alias.c (get_alias_set): Remove handling of PLACEHOLDER_EXPR.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 rtx (*gen_lowpart) (enum machine_mode mode, rtx x) = gen_lowpart_general;
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
125
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
130
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
137
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
152
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
157
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
160
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
164
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
168
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
172
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 rtx value = (rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 rtx a = (rtx)x, b = (rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
261
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
264 {
265 mem_attrs *p = (mem_attrs *) x;
266
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
271 }
272
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
276
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
282
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
285 }
286
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
290
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
325
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
328 {
329 reg_attrs *p = (reg_attrs *) x;
330
331 return ((p->offset * 1000) ^ (long) p->decl);
332 }
333
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
337
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
343
344 return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
349
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
352 {
353 reg_attrs attrs;
354 void **slot;
355
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
359
360 attrs.decl = decl;
361 attrs.offset = offset;
362
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
365 {
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 }
369
370 return *slot;
371 }
372
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
376
377 rtx
378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
383 }
384
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
388
389 rtx
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392 void **slot;
393
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
401
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407
408 return (rtx) *slot;
409 }
410
411 rtx
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414 return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
426 {
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
430
431 return (rtx) *slot;
432 }
433
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
436 rtx
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
441
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443
444 return lookup_const_double (real);
445 }
446
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451
452 rtx
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455 rtx value;
456 unsigned int i;
457
458 if (mode != VOIDmode)
459 {
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
467
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
482
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
486
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
491
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
495
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
498
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
504
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
510
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
513
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 }
517
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
521
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
525
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
528
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
531
532 return lookup_const_double (value);
533 }
534
535 rtx
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
543
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
548
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
551
552 if (mode == Pmode && !reload_in_progress)
553 {
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
575 }
576
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
580
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
585
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
588
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
596
597 return gen_raw_REG (mode, regno);
598 }
599
600 rtx
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
604
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
608
609 return rt;
610 }
611
612 rtx
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
619
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
633
634 rtx
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637 enum machine_mode inmode;
638
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
644 }
645 \f
646 /* gen_rtvec (n, [rt1, ..., rtn])
647 **
648 ** This routine creates an rtvec and stores within it the
649 ** pointers to rtx's which are its arguments.
650 */
651
652 /*VARARGS1*/
653 rtvec
654 gen_rtvec (int n, ...)
655 {
656 int i, save_n;
657 rtx *vector;
658 va_list p;
659
660 va_start (p, n);
661
662 if (n == 0)
663 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
664
665 vector = alloca (n * sizeof (rtx));
666
667 for (i = 0; i < n; i++)
668 vector[i] = va_arg (p, rtx);
669
670 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
671 save_n = n;
672 va_end (p);
673
674 return gen_rtvec_v (save_n, vector);
675 }
676
677 rtvec
678 gen_rtvec_v (int n, rtx *argp)
679 {
680 int i;
681 rtvec rt_val;
682
683 if (n == 0)
684 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
685
686 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
687
688 for (i = 0; i < n; i++)
689 rt_val->elem[i] = *argp++;
690
691 return rt_val;
692 }
693 \f
694 /* Generate a REG rtx for a new pseudo register of mode MODE.
695 This pseudo is assigned the next sequential register number. */
696
697 rtx
698 gen_reg_rtx (enum machine_mode mode)
699 {
700 struct function *f = cfun;
701 rtx val;
702
703 /* Don't let anything called after initial flow analysis create new
704 registers. */
705 if (no_new_pseudos)
706 abort ();
707
708 if (generating_concat_p
709 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
710 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
711 {
712 /* For complex modes, don't make a single pseudo.
713 Instead, make a CONCAT of two pseudos.
714 This allows noncontiguous allocation of the real and imaginary parts,
715 which makes much better code. Besides, allocating DCmode
716 pseudos overstrains reload on some machines like the 386. */
717 rtx realpart, imagpart;
718 enum machine_mode partmode = GET_MODE_INNER (mode);
719
720 realpart = gen_reg_rtx (partmode);
721 imagpart = gen_reg_rtx (partmode);
722 return gen_rtx_CONCAT (mode, realpart, imagpart);
723 }
724
725 /* Make sure regno_pointer_align, and regno_reg_rtx are large
726 enough to have an element for this pseudo reg number. */
727
728 if (reg_rtx_no == f->emit->regno_pointer_align_length)
729 {
730 int old_size = f->emit->regno_pointer_align_length;
731 char *new;
732 rtx *new1;
733
734 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
735 memset (new + old_size, 0, old_size);
736 f->emit->regno_pointer_align = (unsigned char *) new;
737
738 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
739 old_size * 2 * sizeof (rtx));
740 memset (new1 + old_size, 0, old_size * sizeof (rtx));
741 regno_reg_rtx = new1;
742
743 f->emit->regno_pointer_align_length = old_size * 2;
744 }
745
746 val = gen_raw_REG (mode, reg_rtx_no);
747 regno_reg_rtx[reg_rtx_no++] = val;
748 return val;
749 }
750
751 /* Generate a register with same attributes as REG,
752 but offsetted by OFFSET. */
753
754 rtx
755 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
756 {
757 rtx new = gen_rtx_REG (mode, regno);
758 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
759 REG_OFFSET (reg) + offset);
760 return new;
761 }
762
763 /* Set the decl for MEM to DECL. */
764
765 void
766 set_reg_attrs_from_mem (rtx reg, rtx mem)
767 {
768 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
769 REG_ATTRS (reg)
770 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
771 }
772
773 /* Set the register attributes for registers contained in PARM_RTX.
774 Use needed values from memory attributes of MEM. */
775
776 void
777 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
778 {
779 if (GET_CODE (parm_rtx) == REG)
780 set_reg_attrs_from_mem (parm_rtx, mem);
781 else if (GET_CODE (parm_rtx) == PARALLEL)
782 {
783 /* Check for a NULL entry in the first slot, used to indicate that the
784 parameter goes both on the stack and in registers. */
785 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
786 for (; i < XVECLEN (parm_rtx, 0); i++)
787 {
788 rtx x = XVECEXP (parm_rtx, 0, i);
789 if (GET_CODE (XEXP (x, 0)) == REG)
790 REG_ATTRS (XEXP (x, 0))
791 = get_reg_attrs (MEM_EXPR (mem),
792 INTVAL (XEXP (x, 1)));
793 }
794 }
795 }
796
797 /* Assign the RTX X to declaration T. */
798 void
799 set_decl_rtl (tree t, rtx x)
800 {
801 DECL_CHECK (t)->decl.rtl = x;
802
803 if (!x)
804 return;
805 /* For register, we maintain the reverse information too. */
806 if (GET_CODE (x) == REG)
807 REG_ATTRS (x) = get_reg_attrs (t, 0);
808 else if (GET_CODE (x) == SUBREG)
809 REG_ATTRS (SUBREG_REG (x))
810 = get_reg_attrs (t, -SUBREG_BYTE (x));
811 if (GET_CODE (x) == CONCAT)
812 {
813 if (REG_P (XEXP (x, 0)))
814 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
815 if (REG_P (XEXP (x, 1)))
816 REG_ATTRS (XEXP (x, 1))
817 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
818 }
819 if (GET_CODE (x) == PARALLEL)
820 {
821 int i;
822 for (i = 0; i < XVECLEN (x, 0); i++)
823 {
824 rtx y = XVECEXP (x, 0, i);
825 if (REG_P (XEXP (y, 0)))
826 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
827 }
828 }
829 }
830
831 /* Assign the RTX X to parameter declaration T. */
832 void
833 set_decl_incoming_rtl (tree t, rtx x)
834 {
835 DECL_INCOMING_RTL (t) = x;
836
837 if (!x)
838 return;
839 /* For register, we maintain the reverse information too. */
840 if (GET_CODE (x) == REG)
841 REG_ATTRS (x) = get_reg_attrs (t, 0);
842 else if (GET_CODE (x) == SUBREG)
843 REG_ATTRS (SUBREG_REG (x))
844 = get_reg_attrs (t, -SUBREG_BYTE (x));
845 if (GET_CODE (x) == CONCAT)
846 {
847 if (REG_P (XEXP (x, 0)))
848 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
849 if (REG_P (XEXP (x, 1)))
850 REG_ATTRS (XEXP (x, 1))
851 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
852 }
853 if (GET_CODE (x) == PARALLEL)
854 {
855 int i, start;
856
857 /* Check for a NULL entry, used to indicate that the parameter goes
858 both on the stack and in registers. */
859 if (XEXP (XVECEXP (x, 0, 0), 0))
860 start = 0;
861 else
862 start = 1;
863
864 for (i = start; i < XVECLEN (x, 0); i++)
865 {
866 rtx y = XVECEXP (x, 0, i);
867 if (REG_P (XEXP (y, 0)))
868 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
869 }
870 }
871 }
872
873 /* Identify REG (which may be a CONCAT) as a user register. */
874
875 void
876 mark_user_reg (rtx reg)
877 {
878 if (GET_CODE (reg) == CONCAT)
879 {
880 REG_USERVAR_P (XEXP (reg, 0)) = 1;
881 REG_USERVAR_P (XEXP (reg, 1)) = 1;
882 }
883 else if (GET_CODE (reg) == REG)
884 REG_USERVAR_P (reg) = 1;
885 else
886 abort ();
887 }
888
889 /* Identify REG as a probable pointer register and show its alignment
890 as ALIGN, if nonzero. */
891
892 void
893 mark_reg_pointer (rtx reg, int align)
894 {
895 if (! REG_POINTER (reg))
896 {
897 REG_POINTER (reg) = 1;
898
899 if (align)
900 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
901 }
902 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
903 /* We can no-longer be sure just how aligned this pointer is. */
904 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
905 }
906
907 /* Return 1 plus largest pseudo reg number used in the current function. */
908
909 int
910 max_reg_num (void)
911 {
912 return reg_rtx_no;
913 }
914
915 /* Return 1 + the largest label number used so far in the current function. */
916
917 int
918 max_label_num (void)
919 {
920 if (last_label_num && label_num == base_label_num)
921 return last_label_num;
922 return label_num;
923 }
924
925 /* Return first label number used in this function (if any were used). */
926
927 int
928 get_first_label_num (void)
929 {
930 return first_label_num;
931 }
932 \f
933 /* Return the final regno of X, which is a SUBREG of a hard
934 register. */
935 int
936 subreg_hard_regno (rtx x, int check_mode)
937 {
938 enum machine_mode mode = GET_MODE (x);
939 unsigned int byte_offset, base_regno, final_regno;
940 rtx reg = SUBREG_REG (x);
941
942 /* This is where we attempt to catch illegal subregs
943 created by the compiler. */
944 if (GET_CODE (x) != SUBREG
945 || GET_CODE (reg) != REG)
946 abort ();
947 base_regno = REGNO (reg);
948 if (base_regno >= FIRST_PSEUDO_REGISTER)
949 abort ();
950 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
951 abort ();
952 #ifdef ENABLE_CHECKING
953 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
954 SUBREG_BYTE (x), mode))
955 abort ();
956 #endif
957 /* Catch non-congruent offsets too. */
958 byte_offset = SUBREG_BYTE (x);
959 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
960 abort ();
961
962 final_regno = subreg_regno (x);
963
964 return final_regno;
965 }
966
967 /* Return a value representing some low-order bits of X, where the number
968 of low-order bits is given by MODE. Note that no conversion is done
969 between floating-point and fixed-point values, rather, the bit
970 representation is returned.
971
972 This function handles the cases in common between gen_lowpart, below,
973 and two variants in cse.c and combine.c. These are the cases that can
974 be safely handled at all points in the compilation.
975
976 If this is not a case we can handle, return 0. */
977
978 rtx
979 gen_lowpart_common (enum machine_mode mode, rtx x)
980 {
981 int msize = GET_MODE_SIZE (mode);
982 int xsize;
983 int offset = 0;
984 enum machine_mode innermode;
985
986 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
987 so we have to make one up. Yuk. */
988 innermode = GET_MODE (x);
989 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
990 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
991 else if (innermode == VOIDmode)
992 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
993
994 xsize = GET_MODE_SIZE (innermode);
995
996 if (innermode == VOIDmode || innermode == BLKmode)
997 abort ();
998
999 if (innermode == mode)
1000 return x;
1001
1002 /* MODE must occupy no more words than the mode of X. */
1003 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1004 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1005 return 0;
1006
1007 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1008 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1009 return 0;
1010
1011 offset = subreg_lowpart_offset (mode, innermode);
1012
1013 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1014 && (GET_MODE_CLASS (mode) == MODE_INT
1015 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1016 {
1017 /* If we are getting the low-order part of something that has been
1018 sign- or zero-extended, we can either just use the object being
1019 extended or make a narrower extension. If we want an even smaller
1020 piece than the size of the object being extended, call ourselves
1021 recursively.
1022
1023 This case is used mostly by combine and cse. */
1024
1025 if (GET_MODE (XEXP (x, 0)) == mode)
1026 return XEXP (x, 0);
1027 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1028 return gen_lowpart_common (mode, XEXP (x, 0));
1029 else if (msize < xsize)
1030 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1031 }
1032 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1033 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1034 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1035 return simplify_gen_subreg (mode, x, innermode, offset);
1036
1037 /* Otherwise, we can't do this. */
1038 return 0;
1039 }
1040 \f
1041 /* Return the constant real or imaginary part (which has mode MODE)
1042 of a complex value X. The IMAGPART_P argument determines whether
1043 the real or complex component should be returned. This function
1044 returns NULL_RTX if the component isn't a constant. */
1045
1046 static rtx
1047 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1048 {
1049 tree decl, part;
1050
1051 if (GET_CODE (x) == MEM
1052 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1053 {
1054 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1055 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1056 {
1057 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1058 if (TREE_CODE (part) == REAL_CST
1059 || TREE_CODE (part) == INTEGER_CST)
1060 return expand_expr (part, NULL_RTX, mode, 0);
1061 }
1062 }
1063 return NULL_RTX;
1064 }
1065
1066 /* Return the real part (which has mode MODE) of a complex value X.
1067 This always comes at the low address in memory. */
1068
1069 rtx
1070 gen_realpart (enum machine_mode mode, rtx x)
1071 {
1072 rtx part;
1073
1074 /* Handle complex constants. */
1075 part = gen_complex_constant_part (mode, x, 0);
1076 if (part != NULL_RTX)
1077 return part;
1078
1079 if (WORDS_BIG_ENDIAN
1080 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1081 && REG_P (x)
1082 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1083 internal_error
1084 ("can't access real part of complex value in hard register");
1085 else if (WORDS_BIG_ENDIAN)
1086 return gen_highpart (mode, x);
1087 else
1088 return gen_lowpart (mode, x);
1089 }
1090
1091 /* Return the imaginary part (which has mode MODE) of a complex value X.
1092 This always comes at the high address in memory. */
1093
1094 rtx
1095 gen_imagpart (enum machine_mode mode, rtx x)
1096 {
1097 rtx part;
1098
1099 /* Handle complex constants. */
1100 part = gen_complex_constant_part (mode, x, 1);
1101 if (part != NULL_RTX)
1102 return part;
1103
1104 if (WORDS_BIG_ENDIAN)
1105 return gen_lowpart (mode, x);
1106 else if (! WORDS_BIG_ENDIAN
1107 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1108 && REG_P (x)
1109 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1110 internal_error
1111 ("can't access imaginary part of complex value in hard register");
1112 else
1113 return gen_highpart (mode, x);
1114 }
1115 \f
1116 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1117 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1118 least-significant part of X.
1119 MODE specifies how big a part of X to return;
1120 it usually should not be larger than a word.
1121 If X is a MEM whose address is a QUEUED, the value may be so also. */
1122
1123 rtx
1124 gen_lowpart_general (enum machine_mode mode, rtx x)
1125 {
1126 rtx result = gen_lowpart_common (mode, x);
1127
1128 if (result)
1129 return result;
1130 else if (GET_CODE (x) == REG)
1131 {
1132 /* Must be a hard reg that's not valid in MODE. */
1133 result = gen_lowpart_common (mode, copy_to_reg (x));
1134 if (result == 0)
1135 abort ();
1136 return result;
1137 }
1138 else if (GET_CODE (x) == MEM)
1139 {
1140 /* The only additional case we can do is MEM. */
1141 int offset = 0;
1142
1143 /* The following exposes the use of "x" to CSE. */
1144 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1145 && SCALAR_INT_MODE_P (GET_MODE (x))
1146 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1147 GET_MODE_BITSIZE (GET_MODE (x)))
1148 && ! no_new_pseudos)
1149 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1150
1151 if (WORDS_BIG_ENDIAN)
1152 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1153 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1154
1155 if (BYTES_BIG_ENDIAN)
1156 /* Adjust the address so that the address-after-the-data
1157 is unchanged. */
1158 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1159 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1160
1161 return adjust_address (x, mode, offset);
1162 }
1163 else if (GET_CODE (x) == ADDRESSOF)
1164 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1165 else
1166 abort ();
1167 }
1168
1169 /* Like `gen_lowpart', but refer to the most significant part.
1170 This is used to access the imaginary part of a complex number. */
1171
1172 rtx
1173 gen_highpart (enum machine_mode mode, rtx x)
1174 {
1175 unsigned int msize = GET_MODE_SIZE (mode);
1176 rtx result;
1177
1178 /* This case loses if X is a subreg. To catch bugs early,
1179 complain if an invalid MODE is used even in other cases. */
1180 if (msize > UNITS_PER_WORD
1181 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1182 abort ();
1183
1184 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1185 subreg_highpart_offset (mode, GET_MODE (x)));
1186
1187 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1188 the target if we have a MEM. gen_highpart must return a valid operand,
1189 emitting code if necessary to do so. */
1190 if (result != NULL_RTX && GET_CODE (result) == MEM)
1191 result = validize_mem (result);
1192
1193 if (!result)
1194 abort ();
1195 return result;
1196 }
1197
1198 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1199 be VOIDmode constant. */
1200 rtx
1201 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1202 {
1203 if (GET_MODE (exp) != VOIDmode)
1204 {
1205 if (GET_MODE (exp) != innermode)
1206 abort ();
1207 return gen_highpart (outermode, exp);
1208 }
1209 return simplify_gen_subreg (outermode, exp, innermode,
1210 subreg_highpart_offset (outermode, innermode));
1211 }
1212
1213 /* Return offset in bytes to get OUTERMODE low part
1214 of the value in mode INNERMODE stored in memory in target format. */
1215
1216 unsigned int
1217 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1218 {
1219 unsigned int offset = 0;
1220 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1221
1222 if (difference > 0)
1223 {
1224 if (WORDS_BIG_ENDIAN)
1225 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1226 if (BYTES_BIG_ENDIAN)
1227 offset += difference % UNITS_PER_WORD;
1228 }
1229
1230 return offset;
1231 }
1232
1233 /* Return offset in bytes to get OUTERMODE high part
1234 of the value in mode INNERMODE stored in memory in target format. */
1235 unsigned int
1236 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1237 {
1238 unsigned int offset = 0;
1239 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1240
1241 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1242 abort ();
1243
1244 if (difference > 0)
1245 {
1246 if (! WORDS_BIG_ENDIAN)
1247 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1248 if (! BYTES_BIG_ENDIAN)
1249 offset += difference % UNITS_PER_WORD;
1250 }
1251
1252 return offset;
1253 }
1254
1255 /* Return 1 iff X, assumed to be a SUBREG,
1256 refers to the least significant part of its containing reg.
1257 If X is not a SUBREG, always return 1 (it is its own low part!). */
1258
1259 int
1260 subreg_lowpart_p (rtx x)
1261 {
1262 if (GET_CODE (x) != SUBREG)
1263 return 1;
1264 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1265 return 0;
1266
1267 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1268 == SUBREG_BYTE (x));
1269 }
1270 \f
1271 /* Return subword OFFSET of operand OP.
1272 The word number, OFFSET, is interpreted as the word number starting
1273 at the low-order address. OFFSET 0 is the low-order word if not
1274 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1275
1276 If we cannot extract the required word, we return zero. Otherwise,
1277 an rtx corresponding to the requested word will be returned.
1278
1279 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1280 reload has completed, a valid address will always be returned. After
1281 reload, if a valid address cannot be returned, we return zero.
1282
1283 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1284 it is the responsibility of the caller.
1285
1286 MODE is the mode of OP in case it is a CONST_INT.
1287
1288 ??? This is still rather broken for some cases. The problem for the
1289 moment is that all callers of this thing provide no 'goal mode' to
1290 tell us to work with. This exists because all callers were written
1291 in a word based SUBREG world.
1292 Now use of this function can be deprecated by simplify_subreg in most
1293 cases.
1294 */
1295
1296 rtx
1297 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1298 {
1299 if (mode == VOIDmode)
1300 mode = GET_MODE (op);
1301
1302 if (mode == VOIDmode)
1303 abort ();
1304
1305 /* If OP is narrower than a word, fail. */
1306 if (mode != BLKmode
1307 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1308 return 0;
1309
1310 /* If we want a word outside OP, return zero. */
1311 if (mode != BLKmode
1312 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1313 return const0_rtx;
1314
1315 /* Form a new MEM at the requested address. */
1316 if (GET_CODE (op) == MEM)
1317 {
1318 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1319
1320 if (! validate_address)
1321 return new;
1322
1323 else if (reload_completed)
1324 {
1325 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1326 return 0;
1327 }
1328 else
1329 return replace_equiv_address (new, XEXP (new, 0));
1330 }
1331
1332 /* Rest can be handled by simplify_subreg. */
1333 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1334 }
1335
1336 /* Similar to `operand_subword', but never return 0. If we can't extract
1337 the required subword, put OP into a register and try again. If that fails,
1338 abort. We always validate the address in this case.
1339
1340 MODE is the mode of OP, in case it is CONST_INT. */
1341
1342 rtx
1343 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1344 {
1345 rtx result = operand_subword (op, offset, 1, mode);
1346
1347 if (result)
1348 return result;
1349
1350 if (mode != BLKmode && mode != VOIDmode)
1351 {
1352 /* If this is a register which can not be accessed by words, copy it
1353 to a pseudo register. */
1354 if (GET_CODE (op) == REG)
1355 op = copy_to_reg (op);
1356 else
1357 op = force_reg (mode, op);
1358 }
1359
1360 result = operand_subword (op, offset, 1, mode);
1361 if (result == 0)
1362 abort ();
1363
1364 return result;
1365 }
1366 \f
1367 /* Given a compare instruction, swap the operands.
1368 A test instruction is changed into a compare of 0 against the operand. */
1369
1370 void
1371 reverse_comparison (rtx insn)
1372 {
1373 rtx body = PATTERN (insn);
1374 rtx comp;
1375
1376 if (GET_CODE (body) == SET)
1377 comp = SET_SRC (body);
1378 else
1379 comp = SET_SRC (XVECEXP (body, 0, 0));
1380
1381 if (GET_CODE (comp) == COMPARE)
1382 {
1383 rtx op0 = XEXP (comp, 0);
1384 rtx op1 = XEXP (comp, 1);
1385 XEXP (comp, 0) = op1;
1386 XEXP (comp, 1) = op0;
1387 }
1388 else
1389 {
1390 rtx new = gen_rtx_COMPARE (VOIDmode,
1391 CONST0_RTX (GET_MODE (comp)), comp);
1392 if (GET_CODE (body) == SET)
1393 SET_SRC (body) = new;
1394 else
1395 SET_SRC (XVECEXP (body, 0, 0)) = new;
1396 }
1397 }
1398 \f
1399 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1400 or (2) a component ref of something variable. Represent the later with
1401 a NULL expression. */
1402
1403 static tree
1404 component_ref_for_mem_expr (tree ref)
1405 {
1406 tree inner = TREE_OPERAND (ref, 0);
1407
1408 if (TREE_CODE (inner) == COMPONENT_REF)
1409 inner = component_ref_for_mem_expr (inner);
1410 else
1411 {
1412 /* Now remove any conversions: they don't change what the underlying
1413 object is. Likewise for SAVE_EXPR. */
1414 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1415 || TREE_CODE (inner) == NON_LVALUE_EXPR
1416 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1417 || TREE_CODE (inner) == SAVE_EXPR)
1418 inner = TREE_OPERAND (inner, 0);
1419
1420 if (! DECL_P (inner))
1421 inner = NULL_TREE;
1422 }
1423
1424 if (inner == TREE_OPERAND (ref, 0))
1425 return ref;
1426 else
1427 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1428 TREE_OPERAND (ref, 1));
1429 }
1430
1431 /* Returns 1 if both MEM_EXPR can be considered equal
1432 and 0 otherwise. */
1433
1434 int
1435 mem_expr_equal_p (tree expr1, tree expr2)
1436 {
1437 if (expr1 == expr2)
1438 return 1;
1439
1440 if (! expr1 || ! expr2)
1441 return 0;
1442
1443 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1444 return 0;
1445
1446 if (TREE_CODE (expr1) == COMPONENT_REF)
1447 return
1448 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1449 TREE_OPERAND (expr2, 0))
1450 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1451 TREE_OPERAND (expr2, 1));
1452
1453 if (TREE_CODE (expr1) == INDIRECT_REF)
1454 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1455 TREE_OPERAND (expr2, 0));
1456
1457 /* Decls with different pointers can't be equal. */
1458 if (DECL_P (expr1))
1459 return 0;
1460
1461 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1462 have been resolved here. */
1463 }
1464
1465 /* Given REF, a MEM, and T, either the type of X or the expression
1466 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1467 if we are making a new object of this type. BITPOS is nonzero if
1468 there is an offset outstanding on T that will be applied later. */
1469
1470 void
1471 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1472 HOST_WIDE_INT bitpos)
1473 {
1474 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1475 tree expr = MEM_EXPR (ref);
1476 rtx offset = MEM_OFFSET (ref);
1477 rtx size = MEM_SIZE (ref);
1478 unsigned int align = MEM_ALIGN (ref);
1479 HOST_WIDE_INT apply_bitpos = 0;
1480 tree type;
1481
1482 /* It can happen that type_for_mode was given a mode for which there
1483 is no language-level type. In which case it returns NULL, which
1484 we can see here. */
1485 if (t == NULL_TREE)
1486 return;
1487
1488 type = TYPE_P (t) ? t : TREE_TYPE (t);
1489 if (type == error_mark_node)
1490 return;
1491
1492 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1493 wrong answer, as it assumes that DECL_RTL already has the right alias
1494 info. Callers should not set DECL_RTL until after the call to
1495 set_mem_attributes. */
1496 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1497 abort ();
1498
1499 /* Get the alias set from the expression or type (perhaps using a
1500 front-end routine) and use it. */
1501 alias = get_alias_set (t);
1502
1503 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1504 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1505 RTX_UNCHANGING_P (ref)
1506 |= ((lang_hooks.honor_readonly
1507 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1508 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1509 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1510
1511 /* If we are making an object of this type, or if this is a DECL, we know
1512 that it is a scalar if the type is not an aggregate. */
1513 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1514 MEM_SCALAR_P (ref) = 1;
1515
1516 /* We can set the alignment from the type if we are making an object,
1517 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1518 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1519 align = MAX (align, TYPE_ALIGN (type));
1520
1521 /* If the size is known, we can set that. */
1522 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1523 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1524
1525 /* If T is not a type, we may be able to deduce some more information about
1526 the expression. */
1527 if (! TYPE_P (t))
1528 {
1529 maybe_set_unchanging (ref, t);
1530 if (TREE_THIS_VOLATILE (t))
1531 MEM_VOLATILE_P (ref) = 1;
1532
1533 /* Now remove any conversions: they don't change what the underlying
1534 object is. Likewise for SAVE_EXPR. */
1535 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1536 || TREE_CODE (t) == NON_LVALUE_EXPR
1537 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1538 || TREE_CODE (t) == SAVE_EXPR)
1539 t = TREE_OPERAND (t, 0);
1540
1541 /* If this expression can't be addressed (e.g., it contains a reference
1542 to a non-addressable field), show we don't change its alias set. */
1543 if (! can_address_p (t))
1544 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1545
1546 /* If this is a decl, set the attributes of the MEM from it. */
1547 if (DECL_P (t))
1548 {
1549 expr = t;
1550 offset = const0_rtx;
1551 apply_bitpos = bitpos;
1552 size = (DECL_SIZE_UNIT (t)
1553 && host_integerp (DECL_SIZE_UNIT (t), 1)
1554 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1555 align = DECL_ALIGN (t);
1556 }
1557
1558 /* If this is a constant, we know the alignment. */
1559 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1560 {
1561 align = TYPE_ALIGN (type);
1562 #ifdef CONSTANT_ALIGNMENT
1563 align = CONSTANT_ALIGNMENT (t, align);
1564 #endif
1565 }
1566
1567 /* If this is a field reference and not a bit-field, record it. */
1568 /* ??? There is some information that can be gleened from bit-fields,
1569 such as the word offset in the structure that might be modified.
1570 But skip it for now. */
1571 else if (TREE_CODE (t) == COMPONENT_REF
1572 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1573 {
1574 expr = component_ref_for_mem_expr (t);
1575 offset = const0_rtx;
1576 apply_bitpos = bitpos;
1577 /* ??? Any reason the field size would be different than
1578 the size we got from the type? */
1579 }
1580
1581 /* If this is an array reference, look for an outer field reference. */
1582 else if (TREE_CODE (t) == ARRAY_REF)
1583 {
1584 tree off_tree = size_zero_node;
1585 /* We can't modify t, because we use it at the end of the
1586 function. */
1587 tree t2 = t;
1588
1589 do
1590 {
1591 tree index = TREE_OPERAND (t2, 1);
1592 tree array = TREE_OPERAND (t2, 0);
1593 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1594 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1595 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1596
1597 /* We assume all arrays have sizes that are a multiple of a byte.
1598 First subtract the lower bound, if any, in the type of the
1599 index, then convert to sizetype and multiply by the size of the
1600 array element. */
1601 if (low_bound != 0 && ! integer_zerop (low_bound))
1602 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1603 index, low_bound));
1604
1605 /* If the index has a self-referential type, instantiate it;
1606 likewise for the component size. */
1607 index = SUBSTITUTE_PLACEHOLDER_IN_EXPR (index, t2);
1608 unit_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (unit_size, array);
1609 off_tree
1610 = fold (build (PLUS_EXPR, sizetype,
1611 fold (build (MULT_EXPR, sizetype,
1612 index, unit_size)),
1613 off_tree));
1614 t2 = TREE_OPERAND (t2, 0);
1615 }
1616 while (TREE_CODE (t2) == ARRAY_REF);
1617
1618 if (DECL_P (t2))
1619 {
1620 expr = t2;
1621 offset = NULL;
1622 if (host_integerp (off_tree, 1))
1623 {
1624 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1625 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1626 align = DECL_ALIGN (t2);
1627 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1628 align = aoff;
1629 offset = GEN_INT (ioff);
1630 apply_bitpos = bitpos;
1631 }
1632 }
1633 else if (TREE_CODE (t2) == COMPONENT_REF)
1634 {
1635 expr = component_ref_for_mem_expr (t2);
1636 if (host_integerp (off_tree, 1))
1637 {
1638 offset = GEN_INT (tree_low_cst (off_tree, 1));
1639 apply_bitpos = bitpos;
1640 }
1641 /* ??? Any reason the field size would be different than
1642 the size we got from the type? */
1643 }
1644 else if (flag_argument_noalias > 1
1645 && TREE_CODE (t2) == INDIRECT_REF
1646 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1647 {
1648 expr = t2;
1649 offset = NULL;
1650 }
1651 }
1652
1653 /* If this is a Fortran indirect argument reference, record the
1654 parameter decl. */
1655 else if (flag_argument_noalias > 1
1656 && TREE_CODE (t) == INDIRECT_REF
1657 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1658 {
1659 expr = t;
1660 offset = NULL;
1661 }
1662 }
1663
1664 /* If we modified OFFSET based on T, then subtract the outstanding
1665 bit position offset. Similarly, increase the size of the accessed
1666 object to contain the negative offset. */
1667 if (apply_bitpos)
1668 {
1669 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1670 if (size)
1671 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1672 }
1673
1674 /* Now set the attributes we computed above. */
1675 MEM_ATTRS (ref)
1676 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1677
1678 /* If this is already known to be a scalar or aggregate, we are done. */
1679 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1680 return;
1681
1682 /* If it is a reference into an aggregate, this is part of an aggregate.
1683 Otherwise we don't know. */
1684 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1685 || TREE_CODE (t) == ARRAY_RANGE_REF
1686 || TREE_CODE (t) == BIT_FIELD_REF)
1687 MEM_IN_STRUCT_P (ref) = 1;
1688 }
1689
1690 void
1691 set_mem_attributes (rtx ref, tree t, int objectp)
1692 {
1693 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1694 }
1695
1696 /* Set the decl for MEM to DECL. */
1697
1698 void
1699 set_mem_attrs_from_reg (rtx mem, rtx reg)
1700 {
1701 MEM_ATTRS (mem)
1702 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1703 GEN_INT (REG_OFFSET (reg)),
1704 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1705 }
1706
1707 /* Set the alias set of MEM to SET. */
1708
1709 void
1710 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1711 {
1712 #ifdef ENABLE_CHECKING
1713 /* If the new and old alias sets don't conflict, something is wrong. */
1714 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1715 abort ();
1716 #endif
1717
1718 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1719 MEM_SIZE (mem), MEM_ALIGN (mem),
1720 GET_MODE (mem));
1721 }
1722
1723 /* Set the alignment of MEM to ALIGN bits. */
1724
1725 void
1726 set_mem_align (rtx mem, unsigned int align)
1727 {
1728 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1729 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1730 GET_MODE (mem));
1731 }
1732
1733 /* Set the expr for MEM to EXPR. */
1734
1735 void
1736 set_mem_expr (rtx mem, tree expr)
1737 {
1738 MEM_ATTRS (mem)
1739 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1740 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1741 }
1742
1743 /* Set the offset of MEM to OFFSET. */
1744
1745 void
1746 set_mem_offset (rtx mem, rtx offset)
1747 {
1748 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1749 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1750 GET_MODE (mem));
1751 }
1752
1753 /* Set the size of MEM to SIZE. */
1754
1755 void
1756 set_mem_size (rtx mem, rtx size)
1757 {
1758 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1759 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1760 GET_MODE (mem));
1761 }
1762 \f
1763 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1764 and its address changed to ADDR. (VOIDmode means don't change the mode.
1765 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1766 returned memory location is required to be valid. The memory
1767 attributes are not changed. */
1768
1769 static rtx
1770 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1771 {
1772 rtx new;
1773
1774 if (GET_CODE (memref) != MEM)
1775 abort ();
1776 if (mode == VOIDmode)
1777 mode = GET_MODE (memref);
1778 if (addr == 0)
1779 addr = XEXP (memref, 0);
1780 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1781 && (!validate || memory_address_p (mode, addr)))
1782 return memref;
1783
1784 if (validate)
1785 {
1786 if (reload_in_progress || reload_completed)
1787 {
1788 if (! memory_address_p (mode, addr))
1789 abort ();
1790 }
1791 else
1792 addr = memory_address (mode, addr);
1793 }
1794
1795 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1796 return memref;
1797
1798 new = gen_rtx_MEM (mode, addr);
1799 MEM_COPY_ATTRIBUTES (new, memref);
1800 return new;
1801 }
1802
1803 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1804 way we are changing MEMREF, so we only preserve the alias set. */
1805
1806 rtx
1807 change_address (rtx memref, enum machine_mode mode, rtx addr)
1808 {
1809 rtx new = change_address_1 (memref, mode, addr, 1), size;
1810 enum machine_mode mmode = GET_MODE (new);
1811 unsigned int align;
1812
1813 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1814 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1815
1816 /* If there are no changes, just return the original memory reference. */
1817 if (new == memref)
1818 {
1819 if (MEM_ATTRS (memref) == 0
1820 || (MEM_EXPR (memref) == NULL
1821 && MEM_OFFSET (memref) == NULL
1822 && MEM_SIZE (memref) == size
1823 && MEM_ALIGN (memref) == align))
1824 return new;
1825
1826 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1827 MEM_COPY_ATTRIBUTES (new, memref);
1828 }
1829
1830 MEM_ATTRS (new)
1831 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1832
1833 return new;
1834 }
1835
1836 /* Return a memory reference like MEMREF, but with its mode changed
1837 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1838 nonzero, the memory address is forced to be valid.
1839 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1840 and caller is responsible for adjusting MEMREF base register. */
1841
1842 rtx
1843 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1844 int validate, int adjust)
1845 {
1846 rtx addr = XEXP (memref, 0);
1847 rtx new;
1848 rtx memoffset = MEM_OFFSET (memref);
1849 rtx size = 0;
1850 unsigned int memalign = MEM_ALIGN (memref);
1851
1852 /* If there are no changes, just return the original memory reference. */
1853 if (mode == GET_MODE (memref) && !offset
1854 && (!validate || memory_address_p (mode, addr)))
1855 return memref;
1856
1857 /* ??? Prefer to create garbage instead of creating shared rtl.
1858 This may happen even if offset is nonzero -- consider
1859 (plus (plus reg reg) const_int) -- so do this always. */
1860 addr = copy_rtx (addr);
1861
1862 if (adjust)
1863 {
1864 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1865 object, we can merge it into the LO_SUM. */
1866 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1867 && offset >= 0
1868 && (unsigned HOST_WIDE_INT) offset
1869 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1870 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1871 plus_constant (XEXP (addr, 1), offset));
1872 else
1873 addr = plus_constant (addr, offset);
1874 }
1875
1876 new = change_address_1 (memref, mode, addr, validate);
1877
1878 /* Compute the new values of the memory attributes due to this adjustment.
1879 We add the offsets and update the alignment. */
1880 if (memoffset)
1881 memoffset = GEN_INT (offset + INTVAL (memoffset));
1882
1883 /* Compute the new alignment by taking the MIN of the alignment and the
1884 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1885 if zero. */
1886 if (offset != 0)
1887 memalign
1888 = MIN (memalign,
1889 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1890
1891 /* We can compute the size in a number of ways. */
1892 if (GET_MODE (new) != BLKmode)
1893 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1894 else if (MEM_SIZE (memref))
1895 size = plus_constant (MEM_SIZE (memref), -offset);
1896
1897 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1898 memoffset, size, memalign, GET_MODE (new));
1899
1900 /* At some point, we should validate that this offset is within the object,
1901 if all the appropriate values are known. */
1902 return new;
1903 }
1904
1905 /* Return a memory reference like MEMREF, but with its mode changed
1906 to MODE and its address changed to ADDR, which is assumed to be
1907 MEMREF offseted by OFFSET bytes. If VALIDATE is
1908 nonzero, the memory address is forced to be valid. */
1909
1910 rtx
1911 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1912 HOST_WIDE_INT offset, int validate)
1913 {
1914 memref = change_address_1 (memref, VOIDmode, addr, validate);
1915 return adjust_address_1 (memref, mode, offset, validate, 0);
1916 }
1917
1918 /* Return a memory reference like MEMREF, but whose address is changed by
1919 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1920 known to be in OFFSET (possibly 1). */
1921
1922 rtx
1923 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1924 {
1925 rtx new, addr = XEXP (memref, 0);
1926
1927 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1928
1929 /* At this point we don't know _why_ the address is invalid. It
1930 could have secondary memory references, multiplies or anything.
1931
1932 However, if we did go and rearrange things, we can wind up not
1933 being able to recognize the magic around pic_offset_table_rtx.
1934 This stuff is fragile, and is yet another example of why it is
1935 bad to expose PIC machinery too early. */
1936 if (! memory_address_p (GET_MODE (memref), new)
1937 && GET_CODE (addr) == PLUS
1938 && XEXP (addr, 0) == pic_offset_table_rtx)
1939 {
1940 addr = force_reg (GET_MODE (addr), addr);
1941 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1942 }
1943
1944 update_temp_slot_address (XEXP (memref, 0), new);
1945 new = change_address_1 (memref, VOIDmode, new, 1);
1946
1947 /* If there are no changes, just return the original memory reference. */
1948 if (new == memref)
1949 return new;
1950
1951 /* Update the alignment to reflect the offset. Reset the offset, which
1952 we don't know. */
1953 MEM_ATTRS (new)
1954 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1955 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1956 GET_MODE (new));
1957 return new;
1958 }
1959
1960 /* Return a memory reference like MEMREF, but with its address changed to
1961 ADDR. The caller is asserting that the actual piece of memory pointed
1962 to is the same, just the form of the address is being changed, such as
1963 by putting something into a register. */
1964
1965 rtx
1966 replace_equiv_address (rtx memref, rtx addr)
1967 {
1968 /* change_address_1 copies the memory attribute structure without change
1969 and that's exactly what we want here. */
1970 update_temp_slot_address (XEXP (memref, 0), addr);
1971 return change_address_1 (memref, VOIDmode, addr, 1);
1972 }
1973
1974 /* Likewise, but the reference is not required to be valid. */
1975
1976 rtx
1977 replace_equiv_address_nv (rtx memref, rtx addr)
1978 {
1979 return change_address_1 (memref, VOIDmode, addr, 0);
1980 }
1981
1982 /* Return a memory reference like MEMREF, but with its mode widened to
1983 MODE and offset by OFFSET. This would be used by targets that e.g.
1984 cannot issue QImode memory operations and have to use SImode memory
1985 operations plus masking logic. */
1986
1987 rtx
1988 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1989 {
1990 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1991 tree expr = MEM_EXPR (new);
1992 rtx memoffset = MEM_OFFSET (new);
1993 unsigned int size = GET_MODE_SIZE (mode);
1994
1995 /* If there are no changes, just return the original memory reference. */
1996 if (new == memref)
1997 return new;
1998
1999 /* If we don't know what offset we were at within the expression, then
2000 we can't know if we've overstepped the bounds. */
2001 if (! memoffset)
2002 expr = NULL_TREE;
2003
2004 while (expr)
2005 {
2006 if (TREE_CODE (expr) == COMPONENT_REF)
2007 {
2008 tree field = TREE_OPERAND (expr, 1);
2009
2010 if (! DECL_SIZE_UNIT (field))
2011 {
2012 expr = NULL_TREE;
2013 break;
2014 }
2015
2016 /* Is the field at least as large as the access? If so, ok,
2017 otherwise strip back to the containing structure. */
2018 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2019 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2020 && INTVAL (memoffset) >= 0)
2021 break;
2022
2023 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2024 {
2025 expr = NULL_TREE;
2026 break;
2027 }
2028
2029 expr = TREE_OPERAND (expr, 0);
2030 memoffset = (GEN_INT (INTVAL (memoffset)
2031 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2032 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2033 / BITS_PER_UNIT)));
2034 }
2035 /* Similarly for the decl. */
2036 else if (DECL_P (expr)
2037 && DECL_SIZE_UNIT (expr)
2038 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2039 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2040 && (! memoffset || INTVAL (memoffset) >= 0))
2041 break;
2042 else
2043 {
2044 /* The widened memory access overflows the expression, which means
2045 that it could alias another expression. Zap it. */
2046 expr = NULL_TREE;
2047 break;
2048 }
2049 }
2050
2051 if (! expr)
2052 memoffset = NULL_RTX;
2053
2054 /* The widened memory may alias other stuff, so zap the alias set. */
2055 /* ??? Maybe use get_alias_set on any remaining expression. */
2056
2057 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2058 MEM_ALIGN (new), mode);
2059
2060 return new;
2061 }
2062 \f
2063 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2064
2065 rtx
2066 gen_label_rtx (void)
2067 {
2068 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2069 NULL, label_num++, NULL);
2070 }
2071 \f
2072 /* For procedure integration. */
2073
2074 /* Install new pointers to the first and last insns in the chain.
2075 Also, set cur_insn_uid to one higher than the last in use.
2076 Used for an inline-procedure after copying the insn chain. */
2077
2078 void
2079 set_new_first_and_last_insn (rtx first, rtx last)
2080 {
2081 rtx insn;
2082
2083 first_insn = first;
2084 last_insn = last;
2085 cur_insn_uid = 0;
2086
2087 for (insn = first; insn; insn = NEXT_INSN (insn))
2088 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2089
2090 cur_insn_uid++;
2091 }
2092
2093 /* Set the last label number found in the current function.
2094 This is used when belatedly compiling an inline function. */
2095
2096 void
2097 set_new_last_label_num (int last)
2098 {
2099 base_label_num = label_num;
2100 last_label_num = last;
2101 }
2102 \f
2103 /* Restore all variables describing the current status from the structure *P.
2104 This is used after a nested function. */
2105
2106 void
2107 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2108 {
2109 last_label_num = 0;
2110 }
2111 \f
2112 /* Go through all the RTL insn bodies and copy any invalid shared
2113 structure. This routine should only be called once. */
2114
2115 void
2116 unshare_all_rtl (tree fndecl, rtx insn)
2117 {
2118 tree decl;
2119
2120 /* Make sure that virtual parameters are not shared. */
2121 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2122 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2123
2124 /* Make sure that virtual stack slots are not shared. */
2125 unshare_all_decls (DECL_INITIAL (fndecl));
2126
2127 /* Unshare just about everything else. */
2128 unshare_all_rtl_in_chain (insn);
2129
2130 /* Make sure the addresses of stack slots found outside the insn chain
2131 (such as, in DECL_RTL of a variable) are not shared
2132 with the insn chain.
2133
2134 This special care is necessary when the stack slot MEM does not
2135 actually appear in the insn chain. If it does appear, its address
2136 is unshared from all else at that point. */
2137 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2138 }
2139
2140 /* Go through all the RTL insn bodies and copy any invalid shared
2141 structure, again. This is a fairly expensive thing to do so it
2142 should be done sparingly. */
2143
2144 void
2145 unshare_all_rtl_again (rtx insn)
2146 {
2147 rtx p;
2148 tree decl;
2149
2150 for (p = insn; p; p = NEXT_INSN (p))
2151 if (INSN_P (p))
2152 {
2153 reset_used_flags (PATTERN (p));
2154 reset_used_flags (REG_NOTES (p));
2155 reset_used_flags (LOG_LINKS (p));
2156 }
2157
2158 /* Make sure that virtual stack slots are not shared. */
2159 reset_used_decls (DECL_INITIAL (cfun->decl));
2160
2161 /* Make sure that virtual parameters are not shared. */
2162 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2163 reset_used_flags (DECL_RTL (decl));
2164
2165 reset_used_flags (stack_slot_list);
2166
2167 unshare_all_rtl (cfun->decl, insn);
2168 }
2169
2170 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2171 Recursively does the same for subexpressions. */
2172
2173 static void
2174 verify_rtx_sharing (rtx orig, rtx insn)
2175 {
2176 rtx x = orig;
2177 int i;
2178 enum rtx_code code;
2179 const char *format_ptr;
2180
2181 if (x == 0)
2182 return;
2183
2184 code = GET_CODE (x);
2185
2186 /* These types may be freely shared. */
2187
2188 switch (code)
2189 {
2190 case REG:
2191 case QUEUED:
2192 case CONST_INT:
2193 case CONST_DOUBLE:
2194 case CONST_VECTOR:
2195 case SYMBOL_REF:
2196 case LABEL_REF:
2197 case CODE_LABEL:
2198 case PC:
2199 case CC0:
2200 case SCRATCH:
2201 return;
2202 /* SCRATCH must be shared because they represent distinct values. */
2203 case CLOBBER:
2204 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2205 return;
2206 break;
2207
2208 case CONST:
2209 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2210 a LABEL_REF, it isn't sharable. */
2211 if (GET_CODE (XEXP (x, 0)) == PLUS
2212 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2213 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2214 return;
2215 break;
2216
2217 case MEM:
2218 /* A MEM is allowed to be shared if its address is constant. */
2219 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2220 || reload_completed || reload_in_progress)
2221 return;
2222
2223 break;
2224
2225 default:
2226 break;
2227 }
2228
2229 /* This rtx may not be shared. If it has already been seen,
2230 replace it with a copy of itself. */
2231
2232 if (RTX_FLAG (x, used))
2233 {
2234 error ("Invalid rtl sharing found in the insn");
2235 debug_rtx (insn);
2236 error ("Shared rtx");
2237 debug_rtx (x);
2238 abort ();
2239 }
2240 RTX_FLAG (x, used) = 1;
2241
2242 /* Now scan the subexpressions recursively. */
2243
2244 format_ptr = GET_RTX_FORMAT (code);
2245
2246 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2247 {
2248 switch (*format_ptr++)
2249 {
2250 case 'e':
2251 verify_rtx_sharing (XEXP (x, i), insn);
2252 break;
2253
2254 case 'E':
2255 if (XVEC (x, i) != NULL)
2256 {
2257 int j;
2258 int len = XVECLEN (x, i);
2259
2260 for (j = 0; j < len; j++)
2261 {
2262 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2263 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2264 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2265 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2266 else
2267 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2268 }
2269 }
2270 break;
2271 }
2272 }
2273 return;
2274 }
2275
2276 /* Go through all the RTL insn bodies and check that there is no unexpected
2277 sharing in between the subexpressions. */
2278
2279 void
2280 verify_rtl_sharing (void)
2281 {
2282 rtx p;
2283
2284 for (p = get_insns (); p; p = NEXT_INSN (p))
2285 if (INSN_P (p))
2286 {
2287 reset_used_flags (PATTERN (p));
2288 reset_used_flags (REG_NOTES (p));
2289 reset_used_flags (LOG_LINKS (p));
2290 }
2291
2292 for (p = get_insns (); p; p = NEXT_INSN (p))
2293 if (INSN_P (p))
2294 {
2295 verify_rtx_sharing (PATTERN (p), p);
2296 verify_rtx_sharing (REG_NOTES (p), p);
2297 verify_rtx_sharing (LOG_LINKS (p), p);
2298 }
2299 }
2300
2301 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2302 Assumes the mark bits are cleared at entry. */
2303
2304 void
2305 unshare_all_rtl_in_chain (rtx insn)
2306 {
2307 for (; insn; insn = NEXT_INSN (insn))
2308 if (INSN_P (insn))
2309 {
2310 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2311 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2312 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2313 }
2314 }
2315
2316 /* Go through all virtual stack slots of a function and copy any
2317 shared structure. */
2318 static void
2319 unshare_all_decls (tree blk)
2320 {
2321 tree t;
2322
2323 /* Copy shared decls. */
2324 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2325 if (DECL_RTL_SET_P (t))
2326 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2327
2328 /* Now process sub-blocks. */
2329 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2330 unshare_all_decls (t);
2331 }
2332
2333 /* Go through all virtual stack slots of a function and mark them as
2334 not shared. */
2335 static void
2336 reset_used_decls (tree blk)
2337 {
2338 tree t;
2339
2340 /* Mark decls. */
2341 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2342 if (DECL_RTL_SET_P (t))
2343 reset_used_flags (DECL_RTL (t));
2344
2345 /* Now process sub-blocks. */
2346 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2347 reset_used_decls (t);
2348 }
2349
2350 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2351 placed in the result directly, rather than being copied. MAY_SHARE is
2352 either a MEM of an EXPR_LIST of MEMs. */
2353
2354 rtx
2355 copy_most_rtx (rtx orig, rtx may_share)
2356 {
2357 rtx copy;
2358 int i, j;
2359 RTX_CODE code;
2360 const char *format_ptr;
2361
2362 if (orig == may_share
2363 || (GET_CODE (may_share) == EXPR_LIST
2364 && in_expr_list_p (may_share, orig)))
2365 return orig;
2366
2367 code = GET_CODE (orig);
2368
2369 switch (code)
2370 {
2371 case REG:
2372 case QUEUED:
2373 case CONST_INT:
2374 case CONST_DOUBLE:
2375 case CONST_VECTOR:
2376 case SYMBOL_REF:
2377 case CODE_LABEL:
2378 case PC:
2379 case CC0:
2380 return orig;
2381 default:
2382 break;
2383 }
2384
2385 copy = rtx_alloc (code);
2386 PUT_MODE (copy, GET_MODE (orig));
2387 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2388 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2389 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2390 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2391 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2392
2393 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2394
2395 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2396 {
2397 switch (*format_ptr++)
2398 {
2399 case 'e':
2400 XEXP (copy, i) = XEXP (orig, i);
2401 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2402 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2403 break;
2404
2405 case 'u':
2406 XEXP (copy, i) = XEXP (orig, i);
2407 break;
2408
2409 case 'E':
2410 case 'V':
2411 XVEC (copy, i) = XVEC (orig, i);
2412 if (XVEC (orig, i) != NULL)
2413 {
2414 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2415 for (j = 0; j < XVECLEN (copy, i); j++)
2416 XVECEXP (copy, i, j)
2417 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2418 }
2419 break;
2420
2421 case 'w':
2422 XWINT (copy, i) = XWINT (orig, i);
2423 break;
2424
2425 case 'n':
2426 case 'i':
2427 XINT (copy, i) = XINT (orig, i);
2428 break;
2429
2430 case 't':
2431 XTREE (copy, i) = XTREE (orig, i);
2432 break;
2433
2434 case 's':
2435 case 'S':
2436 XSTR (copy, i) = XSTR (orig, i);
2437 break;
2438
2439 case '0':
2440 X0ANY (copy, i) = X0ANY (orig, i);
2441 break;
2442
2443 default:
2444 abort ();
2445 }
2446 }
2447 return copy;
2448 }
2449
2450 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2451 Recursively does the same for subexpressions. Uses
2452 copy_rtx_if_shared_1 to reduce stack space. */
2453
2454 rtx
2455 copy_rtx_if_shared (rtx orig)
2456 {
2457 copy_rtx_if_shared_1 (&orig);
2458 return orig;
2459 }
2460
2461 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2462 use. Recursively does the same for subexpressions. */
2463
2464 static void
2465 copy_rtx_if_shared_1 (rtx *orig1)
2466 {
2467 rtx x;
2468 int i;
2469 enum rtx_code code;
2470 rtx *last_ptr;
2471 const char *format_ptr;
2472 int copied = 0;
2473 int length;
2474
2475 /* Repeat is used to turn tail-recursion into iteration. */
2476 repeat:
2477 x = *orig1;
2478
2479 if (x == 0)
2480 return;
2481
2482 code = GET_CODE (x);
2483
2484 /* These types may be freely shared. */
2485
2486 switch (code)
2487 {
2488 case REG:
2489 case QUEUED:
2490 case CONST_INT:
2491 case CONST_DOUBLE:
2492 case CONST_VECTOR:
2493 case SYMBOL_REF:
2494 case LABEL_REF:
2495 case CODE_LABEL:
2496 case PC:
2497 case CC0:
2498 case SCRATCH:
2499 /* SCRATCH must be shared because they represent distinct values. */
2500 return;
2501 case CLOBBER:
2502 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2503 return;
2504 break;
2505
2506 case CONST:
2507 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2508 a LABEL_REF, it isn't sharable. */
2509 if (GET_CODE (XEXP (x, 0)) == PLUS
2510 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2511 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2512 return;
2513 break;
2514
2515 case INSN:
2516 case JUMP_INSN:
2517 case CALL_INSN:
2518 case NOTE:
2519 case BARRIER:
2520 /* The chain of insns is not being copied. */
2521 return;
2522
2523 default:
2524 break;
2525 }
2526
2527 /* This rtx may not be shared. If it has already been seen,
2528 replace it with a copy of itself. */
2529
2530 if (RTX_FLAG (x, used))
2531 {
2532 rtx copy;
2533
2534 copy = rtx_alloc (code);
2535 memcpy (copy, x, RTX_SIZE (code));
2536 x = copy;
2537 copied = 1;
2538 }
2539 RTX_FLAG (x, used) = 1;
2540
2541 /* Now scan the subexpressions recursively.
2542 We can store any replaced subexpressions directly into X
2543 since we know X is not shared! Any vectors in X
2544 must be copied if X was copied. */
2545
2546 format_ptr = GET_RTX_FORMAT (code);
2547 length = GET_RTX_LENGTH (code);
2548 last_ptr = NULL;
2549
2550 for (i = 0; i < length; i++)
2551 {
2552 switch (*format_ptr++)
2553 {
2554 case 'e':
2555 if (last_ptr)
2556 copy_rtx_if_shared_1 (last_ptr);
2557 last_ptr = &XEXP (x, i);
2558 break;
2559
2560 case 'E':
2561 if (XVEC (x, i) != NULL)
2562 {
2563 int j;
2564 int len = XVECLEN (x, i);
2565
2566 /* Copy the vector iff I copied the rtx and the length
2567 is nonzero. */
2568 if (copied && len > 0)
2569 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2570
2571 /* Call recursively on all inside the vector. */
2572 for (j = 0; j < len; j++)
2573 {
2574 if (last_ptr)
2575 copy_rtx_if_shared_1 (last_ptr);
2576 last_ptr = &XVECEXP (x, i, j);
2577 }
2578 }
2579 break;
2580 }
2581 }
2582 *orig1 = x;
2583 if (last_ptr)
2584 {
2585 orig1 = last_ptr;
2586 goto repeat;
2587 }
2588 return;
2589 }
2590
2591 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2592 to look for shared sub-parts. */
2593
2594 void
2595 reset_used_flags (rtx x)
2596 {
2597 int i, j;
2598 enum rtx_code code;
2599 const char *format_ptr;
2600 int length;
2601
2602 /* Repeat is used to turn tail-recursion into iteration. */
2603 repeat:
2604 if (x == 0)
2605 return;
2606
2607 code = GET_CODE (x);
2608
2609 /* These types may be freely shared so we needn't do any resetting
2610 for them. */
2611
2612 switch (code)
2613 {
2614 case REG:
2615 case QUEUED:
2616 case CONST_INT:
2617 case CONST_DOUBLE:
2618 case CONST_VECTOR:
2619 case SYMBOL_REF:
2620 case CODE_LABEL:
2621 case PC:
2622 case CC0:
2623 return;
2624
2625 case INSN:
2626 case JUMP_INSN:
2627 case CALL_INSN:
2628 case NOTE:
2629 case LABEL_REF:
2630 case BARRIER:
2631 /* The chain of insns is not being copied. */
2632 return;
2633
2634 default:
2635 break;
2636 }
2637
2638 RTX_FLAG (x, used) = 0;
2639
2640 format_ptr = GET_RTX_FORMAT (code);
2641 length = GET_RTX_LENGTH (code);
2642
2643 for (i = 0; i < length; i++)
2644 {
2645 switch (*format_ptr++)
2646 {
2647 case 'e':
2648 if (i == length-1)
2649 {
2650 x = XEXP (x, i);
2651 goto repeat;
2652 }
2653 reset_used_flags (XEXP (x, i));
2654 break;
2655
2656 case 'E':
2657 for (j = 0; j < XVECLEN (x, i); j++)
2658 reset_used_flags (XVECEXP (x, i, j));
2659 break;
2660 }
2661 }
2662 }
2663
2664 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2665 to look for shared sub-parts. */
2666
2667 void
2668 set_used_flags (rtx x)
2669 {
2670 int i, j;
2671 enum rtx_code code;
2672 const char *format_ptr;
2673
2674 if (x == 0)
2675 return;
2676
2677 code = GET_CODE (x);
2678
2679 /* These types may be freely shared so we needn't do any resetting
2680 for them. */
2681
2682 switch (code)
2683 {
2684 case REG:
2685 case QUEUED:
2686 case CONST_INT:
2687 case CONST_DOUBLE:
2688 case CONST_VECTOR:
2689 case SYMBOL_REF:
2690 case CODE_LABEL:
2691 case PC:
2692 case CC0:
2693 return;
2694
2695 case INSN:
2696 case JUMP_INSN:
2697 case CALL_INSN:
2698 case NOTE:
2699 case LABEL_REF:
2700 case BARRIER:
2701 /* The chain of insns is not being copied. */
2702 return;
2703
2704 default:
2705 break;
2706 }
2707
2708 RTX_FLAG (x, used) = 1;
2709
2710 format_ptr = GET_RTX_FORMAT (code);
2711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2712 {
2713 switch (*format_ptr++)
2714 {
2715 case 'e':
2716 set_used_flags (XEXP (x, i));
2717 break;
2718
2719 case 'E':
2720 for (j = 0; j < XVECLEN (x, i); j++)
2721 set_used_flags (XVECEXP (x, i, j));
2722 break;
2723 }
2724 }
2725 }
2726 \f
2727 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2728 Return X or the rtx for the pseudo reg the value of X was copied into.
2729 OTHER must be valid as a SET_DEST. */
2730
2731 rtx
2732 make_safe_from (rtx x, rtx other)
2733 {
2734 while (1)
2735 switch (GET_CODE (other))
2736 {
2737 case SUBREG:
2738 other = SUBREG_REG (other);
2739 break;
2740 case STRICT_LOW_PART:
2741 case SIGN_EXTEND:
2742 case ZERO_EXTEND:
2743 other = XEXP (other, 0);
2744 break;
2745 default:
2746 goto done;
2747 }
2748 done:
2749 if ((GET_CODE (other) == MEM
2750 && ! CONSTANT_P (x)
2751 && GET_CODE (x) != REG
2752 && GET_CODE (x) != SUBREG)
2753 || (GET_CODE (other) == REG
2754 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2755 || reg_mentioned_p (other, x))))
2756 {
2757 rtx temp = gen_reg_rtx (GET_MODE (x));
2758 emit_move_insn (temp, x);
2759 return temp;
2760 }
2761 return x;
2762 }
2763 \f
2764 /* Emission of insns (adding them to the doubly-linked list). */
2765
2766 /* Return the first insn of the current sequence or current function. */
2767
2768 rtx
2769 get_insns (void)
2770 {
2771 return first_insn;
2772 }
2773
2774 /* Specify a new insn as the first in the chain. */
2775
2776 void
2777 set_first_insn (rtx insn)
2778 {
2779 if (PREV_INSN (insn) != 0)
2780 abort ();
2781 first_insn = insn;
2782 }
2783
2784 /* Return the last insn emitted in current sequence or current function. */
2785
2786 rtx
2787 get_last_insn (void)
2788 {
2789 return last_insn;
2790 }
2791
2792 /* Specify a new insn as the last in the chain. */
2793
2794 void
2795 set_last_insn (rtx insn)
2796 {
2797 if (NEXT_INSN (insn) != 0)
2798 abort ();
2799 last_insn = insn;
2800 }
2801
2802 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2803
2804 rtx
2805 get_last_insn_anywhere (void)
2806 {
2807 struct sequence_stack *stack;
2808 if (last_insn)
2809 return last_insn;
2810 for (stack = seq_stack; stack; stack = stack->next)
2811 if (stack->last != 0)
2812 return stack->last;
2813 return 0;
2814 }
2815
2816 /* Return the first nonnote insn emitted in current sequence or current
2817 function. This routine looks inside SEQUENCEs. */
2818
2819 rtx
2820 get_first_nonnote_insn (void)
2821 {
2822 rtx insn = first_insn;
2823
2824 while (insn)
2825 {
2826 insn = next_insn (insn);
2827 if (insn == 0 || GET_CODE (insn) != NOTE)
2828 break;
2829 }
2830
2831 return insn;
2832 }
2833
2834 /* Return the last nonnote insn emitted in current sequence or current
2835 function. This routine looks inside SEQUENCEs. */
2836
2837 rtx
2838 get_last_nonnote_insn (void)
2839 {
2840 rtx insn = last_insn;
2841
2842 while (insn)
2843 {
2844 insn = previous_insn (insn);
2845 if (insn == 0 || GET_CODE (insn) != NOTE)
2846 break;
2847 }
2848
2849 return insn;
2850 }
2851
2852 /* Return a number larger than any instruction's uid in this function. */
2853
2854 int
2855 get_max_uid (void)
2856 {
2857 return cur_insn_uid;
2858 }
2859
2860 /* Renumber instructions so that no instruction UIDs are wasted. */
2861
2862 void
2863 renumber_insns (FILE *stream)
2864 {
2865 rtx insn;
2866
2867 /* If we're not supposed to renumber instructions, don't. */
2868 if (!flag_renumber_insns)
2869 return;
2870
2871 /* If there aren't that many instructions, then it's not really
2872 worth renumbering them. */
2873 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2874 return;
2875
2876 cur_insn_uid = 1;
2877
2878 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2879 {
2880 if (stream)
2881 fprintf (stream, "Renumbering insn %d to %d\n",
2882 INSN_UID (insn), cur_insn_uid);
2883 INSN_UID (insn) = cur_insn_uid++;
2884 }
2885 }
2886 \f
2887 /* Return the next insn. If it is a SEQUENCE, return the first insn
2888 of the sequence. */
2889
2890 rtx
2891 next_insn (rtx insn)
2892 {
2893 if (insn)
2894 {
2895 insn = NEXT_INSN (insn);
2896 if (insn && GET_CODE (insn) == INSN
2897 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2898 insn = XVECEXP (PATTERN (insn), 0, 0);
2899 }
2900
2901 return insn;
2902 }
2903
2904 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2905 of the sequence. */
2906
2907 rtx
2908 previous_insn (rtx insn)
2909 {
2910 if (insn)
2911 {
2912 insn = PREV_INSN (insn);
2913 if (insn && GET_CODE (insn) == INSN
2914 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2915 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2916 }
2917
2918 return insn;
2919 }
2920
2921 /* Return the next insn after INSN that is not a NOTE. This routine does not
2922 look inside SEQUENCEs. */
2923
2924 rtx
2925 next_nonnote_insn (rtx insn)
2926 {
2927 while (insn)
2928 {
2929 insn = NEXT_INSN (insn);
2930 if (insn == 0 || GET_CODE (insn) != NOTE)
2931 break;
2932 }
2933
2934 return insn;
2935 }
2936
2937 /* Return the previous insn before INSN that is not a NOTE. This routine does
2938 not look inside SEQUENCEs. */
2939
2940 rtx
2941 prev_nonnote_insn (rtx insn)
2942 {
2943 while (insn)
2944 {
2945 insn = PREV_INSN (insn);
2946 if (insn == 0 || GET_CODE (insn) != NOTE)
2947 break;
2948 }
2949
2950 return insn;
2951 }
2952
2953 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2954 or 0, if there is none. This routine does not look inside
2955 SEQUENCEs. */
2956
2957 rtx
2958 next_real_insn (rtx insn)
2959 {
2960 while (insn)
2961 {
2962 insn = NEXT_INSN (insn);
2963 if (insn == 0 || GET_CODE (insn) == INSN
2964 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2965 break;
2966 }
2967
2968 return insn;
2969 }
2970
2971 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2972 or 0, if there is none. This routine does not look inside
2973 SEQUENCEs. */
2974
2975 rtx
2976 prev_real_insn (rtx insn)
2977 {
2978 while (insn)
2979 {
2980 insn = PREV_INSN (insn);
2981 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2982 || GET_CODE (insn) == JUMP_INSN)
2983 break;
2984 }
2985
2986 return insn;
2987 }
2988
2989 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2990 This routine does not look inside SEQUENCEs. */
2991
2992 rtx
2993 last_call_insn (void)
2994 {
2995 rtx insn;
2996
2997 for (insn = get_last_insn ();
2998 insn && GET_CODE (insn) != CALL_INSN;
2999 insn = PREV_INSN (insn))
3000 ;
3001
3002 return insn;
3003 }
3004
3005 /* Find the next insn after INSN that really does something. This routine
3006 does not look inside SEQUENCEs. Until reload has completed, this is the
3007 same as next_real_insn. */
3008
3009 int
3010 active_insn_p (rtx insn)
3011 {
3012 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3013 || (GET_CODE (insn) == INSN
3014 && (! reload_completed
3015 || (GET_CODE (PATTERN (insn)) != USE
3016 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3017 }
3018
3019 rtx
3020 next_active_insn (rtx insn)
3021 {
3022 while (insn)
3023 {
3024 insn = NEXT_INSN (insn);
3025 if (insn == 0 || active_insn_p (insn))
3026 break;
3027 }
3028
3029 return insn;
3030 }
3031
3032 /* Find the last insn before INSN that really does something. This routine
3033 does not look inside SEQUENCEs. Until reload has completed, this is the
3034 same as prev_real_insn. */
3035
3036 rtx
3037 prev_active_insn (rtx insn)
3038 {
3039 while (insn)
3040 {
3041 insn = PREV_INSN (insn);
3042 if (insn == 0 || active_insn_p (insn))
3043 break;
3044 }
3045
3046 return insn;
3047 }
3048
3049 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3050
3051 rtx
3052 next_label (rtx insn)
3053 {
3054 while (insn)
3055 {
3056 insn = NEXT_INSN (insn);
3057 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3058 break;
3059 }
3060
3061 return insn;
3062 }
3063
3064 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3065
3066 rtx
3067 prev_label (rtx insn)
3068 {
3069 while (insn)
3070 {
3071 insn = PREV_INSN (insn);
3072 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3073 break;
3074 }
3075
3076 return insn;
3077 }
3078 \f
3079 #ifdef HAVE_cc0
3080 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3081 and REG_CC_USER notes so we can find it. */
3082
3083 void
3084 link_cc0_insns (rtx insn)
3085 {
3086 rtx user = next_nonnote_insn (insn);
3087
3088 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3089 user = XVECEXP (PATTERN (user), 0, 0);
3090
3091 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3092 REG_NOTES (user));
3093 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3094 }
3095
3096 /* Return the next insn that uses CC0 after INSN, which is assumed to
3097 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3098 applied to the result of this function should yield INSN).
3099
3100 Normally, this is simply the next insn. However, if a REG_CC_USER note
3101 is present, it contains the insn that uses CC0.
3102
3103 Return 0 if we can't find the insn. */
3104
3105 rtx
3106 next_cc0_user (rtx insn)
3107 {
3108 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3109
3110 if (note)
3111 return XEXP (note, 0);
3112
3113 insn = next_nonnote_insn (insn);
3114 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3115 insn = XVECEXP (PATTERN (insn), 0, 0);
3116
3117 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3118 return insn;
3119
3120 return 0;
3121 }
3122
3123 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3124 note, it is the previous insn. */
3125
3126 rtx
3127 prev_cc0_setter (rtx insn)
3128 {
3129 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3130
3131 if (note)
3132 return XEXP (note, 0);
3133
3134 insn = prev_nonnote_insn (insn);
3135 if (! sets_cc0_p (PATTERN (insn)))
3136 abort ();
3137
3138 return insn;
3139 }
3140 #endif
3141
3142 /* Increment the label uses for all labels present in rtx. */
3143
3144 static void
3145 mark_label_nuses (rtx x)
3146 {
3147 enum rtx_code code;
3148 int i, j;
3149 const char *fmt;
3150
3151 code = GET_CODE (x);
3152 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3153 LABEL_NUSES (XEXP (x, 0))++;
3154
3155 fmt = GET_RTX_FORMAT (code);
3156 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3157 {
3158 if (fmt[i] == 'e')
3159 mark_label_nuses (XEXP (x, i));
3160 else if (fmt[i] == 'E')
3161 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3162 mark_label_nuses (XVECEXP (x, i, j));
3163 }
3164 }
3165
3166 \f
3167 /* Try splitting insns that can be split for better scheduling.
3168 PAT is the pattern which might split.
3169 TRIAL is the insn providing PAT.
3170 LAST is nonzero if we should return the last insn of the sequence produced.
3171
3172 If this routine succeeds in splitting, it returns the first or last
3173 replacement insn depending on the value of LAST. Otherwise, it
3174 returns TRIAL. If the insn to be returned can be split, it will be. */
3175
3176 rtx
3177 try_split (rtx pat, rtx trial, int last)
3178 {
3179 rtx before = PREV_INSN (trial);
3180 rtx after = NEXT_INSN (trial);
3181 int has_barrier = 0;
3182 rtx tem;
3183 rtx note, seq;
3184 int probability;
3185 rtx insn_last, insn;
3186 int njumps = 0;
3187
3188 if (any_condjump_p (trial)
3189 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3190 split_branch_probability = INTVAL (XEXP (note, 0));
3191 probability = split_branch_probability;
3192
3193 seq = split_insns (pat, trial);
3194
3195 split_branch_probability = -1;
3196
3197 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3198 We may need to handle this specially. */
3199 if (after && GET_CODE (after) == BARRIER)
3200 {
3201 has_barrier = 1;
3202 after = NEXT_INSN (after);
3203 }
3204
3205 if (!seq)
3206 return trial;
3207
3208 /* Avoid infinite loop if any insn of the result matches
3209 the original pattern. */
3210 insn_last = seq;
3211 while (1)
3212 {
3213 if (INSN_P (insn_last)
3214 && rtx_equal_p (PATTERN (insn_last), pat))
3215 return trial;
3216 if (!NEXT_INSN (insn_last))
3217 break;
3218 insn_last = NEXT_INSN (insn_last);
3219 }
3220
3221 /* Mark labels. */
3222 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3223 {
3224 if (GET_CODE (insn) == JUMP_INSN)
3225 {
3226 mark_jump_label (PATTERN (insn), insn, 0);
3227 njumps++;
3228 if (probability != -1
3229 && any_condjump_p (insn)
3230 && !find_reg_note (insn, REG_BR_PROB, 0))
3231 {
3232 /* We can preserve the REG_BR_PROB notes only if exactly
3233 one jump is created, otherwise the machine description
3234 is responsible for this step using
3235 split_branch_probability variable. */
3236 if (njumps != 1)
3237 abort ();
3238 REG_NOTES (insn)
3239 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3240 GEN_INT (probability),
3241 REG_NOTES (insn));
3242 }
3243 }
3244 }
3245
3246 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3247 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3248 if (GET_CODE (trial) == CALL_INSN)
3249 {
3250 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3251 if (GET_CODE (insn) == CALL_INSN)
3252 {
3253 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3254 while (*p)
3255 p = &XEXP (*p, 1);
3256 *p = CALL_INSN_FUNCTION_USAGE (trial);
3257 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3258 }
3259 }
3260
3261 /* Copy notes, particularly those related to the CFG. */
3262 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3263 {
3264 switch (REG_NOTE_KIND (note))
3265 {
3266 case REG_EH_REGION:
3267 insn = insn_last;
3268 while (insn != NULL_RTX)
3269 {
3270 if (GET_CODE (insn) == CALL_INSN
3271 || (flag_non_call_exceptions
3272 && may_trap_p (PATTERN (insn))))
3273 REG_NOTES (insn)
3274 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3275 XEXP (note, 0),
3276 REG_NOTES (insn));
3277 insn = PREV_INSN (insn);
3278 }
3279 break;
3280
3281 case REG_NORETURN:
3282 case REG_SETJMP:
3283 case REG_ALWAYS_RETURN:
3284 insn = insn_last;
3285 while (insn != NULL_RTX)
3286 {
3287 if (GET_CODE (insn) == CALL_INSN)
3288 REG_NOTES (insn)
3289 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3290 XEXP (note, 0),
3291 REG_NOTES (insn));
3292 insn = PREV_INSN (insn);
3293 }
3294 break;
3295
3296 case REG_NON_LOCAL_GOTO:
3297 insn = insn_last;
3298 while (insn != NULL_RTX)
3299 {
3300 if (GET_CODE (insn) == JUMP_INSN)
3301 REG_NOTES (insn)
3302 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3303 XEXP (note, 0),
3304 REG_NOTES (insn));
3305 insn = PREV_INSN (insn);
3306 }
3307 break;
3308
3309 default:
3310 break;
3311 }
3312 }
3313
3314 /* If there are LABELS inside the split insns increment the
3315 usage count so we don't delete the label. */
3316 if (GET_CODE (trial) == INSN)
3317 {
3318 insn = insn_last;
3319 while (insn != NULL_RTX)
3320 {
3321 if (GET_CODE (insn) == INSN)
3322 mark_label_nuses (PATTERN (insn));
3323
3324 insn = PREV_INSN (insn);
3325 }
3326 }
3327
3328 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3329
3330 delete_insn (trial);
3331 if (has_barrier)
3332 emit_barrier_after (tem);
3333
3334 /* Recursively call try_split for each new insn created; by the
3335 time control returns here that insn will be fully split, so
3336 set LAST and continue from the insn after the one returned.
3337 We can't use next_active_insn here since AFTER may be a note.
3338 Ignore deleted insns, which can be occur if not optimizing. */
3339 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3340 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3341 tem = try_split (PATTERN (tem), tem, 1);
3342
3343 /* Return either the first or the last insn, depending on which was
3344 requested. */
3345 return last
3346 ? (after ? PREV_INSN (after) : last_insn)
3347 : NEXT_INSN (before);
3348 }
3349 \f
3350 /* Make and return an INSN rtx, initializing all its slots.
3351 Store PATTERN in the pattern slots. */
3352
3353 rtx
3354 make_insn_raw (rtx pattern)
3355 {
3356 rtx insn;
3357
3358 insn = rtx_alloc (INSN);
3359
3360 INSN_UID (insn) = cur_insn_uid++;
3361 PATTERN (insn) = pattern;
3362 INSN_CODE (insn) = -1;
3363 LOG_LINKS (insn) = NULL;
3364 REG_NOTES (insn) = NULL;
3365 INSN_LOCATOR (insn) = 0;
3366 BLOCK_FOR_INSN (insn) = NULL;
3367
3368 #ifdef ENABLE_RTL_CHECKING
3369 if (insn
3370 && INSN_P (insn)
3371 && (returnjump_p (insn)
3372 || (GET_CODE (insn) == SET
3373 && SET_DEST (insn) == pc_rtx)))
3374 {
3375 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3376 debug_rtx (insn);
3377 }
3378 #endif
3379
3380 return insn;
3381 }
3382
3383 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3384
3385 static rtx
3386 make_jump_insn_raw (rtx pattern)
3387 {
3388 rtx insn;
3389
3390 insn = rtx_alloc (JUMP_INSN);
3391 INSN_UID (insn) = cur_insn_uid++;
3392
3393 PATTERN (insn) = pattern;
3394 INSN_CODE (insn) = -1;
3395 LOG_LINKS (insn) = NULL;
3396 REG_NOTES (insn) = NULL;
3397 JUMP_LABEL (insn) = NULL;
3398 INSN_LOCATOR (insn) = 0;
3399 BLOCK_FOR_INSN (insn) = NULL;
3400
3401 return insn;
3402 }
3403
3404 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3405
3406 static rtx
3407 make_call_insn_raw (rtx pattern)
3408 {
3409 rtx insn;
3410
3411 insn = rtx_alloc (CALL_INSN);
3412 INSN_UID (insn) = cur_insn_uid++;
3413
3414 PATTERN (insn) = pattern;
3415 INSN_CODE (insn) = -1;
3416 LOG_LINKS (insn) = NULL;
3417 REG_NOTES (insn) = NULL;
3418 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3419 INSN_LOCATOR (insn) = 0;
3420 BLOCK_FOR_INSN (insn) = NULL;
3421
3422 return insn;
3423 }
3424 \f
3425 /* Add INSN to the end of the doubly-linked list.
3426 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3427
3428 void
3429 add_insn (rtx insn)
3430 {
3431 PREV_INSN (insn) = last_insn;
3432 NEXT_INSN (insn) = 0;
3433
3434 if (NULL != last_insn)
3435 NEXT_INSN (last_insn) = insn;
3436
3437 if (NULL == first_insn)
3438 first_insn = insn;
3439
3440 last_insn = insn;
3441 }
3442
3443 /* Add INSN into the doubly-linked list after insn AFTER. This and
3444 the next should be the only functions called to insert an insn once
3445 delay slots have been filled since only they know how to update a
3446 SEQUENCE. */
3447
3448 void
3449 add_insn_after (rtx insn, rtx after)
3450 {
3451 rtx next = NEXT_INSN (after);
3452 basic_block bb;
3453
3454 if (optimize && INSN_DELETED_P (after))
3455 abort ();
3456
3457 NEXT_INSN (insn) = next;
3458 PREV_INSN (insn) = after;
3459
3460 if (next)
3461 {
3462 PREV_INSN (next) = insn;
3463 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3464 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3465 }
3466 else if (last_insn == after)
3467 last_insn = insn;
3468 else
3469 {
3470 struct sequence_stack *stack = seq_stack;
3471 /* Scan all pending sequences too. */
3472 for (; stack; stack = stack->next)
3473 if (after == stack->last)
3474 {
3475 stack->last = insn;
3476 break;
3477 }
3478
3479 if (stack == 0)
3480 abort ();
3481 }
3482
3483 if (GET_CODE (after) != BARRIER
3484 && GET_CODE (insn) != BARRIER
3485 && (bb = BLOCK_FOR_INSN (after)))
3486 {
3487 set_block_for_insn (insn, bb);
3488 if (INSN_P (insn))
3489 bb->flags |= BB_DIRTY;
3490 /* Should not happen as first in the BB is always
3491 either NOTE or LABEL. */
3492 if (BB_END (bb) == after
3493 /* Avoid clobbering of structure when creating new BB. */
3494 && GET_CODE (insn) != BARRIER
3495 && (GET_CODE (insn) != NOTE
3496 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3497 BB_END (bb) = insn;
3498 }
3499
3500 NEXT_INSN (after) = insn;
3501 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3502 {
3503 rtx sequence = PATTERN (after);
3504 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3505 }
3506 }
3507
3508 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3509 the previous should be the only functions called to insert an insn once
3510 delay slots have been filled since only they know how to update a
3511 SEQUENCE. */
3512
3513 void
3514 add_insn_before (rtx insn, rtx before)
3515 {
3516 rtx prev = PREV_INSN (before);
3517 basic_block bb;
3518
3519 if (optimize && INSN_DELETED_P (before))
3520 abort ();
3521
3522 PREV_INSN (insn) = prev;
3523 NEXT_INSN (insn) = before;
3524
3525 if (prev)
3526 {
3527 NEXT_INSN (prev) = insn;
3528 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3529 {
3530 rtx sequence = PATTERN (prev);
3531 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3532 }
3533 }
3534 else if (first_insn == before)
3535 first_insn = insn;
3536 else
3537 {
3538 struct sequence_stack *stack = seq_stack;
3539 /* Scan all pending sequences too. */
3540 for (; stack; stack = stack->next)
3541 if (before == stack->first)
3542 {
3543 stack->first = insn;
3544 break;
3545 }
3546
3547 if (stack == 0)
3548 abort ();
3549 }
3550
3551 if (GET_CODE (before) != BARRIER
3552 && GET_CODE (insn) != BARRIER
3553 && (bb = BLOCK_FOR_INSN (before)))
3554 {
3555 set_block_for_insn (insn, bb);
3556 if (INSN_P (insn))
3557 bb->flags |= BB_DIRTY;
3558 /* Should not happen as first in the BB is always
3559 either NOTE or LABEl. */
3560 if (BB_HEAD (bb) == insn
3561 /* Avoid clobbering of structure when creating new BB. */
3562 && GET_CODE (insn) != BARRIER
3563 && (GET_CODE (insn) != NOTE
3564 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3565 abort ();
3566 }
3567
3568 PREV_INSN (before) = insn;
3569 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3570 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3571 }
3572
3573 /* Remove an insn from its doubly-linked list. This function knows how
3574 to handle sequences. */
3575 void
3576 remove_insn (rtx insn)
3577 {
3578 rtx next = NEXT_INSN (insn);
3579 rtx prev = PREV_INSN (insn);
3580 basic_block bb;
3581
3582 if (prev)
3583 {
3584 NEXT_INSN (prev) = next;
3585 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3586 {
3587 rtx sequence = PATTERN (prev);
3588 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3589 }
3590 }
3591 else if (first_insn == insn)
3592 first_insn = next;
3593 else
3594 {
3595 struct sequence_stack *stack = seq_stack;
3596 /* Scan all pending sequences too. */
3597 for (; stack; stack = stack->next)
3598 if (insn == stack->first)
3599 {
3600 stack->first = next;
3601 break;
3602 }
3603
3604 if (stack == 0)
3605 abort ();
3606 }
3607
3608 if (next)
3609 {
3610 PREV_INSN (next) = prev;
3611 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3612 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3613 }
3614 else if (last_insn == insn)
3615 last_insn = prev;
3616 else
3617 {
3618 struct sequence_stack *stack = seq_stack;
3619 /* Scan all pending sequences too. */
3620 for (; stack; stack = stack->next)
3621 if (insn == stack->last)
3622 {
3623 stack->last = prev;
3624 break;
3625 }
3626
3627 if (stack == 0)
3628 abort ();
3629 }
3630 if (GET_CODE (insn) != BARRIER
3631 && (bb = BLOCK_FOR_INSN (insn)))
3632 {
3633 if (INSN_P (insn))
3634 bb->flags |= BB_DIRTY;
3635 if (BB_HEAD (bb) == insn)
3636 {
3637 /* Never ever delete the basic block note without deleting whole
3638 basic block. */
3639 if (GET_CODE (insn) == NOTE)
3640 abort ();
3641 BB_HEAD (bb) = next;
3642 }
3643 if (BB_END (bb) == insn)
3644 BB_END (bb) = prev;
3645 }
3646 }
3647
3648 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3649
3650 void
3651 add_function_usage_to (rtx call_insn, rtx call_fusage)
3652 {
3653 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3654 abort ();
3655
3656 /* Put the register usage information on the CALL. If there is already
3657 some usage information, put ours at the end. */
3658 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3659 {
3660 rtx link;
3661
3662 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3663 link = XEXP (link, 1))
3664 ;
3665
3666 XEXP (link, 1) = call_fusage;
3667 }
3668 else
3669 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3670 }
3671
3672 /* Delete all insns made since FROM.
3673 FROM becomes the new last instruction. */
3674
3675 void
3676 delete_insns_since (rtx from)
3677 {
3678 if (from == 0)
3679 first_insn = 0;
3680 else
3681 NEXT_INSN (from) = 0;
3682 last_insn = from;
3683 }
3684
3685 /* This function is deprecated, please use sequences instead.
3686
3687 Move a consecutive bunch of insns to a different place in the chain.
3688 The insns to be moved are those between FROM and TO.
3689 They are moved to a new position after the insn AFTER.
3690 AFTER must not be FROM or TO or any insn in between.
3691
3692 This function does not know about SEQUENCEs and hence should not be
3693 called after delay-slot filling has been done. */
3694
3695 void
3696 reorder_insns_nobb (rtx from, rtx to, rtx after)
3697 {
3698 /* Splice this bunch out of where it is now. */
3699 if (PREV_INSN (from))
3700 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3701 if (NEXT_INSN (to))
3702 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3703 if (last_insn == to)
3704 last_insn = PREV_INSN (from);
3705 if (first_insn == from)
3706 first_insn = NEXT_INSN (to);
3707
3708 /* Make the new neighbors point to it and it to them. */
3709 if (NEXT_INSN (after))
3710 PREV_INSN (NEXT_INSN (after)) = to;
3711
3712 NEXT_INSN (to) = NEXT_INSN (after);
3713 PREV_INSN (from) = after;
3714 NEXT_INSN (after) = from;
3715 if (after == last_insn)
3716 last_insn = to;
3717 }
3718
3719 /* Same as function above, but take care to update BB boundaries. */
3720 void
3721 reorder_insns (rtx from, rtx to, rtx after)
3722 {
3723 rtx prev = PREV_INSN (from);
3724 basic_block bb, bb2;
3725
3726 reorder_insns_nobb (from, to, after);
3727
3728 if (GET_CODE (after) != BARRIER
3729 && (bb = BLOCK_FOR_INSN (after)))
3730 {
3731 rtx x;
3732 bb->flags |= BB_DIRTY;
3733
3734 if (GET_CODE (from) != BARRIER
3735 && (bb2 = BLOCK_FOR_INSN (from)))
3736 {
3737 if (BB_END (bb2) == to)
3738 BB_END (bb2) = prev;
3739 bb2->flags |= BB_DIRTY;
3740 }
3741
3742 if (BB_END (bb) == after)
3743 BB_END (bb) = to;
3744
3745 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3746 set_block_for_insn (x, bb);
3747 }
3748 }
3749
3750 /* Return the line note insn preceding INSN. */
3751
3752 static rtx
3753 find_line_note (rtx insn)
3754 {
3755 if (no_line_numbers)
3756 return 0;
3757
3758 for (; insn; insn = PREV_INSN (insn))
3759 if (GET_CODE (insn) == NOTE
3760 && NOTE_LINE_NUMBER (insn) >= 0)
3761 break;
3762
3763 return insn;
3764 }
3765
3766 /* Remove unnecessary notes from the instruction stream. */
3767
3768 void
3769 remove_unnecessary_notes (void)
3770 {
3771 rtx block_stack = NULL_RTX;
3772 rtx eh_stack = NULL_RTX;
3773 rtx insn;
3774 rtx next;
3775 rtx tmp;
3776
3777 /* We must not remove the first instruction in the function because
3778 the compiler depends on the first instruction being a note. */
3779 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3780 {
3781 /* Remember what's next. */
3782 next = NEXT_INSN (insn);
3783
3784 /* We're only interested in notes. */
3785 if (GET_CODE (insn) != NOTE)
3786 continue;
3787
3788 switch (NOTE_LINE_NUMBER (insn))
3789 {
3790 case NOTE_INSN_DELETED:
3791 case NOTE_INSN_LOOP_END_TOP_COND:
3792 remove_insn (insn);
3793 break;
3794
3795 case NOTE_INSN_EH_REGION_BEG:
3796 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3797 break;
3798
3799 case NOTE_INSN_EH_REGION_END:
3800 /* Too many end notes. */
3801 if (eh_stack == NULL_RTX)
3802 abort ();
3803 /* Mismatched nesting. */
3804 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3805 abort ();
3806 tmp = eh_stack;
3807 eh_stack = XEXP (eh_stack, 1);
3808 free_INSN_LIST_node (tmp);
3809 break;
3810
3811 case NOTE_INSN_BLOCK_BEG:
3812 /* By now, all notes indicating lexical blocks should have
3813 NOTE_BLOCK filled in. */
3814 if (NOTE_BLOCK (insn) == NULL_TREE)
3815 abort ();
3816 block_stack = alloc_INSN_LIST (insn, block_stack);
3817 break;
3818
3819 case NOTE_INSN_BLOCK_END:
3820 /* Too many end notes. */
3821 if (block_stack == NULL_RTX)
3822 abort ();
3823 /* Mismatched nesting. */
3824 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3825 abort ();
3826 tmp = block_stack;
3827 block_stack = XEXP (block_stack, 1);
3828 free_INSN_LIST_node (tmp);
3829
3830 /* Scan back to see if there are any non-note instructions
3831 between INSN and the beginning of this block. If not,
3832 then there is no PC range in the generated code that will
3833 actually be in this block, so there's no point in
3834 remembering the existence of the block. */
3835 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3836 {
3837 /* This block contains a real instruction. Note that we
3838 don't include labels; if the only thing in the block
3839 is a label, then there are still no PC values that
3840 lie within the block. */
3841 if (INSN_P (tmp))
3842 break;
3843
3844 /* We're only interested in NOTEs. */
3845 if (GET_CODE (tmp) != NOTE)
3846 continue;
3847
3848 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3849 {
3850 /* We just verified that this BLOCK matches us with
3851 the block_stack check above. Never delete the
3852 BLOCK for the outermost scope of the function; we
3853 can refer to names from that scope even if the
3854 block notes are messed up. */
3855 if (! is_body_block (NOTE_BLOCK (insn))
3856 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3857 {
3858 remove_insn (tmp);
3859 remove_insn (insn);
3860 }
3861 break;
3862 }
3863 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3864 /* There's a nested block. We need to leave the
3865 current block in place since otherwise the debugger
3866 wouldn't be able to show symbols from our block in
3867 the nested block. */
3868 break;
3869 }
3870 }
3871 }
3872
3873 /* Too many begin notes. */
3874 if (block_stack || eh_stack)
3875 abort ();
3876 }
3877
3878 \f
3879 /* Emit insn(s) of given code and pattern
3880 at a specified place within the doubly-linked list.
3881
3882 All of the emit_foo global entry points accept an object
3883 X which is either an insn list or a PATTERN of a single
3884 instruction.
3885
3886 There are thus a few canonical ways to generate code and
3887 emit it at a specific place in the instruction stream. For
3888 example, consider the instruction named SPOT and the fact that
3889 we would like to emit some instructions before SPOT. We might
3890 do it like this:
3891
3892 start_sequence ();
3893 ... emit the new instructions ...
3894 insns_head = get_insns ();
3895 end_sequence ();
3896
3897 emit_insn_before (insns_head, SPOT);
3898
3899 It used to be common to generate SEQUENCE rtl instead, but that
3900 is a relic of the past which no longer occurs. The reason is that
3901 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3902 generated would almost certainly die right after it was created. */
3903
3904 /* Make X be output before the instruction BEFORE. */
3905
3906 rtx
3907 emit_insn_before (rtx x, rtx before)
3908 {
3909 rtx last = before;
3910 rtx insn;
3911
3912 #ifdef ENABLE_RTL_CHECKING
3913 if (before == NULL_RTX)
3914 abort ();
3915 #endif
3916
3917 if (x == NULL_RTX)
3918 return last;
3919
3920 switch (GET_CODE (x))
3921 {
3922 case INSN:
3923 case JUMP_INSN:
3924 case CALL_INSN:
3925 case CODE_LABEL:
3926 case BARRIER:
3927 case NOTE:
3928 insn = x;
3929 while (insn)
3930 {
3931 rtx next = NEXT_INSN (insn);
3932 add_insn_before (insn, before);
3933 last = insn;
3934 insn = next;
3935 }
3936 break;
3937
3938 #ifdef ENABLE_RTL_CHECKING
3939 case SEQUENCE:
3940 abort ();
3941 break;
3942 #endif
3943
3944 default:
3945 last = make_insn_raw (x);
3946 add_insn_before (last, before);
3947 break;
3948 }
3949
3950 return last;
3951 }
3952
3953 /* Make an instruction with body X and code JUMP_INSN
3954 and output it before the instruction BEFORE. */
3955
3956 rtx
3957 emit_jump_insn_before (rtx x, rtx before)
3958 {
3959 rtx insn, last = NULL_RTX;
3960
3961 #ifdef ENABLE_RTL_CHECKING
3962 if (before == NULL_RTX)
3963 abort ();
3964 #endif
3965
3966 switch (GET_CODE (x))
3967 {
3968 case INSN:
3969 case JUMP_INSN:
3970 case CALL_INSN:
3971 case CODE_LABEL:
3972 case BARRIER:
3973 case NOTE:
3974 insn = x;
3975 while (insn)
3976 {
3977 rtx next = NEXT_INSN (insn);
3978 add_insn_before (insn, before);
3979 last = insn;
3980 insn = next;
3981 }
3982 break;
3983
3984 #ifdef ENABLE_RTL_CHECKING
3985 case SEQUENCE:
3986 abort ();
3987 break;
3988 #endif
3989
3990 default:
3991 last = make_jump_insn_raw (x);
3992 add_insn_before (last, before);
3993 break;
3994 }
3995
3996 return last;
3997 }
3998
3999 /* Make an instruction with body X and code CALL_INSN
4000 and output it before the instruction BEFORE. */
4001
4002 rtx
4003 emit_call_insn_before (rtx x, rtx before)
4004 {
4005 rtx last = NULL_RTX, insn;
4006
4007 #ifdef ENABLE_RTL_CHECKING
4008 if (before == NULL_RTX)
4009 abort ();
4010 #endif
4011
4012 switch (GET_CODE (x))
4013 {
4014 case INSN:
4015 case JUMP_INSN:
4016 case CALL_INSN:
4017 case CODE_LABEL:
4018 case BARRIER:
4019 case NOTE:
4020 insn = x;
4021 while (insn)
4022 {
4023 rtx next = NEXT_INSN (insn);
4024 add_insn_before (insn, before);
4025 last = insn;
4026 insn = next;
4027 }
4028 break;
4029
4030 #ifdef ENABLE_RTL_CHECKING
4031 case SEQUENCE:
4032 abort ();
4033 break;
4034 #endif
4035
4036 default:
4037 last = make_call_insn_raw (x);
4038 add_insn_before (last, before);
4039 break;
4040 }
4041
4042 return last;
4043 }
4044
4045 /* Make an insn of code BARRIER
4046 and output it before the insn BEFORE. */
4047
4048 rtx
4049 emit_barrier_before (rtx before)
4050 {
4051 rtx insn = rtx_alloc (BARRIER);
4052
4053 INSN_UID (insn) = cur_insn_uid++;
4054
4055 add_insn_before (insn, before);
4056 return insn;
4057 }
4058
4059 /* Emit the label LABEL before the insn BEFORE. */
4060
4061 rtx
4062 emit_label_before (rtx label, rtx before)
4063 {
4064 /* This can be called twice for the same label as a result of the
4065 confusion that follows a syntax error! So make it harmless. */
4066 if (INSN_UID (label) == 0)
4067 {
4068 INSN_UID (label) = cur_insn_uid++;
4069 add_insn_before (label, before);
4070 }
4071
4072 return label;
4073 }
4074
4075 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4076
4077 rtx
4078 emit_note_before (int subtype, rtx before)
4079 {
4080 rtx note = rtx_alloc (NOTE);
4081 INSN_UID (note) = cur_insn_uid++;
4082 NOTE_SOURCE_FILE (note) = 0;
4083 NOTE_LINE_NUMBER (note) = subtype;
4084 BLOCK_FOR_INSN (note) = NULL;
4085
4086 add_insn_before (note, before);
4087 return note;
4088 }
4089 \f
4090 /* Helper for emit_insn_after, handles lists of instructions
4091 efficiently. */
4092
4093 static rtx emit_insn_after_1 (rtx, rtx);
4094
4095 static rtx
4096 emit_insn_after_1 (rtx first, rtx after)
4097 {
4098 rtx last;
4099 rtx after_after;
4100 basic_block bb;
4101
4102 if (GET_CODE (after) != BARRIER
4103 && (bb = BLOCK_FOR_INSN (after)))
4104 {
4105 bb->flags |= BB_DIRTY;
4106 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4107 if (GET_CODE (last) != BARRIER)
4108 set_block_for_insn (last, bb);
4109 if (GET_CODE (last) != BARRIER)
4110 set_block_for_insn (last, bb);
4111 if (BB_END (bb) == after)
4112 BB_END (bb) = last;
4113 }
4114 else
4115 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4116 continue;
4117
4118 after_after = NEXT_INSN (after);
4119
4120 NEXT_INSN (after) = first;
4121 PREV_INSN (first) = after;
4122 NEXT_INSN (last) = after_after;
4123 if (after_after)
4124 PREV_INSN (after_after) = last;
4125
4126 if (after == last_insn)
4127 last_insn = last;
4128 return last;
4129 }
4130
4131 /* Make X be output after the insn AFTER. */
4132
4133 rtx
4134 emit_insn_after (rtx x, rtx after)
4135 {
4136 rtx last = after;
4137
4138 #ifdef ENABLE_RTL_CHECKING
4139 if (after == NULL_RTX)
4140 abort ();
4141 #endif
4142
4143 if (x == NULL_RTX)
4144 return last;
4145
4146 switch (GET_CODE (x))
4147 {
4148 case INSN:
4149 case JUMP_INSN:
4150 case CALL_INSN:
4151 case CODE_LABEL:
4152 case BARRIER:
4153 case NOTE:
4154 last = emit_insn_after_1 (x, after);
4155 break;
4156
4157 #ifdef ENABLE_RTL_CHECKING
4158 case SEQUENCE:
4159 abort ();
4160 break;
4161 #endif
4162
4163 default:
4164 last = make_insn_raw (x);
4165 add_insn_after (last, after);
4166 break;
4167 }
4168
4169 return last;
4170 }
4171
4172 /* Similar to emit_insn_after, except that line notes are to be inserted so
4173 as to act as if this insn were at FROM. */
4174
4175 void
4176 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4177 {
4178 rtx from_line = find_line_note (from);
4179 rtx after_line = find_line_note (after);
4180 rtx insn = emit_insn_after (x, after);
4181
4182 if (from_line)
4183 emit_note_copy_after (from_line, after);
4184
4185 if (after_line)
4186 emit_note_copy_after (after_line, insn);
4187 }
4188
4189 /* Make an insn of code JUMP_INSN with body X
4190 and output it after the insn AFTER. */
4191
4192 rtx
4193 emit_jump_insn_after (rtx x, rtx after)
4194 {
4195 rtx last;
4196
4197 #ifdef ENABLE_RTL_CHECKING
4198 if (after == NULL_RTX)
4199 abort ();
4200 #endif
4201
4202 switch (GET_CODE (x))
4203 {
4204 case INSN:
4205 case JUMP_INSN:
4206 case CALL_INSN:
4207 case CODE_LABEL:
4208 case BARRIER:
4209 case NOTE:
4210 last = emit_insn_after_1 (x, after);
4211 break;
4212
4213 #ifdef ENABLE_RTL_CHECKING
4214 case SEQUENCE:
4215 abort ();
4216 break;
4217 #endif
4218
4219 default:
4220 last = make_jump_insn_raw (x);
4221 add_insn_after (last, after);
4222 break;
4223 }
4224
4225 return last;
4226 }
4227
4228 /* Make an instruction with body X and code CALL_INSN
4229 and output it after the instruction AFTER. */
4230
4231 rtx
4232 emit_call_insn_after (rtx x, rtx after)
4233 {
4234 rtx last;
4235
4236 #ifdef ENABLE_RTL_CHECKING
4237 if (after == NULL_RTX)
4238 abort ();
4239 #endif
4240
4241 switch (GET_CODE (x))
4242 {
4243 case INSN:
4244 case JUMP_INSN:
4245 case CALL_INSN:
4246 case CODE_LABEL:
4247 case BARRIER:
4248 case NOTE:
4249 last = emit_insn_after_1 (x, after);
4250 break;
4251
4252 #ifdef ENABLE_RTL_CHECKING
4253 case SEQUENCE:
4254 abort ();
4255 break;
4256 #endif
4257
4258 default:
4259 last = make_call_insn_raw (x);
4260 add_insn_after (last, after);
4261 break;
4262 }
4263
4264 return last;
4265 }
4266
4267 /* Make an insn of code BARRIER
4268 and output it after the insn AFTER. */
4269
4270 rtx
4271 emit_barrier_after (rtx after)
4272 {
4273 rtx insn = rtx_alloc (BARRIER);
4274
4275 INSN_UID (insn) = cur_insn_uid++;
4276
4277 add_insn_after (insn, after);
4278 return insn;
4279 }
4280
4281 /* Emit the label LABEL after the insn AFTER. */
4282
4283 rtx
4284 emit_label_after (rtx label, rtx after)
4285 {
4286 /* This can be called twice for the same label
4287 as a result of the confusion that follows a syntax error!
4288 So make it harmless. */
4289 if (INSN_UID (label) == 0)
4290 {
4291 INSN_UID (label) = cur_insn_uid++;
4292 add_insn_after (label, after);
4293 }
4294
4295 return label;
4296 }
4297
4298 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4299
4300 rtx
4301 emit_note_after (int subtype, rtx after)
4302 {
4303 rtx note = rtx_alloc (NOTE);
4304 INSN_UID (note) = cur_insn_uid++;
4305 NOTE_SOURCE_FILE (note) = 0;
4306 NOTE_LINE_NUMBER (note) = subtype;
4307 BLOCK_FOR_INSN (note) = NULL;
4308 add_insn_after (note, after);
4309 return note;
4310 }
4311
4312 /* Emit a copy of note ORIG after the insn AFTER. */
4313
4314 rtx
4315 emit_note_copy_after (rtx orig, rtx after)
4316 {
4317 rtx note;
4318
4319 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4320 {
4321 cur_insn_uid++;
4322 return 0;
4323 }
4324
4325 note = rtx_alloc (NOTE);
4326 INSN_UID (note) = cur_insn_uid++;
4327 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4328 NOTE_DATA (note) = NOTE_DATA (orig);
4329 BLOCK_FOR_INSN (note) = NULL;
4330 add_insn_after (note, after);
4331 return note;
4332 }
4333 \f
4334 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4335 rtx
4336 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4337 {
4338 rtx last = emit_insn_after (pattern, after);
4339
4340 if (pattern == NULL_RTX)
4341 return last;
4342
4343 after = NEXT_INSN (after);
4344 while (1)
4345 {
4346 if (active_insn_p (after))
4347 INSN_LOCATOR (after) = loc;
4348 if (after == last)
4349 break;
4350 after = NEXT_INSN (after);
4351 }
4352 return last;
4353 }
4354
4355 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4356 rtx
4357 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4358 {
4359 rtx last = emit_jump_insn_after (pattern, after);
4360
4361 if (pattern == NULL_RTX)
4362 return last;
4363
4364 after = NEXT_INSN (after);
4365 while (1)
4366 {
4367 if (active_insn_p (after))
4368 INSN_LOCATOR (after) = loc;
4369 if (after == last)
4370 break;
4371 after = NEXT_INSN (after);
4372 }
4373 return last;
4374 }
4375
4376 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4377 rtx
4378 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4379 {
4380 rtx last = emit_call_insn_after (pattern, after);
4381
4382 if (pattern == NULL_RTX)
4383 return last;
4384
4385 after = NEXT_INSN (after);
4386 while (1)
4387 {
4388 if (active_insn_p (after))
4389 INSN_LOCATOR (after) = loc;
4390 if (after == last)
4391 break;
4392 after = NEXT_INSN (after);
4393 }
4394 return last;
4395 }
4396
4397 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4398 rtx
4399 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4400 {
4401 rtx first = PREV_INSN (before);
4402 rtx last = emit_insn_before (pattern, before);
4403
4404 if (pattern == NULL_RTX)
4405 return last;
4406
4407 first = NEXT_INSN (first);
4408 while (1)
4409 {
4410 if (active_insn_p (first))
4411 INSN_LOCATOR (first) = loc;
4412 if (first == last)
4413 break;
4414 first = NEXT_INSN (first);
4415 }
4416 return last;
4417 }
4418 \f
4419 /* Take X and emit it at the end of the doubly-linked
4420 INSN list.
4421
4422 Returns the last insn emitted. */
4423
4424 rtx
4425 emit_insn (rtx x)
4426 {
4427 rtx last = last_insn;
4428 rtx insn;
4429
4430 if (x == NULL_RTX)
4431 return last;
4432
4433 switch (GET_CODE (x))
4434 {
4435 case INSN:
4436 case JUMP_INSN:
4437 case CALL_INSN:
4438 case CODE_LABEL:
4439 case BARRIER:
4440 case NOTE:
4441 insn = x;
4442 while (insn)
4443 {
4444 rtx next = NEXT_INSN (insn);
4445 add_insn (insn);
4446 last = insn;
4447 insn = next;
4448 }
4449 break;
4450
4451 #ifdef ENABLE_RTL_CHECKING
4452 case SEQUENCE:
4453 abort ();
4454 break;
4455 #endif
4456
4457 default:
4458 last = make_insn_raw (x);
4459 add_insn (last);
4460 break;
4461 }
4462
4463 return last;
4464 }
4465
4466 /* Make an insn of code JUMP_INSN with pattern X
4467 and add it to the end of the doubly-linked list. */
4468
4469 rtx
4470 emit_jump_insn (rtx x)
4471 {
4472 rtx last = NULL_RTX, insn;
4473
4474 switch (GET_CODE (x))
4475 {
4476 case INSN:
4477 case JUMP_INSN:
4478 case CALL_INSN:
4479 case CODE_LABEL:
4480 case BARRIER:
4481 case NOTE:
4482 insn = x;
4483 while (insn)
4484 {
4485 rtx next = NEXT_INSN (insn);
4486 add_insn (insn);
4487 last = insn;
4488 insn = next;
4489 }
4490 break;
4491
4492 #ifdef ENABLE_RTL_CHECKING
4493 case SEQUENCE:
4494 abort ();
4495 break;
4496 #endif
4497
4498 default:
4499 last = make_jump_insn_raw (x);
4500 add_insn (last);
4501 break;
4502 }
4503
4504 return last;
4505 }
4506
4507 /* Make an insn of code CALL_INSN with pattern X
4508 and add it to the end of the doubly-linked list. */
4509
4510 rtx
4511 emit_call_insn (rtx x)
4512 {
4513 rtx insn;
4514
4515 switch (GET_CODE (x))
4516 {
4517 case INSN:
4518 case JUMP_INSN:
4519 case CALL_INSN:
4520 case CODE_LABEL:
4521 case BARRIER:
4522 case NOTE:
4523 insn = emit_insn (x);
4524 break;
4525
4526 #ifdef ENABLE_RTL_CHECKING
4527 case SEQUENCE:
4528 abort ();
4529 break;
4530 #endif
4531
4532 default:
4533 insn = make_call_insn_raw (x);
4534 add_insn (insn);
4535 break;
4536 }
4537
4538 return insn;
4539 }
4540
4541 /* Add the label LABEL to the end of the doubly-linked list. */
4542
4543 rtx
4544 emit_label (rtx label)
4545 {
4546 /* This can be called twice for the same label
4547 as a result of the confusion that follows a syntax error!
4548 So make it harmless. */
4549 if (INSN_UID (label) == 0)
4550 {
4551 INSN_UID (label) = cur_insn_uid++;
4552 add_insn (label);
4553 }
4554 return label;
4555 }
4556
4557 /* Make an insn of code BARRIER
4558 and add it to the end of the doubly-linked list. */
4559
4560 rtx
4561 emit_barrier (void)
4562 {
4563 rtx barrier = rtx_alloc (BARRIER);
4564 INSN_UID (barrier) = cur_insn_uid++;
4565 add_insn (barrier);
4566 return barrier;
4567 }
4568
4569 /* Make line numbering NOTE insn for LOCATION add it to the end
4570 of the doubly-linked list, but only if line-numbers are desired for
4571 debugging info and it doesn't match the previous one. */
4572
4573 rtx
4574 emit_line_note (location_t location)
4575 {
4576 rtx note;
4577
4578 set_file_and_line_for_stmt (location);
4579
4580 if (location.file && last_location.file
4581 && !strcmp (location.file, last_location.file)
4582 && location.line == last_location.line)
4583 return NULL_RTX;
4584 last_location = location;
4585
4586 if (no_line_numbers)
4587 {
4588 cur_insn_uid++;
4589 return NULL_RTX;
4590 }
4591
4592 note = emit_note (location.line);
4593 NOTE_SOURCE_FILE (note) = location.file;
4594
4595 return note;
4596 }
4597
4598 /* Emit a copy of note ORIG. */
4599
4600 rtx
4601 emit_note_copy (rtx orig)
4602 {
4603 rtx note;
4604
4605 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4606 {
4607 cur_insn_uid++;
4608 return NULL_RTX;
4609 }
4610
4611 note = rtx_alloc (NOTE);
4612
4613 INSN_UID (note) = cur_insn_uid++;
4614 NOTE_DATA (note) = NOTE_DATA (orig);
4615 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4616 BLOCK_FOR_INSN (note) = NULL;
4617 add_insn (note);
4618
4619 return note;
4620 }
4621
4622 /* Make an insn of code NOTE or type NOTE_NO
4623 and add it to the end of the doubly-linked list. */
4624
4625 rtx
4626 emit_note (int note_no)
4627 {
4628 rtx note;
4629
4630 note = rtx_alloc (NOTE);
4631 INSN_UID (note) = cur_insn_uid++;
4632 NOTE_LINE_NUMBER (note) = note_no;
4633 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4634 BLOCK_FOR_INSN (note) = NULL;
4635 add_insn (note);
4636 return note;
4637 }
4638
4639 /* Cause next statement to emit a line note even if the line number
4640 has not changed. */
4641
4642 void
4643 force_next_line_note (void)
4644 {
4645 last_location.line = -1;
4646 }
4647
4648 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4649 note of this type already exists, remove it first. */
4650
4651 rtx
4652 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4653 {
4654 rtx note = find_reg_note (insn, kind, NULL_RTX);
4655
4656 switch (kind)
4657 {
4658 case REG_EQUAL:
4659 case REG_EQUIV:
4660 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4661 has multiple sets (some callers assume single_set
4662 means the insn only has one set, when in fact it
4663 means the insn only has one * useful * set). */
4664 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4665 {
4666 if (note)
4667 abort ();
4668 return NULL_RTX;
4669 }
4670
4671 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4672 It serves no useful purpose and breaks eliminate_regs. */
4673 if (GET_CODE (datum) == ASM_OPERANDS)
4674 return NULL_RTX;
4675 break;
4676
4677 default:
4678 break;
4679 }
4680
4681 if (note)
4682 {
4683 XEXP (note, 0) = datum;
4684 return note;
4685 }
4686
4687 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4688 return REG_NOTES (insn);
4689 }
4690 \f
4691 /* Return an indication of which type of insn should have X as a body.
4692 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4693
4694 enum rtx_code
4695 classify_insn (rtx x)
4696 {
4697 if (GET_CODE (x) == CODE_LABEL)
4698 return CODE_LABEL;
4699 if (GET_CODE (x) == CALL)
4700 return CALL_INSN;
4701 if (GET_CODE (x) == RETURN)
4702 return JUMP_INSN;
4703 if (GET_CODE (x) == SET)
4704 {
4705 if (SET_DEST (x) == pc_rtx)
4706 return JUMP_INSN;
4707 else if (GET_CODE (SET_SRC (x)) == CALL)
4708 return CALL_INSN;
4709 else
4710 return INSN;
4711 }
4712 if (GET_CODE (x) == PARALLEL)
4713 {
4714 int j;
4715 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4716 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4717 return CALL_INSN;
4718 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4719 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4720 return JUMP_INSN;
4721 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4722 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4723 return CALL_INSN;
4724 }
4725 return INSN;
4726 }
4727
4728 /* Emit the rtl pattern X as an appropriate kind of insn.
4729 If X is a label, it is simply added into the insn chain. */
4730
4731 rtx
4732 emit (rtx x)
4733 {
4734 enum rtx_code code = classify_insn (x);
4735
4736 if (code == CODE_LABEL)
4737 return emit_label (x);
4738 else if (code == INSN)
4739 return emit_insn (x);
4740 else if (code == JUMP_INSN)
4741 {
4742 rtx insn = emit_jump_insn (x);
4743 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4744 return emit_barrier ();
4745 return insn;
4746 }
4747 else if (code == CALL_INSN)
4748 return emit_call_insn (x);
4749 else
4750 abort ();
4751 }
4752 \f
4753 /* Space for free sequence stack entries. */
4754 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4755
4756 /* Begin emitting insns to a sequence which can be packaged in an
4757 RTL_EXPR. If this sequence will contain something that might cause
4758 the compiler to pop arguments to function calls (because those
4759 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4760 details), use do_pending_stack_adjust before calling this function.
4761 That will ensure that the deferred pops are not accidentally
4762 emitted in the middle of this sequence. */
4763
4764 void
4765 start_sequence (void)
4766 {
4767 struct sequence_stack *tem;
4768
4769 if (free_sequence_stack != NULL)
4770 {
4771 tem = free_sequence_stack;
4772 free_sequence_stack = tem->next;
4773 }
4774 else
4775 tem = ggc_alloc (sizeof (struct sequence_stack));
4776
4777 tem->next = seq_stack;
4778 tem->first = first_insn;
4779 tem->last = last_insn;
4780 tem->sequence_rtl_expr = seq_rtl_expr;
4781
4782 seq_stack = tem;
4783
4784 first_insn = 0;
4785 last_insn = 0;
4786 }
4787
4788 /* Similarly, but indicate that this sequence will be placed in T, an
4789 RTL_EXPR. See the documentation for start_sequence for more
4790 information about how to use this function. */
4791
4792 void
4793 start_sequence_for_rtl_expr (tree t)
4794 {
4795 start_sequence ();
4796
4797 seq_rtl_expr = t;
4798 }
4799
4800 /* Set up the insn chain starting with FIRST as the current sequence,
4801 saving the previously current one. See the documentation for
4802 start_sequence for more information about how to use this function. */
4803
4804 void
4805 push_to_sequence (rtx first)
4806 {
4807 rtx last;
4808
4809 start_sequence ();
4810
4811 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4812
4813 first_insn = first;
4814 last_insn = last;
4815 }
4816
4817 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4818
4819 void
4820 push_to_full_sequence (rtx first, rtx last)
4821 {
4822 start_sequence ();
4823 first_insn = first;
4824 last_insn = last;
4825 /* We really should have the end of the insn chain here. */
4826 if (last && NEXT_INSN (last))
4827 abort ();
4828 }
4829
4830 /* Set up the outer-level insn chain
4831 as the current sequence, saving the previously current one. */
4832
4833 void
4834 push_topmost_sequence (void)
4835 {
4836 struct sequence_stack *stack, *top = NULL;
4837
4838 start_sequence ();
4839
4840 for (stack = seq_stack; stack; stack = stack->next)
4841 top = stack;
4842
4843 first_insn = top->first;
4844 last_insn = top->last;
4845 seq_rtl_expr = top->sequence_rtl_expr;
4846 }
4847
4848 /* After emitting to the outer-level insn chain, update the outer-level
4849 insn chain, and restore the previous saved state. */
4850
4851 void
4852 pop_topmost_sequence (void)
4853 {
4854 struct sequence_stack *stack, *top = NULL;
4855
4856 for (stack = seq_stack; stack; stack = stack->next)
4857 top = stack;
4858
4859 top->first = first_insn;
4860 top->last = last_insn;
4861 /* ??? Why don't we save seq_rtl_expr here? */
4862
4863 end_sequence ();
4864 }
4865
4866 /* After emitting to a sequence, restore previous saved state.
4867
4868 To get the contents of the sequence just made, you must call
4869 `get_insns' *before* calling here.
4870
4871 If the compiler might have deferred popping arguments while
4872 generating this sequence, and this sequence will not be immediately
4873 inserted into the instruction stream, use do_pending_stack_adjust
4874 before calling get_insns. That will ensure that the deferred
4875 pops are inserted into this sequence, and not into some random
4876 location in the instruction stream. See INHIBIT_DEFER_POP for more
4877 information about deferred popping of arguments. */
4878
4879 void
4880 end_sequence (void)
4881 {
4882 struct sequence_stack *tem = seq_stack;
4883
4884 first_insn = tem->first;
4885 last_insn = tem->last;
4886 seq_rtl_expr = tem->sequence_rtl_expr;
4887 seq_stack = tem->next;
4888
4889 memset (tem, 0, sizeof (*tem));
4890 tem->next = free_sequence_stack;
4891 free_sequence_stack = tem;
4892 }
4893
4894 /* Return 1 if currently emitting into a sequence. */
4895
4896 int
4897 in_sequence_p (void)
4898 {
4899 return seq_stack != 0;
4900 }
4901 \f
4902 /* Put the various virtual registers into REGNO_REG_RTX. */
4903
4904 void
4905 init_virtual_regs (struct emit_status *es)
4906 {
4907 rtx *ptr = es->x_regno_reg_rtx;
4908 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4909 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4910 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4911 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4912 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4913 }
4914
4915 \f
4916 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4917 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4918 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4919 static int copy_insn_n_scratches;
4920
4921 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4922 copied an ASM_OPERANDS.
4923 In that case, it is the original input-operand vector. */
4924 static rtvec orig_asm_operands_vector;
4925
4926 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4927 copied an ASM_OPERANDS.
4928 In that case, it is the copied input-operand vector. */
4929 static rtvec copy_asm_operands_vector;
4930
4931 /* Likewise for the constraints vector. */
4932 static rtvec orig_asm_constraints_vector;
4933 static rtvec copy_asm_constraints_vector;
4934
4935 /* Recursively create a new copy of an rtx for copy_insn.
4936 This function differs from copy_rtx in that it handles SCRATCHes and
4937 ASM_OPERANDs properly.
4938 Normally, this function is not used directly; use copy_insn as front end.
4939 However, you could first copy an insn pattern with copy_insn and then use
4940 this function afterwards to properly copy any REG_NOTEs containing
4941 SCRATCHes. */
4942
4943 rtx
4944 copy_insn_1 (rtx orig)
4945 {
4946 rtx copy;
4947 int i, j;
4948 RTX_CODE code;
4949 const char *format_ptr;
4950
4951 code = GET_CODE (orig);
4952
4953 switch (code)
4954 {
4955 case REG:
4956 case QUEUED:
4957 case CONST_INT:
4958 case CONST_DOUBLE:
4959 case CONST_VECTOR:
4960 case SYMBOL_REF:
4961 case CODE_LABEL:
4962 case PC:
4963 case CC0:
4964 case ADDRESSOF:
4965 return orig;
4966 case CLOBBER:
4967 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4968 return orig;
4969 break;
4970
4971 case SCRATCH:
4972 for (i = 0; i < copy_insn_n_scratches; i++)
4973 if (copy_insn_scratch_in[i] == orig)
4974 return copy_insn_scratch_out[i];
4975 break;
4976
4977 case CONST:
4978 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4979 a LABEL_REF, it isn't sharable. */
4980 if (GET_CODE (XEXP (orig, 0)) == PLUS
4981 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4982 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4983 return orig;
4984 break;
4985
4986 /* A MEM with a constant address is not sharable. The problem is that
4987 the constant address may need to be reloaded. If the mem is shared,
4988 then reloading one copy of this mem will cause all copies to appear
4989 to have been reloaded. */
4990
4991 default:
4992 break;
4993 }
4994
4995 copy = rtx_alloc (code);
4996
4997 /* Copy the various flags, and other information. We assume that
4998 all fields need copying, and then clear the fields that should
4999 not be copied. That is the sensible default behavior, and forces
5000 us to explicitly document why we are *not* copying a flag. */
5001 memcpy (copy, orig, RTX_HDR_SIZE);
5002
5003 /* We do not copy the USED flag, which is used as a mark bit during
5004 walks over the RTL. */
5005 RTX_FLAG (copy, used) = 0;
5006
5007 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5008 if (INSN_P (orig))
5009 {
5010 RTX_FLAG (copy, jump) = 0;
5011 RTX_FLAG (copy, call) = 0;
5012 RTX_FLAG (copy, frame_related) = 0;
5013 }
5014
5015 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5016
5017 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5018 {
5019 copy->u.fld[i] = orig->u.fld[i];
5020 switch (*format_ptr++)
5021 {
5022 case 'e':
5023 if (XEXP (orig, i) != NULL)
5024 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5025 break;
5026
5027 case 'E':
5028 case 'V':
5029 if (XVEC (orig, i) == orig_asm_constraints_vector)
5030 XVEC (copy, i) = copy_asm_constraints_vector;
5031 else if (XVEC (orig, i) == orig_asm_operands_vector)
5032 XVEC (copy, i) = copy_asm_operands_vector;
5033 else if (XVEC (orig, i) != NULL)
5034 {
5035 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5036 for (j = 0; j < XVECLEN (copy, i); j++)
5037 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5038 }
5039 break;
5040
5041 case 't':
5042 case 'w':
5043 case 'i':
5044 case 's':
5045 case 'S':
5046 case 'u':
5047 case '0':
5048 /* These are left unchanged. */
5049 break;
5050
5051 default:
5052 abort ();
5053 }
5054 }
5055
5056 if (code == SCRATCH)
5057 {
5058 i = copy_insn_n_scratches++;
5059 if (i >= MAX_RECOG_OPERANDS)
5060 abort ();
5061 copy_insn_scratch_in[i] = orig;
5062 copy_insn_scratch_out[i] = copy;
5063 }
5064 else if (code == ASM_OPERANDS)
5065 {
5066 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5067 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5068 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5069 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5070 }
5071
5072 return copy;
5073 }
5074
5075 /* Create a new copy of an rtx.
5076 This function differs from copy_rtx in that it handles SCRATCHes and
5077 ASM_OPERANDs properly.
5078 INSN doesn't really have to be a full INSN; it could be just the
5079 pattern. */
5080 rtx
5081 copy_insn (rtx insn)
5082 {
5083 copy_insn_n_scratches = 0;
5084 orig_asm_operands_vector = 0;
5085 orig_asm_constraints_vector = 0;
5086 copy_asm_operands_vector = 0;
5087 copy_asm_constraints_vector = 0;
5088 return copy_insn_1 (insn);
5089 }
5090
5091 /* Initialize data structures and variables in this file
5092 before generating rtl for each function. */
5093
5094 void
5095 init_emit (void)
5096 {
5097 struct function *f = cfun;
5098
5099 f->emit = ggc_alloc (sizeof (struct emit_status));
5100 first_insn = NULL;
5101 last_insn = NULL;
5102 seq_rtl_expr = NULL;
5103 cur_insn_uid = 1;
5104 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5105 last_location.line = 0;
5106 last_location.file = 0;
5107 first_label_num = label_num;
5108 last_label_num = 0;
5109 seq_stack = NULL;
5110
5111 /* Init the tables that describe all the pseudo regs. */
5112
5113 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5114
5115 f->emit->regno_pointer_align
5116 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5117 * sizeof (unsigned char));
5118
5119 regno_reg_rtx
5120 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5121
5122 /* Put copies of all the hard registers into regno_reg_rtx. */
5123 memcpy (regno_reg_rtx,
5124 static_regno_reg_rtx,
5125 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5126
5127 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5128 init_virtual_regs (f->emit);
5129
5130 /* Indicate that the virtual registers and stack locations are
5131 all pointers. */
5132 REG_POINTER (stack_pointer_rtx) = 1;
5133 REG_POINTER (frame_pointer_rtx) = 1;
5134 REG_POINTER (hard_frame_pointer_rtx) = 1;
5135 REG_POINTER (arg_pointer_rtx) = 1;
5136
5137 REG_POINTER (virtual_incoming_args_rtx) = 1;
5138 REG_POINTER (virtual_stack_vars_rtx) = 1;
5139 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5140 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5141 REG_POINTER (virtual_cfa_rtx) = 1;
5142
5143 #ifdef STACK_BOUNDARY
5144 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5145 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5146 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5147 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5148
5149 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5150 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5151 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5152 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5153 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5154 #endif
5155
5156 #ifdef INIT_EXPANDERS
5157 INIT_EXPANDERS;
5158 #endif
5159 }
5160
5161 /* Generate the constant 0. */
5162
5163 static rtx
5164 gen_const_vector_0 (enum machine_mode mode)
5165 {
5166 rtx tem;
5167 rtvec v;
5168 int units, i;
5169 enum machine_mode inner;
5170
5171 units = GET_MODE_NUNITS (mode);
5172 inner = GET_MODE_INNER (mode);
5173
5174 v = rtvec_alloc (units);
5175
5176 /* We need to call this function after we to set CONST0_RTX first. */
5177 if (!CONST0_RTX (inner))
5178 abort ();
5179
5180 for (i = 0; i < units; ++i)
5181 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5182
5183 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5184 return tem;
5185 }
5186
5187 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5188 all elements are zero. */
5189 rtx
5190 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5191 {
5192 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5193 int i;
5194
5195 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5196 if (RTVEC_ELT (v, i) != inner_zero)
5197 return gen_rtx_raw_CONST_VECTOR (mode, v);
5198 return CONST0_RTX (mode);
5199 }
5200
5201 /* Create some permanent unique rtl objects shared between all functions.
5202 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5203
5204 void
5205 init_emit_once (int line_numbers)
5206 {
5207 int i;
5208 enum machine_mode mode;
5209 enum machine_mode double_mode;
5210
5211 /* We need reg_raw_mode, so initialize the modes now. */
5212 init_reg_modes_once ();
5213
5214 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5215 tables. */
5216 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5217 const_int_htab_eq, NULL);
5218
5219 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5220 const_double_htab_eq, NULL);
5221
5222 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5223 mem_attrs_htab_eq, NULL);
5224 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5225 reg_attrs_htab_eq, NULL);
5226
5227 no_line_numbers = ! line_numbers;
5228
5229 /* Compute the word and byte modes. */
5230
5231 byte_mode = VOIDmode;
5232 word_mode = VOIDmode;
5233 double_mode = VOIDmode;
5234
5235 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5236 mode = GET_MODE_WIDER_MODE (mode))
5237 {
5238 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5239 && byte_mode == VOIDmode)
5240 byte_mode = mode;
5241
5242 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5243 && word_mode == VOIDmode)
5244 word_mode = mode;
5245 }
5246
5247 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5248 mode = GET_MODE_WIDER_MODE (mode))
5249 {
5250 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5251 && double_mode == VOIDmode)
5252 double_mode = mode;
5253 }
5254
5255 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5256
5257 /* Assign register numbers to the globally defined register rtx.
5258 This must be done at runtime because the register number field
5259 is in a union and some compilers can't initialize unions. */
5260
5261 pc_rtx = gen_rtx_PC (VOIDmode);
5262 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5263 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5264 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5265 if (hard_frame_pointer_rtx == 0)
5266 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5267 HARD_FRAME_POINTER_REGNUM);
5268 if (arg_pointer_rtx == 0)
5269 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5270 virtual_incoming_args_rtx =
5271 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5272 virtual_stack_vars_rtx =
5273 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5274 virtual_stack_dynamic_rtx =
5275 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5276 virtual_outgoing_args_rtx =
5277 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5278 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5279
5280 /* Initialize RTL for commonly used hard registers. These are
5281 copied into regno_reg_rtx as we begin to compile each function. */
5282 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5283 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5284
5285 #ifdef INIT_EXPANDERS
5286 /* This is to initialize {init|mark|free}_machine_status before the first
5287 call to push_function_context_to. This is needed by the Chill front
5288 end which calls push_function_context_to before the first call to
5289 init_function_start. */
5290 INIT_EXPANDERS;
5291 #endif
5292
5293 /* Create the unique rtx's for certain rtx codes and operand values. */
5294
5295 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5296 tries to use these variables. */
5297 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5298 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5299 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5300
5301 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5302 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5303 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5304 else
5305 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5306
5307 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5308 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5309 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5310 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5311 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5312 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5313 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5314
5315 dconsthalf = dconst1;
5316 dconsthalf.exp--;
5317
5318 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5319
5320 /* Initialize mathematical constants for constant folding builtins.
5321 These constants need to be given to at least 160 bits precision. */
5322 real_from_string (&dconstpi,
5323 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5324 real_from_string (&dconste,
5325 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5326
5327 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5328 {
5329 REAL_VALUE_TYPE *r =
5330 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5331
5332 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5333 mode = GET_MODE_WIDER_MODE (mode))
5334 const_tiny_rtx[i][(int) mode] =
5335 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5336
5337 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5338
5339 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5340 mode = GET_MODE_WIDER_MODE (mode))
5341 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5342
5343 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5344 mode != VOIDmode;
5345 mode = GET_MODE_WIDER_MODE (mode))
5346 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5347 }
5348
5349 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5350 mode != VOIDmode;
5351 mode = GET_MODE_WIDER_MODE (mode))
5352 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5353
5354 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5355 mode != VOIDmode;
5356 mode = GET_MODE_WIDER_MODE (mode))
5357 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5358
5359 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5360 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5361 const_tiny_rtx[0][i] = const0_rtx;
5362
5363 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5364 if (STORE_FLAG_VALUE == 1)
5365 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5366
5367 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5368 return_address_pointer_rtx
5369 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5370 #endif
5371
5372 #ifdef STATIC_CHAIN_REGNUM
5373 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5374
5375 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5376 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5377 static_chain_incoming_rtx
5378 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5379 else
5380 #endif
5381 static_chain_incoming_rtx = static_chain_rtx;
5382 #endif
5383
5384 #ifdef STATIC_CHAIN
5385 static_chain_rtx = STATIC_CHAIN;
5386
5387 #ifdef STATIC_CHAIN_INCOMING
5388 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5389 #else
5390 static_chain_incoming_rtx = static_chain_rtx;
5391 #endif
5392 #endif
5393
5394 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5395 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5396 }
5397 \f
5398 /* Query and clear/ restore no_line_numbers. This is used by the
5399 switch / case handling in stmt.c to give proper line numbers in
5400 warnings about unreachable code. */
5401
5402 int
5403 force_line_numbers (void)
5404 {
5405 int old = no_line_numbers;
5406
5407 no_line_numbers = 0;
5408 if (old)
5409 force_next_line_note ();
5410 return old;
5411 }
5412
5413 void
5414 restore_line_number_status (int old_value)
5415 {
5416 no_line_numbers = old_value;
5417 }
5418
5419 /* Produce exact duplicate of insn INSN after AFTER.
5420 Care updating of libcall regions if present. */
5421
5422 rtx
5423 emit_copy_of_insn_after (rtx insn, rtx after)
5424 {
5425 rtx new;
5426 rtx note1, note2, link;
5427
5428 switch (GET_CODE (insn))
5429 {
5430 case INSN:
5431 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5432 break;
5433
5434 case JUMP_INSN:
5435 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5436 break;
5437
5438 case CALL_INSN:
5439 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5440 if (CALL_INSN_FUNCTION_USAGE (insn))
5441 CALL_INSN_FUNCTION_USAGE (new)
5442 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5443 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5444 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5445 break;
5446
5447 default:
5448 abort ();
5449 }
5450
5451 /* Update LABEL_NUSES. */
5452 mark_jump_label (PATTERN (new), new, 0);
5453
5454 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5455
5456 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5457 make them. */
5458 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5459 if (REG_NOTE_KIND (link) != REG_LABEL)
5460 {
5461 if (GET_CODE (link) == EXPR_LIST)
5462 REG_NOTES (new)
5463 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5464 XEXP (link, 0),
5465 REG_NOTES (new)));
5466 else
5467 REG_NOTES (new)
5468 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5469 XEXP (link, 0),
5470 REG_NOTES (new)));
5471 }
5472
5473 /* Fix the libcall sequences. */
5474 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5475 {
5476 rtx p = new;
5477 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5478 p = PREV_INSN (p);
5479 XEXP (note1, 0) = p;
5480 XEXP (note2, 0) = new;
5481 }
5482 INSN_CODE (new) = INSN_CODE (insn);
5483 return new;
5484 }
5485
5486 static GTY((deletable(""))) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5487 rtx
5488 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5489 {
5490 if (hard_reg_clobbers[mode][regno])
5491 return hard_reg_clobbers[mode][regno];
5492 else
5493 return (hard_reg_clobbers[mode][regno] =
5494 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5495 }
5496
5497 #include "gt-emit-rtl.h"