intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* Middle-to-low level generation of rtx code and insns.
25
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
28
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "toplev.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
62
63 /* Commonly used modes. */
64
65 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
66 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
67 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
68 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69
70 /* Datastructures maintained for currently processed function in RTL form. */
71
72 struct rtl_data x_rtl;
73
74 /* Indexed by pseudo register number, gives the rtx for that pseudo.
75 Allocated in parallel with regno_pointer_align.
76 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
77 with length attribute nested in top level structures. */
78
79 rtx * regno_reg_rtx;
80
81 /* This is *not* reset after each function. It gives each CODE_LABEL
82 in the entire compilation a unique label number. */
83
84 static GTY(()) int label_num = 1;
85
86 /* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these are unique; no other rtx-object will be equal to any
89 of these. */
90
91 rtx global_rtl[GR_MAX];
92
93 /* Commonly used RTL for hard registers. These objects are not necessarily
94 unique, so we allocate them separately from global_rtl. They are
95 initialized once per compilation unit, then copied into regno_reg_rtx
96 at the beginning of each function. */
97 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
98
99 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
100 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
101 record a copy of const[012]_rtx. */
102
103 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
104
105 rtx const_true_rtx;
106
107 REAL_VALUE_TYPE dconst0;
108 REAL_VALUE_TYPE dconst1;
109 REAL_VALUE_TYPE dconst2;
110 REAL_VALUE_TYPE dconstm1;
111 REAL_VALUE_TYPE dconsthalf;
112
113 /* Record fixed-point constant 0 and 1. */
114 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
115 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
116
117 /* All references to the following fixed hard registers go through
118 these unique rtl objects. On machines where the frame-pointer and
119 arg-pointer are the same register, they use the same unique object.
120
121 After register allocation, other rtl objects which used to be pseudo-regs
122 may be clobbered to refer to the frame-pointer register.
123 But references that were originally to the frame-pointer can be
124 distinguished from the others because they contain frame_pointer_rtx.
125
126 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
127 tricky: until register elimination has taken place hard_frame_pointer_rtx
128 should be used if it is being set, and frame_pointer_rtx otherwise. After
129 register elimination hard_frame_pointer_rtx should always be used.
130 On machines where the two registers are same (most) then these are the
131 same.
132
133 In an inline procedure, the stack and frame pointer rtxs may not be
134 used for anything else. */
135 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
136
137 /* This is used to implement __builtin_return_address for some machines.
138 See for instance the MIPS port. */
139 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
140
141 /* We make one copy of (const_int C) where C is in
142 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
143 to save space during the compilation and simplify comparisons of
144 integers. */
145
146 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
147
148 /* A hash table storing CONST_INTs whose absolute value is greater
149 than MAX_SAVED_CONST_INT. */
150
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
152 htab_t const_int_htab;
153
154 /* A hash table storing memory attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
156 htab_t mem_attrs_htab;
157
158 /* A hash table storing register attribute structures. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
160 htab_t reg_attrs_htab;
161
162 /* A hash table storing all CONST_DOUBLEs. */
163 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
164 htab_t const_double_htab;
165
166 /* A hash table storing all CONST_FIXEDs. */
167 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
168 htab_t const_fixed_htab;
169
170 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
171 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
172 #define last_location (crtl->emit.x_last_location)
173 #define first_label_num (crtl->emit.x_first_label_num)
174
175 static rtx make_call_insn_raw (rtx);
176 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
177 static void set_used_decls (tree);
178 static void mark_label_nuses (rtx);
179 static hashval_t const_int_htab_hash (const void *);
180 static int const_int_htab_eq (const void *, const void *);
181 static hashval_t const_double_htab_hash (const void *);
182 static int const_double_htab_eq (const void *, const void *);
183 static rtx lookup_const_double (rtx);
184 static hashval_t const_fixed_htab_hash (const void *);
185 static int const_fixed_htab_eq (const void *, const void *);
186 static rtx lookup_const_fixed (rtx);
187 static hashval_t mem_attrs_htab_hash (const void *);
188 static int mem_attrs_htab_eq (const void *, const void *);
189 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
190 addr_space_t, enum machine_mode);
191 static hashval_t reg_attrs_htab_hash (const void *);
192 static int reg_attrs_htab_eq (const void *, const void *);
193 static reg_attrs *get_reg_attrs (tree, int);
194 static rtx gen_const_vector (enum machine_mode, int);
195 static void copy_rtx_if_shared_1 (rtx *orig);
196
197 /* Probability of the conditional branch currently proceeded by try_split.
198 Set to -1 otherwise. */
199 int split_branch_probability = -1;
200 \f
201 /* Returns a hash code for X (which is a really a CONST_INT). */
202
203 static hashval_t
204 const_int_htab_hash (const void *x)
205 {
206 return (hashval_t) INTVAL ((const_rtx) x);
207 }
208
209 /* Returns nonzero if the value represented by X (which is really a
210 CONST_INT) is the same as that given by Y (which is really a
211 HOST_WIDE_INT *). */
212
213 static int
214 const_int_htab_eq (const void *x, const void *y)
215 {
216 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
217 }
218
219 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
220 static hashval_t
221 const_double_htab_hash (const void *x)
222 {
223 const_rtx const value = (const_rtx) x;
224 hashval_t h;
225
226 if (GET_MODE (value) == VOIDmode)
227 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
228 else
229 {
230 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
231 /* MODE is used in the comparison, so it should be in the hash. */
232 h ^= GET_MODE (value);
233 }
234 return h;
235 }
236
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...) */
239 static int
240 const_double_htab_eq (const void *x, const void *y)
241 {
242 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
243
244 if (GET_MODE (a) != GET_MODE (b))
245 return 0;
246 if (GET_MODE (a) == VOIDmode)
247 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
248 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
249 else
250 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
251 CONST_DOUBLE_REAL_VALUE (b));
252 }
253
254 /* Returns a hash code for X (which is really a CONST_FIXED). */
255
256 static hashval_t
257 const_fixed_htab_hash (const void *x)
258 {
259 const_rtx const value = (const_rtx) x;
260 hashval_t h;
261
262 h = fixed_hash (CONST_FIXED_VALUE (value));
263 /* MODE is used in the comparison, so it should be in the hash. */
264 h ^= GET_MODE (value);
265 return h;
266 }
267
268 /* Returns nonzero if the value represented by X (really a ...)
269 is the same as that represented by Y (really a ...). */
270
271 static int
272 const_fixed_htab_eq (const void *x, const void *y)
273 {
274 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
275
276 if (GET_MODE (a) != GET_MODE (b))
277 return 0;
278 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
279 }
280
281 /* Returns a hash code for X (which is a really a mem_attrs *). */
282
283 static hashval_t
284 mem_attrs_htab_hash (const void *x)
285 {
286 const mem_attrs *const p = (const mem_attrs *) x;
287
288 return (p->alias ^ (p->align * 1000)
289 ^ (p->addrspace * 4000)
290 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
291 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
292 ^ (size_t) iterative_hash_expr (p->expr, 0));
293 }
294
295 /* Returns nonzero if the value represented by X (which is really a
296 mem_attrs *) is the same as that given by Y (which is also really a
297 mem_attrs *). */
298
299 static int
300 mem_attrs_htab_eq (const void *x, const void *y)
301 {
302 const mem_attrs *const p = (const mem_attrs *) x;
303 const mem_attrs *const q = (const mem_attrs *) y;
304
305 return (p->alias == q->alias && p->offset == q->offset
306 && p->size == q->size && p->align == q->align
307 && p->addrspace == q->addrspace
308 && (p->expr == q->expr
309 || (p->expr != NULL_TREE && q->expr != NULL_TREE
310 && operand_equal_p (p->expr, q->expr, 0))));
311 }
312
313 /* Allocate a new mem_attrs structure and insert it into the hash table if
314 one identical to it is not already in the table. We are doing this for
315 MEM of mode MODE. */
316
317 static mem_attrs *
318 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
319 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
320 {
321 mem_attrs attrs;
322 void **slot;
323
324 /* If everything is the default, we can just return zero.
325 This must match what the corresponding MEM_* macros return when the
326 field is not present. */
327 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
328 && (size == 0
329 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
330 && (STRICT_ALIGNMENT && mode != BLKmode
331 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
332 return 0;
333
334 attrs.alias = alias;
335 attrs.expr = expr;
336 attrs.offset = offset;
337 attrs.size = size;
338 attrs.align = align;
339 attrs.addrspace = addrspace;
340
341 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
342 if (*slot == 0)
343 {
344 *slot = ggc_alloc_mem_attrs ();
345 memcpy (*slot, &attrs, sizeof (mem_attrs));
346 }
347
348 return (mem_attrs *) *slot;
349 }
350
351 /* Returns a hash code for X (which is a really a reg_attrs *). */
352
353 static hashval_t
354 reg_attrs_htab_hash (const void *x)
355 {
356 const reg_attrs *const p = (const reg_attrs *) x;
357
358 return ((p->offset * 1000) ^ (long) p->decl);
359 }
360
361 /* Returns nonzero if the value represented by X (which is really a
362 reg_attrs *) is the same as that given by Y (which is also really a
363 reg_attrs *). */
364
365 static int
366 reg_attrs_htab_eq (const void *x, const void *y)
367 {
368 const reg_attrs *const p = (const reg_attrs *) x;
369 const reg_attrs *const q = (const reg_attrs *) y;
370
371 return (p->decl == q->decl && p->offset == q->offset);
372 }
373 /* Allocate a new reg_attrs structure and insert it into the hash table if
374 one identical to it is not already in the table. We are doing this for
375 MEM of mode MODE. */
376
377 static reg_attrs *
378 get_reg_attrs (tree decl, int offset)
379 {
380 reg_attrs attrs;
381 void **slot;
382
383 /* If everything is the default, we can just return zero. */
384 if (decl == 0 && offset == 0)
385 return 0;
386
387 attrs.decl = decl;
388 attrs.offset = offset;
389
390 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
391 if (*slot == 0)
392 {
393 *slot = ggc_alloc_reg_attrs ();
394 memcpy (*slot, &attrs, sizeof (reg_attrs));
395 }
396
397 return (reg_attrs *) *slot;
398 }
399
400
401 #if !HAVE_blockage
402 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
403 across this insn. */
404
405 rtx
406 gen_blockage (void)
407 {
408 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
409 MEM_VOLATILE_P (x) = true;
410 return x;
411 }
412 #endif
413
414
415 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
416 don't attempt to share with the various global pieces of rtl (such as
417 frame_pointer_rtx). */
418
419 rtx
420 gen_raw_REG (enum machine_mode mode, int regno)
421 {
422 rtx x = gen_rtx_raw_REG (mode, regno);
423 ORIGINAL_REGNO (x) = regno;
424 return x;
425 }
426
427 /* There are some RTL codes that require special attention; the generation
428 functions do the raw handling. If you add to this list, modify
429 special_rtx in gengenrtl.c as well. */
430
431 rtx
432 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
433 {
434 void **slot;
435
436 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
437 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
438
439 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
440 if (const_true_rtx && arg == STORE_FLAG_VALUE)
441 return const_true_rtx;
442 #endif
443
444 /* Look up the CONST_INT in the hash table. */
445 slot = htab_find_slot_with_hash (const_int_htab, &arg,
446 (hashval_t) arg, INSERT);
447 if (*slot == 0)
448 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
449
450 return (rtx) *slot;
451 }
452
453 rtx
454 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
455 {
456 return GEN_INT (trunc_int_for_mode (c, mode));
457 }
458
459 /* CONST_DOUBLEs might be created from pairs of integers, or from
460 REAL_VALUE_TYPEs. Also, their length is known only at run time,
461 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
462
463 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
464 hash table. If so, return its counterpart; otherwise add it
465 to the hash table and return it. */
466 static rtx
467 lookup_const_double (rtx real)
468 {
469 void **slot = htab_find_slot (const_double_htab, real, INSERT);
470 if (*slot == 0)
471 *slot = real;
472
473 return (rtx) *slot;
474 }
475
476 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
477 VALUE in mode MODE. */
478 rtx
479 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
480 {
481 rtx real = rtx_alloc (CONST_DOUBLE);
482 PUT_MODE (real, mode);
483
484 real->u.rv = value;
485
486 return lookup_const_double (real);
487 }
488
489 /* Determine whether FIXED, a CONST_FIXED, already exists in the
490 hash table. If so, return its counterpart; otherwise add it
491 to the hash table and return it. */
492
493 static rtx
494 lookup_const_fixed (rtx fixed)
495 {
496 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
497 if (*slot == 0)
498 *slot = fixed;
499
500 return (rtx) *slot;
501 }
502
503 /* Return a CONST_FIXED rtx for a fixed-point value specified by
504 VALUE in mode MODE. */
505
506 rtx
507 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
508 {
509 rtx fixed = rtx_alloc (CONST_FIXED);
510 PUT_MODE (fixed, mode);
511
512 fixed->u.fv = value;
513
514 return lookup_const_fixed (fixed);
515 }
516
517 /* Constructs double_int from rtx CST. */
518
519 double_int
520 rtx_to_double_int (const_rtx cst)
521 {
522 double_int r;
523
524 if (CONST_INT_P (cst))
525 r = shwi_to_double_int (INTVAL (cst));
526 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
527 {
528 r.low = CONST_DOUBLE_LOW (cst);
529 r.high = CONST_DOUBLE_HIGH (cst);
530 }
531 else
532 gcc_unreachable ();
533
534 return r;
535 }
536
537
538 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
539 a double_int. */
540
541 rtx
542 immed_double_int_const (double_int i, enum machine_mode mode)
543 {
544 return immed_double_const (i.low, i.high, mode);
545 }
546
547 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
548 of ints: I0 is the low-order word and I1 is the high-order word.
549 Do not use this routine for non-integer modes; convert to
550 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
551
552 rtx
553 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
554 {
555 rtx value;
556 unsigned int i;
557
558 /* There are the following cases (note that there are no modes with
559 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
560
561 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
562 gen_int_mode.
563 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
564 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
565 from copies of the sign bit, and sign of i0 and i1 are the same), then
566 we return a CONST_INT for i0.
567 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
568 if (mode != VOIDmode)
569 {
570 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
571 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
572 /* We can get a 0 for an error mark. */
573 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
574 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
575
576 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
577 return gen_int_mode (i0, mode);
578
579 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
580 }
581
582 /* If this integer fits in one word, return a CONST_INT. */
583 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
584 return GEN_INT (i0);
585
586 /* We use VOIDmode for integers. */
587 value = rtx_alloc (CONST_DOUBLE);
588 PUT_MODE (value, VOIDmode);
589
590 CONST_DOUBLE_LOW (value) = i0;
591 CONST_DOUBLE_HIGH (value) = i1;
592
593 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
594 XWINT (value, i) = 0;
595
596 return lookup_const_double (value);
597 }
598
599 rtx
600 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
601 {
602 /* In case the MD file explicitly references the frame pointer, have
603 all such references point to the same frame pointer. This is
604 used during frame pointer elimination to distinguish the explicit
605 references to these registers from pseudos that happened to be
606 assigned to them.
607
608 If we have eliminated the frame pointer or arg pointer, we will
609 be using it as a normal register, for example as a spill
610 register. In such cases, we might be accessing it in a mode that
611 is not Pmode and therefore cannot use the pre-allocated rtx.
612
613 Also don't do this when we are making new REGs in reload, since
614 we don't want to get confused with the real pointers. */
615
616 if (mode == Pmode && !reload_in_progress)
617 {
618 if (regno == FRAME_POINTER_REGNUM
619 && (!reload_completed || frame_pointer_needed))
620 return frame_pointer_rtx;
621 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
622 if (regno == HARD_FRAME_POINTER_REGNUM
623 && (!reload_completed || frame_pointer_needed))
624 return hard_frame_pointer_rtx;
625 #endif
626 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
627 if (regno == ARG_POINTER_REGNUM)
628 return arg_pointer_rtx;
629 #endif
630 #ifdef RETURN_ADDRESS_POINTER_REGNUM
631 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
632 return return_address_pointer_rtx;
633 #endif
634 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
635 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
636 return pic_offset_table_rtx;
637 if (regno == STACK_POINTER_REGNUM)
638 return stack_pointer_rtx;
639 }
640
641 #if 0
642 /* If the per-function register table has been set up, try to re-use
643 an existing entry in that table to avoid useless generation of RTL.
644
645 This code is disabled for now until we can fix the various backends
646 which depend on having non-shared hard registers in some cases. Long
647 term we want to re-enable this code as it can significantly cut down
648 on the amount of useless RTL that gets generated.
649
650 We'll also need to fix some code that runs after reload that wants to
651 set ORIGINAL_REGNO. */
652
653 if (cfun
654 && cfun->emit
655 && regno_reg_rtx
656 && regno < FIRST_PSEUDO_REGISTER
657 && reg_raw_mode[regno] == mode)
658 return regno_reg_rtx[regno];
659 #endif
660
661 return gen_raw_REG (mode, regno);
662 }
663
664 rtx
665 gen_rtx_MEM (enum machine_mode mode, rtx addr)
666 {
667 rtx rt = gen_rtx_raw_MEM (mode, addr);
668
669 /* This field is not cleared by the mere allocation of the rtx, so
670 we clear it here. */
671 MEM_ATTRS (rt) = 0;
672
673 return rt;
674 }
675
676 /* Generate a memory referring to non-trapping constant memory. */
677
678 rtx
679 gen_const_mem (enum machine_mode mode, rtx addr)
680 {
681 rtx mem = gen_rtx_MEM (mode, addr);
682 MEM_READONLY_P (mem) = 1;
683 MEM_NOTRAP_P (mem) = 1;
684 return mem;
685 }
686
687 /* Generate a MEM referring to fixed portions of the frame, e.g., register
688 save areas. */
689
690 rtx
691 gen_frame_mem (enum machine_mode mode, rtx addr)
692 {
693 rtx mem = gen_rtx_MEM (mode, addr);
694 MEM_NOTRAP_P (mem) = 1;
695 set_mem_alias_set (mem, get_frame_alias_set ());
696 return mem;
697 }
698
699 /* Generate a MEM referring to a temporary use of the stack, not part
700 of the fixed stack frame. For example, something which is pushed
701 by a target splitter. */
702 rtx
703 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
704 {
705 rtx mem = gen_rtx_MEM (mode, addr);
706 MEM_NOTRAP_P (mem) = 1;
707 if (!cfun->calls_alloca)
708 set_mem_alias_set (mem, get_frame_alias_set ());
709 return mem;
710 }
711
712 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
713 this construct would be valid, and false otherwise. */
714
715 bool
716 validate_subreg (enum machine_mode omode, enum machine_mode imode,
717 const_rtx reg, unsigned int offset)
718 {
719 unsigned int isize = GET_MODE_SIZE (imode);
720 unsigned int osize = GET_MODE_SIZE (omode);
721
722 /* All subregs must be aligned. */
723 if (offset % osize != 0)
724 return false;
725
726 /* The subreg offset cannot be outside the inner object. */
727 if (offset >= isize)
728 return false;
729
730 /* ??? This should not be here. Temporarily continue to allow word_mode
731 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
732 Generally, backends are doing something sketchy but it'll take time to
733 fix them all. */
734 if (omode == word_mode)
735 ;
736 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
737 is the culprit here, and not the backends. */
738 else if (osize >= UNITS_PER_WORD && isize >= osize)
739 ;
740 /* Allow component subregs of complex and vector. Though given the below
741 extraction rules, it's not always clear what that means. */
742 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
743 && GET_MODE_INNER (imode) == omode)
744 ;
745 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
746 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
747 represent this. It's questionable if this ought to be represented at
748 all -- why can't this all be hidden in post-reload splitters that make
749 arbitrarily mode changes to the registers themselves. */
750 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
751 ;
752 /* Subregs involving floating point modes are not allowed to
753 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
754 (subreg:SI (reg:DF) 0) isn't. */
755 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
756 {
757 if (isize != osize)
758 return false;
759 }
760
761 /* Paradoxical subregs must have offset zero. */
762 if (osize > isize)
763 return offset == 0;
764
765 /* This is a normal subreg. Verify that the offset is representable. */
766
767 /* For hard registers, we already have most of these rules collected in
768 subreg_offset_representable_p. */
769 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
770 {
771 unsigned int regno = REGNO (reg);
772
773 #ifdef CANNOT_CHANGE_MODE_CLASS
774 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
775 && GET_MODE_INNER (imode) == omode)
776 ;
777 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
778 return false;
779 #endif
780
781 return subreg_offset_representable_p (regno, imode, offset, omode);
782 }
783
784 /* For pseudo registers, we want most of the same checks. Namely:
785 If the register no larger than a word, the subreg must be lowpart.
786 If the register is larger than a word, the subreg must be the lowpart
787 of a subword. A subreg does *not* perform arbitrary bit extraction.
788 Given that we've already checked mode/offset alignment, we only have
789 to check subword subregs here. */
790 if (osize < UNITS_PER_WORD)
791 {
792 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
793 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
794 if (offset % UNITS_PER_WORD != low_off)
795 return false;
796 }
797 return true;
798 }
799
800 rtx
801 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
802 {
803 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
804 return gen_rtx_raw_SUBREG (mode, reg, offset);
805 }
806
807 /* Generate a SUBREG representing the least-significant part of REG if MODE
808 is smaller than mode of REG, otherwise paradoxical SUBREG. */
809
810 rtx
811 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
812 {
813 enum machine_mode inmode;
814
815 inmode = GET_MODE (reg);
816 if (inmode == VOIDmode)
817 inmode = mode;
818 return gen_rtx_SUBREG (mode, reg,
819 subreg_lowpart_offset (mode, inmode));
820 }
821 \f
822
823 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
824
825 rtvec
826 gen_rtvec (int n, ...)
827 {
828 int i;
829 rtvec rt_val;
830 va_list p;
831
832 va_start (p, n);
833
834 /* Don't allocate an empty rtvec... */
835 if (n == 0)
836 return NULL_RTVEC;
837
838 rt_val = rtvec_alloc (n);
839
840 for (i = 0; i < n; i++)
841 rt_val->elem[i] = va_arg (p, rtx);
842
843 va_end (p);
844 return rt_val;
845 }
846
847 rtvec
848 gen_rtvec_v (int n, rtx *argp)
849 {
850 int i;
851 rtvec rt_val;
852
853 /* Don't allocate an empty rtvec... */
854 if (n == 0)
855 return NULL_RTVEC;
856
857 rt_val = rtvec_alloc (n);
858
859 for (i = 0; i < n; i++)
860 rt_val->elem[i] = *argp++;
861
862 return rt_val;
863 }
864 \f
865 /* Return the number of bytes between the start of an OUTER_MODE
866 in-memory value and the start of an INNER_MODE in-memory value,
867 given that the former is a lowpart of the latter. It may be a
868 paradoxical lowpart, in which case the offset will be negative
869 on big-endian targets. */
870
871 int
872 byte_lowpart_offset (enum machine_mode outer_mode,
873 enum machine_mode inner_mode)
874 {
875 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
876 return subreg_lowpart_offset (outer_mode, inner_mode);
877 else
878 return -subreg_lowpart_offset (inner_mode, outer_mode);
879 }
880 \f
881 /* Generate a REG rtx for a new pseudo register of mode MODE.
882 This pseudo is assigned the next sequential register number. */
883
884 rtx
885 gen_reg_rtx (enum machine_mode mode)
886 {
887 rtx val;
888 unsigned int align = GET_MODE_ALIGNMENT (mode);
889
890 gcc_assert (can_create_pseudo_p ());
891
892 /* If a virtual register with bigger mode alignment is generated,
893 increase stack alignment estimation because it might be spilled
894 to stack later. */
895 if (SUPPORTS_STACK_ALIGNMENT
896 && crtl->stack_alignment_estimated < align
897 && !crtl->stack_realign_processed)
898 {
899 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
900 if (crtl->stack_alignment_estimated < min_align)
901 crtl->stack_alignment_estimated = min_align;
902 }
903
904 if (generating_concat_p
905 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
906 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
907 {
908 /* For complex modes, don't make a single pseudo.
909 Instead, make a CONCAT of two pseudos.
910 This allows noncontiguous allocation of the real and imaginary parts,
911 which makes much better code. Besides, allocating DCmode
912 pseudos overstrains reload on some machines like the 386. */
913 rtx realpart, imagpart;
914 enum machine_mode partmode = GET_MODE_INNER (mode);
915
916 realpart = gen_reg_rtx (partmode);
917 imagpart = gen_reg_rtx (partmode);
918 return gen_rtx_CONCAT (mode, realpart, imagpart);
919 }
920
921 /* Make sure regno_pointer_align, and regno_reg_rtx are large
922 enough to have an element for this pseudo reg number. */
923
924 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
925 {
926 int old_size = crtl->emit.regno_pointer_align_length;
927 char *tmp;
928 rtx *new1;
929
930 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
931 memset (tmp + old_size, 0, old_size);
932 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
933
934 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
935 memset (new1 + old_size, 0, old_size * sizeof (rtx));
936 regno_reg_rtx = new1;
937
938 crtl->emit.regno_pointer_align_length = old_size * 2;
939 }
940
941 val = gen_raw_REG (mode, reg_rtx_no);
942 regno_reg_rtx[reg_rtx_no++] = val;
943 return val;
944 }
945
946 /* Update NEW with the same attributes as REG, but with OFFSET added
947 to the REG_OFFSET. */
948
949 static void
950 update_reg_offset (rtx new_rtx, rtx reg, int offset)
951 {
952 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
953 REG_OFFSET (reg) + offset);
954 }
955
956 /* Generate a register with same attributes as REG, but with OFFSET
957 added to the REG_OFFSET. */
958
959 rtx
960 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
961 int offset)
962 {
963 rtx new_rtx = gen_rtx_REG (mode, regno);
964
965 update_reg_offset (new_rtx, reg, offset);
966 return new_rtx;
967 }
968
969 /* Generate a new pseudo-register with the same attributes as REG, but
970 with OFFSET added to the REG_OFFSET. */
971
972 rtx
973 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
974 {
975 rtx new_rtx = gen_reg_rtx (mode);
976
977 update_reg_offset (new_rtx, reg, offset);
978 return new_rtx;
979 }
980
981 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
982 new register is a (possibly paradoxical) lowpart of the old one. */
983
984 void
985 adjust_reg_mode (rtx reg, enum machine_mode mode)
986 {
987 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
988 PUT_MODE (reg, mode);
989 }
990
991 /* Copy REG's attributes from X, if X has any attributes. If REG and X
992 have different modes, REG is a (possibly paradoxical) lowpart of X. */
993
994 void
995 set_reg_attrs_from_value (rtx reg, rtx x)
996 {
997 int offset;
998
999 /* Hard registers can be reused for multiple purposes within the same
1000 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1001 on them is wrong. */
1002 if (HARD_REGISTER_P (reg))
1003 return;
1004
1005 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1006 if (MEM_P (x))
1007 {
1008 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
1009 REG_ATTRS (reg)
1010 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
1011 if (MEM_POINTER (x))
1012 mark_reg_pointer (reg, 0);
1013 }
1014 else if (REG_P (x))
1015 {
1016 if (REG_ATTRS (x))
1017 update_reg_offset (reg, x, offset);
1018 if (REG_POINTER (x))
1019 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1020 }
1021 }
1022
1023 /* Generate a REG rtx for a new pseudo register, copying the mode
1024 and attributes from X. */
1025
1026 rtx
1027 gen_reg_rtx_and_attrs (rtx x)
1028 {
1029 rtx reg = gen_reg_rtx (GET_MODE (x));
1030 set_reg_attrs_from_value (reg, x);
1031 return reg;
1032 }
1033
1034 /* Set the register attributes for registers contained in PARM_RTX.
1035 Use needed values from memory attributes of MEM. */
1036
1037 void
1038 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1039 {
1040 if (REG_P (parm_rtx))
1041 set_reg_attrs_from_value (parm_rtx, mem);
1042 else if (GET_CODE (parm_rtx) == PARALLEL)
1043 {
1044 /* Check for a NULL entry in the first slot, used to indicate that the
1045 parameter goes both on the stack and in registers. */
1046 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1047 for (; i < XVECLEN (parm_rtx, 0); i++)
1048 {
1049 rtx x = XVECEXP (parm_rtx, 0, i);
1050 if (REG_P (XEXP (x, 0)))
1051 REG_ATTRS (XEXP (x, 0))
1052 = get_reg_attrs (MEM_EXPR (mem),
1053 INTVAL (XEXP (x, 1)));
1054 }
1055 }
1056 }
1057
1058 /* Set the REG_ATTRS for registers in value X, given that X represents
1059 decl T. */
1060
1061 void
1062 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1063 {
1064 if (GET_CODE (x) == SUBREG)
1065 {
1066 gcc_assert (subreg_lowpart_p (x));
1067 x = SUBREG_REG (x);
1068 }
1069 if (REG_P (x))
1070 REG_ATTRS (x)
1071 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1072 DECL_MODE (t)));
1073 if (GET_CODE (x) == CONCAT)
1074 {
1075 if (REG_P (XEXP (x, 0)))
1076 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1077 if (REG_P (XEXP (x, 1)))
1078 REG_ATTRS (XEXP (x, 1))
1079 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1080 }
1081 if (GET_CODE (x) == PARALLEL)
1082 {
1083 int i, start;
1084
1085 /* Check for a NULL entry, used to indicate that the parameter goes
1086 both on the stack and in registers. */
1087 if (XEXP (XVECEXP (x, 0, 0), 0))
1088 start = 0;
1089 else
1090 start = 1;
1091
1092 for (i = start; i < XVECLEN (x, 0); i++)
1093 {
1094 rtx y = XVECEXP (x, 0, i);
1095 if (REG_P (XEXP (y, 0)))
1096 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1097 }
1098 }
1099 }
1100
1101 /* Assign the RTX X to declaration T. */
1102
1103 void
1104 set_decl_rtl (tree t, rtx x)
1105 {
1106 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1107 if (x)
1108 set_reg_attrs_for_decl_rtl (t, x);
1109 }
1110
1111 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1112 if the ABI requires the parameter to be passed by reference. */
1113
1114 void
1115 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1116 {
1117 DECL_INCOMING_RTL (t) = x;
1118 if (x && !by_reference_p)
1119 set_reg_attrs_for_decl_rtl (t, x);
1120 }
1121
1122 /* Identify REG (which may be a CONCAT) as a user register. */
1123
1124 void
1125 mark_user_reg (rtx reg)
1126 {
1127 if (GET_CODE (reg) == CONCAT)
1128 {
1129 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1130 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1131 }
1132 else
1133 {
1134 gcc_assert (REG_P (reg));
1135 REG_USERVAR_P (reg) = 1;
1136 }
1137 }
1138
1139 /* Identify REG as a probable pointer register and show its alignment
1140 as ALIGN, if nonzero. */
1141
1142 void
1143 mark_reg_pointer (rtx reg, int align)
1144 {
1145 if (! REG_POINTER (reg))
1146 {
1147 REG_POINTER (reg) = 1;
1148
1149 if (align)
1150 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1151 }
1152 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1153 /* We can no-longer be sure just how aligned this pointer is. */
1154 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1155 }
1156
1157 /* Return 1 plus largest pseudo reg number used in the current function. */
1158
1159 int
1160 max_reg_num (void)
1161 {
1162 return reg_rtx_no;
1163 }
1164
1165 /* Return 1 + the largest label number used so far in the current function. */
1166
1167 int
1168 max_label_num (void)
1169 {
1170 return label_num;
1171 }
1172
1173 /* Return first label number used in this function (if any were used). */
1174
1175 int
1176 get_first_label_num (void)
1177 {
1178 return first_label_num;
1179 }
1180
1181 /* If the rtx for label was created during the expansion of a nested
1182 function, then first_label_num won't include this label number.
1183 Fix this now so that array indices work later. */
1184
1185 void
1186 maybe_set_first_label_num (rtx x)
1187 {
1188 if (CODE_LABEL_NUMBER (x) < first_label_num)
1189 first_label_num = CODE_LABEL_NUMBER (x);
1190 }
1191 \f
1192 /* Return a value representing some low-order bits of X, where the number
1193 of low-order bits is given by MODE. Note that no conversion is done
1194 between floating-point and fixed-point values, rather, the bit
1195 representation is returned.
1196
1197 This function handles the cases in common between gen_lowpart, below,
1198 and two variants in cse.c and combine.c. These are the cases that can
1199 be safely handled at all points in the compilation.
1200
1201 If this is not a case we can handle, return 0. */
1202
1203 rtx
1204 gen_lowpart_common (enum machine_mode mode, rtx x)
1205 {
1206 int msize = GET_MODE_SIZE (mode);
1207 int xsize;
1208 int offset = 0;
1209 enum machine_mode innermode;
1210
1211 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1212 so we have to make one up. Yuk. */
1213 innermode = GET_MODE (x);
1214 if (CONST_INT_P (x)
1215 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1216 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1217 else if (innermode == VOIDmode)
1218 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1219
1220 xsize = GET_MODE_SIZE (innermode);
1221
1222 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1223
1224 if (innermode == mode)
1225 return x;
1226
1227 /* MODE must occupy no more words than the mode of X. */
1228 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1229 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1230 return 0;
1231
1232 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1233 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1234 return 0;
1235
1236 offset = subreg_lowpart_offset (mode, innermode);
1237
1238 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1239 && (GET_MODE_CLASS (mode) == MODE_INT
1240 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1241 {
1242 /* If we are getting the low-order part of something that has been
1243 sign- or zero-extended, we can either just use the object being
1244 extended or make a narrower extension. If we want an even smaller
1245 piece than the size of the object being extended, call ourselves
1246 recursively.
1247
1248 This case is used mostly by combine and cse. */
1249
1250 if (GET_MODE (XEXP (x, 0)) == mode)
1251 return XEXP (x, 0);
1252 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1253 return gen_lowpart_common (mode, XEXP (x, 0));
1254 else if (msize < xsize)
1255 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1256 }
1257 else if (GET_CODE (x) == SUBREG || REG_P (x)
1258 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1259 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1260 return simplify_gen_subreg (mode, x, innermode, offset);
1261
1262 /* Otherwise, we can't do this. */
1263 return 0;
1264 }
1265 \f
1266 rtx
1267 gen_highpart (enum machine_mode mode, rtx x)
1268 {
1269 unsigned int msize = GET_MODE_SIZE (mode);
1270 rtx result;
1271
1272 /* This case loses if X is a subreg. To catch bugs early,
1273 complain if an invalid MODE is used even in other cases. */
1274 gcc_assert (msize <= UNITS_PER_WORD
1275 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1276
1277 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1278 subreg_highpart_offset (mode, GET_MODE (x)));
1279 gcc_assert (result);
1280
1281 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1282 the target if we have a MEM. gen_highpart must return a valid operand,
1283 emitting code if necessary to do so. */
1284 if (MEM_P (result))
1285 {
1286 result = validize_mem (result);
1287 gcc_assert (result);
1288 }
1289
1290 return result;
1291 }
1292
1293 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1294 be VOIDmode constant. */
1295 rtx
1296 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1297 {
1298 if (GET_MODE (exp) != VOIDmode)
1299 {
1300 gcc_assert (GET_MODE (exp) == innermode);
1301 return gen_highpart (outermode, exp);
1302 }
1303 return simplify_gen_subreg (outermode, exp, innermode,
1304 subreg_highpart_offset (outermode, innermode));
1305 }
1306
1307 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1308
1309 unsigned int
1310 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1311 {
1312 unsigned int offset = 0;
1313 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1314
1315 if (difference > 0)
1316 {
1317 if (WORDS_BIG_ENDIAN)
1318 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1319 if (BYTES_BIG_ENDIAN)
1320 offset += difference % UNITS_PER_WORD;
1321 }
1322
1323 return offset;
1324 }
1325
1326 /* Return offset in bytes to get OUTERMODE high part
1327 of the value in mode INNERMODE stored in memory in target format. */
1328 unsigned int
1329 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1330 {
1331 unsigned int offset = 0;
1332 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1333
1334 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1335
1336 if (difference > 0)
1337 {
1338 if (! WORDS_BIG_ENDIAN)
1339 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1340 if (! BYTES_BIG_ENDIAN)
1341 offset += difference % UNITS_PER_WORD;
1342 }
1343
1344 return offset;
1345 }
1346
1347 /* Return 1 iff X, assumed to be a SUBREG,
1348 refers to the least significant part of its containing reg.
1349 If X is not a SUBREG, always return 1 (it is its own low part!). */
1350
1351 int
1352 subreg_lowpart_p (const_rtx x)
1353 {
1354 if (GET_CODE (x) != SUBREG)
1355 return 1;
1356 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1357 return 0;
1358
1359 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1360 == SUBREG_BYTE (x));
1361 }
1362 \f
1363 /* Return subword OFFSET of operand OP.
1364 The word number, OFFSET, is interpreted as the word number starting
1365 at the low-order address. OFFSET 0 is the low-order word if not
1366 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1367
1368 If we cannot extract the required word, we return zero. Otherwise,
1369 an rtx corresponding to the requested word will be returned.
1370
1371 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1372 reload has completed, a valid address will always be returned. After
1373 reload, if a valid address cannot be returned, we return zero.
1374
1375 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1376 it is the responsibility of the caller.
1377
1378 MODE is the mode of OP in case it is a CONST_INT.
1379
1380 ??? This is still rather broken for some cases. The problem for the
1381 moment is that all callers of this thing provide no 'goal mode' to
1382 tell us to work with. This exists because all callers were written
1383 in a word based SUBREG world.
1384 Now use of this function can be deprecated by simplify_subreg in most
1385 cases.
1386 */
1387
1388 rtx
1389 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1390 {
1391 if (mode == VOIDmode)
1392 mode = GET_MODE (op);
1393
1394 gcc_assert (mode != VOIDmode);
1395
1396 /* If OP is narrower than a word, fail. */
1397 if (mode != BLKmode
1398 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1399 return 0;
1400
1401 /* If we want a word outside OP, return zero. */
1402 if (mode != BLKmode
1403 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1404 return const0_rtx;
1405
1406 /* Form a new MEM at the requested address. */
1407 if (MEM_P (op))
1408 {
1409 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1410
1411 if (! validate_address)
1412 return new_rtx;
1413
1414 else if (reload_completed)
1415 {
1416 if (! strict_memory_address_addr_space_p (word_mode,
1417 XEXP (new_rtx, 0),
1418 MEM_ADDR_SPACE (op)))
1419 return 0;
1420 }
1421 else
1422 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1423 }
1424
1425 /* Rest can be handled by simplify_subreg. */
1426 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1427 }
1428
1429 /* Similar to `operand_subword', but never return 0. If we can't
1430 extract the required subword, put OP into a register and try again.
1431 The second attempt must succeed. We always validate the address in
1432 this case.
1433
1434 MODE is the mode of OP, in case it is CONST_INT. */
1435
1436 rtx
1437 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1438 {
1439 rtx result = operand_subword (op, offset, 1, mode);
1440
1441 if (result)
1442 return result;
1443
1444 if (mode != BLKmode && mode != VOIDmode)
1445 {
1446 /* If this is a register which can not be accessed by words, copy it
1447 to a pseudo register. */
1448 if (REG_P (op))
1449 op = copy_to_reg (op);
1450 else
1451 op = force_reg (mode, op);
1452 }
1453
1454 result = operand_subword (op, offset, 1, mode);
1455 gcc_assert (result);
1456
1457 return result;
1458 }
1459 \f
1460 /* Returns 1 if both MEM_EXPR can be considered equal
1461 and 0 otherwise. */
1462
1463 int
1464 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1465 {
1466 if (expr1 == expr2)
1467 return 1;
1468
1469 if (! expr1 || ! expr2)
1470 return 0;
1471
1472 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1473 return 0;
1474
1475 return operand_equal_p (expr1, expr2, 0);
1476 }
1477
1478 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1479 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1480 -1 if not known. */
1481
1482 int
1483 get_mem_align_offset (rtx mem, unsigned int align)
1484 {
1485 tree expr;
1486 unsigned HOST_WIDE_INT offset;
1487
1488 /* This function can't use
1489 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1490 || !CONST_INT_P (MEM_OFFSET (mem))
1491 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1492 < align))
1493 return -1;
1494 else
1495 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1496 for two reasons:
1497 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1498 for <variable>. get_inner_reference doesn't handle it and
1499 even if it did, the alignment in that case needs to be determined
1500 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1501 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1502 isn't sufficiently aligned, the object it is in might be. */
1503 gcc_assert (MEM_P (mem));
1504 expr = MEM_EXPR (mem);
1505 if (expr == NULL_TREE
1506 || MEM_OFFSET (mem) == NULL_RTX
1507 || !CONST_INT_P (MEM_OFFSET (mem)))
1508 return -1;
1509
1510 offset = INTVAL (MEM_OFFSET (mem));
1511 if (DECL_P (expr))
1512 {
1513 if (DECL_ALIGN (expr) < align)
1514 return -1;
1515 }
1516 else if (INDIRECT_REF_P (expr))
1517 {
1518 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1519 return -1;
1520 }
1521 else if (TREE_CODE (expr) == COMPONENT_REF)
1522 {
1523 while (1)
1524 {
1525 tree inner = TREE_OPERAND (expr, 0);
1526 tree field = TREE_OPERAND (expr, 1);
1527 tree byte_offset = component_ref_field_offset (expr);
1528 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1529
1530 if (!byte_offset
1531 || !host_integerp (byte_offset, 1)
1532 || !host_integerp (bit_offset, 1))
1533 return -1;
1534
1535 offset += tree_low_cst (byte_offset, 1);
1536 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1537
1538 if (inner == NULL_TREE)
1539 {
1540 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1541 < (unsigned int) align)
1542 return -1;
1543 break;
1544 }
1545 else if (DECL_P (inner))
1546 {
1547 if (DECL_ALIGN (inner) < align)
1548 return -1;
1549 break;
1550 }
1551 else if (TREE_CODE (inner) != COMPONENT_REF)
1552 return -1;
1553 expr = inner;
1554 }
1555 }
1556 else
1557 return -1;
1558
1559 return offset & ((align / BITS_PER_UNIT) - 1);
1560 }
1561
1562 /* Given REF (a MEM) and T, either the type of X or the expression
1563 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1564 if we are making a new object of this type. BITPOS is nonzero if
1565 there is an offset outstanding on T that will be applied later. */
1566
1567 void
1568 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1569 HOST_WIDE_INT bitpos)
1570 {
1571 alias_set_type alias = MEM_ALIAS_SET (ref);
1572 tree expr = MEM_EXPR (ref);
1573 rtx offset = MEM_OFFSET (ref);
1574 rtx size = MEM_SIZE (ref);
1575 unsigned int align = MEM_ALIGN (ref);
1576 HOST_WIDE_INT apply_bitpos = 0;
1577 tree type;
1578
1579 /* It can happen that type_for_mode was given a mode for which there
1580 is no language-level type. In which case it returns NULL, which
1581 we can see here. */
1582 if (t == NULL_TREE)
1583 return;
1584
1585 type = TYPE_P (t) ? t : TREE_TYPE (t);
1586 if (type == error_mark_node)
1587 return;
1588
1589 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1590 wrong answer, as it assumes that DECL_RTL already has the right alias
1591 info. Callers should not set DECL_RTL until after the call to
1592 set_mem_attributes. */
1593 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1594
1595 /* Get the alias set from the expression or type (perhaps using a
1596 front-end routine) and use it. */
1597 alias = get_alias_set (t);
1598
1599 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1600 MEM_IN_STRUCT_P (ref)
1601 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1602 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1603
1604 /* If we are making an object of this type, or if this is a DECL, we know
1605 that it is a scalar if the type is not an aggregate. */
1606 if ((objectp || DECL_P (t))
1607 && ! AGGREGATE_TYPE_P (type)
1608 && TREE_CODE (type) != COMPLEX_TYPE)
1609 MEM_SCALAR_P (ref) = 1;
1610
1611 /* We can set the alignment from the type if we are making an object,
1612 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1613 if (objectp || TREE_CODE (t) == INDIRECT_REF
1614 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1615 || TYPE_ALIGN_OK (type))
1616 align = MAX (align, TYPE_ALIGN (type));
1617 else
1618 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1619 {
1620 if (integer_zerop (TREE_OPERAND (t, 1)))
1621 /* We don't know anything about the alignment. */
1622 align = BITS_PER_UNIT;
1623 else
1624 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1625 }
1626
1627 /* If the size is known, we can set that. */
1628 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1629 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1630
1631 /* If T is not a type, we may be able to deduce some more information about
1632 the expression. */
1633 if (! TYPE_P (t))
1634 {
1635 tree base;
1636 bool align_computed = false;
1637
1638 if (TREE_THIS_VOLATILE (t))
1639 MEM_VOLATILE_P (ref) = 1;
1640
1641 /* Now remove any conversions: they don't change what the underlying
1642 object is. Likewise for SAVE_EXPR. */
1643 while (CONVERT_EXPR_P (t)
1644 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1645 || TREE_CODE (t) == SAVE_EXPR)
1646 t = TREE_OPERAND (t, 0);
1647
1648 /* We may look through structure-like accesses for the purposes of
1649 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1650 base = t;
1651 while (TREE_CODE (base) == COMPONENT_REF
1652 || TREE_CODE (base) == REALPART_EXPR
1653 || TREE_CODE (base) == IMAGPART_EXPR
1654 || TREE_CODE (base) == BIT_FIELD_REF)
1655 base = TREE_OPERAND (base, 0);
1656
1657 if (DECL_P (base))
1658 {
1659 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1660 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1661 else
1662 MEM_NOTRAP_P (ref) = 1;
1663 }
1664 else
1665 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1666
1667 base = get_base_address (base);
1668 if (base && DECL_P (base)
1669 && TREE_READONLY (base)
1670 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1671 MEM_READONLY_P (ref) = 1;
1672
1673 /* If this expression uses it's parent's alias set, mark it such
1674 that we won't change it. */
1675 if (component_uses_parent_alias_set (t))
1676 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1677
1678 /* If this is a decl, set the attributes of the MEM from it. */
1679 if (DECL_P (t))
1680 {
1681 expr = t;
1682 offset = const0_rtx;
1683 apply_bitpos = bitpos;
1684 size = (DECL_SIZE_UNIT (t)
1685 && host_integerp (DECL_SIZE_UNIT (t), 1)
1686 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1687 align = DECL_ALIGN (t);
1688 align_computed = true;
1689 }
1690
1691 /* If this is a constant, we know the alignment. */
1692 else if (CONSTANT_CLASS_P (t))
1693 {
1694 align = TYPE_ALIGN (type);
1695 #ifdef CONSTANT_ALIGNMENT
1696 align = CONSTANT_ALIGNMENT (t, align);
1697 #endif
1698 align_computed = true;
1699 }
1700
1701 /* If this is a field reference and not a bit-field, record it. */
1702 /* ??? There is some information that can be gleaned from bit-fields,
1703 such as the word offset in the structure that might be modified.
1704 But skip it for now. */
1705 else if (TREE_CODE (t) == COMPONENT_REF
1706 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1707 {
1708 expr = t;
1709 offset = const0_rtx;
1710 apply_bitpos = bitpos;
1711 /* ??? Any reason the field size would be different than
1712 the size we got from the type? */
1713 }
1714
1715 /* If this is an array reference, look for an outer field reference. */
1716 else if (TREE_CODE (t) == ARRAY_REF)
1717 {
1718 tree off_tree = size_zero_node;
1719 /* We can't modify t, because we use it at the end of the
1720 function. */
1721 tree t2 = t;
1722
1723 do
1724 {
1725 tree index = TREE_OPERAND (t2, 1);
1726 tree low_bound = array_ref_low_bound (t2);
1727 tree unit_size = array_ref_element_size (t2);
1728
1729 /* We assume all arrays have sizes that are a multiple of a byte.
1730 First subtract the lower bound, if any, in the type of the
1731 index, then convert to sizetype and multiply by the size of
1732 the array element. */
1733 if (! integer_zerop (low_bound))
1734 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1735 index, low_bound);
1736
1737 off_tree = size_binop (PLUS_EXPR,
1738 size_binop (MULT_EXPR,
1739 fold_convert (sizetype,
1740 index),
1741 unit_size),
1742 off_tree);
1743 t2 = TREE_OPERAND (t2, 0);
1744 }
1745 while (TREE_CODE (t2) == ARRAY_REF);
1746
1747 if (DECL_P (t2))
1748 {
1749 expr = t2;
1750 offset = NULL;
1751 if (host_integerp (off_tree, 1))
1752 {
1753 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1754 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1755 align = DECL_ALIGN (t2);
1756 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1757 align = aoff;
1758 align_computed = true;
1759 offset = GEN_INT (ioff);
1760 apply_bitpos = bitpos;
1761 }
1762 }
1763 else if (TREE_CODE (t2) == COMPONENT_REF)
1764 {
1765 expr = t2;
1766 offset = NULL;
1767 if (host_integerp (off_tree, 1))
1768 {
1769 offset = GEN_INT (tree_low_cst (off_tree, 1));
1770 apply_bitpos = bitpos;
1771 }
1772 /* ??? Any reason the field size would be different than
1773 the size we got from the type? */
1774 }
1775
1776 /* If this is an indirect reference, record it. */
1777 else if (TREE_CODE (t) == INDIRECT_REF
1778 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1779 {
1780 expr = t;
1781 offset = const0_rtx;
1782 apply_bitpos = bitpos;
1783 }
1784 }
1785
1786 /* If this is an indirect reference, record it. */
1787 else if (TREE_CODE (t) == INDIRECT_REF
1788 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1789 {
1790 expr = t;
1791 offset = const0_rtx;
1792 apply_bitpos = bitpos;
1793 }
1794
1795 if (!align_computed && !INDIRECT_REF_P (t))
1796 {
1797 unsigned int obj_align
1798 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1799 align = MAX (align, obj_align);
1800 }
1801 }
1802
1803 /* If we modified OFFSET based on T, then subtract the outstanding
1804 bit position offset. Similarly, increase the size of the accessed
1805 object to contain the negative offset. */
1806 if (apply_bitpos)
1807 {
1808 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1809 if (size)
1810 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1811 }
1812
1813 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1814 {
1815 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1816 we're overlapping. */
1817 offset = NULL;
1818 expr = NULL;
1819 }
1820
1821 /* Now set the attributes we computed above. */
1822 MEM_ATTRS (ref)
1823 = get_mem_attrs (alias, expr, offset, size, align,
1824 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1825
1826 /* If this is already known to be a scalar or aggregate, we are done. */
1827 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1828 return;
1829
1830 /* If it is a reference into an aggregate, this is part of an aggregate.
1831 Otherwise we don't know. */
1832 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1833 || TREE_CODE (t) == ARRAY_RANGE_REF
1834 || TREE_CODE (t) == BIT_FIELD_REF)
1835 MEM_IN_STRUCT_P (ref) = 1;
1836 }
1837
1838 void
1839 set_mem_attributes (rtx ref, tree t, int objectp)
1840 {
1841 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1842 }
1843
1844 /* Set the alias set of MEM to SET. */
1845
1846 void
1847 set_mem_alias_set (rtx mem, alias_set_type set)
1848 {
1849 #ifdef ENABLE_CHECKING
1850 /* If the new and old alias sets don't conflict, something is wrong. */
1851 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1852 #endif
1853
1854 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1855 MEM_SIZE (mem), MEM_ALIGN (mem),
1856 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1857 }
1858
1859 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1860
1861 void
1862 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1863 {
1864 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1865 MEM_OFFSET (mem), MEM_SIZE (mem),
1866 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1867 }
1868
1869 /* Set the alignment of MEM to ALIGN bits. */
1870
1871 void
1872 set_mem_align (rtx mem, unsigned int align)
1873 {
1874 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1875 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1876 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1877 }
1878
1879 /* Set the expr for MEM to EXPR. */
1880
1881 void
1882 set_mem_expr (rtx mem, tree expr)
1883 {
1884 MEM_ATTRS (mem)
1885 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1886 MEM_SIZE (mem), MEM_ALIGN (mem),
1887 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1888 }
1889
1890 /* Set the offset of MEM to OFFSET. */
1891
1892 void
1893 set_mem_offset (rtx mem, rtx offset)
1894 {
1895 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1896 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1897 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1898 }
1899
1900 /* Set the size of MEM to SIZE. */
1901
1902 void
1903 set_mem_size (rtx mem, rtx size)
1904 {
1905 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1906 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1907 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1908 }
1909 \f
1910 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1911 and its address changed to ADDR. (VOIDmode means don't change the mode.
1912 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1913 returned memory location is required to be valid. The memory
1914 attributes are not changed. */
1915
1916 static rtx
1917 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1918 {
1919 addr_space_t as;
1920 rtx new_rtx;
1921
1922 gcc_assert (MEM_P (memref));
1923 as = MEM_ADDR_SPACE (memref);
1924 if (mode == VOIDmode)
1925 mode = GET_MODE (memref);
1926 if (addr == 0)
1927 addr = XEXP (memref, 0);
1928 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1929 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1930 return memref;
1931
1932 if (validate)
1933 {
1934 if (reload_in_progress || reload_completed)
1935 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1936 else
1937 addr = memory_address_addr_space (mode, addr, as);
1938 }
1939
1940 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1941 return memref;
1942
1943 new_rtx = gen_rtx_MEM (mode, addr);
1944 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1945 return new_rtx;
1946 }
1947
1948 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1949 way we are changing MEMREF, so we only preserve the alias set. */
1950
1951 rtx
1952 change_address (rtx memref, enum machine_mode mode, rtx addr)
1953 {
1954 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1955 enum machine_mode mmode = GET_MODE (new_rtx);
1956 unsigned int align;
1957
1958 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1959 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1960
1961 /* If there are no changes, just return the original memory reference. */
1962 if (new_rtx == memref)
1963 {
1964 if (MEM_ATTRS (memref) == 0
1965 || (MEM_EXPR (memref) == NULL
1966 && MEM_OFFSET (memref) == NULL
1967 && MEM_SIZE (memref) == size
1968 && MEM_ALIGN (memref) == align))
1969 return new_rtx;
1970
1971 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1972 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1973 }
1974
1975 MEM_ATTRS (new_rtx)
1976 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1977 MEM_ADDR_SPACE (memref), mmode);
1978
1979 return new_rtx;
1980 }
1981
1982 /* Return a memory reference like MEMREF, but with its mode changed
1983 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1984 nonzero, the memory address is forced to be valid.
1985 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1986 and caller is responsible for adjusting MEMREF base register. */
1987
1988 rtx
1989 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1990 int validate, int adjust)
1991 {
1992 rtx addr = XEXP (memref, 0);
1993 rtx new_rtx;
1994 rtx memoffset = MEM_OFFSET (memref);
1995 rtx size = 0;
1996 unsigned int memalign = MEM_ALIGN (memref);
1997 addr_space_t as = MEM_ADDR_SPACE (memref);
1998 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1999 int pbits;
2000
2001 /* If there are no changes, just return the original memory reference. */
2002 if (mode == GET_MODE (memref) && !offset
2003 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2004 return memref;
2005
2006 /* ??? Prefer to create garbage instead of creating shared rtl.
2007 This may happen even if offset is nonzero -- consider
2008 (plus (plus reg reg) const_int) -- so do this always. */
2009 addr = copy_rtx (addr);
2010
2011 /* Convert a possibly large offset to a signed value within the
2012 range of the target address space. */
2013 pbits = GET_MODE_BITSIZE (address_mode);
2014 if (HOST_BITS_PER_WIDE_INT > pbits)
2015 {
2016 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2017 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2018 >> shift);
2019 }
2020
2021 if (adjust)
2022 {
2023 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2024 object, we can merge it into the LO_SUM. */
2025 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2026 && offset >= 0
2027 && (unsigned HOST_WIDE_INT) offset
2028 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2029 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2030 plus_constant (XEXP (addr, 1), offset));
2031 else
2032 addr = plus_constant (addr, offset);
2033 }
2034
2035 new_rtx = change_address_1 (memref, mode, addr, validate);
2036
2037 /* If the address is a REG, change_address_1 rightfully returns memref,
2038 but this would destroy memref's MEM_ATTRS. */
2039 if (new_rtx == memref && offset != 0)
2040 new_rtx = copy_rtx (new_rtx);
2041
2042 /* Compute the new values of the memory attributes due to this adjustment.
2043 We add the offsets and update the alignment. */
2044 if (memoffset)
2045 memoffset = GEN_INT (offset + INTVAL (memoffset));
2046
2047 /* Compute the new alignment by taking the MIN of the alignment and the
2048 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2049 if zero. */
2050 if (offset != 0)
2051 memalign
2052 = MIN (memalign,
2053 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2054
2055 /* We can compute the size in a number of ways. */
2056 if (GET_MODE (new_rtx) != BLKmode)
2057 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2058 else if (MEM_SIZE (memref))
2059 size = plus_constant (MEM_SIZE (memref), -offset);
2060
2061 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2062 memoffset, size, memalign, as,
2063 GET_MODE (new_rtx));
2064
2065 /* At some point, we should validate that this offset is within the object,
2066 if all the appropriate values are known. */
2067 return new_rtx;
2068 }
2069
2070 /* Return a memory reference like MEMREF, but with its mode changed
2071 to MODE and its address changed to ADDR, which is assumed to be
2072 MEMREF offset by OFFSET bytes. If VALIDATE is
2073 nonzero, the memory address is forced to be valid. */
2074
2075 rtx
2076 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2077 HOST_WIDE_INT offset, int validate)
2078 {
2079 memref = change_address_1 (memref, VOIDmode, addr, validate);
2080 return adjust_address_1 (memref, mode, offset, validate, 0);
2081 }
2082
2083 /* Return a memory reference like MEMREF, but whose address is changed by
2084 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2085 known to be in OFFSET (possibly 1). */
2086
2087 rtx
2088 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2089 {
2090 rtx new_rtx, addr = XEXP (memref, 0);
2091 addr_space_t as = MEM_ADDR_SPACE (memref);
2092 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2093
2094 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2095
2096 /* At this point we don't know _why_ the address is invalid. It
2097 could have secondary memory references, multiplies or anything.
2098
2099 However, if we did go and rearrange things, we can wind up not
2100 being able to recognize the magic around pic_offset_table_rtx.
2101 This stuff is fragile, and is yet another example of why it is
2102 bad to expose PIC machinery too early. */
2103 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2104 && GET_CODE (addr) == PLUS
2105 && XEXP (addr, 0) == pic_offset_table_rtx)
2106 {
2107 addr = force_reg (GET_MODE (addr), addr);
2108 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2109 }
2110
2111 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2112 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2113
2114 /* If there are no changes, just return the original memory reference. */
2115 if (new_rtx == memref)
2116 return new_rtx;
2117
2118 /* Update the alignment to reflect the offset. Reset the offset, which
2119 we don't know. */
2120 MEM_ATTRS (new_rtx)
2121 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2122 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2123 as, GET_MODE (new_rtx));
2124 return new_rtx;
2125 }
2126
2127 /* Return a memory reference like MEMREF, but with its address changed to
2128 ADDR. The caller is asserting that the actual piece of memory pointed
2129 to is the same, just the form of the address is being changed, such as
2130 by putting something into a register. */
2131
2132 rtx
2133 replace_equiv_address (rtx memref, rtx addr)
2134 {
2135 /* change_address_1 copies the memory attribute structure without change
2136 and that's exactly what we want here. */
2137 update_temp_slot_address (XEXP (memref, 0), addr);
2138 return change_address_1 (memref, VOIDmode, addr, 1);
2139 }
2140
2141 /* Likewise, but the reference is not required to be valid. */
2142
2143 rtx
2144 replace_equiv_address_nv (rtx memref, rtx addr)
2145 {
2146 return change_address_1 (memref, VOIDmode, addr, 0);
2147 }
2148
2149 /* Return a memory reference like MEMREF, but with its mode widened to
2150 MODE and offset by OFFSET. This would be used by targets that e.g.
2151 cannot issue QImode memory operations and have to use SImode memory
2152 operations plus masking logic. */
2153
2154 rtx
2155 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2156 {
2157 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2158 tree expr = MEM_EXPR (new_rtx);
2159 rtx memoffset = MEM_OFFSET (new_rtx);
2160 unsigned int size = GET_MODE_SIZE (mode);
2161
2162 /* If there are no changes, just return the original memory reference. */
2163 if (new_rtx == memref)
2164 return new_rtx;
2165
2166 /* If we don't know what offset we were at within the expression, then
2167 we can't know if we've overstepped the bounds. */
2168 if (! memoffset)
2169 expr = NULL_TREE;
2170
2171 while (expr)
2172 {
2173 if (TREE_CODE (expr) == COMPONENT_REF)
2174 {
2175 tree field = TREE_OPERAND (expr, 1);
2176 tree offset = component_ref_field_offset (expr);
2177
2178 if (! DECL_SIZE_UNIT (field))
2179 {
2180 expr = NULL_TREE;
2181 break;
2182 }
2183
2184 /* Is the field at least as large as the access? If so, ok,
2185 otherwise strip back to the containing structure. */
2186 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2187 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2188 && INTVAL (memoffset) >= 0)
2189 break;
2190
2191 if (! host_integerp (offset, 1))
2192 {
2193 expr = NULL_TREE;
2194 break;
2195 }
2196
2197 expr = TREE_OPERAND (expr, 0);
2198 memoffset
2199 = (GEN_INT (INTVAL (memoffset)
2200 + tree_low_cst (offset, 1)
2201 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2202 / BITS_PER_UNIT)));
2203 }
2204 /* Similarly for the decl. */
2205 else if (DECL_P (expr)
2206 && DECL_SIZE_UNIT (expr)
2207 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2208 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2209 && (! memoffset || INTVAL (memoffset) >= 0))
2210 break;
2211 else
2212 {
2213 /* The widened memory access overflows the expression, which means
2214 that it could alias another expression. Zap it. */
2215 expr = NULL_TREE;
2216 break;
2217 }
2218 }
2219
2220 if (! expr)
2221 memoffset = NULL_RTX;
2222
2223 /* The widened memory may alias other stuff, so zap the alias set. */
2224 /* ??? Maybe use get_alias_set on any remaining expression. */
2225
2226 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2227 MEM_ALIGN (new_rtx),
2228 MEM_ADDR_SPACE (new_rtx), mode);
2229
2230 return new_rtx;
2231 }
2232 \f
2233 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2234 static GTY(()) tree spill_slot_decl;
2235
2236 tree
2237 get_spill_slot_decl (bool force_build_p)
2238 {
2239 tree d = spill_slot_decl;
2240 rtx rd;
2241
2242 if (d || !force_build_p)
2243 return d;
2244
2245 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2246 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2247 DECL_ARTIFICIAL (d) = 1;
2248 DECL_IGNORED_P (d) = 1;
2249 TREE_USED (d) = 1;
2250 TREE_THIS_NOTRAP (d) = 1;
2251 spill_slot_decl = d;
2252
2253 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2254 MEM_NOTRAP_P (rd) = 1;
2255 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2256 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2257 SET_DECL_RTL (d, rd);
2258
2259 return d;
2260 }
2261
2262 /* Given MEM, a result from assign_stack_local, fill in the memory
2263 attributes as appropriate for a register allocator spill slot.
2264 These slots are not aliasable by other memory. We arrange for
2265 them all to use a single MEM_EXPR, so that the aliasing code can
2266 work properly in the case of shared spill slots. */
2267
2268 void
2269 set_mem_attrs_for_spill (rtx mem)
2270 {
2271 alias_set_type alias;
2272 rtx addr, offset;
2273 tree expr;
2274
2275 expr = get_spill_slot_decl (true);
2276 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2277
2278 /* We expect the incoming memory to be of the form:
2279 (mem:MODE (plus (reg sfp) (const_int offset)))
2280 with perhaps the plus missing for offset = 0. */
2281 addr = XEXP (mem, 0);
2282 offset = const0_rtx;
2283 if (GET_CODE (addr) == PLUS
2284 && CONST_INT_P (XEXP (addr, 1)))
2285 offset = XEXP (addr, 1);
2286
2287 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2288 MEM_SIZE (mem), MEM_ALIGN (mem),
2289 ADDR_SPACE_GENERIC, GET_MODE (mem));
2290 MEM_NOTRAP_P (mem) = 1;
2291 }
2292 \f
2293 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2294
2295 rtx
2296 gen_label_rtx (void)
2297 {
2298 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2299 NULL, label_num++, NULL);
2300 }
2301 \f
2302 /* For procedure integration. */
2303
2304 /* Install new pointers to the first and last insns in the chain.
2305 Also, set cur_insn_uid to one higher than the last in use.
2306 Used for an inline-procedure after copying the insn chain. */
2307
2308 void
2309 set_new_first_and_last_insn (rtx first, rtx last)
2310 {
2311 rtx insn;
2312
2313 set_first_insn (first);
2314 set_last_insn (last);
2315 cur_insn_uid = 0;
2316
2317 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2318 {
2319 int debug_count = 0;
2320
2321 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2322 cur_debug_insn_uid = 0;
2323
2324 for (insn = first; insn; insn = NEXT_INSN (insn))
2325 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2326 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2327 else
2328 {
2329 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2330 if (DEBUG_INSN_P (insn))
2331 debug_count++;
2332 }
2333
2334 if (debug_count)
2335 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2336 else
2337 cur_debug_insn_uid++;
2338 }
2339 else
2340 for (insn = first; insn; insn = NEXT_INSN (insn))
2341 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2342
2343 cur_insn_uid++;
2344 }
2345 \f
2346 /* Go through all the RTL insn bodies and copy any invalid shared
2347 structure. This routine should only be called once. */
2348
2349 static void
2350 unshare_all_rtl_1 (rtx insn)
2351 {
2352 /* Unshare just about everything else. */
2353 unshare_all_rtl_in_chain (insn);
2354
2355 /* Make sure the addresses of stack slots found outside the insn chain
2356 (such as, in DECL_RTL of a variable) are not shared
2357 with the insn chain.
2358
2359 This special care is necessary when the stack slot MEM does not
2360 actually appear in the insn chain. If it does appear, its address
2361 is unshared from all else at that point. */
2362 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2363 }
2364
2365 /* Go through all the RTL insn bodies and copy any invalid shared
2366 structure, again. This is a fairly expensive thing to do so it
2367 should be done sparingly. */
2368
2369 void
2370 unshare_all_rtl_again (rtx insn)
2371 {
2372 rtx p;
2373 tree decl;
2374
2375 for (p = insn; p; p = NEXT_INSN (p))
2376 if (INSN_P (p))
2377 {
2378 reset_used_flags (PATTERN (p));
2379 reset_used_flags (REG_NOTES (p));
2380 }
2381
2382 /* Make sure that virtual stack slots are not shared. */
2383 set_used_decls (DECL_INITIAL (cfun->decl));
2384
2385 /* Make sure that virtual parameters are not shared. */
2386 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2387 set_used_flags (DECL_RTL (decl));
2388
2389 reset_used_flags (stack_slot_list);
2390
2391 unshare_all_rtl_1 (insn);
2392 }
2393
2394 unsigned int
2395 unshare_all_rtl (void)
2396 {
2397 unshare_all_rtl_1 (get_insns ());
2398 return 0;
2399 }
2400
2401 struct rtl_opt_pass pass_unshare_all_rtl =
2402 {
2403 {
2404 RTL_PASS,
2405 "unshare", /* name */
2406 NULL, /* gate */
2407 unshare_all_rtl, /* execute */
2408 NULL, /* sub */
2409 NULL, /* next */
2410 0, /* static_pass_number */
2411 TV_NONE, /* tv_id */
2412 0, /* properties_required */
2413 0, /* properties_provided */
2414 0, /* properties_destroyed */
2415 0, /* todo_flags_start */
2416 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2417 }
2418 };
2419
2420
2421 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2422 Recursively does the same for subexpressions. */
2423
2424 static void
2425 verify_rtx_sharing (rtx orig, rtx insn)
2426 {
2427 rtx x = orig;
2428 int i;
2429 enum rtx_code code;
2430 const char *format_ptr;
2431
2432 if (x == 0)
2433 return;
2434
2435 code = GET_CODE (x);
2436
2437 /* These types may be freely shared. */
2438
2439 switch (code)
2440 {
2441 case REG:
2442 case DEBUG_EXPR:
2443 case VALUE:
2444 case CONST_INT:
2445 case CONST_DOUBLE:
2446 case CONST_FIXED:
2447 case CONST_VECTOR:
2448 case SYMBOL_REF:
2449 case LABEL_REF:
2450 case CODE_LABEL:
2451 case PC:
2452 case CC0:
2453 case SCRATCH:
2454 return;
2455 /* SCRATCH must be shared because they represent distinct values. */
2456 case CLOBBER:
2457 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2458 return;
2459 break;
2460
2461 case CONST:
2462 if (shared_const_p (orig))
2463 return;
2464 break;
2465
2466 case MEM:
2467 /* A MEM is allowed to be shared if its address is constant. */
2468 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2469 || reload_completed || reload_in_progress)
2470 return;
2471
2472 break;
2473
2474 default:
2475 break;
2476 }
2477
2478 /* This rtx may not be shared. If it has already been seen,
2479 replace it with a copy of itself. */
2480 #ifdef ENABLE_CHECKING
2481 if (RTX_FLAG (x, used))
2482 {
2483 error ("invalid rtl sharing found in the insn");
2484 debug_rtx (insn);
2485 error ("shared rtx");
2486 debug_rtx (x);
2487 internal_error ("internal consistency failure");
2488 }
2489 #endif
2490 gcc_assert (!RTX_FLAG (x, used));
2491
2492 RTX_FLAG (x, used) = 1;
2493
2494 /* Now scan the subexpressions recursively. */
2495
2496 format_ptr = GET_RTX_FORMAT (code);
2497
2498 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2499 {
2500 switch (*format_ptr++)
2501 {
2502 case 'e':
2503 verify_rtx_sharing (XEXP (x, i), insn);
2504 break;
2505
2506 case 'E':
2507 if (XVEC (x, i) != NULL)
2508 {
2509 int j;
2510 int len = XVECLEN (x, i);
2511
2512 for (j = 0; j < len; j++)
2513 {
2514 /* We allow sharing of ASM_OPERANDS inside single
2515 instruction. */
2516 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2517 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2518 == ASM_OPERANDS))
2519 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2520 else
2521 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2522 }
2523 }
2524 break;
2525 }
2526 }
2527 return;
2528 }
2529
2530 /* Go through all the RTL insn bodies and check that there is no unexpected
2531 sharing in between the subexpressions. */
2532
2533 DEBUG_FUNCTION void
2534 verify_rtl_sharing (void)
2535 {
2536 rtx p;
2537
2538 for (p = get_insns (); p; p = NEXT_INSN (p))
2539 if (INSN_P (p))
2540 {
2541 reset_used_flags (PATTERN (p));
2542 reset_used_flags (REG_NOTES (p));
2543 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2544 {
2545 int i;
2546 rtx q, sequence = PATTERN (p);
2547
2548 for (i = 0; i < XVECLEN (sequence, 0); i++)
2549 {
2550 q = XVECEXP (sequence, 0, i);
2551 gcc_assert (INSN_P (q));
2552 reset_used_flags (PATTERN (q));
2553 reset_used_flags (REG_NOTES (q));
2554 }
2555 }
2556 }
2557
2558 for (p = get_insns (); p; p = NEXT_INSN (p))
2559 if (INSN_P (p))
2560 {
2561 verify_rtx_sharing (PATTERN (p), p);
2562 verify_rtx_sharing (REG_NOTES (p), p);
2563 }
2564 }
2565
2566 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2567 Assumes the mark bits are cleared at entry. */
2568
2569 void
2570 unshare_all_rtl_in_chain (rtx insn)
2571 {
2572 for (; insn; insn = NEXT_INSN (insn))
2573 if (INSN_P (insn))
2574 {
2575 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2576 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2577 }
2578 }
2579
2580 /* Go through all virtual stack slots of a function and mark them as
2581 shared. We never replace the DECL_RTLs themselves with a copy,
2582 but expressions mentioned into a DECL_RTL cannot be shared with
2583 expressions in the instruction stream.
2584
2585 Note that reload may convert pseudo registers into memories in-place.
2586 Pseudo registers are always shared, but MEMs never are. Thus if we
2587 reset the used flags on MEMs in the instruction stream, we must set
2588 them again on MEMs that appear in DECL_RTLs. */
2589
2590 static void
2591 set_used_decls (tree blk)
2592 {
2593 tree t;
2594
2595 /* Mark decls. */
2596 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2597 if (DECL_RTL_SET_P (t))
2598 set_used_flags (DECL_RTL (t));
2599
2600 /* Now process sub-blocks. */
2601 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2602 set_used_decls (t);
2603 }
2604
2605 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2606 Recursively does the same for subexpressions. Uses
2607 copy_rtx_if_shared_1 to reduce stack space. */
2608
2609 rtx
2610 copy_rtx_if_shared (rtx orig)
2611 {
2612 copy_rtx_if_shared_1 (&orig);
2613 return orig;
2614 }
2615
2616 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2617 use. Recursively does the same for subexpressions. */
2618
2619 static void
2620 copy_rtx_if_shared_1 (rtx *orig1)
2621 {
2622 rtx x;
2623 int i;
2624 enum rtx_code code;
2625 rtx *last_ptr;
2626 const char *format_ptr;
2627 int copied = 0;
2628 int length;
2629
2630 /* Repeat is used to turn tail-recursion into iteration. */
2631 repeat:
2632 x = *orig1;
2633
2634 if (x == 0)
2635 return;
2636
2637 code = GET_CODE (x);
2638
2639 /* These types may be freely shared. */
2640
2641 switch (code)
2642 {
2643 case REG:
2644 case DEBUG_EXPR:
2645 case VALUE:
2646 case CONST_INT:
2647 case CONST_DOUBLE:
2648 case CONST_FIXED:
2649 case CONST_VECTOR:
2650 case SYMBOL_REF:
2651 case LABEL_REF:
2652 case CODE_LABEL:
2653 case PC:
2654 case CC0:
2655 case SCRATCH:
2656 /* SCRATCH must be shared because they represent distinct values. */
2657 return;
2658 case CLOBBER:
2659 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2660 return;
2661 break;
2662
2663 case CONST:
2664 if (shared_const_p (x))
2665 return;
2666 break;
2667
2668 case DEBUG_INSN:
2669 case INSN:
2670 case JUMP_INSN:
2671 case CALL_INSN:
2672 case NOTE:
2673 case BARRIER:
2674 /* The chain of insns is not being copied. */
2675 return;
2676
2677 default:
2678 break;
2679 }
2680
2681 /* This rtx may not be shared. If it has already been seen,
2682 replace it with a copy of itself. */
2683
2684 if (RTX_FLAG (x, used))
2685 {
2686 x = shallow_copy_rtx (x);
2687 copied = 1;
2688 }
2689 RTX_FLAG (x, used) = 1;
2690
2691 /* Now scan the subexpressions recursively.
2692 We can store any replaced subexpressions directly into X
2693 since we know X is not shared! Any vectors in X
2694 must be copied if X was copied. */
2695
2696 format_ptr = GET_RTX_FORMAT (code);
2697 length = GET_RTX_LENGTH (code);
2698 last_ptr = NULL;
2699
2700 for (i = 0; i < length; i++)
2701 {
2702 switch (*format_ptr++)
2703 {
2704 case 'e':
2705 if (last_ptr)
2706 copy_rtx_if_shared_1 (last_ptr);
2707 last_ptr = &XEXP (x, i);
2708 break;
2709
2710 case 'E':
2711 if (XVEC (x, i) != NULL)
2712 {
2713 int j;
2714 int len = XVECLEN (x, i);
2715
2716 /* Copy the vector iff I copied the rtx and the length
2717 is nonzero. */
2718 if (copied && len > 0)
2719 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2720
2721 /* Call recursively on all inside the vector. */
2722 for (j = 0; j < len; j++)
2723 {
2724 if (last_ptr)
2725 copy_rtx_if_shared_1 (last_ptr);
2726 last_ptr = &XVECEXP (x, i, j);
2727 }
2728 }
2729 break;
2730 }
2731 }
2732 *orig1 = x;
2733 if (last_ptr)
2734 {
2735 orig1 = last_ptr;
2736 goto repeat;
2737 }
2738 return;
2739 }
2740
2741 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2742 to look for shared sub-parts. */
2743
2744 void
2745 reset_used_flags (rtx x)
2746 {
2747 int i, j;
2748 enum rtx_code code;
2749 const char *format_ptr;
2750 int length;
2751
2752 /* Repeat is used to turn tail-recursion into iteration. */
2753 repeat:
2754 if (x == 0)
2755 return;
2756
2757 code = GET_CODE (x);
2758
2759 /* These types may be freely shared so we needn't do any resetting
2760 for them. */
2761
2762 switch (code)
2763 {
2764 case REG:
2765 case DEBUG_EXPR:
2766 case VALUE:
2767 case CONST_INT:
2768 case CONST_DOUBLE:
2769 case CONST_FIXED:
2770 case CONST_VECTOR:
2771 case SYMBOL_REF:
2772 case CODE_LABEL:
2773 case PC:
2774 case CC0:
2775 return;
2776
2777 case DEBUG_INSN:
2778 case INSN:
2779 case JUMP_INSN:
2780 case CALL_INSN:
2781 case NOTE:
2782 case LABEL_REF:
2783 case BARRIER:
2784 /* The chain of insns is not being copied. */
2785 return;
2786
2787 default:
2788 break;
2789 }
2790
2791 RTX_FLAG (x, used) = 0;
2792
2793 format_ptr = GET_RTX_FORMAT (code);
2794 length = GET_RTX_LENGTH (code);
2795
2796 for (i = 0; i < length; i++)
2797 {
2798 switch (*format_ptr++)
2799 {
2800 case 'e':
2801 if (i == length-1)
2802 {
2803 x = XEXP (x, i);
2804 goto repeat;
2805 }
2806 reset_used_flags (XEXP (x, i));
2807 break;
2808
2809 case 'E':
2810 for (j = 0; j < XVECLEN (x, i); j++)
2811 reset_used_flags (XVECEXP (x, i, j));
2812 break;
2813 }
2814 }
2815 }
2816
2817 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2818 to look for shared sub-parts. */
2819
2820 void
2821 set_used_flags (rtx x)
2822 {
2823 int i, j;
2824 enum rtx_code code;
2825 const char *format_ptr;
2826
2827 if (x == 0)
2828 return;
2829
2830 code = GET_CODE (x);
2831
2832 /* These types may be freely shared so we needn't do any resetting
2833 for them. */
2834
2835 switch (code)
2836 {
2837 case REG:
2838 case DEBUG_EXPR:
2839 case VALUE:
2840 case CONST_INT:
2841 case CONST_DOUBLE:
2842 case CONST_FIXED:
2843 case CONST_VECTOR:
2844 case SYMBOL_REF:
2845 case CODE_LABEL:
2846 case PC:
2847 case CC0:
2848 return;
2849
2850 case DEBUG_INSN:
2851 case INSN:
2852 case JUMP_INSN:
2853 case CALL_INSN:
2854 case NOTE:
2855 case LABEL_REF:
2856 case BARRIER:
2857 /* The chain of insns is not being copied. */
2858 return;
2859
2860 default:
2861 break;
2862 }
2863
2864 RTX_FLAG (x, used) = 1;
2865
2866 format_ptr = GET_RTX_FORMAT (code);
2867 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2868 {
2869 switch (*format_ptr++)
2870 {
2871 case 'e':
2872 set_used_flags (XEXP (x, i));
2873 break;
2874
2875 case 'E':
2876 for (j = 0; j < XVECLEN (x, i); j++)
2877 set_used_flags (XVECEXP (x, i, j));
2878 break;
2879 }
2880 }
2881 }
2882 \f
2883 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2884 Return X or the rtx for the pseudo reg the value of X was copied into.
2885 OTHER must be valid as a SET_DEST. */
2886
2887 rtx
2888 make_safe_from (rtx x, rtx other)
2889 {
2890 while (1)
2891 switch (GET_CODE (other))
2892 {
2893 case SUBREG:
2894 other = SUBREG_REG (other);
2895 break;
2896 case STRICT_LOW_PART:
2897 case SIGN_EXTEND:
2898 case ZERO_EXTEND:
2899 other = XEXP (other, 0);
2900 break;
2901 default:
2902 goto done;
2903 }
2904 done:
2905 if ((MEM_P (other)
2906 && ! CONSTANT_P (x)
2907 && !REG_P (x)
2908 && GET_CODE (x) != SUBREG)
2909 || (REG_P (other)
2910 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2911 || reg_mentioned_p (other, x))))
2912 {
2913 rtx temp = gen_reg_rtx (GET_MODE (x));
2914 emit_move_insn (temp, x);
2915 return temp;
2916 }
2917 return x;
2918 }
2919 \f
2920 /* Emission of insns (adding them to the doubly-linked list). */
2921
2922 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2923
2924 rtx
2925 get_last_insn_anywhere (void)
2926 {
2927 struct sequence_stack *stack;
2928 if (get_last_insn ())
2929 return get_last_insn ();
2930 for (stack = seq_stack; stack; stack = stack->next)
2931 if (stack->last != 0)
2932 return stack->last;
2933 return 0;
2934 }
2935
2936 /* Return the first nonnote insn emitted in current sequence or current
2937 function. This routine looks inside SEQUENCEs. */
2938
2939 rtx
2940 get_first_nonnote_insn (void)
2941 {
2942 rtx insn = get_insns ();
2943
2944 if (insn)
2945 {
2946 if (NOTE_P (insn))
2947 for (insn = next_insn (insn);
2948 insn && NOTE_P (insn);
2949 insn = next_insn (insn))
2950 continue;
2951 else
2952 {
2953 if (NONJUMP_INSN_P (insn)
2954 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2955 insn = XVECEXP (PATTERN (insn), 0, 0);
2956 }
2957 }
2958
2959 return insn;
2960 }
2961
2962 /* Return the last nonnote insn emitted in current sequence or current
2963 function. This routine looks inside SEQUENCEs. */
2964
2965 rtx
2966 get_last_nonnote_insn (void)
2967 {
2968 rtx insn = get_last_insn ();
2969
2970 if (insn)
2971 {
2972 if (NOTE_P (insn))
2973 for (insn = previous_insn (insn);
2974 insn && NOTE_P (insn);
2975 insn = previous_insn (insn))
2976 continue;
2977 else
2978 {
2979 if (NONJUMP_INSN_P (insn)
2980 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2981 insn = XVECEXP (PATTERN (insn), 0,
2982 XVECLEN (PATTERN (insn), 0) - 1);
2983 }
2984 }
2985
2986 return insn;
2987 }
2988
2989 /* Return the number of actual (non-debug) insns emitted in this
2990 function. */
2991
2992 int
2993 get_max_insn_count (void)
2994 {
2995 int n = cur_insn_uid;
2996
2997 /* The table size must be stable across -g, to avoid codegen
2998 differences due to debug insns, and not be affected by
2999 -fmin-insn-uid, to avoid excessive table size and to simplify
3000 debugging of -fcompare-debug failures. */
3001 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3002 n -= cur_debug_insn_uid;
3003 else
3004 n -= MIN_NONDEBUG_INSN_UID;
3005
3006 return n;
3007 }
3008
3009 \f
3010 /* Return the next insn. If it is a SEQUENCE, return the first insn
3011 of the sequence. */
3012
3013 rtx
3014 next_insn (rtx insn)
3015 {
3016 if (insn)
3017 {
3018 insn = NEXT_INSN (insn);
3019 if (insn && NONJUMP_INSN_P (insn)
3020 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3021 insn = XVECEXP (PATTERN (insn), 0, 0);
3022 }
3023
3024 return insn;
3025 }
3026
3027 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3028 of the sequence. */
3029
3030 rtx
3031 previous_insn (rtx insn)
3032 {
3033 if (insn)
3034 {
3035 insn = PREV_INSN (insn);
3036 if (insn && NONJUMP_INSN_P (insn)
3037 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3038 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3039 }
3040
3041 return insn;
3042 }
3043
3044 /* Return the next insn after INSN that is not a NOTE. This routine does not
3045 look inside SEQUENCEs. */
3046
3047 rtx
3048 next_nonnote_insn (rtx insn)
3049 {
3050 while (insn)
3051 {
3052 insn = NEXT_INSN (insn);
3053 if (insn == 0 || !NOTE_P (insn))
3054 break;
3055 }
3056
3057 return insn;
3058 }
3059
3060 /* Return the next insn after INSN that is not a NOTE, but stop the
3061 search before we enter another basic block. This routine does not
3062 look inside SEQUENCEs. */
3063
3064 rtx
3065 next_nonnote_insn_bb (rtx insn)
3066 {
3067 while (insn)
3068 {
3069 insn = NEXT_INSN (insn);
3070 if (insn == 0 || !NOTE_P (insn))
3071 break;
3072 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3073 return NULL_RTX;
3074 }
3075
3076 return insn;
3077 }
3078
3079 /* Return the previous insn before INSN that is not a NOTE. This routine does
3080 not look inside SEQUENCEs. */
3081
3082 rtx
3083 prev_nonnote_insn (rtx insn)
3084 {
3085 while (insn)
3086 {
3087 insn = PREV_INSN (insn);
3088 if (insn == 0 || !NOTE_P (insn))
3089 break;
3090 }
3091
3092 return insn;
3093 }
3094
3095 /* Return the previous insn before INSN that is not a NOTE, but stop
3096 the search before we enter another basic block. This routine does
3097 not look inside SEQUENCEs. */
3098
3099 rtx
3100 prev_nonnote_insn_bb (rtx insn)
3101 {
3102 while (insn)
3103 {
3104 insn = PREV_INSN (insn);
3105 if (insn == 0 || !NOTE_P (insn))
3106 break;
3107 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3108 return NULL_RTX;
3109 }
3110
3111 return insn;
3112 }
3113
3114 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3115 routine does not look inside SEQUENCEs. */
3116
3117 rtx
3118 next_nondebug_insn (rtx insn)
3119 {
3120 while (insn)
3121 {
3122 insn = NEXT_INSN (insn);
3123 if (insn == 0 || !DEBUG_INSN_P (insn))
3124 break;
3125 }
3126
3127 return insn;
3128 }
3129
3130 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3131 This routine does not look inside SEQUENCEs. */
3132
3133 rtx
3134 prev_nondebug_insn (rtx insn)
3135 {
3136 while (insn)
3137 {
3138 insn = PREV_INSN (insn);
3139 if (insn == 0 || !DEBUG_INSN_P (insn))
3140 break;
3141 }
3142
3143 return insn;
3144 }
3145
3146 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3147 or 0, if there is none. This routine does not look inside
3148 SEQUENCEs. */
3149
3150 rtx
3151 next_real_insn (rtx insn)
3152 {
3153 while (insn)
3154 {
3155 insn = NEXT_INSN (insn);
3156 if (insn == 0 || INSN_P (insn))
3157 break;
3158 }
3159
3160 return insn;
3161 }
3162
3163 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3164 or 0, if there is none. This routine does not look inside
3165 SEQUENCEs. */
3166
3167 rtx
3168 prev_real_insn (rtx insn)
3169 {
3170 while (insn)
3171 {
3172 insn = PREV_INSN (insn);
3173 if (insn == 0 || INSN_P (insn))
3174 break;
3175 }
3176
3177 return insn;
3178 }
3179
3180 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3181 This routine does not look inside SEQUENCEs. */
3182
3183 rtx
3184 last_call_insn (void)
3185 {
3186 rtx insn;
3187
3188 for (insn = get_last_insn ();
3189 insn && !CALL_P (insn);
3190 insn = PREV_INSN (insn))
3191 ;
3192
3193 return insn;
3194 }
3195
3196 /* Find the next insn after INSN that really does something. This routine
3197 does not look inside SEQUENCEs. After reload this also skips over
3198 standalone USE and CLOBBER insn. */
3199
3200 int
3201 active_insn_p (const_rtx insn)
3202 {
3203 return (CALL_P (insn) || JUMP_P (insn)
3204 || (NONJUMP_INSN_P (insn)
3205 && (! reload_completed
3206 || (GET_CODE (PATTERN (insn)) != USE
3207 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3208 }
3209
3210 rtx
3211 next_active_insn (rtx insn)
3212 {
3213 while (insn)
3214 {
3215 insn = NEXT_INSN (insn);
3216 if (insn == 0 || active_insn_p (insn))
3217 break;
3218 }
3219
3220 return insn;
3221 }
3222
3223 /* Find the last insn before INSN that really does something. This routine
3224 does not look inside SEQUENCEs. After reload this also skips over
3225 standalone USE and CLOBBER insn. */
3226
3227 rtx
3228 prev_active_insn (rtx insn)
3229 {
3230 while (insn)
3231 {
3232 insn = PREV_INSN (insn);
3233 if (insn == 0 || active_insn_p (insn))
3234 break;
3235 }
3236
3237 return insn;
3238 }
3239
3240 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3241
3242 rtx
3243 next_label (rtx insn)
3244 {
3245 while (insn)
3246 {
3247 insn = NEXT_INSN (insn);
3248 if (insn == 0 || LABEL_P (insn))
3249 break;
3250 }
3251
3252 return insn;
3253 }
3254
3255 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3256
3257 rtx
3258 prev_label (rtx insn)
3259 {
3260 while (insn)
3261 {
3262 insn = PREV_INSN (insn);
3263 if (insn == 0 || LABEL_P (insn))
3264 break;
3265 }
3266
3267 return insn;
3268 }
3269
3270 /* Return the last label to mark the same position as LABEL. Return null
3271 if LABEL itself is null. */
3272
3273 rtx
3274 skip_consecutive_labels (rtx label)
3275 {
3276 rtx insn;
3277
3278 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3279 if (LABEL_P (insn))
3280 label = insn;
3281
3282 return label;
3283 }
3284 \f
3285 #ifdef HAVE_cc0
3286 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3287 and REG_CC_USER notes so we can find it. */
3288
3289 void
3290 link_cc0_insns (rtx insn)
3291 {
3292 rtx user = next_nonnote_insn (insn);
3293
3294 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3295 user = XVECEXP (PATTERN (user), 0, 0);
3296
3297 add_reg_note (user, REG_CC_SETTER, insn);
3298 add_reg_note (insn, REG_CC_USER, user);
3299 }
3300
3301 /* Return the next insn that uses CC0 after INSN, which is assumed to
3302 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3303 applied to the result of this function should yield INSN).
3304
3305 Normally, this is simply the next insn. However, if a REG_CC_USER note
3306 is present, it contains the insn that uses CC0.
3307
3308 Return 0 if we can't find the insn. */
3309
3310 rtx
3311 next_cc0_user (rtx insn)
3312 {
3313 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3314
3315 if (note)
3316 return XEXP (note, 0);
3317
3318 insn = next_nonnote_insn (insn);
3319 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3320 insn = XVECEXP (PATTERN (insn), 0, 0);
3321
3322 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3323 return insn;
3324
3325 return 0;
3326 }
3327
3328 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3329 note, it is the previous insn. */
3330
3331 rtx
3332 prev_cc0_setter (rtx insn)
3333 {
3334 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3335
3336 if (note)
3337 return XEXP (note, 0);
3338
3339 insn = prev_nonnote_insn (insn);
3340 gcc_assert (sets_cc0_p (PATTERN (insn)));
3341
3342 return insn;
3343 }
3344 #endif
3345
3346 #ifdef AUTO_INC_DEC
3347 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3348
3349 static int
3350 find_auto_inc (rtx *xp, void *data)
3351 {
3352 rtx x = *xp;
3353 rtx reg = (rtx) data;
3354
3355 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3356 return 0;
3357
3358 switch (GET_CODE (x))
3359 {
3360 case PRE_DEC:
3361 case PRE_INC:
3362 case POST_DEC:
3363 case POST_INC:
3364 case PRE_MODIFY:
3365 case POST_MODIFY:
3366 if (rtx_equal_p (reg, XEXP (x, 0)))
3367 return 1;
3368 break;
3369
3370 default:
3371 gcc_unreachable ();
3372 }
3373 return -1;
3374 }
3375 #endif
3376
3377 /* Increment the label uses for all labels present in rtx. */
3378
3379 static void
3380 mark_label_nuses (rtx x)
3381 {
3382 enum rtx_code code;
3383 int i, j;
3384 const char *fmt;
3385
3386 code = GET_CODE (x);
3387 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3388 LABEL_NUSES (XEXP (x, 0))++;
3389
3390 fmt = GET_RTX_FORMAT (code);
3391 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3392 {
3393 if (fmt[i] == 'e')
3394 mark_label_nuses (XEXP (x, i));
3395 else if (fmt[i] == 'E')
3396 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3397 mark_label_nuses (XVECEXP (x, i, j));
3398 }
3399 }
3400
3401 \f
3402 /* Try splitting insns that can be split for better scheduling.
3403 PAT is the pattern which might split.
3404 TRIAL is the insn providing PAT.
3405 LAST is nonzero if we should return the last insn of the sequence produced.
3406
3407 If this routine succeeds in splitting, it returns the first or last
3408 replacement insn depending on the value of LAST. Otherwise, it
3409 returns TRIAL. If the insn to be returned can be split, it will be. */
3410
3411 rtx
3412 try_split (rtx pat, rtx trial, int last)
3413 {
3414 rtx before = PREV_INSN (trial);
3415 rtx after = NEXT_INSN (trial);
3416 int has_barrier = 0;
3417 rtx note, seq, tem;
3418 int probability;
3419 rtx insn_last, insn;
3420 int njumps = 0;
3421
3422 /* We're not good at redistributing frame information. */
3423 if (RTX_FRAME_RELATED_P (trial))
3424 return trial;
3425
3426 if (any_condjump_p (trial)
3427 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3428 split_branch_probability = INTVAL (XEXP (note, 0));
3429 probability = split_branch_probability;
3430
3431 seq = split_insns (pat, trial);
3432
3433 split_branch_probability = -1;
3434
3435 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3436 We may need to handle this specially. */
3437 if (after && BARRIER_P (after))
3438 {
3439 has_barrier = 1;
3440 after = NEXT_INSN (after);
3441 }
3442
3443 if (!seq)
3444 return trial;
3445
3446 /* Avoid infinite loop if any insn of the result matches
3447 the original pattern. */
3448 insn_last = seq;
3449 while (1)
3450 {
3451 if (INSN_P (insn_last)
3452 && rtx_equal_p (PATTERN (insn_last), pat))
3453 return trial;
3454 if (!NEXT_INSN (insn_last))
3455 break;
3456 insn_last = NEXT_INSN (insn_last);
3457 }
3458
3459 /* We will be adding the new sequence to the function. The splitters
3460 may have introduced invalid RTL sharing, so unshare the sequence now. */
3461 unshare_all_rtl_in_chain (seq);
3462
3463 /* Mark labels. */
3464 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3465 {
3466 if (JUMP_P (insn))
3467 {
3468 mark_jump_label (PATTERN (insn), insn, 0);
3469 njumps++;
3470 if (probability != -1
3471 && any_condjump_p (insn)
3472 && !find_reg_note (insn, REG_BR_PROB, 0))
3473 {
3474 /* We can preserve the REG_BR_PROB notes only if exactly
3475 one jump is created, otherwise the machine description
3476 is responsible for this step using
3477 split_branch_probability variable. */
3478 gcc_assert (njumps == 1);
3479 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3480 }
3481 }
3482 }
3483
3484 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3485 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3486 if (CALL_P (trial))
3487 {
3488 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3489 if (CALL_P (insn))
3490 {
3491 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3492 while (*p)
3493 p = &XEXP (*p, 1);
3494 *p = CALL_INSN_FUNCTION_USAGE (trial);
3495 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3496
3497 /* Update the debug information for the CALL_INSN. */
3498 if (flag_enable_icf_debug)
3499 (*debug_hooks->copy_call_info) (trial, insn);
3500 }
3501 }
3502
3503 /* Copy notes, particularly those related to the CFG. */
3504 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3505 {
3506 switch (REG_NOTE_KIND (note))
3507 {
3508 case REG_EH_REGION:
3509 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3510 break;
3511
3512 case REG_NORETURN:
3513 case REG_SETJMP:
3514 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3515 {
3516 if (CALL_P (insn))
3517 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3518 }
3519 break;
3520
3521 case REG_NON_LOCAL_GOTO:
3522 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3523 {
3524 if (JUMP_P (insn))
3525 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3526 }
3527 break;
3528
3529 #ifdef AUTO_INC_DEC
3530 case REG_INC:
3531 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3532 {
3533 rtx reg = XEXP (note, 0);
3534 if (!FIND_REG_INC_NOTE (insn, reg)
3535 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3536 add_reg_note (insn, REG_INC, reg);
3537 }
3538 break;
3539 #endif
3540
3541 default:
3542 break;
3543 }
3544 }
3545
3546 /* If there are LABELS inside the split insns increment the
3547 usage count so we don't delete the label. */
3548 if (INSN_P (trial))
3549 {
3550 insn = insn_last;
3551 while (insn != NULL_RTX)
3552 {
3553 /* JUMP_P insns have already been "marked" above. */
3554 if (NONJUMP_INSN_P (insn))
3555 mark_label_nuses (PATTERN (insn));
3556
3557 insn = PREV_INSN (insn);
3558 }
3559 }
3560
3561 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3562
3563 delete_insn (trial);
3564 if (has_barrier)
3565 emit_barrier_after (tem);
3566
3567 /* Recursively call try_split for each new insn created; by the
3568 time control returns here that insn will be fully split, so
3569 set LAST and continue from the insn after the one returned.
3570 We can't use next_active_insn here since AFTER may be a note.
3571 Ignore deleted insns, which can be occur if not optimizing. */
3572 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3573 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3574 tem = try_split (PATTERN (tem), tem, 1);
3575
3576 /* Return either the first or the last insn, depending on which was
3577 requested. */
3578 return last
3579 ? (after ? PREV_INSN (after) : get_last_insn ())
3580 : NEXT_INSN (before);
3581 }
3582 \f
3583 /* Make and return an INSN rtx, initializing all its slots.
3584 Store PATTERN in the pattern slots. */
3585
3586 rtx
3587 make_insn_raw (rtx pattern)
3588 {
3589 rtx insn;
3590
3591 insn = rtx_alloc (INSN);
3592
3593 INSN_UID (insn) = cur_insn_uid++;
3594 PATTERN (insn) = pattern;
3595 INSN_CODE (insn) = -1;
3596 REG_NOTES (insn) = NULL;
3597 INSN_LOCATOR (insn) = curr_insn_locator ();
3598 BLOCK_FOR_INSN (insn) = NULL;
3599
3600 #ifdef ENABLE_RTL_CHECKING
3601 if (insn
3602 && INSN_P (insn)
3603 && (returnjump_p (insn)
3604 || (GET_CODE (insn) == SET
3605 && SET_DEST (insn) == pc_rtx)))
3606 {
3607 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3608 debug_rtx (insn);
3609 }
3610 #endif
3611
3612 return insn;
3613 }
3614
3615 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3616
3617 rtx
3618 make_debug_insn_raw (rtx pattern)
3619 {
3620 rtx insn;
3621
3622 insn = rtx_alloc (DEBUG_INSN);
3623 INSN_UID (insn) = cur_debug_insn_uid++;
3624 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3625 INSN_UID (insn) = cur_insn_uid++;
3626
3627 PATTERN (insn) = pattern;
3628 INSN_CODE (insn) = -1;
3629 REG_NOTES (insn) = NULL;
3630 INSN_LOCATOR (insn) = curr_insn_locator ();
3631 BLOCK_FOR_INSN (insn) = NULL;
3632
3633 return insn;
3634 }
3635
3636 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3637
3638 rtx
3639 make_jump_insn_raw (rtx pattern)
3640 {
3641 rtx insn;
3642
3643 insn = rtx_alloc (JUMP_INSN);
3644 INSN_UID (insn) = cur_insn_uid++;
3645
3646 PATTERN (insn) = pattern;
3647 INSN_CODE (insn) = -1;
3648 REG_NOTES (insn) = NULL;
3649 JUMP_LABEL (insn) = NULL;
3650 INSN_LOCATOR (insn) = curr_insn_locator ();
3651 BLOCK_FOR_INSN (insn) = NULL;
3652
3653 return insn;
3654 }
3655
3656 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3657
3658 static rtx
3659 make_call_insn_raw (rtx pattern)
3660 {
3661 rtx insn;
3662
3663 insn = rtx_alloc (CALL_INSN);
3664 INSN_UID (insn) = cur_insn_uid++;
3665
3666 PATTERN (insn) = pattern;
3667 INSN_CODE (insn) = -1;
3668 REG_NOTES (insn) = NULL;
3669 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3670 INSN_LOCATOR (insn) = curr_insn_locator ();
3671 BLOCK_FOR_INSN (insn) = NULL;
3672
3673 return insn;
3674 }
3675 \f
3676 /* Add INSN to the end of the doubly-linked list.
3677 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3678
3679 void
3680 add_insn (rtx insn)
3681 {
3682 PREV_INSN (insn) = get_last_insn();
3683 NEXT_INSN (insn) = 0;
3684
3685 if (NULL != get_last_insn())
3686 NEXT_INSN (get_last_insn ()) = insn;
3687
3688 if (NULL == get_insns ())
3689 set_first_insn (insn);
3690
3691 set_last_insn (insn);
3692 }
3693
3694 /* Add INSN into the doubly-linked list after insn AFTER. This and
3695 the next should be the only functions called to insert an insn once
3696 delay slots have been filled since only they know how to update a
3697 SEQUENCE. */
3698
3699 void
3700 add_insn_after (rtx insn, rtx after, basic_block bb)
3701 {
3702 rtx next = NEXT_INSN (after);
3703
3704 gcc_assert (!optimize || !INSN_DELETED_P (after));
3705
3706 NEXT_INSN (insn) = next;
3707 PREV_INSN (insn) = after;
3708
3709 if (next)
3710 {
3711 PREV_INSN (next) = insn;
3712 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3713 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3714 }
3715 else if (get_last_insn () == after)
3716 set_last_insn (insn);
3717 else
3718 {
3719 struct sequence_stack *stack = seq_stack;
3720 /* Scan all pending sequences too. */
3721 for (; stack; stack = stack->next)
3722 if (after == stack->last)
3723 {
3724 stack->last = insn;
3725 break;
3726 }
3727
3728 gcc_assert (stack);
3729 }
3730
3731 if (!BARRIER_P (after)
3732 && !BARRIER_P (insn)
3733 && (bb = BLOCK_FOR_INSN (after)))
3734 {
3735 set_block_for_insn (insn, bb);
3736 if (INSN_P (insn))
3737 df_insn_rescan (insn);
3738 /* Should not happen as first in the BB is always
3739 either NOTE or LABEL. */
3740 if (BB_END (bb) == after
3741 /* Avoid clobbering of structure when creating new BB. */
3742 && !BARRIER_P (insn)
3743 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3744 BB_END (bb) = insn;
3745 }
3746
3747 NEXT_INSN (after) = insn;
3748 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3749 {
3750 rtx sequence = PATTERN (after);
3751 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3752 }
3753 }
3754
3755 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3756 the previous should be the only functions called to insert an insn
3757 once delay slots have been filled since only they know how to
3758 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3759 bb from before. */
3760
3761 void
3762 add_insn_before (rtx insn, rtx before, basic_block bb)
3763 {
3764 rtx prev = PREV_INSN (before);
3765
3766 gcc_assert (!optimize || !INSN_DELETED_P (before));
3767
3768 PREV_INSN (insn) = prev;
3769 NEXT_INSN (insn) = before;
3770
3771 if (prev)
3772 {
3773 NEXT_INSN (prev) = insn;
3774 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3775 {
3776 rtx sequence = PATTERN (prev);
3777 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3778 }
3779 }
3780 else if (get_insns () == before)
3781 set_first_insn (insn);
3782 else
3783 {
3784 struct sequence_stack *stack = seq_stack;
3785 /* Scan all pending sequences too. */
3786 for (; stack; stack = stack->next)
3787 if (before == stack->first)
3788 {
3789 stack->first = insn;
3790 break;
3791 }
3792
3793 gcc_assert (stack);
3794 }
3795
3796 if (!bb
3797 && !BARRIER_P (before)
3798 && !BARRIER_P (insn))
3799 bb = BLOCK_FOR_INSN (before);
3800
3801 if (bb)
3802 {
3803 set_block_for_insn (insn, bb);
3804 if (INSN_P (insn))
3805 df_insn_rescan (insn);
3806 /* Should not happen as first in the BB is always either NOTE or
3807 LABEL. */
3808 gcc_assert (BB_HEAD (bb) != insn
3809 /* Avoid clobbering of structure when creating new BB. */
3810 || BARRIER_P (insn)
3811 || NOTE_INSN_BASIC_BLOCK_P (insn));
3812 }
3813
3814 PREV_INSN (before) = insn;
3815 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3816 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3817 }
3818
3819
3820 /* Replace insn with an deleted instruction note. */
3821
3822 void
3823 set_insn_deleted (rtx insn)
3824 {
3825 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3826 PUT_CODE (insn, NOTE);
3827 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3828 }
3829
3830
3831 /* Remove an insn from its doubly-linked list. This function knows how
3832 to handle sequences. */
3833 void
3834 remove_insn (rtx insn)
3835 {
3836 rtx next = NEXT_INSN (insn);
3837 rtx prev = PREV_INSN (insn);
3838 basic_block bb;
3839
3840 /* Later in the code, the block will be marked dirty. */
3841 df_insn_delete (NULL, INSN_UID (insn));
3842
3843 if (prev)
3844 {
3845 NEXT_INSN (prev) = next;
3846 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3847 {
3848 rtx sequence = PATTERN (prev);
3849 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3850 }
3851 }
3852 else if (get_insns () == insn)
3853 {
3854 if (next)
3855 PREV_INSN (next) = NULL;
3856 set_first_insn (next);
3857 }
3858 else
3859 {
3860 struct sequence_stack *stack = seq_stack;
3861 /* Scan all pending sequences too. */
3862 for (; stack; stack = stack->next)
3863 if (insn == stack->first)
3864 {
3865 stack->first = next;
3866 break;
3867 }
3868
3869 gcc_assert (stack);
3870 }
3871
3872 if (next)
3873 {
3874 PREV_INSN (next) = prev;
3875 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3876 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3877 }
3878 else if (get_last_insn () == insn)
3879 set_last_insn (prev);
3880 else
3881 {
3882 struct sequence_stack *stack = seq_stack;
3883 /* Scan all pending sequences too. */
3884 for (; stack; stack = stack->next)
3885 if (insn == stack->last)
3886 {
3887 stack->last = prev;
3888 break;
3889 }
3890
3891 gcc_assert (stack);
3892 }
3893 if (!BARRIER_P (insn)
3894 && (bb = BLOCK_FOR_INSN (insn)))
3895 {
3896 if (INSN_P (insn))
3897 df_set_bb_dirty (bb);
3898 if (BB_HEAD (bb) == insn)
3899 {
3900 /* Never ever delete the basic block note without deleting whole
3901 basic block. */
3902 gcc_assert (!NOTE_P (insn));
3903 BB_HEAD (bb) = next;
3904 }
3905 if (BB_END (bb) == insn)
3906 BB_END (bb) = prev;
3907 }
3908 }
3909
3910 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3911
3912 void
3913 add_function_usage_to (rtx call_insn, rtx call_fusage)
3914 {
3915 gcc_assert (call_insn && CALL_P (call_insn));
3916
3917 /* Put the register usage information on the CALL. If there is already
3918 some usage information, put ours at the end. */
3919 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3920 {
3921 rtx link;
3922
3923 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3924 link = XEXP (link, 1))
3925 ;
3926
3927 XEXP (link, 1) = call_fusage;
3928 }
3929 else
3930 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3931 }
3932
3933 /* Delete all insns made since FROM.
3934 FROM becomes the new last instruction. */
3935
3936 void
3937 delete_insns_since (rtx from)
3938 {
3939 if (from == 0)
3940 set_first_insn (0);
3941 else
3942 NEXT_INSN (from) = 0;
3943 set_last_insn (from);
3944 }
3945
3946 /* This function is deprecated, please use sequences instead.
3947
3948 Move a consecutive bunch of insns to a different place in the chain.
3949 The insns to be moved are those between FROM and TO.
3950 They are moved to a new position after the insn AFTER.
3951 AFTER must not be FROM or TO or any insn in between.
3952
3953 This function does not know about SEQUENCEs and hence should not be
3954 called after delay-slot filling has been done. */
3955
3956 void
3957 reorder_insns_nobb (rtx from, rtx to, rtx after)
3958 {
3959 /* Splice this bunch out of where it is now. */
3960 if (PREV_INSN (from))
3961 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3962 if (NEXT_INSN (to))
3963 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3964 if (get_last_insn () == to)
3965 set_last_insn (PREV_INSN (from));
3966 if (get_insns () == from)
3967 set_first_insn (NEXT_INSN (to));
3968
3969 /* Make the new neighbors point to it and it to them. */
3970 if (NEXT_INSN (after))
3971 PREV_INSN (NEXT_INSN (after)) = to;
3972
3973 NEXT_INSN (to) = NEXT_INSN (after);
3974 PREV_INSN (from) = after;
3975 NEXT_INSN (after) = from;
3976 if (after == get_last_insn())
3977 set_last_insn (to);
3978 }
3979
3980 /* Same as function above, but take care to update BB boundaries. */
3981 void
3982 reorder_insns (rtx from, rtx to, rtx after)
3983 {
3984 rtx prev = PREV_INSN (from);
3985 basic_block bb, bb2;
3986
3987 reorder_insns_nobb (from, to, after);
3988
3989 if (!BARRIER_P (after)
3990 && (bb = BLOCK_FOR_INSN (after)))
3991 {
3992 rtx x;
3993 df_set_bb_dirty (bb);
3994
3995 if (!BARRIER_P (from)
3996 && (bb2 = BLOCK_FOR_INSN (from)))
3997 {
3998 if (BB_END (bb2) == to)
3999 BB_END (bb2) = prev;
4000 df_set_bb_dirty (bb2);
4001 }
4002
4003 if (BB_END (bb) == after)
4004 BB_END (bb) = to;
4005
4006 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4007 if (!BARRIER_P (x))
4008 df_insn_change_bb (x, bb);
4009 }
4010 }
4011
4012 \f
4013 /* Emit insn(s) of given code and pattern
4014 at a specified place within the doubly-linked list.
4015
4016 All of the emit_foo global entry points accept an object
4017 X which is either an insn list or a PATTERN of a single
4018 instruction.
4019
4020 There are thus a few canonical ways to generate code and
4021 emit it at a specific place in the instruction stream. For
4022 example, consider the instruction named SPOT and the fact that
4023 we would like to emit some instructions before SPOT. We might
4024 do it like this:
4025
4026 start_sequence ();
4027 ... emit the new instructions ...
4028 insns_head = get_insns ();
4029 end_sequence ();
4030
4031 emit_insn_before (insns_head, SPOT);
4032
4033 It used to be common to generate SEQUENCE rtl instead, but that
4034 is a relic of the past which no longer occurs. The reason is that
4035 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4036 generated would almost certainly die right after it was created. */
4037
4038 /* Make X be output before the instruction BEFORE. */
4039
4040 rtx
4041 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4042 {
4043 rtx last = before;
4044 rtx insn;
4045
4046 gcc_assert (before);
4047
4048 if (x == NULL_RTX)
4049 return last;
4050
4051 switch (GET_CODE (x))
4052 {
4053 case DEBUG_INSN:
4054 case INSN:
4055 case JUMP_INSN:
4056 case CALL_INSN:
4057 case CODE_LABEL:
4058 case BARRIER:
4059 case NOTE:
4060 insn = x;
4061 while (insn)
4062 {
4063 rtx next = NEXT_INSN (insn);
4064 add_insn_before (insn, before, bb);
4065 last = insn;
4066 insn = next;
4067 }
4068 break;
4069
4070 #ifdef ENABLE_RTL_CHECKING
4071 case SEQUENCE:
4072 gcc_unreachable ();
4073 break;
4074 #endif
4075
4076 default:
4077 last = make_insn_raw (x);
4078 add_insn_before (last, before, bb);
4079 break;
4080 }
4081
4082 return last;
4083 }
4084
4085 /* Make an instruction with body X and code JUMP_INSN
4086 and output it before the instruction BEFORE. */
4087
4088 rtx
4089 emit_jump_insn_before_noloc (rtx x, rtx before)
4090 {
4091 rtx insn, last = NULL_RTX;
4092
4093 gcc_assert (before);
4094
4095 switch (GET_CODE (x))
4096 {
4097 case DEBUG_INSN:
4098 case INSN:
4099 case JUMP_INSN:
4100 case CALL_INSN:
4101 case CODE_LABEL:
4102 case BARRIER:
4103 case NOTE:
4104 insn = x;
4105 while (insn)
4106 {
4107 rtx next = NEXT_INSN (insn);
4108 add_insn_before (insn, before, NULL);
4109 last = insn;
4110 insn = next;
4111 }
4112 break;
4113
4114 #ifdef ENABLE_RTL_CHECKING
4115 case SEQUENCE:
4116 gcc_unreachable ();
4117 break;
4118 #endif
4119
4120 default:
4121 last = make_jump_insn_raw (x);
4122 add_insn_before (last, before, NULL);
4123 break;
4124 }
4125
4126 return last;
4127 }
4128
4129 /* Make an instruction with body X and code CALL_INSN
4130 and output it before the instruction BEFORE. */
4131
4132 rtx
4133 emit_call_insn_before_noloc (rtx x, rtx before)
4134 {
4135 rtx last = NULL_RTX, insn;
4136
4137 gcc_assert (before);
4138
4139 switch (GET_CODE (x))
4140 {
4141 case DEBUG_INSN:
4142 case INSN:
4143 case JUMP_INSN:
4144 case CALL_INSN:
4145 case CODE_LABEL:
4146 case BARRIER:
4147 case NOTE:
4148 insn = x;
4149 while (insn)
4150 {
4151 rtx next = NEXT_INSN (insn);
4152 add_insn_before (insn, before, NULL);
4153 last = insn;
4154 insn = next;
4155 }
4156 break;
4157
4158 #ifdef ENABLE_RTL_CHECKING
4159 case SEQUENCE:
4160 gcc_unreachable ();
4161 break;
4162 #endif
4163
4164 default:
4165 last = make_call_insn_raw (x);
4166 add_insn_before (last, before, NULL);
4167 break;
4168 }
4169
4170 return last;
4171 }
4172
4173 /* Make an instruction with body X and code DEBUG_INSN
4174 and output it before the instruction BEFORE. */
4175
4176 rtx
4177 emit_debug_insn_before_noloc (rtx x, rtx before)
4178 {
4179 rtx last = NULL_RTX, insn;
4180
4181 gcc_assert (before);
4182
4183 switch (GET_CODE (x))
4184 {
4185 case DEBUG_INSN:
4186 case INSN:
4187 case JUMP_INSN:
4188 case CALL_INSN:
4189 case CODE_LABEL:
4190 case BARRIER:
4191 case NOTE:
4192 insn = x;
4193 while (insn)
4194 {
4195 rtx next = NEXT_INSN (insn);
4196 add_insn_before (insn, before, NULL);
4197 last = insn;
4198 insn = next;
4199 }
4200 break;
4201
4202 #ifdef ENABLE_RTL_CHECKING
4203 case SEQUENCE:
4204 gcc_unreachable ();
4205 break;
4206 #endif
4207
4208 default:
4209 last = make_debug_insn_raw (x);
4210 add_insn_before (last, before, NULL);
4211 break;
4212 }
4213
4214 return last;
4215 }
4216
4217 /* Make an insn of code BARRIER
4218 and output it before the insn BEFORE. */
4219
4220 rtx
4221 emit_barrier_before (rtx before)
4222 {
4223 rtx insn = rtx_alloc (BARRIER);
4224
4225 INSN_UID (insn) = cur_insn_uid++;
4226
4227 add_insn_before (insn, before, NULL);
4228 return insn;
4229 }
4230
4231 /* Emit the label LABEL before the insn BEFORE. */
4232
4233 rtx
4234 emit_label_before (rtx label, rtx before)
4235 {
4236 /* This can be called twice for the same label as a result of the
4237 confusion that follows a syntax error! So make it harmless. */
4238 if (INSN_UID (label) == 0)
4239 {
4240 INSN_UID (label) = cur_insn_uid++;
4241 add_insn_before (label, before, NULL);
4242 }
4243
4244 return label;
4245 }
4246
4247 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4248
4249 rtx
4250 emit_note_before (enum insn_note subtype, rtx before)
4251 {
4252 rtx note = rtx_alloc (NOTE);
4253 INSN_UID (note) = cur_insn_uid++;
4254 NOTE_KIND (note) = subtype;
4255 BLOCK_FOR_INSN (note) = NULL;
4256 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4257
4258 add_insn_before (note, before, NULL);
4259 return note;
4260 }
4261 \f
4262 /* Helper for emit_insn_after, handles lists of instructions
4263 efficiently. */
4264
4265 static rtx
4266 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4267 {
4268 rtx last;
4269 rtx after_after;
4270 if (!bb && !BARRIER_P (after))
4271 bb = BLOCK_FOR_INSN (after);
4272
4273 if (bb)
4274 {
4275 df_set_bb_dirty (bb);
4276 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4277 if (!BARRIER_P (last))
4278 {
4279 set_block_for_insn (last, bb);
4280 df_insn_rescan (last);
4281 }
4282 if (!BARRIER_P (last))
4283 {
4284 set_block_for_insn (last, bb);
4285 df_insn_rescan (last);
4286 }
4287 if (BB_END (bb) == after)
4288 BB_END (bb) = last;
4289 }
4290 else
4291 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4292 continue;
4293
4294 after_after = NEXT_INSN (after);
4295
4296 NEXT_INSN (after) = first;
4297 PREV_INSN (first) = after;
4298 NEXT_INSN (last) = after_after;
4299 if (after_after)
4300 PREV_INSN (after_after) = last;
4301
4302 if (after == get_last_insn())
4303 set_last_insn (last);
4304
4305 return last;
4306 }
4307
4308 /* Make X be output after the insn AFTER and set the BB of insn. If
4309 BB is NULL, an attempt is made to infer the BB from AFTER. */
4310
4311 rtx
4312 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4313 {
4314 rtx last = after;
4315
4316 gcc_assert (after);
4317
4318 if (x == NULL_RTX)
4319 return last;
4320
4321 switch (GET_CODE (x))
4322 {
4323 case DEBUG_INSN:
4324 case INSN:
4325 case JUMP_INSN:
4326 case CALL_INSN:
4327 case CODE_LABEL:
4328 case BARRIER:
4329 case NOTE:
4330 last = emit_insn_after_1 (x, after, bb);
4331 break;
4332
4333 #ifdef ENABLE_RTL_CHECKING
4334 case SEQUENCE:
4335 gcc_unreachable ();
4336 break;
4337 #endif
4338
4339 default:
4340 last = make_insn_raw (x);
4341 add_insn_after (last, after, bb);
4342 break;
4343 }
4344
4345 return last;
4346 }
4347
4348
4349 /* Make an insn of code JUMP_INSN with body X
4350 and output it after the insn AFTER. */
4351
4352 rtx
4353 emit_jump_insn_after_noloc (rtx x, rtx after)
4354 {
4355 rtx last;
4356
4357 gcc_assert (after);
4358
4359 switch (GET_CODE (x))
4360 {
4361 case DEBUG_INSN:
4362 case INSN:
4363 case JUMP_INSN:
4364 case CALL_INSN:
4365 case CODE_LABEL:
4366 case BARRIER:
4367 case NOTE:
4368 last = emit_insn_after_1 (x, after, NULL);
4369 break;
4370
4371 #ifdef ENABLE_RTL_CHECKING
4372 case SEQUENCE:
4373 gcc_unreachable ();
4374 break;
4375 #endif
4376
4377 default:
4378 last = make_jump_insn_raw (x);
4379 add_insn_after (last, after, NULL);
4380 break;
4381 }
4382
4383 return last;
4384 }
4385
4386 /* Make an instruction with body X and code CALL_INSN
4387 and output it after the instruction AFTER. */
4388
4389 rtx
4390 emit_call_insn_after_noloc (rtx x, rtx after)
4391 {
4392 rtx last;
4393
4394 gcc_assert (after);
4395
4396 switch (GET_CODE (x))
4397 {
4398 case DEBUG_INSN:
4399 case INSN:
4400 case JUMP_INSN:
4401 case CALL_INSN:
4402 case CODE_LABEL:
4403 case BARRIER:
4404 case NOTE:
4405 last = emit_insn_after_1 (x, after, NULL);
4406 break;
4407
4408 #ifdef ENABLE_RTL_CHECKING
4409 case SEQUENCE:
4410 gcc_unreachable ();
4411 break;
4412 #endif
4413
4414 default:
4415 last = make_call_insn_raw (x);
4416 add_insn_after (last, after, NULL);
4417 break;
4418 }
4419
4420 return last;
4421 }
4422
4423 /* Make an instruction with body X and code CALL_INSN
4424 and output it after the instruction AFTER. */
4425
4426 rtx
4427 emit_debug_insn_after_noloc (rtx x, rtx after)
4428 {
4429 rtx last;
4430
4431 gcc_assert (after);
4432
4433 switch (GET_CODE (x))
4434 {
4435 case DEBUG_INSN:
4436 case INSN:
4437 case JUMP_INSN:
4438 case CALL_INSN:
4439 case CODE_LABEL:
4440 case BARRIER:
4441 case NOTE:
4442 last = emit_insn_after_1 (x, after, NULL);
4443 break;
4444
4445 #ifdef ENABLE_RTL_CHECKING
4446 case SEQUENCE:
4447 gcc_unreachable ();
4448 break;
4449 #endif
4450
4451 default:
4452 last = make_debug_insn_raw (x);
4453 add_insn_after (last, after, NULL);
4454 break;
4455 }
4456
4457 return last;
4458 }
4459
4460 /* Make an insn of code BARRIER
4461 and output it after the insn AFTER. */
4462
4463 rtx
4464 emit_barrier_after (rtx after)
4465 {
4466 rtx insn = rtx_alloc (BARRIER);
4467
4468 INSN_UID (insn) = cur_insn_uid++;
4469
4470 add_insn_after (insn, after, NULL);
4471 return insn;
4472 }
4473
4474 /* Emit the label LABEL after the insn AFTER. */
4475
4476 rtx
4477 emit_label_after (rtx label, rtx after)
4478 {
4479 /* This can be called twice for the same label
4480 as a result of the confusion that follows a syntax error!
4481 So make it harmless. */
4482 if (INSN_UID (label) == 0)
4483 {
4484 INSN_UID (label) = cur_insn_uid++;
4485 add_insn_after (label, after, NULL);
4486 }
4487
4488 return label;
4489 }
4490
4491 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4492
4493 rtx
4494 emit_note_after (enum insn_note subtype, rtx after)
4495 {
4496 rtx note = rtx_alloc (NOTE);
4497 INSN_UID (note) = cur_insn_uid++;
4498 NOTE_KIND (note) = subtype;
4499 BLOCK_FOR_INSN (note) = NULL;
4500 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4501 add_insn_after (note, after, NULL);
4502 return note;
4503 }
4504 \f
4505 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4506 rtx
4507 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4508 {
4509 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4510
4511 if (pattern == NULL_RTX || !loc)
4512 return last;
4513
4514 after = NEXT_INSN (after);
4515 while (1)
4516 {
4517 if (active_insn_p (after) && !INSN_LOCATOR (after))
4518 INSN_LOCATOR (after) = loc;
4519 if (after == last)
4520 break;
4521 after = NEXT_INSN (after);
4522 }
4523 return last;
4524 }
4525
4526 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4527 rtx
4528 emit_insn_after (rtx pattern, rtx after)
4529 {
4530 rtx prev = after;
4531
4532 while (DEBUG_INSN_P (prev))
4533 prev = PREV_INSN (prev);
4534
4535 if (INSN_P (prev))
4536 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4537 else
4538 return emit_insn_after_noloc (pattern, after, NULL);
4539 }
4540
4541 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4542 rtx
4543 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4544 {
4545 rtx last = emit_jump_insn_after_noloc (pattern, after);
4546
4547 if (pattern == NULL_RTX || !loc)
4548 return last;
4549
4550 after = NEXT_INSN (after);
4551 while (1)
4552 {
4553 if (active_insn_p (after) && !INSN_LOCATOR (after))
4554 INSN_LOCATOR (after) = loc;
4555 if (after == last)
4556 break;
4557 after = NEXT_INSN (after);
4558 }
4559 return last;
4560 }
4561
4562 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4563 rtx
4564 emit_jump_insn_after (rtx pattern, rtx after)
4565 {
4566 rtx prev = after;
4567
4568 while (DEBUG_INSN_P (prev))
4569 prev = PREV_INSN (prev);
4570
4571 if (INSN_P (prev))
4572 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4573 else
4574 return emit_jump_insn_after_noloc (pattern, after);
4575 }
4576
4577 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4578 rtx
4579 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4580 {
4581 rtx last = emit_call_insn_after_noloc (pattern, after);
4582
4583 if (pattern == NULL_RTX || !loc)
4584 return last;
4585
4586 after = NEXT_INSN (after);
4587 while (1)
4588 {
4589 if (active_insn_p (after) && !INSN_LOCATOR (after))
4590 INSN_LOCATOR (after) = loc;
4591 if (after == last)
4592 break;
4593 after = NEXT_INSN (after);
4594 }
4595 return last;
4596 }
4597
4598 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4599 rtx
4600 emit_call_insn_after (rtx pattern, rtx after)
4601 {
4602 rtx prev = after;
4603
4604 while (DEBUG_INSN_P (prev))
4605 prev = PREV_INSN (prev);
4606
4607 if (INSN_P (prev))
4608 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4609 else
4610 return emit_call_insn_after_noloc (pattern, after);
4611 }
4612
4613 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4614 rtx
4615 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4616 {
4617 rtx last = emit_debug_insn_after_noloc (pattern, after);
4618
4619 if (pattern == NULL_RTX || !loc)
4620 return last;
4621
4622 after = NEXT_INSN (after);
4623 while (1)
4624 {
4625 if (active_insn_p (after) && !INSN_LOCATOR (after))
4626 INSN_LOCATOR (after) = loc;
4627 if (after == last)
4628 break;
4629 after = NEXT_INSN (after);
4630 }
4631 return last;
4632 }
4633
4634 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4635 rtx
4636 emit_debug_insn_after (rtx pattern, rtx after)
4637 {
4638 if (INSN_P (after))
4639 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4640 else
4641 return emit_debug_insn_after_noloc (pattern, after);
4642 }
4643
4644 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4645 rtx
4646 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4647 {
4648 rtx first = PREV_INSN (before);
4649 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4650
4651 if (pattern == NULL_RTX || !loc)
4652 return last;
4653
4654 if (!first)
4655 first = get_insns ();
4656 else
4657 first = NEXT_INSN (first);
4658 while (1)
4659 {
4660 if (active_insn_p (first) && !INSN_LOCATOR (first))
4661 INSN_LOCATOR (first) = loc;
4662 if (first == last)
4663 break;
4664 first = NEXT_INSN (first);
4665 }
4666 return last;
4667 }
4668
4669 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4670 rtx
4671 emit_insn_before (rtx pattern, rtx before)
4672 {
4673 rtx next = before;
4674
4675 while (DEBUG_INSN_P (next))
4676 next = PREV_INSN (next);
4677
4678 if (INSN_P (next))
4679 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4680 else
4681 return emit_insn_before_noloc (pattern, before, NULL);
4682 }
4683
4684 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4685 rtx
4686 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4687 {
4688 rtx first = PREV_INSN (before);
4689 rtx last = emit_jump_insn_before_noloc (pattern, before);
4690
4691 if (pattern == NULL_RTX)
4692 return last;
4693
4694 first = NEXT_INSN (first);
4695 while (1)
4696 {
4697 if (active_insn_p (first) && !INSN_LOCATOR (first))
4698 INSN_LOCATOR (first) = loc;
4699 if (first == last)
4700 break;
4701 first = NEXT_INSN (first);
4702 }
4703 return last;
4704 }
4705
4706 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4707 rtx
4708 emit_jump_insn_before (rtx pattern, rtx before)
4709 {
4710 rtx next = before;
4711
4712 while (DEBUG_INSN_P (next))
4713 next = PREV_INSN (next);
4714
4715 if (INSN_P (next))
4716 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4717 else
4718 return emit_jump_insn_before_noloc (pattern, before);
4719 }
4720
4721 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4722 rtx
4723 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4724 {
4725 rtx first = PREV_INSN (before);
4726 rtx last = emit_call_insn_before_noloc (pattern, before);
4727
4728 if (pattern == NULL_RTX)
4729 return last;
4730
4731 first = NEXT_INSN (first);
4732 while (1)
4733 {
4734 if (active_insn_p (first) && !INSN_LOCATOR (first))
4735 INSN_LOCATOR (first) = loc;
4736 if (first == last)
4737 break;
4738 first = NEXT_INSN (first);
4739 }
4740 return last;
4741 }
4742
4743 /* like emit_call_insn_before_noloc,
4744 but set insn_locator according to before. */
4745 rtx
4746 emit_call_insn_before (rtx pattern, rtx before)
4747 {
4748 rtx next = before;
4749
4750 while (DEBUG_INSN_P (next))
4751 next = PREV_INSN (next);
4752
4753 if (INSN_P (next))
4754 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4755 else
4756 return emit_call_insn_before_noloc (pattern, before);
4757 }
4758
4759 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4760 rtx
4761 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4762 {
4763 rtx first = PREV_INSN (before);
4764 rtx last = emit_debug_insn_before_noloc (pattern, before);
4765
4766 if (pattern == NULL_RTX)
4767 return last;
4768
4769 first = NEXT_INSN (first);
4770 while (1)
4771 {
4772 if (active_insn_p (first) && !INSN_LOCATOR (first))
4773 INSN_LOCATOR (first) = loc;
4774 if (first == last)
4775 break;
4776 first = NEXT_INSN (first);
4777 }
4778 return last;
4779 }
4780
4781 /* like emit_debug_insn_before_noloc,
4782 but set insn_locator according to before. */
4783 rtx
4784 emit_debug_insn_before (rtx pattern, rtx before)
4785 {
4786 if (INSN_P (before))
4787 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4788 else
4789 return emit_debug_insn_before_noloc (pattern, before);
4790 }
4791 \f
4792 /* Take X and emit it at the end of the doubly-linked
4793 INSN list.
4794
4795 Returns the last insn emitted. */
4796
4797 rtx
4798 emit_insn (rtx x)
4799 {
4800 rtx last = get_last_insn();
4801 rtx insn;
4802
4803 if (x == NULL_RTX)
4804 return last;
4805
4806 switch (GET_CODE (x))
4807 {
4808 case DEBUG_INSN:
4809 case INSN:
4810 case JUMP_INSN:
4811 case CALL_INSN:
4812 case CODE_LABEL:
4813 case BARRIER:
4814 case NOTE:
4815 insn = x;
4816 while (insn)
4817 {
4818 rtx next = NEXT_INSN (insn);
4819 add_insn (insn);
4820 last = insn;
4821 insn = next;
4822 }
4823 break;
4824
4825 #ifdef ENABLE_RTL_CHECKING
4826 case SEQUENCE:
4827 gcc_unreachable ();
4828 break;
4829 #endif
4830
4831 default:
4832 last = make_insn_raw (x);
4833 add_insn (last);
4834 break;
4835 }
4836
4837 return last;
4838 }
4839
4840 /* Make an insn of code DEBUG_INSN with pattern X
4841 and add it to the end of the doubly-linked list. */
4842
4843 rtx
4844 emit_debug_insn (rtx x)
4845 {
4846 rtx last = get_last_insn();
4847 rtx insn;
4848
4849 if (x == NULL_RTX)
4850 return last;
4851
4852 switch (GET_CODE (x))
4853 {
4854 case DEBUG_INSN:
4855 case INSN:
4856 case JUMP_INSN:
4857 case CALL_INSN:
4858 case CODE_LABEL:
4859 case BARRIER:
4860 case NOTE:
4861 insn = x;
4862 while (insn)
4863 {
4864 rtx next = NEXT_INSN (insn);
4865 add_insn (insn);
4866 last = insn;
4867 insn = next;
4868 }
4869 break;
4870
4871 #ifdef ENABLE_RTL_CHECKING
4872 case SEQUENCE:
4873 gcc_unreachable ();
4874 break;
4875 #endif
4876
4877 default:
4878 last = make_debug_insn_raw (x);
4879 add_insn (last);
4880 break;
4881 }
4882
4883 return last;
4884 }
4885
4886 /* Make an insn of code JUMP_INSN with pattern X
4887 and add it to the end of the doubly-linked list. */
4888
4889 rtx
4890 emit_jump_insn (rtx x)
4891 {
4892 rtx last = NULL_RTX, insn;
4893
4894 switch (GET_CODE (x))
4895 {
4896 case DEBUG_INSN:
4897 case INSN:
4898 case JUMP_INSN:
4899 case CALL_INSN:
4900 case CODE_LABEL:
4901 case BARRIER:
4902 case NOTE:
4903 insn = x;
4904 while (insn)
4905 {
4906 rtx next = NEXT_INSN (insn);
4907 add_insn (insn);
4908 last = insn;
4909 insn = next;
4910 }
4911 break;
4912
4913 #ifdef ENABLE_RTL_CHECKING
4914 case SEQUENCE:
4915 gcc_unreachable ();
4916 break;
4917 #endif
4918
4919 default:
4920 last = make_jump_insn_raw (x);
4921 add_insn (last);
4922 break;
4923 }
4924
4925 return last;
4926 }
4927
4928 /* Make an insn of code CALL_INSN with pattern X
4929 and add it to the end of the doubly-linked list. */
4930
4931 rtx
4932 emit_call_insn (rtx x)
4933 {
4934 rtx insn;
4935
4936 switch (GET_CODE (x))
4937 {
4938 case DEBUG_INSN:
4939 case INSN:
4940 case JUMP_INSN:
4941 case CALL_INSN:
4942 case CODE_LABEL:
4943 case BARRIER:
4944 case NOTE:
4945 insn = emit_insn (x);
4946 break;
4947
4948 #ifdef ENABLE_RTL_CHECKING
4949 case SEQUENCE:
4950 gcc_unreachable ();
4951 break;
4952 #endif
4953
4954 default:
4955 insn = make_call_insn_raw (x);
4956 add_insn (insn);
4957 break;
4958 }
4959
4960 return insn;
4961 }
4962
4963 /* Add the label LABEL to the end of the doubly-linked list. */
4964
4965 rtx
4966 emit_label (rtx label)
4967 {
4968 /* This can be called twice for the same label
4969 as a result of the confusion that follows a syntax error!
4970 So make it harmless. */
4971 if (INSN_UID (label) == 0)
4972 {
4973 INSN_UID (label) = cur_insn_uid++;
4974 add_insn (label);
4975 }
4976 return label;
4977 }
4978
4979 /* Make an insn of code BARRIER
4980 and add it to the end of the doubly-linked list. */
4981
4982 rtx
4983 emit_barrier (void)
4984 {
4985 rtx barrier = rtx_alloc (BARRIER);
4986 INSN_UID (barrier) = cur_insn_uid++;
4987 add_insn (barrier);
4988 return barrier;
4989 }
4990
4991 /* Emit a copy of note ORIG. */
4992
4993 rtx
4994 emit_note_copy (rtx orig)
4995 {
4996 rtx note;
4997
4998 note = rtx_alloc (NOTE);
4999
5000 INSN_UID (note) = cur_insn_uid++;
5001 NOTE_DATA (note) = NOTE_DATA (orig);
5002 NOTE_KIND (note) = NOTE_KIND (orig);
5003 BLOCK_FOR_INSN (note) = NULL;
5004 add_insn (note);
5005
5006 return note;
5007 }
5008
5009 /* Make an insn of code NOTE or type NOTE_NO
5010 and add it to the end of the doubly-linked list. */
5011
5012 rtx
5013 emit_note (enum insn_note kind)
5014 {
5015 rtx note;
5016
5017 note = rtx_alloc (NOTE);
5018 INSN_UID (note) = cur_insn_uid++;
5019 NOTE_KIND (note) = kind;
5020 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5021 BLOCK_FOR_INSN (note) = NULL;
5022 add_insn (note);
5023 return note;
5024 }
5025
5026 /* Emit a clobber of lvalue X. */
5027
5028 rtx
5029 emit_clobber (rtx x)
5030 {
5031 /* CONCATs should not appear in the insn stream. */
5032 if (GET_CODE (x) == CONCAT)
5033 {
5034 emit_clobber (XEXP (x, 0));
5035 return emit_clobber (XEXP (x, 1));
5036 }
5037 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5038 }
5039
5040 /* Return a sequence of insns to clobber lvalue X. */
5041
5042 rtx
5043 gen_clobber (rtx x)
5044 {
5045 rtx seq;
5046
5047 start_sequence ();
5048 emit_clobber (x);
5049 seq = get_insns ();
5050 end_sequence ();
5051 return seq;
5052 }
5053
5054 /* Emit a use of rvalue X. */
5055
5056 rtx
5057 emit_use (rtx x)
5058 {
5059 /* CONCATs should not appear in the insn stream. */
5060 if (GET_CODE (x) == CONCAT)
5061 {
5062 emit_use (XEXP (x, 0));
5063 return emit_use (XEXP (x, 1));
5064 }
5065 return emit_insn (gen_rtx_USE (VOIDmode, x));
5066 }
5067
5068 /* Return a sequence of insns to use rvalue X. */
5069
5070 rtx
5071 gen_use (rtx x)
5072 {
5073 rtx seq;
5074
5075 start_sequence ();
5076 emit_use (x);
5077 seq = get_insns ();
5078 end_sequence ();
5079 return seq;
5080 }
5081
5082 /* Cause next statement to emit a line note even if the line number
5083 has not changed. */
5084
5085 void
5086 force_next_line_note (void)
5087 {
5088 last_location = -1;
5089 }
5090
5091 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5092 note of this type already exists, remove it first. */
5093
5094 rtx
5095 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5096 {
5097 rtx note = find_reg_note (insn, kind, NULL_RTX);
5098
5099 switch (kind)
5100 {
5101 case REG_EQUAL:
5102 case REG_EQUIV:
5103 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5104 has multiple sets (some callers assume single_set
5105 means the insn only has one set, when in fact it
5106 means the insn only has one * useful * set). */
5107 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5108 {
5109 gcc_assert (!note);
5110 return NULL_RTX;
5111 }
5112
5113 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5114 It serves no useful purpose and breaks eliminate_regs. */
5115 if (GET_CODE (datum) == ASM_OPERANDS)
5116 return NULL_RTX;
5117
5118 if (note)
5119 {
5120 XEXP (note, 0) = datum;
5121 df_notes_rescan (insn);
5122 return note;
5123 }
5124 break;
5125
5126 default:
5127 if (note)
5128 {
5129 XEXP (note, 0) = datum;
5130 return note;
5131 }
5132 break;
5133 }
5134
5135 add_reg_note (insn, kind, datum);
5136
5137 switch (kind)
5138 {
5139 case REG_EQUAL:
5140 case REG_EQUIV:
5141 df_notes_rescan (insn);
5142 break;
5143 default:
5144 break;
5145 }
5146
5147 return REG_NOTES (insn);
5148 }
5149 \f
5150 /* Return an indication of which type of insn should have X as a body.
5151 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5152
5153 static enum rtx_code
5154 classify_insn (rtx x)
5155 {
5156 if (LABEL_P (x))
5157 return CODE_LABEL;
5158 if (GET_CODE (x) == CALL)
5159 return CALL_INSN;
5160 if (GET_CODE (x) == RETURN)
5161 return JUMP_INSN;
5162 if (GET_CODE (x) == SET)
5163 {
5164 if (SET_DEST (x) == pc_rtx)
5165 return JUMP_INSN;
5166 else if (GET_CODE (SET_SRC (x)) == CALL)
5167 return CALL_INSN;
5168 else
5169 return INSN;
5170 }
5171 if (GET_CODE (x) == PARALLEL)
5172 {
5173 int j;
5174 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5175 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5176 return CALL_INSN;
5177 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5178 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5179 return JUMP_INSN;
5180 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5181 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5182 return CALL_INSN;
5183 }
5184 return INSN;
5185 }
5186
5187 /* Emit the rtl pattern X as an appropriate kind of insn.
5188 If X is a label, it is simply added into the insn chain. */
5189
5190 rtx
5191 emit (rtx x)
5192 {
5193 enum rtx_code code = classify_insn (x);
5194
5195 switch (code)
5196 {
5197 case CODE_LABEL:
5198 return emit_label (x);
5199 case INSN:
5200 return emit_insn (x);
5201 case JUMP_INSN:
5202 {
5203 rtx insn = emit_jump_insn (x);
5204 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5205 return emit_barrier ();
5206 return insn;
5207 }
5208 case CALL_INSN:
5209 return emit_call_insn (x);
5210 case DEBUG_INSN:
5211 return emit_debug_insn (x);
5212 default:
5213 gcc_unreachable ();
5214 }
5215 }
5216 \f
5217 /* Space for free sequence stack entries. */
5218 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5219
5220 /* Begin emitting insns to a sequence. If this sequence will contain
5221 something that might cause the compiler to pop arguments to function
5222 calls (because those pops have previously been deferred; see
5223 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5224 before calling this function. That will ensure that the deferred
5225 pops are not accidentally emitted in the middle of this sequence. */
5226
5227 void
5228 start_sequence (void)
5229 {
5230 struct sequence_stack *tem;
5231
5232 if (free_sequence_stack != NULL)
5233 {
5234 tem = free_sequence_stack;
5235 free_sequence_stack = tem->next;
5236 }
5237 else
5238 tem = ggc_alloc_sequence_stack ();
5239
5240 tem->next = seq_stack;
5241 tem->first = get_insns ();
5242 tem->last = get_last_insn ();
5243
5244 seq_stack = tem;
5245
5246 set_first_insn (0);
5247 set_last_insn (0);
5248 }
5249
5250 /* Set up the insn chain starting with FIRST as the current sequence,
5251 saving the previously current one. See the documentation for
5252 start_sequence for more information about how to use this function. */
5253
5254 void
5255 push_to_sequence (rtx first)
5256 {
5257 rtx last;
5258
5259 start_sequence ();
5260
5261 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5262
5263 set_first_insn (first);
5264 set_last_insn (last);
5265 }
5266
5267 /* Like push_to_sequence, but take the last insn as an argument to avoid
5268 looping through the list. */
5269
5270 void
5271 push_to_sequence2 (rtx first, rtx last)
5272 {
5273 start_sequence ();
5274
5275 set_first_insn (first);
5276 set_last_insn (last);
5277 }
5278
5279 /* Set up the outer-level insn chain
5280 as the current sequence, saving the previously current one. */
5281
5282 void
5283 push_topmost_sequence (void)
5284 {
5285 struct sequence_stack *stack, *top = NULL;
5286
5287 start_sequence ();
5288
5289 for (stack = seq_stack; stack; stack = stack->next)
5290 top = stack;
5291
5292 set_first_insn (top->first);
5293 set_last_insn (top->last);
5294 }
5295
5296 /* After emitting to the outer-level insn chain, update the outer-level
5297 insn chain, and restore the previous saved state. */
5298
5299 void
5300 pop_topmost_sequence (void)
5301 {
5302 struct sequence_stack *stack, *top = NULL;
5303
5304 for (stack = seq_stack; stack; stack = stack->next)
5305 top = stack;
5306
5307 top->first = get_insns ();
5308 top->last = get_last_insn ();
5309
5310 end_sequence ();
5311 }
5312
5313 /* After emitting to a sequence, restore previous saved state.
5314
5315 To get the contents of the sequence just made, you must call
5316 `get_insns' *before* calling here.
5317
5318 If the compiler might have deferred popping arguments while
5319 generating this sequence, and this sequence will not be immediately
5320 inserted into the instruction stream, use do_pending_stack_adjust
5321 before calling get_insns. That will ensure that the deferred
5322 pops are inserted into this sequence, and not into some random
5323 location in the instruction stream. See INHIBIT_DEFER_POP for more
5324 information about deferred popping of arguments. */
5325
5326 void
5327 end_sequence (void)
5328 {
5329 struct sequence_stack *tem = seq_stack;
5330
5331 set_first_insn (tem->first);
5332 set_last_insn (tem->last);
5333 seq_stack = tem->next;
5334
5335 memset (tem, 0, sizeof (*tem));
5336 tem->next = free_sequence_stack;
5337 free_sequence_stack = tem;
5338 }
5339
5340 /* Return 1 if currently emitting into a sequence. */
5341
5342 int
5343 in_sequence_p (void)
5344 {
5345 return seq_stack != 0;
5346 }
5347 \f
5348 /* Put the various virtual registers into REGNO_REG_RTX. */
5349
5350 static void
5351 init_virtual_regs (void)
5352 {
5353 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5354 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5355 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5356 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5357 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5358 }
5359
5360 \f
5361 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5362 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5363 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5364 static int copy_insn_n_scratches;
5365
5366 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5367 copied an ASM_OPERANDS.
5368 In that case, it is the original input-operand vector. */
5369 static rtvec orig_asm_operands_vector;
5370
5371 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5372 copied an ASM_OPERANDS.
5373 In that case, it is the copied input-operand vector. */
5374 static rtvec copy_asm_operands_vector;
5375
5376 /* Likewise for the constraints vector. */
5377 static rtvec orig_asm_constraints_vector;
5378 static rtvec copy_asm_constraints_vector;
5379
5380 /* Recursively create a new copy of an rtx for copy_insn.
5381 This function differs from copy_rtx in that it handles SCRATCHes and
5382 ASM_OPERANDs properly.
5383 Normally, this function is not used directly; use copy_insn as front end.
5384 However, you could first copy an insn pattern with copy_insn and then use
5385 this function afterwards to properly copy any REG_NOTEs containing
5386 SCRATCHes. */
5387
5388 rtx
5389 copy_insn_1 (rtx orig)
5390 {
5391 rtx copy;
5392 int i, j;
5393 RTX_CODE code;
5394 const char *format_ptr;
5395
5396 if (orig == NULL)
5397 return NULL;
5398
5399 code = GET_CODE (orig);
5400
5401 switch (code)
5402 {
5403 case REG:
5404 case CONST_INT:
5405 case CONST_DOUBLE:
5406 case CONST_FIXED:
5407 case CONST_VECTOR:
5408 case SYMBOL_REF:
5409 case CODE_LABEL:
5410 case PC:
5411 case CC0:
5412 return orig;
5413 case CLOBBER:
5414 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5415 return orig;
5416 break;
5417
5418 case SCRATCH:
5419 for (i = 0; i < copy_insn_n_scratches; i++)
5420 if (copy_insn_scratch_in[i] == orig)
5421 return copy_insn_scratch_out[i];
5422 break;
5423
5424 case CONST:
5425 if (shared_const_p (orig))
5426 return orig;
5427 break;
5428
5429 /* A MEM with a constant address is not sharable. The problem is that
5430 the constant address may need to be reloaded. If the mem is shared,
5431 then reloading one copy of this mem will cause all copies to appear
5432 to have been reloaded. */
5433
5434 default:
5435 break;
5436 }
5437
5438 /* Copy the various flags, fields, and other information. We assume
5439 that all fields need copying, and then clear the fields that should
5440 not be copied. That is the sensible default behavior, and forces
5441 us to explicitly document why we are *not* copying a flag. */
5442 copy = shallow_copy_rtx (orig);
5443
5444 /* We do not copy the USED flag, which is used as a mark bit during
5445 walks over the RTL. */
5446 RTX_FLAG (copy, used) = 0;
5447
5448 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5449 if (INSN_P (orig))
5450 {
5451 RTX_FLAG (copy, jump) = 0;
5452 RTX_FLAG (copy, call) = 0;
5453 RTX_FLAG (copy, frame_related) = 0;
5454 }
5455
5456 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5457
5458 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5459 switch (*format_ptr++)
5460 {
5461 case 'e':
5462 if (XEXP (orig, i) != NULL)
5463 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5464 break;
5465
5466 case 'E':
5467 case 'V':
5468 if (XVEC (orig, i) == orig_asm_constraints_vector)
5469 XVEC (copy, i) = copy_asm_constraints_vector;
5470 else if (XVEC (orig, i) == orig_asm_operands_vector)
5471 XVEC (copy, i) = copy_asm_operands_vector;
5472 else if (XVEC (orig, i) != NULL)
5473 {
5474 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5475 for (j = 0; j < XVECLEN (copy, i); j++)
5476 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5477 }
5478 break;
5479
5480 case 't':
5481 case 'w':
5482 case 'i':
5483 case 's':
5484 case 'S':
5485 case 'u':
5486 case '0':
5487 /* These are left unchanged. */
5488 break;
5489
5490 default:
5491 gcc_unreachable ();
5492 }
5493
5494 if (code == SCRATCH)
5495 {
5496 i = copy_insn_n_scratches++;
5497 gcc_assert (i < MAX_RECOG_OPERANDS);
5498 copy_insn_scratch_in[i] = orig;
5499 copy_insn_scratch_out[i] = copy;
5500 }
5501 else if (code == ASM_OPERANDS)
5502 {
5503 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5504 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5505 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5506 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5507 }
5508
5509 return copy;
5510 }
5511
5512 /* Create a new copy of an rtx.
5513 This function differs from copy_rtx in that it handles SCRATCHes and
5514 ASM_OPERANDs properly.
5515 INSN doesn't really have to be a full INSN; it could be just the
5516 pattern. */
5517 rtx
5518 copy_insn (rtx insn)
5519 {
5520 copy_insn_n_scratches = 0;
5521 orig_asm_operands_vector = 0;
5522 orig_asm_constraints_vector = 0;
5523 copy_asm_operands_vector = 0;
5524 copy_asm_constraints_vector = 0;
5525 return copy_insn_1 (insn);
5526 }
5527
5528 /* Initialize data structures and variables in this file
5529 before generating rtl for each function. */
5530
5531 void
5532 init_emit (void)
5533 {
5534 set_first_insn (NULL);
5535 set_last_insn (NULL);
5536 if (MIN_NONDEBUG_INSN_UID)
5537 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5538 else
5539 cur_insn_uid = 1;
5540 cur_debug_insn_uid = 1;
5541 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5542 last_location = UNKNOWN_LOCATION;
5543 first_label_num = label_num;
5544 seq_stack = NULL;
5545
5546 /* Init the tables that describe all the pseudo regs. */
5547
5548 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5549
5550 crtl->emit.regno_pointer_align
5551 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5552
5553 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5554
5555 /* Put copies of all the hard registers into regno_reg_rtx. */
5556 memcpy (regno_reg_rtx,
5557 static_regno_reg_rtx,
5558 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5559
5560 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5561 init_virtual_regs ();
5562
5563 /* Indicate that the virtual registers and stack locations are
5564 all pointers. */
5565 REG_POINTER (stack_pointer_rtx) = 1;
5566 REG_POINTER (frame_pointer_rtx) = 1;
5567 REG_POINTER (hard_frame_pointer_rtx) = 1;
5568 REG_POINTER (arg_pointer_rtx) = 1;
5569
5570 REG_POINTER (virtual_incoming_args_rtx) = 1;
5571 REG_POINTER (virtual_stack_vars_rtx) = 1;
5572 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5573 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5574 REG_POINTER (virtual_cfa_rtx) = 1;
5575
5576 #ifdef STACK_BOUNDARY
5577 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5578 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5579 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5580 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5581
5582 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5583 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5584 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5585 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5586 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5587 #endif
5588
5589 #ifdef INIT_EXPANDERS
5590 INIT_EXPANDERS;
5591 #endif
5592 }
5593
5594 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5595
5596 static rtx
5597 gen_const_vector (enum machine_mode mode, int constant)
5598 {
5599 rtx tem;
5600 rtvec v;
5601 int units, i;
5602 enum machine_mode inner;
5603
5604 units = GET_MODE_NUNITS (mode);
5605 inner = GET_MODE_INNER (mode);
5606
5607 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5608
5609 v = rtvec_alloc (units);
5610
5611 /* We need to call this function after we set the scalar const_tiny_rtx
5612 entries. */
5613 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5614
5615 for (i = 0; i < units; ++i)
5616 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5617
5618 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5619 return tem;
5620 }
5621
5622 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5623 all elements are zero, and the one vector when all elements are one. */
5624 rtx
5625 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5626 {
5627 enum machine_mode inner = GET_MODE_INNER (mode);
5628 int nunits = GET_MODE_NUNITS (mode);
5629 rtx x;
5630 int i;
5631
5632 /* Check to see if all of the elements have the same value. */
5633 x = RTVEC_ELT (v, nunits - 1);
5634 for (i = nunits - 2; i >= 0; i--)
5635 if (RTVEC_ELT (v, i) != x)
5636 break;
5637
5638 /* If the values are all the same, check to see if we can use one of the
5639 standard constant vectors. */
5640 if (i == -1)
5641 {
5642 if (x == CONST0_RTX (inner))
5643 return CONST0_RTX (mode);
5644 else if (x == CONST1_RTX (inner))
5645 return CONST1_RTX (mode);
5646 }
5647
5648 return gen_rtx_raw_CONST_VECTOR (mode, v);
5649 }
5650
5651 /* Initialise global register information required by all functions. */
5652
5653 void
5654 init_emit_regs (void)
5655 {
5656 int i;
5657
5658 /* Reset register attributes */
5659 htab_empty (reg_attrs_htab);
5660
5661 /* We need reg_raw_mode, so initialize the modes now. */
5662 init_reg_modes_target ();
5663
5664 /* Assign register numbers to the globally defined register rtx. */
5665 pc_rtx = gen_rtx_PC (VOIDmode);
5666 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5667 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5668 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5669 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5670 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5671 virtual_incoming_args_rtx =
5672 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5673 virtual_stack_vars_rtx =
5674 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5675 virtual_stack_dynamic_rtx =
5676 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5677 virtual_outgoing_args_rtx =
5678 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5679 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5680
5681 /* Initialize RTL for commonly used hard registers. These are
5682 copied into regno_reg_rtx as we begin to compile each function. */
5683 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5684 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5685
5686 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5687 return_address_pointer_rtx
5688 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5689 #endif
5690
5691 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5692 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5693 else
5694 pic_offset_table_rtx = NULL_RTX;
5695 }
5696
5697 /* Create some permanent unique rtl objects shared between all functions. */
5698
5699 void
5700 init_emit_once (void)
5701 {
5702 int i;
5703 enum machine_mode mode;
5704 enum machine_mode double_mode;
5705
5706 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5707 hash tables. */
5708 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5709 const_int_htab_eq, NULL);
5710
5711 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5712 const_double_htab_eq, NULL);
5713
5714 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5715 const_fixed_htab_eq, NULL);
5716
5717 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5718 mem_attrs_htab_eq, NULL);
5719 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5720 reg_attrs_htab_eq, NULL);
5721
5722 /* Compute the word and byte modes. */
5723
5724 byte_mode = VOIDmode;
5725 word_mode = VOIDmode;
5726 double_mode = VOIDmode;
5727
5728 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5729 mode != VOIDmode;
5730 mode = GET_MODE_WIDER_MODE (mode))
5731 {
5732 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5733 && byte_mode == VOIDmode)
5734 byte_mode = mode;
5735
5736 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5737 && word_mode == VOIDmode)
5738 word_mode = mode;
5739 }
5740
5741 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5742 mode != VOIDmode;
5743 mode = GET_MODE_WIDER_MODE (mode))
5744 {
5745 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5746 && double_mode == VOIDmode)
5747 double_mode = mode;
5748 }
5749
5750 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5751
5752 #ifdef INIT_EXPANDERS
5753 /* This is to initialize {init|mark|free}_machine_status before the first
5754 call to push_function_context_to. This is needed by the Chill front
5755 end which calls push_function_context_to before the first call to
5756 init_function_start. */
5757 INIT_EXPANDERS;
5758 #endif
5759
5760 /* Create the unique rtx's for certain rtx codes and operand values. */
5761
5762 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5763 tries to use these variables. */
5764 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5765 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5766 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5767
5768 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5769 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5770 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5771 else
5772 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5773
5774 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5775 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5776 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5777
5778 dconstm1 = dconst1;
5779 dconstm1.sign = 1;
5780
5781 dconsthalf = dconst1;
5782 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5783
5784 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5785 {
5786 const REAL_VALUE_TYPE *const r =
5787 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5788
5789 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5790 mode != VOIDmode;
5791 mode = GET_MODE_WIDER_MODE (mode))
5792 const_tiny_rtx[i][(int) mode] =
5793 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5794
5795 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5796 mode != VOIDmode;
5797 mode = GET_MODE_WIDER_MODE (mode))
5798 const_tiny_rtx[i][(int) mode] =
5799 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5800
5801 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5802
5803 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5804 mode != VOIDmode;
5805 mode = GET_MODE_WIDER_MODE (mode))
5806 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5807
5808 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5809 mode != VOIDmode;
5810 mode = GET_MODE_WIDER_MODE (mode))
5811 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5812 }
5813
5814 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5815 mode != VOIDmode;
5816 mode = GET_MODE_WIDER_MODE (mode))
5817 {
5818 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5819 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5820 }
5821
5822 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5823 mode != VOIDmode;
5824 mode = GET_MODE_WIDER_MODE (mode))
5825 {
5826 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5827 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5828 }
5829
5830 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5831 mode != VOIDmode;
5832 mode = GET_MODE_WIDER_MODE (mode))
5833 {
5834 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5835 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5836 }
5837
5838 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5839 mode != VOIDmode;
5840 mode = GET_MODE_WIDER_MODE (mode))
5841 {
5842 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5843 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5844 }
5845
5846 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5847 mode != VOIDmode;
5848 mode = GET_MODE_WIDER_MODE (mode))
5849 {
5850 FCONST0(mode).data.high = 0;
5851 FCONST0(mode).data.low = 0;
5852 FCONST0(mode).mode = mode;
5853 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5854 FCONST0 (mode), mode);
5855 }
5856
5857 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5858 mode != VOIDmode;
5859 mode = GET_MODE_WIDER_MODE (mode))
5860 {
5861 FCONST0(mode).data.high = 0;
5862 FCONST0(mode).data.low = 0;
5863 FCONST0(mode).mode = mode;
5864 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5865 FCONST0 (mode), mode);
5866 }
5867
5868 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5869 mode != VOIDmode;
5870 mode = GET_MODE_WIDER_MODE (mode))
5871 {
5872 FCONST0(mode).data.high = 0;
5873 FCONST0(mode).data.low = 0;
5874 FCONST0(mode).mode = mode;
5875 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5876 FCONST0 (mode), mode);
5877
5878 /* We store the value 1. */
5879 FCONST1(mode).data.high = 0;
5880 FCONST1(mode).data.low = 0;
5881 FCONST1(mode).mode = mode;
5882 lshift_double (1, 0, GET_MODE_FBIT (mode),
5883 2 * HOST_BITS_PER_WIDE_INT,
5884 &FCONST1(mode).data.low,
5885 &FCONST1(mode).data.high,
5886 SIGNED_FIXED_POINT_MODE_P (mode));
5887 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5888 FCONST1 (mode), mode);
5889 }
5890
5891 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5892 mode != VOIDmode;
5893 mode = GET_MODE_WIDER_MODE (mode))
5894 {
5895 FCONST0(mode).data.high = 0;
5896 FCONST0(mode).data.low = 0;
5897 FCONST0(mode).mode = mode;
5898 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5899 FCONST0 (mode), mode);
5900
5901 /* We store the value 1. */
5902 FCONST1(mode).data.high = 0;
5903 FCONST1(mode).data.low = 0;
5904 FCONST1(mode).mode = mode;
5905 lshift_double (1, 0, GET_MODE_FBIT (mode),
5906 2 * HOST_BITS_PER_WIDE_INT,
5907 &FCONST1(mode).data.low,
5908 &FCONST1(mode).data.high,
5909 SIGNED_FIXED_POINT_MODE_P (mode));
5910 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5911 FCONST1 (mode), mode);
5912 }
5913
5914 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5915 mode != VOIDmode;
5916 mode = GET_MODE_WIDER_MODE (mode))
5917 {
5918 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5919 }
5920
5921 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5922 mode != VOIDmode;
5923 mode = GET_MODE_WIDER_MODE (mode))
5924 {
5925 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5926 }
5927
5928 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5929 mode != VOIDmode;
5930 mode = GET_MODE_WIDER_MODE (mode))
5931 {
5932 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5933 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5934 }
5935
5936 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5937 mode != VOIDmode;
5938 mode = GET_MODE_WIDER_MODE (mode))
5939 {
5940 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5941 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5942 }
5943
5944 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5945 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5946 const_tiny_rtx[0][i] = const0_rtx;
5947
5948 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5949 if (STORE_FLAG_VALUE == 1)
5950 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5951 }
5952 \f
5953 /* Produce exact duplicate of insn INSN after AFTER.
5954 Care updating of libcall regions if present. */
5955
5956 rtx
5957 emit_copy_of_insn_after (rtx insn, rtx after)
5958 {
5959 rtx new_rtx, link;
5960
5961 switch (GET_CODE (insn))
5962 {
5963 case INSN:
5964 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5965 break;
5966
5967 case JUMP_INSN:
5968 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5969 break;
5970
5971 case DEBUG_INSN:
5972 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5973 break;
5974
5975 case CALL_INSN:
5976 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5977 if (CALL_INSN_FUNCTION_USAGE (insn))
5978 CALL_INSN_FUNCTION_USAGE (new_rtx)
5979 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5980 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5981 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5982 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5983 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5984 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5985 break;
5986
5987 default:
5988 gcc_unreachable ();
5989 }
5990
5991 /* Update LABEL_NUSES. */
5992 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5993
5994 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5995
5996 /* If the old insn is frame related, then so is the new one. This is
5997 primarily needed for IA-64 unwind info which marks epilogue insns,
5998 which may be duplicated by the basic block reordering code. */
5999 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6000
6001 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6002 will make them. REG_LABEL_TARGETs are created there too, but are
6003 supposed to be sticky, so we copy them. */
6004 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6005 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6006 {
6007 if (GET_CODE (link) == EXPR_LIST)
6008 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6009 copy_insn_1 (XEXP (link, 0)));
6010 else
6011 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6012 }
6013
6014 INSN_CODE (new_rtx) = INSN_CODE (insn);
6015 return new_rtx;
6016 }
6017
6018 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6019 rtx
6020 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6021 {
6022 if (hard_reg_clobbers[mode][regno])
6023 return hard_reg_clobbers[mode][regno];
6024 else
6025 return (hard_reg_clobbers[mode][regno] =
6026 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6027 }
6028
6029 #include "gt-emit-rtl.h"