re PR c++/24780 (ICE set_mem_attributes_minus_bitpos)
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59
60 /* Commonly used modes. */
61
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66
67
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71 static GTY(()) int label_num = 1;
72
73 /* Nonzero means do not generate NOTEs for source line numbers. */
74
75 static int no_line_numbers;
76
77 /* Commonly used rtx's, so that we only need space for one copy.
78 These are initialized once for the entire compilation.
79 All of these are unique; no other rtx-object will be equal to any
80 of these. */
81
82 rtx global_rtl[GR_MAX];
83
84 /* Commonly used RTL for hard registers. These objects are not necessarily
85 unique, so we allocate them separately from global_rtl. They are
86 initialized once per compilation unit, then copied into regno_reg_rtx
87 at the beginning of each function. */
88 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
89
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx. */
93
94 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
95
96 rtx const_true_rtx;
97
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconst3;
102 REAL_VALUE_TYPE dconst10;
103 REAL_VALUE_TYPE dconstm1;
104 REAL_VALUE_TYPE dconstm2;
105 REAL_VALUE_TYPE dconsthalf;
106 REAL_VALUE_TYPE dconstthird;
107 REAL_VALUE_TYPE dconstpi;
108 REAL_VALUE_TYPE dconste;
109
110 /* All references to the following fixed hard registers go through
111 these unique rtl objects. On machines where the frame-pointer and
112 arg-pointer are the same register, they use the same unique object.
113
114 After register allocation, other rtl objects which used to be pseudo-regs
115 may be clobbered to refer to the frame-pointer register.
116 But references that were originally to the frame-pointer can be
117 distinguished from the others because they contain frame_pointer_rtx.
118
119 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
120 tricky: until register elimination has taken place hard_frame_pointer_rtx
121 should be used if it is being set, and frame_pointer_rtx otherwise. After
122 register elimination hard_frame_pointer_rtx should always be used.
123 On machines where the two registers are same (most) then these are the
124 same.
125
126 In an inline procedure, the stack and frame pointer rtxs may not be
127 used for anything else. */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
140
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
145
146 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
147 htab_t const_int_htab;
148
149 /* A hash table storing memory attribute structures. */
150 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
151 htab_t mem_attrs_htab;
152
153 /* A hash table storing register attribute structures. */
154 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
155 htab_t reg_attrs_htab;
156
157 /* A hash table storing all CONST_DOUBLEs. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_double_htab;
160
161 #define first_insn (cfun->emit->x_first_insn)
162 #define last_insn (cfun->emit->x_last_insn)
163 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
164 #define last_location (cfun->emit->x_last_location)
165 #define first_label_num (cfun->emit->x_first_label_num)
166
167 static rtx make_jump_insn_raw (rtx);
168 static rtx make_call_insn_raw (rtx);
169 static rtx find_line_note (rtx);
170 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
171 static void unshare_all_decls (tree);
172 static void reset_used_decls (tree);
173 static void mark_label_nuses (rtx);
174 static hashval_t const_int_htab_hash (const void *);
175 static int const_int_htab_eq (const void *, const void *);
176 static hashval_t const_double_htab_hash (const void *);
177 static int const_double_htab_eq (const void *, const void *);
178 static rtx lookup_const_double (rtx);
179 static hashval_t mem_attrs_htab_hash (const void *);
180 static int mem_attrs_htab_eq (const void *, const void *);
181 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
182 enum machine_mode);
183 static hashval_t reg_attrs_htab_hash (const void *);
184 static int reg_attrs_htab_eq (const void *, const void *);
185 static reg_attrs *get_reg_attrs (tree, int);
186 static tree component_ref_for_mem_expr (tree);
187 static rtx gen_const_vector (enum machine_mode, int);
188 static void copy_rtx_if_shared_1 (rtx *orig);
189
190 /* Probability of the conditional branch currently proceeded by try_split.
191 Set to -1 otherwise. */
192 int split_branch_probability = -1;
193 \f
194 /* Returns a hash code for X (which is a really a CONST_INT). */
195
196 static hashval_t
197 const_int_htab_hash (const void *x)
198 {
199 return (hashval_t) INTVAL ((rtx) x);
200 }
201
202 /* Returns nonzero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
204 HOST_WIDE_INT *). */
205
206 static int
207 const_int_htab_eq (const void *x, const void *y)
208 {
209 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
210 }
211
212 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
213 static hashval_t
214 const_double_htab_hash (const void *x)
215 {
216 rtx value = (rtx) x;
217 hashval_t h;
218
219 if (GET_MODE (value) == VOIDmode)
220 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
221 else
222 {
223 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
224 /* MODE is used in the comparison, so it should be in the hash. */
225 h ^= GET_MODE (value);
226 }
227 return h;
228 }
229
230 /* Returns nonzero if the value represented by X (really a ...)
231 is the same as that represented by Y (really a ...) */
232 static int
233 const_double_htab_eq (const void *x, const void *y)
234 {
235 rtx a = (rtx)x, b = (rtx)y;
236
237 if (GET_MODE (a) != GET_MODE (b))
238 return 0;
239 if (GET_MODE (a) == VOIDmode)
240 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
241 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
242 else
243 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
244 CONST_DOUBLE_REAL_VALUE (b));
245 }
246
247 /* Returns a hash code for X (which is a really a mem_attrs *). */
248
249 static hashval_t
250 mem_attrs_htab_hash (const void *x)
251 {
252 mem_attrs *p = (mem_attrs *) x;
253
254 return (p->alias ^ (p->align * 1000)
255 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
256 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
257 ^ (size_t) p->expr);
258 }
259
260 /* Returns nonzero if the value represented by X (which is really a
261 mem_attrs *) is the same as that given by Y (which is also really a
262 mem_attrs *). */
263
264 static int
265 mem_attrs_htab_eq (const void *x, const void *y)
266 {
267 mem_attrs *p = (mem_attrs *) x;
268 mem_attrs *q = (mem_attrs *) y;
269
270 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
271 && p->size == q->size && p->align == q->align);
272 }
273
274 /* Allocate a new mem_attrs structure and insert it into the hash table if
275 one identical to it is not already in the table. We are doing this for
276 MEM of mode MODE. */
277
278 static mem_attrs *
279 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
280 unsigned int align, enum machine_mode mode)
281 {
282 mem_attrs attrs;
283 void **slot;
284
285 /* If everything is the default, we can just return zero.
286 This must match what the corresponding MEM_* macros return when the
287 field is not present. */
288 if (alias == 0 && expr == 0 && offset == 0
289 && (size == 0
290 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
291 && (STRICT_ALIGNMENT && mode != BLKmode
292 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
293 return 0;
294
295 attrs.alias = alias;
296 attrs.expr = expr;
297 attrs.offset = offset;
298 attrs.size = size;
299 attrs.align = align;
300
301 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
302 if (*slot == 0)
303 {
304 *slot = ggc_alloc (sizeof (mem_attrs));
305 memcpy (*slot, &attrs, sizeof (mem_attrs));
306 }
307
308 return *slot;
309 }
310
311 /* Returns a hash code for X (which is a really a reg_attrs *). */
312
313 static hashval_t
314 reg_attrs_htab_hash (const void *x)
315 {
316 reg_attrs *p = (reg_attrs *) x;
317
318 return ((p->offset * 1000) ^ (long) p->decl);
319 }
320
321 /* Returns nonzero if the value represented by X (which is really a
322 reg_attrs *) is the same as that given by Y (which is also really a
323 reg_attrs *). */
324
325 static int
326 reg_attrs_htab_eq (const void *x, const void *y)
327 {
328 reg_attrs *p = (reg_attrs *) x;
329 reg_attrs *q = (reg_attrs *) y;
330
331 return (p->decl == q->decl && p->offset == q->offset);
332 }
333 /* Allocate a new reg_attrs structure and insert it into the hash table if
334 one identical to it is not already in the table. We are doing this for
335 MEM of mode MODE. */
336
337 static reg_attrs *
338 get_reg_attrs (tree decl, int offset)
339 {
340 reg_attrs attrs;
341 void **slot;
342
343 /* If everything is the default, we can just return zero. */
344 if (decl == 0 && offset == 0)
345 return 0;
346
347 attrs.decl = decl;
348 attrs.offset = offset;
349
350 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
351 if (*slot == 0)
352 {
353 *slot = ggc_alloc (sizeof (reg_attrs));
354 memcpy (*slot, &attrs, sizeof (reg_attrs));
355 }
356
357 return *slot;
358 }
359
360 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
361 don't attempt to share with the various global pieces of rtl (such as
362 frame_pointer_rtx). */
363
364 rtx
365 gen_raw_REG (enum machine_mode mode, int regno)
366 {
367 rtx x = gen_rtx_raw_REG (mode, regno);
368 ORIGINAL_REGNO (x) = regno;
369 return x;
370 }
371
372 /* There are some RTL codes that require special attention; the generation
373 functions do the raw handling. If you add to this list, modify
374 special_rtx in gengenrtl.c as well. */
375
376 rtx
377 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
378 {
379 void **slot;
380
381 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
382 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
383
384 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
385 if (const_true_rtx && arg == STORE_FLAG_VALUE)
386 return const_true_rtx;
387 #endif
388
389 /* Look up the CONST_INT in the hash table. */
390 slot = htab_find_slot_with_hash (const_int_htab, &arg,
391 (hashval_t) arg, INSERT);
392 if (*slot == 0)
393 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
394
395 return (rtx) *slot;
396 }
397
398 rtx
399 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
400 {
401 return GEN_INT (trunc_int_for_mode (c, mode));
402 }
403
404 /* CONST_DOUBLEs might be created from pairs of integers, or from
405 REAL_VALUE_TYPEs. Also, their length is known only at run time,
406 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
407
408 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
409 hash table. If so, return its counterpart; otherwise add it
410 to the hash table and return it. */
411 static rtx
412 lookup_const_double (rtx real)
413 {
414 void **slot = htab_find_slot (const_double_htab, real, INSERT);
415 if (*slot == 0)
416 *slot = real;
417
418 return (rtx) *slot;
419 }
420
421 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
422 VALUE in mode MODE. */
423 rtx
424 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
425 {
426 rtx real = rtx_alloc (CONST_DOUBLE);
427 PUT_MODE (real, mode);
428
429 real->u.rv = value;
430
431 return lookup_const_double (real);
432 }
433
434 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
435 of ints: I0 is the low-order word and I1 is the high-order word.
436 Do not use this routine for non-integer modes; convert to
437 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
438
439 rtx
440 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
441 {
442 rtx value;
443 unsigned int i;
444
445 if (mode != VOIDmode)
446 {
447 int width;
448
449 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
450 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
451 /* We can get a 0 for an error mark. */
452 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
453 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
454
455 /* We clear out all bits that don't belong in MODE, unless they and
456 our sign bit are all one. So we get either a reasonable negative
457 value or a reasonable unsigned value for this mode. */
458 width = GET_MODE_BITSIZE (mode);
459 if (width < HOST_BITS_PER_WIDE_INT
460 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
461 != ((HOST_WIDE_INT) (-1) << (width - 1))))
462 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
463 else if (width == HOST_BITS_PER_WIDE_INT
464 && ! (i1 == ~0 && i0 < 0))
465 i1 = 0;
466 else
467 /* We should be able to represent this value as a constant. */
468 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
469
470 /* If this would be an entire word for the target, but is not for
471 the host, then sign-extend on the host so that the number will
472 look the same way on the host that it would on the target.
473
474 For example, when building a 64 bit alpha hosted 32 bit sparc
475 targeted compiler, then we want the 32 bit unsigned value -1 to be
476 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
477 The latter confuses the sparc backend. */
478
479 if (width < HOST_BITS_PER_WIDE_INT
480 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
481 i0 |= ((HOST_WIDE_INT) (-1) << width);
482
483 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
484 CONST_INT.
485
486 ??? Strictly speaking, this is wrong if we create a CONST_INT for
487 a large unsigned constant with the size of MODE being
488 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
489 in a wider mode. In that case we will mis-interpret it as a
490 negative number.
491
492 Unfortunately, the only alternative is to make a CONST_DOUBLE for
493 any constant in any mode if it is an unsigned constant larger
494 than the maximum signed integer in an int on the host. However,
495 doing this will break everyone that always expects to see a
496 CONST_INT for SImode and smaller.
497
498 We have always been making CONST_INTs in this case, so nothing
499 new is being broken. */
500
501 if (width <= HOST_BITS_PER_WIDE_INT)
502 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
503 }
504
505 /* If this integer fits in one word, return a CONST_INT. */
506 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
507 return GEN_INT (i0);
508
509 /* We use VOIDmode for integers. */
510 value = rtx_alloc (CONST_DOUBLE);
511 PUT_MODE (value, VOIDmode);
512
513 CONST_DOUBLE_LOW (value) = i0;
514 CONST_DOUBLE_HIGH (value) = i1;
515
516 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
517 XWINT (value, i) = 0;
518
519 return lookup_const_double (value);
520 }
521
522 rtx
523 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
524 {
525 /* In case the MD file explicitly references the frame pointer, have
526 all such references point to the same frame pointer. This is
527 used during frame pointer elimination to distinguish the explicit
528 references to these registers from pseudos that happened to be
529 assigned to them.
530
531 If we have eliminated the frame pointer or arg pointer, we will
532 be using it as a normal register, for example as a spill
533 register. In such cases, we might be accessing it in a mode that
534 is not Pmode and therefore cannot use the pre-allocated rtx.
535
536 Also don't do this when we are making new REGs in reload, since
537 we don't want to get confused with the real pointers. */
538
539 if (mode == Pmode && !reload_in_progress)
540 {
541 if (regno == FRAME_POINTER_REGNUM
542 && (!reload_completed || frame_pointer_needed))
543 return frame_pointer_rtx;
544 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
545 if (regno == HARD_FRAME_POINTER_REGNUM
546 && (!reload_completed || frame_pointer_needed))
547 return hard_frame_pointer_rtx;
548 #endif
549 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
550 if (regno == ARG_POINTER_REGNUM)
551 return arg_pointer_rtx;
552 #endif
553 #ifdef RETURN_ADDRESS_POINTER_REGNUM
554 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
555 return return_address_pointer_rtx;
556 #endif
557 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
558 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
559 return pic_offset_table_rtx;
560 if (regno == STACK_POINTER_REGNUM)
561 return stack_pointer_rtx;
562 }
563
564 #if 0
565 /* If the per-function register table has been set up, try to re-use
566 an existing entry in that table to avoid useless generation of RTL.
567
568 This code is disabled for now until we can fix the various backends
569 which depend on having non-shared hard registers in some cases. Long
570 term we want to re-enable this code as it can significantly cut down
571 on the amount of useless RTL that gets generated.
572
573 We'll also need to fix some code that runs after reload that wants to
574 set ORIGINAL_REGNO. */
575
576 if (cfun
577 && cfun->emit
578 && regno_reg_rtx
579 && regno < FIRST_PSEUDO_REGISTER
580 && reg_raw_mode[regno] == mode)
581 return regno_reg_rtx[regno];
582 #endif
583
584 return gen_raw_REG (mode, regno);
585 }
586
587 rtx
588 gen_rtx_MEM (enum machine_mode mode, rtx addr)
589 {
590 rtx rt = gen_rtx_raw_MEM (mode, addr);
591
592 /* This field is not cleared by the mere allocation of the rtx, so
593 we clear it here. */
594 MEM_ATTRS (rt) = 0;
595
596 return rt;
597 }
598
599 /* Generate a memory referring to non-trapping constant memory. */
600
601 rtx
602 gen_const_mem (enum machine_mode mode, rtx addr)
603 {
604 rtx mem = gen_rtx_MEM (mode, addr);
605 MEM_READONLY_P (mem) = 1;
606 MEM_NOTRAP_P (mem) = 1;
607 return mem;
608 }
609
610 /* Generate a MEM referring to fixed portions of the frame, e.g., register
611 save areas. */
612
613 rtx
614 gen_frame_mem (enum machine_mode mode, rtx addr)
615 {
616 rtx mem = gen_rtx_MEM (mode, addr);
617 MEM_NOTRAP_P (mem) = 1;
618 set_mem_alias_set (mem, get_frame_alias_set ());
619 return mem;
620 }
621
622 /* Generate a MEM referring to a temporary use of the stack, not part
623 of the fixed stack frame. For example, something which is pushed
624 by a target splitter. */
625 rtx
626 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
627 {
628 rtx mem = gen_rtx_MEM (mode, addr);
629 MEM_NOTRAP_P (mem) = 1;
630 if (!current_function_calls_alloca)
631 set_mem_alias_set (mem, get_frame_alias_set ());
632 return mem;
633 }
634
635 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
636 this construct would be valid, and false otherwise. */
637
638 bool
639 validate_subreg (enum machine_mode omode, enum machine_mode imode,
640 rtx reg, unsigned int offset)
641 {
642 unsigned int isize = GET_MODE_SIZE (imode);
643 unsigned int osize = GET_MODE_SIZE (omode);
644
645 /* All subregs must be aligned. */
646 if (offset % osize != 0)
647 return false;
648
649 /* The subreg offset cannot be outside the inner object. */
650 if (offset >= isize)
651 return false;
652
653 /* ??? This should not be here. Temporarily continue to allow word_mode
654 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
655 Generally, backends are doing something sketchy but it'll take time to
656 fix them all. */
657 if (omode == word_mode)
658 ;
659 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
660 is the culprit here, and not the backends. */
661 else if (osize >= UNITS_PER_WORD && isize >= osize)
662 ;
663 /* Allow component subregs of complex and vector. Though given the below
664 extraction rules, it's not always clear what that means. */
665 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
666 && GET_MODE_INNER (imode) == omode)
667 ;
668 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
669 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
670 represent this. It's questionable if this ought to be represented at
671 all -- why can't this all be hidden in post-reload splitters that make
672 arbitrarily mode changes to the registers themselves. */
673 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
674 ;
675 /* Subregs involving floating point modes are not allowed to
676 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
677 (subreg:SI (reg:DF) 0) isn't. */
678 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
679 {
680 if (isize != osize)
681 return false;
682 }
683
684 /* Paradoxical subregs must have offset zero. */
685 if (osize > isize)
686 return offset == 0;
687
688 /* This is a normal subreg. Verify that the offset is representable. */
689
690 /* For hard registers, we already have most of these rules collected in
691 subreg_offset_representable_p. */
692 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
693 {
694 unsigned int regno = REGNO (reg);
695
696 #ifdef CANNOT_CHANGE_MODE_CLASS
697 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
698 && GET_MODE_INNER (imode) == omode)
699 ;
700 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
701 return false;
702 #endif
703
704 return subreg_offset_representable_p (regno, imode, offset, omode);
705 }
706
707 /* For pseudo registers, we want most of the same checks. Namely:
708 If the register no larger than a word, the subreg must be lowpart.
709 If the register is larger than a word, the subreg must be the lowpart
710 of a subword. A subreg does *not* perform arbitrary bit extraction.
711 Given that we've already checked mode/offset alignment, we only have
712 to check subword subregs here. */
713 if (osize < UNITS_PER_WORD)
714 {
715 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
716 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
717 if (offset % UNITS_PER_WORD != low_off)
718 return false;
719 }
720 return true;
721 }
722
723 rtx
724 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
725 {
726 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
727 return gen_rtx_raw_SUBREG (mode, reg, offset);
728 }
729
730 /* Generate a SUBREG representing the least-significant part of REG if MODE
731 is smaller than mode of REG, otherwise paradoxical SUBREG. */
732
733 rtx
734 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
735 {
736 enum machine_mode inmode;
737
738 inmode = GET_MODE (reg);
739 if (inmode == VOIDmode)
740 inmode = mode;
741 return gen_rtx_SUBREG (mode, reg,
742 subreg_lowpart_offset (mode, inmode));
743 }
744 \f
745 /* gen_rtvec (n, [rt1, ..., rtn])
746 **
747 ** This routine creates an rtvec and stores within it the
748 ** pointers to rtx's which are its arguments.
749 */
750
751 /*VARARGS1*/
752 rtvec
753 gen_rtvec (int n, ...)
754 {
755 int i, save_n;
756 rtx *vector;
757 va_list p;
758
759 va_start (p, n);
760
761 if (n == 0)
762 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
763
764 vector = alloca (n * sizeof (rtx));
765
766 for (i = 0; i < n; i++)
767 vector[i] = va_arg (p, rtx);
768
769 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
770 save_n = n;
771 va_end (p);
772
773 return gen_rtvec_v (save_n, vector);
774 }
775
776 rtvec
777 gen_rtvec_v (int n, rtx *argp)
778 {
779 int i;
780 rtvec rt_val;
781
782 if (n == 0)
783 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
784
785 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
786
787 for (i = 0; i < n; i++)
788 rt_val->elem[i] = *argp++;
789
790 return rt_val;
791 }
792 \f
793 /* Generate a REG rtx for a new pseudo register of mode MODE.
794 This pseudo is assigned the next sequential register number. */
795
796 rtx
797 gen_reg_rtx (enum machine_mode mode)
798 {
799 struct function *f = cfun;
800 rtx val;
801
802 /* Don't let anything called after initial flow analysis create new
803 registers. */
804 gcc_assert (!no_new_pseudos);
805
806 if (generating_concat_p
807 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
808 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
809 {
810 /* For complex modes, don't make a single pseudo.
811 Instead, make a CONCAT of two pseudos.
812 This allows noncontiguous allocation of the real and imaginary parts,
813 which makes much better code. Besides, allocating DCmode
814 pseudos overstrains reload on some machines like the 386. */
815 rtx realpart, imagpart;
816 enum machine_mode partmode = GET_MODE_INNER (mode);
817
818 realpart = gen_reg_rtx (partmode);
819 imagpart = gen_reg_rtx (partmode);
820 return gen_rtx_CONCAT (mode, realpart, imagpart);
821 }
822
823 /* Make sure regno_pointer_align, and regno_reg_rtx are large
824 enough to have an element for this pseudo reg number. */
825
826 if (reg_rtx_no == f->emit->regno_pointer_align_length)
827 {
828 int old_size = f->emit->regno_pointer_align_length;
829 char *new;
830 rtx *new1;
831
832 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
833 memset (new + old_size, 0, old_size);
834 f->emit->regno_pointer_align = (unsigned char *) new;
835
836 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
837 old_size * 2 * sizeof (rtx));
838 memset (new1 + old_size, 0, old_size * sizeof (rtx));
839 regno_reg_rtx = new1;
840
841 f->emit->regno_pointer_align_length = old_size * 2;
842 }
843
844 val = gen_raw_REG (mode, reg_rtx_no);
845 regno_reg_rtx[reg_rtx_no++] = val;
846 return val;
847 }
848
849 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
850 Do the big endian correction if needed. */
851
852 rtx
853 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
854 {
855 rtx new = gen_rtx_REG (mode, regno);
856 tree decl;
857 HOST_WIDE_INT var_size;
858
859 /* PR middle-end/14084
860 The problem appears when a variable is stored in a larger register
861 and later it is used in the original mode or some mode in between
862 or some part of variable is accessed.
863
864 On little endian machines there is no problem because
865 the REG_OFFSET of the start of the variable is the same when
866 accessed in any mode (it is 0).
867
868 However, this is not true on big endian machines.
869 The offset of the start of the variable is different when accessed
870 in different modes.
871 When we are taking a part of the REG we have to change the OFFSET
872 from offset WRT size of mode of REG to offset WRT size of variable.
873
874 If we would not do the big endian correction the resulting REG_OFFSET
875 would be larger than the size of the DECL.
876
877 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
878
879 REG.mode MODE DECL size old offset new offset description
880 DI SI 4 4 0 int32 in SImode
881 DI SI 1 4 0 char in SImode
882 DI QI 1 7 0 char in QImode
883 DI QI 4 5 1 1st element in QImode
884 of char[4]
885 DI HI 4 6 2 1st element in HImode
886 of int16[2]
887
888 If the size of DECL is equal or greater than the size of REG
889 we can't do this correction because the register holds the
890 whole variable or a part of the variable and thus the REG_OFFSET
891 is already correct. */
892
893 decl = REG_EXPR (reg);
894 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
895 && decl != NULL
896 && offset > 0
897 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
898 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
899 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
900 {
901 int offset_le;
902
903 /* Convert machine endian to little endian WRT size of mode of REG. */
904 if (WORDS_BIG_ENDIAN)
905 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
906 / UNITS_PER_WORD) * UNITS_PER_WORD;
907 else
908 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
909
910 if (BYTES_BIG_ENDIAN)
911 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
912 % UNITS_PER_WORD);
913 else
914 offset_le += offset % UNITS_PER_WORD;
915
916 if (offset_le >= var_size)
917 {
918 /* MODE is wider than the variable so the new reg will cover
919 the whole variable so the resulting OFFSET should be 0. */
920 offset = 0;
921 }
922 else
923 {
924 /* Convert little endian to machine endian WRT size of variable. */
925 if (WORDS_BIG_ENDIAN)
926 offset = ((var_size - 1 - offset_le)
927 / UNITS_PER_WORD) * UNITS_PER_WORD;
928 else
929 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
930
931 if (BYTES_BIG_ENDIAN)
932 offset += ((var_size - 1 - offset_le)
933 % UNITS_PER_WORD);
934 else
935 offset += offset_le % UNITS_PER_WORD;
936 }
937 }
938
939 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
940 REG_OFFSET (reg) + offset);
941 return new;
942 }
943
944 /* Set the decl for MEM to DECL. */
945
946 void
947 set_reg_attrs_from_mem (rtx reg, rtx mem)
948 {
949 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
950 REG_ATTRS (reg)
951 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
952 }
953
954 /* Set the register attributes for registers contained in PARM_RTX.
955 Use needed values from memory attributes of MEM. */
956
957 void
958 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
959 {
960 if (REG_P (parm_rtx))
961 set_reg_attrs_from_mem (parm_rtx, mem);
962 else if (GET_CODE (parm_rtx) == PARALLEL)
963 {
964 /* Check for a NULL entry in the first slot, used to indicate that the
965 parameter goes both on the stack and in registers. */
966 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
967 for (; i < XVECLEN (parm_rtx, 0); i++)
968 {
969 rtx x = XVECEXP (parm_rtx, 0, i);
970 if (REG_P (XEXP (x, 0)))
971 REG_ATTRS (XEXP (x, 0))
972 = get_reg_attrs (MEM_EXPR (mem),
973 INTVAL (XEXP (x, 1)));
974 }
975 }
976 }
977
978 /* Assign the RTX X to declaration T. */
979 void
980 set_decl_rtl (tree t, rtx x)
981 {
982 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
983
984 if (!x)
985 return;
986 /* For register, we maintain the reverse information too. */
987 if (REG_P (x))
988 REG_ATTRS (x) = get_reg_attrs (t, 0);
989 else if (GET_CODE (x) == SUBREG)
990 REG_ATTRS (SUBREG_REG (x))
991 = get_reg_attrs (t, -SUBREG_BYTE (x));
992 if (GET_CODE (x) == CONCAT)
993 {
994 if (REG_P (XEXP (x, 0)))
995 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
996 if (REG_P (XEXP (x, 1)))
997 REG_ATTRS (XEXP (x, 1))
998 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
999 }
1000 if (GET_CODE (x) == PARALLEL)
1001 {
1002 int i;
1003 for (i = 0; i < XVECLEN (x, 0); i++)
1004 {
1005 rtx y = XVECEXP (x, 0, i);
1006 if (REG_P (XEXP (y, 0)))
1007 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1008 }
1009 }
1010 }
1011
1012 /* Assign the RTX X to parameter declaration T. */
1013 void
1014 set_decl_incoming_rtl (tree t, rtx x)
1015 {
1016 DECL_INCOMING_RTL (t) = x;
1017
1018 if (!x)
1019 return;
1020 /* For register, we maintain the reverse information too. */
1021 if (REG_P (x))
1022 REG_ATTRS (x) = get_reg_attrs (t, 0);
1023 else if (GET_CODE (x) == SUBREG)
1024 REG_ATTRS (SUBREG_REG (x))
1025 = get_reg_attrs (t, -SUBREG_BYTE (x));
1026 if (GET_CODE (x) == CONCAT)
1027 {
1028 if (REG_P (XEXP (x, 0)))
1029 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1030 if (REG_P (XEXP (x, 1)))
1031 REG_ATTRS (XEXP (x, 1))
1032 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1033 }
1034 if (GET_CODE (x) == PARALLEL)
1035 {
1036 int i, start;
1037
1038 /* Check for a NULL entry, used to indicate that the parameter goes
1039 both on the stack and in registers. */
1040 if (XEXP (XVECEXP (x, 0, 0), 0))
1041 start = 0;
1042 else
1043 start = 1;
1044
1045 for (i = start; i < XVECLEN (x, 0); i++)
1046 {
1047 rtx y = XVECEXP (x, 0, i);
1048 if (REG_P (XEXP (y, 0)))
1049 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1050 }
1051 }
1052 }
1053
1054 /* Identify REG (which may be a CONCAT) as a user register. */
1055
1056 void
1057 mark_user_reg (rtx reg)
1058 {
1059 if (GET_CODE (reg) == CONCAT)
1060 {
1061 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1062 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1063 }
1064 else
1065 {
1066 gcc_assert (REG_P (reg));
1067 REG_USERVAR_P (reg) = 1;
1068 }
1069 }
1070
1071 /* Identify REG as a probable pointer register and show its alignment
1072 as ALIGN, if nonzero. */
1073
1074 void
1075 mark_reg_pointer (rtx reg, int align)
1076 {
1077 if (! REG_POINTER (reg))
1078 {
1079 REG_POINTER (reg) = 1;
1080
1081 if (align)
1082 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1083 }
1084 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1085 /* We can no-longer be sure just how aligned this pointer is. */
1086 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1087 }
1088
1089 /* Return 1 plus largest pseudo reg number used in the current function. */
1090
1091 int
1092 max_reg_num (void)
1093 {
1094 return reg_rtx_no;
1095 }
1096
1097 /* Return 1 + the largest label number used so far in the current function. */
1098
1099 int
1100 max_label_num (void)
1101 {
1102 return label_num;
1103 }
1104
1105 /* Return first label number used in this function (if any were used). */
1106
1107 int
1108 get_first_label_num (void)
1109 {
1110 return first_label_num;
1111 }
1112
1113 /* If the rtx for label was created during the expansion of a nested
1114 function, then first_label_num won't include this label number.
1115 Fix this now so that array indicies work later. */
1116
1117 void
1118 maybe_set_first_label_num (rtx x)
1119 {
1120 if (CODE_LABEL_NUMBER (x) < first_label_num)
1121 first_label_num = CODE_LABEL_NUMBER (x);
1122 }
1123 \f
1124 /* Return a value representing some low-order bits of X, where the number
1125 of low-order bits is given by MODE. Note that no conversion is done
1126 between floating-point and fixed-point values, rather, the bit
1127 representation is returned.
1128
1129 This function handles the cases in common between gen_lowpart, below,
1130 and two variants in cse.c and combine.c. These are the cases that can
1131 be safely handled at all points in the compilation.
1132
1133 If this is not a case we can handle, return 0. */
1134
1135 rtx
1136 gen_lowpart_common (enum machine_mode mode, rtx x)
1137 {
1138 int msize = GET_MODE_SIZE (mode);
1139 int xsize;
1140 int offset = 0;
1141 enum machine_mode innermode;
1142
1143 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1144 so we have to make one up. Yuk. */
1145 innermode = GET_MODE (x);
1146 if (GET_CODE (x) == CONST_INT
1147 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1148 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1149 else if (innermode == VOIDmode)
1150 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1151
1152 xsize = GET_MODE_SIZE (innermode);
1153
1154 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1155
1156 if (innermode == mode)
1157 return x;
1158
1159 /* MODE must occupy no more words than the mode of X. */
1160 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1161 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1162 return 0;
1163
1164 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1165 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1166 return 0;
1167
1168 offset = subreg_lowpart_offset (mode, innermode);
1169
1170 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1171 && (GET_MODE_CLASS (mode) == MODE_INT
1172 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1173 {
1174 /* If we are getting the low-order part of something that has been
1175 sign- or zero-extended, we can either just use the object being
1176 extended or make a narrower extension. If we want an even smaller
1177 piece than the size of the object being extended, call ourselves
1178 recursively.
1179
1180 This case is used mostly by combine and cse. */
1181
1182 if (GET_MODE (XEXP (x, 0)) == mode)
1183 return XEXP (x, 0);
1184 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1185 return gen_lowpart_common (mode, XEXP (x, 0));
1186 else if (msize < xsize)
1187 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1188 }
1189 else if (GET_CODE (x) == SUBREG || REG_P (x)
1190 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1191 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1192 return simplify_gen_subreg (mode, x, innermode, offset);
1193
1194 /* Otherwise, we can't do this. */
1195 return 0;
1196 }
1197 \f
1198 rtx
1199 gen_highpart (enum machine_mode mode, rtx x)
1200 {
1201 unsigned int msize = GET_MODE_SIZE (mode);
1202 rtx result;
1203
1204 /* This case loses if X is a subreg. To catch bugs early,
1205 complain if an invalid MODE is used even in other cases. */
1206 gcc_assert (msize <= UNITS_PER_WORD
1207 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1208
1209 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1210 subreg_highpart_offset (mode, GET_MODE (x)));
1211 gcc_assert (result);
1212
1213 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1214 the target if we have a MEM. gen_highpart must return a valid operand,
1215 emitting code if necessary to do so. */
1216 if (MEM_P (result))
1217 {
1218 result = validize_mem (result);
1219 gcc_assert (result);
1220 }
1221
1222 return result;
1223 }
1224
1225 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1226 be VOIDmode constant. */
1227 rtx
1228 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1229 {
1230 if (GET_MODE (exp) != VOIDmode)
1231 {
1232 gcc_assert (GET_MODE (exp) == innermode);
1233 return gen_highpart (outermode, exp);
1234 }
1235 return simplify_gen_subreg (outermode, exp, innermode,
1236 subreg_highpart_offset (outermode, innermode));
1237 }
1238
1239 /* Return offset in bytes to get OUTERMODE low part
1240 of the value in mode INNERMODE stored in memory in target format. */
1241
1242 unsigned int
1243 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1244 {
1245 unsigned int offset = 0;
1246 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1247
1248 if (difference > 0)
1249 {
1250 if (WORDS_BIG_ENDIAN)
1251 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1252 if (BYTES_BIG_ENDIAN)
1253 offset += difference % UNITS_PER_WORD;
1254 }
1255
1256 return offset;
1257 }
1258
1259 /* Return offset in bytes to get OUTERMODE high part
1260 of the value in mode INNERMODE stored in memory in target format. */
1261 unsigned int
1262 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1263 {
1264 unsigned int offset = 0;
1265 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1266
1267 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1268
1269 if (difference > 0)
1270 {
1271 if (! WORDS_BIG_ENDIAN)
1272 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1273 if (! BYTES_BIG_ENDIAN)
1274 offset += difference % UNITS_PER_WORD;
1275 }
1276
1277 return offset;
1278 }
1279
1280 /* Return 1 iff X, assumed to be a SUBREG,
1281 refers to the least significant part of its containing reg.
1282 If X is not a SUBREG, always return 1 (it is its own low part!). */
1283
1284 int
1285 subreg_lowpart_p (rtx x)
1286 {
1287 if (GET_CODE (x) != SUBREG)
1288 return 1;
1289 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1290 return 0;
1291
1292 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1293 == SUBREG_BYTE (x));
1294 }
1295 \f
1296 /* Return subword OFFSET of operand OP.
1297 The word number, OFFSET, is interpreted as the word number starting
1298 at the low-order address. OFFSET 0 is the low-order word if not
1299 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1300
1301 If we cannot extract the required word, we return zero. Otherwise,
1302 an rtx corresponding to the requested word will be returned.
1303
1304 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1305 reload has completed, a valid address will always be returned. After
1306 reload, if a valid address cannot be returned, we return zero.
1307
1308 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1309 it is the responsibility of the caller.
1310
1311 MODE is the mode of OP in case it is a CONST_INT.
1312
1313 ??? This is still rather broken for some cases. The problem for the
1314 moment is that all callers of this thing provide no 'goal mode' to
1315 tell us to work with. This exists because all callers were written
1316 in a word based SUBREG world.
1317 Now use of this function can be deprecated by simplify_subreg in most
1318 cases.
1319 */
1320
1321 rtx
1322 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1323 {
1324 if (mode == VOIDmode)
1325 mode = GET_MODE (op);
1326
1327 gcc_assert (mode != VOIDmode);
1328
1329 /* If OP is narrower than a word, fail. */
1330 if (mode != BLKmode
1331 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1332 return 0;
1333
1334 /* If we want a word outside OP, return zero. */
1335 if (mode != BLKmode
1336 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1337 return const0_rtx;
1338
1339 /* Form a new MEM at the requested address. */
1340 if (MEM_P (op))
1341 {
1342 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1343
1344 if (! validate_address)
1345 return new;
1346
1347 else if (reload_completed)
1348 {
1349 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1350 return 0;
1351 }
1352 else
1353 return replace_equiv_address (new, XEXP (new, 0));
1354 }
1355
1356 /* Rest can be handled by simplify_subreg. */
1357 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1358 }
1359
1360 /* Similar to `operand_subword', but never return 0. If we can't
1361 extract the required subword, put OP into a register and try again.
1362 The second attempt must succeed. We always validate the address in
1363 this case.
1364
1365 MODE is the mode of OP, in case it is CONST_INT. */
1366
1367 rtx
1368 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1369 {
1370 rtx result = operand_subword (op, offset, 1, mode);
1371
1372 if (result)
1373 return result;
1374
1375 if (mode != BLKmode && mode != VOIDmode)
1376 {
1377 /* If this is a register which can not be accessed by words, copy it
1378 to a pseudo register. */
1379 if (REG_P (op))
1380 op = copy_to_reg (op);
1381 else
1382 op = force_reg (mode, op);
1383 }
1384
1385 result = operand_subword (op, offset, 1, mode);
1386 gcc_assert (result);
1387
1388 return result;
1389 }
1390 \f
1391 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1392 or (2) a component ref of something variable. Represent the later with
1393 a NULL expression. */
1394
1395 static tree
1396 component_ref_for_mem_expr (tree ref)
1397 {
1398 tree inner = TREE_OPERAND (ref, 0);
1399
1400 if (TREE_CODE (inner) == COMPONENT_REF)
1401 inner = component_ref_for_mem_expr (inner);
1402 else
1403 {
1404 /* Now remove any conversions: they don't change what the underlying
1405 object is. Likewise for SAVE_EXPR. */
1406 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1407 || TREE_CODE (inner) == NON_LVALUE_EXPR
1408 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1409 || TREE_CODE (inner) == SAVE_EXPR)
1410 inner = TREE_OPERAND (inner, 0);
1411
1412 if (! DECL_P (inner))
1413 inner = NULL_TREE;
1414 }
1415
1416 if (inner == TREE_OPERAND (ref, 0))
1417 return ref;
1418 else
1419 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1420 TREE_OPERAND (ref, 1), NULL_TREE);
1421 }
1422
1423 /* Returns 1 if both MEM_EXPR can be considered equal
1424 and 0 otherwise. */
1425
1426 int
1427 mem_expr_equal_p (tree expr1, tree expr2)
1428 {
1429 if (expr1 == expr2)
1430 return 1;
1431
1432 if (! expr1 || ! expr2)
1433 return 0;
1434
1435 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1436 return 0;
1437
1438 if (TREE_CODE (expr1) == COMPONENT_REF)
1439 return
1440 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1441 TREE_OPERAND (expr2, 0))
1442 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1443 TREE_OPERAND (expr2, 1));
1444
1445 if (INDIRECT_REF_P (expr1))
1446 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1447 TREE_OPERAND (expr2, 0));
1448
1449 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1450 have been resolved here. */
1451 gcc_assert (DECL_P (expr1));
1452
1453 /* Decls with different pointers can't be equal. */
1454 return 0;
1455 }
1456
1457 /* Given REF, a MEM, and T, either the type of X or the expression
1458 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1459 if we are making a new object of this type. BITPOS is nonzero if
1460 there is an offset outstanding on T that will be applied later. */
1461
1462 void
1463 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1464 HOST_WIDE_INT bitpos)
1465 {
1466 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1467 tree expr = MEM_EXPR (ref);
1468 rtx offset = MEM_OFFSET (ref);
1469 rtx size = MEM_SIZE (ref);
1470 unsigned int align = MEM_ALIGN (ref);
1471 HOST_WIDE_INT apply_bitpos = 0;
1472 tree type;
1473
1474 /* It can happen that type_for_mode was given a mode for which there
1475 is no language-level type. In which case it returns NULL, which
1476 we can see here. */
1477 if (t == NULL_TREE)
1478 return;
1479
1480 type = TYPE_P (t) ? t : TREE_TYPE (t);
1481 if (type == error_mark_node)
1482 return;
1483
1484 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1485 wrong answer, as it assumes that DECL_RTL already has the right alias
1486 info. Callers should not set DECL_RTL until after the call to
1487 set_mem_attributes. */
1488 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1489
1490 /* Get the alias set from the expression or type (perhaps using a
1491 front-end routine) and use it. */
1492 alias = get_alias_set (t);
1493
1494 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1495 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1496 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1497
1498 /* If we are making an object of this type, or if this is a DECL, we know
1499 that it is a scalar if the type is not an aggregate. */
1500 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1501 MEM_SCALAR_P (ref) = 1;
1502
1503 /* We can set the alignment from the type if we are making an object,
1504 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1505 if (objectp || TREE_CODE (t) == INDIRECT_REF
1506 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1507 || TYPE_ALIGN_OK (type))
1508 align = MAX (align, TYPE_ALIGN (type));
1509 else
1510 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1511 {
1512 if (integer_zerop (TREE_OPERAND (t, 1)))
1513 /* We don't know anything about the alignment. */
1514 align = BITS_PER_UNIT;
1515 else
1516 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1517 }
1518
1519 /* If the size is known, we can set that. */
1520 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1521 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1522
1523 /* If T is not a type, we may be able to deduce some more information about
1524 the expression. */
1525 if (! TYPE_P (t))
1526 {
1527 tree base;
1528
1529 if (TREE_THIS_VOLATILE (t))
1530 MEM_VOLATILE_P (ref) = 1;
1531
1532 /* Now remove any conversions: they don't change what the underlying
1533 object is. Likewise for SAVE_EXPR. */
1534 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1535 || TREE_CODE (t) == NON_LVALUE_EXPR
1536 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1537 || TREE_CODE (t) == SAVE_EXPR)
1538 t = TREE_OPERAND (t, 0);
1539
1540 /* We may look through structure-like accesses for the purposes of
1541 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1542 base = t;
1543 while (TREE_CODE (base) == COMPONENT_REF
1544 || TREE_CODE (base) == REALPART_EXPR
1545 || TREE_CODE (base) == IMAGPART_EXPR
1546 || TREE_CODE (base) == BIT_FIELD_REF)
1547 base = TREE_OPERAND (base, 0);
1548
1549 if (DECL_P (base))
1550 {
1551 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1552 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1553 else
1554 MEM_NOTRAP_P (ref) = 1;
1555 }
1556 else
1557 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1558
1559 base = get_base_address (base);
1560 if (base && DECL_P (base)
1561 && TREE_READONLY (base)
1562 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1563 {
1564 tree base_type = TREE_TYPE (base);
1565 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1566 || DECL_ARTIFICIAL (base));
1567 MEM_READONLY_P (ref) = 1;
1568 }
1569
1570 /* If this expression uses it's parent's alias set, mark it such
1571 that we won't change it. */
1572 if (component_uses_parent_alias_set (t))
1573 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1574
1575 /* If this is a decl, set the attributes of the MEM from it. */
1576 if (DECL_P (t))
1577 {
1578 expr = t;
1579 offset = const0_rtx;
1580 apply_bitpos = bitpos;
1581 size = (DECL_SIZE_UNIT (t)
1582 && host_integerp (DECL_SIZE_UNIT (t), 1)
1583 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1584 align = DECL_ALIGN (t);
1585 }
1586
1587 /* If this is a constant, we know the alignment. */
1588 else if (CONSTANT_CLASS_P (t))
1589 {
1590 align = TYPE_ALIGN (type);
1591 #ifdef CONSTANT_ALIGNMENT
1592 align = CONSTANT_ALIGNMENT (t, align);
1593 #endif
1594 }
1595
1596 /* If this is a field reference and not a bit-field, record it. */
1597 /* ??? There is some information that can be gleened from bit-fields,
1598 such as the word offset in the structure that might be modified.
1599 But skip it for now. */
1600 else if (TREE_CODE (t) == COMPONENT_REF
1601 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1602 {
1603 expr = component_ref_for_mem_expr (t);
1604 offset = const0_rtx;
1605 apply_bitpos = bitpos;
1606 /* ??? Any reason the field size would be different than
1607 the size we got from the type? */
1608 }
1609
1610 /* If this is an array reference, look for an outer field reference. */
1611 else if (TREE_CODE (t) == ARRAY_REF)
1612 {
1613 tree off_tree = size_zero_node;
1614 /* We can't modify t, because we use it at the end of the
1615 function. */
1616 tree t2 = t;
1617
1618 do
1619 {
1620 tree index = TREE_OPERAND (t2, 1);
1621 tree low_bound = array_ref_low_bound (t2);
1622 tree unit_size = array_ref_element_size (t2);
1623
1624 /* We assume all arrays have sizes that are a multiple of a byte.
1625 First subtract the lower bound, if any, in the type of the
1626 index, then convert to sizetype and multiply by the size of
1627 the array element. */
1628 if (! integer_zerop (low_bound))
1629 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1630 index, low_bound);
1631
1632 off_tree = size_binop (PLUS_EXPR,
1633 size_binop (MULT_EXPR, convert (sizetype,
1634 index),
1635 unit_size),
1636 off_tree);
1637 t2 = TREE_OPERAND (t2, 0);
1638 }
1639 while (TREE_CODE (t2) == ARRAY_REF);
1640
1641 if (DECL_P (t2))
1642 {
1643 expr = t2;
1644 offset = NULL;
1645 if (host_integerp (off_tree, 1))
1646 {
1647 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1648 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1649 align = DECL_ALIGN (t2);
1650 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1651 align = aoff;
1652 offset = GEN_INT (ioff);
1653 apply_bitpos = bitpos;
1654 }
1655 }
1656 else if (TREE_CODE (t2) == COMPONENT_REF)
1657 {
1658 expr = component_ref_for_mem_expr (t2);
1659 if (host_integerp (off_tree, 1))
1660 {
1661 offset = GEN_INT (tree_low_cst (off_tree, 1));
1662 apply_bitpos = bitpos;
1663 }
1664 /* ??? Any reason the field size would be different than
1665 the size we got from the type? */
1666 }
1667 else if (flag_argument_noalias > 1
1668 && (INDIRECT_REF_P (t2))
1669 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1670 {
1671 expr = t2;
1672 offset = NULL;
1673 }
1674 }
1675
1676 /* If this is a Fortran indirect argument reference, record the
1677 parameter decl. */
1678 else if (flag_argument_noalias > 1
1679 && (INDIRECT_REF_P (t))
1680 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1681 {
1682 expr = t;
1683 offset = NULL;
1684 }
1685 }
1686
1687 /* If we modified OFFSET based on T, then subtract the outstanding
1688 bit position offset. Similarly, increase the size of the accessed
1689 object to contain the negative offset. */
1690 if (apply_bitpos)
1691 {
1692 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1693 if (size)
1694 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1695 }
1696
1697 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1698 {
1699 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1700 we're overlapping. */
1701 offset = NULL;
1702 expr = NULL;
1703 }
1704
1705 /* Now set the attributes we computed above. */
1706 MEM_ATTRS (ref)
1707 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1708
1709 /* If this is already known to be a scalar or aggregate, we are done. */
1710 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1711 return;
1712
1713 /* If it is a reference into an aggregate, this is part of an aggregate.
1714 Otherwise we don't know. */
1715 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1716 || TREE_CODE (t) == ARRAY_RANGE_REF
1717 || TREE_CODE (t) == BIT_FIELD_REF)
1718 MEM_IN_STRUCT_P (ref) = 1;
1719 }
1720
1721 void
1722 set_mem_attributes (rtx ref, tree t, int objectp)
1723 {
1724 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1725 }
1726
1727 /* Set the decl for MEM to DECL. */
1728
1729 void
1730 set_mem_attrs_from_reg (rtx mem, rtx reg)
1731 {
1732 MEM_ATTRS (mem)
1733 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1734 GEN_INT (REG_OFFSET (reg)),
1735 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1736 }
1737
1738 /* Set the alias set of MEM to SET. */
1739
1740 void
1741 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1742 {
1743 #ifdef ENABLE_CHECKING
1744 /* If the new and old alias sets don't conflict, something is wrong. */
1745 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1746 #endif
1747
1748 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1749 MEM_SIZE (mem), MEM_ALIGN (mem),
1750 GET_MODE (mem));
1751 }
1752
1753 /* Set the alignment of MEM to ALIGN bits. */
1754
1755 void
1756 set_mem_align (rtx mem, unsigned int align)
1757 {
1758 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1759 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1760 GET_MODE (mem));
1761 }
1762
1763 /* Set the expr for MEM to EXPR. */
1764
1765 void
1766 set_mem_expr (rtx mem, tree expr)
1767 {
1768 MEM_ATTRS (mem)
1769 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1770 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1771 }
1772
1773 /* Set the offset of MEM to OFFSET. */
1774
1775 void
1776 set_mem_offset (rtx mem, rtx offset)
1777 {
1778 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1779 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1780 GET_MODE (mem));
1781 }
1782
1783 /* Set the size of MEM to SIZE. */
1784
1785 void
1786 set_mem_size (rtx mem, rtx size)
1787 {
1788 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1789 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1790 GET_MODE (mem));
1791 }
1792 \f
1793 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1794 and its address changed to ADDR. (VOIDmode means don't change the mode.
1795 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1796 returned memory location is required to be valid. The memory
1797 attributes are not changed. */
1798
1799 static rtx
1800 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1801 {
1802 rtx new;
1803
1804 gcc_assert (MEM_P (memref));
1805 if (mode == VOIDmode)
1806 mode = GET_MODE (memref);
1807 if (addr == 0)
1808 addr = XEXP (memref, 0);
1809 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1810 && (!validate || memory_address_p (mode, addr)))
1811 return memref;
1812
1813 if (validate)
1814 {
1815 if (reload_in_progress || reload_completed)
1816 gcc_assert (memory_address_p (mode, addr));
1817 else
1818 addr = memory_address (mode, addr);
1819 }
1820
1821 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1822 return memref;
1823
1824 new = gen_rtx_MEM (mode, addr);
1825 MEM_COPY_ATTRIBUTES (new, memref);
1826 return new;
1827 }
1828
1829 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1830 way we are changing MEMREF, so we only preserve the alias set. */
1831
1832 rtx
1833 change_address (rtx memref, enum machine_mode mode, rtx addr)
1834 {
1835 rtx new = change_address_1 (memref, mode, addr, 1), size;
1836 enum machine_mode mmode = GET_MODE (new);
1837 unsigned int align;
1838
1839 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1840 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1841
1842 /* If there are no changes, just return the original memory reference. */
1843 if (new == memref)
1844 {
1845 if (MEM_ATTRS (memref) == 0
1846 || (MEM_EXPR (memref) == NULL
1847 && MEM_OFFSET (memref) == NULL
1848 && MEM_SIZE (memref) == size
1849 && MEM_ALIGN (memref) == align))
1850 return new;
1851
1852 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1853 MEM_COPY_ATTRIBUTES (new, memref);
1854 }
1855
1856 MEM_ATTRS (new)
1857 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1858
1859 return new;
1860 }
1861
1862 /* Return a memory reference like MEMREF, but with its mode changed
1863 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1864 nonzero, the memory address is forced to be valid.
1865 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1866 and caller is responsible for adjusting MEMREF base register. */
1867
1868 rtx
1869 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1870 int validate, int adjust)
1871 {
1872 rtx addr = XEXP (memref, 0);
1873 rtx new;
1874 rtx memoffset = MEM_OFFSET (memref);
1875 rtx size = 0;
1876 unsigned int memalign = MEM_ALIGN (memref);
1877
1878 /* If there are no changes, just return the original memory reference. */
1879 if (mode == GET_MODE (memref) && !offset
1880 && (!validate || memory_address_p (mode, addr)))
1881 return memref;
1882
1883 /* ??? Prefer to create garbage instead of creating shared rtl.
1884 This may happen even if offset is nonzero -- consider
1885 (plus (plus reg reg) const_int) -- so do this always. */
1886 addr = copy_rtx (addr);
1887
1888 if (adjust)
1889 {
1890 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1891 object, we can merge it into the LO_SUM. */
1892 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1893 && offset >= 0
1894 && (unsigned HOST_WIDE_INT) offset
1895 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1896 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1897 plus_constant (XEXP (addr, 1), offset));
1898 else
1899 addr = plus_constant (addr, offset);
1900 }
1901
1902 new = change_address_1 (memref, mode, addr, validate);
1903
1904 /* Compute the new values of the memory attributes due to this adjustment.
1905 We add the offsets and update the alignment. */
1906 if (memoffset)
1907 memoffset = GEN_INT (offset + INTVAL (memoffset));
1908
1909 /* Compute the new alignment by taking the MIN of the alignment and the
1910 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1911 if zero. */
1912 if (offset != 0)
1913 memalign
1914 = MIN (memalign,
1915 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1916
1917 /* We can compute the size in a number of ways. */
1918 if (GET_MODE (new) != BLKmode)
1919 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1920 else if (MEM_SIZE (memref))
1921 size = plus_constant (MEM_SIZE (memref), -offset);
1922
1923 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1924 memoffset, size, memalign, GET_MODE (new));
1925
1926 /* At some point, we should validate that this offset is within the object,
1927 if all the appropriate values are known. */
1928 return new;
1929 }
1930
1931 /* Return a memory reference like MEMREF, but with its mode changed
1932 to MODE and its address changed to ADDR, which is assumed to be
1933 MEMREF offseted by OFFSET bytes. If VALIDATE is
1934 nonzero, the memory address is forced to be valid. */
1935
1936 rtx
1937 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1938 HOST_WIDE_INT offset, int validate)
1939 {
1940 memref = change_address_1 (memref, VOIDmode, addr, validate);
1941 return adjust_address_1 (memref, mode, offset, validate, 0);
1942 }
1943
1944 /* Return a memory reference like MEMREF, but whose address is changed by
1945 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1946 known to be in OFFSET (possibly 1). */
1947
1948 rtx
1949 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1950 {
1951 rtx new, addr = XEXP (memref, 0);
1952
1953 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1954
1955 /* At this point we don't know _why_ the address is invalid. It
1956 could have secondary memory references, multiplies or anything.
1957
1958 However, if we did go and rearrange things, we can wind up not
1959 being able to recognize the magic around pic_offset_table_rtx.
1960 This stuff is fragile, and is yet another example of why it is
1961 bad to expose PIC machinery too early. */
1962 if (! memory_address_p (GET_MODE (memref), new)
1963 && GET_CODE (addr) == PLUS
1964 && XEXP (addr, 0) == pic_offset_table_rtx)
1965 {
1966 addr = force_reg (GET_MODE (addr), addr);
1967 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1968 }
1969
1970 update_temp_slot_address (XEXP (memref, 0), new);
1971 new = change_address_1 (memref, VOIDmode, new, 1);
1972
1973 /* If there are no changes, just return the original memory reference. */
1974 if (new == memref)
1975 return new;
1976
1977 /* Update the alignment to reflect the offset. Reset the offset, which
1978 we don't know. */
1979 MEM_ATTRS (new)
1980 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1981 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1982 GET_MODE (new));
1983 return new;
1984 }
1985
1986 /* Return a memory reference like MEMREF, but with its address changed to
1987 ADDR. The caller is asserting that the actual piece of memory pointed
1988 to is the same, just the form of the address is being changed, such as
1989 by putting something into a register. */
1990
1991 rtx
1992 replace_equiv_address (rtx memref, rtx addr)
1993 {
1994 /* change_address_1 copies the memory attribute structure without change
1995 and that's exactly what we want here. */
1996 update_temp_slot_address (XEXP (memref, 0), addr);
1997 return change_address_1 (memref, VOIDmode, addr, 1);
1998 }
1999
2000 /* Likewise, but the reference is not required to be valid. */
2001
2002 rtx
2003 replace_equiv_address_nv (rtx memref, rtx addr)
2004 {
2005 return change_address_1 (memref, VOIDmode, addr, 0);
2006 }
2007
2008 /* Return a memory reference like MEMREF, but with its mode widened to
2009 MODE and offset by OFFSET. This would be used by targets that e.g.
2010 cannot issue QImode memory operations and have to use SImode memory
2011 operations plus masking logic. */
2012
2013 rtx
2014 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2015 {
2016 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2017 tree expr = MEM_EXPR (new);
2018 rtx memoffset = MEM_OFFSET (new);
2019 unsigned int size = GET_MODE_SIZE (mode);
2020
2021 /* If there are no changes, just return the original memory reference. */
2022 if (new == memref)
2023 return new;
2024
2025 /* If we don't know what offset we were at within the expression, then
2026 we can't know if we've overstepped the bounds. */
2027 if (! memoffset)
2028 expr = NULL_TREE;
2029
2030 while (expr)
2031 {
2032 if (TREE_CODE (expr) == COMPONENT_REF)
2033 {
2034 tree field = TREE_OPERAND (expr, 1);
2035 tree offset = component_ref_field_offset (expr);
2036
2037 if (! DECL_SIZE_UNIT (field))
2038 {
2039 expr = NULL_TREE;
2040 break;
2041 }
2042
2043 /* Is the field at least as large as the access? If so, ok,
2044 otherwise strip back to the containing structure. */
2045 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2046 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2047 && INTVAL (memoffset) >= 0)
2048 break;
2049
2050 if (! host_integerp (offset, 1))
2051 {
2052 expr = NULL_TREE;
2053 break;
2054 }
2055
2056 expr = TREE_OPERAND (expr, 0);
2057 memoffset
2058 = (GEN_INT (INTVAL (memoffset)
2059 + tree_low_cst (offset, 1)
2060 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2061 / BITS_PER_UNIT)));
2062 }
2063 /* Similarly for the decl. */
2064 else if (DECL_P (expr)
2065 && DECL_SIZE_UNIT (expr)
2066 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2067 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2068 && (! memoffset || INTVAL (memoffset) >= 0))
2069 break;
2070 else
2071 {
2072 /* The widened memory access overflows the expression, which means
2073 that it could alias another expression. Zap it. */
2074 expr = NULL_TREE;
2075 break;
2076 }
2077 }
2078
2079 if (! expr)
2080 memoffset = NULL_RTX;
2081
2082 /* The widened memory may alias other stuff, so zap the alias set. */
2083 /* ??? Maybe use get_alias_set on any remaining expression. */
2084
2085 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2086 MEM_ALIGN (new), mode);
2087
2088 return new;
2089 }
2090 \f
2091 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2092
2093 rtx
2094 gen_label_rtx (void)
2095 {
2096 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2097 NULL, label_num++, NULL);
2098 }
2099 \f
2100 /* For procedure integration. */
2101
2102 /* Install new pointers to the first and last insns in the chain.
2103 Also, set cur_insn_uid to one higher than the last in use.
2104 Used for an inline-procedure after copying the insn chain. */
2105
2106 void
2107 set_new_first_and_last_insn (rtx first, rtx last)
2108 {
2109 rtx insn;
2110
2111 first_insn = first;
2112 last_insn = last;
2113 cur_insn_uid = 0;
2114
2115 for (insn = first; insn; insn = NEXT_INSN (insn))
2116 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2117
2118 cur_insn_uid++;
2119 }
2120 \f
2121 /* Go through all the RTL insn bodies and copy any invalid shared
2122 structure. This routine should only be called once. */
2123
2124 static void
2125 unshare_all_rtl_1 (tree fndecl, rtx insn)
2126 {
2127 tree decl;
2128
2129 /* Make sure that virtual parameters are not shared. */
2130 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2131 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2132
2133 /* Make sure that virtual stack slots are not shared. */
2134 unshare_all_decls (DECL_INITIAL (fndecl));
2135
2136 /* Unshare just about everything else. */
2137 unshare_all_rtl_in_chain (insn);
2138
2139 /* Make sure the addresses of stack slots found outside the insn chain
2140 (such as, in DECL_RTL of a variable) are not shared
2141 with the insn chain.
2142
2143 This special care is necessary when the stack slot MEM does not
2144 actually appear in the insn chain. If it does appear, its address
2145 is unshared from all else at that point. */
2146 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2147 }
2148
2149 /* Go through all the RTL insn bodies and copy any invalid shared
2150 structure, again. This is a fairly expensive thing to do so it
2151 should be done sparingly. */
2152
2153 void
2154 unshare_all_rtl_again (rtx insn)
2155 {
2156 rtx p;
2157 tree decl;
2158
2159 for (p = insn; p; p = NEXT_INSN (p))
2160 if (INSN_P (p))
2161 {
2162 reset_used_flags (PATTERN (p));
2163 reset_used_flags (REG_NOTES (p));
2164 reset_used_flags (LOG_LINKS (p));
2165 }
2166
2167 /* Make sure that virtual stack slots are not shared. */
2168 reset_used_decls (DECL_INITIAL (cfun->decl));
2169
2170 /* Make sure that virtual parameters are not shared. */
2171 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2172 reset_used_flags (DECL_RTL (decl));
2173
2174 reset_used_flags (stack_slot_list);
2175
2176 unshare_all_rtl_1 (cfun->decl, insn);
2177 }
2178
2179 void
2180 unshare_all_rtl (void)
2181 {
2182 unshare_all_rtl_1 (current_function_decl, get_insns ());
2183 }
2184
2185 struct tree_opt_pass pass_unshare_all_rtl =
2186 {
2187 "unshare", /* name */
2188 NULL, /* gate */
2189 unshare_all_rtl, /* execute */
2190 NULL, /* sub */
2191 NULL, /* next */
2192 0, /* static_pass_number */
2193 0, /* tv_id */
2194 0, /* properties_required */
2195 0, /* properties_provided */
2196 0, /* properties_destroyed */
2197 0, /* todo_flags_start */
2198 TODO_dump_func, /* todo_flags_finish */
2199 0 /* letter */
2200 };
2201
2202
2203 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2204 Recursively does the same for subexpressions. */
2205
2206 static void
2207 verify_rtx_sharing (rtx orig, rtx insn)
2208 {
2209 rtx x = orig;
2210 int i;
2211 enum rtx_code code;
2212 const char *format_ptr;
2213
2214 if (x == 0)
2215 return;
2216
2217 code = GET_CODE (x);
2218
2219 /* These types may be freely shared. */
2220
2221 switch (code)
2222 {
2223 case REG:
2224 case CONST_INT:
2225 case CONST_DOUBLE:
2226 case CONST_VECTOR:
2227 case SYMBOL_REF:
2228 case LABEL_REF:
2229 case CODE_LABEL:
2230 case PC:
2231 case CC0:
2232 case SCRATCH:
2233 return;
2234 /* SCRATCH must be shared because they represent distinct values. */
2235 case CLOBBER:
2236 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2237 return;
2238 break;
2239
2240 case CONST:
2241 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2242 a LABEL_REF, it isn't sharable. */
2243 if (GET_CODE (XEXP (x, 0)) == PLUS
2244 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2245 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2246 return;
2247 break;
2248
2249 case MEM:
2250 /* A MEM is allowed to be shared if its address is constant. */
2251 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2252 || reload_completed || reload_in_progress)
2253 return;
2254
2255 break;
2256
2257 default:
2258 break;
2259 }
2260
2261 /* This rtx may not be shared. If it has already been seen,
2262 replace it with a copy of itself. */
2263 #ifdef ENABLE_CHECKING
2264 if (RTX_FLAG (x, used))
2265 {
2266 error ("invalid rtl sharing found in the insn");
2267 debug_rtx (insn);
2268 error ("shared rtx");
2269 debug_rtx (x);
2270 internal_error ("internal consistency failure");
2271 }
2272 #endif
2273 gcc_assert (!RTX_FLAG (x, used));
2274
2275 RTX_FLAG (x, used) = 1;
2276
2277 /* Now scan the subexpressions recursively. */
2278
2279 format_ptr = GET_RTX_FORMAT (code);
2280
2281 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2282 {
2283 switch (*format_ptr++)
2284 {
2285 case 'e':
2286 verify_rtx_sharing (XEXP (x, i), insn);
2287 break;
2288
2289 case 'E':
2290 if (XVEC (x, i) != NULL)
2291 {
2292 int j;
2293 int len = XVECLEN (x, i);
2294
2295 for (j = 0; j < len; j++)
2296 {
2297 /* We allow sharing of ASM_OPERANDS inside single
2298 instruction. */
2299 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2300 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2301 == ASM_OPERANDS))
2302 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2303 else
2304 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2305 }
2306 }
2307 break;
2308 }
2309 }
2310 return;
2311 }
2312
2313 /* Go through all the RTL insn bodies and check that there is no unexpected
2314 sharing in between the subexpressions. */
2315
2316 void
2317 verify_rtl_sharing (void)
2318 {
2319 rtx p;
2320
2321 for (p = get_insns (); p; p = NEXT_INSN (p))
2322 if (INSN_P (p))
2323 {
2324 reset_used_flags (PATTERN (p));
2325 reset_used_flags (REG_NOTES (p));
2326 reset_used_flags (LOG_LINKS (p));
2327 }
2328
2329 for (p = get_insns (); p; p = NEXT_INSN (p))
2330 if (INSN_P (p))
2331 {
2332 verify_rtx_sharing (PATTERN (p), p);
2333 verify_rtx_sharing (REG_NOTES (p), p);
2334 verify_rtx_sharing (LOG_LINKS (p), p);
2335 }
2336 }
2337
2338 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2339 Assumes the mark bits are cleared at entry. */
2340
2341 void
2342 unshare_all_rtl_in_chain (rtx insn)
2343 {
2344 for (; insn; insn = NEXT_INSN (insn))
2345 if (INSN_P (insn))
2346 {
2347 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2348 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2349 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2350 }
2351 }
2352
2353 /* Go through all virtual stack slots of a function and copy any
2354 shared structure. */
2355 static void
2356 unshare_all_decls (tree blk)
2357 {
2358 tree t;
2359
2360 /* Copy shared decls. */
2361 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2362 if (DECL_RTL_SET_P (t))
2363 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2364
2365 /* Now process sub-blocks. */
2366 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2367 unshare_all_decls (t);
2368 }
2369
2370 /* Go through all virtual stack slots of a function and mark them as
2371 not shared. */
2372 static void
2373 reset_used_decls (tree blk)
2374 {
2375 tree t;
2376
2377 /* Mark decls. */
2378 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2379 if (DECL_RTL_SET_P (t))
2380 reset_used_flags (DECL_RTL (t));
2381
2382 /* Now process sub-blocks. */
2383 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2384 reset_used_decls (t);
2385 }
2386
2387 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2388 Recursively does the same for subexpressions. Uses
2389 copy_rtx_if_shared_1 to reduce stack space. */
2390
2391 rtx
2392 copy_rtx_if_shared (rtx orig)
2393 {
2394 copy_rtx_if_shared_1 (&orig);
2395 return orig;
2396 }
2397
2398 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2399 use. Recursively does the same for subexpressions. */
2400
2401 static void
2402 copy_rtx_if_shared_1 (rtx *orig1)
2403 {
2404 rtx x;
2405 int i;
2406 enum rtx_code code;
2407 rtx *last_ptr;
2408 const char *format_ptr;
2409 int copied = 0;
2410 int length;
2411
2412 /* Repeat is used to turn tail-recursion into iteration. */
2413 repeat:
2414 x = *orig1;
2415
2416 if (x == 0)
2417 return;
2418
2419 code = GET_CODE (x);
2420
2421 /* These types may be freely shared. */
2422
2423 switch (code)
2424 {
2425 case REG:
2426 case CONST_INT:
2427 case CONST_DOUBLE:
2428 case CONST_VECTOR:
2429 case SYMBOL_REF:
2430 case LABEL_REF:
2431 case CODE_LABEL:
2432 case PC:
2433 case CC0:
2434 case SCRATCH:
2435 /* SCRATCH must be shared because they represent distinct values. */
2436 return;
2437 case CLOBBER:
2438 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2439 return;
2440 break;
2441
2442 case CONST:
2443 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2444 a LABEL_REF, it isn't sharable. */
2445 if (GET_CODE (XEXP (x, 0)) == PLUS
2446 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2447 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2448 return;
2449 break;
2450
2451 case INSN:
2452 case JUMP_INSN:
2453 case CALL_INSN:
2454 case NOTE:
2455 case BARRIER:
2456 /* The chain of insns is not being copied. */
2457 return;
2458
2459 default:
2460 break;
2461 }
2462
2463 /* This rtx may not be shared. If it has already been seen,
2464 replace it with a copy of itself. */
2465
2466 if (RTX_FLAG (x, used))
2467 {
2468 rtx copy;
2469
2470 copy = rtx_alloc (code);
2471 memcpy (copy, x, RTX_SIZE (code));
2472 x = copy;
2473 copied = 1;
2474 }
2475 RTX_FLAG (x, used) = 1;
2476
2477 /* Now scan the subexpressions recursively.
2478 We can store any replaced subexpressions directly into X
2479 since we know X is not shared! Any vectors in X
2480 must be copied if X was copied. */
2481
2482 format_ptr = GET_RTX_FORMAT (code);
2483 length = GET_RTX_LENGTH (code);
2484 last_ptr = NULL;
2485
2486 for (i = 0; i < length; i++)
2487 {
2488 switch (*format_ptr++)
2489 {
2490 case 'e':
2491 if (last_ptr)
2492 copy_rtx_if_shared_1 (last_ptr);
2493 last_ptr = &XEXP (x, i);
2494 break;
2495
2496 case 'E':
2497 if (XVEC (x, i) != NULL)
2498 {
2499 int j;
2500 int len = XVECLEN (x, i);
2501
2502 /* Copy the vector iff I copied the rtx and the length
2503 is nonzero. */
2504 if (copied && len > 0)
2505 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2506
2507 /* Call recursively on all inside the vector. */
2508 for (j = 0; j < len; j++)
2509 {
2510 if (last_ptr)
2511 copy_rtx_if_shared_1 (last_ptr);
2512 last_ptr = &XVECEXP (x, i, j);
2513 }
2514 }
2515 break;
2516 }
2517 }
2518 *orig1 = x;
2519 if (last_ptr)
2520 {
2521 orig1 = last_ptr;
2522 goto repeat;
2523 }
2524 return;
2525 }
2526
2527 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2528 to look for shared sub-parts. */
2529
2530 void
2531 reset_used_flags (rtx x)
2532 {
2533 int i, j;
2534 enum rtx_code code;
2535 const char *format_ptr;
2536 int length;
2537
2538 /* Repeat is used to turn tail-recursion into iteration. */
2539 repeat:
2540 if (x == 0)
2541 return;
2542
2543 code = GET_CODE (x);
2544
2545 /* These types may be freely shared so we needn't do any resetting
2546 for them. */
2547
2548 switch (code)
2549 {
2550 case REG:
2551 case CONST_INT:
2552 case CONST_DOUBLE:
2553 case CONST_VECTOR:
2554 case SYMBOL_REF:
2555 case CODE_LABEL:
2556 case PC:
2557 case CC0:
2558 return;
2559
2560 case INSN:
2561 case JUMP_INSN:
2562 case CALL_INSN:
2563 case NOTE:
2564 case LABEL_REF:
2565 case BARRIER:
2566 /* The chain of insns is not being copied. */
2567 return;
2568
2569 default:
2570 break;
2571 }
2572
2573 RTX_FLAG (x, used) = 0;
2574
2575 format_ptr = GET_RTX_FORMAT (code);
2576 length = GET_RTX_LENGTH (code);
2577
2578 for (i = 0; i < length; i++)
2579 {
2580 switch (*format_ptr++)
2581 {
2582 case 'e':
2583 if (i == length-1)
2584 {
2585 x = XEXP (x, i);
2586 goto repeat;
2587 }
2588 reset_used_flags (XEXP (x, i));
2589 break;
2590
2591 case 'E':
2592 for (j = 0; j < XVECLEN (x, i); j++)
2593 reset_used_flags (XVECEXP (x, i, j));
2594 break;
2595 }
2596 }
2597 }
2598
2599 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2600 to look for shared sub-parts. */
2601
2602 void
2603 set_used_flags (rtx x)
2604 {
2605 int i, j;
2606 enum rtx_code code;
2607 const char *format_ptr;
2608
2609 if (x == 0)
2610 return;
2611
2612 code = GET_CODE (x);
2613
2614 /* These types may be freely shared so we needn't do any resetting
2615 for them. */
2616
2617 switch (code)
2618 {
2619 case REG:
2620 case CONST_INT:
2621 case CONST_DOUBLE:
2622 case CONST_VECTOR:
2623 case SYMBOL_REF:
2624 case CODE_LABEL:
2625 case PC:
2626 case CC0:
2627 return;
2628
2629 case INSN:
2630 case JUMP_INSN:
2631 case CALL_INSN:
2632 case NOTE:
2633 case LABEL_REF:
2634 case BARRIER:
2635 /* The chain of insns is not being copied. */
2636 return;
2637
2638 default:
2639 break;
2640 }
2641
2642 RTX_FLAG (x, used) = 1;
2643
2644 format_ptr = GET_RTX_FORMAT (code);
2645 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2646 {
2647 switch (*format_ptr++)
2648 {
2649 case 'e':
2650 set_used_flags (XEXP (x, i));
2651 break;
2652
2653 case 'E':
2654 for (j = 0; j < XVECLEN (x, i); j++)
2655 set_used_flags (XVECEXP (x, i, j));
2656 break;
2657 }
2658 }
2659 }
2660 \f
2661 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2662 Return X or the rtx for the pseudo reg the value of X was copied into.
2663 OTHER must be valid as a SET_DEST. */
2664
2665 rtx
2666 make_safe_from (rtx x, rtx other)
2667 {
2668 while (1)
2669 switch (GET_CODE (other))
2670 {
2671 case SUBREG:
2672 other = SUBREG_REG (other);
2673 break;
2674 case STRICT_LOW_PART:
2675 case SIGN_EXTEND:
2676 case ZERO_EXTEND:
2677 other = XEXP (other, 0);
2678 break;
2679 default:
2680 goto done;
2681 }
2682 done:
2683 if ((MEM_P (other)
2684 && ! CONSTANT_P (x)
2685 && !REG_P (x)
2686 && GET_CODE (x) != SUBREG)
2687 || (REG_P (other)
2688 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2689 || reg_mentioned_p (other, x))))
2690 {
2691 rtx temp = gen_reg_rtx (GET_MODE (x));
2692 emit_move_insn (temp, x);
2693 return temp;
2694 }
2695 return x;
2696 }
2697 \f
2698 /* Emission of insns (adding them to the doubly-linked list). */
2699
2700 /* Return the first insn of the current sequence or current function. */
2701
2702 rtx
2703 get_insns (void)
2704 {
2705 return first_insn;
2706 }
2707
2708 /* Specify a new insn as the first in the chain. */
2709
2710 void
2711 set_first_insn (rtx insn)
2712 {
2713 gcc_assert (!PREV_INSN (insn));
2714 first_insn = insn;
2715 }
2716
2717 /* Return the last insn emitted in current sequence or current function. */
2718
2719 rtx
2720 get_last_insn (void)
2721 {
2722 return last_insn;
2723 }
2724
2725 /* Specify a new insn as the last in the chain. */
2726
2727 void
2728 set_last_insn (rtx insn)
2729 {
2730 gcc_assert (!NEXT_INSN (insn));
2731 last_insn = insn;
2732 }
2733
2734 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2735
2736 rtx
2737 get_last_insn_anywhere (void)
2738 {
2739 struct sequence_stack *stack;
2740 if (last_insn)
2741 return last_insn;
2742 for (stack = seq_stack; stack; stack = stack->next)
2743 if (stack->last != 0)
2744 return stack->last;
2745 return 0;
2746 }
2747
2748 /* Return the first nonnote insn emitted in current sequence or current
2749 function. This routine looks inside SEQUENCEs. */
2750
2751 rtx
2752 get_first_nonnote_insn (void)
2753 {
2754 rtx insn = first_insn;
2755
2756 if (insn)
2757 {
2758 if (NOTE_P (insn))
2759 for (insn = next_insn (insn);
2760 insn && NOTE_P (insn);
2761 insn = next_insn (insn))
2762 continue;
2763 else
2764 {
2765 if (NONJUMP_INSN_P (insn)
2766 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2767 insn = XVECEXP (PATTERN (insn), 0, 0);
2768 }
2769 }
2770
2771 return insn;
2772 }
2773
2774 /* Return the last nonnote insn emitted in current sequence or current
2775 function. This routine looks inside SEQUENCEs. */
2776
2777 rtx
2778 get_last_nonnote_insn (void)
2779 {
2780 rtx insn = last_insn;
2781
2782 if (insn)
2783 {
2784 if (NOTE_P (insn))
2785 for (insn = previous_insn (insn);
2786 insn && NOTE_P (insn);
2787 insn = previous_insn (insn))
2788 continue;
2789 else
2790 {
2791 if (NONJUMP_INSN_P (insn)
2792 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2793 insn = XVECEXP (PATTERN (insn), 0,
2794 XVECLEN (PATTERN (insn), 0) - 1);
2795 }
2796 }
2797
2798 return insn;
2799 }
2800
2801 /* Return a number larger than any instruction's uid in this function. */
2802
2803 int
2804 get_max_uid (void)
2805 {
2806 return cur_insn_uid;
2807 }
2808
2809 /* Renumber instructions so that no instruction UIDs are wasted. */
2810
2811 void
2812 renumber_insns (FILE *stream)
2813 {
2814 rtx insn;
2815
2816 /* If we're not supposed to renumber instructions, don't. */
2817 if (!flag_renumber_insns)
2818 return;
2819
2820 /* If there aren't that many instructions, then it's not really
2821 worth renumbering them. */
2822 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2823 return;
2824
2825 cur_insn_uid = 1;
2826
2827 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2828 {
2829 if (stream)
2830 fprintf (stream, "Renumbering insn %d to %d\n",
2831 INSN_UID (insn), cur_insn_uid);
2832 INSN_UID (insn) = cur_insn_uid++;
2833 }
2834 }
2835 \f
2836 /* Return the next insn. If it is a SEQUENCE, return the first insn
2837 of the sequence. */
2838
2839 rtx
2840 next_insn (rtx insn)
2841 {
2842 if (insn)
2843 {
2844 insn = NEXT_INSN (insn);
2845 if (insn && NONJUMP_INSN_P (insn)
2846 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2847 insn = XVECEXP (PATTERN (insn), 0, 0);
2848 }
2849
2850 return insn;
2851 }
2852
2853 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2854 of the sequence. */
2855
2856 rtx
2857 previous_insn (rtx insn)
2858 {
2859 if (insn)
2860 {
2861 insn = PREV_INSN (insn);
2862 if (insn && NONJUMP_INSN_P (insn)
2863 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2864 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2865 }
2866
2867 return insn;
2868 }
2869
2870 /* Return the next insn after INSN that is not a NOTE. This routine does not
2871 look inside SEQUENCEs. */
2872
2873 rtx
2874 next_nonnote_insn (rtx insn)
2875 {
2876 while (insn)
2877 {
2878 insn = NEXT_INSN (insn);
2879 if (insn == 0 || !NOTE_P (insn))
2880 break;
2881 }
2882
2883 return insn;
2884 }
2885
2886 /* Return the previous insn before INSN that is not a NOTE. This routine does
2887 not look inside SEQUENCEs. */
2888
2889 rtx
2890 prev_nonnote_insn (rtx insn)
2891 {
2892 while (insn)
2893 {
2894 insn = PREV_INSN (insn);
2895 if (insn == 0 || !NOTE_P (insn))
2896 break;
2897 }
2898
2899 return insn;
2900 }
2901
2902 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2903 or 0, if there is none. This routine does not look inside
2904 SEQUENCEs. */
2905
2906 rtx
2907 next_real_insn (rtx insn)
2908 {
2909 while (insn)
2910 {
2911 insn = NEXT_INSN (insn);
2912 if (insn == 0 || INSN_P (insn))
2913 break;
2914 }
2915
2916 return insn;
2917 }
2918
2919 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2920 or 0, if there is none. This routine does not look inside
2921 SEQUENCEs. */
2922
2923 rtx
2924 prev_real_insn (rtx insn)
2925 {
2926 while (insn)
2927 {
2928 insn = PREV_INSN (insn);
2929 if (insn == 0 || INSN_P (insn))
2930 break;
2931 }
2932
2933 return insn;
2934 }
2935
2936 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2937 This routine does not look inside SEQUENCEs. */
2938
2939 rtx
2940 last_call_insn (void)
2941 {
2942 rtx insn;
2943
2944 for (insn = get_last_insn ();
2945 insn && !CALL_P (insn);
2946 insn = PREV_INSN (insn))
2947 ;
2948
2949 return insn;
2950 }
2951
2952 /* Find the next insn after INSN that really does something. This routine
2953 does not look inside SEQUENCEs. Until reload has completed, this is the
2954 same as next_real_insn. */
2955
2956 int
2957 active_insn_p (rtx insn)
2958 {
2959 return (CALL_P (insn) || JUMP_P (insn)
2960 || (NONJUMP_INSN_P (insn)
2961 && (! reload_completed
2962 || (GET_CODE (PATTERN (insn)) != USE
2963 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2964 }
2965
2966 rtx
2967 next_active_insn (rtx insn)
2968 {
2969 while (insn)
2970 {
2971 insn = NEXT_INSN (insn);
2972 if (insn == 0 || active_insn_p (insn))
2973 break;
2974 }
2975
2976 return insn;
2977 }
2978
2979 /* Find the last insn before INSN that really does something. This routine
2980 does not look inside SEQUENCEs. Until reload has completed, this is the
2981 same as prev_real_insn. */
2982
2983 rtx
2984 prev_active_insn (rtx insn)
2985 {
2986 while (insn)
2987 {
2988 insn = PREV_INSN (insn);
2989 if (insn == 0 || active_insn_p (insn))
2990 break;
2991 }
2992
2993 return insn;
2994 }
2995
2996 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2997
2998 rtx
2999 next_label (rtx insn)
3000 {
3001 while (insn)
3002 {
3003 insn = NEXT_INSN (insn);
3004 if (insn == 0 || LABEL_P (insn))
3005 break;
3006 }
3007
3008 return insn;
3009 }
3010
3011 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3012
3013 rtx
3014 prev_label (rtx insn)
3015 {
3016 while (insn)
3017 {
3018 insn = PREV_INSN (insn);
3019 if (insn == 0 || LABEL_P (insn))
3020 break;
3021 }
3022
3023 return insn;
3024 }
3025
3026 /* Return the last label to mark the same position as LABEL. Return null
3027 if LABEL itself is null. */
3028
3029 rtx
3030 skip_consecutive_labels (rtx label)
3031 {
3032 rtx insn;
3033
3034 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3035 if (LABEL_P (insn))
3036 label = insn;
3037
3038 return label;
3039 }
3040 \f
3041 #ifdef HAVE_cc0
3042 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3043 and REG_CC_USER notes so we can find it. */
3044
3045 void
3046 link_cc0_insns (rtx insn)
3047 {
3048 rtx user = next_nonnote_insn (insn);
3049
3050 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3051 user = XVECEXP (PATTERN (user), 0, 0);
3052
3053 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3054 REG_NOTES (user));
3055 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3056 }
3057
3058 /* Return the next insn that uses CC0 after INSN, which is assumed to
3059 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3060 applied to the result of this function should yield INSN).
3061
3062 Normally, this is simply the next insn. However, if a REG_CC_USER note
3063 is present, it contains the insn that uses CC0.
3064
3065 Return 0 if we can't find the insn. */
3066
3067 rtx
3068 next_cc0_user (rtx insn)
3069 {
3070 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3071
3072 if (note)
3073 return XEXP (note, 0);
3074
3075 insn = next_nonnote_insn (insn);
3076 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3077 insn = XVECEXP (PATTERN (insn), 0, 0);
3078
3079 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3080 return insn;
3081
3082 return 0;
3083 }
3084
3085 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3086 note, it is the previous insn. */
3087
3088 rtx
3089 prev_cc0_setter (rtx insn)
3090 {
3091 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3092
3093 if (note)
3094 return XEXP (note, 0);
3095
3096 insn = prev_nonnote_insn (insn);
3097 gcc_assert (sets_cc0_p (PATTERN (insn)));
3098
3099 return insn;
3100 }
3101 #endif
3102
3103 /* Increment the label uses for all labels present in rtx. */
3104
3105 static void
3106 mark_label_nuses (rtx x)
3107 {
3108 enum rtx_code code;
3109 int i, j;
3110 const char *fmt;
3111
3112 code = GET_CODE (x);
3113 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3114 LABEL_NUSES (XEXP (x, 0))++;
3115
3116 fmt = GET_RTX_FORMAT (code);
3117 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3118 {
3119 if (fmt[i] == 'e')
3120 mark_label_nuses (XEXP (x, i));
3121 else if (fmt[i] == 'E')
3122 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3123 mark_label_nuses (XVECEXP (x, i, j));
3124 }
3125 }
3126
3127 \f
3128 /* Try splitting insns that can be split for better scheduling.
3129 PAT is the pattern which might split.
3130 TRIAL is the insn providing PAT.
3131 LAST is nonzero if we should return the last insn of the sequence produced.
3132
3133 If this routine succeeds in splitting, it returns the first or last
3134 replacement insn depending on the value of LAST. Otherwise, it
3135 returns TRIAL. If the insn to be returned can be split, it will be. */
3136
3137 rtx
3138 try_split (rtx pat, rtx trial, int last)
3139 {
3140 rtx before = PREV_INSN (trial);
3141 rtx after = NEXT_INSN (trial);
3142 int has_barrier = 0;
3143 rtx tem;
3144 rtx note, seq;
3145 int probability;
3146 rtx insn_last, insn;
3147 int njumps = 0;
3148
3149 if (any_condjump_p (trial)
3150 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3151 split_branch_probability = INTVAL (XEXP (note, 0));
3152 probability = split_branch_probability;
3153
3154 seq = split_insns (pat, trial);
3155
3156 split_branch_probability = -1;
3157
3158 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3159 We may need to handle this specially. */
3160 if (after && BARRIER_P (after))
3161 {
3162 has_barrier = 1;
3163 after = NEXT_INSN (after);
3164 }
3165
3166 if (!seq)
3167 return trial;
3168
3169 /* Avoid infinite loop if any insn of the result matches
3170 the original pattern. */
3171 insn_last = seq;
3172 while (1)
3173 {
3174 if (INSN_P (insn_last)
3175 && rtx_equal_p (PATTERN (insn_last), pat))
3176 return trial;
3177 if (!NEXT_INSN (insn_last))
3178 break;
3179 insn_last = NEXT_INSN (insn_last);
3180 }
3181
3182 /* Mark labels. */
3183 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3184 {
3185 if (JUMP_P (insn))
3186 {
3187 mark_jump_label (PATTERN (insn), insn, 0);
3188 njumps++;
3189 if (probability != -1
3190 && any_condjump_p (insn)
3191 && !find_reg_note (insn, REG_BR_PROB, 0))
3192 {
3193 /* We can preserve the REG_BR_PROB notes only if exactly
3194 one jump is created, otherwise the machine description
3195 is responsible for this step using
3196 split_branch_probability variable. */
3197 gcc_assert (njumps == 1);
3198 REG_NOTES (insn)
3199 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3200 GEN_INT (probability),
3201 REG_NOTES (insn));
3202 }
3203 }
3204 }
3205
3206 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3207 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3208 if (CALL_P (trial))
3209 {
3210 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3211 if (CALL_P (insn))
3212 {
3213 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3214 while (*p)
3215 p = &XEXP (*p, 1);
3216 *p = CALL_INSN_FUNCTION_USAGE (trial);
3217 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3218 }
3219 }
3220
3221 /* Copy notes, particularly those related to the CFG. */
3222 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3223 {
3224 switch (REG_NOTE_KIND (note))
3225 {
3226 case REG_EH_REGION:
3227 insn = insn_last;
3228 while (insn != NULL_RTX)
3229 {
3230 if (CALL_P (insn)
3231 || (flag_non_call_exceptions && INSN_P (insn)
3232 && may_trap_p (PATTERN (insn))))
3233 REG_NOTES (insn)
3234 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3235 XEXP (note, 0),
3236 REG_NOTES (insn));
3237 insn = PREV_INSN (insn);
3238 }
3239 break;
3240
3241 case REG_NORETURN:
3242 case REG_SETJMP:
3243 insn = insn_last;
3244 while (insn != NULL_RTX)
3245 {
3246 if (CALL_P (insn))
3247 REG_NOTES (insn)
3248 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3249 XEXP (note, 0),
3250 REG_NOTES (insn));
3251 insn = PREV_INSN (insn);
3252 }
3253 break;
3254
3255 case REG_NON_LOCAL_GOTO:
3256 insn = insn_last;
3257 while (insn != NULL_RTX)
3258 {
3259 if (JUMP_P (insn))
3260 REG_NOTES (insn)
3261 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3262 XEXP (note, 0),
3263 REG_NOTES (insn));
3264 insn = PREV_INSN (insn);
3265 }
3266 break;
3267
3268 default:
3269 break;
3270 }
3271 }
3272
3273 /* If there are LABELS inside the split insns increment the
3274 usage count so we don't delete the label. */
3275 if (NONJUMP_INSN_P (trial))
3276 {
3277 insn = insn_last;
3278 while (insn != NULL_RTX)
3279 {
3280 if (NONJUMP_INSN_P (insn))
3281 mark_label_nuses (PATTERN (insn));
3282
3283 insn = PREV_INSN (insn);
3284 }
3285 }
3286
3287 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3288
3289 delete_insn (trial);
3290 if (has_barrier)
3291 emit_barrier_after (tem);
3292
3293 /* Recursively call try_split for each new insn created; by the
3294 time control returns here that insn will be fully split, so
3295 set LAST and continue from the insn after the one returned.
3296 We can't use next_active_insn here since AFTER may be a note.
3297 Ignore deleted insns, which can be occur if not optimizing. */
3298 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3299 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3300 tem = try_split (PATTERN (tem), tem, 1);
3301
3302 /* Return either the first or the last insn, depending on which was
3303 requested. */
3304 return last
3305 ? (after ? PREV_INSN (after) : last_insn)
3306 : NEXT_INSN (before);
3307 }
3308 \f
3309 /* Make and return an INSN rtx, initializing all its slots.
3310 Store PATTERN in the pattern slots. */
3311
3312 rtx
3313 make_insn_raw (rtx pattern)
3314 {
3315 rtx insn;
3316
3317 insn = rtx_alloc (INSN);
3318
3319 INSN_UID (insn) = cur_insn_uid++;
3320 PATTERN (insn) = pattern;
3321 INSN_CODE (insn) = -1;
3322 LOG_LINKS (insn) = NULL;
3323 REG_NOTES (insn) = NULL;
3324 INSN_LOCATOR (insn) = 0;
3325 BLOCK_FOR_INSN (insn) = NULL;
3326
3327 #ifdef ENABLE_RTL_CHECKING
3328 if (insn
3329 && INSN_P (insn)
3330 && (returnjump_p (insn)
3331 || (GET_CODE (insn) == SET
3332 && SET_DEST (insn) == pc_rtx)))
3333 {
3334 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3335 debug_rtx (insn);
3336 }
3337 #endif
3338
3339 return insn;
3340 }
3341
3342 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3343
3344 static rtx
3345 make_jump_insn_raw (rtx pattern)
3346 {
3347 rtx insn;
3348
3349 insn = rtx_alloc (JUMP_INSN);
3350 INSN_UID (insn) = cur_insn_uid++;
3351
3352 PATTERN (insn) = pattern;
3353 INSN_CODE (insn) = -1;
3354 LOG_LINKS (insn) = NULL;
3355 REG_NOTES (insn) = NULL;
3356 JUMP_LABEL (insn) = NULL;
3357 INSN_LOCATOR (insn) = 0;
3358 BLOCK_FOR_INSN (insn) = NULL;
3359
3360 return insn;
3361 }
3362
3363 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3364
3365 static rtx
3366 make_call_insn_raw (rtx pattern)
3367 {
3368 rtx insn;
3369
3370 insn = rtx_alloc (CALL_INSN);
3371 INSN_UID (insn) = cur_insn_uid++;
3372
3373 PATTERN (insn) = pattern;
3374 INSN_CODE (insn) = -1;
3375 LOG_LINKS (insn) = NULL;
3376 REG_NOTES (insn) = NULL;
3377 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3378 INSN_LOCATOR (insn) = 0;
3379 BLOCK_FOR_INSN (insn) = NULL;
3380
3381 return insn;
3382 }
3383 \f
3384 /* Add INSN to the end of the doubly-linked list.
3385 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3386
3387 void
3388 add_insn (rtx insn)
3389 {
3390 PREV_INSN (insn) = last_insn;
3391 NEXT_INSN (insn) = 0;
3392
3393 if (NULL != last_insn)
3394 NEXT_INSN (last_insn) = insn;
3395
3396 if (NULL == first_insn)
3397 first_insn = insn;
3398
3399 last_insn = insn;
3400 }
3401
3402 /* Add INSN into the doubly-linked list after insn AFTER. This and
3403 the next should be the only functions called to insert an insn once
3404 delay slots have been filled since only they know how to update a
3405 SEQUENCE. */
3406
3407 void
3408 add_insn_after (rtx insn, rtx after)
3409 {
3410 rtx next = NEXT_INSN (after);
3411 basic_block bb;
3412
3413 gcc_assert (!optimize || !INSN_DELETED_P (after));
3414
3415 NEXT_INSN (insn) = next;
3416 PREV_INSN (insn) = after;
3417
3418 if (next)
3419 {
3420 PREV_INSN (next) = insn;
3421 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3422 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3423 }
3424 else if (last_insn == after)
3425 last_insn = insn;
3426 else
3427 {
3428 struct sequence_stack *stack = seq_stack;
3429 /* Scan all pending sequences too. */
3430 for (; stack; stack = stack->next)
3431 if (after == stack->last)
3432 {
3433 stack->last = insn;
3434 break;
3435 }
3436
3437 gcc_assert (stack);
3438 }
3439
3440 if (!BARRIER_P (after)
3441 && !BARRIER_P (insn)
3442 && (bb = BLOCK_FOR_INSN (after)))
3443 {
3444 set_block_for_insn (insn, bb);
3445 if (INSN_P (insn))
3446 bb->flags |= BB_DIRTY;
3447 /* Should not happen as first in the BB is always
3448 either NOTE or LABEL. */
3449 if (BB_END (bb) == after
3450 /* Avoid clobbering of structure when creating new BB. */
3451 && !BARRIER_P (insn)
3452 && (!NOTE_P (insn)
3453 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3454 BB_END (bb) = insn;
3455 }
3456
3457 NEXT_INSN (after) = insn;
3458 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3459 {
3460 rtx sequence = PATTERN (after);
3461 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3462 }
3463 }
3464
3465 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3466 the previous should be the only functions called to insert an insn once
3467 delay slots have been filled since only they know how to update a
3468 SEQUENCE. */
3469
3470 void
3471 add_insn_before (rtx insn, rtx before)
3472 {
3473 rtx prev = PREV_INSN (before);
3474 basic_block bb;
3475
3476 gcc_assert (!optimize || !INSN_DELETED_P (before));
3477
3478 PREV_INSN (insn) = prev;
3479 NEXT_INSN (insn) = before;
3480
3481 if (prev)
3482 {
3483 NEXT_INSN (prev) = insn;
3484 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3485 {
3486 rtx sequence = PATTERN (prev);
3487 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3488 }
3489 }
3490 else if (first_insn == before)
3491 first_insn = insn;
3492 else
3493 {
3494 struct sequence_stack *stack = seq_stack;
3495 /* Scan all pending sequences too. */
3496 for (; stack; stack = stack->next)
3497 if (before == stack->first)
3498 {
3499 stack->first = insn;
3500 break;
3501 }
3502
3503 gcc_assert (stack);
3504 }
3505
3506 if (!BARRIER_P (before)
3507 && !BARRIER_P (insn)
3508 && (bb = BLOCK_FOR_INSN (before)))
3509 {
3510 set_block_for_insn (insn, bb);
3511 if (INSN_P (insn))
3512 bb->flags |= BB_DIRTY;
3513 /* Should not happen as first in the BB is always either NOTE or
3514 LABEL. */
3515 gcc_assert (BB_HEAD (bb) != insn
3516 /* Avoid clobbering of structure when creating new BB. */
3517 || BARRIER_P (insn)
3518 || (NOTE_P (insn)
3519 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3520 }
3521
3522 PREV_INSN (before) = insn;
3523 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3524 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3525 }
3526
3527 /* Remove an insn from its doubly-linked list. This function knows how
3528 to handle sequences. */
3529 void
3530 remove_insn (rtx insn)
3531 {
3532 rtx next = NEXT_INSN (insn);
3533 rtx prev = PREV_INSN (insn);
3534 basic_block bb;
3535
3536 if (prev)
3537 {
3538 NEXT_INSN (prev) = next;
3539 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3540 {
3541 rtx sequence = PATTERN (prev);
3542 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3543 }
3544 }
3545 else if (first_insn == insn)
3546 first_insn = next;
3547 else
3548 {
3549 struct sequence_stack *stack = seq_stack;
3550 /* Scan all pending sequences too. */
3551 for (; stack; stack = stack->next)
3552 if (insn == stack->first)
3553 {
3554 stack->first = next;
3555 break;
3556 }
3557
3558 gcc_assert (stack);
3559 }
3560
3561 if (next)
3562 {
3563 PREV_INSN (next) = prev;
3564 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3565 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3566 }
3567 else if (last_insn == insn)
3568 last_insn = prev;
3569 else
3570 {
3571 struct sequence_stack *stack = seq_stack;
3572 /* Scan all pending sequences too. */
3573 for (; stack; stack = stack->next)
3574 if (insn == stack->last)
3575 {
3576 stack->last = prev;
3577 break;
3578 }
3579
3580 gcc_assert (stack);
3581 }
3582 if (!BARRIER_P (insn)
3583 && (bb = BLOCK_FOR_INSN (insn)))
3584 {
3585 if (INSN_P (insn))
3586 bb->flags |= BB_DIRTY;
3587 if (BB_HEAD (bb) == insn)
3588 {
3589 /* Never ever delete the basic block note without deleting whole
3590 basic block. */
3591 gcc_assert (!NOTE_P (insn));
3592 BB_HEAD (bb) = next;
3593 }
3594 if (BB_END (bb) == insn)
3595 BB_END (bb) = prev;
3596 }
3597 }
3598
3599 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3600
3601 void
3602 add_function_usage_to (rtx call_insn, rtx call_fusage)
3603 {
3604 gcc_assert (call_insn && CALL_P (call_insn));
3605
3606 /* Put the register usage information on the CALL. If there is already
3607 some usage information, put ours at the end. */
3608 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3609 {
3610 rtx link;
3611
3612 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3613 link = XEXP (link, 1))
3614 ;
3615
3616 XEXP (link, 1) = call_fusage;
3617 }
3618 else
3619 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3620 }
3621
3622 /* Delete all insns made since FROM.
3623 FROM becomes the new last instruction. */
3624
3625 void
3626 delete_insns_since (rtx from)
3627 {
3628 if (from == 0)
3629 first_insn = 0;
3630 else
3631 NEXT_INSN (from) = 0;
3632 last_insn = from;
3633 }
3634
3635 /* This function is deprecated, please use sequences instead.
3636
3637 Move a consecutive bunch of insns to a different place in the chain.
3638 The insns to be moved are those between FROM and TO.
3639 They are moved to a new position after the insn AFTER.
3640 AFTER must not be FROM or TO or any insn in between.
3641
3642 This function does not know about SEQUENCEs and hence should not be
3643 called after delay-slot filling has been done. */
3644
3645 void
3646 reorder_insns_nobb (rtx from, rtx to, rtx after)
3647 {
3648 /* Splice this bunch out of where it is now. */
3649 if (PREV_INSN (from))
3650 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3651 if (NEXT_INSN (to))
3652 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3653 if (last_insn == to)
3654 last_insn = PREV_INSN (from);
3655 if (first_insn == from)
3656 first_insn = NEXT_INSN (to);
3657
3658 /* Make the new neighbors point to it and it to them. */
3659 if (NEXT_INSN (after))
3660 PREV_INSN (NEXT_INSN (after)) = to;
3661
3662 NEXT_INSN (to) = NEXT_INSN (after);
3663 PREV_INSN (from) = after;
3664 NEXT_INSN (after) = from;
3665 if (after == last_insn)
3666 last_insn = to;
3667 }
3668
3669 /* Same as function above, but take care to update BB boundaries. */
3670 void
3671 reorder_insns (rtx from, rtx to, rtx after)
3672 {
3673 rtx prev = PREV_INSN (from);
3674 basic_block bb, bb2;
3675
3676 reorder_insns_nobb (from, to, after);
3677
3678 if (!BARRIER_P (after)
3679 && (bb = BLOCK_FOR_INSN (after)))
3680 {
3681 rtx x;
3682 bb->flags |= BB_DIRTY;
3683
3684 if (!BARRIER_P (from)
3685 && (bb2 = BLOCK_FOR_INSN (from)))
3686 {
3687 if (BB_END (bb2) == to)
3688 BB_END (bb2) = prev;
3689 bb2->flags |= BB_DIRTY;
3690 }
3691
3692 if (BB_END (bb) == after)
3693 BB_END (bb) = to;
3694
3695 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3696 if (!BARRIER_P (x))
3697 set_block_for_insn (x, bb);
3698 }
3699 }
3700
3701 /* Return the line note insn preceding INSN. */
3702
3703 static rtx
3704 find_line_note (rtx insn)
3705 {
3706 if (no_line_numbers)
3707 return 0;
3708
3709 for (; insn; insn = PREV_INSN (insn))
3710 if (NOTE_P (insn)
3711 && NOTE_LINE_NUMBER (insn) >= 0)
3712 break;
3713
3714 return insn;
3715 }
3716
3717 /* Remove unnecessary notes from the instruction stream. */
3718
3719 void
3720 remove_unnecessary_notes (void)
3721 {
3722 rtx eh_stack = NULL_RTX;
3723 rtx insn;
3724 rtx next;
3725 rtx tmp;
3726
3727 /* We must not remove the first instruction in the function because
3728 the compiler depends on the first instruction being a note. */
3729 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3730 {
3731 /* Remember what's next. */
3732 next = NEXT_INSN (insn);
3733
3734 /* We're only interested in notes. */
3735 if (!NOTE_P (insn))
3736 continue;
3737
3738 switch (NOTE_LINE_NUMBER (insn))
3739 {
3740 case NOTE_INSN_DELETED:
3741 remove_insn (insn);
3742 break;
3743
3744 case NOTE_INSN_EH_REGION_BEG:
3745 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3746 break;
3747
3748 case NOTE_INSN_EH_REGION_END:
3749 /* Too many end notes. */
3750 gcc_assert (eh_stack);
3751 /* Mismatched nesting. */
3752 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3753 == NOTE_EH_HANDLER (insn));
3754 tmp = eh_stack;
3755 eh_stack = XEXP (eh_stack, 1);
3756 free_INSN_LIST_node (tmp);
3757 break;
3758
3759 case NOTE_INSN_BLOCK_BEG:
3760 case NOTE_INSN_BLOCK_END:
3761 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3762 gcc_unreachable ();
3763
3764 default:
3765 break;
3766 }
3767 }
3768
3769 /* Too many EH_REGION_BEG notes. */
3770 gcc_assert (!eh_stack);
3771 }
3772
3773 struct tree_opt_pass pass_remove_unnecessary_notes =
3774 {
3775 "eunotes", /* name */
3776 NULL, /* gate */
3777 remove_unnecessary_notes, /* execute */
3778 NULL, /* sub */
3779 NULL, /* next */
3780 0, /* static_pass_number */
3781 0, /* tv_id */
3782 0, /* properties_required */
3783 0, /* properties_provided */
3784 0, /* properties_destroyed */
3785 0, /* todo_flags_start */
3786 TODO_dump_func, /* todo_flags_finish */
3787 0 /* letter */
3788 };
3789
3790 \f
3791 /* Emit insn(s) of given code and pattern
3792 at a specified place within the doubly-linked list.
3793
3794 All of the emit_foo global entry points accept an object
3795 X which is either an insn list or a PATTERN of a single
3796 instruction.
3797
3798 There are thus a few canonical ways to generate code and
3799 emit it at a specific place in the instruction stream. For
3800 example, consider the instruction named SPOT and the fact that
3801 we would like to emit some instructions before SPOT. We might
3802 do it like this:
3803
3804 start_sequence ();
3805 ... emit the new instructions ...
3806 insns_head = get_insns ();
3807 end_sequence ();
3808
3809 emit_insn_before (insns_head, SPOT);
3810
3811 It used to be common to generate SEQUENCE rtl instead, but that
3812 is a relic of the past which no longer occurs. The reason is that
3813 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3814 generated would almost certainly die right after it was created. */
3815
3816 /* Make X be output before the instruction BEFORE. */
3817
3818 rtx
3819 emit_insn_before_noloc (rtx x, rtx before)
3820 {
3821 rtx last = before;
3822 rtx insn;
3823
3824 gcc_assert (before);
3825
3826 if (x == NULL_RTX)
3827 return last;
3828
3829 switch (GET_CODE (x))
3830 {
3831 case INSN:
3832 case JUMP_INSN:
3833 case CALL_INSN:
3834 case CODE_LABEL:
3835 case BARRIER:
3836 case NOTE:
3837 insn = x;
3838 while (insn)
3839 {
3840 rtx next = NEXT_INSN (insn);
3841 add_insn_before (insn, before);
3842 last = insn;
3843 insn = next;
3844 }
3845 break;
3846
3847 #ifdef ENABLE_RTL_CHECKING
3848 case SEQUENCE:
3849 gcc_unreachable ();
3850 break;
3851 #endif
3852
3853 default:
3854 last = make_insn_raw (x);
3855 add_insn_before (last, before);
3856 break;
3857 }
3858
3859 return last;
3860 }
3861
3862 /* Make an instruction with body X and code JUMP_INSN
3863 and output it before the instruction BEFORE. */
3864
3865 rtx
3866 emit_jump_insn_before_noloc (rtx x, rtx before)
3867 {
3868 rtx insn, last = NULL_RTX;
3869
3870 gcc_assert (before);
3871
3872 switch (GET_CODE (x))
3873 {
3874 case INSN:
3875 case JUMP_INSN:
3876 case CALL_INSN:
3877 case CODE_LABEL:
3878 case BARRIER:
3879 case NOTE:
3880 insn = x;
3881 while (insn)
3882 {
3883 rtx next = NEXT_INSN (insn);
3884 add_insn_before (insn, before);
3885 last = insn;
3886 insn = next;
3887 }
3888 break;
3889
3890 #ifdef ENABLE_RTL_CHECKING
3891 case SEQUENCE:
3892 gcc_unreachable ();
3893 break;
3894 #endif
3895
3896 default:
3897 last = make_jump_insn_raw (x);
3898 add_insn_before (last, before);
3899 break;
3900 }
3901
3902 return last;
3903 }
3904
3905 /* Make an instruction with body X and code CALL_INSN
3906 and output it before the instruction BEFORE. */
3907
3908 rtx
3909 emit_call_insn_before_noloc (rtx x, rtx before)
3910 {
3911 rtx last = NULL_RTX, insn;
3912
3913 gcc_assert (before);
3914
3915 switch (GET_CODE (x))
3916 {
3917 case INSN:
3918 case JUMP_INSN:
3919 case CALL_INSN:
3920 case CODE_LABEL:
3921 case BARRIER:
3922 case NOTE:
3923 insn = x;
3924 while (insn)
3925 {
3926 rtx next = NEXT_INSN (insn);
3927 add_insn_before (insn, before);
3928 last = insn;
3929 insn = next;
3930 }
3931 break;
3932
3933 #ifdef ENABLE_RTL_CHECKING
3934 case SEQUENCE:
3935 gcc_unreachable ();
3936 break;
3937 #endif
3938
3939 default:
3940 last = make_call_insn_raw (x);
3941 add_insn_before (last, before);
3942 break;
3943 }
3944
3945 return last;
3946 }
3947
3948 /* Make an insn of code BARRIER
3949 and output it before the insn BEFORE. */
3950
3951 rtx
3952 emit_barrier_before (rtx before)
3953 {
3954 rtx insn = rtx_alloc (BARRIER);
3955
3956 INSN_UID (insn) = cur_insn_uid++;
3957
3958 add_insn_before (insn, before);
3959 return insn;
3960 }
3961
3962 /* Emit the label LABEL before the insn BEFORE. */
3963
3964 rtx
3965 emit_label_before (rtx label, rtx before)
3966 {
3967 /* This can be called twice for the same label as a result of the
3968 confusion that follows a syntax error! So make it harmless. */
3969 if (INSN_UID (label) == 0)
3970 {
3971 INSN_UID (label) = cur_insn_uid++;
3972 add_insn_before (label, before);
3973 }
3974
3975 return label;
3976 }
3977
3978 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3979
3980 rtx
3981 emit_note_before (int subtype, rtx before)
3982 {
3983 rtx note = rtx_alloc (NOTE);
3984 INSN_UID (note) = cur_insn_uid++;
3985 #ifndef USE_MAPPED_LOCATION
3986 NOTE_SOURCE_FILE (note) = 0;
3987 #endif
3988 NOTE_LINE_NUMBER (note) = subtype;
3989 BLOCK_FOR_INSN (note) = NULL;
3990
3991 add_insn_before (note, before);
3992 return note;
3993 }
3994 \f
3995 /* Helper for emit_insn_after, handles lists of instructions
3996 efficiently. */
3997
3998 static rtx emit_insn_after_1 (rtx, rtx);
3999
4000 static rtx
4001 emit_insn_after_1 (rtx first, rtx after)
4002 {
4003 rtx last;
4004 rtx after_after;
4005 basic_block bb;
4006
4007 if (!BARRIER_P (after)
4008 && (bb = BLOCK_FOR_INSN (after)))
4009 {
4010 bb->flags |= BB_DIRTY;
4011 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4012 if (!BARRIER_P (last))
4013 set_block_for_insn (last, bb);
4014 if (!BARRIER_P (last))
4015 set_block_for_insn (last, bb);
4016 if (BB_END (bb) == after)
4017 BB_END (bb) = last;
4018 }
4019 else
4020 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4021 continue;
4022
4023 after_after = NEXT_INSN (after);
4024
4025 NEXT_INSN (after) = first;
4026 PREV_INSN (first) = after;
4027 NEXT_INSN (last) = after_after;
4028 if (after_after)
4029 PREV_INSN (after_after) = last;
4030
4031 if (after == last_insn)
4032 last_insn = last;
4033 return last;
4034 }
4035
4036 /* Make X be output after the insn AFTER. */
4037
4038 rtx
4039 emit_insn_after_noloc (rtx x, rtx after)
4040 {
4041 rtx last = after;
4042
4043 gcc_assert (after);
4044
4045 if (x == NULL_RTX)
4046 return last;
4047
4048 switch (GET_CODE (x))
4049 {
4050 case INSN:
4051 case JUMP_INSN:
4052 case CALL_INSN:
4053 case CODE_LABEL:
4054 case BARRIER:
4055 case NOTE:
4056 last = emit_insn_after_1 (x, after);
4057 break;
4058
4059 #ifdef ENABLE_RTL_CHECKING
4060 case SEQUENCE:
4061 gcc_unreachable ();
4062 break;
4063 #endif
4064
4065 default:
4066 last = make_insn_raw (x);
4067 add_insn_after (last, after);
4068 break;
4069 }
4070
4071 return last;
4072 }
4073
4074 /* Similar to emit_insn_after, except that line notes are to be inserted so
4075 as to act as if this insn were at FROM. */
4076
4077 void
4078 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4079 {
4080 rtx from_line = find_line_note (from);
4081 rtx after_line = find_line_note (after);
4082 rtx insn = emit_insn_after (x, after);
4083
4084 if (from_line)
4085 emit_note_copy_after (from_line, after);
4086
4087 if (after_line)
4088 emit_note_copy_after (after_line, insn);
4089 }
4090
4091 /* Make an insn of code JUMP_INSN with body X
4092 and output it after the insn AFTER. */
4093
4094 rtx
4095 emit_jump_insn_after_noloc (rtx x, rtx after)
4096 {
4097 rtx last;
4098
4099 gcc_assert (after);
4100
4101 switch (GET_CODE (x))
4102 {
4103 case INSN:
4104 case JUMP_INSN:
4105 case CALL_INSN:
4106 case CODE_LABEL:
4107 case BARRIER:
4108 case NOTE:
4109 last = emit_insn_after_1 (x, after);
4110 break;
4111
4112 #ifdef ENABLE_RTL_CHECKING
4113 case SEQUENCE:
4114 gcc_unreachable ();
4115 break;
4116 #endif
4117
4118 default:
4119 last = make_jump_insn_raw (x);
4120 add_insn_after (last, after);
4121 break;
4122 }
4123
4124 return last;
4125 }
4126
4127 /* Make an instruction with body X and code CALL_INSN
4128 and output it after the instruction AFTER. */
4129
4130 rtx
4131 emit_call_insn_after_noloc (rtx x, rtx after)
4132 {
4133 rtx last;
4134
4135 gcc_assert (after);
4136
4137 switch (GET_CODE (x))
4138 {
4139 case INSN:
4140 case JUMP_INSN:
4141 case CALL_INSN:
4142 case CODE_LABEL:
4143 case BARRIER:
4144 case NOTE:
4145 last = emit_insn_after_1 (x, after);
4146 break;
4147
4148 #ifdef ENABLE_RTL_CHECKING
4149 case SEQUENCE:
4150 gcc_unreachable ();
4151 break;
4152 #endif
4153
4154 default:
4155 last = make_call_insn_raw (x);
4156 add_insn_after (last, after);
4157 break;
4158 }
4159
4160 return last;
4161 }
4162
4163 /* Make an insn of code BARRIER
4164 and output it after the insn AFTER. */
4165
4166 rtx
4167 emit_barrier_after (rtx after)
4168 {
4169 rtx insn = rtx_alloc (BARRIER);
4170
4171 INSN_UID (insn) = cur_insn_uid++;
4172
4173 add_insn_after (insn, after);
4174 return insn;
4175 }
4176
4177 /* Emit the label LABEL after the insn AFTER. */
4178
4179 rtx
4180 emit_label_after (rtx label, rtx after)
4181 {
4182 /* This can be called twice for the same label
4183 as a result of the confusion that follows a syntax error!
4184 So make it harmless. */
4185 if (INSN_UID (label) == 0)
4186 {
4187 INSN_UID (label) = cur_insn_uid++;
4188 add_insn_after (label, after);
4189 }
4190
4191 return label;
4192 }
4193
4194 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4195
4196 rtx
4197 emit_note_after (int subtype, rtx after)
4198 {
4199 rtx note = rtx_alloc (NOTE);
4200 INSN_UID (note) = cur_insn_uid++;
4201 #ifndef USE_MAPPED_LOCATION
4202 NOTE_SOURCE_FILE (note) = 0;
4203 #endif
4204 NOTE_LINE_NUMBER (note) = subtype;
4205 BLOCK_FOR_INSN (note) = NULL;
4206 add_insn_after (note, after);
4207 return note;
4208 }
4209
4210 /* Emit a copy of note ORIG after the insn AFTER. */
4211
4212 rtx
4213 emit_note_copy_after (rtx orig, rtx after)
4214 {
4215 rtx note;
4216
4217 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4218 {
4219 cur_insn_uid++;
4220 return 0;
4221 }
4222
4223 note = rtx_alloc (NOTE);
4224 INSN_UID (note) = cur_insn_uid++;
4225 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4226 NOTE_DATA (note) = NOTE_DATA (orig);
4227 BLOCK_FOR_INSN (note) = NULL;
4228 add_insn_after (note, after);
4229 return note;
4230 }
4231 \f
4232 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4233 rtx
4234 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4235 {
4236 rtx last = emit_insn_after_noloc (pattern, after);
4237
4238 if (pattern == NULL_RTX || !loc)
4239 return last;
4240
4241 after = NEXT_INSN (after);
4242 while (1)
4243 {
4244 if (active_insn_p (after) && !INSN_LOCATOR (after))
4245 INSN_LOCATOR (after) = loc;
4246 if (after == last)
4247 break;
4248 after = NEXT_INSN (after);
4249 }
4250 return last;
4251 }
4252
4253 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4254 rtx
4255 emit_insn_after (rtx pattern, rtx after)
4256 {
4257 if (INSN_P (after))
4258 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4259 else
4260 return emit_insn_after_noloc (pattern, after);
4261 }
4262
4263 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4264 rtx
4265 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4266 {
4267 rtx last = emit_jump_insn_after_noloc (pattern, after);
4268
4269 if (pattern == NULL_RTX || !loc)
4270 return last;
4271
4272 after = NEXT_INSN (after);
4273 while (1)
4274 {
4275 if (active_insn_p (after) && !INSN_LOCATOR (after))
4276 INSN_LOCATOR (after) = loc;
4277 if (after == last)
4278 break;
4279 after = NEXT_INSN (after);
4280 }
4281 return last;
4282 }
4283
4284 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4285 rtx
4286 emit_jump_insn_after (rtx pattern, rtx after)
4287 {
4288 if (INSN_P (after))
4289 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4290 else
4291 return emit_jump_insn_after_noloc (pattern, after);
4292 }
4293
4294 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4295 rtx
4296 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4297 {
4298 rtx last = emit_call_insn_after_noloc (pattern, after);
4299
4300 if (pattern == NULL_RTX || !loc)
4301 return last;
4302
4303 after = NEXT_INSN (after);
4304 while (1)
4305 {
4306 if (active_insn_p (after) && !INSN_LOCATOR (after))
4307 INSN_LOCATOR (after) = loc;
4308 if (after == last)
4309 break;
4310 after = NEXT_INSN (after);
4311 }
4312 return last;
4313 }
4314
4315 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4316 rtx
4317 emit_call_insn_after (rtx pattern, rtx after)
4318 {
4319 if (INSN_P (after))
4320 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4321 else
4322 return emit_call_insn_after_noloc (pattern, after);
4323 }
4324
4325 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4326 rtx
4327 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4328 {
4329 rtx first = PREV_INSN (before);
4330 rtx last = emit_insn_before_noloc (pattern, before);
4331
4332 if (pattern == NULL_RTX || !loc)
4333 return last;
4334
4335 first = NEXT_INSN (first);
4336 while (1)
4337 {
4338 if (active_insn_p (first) && !INSN_LOCATOR (first))
4339 INSN_LOCATOR (first) = loc;
4340 if (first == last)
4341 break;
4342 first = NEXT_INSN (first);
4343 }
4344 return last;
4345 }
4346
4347 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4348 rtx
4349 emit_insn_before (rtx pattern, rtx before)
4350 {
4351 if (INSN_P (before))
4352 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4353 else
4354 return emit_insn_before_noloc (pattern, before);
4355 }
4356
4357 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4358 rtx
4359 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4360 {
4361 rtx first = PREV_INSN (before);
4362 rtx last = emit_jump_insn_before_noloc (pattern, before);
4363
4364 if (pattern == NULL_RTX)
4365 return last;
4366
4367 first = NEXT_INSN (first);
4368 while (1)
4369 {
4370 if (active_insn_p (first) && !INSN_LOCATOR (first))
4371 INSN_LOCATOR (first) = loc;
4372 if (first == last)
4373 break;
4374 first = NEXT_INSN (first);
4375 }
4376 return last;
4377 }
4378
4379 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4380 rtx
4381 emit_jump_insn_before (rtx pattern, rtx before)
4382 {
4383 if (INSN_P (before))
4384 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4385 else
4386 return emit_jump_insn_before_noloc (pattern, before);
4387 }
4388
4389 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4390 rtx
4391 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4392 {
4393 rtx first = PREV_INSN (before);
4394 rtx last = emit_call_insn_before_noloc (pattern, before);
4395
4396 if (pattern == NULL_RTX)
4397 return last;
4398
4399 first = NEXT_INSN (first);
4400 while (1)
4401 {
4402 if (active_insn_p (first) && !INSN_LOCATOR (first))
4403 INSN_LOCATOR (first) = loc;
4404 if (first == last)
4405 break;
4406 first = NEXT_INSN (first);
4407 }
4408 return last;
4409 }
4410
4411 /* like emit_call_insn_before_noloc,
4412 but set insn_locator according to before. */
4413 rtx
4414 emit_call_insn_before (rtx pattern, rtx before)
4415 {
4416 if (INSN_P (before))
4417 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4418 else
4419 return emit_call_insn_before_noloc (pattern, before);
4420 }
4421 \f
4422 /* Take X and emit it at the end of the doubly-linked
4423 INSN list.
4424
4425 Returns the last insn emitted. */
4426
4427 rtx
4428 emit_insn (rtx x)
4429 {
4430 rtx last = last_insn;
4431 rtx insn;
4432
4433 if (x == NULL_RTX)
4434 return last;
4435
4436 switch (GET_CODE (x))
4437 {
4438 case INSN:
4439 case JUMP_INSN:
4440 case CALL_INSN:
4441 case CODE_LABEL:
4442 case BARRIER:
4443 case NOTE:
4444 insn = x;
4445 while (insn)
4446 {
4447 rtx next = NEXT_INSN (insn);
4448 add_insn (insn);
4449 last = insn;
4450 insn = next;
4451 }
4452 break;
4453
4454 #ifdef ENABLE_RTL_CHECKING
4455 case SEQUENCE:
4456 gcc_unreachable ();
4457 break;
4458 #endif
4459
4460 default:
4461 last = make_insn_raw (x);
4462 add_insn (last);
4463 break;
4464 }
4465
4466 return last;
4467 }
4468
4469 /* Make an insn of code JUMP_INSN with pattern X
4470 and add it to the end of the doubly-linked list. */
4471
4472 rtx
4473 emit_jump_insn (rtx x)
4474 {
4475 rtx last = NULL_RTX, insn;
4476
4477 switch (GET_CODE (x))
4478 {
4479 case INSN:
4480 case JUMP_INSN:
4481 case CALL_INSN:
4482 case CODE_LABEL:
4483 case BARRIER:
4484 case NOTE:
4485 insn = x;
4486 while (insn)
4487 {
4488 rtx next = NEXT_INSN (insn);
4489 add_insn (insn);
4490 last = insn;
4491 insn = next;
4492 }
4493 break;
4494
4495 #ifdef ENABLE_RTL_CHECKING
4496 case SEQUENCE:
4497 gcc_unreachable ();
4498 break;
4499 #endif
4500
4501 default:
4502 last = make_jump_insn_raw (x);
4503 add_insn (last);
4504 break;
4505 }
4506
4507 return last;
4508 }
4509
4510 /* Make an insn of code CALL_INSN with pattern X
4511 and add it to the end of the doubly-linked list. */
4512
4513 rtx
4514 emit_call_insn (rtx x)
4515 {
4516 rtx insn;
4517
4518 switch (GET_CODE (x))
4519 {
4520 case INSN:
4521 case JUMP_INSN:
4522 case CALL_INSN:
4523 case CODE_LABEL:
4524 case BARRIER:
4525 case NOTE:
4526 insn = emit_insn (x);
4527 break;
4528
4529 #ifdef ENABLE_RTL_CHECKING
4530 case SEQUENCE:
4531 gcc_unreachable ();
4532 break;
4533 #endif
4534
4535 default:
4536 insn = make_call_insn_raw (x);
4537 add_insn (insn);
4538 break;
4539 }
4540
4541 return insn;
4542 }
4543
4544 /* Add the label LABEL to the end of the doubly-linked list. */
4545
4546 rtx
4547 emit_label (rtx label)
4548 {
4549 /* This can be called twice for the same label
4550 as a result of the confusion that follows a syntax error!
4551 So make it harmless. */
4552 if (INSN_UID (label) == 0)
4553 {
4554 INSN_UID (label) = cur_insn_uid++;
4555 add_insn (label);
4556 }
4557 return label;
4558 }
4559
4560 /* Make an insn of code BARRIER
4561 and add it to the end of the doubly-linked list. */
4562
4563 rtx
4564 emit_barrier (void)
4565 {
4566 rtx barrier = rtx_alloc (BARRIER);
4567 INSN_UID (barrier) = cur_insn_uid++;
4568 add_insn (barrier);
4569 return barrier;
4570 }
4571
4572 /* Make line numbering NOTE insn for LOCATION add it to the end
4573 of the doubly-linked list, but only if line-numbers are desired for
4574 debugging info and it doesn't match the previous one. */
4575
4576 rtx
4577 emit_line_note (location_t location)
4578 {
4579 rtx note;
4580
4581 #ifdef USE_MAPPED_LOCATION
4582 if (location == last_location)
4583 return NULL_RTX;
4584 #else
4585 if (location.file && last_location.file
4586 && !strcmp (location.file, last_location.file)
4587 && location.line == last_location.line)
4588 return NULL_RTX;
4589 #endif
4590 last_location = location;
4591
4592 if (no_line_numbers)
4593 {
4594 cur_insn_uid++;
4595 return NULL_RTX;
4596 }
4597
4598 #ifdef USE_MAPPED_LOCATION
4599 note = emit_note ((int) location);
4600 #else
4601 note = emit_note (location.line);
4602 NOTE_SOURCE_FILE (note) = location.file;
4603 #endif
4604
4605 return note;
4606 }
4607
4608 /* Emit a copy of note ORIG. */
4609
4610 rtx
4611 emit_note_copy (rtx orig)
4612 {
4613 rtx note;
4614
4615 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4616 {
4617 cur_insn_uid++;
4618 return NULL_RTX;
4619 }
4620
4621 note = rtx_alloc (NOTE);
4622
4623 INSN_UID (note) = cur_insn_uid++;
4624 NOTE_DATA (note) = NOTE_DATA (orig);
4625 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4626 BLOCK_FOR_INSN (note) = NULL;
4627 add_insn (note);
4628
4629 return note;
4630 }
4631
4632 /* Make an insn of code NOTE or type NOTE_NO
4633 and add it to the end of the doubly-linked list. */
4634
4635 rtx
4636 emit_note (int note_no)
4637 {
4638 rtx note;
4639
4640 note = rtx_alloc (NOTE);
4641 INSN_UID (note) = cur_insn_uid++;
4642 NOTE_LINE_NUMBER (note) = note_no;
4643 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4644 BLOCK_FOR_INSN (note) = NULL;
4645 add_insn (note);
4646 return note;
4647 }
4648
4649 /* Cause next statement to emit a line note even if the line number
4650 has not changed. */
4651
4652 void
4653 force_next_line_note (void)
4654 {
4655 #ifdef USE_MAPPED_LOCATION
4656 last_location = -1;
4657 #else
4658 last_location.line = -1;
4659 #endif
4660 }
4661
4662 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4663 note of this type already exists, remove it first. */
4664
4665 rtx
4666 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4667 {
4668 rtx note = find_reg_note (insn, kind, NULL_RTX);
4669
4670 switch (kind)
4671 {
4672 case REG_EQUAL:
4673 case REG_EQUIV:
4674 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4675 has multiple sets (some callers assume single_set
4676 means the insn only has one set, when in fact it
4677 means the insn only has one * useful * set). */
4678 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4679 {
4680 gcc_assert (!note);
4681 return NULL_RTX;
4682 }
4683
4684 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4685 It serves no useful purpose and breaks eliminate_regs. */
4686 if (GET_CODE (datum) == ASM_OPERANDS)
4687 return NULL_RTX;
4688 break;
4689
4690 default:
4691 break;
4692 }
4693
4694 if (note)
4695 {
4696 XEXP (note, 0) = datum;
4697 return note;
4698 }
4699
4700 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4701 return REG_NOTES (insn);
4702 }
4703 \f
4704 /* Return an indication of which type of insn should have X as a body.
4705 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4706
4707 static enum rtx_code
4708 classify_insn (rtx x)
4709 {
4710 if (LABEL_P (x))
4711 return CODE_LABEL;
4712 if (GET_CODE (x) == CALL)
4713 return CALL_INSN;
4714 if (GET_CODE (x) == RETURN)
4715 return JUMP_INSN;
4716 if (GET_CODE (x) == SET)
4717 {
4718 if (SET_DEST (x) == pc_rtx)
4719 return JUMP_INSN;
4720 else if (GET_CODE (SET_SRC (x)) == CALL)
4721 return CALL_INSN;
4722 else
4723 return INSN;
4724 }
4725 if (GET_CODE (x) == PARALLEL)
4726 {
4727 int j;
4728 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4729 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4730 return CALL_INSN;
4731 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4732 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4733 return JUMP_INSN;
4734 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4735 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4736 return CALL_INSN;
4737 }
4738 return INSN;
4739 }
4740
4741 /* Emit the rtl pattern X as an appropriate kind of insn.
4742 If X is a label, it is simply added into the insn chain. */
4743
4744 rtx
4745 emit (rtx x)
4746 {
4747 enum rtx_code code = classify_insn (x);
4748
4749 switch (code)
4750 {
4751 case CODE_LABEL:
4752 return emit_label (x);
4753 case INSN:
4754 return emit_insn (x);
4755 case JUMP_INSN:
4756 {
4757 rtx insn = emit_jump_insn (x);
4758 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4759 return emit_barrier ();
4760 return insn;
4761 }
4762 case CALL_INSN:
4763 return emit_call_insn (x);
4764 default:
4765 gcc_unreachable ();
4766 }
4767 }
4768 \f
4769 /* Space for free sequence stack entries. */
4770 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4771
4772 /* Begin emitting insns to a sequence. If this sequence will contain
4773 something that might cause the compiler to pop arguments to function
4774 calls (because those pops have previously been deferred; see
4775 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4776 before calling this function. That will ensure that the deferred
4777 pops are not accidentally emitted in the middle of this sequence. */
4778
4779 void
4780 start_sequence (void)
4781 {
4782 struct sequence_stack *tem;
4783
4784 if (free_sequence_stack != NULL)
4785 {
4786 tem = free_sequence_stack;
4787 free_sequence_stack = tem->next;
4788 }
4789 else
4790 tem = ggc_alloc (sizeof (struct sequence_stack));
4791
4792 tem->next = seq_stack;
4793 tem->first = first_insn;
4794 tem->last = last_insn;
4795
4796 seq_stack = tem;
4797
4798 first_insn = 0;
4799 last_insn = 0;
4800 }
4801
4802 /* Set up the insn chain starting with FIRST as the current sequence,
4803 saving the previously current one. See the documentation for
4804 start_sequence for more information about how to use this function. */
4805
4806 void
4807 push_to_sequence (rtx first)
4808 {
4809 rtx last;
4810
4811 start_sequence ();
4812
4813 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4814
4815 first_insn = first;
4816 last_insn = last;
4817 }
4818
4819 /* Set up the outer-level insn chain
4820 as the current sequence, saving the previously current one. */
4821
4822 void
4823 push_topmost_sequence (void)
4824 {
4825 struct sequence_stack *stack, *top = NULL;
4826
4827 start_sequence ();
4828
4829 for (stack = seq_stack; stack; stack = stack->next)
4830 top = stack;
4831
4832 first_insn = top->first;
4833 last_insn = top->last;
4834 }
4835
4836 /* After emitting to the outer-level insn chain, update the outer-level
4837 insn chain, and restore the previous saved state. */
4838
4839 void
4840 pop_topmost_sequence (void)
4841 {
4842 struct sequence_stack *stack, *top = NULL;
4843
4844 for (stack = seq_stack; stack; stack = stack->next)
4845 top = stack;
4846
4847 top->first = first_insn;
4848 top->last = last_insn;
4849
4850 end_sequence ();
4851 }
4852
4853 /* After emitting to a sequence, restore previous saved state.
4854
4855 To get the contents of the sequence just made, you must call
4856 `get_insns' *before* calling here.
4857
4858 If the compiler might have deferred popping arguments while
4859 generating this sequence, and this sequence will not be immediately
4860 inserted into the instruction stream, use do_pending_stack_adjust
4861 before calling get_insns. That will ensure that the deferred
4862 pops are inserted into this sequence, and not into some random
4863 location in the instruction stream. See INHIBIT_DEFER_POP for more
4864 information about deferred popping of arguments. */
4865
4866 void
4867 end_sequence (void)
4868 {
4869 struct sequence_stack *tem = seq_stack;
4870
4871 first_insn = tem->first;
4872 last_insn = tem->last;
4873 seq_stack = tem->next;
4874
4875 memset (tem, 0, sizeof (*tem));
4876 tem->next = free_sequence_stack;
4877 free_sequence_stack = tem;
4878 }
4879
4880 /* Return 1 if currently emitting into a sequence. */
4881
4882 int
4883 in_sequence_p (void)
4884 {
4885 return seq_stack != 0;
4886 }
4887 \f
4888 /* Put the various virtual registers into REGNO_REG_RTX. */
4889
4890 void
4891 init_virtual_regs (struct emit_status *es)
4892 {
4893 rtx *ptr = es->x_regno_reg_rtx;
4894 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4895 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4896 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4897 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4898 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4899 }
4900
4901 \f
4902 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4903 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4904 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4905 static int copy_insn_n_scratches;
4906
4907 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4908 copied an ASM_OPERANDS.
4909 In that case, it is the original input-operand vector. */
4910 static rtvec orig_asm_operands_vector;
4911
4912 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4913 copied an ASM_OPERANDS.
4914 In that case, it is the copied input-operand vector. */
4915 static rtvec copy_asm_operands_vector;
4916
4917 /* Likewise for the constraints vector. */
4918 static rtvec orig_asm_constraints_vector;
4919 static rtvec copy_asm_constraints_vector;
4920
4921 /* Recursively create a new copy of an rtx for copy_insn.
4922 This function differs from copy_rtx in that it handles SCRATCHes and
4923 ASM_OPERANDs properly.
4924 Normally, this function is not used directly; use copy_insn as front end.
4925 However, you could first copy an insn pattern with copy_insn and then use
4926 this function afterwards to properly copy any REG_NOTEs containing
4927 SCRATCHes. */
4928
4929 rtx
4930 copy_insn_1 (rtx orig)
4931 {
4932 rtx copy;
4933 int i, j;
4934 RTX_CODE code;
4935 const char *format_ptr;
4936
4937 code = GET_CODE (orig);
4938
4939 switch (code)
4940 {
4941 case REG:
4942 case CONST_INT:
4943 case CONST_DOUBLE:
4944 case CONST_VECTOR:
4945 case SYMBOL_REF:
4946 case CODE_LABEL:
4947 case PC:
4948 case CC0:
4949 return orig;
4950 case CLOBBER:
4951 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4952 return orig;
4953 break;
4954
4955 case SCRATCH:
4956 for (i = 0; i < copy_insn_n_scratches; i++)
4957 if (copy_insn_scratch_in[i] == orig)
4958 return copy_insn_scratch_out[i];
4959 break;
4960
4961 case CONST:
4962 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4963 a LABEL_REF, it isn't sharable. */
4964 if (GET_CODE (XEXP (orig, 0)) == PLUS
4965 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4966 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4967 return orig;
4968 break;
4969
4970 /* A MEM with a constant address is not sharable. The problem is that
4971 the constant address may need to be reloaded. If the mem is shared,
4972 then reloading one copy of this mem will cause all copies to appear
4973 to have been reloaded. */
4974
4975 default:
4976 break;
4977 }
4978
4979 copy = rtx_alloc (code);
4980
4981 /* Copy the various flags, and other information. We assume that
4982 all fields need copying, and then clear the fields that should
4983 not be copied. That is the sensible default behavior, and forces
4984 us to explicitly document why we are *not* copying a flag. */
4985 memcpy (copy, orig, RTX_HDR_SIZE);
4986
4987 /* We do not copy the USED flag, which is used as a mark bit during
4988 walks over the RTL. */
4989 RTX_FLAG (copy, used) = 0;
4990
4991 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4992 if (INSN_P (orig))
4993 {
4994 RTX_FLAG (copy, jump) = 0;
4995 RTX_FLAG (copy, call) = 0;
4996 RTX_FLAG (copy, frame_related) = 0;
4997 }
4998
4999 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5000
5001 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5002 {
5003 copy->u.fld[i] = orig->u.fld[i];
5004 switch (*format_ptr++)
5005 {
5006 case 'e':
5007 if (XEXP (orig, i) != NULL)
5008 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5009 break;
5010
5011 case 'E':
5012 case 'V':
5013 if (XVEC (orig, i) == orig_asm_constraints_vector)
5014 XVEC (copy, i) = copy_asm_constraints_vector;
5015 else if (XVEC (orig, i) == orig_asm_operands_vector)
5016 XVEC (copy, i) = copy_asm_operands_vector;
5017 else if (XVEC (orig, i) != NULL)
5018 {
5019 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5020 for (j = 0; j < XVECLEN (copy, i); j++)
5021 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5022 }
5023 break;
5024
5025 case 't':
5026 case 'w':
5027 case 'i':
5028 case 's':
5029 case 'S':
5030 case 'u':
5031 case '0':
5032 /* These are left unchanged. */
5033 break;
5034
5035 default:
5036 gcc_unreachable ();
5037 }
5038 }
5039
5040 if (code == SCRATCH)
5041 {
5042 i = copy_insn_n_scratches++;
5043 gcc_assert (i < MAX_RECOG_OPERANDS);
5044 copy_insn_scratch_in[i] = orig;
5045 copy_insn_scratch_out[i] = copy;
5046 }
5047 else if (code == ASM_OPERANDS)
5048 {
5049 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5050 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5051 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5052 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5053 }
5054
5055 return copy;
5056 }
5057
5058 /* Create a new copy of an rtx.
5059 This function differs from copy_rtx in that it handles SCRATCHes and
5060 ASM_OPERANDs properly.
5061 INSN doesn't really have to be a full INSN; it could be just the
5062 pattern. */
5063 rtx
5064 copy_insn (rtx insn)
5065 {
5066 copy_insn_n_scratches = 0;
5067 orig_asm_operands_vector = 0;
5068 orig_asm_constraints_vector = 0;
5069 copy_asm_operands_vector = 0;
5070 copy_asm_constraints_vector = 0;
5071 return copy_insn_1 (insn);
5072 }
5073
5074 /* Initialize data structures and variables in this file
5075 before generating rtl for each function. */
5076
5077 void
5078 init_emit (void)
5079 {
5080 struct function *f = cfun;
5081
5082 f->emit = ggc_alloc (sizeof (struct emit_status));
5083 first_insn = NULL;
5084 last_insn = NULL;
5085 cur_insn_uid = 1;
5086 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5087 last_location = UNKNOWN_LOCATION;
5088 first_label_num = label_num;
5089 seq_stack = NULL;
5090
5091 /* Init the tables that describe all the pseudo regs. */
5092
5093 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5094
5095 f->emit->regno_pointer_align
5096 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5097 * sizeof (unsigned char));
5098
5099 regno_reg_rtx
5100 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5101
5102 /* Put copies of all the hard registers into regno_reg_rtx. */
5103 memcpy (regno_reg_rtx,
5104 static_regno_reg_rtx,
5105 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5106
5107 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5108 init_virtual_regs (f->emit);
5109
5110 /* Indicate that the virtual registers and stack locations are
5111 all pointers. */
5112 REG_POINTER (stack_pointer_rtx) = 1;
5113 REG_POINTER (frame_pointer_rtx) = 1;
5114 REG_POINTER (hard_frame_pointer_rtx) = 1;
5115 REG_POINTER (arg_pointer_rtx) = 1;
5116
5117 REG_POINTER (virtual_incoming_args_rtx) = 1;
5118 REG_POINTER (virtual_stack_vars_rtx) = 1;
5119 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5120 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5121 REG_POINTER (virtual_cfa_rtx) = 1;
5122
5123 #ifdef STACK_BOUNDARY
5124 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5125 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5126 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5127 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5128
5129 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5130 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5131 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5132 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5133 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5134 #endif
5135
5136 #ifdef INIT_EXPANDERS
5137 INIT_EXPANDERS;
5138 #endif
5139 }
5140
5141 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5142
5143 static rtx
5144 gen_const_vector (enum machine_mode mode, int constant)
5145 {
5146 rtx tem;
5147 rtvec v;
5148 int units, i;
5149 enum machine_mode inner;
5150
5151 units = GET_MODE_NUNITS (mode);
5152 inner = GET_MODE_INNER (mode);
5153
5154 v = rtvec_alloc (units);
5155
5156 /* We need to call this function after we set the scalar const_tiny_rtx
5157 entries. */
5158 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5159
5160 for (i = 0; i < units; ++i)
5161 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5162
5163 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5164 return tem;
5165 }
5166
5167 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5168 all elements are zero, and the one vector when all elements are one. */
5169 rtx
5170 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5171 {
5172 enum machine_mode inner = GET_MODE_INNER (mode);
5173 int nunits = GET_MODE_NUNITS (mode);
5174 rtx x;
5175 int i;
5176
5177 /* Check to see if all of the elements have the same value. */
5178 x = RTVEC_ELT (v, nunits - 1);
5179 for (i = nunits - 2; i >= 0; i--)
5180 if (RTVEC_ELT (v, i) != x)
5181 break;
5182
5183 /* If the values are all the same, check to see if we can use one of the
5184 standard constant vectors. */
5185 if (i == -1)
5186 {
5187 if (x == CONST0_RTX (inner))
5188 return CONST0_RTX (mode);
5189 else if (x == CONST1_RTX (inner))
5190 return CONST1_RTX (mode);
5191 }
5192
5193 return gen_rtx_raw_CONST_VECTOR (mode, v);
5194 }
5195
5196 /* Create some permanent unique rtl objects shared between all functions.
5197 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5198
5199 void
5200 init_emit_once (int line_numbers)
5201 {
5202 int i;
5203 enum machine_mode mode;
5204 enum machine_mode double_mode;
5205
5206 /* We need reg_raw_mode, so initialize the modes now. */
5207 init_reg_modes_once ();
5208
5209 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5210 tables. */
5211 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5212 const_int_htab_eq, NULL);
5213
5214 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5215 const_double_htab_eq, NULL);
5216
5217 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5218 mem_attrs_htab_eq, NULL);
5219 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5220 reg_attrs_htab_eq, NULL);
5221
5222 no_line_numbers = ! line_numbers;
5223
5224 /* Compute the word and byte modes. */
5225
5226 byte_mode = VOIDmode;
5227 word_mode = VOIDmode;
5228 double_mode = VOIDmode;
5229
5230 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5231 mode = GET_MODE_WIDER_MODE (mode))
5232 {
5233 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5234 && byte_mode == VOIDmode)
5235 byte_mode = mode;
5236
5237 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5238 && word_mode == VOIDmode)
5239 word_mode = mode;
5240 }
5241
5242 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5243 mode = GET_MODE_WIDER_MODE (mode))
5244 {
5245 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5246 && double_mode == VOIDmode)
5247 double_mode = mode;
5248 }
5249
5250 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5251
5252 /* Assign register numbers to the globally defined register rtx.
5253 This must be done at runtime because the register number field
5254 is in a union and some compilers can't initialize unions. */
5255
5256 pc_rtx = gen_rtx_PC (VOIDmode);
5257 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5258 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5259 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5260 if (hard_frame_pointer_rtx == 0)
5261 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5262 HARD_FRAME_POINTER_REGNUM);
5263 if (arg_pointer_rtx == 0)
5264 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5265 virtual_incoming_args_rtx =
5266 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5267 virtual_stack_vars_rtx =
5268 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5269 virtual_stack_dynamic_rtx =
5270 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5271 virtual_outgoing_args_rtx =
5272 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5273 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5274
5275 /* Initialize RTL for commonly used hard registers. These are
5276 copied into regno_reg_rtx as we begin to compile each function. */
5277 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5278 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5279
5280 #ifdef INIT_EXPANDERS
5281 /* This is to initialize {init|mark|free}_machine_status before the first
5282 call to push_function_context_to. This is needed by the Chill front
5283 end which calls push_function_context_to before the first call to
5284 init_function_start. */
5285 INIT_EXPANDERS;
5286 #endif
5287
5288 /* Create the unique rtx's for certain rtx codes and operand values. */
5289
5290 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5291 tries to use these variables. */
5292 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5293 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5294 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5295
5296 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5297 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5298 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5299 else
5300 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5301
5302 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5303 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5304 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5305 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5306 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5307 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5308 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5309
5310 dconsthalf = dconst1;
5311 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5312
5313 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5314
5315 /* Initialize mathematical constants for constant folding builtins.
5316 These constants need to be given to at least 160 bits precision. */
5317 real_from_string (&dconstpi,
5318 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5319 real_from_string (&dconste,
5320 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5321
5322 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5323 {
5324 REAL_VALUE_TYPE *r =
5325 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5326
5327 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5328 mode = GET_MODE_WIDER_MODE (mode))
5329 const_tiny_rtx[i][(int) mode] =
5330 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5331
5332 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5333
5334 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5335 mode = GET_MODE_WIDER_MODE (mode))
5336 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5337
5338 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5339 mode != VOIDmode;
5340 mode = GET_MODE_WIDER_MODE (mode))
5341 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5342 }
5343
5344 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5345 mode != VOIDmode;
5346 mode = GET_MODE_WIDER_MODE (mode))
5347 {
5348 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5349 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5350 }
5351
5352 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5353 mode != VOIDmode;
5354 mode = GET_MODE_WIDER_MODE (mode))
5355 {
5356 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5357 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5358 }
5359
5360 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5361 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5362 const_tiny_rtx[0][i] = const0_rtx;
5363
5364 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5365 if (STORE_FLAG_VALUE == 1)
5366 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5367
5368 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5369 return_address_pointer_rtx
5370 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5371 #endif
5372
5373 #ifdef STATIC_CHAIN_REGNUM
5374 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5375
5376 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5377 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5378 static_chain_incoming_rtx
5379 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5380 else
5381 #endif
5382 static_chain_incoming_rtx = static_chain_rtx;
5383 #endif
5384
5385 #ifdef STATIC_CHAIN
5386 static_chain_rtx = STATIC_CHAIN;
5387
5388 #ifdef STATIC_CHAIN_INCOMING
5389 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5390 #else
5391 static_chain_incoming_rtx = static_chain_rtx;
5392 #endif
5393 #endif
5394
5395 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5396 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5397 }
5398 \f
5399 /* Produce exact duplicate of insn INSN after AFTER.
5400 Care updating of libcall regions if present. */
5401
5402 rtx
5403 emit_copy_of_insn_after (rtx insn, rtx after)
5404 {
5405 rtx new;
5406 rtx note1, note2, link;
5407
5408 switch (GET_CODE (insn))
5409 {
5410 case INSN:
5411 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5412 break;
5413
5414 case JUMP_INSN:
5415 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5416 break;
5417
5418 case CALL_INSN:
5419 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5420 if (CALL_INSN_FUNCTION_USAGE (insn))
5421 CALL_INSN_FUNCTION_USAGE (new)
5422 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5423 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5424 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5425 break;
5426
5427 default:
5428 gcc_unreachable ();
5429 }
5430
5431 /* Update LABEL_NUSES. */
5432 mark_jump_label (PATTERN (new), new, 0);
5433
5434 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5435
5436 /* If the old insn is frame related, then so is the new one. This is
5437 primarily needed for IA-64 unwind info which marks epilogue insns,
5438 which may be duplicated by the basic block reordering code. */
5439 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5440
5441 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5442 make them. */
5443 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5444 if (REG_NOTE_KIND (link) != REG_LABEL)
5445 {
5446 if (GET_CODE (link) == EXPR_LIST)
5447 REG_NOTES (new)
5448 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5449 XEXP (link, 0),
5450 REG_NOTES (new)));
5451 else
5452 REG_NOTES (new)
5453 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5454 XEXP (link, 0),
5455 REG_NOTES (new)));
5456 }
5457
5458 /* Fix the libcall sequences. */
5459 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5460 {
5461 rtx p = new;
5462 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5463 p = PREV_INSN (p);
5464 XEXP (note1, 0) = p;
5465 XEXP (note2, 0) = new;
5466 }
5467 INSN_CODE (new) = INSN_CODE (insn);
5468 return new;
5469 }
5470
5471 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5472 rtx
5473 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5474 {
5475 if (hard_reg_clobbers[mode][regno])
5476 return hard_reg_clobbers[mode][regno];
5477 else
5478 return (hard_reg_clobbers[mode][regno] =
5479 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5480 }
5481
5482 #include "gt-emit-rtl.h"