* lib/wrapper.exp (${tool}_maybe_build_wrapper): Don't unset gluefile.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Nonzero means do not generate NOTEs for source line numbers. */
73
74 static int no_line_numbers;
75
76 /* Commonly used rtx's, so that we only need space for one copy.
77 These are initialized once for the entire compilation.
78 All of these are unique; no other rtx-object will be equal to any
79 of these. */
80
81 rtx global_rtl[GR_MAX];
82
83 /* Commonly used RTL for hard registers. These objects are not necessarily
84 unique, so we allocate them separately from global_rtl. They are
85 initialized once per compilation unit, then copied into regno_reg_rtx
86 at the beginning of each function. */
87 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx. */
92
93 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
94
95 rtx const_true_rtx;
96
97 REAL_VALUE_TYPE dconst0;
98 REAL_VALUE_TYPE dconst1;
99 REAL_VALUE_TYPE dconst2;
100 REAL_VALUE_TYPE dconst3;
101 REAL_VALUE_TYPE dconst10;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconstm2;
104 REAL_VALUE_TYPE dconsthalf;
105 REAL_VALUE_TYPE dconstthird;
106 REAL_VALUE_TYPE dconstpi;
107 REAL_VALUE_TYPE dconste;
108
109 /* All references to the following fixed hard registers go through
110 these unique rtl objects. On machines where the frame-pointer and
111 arg-pointer are the same register, they use the same unique object.
112
113 After register allocation, other rtl objects which used to be pseudo-regs
114 may be clobbered to refer to the frame-pointer register.
115 But references that were originally to the frame-pointer can be
116 distinguished from the others because they contain frame_pointer_rtx.
117
118 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
119 tricky: until register elimination has taken place hard_frame_pointer_rtx
120 should be used if it is being set, and frame_pointer_rtx otherwise. After
121 register elimination hard_frame_pointer_rtx should always be used.
122 On machines where the two registers are same (most) then these are the
123 same.
124
125 In an inline procedure, the stack and frame pointer rtxs may not be
126 used for anything else. */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
146 htab_t const_int_htab;
147
148 /* A hash table storing memory attribute structures. */
149 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
150 htab_t mem_attrs_htab;
151
152 /* A hash table storing register attribute structures. */
153 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
154 htab_t reg_attrs_htab;
155
156 /* A hash table storing all CONST_DOUBLEs. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
158 htab_t const_double_htab;
159
160 #define first_insn (cfun->emit->x_first_insn)
161 #define last_insn (cfun->emit->x_last_insn)
162 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
163 #define last_location (cfun->emit->x_last_location)
164 #define first_label_num (cfun->emit->x_first_label_num)
165
166 static rtx make_jump_insn_raw (rtx);
167 static rtx make_call_insn_raw (rtx);
168 static rtx find_line_note (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
188
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (const void *x)
197 {
198 return (hashval_t) INTVAL ((rtx) x);
199 }
200
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
204
205 static int
206 const_int_htab_eq (const void *x, const void *y)
207 {
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
209 }
210
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
214 {
215 rtx value = (rtx) x;
216 hashval_t h;
217
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
221 {
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
225 }
226 return h;
227 }
228
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
233 {
234 rtx a = (rtx)x, b = (rtx)y;
235
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
244 }
245
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
247
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
250 {
251 mem_attrs *p = (mem_attrs *) x;
252
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) p->expr);
257 }
258
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
262
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
265 {
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
268
269 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
270 && p->size == q->size && p->align == q->align);
271 }
272
273 /* Allocate a new mem_attrs structure and insert it into the hash table if
274 one identical to it is not already in the table. We are doing this for
275 MEM of mode MODE. */
276
277 static mem_attrs *
278 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
279 unsigned int align, enum machine_mode mode)
280 {
281 mem_attrs attrs;
282 void **slot;
283
284 /* If everything is the default, we can just return zero.
285 This must match what the corresponding MEM_* macros return when the
286 field is not present. */
287 if (alias == 0 && expr == 0 && offset == 0
288 && (size == 0
289 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
290 && (STRICT_ALIGNMENT && mode != BLKmode
291 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
292 return 0;
293
294 attrs.alias = alias;
295 attrs.expr = expr;
296 attrs.offset = offset;
297 attrs.size = size;
298 attrs.align = align;
299
300 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
301 if (*slot == 0)
302 {
303 *slot = ggc_alloc (sizeof (mem_attrs));
304 memcpy (*slot, &attrs, sizeof (mem_attrs));
305 }
306
307 return *slot;
308 }
309
310 /* Returns a hash code for X (which is a really a reg_attrs *). */
311
312 static hashval_t
313 reg_attrs_htab_hash (const void *x)
314 {
315 reg_attrs *p = (reg_attrs *) x;
316
317 return ((p->offset * 1000) ^ (long) p->decl);
318 }
319
320 /* Returns nonzero if the value represented by X (which is really a
321 reg_attrs *) is the same as that given by Y (which is also really a
322 reg_attrs *). */
323
324 static int
325 reg_attrs_htab_eq (const void *x, const void *y)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328 reg_attrs *q = (reg_attrs *) y;
329
330 return (p->decl == q->decl && p->offset == q->offset);
331 }
332 /* Allocate a new reg_attrs structure and insert it into the hash table if
333 one identical to it is not already in the table. We are doing this for
334 MEM of mode MODE. */
335
336 static reg_attrs *
337 get_reg_attrs (tree decl, int offset)
338 {
339 reg_attrs attrs;
340 void **slot;
341
342 /* If everything is the default, we can just return zero. */
343 if (decl == 0 && offset == 0)
344 return 0;
345
346 attrs.decl = decl;
347 attrs.offset = offset;
348
349 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
350 if (*slot == 0)
351 {
352 *slot = ggc_alloc (sizeof (reg_attrs));
353 memcpy (*slot, &attrs, sizeof (reg_attrs));
354 }
355
356 return *slot;
357 }
358
359 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
360 don't attempt to share with the various global pieces of rtl (such as
361 frame_pointer_rtx). */
362
363 rtx
364 gen_raw_REG (enum machine_mode mode, int regno)
365 {
366 rtx x = gen_rtx_raw_REG (mode, regno);
367 ORIGINAL_REGNO (x) = regno;
368 return x;
369 }
370
371 /* There are some RTL codes that require special attention; the generation
372 functions do the raw handling. If you add to this list, modify
373 special_rtx in gengenrtl.c as well. */
374
375 rtx
376 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
377 {
378 void **slot;
379
380 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
381 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
382
383 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
384 if (const_true_rtx && arg == STORE_FLAG_VALUE)
385 return const_true_rtx;
386 #endif
387
388 /* Look up the CONST_INT in the hash table. */
389 slot = htab_find_slot_with_hash (const_int_htab, &arg,
390 (hashval_t) arg, INSERT);
391 if (*slot == 0)
392 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
393
394 return (rtx) *slot;
395 }
396
397 rtx
398 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
399 {
400 return GEN_INT (trunc_int_for_mode (c, mode));
401 }
402
403 /* CONST_DOUBLEs might be created from pairs of integers, or from
404 REAL_VALUE_TYPEs. Also, their length is known only at run time,
405 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
406
407 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
408 hash table. If so, return its counterpart; otherwise add it
409 to the hash table and return it. */
410 static rtx
411 lookup_const_double (rtx real)
412 {
413 void **slot = htab_find_slot (const_double_htab, real, INSERT);
414 if (*slot == 0)
415 *slot = real;
416
417 return (rtx) *slot;
418 }
419
420 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
421 VALUE in mode MODE. */
422 rtx
423 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
424 {
425 rtx real = rtx_alloc (CONST_DOUBLE);
426 PUT_MODE (real, mode);
427
428 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
429
430 return lookup_const_double (real);
431 }
432
433 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
434 of ints: I0 is the low-order word and I1 is the high-order word.
435 Do not use this routine for non-integer modes; convert to
436 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
437
438 rtx
439 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
440 {
441 rtx value;
442 unsigned int i;
443
444 if (mode != VOIDmode)
445 {
446 int width;
447
448 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
449 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
450 /* We can get a 0 for an error mark. */
451 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
452 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
453
454 /* We clear out all bits that don't belong in MODE, unless they and
455 our sign bit are all one. So we get either a reasonable negative
456 value or a reasonable unsigned value for this mode. */
457 width = GET_MODE_BITSIZE (mode);
458 if (width < HOST_BITS_PER_WIDE_INT
459 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
460 != ((HOST_WIDE_INT) (-1) << (width - 1))))
461 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
462 else if (width == HOST_BITS_PER_WIDE_INT
463 && ! (i1 == ~0 && i0 < 0))
464 i1 = 0;
465 else
466 /* We should be able to represent this value as a constant. */
467 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
468
469 /* If this would be an entire word for the target, but is not for
470 the host, then sign-extend on the host so that the number will
471 look the same way on the host that it would on the target.
472
473 For example, when building a 64 bit alpha hosted 32 bit sparc
474 targeted compiler, then we want the 32 bit unsigned value -1 to be
475 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
476 The latter confuses the sparc backend. */
477
478 if (width < HOST_BITS_PER_WIDE_INT
479 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
480 i0 |= ((HOST_WIDE_INT) (-1) << width);
481
482 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
483 CONST_INT.
484
485 ??? Strictly speaking, this is wrong if we create a CONST_INT for
486 a large unsigned constant with the size of MODE being
487 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
488 in a wider mode. In that case we will mis-interpret it as a
489 negative number.
490
491 Unfortunately, the only alternative is to make a CONST_DOUBLE for
492 any constant in any mode if it is an unsigned constant larger
493 than the maximum signed integer in an int on the host. However,
494 doing this will break everyone that always expects to see a
495 CONST_INT for SImode and smaller.
496
497 We have always been making CONST_INTs in this case, so nothing
498 new is being broken. */
499
500 if (width <= HOST_BITS_PER_WIDE_INT)
501 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
502 }
503
504 /* If this integer fits in one word, return a CONST_INT. */
505 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
506 return GEN_INT (i0);
507
508 /* We use VOIDmode for integers. */
509 value = rtx_alloc (CONST_DOUBLE);
510 PUT_MODE (value, VOIDmode);
511
512 CONST_DOUBLE_LOW (value) = i0;
513 CONST_DOUBLE_HIGH (value) = i1;
514
515 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
516 XWINT (value, i) = 0;
517
518 return lookup_const_double (value);
519 }
520
521 rtx
522 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
523 {
524 /* In case the MD file explicitly references the frame pointer, have
525 all such references point to the same frame pointer. This is
526 used during frame pointer elimination to distinguish the explicit
527 references to these registers from pseudos that happened to be
528 assigned to them.
529
530 If we have eliminated the frame pointer or arg pointer, we will
531 be using it as a normal register, for example as a spill
532 register. In such cases, we might be accessing it in a mode that
533 is not Pmode and therefore cannot use the pre-allocated rtx.
534
535 Also don't do this when we are making new REGs in reload, since
536 we don't want to get confused with the real pointers. */
537
538 if (mode == Pmode && !reload_in_progress)
539 {
540 if (regno == FRAME_POINTER_REGNUM
541 && (!reload_completed || frame_pointer_needed))
542 return frame_pointer_rtx;
543 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
544 if (regno == HARD_FRAME_POINTER_REGNUM
545 && (!reload_completed || frame_pointer_needed))
546 return hard_frame_pointer_rtx;
547 #endif
548 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
549 if (regno == ARG_POINTER_REGNUM)
550 return arg_pointer_rtx;
551 #endif
552 #ifdef RETURN_ADDRESS_POINTER_REGNUM
553 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
554 return return_address_pointer_rtx;
555 #endif
556 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
557 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
558 return pic_offset_table_rtx;
559 if (regno == STACK_POINTER_REGNUM)
560 return stack_pointer_rtx;
561 }
562
563 #if 0
564 /* If the per-function register table has been set up, try to re-use
565 an existing entry in that table to avoid useless generation of RTL.
566
567 This code is disabled for now until we can fix the various backends
568 which depend on having non-shared hard registers in some cases. Long
569 term we want to re-enable this code as it can significantly cut down
570 on the amount of useless RTL that gets generated.
571
572 We'll also need to fix some code that runs after reload that wants to
573 set ORIGINAL_REGNO. */
574
575 if (cfun
576 && cfun->emit
577 && regno_reg_rtx
578 && regno < FIRST_PSEUDO_REGISTER
579 && reg_raw_mode[regno] == mode)
580 return regno_reg_rtx[regno];
581 #endif
582
583 return gen_raw_REG (mode, regno);
584 }
585
586 rtx
587 gen_rtx_MEM (enum machine_mode mode, rtx addr)
588 {
589 rtx rt = gen_rtx_raw_MEM (mode, addr);
590
591 /* This field is not cleared by the mere allocation of the rtx, so
592 we clear it here. */
593 MEM_ATTRS (rt) = 0;
594
595 return rt;
596 }
597
598 /* Generate a memory referring to non-trapping constant memory. */
599
600 rtx
601 gen_const_mem (enum machine_mode mode, rtx addr)
602 {
603 rtx mem = gen_rtx_MEM (mode, addr);
604 MEM_READONLY_P (mem) = 1;
605 MEM_NOTRAP_P (mem) = 1;
606 return mem;
607 }
608
609 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
610 this construct would be valid, and false otherwise. */
611
612 bool
613 validate_subreg (enum machine_mode omode, enum machine_mode imode,
614 rtx reg, unsigned int offset)
615 {
616 unsigned int isize = GET_MODE_SIZE (imode);
617 unsigned int osize = GET_MODE_SIZE (omode);
618
619 /* All subregs must be aligned. */
620 if (offset % osize != 0)
621 return false;
622
623 /* The subreg offset cannot be outside the inner object. */
624 if (offset >= isize)
625 return false;
626
627 /* ??? This should not be here. Temporarily continue to allow word_mode
628 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
629 Generally, backends are doing something sketchy but it'll take time to
630 fix them all. */
631 if (omode == word_mode)
632 ;
633 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
634 is the culprit here, and not the backends. */
635 else if (osize >= UNITS_PER_WORD && isize >= osize)
636 ;
637 /* Allow component subregs of complex and vector. Though given the below
638 extraction rules, it's not always clear what that means. */
639 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
640 && GET_MODE_INNER (imode) == omode)
641 ;
642 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
643 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
644 represent this. It's questionable if this ought to be represented at
645 all -- why can't this all be hidden in post-reload splitters that make
646 arbitrarily mode changes to the registers themselves. */
647 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
648 ;
649 /* Subregs involving floating point modes are not allowed to
650 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
651 (subreg:SI (reg:DF) 0) isn't. */
652 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
653 {
654 if (isize != osize)
655 return false;
656 }
657
658 /* Paradoxical subregs must have offset zero. */
659 if (osize > isize)
660 return offset == 0;
661
662 /* This is a normal subreg. Verify that the offset is representable. */
663
664 /* For hard registers, we already have most of these rules collected in
665 subreg_offset_representable_p. */
666 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
667 {
668 unsigned int regno = REGNO (reg);
669
670 #ifdef CANNOT_CHANGE_MODE_CLASS
671 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
672 && GET_MODE_INNER (imode) == omode)
673 ;
674 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
675 return false;
676 #endif
677
678 return subreg_offset_representable_p (regno, imode, offset, omode);
679 }
680
681 /* For pseudo registers, we want most of the same checks. Namely:
682 If the register no larger than a word, the subreg must be lowpart.
683 If the register is larger than a word, the subreg must be the lowpart
684 of a subword. A subreg does *not* perform arbitrary bit extraction.
685 Given that we've already checked mode/offset alignment, we only have
686 to check subword subregs here. */
687 if (osize < UNITS_PER_WORD)
688 {
689 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
690 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
691 if (offset % UNITS_PER_WORD != low_off)
692 return false;
693 }
694 return true;
695 }
696
697 rtx
698 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
699 {
700 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
701 return gen_rtx_raw_SUBREG (mode, reg, offset);
702 }
703
704 /* Generate a SUBREG representing the least-significant part of REG if MODE
705 is smaller than mode of REG, otherwise paradoxical SUBREG. */
706
707 rtx
708 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
709 {
710 enum machine_mode inmode;
711
712 inmode = GET_MODE (reg);
713 if (inmode == VOIDmode)
714 inmode = mode;
715 return gen_rtx_SUBREG (mode, reg,
716 subreg_lowpart_offset (mode, inmode));
717 }
718 \f
719 /* gen_rtvec (n, [rt1, ..., rtn])
720 **
721 ** This routine creates an rtvec and stores within it the
722 ** pointers to rtx's which are its arguments.
723 */
724
725 /*VARARGS1*/
726 rtvec
727 gen_rtvec (int n, ...)
728 {
729 int i, save_n;
730 rtx *vector;
731 va_list p;
732
733 va_start (p, n);
734
735 if (n == 0)
736 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
737
738 vector = alloca (n * sizeof (rtx));
739
740 for (i = 0; i < n; i++)
741 vector[i] = va_arg (p, rtx);
742
743 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
744 save_n = n;
745 va_end (p);
746
747 return gen_rtvec_v (save_n, vector);
748 }
749
750 rtvec
751 gen_rtvec_v (int n, rtx *argp)
752 {
753 int i;
754 rtvec rt_val;
755
756 if (n == 0)
757 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
758
759 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
760
761 for (i = 0; i < n; i++)
762 rt_val->elem[i] = *argp++;
763
764 return rt_val;
765 }
766 \f
767 /* Generate a REG rtx for a new pseudo register of mode MODE.
768 This pseudo is assigned the next sequential register number. */
769
770 rtx
771 gen_reg_rtx (enum machine_mode mode)
772 {
773 struct function *f = cfun;
774 rtx val;
775
776 /* Don't let anything called after initial flow analysis create new
777 registers. */
778 gcc_assert (!no_new_pseudos);
779
780 if (generating_concat_p
781 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
782 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
783 {
784 /* For complex modes, don't make a single pseudo.
785 Instead, make a CONCAT of two pseudos.
786 This allows noncontiguous allocation of the real and imaginary parts,
787 which makes much better code. Besides, allocating DCmode
788 pseudos overstrains reload on some machines like the 386. */
789 rtx realpart, imagpart;
790 enum machine_mode partmode = GET_MODE_INNER (mode);
791
792 realpart = gen_reg_rtx (partmode);
793 imagpart = gen_reg_rtx (partmode);
794 return gen_rtx_CONCAT (mode, realpart, imagpart);
795 }
796
797 /* Make sure regno_pointer_align, and regno_reg_rtx are large
798 enough to have an element for this pseudo reg number. */
799
800 if (reg_rtx_no == f->emit->regno_pointer_align_length)
801 {
802 int old_size = f->emit->regno_pointer_align_length;
803 char *new;
804 rtx *new1;
805
806 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
807 memset (new + old_size, 0, old_size);
808 f->emit->regno_pointer_align = (unsigned char *) new;
809
810 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
811 old_size * 2 * sizeof (rtx));
812 memset (new1 + old_size, 0, old_size * sizeof (rtx));
813 regno_reg_rtx = new1;
814
815 f->emit->regno_pointer_align_length = old_size * 2;
816 }
817
818 val = gen_raw_REG (mode, reg_rtx_no);
819 regno_reg_rtx[reg_rtx_no++] = val;
820 return val;
821 }
822
823 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
824 Do the big endian correction if needed. */
825
826 rtx
827 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
828 {
829 rtx new = gen_rtx_REG (mode, regno);
830 tree decl;
831 HOST_WIDE_INT var_size;
832
833 /* PR middle-end/14084
834 The problem appears when a variable is stored in a larger register
835 and later it is used in the original mode or some mode in between
836 or some part of variable is accessed.
837
838 On little endian machines there is no problem because
839 the REG_OFFSET of the start of the variable is the same when
840 accessed in any mode (it is 0).
841
842 However, this is not true on big endian machines.
843 The offset of the start of the variable is different when accessed
844 in different modes.
845 When we are taking a part of the REG we have to change the OFFSET
846 from offset WRT size of mode of REG to offset WRT size of variable.
847
848 If we would not do the big endian correction the resulting REG_OFFSET
849 would be larger than the size of the DECL.
850
851 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
852
853 REG.mode MODE DECL size old offset new offset description
854 DI SI 4 4 0 int32 in SImode
855 DI SI 1 4 0 char in SImode
856 DI QI 1 7 0 char in QImode
857 DI QI 4 5 1 1st element in QImode
858 of char[4]
859 DI HI 4 6 2 1st element in HImode
860 of int16[2]
861
862 If the size of DECL is equal or greater than the size of REG
863 we can't do this correction because the register holds the
864 whole variable or a part of the variable and thus the REG_OFFSET
865 is already correct. */
866
867 decl = REG_EXPR (reg);
868 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
869 && decl != NULL
870 && offset > 0
871 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
872 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
873 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
874 {
875 int offset_le;
876
877 /* Convert machine endian to little endian WRT size of mode of REG. */
878 if (WORDS_BIG_ENDIAN)
879 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
880 / UNITS_PER_WORD) * UNITS_PER_WORD;
881 else
882 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
883
884 if (BYTES_BIG_ENDIAN)
885 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
886 % UNITS_PER_WORD);
887 else
888 offset_le += offset % UNITS_PER_WORD;
889
890 if (offset_le >= var_size)
891 {
892 /* MODE is wider than the variable so the new reg will cover
893 the whole variable so the resulting OFFSET should be 0. */
894 offset = 0;
895 }
896 else
897 {
898 /* Convert little endian to machine endian WRT size of variable. */
899 if (WORDS_BIG_ENDIAN)
900 offset = ((var_size - 1 - offset_le)
901 / UNITS_PER_WORD) * UNITS_PER_WORD;
902 else
903 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
904
905 if (BYTES_BIG_ENDIAN)
906 offset += ((var_size - 1 - offset_le)
907 % UNITS_PER_WORD);
908 else
909 offset += offset_le % UNITS_PER_WORD;
910 }
911 }
912
913 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
914 REG_OFFSET (reg) + offset);
915 return new;
916 }
917
918 /* Set the decl for MEM to DECL. */
919
920 void
921 set_reg_attrs_from_mem (rtx reg, rtx mem)
922 {
923 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
924 REG_ATTRS (reg)
925 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
926 }
927
928 /* Set the register attributes for registers contained in PARM_RTX.
929 Use needed values from memory attributes of MEM. */
930
931 void
932 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
933 {
934 if (REG_P (parm_rtx))
935 set_reg_attrs_from_mem (parm_rtx, mem);
936 else if (GET_CODE (parm_rtx) == PARALLEL)
937 {
938 /* Check for a NULL entry in the first slot, used to indicate that the
939 parameter goes both on the stack and in registers. */
940 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
941 for (; i < XVECLEN (parm_rtx, 0); i++)
942 {
943 rtx x = XVECEXP (parm_rtx, 0, i);
944 if (REG_P (XEXP (x, 0)))
945 REG_ATTRS (XEXP (x, 0))
946 = get_reg_attrs (MEM_EXPR (mem),
947 INTVAL (XEXP (x, 1)));
948 }
949 }
950 }
951
952 /* Assign the RTX X to declaration T. */
953 void
954 set_decl_rtl (tree t, rtx x)
955 {
956 DECL_CHECK (t)->decl.rtl = x;
957
958 if (!x)
959 return;
960 /* For register, we maintain the reverse information too. */
961 if (REG_P (x))
962 REG_ATTRS (x) = get_reg_attrs (t, 0);
963 else if (GET_CODE (x) == SUBREG)
964 REG_ATTRS (SUBREG_REG (x))
965 = get_reg_attrs (t, -SUBREG_BYTE (x));
966 if (GET_CODE (x) == CONCAT)
967 {
968 if (REG_P (XEXP (x, 0)))
969 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
970 if (REG_P (XEXP (x, 1)))
971 REG_ATTRS (XEXP (x, 1))
972 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
973 }
974 if (GET_CODE (x) == PARALLEL)
975 {
976 int i;
977 for (i = 0; i < XVECLEN (x, 0); i++)
978 {
979 rtx y = XVECEXP (x, 0, i);
980 if (REG_P (XEXP (y, 0)))
981 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
982 }
983 }
984 }
985
986 /* Assign the RTX X to parameter declaration T. */
987 void
988 set_decl_incoming_rtl (tree t, rtx x)
989 {
990 DECL_INCOMING_RTL (t) = x;
991
992 if (!x)
993 return;
994 /* For register, we maintain the reverse information too. */
995 if (REG_P (x))
996 REG_ATTRS (x) = get_reg_attrs (t, 0);
997 else if (GET_CODE (x) == SUBREG)
998 REG_ATTRS (SUBREG_REG (x))
999 = get_reg_attrs (t, -SUBREG_BYTE (x));
1000 if (GET_CODE (x) == CONCAT)
1001 {
1002 if (REG_P (XEXP (x, 0)))
1003 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1004 if (REG_P (XEXP (x, 1)))
1005 REG_ATTRS (XEXP (x, 1))
1006 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1007 }
1008 if (GET_CODE (x) == PARALLEL)
1009 {
1010 int i, start;
1011
1012 /* Check for a NULL entry, used to indicate that the parameter goes
1013 both on the stack and in registers. */
1014 if (XEXP (XVECEXP (x, 0, 0), 0))
1015 start = 0;
1016 else
1017 start = 1;
1018
1019 for (i = start; i < XVECLEN (x, 0); i++)
1020 {
1021 rtx y = XVECEXP (x, 0, i);
1022 if (REG_P (XEXP (y, 0)))
1023 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1024 }
1025 }
1026 }
1027
1028 /* Identify REG (which may be a CONCAT) as a user register. */
1029
1030 void
1031 mark_user_reg (rtx reg)
1032 {
1033 if (GET_CODE (reg) == CONCAT)
1034 {
1035 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1036 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1037 }
1038 else
1039 {
1040 gcc_assert (REG_P (reg));
1041 REG_USERVAR_P (reg) = 1;
1042 }
1043 }
1044
1045 /* Identify REG as a probable pointer register and show its alignment
1046 as ALIGN, if nonzero. */
1047
1048 void
1049 mark_reg_pointer (rtx reg, int align)
1050 {
1051 if (! REG_POINTER (reg))
1052 {
1053 REG_POINTER (reg) = 1;
1054
1055 if (align)
1056 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1057 }
1058 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1059 /* We can no-longer be sure just how aligned this pointer is. */
1060 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1061 }
1062
1063 /* Return 1 plus largest pseudo reg number used in the current function. */
1064
1065 int
1066 max_reg_num (void)
1067 {
1068 return reg_rtx_no;
1069 }
1070
1071 /* Return 1 + the largest label number used so far in the current function. */
1072
1073 int
1074 max_label_num (void)
1075 {
1076 return label_num;
1077 }
1078
1079 /* Return first label number used in this function (if any were used). */
1080
1081 int
1082 get_first_label_num (void)
1083 {
1084 return first_label_num;
1085 }
1086
1087 /* If the rtx for label was created during the expansion of a nested
1088 function, then first_label_num won't include this label number.
1089 Fix this now so that array indicies work later. */
1090
1091 void
1092 maybe_set_first_label_num (rtx x)
1093 {
1094 if (CODE_LABEL_NUMBER (x) < first_label_num)
1095 first_label_num = CODE_LABEL_NUMBER (x);
1096 }
1097 \f
1098 /* Return a value representing some low-order bits of X, where the number
1099 of low-order bits is given by MODE. Note that no conversion is done
1100 between floating-point and fixed-point values, rather, the bit
1101 representation is returned.
1102
1103 This function handles the cases in common between gen_lowpart, below,
1104 and two variants in cse.c and combine.c. These are the cases that can
1105 be safely handled at all points in the compilation.
1106
1107 If this is not a case we can handle, return 0. */
1108
1109 rtx
1110 gen_lowpart_common (enum machine_mode mode, rtx x)
1111 {
1112 int msize = GET_MODE_SIZE (mode);
1113 int xsize;
1114 int offset = 0;
1115 enum machine_mode innermode;
1116
1117 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1118 so we have to make one up. Yuk. */
1119 innermode = GET_MODE (x);
1120 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1121 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1122 else if (innermode == VOIDmode)
1123 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1124
1125 xsize = GET_MODE_SIZE (innermode);
1126
1127 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1128
1129 if (innermode == mode)
1130 return x;
1131
1132 /* MODE must occupy no more words than the mode of X. */
1133 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1134 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1135 return 0;
1136
1137 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1138 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1139 return 0;
1140
1141 offset = subreg_lowpart_offset (mode, innermode);
1142
1143 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1144 && (GET_MODE_CLASS (mode) == MODE_INT
1145 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1146 {
1147 /* If we are getting the low-order part of something that has been
1148 sign- or zero-extended, we can either just use the object being
1149 extended or make a narrower extension. If we want an even smaller
1150 piece than the size of the object being extended, call ourselves
1151 recursively.
1152
1153 This case is used mostly by combine and cse. */
1154
1155 if (GET_MODE (XEXP (x, 0)) == mode)
1156 return XEXP (x, 0);
1157 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1158 return gen_lowpart_common (mode, XEXP (x, 0));
1159 else if (msize < xsize)
1160 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1161 }
1162 else if (GET_CODE (x) == SUBREG || REG_P (x)
1163 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1164 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1165 return simplify_gen_subreg (mode, x, innermode, offset);
1166
1167 /* Otherwise, we can't do this. */
1168 return 0;
1169 }
1170 \f
1171 rtx
1172 gen_highpart (enum machine_mode mode, rtx x)
1173 {
1174 unsigned int msize = GET_MODE_SIZE (mode);
1175 rtx result;
1176
1177 /* This case loses if X is a subreg. To catch bugs early,
1178 complain if an invalid MODE is used even in other cases. */
1179 gcc_assert (msize <= UNITS_PER_WORD
1180 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1181
1182 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1183 subreg_highpart_offset (mode, GET_MODE (x)));
1184 gcc_assert (result);
1185
1186 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1187 the target if we have a MEM. gen_highpart must return a valid operand,
1188 emitting code if necessary to do so. */
1189 if (MEM_P (result))
1190 {
1191 result = validize_mem (result);
1192 gcc_assert (result);
1193 }
1194
1195 return result;
1196 }
1197
1198 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1199 be VOIDmode constant. */
1200 rtx
1201 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1202 {
1203 if (GET_MODE (exp) != VOIDmode)
1204 {
1205 gcc_assert (GET_MODE (exp) == innermode);
1206 return gen_highpart (outermode, exp);
1207 }
1208 return simplify_gen_subreg (outermode, exp, innermode,
1209 subreg_highpart_offset (outermode, innermode));
1210 }
1211
1212 /* Return offset in bytes to get OUTERMODE low part
1213 of the value in mode INNERMODE stored in memory in target format. */
1214
1215 unsigned int
1216 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1217 {
1218 unsigned int offset = 0;
1219 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1220
1221 if (difference > 0)
1222 {
1223 if (WORDS_BIG_ENDIAN)
1224 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1225 if (BYTES_BIG_ENDIAN)
1226 offset += difference % UNITS_PER_WORD;
1227 }
1228
1229 return offset;
1230 }
1231
1232 /* Return offset in bytes to get OUTERMODE high part
1233 of the value in mode INNERMODE stored in memory in target format. */
1234 unsigned int
1235 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1236 {
1237 unsigned int offset = 0;
1238 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1239
1240 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1241
1242 if (difference > 0)
1243 {
1244 if (! WORDS_BIG_ENDIAN)
1245 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1246 if (! BYTES_BIG_ENDIAN)
1247 offset += difference % UNITS_PER_WORD;
1248 }
1249
1250 return offset;
1251 }
1252
1253 /* Return 1 iff X, assumed to be a SUBREG,
1254 refers to the least significant part of its containing reg.
1255 If X is not a SUBREG, always return 1 (it is its own low part!). */
1256
1257 int
1258 subreg_lowpart_p (rtx x)
1259 {
1260 if (GET_CODE (x) != SUBREG)
1261 return 1;
1262 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1263 return 0;
1264
1265 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1266 == SUBREG_BYTE (x));
1267 }
1268 \f
1269 /* Return subword OFFSET of operand OP.
1270 The word number, OFFSET, is interpreted as the word number starting
1271 at the low-order address. OFFSET 0 is the low-order word if not
1272 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1273
1274 If we cannot extract the required word, we return zero. Otherwise,
1275 an rtx corresponding to the requested word will be returned.
1276
1277 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1278 reload has completed, a valid address will always be returned. After
1279 reload, if a valid address cannot be returned, we return zero.
1280
1281 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1282 it is the responsibility of the caller.
1283
1284 MODE is the mode of OP in case it is a CONST_INT.
1285
1286 ??? This is still rather broken for some cases. The problem for the
1287 moment is that all callers of this thing provide no 'goal mode' to
1288 tell us to work with. This exists because all callers were written
1289 in a word based SUBREG world.
1290 Now use of this function can be deprecated by simplify_subreg in most
1291 cases.
1292 */
1293
1294 rtx
1295 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1296 {
1297 if (mode == VOIDmode)
1298 mode = GET_MODE (op);
1299
1300 gcc_assert (mode != VOIDmode);
1301
1302 /* If OP is narrower than a word, fail. */
1303 if (mode != BLKmode
1304 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1305 return 0;
1306
1307 /* If we want a word outside OP, return zero. */
1308 if (mode != BLKmode
1309 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1310 return const0_rtx;
1311
1312 /* Form a new MEM at the requested address. */
1313 if (MEM_P (op))
1314 {
1315 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1316
1317 if (! validate_address)
1318 return new;
1319
1320 else if (reload_completed)
1321 {
1322 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1323 return 0;
1324 }
1325 else
1326 return replace_equiv_address (new, XEXP (new, 0));
1327 }
1328
1329 /* Rest can be handled by simplify_subreg. */
1330 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1331 }
1332
1333 /* Similar to `operand_subword', but never return 0. If we can't extract
1334 the required subword, put OP into a register and try again. If that fails,
1335 abort. We always validate the address in this case.
1336
1337 MODE is the mode of OP, in case it is CONST_INT. */
1338
1339 rtx
1340 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1341 {
1342 rtx result = operand_subword (op, offset, 1, mode);
1343
1344 if (result)
1345 return result;
1346
1347 if (mode != BLKmode && mode != VOIDmode)
1348 {
1349 /* If this is a register which can not be accessed by words, copy it
1350 to a pseudo register. */
1351 if (REG_P (op))
1352 op = copy_to_reg (op);
1353 else
1354 op = force_reg (mode, op);
1355 }
1356
1357 result = operand_subword (op, offset, 1, mode);
1358 gcc_assert (result);
1359
1360 return result;
1361 }
1362 \f
1363 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1364 or (2) a component ref of something variable. Represent the later with
1365 a NULL expression. */
1366
1367 static tree
1368 component_ref_for_mem_expr (tree ref)
1369 {
1370 tree inner = TREE_OPERAND (ref, 0);
1371
1372 if (TREE_CODE (inner) == COMPONENT_REF)
1373 inner = component_ref_for_mem_expr (inner);
1374 else
1375 {
1376 /* Now remove any conversions: they don't change what the underlying
1377 object is. Likewise for SAVE_EXPR. */
1378 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1379 || TREE_CODE (inner) == NON_LVALUE_EXPR
1380 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1381 || TREE_CODE (inner) == SAVE_EXPR)
1382 inner = TREE_OPERAND (inner, 0);
1383
1384 if (! DECL_P (inner))
1385 inner = NULL_TREE;
1386 }
1387
1388 if (inner == TREE_OPERAND (ref, 0))
1389 return ref;
1390 else
1391 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1392 TREE_OPERAND (ref, 1), NULL_TREE);
1393 }
1394
1395 /* Returns 1 if both MEM_EXPR can be considered equal
1396 and 0 otherwise. */
1397
1398 int
1399 mem_expr_equal_p (tree expr1, tree expr2)
1400 {
1401 if (expr1 == expr2)
1402 return 1;
1403
1404 if (! expr1 || ! expr2)
1405 return 0;
1406
1407 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1408 return 0;
1409
1410 if (TREE_CODE (expr1) == COMPONENT_REF)
1411 return
1412 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1413 TREE_OPERAND (expr2, 0))
1414 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1415 TREE_OPERAND (expr2, 1));
1416
1417 if (INDIRECT_REF_P (expr1))
1418 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1419 TREE_OPERAND (expr2, 0));
1420
1421 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1422 have been resolved here. */
1423 gcc_assert (DECL_P (expr1));
1424
1425 /* Decls with different pointers can't be equal. */
1426 return 0;
1427 }
1428
1429 /* Given REF, a MEM, and T, either the type of X or the expression
1430 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1431 if we are making a new object of this type. BITPOS is nonzero if
1432 there is an offset outstanding on T that will be applied later. */
1433
1434 void
1435 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1436 HOST_WIDE_INT bitpos)
1437 {
1438 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1439 tree expr = MEM_EXPR (ref);
1440 rtx offset = MEM_OFFSET (ref);
1441 rtx size = MEM_SIZE (ref);
1442 unsigned int align = MEM_ALIGN (ref);
1443 HOST_WIDE_INT apply_bitpos = 0;
1444 tree type;
1445
1446 /* It can happen that type_for_mode was given a mode for which there
1447 is no language-level type. In which case it returns NULL, which
1448 we can see here. */
1449 if (t == NULL_TREE)
1450 return;
1451
1452 type = TYPE_P (t) ? t : TREE_TYPE (t);
1453 if (type == error_mark_node)
1454 return;
1455
1456 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1457 wrong answer, as it assumes that DECL_RTL already has the right alias
1458 info. Callers should not set DECL_RTL until after the call to
1459 set_mem_attributes. */
1460 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1461
1462 /* Get the alias set from the expression or type (perhaps using a
1463 front-end routine) and use it. */
1464 alias = get_alias_set (t);
1465
1466 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1467 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1468 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1469 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1470
1471 /* If we are making an object of this type, or if this is a DECL, we know
1472 that it is a scalar if the type is not an aggregate. */
1473 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1474 MEM_SCALAR_P (ref) = 1;
1475
1476 /* We can set the alignment from the type if we are making an object,
1477 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1478 if (objectp || TREE_CODE (t) == INDIRECT_REF
1479 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1480 || TYPE_ALIGN_OK (type))
1481 align = MAX (align, TYPE_ALIGN (type));
1482 else
1483 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1484 {
1485 if (integer_zerop (TREE_OPERAND (t, 1)))
1486 /* We don't know anything about the alignment. */
1487 align = BITS_PER_UNIT;
1488 else
1489 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1490 }
1491
1492 /* If the size is known, we can set that. */
1493 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1494 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1495
1496 /* If T is not a type, we may be able to deduce some more information about
1497 the expression. */
1498 if (! TYPE_P (t))
1499 {
1500 tree base = get_base_address (t);
1501 if (base && DECL_P (base)
1502 && TREE_READONLY (base)
1503 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1504 {
1505 tree base_type = TREE_TYPE (base);
1506 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1507 || DECL_ARTIFICIAL (base));
1508 MEM_READONLY_P (ref) = 1;
1509 }
1510
1511 if (TREE_THIS_VOLATILE (t))
1512 MEM_VOLATILE_P (ref) = 1;
1513
1514 /* Now remove any conversions: they don't change what the underlying
1515 object is. Likewise for SAVE_EXPR. */
1516 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1517 || TREE_CODE (t) == NON_LVALUE_EXPR
1518 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1519 || TREE_CODE (t) == SAVE_EXPR)
1520 t = TREE_OPERAND (t, 0);
1521
1522 /* If this expression uses it's parent's alias set, mark it such
1523 that we won't change it. */
1524 if (component_uses_parent_alias_set (t))
1525 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1526
1527 /* If this is a decl, set the attributes of the MEM from it. */
1528 if (DECL_P (t))
1529 {
1530 expr = t;
1531 offset = const0_rtx;
1532 apply_bitpos = bitpos;
1533 size = (DECL_SIZE_UNIT (t)
1534 && host_integerp (DECL_SIZE_UNIT (t), 1)
1535 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1536 align = DECL_ALIGN (t);
1537 }
1538
1539 /* If this is a constant, we know the alignment. */
1540 else if (CONSTANT_CLASS_P (t))
1541 {
1542 align = TYPE_ALIGN (type);
1543 #ifdef CONSTANT_ALIGNMENT
1544 align = CONSTANT_ALIGNMENT (t, align);
1545 #endif
1546 }
1547
1548 /* If this is a field reference and not a bit-field, record it. */
1549 /* ??? There is some information that can be gleened from bit-fields,
1550 such as the word offset in the structure that might be modified.
1551 But skip it for now. */
1552 else if (TREE_CODE (t) == COMPONENT_REF
1553 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1554 {
1555 expr = component_ref_for_mem_expr (t);
1556 offset = const0_rtx;
1557 apply_bitpos = bitpos;
1558 /* ??? Any reason the field size would be different than
1559 the size we got from the type? */
1560 }
1561
1562 /* If this is an array reference, look for an outer field reference. */
1563 else if (TREE_CODE (t) == ARRAY_REF)
1564 {
1565 tree off_tree = size_zero_node;
1566 /* We can't modify t, because we use it at the end of the
1567 function. */
1568 tree t2 = t;
1569
1570 do
1571 {
1572 tree index = TREE_OPERAND (t2, 1);
1573 tree low_bound = array_ref_low_bound (t2);
1574 tree unit_size = array_ref_element_size (t2);
1575
1576 /* We assume all arrays have sizes that are a multiple of a byte.
1577 First subtract the lower bound, if any, in the type of the
1578 index, then convert to sizetype and multiply by the size of
1579 the array element. */
1580 if (! integer_zerop (low_bound))
1581 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1582 index, low_bound));
1583
1584 off_tree = size_binop (PLUS_EXPR,
1585 size_binop (MULT_EXPR, convert (sizetype,
1586 index),
1587 unit_size),
1588 off_tree);
1589 t2 = TREE_OPERAND (t2, 0);
1590 }
1591 while (TREE_CODE (t2) == ARRAY_REF);
1592
1593 if (DECL_P (t2))
1594 {
1595 expr = t2;
1596 offset = NULL;
1597 if (host_integerp (off_tree, 1))
1598 {
1599 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1600 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1601 align = DECL_ALIGN (t2);
1602 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1603 align = aoff;
1604 offset = GEN_INT (ioff);
1605 apply_bitpos = bitpos;
1606 }
1607 }
1608 else if (TREE_CODE (t2) == COMPONENT_REF)
1609 {
1610 expr = component_ref_for_mem_expr (t2);
1611 if (host_integerp (off_tree, 1))
1612 {
1613 offset = GEN_INT (tree_low_cst (off_tree, 1));
1614 apply_bitpos = bitpos;
1615 }
1616 /* ??? Any reason the field size would be different than
1617 the size we got from the type? */
1618 }
1619 else if (flag_argument_noalias > 1
1620 && (INDIRECT_REF_P (t2))
1621 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1622 {
1623 expr = t2;
1624 offset = NULL;
1625 }
1626 }
1627
1628 /* If this is a Fortran indirect argument reference, record the
1629 parameter decl. */
1630 else if (flag_argument_noalias > 1
1631 && (INDIRECT_REF_P (t))
1632 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1633 {
1634 expr = t;
1635 offset = NULL;
1636 }
1637 }
1638
1639 /* If we modified OFFSET based on T, then subtract the outstanding
1640 bit position offset. Similarly, increase the size of the accessed
1641 object to contain the negative offset. */
1642 if (apply_bitpos)
1643 {
1644 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1645 if (size)
1646 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1647 }
1648
1649 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1650 {
1651 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1652 we're overlapping. */
1653 offset = NULL;
1654 expr = NULL;
1655 }
1656
1657 /* Now set the attributes we computed above. */
1658 MEM_ATTRS (ref)
1659 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1660
1661 /* If this is already known to be a scalar or aggregate, we are done. */
1662 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1663 return;
1664
1665 /* If it is a reference into an aggregate, this is part of an aggregate.
1666 Otherwise we don't know. */
1667 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1668 || TREE_CODE (t) == ARRAY_RANGE_REF
1669 || TREE_CODE (t) == BIT_FIELD_REF)
1670 MEM_IN_STRUCT_P (ref) = 1;
1671 }
1672
1673 void
1674 set_mem_attributes (rtx ref, tree t, int objectp)
1675 {
1676 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1677 }
1678
1679 /* Set the decl for MEM to DECL. */
1680
1681 void
1682 set_mem_attrs_from_reg (rtx mem, rtx reg)
1683 {
1684 MEM_ATTRS (mem)
1685 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1686 GEN_INT (REG_OFFSET (reg)),
1687 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1688 }
1689
1690 /* Set the alias set of MEM to SET. */
1691
1692 void
1693 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1694 {
1695 #ifdef ENABLE_CHECKING
1696 /* If the new and old alias sets don't conflict, something is wrong. */
1697 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1698 #endif
1699
1700 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1701 MEM_SIZE (mem), MEM_ALIGN (mem),
1702 GET_MODE (mem));
1703 }
1704
1705 /* Set the alignment of MEM to ALIGN bits. */
1706
1707 void
1708 set_mem_align (rtx mem, unsigned int align)
1709 {
1710 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1711 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1712 GET_MODE (mem));
1713 }
1714
1715 /* Set the expr for MEM to EXPR. */
1716
1717 void
1718 set_mem_expr (rtx mem, tree expr)
1719 {
1720 MEM_ATTRS (mem)
1721 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1722 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1723 }
1724
1725 /* Set the offset of MEM to OFFSET. */
1726
1727 void
1728 set_mem_offset (rtx mem, rtx offset)
1729 {
1730 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1731 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1732 GET_MODE (mem));
1733 }
1734
1735 /* Set the size of MEM to SIZE. */
1736
1737 void
1738 set_mem_size (rtx mem, rtx size)
1739 {
1740 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1741 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1742 GET_MODE (mem));
1743 }
1744 \f
1745 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1746 and its address changed to ADDR. (VOIDmode means don't change the mode.
1747 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1748 returned memory location is required to be valid. The memory
1749 attributes are not changed. */
1750
1751 static rtx
1752 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1753 {
1754 rtx new;
1755
1756 gcc_assert (MEM_P (memref));
1757 if (mode == VOIDmode)
1758 mode = GET_MODE (memref);
1759 if (addr == 0)
1760 addr = XEXP (memref, 0);
1761 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1762 && (!validate || memory_address_p (mode, addr)))
1763 return memref;
1764
1765 if (validate)
1766 {
1767 if (reload_in_progress || reload_completed)
1768 gcc_assert (memory_address_p (mode, addr));
1769 else
1770 addr = memory_address (mode, addr);
1771 }
1772
1773 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1774 return memref;
1775
1776 new = gen_rtx_MEM (mode, addr);
1777 MEM_COPY_ATTRIBUTES (new, memref);
1778 return new;
1779 }
1780
1781 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1782 way we are changing MEMREF, so we only preserve the alias set. */
1783
1784 rtx
1785 change_address (rtx memref, enum machine_mode mode, rtx addr)
1786 {
1787 rtx new = change_address_1 (memref, mode, addr, 1), size;
1788 enum machine_mode mmode = GET_MODE (new);
1789 unsigned int align;
1790
1791 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1792 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1793
1794 /* If there are no changes, just return the original memory reference. */
1795 if (new == memref)
1796 {
1797 if (MEM_ATTRS (memref) == 0
1798 || (MEM_EXPR (memref) == NULL
1799 && MEM_OFFSET (memref) == NULL
1800 && MEM_SIZE (memref) == size
1801 && MEM_ALIGN (memref) == align))
1802 return new;
1803
1804 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1805 MEM_COPY_ATTRIBUTES (new, memref);
1806 }
1807
1808 MEM_ATTRS (new)
1809 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1810
1811 return new;
1812 }
1813
1814 /* Return a memory reference like MEMREF, but with its mode changed
1815 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1816 nonzero, the memory address is forced to be valid.
1817 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1818 and caller is responsible for adjusting MEMREF base register. */
1819
1820 rtx
1821 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1822 int validate, int adjust)
1823 {
1824 rtx addr = XEXP (memref, 0);
1825 rtx new;
1826 rtx memoffset = MEM_OFFSET (memref);
1827 rtx size = 0;
1828 unsigned int memalign = MEM_ALIGN (memref);
1829
1830 /* If there are no changes, just return the original memory reference. */
1831 if (mode == GET_MODE (memref) && !offset
1832 && (!validate || memory_address_p (mode, addr)))
1833 return memref;
1834
1835 /* ??? Prefer to create garbage instead of creating shared rtl.
1836 This may happen even if offset is nonzero -- consider
1837 (plus (plus reg reg) const_int) -- so do this always. */
1838 addr = copy_rtx (addr);
1839
1840 if (adjust)
1841 {
1842 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1843 object, we can merge it into the LO_SUM. */
1844 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1845 && offset >= 0
1846 && (unsigned HOST_WIDE_INT) offset
1847 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1848 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1849 plus_constant (XEXP (addr, 1), offset));
1850 else
1851 addr = plus_constant (addr, offset);
1852 }
1853
1854 new = change_address_1 (memref, mode, addr, validate);
1855
1856 /* Compute the new values of the memory attributes due to this adjustment.
1857 We add the offsets and update the alignment. */
1858 if (memoffset)
1859 memoffset = GEN_INT (offset + INTVAL (memoffset));
1860
1861 /* Compute the new alignment by taking the MIN of the alignment and the
1862 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1863 if zero. */
1864 if (offset != 0)
1865 memalign
1866 = MIN (memalign,
1867 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1868
1869 /* We can compute the size in a number of ways. */
1870 if (GET_MODE (new) != BLKmode)
1871 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1872 else if (MEM_SIZE (memref))
1873 size = plus_constant (MEM_SIZE (memref), -offset);
1874
1875 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1876 memoffset, size, memalign, GET_MODE (new));
1877
1878 /* At some point, we should validate that this offset is within the object,
1879 if all the appropriate values are known. */
1880 return new;
1881 }
1882
1883 /* Return a memory reference like MEMREF, but with its mode changed
1884 to MODE and its address changed to ADDR, which is assumed to be
1885 MEMREF offseted by OFFSET bytes. If VALIDATE is
1886 nonzero, the memory address is forced to be valid. */
1887
1888 rtx
1889 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1890 HOST_WIDE_INT offset, int validate)
1891 {
1892 memref = change_address_1 (memref, VOIDmode, addr, validate);
1893 return adjust_address_1 (memref, mode, offset, validate, 0);
1894 }
1895
1896 /* Return a memory reference like MEMREF, but whose address is changed by
1897 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1898 known to be in OFFSET (possibly 1). */
1899
1900 rtx
1901 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1902 {
1903 rtx new, addr = XEXP (memref, 0);
1904
1905 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1906
1907 /* At this point we don't know _why_ the address is invalid. It
1908 could have secondary memory references, multiplies or anything.
1909
1910 However, if we did go and rearrange things, we can wind up not
1911 being able to recognize the magic around pic_offset_table_rtx.
1912 This stuff is fragile, and is yet another example of why it is
1913 bad to expose PIC machinery too early. */
1914 if (! memory_address_p (GET_MODE (memref), new)
1915 && GET_CODE (addr) == PLUS
1916 && XEXP (addr, 0) == pic_offset_table_rtx)
1917 {
1918 addr = force_reg (GET_MODE (addr), addr);
1919 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1920 }
1921
1922 update_temp_slot_address (XEXP (memref, 0), new);
1923 new = change_address_1 (memref, VOIDmode, new, 1);
1924
1925 /* If there are no changes, just return the original memory reference. */
1926 if (new == memref)
1927 return new;
1928
1929 /* Update the alignment to reflect the offset. Reset the offset, which
1930 we don't know. */
1931 MEM_ATTRS (new)
1932 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1933 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1934 GET_MODE (new));
1935 return new;
1936 }
1937
1938 /* Return a memory reference like MEMREF, but with its address changed to
1939 ADDR. The caller is asserting that the actual piece of memory pointed
1940 to is the same, just the form of the address is being changed, such as
1941 by putting something into a register. */
1942
1943 rtx
1944 replace_equiv_address (rtx memref, rtx addr)
1945 {
1946 /* change_address_1 copies the memory attribute structure without change
1947 and that's exactly what we want here. */
1948 update_temp_slot_address (XEXP (memref, 0), addr);
1949 return change_address_1 (memref, VOIDmode, addr, 1);
1950 }
1951
1952 /* Likewise, but the reference is not required to be valid. */
1953
1954 rtx
1955 replace_equiv_address_nv (rtx memref, rtx addr)
1956 {
1957 return change_address_1 (memref, VOIDmode, addr, 0);
1958 }
1959
1960 /* Return a memory reference like MEMREF, but with its mode widened to
1961 MODE and offset by OFFSET. This would be used by targets that e.g.
1962 cannot issue QImode memory operations and have to use SImode memory
1963 operations plus masking logic. */
1964
1965 rtx
1966 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1967 {
1968 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1969 tree expr = MEM_EXPR (new);
1970 rtx memoffset = MEM_OFFSET (new);
1971 unsigned int size = GET_MODE_SIZE (mode);
1972
1973 /* If there are no changes, just return the original memory reference. */
1974 if (new == memref)
1975 return new;
1976
1977 /* If we don't know what offset we were at within the expression, then
1978 we can't know if we've overstepped the bounds. */
1979 if (! memoffset)
1980 expr = NULL_TREE;
1981
1982 while (expr)
1983 {
1984 if (TREE_CODE (expr) == COMPONENT_REF)
1985 {
1986 tree field = TREE_OPERAND (expr, 1);
1987 tree offset = component_ref_field_offset (expr);
1988
1989 if (! DECL_SIZE_UNIT (field))
1990 {
1991 expr = NULL_TREE;
1992 break;
1993 }
1994
1995 /* Is the field at least as large as the access? If so, ok,
1996 otherwise strip back to the containing structure. */
1997 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
1998 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
1999 && INTVAL (memoffset) >= 0)
2000 break;
2001
2002 if (! host_integerp (offset, 1))
2003 {
2004 expr = NULL_TREE;
2005 break;
2006 }
2007
2008 expr = TREE_OPERAND (expr, 0);
2009 memoffset
2010 = (GEN_INT (INTVAL (memoffset)
2011 + tree_low_cst (offset, 1)
2012 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2013 / BITS_PER_UNIT)));
2014 }
2015 /* Similarly for the decl. */
2016 else if (DECL_P (expr)
2017 && DECL_SIZE_UNIT (expr)
2018 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2019 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2020 && (! memoffset || INTVAL (memoffset) >= 0))
2021 break;
2022 else
2023 {
2024 /* The widened memory access overflows the expression, which means
2025 that it could alias another expression. Zap it. */
2026 expr = NULL_TREE;
2027 break;
2028 }
2029 }
2030
2031 if (! expr)
2032 memoffset = NULL_RTX;
2033
2034 /* The widened memory may alias other stuff, so zap the alias set. */
2035 /* ??? Maybe use get_alias_set on any remaining expression. */
2036
2037 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2038 MEM_ALIGN (new), mode);
2039
2040 return new;
2041 }
2042 \f
2043 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2044
2045 rtx
2046 gen_label_rtx (void)
2047 {
2048 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2049 NULL, label_num++, NULL);
2050 }
2051 \f
2052 /* For procedure integration. */
2053
2054 /* Install new pointers to the first and last insns in the chain.
2055 Also, set cur_insn_uid to one higher than the last in use.
2056 Used for an inline-procedure after copying the insn chain. */
2057
2058 void
2059 set_new_first_and_last_insn (rtx first, rtx last)
2060 {
2061 rtx insn;
2062
2063 first_insn = first;
2064 last_insn = last;
2065 cur_insn_uid = 0;
2066
2067 for (insn = first; insn; insn = NEXT_INSN (insn))
2068 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2069
2070 cur_insn_uid++;
2071 }
2072 \f
2073 /* Go through all the RTL insn bodies and copy any invalid shared
2074 structure. This routine should only be called once. */
2075
2076 static void
2077 unshare_all_rtl_1 (tree fndecl, rtx insn)
2078 {
2079 tree decl;
2080
2081 /* Make sure that virtual parameters are not shared. */
2082 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2083 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2084
2085 /* Make sure that virtual stack slots are not shared. */
2086 unshare_all_decls (DECL_INITIAL (fndecl));
2087
2088 /* Unshare just about everything else. */
2089 unshare_all_rtl_in_chain (insn);
2090
2091 /* Make sure the addresses of stack slots found outside the insn chain
2092 (such as, in DECL_RTL of a variable) are not shared
2093 with the insn chain.
2094
2095 This special care is necessary when the stack slot MEM does not
2096 actually appear in the insn chain. If it does appear, its address
2097 is unshared from all else at that point. */
2098 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2099 }
2100
2101 /* Go through all the RTL insn bodies and copy any invalid shared
2102 structure, again. This is a fairly expensive thing to do so it
2103 should be done sparingly. */
2104
2105 void
2106 unshare_all_rtl_again (rtx insn)
2107 {
2108 rtx p;
2109 tree decl;
2110
2111 for (p = insn; p; p = NEXT_INSN (p))
2112 if (INSN_P (p))
2113 {
2114 reset_used_flags (PATTERN (p));
2115 reset_used_flags (REG_NOTES (p));
2116 reset_used_flags (LOG_LINKS (p));
2117 }
2118
2119 /* Make sure that virtual stack slots are not shared. */
2120 reset_used_decls (DECL_INITIAL (cfun->decl));
2121
2122 /* Make sure that virtual parameters are not shared. */
2123 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2124 reset_used_flags (DECL_RTL (decl));
2125
2126 reset_used_flags (stack_slot_list);
2127
2128 unshare_all_rtl_1 (cfun->decl, insn);
2129 }
2130
2131 void
2132 unshare_all_rtl (void)
2133 {
2134 unshare_all_rtl_1 (current_function_decl, get_insns ());
2135 }
2136
2137 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2138 Recursively does the same for subexpressions. */
2139
2140 static void
2141 verify_rtx_sharing (rtx orig, rtx insn)
2142 {
2143 rtx x = orig;
2144 int i;
2145 enum rtx_code code;
2146 const char *format_ptr;
2147
2148 if (x == 0)
2149 return;
2150
2151 code = GET_CODE (x);
2152
2153 /* These types may be freely shared. */
2154
2155 switch (code)
2156 {
2157 case REG:
2158 case CONST_INT:
2159 case CONST_DOUBLE:
2160 case CONST_VECTOR:
2161 case SYMBOL_REF:
2162 case LABEL_REF:
2163 case CODE_LABEL:
2164 case PC:
2165 case CC0:
2166 case SCRATCH:
2167 return;
2168 /* SCRATCH must be shared because they represent distinct values. */
2169 case CLOBBER:
2170 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2171 return;
2172 break;
2173
2174 case CONST:
2175 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2176 a LABEL_REF, it isn't sharable. */
2177 if (GET_CODE (XEXP (x, 0)) == PLUS
2178 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2179 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2180 return;
2181 break;
2182
2183 case MEM:
2184 /* A MEM is allowed to be shared if its address is constant. */
2185 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2186 || reload_completed || reload_in_progress)
2187 return;
2188
2189 break;
2190
2191 default:
2192 break;
2193 }
2194
2195 /* This rtx may not be shared. If it has already been seen,
2196 replace it with a copy of itself. */
2197 #ifdef ENABLE_CHECKING
2198 if (RTX_FLAG (x, used))
2199 {
2200 error ("Invalid rtl sharing found in the insn");
2201 debug_rtx (insn);
2202 error ("Shared rtx");
2203 debug_rtx (x);
2204 internal_error ("Internal consistency failure");
2205 }
2206 #endif
2207 gcc_assert (!RTX_FLAG (x, used));
2208
2209 RTX_FLAG (x, used) = 1;
2210
2211 /* Now scan the subexpressions recursively. */
2212
2213 format_ptr = GET_RTX_FORMAT (code);
2214
2215 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2216 {
2217 switch (*format_ptr++)
2218 {
2219 case 'e':
2220 verify_rtx_sharing (XEXP (x, i), insn);
2221 break;
2222
2223 case 'E':
2224 if (XVEC (x, i) != NULL)
2225 {
2226 int j;
2227 int len = XVECLEN (x, i);
2228
2229 for (j = 0; j < len; j++)
2230 {
2231 /* We allow sharing of ASM_OPERANDS inside single
2232 instruction. */
2233 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2234 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2235 == ASM_OPERANDS))
2236 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2237 else
2238 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2239 }
2240 }
2241 break;
2242 }
2243 }
2244 return;
2245 }
2246
2247 /* Go through all the RTL insn bodies and check that there is no unexpected
2248 sharing in between the subexpressions. */
2249
2250 void
2251 verify_rtl_sharing (void)
2252 {
2253 rtx p;
2254
2255 for (p = get_insns (); p; p = NEXT_INSN (p))
2256 if (INSN_P (p))
2257 {
2258 reset_used_flags (PATTERN (p));
2259 reset_used_flags (REG_NOTES (p));
2260 reset_used_flags (LOG_LINKS (p));
2261 }
2262
2263 for (p = get_insns (); p; p = NEXT_INSN (p))
2264 if (INSN_P (p))
2265 {
2266 verify_rtx_sharing (PATTERN (p), p);
2267 verify_rtx_sharing (REG_NOTES (p), p);
2268 verify_rtx_sharing (LOG_LINKS (p), p);
2269 }
2270 }
2271
2272 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2273 Assumes the mark bits are cleared at entry. */
2274
2275 void
2276 unshare_all_rtl_in_chain (rtx insn)
2277 {
2278 for (; insn; insn = NEXT_INSN (insn))
2279 if (INSN_P (insn))
2280 {
2281 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2282 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2283 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2284 }
2285 }
2286
2287 /* Go through all virtual stack slots of a function and copy any
2288 shared structure. */
2289 static void
2290 unshare_all_decls (tree blk)
2291 {
2292 tree t;
2293
2294 /* Copy shared decls. */
2295 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2296 if (DECL_RTL_SET_P (t))
2297 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2298
2299 /* Now process sub-blocks. */
2300 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2301 unshare_all_decls (t);
2302 }
2303
2304 /* Go through all virtual stack slots of a function and mark them as
2305 not shared. */
2306 static void
2307 reset_used_decls (tree blk)
2308 {
2309 tree t;
2310
2311 /* Mark decls. */
2312 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2313 if (DECL_RTL_SET_P (t))
2314 reset_used_flags (DECL_RTL (t));
2315
2316 /* Now process sub-blocks. */
2317 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2318 reset_used_decls (t);
2319 }
2320
2321 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2322 Recursively does the same for subexpressions. Uses
2323 copy_rtx_if_shared_1 to reduce stack space. */
2324
2325 rtx
2326 copy_rtx_if_shared (rtx orig)
2327 {
2328 copy_rtx_if_shared_1 (&orig);
2329 return orig;
2330 }
2331
2332 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2333 use. Recursively does the same for subexpressions. */
2334
2335 static void
2336 copy_rtx_if_shared_1 (rtx *orig1)
2337 {
2338 rtx x;
2339 int i;
2340 enum rtx_code code;
2341 rtx *last_ptr;
2342 const char *format_ptr;
2343 int copied = 0;
2344 int length;
2345
2346 /* Repeat is used to turn tail-recursion into iteration. */
2347 repeat:
2348 x = *orig1;
2349
2350 if (x == 0)
2351 return;
2352
2353 code = GET_CODE (x);
2354
2355 /* These types may be freely shared. */
2356
2357 switch (code)
2358 {
2359 case REG:
2360 case CONST_INT:
2361 case CONST_DOUBLE:
2362 case CONST_VECTOR:
2363 case SYMBOL_REF:
2364 case LABEL_REF:
2365 case CODE_LABEL:
2366 case PC:
2367 case CC0:
2368 case SCRATCH:
2369 /* SCRATCH must be shared because they represent distinct values. */
2370 return;
2371 case CLOBBER:
2372 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2373 return;
2374 break;
2375
2376 case CONST:
2377 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2378 a LABEL_REF, it isn't sharable. */
2379 if (GET_CODE (XEXP (x, 0)) == PLUS
2380 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2381 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2382 return;
2383 break;
2384
2385 case INSN:
2386 case JUMP_INSN:
2387 case CALL_INSN:
2388 case NOTE:
2389 case BARRIER:
2390 /* The chain of insns is not being copied. */
2391 return;
2392
2393 default:
2394 break;
2395 }
2396
2397 /* This rtx may not be shared. If it has already been seen,
2398 replace it with a copy of itself. */
2399
2400 if (RTX_FLAG (x, used))
2401 {
2402 rtx copy;
2403
2404 copy = rtx_alloc (code);
2405 memcpy (copy, x, RTX_SIZE (code));
2406 x = copy;
2407 copied = 1;
2408 }
2409 RTX_FLAG (x, used) = 1;
2410
2411 /* Now scan the subexpressions recursively.
2412 We can store any replaced subexpressions directly into X
2413 since we know X is not shared! Any vectors in X
2414 must be copied if X was copied. */
2415
2416 format_ptr = GET_RTX_FORMAT (code);
2417 length = GET_RTX_LENGTH (code);
2418 last_ptr = NULL;
2419
2420 for (i = 0; i < length; i++)
2421 {
2422 switch (*format_ptr++)
2423 {
2424 case 'e':
2425 if (last_ptr)
2426 copy_rtx_if_shared_1 (last_ptr);
2427 last_ptr = &XEXP (x, i);
2428 break;
2429
2430 case 'E':
2431 if (XVEC (x, i) != NULL)
2432 {
2433 int j;
2434 int len = XVECLEN (x, i);
2435
2436 /* Copy the vector iff I copied the rtx and the length
2437 is nonzero. */
2438 if (copied && len > 0)
2439 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2440
2441 /* Call recursively on all inside the vector. */
2442 for (j = 0; j < len; j++)
2443 {
2444 if (last_ptr)
2445 copy_rtx_if_shared_1 (last_ptr);
2446 last_ptr = &XVECEXP (x, i, j);
2447 }
2448 }
2449 break;
2450 }
2451 }
2452 *orig1 = x;
2453 if (last_ptr)
2454 {
2455 orig1 = last_ptr;
2456 goto repeat;
2457 }
2458 return;
2459 }
2460
2461 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2462 to look for shared sub-parts. */
2463
2464 void
2465 reset_used_flags (rtx x)
2466 {
2467 int i, j;
2468 enum rtx_code code;
2469 const char *format_ptr;
2470 int length;
2471
2472 /* Repeat is used to turn tail-recursion into iteration. */
2473 repeat:
2474 if (x == 0)
2475 return;
2476
2477 code = GET_CODE (x);
2478
2479 /* These types may be freely shared so we needn't do any resetting
2480 for them. */
2481
2482 switch (code)
2483 {
2484 case REG:
2485 case CONST_INT:
2486 case CONST_DOUBLE:
2487 case CONST_VECTOR:
2488 case SYMBOL_REF:
2489 case CODE_LABEL:
2490 case PC:
2491 case CC0:
2492 return;
2493
2494 case INSN:
2495 case JUMP_INSN:
2496 case CALL_INSN:
2497 case NOTE:
2498 case LABEL_REF:
2499 case BARRIER:
2500 /* The chain of insns is not being copied. */
2501 return;
2502
2503 default:
2504 break;
2505 }
2506
2507 RTX_FLAG (x, used) = 0;
2508
2509 format_ptr = GET_RTX_FORMAT (code);
2510 length = GET_RTX_LENGTH (code);
2511
2512 for (i = 0; i < length; i++)
2513 {
2514 switch (*format_ptr++)
2515 {
2516 case 'e':
2517 if (i == length-1)
2518 {
2519 x = XEXP (x, i);
2520 goto repeat;
2521 }
2522 reset_used_flags (XEXP (x, i));
2523 break;
2524
2525 case 'E':
2526 for (j = 0; j < XVECLEN (x, i); j++)
2527 reset_used_flags (XVECEXP (x, i, j));
2528 break;
2529 }
2530 }
2531 }
2532
2533 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2534 to look for shared sub-parts. */
2535
2536 void
2537 set_used_flags (rtx x)
2538 {
2539 int i, j;
2540 enum rtx_code code;
2541 const char *format_ptr;
2542
2543 if (x == 0)
2544 return;
2545
2546 code = GET_CODE (x);
2547
2548 /* These types may be freely shared so we needn't do any resetting
2549 for them. */
2550
2551 switch (code)
2552 {
2553 case REG:
2554 case CONST_INT:
2555 case CONST_DOUBLE:
2556 case CONST_VECTOR:
2557 case SYMBOL_REF:
2558 case CODE_LABEL:
2559 case PC:
2560 case CC0:
2561 return;
2562
2563 case INSN:
2564 case JUMP_INSN:
2565 case CALL_INSN:
2566 case NOTE:
2567 case LABEL_REF:
2568 case BARRIER:
2569 /* The chain of insns is not being copied. */
2570 return;
2571
2572 default:
2573 break;
2574 }
2575
2576 RTX_FLAG (x, used) = 1;
2577
2578 format_ptr = GET_RTX_FORMAT (code);
2579 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2580 {
2581 switch (*format_ptr++)
2582 {
2583 case 'e':
2584 set_used_flags (XEXP (x, i));
2585 break;
2586
2587 case 'E':
2588 for (j = 0; j < XVECLEN (x, i); j++)
2589 set_used_flags (XVECEXP (x, i, j));
2590 break;
2591 }
2592 }
2593 }
2594 \f
2595 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2596 Return X or the rtx for the pseudo reg the value of X was copied into.
2597 OTHER must be valid as a SET_DEST. */
2598
2599 rtx
2600 make_safe_from (rtx x, rtx other)
2601 {
2602 while (1)
2603 switch (GET_CODE (other))
2604 {
2605 case SUBREG:
2606 other = SUBREG_REG (other);
2607 break;
2608 case STRICT_LOW_PART:
2609 case SIGN_EXTEND:
2610 case ZERO_EXTEND:
2611 other = XEXP (other, 0);
2612 break;
2613 default:
2614 goto done;
2615 }
2616 done:
2617 if ((MEM_P (other)
2618 && ! CONSTANT_P (x)
2619 && !REG_P (x)
2620 && GET_CODE (x) != SUBREG)
2621 || (REG_P (other)
2622 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2623 || reg_mentioned_p (other, x))))
2624 {
2625 rtx temp = gen_reg_rtx (GET_MODE (x));
2626 emit_move_insn (temp, x);
2627 return temp;
2628 }
2629 return x;
2630 }
2631 \f
2632 /* Emission of insns (adding them to the doubly-linked list). */
2633
2634 /* Return the first insn of the current sequence or current function. */
2635
2636 rtx
2637 get_insns (void)
2638 {
2639 return first_insn;
2640 }
2641
2642 /* Specify a new insn as the first in the chain. */
2643
2644 void
2645 set_first_insn (rtx insn)
2646 {
2647 gcc_assert (!PREV_INSN (insn));
2648 first_insn = insn;
2649 }
2650
2651 /* Return the last insn emitted in current sequence or current function. */
2652
2653 rtx
2654 get_last_insn (void)
2655 {
2656 return last_insn;
2657 }
2658
2659 /* Specify a new insn as the last in the chain. */
2660
2661 void
2662 set_last_insn (rtx insn)
2663 {
2664 gcc_assert (!NEXT_INSN (insn));
2665 last_insn = insn;
2666 }
2667
2668 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2669
2670 rtx
2671 get_last_insn_anywhere (void)
2672 {
2673 struct sequence_stack *stack;
2674 if (last_insn)
2675 return last_insn;
2676 for (stack = seq_stack; stack; stack = stack->next)
2677 if (stack->last != 0)
2678 return stack->last;
2679 return 0;
2680 }
2681
2682 /* Return the first nonnote insn emitted in current sequence or current
2683 function. This routine looks inside SEQUENCEs. */
2684
2685 rtx
2686 get_first_nonnote_insn (void)
2687 {
2688 rtx insn = first_insn;
2689
2690 if (insn)
2691 {
2692 if (NOTE_P (insn))
2693 for (insn = next_insn (insn);
2694 insn && NOTE_P (insn);
2695 insn = next_insn (insn))
2696 continue;
2697 else
2698 {
2699 if (GET_CODE (insn) == INSN
2700 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2701 insn = XVECEXP (PATTERN (insn), 0, 0);
2702 }
2703 }
2704
2705 return insn;
2706 }
2707
2708 /* Return the last nonnote insn emitted in current sequence or current
2709 function. This routine looks inside SEQUENCEs. */
2710
2711 rtx
2712 get_last_nonnote_insn (void)
2713 {
2714 rtx insn = last_insn;
2715
2716 if (insn)
2717 {
2718 if (NOTE_P (insn))
2719 for (insn = previous_insn (insn);
2720 insn && NOTE_P (insn);
2721 insn = previous_insn (insn))
2722 continue;
2723 else
2724 {
2725 if (GET_CODE (insn) == INSN
2726 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2727 insn = XVECEXP (PATTERN (insn), 0,
2728 XVECLEN (PATTERN (insn), 0) - 1);
2729 }
2730 }
2731
2732 return insn;
2733 }
2734
2735 /* Return a number larger than any instruction's uid in this function. */
2736
2737 int
2738 get_max_uid (void)
2739 {
2740 return cur_insn_uid;
2741 }
2742
2743 /* Renumber instructions so that no instruction UIDs are wasted. */
2744
2745 void
2746 renumber_insns (FILE *stream)
2747 {
2748 rtx insn;
2749
2750 /* If we're not supposed to renumber instructions, don't. */
2751 if (!flag_renumber_insns)
2752 return;
2753
2754 /* If there aren't that many instructions, then it's not really
2755 worth renumbering them. */
2756 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2757 return;
2758
2759 cur_insn_uid = 1;
2760
2761 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2762 {
2763 if (stream)
2764 fprintf (stream, "Renumbering insn %d to %d\n",
2765 INSN_UID (insn), cur_insn_uid);
2766 INSN_UID (insn) = cur_insn_uid++;
2767 }
2768 }
2769 \f
2770 /* Return the next insn. If it is a SEQUENCE, return the first insn
2771 of the sequence. */
2772
2773 rtx
2774 next_insn (rtx insn)
2775 {
2776 if (insn)
2777 {
2778 insn = NEXT_INSN (insn);
2779 if (insn && NONJUMP_INSN_P (insn)
2780 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2781 insn = XVECEXP (PATTERN (insn), 0, 0);
2782 }
2783
2784 return insn;
2785 }
2786
2787 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2788 of the sequence. */
2789
2790 rtx
2791 previous_insn (rtx insn)
2792 {
2793 if (insn)
2794 {
2795 insn = PREV_INSN (insn);
2796 if (insn && NONJUMP_INSN_P (insn)
2797 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2798 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2799 }
2800
2801 return insn;
2802 }
2803
2804 /* Return the next insn after INSN that is not a NOTE. This routine does not
2805 look inside SEQUENCEs. */
2806
2807 rtx
2808 next_nonnote_insn (rtx insn)
2809 {
2810 while (insn)
2811 {
2812 insn = NEXT_INSN (insn);
2813 if (insn == 0 || !NOTE_P (insn))
2814 break;
2815 }
2816
2817 return insn;
2818 }
2819
2820 /* Return the previous insn before INSN that is not a NOTE. This routine does
2821 not look inside SEQUENCEs. */
2822
2823 rtx
2824 prev_nonnote_insn (rtx insn)
2825 {
2826 while (insn)
2827 {
2828 insn = PREV_INSN (insn);
2829 if (insn == 0 || !NOTE_P (insn))
2830 break;
2831 }
2832
2833 return insn;
2834 }
2835
2836 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2837 or 0, if there is none. This routine does not look inside
2838 SEQUENCEs. */
2839
2840 rtx
2841 next_real_insn (rtx insn)
2842 {
2843 while (insn)
2844 {
2845 insn = NEXT_INSN (insn);
2846 if (insn == 0 || INSN_P (insn))
2847 break;
2848 }
2849
2850 return insn;
2851 }
2852
2853 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2854 or 0, if there is none. This routine does not look inside
2855 SEQUENCEs. */
2856
2857 rtx
2858 prev_real_insn (rtx insn)
2859 {
2860 while (insn)
2861 {
2862 insn = PREV_INSN (insn);
2863 if (insn == 0 || INSN_P (insn))
2864 break;
2865 }
2866
2867 return insn;
2868 }
2869
2870 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2871 This routine does not look inside SEQUENCEs. */
2872
2873 rtx
2874 last_call_insn (void)
2875 {
2876 rtx insn;
2877
2878 for (insn = get_last_insn ();
2879 insn && !CALL_P (insn);
2880 insn = PREV_INSN (insn))
2881 ;
2882
2883 return insn;
2884 }
2885
2886 /* Find the next insn after INSN that really does something. This routine
2887 does not look inside SEQUENCEs. Until reload has completed, this is the
2888 same as next_real_insn. */
2889
2890 int
2891 active_insn_p (rtx insn)
2892 {
2893 return (CALL_P (insn) || JUMP_P (insn)
2894 || (NONJUMP_INSN_P (insn)
2895 && (! reload_completed
2896 || (GET_CODE (PATTERN (insn)) != USE
2897 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2898 }
2899
2900 rtx
2901 next_active_insn (rtx insn)
2902 {
2903 while (insn)
2904 {
2905 insn = NEXT_INSN (insn);
2906 if (insn == 0 || active_insn_p (insn))
2907 break;
2908 }
2909
2910 return insn;
2911 }
2912
2913 /* Find the last insn before INSN that really does something. This routine
2914 does not look inside SEQUENCEs. Until reload has completed, this is the
2915 same as prev_real_insn. */
2916
2917 rtx
2918 prev_active_insn (rtx insn)
2919 {
2920 while (insn)
2921 {
2922 insn = PREV_INSN (insn);
2923 if (insn == 0 || active_insn_p (insn))
2924 break;
2925 }
2926
2927 return insn;
2928 }
2929
2930 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2931
2932 rtx
2933 next_label (rtx insn)
2934 {
2935 while (insn)
2936 {
2937 insn = NEXT_INSN (insn);
2938 if (insn == 0 || LABEL_P (insn))
2939 break;
2940 }
2941
2942 return insn;
2943 }
2944
2945 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2946
2947 rtx
2948 prev_label (rtx insn)
2949 {
2950 while (insn)
2951 {
2952 insn = PREV_INSN (insn);
2953 if (insn == 0 || LABEL_P (insn))
2954 break;
2955 }
2956
2957 return insn;
2958 }
2959
2960 /* Return the last label to mark the same position as LABEL. Return null
2961 if LABEL itself is null. */
2962
2963 rtx
2964 skip_consecutive_labels (rtx label)
2965 {
2966 rtx insn;
2967
2968 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
2969 if (LABEL_P (insn))
2970 label = insn;
2971
2972 return label;
2973 }
2974 \f
2975 #ifdef HAVE_cc0
2976 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2977 and REG_CC_USER notes so we can find it. */
2978
2979 void
2980 link_cc0_insns (rtx insn)
2981 {
2982 rtx user = next_nonnote_insn (insn);
2983
2984 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
2985 user = XVECEXP (PATTERN (user), 0, 0);
2986
2987 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2988 REG_NOTES (user));
2989 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2990 }
2991
2992 /* Return the next insn that uses CC0 after INSN, which is assumed to
2993 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2994 applied to the result of this function should yield INSN).
2995
2996 Normally, this is simply the next insn. However, if a REG_CC_USER note
2997 is present, it contains the insn that uses CC0.
2998
2999 Return 0 if we can't find the insn. */
3000
3001 rtx
3002 next_cc0_user (rtx insn)
3003 {
3004 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3005
3006 if (note)
3007 return XEXP (note, 0);
3008
3009 insn = next_nonnote_insn (insn);
3010 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3011 insn = XVECEXP (PATTERN (insn), 0, 0);
3012
3013 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3014 return insn;
3015
3016 return 0;
3017 }
3018
3019 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3020 note, it is the previous insn. */
3021
3022 rtx
3023 prev_cc0_setter (rtx insn)
3024 {
3025 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3026
3027 if (note)
3028 return XEXP (note, 0);
3029
3030 insn = prev_nonnote_insn (insn);
3031 gcc_assert (sets_cc0_p (PATTERN (insn)));
3032
3033 return insn;
3034 }
3035 #endif
3036
3037 /* Increment the label uses for all labels present in rtx. */
3038
3039 static void
3040 mark_label_nuses (rtx x)
3041 {
3042 enum rtx_code code;
3043 int i, j;
3044 const char *fmt;
3045
3046 code = GET_CODE (x);
3047 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3048 LABEL_NUSES (XEXP (x, 0))++;
3049
3050 fmt = GET_RTX_FORMAT (code);
3051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3052 {
3053 if (fmt[i] == 'e')
3054 mark_label_nuses (XEXP (x, i));
3055 else if (fmt[i] == 'E')
3056 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3057 mark_label_nuses (XVECEXP (x, i, j));
3058 }
3059 }
3060
3061 \f
3062 /* Try splitting insns that can be split for better scheduling.
3063 PAT is the pattern which might split.
3064 TRIAL is the insn providing PAT.
3065 LAST is nonzero if we should return the last insn of the sequence produced.
3066
3067 If this routine succeeds in splitting, it returns the first or last
3068 replacement insn depending on the value of LAST. Otherwise, it
3069 returns TRIAL. If the insn to be returned can be split, it will be. */
3070
3071 rtx
3072 try_split (rtx pat, rtx trial, int last)
3073 {
3074 rtx before = PREV_INSN (trial);
3075 rtx after = NEXT_INSN (trial);
3076 int has_barrier = 0;
3077 rtx tem;
3078 rtx note, seq;
3079 int probability;
3080 rtx insn_last, insn;
3081 int njumps = 0;
3082
3083 if (any_condjump_p (trial)
3084 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3085 split_branch_probability = INTVAL (XEXP (note, 0));
3086 probability = split_branch_probability;
3087
3088 seq = split_insns (pat, trial);
3089
3090 split_branch_probability = -1;
3091
3092 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3093 We may need to handle this specially. */
3094 if (after && BARRIER_P (after))
3095 {
3096 has_barrier = 1;
3097 after = NEXT_INSN (after);
3098 }
3099
3100 if (!seq)
3101 return trial;
3102
3103 /* Avoid infinite loop if any insn of the result matches
3104 the original pattern. */
3105 insn_last = seq;
3106 while (1)
3107 {
3108 if (INSN_P (insn_last)
3109 && rtx_equal_p (PATTERN (insn_last), pat))
3110 return trial;
3111 if (!NEXT_INSN (insn_last))
3112 break;
3113 insn_last = NEXT_INSN (insn_last);
3114 }
3115
3116 /* Mark labels. */
3117 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3118 {
3119 if (JUMP_P (insn))
3120 {
3121 mark_jump_label (PATTERN (insn), insn, 0);
3122 njumps++;
3123 if (probability != -1
3124 && any_condjump_p (insn)
3125 && !find_reg_note (insn, REG_BR_PROB, 0))
3126 {
3127 /* We can preserve the REG_BR_PROB notes only if exactly
3128 one jump is created, otherwise the machine description
3129 is responsible for this step using
3130 split_branch_probability variable. */
3131 gcc_assert (njumps == 1);
3132 REG_NOTES (insn)
3133 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3134 GEN_INT (probability),
3135 REG_NOTES (insn));
3136 }
3137 }
3138 }
3139
3140 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3141 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3142 if (CALL_P (trial))
3143 {
3144 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3145 if (CALL_P (insn))
3146 {
3147 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3148 while (*p)
3149 p = &XEXP (*p, 1);
3150 *p = CALL_INSN_FUNCTION_USAGE (trial);
3151 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3152 }
3153 }
3154
3155 /* Copy notes, particularly those related to the CFG. */
3156 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3157 {
3158 switch (REG_NOTE_KIND (note))
3159 {
3160 case REG_EH_REGION:
3161 insn = insn_last;
3162 while (insn != NULL_RTX)
3163 {
3164 if (CALL_P (insn)
3165 || (flag_non_call_exceptions && INSN_P (insn)
3166 && may_trap_p (PATTERN (insn))))
3167 REG_NOTES (insn)
3168 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3169 XEXP (note, 0),
3170 REG_NOTES (insn));
3171 insn = PREV_INSN (insn);
3172 }
3173 break;
3174
3175 case REG_NORETURN:
3176 case REG_SETJMP:
3177 insn = insn_last;
3178 while (insn != NULL_RTX)
3179 {
3180 if (CALL_P (insn))
3181 REG_NOTES (insn)
3182 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3183 XEXP (note, 0),
3184 REG_NOTES (insn));
3185 insn = PREV_INSN (insn);
3186 }
3187 break;
3188
3189 case REG_NON_LOCAL_GOTO:
3190 insn = insn_last;
3191 while (insn != NULL_RTX)
3192 {
3193 if (JUMP_P (insn))
3194 REG_NOTES (insn)
3195 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3196 XEXP (note, 0),
3197 REG_NOTES (insn));
3198 insn = PREV_INSN (insn);
3199 }
3200 break;
3201
3202 default:
3203 break;
3204 }
3205 }
3206
3207 /* If there are LABELS inside the split insns increment the
3208 usage count so we don't delete the label. */
3209 if (NONJUMP_INSN_P (trial))
3210 {
3211 insn = insn_last;
3212 while (insn != NULL_RTX)
3213 {
3214 if (NONJUMP_INSN_P (insn))
3215 mark_label_nuses (PATTERN (insn));
3216
3217 insn = PREV_INSN (insn);
3218 }
3219 }
3220
3221 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3222
3223 delete_insn (trial);
3224 if (has_barrier)
3225 emit_barrier_after (tem);
3226
3227 /* Recursively call try_split for each new insn created; by the
3228 time control returns here that insn will be fully split, so
3229 set LAST and continue from the insn after the one returned.
3230 We can't use next_active_insn here since AFTER may be a note.
3231 Ignore deleted insns, which can be occur if not optimizing. */
3232 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3233 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3234 tem = try_split (PATTERN (tem), tem, 1);
3235
3236 /* Return either the first or the last insn, depending on which was
3237 requested. */
3238 return last
3239 ? (after ? PREV_INSN (after) : last_insn)
3240 : NEXT_INSN (before);
3241 }
3242 \f
3243 /* Make and return an INSN rtx, initializing all its slots.
3244 Store PATTERN in the pattern slots. */
3245
3246 rtx
3247 make_insn_raw (rtx pattern)
3248 {
3249 rtx insn;
3250
3251 insn = rtx_alloc (INSN);
3252
3253 INSN_UID (insn) = cur_insn_uid++;
3254 PATTERN (insn) = pattern;
3255 INSN_CODE (insn) = -1;
3256 LOG_LINKS (insn) = NULL;
3257 REG_NOTES (insn) = NULL;
3258 INSN_LOCATOR (insn) = 0;
3259 BLOCK_FOR_INSN (insn) = NULL;
3260
3261 #ifdef ENABLE_RTL_CHECKING
3262 if (insn
3263 && INSN_P (insn)
3264 && (returnjump_p (insn)
3265 || (GET_CODE (insn) == SET
3266 && SET_DEST (insn) == pc_rtx)))
3267 {
3268 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3269 debug_rtx (insn);
3270 }
3271 #endif
3272
3273 return insn;
3274 }
3275
3276 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3277
3278 static rtx
3279 make_jump_insn_raw (rtx pattern)
3280 {
3281 rtx insn;
3282
3283 insn = rtx_alloc (JUMP_INSN);
3284 INSN_UID (insn) = cur_insn_uid++;
3285
3286 PATTERN (insn) = pattern;
3287 INSN_CODE (insn) = -1;
3288 LOG_LINKS (insn) = NULL;
3289 REG_NOTES (insn) = NULL;
3290 JUMP_LABEL (insn) = NULL;
3291 INSN_LOCATOR (insn) = 0;
3292 BLOCK_FOR_INSN (insn) = NULL;
3293
3294 return insn;
3295 }
3296
3297 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3298
3299 static rtx
3300 make_call_insn_raw (rtx pattern)
3301 {
3302 rtx insn;
3303
3304 insn = rtx_alloc (CALL_INSN);
3305 INSN_UID (insn) = cur_insn_uid++;
3306
3307 PATTERN (insn) = pattern;
3308 INSN_CODE (insn) = -1;
3309 LOG_LINKS (insn) = NULL;
3310 REG_NOTES (insn) = NULL;
3311 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3312 INSN_LOCATOR (insn) = 0;
3313 BLOCK_FOR_INSN (insn) = NULL;
3314
3315 return insn;
3316 }
3317 \f
3318 /* Add INSN to the end of the doubly-linked list.
3319 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3320
3321 void
3322 add_insn (rtx insn)
3323 {
3324 PREV_INSN (insn) = last_insn;
3325 NEXT_INSN (insn) = 0;
3326
3327 if (NULL != last_insn)
3328 NEXT_INSN (last_insn) = insn;
3329
3330 if (NULL == first_insn)
3331 first_insn = insn;
3332
3333 last_insn = insn;
3334 }
3335
3336 /* Add INSN into the doubly-linked list after insn AFTER. This and
3337 the next should be the only functions called to insert an insn once
3338 delay slots have been filled since only they know how to update a
3339 SEQUENCE. */
3340
3341 void
3342 add_insn_after (rtx insn, rtx after)
3343 {
3344 rtx next = NEXT_INSN (after);
3345 basic_block bb;
3346
3347 gcc_assert (!optimize || !INSN_DELETED_P (after));
3348
3349 NEXT_INSN (insn) = next;
3350 PREV_INSN (insn) = after;
3351
3352 if (next)
3353 {
3354 PREV_INSN (next) = insn;
3355 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3356 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3357 }
3358 else if (last_insn == after)
3359 last_insn = insn;
3360 else
3361 {
3362 struct sequence_stack *stack = seq_stack;
3363 /* Scan all pending sequences too. */
3364 for (; stack; stack = stack->next)
3365 if (after == stack->last)
3366 {
3367 stack->last = insn;
3368 break;
3369 }
3370
3371 gcc_assert (stack);
3372 }
3373
3374 if (!BARRIER_P (after)
3375 && !BARRIER_P (insn)
3376 && (bb = BLOCK_FOR_INSN (after)))
3377 {
3378 set_block_for_insn (insn, bb);
3379 if (INSN_P (insn))
3380 bb->flags |= BB_DIRTY;
3381 /* Should not happen as first in the BB is always
3382 either NOTE or LABEL. */
3383 if (BB_END (bb) == after
3384 /* Avoid clobbering of structure when creating new BB. */
3385 && !BARRIER_P (insn)
3386 && (!NOTE_P (insn)
3387 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3388 BB_END (bb) = insn;
3389 }
3390
3391 NEXT_INSN (after) = insn;
3392 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3393 {
3394 rtx sequence = PATTERN (after);
3395 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3396 }
3397 }
3398
3399 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3400 the previous should be the only functions called to insert an insn once
3401 delay slots have been filled since only they know how to update a
3402 SEQUENCE. */
3403
3404 void
3405 add_insn_before (rtx insn, rtx before)
3406 {
3407 rtx prev = PREV_INSN (before);
3408 basic_block bb;
3409
3410 gcc_assert (!optimize || !INSN_DELETED_P (before));
3411
3412 PREV_INSN (insn) = prev;
3413 NEXT_INSN (insn) = before;
3414
3415 if (prev)
3416 {
3417 NEXT_INSN (prev) = insn;
3418 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3419 {
3420 rtx sequence = PATTERN (prev);
3421 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3422 }
3423 }
3424 else if (first_insn == before)
3425 first_insn = insn;
3426 else
3427 {
3428 struct sequence_stack *stack = seq_stack;
3429 /* Scan all pending sequences too. */
3430 for (; stack; stack = stack->next)
3431 if (before == stack->first)
3432 {
3433 stack->first = insn;
3434 break;
3435 }
3436
3437 gcc_assert (stack);
3438 }
3439
3440 if (!BARRIER_P (before)
3441 && !BARRIER_P (insn)
3442 && (bb = BLOCK_FOR_INSN (before)))
3443 {
3444 set_block_for_insn (insn, bb);
3445 if (INSN_P (insn))
3446 bb->flags |= BB_DIRTY;
3447 /* Should not happen as first in the BB is always either NOTE or
3448 LABEL. */
3449 gcc_assert (BB_HEAD (bb) != insn
3450 /* Avoid clobbering of structure when creating new BB. */
3451 || BARRIER_P (insn)
3452 || (NOTE_P (insn)
3453 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3454 }
3455
3456 PREV_INSN (before) = insn;
3457 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3458 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3459 }
3460
3461 /* Remove an insn from its doubly-linked list. This function knows how
3462 to handle sequences. */
3463 void
3464 remove_insn (rtx insn)
3465 {
3466 rtx next = NEXT_INSN (insn);
3467 rtx prev = PREV_INSN (insn);
3468 basic_block bb;
3469
3470 if (prev)
3471 {
3472 NEXT_INSN (prev) = next;
3473 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3474 {
3475 rtx sequence = PATTERN (prev);
3476 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3477 }
3478 }
3479 else if (first_insn == insn)
3480 first_insn = next;
3481 else
3482 {
3483 struct sequence_stack *stack = seq_stack;
3484 /* Scan all pending sequences too. */
3485 for (; stack; stack = stack->next)
3486 if (insn == stack->first)
3487 {
3488 stack->first = next;
3489 break;
3490 }
3491
3492 gcc_assert (stack);
3493 }
3494
3495 if (next)
3496 {
3497 PREV_INSN (next) = prev;
3498 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3499 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3500 }
3501 else if (last_insn == insn)
3502 last_insn = prev;
3503 else
3504 {
3505 struct sequence_stack *stack = seq_stack;
3506 /* Scan all pending sequences too. */
3507 for (; stack; stack = stack->next)
3508 if (insn == stack->last)
3509 {
3510 stack->last = prev;
3511 break;
3512 }
3513
3514 gcc_assert (stack);
3515 }
3516 if (!BARRIER_P (insn)
3517 && (bb = BLOCK_FOR_INSN (insn)))
3518 {
3519 if (INSN_P (insn))
3520 bb->flags |= BB_DIRTY;
3521 if (BB_HEAD (bb) == insn)
3522 {
3523 /* Never ever delete the basic block note without deleting whole
3524 basic block. */
3525 gcc_assert (!NOTE_P (insn));
3526 BB_HEAD (bb) = next;
3527 }
3528 if (BB_END (bb) == insn)
3529 BB_END (bb) = prev;
3530 }
3531 }
3532
3533 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3534
3535 void
3536 add_function_usage_to (rtx call_insn, rtx call_fusage)
3537 {
3538 gcc_assert (call_insn && CALL_P (call_insn));
3539
3540 /* Put the register usage information on the CALL. If there is already
3541 some usage information, put ours at the end. */
3542 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3543 {
3544 rtx link;
3545
3546 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3547 link = XEXP (link, 1))
3548 ;
3549
3550 XEXP (link, 1) = call_fusage;
3551 }
3552 else
3553 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3554 }
3555
3556 /* Delete all insns made since FROM.
3557 FROM becomes the new last instruction. */
3558
3559 void
3560 delete_insns_since (rtx from)
3561 {
3562 if (from == 0)
3563 first_insn = 0;
3564 else
3565 NEXT_INSN (from) = 0;
3566 last_insn = from;
3567 }
3568
3569 /* This function is deprecated, please use sequences instead.
3570
3571 Move a consecutive bunch of insns to a different place in the chain.
3572 The insns to be moved are those between FROM and TO.
3573 They are moved to a new position after the insn AFTER.
3574 AFTER must not be FROM or TO or any insn in between.
3575
3576 This function does not know about SEQUENCEs and hence should not be
3577 called after delay-slot filling has been done. */
3578
3579 void
3580 reorder_insns_nobb (rtx from, rtx to, rtx after)
3581 {
3582 /* Splice this bunch out of where it is now. */
3583 if (PREV_INSN (from))
3584 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3585 if (NEXT_INSN (to))
3586 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3587 if (last_insn == to)
3588 last_insn = PREV_INSN (from);
3589 if (first_insn == from)
3590 first_insn = NEXT_INSN (to);
3591
3592 /* Make the new neighbors point to it and it to them. */
3593 if (NEXT_INSN (after))
3594 PREV_INSN (NEXT_INSN (after)) = to;
3595
3596 NEXT_INSN (to) = NEXT_INSN (after);
3597 PREV_INSN (from) = after;
3598 NEXT_INSN (after) = from;
3599 if (after == last_insn)
3600 last_insn = to;
3601 }
3602
3603 /* Same as function above, but take care to update BB boundaries. */
3604 void
3605 reorder_insns (rtx from, rtx to, rtx after)
3606 {
3607 rtx prev = PREV_INSN (from);
3608 basic_block bb, bb2;
3609
3610 reorder_insns_nobb (from, to, after);
3611
3612 if (!BARRIER_P (after)
3613 && (bb = BLOCK_FOR_INSN (after)))
3614 {
3615 rtx x;
3616 bb->flags |= BB_DIRTY;
3617
3618 if (!BARRIER_P (from)
3619 && (bb2 = BLOCK_FOR_INSN (from)))
3620 {
3621 if (BB_END (bb2) == to)
3622 BB_END (bb2) = prev;
3623 bb2->flags |= BB_DIRTY;
3624 }
3625
3626 if (BB_END (bb) == after)
3627 BB_END (bb) = to;
3628
3629 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3630 if (!BARRIER_P (x))
3631 set_block_for_insn (x, bb);
3632 }
3633 }
3634
3635 /* Return the line note insn preceding INSN. */
3636
3637 static rtx
3638 find_line_note (rtx insn)
3639 {
3640 if (no_line_numbers)
3641 return 0;
3642
3643 for (; insn; insn = PREV_INSN (insn))
3644 if (NOTE_P (insn)
3645 && NOTE_LINE_NUMBER (insn) >= 0)
3646 break;
3647
3648 return insn;
3649 }
3650
3651 /* Remove unnecessary notes from the instruction stream. */
3652
3653 void
3654 remove_unnecessary_notes (void)
3655 {
3656 rtx eh_stack = NULL_RTX;
3657 rtx insn;
3658 rtx next;
3659 rtx tmp;
3660
3661 /* We must not remove the first instruction in the function because
3662 the compiler depends on the first instruction being a note. */
3663 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3664 {
3665 /* Remember what's next. */
3666 next = NEXT_INSN (insn);
3667
3668 /* We're only interested in notes. */
3669 if (!NOTE_P (insn))
3670 continue;
3671
3672 switch (NOTE_LINE_NUMBER (insn))
3673 {
3674 case NOTE_INSN_DELETED:
3675 remove_insn (insn);
3676 break;
3677
3678 case NOTE_INSN_EH_REGION_BEG:
3679 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3680 break;
3681
3682 case NOTE_INSN_EH_REGION_END:
3683 /* Too many end notes. */
3684 gcc_assert (eh_stack);
3685 /* Mismatched nesting. */
3686 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3687 == NOTE_EH_HANDLER (insn));
3688 tmp = eh_stack;
3689 eh_stack = XEXP (eh_stack, 1);
3690 free_INSN_LIST_node (tmp);
3691 break;
3692
3693 case NOTE_INSN_BLOCK_BEG:
3694 case NOTE_INSN_BLOCK_END:
3695 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3696 gcc_unreachable ();
3697
3698 default:
3699 break;
3700 }
3701 }
3702
3703 /* Too many EH_REGION_BEG notes. */
3704 gcc_assert (!eh_stack);
3705 }
3706
3707 \f
3708 /* Emit insn(s) of given code and pattern
3709 at a specified place within the doubly-linked list.
3710
3711 All of the emit_foo global entry points accept an object
3712 X which is either an insn list or a PATTERN of a single
3713 instruction.
3714
3715 There are thus a few canonical ways to generate code and
3716 emit it at a specific place in the instruction stream. For
3717 example, consider the instruction named SPOT and the fact that
3718 we would like to emit some instructions before SPOT. We might
3719 do it like this:
3720
3721 start_sequence ();
3722 ... emit the new instructions ...
3723 insns_head = get_insns ();
3724 end_sequence ();
3725
3726 emit_insn_before (insns_head, SPOT);
3727
3728 It used to be common to generate SEQUENCE rtl instead, but that
3729 is a relic of the past which no longer occurs. The reason is that
3730 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3731 generated would almost certainly die right after it was created. */
3732
3733 /* Make X be output before the instruction BEFORE. */
3734
3735 rtx
3736 emit_insn_before_noloc (rtx x, rtx before)
3737 {
3738 rtx last = before;
3739 rtx insn;
3740
3741 gcc_assert (before);
3742
3743 if (x == NULL_RTX)
3744 return last;
3745
3746 switch (GET_CODE (x))
3747 {
3748 case INSN:
3749 case JUMP_INSN:
3750 case CALL_INSN:
3751 case CODE_LABEL:
3752 case BARRIER:
3753 case NOTE:
3754 insn = x;
3755 while (insn)
3756 {
3757 rtx next = NEXT_INSN (insn);
3758 add_insn_before (insn, before);
3759 last = insn;
3760 insn = next;
3761 }
3762 break;
3763
3764 #ifdef ENABLE_RTL_CHECKING
3765 case SEQUENCE:
3766 gcc_unreachable ();
3767 break;
3768 #endif
3769
3770 default:
3771 last = make_insn_raw (x);
3772 add_insn_before (last, before);
3773 break;
3774 }
3775
3776 return last;
3777 }
3778
3779 /* Make an instruction with body X and code JUMP_INSN
3780 and output it before the instruction BEFORE. */
3781
3782 rtx
3783 emit_jump_insn_before_noloc (rtx x, rtx before)
3784 {
3785 rtx insn, last = NULL_RTX;
3786
3787 gcc_assert (before);
3788
3789 switch (GET_CODE (x))
3790 {
3791 case INSN:
3792 case JUMP_INSN:
3793 case CALL_INSN:
3794 case CODE_LABEL:
3795 case BARRIER:
3796 case NOTE:
3797 insn = x;
3798 while (insn)
3799 {
3800 rtx next = NEXT_INSN (insn);
3801 add_insn_before (insn, before);
3802 last = insn;
3803 insn = next;
3804 }
3805 break;
3806
3807 #ifdef ENABLE_RTL_CHECKING
3808 case SEQUENCE:
3809 gcc_unreachable ();
3810 break;
3811 #endif
3812
3813 default:
3814 last = make_jump_insn_raw (x);
3815 add_insn_before (last, before);
3816 break;
3817 }
3818
3819 return last;
3820 }
3821
3822 /* Make an instruction with body X and code CALL_INSN
3823 and output it before the instruction BEFORE. */
3824
3825 rtx
3826 emit_call_insn_before_noloc (rtx x, rtx before)
3827 {
3828 rtx last = NULL_RTX, insn;
3829
3830 gcc_assert (before);
3831
3832 switch (GET_CODE (x))
3833 {
3834 case INSN:
3835 case JUMP_INSN:
3836 case CALL_INSN:
3837 case CODE_LABEL:
3838 case BARRIER:
3839 case NOTE:
3840 insn = x;
3841 while (insn)
3842 {
3843 rtx next = NEXT_INSN (insn);
3844 add_insn_before (insn, before);
3845 last = insn;
3846 insn = next;
3847 }
3848 break;
3849
3850 #ifdef ENABLE_RTL_CHECKING
3851 case SEQUENCE:
3852 gcc_unreachable ();
3853 break;
3854 #endif
3855
3856 default:
3857 last = make_call_insn_raw (x);
3858 add_insn_before (last, before);
3859 break;
3860 }
3861
3862 return last;
3863 }
3864
3865 /* Make an insn of code BARRIER
3866 and output it before the insn BEFORE. */
3867
3868 rtx
3869 emit_barrier_before (rtx before)
3870 {
3871 rtx insn = rtx_alloc (BARRIER);
3872
3873 INSN_UID (insn) = cur_insn_uid++;
3874
3875 add_insn_before (insn, before);
3876 return insn;
3877 }
3878
3879 /* Emit the label LABEL before the insn BEFORE. */
3880
3881 rtx
3882 emit_label_before (rtx label, rtx before)
3883 {
3884 /* This can be called twice for the same label as a result of the
3885 confusion that follows a syntax error! So make it harmless. */
3886 if (INSN_UID (label) == 0)
3887 {
3888 INSN_UID (label) = cur_insn_uid++;
3889 add_insn_before (label, before);
3890 }
3891
3892 return label;
3893 }
3894
3895 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3896
3897 rtx
3898 emit_note_before (int subtype, rtx before)
3899 {
3900 rtx note = rtx_alloc (NOTE);
3901 INSN_UID (note) = cur_insn_uid++;
3902 #ifndef USE_MAPPED_LOCATION
3903 NOTE_SOURCE_FILE (note) = 0;
3904 #endif
3905 NOTE_LINE_NUMBER (note) = subtype;
3906 BLOCK_FOR_INSN (note) = NULL;
3907
3908 add_insn_before (note, before);
3909 return note;
3910 }
3911 \f
3912 /* Helper for emit_insn_after, handles lists of instructions
3913 efficiently. */
3914
3915 static rtx emit_insn_after_1 (rtx, rtx);
3916
3917 static rtx
3918 emit_insn_after_1 (rtx first, rtx after)
3919 {
3920 rtx last;
3921 rtx after_after;
3922 basic_block bb;
3923
3924 if (!BARRIER_P (after)
3925 && (bb = BLOCK_FOR_INSN (after)))
3926 {
3927 bb->flags |= BB_DIRTY;
3928 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3929 if (!BARRIER_P (last))
3930 set_block_for_insn (last, bb);
3931 if (!BARRIER_P (last))
3932 set_block_for_insn (last, bb);
3933 if (BB_END (bb) == after)
3934 BB_END (bb) = last;
3935 }
3936 else
3937 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3938 continue;
3939
3940 after_after = NEXT_INSN (after);
3941
3942 NEXT_INSN (after) = first;
3943 PREV_INSN (first) = after;
3944 NEXT_INSN (last) = after_after;
3945 if (after_after)
3946 PREV_INSN (after_after) = last;
3947
3948 if (after == last_insn)
3949 last_insn = last;
3950 return last;
3951 }
3952
3953 /* Make X be output after the insn AFTER. */
3954
3955 rtx
3956 emit_insn_after_noloc (rtx x, rtx after)
3957 {
3958 rtx last = after;
3959
3960 gcc_assert (after);
3961
3962 if (x == NULL_RTX)
3963 return last;
3964
3965 switch (GET_CODE (x))
3966 {
3967 case INSN:
3968 case JUMP_INSN:
3969 case CALL_INSN:
3970 case CODE_LABEL:
3971 case BARRIER:
3972 case NOTE:
3973 last = emit_insn_after_1 (x, after);
3974 break;
3975
3976 #ifdef ENABLE_RTL_CHECKING
3977 case SEQUENCE:
3978 gcc_unreachable ();
3979 break;
3980 #endif
3981
3982 default:
3983 last = make_insn_raw (x);
3984 add_insn_after (last, after);
3985 break;
3986 }
3987
3988 return last;
3989 }
3990
3991 /* Similar to emit_insn_after, except that line notes are to be inserted so
3992 as to act as if this insn were at FROM. */
3993
3994 void
3995 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
3996 {
3997 rtx from_line = find_line_note (from);
3998 rtx after_line = find_line_note (after);
3999 rtx insn = emit_insn_after (x, after);
4000
4001 if (from_line)
4002 emit_note_copy_after (from_line, after);
4003
4004 if (after_line)
4005 emit_note_copy_after (after_line, insn);
4006 }
4007
4008 /* Make an insn of code JUMP_INSN with body X
4009 and output it after the insn AFTER. */
4010
4011 rtx
4012 emit_jump_insn_after_noloc (rtx x, rtx after)
4013 {
4014 rtx last;
4015
4016 gcc_assert (after);
4017
4018 switch (GET_CODE (x))
4019 {
4020 case INSN:
4021 case JUMP_INSN:
4022 case CALL_INSN:
4023 case CODE_LABEL:
4024 case BARRIER:
4025 case NOTE:
4026 last = emit_insn_after_1 (x, after);
4027 break;
4028
4029 #ifdef ENABLE_RTL_CHECKING
4030 case SEQUENCE:
4031 gcc_unreachable ();
4032 break;
4033 #endif
4034
4035 default:
4036 last = make_jump_insn_raw (x);
4037 add_insn_after (last, after);
4038 break;
4039 }
4040
4041 return last;
4042 }
4043
4044 /* Make an instruction with body X and code CALL_INSN
4045 and output it after the instruction AFTER. */
4046
4047 rtx
4048 emit_call_insn_after_noloc (rtx x, rtx after)
4049 {
4050 rtx last;
4051
4052 gcc_assert (after);
4053
4054 switch (GET_CODE (x))
4055 {
4056 case INSN:
4057 case JUMP_INSN:
4058 case CALL_INSN:
4059 case CODE_LABEL:
4060 case BARRIER:
4061 case NOTE:
4062 last = emit_insn_after_1 (x, after);
4063 break;
4064
4065 #ifdef ENABLE_RTL_CHECKING
4066 case SEQUENCE:
4067 gcc_unreachable ();
4068 break;
4069 #endif
4070
4071 default:
4072 last = make_call_insn_raw (x);
4073 add_insn_after (last, after);
4074 break;
4075 }
4076
4077 return last;
4078 }
4079
4080 /* Make an insn of code BARRIER
4081 and output it after the insn AFTER. */
4082
4083 rtx
4084 emit_barrier_after (rtx after)
4085 {
4086 rtx insn = rtx_alloc (BARRIER);
4087
4088 INSN_UID (insn) = cur_insn_uid++;
4089
4090 add_insn_after (insn, after);
4091 return insn;
4092 }
4093
4094 /* Emit the label LABEL after the insn AFTER. */
4095
4096 rtx
4097 emit_label_after (rtx label, rtx after)
4098 {
4099 /* This can be called twice for the same label
4100 as a result of the confusion that follows a syntax error!
4101 So make it harmless. */
4102 if (INSN_UID (label) == 0)
4103 {
4104 INSN_UID (label) = cur_insn_uid++;
4105 add_insn_after (label, after);
4106 }
4107
4108 return label;
4109 }
4110
4111 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4112
4113 rtx
4114 emit_note_after (int subtype, rtx after)
4115 {
4116 rtx note = rtx_alloc (NOTE);
4117 INSN_UID (note) = cur_insn_uid++;
4118 #ifndef USE_MAPPED_LOCATION
4119 NOTE_SOURCE_FILE (note) = 0;
4120 #endif
4121 NOTE_LINE_NUMBER (note) = subtype;
4122 BLOCK_FOR_INSN (note) = NULL;
4123 add_insn_after (note, after);
4124 return note;
4125 }
4126
4127 /* Emit a copy of note ORIG after the insn AFTER. */
4128
4129 rtx
4130 emit_note_copy_after (rtx orig, rtx after)
4131 {
4132 rtx note;
4133
4134 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4135 {
4136 cur_insn_uid++;
4137 return 0;
4138 }
4139
4140 note = rtx_alloc (NOTE);
4141 INSN_UID (note) = cur_insn_uid++;
4142 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4143 NOTE_DATA (note) = NOTE_DATA (orig);
4144 BLOCK_FOR_INSN (note) = NULL;
4145 add_insn_after (note, after);
4146 return note;
4147 }
4148 \f
4149 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4150 rtx
4151 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4152 {
4153 rtx last = emit_insn_after_noloc (pattern, after);
4154
4155 if (pattern == NULL_RTX || !loc)
4156 return last;
4157
4158 after = NEXT_INSN (after);
4159 while (1)
4160 {
4161 if (active_insn_p (after) && !INSN_LOCATOR (after))
4162 INSN_LOCATOR (after) = loc;
4163 if (after == last)
4164 break;
4165 after = NEXT_INSN (after);
4166 }
4167 return last;
4168 }
4169
4170 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4171 rtx
4172 emit_insn_after (rtx pattern, rtx after)
4173 {
4174 if (INSN_P (after))
4175 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4176 else
4177 return emit_insn_after_noloc (pattern, after);
4178 }
4179
4180 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4181 rtx
4182 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4183 {
4184 rtx last = emit_jump_insn_after_noloc (pattern, after);
4185
4186 if (pattern == NULL_RTX || !loc)
4187 return last;
4188
4189 after = NEXT_INSN (after);
4190 while (1)
4191 {
4192 if (active_insn_p (after) && !INSN_LOCATOR (after))
4193 INSN_LOCATOR (after) = loc;
4194 if (after == last)
4195 break;
4196 after = NEXT_INSN (after);
4197 }
4198 return last;
4199 }
4200
4201 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4202 rtx
4203 emit_jump_insn_after (rtx pattern, rtx after)
4204 {
4205 if (INSN_P (after))
4206 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4207 else
4208 return emit_jump_insn_after_noloc (pattern, after);
4209 }
4210
4211 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4212 rtx
4213 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4214 {
4215 rtx last = emit_call_insn_after_noloc (pattern, after);
4216
4217 if (pattern == NULL_RTX || !loc)
4218 return last;
4219
4220 after = NEXT_INSN (after);
4221 while (1)
4222 {
4223 if (active_insn_p (after) && !INSN_LOCATOR (after))
4224 INSN_LOCATOR (after) = loc;
4225 if (after == last)
4226 break;
4227 after = NEXT_INSN (after);
4228 }
4229 return last;
4230 }
4231
4232 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4233 rtx
4234 emit_call_insn_after (rtx pattern, rtx after)
4235 {
4236 if (INSN_P (after))
4237 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4238 else
4239 return emit_call_insn_after_noloc (pattern, after);
4240 }
4241
4242 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4243 rtx
4244 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4245 {
4246 rtx first = PREV_INSN (before);
4247 rtx last = emit_insn_before_noloc (pattern, before);
4248
4249 if (pattern == NULL_RTX || !loc)
4250 return last;
4251
4252 first = NEXT_INSN (first);
4253 while (1)
4254 {
4255 if (active_insn_p (first) && !INSN_LOCATOR (first))
4256 INSN_LOCATOR (first) = loc;
4257 if (first == last)
4258 break;
4259 first = NEXT_INSN (first);
4260 }
4261 return last;
4262 }
4263
4264 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4265 rtx
4266 emit_insn_before (rtx pattern, rtx before)
4267 {
4268 if (INSN_P (before))
4269 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4270 else
4271 return emit_insn_before_noloc (pattern, before);
4272 }
4273
4274 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4275 rtx
4276 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4277 {
4278 rtx first = PREV_INSN (before);
4279 rtx last = emit_jump_insn_before_noloc (pattern, before);
4280
4281 if (pattern == NULL_RTX)
4282 return last;
4283
4284 first = NEXT_INSN (first);
4285 while (1)
4286 {
4287 if (active_insn_p (first) && !INSN_LOCATOR (first))
4288 INSN_LOCATOR (first) = loc;
4289 if (first == last)
4290 break;
4291 first = NEXT_INSN (first);
4292 }
4293 return last;
4294 }
4295
4296 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4297 rtx
4298 emit_jump_insn_before (rtx pattern, rtx before)
4299 {
4300 if (INSN_P (before))
4301 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4302 else
4303 return emit_jump_insn_before_noloc (pattern, before);
4304 }
4305
4306 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4307 rtx
4308 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4309 {
4310 rtx first = PREV_INSN (before);
4311 rtx last = emit_call_insn_before_noloc (pattern, before);
4312
4313 if (pattern == NULL_RTX)
4314 return last;
4315
4316 first = NEXT_INSN (first);
4317 while (1)
4318 {
4319 if (active_insn_p (first) && !INSN_LOCATOR (first))
4320 INSN_LOCATOR (first) = loc;
4321 if (first == last)
4322 break;
4323 first = NEXT_INSN (first);
4324 }
4325 return last;
4326 }
4327
4328 /* like emit_call_insn_before_noloc,
4329 but set insn_locator according to before. */
4330 rtx
4331 emit_call_insn_before (rtx pattern, rtx before)
4332 {
4333 if (INSN_P (before))
4334 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4335 else
4336 return emit_call_insn_before_noloc (pattern, before);
4337 }
4338 \f
4339 /* Take X and emit it at the end of the doubly-linked
4340 INSN list.
4341
4342 Returns the last insn emitted. */
4343
4344 rtx
4345 emit_insn (rtx x)
4346 {
4347 rtx last = last_insn;
4348 rtx insn;
4349
4350 if (x == NULL_RTX)
4351 return last;
4352
4353 switch (GET_CODE (x))
4354 {
4355 case INSN:
4356 case JUMP_INSN:
4357 case CALL_INSN:
4358 case CODE_LABEL:
4359 case BARRIER:
4360 case NOTE:
4361 insn = x;
4362 while (insn)
4363 {
4364 rtx next = NEXT_INSN (insn);
4365 add_insn (insn);
4366 last = insn;
4367 insn = next;
4368 }
4369 break;
4370
4371 #ifdef ENABLE_RTL_CHECKING
4372 case SEQUENCE:
4373 gcc_unreachable ();
4374 break;
4375 #endif
4376
4377 default:
4378 last = make_insn_raw (x);
4379 add_insn (last);
4380 break;
4381 }
4382
4383 return last;
4384 }
4385
4386 /* Make an insn of code JUMP_INSN with pattern X
4387 and add it to the end of the doubly-linked list. */
4388
4389 rtx
4390 emit_jump_insn (rtx x)
4391 {
4392 rtx last = NULL_RTX, insn;
4393
4394 switch (GET_CODE (x))
4395 {
4396 case INSN:
4397 case JUMP_INSN:
4398 case CALL_INSN:
4399 case CODE_LABEL:
4400 case BARRIER:
4401 case NOTE:
4402 insn = x;
4403 while (insn)
4404 {
4405 rtx next = NEXT_INSN (insn);
4406 add_insn (insn);
4407 last = insn;
4408 insn = next;
4409 }
4410 break;
4411
4412 #ifdef ENABLE_RTL_CHECKING
4413 case SEQUENCE:
4414 gcc_unreachable ();
4415 break;
4416 #endif
4417
4418 default:
4419 last = make_jump_insn_raw (x);
4420 add_insn (last);
4421 break;
4422 }
4423
4424 return last;
4425 }
4426
4427 /* Make an insn of code CALL_INSN with pattern X
4428 and add it to the end of the doubly-linked list. */
4429
4430 rtx
4431 emit_call_insn (rtx x)
4432 {
4433 rtx insn;
4434
4435 switch (GET_CODE (x))
4436 {
4437 case INSN:
4438 case JUMP_INSN:
4439 case CALL_INSN:
4440 case CODE_LABEL:
4441 case BARRIER:
4442 case NOTE:
4443 insn = emit_insn (x);
4444 break;
4445
4446 #ifdef ENABLE_RTL_CHECKING
4447 case SEQUENCE:
4448 gcc_unreachable ();
4449 break;
4450 #endif
4451
4452 default:
4453 insn = make_call_insn_raw (x);
4454 add_insn (insn);
4455 break;
4456 }
4457
4458 return insn;
4459 }
4460
4461 /* Add the label LABEL to the end of the doubly-linked list. */
4462
4463 rtx
4464 emit_label (rtx label)
4465 {
4466 /* This can be called twice for the same label
4467 as a result of the confusion that follows a syntax error!
4468 So make it harmless. */
4469 if (INSN_UID (label) == 0)
4470 {
4471 INSN_UID (label) = cur_insn_uid++;
4472 add_insn (label);
4473 }
4474 return label;
4475 }
4476
4477 /* Make an insn of code BARRIER
4478 and add it to the end of the doubly-linked list. */
4479
4480 rtx
4481 emit_barrier (void)
4482 {
4483 rtx barrier = rtx_alloc (BARRIER);
4484 INSN_UID (barrier) = cur_insn_uid++;
4485 add_insn (barrier);
4486 return barrier;
4487 }
4488
4489 /* Make line numbering NOTE insn for LOCATION add it to the end
4490 of the doubly-linked list, but only if line-numbers are desired for
4491 debugging info and it doesn't match the previous one. */
4492
4493 rtx
4494 emit_line_note (location_t location)
4495 {
4496 rtx note;
4497
4498 #ifdef USE_MAPPED_LOCATION
4499 if (location == last_location)
4500 return NULL_RTX;
4501 #else
4502 if (location.file && last_location.file
4503 && !strcmp (location.file, last_location.file)
4504 && location.line == last_location.line)
4505 return NULL_RTX;
4506 #endif
4507 last_location = location;
4508
4509 if (no_line_numbers)
4510 {
4511 cur_insn_uid++;
4512 return NULL_RTX;
4513 }
4514
4515 #ifdef USE_MAPPED_LOCATION
4516 note = emit_note ((int) location);
4517 #else
4518 note = emit_note (location.line);
4519 NOTE_SOURCE_FILE (note) = location.file;
4520 #endif
4521
4522 return note;
4523 }
4524
4525 /* Emit a copy of note ORIG. */
4526
4527 rtx
4528 emit_note_copy (rtx orig)
4529 {
4530 rtx note;
4531
4532 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4533 {
4534 cur_insn_uid++;
4535 return NULL_RTX;
4536 }
4537
4538 note = rtx_alloc (NOTE);
4539
4540 INSN_UID (note) = cur_insn_uid++;
4541 NOTE_DATA (note) = NOTE_DATA (orig);
4542 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4543 BLOCK_FOR_INSN (note) = NULL;
4544 add_insn (note);
4545
4546 return note;
4547 }
4548
4549 /* Make an insn of code NOTE or type NOTE_NO
4550 and add it to the end of the doubly-linked list. */
4551
4552 rtx
4553 emit_note (int note_no)
4554 {
4555 rtx note;
4556
4557 note = rtx_alloc (NOTE);
4558 INSN_UID (note) = cur_insn_uid++;
4559 NOTE_LINE_NUMBER (note) = note_no;
4560 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4561 BLOCK_FOR_INSN (note) = NULL;
4562 add_insn (note);
4563 return note;
4564 }
4565
4566 /* Cause next statement to emit a line note even if the line number
4567 has not changed. */
4568
4569 void
4570 force_next_line_note (void)
4571 {
4572 #ifdef USE_MAPPED_LOCATION
4573 last_location = -1;
4574 #else
4575 last_location.line = -1;
4576 #endif
4577 }
4578
4579 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4580 note of this type already exists, remove it first. */
4581
4582 rtx
4583 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4584 {
4585 rtx note = find_reg_note (insn, kind, NULL_RTX);
4586
4587 switch (kind)
4588 {
4589 case REG_EQUAL:
4590 case REG_EQUIV:
4591 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4592 has multiple sets (some callers assume single_set
4593 means the insn only has one set, when in fact it
4594 means the insn only has one * useful * set). */
4595 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4596 {
4597 gcc_assert (!note);
4598 return NULL_RTX;
4599 }
4600
4601 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4602 It serves no useful purpose and breaks eliminate_regs. */
4603 if (GET_CODE (datum) == ASM_OPERANDS)
4604 return NULL_RTX;
4605 break;
4606
4607 default:
4608 break;
4609 }
4610
4611 if (note)
4612 {
4613 XEXP (note, 0) = datum;
4614 return note;
4615 }
4616
4617 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4618 return REG_NOTES (insn);
4619 }
4620 \f
4621 /* Return an indication of which type of insn should have X as a body.
4622 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4623
4624 static enum rtx_code
4625 classify_insn (rtx x)
4626 {
4627 if (LABEL_P (x))
4628 return CODE_LABEL;
4629 if (GET_CODE (x) == CALL)
4630 return CALL_INSN;
4631 if (GET_CODE (x) == RETURN)
4632 return JUMP_INSN;
4633 if (GET_CODE (x) == SET)
4634 {
4635 if (SET_DEST (x) == pc_rtx)
4636 return JUMP_INSN;
4637 else if (GET_CODE (SET_SRC (x)) == CALL)
4638 return CALL_INSN;
4639 else
4640 return INSN;
4641 }
4642 if (GET_CODE (x) == PARALLEL)
4643 {
4644 int j;
4645 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4646 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4647 return CALL_INSN;
4648 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4649 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4650 return JUMP_INSN;
4651 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4652 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4653 return CALL_INSN;
4654 }
4655 return INSN;
4656 }
4657
4658 /* Emit the rtl pattern X as an appropriate kind of insn.
4659 If X is a label, it is simply added into the insn chain. */
4660
4661 rtx
4662 emit (rtx x)
4663 {
4664 enum rtx_code code = classify_insn (x);
4665
4666 switch (code)
4667 {
4668 case CODE_LABEL:
4669 return emit_label (x);
4670 case INSN:
4671 return emit_insn (x);
4672 case JUMP_INSN:
4673 {
4674 rtx insn = emit_jump_insn (x);
4675 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4676 return emit_barrier ();
4677 return insn;
4678 }
4679 case CALL_INSN:
4680 return emit_call_insn (x);
4681 default:
4682 gcc_unreachable ();
4683 }
4684 }
4685 \f
4686 /* Space for free sequence stack entries. */
4687 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4688
4689 /* Begin emitting insns to a sequence. If this sequence will contain
4690 something that might cause the compiler to pop arguments to function
4691 calls (because those pops have previously been deferred; see
4692 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4693 before calling this function. That will ensure that the deferred
4694 pops are not accidentally emitted in the middle of this sequence. */
4695
4696 void
4697 start_sequence (void)
4698 {
4699 struct sequence_stack *tem;
4700
4701 if (free_sequence_stack != NULL)
4702 {
4703 tem = free_sequence_stack;
4704 free_sequence_stack = tem->next;
4705 }
4706 else
4707 tem = ggc_alloc (sizeof (struct sequence_stack));
4708
4709 tem->next = seq_stack;
4710 tem->first = first_insn;
4711 tem->last = last_insn;
4712
4713 seq_stack = tem;
4714
4715 first_insn = 0;
4716 last_insn = 0;
4717 }
4718
4719 /* Set up the insn chain starting with FIRST as the current sequence,
4720 saving the previously current one. See the documentation for
4721 start_sequence for more information about how to use this function. */
4722
4723 void
4724 push_to_sequence (rtx first)
4725 {
4726 rtx last;
4727
4728 start_sequence ();
4729
4730 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4731
4732 first_insn = first;
4733 last_insn = last;
4734 }
4735
4736 /* Set up the outer-level insn chain
4737 as the current sequence, saving the previously current one. */
4738
4739 void
4740 push_topmost_sequence (void)
4741 {
4742 struct sequence_stack *stack, *top = NULL;
4743
4744 start_sequence ();
4745
4746 for (stack = seq_stack; stack; stack = stack->next)
4747 top = stack;
4748
4749 first_insn = top->first;
4750 last_insn = top->last;
4751 }
4752
4753 /* After emitting to the outer-level insn chain, update the outer-level
4754 insn chain, and restore the previous saved state. */
4755
4756 void
4757 pop_topmost_sequence (void)
4758 {
4759 struct sequence_stack *stack, *top = NULL;
4760
4761 for (stack = seq_stack; stack; stack = stack->next)
4762 top = stack;
4763
4764 top->first = first_insn;
4765 top->last = last_insn;
4766
4767 end_sequence ();
4768 }
4769
4770 /* After emitting to a sequence, restore previous saved state.
4771
4772 To get the contents of the sequence just made, you must call
4773 `get_insns' *before* calling here.
4774
4775 If the compiler might have deferred popping arguments while
4776 generating this sequence, and this sequence will not be immediately
4777 inserted into the instruction stream, use do_pending_stack_adjust
4778 before calling get_insns. That will ensure that the deferred
4779 pops are inserted into this sequence, and not into some random
4780 location in the instruction stream. See INHIBIT_DEFER_POP for more
4781 information about deferred popping of arguments. */
4782
4783 void
4784 end_sequence (void)
4785 {
4786 struct sequence_stack *tem = seq_stack;
4787
4788 first_insn = tem->first;
4789 last_insn = tem->last;
4790 seq_stack = tem->next;
4791
4792 memset (tem, 0, sizeof (*tem));
4793 tem->next = free_sequence_stack;
4794 free_sequence_stack = tem;
4795 }
4796
4797 /* Return 1 if currently emitting into a sequence. */
4798
4799 int
4800 in_sequence_p (void)
4801 {
4802 return seq_stack != 0;
4803 }
4804 \f
4805 /* Put the various virtual registers into REGNO_REG_RTX. */
4806
4807 void
4808 init_virtual_regs (struct emit_status *es)
4809 {
4810 rtx *ptr = es->x_regno_reg_rtx;
4811 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4812 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4813 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4814 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4815 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4816 }
4817
4818 \f
4819 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4820 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4821 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4822 static int copy_insn_n_scratches;
4823
4824 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4825 copied an ASM_OPERANDS.
4826 In that case, it is the original input-operand vector. */
4827 static rtvec orig_asm_operands_vector;
4828
4829 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4830 copied an ASM_OPERANDS.
4831 In that case, it is the copied input-operand vector. */
4832 static rtvec copy_asm_operands_vector;
4833
4834 /* Likewise for the constraints vector. */
4835 static rtvec orig_asm_constraints_vector;
4836 static rtvec copy_asm_constraints_vector;
4837
4838 /* Recursively create a new copy of an rtx for copy_insn.
4839 This function differs from copy_rtx in that it handles SCRATCHes and
4840 ASM_OPERANDs properly.
4841 Normally, this function is not used directly; use copy_insn as front end.
4842 However, you could first copy an insn pattern with copy_insn and then use
4843 this function afterwards to properly copy any REG_NOTEs containing
4844 SCRATCHes. */
4845
4846 rtx
4847 copy_insn_1 (rtx orig)
4848 {
4849 rtx copy;
4850 int i, j;
4851 RTX_CODE code;
4852 const char *format_ptr;
4853
4854 code = GET_CODE (orig);
4855
4856 switch (code)
4857 {
4858 case REG:
4859 case CONST_INT:
4860 case CONST_DOUBLE:
4861 case CONST_VECTOR:
4862 case SYMBOL_REF:
4863 case CODE_LABEL:
4864 case PC:
4865 case CC0:
4866 return orig;
4867 case CLOBBER:
4868 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4869 return orig;
4870 break;
4871
4872 case SCRATCH:
4873 for (i = 0; i < copy_insn_n_scratches; i++)
4874 if (copy_insn_scratch_in[i] == orig)
4875 return copy_insn_scratch_out[i];
4876 break;
4877
4878 case CONST:
4879 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4880 a LABEL_REF, it isn't sharable. */
4881 if (GET_CODE (XEXP (orig, 0)) == PLUS
4882 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4883 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4884 return orig;
4885 break;
4886
4887 /* A MEM with a constant address is not sharable. The problem is that
4888 the constant address may need to be reloaded. If the mem is shared,
4889 then reloading one copy of this mem will cause all copies to appear
4890 to have been reloaded. */
4891
4892 default:
4893 break;
4894 }
4895
4896 copy = rtx_alloc (code);
4897
4898 /* Copy the various flags, and other information. We assume that
4899 all fields need copying, and then clear the fields that should
4900 not be copied. That is the sensible default behavior, and forces
4901 us to explicitly document why we are *not* copying a flag. */
4902 memcpy (copy, orig, RTX_HDR_SIZE);
4903
4904 /* We do not copy the USED flag, which is used as a mark bit during
4905 walks over the RTL. */
4906 RTX_FLAG (copy, used) = 0;
4907
4908 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4909 if (INSN_P (orig))
4910 {
4911 RTX_FLAG (copy, jump) = 0;
4912 RTX_FLAG (copy, call) = 0;
4913 RTX_FLAG (copy, frame_related) = 0;
4914 }
4915
4916 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4917
4918 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4919 {
4920 copy->u.fld[i] = orig->u.fld[i];
4921 switch (*format_ptr++)
4922 {
4923 case 'e':
4924 if (XEXP (orig, i) != NULL)
4925 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4926 break;
4927
4928 case 'E':
4929 case 'V':
4930 if (XVEC (orig, i) == orig_asm_constraints_vector)
4931 XVEC (copy, i) = copy_asm_constraints_vector;
4932 else if (XVEC (orig, i) == orig_asm_operands_vector)
4933 XVEC (copy, i) = copy_asm_operands_vector;
4934 else if (XVEC (orig, i) != NULL)
4935 {
4936 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4937 for (j = 0; j < XVECLEN (copy, i); j++)
4938 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4939 }
4940 break;
4941
4942 case 't':
4943 case 'w':
4944 case 'i':
4945 case 's':
4946 case 'S':
4947 case 'u':
4948 case '0':
4949 /* These are left unchanged. */
4950 break;
4951
4952 default:
4953 gcc_unreachable ();
4954 }
4955 }
4956
4957 if (code == SCRATCH)
4958 {
4959 i = copy_insn_n_scratches++;
4960 gcc_assert (i < MAX_RECOG_OPERANDS);
4961 copy_insn_scratch_in[i] = orig;
4962 copy_insn_scratch_out[i] = copy;
4963 }
4964 else if (code == ASM_OPERANDS)
4965 {
4966 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4967 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4968 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4969 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4970 }
4971
4972 return copy;
4973 }
4974
4975 /* Create a new copy of an rtx.
4976 This function differs from copy_rtx in that it handles SCRATCHes and
4977 ASM_OPERANDs properly.
4978 INSN doesn't really have to be a full INSN; it could be just the
4979 pattern. */
4980 rtx
4981 copy_insn (rtx insn)
4982 {
4983 copy_insn_n_scratches = 0;
4984 orig_asm_operands_vector = 0;
4985 orig_asm_constraints_vector = 0;
4986 copy_asm_operands_vector = 0;
4987 copy_asm_constraints_vector = 0;
4988 return copy_insn_1 (insn);
4989 }
4990
4991 /* Initialize data structures and variables in this file
4992 before generating rtl for each function. */
4993
4994 void
4995 init_emit (void)
4996 {
4997 struct function *f = cfun;
4998
4999 f->emit = ggc_alloc (sizeof (struct emit_status));
5000 first_insn = NULL;
5001 last_insn = NULL;
5002 cur_insn_uid = 1;
5003 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5004 last_location = UNKNOWN_LOCATION;
5005 first_label_num = label_num;
5006 seq_stack = NULL;
5007
5008 /* Init the tables that describe all the pseudo regs. */
5009
5010 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5011
5012 f->emit->regno_pointer_align
5013 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5014 * sizeof (unsigned char));
5015
5016 regno_reg_rtx
5017 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5018
5019 /* Put copies of all the hard registers into regno_reg_rtx. */
5020 memcpy (regno_reg_rtx,
5021 static_regno_reg_rtx,
5022 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5023
5024 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5025 init_virtual_regs (f->emit);
5026
5027 /* Indicate that the virtual registers and stack locations are
5028 all pointers. */
5029 REG_POINTER (stack_pointer_rtx) = 1;
5030 REG_POINTER (frame_pointer_rtx) = 1;
5031 REG_POINTER (hard_frame_pointer_rtx) = 1;
5032 REG_POINTER (arg_pointer_rtx) = 1;
5033
5034 REG_POINTER (virtual_incoming_args_rtx) = 1;
5035 REG_POINTER (virtual_stack_vars_rtx) = 1;
5036 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5037 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5038 REG_POINTER (virtual_cfa_rtx) = 1;
5039
5040 #ifdef STACK_BOUNDARY
5041 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5042 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5043 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5044 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5045
5046 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5047 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5048 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5049 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5050 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5051 #endif
5052
5053 #ifdef INIT_EXPANDERS
5054 INIT_EXPANDERS;
5055 #endif
5056 }
5057
5058 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5059
5060 static rtx
5061 gen_const_vector (enum machine_mode mode, int constant)
5062 {
5063 rtx tem;
5064 rtvec v;
5065 int units, i;
5066 enum machine_mode inner;
5067
5068 units = GET_MODE_NUNITS (mode);
5069 inner = GET_MODE_INNER (mode);
5070
5071 v = rtvec_alloc (units);
5072
5073 /* We need to call this function after we set the scalar const_tiny_rtx
5074 entries. */
5075 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5076
5077 for (i = 0; i < units; ++i)
5078 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5079
5080 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5081 return tem;
5082 }
5083
5084 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5085 all elements are zero, and the one vector when all elements are one. */
5086 rtx
5087 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5088 {
5089 enum machine_mode inner = GET_MODE_INNER (mode);
5090 int nunits = GET_MODE_NUNITS (mode);
5091 rtx x;
5092 int i;
5093
5094 /* Check to see if all of the elements have the same value. */
5095 x = RTVEC_ELT (v, nunits - 1);
5096 for (i = nunits - 2; i >= 0; i--)
5097 if (RTVEC_ELT (v, i) != x)
5098 break;
5099
5100 /* If the values are all the same, check to see if we can use one of the
5101 standard constant vectors. */
5102 if (i == -1)
5103 {
5104 if (x == CONST0_RTX (inner))
5105 return CONST0_RTX (mode);
5106 else if (x == CONST1_RTX (inner))
5107 return CONST1_RTX (mode);
5108 }
5109
5110 return gen_rtx_raw_CONST_VECTOR (mode, v);
5111 }
5112
5113 /* Create some permanent unique rtl objects shared between all functions.
5114 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5115
5116 void
5117 init_emit_once (int line_numbers)
5118 {
5119 int i;
5120 enum machine_mode mode;
5121 enum machine_mode double_mode;
5122
5123 /* We need reg_raw_mode, so initialize the modes now. */
5124 init_reg_modes_once ();
5125
5126 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5127 tables. */
5128 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5129 const_int_htab_eq, NULL);
5130
5131 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5132 const_double_htab_eq, NULL);
5133
5134 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5135 mem_attrs_htab_eq, NULL);
5136 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5137 reg_attrs_htab_eq, NULL);
5138
5139 no_line_numbers = ! line_numbers;
5140
5141 /* Compute the word and byte modes. */
5142
5143 byte_mode = VOIDmode;
5144 word_mode = VOIDmode;
5145 double_mode = VOIDmode;
5146
5147 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5148 mode = GET_MODE_WIDER_MODE (mode))
5149 {
5150 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5151 && byte_mode == VOIDmode)
5152 byte_mode = mode;
5153
5154 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5155 && word_mode == VOIDmode)
5156 word_mode = mode;
5157 }
5158
5159 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5160 mode = GET_MODE_WIDER_MODE (mode))
5161 {
5162 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5163 && double_mode == VOIDmode)
5164 double_mode = mode;
5165 }
5166
5167 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5168
5169 /* Assign register numbers to the globally defined register rtx.
5170 This must be done at runtime because the register number field
5171 is in a union and some compilers can't initialize unions. */
5172
5173 pc_rtx = gen_rtx_PC (VOIDmode);
5174 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5175 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5176 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5177 if (hard_frame_pointer_rtx == 0)
5178 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5179 HARD_FRAME_POINTER_REGNUM);
5180 if (arg_pointer_rtx == 0)
5181 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5182 virtual_incoming_args_rtx =
5183 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5184 virtual_stack_vars_rtx =
5185 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5186 virtual_stack_dynamic_rtx =
5187 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5188 virtual_outgoing_args_rtx =
5189 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5190 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5191
5192 /* Initialize RTL for commonly used hard registers. These are
5193 copied into regno_reg_rtx as we begin to compile each function. */
5194 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5195 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5196
5197 #ifdef INIT_EXPANDERS
5198 /* This is to initialize {init|mark|free}_machine_status before the first
5199 call to push_function_context_to. This is needed by the Chill front
5200 end which calls push_function_context_to before the first call to
5201 init_function_start. */
5202 INIT_EXPANDERS;
5203 #endif
5204
5205 /* Create the unique rtx's for certain rtx codes and operand values. */
5206
5207 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5208 tries to use these variables. */
5209 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5210 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5211 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5212
5213 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5214 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5215 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5216 else
5217 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5218
5219 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5220 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5221 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5222 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5223 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5224 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5225 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5226
5227 dconsthalf = dconst1;
5228 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5229
5230 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5231
5232 /* Initialize mathematical constants for constant folding builtins.
5233 These constants need to be given to at least 160 bits precision. */
5234 real_from_string (&dconstpi,
5235 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5236 real_from_string (&dconste,
5237 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5238
5239 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5240 {
5241 REAL_VALUE_TYPE *r =
5242 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5243
5244 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5245 mode = GET_MODE_WIDER_MODE (mode))
5246 const_tiny_rtx[i][(int) mode] =
5247 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5248
5249 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5250
5251 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5252 mode = GET_MODE_WIDER_MODE (mode))
5253 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5254
5255 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5256 mode != VOIDmode;
5257 mode = GET_MODE_WIDER_MODE (mode))
5258 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5259 }
5260
5261 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5262 mode != VOIDmode;
5263 mode = GET_MODE_WIDER_MODE (mode))
5264 {
5265 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5266 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5267 }
5268
5269 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5270 mode != VOIDmode;
5271 mode = GET_MODE_WIDER_MODE (mode))
5272 {
5273 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5274 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5275 }
5276
5277 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5278 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5279 const_tiny_rtx[0][i] = const0_rtx;
5280
5281 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5282 if (STORE_FLAG_VALUE == 1)
5283 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5284
5285 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5286 return_address_pointer_rtx
5287 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5288 #endif
5289
5290 #ifdef STATIC_CHAIN_REGNUM
5291 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5292
5293 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5294 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5295 static_chain_incoming_rtx
5296 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5297 else
5298 #endif
5299 static_chain_incoming_rtx = static_chain_rtx;
5300 #endif
5301
5302 #ifdef STATIC_CHAIN
5303 static_chain_rtx = STATIC_CHAIN;
5304
5305 #ifdef STATIC_CHAIN_INCOMING
5306 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5307 #else
5308 static_chain_incoming_rtx = static_chain_rtx;
5309 #endif
5310 #endif
5311
5312 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5313 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5314 }
5315 \f
5316 /* Produce exact duplicate of insn INSN after AFTER.
5317 Care updating of libcall regions if present. */
5318
5319 rtx
5320 emit_copy_of_insn_after (rtx insn, rtx after)
5321 {
5322 rtx new;
5323 rtx note1, note2, link;
5324
5325 switch (GET_CODE (insn))
5326 {
5327 case INSN:
5328 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5329 break;
5330
5331 case JUMP_INSN:
5332 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5333 break;
5334
5335 case CALL_INSN:
5336 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5337 if (CALL_INSN_FUNCTION_USAGE (insn))
5338 CALL_INSN_FUNCTION_USAGE (new)
5339 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5340 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5341 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5342 break;
5343
5344 default:
5345 gcc_unreachable ();
5346 }
5347
5348 /* Update LABEL_NUSES. */
5349 mark_jump_label (PATTERN (new), new, 0);
5350
5351 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5352
5353 /* If the old insn is frame related, then so is the new one. This is
5354 primarily needed for IA-64 unwind info which marks epilogue insns,
5355 which may be duplicated by the basic block reordering code. */
5356 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5357
5358 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5359 make them. */
5360 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5361 if (REG_NOTE_KIND (link) != REG_LABEL)
5362 {
5363 if (GET_CODE (link) == EXPR_LIST)
5364 REG_NOTES (new)
5365 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5366 XEXP (link, 0),
5367 REG_NOTES (new)));
5368 else
5369 REG_NOTES (new)
5370 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5371 XEXP (link, 0),
5372 REG_NOTES (new)));
5373 }
5374
5375 /* Fix the libcall sequences. */
5376 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5377 {
5378 rtx p = new;
5379 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5380 p = PREV_INSN (p);
5381 XEXP (note1, 0) = p;
5382 XEXP (note2, 0) = new;
5383 }
5384 INSN_CODE (new) = INSN_CODE (insn);
5385 return new;
5386 }
5387
5388 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5389 rtx
5390 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5391 {
5392 if (hard_reg_clobbers[mode][regno])
5393 return hard_reg_clobbers[mode][regno];
5394 else
5395 return (hard_reg_clobbers[mode][regno] =
5396 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5397 }
5398
5399 #include "gt-emit-rtl.h"