* Set the size of MEM to SIZE. */
1899
1900 void
1901 set_mem_size (rtx mem, rtx size)
1902 {
1903 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1904 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1905 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1906 }
1907 \f
1908 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1909 and its address changed to ADDR. (VOIDmode means don't change the mode.
1910 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1911 returned memory location is required to be valid. The memory
1912 attributes are not changed. */
1913
1914 static rtx
1915 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1916 {
1917 addr_space_t as;
1918 rtx new_rtx;
1919
1920 gcc_assert (MEM_P (memref));
1921 as = MEM_ADDR_SPACE (memref);
1922 if (mode == VOIDmode)
1923 mode = GET_MODE (memref);
1924 if (addr == 0)
1925 addr = XEXP (memref, 0);
1926 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1927 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1928 return memref;
1929
1930 if (validate)
1931 {
1932 if (reload_in_progress || reload_completed)
1933 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1934 else
1935 addr = memory_address_addr_space (mode, addr, as);
1936 }
1937
1938 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1939 return memref;
1940
1941 new_rtx = gen_rtx_MEM (mode, addr);
1942 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1943 return new_rtx;
1944 }
1945
1946 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1947 way we are changing MEMREF, so we only preserve the alias set. */
1948
1949 rtx
1950 change_address (rtx memref, enum machine_mode mode, rtx addr)
1951 {
1952 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1953 enum machine_mode mmode = GET_MODE (new_rtx);
1954 unsigned int align;
1955
1956 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1957 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1958
1959 /* If there are no changes, just return the original memory reference. */
1960 if (new_rtx == memref)
1961 {
1962 if (MEM_ATTRS (memref) == 0
1963 || (MEM_EXPR (memref) == NULL
1964 && MEM_OFFSET (memref) == NULL
1965 && MEM_SIZE (memref) == size
1966 && MEM_ALIGN (memref) == align))
1967 return new_rtx;
1968
1969 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1970 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1971 }
1972
1973 MEM_ATTRS (new_rtx)
1974 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1975 MEM_ADDR_SPACE (memref), mmode);
1976
1977 return new_rtx;
1978 }
1979
1980 /* Return a memory reference like MEMREF, but with its mode changed
1981 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1982 nonzero, the memory address is forced to be valid.
1983 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1984 and caller is responsible for adjusting MEMREF base register. */
1985
1986 rtx
1987 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1988 int validate, int adjust)
1989 {
1990 rtx addr = XEXP (memref, 0);
1991 rtx new_rtx;
1992 rtx memoffset = MEM_OFFSET (memref);
1993 rtx size = 0;
1994 unsigned int memalign = MEM_ALIGN (memref);
1995 addr_space_t as = MEM_ADDR_SPACE (memref);
1996 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1997 int pbits;
1998
1999 /* If there are no changes, just return the original memory reference. */
2000 if (mode == GET_MODE (memref) && !offset
2001 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2002 return memref;
2003
2004 /* ??? Prefer to create garbage instead of creating shared rtl.
2005 This may happen even if offset is nonzero -- consider
2006 (plus (plus reg reg) const_int) -- so do this always. */
2007 addr = copy_rtx (addr);
2008
2009 /* Convert a possibly large offset to a signed value within the
2010 range of the target address space. */
2011 pbits = GET_MODE_BITSIZE (address_mode);
2012 if (HOST_BITS_PER_WIDE_INT > pbits)
2013 {
2014 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2015 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2016 >> shift);
2017 }
2018
2019 if (adjust)
2020 {
2021 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2022 object, we can merge it into the LO_SUM. */
2023 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2024 && offset >= 0
2025 && (unsigned HOST_WIDE_INT) offset
2026 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2027 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2028 plus_constant (XEXP (addr, 1), offset));
2029 else
2030 addr = plus_constant (addr, offset);
2031 }
2032
2033 new_rtx = change_address_1 (memref, mode, addr, validate);
2034
2035 /* If the address is a REG, change_address_1 rightfully returns memref,
2036 but this would destroy memref's MEM_ATTRS. */
2037 if (new_rtx == memref && offset != 0)
2038 new_rtx = copy_rtx (new_rtx);
2039
2040 /* Compute the new values of the memory attributes due to this adjustment.
2041 We add the offsets and update the alignment. */
2042 if (memoffset)
2043 memoffset = GEN_INT (offset + INTVAL (memoffset));
2044
2045 /* Compute the new alignment by taking the MIN of the alignment and the
2046 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2047 if zero. */
2048 if (offset != 0)
2049 memalign
2050 = MIN (memalign,
2051 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2052
2053 /* We can compute the size in a number of ways. */
2054 if (GET_MODE (new_rtx) != BLKmode)
2055 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2056 else if (MEM_SIZE (memref))
2057 size = plus_constant (MEM_SIZE (memref), -offset);
2058
2059 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2060 memoffset, size, memalign, as,
2061 GET_MODE (new_rtx));
2062
2063 /* At some point, we should validate that this offset is within the object,
2064 if all the appropriate values are known. */
2065 return new_rtx;
2066 }
2067
2068 /* Return a memory reference like MEMREF, but with its mode changed
2069 to MODE and its address changed to ADDR, which is assumed to be
2070 MEMREF offset by OFFSET bytes. If VALIDATE is
2071 nonzero, the memory address is forced to be valid. */
2072
2073 rtx
2074 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2075 HOST_WIDE_INT offset, int validate)
2076 {
2077 memref = change_address_1 (memref, VOIDmode, addr, validate);
2078 return adjust_address_1 (memref, mode, offset, validate, 0);
2079 }
2080
2081 /* Return a memory reference like MEMREF, but whose address is changed by
2082 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2083 known to be in OFFSET (possibly 1). */
2084
2085 rtx
2086 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2087 {
2088 rtx new_rtx, addr = XEXP (memref, 0);
2089 addr_space_t as = MEM_ADDR_SPACE (memref);
2090 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2091
2092 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2093
2094 /* At this point we don't know _why_ the address is invalid. It
2095 could have secondary memory references, multiplies or anything.
2096
2097 However, if we did go and rearrange things, we can wind up not
2098 being able to recognize the magic around pic_offset_table_rtx.
2099 This stuff is fragile, and is yet another example of why it is
2100 bad to expose PIC machinery too early. */
2101 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2102 && GET_CODE (addr) == PLUS
2103 && XEXP (addr, 0) == pic_offset_table_rtx)
2104 {
2105 addr = force_reg (GET_MODE (addr), addr);
2106 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2107 }
2108
2109 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2110 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2111
2112 /* If there are no changes, just return the original memory reference. */
2113 if (new_rtx == memref)
2114 return new_rtx;
2115
2116 /* Update the alignment to reflect the offset. Reset the offset, which
2117 we don't know. */
2118 MEM_ATTRS (new_rtx)
2119 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2120 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2121 as, GET_MODE (new_rtx));
2122 return new_rtx;
2123 }
2124
2125 /* Return a memory reference like MEMREF, but with its address changed to
2126 ADDR. The caller is asserting that the actual piece of memory pointed
2127 to is the same, just the form of the address is being changed, such as
2128 by putting something into a register. */
2129
2130 rtx
2131 replace_equiv_address (rtx memref, rtx addr)
2132 {
2133 /* change_address_1 copies the memory attribute structure without change
2134 and that's exactly what we want here. */
2135 update_temp_slot_address (XEXP (memref, 0), addr);
2136 return change_address_1 (memref, VOIDmode, addr, 1);
2137 }
2138
2139 /* Likewise, but the reference is not required to be valid. */
2140
2141 rtx
2142 replace_equiv_address_nv (rtx memref, rtx addr)
2143 {
2144 return change_address_1 (memref, VOIDmode, addr, 0);
2145 }
2146
2147 /* Return a memory reference like MEMREF, but with its mode widened to
2148 MODE and offset by OFFSET. This would be used by targets that e.g.
2149 cannot issue QImode memory operations and have to use SImode memory
2150 operations plus masking logic. */
2151
2152 rtx
2153 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2154 {
2155 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2156 tree expr = MEM_EXPR (new_rtx);
2157 rtx memoffset = MEM_OFFSET (new_rtx);
2158 unsigned int size = GET_MODE_SIZE (mode);
2159
2160 /* If there are no changes, just return the original memory reference. */
2161 if (new_rtx == memref)
2162 return new_rtx;
2163
2164 /* If we don't know what offset we were at within the expression, then
2165 we can't know if we've overstepped the bounds. */
2166 if (! memoffset)
2167 expr = NULL_TREE;
2168
2169 while (expr)
2170 {
2171 if (TREE_CODE (expr) == COMPONENT_REF)
2172 {
2173 tree field = TREE_OPERAND (expr, 1);
2174 tree offset = component_ref_field_offset (expr);
2175
2176 if (! DECL_SIZE_UNIT (field))
2177 {
2178 expr = NULL_TREE;
2179 break;
2180 }
2181
2182 /* Is the field at least as large as the access? If so, ok,
2183 otherwise strip back to the containing structure. */
2184 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2185 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2186 && INTVAL (memoffset) >= 0)
2187 break;
2188
2189 if (! host_integerp (offset, 1))
2190 {
2191 expr = NULL_TREE;
2192 break;
2193 }
2194
2195 expr = TREE_OPERAND (expr, 0);
2196 memoffset
2197 = (GEN_INT (INTVAL (memoffset)
2198 + tree_low_cst (offset, 1)
2199 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2200 / BITS_PER_UNIT)));
2201 }
2202 /* Similarly for the decl. */
2203 else if (DECL_P (expr)
2204 && DECL_SIZE_UNIT (expr)
2205 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2206 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2207 && (! memoffset || INTVAL (memoffset) >= 0))
2208 break;
2209 else
2210 {
2211 /* The widened memory access overflows the expression, which means
2212 that it could alias another expression. Zap it. */
2213 expr = NULL_TREE;
2214 break;
2215 }
2216 }
2217
2218 if (! expr)
2219 memoffset = NULL_RTX;
2220
2221 /* The widened memory may alias other stuff, so zap the alias set. */
2222 /* ??? Maybe use get_alias_set on any remaining expression. */
2223
2224 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2225 MEM_ALIGN (new_rtx),
2226 MEM_ADDR_SPACE (new_rtx), mode);
2227
2228 return new_rtx;
2229 }
2230 \f
2231 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2232 static GTY(()) tree spill_slot_decl;
2233
2234 tree
2235 get_spill_slot_decl (bool force_build_p)
2236 {
2237 tree d = spill_slot_decl;
2238 rtx rd;
2239
2240 if (d || !force_build_p)
2241 return d;
2242
2243 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2244 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2245 DECL_ARTIFICIAL (d) = 1;
2246 DECL_IGNORED_P (d) = 1;
2247 TREE_USED (d) = 1;
2248 spill_slot_decl = d;
2249
2250 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2251 MEM_NOTRAP_P (rd) = 1;
2252 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2253 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2254 SET_DECL_RTL (d, rd);
2255
2256 return d;
2257 }
2258
2259 /* Given MEM, a result from assign_stack_local, fill in the memory
2260 attributes as appropriate for a register allocator spill slot.
2261 These slots are not aliasable by other memory. We arrange for
2262 them all to use a single MEM_EXPR, so that the aliasing code can
2263 work properly in the case of shared spill slots. */
2264
2265 void
2266 set_mem_attrs_for_spill (rtx mem)
2267 {
2268 alias_set_type alias;
2269 rtx addr, offset;
2270 tree expr;
2271
2272 expr = get_spill_slot_decl (true);
2273 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2274
2275 /* We expect the incoming memory to be of the form:
2276 (mem:MODE (plus (reg sfp) (const_int offset)))
2277 with perhaps the plus missing for offset = 0. */
2278 addr = XEXP (mem, 0);
2279 offset = const0_rtx;
2280 if (GET_CODE (addr) == PLUS
2281 && CONST_INT_P (XEXP (addr, 1)))
2282 offset = XEXP (addr, 1);
2283
2284 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2285 MEM_SIZE (mem), MEM_ALIGN (mem),
2286 ADDR_SPACE_GENERIC, GET_MODE (mem));
2287 MEM_NOTRAP_P (mem) = 1;
2288 }
2289 \f
2290 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2291
2292 rtx
2293 gen_label_rtx (void)
2294 {
2295 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2296 NULL, label_num++, NULL);
2297 }
2298 \f
2299 /* For procedure integration. */
2300
2301 /* Install new pointers to the first and last insns in the chain.
2302 Also, set cur_insn_uid to one higher than the last in use.
2303 Used for an inline-procedure after copying the insn chain. */
2304
2305 void
2306 set_new_first_and_last_insn (rtx first, rtx last)
2307 {
2308 rtx insn;
2309
2310 set_first_insn (first);
2311 set_last_insn (last);
2312 cur_insn_uid = 0;
2313
2314 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2315 {
2316 int debug_count = 0;
2317
2318 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2319 cur_debug_insn_uid = 0;
2320
2321 for (insn = first; insn; insn = NEXT_INSN (insn))
2322 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2323 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2324 else
2325 {
2326 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2327 if (DEBUG_INSN_P (insn))
2328 debug_count++;
2329 }
2330
2331 if (debug_count)
2332 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2333 else
2334 cur_debug_insn_uid++;
2335 }
2336 else
2337 for (insn = first; insn; insn = NEXT_INSN (insn))
2338 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2339
2340 cur_insn_uid++;
2341 }
2342 \f
2343 /* Go through all the RTL insn bodies and copy any invalid shared
2344 structure. This routine should only be called once. */
2345
2346 static void
2347 unshare_all_rtl_1 (rtx insn)
2348 {
2349 /* Unshare just about everything else. */
2350 unshare_all_rtl_in_chain (insn);
2351
2352 /* Make sure the addresses of stack slots found outside the insn chain
2353 (such as, in DECL_RTL of a variable) are not shared
2354 with the insn chain.
2355
2356 This special care is necessary when the stack slot MEM does not
2357 actually appear in the insn chain. If it does appear, its address
2358 is unshared from all else at that point. */
2359 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2360 }
2361
2362 /* Go through all the RTL insn bodies and copy any invalid shared
2363 structure, again. This is a fairly expensive thing to do so it
2364 should be done sparingly. */
2365
2366 void
2367 unshare_all_rtl_again (rtx insn)
2368 {
2369 rtx p;
2370 tree decl;
2371
2372 for (p = insn; p; p = NEXT_INSN (p))
2373 if (INSN_P (p))
2374 {
2375 reset_used_flags (PATTERN (p));
2376 reset_used_flags (REG_NOTES (p));
2377 }
2378
2379 /* Make sure that virtual stack slots are not shared. */
2380 set_used_decls (DECL_INITIAL (cfun->decl));
2381
2382 /* Make sure that virtual parameters are not shared. */
2383 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2384 set_used_flags (DECL_RTL (decl));
2385
2386 reset_used_flags (stack_slot_list);
2387
2388 unshare_all_rtl_1 (insn);
2389 }
2390
2391 unsigned int
2392 unshare_all_rtl (void)
2393 {
2394 unshare_all_rtl_1 (get_insns ());
2395 return 0;
2396 }
2397
2398 struct rtl_opt_pass pass_unshare_all_rtl =
2399 {
2400 {
2401 RTL_PASS,
2402 "unshare", /* name */
2403 NULL, /* gate */
2404 unshare_all_rtl, /* execute */
2405 NULL, /* sub */
2406 NULL, /* next */
2407 0, /* static_pass_number */
2408 TV_NONE, /* tv_id */
2409 0, /* properties_required */
2410 0, /* properties_provided */
2411 0, /* properties_destroyed */
2412 0, /* todo_flags_start */
2413 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2414 }
2415 };
2416
2417
2418 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2419 Recursively does the same for subexpressions. */
2420
2421 static void
2422 verify_rtx_sharing (rtx orig, rtx insn)
2423 {
2424 rtx x = orig;
2425 int i;
2426 enum rtx_code code;
2427 const char *format_ptr;
2428
2429 if (x == 0)
2430 return;
2431
2432 code = GET_CODE (x);
2433
2434 /* These types may be freely shared. */
2435
2436 switch (code)
2437 {
2438 case REG:
2439 case DEBUG_EXPR:
2440 case VALUE:
2441 case CONST_INT:
2442 case CONST_DOUBLE:
2443 case CONST_FIXED:
2444 case CONST_VECTOR:
2445 case SYMBOL_REF:
2446 case LABEL_REF:
2447 case CODE_LABEL:
2448 case PC:
2449 case CC0:
2450 case SCRATCH:
2451 return;
2452 /* SCRATCH must be shared because they represent distinct values. */
2453 case CLOBBER:
2454 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2455 return;
2456 break;
2457
2458 case CONST:
2459 if (shared_const_p (orig))
2460 return;
2461 break;
2462
2463 case MEM:
2464 /* A MEM is allowed to be shared if its address is constant. */
2465 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2466 || reload_completed || reload_in_progress)
2467 return;
2468
2469 break;
2470
2471 default:
2472 break;
2473 }
2474
2475 /* This rtx may not be shared. If it has already been seen,
2476 replace it with a copy of itself. */
2477 #ifdef ENABLE_CHECKING
2478 if (RTX_FLAG (x, used))
2479 {
2480 error ("invalid rtl sharing found in the insn");
2481 debug_rtx (insn);
2482 error ("shared rtx");
2483 debug_rtx (x);
2484 internal_error ("internal consistency failure");
2485 }
2486 #endif
2487 gcc_assert (!RTX_FLAG (x, used));
2488
2489 RTX_FLAG (x, used) = 1;
2490
2491 /* Now scan the subexpressions recursively. */
2492
2493 format_ptr = GET_RTX_FORMAT (code);
2494
2495 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2496 {
2497 switch (*format_ptr++)
2498 {
2499 case 'e':
2500 verify_rtx_sharing (XEXP (x, i), insn);
2501 break;
2502
2503 case 'E':
2504 if (XVEC (x, i) != NULL)
2505 {
2506 int j;
2507 int len = XVECLEN (x, i);
2508
2509 for (j = 0; j < len; j++)
2510 {
2511 /* We allow sharing of ASM_OPERANDS inside single
2512 instruction. */
2513 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2514 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2515 == ASM_OPERANDS))
2516 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2517 else
2518 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2519 }
2520 }
2521 break;
2522 }
2523 }
2524 return;
2525 }
2526
2527 /* Go through all the RTL insn bodies and check that there is no unexpected
2528 sharing in between the subexpressions. */
2529
2530 DEBUG_FUNCTION void
2531 verify_rtl_sharing (void)
2532 {
2533 rtx p;
2534
2535 timevar_push (TV_VERIFY_RTL_SHARING);
2536
2537 for (p = get_insns (); p; p = NEXT_INSN (p))
2538 if (INSN_P (p))
2539 {
2540 reset_used_flags (PATTERN (p));
2541 reset_used_flags (REG_NOTES (p));
2542 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2543 {
2544 int i;
2545 rtx q, sequence = PATTERN (p);
2546
2547 for (i = 0; i < XVECLEN (sequence, 0); i++)
2548 {
2549 q = XVECEXP (sequence, 0, i);
2550 gcc_assert (INSN_P (q));
2551 reset_used_flags (PATTERN (q));
2552 reset_used_flags (REG_NOTES (q));
2553 }
2554 }
2555 }
2556
2557 for (p = get_insns (); p; p = NEXT_INSN (p))
2558 if (INSN_P (p))
2559 {
2560 verify_rtx_sharing (PATTERN (p), p);
2561 verify_rtx_sharing (REG_NOTES (p), p);
2562 }
2563
2564 timevar_pop (TV_VERIFY_RTL_SHARING);
2565 }
2566
2567 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2568 Assumes the mark bits are cleared at entry. */
2569
2570 void
2571 unshare_all_rtl_in_chain (rtx insn)
2572 {
2573 for (; insn; insn = NEXT_INSN (insn))
2574 if (INSN_P (insn))
2575 {
2576 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2577 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2578 }
2579 }
2580
2581 /* Go through all virtual stack slots of a function and mark them as
2582 shared. We never replace the DECL_RTLs themselves with a copy,
2583 but expressions mentioned into a DECL_RTL cannot be shared with
2584 expressions in the instruction stream.
2585
2586 Note that reload may convert pseudo registers into memories in-place.
2587 Pseudo registers are always shared, but MEMs never are. Thus if we
2588 reset the used flags on MEMs in the instruction stream, we must set
2589 them again on MEMs that appear in DECL_RTLs. */
2590
2591 static void
2592 set_used_decls (tree blk)
2593 {
2594 tree t;
2595
2596 /* Mark decls. */
2597 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2598 if (DECL_RTL_SET_P (t))
2599 set_used_flags (DECL_RTL (t));
2600
2601 /* Now process sub-blocks. */
2602 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2603 set_used_decls (t);
2604 }
2605
2606 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2607 Recursively does the same for subexpressions. Uses
2608 copy_rtx_if_shared_1 to reduce stack space. */
2609
2610 rtx
2611 copy_rtx_if_shared (rtx orig)
2612 {
2613 copy_rtx_if_shared_1 (&orig);
2614 return orig;
2615 }
2616
2617 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2618 use. Recursively does the same for subexpressions. */
2619
2620 static void
2621 copy_rtx_if_shared_1 (rtx *orig1)
2622 {
2623 rtx x;
2624 int i;
2625 enum rtx_code code;
2626 rtx *last_ptr;
2627 const char *format_ptr;
2628 int copied = 0;
2629 int length;
2630
2631 /* Repeat is used to turn tail-recursion into iteration. */
2632 repeat:
2633 x = *orig1;
2634
2635 if (x == 0)
2636 return;
2637
2638 code = GET_CODE (x);
2639
2640 /* These types may be freely shared. */
2641
2642 switch (code)
2643 {
2644 case REG:
2645 case DEBUG_EXPR:
2646 case VALUE:
2647 case CONST_INT:
2648 case CONST_DOUBLE:
2649 case CONST_FIXED:
2650 case CONST_VECTOR:
2651 case SYMBOL_REF:
2652 case LABEL_REF:
2653 case CODE_LABEL:
2654 case PC:
2655 case CC0:
2656 case SCRATCH:
2657 /* SCRATCH must be shared because they represent distinct values. */
2658 return;
2659 case CLOBBER:
2660 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2661 return;
2662 break;
2663
2664 case CONST:
2665 if (shared_const_p (x))
2666 return;
2667 break;
2668
2669 case DEBUG_INSN:
2670 case INSN:
2671 case JUMP_INSN:
2672 case CALL_INSN:
2673 case NOTE:
2674 case BARRIER:
2675 /* The chain of insns is not being copied. */
2676 return;
2677
2678 default:
2679 break;
2680 }
2681
2682 /* This rtx may not be shared. If it has already been seen,
2683 replace it with a copy of itself. */
2684
2685 if (RTX_FLAG (x, used))
2686 {
2687 x = shallow_copy_rtx (x);
2688 copied = 1;
2689 }
2690 RTX_FLAG (x, used) = 1;
2691
2692 /* Now scan the subexpressions recursively.
2693 We can store any replaced subexpressions directly into X
2694 since we know X is not shared! Any vectors in X
2695 must be copied if X was copied. */
2696
2697 format_ptr = GET_RTX_FORMAT (code);
2698 length = GET_RTX_LENGTH (code);
2699 last_ptr = NULL;
2700
2701 for (i = 0; i < length; i++)
2702 {
2703 switch (*format_ptr++)
2704 {
2705 case 'e':
2706 if (last_ptr)
2707 copy_rtx_if_shared_1 (last_ptr);
2708 last_ptr = &XEXP (x, i);
2709 break;
2710
2711 case 'E':
2712 if (XVEC (x, i) != NULL)
2713 {
2714 int j;
2715 int len = XVECLEN (x, i);
2716
2717 /* Copy the vector iff I copied the rtx and the length
2718 is nonzero. */
2719 if (copied && len > 0)
2720 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2721
2722 /* Call recursively on all inside the vector. */
2723 for (j = 0; j < len; j++)
2724 {
2725 if (last_ptr)
2726 copy_rtx_if_shared_1 (last_ptr);
2727 last_ptr = &XVECEXP (x, i, j);
2728 }
2729 }
2730 break;
2731 }
2732 }
2733 *orig1 = x;
2734 if (last_ptr)
2735 {
2736 orig1 = last_ptr;
2737 goto repeat;
2738 }
2739 return;
2740 }
2741
2742 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2743
2744 static void
2745 mark_used_flags (rtx x, int flag)
2746 {
2747 int i, j;
2748 enum rtx_code code;
2749 const char *format_ptr;
2750 int length;
2751
2752 /* Repeat is used to turn tail-recursion into iteration. */
2753 repeat:
2754 if (x == 0)
2755 return;
2756
2757 code = GET_CODE (x);
2758
2759 /* These types may be freely shared so we needn't do any resetting
2760 for them. */
2761
2762 switch (code)
2763 {
2764 case REG:
2765 case DEBUG_EXPR:
2766 case VALUE:
2767 case CONST_INT:
2768 case CONST_DOUBLE:
2769 case CONST_FIXED:
2770 case CONST_VECTOR:
2771 case SYMBOL_REF:
2772 case CODE_LABEL:
2773 case PC:
2774 case CC0:
2775 return;
2776
2777 case DEBUG_INSN:
2778 case INSN:
2779 case JUMP_INSN:
2780 case CALL_INSN:
2781 case NOTE:
2782 case LABEL_REF:
2783 case BARRIER:
2784 /* The chain of insns is not being copied. */
2785 return;
2786
2787 default:
2788 break;
2789 }
2790
2791 RTX_FLAG (x, used) = flag;
2792
2793 format_ptr = GET_RTX_FORMAT (code);
2794 length = GET_RTX_LENGTH (code);
2795
2796 for (i = 0; i < length; i++)
2797 {
2798 switch (*format_ptr++)
2799 {
2800 case 'e':
2801 if (i == length-1)
2802 {
2803 x = XEXP (x, i);
2804 goto repeat;
2805 }
2806 mark_used_flags (XEXP (x, i), flag);
2807 break;
2808
2809 case 'E':
2810 for (j = 0; j < XVECLEN (x, i); j++)
2811 mark_used_flags (XVECEXP (x, i, j), flag);
2812 break;
2813 }
2814 }
2815 }
2816
2817 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2818 to look for shared sub-parts. */
2819
2820 void
2821 reset_used_flags (rtx x)
2822 {
2823 mark_used_flags (x, 0);
2824 }
2825
2826 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2827 to look for shared sub-parts. */
2828
2829 void
2830 set_used_flags (rtx x)
2831 {
2832 mark_used_flags (x, 1);
2833 }
2834 \f
2835 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2836 Return X or the rtx for the pseudo reg the value of X was copied into.
2837 OTHER must be valid as a SET_DEST. */
2838
2839 rtx
2840 make_safe_from (rtx x, rtx other)
2841 {
2842 while (1)
2843 switch (GET_CODE (other))
2844 {
2845 case SUBREG:
2846 other = SUBREG_REG (other);
2847 break;
2848 case STRICT_LOW_PART:
2849 case SIGN_EXTEND:
2850 case ZERO_EXTEND:
2851 other = XEXP (other, 0);
2852 break;
2853 default:
2854 goto done;
2855 }
2856 done:
2857 if ((MEM_P (other)
2858 && ! CONSTANT_P (x)
2859 && !REG_P (x)
2860 && GET_CODE (x) != SUBREG)
2861 || (REG_P (other)
2862 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2863 || reg_mentioned_p (other, x))))
2864 {
2865 rtx temp = gen_reg_rtx (GET_MODE (x));
2866 emit_move_insn (temp, x);
2867 return temp;
2868 }
2869 return x;
2870 }
2871 \f
2872 /* Emission of insns (adding them to the doubly-linked list). */
2873
2874 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2875
2876 rtx
2877 get_last_insn_anywhere (void)
2878 {
2879 struct sequence_stack *stack;
2880 if (get_last_insn ())
2881 return get_last_insn ();
2882 for (stack = seq_stack; stack; stack = stack->next)
2883 if (stack->last != 0)
2884 return stack->last;
2885 return 0;
2886 }
2887
2888 /* Return the first nonnote insn emitted in current sequence or current
2889 function. This routine looks inside SEQUENCEs. */
2890
2891 rtx
2892 get_first_nonnote_insn (void)
2893 {
2894 rtx insn = get_insns ();
2895
2896 if (insn)
2897 {
2898 if (NOTE_P (insn))
2899 for (insn = next_insn (insn);
2900 insn && NOTE_P (insn);
2901 insn = next_insn (insn))
2902 continue;
2903 else
2904 {
2905 if (NONJUMP_INSN_P (insn)
2906 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2907 insn = XVECEXP (PATTERN (insn), 0, 0);
2908 }
2909 }
2910
2911 return insn;
2912 }
2913
2914 /* Return the last nonnote insn emitted in current sequence or current
2915 function. This routine looks inside SEQUENCEs. */
2916
2917 rtx
2918 get_last_nonnote_insn (void)
2919 {
2920 rtx insn = get_last_insn ();
2921
2922 if (insn)
2923 {
2924 if (NOTE_P (insn))
2925 for (insn = previous_insn (insn);
2926 insn && NOTE_P (insn);
2927 insn = previous_insn (insn))
2928 continue;
2929 else
2930 {
2931 if (NONJUMP_INSN_P (insn)
2932 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2933 insn = XVECEXP (PATTERN (insn), 0,
2934 XVECLEN (PATTERN (insn), 0) - 1);
2935 }
2936 }
2937
2938 return insn;
2939 }
2940
2941 /* Return the number of actual (non-debug) insns emitted in this
2942 function. */
2943
2944 int
2945 get_max_insn_count (void)
2946 {
2947 int n = cur_insn_uid;
2948
2949 /* The table size must be stable across -g, to avoid codegen
2950 differences due to debug insns, and not be affected by
2951 -fmin-insn-uid, to avoid excessive table size and to simplify
2952 debugging of -fcompare-debug failures. */
2953 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
2954 n -= cur_debug_insn_uid;
2955 else
2956 n -= MIN_NONDEBUG_INSN_UID;
2957
2958 return n;
2959 }
2960
2961 \f
2962 /* Return the next insn. If it is a SEQUENCE, return the first insn
2963 of the sequence. */
2964
2965 rtx
2966 next_insn (rtx insn)
2967 {
2968 if (insn)
2969 {
2970 insn = NEXT_INSN (insn);
2971 if (insn && NONJUMP_INSN_P (insn)
2972 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2973 insn = XVECEXP (PATTERN (insn), 0, 0);
2974 }
2975
2976 return insn;
2977 }
2978
2979 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2980 of the sequence. */
2981
2982 rtx
2983 previous_insn (rtx insn)
2984 {
2985 if (insn)
2986 {
2987 insn = PREV_INSN (insn);
2988 if (insn && NONJUMP_INSN_P (insn)
2989 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2990 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2991 }
2992
2993 return insn;
2994 }
2995
2996 /* Return the next insn after INSN that is not a NOTE. This routine does not
2997 look inside SEQUENCEs. */
2998
2999 rtx
3000 next_nonnote_insn (rtx insn)
3001 {
3002 while (insn)
3003 {
3004 insn = NEXT_INSN (insn);
3005 if (insn == 0 || !NOTE_P (insn))
3006 break;
3007 }
3008
3009 return insn;
3010 }
3011
3012 /* Return the next insn after INSN that is not a NOTE, but stop the
3013 search before we enter another basic block. This routine does not
3014 look inside SEQUENCEs. */
3015
3016 rtx
3017 next_nonnote_insn_bb (rtx insn)
3018 {
3019 while (insn)
3020 {
3021 insn = NEXT_INSN (insn);
3022 if (insn == 0 || !NOTE_P (insn))
3023 break;
3024 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3025 return NULL_RTX;
3026 }
3027
3028 return insn;
3029 }
3030
3031 /* Return the previous insn before INSN that is not a NOTE. This routine does
3032 not look inside SEQUENCEs. */
3033
3034 rtx
3035 prev_nonnote_insn (rtx insn)
3036 {
3037 while (insn)
3038 {
3039 insn = PREV_INSN (insn);
3040 if (insn == 0 || !NOTE_P (insn))
3041 break;
3042 }
3043
3044 return insn;
3045 }
3046
3047 /* Return the previous insn before INSN that is not a NOTE, but stop
3048 the search before we enter another basic block. This routine does
3049 not look inside SEQUENCEs. */
3050
3051 rtx
3052 prev_nonnote_insn_bb (rtx insn)
3053 {
3054 while (insn)
3055 {
3056 insn = PREV_INSN (insn);
3057 if (insn == 0 || !NOTE_P (insn))
3058 break;
3059 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3060 return NULL_RTX;
3061 }
3062
3063 return insn;
3064 }
3065
3066 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3067 routine does not look inside SEQUENCEs. */
3068
3069 rtx
3070 next_nondebug_insn (rtx insn)
3071 {
3072 while (insn)
3073 {
3074 insn = NEXT_INSN (insn);
3075 if (insn == 0 || !DEBUG_INSN_P (insn))
3076 break;
3077 }
3078
3079 return insn;
3080 }
3081
3082 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3083 This routine does not look inside SEQUENCEs. */
3084
3085 rtx
3086 prev_nondebug_insn (rtx insn)
3087 {
3088 while (insn)
3089 {
3090 insn = PREV_INSN (insn);
3091 if (insn == 0 || !DEBUG_INSN_P (insn))
3092 break;
3093 }
3094
3095 return insn;
3096 }
3097
3098 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3099 This routine does not look inside SEQUENCEs. */
3100
3101 rtx
3102 next_nonnote_nondebug_insn (rtx insn)
3103 {
3104 while (insn)
3105 {
3106 insn = NEXT_INSN (insn);
3107 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3108 break;
3109 }
3110
3111 return insn;
3112 }
3113
3114 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3115 This routine does not look inside SEQUENCEs. */
3116
3117 rtx
3118 prev_nonnote_nondebug_insn (rtx insn)
3119 {
3120 while (insn)
3121 {
3122 insn = PREV_INSN (insn);
3123 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3124 break;
3125 }
3126
3127 return insn;
3128 }
3129
3130 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3131 or 0, if there is none. This routine does not look inside
3132 SEQUENCEs. */
3133
3134 rtx
3135 next_real_insn (rtx insn)
3136 {
3137 while (insn)
3138 {
3139 insn = NEXT_INSN (insn);
3140 if (insn == 0 || INSN_P (insn))
3141 break;
3142 }
3143
3144 return insn;
3145 }
3146
3147 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3148 or 0, if there is none. This routine does not look inside
3149 SEQUENCEs. */
3150
3151 rtx
3152 prev_real_insn (rtx insn)
3153 {
3154 while (insn)
3155 {
3156 insn = PREV_INSN (insn);
3157 if (insn == 0 || INSN_P (insn))
3158 break;
3159 }
3160
3161 return insn;
3162 }
3163
3164 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3165 This routine does not look inside SEQUENCEs. */
3166
3167 rtx
3168 last_call_insn (void)
3169 {
3170 rtx insn;
3171
3172 for (insn = get_last_insn ();
3173 insn && !CALL_P (insn);
3174 insn = PREV_INSN (insn))
3175 ;
3176
3177 return insn;
3178 }
3179
3180 /* Find the next insn after INSN that really does something. This routine
3181 does not look inside SEQUENCEs. After reload this also skips over
3182 standalone USE and CLOBBER insn. */
3183
3184 int
3185 active_insn_p (const_rtx insn)
3186 {
3187 return (CALL_P (insn) || JUMP_P (insn)
3188 || (NONJUMP_INSN_P (insn)
3189 && (! reload_completed
3190 || (GET_CODE (PATTERN (insn)) != USE
3191 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3192 }
3193
3194 rtx
3195 next_active_insn (rtx insn)
3196 {
3197 while (insn)
3198 {
3199 insn = NEXT_INSN (insn);
3200 if (insn == 0 || active_insn_p (insn))
3201 break;
3202 }
3203
3204 return insn;
3205 }
3206
3207 /* Find the last insn before INSN that really does something. This routine
3208 does not look inside SEQUENCEs. After reload this also skips over
3209 standalone USE and CLOBBER insn. */
3210
3211 rtx
3212 prev_active_insn (rtx insn)
3213 {
3214 while (insn)
3215 {
3216 insn = PREV_INSN (insn);
3217 if (insn == 0 || active_insn_p (insn))
3218 break;
3219 }
3220
3221 return insn;
3222 }
3223
3224 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3225
3226 rtx
3227 next_label (rtx insn)
3228 {
3229 while (insn)
3230 {
3231 insn = NEXT_INSN (insn);
3232 if (insn == 0 || LABEL_P (insn))
3233 break;
3234 }
3235
3236 return insn;
3237 }
3238
3239 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3240
3241 rtx
3242 prev_label (rtx insn)
3243 {
3244 while (insn)
3245 {
3246 insn = PREV_INSN (insn);
3247 if (insn == 0 || LABEL_P (insn))
3248 break;
3249 }
3250
3251 return insn;
3252 }
3253
3254 /* Return the last label to mark the same position as LABEL. Return null
3255 if LABEL itself is null. */
3256
3257 rtx
3258 skip_consecutive_labels (rtx label)
3259 {
3260 rtx insn;
3261
3262 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3263 if (LABEL_P (insn))
3264 label = insn;
3265
3266 return label;
3267 }
3268 \f
3269 #ifdef HAVE_cc0
3270 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3271 and REG_CC_USER notes so we can find it. */
3272
3273 void
3274 link_cc0_insns (rtx insn)
3275 {
3276 rtx user = next_nonnote_insn (insn);
3277
3278 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3279 user = XVECEXP (PATTERN (user), 0, 0);
3280
3281 add_reg_note (user, REG_CC_SETTER, insn);
3282 add_reg_note (insn, REG_CC_USER, user);
3283 }
3284
3285 /* Return the next insn that uses CC0 after INSN, which is assumed to
3286 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3287 applied to the result of this function should yield INSN).
3288
3289 Normally, this is simply the next insn. However, if a REG_CC_USER note
3290 is present, it contains the insn that uses CC0.
3291
3292 Return 0 if we can't find the insn. */
3293
3294 rtx
3295 next_cc0_user (rtx insn)
3296 {
3297 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3298
3299 if (note)
3300 return XEXP (note, 0);
3301
3302 insn = next_nonnote_insn (insn);
3303 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3304 insn = XVECEXP (PATTERN (insn), 0, 0);
3305
3306 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3307 return insn;
3308
3309 return 0;
3310 }
3311
3312 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3313 note, it is the previous insn. */
3314
3315 rtx
3316 prev_cc0_setter (rtx insn)
3317 {
3318 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3319
3320 if (note)
3321 return XEXP (note, 0);
3322
3323 insn = prev_nonnote_insn (insn);
3324 gcc_assert (sets_cc0_p (PATTERN (insn)));
3325
3326 return insn;
3327 }
3328 #endif
3329
3330 #ifdef AUTO_INC_DEC
3331 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3332
3333 static int
3334 find_auto_inc (rtx *xp, void *data)
3335 {
3336 rtx x = *xp;
3337 rtx reg = (rtx) data;
3338
3339 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3340 return 0;
3341
3342 switch (GET_CODE (x))
3343 {
3344 case PRE_DEC:
3345 case PRE_INC:
3346 case POST_DEC:
3347 case POST_INC:
3348 case PRE_MODIFY:
3349 case POST_MODIFY:
3350 if (rtx_equal_p (reg, XEXP (x, 0)))
3351 return 1;
3352 break;
3353
3354 default:
3355 gcc_unreachable ();
3356 }
3357 return -1;
3358 }
3359 #endif
3360
3361 /* Increment the label uses for all labels present in rtx. */
3362
3363 static void
3364 mark_label_nuses (rtx x)
3365 {
3366 enum rtx_code code;
3367 int i, j;
3368 const char *fmt;
3369
3370 code = GET_CODE (x);
3371 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3372 LABEL_NUSES (XEXP (x, 0))++;
3373
3374 fmt = GET_RTX_FORMAT (code);
3375 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3376 {
3377 if (fmt[i] == 'e')
3378 mark_label_nuses (XEXP (x, i));
3379 else if (fmt[i] == 'E')
3380 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3381 mark_label_nuses (XVECEXP (x, i, j));
3382 }
3383 }
3384
3385 \f
3386 /* Try splitting insns that can be split for better scheduling.
3387 PAT is the pattern which might split.
3388 TRIAL is the insn providing PAT.
3389 LAST is nonzero if we should return the last insn of the sequence produced.
3390
3391 If this routine succeeds in splitting, it returns the first or last
3392 replacement insn depending on the value of LAST. Otherwise, it
3393 returns TRIAL. If the insn to be returned can be split, it will be. */
3394
3395 rtx
3396 try_split (rtx pat, rtx trial, int last)
3397 {
3398 rtx before = PREV_INSN (trial);
3399 rtx after = NEXT_INSN (trial);
3400 int has_barrier = 0;
3401 rtx note, seq, tem;
3402 int probability;
3403 rtx insn_last, insn;
3404 int njumps = 0;
3405
3406 /* We're not good at redistributing frame information. */
3407 if (RTX_FRAME_RELATED_P (trial))
3408 return trial;
3409
3410 if (any_condjump_p (trial)
3411 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3412 split_branch_probability = INTVAL (XEXP (note, 0));
3413 probability = split_branch_probability;
3414
3415 seq = split_insns (pat, trial);
3416
3417 split_branch_probability = -1;
3418
3419 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3420 We may need to handle this specially. */
3421 if (after && BARRIER_P (after))
3422 {
3423 has_barrier = 1;
3424 after = NEXT_INSN (after);
3425 }
3426
3427 if (!seq)
3428 return trial;
3429
3430 /* Avoid infinite loop if any insn of the result matches
3431 the original pattern. */
3432 insn_last = seq;
3433 while (1)
3434 {
3435 if (INSN_P (insn_last)
3436 && rtx_equal_p (PATTERN (insn_last), pat))
3437 return trial;
3438 if (!NEXT_INSN (insn_last))
3439 break;
3440 insn_last = NEXT_INSN (insn_last);
3441 }
3442
3443 /* We will be adding the new sequence to the function. The splitters
3444 may have introduced invalid RTL sharing, so unshare the sequence now. */
3445 unshare_all_rtl_in_chain (seq);
3446
3447 /* Mark labels. */
3448 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3449 {
3450 if (JUMP_P (insn))
3451 {
3452 mark_jump_label (PATTERN (insn), insn, 0);
3453 njumps++;
3454 if (probability != -1
3455 && any_condjump_p (insn)
3456 && !find_reg_note (insn, REG_BR_PROB, 0))
3457 {
3458 /* We can preserve the REG_BR_PROB notes only if exactly
3459 one jump is created, otherwise the machine description
3460 is responsible for this step using
3461 split_branch_probability variable. */
3462 gcc_assert (njumps == 1);
3463 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3464 }
3465 }
3466 }
3467
3468 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3469 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3470 if (CALL_P (trial))
3471 {
3472 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3473 if (CALL_P (insn))
3474 {
3475 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3476 while (*p)
3477 p = &XEXP (*p, 1);
3478 *p = CALL_INSN_FUNCTION_USAGE (trial);
3479 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3480
3481 /* Update the debug information for the CALL_INSN. */
3482 if (flag_enable_icf_debug)
3483 (*debug_hooks->copy_call_info) (trial, insn);
3484 }
3485 }
3486
3487 /* Copy notes, particularly those related to the CFG. */
3488 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3489 {
3490 switch (REG_NOTE_KIND (note))
3491 {
3492 case REG_EH_REGION:
3493 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3494 break;
3495
3496 case REG_NORETURN:
3497 case REG_SETJMP:
3498 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3499 {
3500 if (CALL_P (insn))
3501 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3502 }
3503 break;
3504
3505 case REG_NON_LOCAL_GOTO:
3506 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3507 {
3508 if (JUMP_P (insn))
3509 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3510 }
3511 break;
3512
3513 #ifdef AUTO_INC_DEC
3514 case REG_INC:
3515 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3516 {
3517 rtx reg = XEXP (note, 0);
3518 if (!FIND_REG_INC_NOTE (insn, reg)
3519 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3520 add_reg_note (insn, REG_INC, reg);
3521 }
3522 break;
3523 #endif
3524
3525 default:
3526 break;
3527 }
3528 }
3529
3530 /* If there are LABELS inside the split insns increment the
3531 usage count so we don't delete the label. */
3532 if (INSN_P (trial))
3533 {
3534 insn = insn_last;
3535 while (insn != NULL_RTX)
3536 {
3537 /* JUMP_P insns have already been "marked" above. */
3538 if (NONJUMP_INSN_P (insn))
3539 mark_label_nuses (PATTERN (insn));
3540
3541 insn = PREV_INSN (insn);
3542 }
3543 }
3544
3545 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3546
3547 delete_insn (trial);
3548 if (has_barrier)
3549 emit_barrier_after (tem);
3550
3551 /* Recursively call try_split for each new insn created; by the
3552 time control returns here that insn will be fully split, so
3553 set LAST and continue from the insn after the one returned.
3554 We can't use next_active_insn here since AFTER may be a note.
3555 Ignore deleted insns, which can be occur if not optimizing. */
3556 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3557 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3558 tem = try_split (PATTERN (tem), tem, 1);
3559
3560 /* Return either the first or the last insn, depending on which was
3561 requested. */
3562 return last
3563 ? (after ? PREV_INSN (after) : get_last_insn ())
3564 : NEXT_INSN (before);
3565 }
3566 \f
3567 /* Make and return an INSN rtx, initializing all its slots.
3568 Store PATTERN in the pattern slots. */
3569
3570 rtx
3571 make_insn_raw (rtx pattern)
3572 {
3573 rtx insn;
3574
3575 insn = rtx_alloc (INSN);
3576
3577 INSN_UID (insn) = cur_insn_uid++;
3578 PATTERN (insn) = pattern;
3579 INSN_CODE (insn) = -1;
3580 REG_NOTES (insn) = NULL;
3581 INSN_LOCATOR (insn) = curr_insn_locator ();
3582 BLOCK_FOR_INSN (insn) = NULL;
3583
3584 #ifdef ENABLE_RTL_CHECKING
3585 if (insn
3586 && INSN_P (insn)
3587 && (returnjump_p (insn)
3588 || (GET_CODE (insn) == SET
3589 && SET_DEST (insn) == pc_rtx)))
3590 {
3591 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3592 debug_rtx (insn);
3593 }
3594 #endif
3595
3596 return insn;
3597 }
3598
3599 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3600
3601 rtx
3602 make_debug_insn_raw (rtx pattern)
3603 {
3604 rtx insn;
3605
3606 insn = rtx_alloc (DEBUG_INSN);
3607 INSN_UID (insn) = cur_debug_insn_uid++;
3608 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3609 INSN_UID (insn) = cur_insn_uid++;
3610
3611 PATTERN (insn) = pattern;
3612 INSN_CODE (insn) = -1;
3613 REG_NOTES (insn) = NULL;
3614 INSN_LOCATOR (insn) = curr_insn_locator ();
3615 BLOCK_FOR_INSN (insn) = NULL;
3616
3617 return insn;
3618 }
3619
3620 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3621
3622 rtx
3623 make_jump_insn_raw (rtx pattern)
3624 {
3625 rtx insn;
3626
3627 insn = rtx_alloc (JUMP_INSN);
3628 INSN_UID (insn) = cur_insn_uid++;
3629
3630 PATTERN (insn) = pattern;
3631 INSN_CODE (insn) = -1;
3632 REG_NOTES (insn) = NULL;
3633 JUMP_LABEL (insn) = NULL;
3634 INSN_LOCATOR (insn) = curr_insn_locator ();
3635 BLOCK_FOR_INSN (insn) = NULL;
3636
3637 return insn;
3638 }
3639
3640 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3641
3642 static rtx
3643 make_call_insn_raw (rtx pattern)
3644 {
3645 rtx insn;
3646
3647 insn = rtx_alloc (CALL_INSN);
3648 INSN_UID (insn) = cur_insn_uid++;
3649
3650 PATTERN (insn) = pattern;
3651 INSN_CODE (insn) = -1;
3652 REG_NOTES (insn) = NULL;
3653 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3654 INSN_LOCATOR (insn) = curr_insn_locator ();
3655 BLOCK_FOR_INSN (insn) = NULL;
3656
3657 return insn;
3658 }
3659 \f
3660 /* Add INSN to the end of the doubly-linked list.
3661 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3662
3663 void
3664 add_insn (rtx insn)
3665 {
3666 PREV_INSN (insn) = get_last_insn();
3667 NEXT_INSN (insn) = 0;
3668
3669 if (NULL != get_last_insn())
3670 NEXT_INSN (get_last_insn ()) = insn;
3671
3672 if (NULL == get_insns ())
3673 set_first_insn (insn);
3674
3675 set_last_insn (insn);
3676 }
3677
3678 /* Add INSN into the doubly-linked list after insn AFTER. This and
3679 the next should be the only functions called to insert an insn once
3680 delay slots have been filled since only they know how to update a
3681 SEQUENCE. */
3682
3683 void
3684 add_insn_after (rtx insn, rtx after, basic_block bb)
3685 {
3686 rtx next = NEXT_INSN (after);
3687
3688 gcc_assert (!optimize || !INSN_DELETED_P (after));
3689
3690 NEXT_INSN (insn) = next;
3691 PREV_INSN (insn) = after;
3692
3693 if (next)
3694 {
3695 PREV_INSN (next) = insn;
3696 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3697 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3698 }
3699 else if (get_last_insn () == after)
3700 set_last_insn (insn);
3701 else
3702 {
3703 struct sequence_stack *stack = seq_stack;
3704 /* Scan all pending sequences too. */
3705 for (; stack; stack = stack->next)
3706 if (after == stack->last)
3707 {
3708 stack->last = insn;
3709 break;
3710 }
3711
3712 gcc_assert (stack);
3713 }
3714
3715 if (!BARRIER_P (after)
3716 && !BARRIER_P (insn)
3717 && (bb = BLOCK_FOR_INSN (after)))
3718 {
3719 set_block_for_insn (insn, bb);
3720 if (INSN_P (insn))
3721 df_insn_rescan (insn);
3722 /* Should not happen as first in the BB is always
3723 either NOTE or LABEL. */
3724 if (BB_END (bb) == after
3725 /* Avoid clobbering of structure when creating new BB. */
3726 && !BARRIER_P (insn)
3727 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3728 BB_END (bb) = insn;
3729 }
3730
3731 NEXT_INSN (after) = insn;
3732 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3733 {
3734 rtx sequence = PATTERN (after);
3735 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3736 }
3737 }
3738
3739 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3740 the previous should be the only functions called to insert an insn
3741 once delay slots have been filled since only they know how to
3742 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3743 bb from before. */
3744
3745 void
3746 add_insn_before (rtx insn, rtx before, basic_block bb)
3747 {
3748 rtx prev = PREV_INSN (before);
3749
3750 gcc_assert (!optimize || !INSN_DELETED_P (before));
3751
3752 PREV_INSN (insn) = prev;
3753 NEXT_INSN (insn) = before;
3754
3755 if (prev)
3756 {
3757 NEXT_INSN (prev) = insn;
3758 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3759 {
3760 rtx sequence = PATTERN (prev);
3761 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3762 }
3763 }
3764 else if (get_insns () == before)
3765 set_first_insn (insn);
3766 else
3767 {
3768 struct sequence_stack *stack = seq_stack;
3769 /* Scan all pending sequences too. */
3770 for (; stack; stack = stack->next)
3771 if (before == stack->first)
3772 {
3773 stack->first = insn;
3774 break;
3775 }
3776
3777 gcc_assert (stack);
3778 }
3779
3780 if (!bb
3781 && !BARRIER_P (before)
3782 && !BARRIER_P (insn))
3783 bb = BLOCK_FOR_INSN (before);
3784
3785 if (bb)
3786 {
3787 set_block_for_insn (insn, bb);
3788 if (INSN_P (insn))
3789 df_insn_rescan (insn);
3790 /* Should not happen as first in the BB is always either NOTE or
3791 LABEL. */
3792 gcc_assert (BB_HEAD (bb) != insn
3793 /* Avoid clobbering of structure when creating new BB. */
3794 || BARRIER_P (insn)
3795 || NOTE_INSN_BASIC_BLOCK_P (insn));
3796 }
3797
3798 PREV_INSN (before) = insn;
3799 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3800 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3801 }
3802
3803
3804 /* Replace insn with an deleted instruction note. */
3805
3806 void
3807 set_insn_deleted (rtx insn)
3808 {
3809 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3810 PUT_CODE (insn, NOTE);
3811 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3812 }
3813
3814
3815 /* Remove an insn from its doubly-linked list. This function knows how
3816 to handle sequences. */
3817 void
3818 remove_insn (rtx insn)
3819 {
3820 rtx next = NEXT_INSN (insn);
3821 rtx prev = PREV_INSN (insn);
3822 basic_block bb;
3823
3824 /* Later in the code, the block will be marked dirty. */
3825 df_insn_delete (NULL, INSN_UID (insn));
3826
3827 if (prev)
3828 {
3829 NEXT_INSN (prev) = next;
3830 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3831 {
3832 rtx sequence = PATTERN (prev);
3833 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3834 }
3835 }
3836 else if (get_insns () == insn)
3837 {
3838 if (next)
3839 PREV_INSN (next) = NULL;
3840 set_first_insn (next);
3841 }
3842 else
3843 {
3844 struct sequence_stack *stack = seq_stack;
3845 /* Scan all pending sequences too. */
3846 for (; stack; stack = stack->next)
3847 if (insn == stack->first)
3848 {
3849 stack->first = next;
3850 break;
3851 }
3852
3853 gcc_assert (stack);
3854 }
3855
3856 if (next)
3857 {
3858 PREV_INSN (next) = prev;
3859 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3860 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3861 }
3862 else if (get_last_insn () == insn)
3863 set_last_insn (prev);
3864 else
3865 {
3866 struct sequence_stack *stack = seq_stack;
3867 /* Scan all pending sequences too. */
3868 for (; stack; stack = stack->next)
3869 if (insn == stack->last)
3870 {
3871 stack->last = prev;
3872 break;
3873 }
3874
3875 gcc_assert (stack);
3876 }
3877 if (!BARRIER_P (insn)
3878 && (bb = BLOCK_FOR_INSN (insn)))
3879 {
3880 if (NONDEBUG_INSN_P (insn))
3881 df_set_bb_dirty (bb);
3882 if (BB_HEAD (bb) == insn)
3883 {
3884 /* Never ever delete the basic block note without deleting whole
3885 basic block. */
3886 gcc_assert (!NOTE_P (insn));
3887 BB_HEAD (bb) = next;
3888 }
3889 if (BB_END (bb) == insn)
3890 BB_END (bb) = prev;
3891 }
3892 }
3893
3894 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3895
3896 void
3897 add_function_usage_to (rtx call_insn, rtx call_fusage)
3898 {
3899 gcc_assert (call_insn && CALL_P (call_insn));
3900
3901 /* Put the register usage information on the CALL. If there is already
3902 some usage information, put ours at the end. */
3903 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3904 {
3905 rtx link;
3906
3907 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3908 link = XEXP (link, 1))
3909 ;
3910
3911 XEXP (link, 1) = call_fusage;
3912 }
3913 else
3914 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3915 }
3916
3917 /* Delete all insns made since FROM.
3918 FROM becomes the new last instruction. */
3919
3920 void
3921 delete_insns_since (rtx from)
3922 {
3923 if (from == 0)
3924 set_first_insn (0);
3925 else
3926 NEXT_INSN (from) = 0;
3927 set_last_insn (from);
3928 }
3929
3930 /* This function is deprecated, please use sequences instead.
3931
3932 Move a consecutive bunch of insns to a different place in the chain.
3933 The insns to be moved are those between FROM and TO.
3934 They are moved to a new position after the insn AFTER.
3935 AFTER must not be FROM or TO or any insn in between.
3936
3937 This function does not know about SEQUENCEs and hence should not be
3938 called after delay-slot filling has been done. */
3939
3940 void
3941 reorder_insns_nobb (rtx from, rtx to, rtx after)
3942 {
3943 #ifdef ENABLE_CHECKING
3944 rtx x;
3945 for (x = from; x != to; x = NEXT_INSN (x))
3946 gcc_assert (after != x);
3947 gcc_assert (after != to);
3948 #endif
3949
3950 /* Splice this bunch out of where it is now. */
3951 if (PREV_INSN (from))
3952 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3953 if (NEXT_INSN (to))
3954 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3955 if (get_last_insn () == to)
3956 set_last_insn (PREV_INSN (from));
3957 if (get_insns () == from)
3958 set_first_insn (NEXT_INSN (to));
3959
3960 /* Make the new neighbors point to it and it to them. */
3961 if (NEXT_INSN (after))
3962 PREV_INSN (NEXT_INSN (after)) = to;
3963
3964 NEXT_INSN (to) = NEXT_INSN (after);
3965 PREV_INSN (from) = after;
3966 NEXT_INSN (after) = from;
3967 if (after == get_last_insn())
3968 set_last_insn (to);
3969 }
3970
3971 /* Same as function above, but take care to update BB boundaries. */
3972 void
3973 reorder_insns (rtx from, rtx to, rtx after)
3974 {
3975 rtx prev = PREV_INSN (from);
3976 basic_block bb, bb2;
3977
3978 reorder_insns_nobb (from, to, after);
3979
3980 if (!BARRIER_P (after)
3981 && (bb = BLOCK_FOR_INSN (after)))
3982 {
3983 rtx x;
3984 df_set_bb_dirty (bb);
3985
3986 if (!BARRIER_P (from)
3987 && (bb2 = BLOCK_FOR_INSN (from)))
3988 {
3989 if (BB_END (bb2) == to)
3990 BB_END (bb2) = prev;
3991 df_set_bb_dirty (bb2);
3992 }
3993
3994 if (BB_END (bb) == after)
3995 BB_END (bb) = to;
3996
3997 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3998 if (!BARRIER_P (x))
3999 df_insn_change_bb (x, bb);
4000 }
4001 }
4002
4003 \f
4004 /* Emit insn(s) of given code and pattern
4005 at a specified place within the doubly-linked list.
4006
4007 All of the emit_foo global entry points accept an object
4008 X which is either an insn list or a PATTERN of a single
4009 instruction.
4010
4011 There are thus a few canonical ways to generate code and
4012 emit it at a specific place in the instruction stream. For
4013 example, consider the instruction named SPOT and the fact that
4014 we would like to emit some instructions before SPOT. We might
4015 do it like this:
4016
4017 start_sequence ();
4018 ... emit the new instructions ...
4019 insns_head = get_insns ();
4020 end_sequence ();
4021
4022 emit_insn_before (insns_head, SPOT);
4023
4024 It used to be common to generate SEQUENCE rtl instead, but that
4025 is a relic of the past which no longer occurs. The reason is that
4026 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4027 generated would almost certainly die right after it was created. */
4028
4029 /* Make X be output before the instruction BEFORE. */
4030
4031 rtx
4032 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4033 {
4034 rtx last = before;
4035 rtx insn;
4036
4037 gcc_assert (before);
4038
4039 if (x == NULL_RTX)
4040 return last;
4041
4042 switch (GET_CODE (x))
4043 {
4044 case DEBUG_INSN:
4045 case INSN:
4046 case JUMP_INSN:
4047 case CALL_INSN:
4048 case CODE_LABEL:
4049 case BARRIER:
4050 case NOTE:
4051 insn = x;
4052 while (insn)
4053 {
4054 rtx next = NEXT_INSN (insn);
4055 add_insn_before (insn, before, bb);
4056 last = insn;
4057 insn = next;
4058 }
4059 break;
4060
4061 #ifdef ENABLE_RTL_CHECKING
4062 case SEQUENCE:
4063 gcc_unreachable ();
4064 break;
4065 #endif
4066
4067 default:
4068 last = make_insn_raw (x);
4069 add_insn_before (last, before, bb);
4070 break;
4071 }
4072
4073 return last;
4074 }
4075
4076 /* Make an instruction with body X and code JUMP_INSN
4077 and output it before the instruction BEFORE. */
4078
4079 rtx
4080 emit_jump_insn_before_noloc (rtx x, rtx before)
4081 {
4082 rtx insn, last = NULL_RTX;
4083
4084 gcc_assert (before);
4085
4086 switch (GET_CODE (x))
4087 {
4088 case DEBUG_INSN:
4089 case INSN:
4090 case JUMP_INSN:
4091 case CALL_INSN:
4092 case CODE_LABEL:
4093 case BARRIER:
4094 case NOTE:
4095 insn = x;
4096 while (insn)
4097 {
4098 rtx next = NEXT_INSN (insn);
4099 add_insn_before (insn, before, NULL);
4100 last = insn;
4101 insn = next;
4102 }
4103 break;
4104
4105 #ifdef ENABLE_RTL_CHECKING
4106 case SEQUENCE:
4107 gcc_unreachable ();
4108 break;
4109 #endif
4110
4111 default:
4112 last = make_jump_insn_raw (x);
4113 add_insn_before (last, before, NULL);
4114 break;
4115 }
4116
4117 return last;
4118 }
4119
4120 /* Make an instruction with body X and code CALL_INSN
4121 and output it before the instruction BEFORE. */
4122
4123 rtx
4124 emit_call_insn_before_noloc (rtx x, rtx before)
4125 {
4126 rtx last = NULL_RTX, insn;
4127
4128 gcc_assert (before);
4129
4130 switch (GET_CODE (x))
4131 {
4132 case DEBUG_INSN:
4133 case INSN:
4134 case JUMP_INSN:
4135 case CALL_INSN:
4136 case CODE_LABEL:
4137 case BARRIER:
4138 case NOTE:
4139 insn = x;
4140 while (insn)
4141 {
4142 rtx next = NEXT_INSN (insn);
4143 add_insn_before (insn, before, NULL);
4144 last = insn;
4145 insn = next;
4146 }
4147 break;
4148
4149 #ifdef ENABLE_RTL_CHECKING
4150 case SEQUENCE:
4151 gcc_unreachable ();
4152 break;
4153 #endif
4154
4155 default:
4156 last = make_call_insn_raw (x);
4157 add_insn_before (last, before, NULL);
4158 break;
4159 }
4160
4161 return last;
4162 }
4163
4164 /* Make an instruction with body X and code DEBUG_INSN
4165 and output it before the instruction BEFORE. */
4166
4167 rtx
4168 emit_debug_insn_before_noloc (rtx x, rtx before)
4169 {
4170 rtx last = NULL_RTX, insn;
4171
4172 gcc_assert (before);
4173
4174 switch (GET_CODE (x))
4175 {
4176 case DEBUG_INSN:
4177 case INSN:
4178 case JUMP_INSN:
4179 case CALL_INSN:
4180 case CODE_LABEL:
4181 case BARRIER:
4182 case NOTE:
4183 insn = x;
4184 while (insn)
4185 {
4186 rtx next = NEXT_INSN (insn);
4187 add_insn_before (insn, before, NULL);
4188 last = insn;
4189 insn = next;
4190 }
4191 break;
4192
4193 #ifdef ENABLE_RTL_CHECKING
4194 case SEQUENCE:
4195 gcc_unreachable ();
4196 break;
4197 #endif
4198
4199 default:
4200 last = make_debug_insn_raw (x);
4201 add_insn_before (last, before, NULL);
4202 break;
4203 }
4204
4205 return last;
4206 }
4207
4208 /* Make an insn of code BARRIER
4209 and output it before the insn BEFORE. */
4210
4211 rtx
4212 emit_barrier_before (rtx before)
4213 {
4214 rtx insn = rtx_alloc (BARRIER);
4215
4216 INSN_UID (insn) = cur_insn_uid++;
4217
4218 add_insn_before (insn, before, NULL);
4219 return insn;
4220 }
4221
4222 /* Emit the label LABEL before the insn BEFORE. */
4223
4224 rtx
4225 emit_label_before (rtx label, rtx before)
4226 {
4227 /* This can be called twice for the same label as a result of the
4228 confusion that follows a syntax error! So make it harmless. */
4229 if (INSN_UID (label) == 0)
4230 {
4231 INSN_UID (label) = cur_insn_uid++;
4232 add_insn_before (label, before, NULL);
4233 }
4234
4235 return label;
4236 }
4237
4238 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4239
4240 rtx
4241 emit_note_before (enum insn_note subtype, rtx before)
4242 {
4243 rtx note = rtx_alloc (NOTE);
4244 INSN_UID (note) = cur_insn_uid++;
4245 NOTE_KIND (note) = subtype;
4246 BLOCK_FOR_INSN (note) = NULL;
4247 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4248
4249 add_insn_before (note, before, NULL);
4250 return note;
4251 }
4252 \f
4253 /* Helper for emit_insn_after, handles lists of instructions
4254 efficiently. */
4255
4256 static rtx
4257 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4258 {
4259 rtx last;
4260 rtx after_after;
4261 if (!bb && !BARRIER_P (after))
4262 bb = BLOCK_FOR_INSN (after);
4263
4264 if (bb)
4265 {
4266 df_set_bb_dirty (bb);
4267 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4268 if (!BARRIER_P (last))
4269 {
4270 set_block_for_insn (last, bb);
4271 df_insn_rescan (last);
4272 }
4273 if (!BARRIER_P (last))
4274 {
4275 set_block_for_insn (last, bb);
4276 df_insn_rescan (last);
4277 }
4278 if (BB_END (bb) == after)
4279 BB_END (bb) = last;
4280 }
4281 else
4282 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4283 continue;
4284
4285 after_after = NEXT_INSN (after);
4286
4287 NEXT_INSN (after) = first;
4288 PREV_INSN (first) = after;
4289 NEXT_INSN (last) = after_after;
4290 if (after_after)
4291 PREV_INSN (after_after) = last;
4292
4293 if (after == get_last_insn())
4294 set_last_insn (last);
4295
4296 return last;
4297 }
4298
4299 /* Make X be output after the insn AFTER and set the BB of insn. If
4300 BB is NULL, an attempt is made to infer the BB from AFTER. */
4301
4302 rtx
4303 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4304 {
4305 rtx last = after;
4306
4307 gcc_assert (after);
4308
4309 if (x == NULL_RTX)
4310 return last;
4311
4312 switch (GET_CODE (x))
4313 {
4314 case DEBUG_INSN:
4315 case INSN:
4316 case JUMP_INSN:
4317 case CALL_INSN:
4318 case CODE_LABEL:
4319 case BARRIER:
4320 case NOTE:
4321 last = emit_insn_after_1 (x, after, bb);
4322 break;
4323
4324 #ifdef ENABLE_RTL_CHECKING
4325 case SEQUENCE:
4326 gcc_unreachable ();
4327 break;
4328 #endif
4329
4330 default:
4331 last = make_insn_raw (x);
4332 add_insn_after (last, after, bb);
4333 break;
4334 }
4335
4336 return last;
4337 }
4338
4339
4340 /* Make an insn of code JUMP_INSN with body X
4341 and output it after the insn AFTER. */
4342
4343 rtx
4344 emit_jump_insn_after_noloc (rtx x, rtx after)
4345 {
4346 rtx last;
4347
4348 gcc_assert (after);
4349
4350 switch (GET_CODE (x))
4351 {
4352 case DEBUG_INSN:
4353 case INSN:
4354 case JUMP_INSN:
4355 case CALL_INSN:
4356 case CODE_LABEL:
4357 case BARRIER:
4358 case NOTE:
4359 last = emit_insn_after_1 (x, after, NULL);
4360 break;
4361
4362 #ifdef ENABLE_RTL_CHECKING
4363 case SEQUENCE:
4364 gcc_unreachable ();
4365 break;
4366 #endif
4367
4368 default:
4369 last = make_jump_insn_raw (x);
4370 add_insn_after (last, after, NULL);
4371 break;
4372 }
4373
4374 return last;
4375 }
4376
4377 /* Make an instruction with body X and code CALL_INSN
4378 and output it after the instruction AFTER. */
4379
4380 rtx
4381 emit_call_insn_after_noloc (rtx x, rtx after)
4382 {
4383 rtx last;
4384
4385 gcc_assert (after);
4386
4387 switch (GET_CODE (x))
4388 {
4389 case DEBUG_INSN:
4390 case INSN:
4391 case JUMP_INSN:
4392 case CALL_INSN:
4393 case CODE_LABEL:
4394 case BARRIER:
4395 case NOTE:
4396 last = emit_insn_after_1 (x, after, NULL);
4397 break;
4398
4399 #ifdef ENABLE_RTL_CHECKING
4400 case SEQUENCE:
4401 gcc_unreachable ();
4402 break;
4403 #endif
4404
4405 default:
4406 last = make_call_insn_raw (x);
4407 add_insn_after (last, after, NULL);
4408 break;
4409 }
4410
4411 return last;
4412 }
4413
4414 /* Make an instruction with body X and code CALL_INSN
4415 and output it after the instruction AFTER. */
4416
4417 rtx
4418 emit_debug_insn_after_noloc (rtx x, rtx after)
4419 {
4420 rtx last;
4421
4422 gcc_assert (after);
4423
4424 switch (GET_CODE (x))
4425 {
4426 case DEBUG_INSN:
4427 case INSN:
4428 case JUMP_INSN:
4429 case CALL_INSN:
4430 case CODE_LABEL:
4431 case BARRIER:
4432 case NOTE:
4433 last = emit_insn_after_1 (x, after, NULL);
4434 break;
4435
4436 #ifdef ENABLE_RTL_CHECKING
4437 case SEQUENCE:
4438 gcc_unreachable ();
4439 break;
4440 #endif
4441
4442 default:
4443 last = make_debug_insn_raw (x);
4444 add_insn_after (last, after, NULL);
4445 break;
4446 }
4447
4448 return last;
4449 }
4450
4451 /* Make an insn of code BARRIER
4452 and output it after the insn AFTER. */
4453
4454 rtx
4455 emit_barrier_after (rtx after)
4456 {
4457 rtx insn = rtx_alloc (BARRIER);
4458
4459 INSN_UID (insn) = cur_insn_uid++;
4460
4461 add_insn_after (insn, after, NULL);
4462 return insn;
4463 }
4464
4465 /* Emit the label LABEL after the insn AFTER. */
4466
4467 rtx
4468 emit_label_after (rtx label, rtx after)
4469 {
4470 /* This can be called twice for the same label
4471 as a result of the confusion that follows a syntax error!
4472 So make it harmless. */
4473 if (INSN_UID (label) == 0)
4474 {
4475 INSN_UID (label) = cur_insn_uid++;
4476 add_insn_after (label, after, NULL);
4477 }
4478
4479 return label;
4480 }
4481
4482 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4483
4484 rtx
4485 emit_note_after (enum insn_note subtype, rtx after)
4486 {
4487 rtx note = rtx_alloc (NOTE);
4488 INSN_UID (note) = cur_insn_uid++;
4489 NOTE_KIND (note) = subtype;
4490 BLOCK_FOR_INSN (note) = NULL;
4491 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4492 add_insn_after (note, after, NULL);
4493 return note;
4494 }
4495 \f
4496 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4497 rtx
4498 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4499 {
4500 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4501
4502 if (pattern == NULL_RTX || !loc)
4503 return last;
4504
4505 after = NEXT_INSN (after);
4506 while (1)
4507 {
4508 if (active_insn_p (after) && !INSN_LOCATOR (after))
4509 INSN_LOCATOR (after) = loc;
4510 if (after == last)
4511 break;
4512 after = NEXT_INSN (after);
4513 }
4514 return last;
4515 }
4516
4517 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4518 rtx
4519 emit_insn_after (rtx pattern, rtx after)
4520 {
4521 rtx prev = after;
4522
4523 while (DEBUG_INSN_P (prev))
4524 prev = PREV_INSN (prev);
4525
4526 if (INSN_P (prev))
4527 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4528 else
4529 return emit_insn_after_noloc (pattern, after, NULL);
4530 }
4531
4532 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4533 rtx
4534 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4535 {
4536 rtx last = emit_jump_insn_after_noloc (pattern, after);
4537
4538 if (pattern == NULL_RTX || !loc)
4539 return last;
4540
4541 after = NEXT_INSN (after);
4542 while (1)
4543 {
4544 if (active_insn_p (after) && !INSN_LOCATOR (after))
4545 INSN_LOCATOR (after) = loc;
4546 if (after == last)
4547 break;
4548 after = NEXT_INSN (after);
4549 }
4550 return last;
4551 }
4552
4553 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4554 rtx
4555 emit_jump_insn_after (rtx pattern, rtx after)
4556 {
4557 rtx prev = after;
4558
4559 while (DEBUG_INSN_P (prev))
4560 prev = PREV_INSN (prev);
4561
4562 if (INSN_P (prev))
4563 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4564 else
4565 return emit_jump_insn_after_noloc (pattern, after);
4566 }
4567
4568 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4569 rtx
4570 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4571 {
4572 rtx last = emit_call_insn_after_noloc (pattern, after);
4573
4574 if (pattern == NULL_RTX || !loc)
4575 return last;
4576
4577 after = NEXT_INSN (after);
4578 while (1)
4579 {
4580 if (active_insn_p (after) && !INSN_LOCATOR (after))
4581 INSN_LOCATOR (after) = loc;
4582 if (after == last)
4583 break;
4584 after = NEXT_INSN (after);
4585 }
4586 return last;
4587 }
4588
4589 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4590 rtx
4591 emit_call_insn_after (rtx pattern, rtx after)
4592 {
4593 rtx prev = after;
4594
4595 while (DEBUG_INSN_P (prev))
4596 prev = PREV_INSN (prev);
4597
4598 if (INSN_P (prev))
4599 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4600 else
4601 return emit_call_insn_after_noloc (pattern, after);
4602 }
4603
4604 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4605 rtx
4606 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4607 {
4608 rtx last = emit_debug_insn_after_noloc (pattern, after);
4609
4610 if (pattern == NULL_RTX || !loc)
4611 return last;
4612
4613 after = NEXT_INSN (after);
4614 while (1)
4615 {
4616 if (active_insn_p (after) && !INSN_LOCATOR (after))
4617 INSN_LOCATOR (after) = loc;
4618 if (after == last)
4619 break;
4620 after = NEXT_INSN (after);
4621 }
4622 return last;
4623 }
4624
4625 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4626 rtx
4627 emit_debug_insn_after (rtx pattern, rtx after)
4628 {
4629 if (INSN_P (after))
4630 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4631 else
4632 return emit_debug_insn_after_noloc (pattern, after);
4633 }
4634
4635 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4636 rtx
4637 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4638 {
4639 rtx first = PREV_INSN (before);
4640 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4641
4642 if (pattern == NULL_RTX || !loc)
4643 return last;
4644
4645 if (!first)
4646 first = get_insns ();
4647 else
4648 first = NEXT_INSN (first);
4649 while (1)
4650 {
4651 if (active_insn_p (first) && !INSN_LOCATOR (first))
4652 INSN_LOCATOR (first) = loc;
4653 if (first == last)
4654 break;
4655 first = NEXT_INSN (first);
4656 }
4657 return last;
4658 }
4659
4660 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4661 rtx
4662 emit_insn_before (rtx pattern, rtx before)
4663 {
4664 rtx next = before;
4665
4666 while (DEBUG_INSN_P (next))
4667 next = PREV_INSN (next);
4668
4669 if (INSN_P (next))
4670 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4671 else
4672 return emit_insn_before_noloc (pattern, before, NULL);
4673 }
4674
4675 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4676 rtx
4677 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4678 {
4679 rtx first = PREV_INSN (before);
4680 rtx last = emit_jump_insn_before_noloc (pattern, before);
4681
4682 if (pattern == NULL_RTX)
4683 return last;
4684
4685 first = NEXT_INSN (first);
4686 while (1)
4687 {
4688 if (active_insn_p (first) && !INSN_LOCATOR (first))
4689 INSN_LOCATOR (first) = loc;
4690 if (first == last)
4691 break;
4692 first = NEXT_INSN (first);
4693 }
4694 return last;
4695 }
4696
4697 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4698 rtx
4699 emit_jump_insn_before (rtx pattern, rtx before)
4700 {
4701 rtx next = before;
4702
4703 while (DEBUG_INSN_P (next))
4704 next = PREV_INSN (next);
4705
4706 if (INSN_P (next))
4707 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4708 else
4709 return emit_jump_insn_before_noloc (pattern, before);
4710 }
4711
4712 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4713 rtx
4714 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4715 {
4716 rtx first = PREV_INSN (before);
4717 rtx last = emit_call_insn_before_noloc (pattern, before);
4718
4719 if (pattern == NULL_RTX)
4720 return last;
4721
4722 first = NEXT_INSN (first);
4723 while (1)
4724 {
4725 if (active_insn_p (first) && !INSN_LOCATOR (first))
4726 INSN_LOCATOR (first) = loc;
4727 if (first == last)
4728 break;
4729 first = NEXT_INSN (first);
4730 }
4731 return last;
4732 }
4733
4734 /* like emit_call_insn_before_noloc,
4735 but set insn_locator according to before. */
4736 rtx
4737 emit_call_insn_before (rtx pattern, rtx before)
4738 {
4739 rtx next = before;
4740
4741 while (DEBUG_INSN_P (next))
4742 next = PREV_INSN (next);
4743
4744 if (INSN_P (next))
4745 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4746 else
4747 return emit_call_insn_before_noloc (pattern, before);
4748 }
4749
4750 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4751 rtx
4752 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4753 {
4754 rtx first = PREV_INSN (before);
4755 rtx last = emit_debug_insn_before_noloc (pattern, before);
4756
4757 if (pattern == NULL_RTX)
4758 return last;
4759
4760 first = NEXT_INSN (first);
4761 while (1)
4762 {
4763 if (active_insn_p (first) && !INSN_LOCATOR (first))
4764 INSN_LOCATOR (first) = loc;
4765 if (first == last)
4766 break;
4767 first = NEXT_INSN (first);
4768 }
4769 return last;
4770 }
4771
4772 /* like emit_debug_insn_before_noloc,
4773 but set insn_locator according to before. */
4774 rtx
4775 emit_debug_insn_before (rtx pattern, rtx before)
4776 {
4777 if (INSN_P (before))
4778 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4779 else
4780 return emit_debug_insn_before_noloc (pattern, before);
4781 }
4782 \f
4783 /* Take X and emit it at the end of the doubly-linked
4784 INSN list.
4785
4786 Returns the last insn emitted. */
4787
4788 rtx
4789 emit_insn (rtx x)
4790 {
4791 rtx last = get_last_insn();
4792 rtx insn;
4793
4794 if (x == NULL_RTX)
4795 return last;
4796
4797 switch (GET_CODE (x))
4798 {
4799 case DEBUG_INSN:
4800 case INSN:
4801 case JUMP_INSN:
4802 case CALL_INSN:
4803 case CODE_LABEL:
4804 case BARRIER:
4805 case NOTE:
4806 insn = x;
4807 while (insn)
4808 {
4809 rtx next = NEXT_INSN (insn);
4810 add_insn (insn);
4811 last = insn;
4812 insn = next;
4813 }
4814 break;
4815
4816 #ifdef ENABLE_RTL_CHECKING
4817 case SEQUENCE:
4818 gcc_unreachable ();
4819 break;
4820 #endif
4821
4822 default:
4823 last = make_insn_raw (x);
4824 add_insn (last);
4825 break;
4826 }
4827
4828 return last;
4829 }
4830
4831 /* Make an insn of code DEBUG_INSN with pattern X
4832 and add it to the end of the doubly-linked list. */
4833
4834 rtx
4835 emit_debug_insn (rtx x)
4836 {
4837 rtx last = get_last_insn();
4838 rtx insn;
4839
4840 if (x == NULL_RTX)
4841 return last;
4842
4843 switch (GET_CODE (x))
4844 {
4845 case DEBUG_INSN:
4846 case INSN:
4847 case JUMP_INSN:
4848 case CALL_INSN:
4849 case CODE_LABEL:
4850 case BARRIER:
4851 case NOTE:
4852 insn = x;
4853 while (insn)
4854 {
4855 rtx next = NEXT_INSN (insn);
4856 add_insn (insn);
4857 last = insn;
4858 insn = next;
4859 }
4860 break;
4861
4862 #ifdef ENABLE_RTL_CHECKING
4863 case SEQUENCE:
4864 gcc_unreachable ();
4865 break;
4866 #endif
4867
4868 default:
4869 last = make_debug_insn_raw (x);
4870 add_insn (last);
4871 break;
4872 }
4873
4874 return last;
4875 }
4876
4877 /* Make an insn of code JUMP_INSN with pattern X
4878 and add it to the end of the doubly-linked list. */
4879
4880 rtx
4881 emit_jump_insn (rtx x)
4882 {
4883 rtx last = NULL_RTX, insn;
4884
4885 switch (GET_CODE (x))
4886 {
4887 case DEBUG_INSN:
4888 case INSN:
4889 case JUMP_INSN:
4890 case CALL_INSN:
4891 case CODE_LABEL:
4892 case BARRIER:
4893 case NOTE:
4894 insn = x;
4895 while (insn)
4896 {
4897 rtx next = NEXT_INSN (insn);
4898 add_insn (insn);
4899 last = insn;
4900 insn = next;
4901 }
4902 break;
4903
4904 #ifdef ENABLE_RTL_CHECKING
4905 case SEQUENCE:
4906 gcc_unreachable ();
4907 break;
4908 #endif
4909
4910 default:
4911 last = make_jump_insn_raw (x);
4912 add_insn (last);
4913 break;
4914 }
4915
4916 return last;
4917 }
4918
4919 /* Make an insn of code CALL_INSN with pattern X
4920 and add it to the end of the doubly-linked list. */
4921
4922 rtx
4923 emit_call_insn (rtx x)
4924 {
4925 rtx insn;
4926
4927 switch (GET_CODE (x))
4928 {
4929 case DEBUG_INSN:
4930 case INSN:
4931 case JUMP_INSN:
4932 case CALL_INSN:
4933 case CODE_LABEL:
4934 case BARRIER:
4935 case NOTE:
4936 insn = emit_insn (x);
4937 break;
4938
4939 #ifdef ENABLE_RTL_CHECKING
4940 case SEQUENCE:
4941 gcc_unreachable ();
4942 break;
4943 #endif
4944
4945 default:
4946 insn = make_call_insn_raw (x);
4947 add_insn (insn);
4948 break;
4949 }
4950
4951 return insn;
4952 }
4953
4954 /* Add the label LABEL to the end of the doubly-linked list. */
4955
4956 rtx
4957 emit_label (rtx label)
4958 {
4959 /* This can be called twice for the same label
4960 as a result of the confusion that follows a syntax error!
4961 So make it harmless. */
4962 if (INSN_UID (label) == 0)
4963 {
4964 INSN_UID (label) = cur_insn_uid++;
4965 add_insn (label);
4966 }
4967 return label;
4968 }
4969
4970 /* Make an insn of code BARRIER
4971 and add it to the end of the doubly-linked list. */
4972
4973 rtx
4974 emit_barrier (void)
4975 {
4976 rtx barrier = rtx_alloc (BARRIER);
4977 INSN_UID (barrier) = cur_insn_uid++;
4978 add_insn (barrier);
4979 return barrier;
4980 }
4981
4982 /* Emit a copy of note ORIG. */
4983
4984 rtx
4985 emit_note_copy (rtx orig)
4986 {
4987 rtx note;
4988
4989 note = rtx_alloc (NOTE);
4990
4991 INSN_UID (note) = cur_insn_uid++;
4992 NOTE_DATA (note) = NOTE_DATA (orig);
4993 NOTE_KIND (note) = NOTE_KIND (orig);
4994 BLOCK_FOR_INSN (note) = NULL;
4995 add_insn (note);
4996
4997 return note;
4998 }
4999
5000 /* Make an insn of code NOTE or type NOTE_NO
5001 and add it to the end of the doubly-linked list. */
5002
5003 rtx
5004 emit_note (enum insn_note kind)
5005 {
5006 rtx note;
5007
5008 note = rtx_alloc (NOTE);
5009 INSN_UID (note) = cur_insn_uid++;
5010 NOTE_KIND (note) = kind;
5011 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5012 BLOCK_FOR_INSN (note) = NULL;
5013 add_insn (note);
5014 return note;
5015 }
5016
5017 /* Emit a clobber of lvalue X. */
5018
5019 rtx
5020 emit_clobber (rtx x)
5021 {
5022 /* CONCATs should not appear in the insn stream. */
5023 if (GET_CODE (x) == CONCAT)
5024 {
5025 emit_clobber (XEXP (x, 0));
5026 return emit_clobber (XEXP (x, 1));
5027 }
5028 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5029 }
5030
5031 /* Return a sequence of insns to clobber lvalue X. */
5032
5033 rtx
5034 gen_clobber (rtx x)
5035 {
5036 rtx seq;
5037
5038 start_sequence ();
5039 emit_clobber (x);
5040 seq = get_insns ();
5041 end_sequence ();
5042 return seq;
5043 }
5044
5045 /* Emit a use of rvalue X. */
5046
5047 rtx
5048 emit_use (rtx x)
5049 {
5050 /* CONCATs should not appear in the insn stream. */
5051 if (GET_CODE (x) == CONCAT)
5052 {
5053 emit_use (XEXP (x, 0));
5054 return emit_use (XEXP (x, 1));
5055 }
5056 return emit_insn (gen_rtx_USE (VOIDmode, x));
5057 }
5058
5059 /* Return a sequence of insns to use rvalue X. */
5060
5061 rtx
5062 gen_use (rtx x)
5063 {
5064 rtx seq;
5065
5066 start_sequence ();
5067 emit_use (x);
5068 seq = get_insns ();
5069 end_sequence ();
5070 return seq;
5071 }
5072
5073 /* Cause next statement to emit a line note even if the line number
5074 has not changed. */
5075
5076 void
5077 force_next_line_note (void)
5078 {
5079 last_location = -1;
5080 }
5081
5082 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5083 note of this type already exists, remove it first. */
5084
5085 rtx
5086 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5087 {
5088 rtx note = find_reg_note (insn, kind, NULL_RTX);
5089
5090 switch (kind)
5091 {
5092 case REG_EQUAL:
5093 case REG_EQUIV:
5094 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5095 has multiple sets (some callers assume single_set
5096 means the insn only has one set, when in fact it
5097 means the insn only has one * useful * set). */
5098 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5099 {
5100 gcc_assert (!note);
5101 return NULL_RTX;
5102 }
5103
5104 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5105 It serves no useful purpose and breaks eliminate_regs. */
5106 if (GET_CODE (datum) == ASM_OPERANDS)
5107 return NULL_RTX;
5108
5109 if (note)
5110 {
5111 XEXP (note, 0) = datum;
5112 df_notes_rescan (insn);
5113 return note;
5114 }
5115 break;
5116
5117 default:
5118 if (note)
5119 {
5120 XEXP (note, 0) = datum;
5121 return note;
5122 }
5123 break;
5124 }
5125
5126 add_reg_note (insn, kind, datum);
5127
5128 switch (kind)
5129 {
5130 case REG_EQUAL:
5131 case REG_EQUIV:
5132 df_notes_rescan (insn);
5133 break;
5134 default:
5135 break;
5136 }
5137
5138 return REG_NOTES (insn);
5139 }
5140 \f
5141 /* Return an indication of which type of insn should have X as a body.
5142 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5143
5144 static enum rtx_code
5145 classify_insn (rtx x)
5146 {
5147 if (LABEL_P (x))
5148 return CODE_LABEL;
5149 if (GET_CODE (x) == CALL)
5150 return CALL_INSN;
5151 if (GET_CODE (x) == RETURN)
5152 return JUMP_INSN;
5153 if (GET_CODE (x) == SET)
5154 {
5155 if (SET_DEST (x) == pc_rtx)
5156 return JUMP_INSN;
5157 else if (GET_CODE (SET_SRC (x)) == CALL)
5158 return CALL_INSN;
5159 else
5160 return INSN;
5161 }
5162 if (GET_CODE (x) == PARALLEL)
5163 {
5164 int j;
5165 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5166 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5167 return CALL_INSN;
5168 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5169 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5170 return JUMP_INSN;
5171 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5172 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5173 return CALL_INSN;
5174 }
5175 return INSN;
5176 }
5177
5178 /* Emit the rtl pattern X as an appropriate kind of insn.
5179 If X is a label, it is simply added into the insn chain. */
5180
5181 rtx
5182 emit (rtx x)
5183 {
5184 enum rtx_code code = classify_insn (x);
5185
5186 switch (code)
5187 {
5188 case CODE_LABEL:
5189 return emit_label (x);
5190 case INSN:
5191 return emit_insn (x);
5192 case JUMP_INSN:
5193 {
5194 rtx insn = emit_jump_insn (x);
5195 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5196 return emit_barrier ();
5197 return insn;
5198 }
5199 case CALL_INSN:
5200 return emit_call_insn (x);
5201 case DEBUG_INSN:
5202 return emit_debug_insn (x);
5203 default:
5204 gcc_unreachable ();
5205 }
5206 }
5207 \f
5208 /* Space for free sequence stack entries. */
5209 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5210
5211 /* Begin emitting insns to a sequence. If this sequence will contain
5212 something that might cause the compiler to pop arguments to function
5213 calls (because those pops have previously been deferred; see
5214 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5215 before calling this function. That will ensure that the deferred
5216 pops are not accidentally emitted in the middle of this sequence. */
5217
5218 void
5219 start_sequence (void)
5220 {
5221 struct sequence_stack *tem;
5222
5223 if (free_sequence_stack != NULL)
5224 {
5225 tem = free_sequence_stack;
5226 free_sequence_stack = tem->next;
5227 }
5228 else
5229 tem = ggc_alloc_sequence_stack ();
5230
5231 tem->next = seq_stack;
5232 tem->first = get_insns ();
5233 tem->last = get_last_insn ();
5234
5235 seq_stack = tem;
5236
5237 set_first_insn (0);
5238 set_last_insn (0);
5239 }
5240
5241 /* Set up the insn chain starting with FIRST as the current sequence,
5242 saving the previously current one. See the documentation for
5243 start_sequence for more information about how to use this function. */
5244
5245 void
5246 push_to_sequence (rtx first)
5247 {
5248 rtx last;
5249
5250 start_sequence ();
5251
5252 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5253
5254 set_first_insn (first);
5255 set_last_insn (last);
5256 }
5257
5258 /* Like push_to_sequence, but take the last insn as an argument to avoid
5259 looping through the list. */
5260
5261 void
5262 push_to_sequence2 (rtx first, rtx last)
5263 {
5264 start_sequence ();
5265
5266 set_first_insn (first);
5267 set_last_insn (last);
5268 }
5269
5270 /* Set up the outer-level insn chain
5271 as the current sequence, saving the previously current one. */
5272
5273 void
5274 push_topmost_sequence (void)
5275 {
5276 struct sequence_stack *stack, *top = NULL;
5277
5278 start_sequence ();
5279
5280 for (stack = seq_stack; stack; stack = stack->next)
5281 top = stack;
5282
5283 set_first_insn (top->first);
5284 set_last_insn (top->last);
5285 }
5286
5287 /* After emitting to the outer-level insn chain, update the outer-level
5288 insn chain, and restore the previous saved state. */
5289
5290 void
5291 pop_topmost_sequence (void)
5292 {
5293 struct sequence_stack *stack, *top = NULL;
5294
5295 for (stack = seq_stack; stack; stack = stack->next)
5296 top = stack;
5297
5298 top->first = get_insns ();
5299 top->last = get_last_insn ();
5300
5301 end_sequence ();
5302 }
5303
5304 /* After emitting to a sequence, restore previous saved state.
5305
5306 To get the contents of the sequence just made, you must call
5307 `get_insns' *before* calling here.
5308
5309 If the compiler might have deferred popping arguments while
5310 generating this sequence, and this sequence will not be immediately
5311 inserted into the instruction stream, use do_pending_stack_adjust
5312 before calling get_insns. That will ensure that the deferred
5313 pops are inserted into this sequence, and not into some random
5314 location in the instruction stream. See INHIBIT_DEFER_POP for more
5315 information about deferred popping of arguments. */
5316
5317 void
5318 end_sequence (void)
5319 {
5320 struct sequence_stack *tem = seq_stack;
5321
5322 set_first_insn (tem->first);
5323 set_last_insn (tem->last);
5324 seq_stack = tem->next;
5325
5326 memset (tem, 0, sizeof (*tem));
5327 tem->next = free_sequence_stack;
5328 free_sequence_stack = tem;
5329 }
5330
5331 /* Return 1 if currently emitting into a sequence. */
5332
5333 int
5334 in_sequence_p (void)
5335 {
5336 return seq_stack != 0;
5337 }
5338 \f
5339 /* Put the various virtual registers into REGNO_REG_RTX. */
5340
5341 static void
5342 init_virtual_regs (void)
5343 {
5344 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5345 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5346 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5347 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5348 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5349 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5350 = virtual_preferred_stack_boundary_rtx;
5351 }
5352
5353 \f
5354 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5355 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5356 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5357 static int copy_insn_n_scratches;
5358
5359 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5360 copied an ASM_OPERANDS.
5361 In that case, it is the original input-operand vector. */
5362 static rtvec orig_asm_operands_vector;
5363
5364 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5365 copied an ASM_OPERANDS.
5366 In that case, it is the copied input-operand vector. */
5367 static rtvec copy_asm_operands_vector;
5368
5369 /* Likewise for the constraints vector. */
5370 static rtvec orig_asm_constraints_vector;
5371 static rtvec copy_asm_constraints_vector;
5372
5373 /* Recursively create a new copy of an rtx for copy_insn.
5374 This function differs from copy_rtx in that it handles SCRATCHes and
5375 ASM_OPERANDs properly.
5376 Normally, this function is not used directly; use copy_insn as front end.
5377 However, you could first copy an insn pattern with copy_insn and then use
5378 this function afterwards to properly copy any REG_NOTEs containing
5379 SCRATCHes. */
5380
5381 rtx
5382 copy_insn_1 (rtx orig)
5383 {
5384 rtx copy;
5385 int i, j;
5386 RTX_CODE code;
5387 const char *format_ptr;
5388
5389 if (orig == NULL)
5390 return NULL;
5391
5392 code = GET_CODE (orig);
5393
5394 switch (code)
5395 {
5396 case REG:
5397 case CONST_INT:
5398 case CONST_DOUBLE:
5399 case CONST_FIXED:
5400 case CONST_VECTOR:
5401 case SYMBOL_REF:
5402 case CODE_LABEL:
5403 case PC:
5404 case CC0:
5405 return orig;
5406 case CLOBBER:
5407 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5408 return orig;
5409 break;
5410
5411 case SCRATCH:
5412 for (i = 0; i < copy_insn_n_scratches; i++)
5413 if (copy_insn_scratch_in[i] == orig)
5414 return copy_insn_scratch_out[i];
5415 break;
5416
5417 case CONST:
5418 if (shared_const_p (orig))
5419 return orig;
5420 break;
5421
5422 /* A MEM with a constant address is not sharable. The problem is that
5423 the constant address may need to be reloaded. If the mem is shared,
5424 then reloading one copy of this mem will cause all copies to appear
5425 to have been reloaded. */
5426
5427 default:
5428 break;
5429 }
5430
5431 /* Copy the various flags, fields, and other information. We assume
5432 that all fields need copying, and then clear the fields that should
5433 not be copied. That is the sensible default behavior, and forces
5434 us to explicitly document why we are *not* copying a flag. */
5435 copy = shallow_copy_rtx (orig);
5436
5437 /* We do not copy the USED flag, which is used as a mark bit during
5438 walks over the RTL. */
5439 RTX_FLAG (copy, used) = 0;
5440
5441 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5442 if (INSN_P (orig))
5443 {
5444 RTX_FLAG (copy, jump) = 0;
5445 RTX_FLAG (copy, call) = 0;
5446 RTX_FLAG (copy, frame_related) = 0;
5447 }
5448
5449 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5450
5451 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5452 switch (*format_ptr++)
5453 {
5454 case 'e':
5455 if (XEXP (orig, i) != NULL)
5456 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5457 break;
5458
5459 case 'E':
5460 case 'V':
5461 if (XVEC (orig, i) == orig_asm_constraints_vector)
5462 XVEC (copy, i) = copy_asm_constraints_vector;
5463 else if (XVEC (orig, i) == orig_asm_operands_vector)
5464 XVEC (copy, i) = copy_asm_operands_vector;
5465 else if (XVEC (orig, i) != NULL)
5466 {
5467 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5468 for (j = 0; j < XVECLEN (copy, i); j++)
5469 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5470 }
5471 break;
5472
5473 case 't':
5474 case 'w':
5475 case 'i':
5476 case 's':
5477 case 'S':
5478 case 'u':
5479 case '0':
5480 /* These are left unchanged. */
5481 break;
5482
5483 default:
5484 gcc_unreachable ();
5485 }
5486
5487 if (code == SCRATCH)
5488 {
5489 i = copy_insn_n_scratches++;
5490 gcc_assert (i < MAX_RECOG_OPERANDS);
5491 copy_insn_scratch_in[i] = orig;
5492 copy_insn_scratch_out[i] = copy;
5493 }
5494 else if (code == ASM_OPERANDS)
5495 {
5496 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5497 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5498 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5499 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5500 }
5501
5502 return copy;
5503 }
5504
5505 /* Create a new copy of an rtx.
5506 This function differs from copy_rtx in that it handles SCRATCHes and
5507 ASM_OPERANDs properly.
5508 INSN doesn't really have to be a full INSN; it could be just the
5509 pattern. */
5510 rtx
5511 copy_insn (rtx insn)
5512 {
5513 copy_insn_n_scratches = 0;
5514 orig_asm_operands_vector = 0;
5515 orig_asm_constraints_vector = 0;
5516 copy_asm_operands_vector = 0;
5517 copy_asm_constraints_vector = 0;
5518 return copy_insn_1 (insn);
5519 }
5520
5521 /* Initialize data structures and variables in this file
5522 before generating rtl for each function. */
5523
5524 void
5525 init_emit (void)
5526 {
5527 set_first_insn (NULL);
5528 set_last_insn (NULL);
5529 if (MIN_NONDEBUG_INSN_UID)
5530 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5531 else
5532 cur_insn_uid = 1;
5533 cur_debug_insn_uid = 1;
5534 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5535 last_location = UNKNOWN_LOCATION;
5536 first_label_num = label_num;
5537 seq_stack = NULL;
5538
5539 /* Init the tables that describe all the pseudo regs. */
5540
5541 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5542
5543 crtl->emit.regno_pointer_align
5544 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5545
5546 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5547
5548 /* Put copies of all the hard registers into regno_reg_rtx. */
5549 memcpy (regno_reg_rtx,
5550 initial_regno_reg_rtx,
5551 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5552
5553 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5554 init_virtual_regs ();
5555
5556 /* Indicate that the virtual registers and stack locations are
5557 all pointers. */
5558 REG_POINTER (stack_pointer_rtx) = 1;
5559 REG_POINTER (frame_pointer_rtx) = 1;
5560 REG_POINTER (hard_frame_pointer_rtx) = 1;
5561 REG_POINTER (arg_pointer_rtx) = 1;
5562
5563 REG_POINTER (virtual_incoming_args_rtx) = 1;
5564 REG_POINTER (virtual_stack_vars_rtx) = 1;
5565 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5566 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5567 REG_POINTER (virtual_cfa_rtx) = 1;
5568
5569 #ifdef STACK_BOUNDARY
5570 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5571 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5572 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5573 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5574
5575 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5576 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5577 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5578 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5579 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5580 #endif
5581
5582 #ifdef INIT_EXPANDERS
5583 INIT_EXPANDERS;
5584 #endif
5585 }
5586
5587 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5588
5589 static rtx
5590 gen_const_vector (enum machine_mode mode, int constant)
5591 {
5592 rtx tem;
5593 rtvec v;
5594 int units, i;
5595 enum machine_mode inner;
5596
5597 units = GET_MODE_NUNITS (mode);
5598 inner = GET_MODE_INNER (mode);
5599
5600 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5601
5602 v = rtvec_alloc (units);
5603
5604 /* We need to call this function after we set the scalar const_tiny_rtx
5605 entries. */
5606 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5607
5608 for (i = 0; i < units; ++i)
5609 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5610
5611 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5612 return tem;
5613 }
5614
5615 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5616 all elements are zero, and the one vector when all elements are one. */
5617 rtx
5618 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5619 {
5620 enum machine_mode inner = GET_MODE_INNER (mode);
5621 int nunits = GET_MODE_NUNITS (mode);
5622 rtx x;
5623 int i;
5624
5625 /* Check to see if all of the elements have the same value. */
5626 x = RTVEC_ELT (v, nunits - 1);
5627 for (i = nunits - 2; i >= 0; i--)
5628 if (RTVEC_ELT (v, i) != x)
5629 break;
5630
5631 /* If the values are all the same, check to see if we can use one of the
5632 standard constant vectors. */
5633 if (i == -1)
5634 {
5635 if (x == CONST0_RTX (inner))
5636 return CONST0_RTX (mode);
5637 else if (x == CONST1_RTX (inner))
5638 return CONST1_RTX (mode);
5639 }
5640
5641 return gen_rtx_raw_CONST_VECTOR (mode, v);
5642 }
5643
5644 /* Initialise global register information required by all functions. */
5645
5646 void
5647 init_emit_regs (void)
5648 {
5649 int i;
5650
5651 /* Reset register attributes */
5652 htab_empty (reg_attrs_htab);
5653
5654 /* We need reg_raw_mode, so initialize the modes now. */
5655 init_reg_modes_target ();
5656
5657 /* Assign register numbers to the globally defined register rtx. */
5658 pc_rtx = gen_rtx_PC (VOIDmode);
5659 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5660 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5661 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5662 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5663 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5664 virtual_incoming_args_rtx =
5665 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5666 virtual_stack_vars_rtx =
5667 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5668 virtual_stack_dynamic_rtx =
5669 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5670 virtual_outgoing_args_rtx =
5671 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5672 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5673 virtual_preferred_stack_boundary_rtx =
5674 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5675
5676 /* Initialize RTL for commonly used hard registers. These are
5677 copied into regno_reg_rtx as we begin to compile each function. */
5678 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5679 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5680
5681 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5682 return_address_pointer_rtx
5683 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5684 #endif
5685
5686 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5687 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5688 else
5689 pic_offset_table_rtx = NULL_RTX;
5690 }
5691
5692 /* Create some permanent unique rtl objects shared between all functions. */
5693
5694 void
5695 init_emit_once (void)
5696 {
5697 int i;
5698 enum machine_mode mode;
5699 enum machine_mode double_mode;
5700
5701 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5702 hash tables. */
5703 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5704 const_int_htab_eq, NULL);
5705
5706 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5707 const_double_htab_eq, NULL);
5708
5709 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5710 const_fixed_htab_eq, NULL);
5711
5712 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5713 mem_attrs_htab_eq, NULL);
5714 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5715 reg_attrs_htab_eq, NULL);
5716
5717 /* Compute the word and byte modes. */
5718
5719 byte_mode = VOIDmode;
5720 word_mode = VOIDmode;
5721 double_mode = VOIDmode;
5722
5723 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5724 mode != VOIDmode;
5725 mode = GET_MODE_WIDER_MODE (mode))
5726 {
5727 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5728 && byte_mode == VOIDmode)
5729 byte_mode = mode;
5730
5731 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5732 && word_mode == VOIDmode)
5733 word_mode = mode;
5734 }
5735
5736 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5737 mode != VOIDmode;
5738 mode = GET_MODE_WIDER_MODE (mode))
5739 {
5740 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5741 && double_mode == VOIDmode)
5742 double_mode = mode;
5743 }
5744
5745 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5746
5747 #ifdef INIT_EXPANDERS
5748 /* This is to initialize {init|mark|free}_machine_status before the first
5749 call to push_function_context_to. This is needed by the Chill front
5750 end which calls push_function_context_to before the first call to
5751 init_function_start. */
5752 INIT_EXPANDERS;
5753 #endif
5754
5755 /* Create the unique rtx's for certain rtx codes and operand values. */
5756
5757 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5758 tries to use these variables. */
5759 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5760 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5761 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5762
5763 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5764 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5765 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5766 else
5767 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5768
5769 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5770 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5771 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5772
5773 dconstm1 = dconst1;
5774 dconstm1.sign = 1;
5775
5776 dconsthalf = dconst1;
5777 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5778
5779 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5780 {
5781 const REAL_VALUE_TYPE *const r =
5782 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5783
5784 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5785 mode != VOIDmode;
5786 mode = GET_MODE_WIDER_MODE (mode))
5787 const_tiny_rtx[i][(int) mode] =
5788 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5789
5790 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5791 mode != VOIDmode;
5792 mode = GET_MODE_WIDER_MODE (mode))
5793 const_tiny_rtx[i][(int) mode] =
5794 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5795
5796 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5797
5798 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5799 mode != VOIDmode;
5800 mode = GET_MODE_WIDER_MODE (mode))
5801 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5802
5803 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5804 mode != VOIDmode;
5805 mode = GET_MODE_WIDER_MODE (mode))
5806 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5807 }
5808
5809 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5810 mode != VOIDmode;
5811 mode = GET_MODE_WIDER_MODE (mode))
5812 {
5813 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5814 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5815 }
5816
5817 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5818 mode != VOIDmode;
5819 mode = GET_MODE_WIDER_MODE (mode))
5820 {
5821 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5822 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5823 }
5824
5825 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5826 mode != VOIDmode;
5827 mode = GET_MODE_WIDER_MODE (mode))
5828 {
5829 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5830 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5831 }
5832
5833 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5834 mode != VOIDmode;
5835 mode = GET_MODE_WIDER_MODE (mode))
5836 {
5837 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5838 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5839 }
5840
5841 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5842 mode != VOIDmode;
5843 mode = GET_MODE_WIDER_MODE (mode))
5844 {
5845 FCONST0(mode).data.high = 0;
5846 FCONST0(mode).data.low = 0;
5847 FCONST0(mode).mode = mode;
5848 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5849 FCONST0 (mode), mode);
5850 }
5851
5852 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5853 mode != VOIDmode;
5854 mode = GET_MODE_WIDER_MODE (mode))
5855 {
5856 FCONST0(mode).data.high = 0;
5857 FCONST0(mode).data.low = 0;
5858 FCONST0(mode).mode = mode;
5859 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5860 FCONST0 (mode), mode);
5861 }
5862
5863 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5864 mode != VOIDmode;
5865 mode = GET_MODE_WIDER_MODE (mode))
5866 {
5867 FCONST0(mode).data.high = 0;
5868 FCONST0(mode).data.low = 0;
5869 FCONST0(mode).mode = mode;
5870 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5871 FCONST0 (mode), mode);
5872
5873 /* We store the value 1. */
5874 FCONST1(mode).data.high = 0;
5875 FCONST1(mode).data.low = 0;
5876 FCONST1(mode).mode = mode;
5877 lshift_double (1, 0, GET_MODE_FBIT (mode),
5878 2 * HOST_BITS_PER_WIDE_INT,
5879 &FCONST1(mode).data.low,
5880 &FCONST1(mode).data.high,
5881 SIGNED_FIXED_POINT_MODE_P (mode));
5882 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5883 FCONST1 (mode), mode);
5884 }
5885
5886 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5887 mode != VOIDmode;
5888 mode = GET_MODE_WIDER_MODE (mode))
5889 {
5890 FCONST0(mode).data.high = 0;
5891 FCONST0(mode).data.low = 0;
5892 FCONST0(mode).mode = mode;
5893 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5894 FCONST0 (mode), mode);
5895
5896 /* We store the value 1. */
5897 FCONST1(mode).data.high = 0;
5898 FCONST1(mode).data.low = 0;
5899 FCONST1(mode).mode = mode;
5900 lshift_double (1, 0, GET_MODE_FBIT (mode),
5901 2 * HOST_BITS_PER_WIDE_INT,
5902 &FCONST1(mode).data.low,
5903 &FCONST1(mode).data.high,
5904 SIGNED_FIXED_POINT_MODE_P (mode));
5905 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5906 FCONST1 (mode), mode);
5907 }
5908
5909 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5910 mode != VOIDmode;
5911 mode = GET_MODE_WIDER_MODE (mode))
5912 {
5913 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5914 }
5915
5916 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5917 mode != VOIDmode;
5918 mode = GET_MODE_WIDER_MODE (mode))
5919 {
5920 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5921 }
5922
5923 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5924 mode != VOIDmode;
5925 mode = GET_MODE_WIDER_MODE (mode))
5926 {
5927 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5928 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5929 }
5930
5931 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5932 mode != VOIDmode;
5933 mode = GET_MODE_WIDER_MODE (mode))
5934 {
5935 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5936 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5937 }
5938
5939 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5940 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5941 const_tiny_rtx[0][i] = const0_rtx;
5942
5943 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5944 if (STORE_FLAG_VALUE == 1)
5945 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5946 }
5947 \f
5948 /* Produce exact duplicate of insn INSN after AFTER.
5949 Care updating of libcall regions if present. */
5950
5951 rtx
5952 emit_copy_of_insn_after (rtx insn, rtx after)
5953 {
5954 rtx new_rtx, link;
5955
5956 switch (GET_CODE (insn))
5957 {
5958 case INSN:
5959 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5960 break;
5961
5962 case JUMP_INSN:
5963 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5964 break;
5965
5966 case DEBUG_INSN:
5967 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5968 break;
5969
5970 case CALL_INSN:
5971 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5972 if (CALL_INSN_FUNCTION_USAGE (insn))
5973 CALL_INSN_FUNCTION_USAGE (new_rtx)
5974 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5975 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5976 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5977 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5978 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5979 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5980 break;
5981
5982 default:
5983 gcc_unreachable ();
5984 }
5985
5986 /* Update LABEL_NUSES. */
5987 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5988
5989 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5990
5991 /* If the old insn is frame related, then so is the new one. This is
5992 primarily needed for IA-64 unwind info which marks epilogue insns,
5993 which may be duplicated by the basic block reordering code. */
5994 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5995
5996 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5997 will make them. REG_LABEL_TARGETs are created there too, but are
5998 supposed to be sticky, so we copy them. */
5999 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6000 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6001 {
6002 if (GET_CODE (link) == EXPR_LIST)
6003 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6004 copy_insn_1 (XEXP (link, 0)));
6005 else
6006 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6007 }
6008
6009 INSN_CODE (new_rtx) = INSN_CODE (insn);
6010 return new_rtx;
6011 }
6012
6013 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6014 rtx
6015 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6016 {
6017 if (hard_reg_clobbers[mode][regno])
6018 return hard_reg_clobbers[mode][regno];
6019 else
6020 return (hard_reg_clobbers[mode][regno] =
6021 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6022 }
6023
6024 #include "gt-emit-rtl.h"