tree-ssa-alias.h (refs_may_alias_p_1): Declare.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61
62 /* Commonly used modes. */
63
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68
69 /* Datastructures maintained for currently processed function in RTL form. */
70
71 struct rtl_data x_rtl;
72
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
77
78 rtx * regno_reg_rtx;
79
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
82
83 static GTY(()) int label_num = 1;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
115
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
174
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
180
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static rtx gen_const_vector (enum machine_mode, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((const_rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 const_rtx const value = (const_rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is really a CONST_FIXED). */
261
262 static hashval_t
263 const_fixed_htab_hash (const void *x)
264 {
265 const_rtx const value = (const_rtx) x;
266 hashval_t h;
267
268 h = fixed_hash (CONST_FIXED_VALUE (value));
269 /* MODE is used in the comparison, so it should be in the hash. */
270 h ^= GET_MODE (value);
271 return h;
272 }
273
274 /* Returns nonzero if the value represented by X (really a ...)
275 is the same as that represented by Y (really a ...). */
276
277 static int
278 const_fixed_htab_eq (const void *x, const void *y)
279 {
280 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
281
282 if (GET_MODE (a) != GET_MODE (b))
283 return 0;
284 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
285 }
286
287 /* Returns a hash code for X (which is a really a mem_attrs *). */
288
289 static hashval_t
290 mem_attrs_htab_hash (const void *x)
291 {
292 const mem_attrs *const p = (const mem_attrs *) x;
293
294 return (p->alias ^ (p->align * 1000)
295 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
296 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
297 ^ (size_t) iterative_hash_expr (p->expr, 0));
298 }
299
300 /* Returns nonzero if the value represented by X (which is really a
301 mem_attrs *) is the same as that given by Y (which is also really a
302 mem_attrs *). */
303
304 static int
305 mem_attrs_htab_eq (const void *x, const void *y)
306 {
307 const mem_attrs *const p = (const mem_attrs *) x;
308 const mem_attrs *const q = (const mem_attrs *) y;
309
310 return (p->alias == q->alias && p->offset == q->offset
311 && p->size == q->size && p->align == q->align
312 && (p->expr == q->expr
313 || (p->expr != NULL_TREE && q->expr != NULL_TREE
314 && operand_equal_p (p->expr, q->expr, 0))));
315 }
316
317 /* Allocate a new mem_attrs structure and insert it into the hash table if
318 one identical to it is not already in the table. We are doing this for
319 MEM of mode MODE. */
320
321 static mem_attrs *
322 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
323 unsigned int align, enum machine_mode mode)
324 {
325 mem_attrs attrs;
326 void **slot;
327
328 /* If everything is the default, we can just return zero.
329 This must match what the corresponding MEM_* macros return when the
330 field is not present. */
331 if (alias == 0 && expr == 0 && offset == 0
332 && (size == 0
333 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
334 && (STRICT_ALIGNMENT && mode != BLKmode
335 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
336 return 0;
337
338 attrs.alias = alias;
339 attrs.expr = expr;
340 attrs.offset = offset;
341 attrs.size = size;
342 attrs.align = align;
343
344 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
345 if (*slot == 0)
346 {
347 *slot = ggc_alloc (sizeof (mem_attrs));
348 memcpy (*slot, &attrs, sizeof (mem_attrs));
349 }
350
351 return (mem_attrs *) *slot;
352 }
353
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
355
356 static hashval_t
357 reg_attrs_htab_hash (const void *x)
358 {
359 const reg_attrs *const p = (const reg_attrs *) x;
360
361 return ((p->offset * 1000) ^ (long) p->decl);
362 }
363
364 /* Returns nonzero if the value represented by X (which is really a
365 reg_attrs *) is the same as that given by Y (which is also really a
366 reg_attrs *). */
367
368 static int
369 reg_attrs_htab_eq (const void *x, const void *y)
370 {
371 const reg_attrs *const p = (const reg_attrs *) x;
372 const reg_attrs *const q = (const reg_attrs *) y;
373
374 return (p->decl == q->decl && p->offset == q->offset);
375 }
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
378 MEM of mode MODE. */
379
380 static reg_attrs *
381 get_reg_attrs (tree decl, int offset)
382 {
383 reg_attrs attrs;
384 void **slot;
385
386 /* If everything is the default, we can just return zero. */
387 if (decl == 0 && offset == 0)
388 return 0;
389
390 attrs.decl = decl;
391 attrs.offset = offset;
392
393 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
394 if (*slot == 0)
395 {
396 *slot = ggc_alloc (sizeof (reg_attrs));
397 memcpy (*slot, &attrs, sizeof (reg_attrs));
398 }
399
400 return (reg_attrs *) *slot;
401 }
402
403
404 #if !HAVE_blockage
405 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
406 across this insn. */
407
408 rtx
409 gen_blockage (void)
410 {
411 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
412 MEM_VOLATILE_P (x) = true;
413 return x;
414 }
415 #endif
416
417
418 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
419 don't attempt to share with the various global pieces of rtl (such as
420 frame_pointer_rtx). */
421
422 rtx
423 gen_raw_REG (enum machine_mode mode, int regno)
424 {
425 rtx x = gen_rtx_raw_REG (mode, regno);
426 ORIGINAL_REGNO (x) = regno;
427 return x;
428 }
429
430 /* There are some RTL codes that require special attention; the generation
431 functions do the raw handling. If you add to this list, modify
432 special_rtx in gengenrtl.c as well. */
433
434 rtx
435 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
436 {
437 void **slot;
438
439 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
440 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
441
442 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
443 if (const_true_rtx && arg == STORE_FLAG_VALUE)
444 return const_true_rtx;
445 #endif
446
447 /* Look up the CONST_INT in the hash table. */
448 slot = htab_find_slot_with_hash (const_int_htab, &arg,
449 (hashval_t) arg, INSERT);
450 if (*slot == 0)
451 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
452
453 return (rtx) *slot;
454 }
455
456 rtx
457 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
458 {
459 return GEN_INT (trunc_int_for_mode (c, mode));
460 }
461
462 /* CONST_DOUBLEs might be created from pairs of integers, or from
463 REAL_VALUE_TYPEs. Also, their length is known only at run time,
464 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
465
466 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
467 hash table. If so, return its counterpart; otherwise add it
468 to the hash table and return it. */
469 static rtx
470 lookup_const_double (rtx real)
471 {
472 void **slot = htab_find_slot (const_double_htab, real, INSERT);
473 if (*slot == 0)
474 *slot = real;
475
476 return (rtx) *slot;
477 }
478
479 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
480 VALUE in mode MODE. */
481 rtx
482 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
483 {
484 rtx real = rtx_alloc (CONST_DOUBLE);
485 PUT_MODE (real, mode);
486
487 real->u.rv = value;
488
489 return lookup_const_double (real);
490 }
491
492 /* Determine whether FIXED, a CONST_FIXED, already exists in the
493 hash table. If so, return its counterpart; otherwise add it
494 to the hash table and return it. */
495
496 static rtx
497 lookup_const_fixed (rtx fixed)
498 {
499 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
500 if (*slot == 0)
501 *slot = fixed;
502
503 return (rtx) *slot;
504 }
505
506 /* Return a CONST_FIXED rtx for a fixed-point value specified by
507 VALUE in mode MODE. */
508
509 rtx
510 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
511 {
512 rtx fixed = rtx_alloc (CONST_FIXED);
513 PUT_MODE (fixed, mode);
514
515 fixed->u.fv = value;
516
517 return lookup_const_fixed (fixed);
518 }
519
520 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
521 of ints: I0 is the low-order word and I1 is the high-order word.
522 Do not use this routine for non-integer modes; convert to
523 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
524
525 rtx
526 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
527 {
528 rtx value;
529 unsigned int i;
530
531 /* There are the following cases (note that there are no modes with
532 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
533
534 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
535 gen_int_mode.
536 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
537 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
538 from copies of the sign bit, and sign of i0 and i1 are the same), then
539 we return a CONST_INT for i0.
540 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
541 if (mode != VOIDmode)
542 {
543 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
544 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
545 /* We can get a 0 for an error mark. */
546 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
548
549 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
550 return gen_int_mode (i0, mode);
551
552 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
553 }
554
555 /* If this integer fits in one word, return a CONST_INT. */
556 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
557 return GEN_INT (i0);
558
559 /* We use VOIDmode for integers. */
560 value = rtx_alloc (CONST_DOUBLE);
561 PUT_MODE (value, VOIDmode);
562
563 CONST_DOUBLE_LOW (value) = i0;
564 CONST_DOUBLE_HIGH (value) = i1;
565
566 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
567 XWINT (value, i) = 0;
568
569 return lookup_const_double (value);
570 }
571
572 rtx
573 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
574 {
575 /* In case the MD file explicitly references the frame pointer, have
576 all such references point to the same frame pointer. This is
577 used during frame pointer elimination to distinguish the explicit
578 references to these registers from pseudos that happened to be
579 assigned to them.
580
581 If we have eliminated the frame pointer or arg pointer, we will
582 be using it as a normal register, for example as a spill
583 register. In such cases, we might be accessing it in a mode that
584 is not Pmode and therefore cannot use the pre-allocated rtx.
585
586 Also don't do this when we are making new REGs in reload, since
587 we don't want to get confused with the real pointers. */
588
589 if (mode == Pmode && !reload_in_progress)
590 {
591 if (regno == FRAME_POINTER_REGNUM
592 && (!reload_completed || frame_pointer_needed))
593 return frame_pointer_rtx;
594 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
595 if (regno == HARD_FRAME_POINTER_REGNUM
596 && (!reload_completed || frame_pointer_needed))
597 return hard_frame_pointer_rtx;
598 #endif
599 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
600 if (regno == ARG_POINTER_REGNUM)
601 return arg_pointer_rtx;
602 #endif
603 #ifdef RETURN_ADDRESS_POINTER_REGNUM
604 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
605 return return_address_pointer_rtx;
606 #endif
607 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
608 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
609 return pic_offset_table_rtx;
610 if (regno == STACK_POINTER_REGNUM)
611 return stack_pointer_rtx;
612 }
613
614 #if 0
615 /* If the per-function register table has been set up, try to re-use
616 an existing entry in that table to avoid useless generation of RTL.
617
618 This code is disabled for now until we can fix the various backends
619 which depend on having non-shared hard registers in some cases. Long
620 term we want to re-enable this code as it can significantly cut down
621 on the amount of useless RTL that gets generated.
622
623 We'll also need to fix some code that runs after reload that wants to
624 set ORIGINAL_REGNO. */
625
626 if (cfun
627 && cfun->emit
628 && regno_reg_rtx
629 && regno < FIRST_PSEUDO_REGISTER
630 && reg_raw_mode[regno] == mode)
631 return regno_reg_rtx[regno];
632 #endif
633
634 return gen_raw_REG (mode, regno);
635 }
636
637 rtx
638 gen_rtx_MEM (enum machine_mode mode, rtx addr)
639 {
640 rtx rt = gen_rtx_raw_MEM (mode, addr);
641
642 /* This field is not cleared by the mere allocation of the rtx, so
643 we clear it here. */
644 MEM_ATTRS (rt) = 0;
645
646 return rt;
647 }
648
649 /* Generate a memory referring to non-trapping constant memory. */
650
651 rtx
652 gen_const_mem (enum machine_mode mode, rtx addr)
653 {
654 rtx mem = gen_rtx_MEM (mode, addr);
655 MEM_READONLY_P (mem) = 1;
656 MEM_NOTRAP_P (mem) = 1;
657 return mem;
658 }
659
660 /* Generate a MEM referring to fixed portions of the frame, e.g., register
661 save areas. */
662
663 rtx
664 gen_frame_mem (enum machine_mode mode, rtx addr)
665 {
666 rtx mem = gen_rtx_MEM (mode, addr);
667 MEM_NOTRAP_P (mem) = 1;
668 set_mem_alias_set (mem, get_frame_alias_set ());
669 return mem;
670 }
671
672 /* Generate a MEM referring to a temporary use of the stack, not part
673 of the fixed stack frame. For example, something which is pushed
674 by a target splitter. */
675 rtx
676 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
677 {
678 rtx mem = gen_rtx_MEM (mode, addr);
679 MEM_NOTRAP_P (mem) = 1;
680 if (!cfun->calls_alloca)
681 set_mem_alias_set (mem, get_frame_alias_set ());
682 return mem;
683 }
684
685 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
686 this construct would be valid, and false otherwise. */
687
688 bool
689 validate_subreg (enum machine_mode omode, enum machine_mode imode,
690 const_rtx reg, unsigned int offset)
691 {
692 unsigned int isize = GET_MODE_SIZE (imode);
693 unsigned int osize = GET_MODE_SIZE (omode);
694
695 /* All subregs must be aligned. */
696 if (offset % osize != 0)
697 return false;
698
699 /* The subreg offset cannot be outside the inner object. */
700 if (offset >= isize)
701 return false;
702
703 /* ??? This should not be here. Temporarily continue to allow word_mode
704 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
705 Generally, backends are doing something sketchy but it'll take time to
706 fix them all. */
707 if (omode == word_mode)
708 ;
709 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
710 is the culprit here, and not the backends. */
711 else if (osize >= UNITS_PER_WORD && isize >= osize)
712 ;
713 /* Allow component subregs of complex and vector. Though given the below
714 extraction rules, it's not always clear what that means. */
715 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
716 && GET_MODE_INNER (imode) == omode)
717 ;
718 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
719 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
720 represent this. It's questionable if this ought to be represented at
721 all -- why can't this all be hidden in post-reload splitters that make
722 arbitrarily mode changes to the registers themselves. */
723 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
724 ;
725 /* Subregs involving floating point modes are not allowed to
726 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
727 (subreg:SI (reg:DF) 0) isn't. */
728 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
729 {
730 if (isize != osize)
731 return false;
732 }
733
734 /* Paradoxical subregs must have offset zero. */
735 if (osize > isize)
736 return offset == 0;
737
738 /* This is a normal subreg. Verify that the offset is representable. */
739
740 /* For hard registers, we already have most of these rules collected in
741 subreg_offset_representable_p. */
742 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 {
744 unsigned int regno = REGNO (reg);
745
746 #ifdef CANNOT_CHANGE_MODE_CLASS
747 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
748 && GET_MODE_INNER (imode) == omode)
749 ;
750 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
751 return false;
752 #endif
753
754 return subreg_offset_representable_p (regno, imode, offset, omode);
755 }
756
757 /* For pseudo registers, we want most of the same checks. Namely:
758 If the register no larger than a word, the subreg must be lowpart.
759 If the register is larger than a word, the subreg must be the lowpart
760 of a subword. A subreg does *not* perform arbitrary bit extraction.
761 Given that we've already checked mode/offset alignment, we only have
762 to check subword subregs here. */
763 if (osize < UNITS_PER_WORD)
764 {
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
769 }
770 return true;
771 }
772
773 rtx
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 {
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777 return gen_rtx_raw_SUBREG (mode, reg, offset);
778 }
779
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
782
783 rtx
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 {
786 enum machine_mode inmode;
787
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
793 }
794 \f
795
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797
798 rtvec
799 gen_rtvec (int n, ...)
800 {
801 int i;
802 rtvec rt_val;
803 va_list p;
804
805 va_start (p, n);
806
807 /* Don't allocate an empty rtvec... */
808 if (n == 0)
809 return NULL_RTVEC;
810
811 rt_val = rtvec_alloc (n);
812
813 for (i = 0; i < n; i++)
814 rt_val->elem[i] = va_arg (p, rtx);
815
816 va_end (p);
817 return rt_val;
818 }
819
820 rtvec
821 gen_rtvec_v (int n, rtx *argp)
822 {
823 int i;
824 rtvec rt_val;
825
826 /* Don't allocate an empty rtvec... */
827 if (n == 0)
828 return NULL_RTVEC;
829
830 rt_val = rtvec_alloc (n);
831
832 for (i = 0; i < n; i++)
833 rt_val->elem[i] = *argp++;
834
835 return rt_val;
836 }
837 \f
838 /* Return the number of bytes between the start of an OUTER_MODE
839 in-memory value and the start of an INNER_MODE in-memory value,
840 given that the former is a lowpart of the latter. It may be a
841 paradoxical lowpart, in which case the offset will be negative
842 on big-endian targets. */
843
844 int
845 byte_lowpart_offset (enum machine_mode outer_mode,
846 enum machine_mode inner_mode)
847 {
848 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
849 return subreg_lowpart_offset (outer_mode, inner_mode);
850 else
851 return -subreg_lowpart_offset (inner_mode, outer_mode);
852 }
853 \f
854 /* Generate a REG rtx for a new pseudo register of mode MODE.
855 This pseudo is assigned the next sequential register number. */
856
857 rtx
858 gen_reg_rtx (enum machine_mode mode)
859 {
860 rtx val;
861 unsigned int align = GET_MODE_ALIGNMENT (mode);
862
863 gcc_assert (can_create_pseudo_p ());
864
865 /* If a virtual register with bigger mode alignment is generated,
866 increase stack alignment estimation because it might be spilled
867 to stack later. */
868 if (SUPPORTS_STACK_ALIGNMENT
869 && crtl->stack_alignment_estimated < align
870 && !crtl->stack_realign_processed)
871 {
872 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
873 if (crtl->stack_alignment_estimated < min_align)
874 crtl->stack_alignment_estimated = min_align;
875 }
876
877 if (generating_concat_p
878 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
879 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
880 {
881 /* For complex modes, don't make a single pseudo.
882 Instead, make a CONCAT of two pseudos.
883 This allows noncontiguous allocation of the real and imaginary parts,
884 which makes much better code. Besides, allocating DCmode
885 pseudos overstrains reload on some machines like the 386. */
886 rtx realpart, imagpart;
887 enum machine_mode partmode = GET_MODE_INNER (mode);
888
889 realpart = gen_reg_rtx (partmode);
890 imagpart = gen_reg_rtx (partmode);
891 return gen_rtx_CONCAT (mode, realpart, imagpart);
892 }
893
894 /* Make sure regno_pointer_align, and regno_reg_rtx are large
895 enough to have an element for this pseudo reg number. */
896
897 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
898 {
899 int old_size = crtl->emit.regno_pointer_align_length;
900 char *tmp;
901 rtx *new1;
902
903 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
904 memset (tmp + old_size, 0, old_size);
905 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
906
907 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
908 memset (new1 + old_size, 0, old_size * sizeof (rtx));
909 regno_reg_rtx = new1;
910
911 crtl->emit.regno_pointer_align_length = old_size * 2;
912 }
913
914 val = gen_raw_REG (mode, reg_rtx_no);
915 regno_reg_rtx[reg_rtx_no++] = val;
916 return val;
917 }
918
919 /* Update NEW with the same attributes as REG, but with OFFSET added
920 to the REG_OFFSET. */
921
922 static void
923 update_reg_offset (rtx new_rtx, rtx reg, int offset)
924 {
925 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
926 REG_OFFSET (reg) + offset);
927 }
928
929 /* Generate a register with same attributes as REG, but with OFFSET
930 added to the REG_OFFSET. */
931
932 rtx
933 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
934 int offset)
935 {
936 rtx new_rtx = gen_rtx_REG (mode, regno);
937
938 update_reg_offset (new_rtx, reg, offset);
939 return new_rtx;
940 }
941
942 /* Generate a new pseudo-register with the same attributes as REG, but
943 with OFFSET added to the REG_OFFSET. */
944
945 rtx
946 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
947 {
948 rtx new_rtx = gen_reg_rtx (mode);
949
950 update_reg_offset (new_rtx, reg, offset);
951 return new_rtx;
952 }
953
954 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
955 new register is a (possibly paradoxical) lowpart of the old one. */
956
957 void
958 adjust_reg_mode (rtx reg, enum machine_mode mode)
959 {
960 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
961 PUT_MODE (reg, mode);
962 }
963
964 /* Copy REG's attributes from X, if X has any attributes. If REG and X
965 have different modes, REG is a (possibly paradoxical) lowpart of X. */
966
967 void
968 set_reg_attrs_from_value (rtx reg, rtx x)
969 {
970 int offset;
971
972 /* Hard registers can be reused for multiple purposes within the same
973 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
974 on them is wrong. */
975 if (HARD_REGISTER_P (reg))
976 return;
977
978 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
979 if (MEM_P (x))
980 {
981 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
982 REG_ATTRS (reg)
983 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
984 if (MEM_POINTER (x))
985 mark_reg_pointer (reg, 0);
986 }
987 else if (REG_P (x))
988 {
989 if (REG_ATTRS (x))
990 update_reg_offset (reg, x, offset);
991 if (REG_POINTER (x))
992 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993 }
994 }
995
996 /* Generate a REG rtx for a new pseudo register, copying the mode
997 and attributes from X. */
998
999 rtx
1000 gen_reg_rtx_and_attrs (rtx x)
1001 {
1002 rtx reg = gen_reg_rtx (GET_MODE (x));
1003 set_reg_attrs_from_value (reg, x);
1004 return reg;
1005 }
1006
1007 /* Set the register attributes for registers contained in PARM_RTX.
1008 Use needed values from memory attributes of MEM. */
1009
1010 void
1011 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1012 {
1013 if (REG_P (parm_rtx))
1014 set_reg_attrs_from_value (parm_rtx, mem);
1015 else if (GET_CODE (parm_rtx) == PARALLEL)
1016 {
1017 /* Check for a NULL entry in the first slot, used to indicate that the
1018 parameter goes both on the stack and in registers. */
1019 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1020 for (; i < XVECLEN (parm_rtx, 0); i++)
1021 {
1022 rtx x = XVECEXP (parm_rtx, 0, i);
1023 if (REG_P (XEXP (x, 0)))
1024 REG_ATTRS (XEXP (x, 0))
1025 = get_reg_attrs (MEM_EXPR (mem),
1026 INTVAL (XEXP (x, 1)));
1027 }
1028 }
1029 }
1030
1031 /* Set the REG_ATTRS for registers in value X, given that X represents
1032 decl T. */
1033
1034 void
1035 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1036 {
1037 if (GET_CODE (x) == SUBREG)
1038 {
1039 gcc_assert (subreg_lowpart_p (x));
1040 x = SUBREG_REG (x);
1041 }
1042 if (REG_P (x))
1043 REG_ATTRS (x)
1044 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1045 DECL_MODE (t)));
1046 if (GET_CODE (x) == CONCAT)
1047 {
1048 if (REG_P (XEXP (x, 0)))
1049 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1050 if (REG_P (XEXP (x, 1)))
1051 REG_ATTRS (XEXP (x, 1))
1052 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1053 }
1054 if (GET_CODE (x) == PARALLEL)
1055 {
1056 int i, start;
1057
1058 /* Check for a NULL entry, used to indicate that the parameter goes
1059 both on the stack and in registers. */
1060 if (XEXP (XVECEXP (x, 0, 0), 0))
1061 start = 0;
1062 else
1063 start = 1;
1064
1065 for (i = start; i < XVECLEN (x, 0); i++)
1066 {
1067 rtx y = XVECEXP (x, 0, i);
1068 if (REG_P (XEXP (y, 0)))
1069 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1070 }
1071 }
1072 }
1073
1074 /* Assign the RTX X to declaration T. */
1075
1076 void
1077 set_decl_rtl (tree t, rtx x)
1078 {
1079 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1080 if (x)
1081 set_reg_attrs_for_decl_rtl (t, x);
1082 }
1083
1084 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1085 if the ABI requires the parameter to be passed by reference. */
1086
1087 void
1088 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1089 {
1090 DECL_INCOMING_RTL (t) = x;
1091 if (x && !by_reference_p)
1092 set_reg_attrs_for_decl_rtl (t, x);
1093 }
1094
1095 /* Identify REG (which may be a CONCAT) as a user register. */
1096
1097 void
1098 mark_user_reg (rtx reg)
1099 {
1100 if (GET_CODE (reg) == CONCAT)
1101 {
1102 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1103 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1104 }
1105 else
1106 {
1107 gcc_assert (REG_P (reg));
1108 REG_USERVAR_P (reg) = 1;
1109 }
1110 }
1111
1112 /* Identify REG as a probable pointer register and show its alignment
1113 as ALIGN, if nonzero. */
1114
1115 void
1116 mark_reg_pointer (rtx reg, int align)
1117 {
1118 if (! REG_POINTER (reg))
1119 {
1120 REG_POINTER (reg) = 1;
1121
1122 if (align)
1123 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1124 }
1125 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1126 /* We can no-longer be sure just how aligned this pointer is. */
1127 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1128 }
1129
1130 /* Return 1 plus largest pseudo reg number used in the current function. */
1131
1132 int
1133 max_reg_num (void)
1134 {
1135 return reg_rtx_no;
1136 }
1137
1138 /* Return 1 + the largest label number used so far in the current function. */
1139
1140 int
1141 max_label_num (void)
1142 {
1143 return label_num;
1144 }
1145
1146 /* Return first label number used in this function (if any were used). */
1147
1148 int
1149 get_first_label_num (void)
1150 {
1151 return first_label_num;
1152 }
1153
1154 /* If the rtx for label was created during the expansion of a nested
1155 function, then first_label_num won't include this label number.
1156 Fix this now so that array indices work later. */
1157
1158 void
1159 maybe_set_first_label_num (rtx x)
1160 {
1161 if (CODE_LABEL_NUMBER (x) < first_label_num)
1162 first_label_num = CODE_LABEL_NUMBER (x);
1163 }
1164 \f
1165 /* Return a value representing some low-order bits of X, where the number
1166 of low-order bits is given by MODE. Note that no conversion is done
1167 between floating-point and fixed-point values, rather, the bit
1168 representation is returned.
1169
1170 This function handles the cases in common between gen_lowpart, below,
1171 and two variants in cse.c and combine.c. These are the cases that can
1172 be safely handled at all points in the compilation.
1173
1174 If this is not a case we can handle, return 0. */
1175
1176 rtx
1177 gen_lowpart_common (enum machine_mode mode, rtx x)
1178 {
1179 int msize = GET_MODE_SIZE (mode);
1180 int xsize;
1181 int offset = 0;
1182 enum machine_mode innermode;
1183
1184 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1185 so we have to make one up. Yuk. */
1186 innermode = GET_MODE (x);
1187 if (CONST_INT_P (x)
1188 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1189 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1190 else if (innermode == VOIDmode)
1191 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1192
1193 xsize = GET_MODE_SIZE (innermode);
1194
1195 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1196
1197 if (innermode == mode)
1198 return x;
1199
1200 /* MODE must occupy no more words than the mode of X. */
1201 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1202 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1203 return 0;
1204
1205 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1206 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1207 return 0;
1208
1209 offset = subreg_lowpart_offset (mode, innermode);
1210
1211 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1212 && (GET_MODE_CLASS (mode) == MODE_INT
1213 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1214 {
1215 /* If we are getting the low-order part of something that has been
1216 sign- or zero-extended, we can either just use the object being
1217 extended or make a narrower extension. If we want an even smaller
1218 piece than the size of the object being extended, call ourselves
1219 recursively.
1220
1221 This case is used mostly by combine and cse. */
1222
1223 if (GET_MODE (XEXP (x, 0)) == mode)
1224 return XEXP (x, 0);
1225 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1226 return gen_lowpart_common (mode, XEXP (x, 0));
1227 else if (msize < xsize)
1228 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1229 }
1230 else if (GET_CODE (x) == SUBREG || REG_P (x)
1231 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1232 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1233 return simplify_gen_subreg (mode, x, innermode, offset);
1234
1235 /* Otherwise, we can't do this. */
1236 return 0;
1237 }
1238 \f
1239 rtx
1240 gen_highpart (enum machine_mode mode, rtx x)
1241 {
1242 unsigned int msize = GET_MODE_SIZE (mode);
1243 rtx result;
1244
1245 /* This case loses if X is a subreg. To catch bugs early,
1246 complain if an invalid MODE is used even in other cases. */
1247 gcc_assert (msize <= UNITS_PER_WORD
1248 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1249
1250 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1251 subreg_highpart_offset (mode, GET_MODE (x)));
1252 gcc_assert (result);
1253
1254 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1255 the target if we have a MEM. gen_highpart must return a valid operand,
1256 emitting code if necessary to do so. */
1257 if (MEM_P (result))
1258 {
1259 result = validize_mem (result);
1260 gcc_assert (result);
1261 }
1262
1263 return result;
1264 }
1265
1266 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1267 be VOIDmode constant. */
1268 rtx
1269 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1270 {
1271 if (GET_MODE (exp) != VOIDmode)
1272 {
1273 gcc_assert (GET_MODE (exp) == innermode);
1274 return gen_highpart (outermode, exp);
1275 }
1276 return simplify_gen_subreg (outermode, exp, innermode,
1277 subreg_highpart_offset (outermode, innermode));
1278 }
1279
1280 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1281
1282 unsigned int
1283 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1284 {
1285 unsigned int offset = 0;
1286 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1287
1288 if (difference > 0)
1289 {
1290 if (WORDS_BIG_ENDIAN)
1291 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1292 if (BYTES_BIG_ENDIAN)
1293 offset += difference % UNITS_PER_WORD;
1294 }
1295
1296 return offset;
1297 }
1298
1299 /* Return offset in bytes to get OUTERMODE high part
1300 of the value in mode INNERMODE stored in memory in target format. */
1301 unsigned int
1302 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303 {
1304 unsigned int offset = 0;
1305 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306
1307 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1308
1309 if (difference > 0)
1310 {
1311 if (! WORDS_BIG_ENDIAN)
1312 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1313 if (! BYTES_BIG_ENDIAN)
1314 offset += difference % UNITS_PER_WORD;
1315 }
1316
1317 return offset;
1318 }
1319
1320 /* Return 1 iff X, assumed to be a SUBREG,
1321 refers to the least significant part of its containing reg.
1322 If X is not a SUBREG, always return 1 (it is its own low part!). */
1323
1324 int
1325 subreg_lowpart_p (const_rtx x)
1326 {
1327 if (GET_CODE (x) != SUBREG)
1328 return 1;
1329 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1330 return 0;
1331
1332 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1333 == SUBREG_BYTE (x));
1334 }
1335 \f
1336 /* Return subword OFFSET of operand OP.
1337 The word number, OFFSET, is interpreted as the word number starting
1338 at the low-order address. OFFSET 0 is the low-order word if not
1339 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1340
1341 If we cannot extract the required word, we return zero. Otherwise,
1342 an rtx corresponding to the requested word will be returned.
1343
1344 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1345 reload has completed, a valid address will always be returned. After
1346 reload, if a valid address cannot be returned, we return zero.
1347
1348 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1349 it is the responsibility of the caller.
1350
1351 MODE is the mode of OP in case it is a CONST_INT.
1352
1353 ??? This is still rather broken for some cases. The problem for the
1354 moment is that all callers of this thing provide no 'goal mode' to
1355 tell us to work with. This exists because all callers were written
1356 in a word based SUBREG world.
1357 Now use of this function can be deprecated by simplify_subreg in most
1358 cases.
1359 */
1360
1361 rtx
1362 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1363 {
1364 if (mode == VOIDmode)
1365 mode = GET_MODE (op);
1366
1367 gcc_assert (mode != VOIDmode);
1368
1369 /* If OP is narrower than a word, fail. */
1370 if (mode != BLKmode
1371 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1372 return 0;
1373
1374 /* If we want a word outside OP, return zero. */
1375 if (mode != BLKmode
1376 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1377 return const0_rtx;
1378
1379 /* Form a new MEM at the requested address. */
1380 if (MEM_P (op))
1381 {
1382 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1383
1384 if (! validate_address)
1385 return new_rtx;
1386
1387 else if (reload_completed)
1388 {
1389 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1390 return 0;
1391 }
1392 else
1393 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1394 }
1395
1396 /* Rest can be handled by simplify_subreg. */
1397 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1398 }
1399
1400 /* Similar to `operand_subword', but never return 0. If we can't
1401 extract the required subword, put OP into a register and try again.
1402 The second attempt must succeed. We always validate the address in
1403 this case.
1404
1405 MODE is the mode of OP, in case it is CONST_INT. */
1406
1407 rtx
1408 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1409 {
1410 rtx result = operand_subword (op, offset, 1, mode);
1411
1412 if (result)
1413 return result;
1414
1415 if (mode != BLKmode && mode != VOIDmode)
1416 {
1417 /* If this is a register which can not be accessed by words, copy it
1418 to a pseudo register. */
1419 if (REG_P (op))
1420 op = copy_to_reg (op);
1421 else
1422 op = force_reg (mode, op);
1423 }
1424
1425 result = operand_subword (op, offset, 1, mode);
1426 gcc_assert (result);
1427
1428 return result;
1429 }
1430 \f
1431 /* Returns 1 if both MEM_EXPR can be considered equal
1432 and 0 otherwise. */
1433
1434 int
1435 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1436 {
1437 if (expr1 == expr2)
1438 return 1;
1439
1440 if (! expr1 || ! expr2)
1441 return 0;
1442
1443 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1444 return 0;
1445
1446 return operand_equal_p (expr1, expr2, 0);
1447 }
1448
1449 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1450 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1451 -1 if not known. */
1452
1453 int
1454 get_mem_align_offset (rtx mem, unsigned int align)
1455 {
1456 tree expr;
1457 unsigned HOST_WIDE_INT offset;
1458
1459 /* This function can't use
1460 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1461 || !CONST_INT_P (MEM_OFFSET (mem))
1462 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1463 < align))
1464 return -1;
1465 else
1466 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1467 for two reasons:
1468 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1469 for <variable>. get_inner_reference doesn't handle it and
1470 even if it did, the alignment in that case needs to be determined
1471 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1472 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1473 isn't sufficiently aligned, the object it is in might be. */
1474 gcc_assert (MEM_P (mem));
1475 expr = MEM_EXPR (mem);
1476 if (expr == NULL_TREE
1477 || MEM_OFFSET (mem) == NULL_RTX
1478 || !CONST_INT_P (MEM_OFFSET (mem)))
1479 return -1;
1480
1481 offset = INTVAL (MEM_OFFSET (mem));
1482 if (DECL_P (expr))
1483 {
1484 if (DECL_ALIGN (expr) < align)
1485 return -1;
1486 }
1487 else if (INDIRECT_REF_P (expr))
1488 {
1489 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1490 return -1;
1491 }
1492 else if (TREE_CODE (expr) == COMPONENT_REF)
1493 {
1494 while (1)
1495 {
1496 tree inner = TREE_OPERAND (expr, 0);
1497 tree field = TREE_OPERAND (expr, 1);
1498 tree byte_offset = component_ref_field_offset (expr);
1499 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1500
1501 if (!byte_offset
1502 || !host_integerp (byte_offset, 1)
1503 || !host_integerp (bit_offset, 1))
1504 return -1;
1505
1506 offset += tree_low_cst (byte_offset, 1);
1507 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1508
1509 if (inner == NULL_TREE)
1510 {
1511 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1512 < (unsigned int) align)
1513 return -1;
1514 break;
1515 }
1516 else if (DECL_P (inner))
1517 {
1518 if (DECL_ALIGN (inner) < align)
1519 return -1;
1520 break;
1521 }
1522 else if (TREE_CODE (inner) != COMPONENT_REF)
1523 return -1;
1524 expr = inner;
1525 }
1526 }
1527 else
1528 return -1;
1529
1530 return offset & ((align / BITS_PER_UNIT) - 1);
1531 }
1532
1533 /* Given REF (a MEM) and T, either the type of X or the expression
1534 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1535 if we are making a new object of this type. BITPOS is nonzero if
1536 there is an offset outstanding on T that will be applied later. */
1537
1538 void
1539 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1540 HOST_WIDE_INT bitpos)
1541 {
1542 alias_set_type alias = MEM_ALIAS_SET (ref);
1543 tree expr = MEM_EXPR (ref);
1544 rtx offset = MEM_OFFSET (ref);
1545 rtx size = MEM_SIZE (ref);
1546 unsigned int align = MEM_ALIGN (ref);
1547 HOST_WIDE_INT apply_bitpos = 0;
1548 tree type;
1549
1550 /* It can happen that type_for_mode was given a mode for which there
1551 is no language-level type. In which case it returns NULL, which
1552 we can see here. */
1553 if (t == NULL_TREE)
1554 return;
1555
1556 type = TYPE_P (t) ? t : TREE_TYPE (t);
1557 if (type == error_mark_node)
1558 return;
1559
1560 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1561 wrong answer, as it assumes that DECL_RTL already has the right alias
1562 info. Callers should not set DECL_RTL until after the call to
1563 set_mem_attributes. */
1564 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1565
1566 /* Get the alias set from the expression or type (perhaps using a
1567 front-end routine) and use it. */
1568 alias = get_alias_set (t);
1569
1570 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1571 MEM_IN_STRUCT_P (ref)
1572 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1573 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1574
1575 /* If we are making an object of this type, or if this is a DECL, we know
1576 that it is a scalar if the type is not an aggregate. */
1577 if ((objectp || DECL_P (t))
1578 && ! AGGREGATE_TYPE_P (type)
1579 && TREE_CODE (type) != COMPLEX_TYPE)
1580 MEM_SCALAR_P (ref) = 1;
1581
1582 /* We can set the alignment from the type if we are making an object,
1583 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1584 if (objectp || TREE_CODE (t) == INDIRECT_REF
1585 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1586 || TYPE_ALIGN_OK (type))
1587 align = MAX (align, TYPE_ALIGN (type));
1588 else
1589 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1590 {
1591 if (integer_zerop (TREE_OPERAND (t, 1)))
1592 /* We don't know anything about the alignment. */
1593 align = BITS_PER_UNIT;
1594 else
1595 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1596 }
1597
1598 /* If the size is known, we can set that. */
1599 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1600 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1601
1602 /* If T is not a type, we may be able to deduce some more information about
1603 the expression. */
1604 if (! TYPE_P (t))
1605 {
1606 tree base;
1607 bool align_computed = false;
1608
1609 if (TREE_THIS_VOLATILE (t))
1610 MEM_VOLATILE_P (ref) = 1;
1611
1612 /* Now remove any conversions: they don't change what the underlying
1613 object is. Likewise for SAVE_EXPR. */
1614 while (CONVERT_EXPR_P (t)
1615 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1616 || TREE_CODE (t) == SAVE_EXPR)
1617 t = TREE_OPERAND (t, 0);
1618
1619 /* We may look through structure-like accesses for the purposes of
1620 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1621 base = t;
1622 while (TREE_CODE (base) == COMPONENT_REF
1623 || TREE_CODE (base) == REALPART_EXPR
1624 || TREE_CODE (base) == IMAGPART_EXPR
1625 || TREE_CODE (base) == BIT_FIELD_REF)
1626 base = TREE_OPERAND (base, 0);
1627
1628 if (DECL_P (base))
1629 {
1630 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1631 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1632 else
1633 MEM_NOTRAP_P (ref) = 1;
1634 }
1635 else
1636 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1637
1638 base = get_base_address (base);
1639 if (base && DECL_P (base)
1640 && TREE_READONLY (base)
1641 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1642 {
1643 tree base_type = TREE_TYPE (base);
1644 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1645 || DECL_ARTIFICIAL (base));
1646 MEM_READONLY_P (ref) = 1;
1647 }
1648
1649 /* If this expression uses it's parent's alias set, mark it such
1650 that we won't change it. */
1651 if (component_uses_parent_alias_set (t))
1652 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1653
1654 /* If this is a decl, set the attributes of the MEM from it. */
1655 if (DECL_P (t))
1656 {
1657 expr = t;
1658 offset = const0_rtx;
1659 apply_bitpos = bitpos;
1660 size = (DECL_SIZE_UNIT (t)
1661 && host_integerp (DECL_SIZE_UNIT (t), 1)
1662 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1663 align = DECL_ALIGN (t);
1664 align_computed = true;
1665 }
1666
1667 /* If this is a constant, we know the alignment. */
1668 else if (CONSTANT_CLASS_P (t))
1669 {
1670 align = TYPE_ALIGN (type);
1671 #ifdef CONSTANT_ALIGNMENT
1672 align = CONSTANT_ALIGNMENT (t, align);
1673 #endif
1674 align_computed = true;
1675 }
1676
1677 /* If this is a field reference and not a bit-field, record it. */
1678 /* ??? There is some information that can be gleaned from bit-fields,
1679 such as the word offset in the structure that might be modified.
1680 But skip it for now. */
1681 else if (TREE_CODE (t) == COMPONENT_REF
1682 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1683 {
1684 expr = t;
1685 offset = const0_rtx;
1686 apply_bitpos = bitpos;
1687 /* ??? Any reason the field size would be different than
1688 the size we got from the type? */
1689 }
1690
1691 /* If this is an array reference, look for an outer field reference. */
1692 else if (TREE_CODE (t) == ARRAY_REF)
1693 {
1694 tree off_tree = size_zero_node;
1695 /* We can't modify t, because we use it at the end of the
1696 function. */
1697 tree t2 = t;
1698
1699 do
1700 {
1701 tree index = TREE_OPERAND (t2, 1);
1702 tree low_bound = array_ref_low_bound (t2);
1703 tree unit_size = array_ref_element_size (t2);
1704
1705 /* We assume all arrays have sizes that are a multiple of a byte.
1706 First subtract the lower bound, if any, in the type of the
1707 index, then convert to sizetype and multiply by the size of
1708 the array element. */
1709 if (! integer_zerop (low_bound))
1710 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1711 index, low_bound);
1712
1713 off_tree = size_binop (PLUS_EXPR,
1714 size_binop (MULT_EXPR,
1715 fold_convert (sizetype,
1716 index),
1717 unit_size),
1718 off_tree);
1719 t2 = TREE_OPERAND (t2, 0);
1720 }
1721 while (TREE_CODE (t2) == ARRAY_REF);
1722
1723 if (DECL_P (t2))
1724 {
1725 expr = t2;
1726 offset = NULL;
1727 if (host_integerp (off_tree, 1))
1728 {
1729 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1730 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1731 align = DECL_ALIGN (t2);
1732 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1733 align = aoff;
1734 align_computed = true;
1735 offset = GEN_INT (ioff);
1736 apply_bitpos = bitpos;
1737 }
1738 }
1739 else if (TREE_CODE (t2) == COMPONENT_REF)
1740 {
1741 expr = t2;
1742 offset = NULL;
1743 if (host_integerp (off_tree, 1))
1744 {
1745 offset = GEN_INT (tree_low_cst (off_tree, 1));
1746 apply_bitpos = bitpos;
1747 }
1748 /* ??? Any reason the field size would be different than
1749 the size we got from the type? */
1750 }
1751 else if (flag_argument_noalias > 1
1752 && (INDIRECT_REF_P (t2))
1753 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1754 {
1755 expr = t2;
1756 offset = NULL;
1757 }
1758 }
1759
1760 /* If this is a Fortran indirect argument reference, record the
1761 parameter decl. */
1762 else if (flag_argument_noalias > 1
1763 && (INDIRECT_REF_P (t))
1764 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1765 {
1766 expr = t;
1767 offset = NULL;
1768 }
1769
1770 if (!align_computed && !INDIRECT_REF_P (t))
1771 {
1772 unsigned int obj_align
1773 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1774 align = MAX (align, obj_align);
1775 }
1776 }
1777
1778 /* If we modified OFFSET based on T, then subtract the outstanding
1779 bit position offset. Similarly, increase the size of the accessed
1780 object to contain the negative offset. */
1781 if (apply_bitpos)
1782 {
1783 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1784 if (size)
1785 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1786 }
1787
1788 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1789 {
1790 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1791 we're overlapping. */
1792 offset = NULL;
1793 expr = NULL;
1794 }
1795
1796 /* Now set the attributes we computed above. */
1797 MEM_ATTRS (ref)
1798 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1799
1800 /* If this is already known to be a scalar or aggregate, we are done. */
1801 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1802 return;
1803
1804 /* If it is a reference into an aggregate, this is part of an aggregate.
1805 Otherwise we don't know. */
1806 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1807 || TREE_CODE (t) == ARRAY_RANGE_REF
1808 || TREE_CODE (t) == BIT_FIELD_REF)
1809 MEM_IN_STRUCT_P (ref) = 1;
1810 }
1811
1812 void
1813 set_mem_attributes (rtx ref, tree t, int objectp)
1814 {
1815 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1816 }
1817
1818 /* Set the alias set of MEM to SET. */
1819
1820 void
1821 set_mem_alias_set (rtx mem, alias_set_type set)
1822 {
1823 #ifdef ENABLE_CHECKING
1824 /* If the new and old alias sets don't conflict, something is wrong. */
1825 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1826 #endif
1827
1828 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1829 MEM_SIZE (mem), MEM_ALIGN (mem),
1830 GET_MODE (mem));
1831 }
1832
1833 /* Set the alignment of MEM to ALIGN bits. */
1834
1835 void
1836 set_mem_align (rtx mem, unsigned int align)
1837 {
1838 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1839 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1840 GET_MODE (mem));
1841 }
1842
1843 /* Set the expr for MEM to EXPR. */
1844
1845 void
1846 set_mem_expr (rtx mem, tree expr)
1847 {
1848 MEM_ATTRS (mem)
1849 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1850 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1851 }
1852
1853 /* Set the offset of MEM to OFFSET. */
1854
1855 void
1856 set_mem_offset (rtx mem, rtx offset)
1857 {
1858 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1859 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1860 GET_MODE (mem));
1861 }
1862
1863 /* Set the size of MEM to SIZE. */
1864
1865 void
1866 set_mem_size (rtx mem, rtx size)
1867 {
1868 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1869 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1870 GET_MODE (mem));
1871 }
1872 \f
1873 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1874 and its address changed to ADDR. (VOIDmode means don't change the mode.
1875 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1876 returned memory location is required to be valid. The memory
1877 attributes are not changed. */
1878
1879 static rtx
1880 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1881 {
1882 rtx new_rtx;
1883
1884 gcc_assert (MEM_P (memref));
1885 if (mode == VOIDmode)
1886 mode = GET_MODE (memref);
1887 if (addr == 0)
1888 addr = XEXP (memref, 0);
1889 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1890 && (!validate || memory_address_p (mode, addr)))
1891 return memref;
1892
1893 if (validate)
1894 {
1895 if (reload_in_progress || reload_completed)
1896 gcc_assert (memory_address_p (mode, addr));
1897 else
1898 addr = memory_address (mode, addr);
1899 }
1900
1901 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1902 return memref;
1903
1904 new_rtx = gen_rtx_MEM (mode, addr);
1905 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1906 return new_rtx;
1907 }
1908
1909 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1910 way we are changing MEMREF, so we only preserve the alias set. */
1911
1912 rtx
1913 change_address (rtx memref, enum machine_mode mode, rtx addr)
1914 {
1915 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1916 enum machine_mode mmode = GET_MODE (new_rtx);
1917 unsigned int align;
1918
1919 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1920 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1921
1922 /* If there are no changes, just return the original memory reference. */
1923 if (new_rtx == memref)
1924 {
1925 if (MEM_ATTRS (memref) == 0
1926 || (MEM_EXPR (memref) == NULL
1927 && MEM_OFFSET (memref) == NULL
1928 && MEM_SIZE (memref) == size
1929 && MEM_ALIGN (memref) == align))
1930 return new_rtx;
1931
1932 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1933 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1934 }
1935
1936 MEM_ATTRS (new_rtx)
1937 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1938
1939 return new_rtx;
1940 }
1941
1942 /* Return a memory reference like MEMREF, but with its mode changed
1943 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1944 nonzero, the memory address is forced to be valid.
1945 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1946 and caller is responsible for adjusting MEMREF base register. */
1947
1948 rtx
1949 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1950 int validate, int adjust)
1951 {
1952 rtx addr = XEXP (memref, 0);
1953 rtx new_rtx;
1954 rtx memoffset = MEM_OFFSET (memref);
1955 rtx size = 0;
1956 unsigned int memalign = MEM_ALIGN (memref);
1957 int pbits;
1958
1959 /* If there are no changes, just return the original memory reference. */
1960 if (mode == GET_MODE (memref) && !offset
1961 && (!validate || memory_address_p (mode, addr)))
1962 return memref;
1963
1964 /* ??? Prefer to create garbage instead of creating shared rtl.
1965 This may happen even if offset is nonzero -- consider
1966 (plus (plus reg reg) const_int) -- so do this always. */
1967 addr = copy_rtx (addr);
1968
1969 /* Convert a possibly large offset to a signed value within the
1970 range of the target address space. */
1971 pbits = GET_MODE_BITSIZE (Pmode);
1972 if (HOST_BITS_PER_WIDE_INT > pbits)
1973 {
1974 int shift = HOST_BITS_PER_WIDE_INT - pbits;
1975 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
1976 >> shift);
1977 }
1978
1979 if (adjust)
1980 {
1981 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1982 object, we can merge it into the LO_SUM. */
1983 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1984 && offset >= 0
1985 && (unsigned HOST_WIDE_INT) offset
1986 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1987 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1988 plus_constant (XEXP (addr, 1), offset));
1989 else
1990 addr = plus_constant (addr, offset);
1991 }
1992
1993 new_rtx = change_address_1 (memref, mode, addr, validate);
1994
1995 /* If the address is a REG, change_address_1 rightfully returns memref,
1996 but this would destroy memref's MEM_ATTRS. */
1997 if (new_rtx == memref && offset != 0)
1998 new_rtx = copy_rtx (new_rtx);
1999
2000 /* Compute the new values of the memory attributes due to this adjustment.
2001 We add the offsets and update the alignment. */
2002 if (memoffset)
2003 memoffset = GEN_INT (offset + INTVAL (memoffset));
2004
2005 /* Compute the new alignment by taking the MIN of the alignment and the
2006 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2007 if zero. */
2008 if (offset != 0)
2009 memalign
2010 = MIN (memalign,
2011 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2012
2013 /* We can compute the size in a number of ways. */
2014 if (GET_MODE (new_rtx) != BLKmode)
2015 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2016 else if (MEM_SIZE (memref))
2017 size = plus_constant (MEM_SIZE (memref), -offset);
2018
2019 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2020 memoffset, size, memalign, GET_MODE (new_rtx));
2021
2022 /* At some point, we should validate that this offset is within the object,
2023 if all the appropriate values are known. */
2024 return new_rtx;
2025 }
2026
2027 /* Return a memory reference like MEMREF, but with its mode changed
2028 to MODE and its address changed to ADDR, which is assumed to be
2029 MEMREF offset by OFFSET bytes. If VALIDATE is
2030 nonzero, the memory address is forced to be valid. */
2031
2032 rtx
2033 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2034 HOST_WIDE_INT offset, int validate)
2035 {
2036 memref = change_address_1 (memref, VOIDmode, addr, validate);
2037 return adjust_address_1 (memref, mode, offset, validate, 0);
2038 }
2039
2040 /* Return a memory reference like MEMREF, but whose address is changed by
2041 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2042 known to be in OFFSET (possibly 1). */
2043
2044 rtx
2045 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2046 {
2047 rtx new_rtx, addr = XEXP (memref, 0);
2048
2049 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2050
2051 /* At this point we don't know _why_ the address is invalid. It
2052 could have secondary memory references, multiplies or anything.
2053
2054 However, if we did go and rearrange things, we can wind up not
2055 being able to recognize the magic around pic_offset_table_rtx.
2056 This stuff is fragile, and is yet another example of why it is
2057 bad to expose PIC machinery too early. */
2058 if (! memory_address_p (GET_MODE (memref), new_rtx)
2059 && GET_CODE (addr) == PLUS
2060 && XEXP (addr, 0) == pic_offset_table_rtx)
2061 {
2062 addr = force_reg (GET_MODE (addr), addr);
2063 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2064 }
2065
2066 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2067 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2068
2069 /* If there are no changes, just return the original memory reference. */
2070 if (new_rtx == memref)
2071 return new_rtx;
2072
2073 /* Update the alignment to reflect the offset. Reset the offset, which
2074 we don't know. */
2075 MEM_ATTRS (new_rtx)
2076 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2077 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2078 GET_MODE (new_rtx));
2079 return new_rtx;
2080 }
2081
2082 /* Return a memory reference like MEMREF, but with its address changed to
2083 ADDR. The caller is asserting that the actual piece of memory pointed
2084 to is the same, just the form of the address is being changed, such as
2085 by putting something into a register. */
2086
2087 rtx
2088 replace_equiv_address (rtx memref, rtx addr)
2089 {
2090 /* change_address_1 copies the memory attribute structure without change
2091 and that's exactly what we want here. */
2092 update_temp_slot_address (XEXP (memref, 0), addr);
2093 return change_address_1 (memref, VOIDmode, addr, 1);
2094 }
2095
2096 /* Likewise, but the reference is not required to be valid. */
2097
2098 rtx
2099 replace_equiv_address_nv (rtx memref, rtx addr)
2100 {
2101 return change_address_1 (memref, VOIDmode, addr, 0);
2102 }
2103
2104 /* Return a memory reference like MEMREF, but with its mode widened to
2105 MODE and offset by OFFSET. This would be used by targets that e.g.
2106 cannot issue QImode memory operations and have to use SImode memory
2107 operations plus masking logic. */
2108
2109 rtx
2110 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2111 {
2112 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2113 tree expr = MEM_EXPR (new_rtx);
2114 rtx memoffset = MEM_OFFSET (new_rtx);
2115 unsigned int size = GET_MODE_SIZE (mode);
2116
2117 /* If there are no changes, just return the original memory reference. */
2118 if (new_rtx == memref)
2119 return new_rtx;
2120
2121 /* If we don't know what offset we were at within the expression, then
2122 we can't know if we've overstepped the bounds. */
2123 if (! memoffset)
2124 expr = NULL_TREE;
2125
2126 while (expr)
2127 {
2128 if (TREE_CODE (expr) == COMPONENT_REF)
2129 {
2130 tree field = TREE_OPERAND (expr, 1);
2131 tree offset = component_ref_field_offset (expr);
2132
2133 if (! DECL_SIZE_UNIT (field))
2134 {
2135 expr = NULL_TREE;
2136 break;
2137 }
2138
2139 /* Is the field at least as large as the access? If so, ok,
2140 otherwise strip back to the containing structure. */
2141 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2142 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2143 && INTVAL (memoffset) >= 0)
2144 break;
2145
2146 if (! host_integerp (offset, 1))
2147 {
2148 expr = NULL_TREE;
2149 break;
2150 }
2151
2152 expr = TREE_OPERAND (expr, 0);
2153 memoffset
2154 = (GEN_INT (INTVAL (memoffset)
2155 + tree_low_cst (offset, 1)
2156 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2157 / BITS_PER_UNIT)));
2158 }
2159 /* Similarly for the decl. */
2160 else if (DECL_P (expr)
2161 && DECL_SIZE_UNIT (expr)
2162 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2163 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2164 && (! memoffset || INTVAL (memoffset) >= 0))
2165 break;
2166 else
2167 {
2168 /* The widened memory access overflows the expression, which means
2169 that it could alias another expression. Zap it. */
2170 expr = NULL_TREE;
2171 break;
2172 }
2173 }
2174
2175 if (! expr)
2176 memoffset = NULL_RTX;
2177
2178 /* The widened memory may alias other stuff, so zap the alias set. */
2179 /* ??? Maybe use get_alias_set on any remaining expression. */
2180
2181 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2182 MEM_ALIGN (new_rtx), mode);
2183
2184 return new_rtx;
2185 }
2186 \f
2187 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2188 static GTY(()) tree spill_slot_decl;
2189
2190 tree
2191 get_spill_slot_decl (bool force_build_p)
2192 {
2193 tree d = spill_slot_decl;
2194 rtx rd;
2195
2196 if (d || !force_build_p)
2197 return d;
2198
2199 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2200 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2201 DECL_ARTIFICIAL (d) = 1;
2202 DECL_IGNORED_P (d) = 1;
2203 TREE_USED (d) = 1;
2204 TREE_THIS_NOTRAP (d) = 1;
2205 spill_slot_decl = d;
2206
2207 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2208 MEM_NOTRAP_P (rd) = 1;
2209 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2210 NULL_RTX, 0, BLKmode);
2211 SET_DECL_RTL (d, rd);
2212
2213 return d;
2214 }
2215
2216 /* Given MEM, a result from assign_stack_local, fill in the memory
2217 attributes as appropriate for a register allocator spill slot.
2218 These slots are not aliasable by other memory. We arrange for
2219 them all to use a single MEM_EXPR, so that the aliasing code can
2220 work properly in the case of shared spill slots. */
2221
2222 void
2223 set_mem_attrs_for_spill (rtx mem)
2224 {
2225 alias_set_type alias;
2226 rtx addr, offset;
2227 tree expr;
2228
2229 expr = get_spill_slot_decl (true);
2230 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2231
2232 /* We expect the incoming memory to be of the form:
2233 (mem:MODE (plus (reg sfp) (const_int offset)))
2234 with perhaps the plus missing for offset = 0. */
2235 addr = XEXP (mem, 0);
2236 offset = const0_rtx;
2237 if (GET_CODE (addr) == PLUS
2238 && CONST_INT_P (XEXP (addr, 1)))
2239 offset = XEXP (addr, 1);
2240
2241 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2242 MEM_SIZE (mem), MEM_ALIGN (mem),
2243 GET_MODE (mem));
2244 MEM_NOTRAP_P (mem) = 1;
2245 }
2246 \f
2247 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2248
2249 rtx
2250 gen_label_rtx (void)
2251 {
2252 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2253 NULL, label_num++, NULL);
2254 }
2255 \f
2256 /* For procedure integration. */
2257
2258 /* Install new pointers to the first and last insns in the chain.
2259 Also, set cur_insn_uid to one higher than the last in use.
2260 Used for an inline-procedure after copying the insn chain. */
2261
2262 void
2263 set_new_first_and_last_insn (rtx first, rtx last)
2264 {
2265 rtx insn;
2266
2267 first_insn = first;
2268 last_insn = last;
2269 cur_insn_uid = 0;
2270
2271 for (insn = first; insn; insn = NEXT_INSN (insn))
2272 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2273
2274 cur_insn_uid++;
2275 }
2276 \f
2277 /* Go through all the RTL insn bodies and copy any invalid shared
2278 structure. This routine should only be called once. */
2279
2280 static void
2281 unshare_all_rtl_1 (rtx insn)
2282 {
2283 /* Unshare just about everything else. */
2284 unshare_all_rtl_in_chain (insn);
2285
2286 /* Make sure the addresses of stack slots found outside the insn chain
2287 (such as, in DECL_RTL of a variable) are not shared
2288 with the insn chain.
2289
2290 This special care is necessary when the stack slot MEM does not
2291 actually appear in the insn chain. If it does appear, its address
2292 is unshared from all else at that point. */
2293 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2294 }
2295
2296 /* Go through all the RTL insn bodies and copy any invalid shared
2297 structure, again. This is a fairly expensive thing to do so it
2298 should be done sparingly. */
2299
2300 void
2301 unshare_all_rtl_again (rtx insn)
2302 {
2303 rtx p;
2304 tree decl;
2305
2306 for (p = insn; p; p = NEXT_INSN (p))
2307 if (INSN_P (p))
2308 {
2309 reset_used_flags (PATTERN (p));
2310 reset_used_flags (REG_NOTES (p));
2311 }
2312
2313 /* Make sure that virtual stack slots are not shared. */
2314 set_used_decls (DECL_INITIAL (cfun->decl));
2315
2316 /* Make sure that virtual parameters are not shared. */
2317 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2318 set_used_flags (DECL_RTL (decl));
2319
2320 reset_used_flags (stack_slot_list);
2321
2322 unshare_all_rtl_1 (insn);
2323 }
2324
2325 unsigned int
2326 unshare_all_rtl (void)
2327 {
2328 unshare_all_rtl_1 (get_insns ());
2329 return 0;
2330 }
2331
2332 struct rtl_opt_pass pass_unshare_all_rtl =
2333 {
2334 {
2335 RTL_PASS,
2336 "unshare", /* name */
2337 NULL, /* gate */
2338 unshare_all_rtl, /* execute */
2339 NULL, /* sub */
2340 NULL, /* next */
2341 0, /* static_pass_number */
2342 TV_NONE, /* tv_id */
2343 0, /* properties_required */
2344 0, /* properties_provided */
2345 0, /* properties_destroyed */
2346 0, /* todo_flags_start */
2347 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2348 }
2349 };
2350
2351
2352 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2353 Recursively does the same for subexpressions. */
2354
2355 static void
2356 verify_rtx_sharing (rtx orig, rtx insn)
2357 {
2358 rtx x = orig;
2359 int i;
2360 enum rtx_code code;
2361 const char *format_ptr;
2362
2363 if (x == 0)
2364 return;
2365
2366 code = GET_CODE (x);
2367
2368 /* These types may be freely shared. */
2369
2370 switch (code)
2371 {
2372 case REG:
2373 case CONST_INT:
2374 case CONST_DOUBLE:
2375 case CONST_FIXED:
2376 case CONST_VECTOR:
2377 case SYMBOL_REF:
2378 case LABEL_REF:
2379 case CODE_LABEL:
2380 case PC:
2381 case CC0:
2382 case SCRATCH:
2383 return;
2384 /* SCRATCH must be shared because they represent distinct values. */
2385 case CLOBBER:
2386 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2387 return;
2388 break;
2389
2390 case CONST:
2391 if (shared_const_p (orig))
2392 return;
2393 break;
2394
2395 case MEM:
2396 /* A MEM is allowed to be shared if its address is constant. */
2397 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2398 || reload_completed || reload_in_progress)
2399 return;
2400
2401 break;
2402
2403 default:
2404 break;
2405 }
2406
2407 /* This rtx may not be shared. If it has already been seen,
2408 replace it with a copy of itself. */
2409 #ifdef ENABLE_CHECKING
2410 if (RTX_FLAG (x, used))
2411 {
2412 error ("invalid rtl sharing found in the insn");
2413 debug_rtx (insn);
2414 error ("shared rtx");
2415 debug_rtx (x);
2416 internal_error ("internal consistency failure");
2417 }
2418 #endif
2419 gcc_assert (!RTX_FLAG (x, used));
2420
2421 RTX_FLAG (x, used) = 1;
2422
2423 /* Now scan the subexpressions recursively. */
2424
2425 format_ptr = GET_RTX_FORMAT (code);
2426
2427 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2428 {
2429 switch (*format_ptr++)
2430 {
2431 case 'e':
2432 verify_rtx_sharing (XEXP (x, i), insn);
2433 break;
2434
2435 case 'E':
2436 if (XVEC (x, i) != NULL)
2437 {
2438 int j;
2439 int len = XVECLEN (x, i);
2440
2441 for (j = 0; j < len; j++)
2442 {
2443 /* We allow sharing of ASM_OPERANDS inside single
2444 instruction. */
2445 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2446 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2447 == ASM_OPERANDS))
2448 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2449 else
2450 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2451 }
2452 }
2453 break;
2454 }
2455 }
2456 return;
2457 }
2458
2459 /* Go through all the RTL insn bodies and check that there is no unexpected
2460 sharing in between the subexpressions. */
2461
2462 void
2463 verify_rtl_sharing (void)
2464 {
2465 rtx p;
2466
2467 for (p = get_insns (); p; p = NEXT_INSN (p))
2468 if (INSN_P (p))
2469 {
2470 reset_used_flags (PATTERN (p));
2471 reset_used_flags (REG_NOTES (p));
2472 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2473 {
2474 int i;
2475 rtx q, sequence = PATTERN (p);
2476
2477 for (i = 0; i < XVECLEN (sequence, 0); i++)
2478 {
2479 q = XVECEXP (sequence, 0, i);
2480 gcc_assert (INSN_P (q));
2481 reset_used_flags (PATTERN (q));
2482 reset_used_flags (REG_NOTES (q));
2483 }
2484 }
2485 }
2486
2487 for (p = get_insns (); p; p = NEXT_INSN (p))
2488 if (INSN_P (p))
2489 {
2490 verify_rtx_sharing (PATTERN (p), p);
2491 verify_rtx_sharing (REG_NOTES (p), p);
2492 }
2493 }
2494
2495 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2496 Assumes the mark bits are cleared at entry. */
2497
2498 void
2499 unshare_all_rtl_in_chain (rtx insn)
2500 {
2501 for (; insn; insn = NEXT_INSN (insn))
2502 if (INSN_P (insn))
2503 {
2504 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2505 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2506 }
2507 }
2508
2509 /* Go through all virtual stack slots of a function and mark them as
2510 shared. We never replace the DECL_RTLs themselves with a copy,
2511 but expressions mentioned into a DECL_RTL cannot be shared with
2512 expressions in the instruction stream.
2513
2514 Note that reload may convert pseudo registers into memories in-place.
2515 Pseudo registers are always shared, but MEMs never are. Thus if we
2516 reset the used flags on MEMs in the instruction stream, we must set
2517 them again on MEMs that appear in DECL_RTLs. */
2518
2519 static void
2520 set_used_decls (tree blk)
2521 {
2522 tree t;
2523
2524 /* Mark decls. */
2525 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2526 if (DECL_RTL_SET_P (t))
2527 set_used_flags (DECL_RTL (t));
2528
2529 /* Now process sub-blocks. */
2530 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2531 set_used_decls (t);
2532 }
2533
2534 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2535 Recursively does the same for subexpressions. Uses
2536 copy_rtx_if_shared_1 to reduce stack space. */
2537
2538 rtx
2539 copy_rtx_if_shared (rtx orig)
2540 {
2541 copy_rtx_if_shared_1 (&orig);
2542 return orig;
2543 }
2544
2545 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2546 use. Recursively does the same for subexpressions. */
2547
2548 static void
2549 copy_rtx_if_shared_1 (rtx *orig1)
2550 {
2551 rtx x;
2552 int i;
2553 enum rtx_code code;
2554 rtx *last_ptr;
2555 const char *format_ptr;
2556 int copied = 0;
2557 int length;
2558
2559 /* Repeat is used to turn tail-recursion into iteration. */
2560 repeat:
2561 x = *orig1;
2562
2563 if (x == 0)
2564 return;
2565
2566 code = GET_CODE (x);
2567
2568 /* These types may be freely shared. */
2569
2570 switch (code)
2571 {
2572 case REG:
2573 case CONST_INT:
2574 case CONST_DOUBLE:
2575 case CONST_FIXED:
2576 case CONST_VECTOR:
2577 case SYMBOL_REF:
2578 case LABEL_REF:
2579 case CODE_LABEL:
2580 case PC:
2581 case CC0:
2582 case SCRATCH:
2583 /* SCRATCH must be shared because they represent distinct values. */
2584 return;
2585 case CLOBBER:
2586 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2587 return;
2588 break;
2589
2590 case CONST:
2591 if (shared_const_p (x))
2592 return;
2593 break;
2594
2595 case INSN:
2596 case JUMP_INSN:
2597 case CALL_INSN:
2598 case NOTE:
2599 case BARRIER:
2600 /* The chain of insns is not being copied. */
2601 return;
2602
2603 default:
2604 break;
2605 }
2606
2607 /* This rtx may not be shared. If it has already been seen,
2608 replace it with a copy of itself. */
2609
2610 if (RTX_FLAG (x, used))
2611 {
2612 x = shallow_copy_rtx (x);
2613 copied = 1;
2614 }
2615 RTX_FLAG (x, used) = 1;
2616
2617 /* Now scan the subexpressions recursively.
2618 We can store any replaced subexpressions directly into X
2619 since we know X is not shared! Any vectors in X
2620 must be copied if X was copied. */
2621
2622 format_ptr = GET_RTX_FORMAT (code);
2623 length = GET_RTX_LENGTH (code);
2624 last_ptr = NULL;
2625
2626 for (i = 0; i < length; i++)
2627 {
2628 switch (*format_ptr++)
2629 {
2630 case 'e':
2631 if (last_ptr)
2632 copy_rtx_if_shared_1 (last_ptr);
2633 last_ptr = &XEXP (x, i);
2634 break;
2635
2636 case 'E':
2637 if (XVEC (x, i) != NULL)
2638 {
2639 int j;
2640 int len = XVECLEN (x, i);
2641
2642 /* Copy the vector iff I copied the rtx and the length
2643 is nonzero. */
2644 if (copied && len > 0)
2645 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2646
2647 /* Call recursively on all inside the vector. */
2648 for (j = 0; j < len; j++)
2649 {
2650 if (last_ptr)
2651 copy_rtx_if_shared_1 (last_ptr);
2652 last_ptr = &XVECEXP (x, i, j);
2653 }
2654 }
2655 break;
2656 }
2657 }
2658 *orig1 = x;
2659 if (last_ptr)
2660 {
2661 orig1 = last_ptr;
2662 goto repeat;
2663 }
2664 return;
2665 }
2666
2667 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2668 to look for shared sub-parts. */
2669
2670 void
2671 reset_used_flags (rtx x)
2672 {
2673 int i, j;
2674 enum rtx_code code;
2675 const char *format_ptr;
2676 int length;
2677
2678 /* Repeat is used to turn tail-recursion into iteration. */
2679 repeat:
2680 if (x == 0)
2681 return;
2682
2683 code = GET_CODE (x);
2684
2685 /* These types may be freely shared so we needn't do any resetting
2686 for them. */
2687
2688 switch (code)
2689 {
2690 case REG:
2691 case CONST_INT:
2692 case CONST_DOUBLE:
2693 case CONST_FIXED:
2694 case CONST_VECTOR:
2695 case SYMBOL_REF:
2696 case CODE_LABEL:
2697 case PC:
2698 case CC0:
2699 return;
2700
2701 case INSN:
2702 case JUMP_INSN:
2703 case CALL_INSN:
2704 case NOTE:
2705 case LABEL_REF:
2706 case BARRIER:
2707 /* The chain of insns is not being copied. */
2708 return;
2709
2710 default:
2711 break;
2712 }
2713
2714 RTX_FLAG (x, used) = 0;
2715
2716 format_ptr = GET_RTX_FORMAT (code);
2717 length = GET_RTX_LENGTH (code);
2718
2719 for (i = 0; i < length; i++)
2720 {
2721 switch (*format_ptr++)
2722 {
2723 case 'e':
2724 if (i == length-1)
2725 {
2726 x = XEXP (x, i);
2727 goto repeat;
2728 }
2729 reset_used_flags (XEXP (x, i));
2730 break;
2731
2732 case 'E':
2733 for (j = 0; j < XVECLEN (x, i); j++)
2734 reset_used_flags (XVECEXP (x, i, j));
2735 break;
2736 }
2737 }
2738 }
2739
2740 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2741 to look for shared sub-parts. */
2742
2743 void
2744 set_used_flags (rtx x)
2745 {
2746 int i, j;
2747 enum rtx_code code;
2748 const char *format_ptr;
2749
2750 if (x == 0)
2751 return;
2752
2753 code = GET_CODE (x);
2754
2755 /* These types may be freely shared so we needn't do any resetting
2756 for them. */
2757
2758 switch (code)
2759 {
2760 case REG:
2761 case CONST_INT:
2762 case CONST_DOUBLE:
2763 case CONST_FIXED:
2764 case CONST_VECTOR:
2765 case SYMBOL_REF:
2766 case CODE_LABEL:
2767 case PC:
2768 case CC0:
2769 return;
2770
2771 case INSN:
2772 case JUMP_INSN:
2773 case CALL_INSN:
2774 case NOTE:
2775 case LABEL_REF:
2776 case BARRIER:
2777 /* The chain of insns is not being copied. */
2778 return;
2779
2780 default:
2781 break;
2782 }
2783
2784 RTX_FLAG (x, used) = 1;
2785
2786 format_ptr = GET_RTX_FORMAT (code);
2787 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2788 {
2789 switch (*format_ptr++)
2790 {
2791 case 'e':
2792 set_used_flags (XEXP (x, i));
2793 break;
2794
2795 case 'E':
2796 for (j = 0; j < XVECLEN (x, i); j++)
2797 set_used_flags (XVECEXP (x, i, j));
2798 break;
2799 }
2800 }
2801 }
2802 \f
2803 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2804 Return X or the rtx for the pseudo reg the value of X was copied into.
2805 OTHER must be valid as a SET_DEST. */
2806
2807 rtx
2808 make_safe_from (rtx x, rtx other)
2809 {
2810 while (1)
2811 switch (GET_CODE (other))
2812 {
2813 case SUBREG:
2814 other = SUBREG_REG (other);
2815 break;
2816 case STRICT_LOW_PART:
2817 case SIGN_EXTEND:
2818 case ZERO_EXTEND:
2819 other = XEXP (other, 0);
2820 break;
2821 default:
2822 goto done;
2823 }
2824 done:
2825 if ((MEM_P (other)
2826 && ! CONSTANT_P (x)
2827 && !REG_P (x)
2828 && GET_CODE (x) != SUBREG)
2829 || (REG_P (other)
2830 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2831 || reg_mentioned_p (other, x))))
2832 {
2833 rtx temp = gen_reg_rtx (GET_MODE (x));
2834 emit_move_insn (temp, x);
2835 return temp;
2836 }
2837 return x;
2838 }
2839 \f
2840 /* Emission of insns (adding them to the doubly-linked list). */
2841
2842 /* Return the first insn of the current sequence or current function. */
2843
2844 rtx
2845 get_insns (void)
2846 {
2847 return first_insn;
2848 }
2849
2850 /* Specify a new insn as the first in the chain. */
2851
2852 void
2853 set_first_insn (rtx insn)
2854 {
2855 gcc_assert (!PREV_INSN (insn));
2856 first_insn = insn;
2857 }
2858
2859 /* Return the last insn emitted in current sequence or current function. */
2860
2861 rtx
2862 get_last_insn (void)
2863 {
2864 return last_insn;
2865 }
2866
2867 /* Specify a new insn as the last in the chain. */
2868
2869 void
2870 set_last_insn (rtx insn)
2871 {
2872 gcc_assert (!NEXT_INSN (insn));
2873 last_insn = insn;
2874 }
2875
2876 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2877
2878 rtx
2879 get_last_insn_anywhere (void)
2880 {
2881 struct sequence_stack *stack;
2882 if (last_insn)
2883 return last_insn;
2884 for (stack = seq_stack; stack; stack = stack->next)
2885 if (stack->last != 0)
2886 return stack->last;
2887 return 0;
2888 }
2889
2890 /* Return the first nonnote insn emitted in current sequence or current
2891 function. This routine looks inside SEQUENCEs. */
2892
2893 rtx
2894 get_first_nonnote_insn (void)
2895 {
2896 rtx insn = first_insn;
2897
2898 if (insn)
2899 {
2900 if (NOTE_P (insn))
2901 for (insn = next_insn (insn);
2902 insn && NOTE_P (insn);
2903 insn = next_insn (insn))
2904 continue;
2905 else
2906 {
2907 if (NONJUMP_INSN_P (insn)
2908 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2909 insn = XVECEXP (PATTERN (insn), 0, 0);
2910 }
2911 }
2912
2913 return insn;
2914 }
2915
2916 /* Return the last nonnote insn emitted in current sequence or current
2917 function. This routine looks inside SEQUENCEs. */
2918
2919 rtx
2920 get_last_nonnote_insn (void)
2921 {
2922 rtx insn = last_insn;
2923
2924 if (insn)
2925 {
2926 if (NOTE_P (insn))
2927 for (insn = previous_insn (insn);
2928 insn && NOTE_P (insn);
2929 insn = previous_insn (insn))
2930 continue;
2931 else
2932 {
2933 if (NONJUMP_INSN_P (insn)
2934 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2935 insn = XVECEXP (PATTERN (insn), 0,
2936 XVECLEN (PATTERN (insn), 0) - 1);
2937 }
2938 }
2939
2940 return insn;
2941 }
2942
2943 /* Return a number larger than any instruction's uid in this function. */
2944
2945 int
2946 get_max_uid (void)
2947 {
2948 return cur_insn_uid;
2949 }
2950 \f
2951 /* Return the next insn. If it is a SEQUENCE, return the first insn
2952 of the sequence. */
2953
2954 rtx
2955 next_insn (rtx insn)
2956 {
2957 if (insn)
2958 {
2959 insn = NEXT_INSN (insn);
2960 if (insn && NONJUMP_INSN_P (insn)
2961 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2962 insn = XVECEXP (PATTERN (insn), 0, 0);
2963 }
2964
2965 return insn;
2966 }
2967
2968 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2969 of the sequence. */
2970
2971 rtx
2972 previous_insn (rtx insn)
2973 {
2974 if (insn)
2975 {
2976 insn = PREV_INSN (insn);
2977 if (insn && NONJUMP_INSN_P (insn)
2978 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2979 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2980 }
2981
2982 return insn;
2983 }
2984
2985 /* Return the next insn after INSN that is not a NOTE. This routine does not
2986 look inside SEQUENCEs. */
2987
2988 rtx
2989 next_nonnote_insn (rtx insn)
2990 {
2991 while (insn)
2992 {
2993 insn = NEXT_INSN (insn);
2994 if (insn == 0 || !NOTE_P (insn))
2995 break;
2996 }
2997
2998 return insn;
2999 }
3000
3001 /* Return the previous insn before INSN that is not a NOTE. This routine does
3002 not look inside SEQUENCEs. */
3003
3004 rtx
3005 prev_nonnote_insn (rtx insn)
3006 {
3007 while (insn)
3008 {
3009 insn = PREV_INSN (insn);
3010 if (insn == 0 || !NOTE_P (insn))
3011 break;
3012 }
3013
3014 return insn;
3015 }
3016
3017 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3018 or 0, if there is none. This routine does not look inside
3019 SEQUENCEs. */
3020
3021 rtx
3022 next_real_insn (rtx insn)
3023 {
3024 while (insn)
3025 {
3026 insn = NEXT_INSN (insn);
3027 if (insn == 0 || INSN_P (insn))
3028 break;
3029 }
3030
3031 return insn;
3032 }
3033
3034 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3035 or 0, if there is none. This routine does not look inside
3036 SEQUENCEs. */
3037
3038 rtx
3039 prev_real_insn (rtx insn)
3040 {
3041 while (insn)
3042 {
3043 insn = PREV_INSN (insn);
3044 if (insn == 0 || INSN_P (insn))
3045 break;
3046 }
3047
3048 return insn;
3049 }
3050
3051 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3052 This routine does not look inside SEQUENCEs. */
3053
3054 rtx
3055 last_call_insn (void)
3056 {
3057 rtx insn;
3058
3059 for (insn = get_last_insn ();
3060 insn && !CALL_P (insn);
3061 insn = PREV_INSN (insn))
3062 ;
3063
3064 return insn;
3065 }
3066
3067 /* Find the next insn after INSN that really does something. This routine
3068 does not look inside SEQUENCEs. Until reload has completed, this is the
3069 same as next_real_insn. */
3070
3071 int
3072 active_insn_p (const_rtx insn)
3073 {
3074 return (CALL_P (insn) || JUMP_P (insn)
3075 || (NONJUMP_INSN_P (insn)
3076 && (! reload_completed
3077 || (GET_CODE (PATTERN (insn)) != USE
3078 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3079 }
3080
3081 rtx
3082 next_active_insn (rtx insn)
3083 {
3084 while (insn)
3085 {
3086 insn = NEXT_INSN (insn);
3087 if (insn == 0 || active_insn_p (insn))
3088 break;
3089 }
3090
3091 return insn;
3092 }
3093
3094 /* Find the last insn before INSN that really does something. This routine
3095 does not look inside SEQUENCEs. Until reload has completed, this is the
3096 same as prev_real_insn. */
3097
3098 rtx
3099 prev_active_insn (rtx insn)
3100 {
3101 while (insn)
3102 {
3103 insn = PREV_INSN (insn);
3104 if (insn == 0 || active_insn_p (insn))
3105 break;
3106 }
3107
3108 return insn;
3109 }
3110
3111 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3112
3113 rtx
3114 next_label (rtx insn)
3115 {
3116 while (insn)
3117 {
3118 insn = NEXT_INSN (insn);
3119 if (insn == 0 || LABEL_P (insn))
3120 break;
3121 }
3122
3123 return insn;
3124 }
3125
3126 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3127
3128 rtx
3129 prev_label (rtx insn)
3130 {
3131 while (insn)
3132 {
3133 insn = PREV_INSN (insn);
3134 if (insn == 0 || LABEL_P (insn))
3135 break;
3136 }
3137
3138 return insn;
3139 }
3140
3141 /* Return the last label to mark the same position as LABEL. Return null
3142 if LABEL itself is null. */
3143
3144 rtx
3145 skip_consecutive_labels (rtx label)
3146 {
3147 rtx insn;
3148
3149 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3150 if (LABEL_P (insn))
3151 label = insn;
3152
3153 return label;
3154 }
3155 \f
3156 #ifdef HAVE_cc0
3157 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3158 and REG_CC_USER notes so we can find it. */
3159
3160 void
3161 link_cc0_insns (rtx insn)
3162 {
3163 rtx user = next_nonnote_insn (insn);
3164
3165 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3166 user = XVECEXP (PATTERN (user), 0, 0);
3167
3168 add_reg_note (user, REG_CC_SETTER, insn);
3169 add_reg_note (insn, REG_CC_USER, user);
3170 }
3171
3172 /* Return the next insn that uses CC0 after INSN, which is assumed to
3173 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3174 applied to the result of this function should yield INSN).
3175
3176 Normally, this is simply the next insn. However, if a REG_CC_USER note
3177 is present, it contains the insn that uses CC0.
3178
3179 Return 0 if we can't find the insn. */
3180
3181 rtx
3182 next_cc0_user (rtx insn)
3183 {
3184 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3185
3186 if (note)
3187 return XEXP (note, 0);
3188
3189 insn = next_nonnote_insn (insn);
3190 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3191 insn = XVECEXP (PATTERN (insn), 0, 0);
3192
3193 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3194 return insn;
3195
3196 return 0;
3197 }
3198
3199 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3200 note, it is the previous insn. */
3201
3202 rtx
3203 prev_cc0_setter (rtx insn)
3204 {
3205 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3206
3207 if (note)
3208 return XEXP (note, 0);
3209
3210 insn = prev_nonnote_insn (insn);
3211 gcc_assert (sets_cc0_p (PATTERN (insn)));
3212
3213 return insn;
3214 }
3215 #endif
3216
3217 #ifdef AUTO_INC_DEC
3218 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3219
3220 static int
3221 find_auto_inc (rtx *xp, void *data)
3222 {
3223 rtx x = *xp;
3224 rtx reg = (rtx) data;
3225
3226 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3227 return 0;
3228
3229 switch (GET_CODE (x))
3230 {
3231 case PRE_DEC:
3232 case PRE_INC:
3233 case POST_DEC:
3234 case POST_INC:
3235 case PRE_MODIFY:
3236 case POST_MODIFY:
3237 if (rtx_equal_p (reg, XEXP (x, 0)))
3238 return 1;
3239 break;
3240
3241 default:
3242 gcc_unreachable ();
3243 }
3244 return -1;
3245 }
3246 #endif
3247
3248 /* Increment the label uses for all labels present in rtx. */
3249
3250 static void
3251 mark_label_nuses (rtx x)
3252 {
3253 enum rtx_code code;
3254 int i, j;
3255 const char *fmt;
3256
3257 code = GET_CODE (x);
3258 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3259 LABEL_NUSES (XEXP (x, 0))++;
3260
3261 fmt = GET_RTX_FORMAT (code);
3262 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3263 {
3264 if (fmt[i] == 'e')
3265 mark_label_nuses (XEXP (x, i));
3266 else if (fmt[i] == 'E')
3267 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3268 mark_label_nuses (XVECEXP (x, i, j));
3269 }
3270 }
3271
3272 \f
3273 /* Try splitting insns that can be split for better scheduling.
3274 PAT is the pattern which might split.
3275 TRIAL is the insn providing PAT.
3276 LAST is nonzero if we should return the last insn of the sequence produced.
3277
3278 If this routine succeeds in splitting, it returns the first or last
3279 replacement insn depending on the value of LAST. Otherwise, it
3280 returns TRIAL. If the insn to be returned can be split, it will be. */
3281
3282 rtx
3283 try_split (rtx pat, rtx trial, int last)
3284 {
3285 rtx before = PREV_INSN (trial);
3286 rtx after = NEXT_INSN (trial);
3287 int has_barrier = 0;
3288 rtx note, seq, tem;
3289 int probability;
3290 rtx insn_last, insn;
3291 int njumps = 0;
3292
3293 /* We're not good at redistributing frame information. */
3294 if (RTX_FRAME_RELATED_P (trial))
3295 return trial;
3296
3297 if (any_condjump_p (trial)
3298 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3299 split_branch_probability = INTVAL (XEXP (note, 0));
3300 probability = split_branch_probability;
3301
3302 seq = split_insns (pat, trial);
3303
3304 split_branch_probability = -1;
3305
3306 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3307 We may need to handle this specially. */
3308 if (after && BARRIER_P (after))
3309 {
3310 has_barrier = 1;
3311 after = NEXT_INSN (after);
3312 }
3313
3314 if (!seq)
3315 return trial;
3316
3317 /* Avoid infinite loop if any insn of the result matches
3318 the original pattern. */
3319 insn_last = seq;
3320 while (1)
3321 {
3322 if (INSN_P (insn_last)
3323 && rtx_equal_p (PATTERN (insn_last), pat))
3324 return trial;
3325 if (!NEXT_INSN (insn_last))
3326 break;
3327 insn_last = NEXT_INSN (insn_last);
3328 }
3329
3330 /* We will be adding the new sequence to the function. The splitters
3331 may have introduced invalid RTL sharing, so unshare the sequence now. */
3332 unshare_all_rtl_in_chain (seq);
3333
3334 /* Mark labels. */
3335 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3336 {
3337 if (JUMP_P (insn))
3338 {
3339 mark_jump_label (PATTERN (insn), insn, 0);
3340 njumps++;
3341 if (probability != -1
3342 && any_condjump_p (insn)
3343 && !find_reg_note (insn, REG_BR_PROB, 0))
3344 {
3345 /* We can preserve the REG_BR_PROB notes only if exactly
3346 one jump is created, otherwise the machine description
3347 is responsible for this step using
3348 split_branch_probability variable. */
3349 gcc_assert (njumps == 1);
3350 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3351 }
3352 }
3353 }
3354
3355 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3356 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3357 if (CALL_P (trial))
3358 {
3359 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3360 if (CALL_P (insn))
3361 {
3362 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3363 while (*p)
3364 p = &XEXP (*p, 1);
3365 *p = CALL_INSN_FUNCTION_USAGE (trial);
3366 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3367 }
3368 }
3369
3370 /* Copy notes, particularly those related to the CFG. */
3371 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3372 {
3373 switch (REG_NOTE_KIND (note))
3374 {
3375 case REG_EH_REGION:
3376 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3377 {
3378 if (CALL_P (insn)
3379 || (flag_non_call_exceptions && INSN_P (insn)
3380 && may_trap_p (PATTERN (insn))))
3381 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
3382 }
3383 break;
3384
3385 case REG_NORETURN:
3386 case REG_SETJMP:
3387 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3388 {
3389 if (CALL_P (insn))
3390 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3391 }
3392 break;
3393
3394 case REG_NON_LOCAL_GOTO:
3395 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3396 {
3397 if (JUMP_P (insn))
3398 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3399 }
3400 break;
3401
3402 #ifdef AUTO_INC_DEC
3403 case REG_INC:
3404 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3405 {
3406 rtx reg = XEXP (note, 0);
3407 if (!FIND_REG_INC_NOTE (insn, reg)
3408 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3409 add_reg_note (insn, REG_INC, reg);
3410 }
3411 break;
3412 #endif
3413
3414 default:
3415 break;
3416 }
3417 }
3418
3419 /* If there are LABELS inside the split insns increment the
3420 usage count so we don't delete the label. */
3421 if (INSN_P (trial))
3422 {
3423 insn = insn_last;
3424 while (insn != NULL_RTX)
3425 {
3426 /* JUMP_P insns have already been "marked" above. */
3427 if (NONJUMP_INSN_P (insn))
3428 mark_label_nuses (PATTERN (insn));
3429
3430 insn = PREV_INSN (insn);
3431 }
3432 }
3433
3434 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3435
3436 delete_insn (trial);
3437 if (has_barrier)
3438 emit_barrier_after (tem);
3439
3440 /* Recursively call try_split for each new insn created; by the
3441 time control returns here that insn will be fully split, so
3442 set LAST and continue from the insn after the one returned.
3443 We can't use next_active_insn here since AFTER may be a note.
3444 Ignore deleted insns, which can be occur if not optimizing. */
3445 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3446 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3447 tem = try_split (PATTERN (tem), tem, 1);
3448
3449 /* Return either the first or the last insn, depending on which was
3450 requested. */
3451 return last
3452 ? (after ? PREV_INSN (after) : last_insn)
3453 : NEXT_INSN (before);
3454 }
3455 \f
3456 /* Make and return an INSN rtx, initializing all its slots.
3457 Store PATTERN in the pattern slots. */
3458
3459 rtx
3460 make_insn_raw (rtx pattern)
3461 {
3462 rtx insn;
3463
3464 insn = rtx_alloc (INSN);
3465
3466 INSN_UID (insn) = cur_insn_uid++;
3467 PATTERN (insn) = pattern;
3468 INSN_CODE (insn) = -1;
3469 REG_NOTES (insn) = NULL;
3470 INSN_LOCATOR (insn) = curr_insn_locator ();
3471 BLOCK_FOR_INSN (insn) = NULL;
3472
3473 #ifdef ENABLE_RTL_CHECKING
3474 if (insn
3475 && INSN_P (insn)
3476 && (returnjump_p (insn)
3477 || (GET_CODE (insn) == SET
3478 && SET_DEST (insn) == pc_rtx)))
3479 {
3480 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3481 debug_rtx (insn);
3482 }
3483 #endif
3484
3485 return insn;
3486 }
3487
3488 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3489
3490 rtx
3491 make_jump_insn_raw (rtx pattern)
3492 {
3493 rtx insn;
3494
3495 insn = rtx_alloc (JUMP_INSN);
3496 INSN_UID (insn) = cur_insn_uid++;
3497
3498 PATTERN (insn) = pattern;
3499 INSN_CODE (insn) = -1;
3500 REG_NOTES (insn) = NULL;
3501 JUMP_LABEL (insn) = NULL;
3502 INSN_LOCATOR (insn) = curr_insn_locator ();
3503 BLOCK_FOR_INSN (insn) = NULL;
3504
3505 return insn;
3506 }
3507
3508 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3509
3510 static rtx
3511 make_call_insn_raw (rtx pattern)
3512 {
3513 rtx insn;
3514
3515 insn = rtx_alloc (CALL_INSN);
3516 INSN_UID (insn) = cur_insn_uid++;
3517
3518 PATTERN (insn) = pattern;
3519 INSN_CODE (insn) = -1;
3520 REG_NOTES (insn) = NULL;
3521 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3522 INSN_LOCATOR (insn) = curr_insn_locator ();
3523 BLOCK_FOR_INSN (insn) = NULL;
3524
3525 return insn;
3526 }
3527 \f
3528 /* Add INSN to the end of the doubly-linked list.
3529 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3530
3531 void
3532 add_insn (rtx insn)
3533 {
3534 PREV_INSN (insn) = last_insn;
3535 NEXT_INSN (insn) = 0;
3536
3537 if (NULL != last_insn)
3538 NEXT_INSN (last_insn) = insn;
3539
3540 if (NULL == first_insn)
3541 first_insn = insn;
3542
3543 last_insn = insn;
3544 }
3545
3546 /* Add INSN into the doubly-linked list after insn AFTER. This and
3547 the next should be the only functions called to insert an insn once
3548 delay slots have been filled since only they know how to update a
3549 SEQUENCE. */
3550
3551 void
3552 add_insn_after (rtx insn, rtx after, basic_block bb)
3553 {
3554 rtx next = NEXT_INSN (after);
3555
3556 gcc_assert (!optimize || !INSN_DELETED_P (after));
3557
3558 NEXT_INSN (insn) = next;
3559 PREV_INSN (insn) = after;
3560
3561 if (next)
3562 {
3563 PREV_INSN (next) = insn;
3564 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3565 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3566 }
3567 else if (last_insn == after)
3568 last_insn = insn;
3569 else
3570 {
3571 struct sequence_stack *stack = seq_stack;
3572 /* Scan all pending sequences too. */
3573 for (; stack; stack = stack->next)
3574 if (after == stack->last)
3575 {
3576 stack->last = insn;
3577 break;
3578 }
3579
3580 gcc_assert (stack);
3581 }
3582
3583 if (!BARRIER_P (after)
3584 && !BARRIER_P (insn)
3585 && (bb = BLOCK_FOR_INSN (after)))
3586 {
3587 set_block_for_insn (insn, bb);
3588 if (INSN_P (insn))
3589 df_insn_rescan (insn);
3590 /* Should not happen as first in the BB is always
3591 either NOTE or LABEL. */
3592 if (BB_END (bb) == after
3593 /* Avoid clobbering of structure when creating new BB. */
3594 && !BARRIER_P (insn)
3595 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3596 BB_END (bb) = insn;
3597 }
3598
3599 NEXT_INSN (after) = insn;
3600 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3601 {
3602 rtx sequence = PATTERN (after);
3603 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3604 }
3605 }
3606
3607 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3608 the previous should be the only functions called to insert an insn
3609 once delay slots have been filled since only they know how to
3610 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3611 bb from before. */
3612
3613 void
3614 add_insn_before (rtx insn, rtx before, basic_block bb)
3615 {
3616 rtx prev = PREV_INSN (before);
3617
3618 gcc_assert (!optimize || !INSN_DELETED_P (before));
3619
3620 PREV_INSN (insn) = prev;
3621 NEXT_INSN (insn) = before;
3622
3623 if (prev)
3624 {
3625 NEXT_INSN (prev) = insn;
3626 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3627 {
3628 rtx sequence = PATTERN (prev);
3629 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3630 }
3631 }
3632 else if (first_insn == before)
3633 first_insn = insn;
3634 else
3635 {
3636 struct sequence_stack *stack = seq_stack;
3637 /* Scan all pending sequences too. */
3638 for (; stack; stack = stack->next)
3639 if (before == stack->first)
3640 {
3641 stack->first = insn;
3642 break;
3643 }
3644
3645 gcc_assert (stack);
3646 }
3647
3648 if (!bb
3649 && !BARRIER_P (before)
3650 && !BARRIER_P (insn))
3651 bb = BLOCK_FOR_INSN (before);
3652
3653 if (bb)
3654 {
3655 set_block_for_insn (insn, bb);
3656 if (INSN_P (insn))
3657 df_insn_rescan (insn);
3658 /* Should not happen as first in the BB is always either NOTE or
3659 LABEL. */
3660 gcc_assert (BB_HEAD (bb) != insn
3661 /* Avoid clobbering of structure when creating new BB. */
3662 || BARRIER_P (insn)
3663 || NOTE_INSN_BASIC_BLOCK_P (insn));
3664 }
3665
3666 PREV_INSN (before) = insn;
3667 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3668 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3669 }
3670
3671
3672 /* Replace insn with an deleted instruction note. */
3673
3674 void
3675 set_insn_deleted (rtx insn)
3676 {
3677 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3678 PUT_CODE (insn, NOTE);
3679 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3680 }
3681
3682
3683 /* Remove an insn from its doubly-linked list. This function knows how
3684 to handle sequences. */
3685 void
3686 remove_insn (rtx insn)
3687 {
3688 rtx next = NEXT_INSN (insn);
3689 rtx prev = PREV_INSN (insn);
3690 basic_block bb;
3691
3692 /* Later in the code, the block will be marked dirty. */
3693 df_insn_delete (NULL, INSN_UID (insn));
3694
3695 if (prev)
3696 {
3697 NEXT_INSN (prev) = next;
3698 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3699 {
3700 rtx sequence = PATTERN (prev);
3701 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3702 }
3703 }
3704 else if (first_insn == insn)
3705 first_insn = next;
3706 else
3707 {
3708 struct sequence_stack *stack = seq_stack;
3709 /* Scan all pending sequences too. */
3710 for (; stack; stack = stack->next)
3711 if (insn == stack->first)
3712 {
3713 stack->first = next;
3714 break;
3715 }
3716
3717 gcc_assert (stack);
3718 }
3719
3720 if (next)
3721 {
3722 PREV_INSN (next) = prev;
3723 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3724 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3725 }
3726 else if (last_insn == insn)
3727 last_insn = prev;
3728 else
3729 {
3730 struct sequence_stack *stack = seq_stack;
3731 /* Scan all pending sequences too. */
3732 for (; stack; stack = stack->next)
3733 if (insn == stack->last)
3734 {
3735 stack->last = prev;
3736 break;
3737 }
3738
3739 gcc_assert (stack);
3740 }
3741 if (!BARRIER_P (insn)
3742 && (bb = BLOCK_FOR_INSN (insn)))
3743 {
3744 if (INSN_P (insn))
3745 df_set_bb_dirty (bb);
3746 if (BB_HEAD (bb) == insn)
3747 {
3748 /* Never ever delete the basic block note without deleting whole
3749 basic block. */
3750 gcc_assert (!NOTE_P (insn));
3751 BB_HEAD (bb) = next;
3752 }
3753 if (BB_END (bb) == insn)
3754 BB_END (bb) = prev;
3755 }
3756 }
3757
3758 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3759
3760 void
3761 add_function_usage_to (rtx call_insn, rtx call_fusage)
3762 {
3763 gcc_assert (call_insn && CALL_P (call_insn));
3764
3765 /* Put the register usage information on the CALL. If there is already
3766 some usage information, put ours at the end. */
3767 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3768 {
3769 rtx link;
3770
3771 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3772 link = XEXP (link, 1))
3773 ;
3774
3775 XEXP (link, 1) = call_fusage;
3776 }
3777 else
3778 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3779 }
3780
3781 /* Delete all insns made since FROM.
3782 FROM becomes the new last instruction. */
3783
3784 void
3785 delete_insns_since (rtx from)
3786 {
3787 if (from == 0)
3788 first_insn = 0;
3789 else
3790 NEXT_INSN (from) = 0;
3791 last_insn = from;
3792 }
3793
3794 /* This function is deprecated, please use sequences instead.
3795
3796 Move a consecutive bunch of insns to a different place in the chain.
3797 The insns to be moved are those between FROM and TO.
3798 They are moved to a new position after the insn AFTER.
3799 AFTER must not be FROM or TO or any insn in between.
3800
3801 This function does not know about SEQUENCEs and hence should not be
3802 called after delay-slot filling has been done. */
3803
3804 void
3805 reorder_insns_nobb (rtx from, rtx to, rtx after)
3806 {
3807 /* Splice this bunch out of where it is now. */
3808 if (PREV_INSN (from))
3809 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3810 if (NEXT_INSN (to))
3811 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3812 if (last_insn == to)
3813 last_insn = PREV_INSN (from);
3814 if (first_insn == from)
3815 first_insn = NEXT_INSN (to);
3816
3817 /* Make the new neighbors point to it and it to them. */
3818 if (NEXT_INSN (after))
3819 PREV_INSN (NEXT_INSN (after)) = to;
3820
3821 NEXT_INSN (to) = NEXT_INSN (after);
3822 PREV_INSN (from) = after;
3823 NEXT_INSN (after) = from;
3824 if (after == last_insn)
3825 last_insn = to;
3826 }
3827
3828 /* Same as function above, but take care to update BB boundaries. */
3829 void
3830 reorder_insns (rtx from, rtx to, rtx after)
3831 {
3832 rtx prev = PREV_INSN (from);
3833 basic_block bb, bb2;
3834
3835 reorder_insns_nobb (from, to, after);
3836
3837 if (!BARRIER_P (after)
3838 && (bb = BLOCK_FOR_INSN (after)))
3839 {
3840 rtx x;
3841 df_set_bb_dirty (bb);
3842
3843 if (!BARRIER_P (from)
3844 && (bb2 = BLOCK_FOR_INSN (from)))
3845 {
3846 if (BB_END (bb2) == to)
3847 BB_END (bb2) = prev;
3848 df_set_bb_dirty (bb2);
3849 }
3850
3851 if (BB_END (bb) == after)
3852 BB_END (bb) = to;
3853
3854 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3855 if (!BARRIER_P (x))
3856 df_insn_change_bb (x, bb);
3857 }
3858 }
3859
3860 \f
3861 /* Emit insn(s) of given code and pattern
3862 at a specified place within the doubly-linked list.
3863
3864 All of the emit_foo global entry points accept an object
3865 X which is either an insn list or a PATTERN of a single
3866 instruction.
3867
3868 There are thus a few canonical ways to generate code and
3869 emit it at a specific place in the instruction stream. For
3870 example, consider the instruction named SPOT and the fact that
3871 we would like to emit some instructions before SPOT. We might
3872 do it like this:
3873
3874 start_sequence ();
3875 ... emit the new instructions ...
3876 insns_head = get_insns ();
3877 end_sequence ();
3878
3879 emit_insn_before (insns_head, SPOT);
3880
3881 It used to be common to generate SEQUENCE rtl instead, but that
3882 is a relic of the past which no longer occurs. The reason is that
3883 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3884 generated would almost certainly die right after it was created. */
3885
3886 /* Make X be output before the instruction BEFORE. */
3887
3888 rtx
3889 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3890 {
3891 rtx last = before;
3892 rtx insn;
3893
3894 gcc_assert (before);
3895
3896 if (x == NULL_RTX)
3897 return last;
3898
3899 switch (GET_CODE (x))
3900 {
3901 case INSN:
3902 case JUMP_INSN:
3903 case CALL_INSN:
3904 case CODE_LABEL:
3905 case BARRIER:
3906 case NOTE:
3907 insn = x;
3908 while (insn)
3909 {
3910 rtx next = NEXT_INSN (insn);
3911 add_insn_before (insn, before, bb);
3912 last = insn;
3913 insn = next;
3914 }
3915 break;
3916
3917 #ifdef ENABLE_RTL_CHECKING
3918 case SEQUENCE:
3919 gcc_unreachable ();
3920 break;
3921 #endif
3922
3923 default:
3924 last = make_insn_raw (x);
3925 add_insn_before (last, before, bb);
3926 break;
3927 }
3928
3929 return last;
3930 }
3931
3932 /* Make an instruction with body X and code JUMP_INSN
3933 and output it before the instruction BEFORE. */
3934
3935 rtx
3936 emit_jump_insn_before_noloc (rtx x, rtx before)
3937 {
3938 rtx insn, last = NULL_RTX;
3939
3940 gcc_assert (before);
3941
3942 switch (GET_CODE (x))
3943 {
3944 case INSN:
3945 case JUMP_INSN:
3946 case CALL_INSN:
3947 case CODE_LABEL:
3948 case BARRIER:
3949 case NOTE:
3950 insn = x;
3951 while (insn)
3952 {
3953 rtx next = NEXT_INSN (insn);
3954 add_insn_before (insn, before, NULL);
3955 last = insn;
3956 insn = next;
3957 }
3958 break;
3959
3960 #ifdef ENABLE_RTL_CHECKING
3961 case SEQUENCE:
3962 gcc_unreachable ();
3963 break;
3964 #endif
3965
3966 default:
3967 last = make_jump_insn_raw (x);
3968 add_insn_before (last, before, NULL);
3969 break;
3970 }
3971
3972 return last;
3973 }
3974
3975 /* Make an instruction with body X and code CALL_INSN
3976 and output it before the instruction BEFORE. */
3977
3978 rtx
3979 emit_call_insn_before_noloc (rtx x, rtx before)
3980 {
3981 rtx last = NULL_RTX, insn;
3982
3983 gcc_assert (before);
3984
3985 switch (GET_CODE (x))
3986 {
3987 case INSN:
3988 case JUMP_INSN:
3989 case CALL_INSN:
3990 case CODE_LABEL:
3991 case BARRIER:
3992 case NOTE:
3993 insn = x;
3994 while (insn)
3995 {
3996 rtx next = NEXT_INSN (insn);
3997 add_insn_before (insn, before, NULL);
3998 last = insn;
3999 insn = next;
4000 }
4001 break;
4002
4003 #ifdef ENABLE_RTL_CHECKING
4004 case SEQUENCE:
4005 gcc_unreachable ();
4006 break;
4007 #endif
4008
4009 default:
4010 last = make_call_insn_raw (x);
4011 add_insn_before (last, before, NULL);
4012 break;
4013 }
4014
4015 return last;
4016 }
4017
4018 /* Make an insn of code BARRIER
4019 and output it before the insn BEFORE. */
4020
4021 rtx
4022 emit_barrier_before (rtx before)
4023 {
4024 rtx insn = rtx_alloc (BARRIER);
4025
4026 INSN_UID (insn) = cur_insn_uid++;
4027
4028 add_insn_before (insn, before, NULL);
4029 return insn;
4030 }
4031
4032 /* Emit the label LABEL before the insn BEFORE. */
4033
4034 rtx
4035 emit_label_before (rtx label, rtx before)
4036 {
4037 /* This can be called twice for the same label as a result of the
4038 confusion that follows a syntax error! So make it harmless. */
4039 if (INSN_UID (label) == 0)
4040 {
4041 INSN_UID (label) = cur_insn_uid++;
4042 add_insn_before (label, before, NULL);
4043 }
4044
4045 return label;
4046 }
4047
4048 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4049
4050 rtx
4051 emit_note_before (enum insn_note subtype, rtx before)
4052 {
4053 rtx note = rtx_alloc (NOTE);
4054 INSN_UID (note) = cur_insn_uid++;
4055 NOTE_KIND (note) = subtype;
4056 BLOCK_FOR_INSN (note) = NULL;
4057 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4058
4059 add_insn_before (note, before, NULL);
4060 return note;
4061 }
4062 \f
4063 /* Helper for emit_insn_after, handles lists of instructions
4064 efficiently. */
4065
4066 static rtx
4067 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4068 {
4069 rtx last;
4070 rtx after_after;
4071 if (!bb && !BARRIER_P (after))
4072 bb = BLOCK_FOR_INSN (after);
4073
4074 if (bb)
4075 {
4076 df_set_bb_dirty (bb);
4077 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4078 if (!BARRIER_P (last))
4079 {
4080 set_block_for_insn (last, bb);
4081 df_insn_rescan (last);
4082 }
4083 if (!BARRIER_P (last))
4084 {
4085 set_block_for_insn (last, bb);
4086 df_insn_rescan (last);
4087 }
4088 if (BB_END (bb) == after)
4089 BB_END (bb) = last;
4090 }
4091 else
4092 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4093 continue;
4094
4095 after_after = NEXT_INSN (after);
4096
4097 NEXT_INSN (after) = first;
4098 PREV_INSN (first) = after;
4099 NEXT_INSN (last) = after_after;
4100 if (after_after)
4101 PREV_INSN (after_after) = last;
4102
4103 if (after == last_insn)
4104 last_insn = last;
4105
4106 return last;
4107 }
4108
4109 /* Make X be output after the insn AFTER and set the BB of insn. If
4110 BB is NULL, an attempt is made to infer the BB from AFTER. */
4111
4112 rtx
4113 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4114 {
4115 rtx last = after;
4116
4117 gcc_assert (after);
4118
4119 if (x == NULL_RTX)
4120 return last;
4121
4122 switch (GET_CODE (x))
4123 {
4124 case INSN:
4125 case JUMP_INSN:
4126 case CALL_INSN:
4127 case CODE_LABEL:
4128 case BARRIER:
4129 case NOTE:
4130 last = emit_insn_after_1 (x, after, bb);
4131 break;
4132
4133 #ifdef ENABLE_RTL_CHECKING
4134 case SEQUENCE:
4135 gcc_unreachable ();
4136 break;
4137 #endif
4138
4139 default:
4140 last = make_insn_raw (x);
4141 add_insn_after (last, after, bb);
4142 break;
4143 }
4144
4145 return last;
4146 }
4147
4148
4149 /* Make an insn of code JUMP_INSN with body X
4150 and output it after the insn AFTER. */
4151
4152 rtx
4153 emit_jump_insn_after_noloc (rtx x, rtx after)
4154 {
4155 rtx last;
4156
4157 gcc_assert (after);
4158
4159 switch (GET_CODE (x))
4160 {
4161 case INSN:
4162 case JUMP_INSN:
4163 case CALL_INSN:
4164 case CODE_LABEL:
4165 case BARRIER:
4166 case NOTE:
4167 last = emit_insn_after_1 (x, after, NULL);
4168 break;
4169
4170 #ifdef ENABLE_RTL_CHECKING
4171 case SEQUENCE:
4172 gcc_unreachable ();
4173 break;
4174 #endif
4175
4176 default:
4177 last = make_jump_insn_raw (x);
4178 add_insn_after (last, after, NULL);
4179 break;
4180 }
4181
4182 return last;
4183 }
4184
4185 /* Make an instruction with body X and code CALL_INSN
4186 and output it after the instruction AFTER. */
4187
4188 rtx
4189 emit_call_insn_after_noloc (rtx x, rtx after)
4190 {
4191 rtx last;
4192
4193 gcc_assert (after);
4194
4195 switch (GET_CODE (x))
4196 {
4197 case INSN:
4198 case JUMP_INSN:
4199 case CALL_INSN:
4200 case CODE_LABEL:
4201 case BARRIER:
4202 case NOTE:
4203 last = emit_insn_after_1 (x, after, NULL);
4204 break;
4205
4206 #ifdef ENABLE_RTL_CHECKING
4207 case SEQUENCE:
4208 gcc_unreachable ();
4209 break;
4210 #endif
4211
4212 default:
4213 last = make_call_insn_raw (x);
4214 add_insn_after (last, after, NULL);
4215 break;
4216 }
4217
4218 return last;
4219 }
4220
4221 /* Make an insn of code BARRIER
4222 and output it after the insn AFTER. */
4223
4224 rtx
4225 emit_barrier_after (rtx after)
4226 {
4227 rtx insn = rtx_alloc (BARRIER);
4228
4229 INSN_UID (insn) = cur_insn_uid++;
4230
4231 add_insn_after (insn, after, NULL);
4232 return insn;
4233 }
4234
4235 /* Emit the label LABEL after the insn AFTER. */
4236
4237 rtx
4238 emit_label_after (rtx label, rtx after)
4239 {
4240 /* This can be called twice for the same label
4241 as a result of the confusion that follows a syntax error!
4242 So make it harmless. */
4243 if (INSN_UID (label) == 0)
4244 {
4245 INSN_UID (label) = cur_insn_uid++;
4246 add_insn_after (label, after, NULL);
4247 }
4248
4249 return label;
4250 }
4251
4252 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4253
4254 rtx
4255 emit_note_after (enum insn_note subtype, rtx after)
4256 {
4257 rtx note = rtx_alloc (NOTE);
4258 INSN_UID (note) = cur_insn_uid++;
4259 NOTE_KIND (note) = subtype;
4260 BLOCK_FOR_INSN (note) = NULL;
4261 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4262 add_insn_after (note, after, NULL);
4263 return note;
4264 }
4265 \f
4266 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4267 rtx
4268 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4269 {
4270 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4271
4272 if (pattern == NULL_RTX || !loc)
4273 return last;
4274
4275 after = NEXT_INSN (after);
4276 while (1)
4277 {
4278 if (active_insn_p (after) && !INSN_LOCATOR (after))
4279 INSN_LOCATOR (after) = loc;
4280 if (after == last)
4281 break;
4282 after = NEXT_INSN (after);
4283 }
4284 return last;
4285 }
4286
4287 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4288 rtx
4289 emit_insn_after (rtx pattern, rtx after)
4290 {
4291 if (INSN_P (after))
4292 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4293 else
4294 return emit_insn_after_noloc (pattern, after, NULL);
4295 }
4296
4297 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4298 rtx
4299 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4300 {
4301 rtx last = emit_jump_insn_after_noloc (pattern, after);
4302
4303 if (pattern == NULL_RTX || !loc)
4304 return last;
4305
4306 after = NEXT_INSN (after);
4307 while (1)
4308 {
4309 if (active_insn_p (after) && !INSN_LOCATOR (after))
4310 INSN_LOCATOR (after) = loc;
4311 if (after == last)
4312 break;
4313 after = NEXT_INSN (after);
4314 }
4315 return last;
4316 }
4317
4318 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4319 rtx
4320 emit_jump_insn_after (rtx pattern, rtx after)
4321 {
4322 if (INSN_P (after))
4323 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4324 else
4325 return emit_jump_insn_after_noloc (pattern, after);
4326 }
4327
4328 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4329 rtx
4330 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4331 {
4332 rtx last = emit_call_insn_after_noloc (pattern, after);
4333
4334 if (pattern == NULL_RTX || !loc)
4335 return last;
4336
4337 after = NEXT_INSN (after);
4338 while (1)
4339 {
4340 if (active_insn_p (after) && !INSN_LOCATOR (after))
4341 INSN_LOCATOR (after) = loc;
4342 if (after == last)
4343 break;
4344 after = NEXT_INSN (after);
4345 }
4346 return last;
4347 }
4348
4349 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4350 rtx
4351 emit_call_insn_after (rtx pattern, rtx after)
4352 {
4353 if (INSN_P (after))
4354 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4355 else
4356 return emit_call_insn_after_noloc (pattern, after);
4357 }
4358
4359 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4360 rtx
4361 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4362 {
4363 rtx first = PREV_INSN (before);
4364 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4365
4366 if (pattern == NULL_RTX || !loc)
4367 return last;
4368
4369 if (!first)
4370 first = get_insns ();
4371 else
4372 first = NEXT_INSN (first);
4373 while (1)
4374 {
4375 if (active_insn_p (first) && !INSN_LOCATOR (first))
4376 INSN_LOCATOR (first) = loc;
4377 if (first == last)
4378 break;
4379 first = NEXT_INSN (first);
4380 }
4381 return last;
4382 }
4383
4384 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4385 rtx
4386 emit_insn_before (rtx pattern, rtx before)
4387 {
4388 if (INSN_P (before))
4389 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4390 else
4391 return emit_insn_before_noloc (pattern, before, NULL);
4392 }
4393
4394 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4395 rtx
4396 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4397 {
4398 rtx first = PREV_INSN (before);
4399 rtx last = emit_jump_insn_before_noloc (pattern, before);
4400
4401 if (pattern == NULL_RTX)
4402 return last;
4403
4404 first = NEXT_INSN (first);
4405 while (1)
4406 {
4407 if (active_insn_p (first) && !INSN_LOCATOR (first))
4408 INSN_LOCATOR (first) = loc;
4409 if (first == last)
4410 break;
4411 first = NEXT_INSN (first);
4412 }
4413 return last;
4414 }
4415
4416 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4417 rtx
4418 emit_jump_insn_before (rtx pattern, rtx before)
4419 {
4420 if (INSN_P (before))
4421 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4422 else
4423 return emit_jump_insn_before_noloc (pattern, before);
4424 }
4425
4426 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4427 rtx
4428 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4429 {
4430 rtx first = PREV_INSN (before);
4431 rtx last = emit_call_insn_before_noloc (pattern, before);
4432
4433 if (pattern == NULL_RTX)
4434 return last;
4435
4436 first = NEXT_INSN (first);
4437 while (1)
4438 {
4439 if (active_insn_p (first) && !INSN_LOCATOR (first))
4440 INSN_LOCATOR (first) = loc;
4441 if (first == last)
4442 break;
4443 first = NEXT_INSN (first);
4444 }
4445 return last;
4446 }
4447
4448 /* like emit_call_insn_before_noloc,
4449 but set insn_locator according to before. */
4450 rtx
4451 emit_call_insn_before (rtx pattern, rtx before)
4452 {
4453 if (INSN_P (before))
4454 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4455 else
4456 return emit_call_insn_before_noloc (pattern, before);
4457 }
4458 \f
4459 /* Take X and emit it at the end of the doubly-linked
4460 INSN list.
4461
4462 Returns the last insn emitted. */
4463
4464 rtx
4465 emit_insn (rtx x)
4466 {
4467 rtx last = last_insn;
4468 rtx insn;
4469
4470 if (x == NULL_RTX)
4471 return last;
4472
4473 switch (GET_CODE (x))
4474 {
4475 case INSN:
4476 case JUMP_INSN:
4477 case CALL_INSN:
4478 case CODE_LABEL:
4479 case BARRIER:
4480 case NOTE:
4481 insn = x;
4482 while (insn)
4483 {
4484 rtx next = NEXT_INSN (insn);
4485 add_insn (insn);
4486 last = insn;
4487 insn = next;
4488 }
4489 break;
4490
4491 #ifdef ENABLE_RTL_CHECKING
4492 case SEQUENCE:
4493 gcc_unreachable ();
4494 break;
4495 #endif
4496
4497 default:
4498 last = make_insn_raw (x);
4499 add_insn (last);
4500 break;
4501 }
4502
4503 return last;
4504 }
4505
4506 /* Make an insn of code JUMP_INSN with pattern X
4507 and add it to the end of the doubly-linked list. */
4508
4509 rtx
4510 emit_jump_insn (rtx x)
4511 {
4512 rtx last = NULL_RTX, insn;
4513
4514 switch (GET_CODE (x))
4515 {
4516 case INSN:
4517 case JUMP_INSN:
4518 case CALL_INSN:
4519 case CODE_LABEL:
4520 case BARRIER:
4521 case NOTE:
4522 insn = x;
4523 while (insn)
4524 {
4525 rtx next = NEXT_INSN (insn);
4526 add_insn (insn);
4527 last = insn;
4528 insn = next;
4529 }
4530 break;
4531
4532 #ifdef ENABLE_RTL_CHECKING
4533 case SEQUENCE:
4534 gcc_unreachable ();
4535 break;
4536 #endif
4537
4538 default:
4539 last = make_jump_insn_raw (x);
4540 add_insn (last);
4541 break;
4542 }
4543
4544 return last;
4545 }
4546
4547 /* Make an insn of code CALL_INSN with pattern X
4548 and add it to the end of the doubly-linked list. */
4549
4550 rtx
4551 emit_call_insn (rtx x)
4552 {
4553 rtx insn;
4554
4555 switch (GET_CODE (x))
4556 {
4557 case INSN:
4558 case JUMP_INSN:
4559 case CALL_INSN:
4560 case CODE_LABEL:
4561 case BARRIER:
4562 case NOTE:
4563 insn = emit_insn (x);
4564 break;
4565
4566 #ifdef ENABLE_RTL_CHECKING
4567 case SEQUENCE:
4568 gcc_unreachable ();
4569 break;
4570 #endif
4571
4572 default:
4573 insn = make_call_insn_raw (x);
4574 add_insn (insn);
4575 break;
4576 }
4577
4578 return insn;
4579 }
4580
4581 /* Add the label LABEL to the end of the doubly-linked list. */
4582
4583 rtx
4584 emit_label (rtx label)
4585 {
4586 /* This can be called twice for the same label
4587 as a result of the confusion that follows a syntax error!
4588 So make it harmless. */
4589 if (INSN_UID (label) == 0)
4590 {
4591 INSN_UID (label) = cur_insn_uid++;
4592 add_insn (label);
4593 }
4594 return label;
4595 }
4596
4597 /* Make an insn of code BARRIER
4598 and add it to the end of the doubly-linked list. */
4599
4600 rtx
4601 emit_barrier (void)
4602 {
4603 rtx barrier = rtx_alloc (BARRIER);
4604 INSN_UID (barrier) = cur_insn_uid++;
4605 add_insn (barrier);
4606 return barrier;
4607 }
4608
4609 /* Emit a copy of note ORIG. */
4610
4611 rtx
4612 emit_note_copy (rtx orig)
4613 {
4614 rtx note;
4615
4616 note = rtx_alloc (NOTE);
4617
4618 INSN_UID (note) = cur_insn_uid++;
4619 NOTE_DATA (note) = NOTE_DATA (orig);
4620 NOTE_KIND (note) = NOTE_KIND (orig);
4621 BLOCK_FOR_INSN (note) = NULL;
4622 add_insn (note);
4623
4624 return note;
4625 }
4626
4627 /* Make an insn of code NOTE or type NOTE_NO
4628 and add it to the end of the doubly-linked list. */
4629
4630 rtx
4631 emit_note (enum insn_note kind)
4632 {
4633 rtx note;
4634
4635 note = rtx_alloc (NOTE);
4636 INSN_UID (note) = cur_insn_uid++;
4637 NOTE_KIND (note) = kind;
4638 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4639 BLOCK_FOR_INSN (note) = NULL;
4640 add_insn (note);
4641 return note;
4642 }
4643
4644 /* Emit a clobber of lvalue X. */
4645
4646 rtx
4647 emit_clobber (rtx x)
4648 {
4649 /* CONCATs should not appear in the insn stream. */
4650 if (GET_CODE (x) == CONCAT)
4651 {
4652 emit_clobber (XEXP (x, 0));
4653 return emit_clobber (XEXP (x, 1));
4654 }
4655 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4656 }
4657
4658 /* Return a sequence of insns to clobber lvalue X. */
4659
4660 rtx
4661 gen_clobber (rtx x)
4662 {
4663 rtx seq;
4664
4665 start_sequence ();
4666 emit_clobber (x);
4667 seq = get_insns ();
4668 end_sequence ();
4669 return seq;
4670 }
4671
4672 /* Emit a use of rvalue X. */
4673
4674 rtx
4675 emit_use (rtx x)
4676 {
4677 /* CONCATs should not appear in the insn stream. */
4678 if (GET_CODE (x) == CONCAT)
4679 {
4680 emit_use (XEXP (x, 0));
4681 return emit_use (XEXP (x, 1));
4682 }
4683 return emit_insn (gen_rtx_USE (VOIDmode, x));
4684 }
4685
4686 /* Return a sequence of insns to use rvalue X. */
4687
4688 rtx
4689 gen_use (rtx x)
4690 {
4691 rtx seq;
4692
4693 start_sequence ();
4694 emit_use (x);
4695 seq = get_insns ();
4696 end_sequence ();
4697 return seq;
4698 }
4699
4700 /* Cause next statement to emit a line note even if the line number
4701 has not changed. */
4702
4703 void
4704 force_next_line_note (void)
4705 {
4706 last_location = -1;
4707 }
4708
4709 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4710 note of this type already exists, remove it first. */
4711
4712 rtx
4713 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4714 {
4715 rtx note = find_reg_note (insn, kind, NULL_RTX);
4716
4717 switch (kind)
4718 {
4719 case REG_EQUAL:
4720 case REG_EQUIV:
4721 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4722 has multiple sets (some callers assume single_set
4723 means the insn only has one set, when in fact it
4724 means the insn only has one * useful * set). */
4725 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4726 {
4727 gcc_assert (!note);
4728 return NULL_RTX;
4729 }
4730
4731 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4732 It serves no useful purpose and breaks eliminate_regs. */
4733 if (GET_CODE (datum) == ASM_OPERANDS)
4734 return NULL_RTX;
4735
4736 if (note)
4737 {
4738 XEXP (note, 0) = datum;
4739 df_notes_rescan (insn);
4740 return note;
4741 }
4742 break;
4743
4744 default:
4745 if (note)
4746 {
4747 XEXP (note, 0) = datum;
4748 return note;
4749 }
4750 break;
4751 }
4752
4753 add_reg_note (insn, kind, datum);
4754
4755 switch (kind)
4756 {
4757 case REG_EQUAL:
4758 case REG_EQUIV:
4759 df_notes_rescan (insn);
4760 break;
4761 default:
4762 break;
4763 }
4764
4765 return REG_NOTES (insn);
4766 }
4767 \f
4768 /* Return an indication of which type of insn should have X as a body.
4769 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4770
4771 static enum rtx_code
4772 classify_insn (rtx x)
4773 {
4774 if (LABEL_P (x))
4775 return CODE_LABEL;
4776 if (GET_CODE (x) == CALL)
4777 return CALL_INSN;
4778 if (GET_CODE (x) == RETURN)
4779 return JUMP_INSN;
4780 if (GET_CODE (x) == SET)
4781 {
4782 if (SET_DEST (x) == pc_rtx)
4783 return JUMP_INSN;
4784 else if (GET_CODE (SET_SRC (x)) == CALL)
4785 return CALL_INSN;
4786 else
4787 return INSN;
4788 }
4789 if (GET_CODE (x) == PARALLEL)
4790 {
4791 int j;
4792 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4793 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4794 return CALL_INSN;
4795 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4796 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4797 return JUMP_INSN;
4798 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4799 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4800 return CALL_INSN;
4801 }
4802 return INSN;
4803 }
4804
4805 /* Emit the rtl pattern X as an appropriate kind of insn.
4806 If X is a label, it is simply added into the insn chain. */
4807
4808 rtx
4809 emit (rtx x)
4810 {
4811 enum rtx_code code = classify_insn (x);
4812
4813 switch (code)
4814 {
4815 case CODE_LABEL:
4816 return emit_label (x);
4817 case INSN:
4818 return emit_insn (x);
4819 case JUMP_INSN:
4820 {
4821 rtx insn = emit_jump_insn (x);
4822 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4823 return emit_barrier ();
4824 return insn;
4825 }
4826 case CALL_INSN:
4827 return emit_call_insn (x);
4828 default:
4829 gcc_unreachable ();
4830 }
4831 }
4832 \f
4833 /* Space for free sequence stack entries. */
4834 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4835
4836 /* Begin emitting insns to a sequence. If this sequence will contain
4837 something that might cause the compiler to pop arguments to function
4838 calls (because those pops have previously been deferred; see
4839 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4840 before calling this function. That will ensure that the deferred
4841 pops are not accidentally emitted in the middle of this sequence. */
4842
4843 void
4844 start_sequence (void)
4845 {
4846 struct sequence_stack *tem;
4847
4848 if (free_sequence_stack != NULL)
4849 {
4850 tem = free_sequence_stack;
4851 free_sequence_stack = tem->next;
4852 }
4853 else
4854 tem = GGC_NEW (struct sequence_stack);
4855
4856 tem->next = seq_stack;
4857 tem->first = first_insn;
4858 tem->last = last_insn;
4859
4860 seq_stack = tem;
4861
4862 first_insn = 0;
4863 last_insn = 0;
4864 }
4865
4866 /* Set up the insn chain starting with FIRST as the current sequence,
4867 saving the previously current one. See the documentation for
4868 start_sequence for more information about how to use this function. */
4869
4870 void
4871 push_to_sequence (rtx first)
4872 {
4873 rtx last;
4874
4875 start_sequence ();
4876
4877 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4878
4879 first_insn = first;
4880 last_insn = last;
4881 }
4882
4883 /* Like push_to_sequence, but take the last insn as an argument to avoid
4884 looping through the list. */
4885
4886 void
4887 push_to_sequence2 (rtx first, rtx last)
4888 {
4889 start_sequence ();
4890
4891 first_insn = first;
4892 last_insn = last;
4893 }
4894
4895 /* Set up the outer-level insn chain
4896 as the current sequence, saving the previously current one. */
4897
4898 void
4899 push_topmost_sequence (void)
4900 {
4901 struct sequence_stack *stack, *top = NULL;
4902
4903 start_sequence ();
4904
4905 for (stack = seq_stack; stack; stack = stack->next)
4906 top = stack;
4907
4908 first_insn = top->first;
4909 last_insn = top->last;
4910 }
4911
4912 /* After emitting to the outer-level insn chain, update the outer-level
4913 insn chain, and restore the previous saved state. */
4914
4915 void
4916 pop_topmost_sequence (void)
4917 {
4918 struct sequence_stack *stack, *top = NULL;
4919
4920 for (stack = seq_stack; stack; stack = stack->next)
4921 top = stack;
4922
4923 top->first = first_insn;
4924 top->last = last_insn;
4925
4926 end_sequence ();
4927 }
4928
4929 /* After emitting to a sequence, restore previous saved state.
4930
4931 To get the contents of the sequence just made, you must call
4932 `get_insns' *before* calling here.
4933
4934 If the compiler might have deferred popping arguments while
4935 generating this sequence, and this sequence will not be immediately
4936 inserted into the instruction stream, use do_pending_stack_adjust
4937 before calling get_insns. That will ensure that the deferred
4938 pops are inserted into this sequence, and not into some random
4939 location in the instruction stream. See INHIBIT_DEFER_POP for more
4940 information about deferred popping of arguments. */
4941
4942 void
4943 end_sequence (void)
4944 {
4945 struct sequence_stack *tem = seq_stack;
4946
4947 first_insn = tem->first;
4948 last_insn = tem->last;
4949 seq_stack = tem->next;
4950
4951 memset (tem, 0, sizeof (*tem));
4952 tem->next = free_sequence_stack;
4953 free_sequence_stack = tem;
4954 }
4955
4956 /* Return 1 if currently emitting into a sequence. */
4957
4958 int
4959 in_sequence_p (void)
4960 {
4961 return seq_stack != 0;
4962 }
4963 \f
4964 /* Put the various virtual registers into REGNO_REG_RTX. */
4965
4966 static void
4967 init_virtual_regs (void)
4968 {
4969 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4970 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4971 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4972 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4973 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4974 }
4975
4976 \f
4977 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4978 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4979 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4980 static int copy_insn_n_scratches;
4981
4982 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4983 copied an ASM_OPERANDS.
4984 In that case, it is the original input-operand vector. */
4985 static rtvec orig_asm_operands_vector;
4986
4987 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4988 copied an ASM_OPERANDS.
4989 In that case, it is the copied input-operand vector. */
4990 static rtvec copy_asm_operands_vector;
4991
4992 /* Likewise for the constraints vector. */
4993 static rtvec orig_asm_constraints_vector;
4994 static rtvec copy_asm_constraints_vector;
4995
4996 /* Recursively create a new copy of an rtx for copy_insn.
4997 This function differs from copy_rtx in that it handles SCRATCHes and
4998 ASM_OPERANDs properly.
4999 Normally, this function is not used directly; use copy_insn as front end.
5000 However, you could first copy an insn pattern with copy_insn and then use
5001 this function afterwards to properly copy any REG_NOTEs containing
5002 SCRATCHes. */
5003
5004 rtx
5005 copy_insn_1 (rtx orig)
5006 {
5007 rtx copy;
5008 int i, j;
5009 RTX_CODE code;
5010 const char *format_ptr;
5011
5012 if (orig == NULL)
5013 return NULL;
5014
5015 code = GET_CODE (orig);
5016
5017 switch (code)
5018 {
5019 case REG:
5020 case CONST_INT:
5021 case CONST_DOUBLE:
5022 case CONST_FIXED:
5023 case CONST_VECTOR:
5024 case SYMBOL_REF:
5025 case CODE_LABEL:
5026 case PC:
5027 case CC0:
5028 return orig;
5029 case CLOBBER:
5030 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5031 return orig;
5032 break;
5033
5034 case SCRATCH:
5035 for (i = 0; i < copy_insn_n_scratches; i++)
5036 if (copy_insn_scratch_in[i] == orig)
5037 return copy_insn_scratch_out[i];
5038 break;
5039
5040 case CONST:
5041 if (shared_const_p (orig))
5042 return orig;
5043 break;
5044
5045 /* A MEM with a constant address is not sharable. The problem is that
5046 the constant address may need to be reloaded. If the mem is shared,
5047 then reloading one copy of this mem will cause all copies to appear
5048 to have been reloaded. */
5049
5050 default:
5051 break;
5052 }
5053
5054 /* Copy the various flags, fields, and other information. We assume
5055 that all fields need copying, and then clear the fields that should
5056 not be copied. That is the sensible default behavior, and forces
5057 us to explicitly document why we are *not* copying a flag. */
5058 copy = shallow_copy_rtx (orig);
5059
5060 /* We do not copy the USED flag, which is used as a mark bit during
5061 walks over the RTL. */
5062 RTX_FLAG (copy, used) = 0;
5063
5064 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5065 if (INSN_P (orig))
5066 {
5067 RTX_FLAG (copy, jump) = 0;
5068 RTX_FLAG (copy, call) = 0;
5069 RTX_FLAG (copy, frame_related) = 0;
5070 }
5071
5072 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5073
5074 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5075 switch (*format_ptr++)
5076 {
5077 case 'e':
5078 if (XEXP (orig, i) != NULL)
5079 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5080 break;
5081
5082 case 'E':
5083 case 'V':
5084 if (XVEC (orig, i) == orig_asm_constraints_vector)
5085 XVEC (copy, i) = copy_asm_constraints_vector;
5086 else if (XVEC (orig, i) == orig_asm_operands_vector)
5087 XVEC (copy, i) = copy_asm_operands_vector;
5088 else if (XVEC (orig, i) != NULL)
5089 {
5090 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5091 for (j = 0; j < XVECLEN (copy, i); j++)
5092 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5093 }
5094 break;
5095
5096 case 't':
5097 case 'w':
5098 case 'i':
5099 case 's':
5100 case 'S':
5101 case 'u':
5102 case '0':
5103 /* These are left unchanged. */
5104 break;
5105
5106 default:
5107 gcc_unreachable ();
5108 }
5109
5110 if (code == SCRATCH)
5111 {
5112 i = copy_insn_n_scratches++;
5113 gcc_assert (i < MAX_RECOG_OPERANDS);
5114 copy_insn_scratch_in[i] = orig;
5115 copy_insn_scratch_out[i] = copy;
5116 }
5117 else if (code == ASM_OPERANDS)
5118 {
5119 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5120 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5121 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5122 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5123 }
5124
5125 return copy;
5126 }
5127
5128 /* Create a new copy of an rtx.
5129 This function differs from copy_rtx in that it handles SCRATCHes and
5130 ASM_OPERANDs properly.
5131 INSN doesn't really have to be a full INSN; it could be just the
5132 pattern. */
5133 rtx
5134 copy_insn (rtx insn)
5135 {
5136 copy_insn_n_scratches = 0;
5137 orig_asm_operands_vector = 0;
5138 orig_asm_constraints_vector = 0;
5139 copy_asm_operands_vector = 0;
5140 copy_asm_constraints_vector = 0;
5141 return copy_insn_1 (insn);
5142 }
5143
5144 /* Initialize data structures and variables in this file
5145 before generating rtl for each function. */
5146
5147 void
5148 init_emit (void)
5149 {
5150 first_insn = NULL;
5151 last_insn = NULL;
5152 cur_insn_uid = 1;
5153 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5154 last_location = UNKNOWN_LOCATION;
5155 first_label_num = label_num;
5156 seq_stack = NULL;
5157
5158 /* Init the tables that describe all the pseudo regs. */
5159
5160 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5161
5162 crtl->emit.regno_pointer_align
5163 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5164
5165 regno_reg_rtx
5166 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5167
5168 /* Put copies of all the hard registers into regno_reg_rtx. */
5169 memcpy (regno_reg_rtx,
5170 static_regno_reg_rtx,
5171 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5172
5173 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5174 init_virtual_regs ();
5175
5176 /* Indicate that the virtual registers and stack locations are
5177 all pointers. */
5178 REG_POINTER (stack_pointer_rtx) = 1;
5179 REG_POINTER (frame_pointer_rtx) = 1;
5180 REG_POINTER (hard_frame_pointer_rtx) = 1;
5181 REG_POINTER (arg_pointer_rtx) = 1;
5182
5183 REG_POINTER (virtual_incoming_args_rtx) = 1;
5184 REG_POINTER (virtual_stack_vars_rtx) = 1;
5185 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5186 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5187 REG_POINTER (virtual_cfa_rtx) = 1;
5188
5189 #ifdef STACK_BOUNDARY
5190 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5191 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5192 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5193 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5194
5195 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5196 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5197 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5198 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5199 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5200 #endif
5201
5202 #ifdef INIT_EXPANDERS
5203 INIT_EXPANDERS;
5204 #endif
5205 }
5206
5207 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5208
5209 static rtx
5210 gen_const_vector (enum machine_mode mode, int constant)
5211 {
5212 rtx tem;
5213 rtvec v;
5214 int units, i;
5215 enum machine_mode inner;
5216
5217 units = GET_MODE_NUNITS (mode);
5218 inner = GET_MODE_INNER (mode);
5219
5220 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5221
5222 v = rtvec_alloc (units);
5223
5224 /* We need to call this function after we set the scalar const_tiny_rtx
5225 entries. */
5226 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5227
5228 for (i = 0; i < units; ++i)
5229 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5230
5231 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5232 return tem;
5233 }
5234
5235 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5236 all elements are zero, and the one vector when all elements are one. */
5237 rtx
5238 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5239 {
5240 enum machine_mode inner = GET_MODE_INNER (mode);
5241 int nunits = GET_MODE_NUNITS (mode);
5242 rtx x;
5243 int i;
5244
5245 /* Check to see if all of the elements have the same value. */
5246 x = RTVEC_ELT (v, nunits - 1);
5247 for (i = nunits - 2; i >= 0; i--)
5248 if (RTVEC_ELT (v, i) != x)
5249 break;
5250
5251 /* If the values are all the same, check to see if we can use one of the
5252 standard constant vectors. */
5253 if (i == -1)
5254 {
5255 if (x == CONST0_RTX (inner))
5256 return CONST0_RTX (mode);
5257 else if (x == CONST1_RTX (inner))
5258 return CONST1_RTX (mode);
5259 }
5260
5261 return gen_rtx_raw_CONST_VECTOR (mode, v);
5262 }
5263
5264 /* Initialise global register information required by all functions. */
5265
5266 void
5267 init_emit_regs (void)
5268 {
5269 int i;
5270
5271 /* Reset register attributes */
5272 htab_empty (reg_attrs_htab);
5273
5274 /* We need reg_raw_mode, so initialize the modes now. */
5275 init_reg_modes_target ();
5276
5277 /* Assign register numbers to the globally defined register rtx. */
5278 pc_rtx = gen_rtx_PC (VOIDmode);
5279 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5280 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5281 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5282 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5283 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5284 virtual_incoming_args_rtx =
5285 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5286 virtual_stack_vars_rtx =
5287 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5288 virtual_stack_dynamic_rtx =
5289 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5290 virtual_outgoing_args_rtx =
5291 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5292 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5293
5294 /* Initialize RTL for commonly used hard registers. These are
5295 copied into regno_reg_rtx as we begin to compile each function. */
5296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5297 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5298
5299 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5300 return_address_pointer_rtx
5301 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5302 #endif
5303
5304 #ifdef STATIC_CHAIN_REGNUM
5305 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5306
5307 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5308 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5309 static_chain_incoming_rtx
5310 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5311 else
5312 #endif
5313 static_chain_incoming_rtx = static_chain_rtx;
5314 #endif
5315
5316 #ifdef STATIC_CHAIN
5317 static_chain_rtx = STATIC_CHAIN;
5318
5319 #ifdef STATIC_CHAIN_INCOMING
5320 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5321 #else
5322 static_chain_incoming_rtx = static_chain_rtx;
5323 #endif
5324 #endif
5325
5326 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5327 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5328 else
5329 pic_offset_table_rtx = NULL_RTX;
5330 }
5331
5332 /* Create some permanent unique rtl objects shared between all functions.
5333 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5334
5335 void
5336 init_emit_once (int line_numbers)
5337 {
5338 int i;
5339 enum machine_mode mode;
5340 enum machine_mode double_mode;
5341
5342 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5343 hash tables. */
5344 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5345 const_int_htab_eq, NULL);
5346
5347 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5348 const_double_htab_eq, NULL);
5349
5350 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5351 const_fixed_htab_eq, NULL);
5352
5353 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5354 mem_attrs_htab_eq, NULL);
5355 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5356 reg_attrs_htab_eq, NULL);
5357
5358 no_line_numbers = ! line_numbers;
5359
5360 /* Compute the word and byte modes. */
5361
5362 byte_mode = VOIDmode;
5363 word_mode = VOIDmode;
5364 double_mode = VOIDmode;
5365
5366 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5367 mode != VOIDmode;
5368 mode = GET_MODE_WIDER_MODE (mode))
5369 {
5370 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5371 && byte_mode == VOIDmode)
5372 byte_mode = mode;
5373
5374 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5375 && word_mode == VOIDmode)
5376 word_mode = mode;
5377 }
5378
5379 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5380 mode != VOIDmode;
5381 mode = GET_MODE_WIDER_MODE (mode))
5382 {
5383 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5384 && double_mode == VOIDmode)
5385 double_mode = mode;
5386 }
5387
5388 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5389
5390 #ifdef INIT_EXPANDERS
5391 /* This is to initialize {init|mark|free}_machine_status before the first
5392 call to push_function_context_to. This is needed by the Chill front
5393 end which calls push_function_context_to before the first call to
5394 init_function_start. */
5395 INIT_EXPANDERS;
5396 #endif
5397
5398 /* Create the unique rtx's for certain rtx codes and operand values. */
5399
5400 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5401 tries to use these variables. */
5402 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5403 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5404 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5405
5406 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5407 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5408 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5409 else
5410 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5411
5412 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5413 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5414 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5415
5416 dconstm1 = dconst1;
5417 dconstm1.sign = 1;
5418
5419 dconsthalf = dconst1;
5420 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5421
5422 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5423 {
5424 const REAL_VALUE_TYPE *const r =
5425 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5426
5427 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5428 mode != VOIDmode;
5429 mode = GET_MODE_WIDER_MODE (mode))
5430 const_tiny_rtx[i][(int) mode] =
5431 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5432
5433 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5434 mode != VOIDmode;
5435 mode = GET_MODE_WIDER_MODE (mode))
5436 const_tiny_rtx[i][(int) mode] =
5437 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5438
5439 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5440
5441 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5442 mode != VOIDmode;
5443 mode = GET_MODE_WIDER_MODE (mode))
5444 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5445
5446 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5447 mode != VOIDmode;
5448 mode = GET_MODE_WIDER_MODE (mode))
5449 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5450 }
5451
5452 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5453 mode != VOIDmode;
5454 mode = GET_MODE_WIDER_MODE (mode))
5455 {
5456 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5457 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5458 }
5459
5460 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5461 mode != VOIDmode;
5462 mode = GET_MODE_WIDER_MODE (mode))
5463 {
5464 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5465 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5466 }
5467
5468 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5469 mode != VOIDmode;
5470 mode = GET_MODE_WIDER_MODE (mode))
5471 {
5472 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5473 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5474 }
5475
5476 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5477 mode != VOIDmode;
5478 mode = GET_MODE_WIDER_MODE (mode))
5479 {
5480 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5481 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5482 }
5483
5484 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5485 mode != VOIDmode;
5486 mode = GET_MODE_WIDER_MODE (mode))
5487 {
5488 FCONST0(mode).data.high = 0;
5489 FCONST0(mode).data.low = 0;
5490 FCONST0(mode).mode = mode;
5491 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5492 FCONST0 (mode), mode);
5493 }
5494
5495 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5496 mode != VOIDmode;
5497 mode = GET_MODE_WIDER_MODE (mode))
5498 {
5499 FCONST0(mode).data.high = 0;
5500 FCONST0(mode).data.low = 0;
5501 FCONST0(mode).mode = mode;
5502 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5503 FCONST0 (mode), mode);
5504 }
5505
5506 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5507 mode != VOIDmode;
5508 mode = GET_MODE_WIDER_MODE (mode))
5509 {
5510 FCONST0(mode).data.high = 0;
5511 FCONST0(mode).data.low = 0;
5512 FCONST0(mode).mode = mode;
5513 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5514 FCONST0 (mode), mode);
5515
5516 /* We store the value 1. */
5517 FCONST1(mode).data.high = 0;
5518 FCONST1(mode).data.low = 0;
5519 FCONST1(mode).mode = mode;
5520 lshift_double (1, 0, GET_MODE_FBIT (mode),
5521 2 * HOST_BITS_PER_WIDE_INT,
5522 &FCONST1(mode).data.low,
5523 &FCONST1(mode).data.high,
5524 SIGNED_FIXED_POINT_MODE_P (mode));
5525 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5526 FCONST1 (mode), mode);
5527 }
5528
5529 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5530 mode != VOIDmode;
5531 mode = GET_MODE_WIDER_MODE (mode))
5532 {
5533 FCONST0(mode).data.high = 0;
5534 FCONST0(mode).data.low = 0;
5535 FCONST0(mode).mode = mode;
5536 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5537 FCONST0 (mode), mode);
5538
5539 /* We store the value 1. */
5540 FCONST1(mode).data.high = 0;
5541 FCONST1(mode).data.low = 0;
5542 FCONST1(mode).mode = mode;
5543 lshift_double (1, 0, GET_MODE_FBIT (mode),
5544 2 * HOST_BITS_PER_WIDE_INT,
5545 &FCONST1(mode).data.low,
5546 &FCONST1(mode).data.high,
5547 SIGNED_FIXED_POINT_MODE_P (mode));
5548 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5549 FCONST1 (mode), mode);
5550 }
5551
5552 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5553 mode != VOIDmode;
5554 mode = GET_MODE_WIDER_MODE (mode))
5555 {
5556 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5557 }
5558
5559 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5560 mode != VOIDmode;
5561 mode = GET_MODE_WIDER_MODE (mode))
5562 {
5563 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5564 }
5565
5566 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5567 mode != VOIDmode;
5568 mode = GET_MODE_WIDER_MODE (mode))
5569 {
5570 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5571 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5572 }
5573
5574 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5575 mode != VOIDmode;
5576 mode = GET_MODE_WIDER_MODE (mode))
5577 {
5578 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5579 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5580 }
5581
5582 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5583 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5584 const_tiny_rtx[0][i] = const0_rtx;
5585
5586 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5587 if (STORE_FLAG_VALUE == 1)
5588 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5589 }
5590 \f
5591 /* Produce exact duplicate of insn INSN after AFTER.
5592 Care updating of libcall regions if present. */
5593
5594 rtx
5595 emit_copy_of_insn_after (rtx insn, rtx after)
5596 {
5597 rtx new_rtx, link;
5598
5599 switch (GET_CODE (insn))
5600 {
5601 case INSN:
5602 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5603 break;
5604
5605 case JUMP_INSN:
5606 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5607 break;
5608
5609 case CALL_INSN:
5610 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5611 if (CALL_INSN_FUNCTION_USAGE (insn))
5612 CALL_INSN_FUNCTION_USAGE (new_rtx)
5613 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5614 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5615 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5616 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5617 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5618 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5619 break;
5620
5621 default:
5622 gcc_unreachable ();
5623 }
5624
5625 /* Update LABEL_NUSES. */
5626 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5627
5628 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5629
5630 /* If the old insn is frame related, then so is the new one. This is
5631 primarily needed for IA-64 unwind info which marks epilogue insns,
5632 which may be duplicated by the basic block reordering code. */
5633 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5634
5635 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5636 will make them. REG_LABEL_TARGETs are created there too, but are
5637 supposed to be sticky, so we copy them. */
5638 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5639 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5640 {
5641 if (GET_CODE (link) == EXPR_LIST)
5642 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5643 copy_insn_1 (XEXP (link, 0)));
5644 else
5645 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5646 }
5647
5648 INSN_CODE (new_rtx) = INSN_CODE (insn);
5649 return new_rtx;
5650 }
5651
5652 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5653 rtx
5654 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5655 {
5656 if (hard_reg_clobbers[mode][regno])
5657 return hard_reg_clobbers[mode][regno];
5658 else
5659 return (hard_reg_clobbers[mode][regno] =
5660 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5661 }
5662
5663 #include "gt-emit-rtl.h"