pr39543-2.c: Skip if ilp32 && pic.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61
62 /* Commonly used modes. */
63
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68
69 /* Datastructures maintained for currently processed function in RTL form. */
70
71 struct rtl_data x_rtl;
72
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
77
78 rtx * regno_reg_rtx;
79
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
82
83 static GTY(()) int label_num = 1;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
115
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
174
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
180
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
203
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
207 \f
208 /* Returns a hash code for X (which is a really a CONST_INT). */
209
210 static hashval_t
211 const_int_htab_hash (const void *x)
212 {
213 return (hashval_t) INTVAL ((const_rtx) x);
214 }
215
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
220 static int
221 const_int_htab_eq (const void *x, const void *y)
222 {
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
224 }
225
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
229 {
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
232
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
236 {
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
240 }
241 return h;
242 }
243
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
248 {
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
250
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
259 }
260
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
262
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
265 {
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
268
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
273 }
274
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
277
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
280 {
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
282
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
286 }
287
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
289
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
292 {
293 const mem_attrs *const p = (const mem_attrs *) x;
294
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
299 }
300
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
304
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
307 {
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
310
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
316 }
317
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
321
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
325 {
326 mem_attrs attrs;
327 void **slot;
328
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
338
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
344
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
347 {
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
350 }
351
352 return (mem_attrs *) *slot;
353 }
354
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
356
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
359 {
360 const reg_attrs *const p = (const reg_attrs *) x;
361
362 return ((p->offset * 1000) ^ (long) p->decl);
363 }
364
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
368
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
371 {
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
374
375 return (p->decl == q->decl && p->offset == q->offset);
376 }
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
380
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
383 {
384 reg_attrs attrs;
385 void **slot;
386
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
390
391 attrs.decl = decl;
392 attrs.offset = offset;
393
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
396 {
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
399 }
400
401 return (reg_attrs *) *slot;
402 }
403
404
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
408
409 rtx
410 gen_blockage (void)
411 {
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
415 }
416 #endif
417
418
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
422
423 rtx
424 gen_raw_REG (enum machine_mode mode, int regno)
425 {
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
429 }
430
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
434
435 rtx
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
437 {
438 void **slot;
439
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
442
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
447
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
453
454 return (rtx) *slot;
455 }
456
457 rtx
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
459 {
460 return GEN_INT (trunc_int_for_mode (c, mode));
461 }
462
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
466
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
472 {
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
476
477 return (rtx) *slot;
478 }
479
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
482 rtx
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
484 {
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
487
488 real->u.rv = value;
489
490 return lookup_const_double (real);
491 }
492
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
496
497 static rtx
498 lookup_const_fixed (rtx fixed)
499 {
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
503
504 return (rtx) *slot;
505 }
506
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
509
510 rtx
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
512 {
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
515
516 fixed->u.fv = value;
517
518 return lookup_const_fixed (fixed);
519 }
520
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
525
526 rtx
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
528 {
529 rtx value;
530 unsigned int i;
531
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
534
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
543 {
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
549
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
552
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
554 }
555
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
559
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
563
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
566
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
569
570 return lookup_const_double (value);
571 }
572
573 rtx
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
575 {
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
581
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
586
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
589
590 if (mode == Pmode && !reload_in_progress)
591 {
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
613 }
614
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
618
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
623
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
626
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
634
635 return gen_raw_REG (mode, regno);
636 }
637
638 rtx
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
640 {
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
642
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
646
647 return rt;
648 }
649
650 /* Generate a memory referring to non-trapping constant memory. */
651
652 rtx
653 gen_const_mem (enum machine_mode mode, rtx addr)
654 {
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
659 }
660
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
663
664 rtx
665 gen_frame_mem (enum machine_mode mode, rtx addr)
666 {
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
671 }
672
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
676 rtx
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
678 {
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!cfun->calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
684 }
685
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
688
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
692 {
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
695
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
699
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
703
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
709 ;
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
713 ;
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
718 ;
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
725 ;
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
730 {
731 if (isize != osize)
732 return false;
733 }
734
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
738
739 /* This is a normal subreg. Verify that the offset is representable. */
740
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
744 {
745 unsigned int regno = REGNO (reg);
746
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
750 ;
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
754
755 return subreg_offset_representable_p (regno, imode, offset, omode);
756 }
757
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
765 {
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
770 }
771 return true;
772 }
773
774 rtx
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776 {
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
779 }
780
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783
784 rtx
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
786 {
787 enum machine_mode inmode;
788
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
794 }
795 \f
796
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
798
799 rtvec
800 gen_rtvec (int n, ...)
801 {
802 int i;
803 rtvec rt_val;
804 va_list p;
805
806 va_start (p, n);
807
808 /* Don't allocate an empty rtvec... */
809 if (n == 0)
810 return NULL_RTVEC;
811
812 rt_val = rtvec_alloc (n);
813
814 for (i = 0; i < n; i++)
815 rt_val->elem[i] = va_arg (p, rtx);
816
817 va_end (p);
818 return rt_val;
819 }
820
821 rtvec
822 gen_rtvec_v (int n, rtx *argp)
823 {
824 int i;
825 rtvec rt_val;
826
827 /* Don't allocate an empty rtvec... */
828 if (n == 0)
829 return NULL_RTVEC;
830
831 rt_val = rtvec_alloc (n);
832
833 for (i = 0; i < n; i++)
834 rt_val->elem[i] = *argp++;
835
836 return rt_val;
837 }
838 \f
839 /* Return the number of bytes between the start of an OUTER_MODE
840 in-memory value and the start of an INNER_MODE in-memory value,
841 given that the former is a lowpart of the latter. It may be a
842 paradoxical lowpart, in which case the offset will be negative
843 on big-endian targets. */
844
845 int
846 byte_lowpart_offset (enum machine_mode outer_mode,
847 enum machine_mode inner_mode)
848 {
849 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
850 return subreg_lowpart_offset (outer_mode, inner_mode);
851 else
852 return -subreg_lowpart_offset (inner_mode, outer_mode);
853 }
854 \f
855 /* Generate a REG rtx for a new pseudo register of mode MODE.
856 This pseudo is assigned the next sequential register number. */
857
858 rtx
859 gen_reg_rtx (enum machine_mode mode)
860 {
861 rtx val;
862 unsigned int align = GET_MODE_ALIGNMENT (mode);
863
864 gcc_assert (can_create_pseudo_p ());
865
866 /* If a virtual register with bigger mode alignment is generated,
867 increase stack alignment estimation because it might be spilled
868 to stack later. */
869 if (SUPPORTS_STACK_ALIGNMENT
870 && crtl->stack_alignment_estimated < align
871 && !crtl->stack_realign_processed)
872 crtl->stack_alignment_estimated = align;
873
874 if (generating_concat_p
875 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
876 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
877 {
878 /* For complex modes, don't make a single pseudo.
879 Instead, make a CONCAT of two pseudos.
880 This allows noncontiguous allocation of the real and imaginary parts,
881 which makes much better code. Besides, allocating DCmode
882 pseudos overstrains reload on some machines like the 386. */
883 rtx realpart, imagpart;
884 enum machine_mode partmode = GET_MODE_INNER (mode);
885
886 realpart = gen_reg_rtx (partmode);
887 imagpart = gen_reg_rtx (partmode);
888 return gen_rtx_CONCAT (mode, realpart, imagpart);
889 }
890
891 /* Make sure regno_pointer_align, and regno_reg_rtx are large
892 enough to have an element for this pseudo reg number. */
893
894 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
895 {
896 int old_size = crtl->emit.regno_pointer_align_length;
897 char *tmp;
898 rtx *new1;
899
900 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
901 memset (tmp + old_size, 0, old_size);
902 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
903
904 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
905 memset (new1 + old_size, 0, old_size * sizeof (rtx));
906 regno_reg_rtx = new1;
907
908 crtl->emit.regno_pointer_align_length = old_size * 2;
909 }
910
911 val = gen_raw_REG (mode, reg_rtx_no);
912 regno_reg_rtx[reg_rtx_no++] = val;
913 return val;
914 }
915
916 /* Update NEW with the same attributes as REG, but with OFFSET added
917 to the REG_OFFSET. */
918
919 static void
920 update_reg_offset (rtx new_rtx, rtx reg, int offset)
921 {
922 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
923 REG_OFFSET (reg) + offset);
924 }
925
926 /* Generate a register with same attributes as REG, but with OFFSET
927 added to the REG_OFFSET. */
928
929 rtx
930 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
931 int offset)
932 {
933 rtx new_rtx = gen_rtx_REG (mode, regno);
934
935 update_reg_offset (new_rtx, reg, offset);
936 return new_rtx;
937 }
938
939 /* Generate a new pseudo-register with the same attributes as REG, but
940 with OFFSET added to the REG_OFFSET. */
941
942 rtx
943 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
944 {
945 rtx new_rtx = gen_reg_rtx (mode);
946
947 update_reg_offset (new_rtx, reg, offset);
948 return new_rtx;
949 }
950
951 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
952 new register is a (possibly paradoxical) lowpart of the old one. */
953
954 void
955 adjust_reg_mode (rtx reg, enum machine_mode mode)
956 {
957 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
958 PUT_MODE (reg, mode);
959 }
960
961 /* Copy REG's attributes from X, if X has any attributes. If REG and X
962 have different modes, REG is a (possibly paradoxical) lowpart of X. */
963
964 void
965 set_reg_attrs_from_value (rtx reg, rtx x)
966 {
967 int offset;
968
969 /* Hard registers can be reused for multiple purposes within the same
970 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
971 on them is wrong. */
972 if (HARD_REGISTER_P (reg))
973 return;
974
975 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
976 if (MEM_P (x))
977 {
978 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
979 REG_ATTRS (reg)
980 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
981 if (MEM_POINTER (x))
982 mark_reg_pointer (reg, 0);
983 }
984 else if (REG_P (x))
985 {
986 if (REG_ATTRS (x))
987 update_reg_offset (reg, x, offset);
988 if (REG_POINTER (x))
989 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
990 }
991 }
992
993 /* Generate a REG rtx for a new pseudo register, copying the mode
994 and attributes from X. */
995
996 rtx
997 gen_reg_rtx_and_attrs (rtx x)
998 {
999 rtx reg = gen_reg_rtx (GET_MODE (x));
1000 set_reg_attrs_from_value (reg, x);
1001 return reg;
1002 }
1003
1004 /* Set the register attributes for registers contained in PARM_RTX.
1005 Use needed values from memory attributes of MEM. */
1006
1007 void
1008 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1009 {
1010 if (REG_P (parm_rtx))
1011 set_reg_attrs_from_value (parm_rtx, mem);
1012 else if (GET_CODE (parm_rtx) == PARALLEL)
1013 {
1014 /* Check for a NULL entry in the first slot, used to indicate that the
1015 parameter goes both on the stack and in registers. */
1016 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1017 for (; i < XVECLEN (parm_rtx, 0); i++)
1018 {
1019 rtx x = XVECEXP (parm_rtx, 0, i);
1020 if (REG_P (XEXP (x, 0)))
1021 REG_ATTRS (XEXP (x, 0))
1022 = get_reg_attrs (MEM_EXPR (mem),
1023 INTVAL (XEXP (x, 1)));
1024 }
1025 }
1026 }
1027
1028 /* Set the REG_ATTRS for registers in value X, given that X represents
1029 decl T. */
1030
1031 void
1032 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1033 {
1034 if (GET_CODE (x) == SUBREG)
1035 {
1036 gcc_assert (subreg_lowpart_p (x));
1037 x = SUBREG_REG (x);
1038 }
1039 if (REG_P (x))
1040 REG_ATTRS (x)
1041 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1042 DECL_MODE (t)));
1043 if (GET_CODE (x) == CONCAT)
1044 {
1045 if (REG_P (XEXP (x, 0)))
1046 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1047 if (REG_P (XEXP (x, 1)))
1048 REG_ATTRS (XEXP (x, 1))
1049 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1050 }
1051 if (GET_CODE (x) == PARALLEL)
1052 {
1053 int i, start;
1054
1055 /* Check for a NULL entry, used to indicate that the parameter goes
1056 both on the stack and in registers. */
1057 if (XEXP (XVECEXP (x, 0, 0), 0))
1058 start = 0;
1059 else
1060 start = 1;
1061
1062 for (i = start; i < XVECLEN (x, 0); i++)
1063 {
1064 rtx y = XVECEXP (x, 0, i);
1065 if (REG_P (XEXP (y, 0)))
1066 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1067 }
1068 }
1069 }
1070
1071 /* Assign the RTX X to declaration T. */
1072
1073 void
1074 set_decl_rtl (tree t, rtx x)
1075 {
1076 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1077 if (x)
1078 set_reg_attrs_for_decl_rtl (t, x);
1079 }
1080
1081 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1082 if the ABI requires the parameter to be passed by reference. */
1083
1084 void
1085 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1086 {
1087 DECL_INCOMING_RTL (t) = x;
1088 if (x && !by_reference_p)
1089 set_reg_attrs_for_decl_rtl (t, x);
1090 }
1091
1092 /* Identify REG (which may be a CONCAT) as a user register. */
1093
1094 void
1095 mark_user_reg (rtx reg)
1096 {
1097 if (GET_CODE (reg) == CONCAT)
1098 {
1099 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1100 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1101 }
1102 else
1103 {
1104 gcc_assert (REG_P (reg));
1105 REG_USERVAR_P (reg) = 1;
1106 }
1107 }
1108
1109 /* Identify REG as a probable pointer register and show its alignment
1110 as ALIGN, if nonzero. */
1111
1112 void
1113 mark_reg_pointer (rtx reg, int align)
1114 {
1115 if (! REG_POINTER (reg))
1116 {
1117 REG_POINTER (reg) = 1;
1118
1119 if (align)
1120 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1121 }
1122 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1123 /* We can no-longer be sure just how aligned this pointer is. */
1124 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1125 }
1126
1127 /* Return 1 plus largest pseudo reg number used in the current function. */
1128
1129 int
1130 max_reg_num (void)
1131 {
1132 return reg_rtx_no;
1133 }
1134
1135 /* Return 1 + the largest label number used so far in the current function. */
1136
1137 int
1138 max_label_num (void)
1139 {
1140 return label_num;
1141 }
1142
1143 /* Return first label number used in this function (if any were used). */
1144
1145 int
1146 get_first_label_num (void)
1147 {
1148 return first_label_num;
1149 }
1150
1151 /* If the rtx for label was created during the expansion of a nested
1152 function, then first_label_num won't include this label number.
1153 Fix this now so that array indices work later. */
1154
1155 void
1156 maybe_set_first_label_num (rtx x)
1157 {
1158 if (CODE_LABEL_NUMBER (x) < first_label_num)
1159 first_label_num = CODE_LABEL_NUMBER (x);
1160 }
1161 \f
1162 /* Return a value representing some low-order bits of X, where the number
1163 of low-order bits is given by MODE. Note that no conversion is done
1164 between floating-point and fixed-point values, rather, the bit
1165 representation is returned.
1166
1167 This function handles the cases in common between gen_lowpart, below,
1168 and two variants in cse.c and combine.c. These are the cases that can
1169 be safely handled at all points in the compilation.
1170
1171 If this is not a case we can handle, return 0. */
1172
1173 rtx
1174 gen_lowpart_common (enum machine_mode mode, rtx x)
1175 {
1176 int msize = GET_MODE_SIZE (mode);
1177 int xsize;
1178 int offset = 0;
1179 enum machine_mode innermode;
1180
1181 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1182 so we have to make one up. Yuk. */
1183 innermode = GET_MODE (x);
1184 if (GET_CODE (x) == CONST_INT
1185 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1186 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1187 else if (innermode == VOIDmode)
1188 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1189
1190 xsize = GET_MODE_SIZE (innermode);
1191
1192 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1193
1194 if (innermode == mode)
1195 return x;
1196
1197 /* MODE must occupy no more words than the mode of X. */
1198 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1199 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1200 return 0;
1201
1202 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1203 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1204 return 0;
1205
1206 offset = subreg_lowpart_offset (mode, innermode);
1207
1208 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1209 && (GET_MODE_CLASS (mode) == MODE_INT
1210 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1211 {
1212 /* If we are getting the low-order part of something that has been
1213 sign- or zero-extended, we can either just use the object being
1214 extended or make a narrower extension. If we want an even smaller
1215 piece than the size of the object being extended, call ourselves
1216 recursively.
1217
1218 This case is used mostly by combine and cse. */
1219
1220 if (GET_MODE (XEXP (x, 0)) == mode)
1221 return XEXP (x, 0);
1222 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1223 return gen_lowpart_common (mode, XEXP (x, 0));
1224 else if (msize < xsize)
1225 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1226 }
1227 else if (GET_CODE (x) == SUBREG || REG_P (x)
1228 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1229 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1230 return simplify_gen_subreg (mode, x, innermode, offset);
1231
1232 /* Otherwise, we can't do this. */
1233 return 0;
1234 }
1235 \f
1236 rtx
1237 gen_highpart (enum machine_mode mode, rtx x)
1238 {
1239 unsigned int msize = GET_MODE_SIZE (mode);
1240 rtx result;
1241
1242 /* This case loses if X is a subreg. To catch bugs early,
1243 complain if an invalid MODE is used even in other cases. */
1244 gcc_assert (msize <= UNITS_PER_WORD
1245 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1246
1247 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1248 subreg_highpart_offset (mode, GET_MODE (x)));
1249 gcc_assert (result);
1250
1251 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1252 the target if we have a MEM. gen_highpart must return a valid operand,
1253 emitting code if necessary to do so. */
1254 if (MEM_P (result))
1255 {
1256 result = validize_mem (result);
1257 gcc_assert (result);
1258 }
1259
1260 return result;
1261 }
1262
1263 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1264 be VOIDmode constant. */
1265 rtx
1266 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1267 {
1268 if (GET_MODE (exp) != VOIDmode)
1269 {
1270 gcc_assert (GET_MODE (exp) == innermode);
1271 return gen_highpart (outermode, exp);
1272 }
1273 return simplify_gen_subreg (outermode, exp, innermode,
1274 subreg_highpart_offset (outermode, innermode));
1275 }
1276
1277 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1278
1279 unsigned int
1280 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1281 {
1282 unsigned int offset = 0;
1283 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1284
1285 if (difference > 0)
1286 {
1287 if (WORDS_BIG_ENDIAN)
1288 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1289 if (BYTES_BIG_ENDIAN)
1290 offset += difference % UNITS_PER_WORD;
1291 }
1292
1293 return offset;
1294 }
1295
1296 /* Return offset in bytes to get OUTERMODE high part
1297 of the value in mode INNERMODE stored in memory in target format. */
1298 unsigned int
1299 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1300 {
1301 unsigned int offset = 0;
1302 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1303
1304 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1305
1306 if (difference > 0)
1307 {
1308 if (! WORDS_BIG_ENDIAN)
1309 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1310 if (! BYTES_BIG_ENDIAN)
1311 offset += difference % UNITS_PER_WORD;
1312 }
1313
1314 return offset;
1315 }
1316
1317 /* Return 1 iff X, assumed to be a SUBREG,
1318 refers to the least significant part of its containing reg.
1319 If X is not a SUBREG, always return 1 (it is its own low part!). */
1320
1321 int
1322 subreg_lowpart_p (const_rtx x)
1323 {
1324 if (GET_CODE (x) != SUBREG)
1325 return 1;
1326 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1327 return 0;
1328
1329 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1330 == SUBREG_BYTE (x));
1331 }
1332 \f
1333 /* Return subword OFFSET of operand OP.
1334 The word number, OFFSET, is interpreted as the word number starting
1335 at the low-order address. OFFSET 0 is the low-order word if not
1336 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1337
1338 If we cannot extract the required word, we return zero. Otherwise,
1339 an rtx corresponding to the requested word will be returned.
1340
1341 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1342 reload has completed, a valid address will always be returned. After
1343 reload, if a valid address cannot be returned, we return zero.
1344
1345 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1346 it is the responsibility of the caller.
1347
1348 MODE is the mode of OP in case it is a CONST_INT.
1349
1350 ??? This is still rather broken for some cases. The problem for the
1351 moment is that all callers of this thing provide no 'goal mode' to
1352 tell us to work with. This exists because all callers were written
1353 in a word based SUBREG world.
1354 Now use of this function can be deprecated by simplify_subreg in most
1355 cases.
1356 */
1357
1358 rtx
1359 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1360 {
1361 if (mode == VOIDmode)
1362 mode = GET_MODE (op);
1363
1364 gcc_assert (mode != VOIDmode);
1365
1366 /* If OP is narrower than a word, fail. */
1367 if (mode != BLKmode
1368 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1369 return 0;
1370
1371 /* If we want a word outside OP, return zero. */
1372 if (mode != BLKmode
1373 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1374 return const0_rtx;
1375
1376 /* Form a new MEM at the requested address. */
1377 if (MEM_P (op))
1378 {
1379 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1380
1381 if (! validate_address)
1382 return new_rtx;
1383
1384 else if (reload_completed)
1385 {
1386 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1387 return 0;
1388 }
1389 else
1390 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1391 }
1392
1393 /* Rest can be handled by simplify_subreg. */
1394 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1395 }
1396
1397 /* Similar to `operand_subword', but never return 0. If we can't
1398 extract the required subword, put OP into a register and try again.
1399 The second attempt must succeed. We always validate the address in
1400 this case.
1401
1402 MODE is the mode of OP, in case it is CONST_INT. */
1403
1404 rtx
1405 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1406 {
1407 rtx result = operand_subword (op, offset, 1, mode);
1408
1409 if (result)
1410 return result;
1411
1412 if (mode != BLKmode && mode != VOIDmode)
1413 {
1414 /* If this is a register which can not be accessed by words, copy it
1415 to a pseudo register. */
1416 if (REG_P (op))
1417 op = copy_to_reg (op);
1418 else
1419 op = force_reg (mode, op);
1420 }
1421
1422 result = operand_subword (op, offset, 1, mode);
1423 gcc_assert (result);
1424
1425 return result;
1426 }
1427 \f
1428 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1429 or (2) a component ref of something variable. Represent the later with
1430 a NULL expression. */
1431
1432 static tree
1433 component_ref_for_mem_expr (tree ref)
1434 {
1435 tree inner = TREE_OPERAND (ref, 0);
1436
1437 if (TREE_CODE (inner) == COMPONENT_REF)
1438 inner = component_ref_for_mem_expr (inner);
1439 else
1440 {
1441 /* Now remove any conversions: they don't change what the underlying
1442 object is. Likewise for SAVE_EXPR. */
1443 while (CONVERT_EXPR_P (inner)
1444 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1445 || TREE_CODE (inner) == SAVE_EXPR)
1446 inner = TREE_OPERAND (inner, 0);
1447
1448 if (! DECL_P (inner))
1449 inner = NULL_TREE;
1450 }
1451
1452 if (inner == TREE_OPERAND (ref, 0)
1453 /* Don't leak SSA-names in the third operand. */
1454 && (!TREE_OPERAND (ref, 2)
1455 || TREE_CODE (TREE_OPERAND (ref, 2)) != SSA_NAME))
1456 return ref;
1457 else
1458 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1459 TREE_OPERAND (ref, 1), NULL_TREE);
1460 }
1461
1462 /* Returns 1 if both MEM_EXPR can be considered equal
1463 and 0 otherwise. */
1464
1465 int
1466 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1467 {
1468 if (expr1 == expr2)
1469 return 1;
1470
1471 if (! expr1 || ! expr2)
1472 return 0;
1473
1474 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1475 return 0;
1476
1477 if (TREE_CODE (expr1) == COMPONENT_REF)
1478 return
1479 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1480 TREE_OPERAND (expr2, 0))
1481 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1482 TREE_OPERAND (expr2, 1));
1483
1484 if (INDIRECT_REF_P (expr1))
1485 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1486 TREE_OPERAND (expr2, 0));
1487
1488 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1489 have been resolved here. */
1490 gcc_assert (DECL_P (expr1));
1491
1492 /* Decls with different pointers can't be equal. */
1493 return 0;
1494 }
1495
1496 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1497 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1498 -1 if not known. */
1499
1500 int
1501 get_mem_align_offset (rtx mem, unsigned int align)
1502 {
1503 tree expr;
1504 unsigned HOST_WIDE_INT offset;
1505
1506 /* This function can't use
1507 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1508 || !CONST_INT_P (MEM_OFFSET (mem))
1509 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1510 < align))
1511 return -1;
1512 else
1513 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1514 for two reasons:
1515 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1516 for <variable>. get_inner_reference doesn't handle it and
1517 even if it did, the alignment in that case needs to be determined
1518 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1519 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1520 isn't sufficiently aligned, the object it is in might be. */
1521 gcc_assert (MEM_P (mem));
1522 expr = MEM_EXPR (mem);
1523 if (expr == NULL_TREE
1524 || MEM_OFFSET (mem) == NULL_RTX
1525 || !CONST_INT_P (MEM_OFFSET (mem)))
1526 return -1;
1527
1528 offset = INTVAL (MEM_OFFSET (mem));
1529 if (DECL_P (expr))
1530 {
1531 if (DECL_ALIGN (expr) < align)
1532 return -1;
1533 }
1534 else if (INDIRECT_REF_P (expr))
1535 {
1536 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1537 return -1;
1538 }
1539 else if (TREE_CODE (expr) == COMPONENT_REF)
1540 {
1541 while (1)
1542 {
1543 tree inner = TREE_OPERAND (expr, 0);
1544 tree field = TREE_OPERAND (expr, 1);
1545 tree byte_offset = component_ref_field_offset (expr);
1546 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1547
1548 if (!byte_offset
1549 || !host_integerp (byte_offset, 1)
1550 || !host_integerp (bit_offset, 1))
1551 return -1;
1552
1553 offset += tree_low_cst (byte_offset, 1);
1554 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1555
1556 if (inner == NULL_TREE)
1557 {
1558 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1559 < (unsigned int) align)
1560 return -1;
1561 break;
1562 }
1563 else if (DECL_P (inner))
1564 {
1565 if (DECL_ALIGN (inner) < align)
1566 return -1;
1567 break;
1568 }
1569 else if (TREE_CODE (inner) != COMPONENT_REF)
1570 return -1;
1571 expr = inner;
1572 }
1573 }
1574 else
1575 return -1;
1576
1577 return offset & ((align / BITS_PER_UNIT) - 1);
1578 }
1579
1580 /* Given REF (a MEM) and T, either the type of X or the expression
1581 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1582 if we are making a new object of this type. BITPOS is nonzero if
1583 there is an offset outstanding on T that will be applied later. */
1584
1585 void
1586 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1587 HOST_WIDE_INT bitpos)
1588 {
1589 alias_set_type alias = MEM_ALIAS_SET (ref);
1590 tree expr = MEM_EXPR (ref);
1591 rtx offset = MEM_OFFSET (ref);
1592 rtx size = MEM_SIZE (ref);
1593 unsigned int align = MEM_ALIGN (ref);
1594 HOST_WIDE_INT apply_bitpos = 0;
1595 tree type;
1596
1597 /* It can happen that type_for_mode was given a mode for which there
1598 is no language-level type. In which case it returns NULL, which
1599 we can see here. */
1600 if (t == NULL_TREE)
1601 return;
1602
1603 type = TYPE_P (t) ? t : TREE_TYPE (t);
1604 if (type == error_mark_node)
1605 return;
1606
1607 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1608 wrong answer, as it assumes that DECL_RTL already has the right alias
1609 info. Callers should not set DECL_RTL until after the call to
1610 set_mem_attributes. */
1611 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1612
1613 /* Get the alias set from the expression or type (perhaps using a
1614 front-end routine) and use it. */
1615 alias = get_alias_set (t);
1616
1617 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1618 MEM_IN_STRUCT_P (ref)
1619 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1620 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1621
1622 /* If we are making an object of this type, or if this is a DECL, we know
1623 that it is a scalar if the type is not an aggregate. */
1624 if ((objectp || DECL_P (t))
1625 && ! AGGREGATE_TYPE_P (type)
1626 && TREE_CODE (type) != COMPLEX_TYPE)
1627 MEM_SCALAR_P (ref) = 1;
1628
1629 /* We can set the alignment from the type if we are making an object,
1630 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1631 if (objectp || TREE_CODE (t) == INDIRECT_REF
1632 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1633 || TYPE_ALIGN_OK (type))
1634 align = MAX (align, TYPE_ALIGN (type));
1635 else
1636 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1637 {
1638 if (integer_zerop (TREE_OPERAND (t, 1)))
1639 /* We don't know anything about the alignment. */
1640 align = BITS_PER_UNIT;
1641 else
1642 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1643 }
1644
1645 /* If the size is known, we can set that. */
1646 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1647 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1648
1649 /* If T is not a type, we may be able to deduce some more information about
1650 the expression. */
1651 if (! TYPE_P (t))
1652 {
1653 tree base;
1654 bool align_computed = false;
1655
1656 if (TREE_THIS_VOLATILE (t))
1657 MEM_VOLATILE_P (ref) = 1;
1658
1659 /* Now remove any conversions: they don't change what the underlying
1660 object is. Likewise for SAVE_EXPR. */
1661 while (CONVERT_EXPR_P (t)
1662 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1663 || TREE_CODE (t) == SAVE_EXPR)
1664 t = TREE_OPERAND (t, 0);
1665
1666 /* We may look through structure-like accesses for the purposes of
1667 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1668 base = t;
1669 while (TREE_CODE (base) == COMPONENT_REF
1670 || TREE_CODE (base) == REALPART_EXPR
1671 || TREE_CODE (base) == IMAGPART_EXPR
1672 || TREE_CODE (base) == BIT_FIELD_REF)
1673 base = TREE_OPERAND (base, 0);
1674
1675 if (DECL_P (base))
1676 {
1677 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1678 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1679 else
1680 MEM_NOTRAP_P (ref) = 1;
1681 }
1682 else
1683 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1684
1685 base = get_base_address (base);
1686 if (base && DECL_P (base)
1687 && TREE_READONLY (base)
1688 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1689 {
1690 tree base_type = TREE_TYPE (base);
1691 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1692 || DECL_ARTIFICIAL (base));
1693 MEM_READONLY_P (ref) = 1;
1694 }
1695
1696 /* If this expression uses it's parent's alias set, mark it such
1697 that we won't change it. */
1698 if (component_uses_parent_alias_set (t))
1699 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1700
1701 /* If this is a decl, set the attributes of the MEM from it. */
1702 if (DECL_P (t))
1703 {
1704 expr = t;
1705 offset = const0_rtx;
1706 apply_bitpos = bitpos;
1707 size = (DECL_SIZE_UNIT (t)
1708 && host_integerp (DECL_SIZE_UNIT (t), 1)
1709 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1710 align = DECL_ALIGN (t);
1711 align_computed = true;
1712 }
1713
1714 /* If this is a constant, we know the alignment. */
1715 else if (CONSTANT_CLASS_P (t))
1716 {
1717 align = TYPE_ALIGN (type);
1718 #ifdef CONSTANT_ALIGNMENT
1719 align = CONSTANT_ALIGNMENT (t, align);
1720 #endif
1721 align_computed = true;
1722 }
1723
1724 /* If this is a field reference and not a bit-field, record it. */
1725 /* ??? There is some information that can be gleaned from bit-fields,
1726 such as the word offset in the structure that might be modified.
1727 But skip it for now. */
1728 else if (TREE_CODE (t) == COMPONENT_REF
1729 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1730 {
1731 expr = component_ref_for_mem_expr (t);
1732 offset = const0_rtx;
1733 apply_bitpos = bitpos;
1734 /* ??? Any reason the field size would be different than
1735 the size we got from the type? */
1736 }
1737
1738 /* If this is an array reference, look for an outer field reference. */
1739 else if (TREE_CODE (t) == ARRAY_REF)
1740 {
1741 tree off_tree = size_zero_node;
1742 /* We can't modify t, because we use it at the end of the
1743 function. */
1744 tree t2 = t;
1745
1746 do
1747 {
1748 tree index = TREE_OPERAND (t2, 1);
1749 tree low_bound = array_ref_low_bound (t2);
1750 tree unit_size = array_ref_element_size (t2);
1751
1752 /* We assume all arrays have sizes that are a multiple of a byte.
1753 First subtract the lower bound, if any, in the type of the
1754 index, then convert to sizetype and multiply by the size of
1755 the array element. */
1756 if (! integer_zerop (low_bound))
1757 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1758 index, low_bound);
1759
1760 off_tree = size_binop (PLUS_EXPR,
1761 size_binop (MULT_EXPR,
1762 fold_convert (sizetype,
1763 index),
1764 unit_size),
1765 off_tree);
1766 t2 = TREE_OPERAND (t2, 0);
1767 }
1768 while (TREE_CODE (t2) == ARRAY_REF);
1769
1770 if (DECL_P (t2))
1771 {
1772 expr = t2;
1773 offset = NULL;
1774 if (host_integerp (off_tree, 1))
1775 {
1776 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1777 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1778 align = DECL_ALIGN (t2);
1779 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1780 align = aoff;
1781 align_computed = true;
1782 offset = GEN_INT (ioff);
1783 apply_bitpos = bitpos;
1784 }
1785 }
1786 else if (TREE_CODE (t2) == COMPONENT_REF)
1787 {
1788 expr = component_ref_for_mem_expr (t2);
1789 if (host_integerp (off_tree, 1))
1790 {
1791 offset = GEN_INT (tree_low_cst (off_tree, 1));
1792 apply_bitpos = bitpos;
1793 }
1794 /* ??? Any reason the field size would be different than
1795 the size we got from the type? */
1796 }
1797 else if (flag_argument_noalias > 1
1798 && (INDIRECT_REF_P (t2))
1799 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1800 {
1801 expr = t2;
1802 offset = NULL;
1803 }
1804 }
1805
1806 /* If this is a Fortran indirect argument reference, record the
1807 parameter decl. */
1808 else if (flag_argument_noalias > 1
1809 && (INDIRECT_REF_P (t))
1810 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1811 {
1812 expr = t;
1813 offset = NULL;
1814 }
1815
1816 if (!align_computed && !INDIRECT_REF_P (t))
1817 {
1818 unsigned int obj_align
1819 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1820 align = MAX (align, obj_align);
1821 }
1822 }
1823
1824 /* If we modified OFFSET based on T, then subtract the outstanding
1825 bit position offset. Similarly, increase the size of the accessed
1826 object to contain the negative offset. */
1827 if (apply_bitpos)
1828 {
1829 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1830 if (size)
1831 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1832 }
1833
1834 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1835 {
1836 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1837 we're overlapping. */
1838 offset = NULL;
1839 expr = NULL;
1840 }
1841
1842 /* Now set the attributes we computed above. */
1843 MEM_ATTRS (ref)
1844 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1845
1846 /* If this is already known to be a scalar or aggregate, we are done. */
1847 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1848 return;
1849
1850 /* If it is a reference into an aggregate, this is part of an aggregate.
1851 Otherwise we don't know. */
1852 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1853 || TREE_CODE (t) == ARRAY_RANGE_REF
1854 || TREE_CODE (t) == BIT_FIELD_REF)
1855 MEM_IN_STRUCT_P (ref) = 1;
1856 }
1857
1858 void
1859 set_mem_attributes (rtx ref, tree t, int objectp)
1860 {
1861 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1862 }
1863
1864 /* Set the alias set of MEM to SET. */
1865
1866 void
1867 set_mem_alias_set (rtx mem, alias_set_type set)
1868 {
1869 #ifdef ENABLE_CHECKING
1870 /* If the new and old alias sets don't conflict, something is wrong. */
1871 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1872 #endif
1873
1874 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1875 MEM_SIZE (mem), MEM_ALIGN (mem),
1876 GET_MODE (mem));
1877 }
1878
1879 /* Set the alignment of MEM to ALIGN bits. */
1880
1881 void
1882 set_mem_align (rtx mem, unsigned int align)
1883 {
1884 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1885 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1886 GET_MODE (mem));
1887 }
1888
1889 /* Set the expr for MEM to EXPR. */
1890
1891 void
1892 set_mem_expr (rtx mem, tree expr)
1893 {
1894 MEM_ATTRS (mem)
1895 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1896 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1897 }
1898
1899 /* Set the offset of MEM to OFFSET. */
1900
1901 void
1902 set_mem_offset (rtx mem, rtx offset)
1903 {
1904 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1905 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1906 GET_MODE (mem));
1907 }
1908
1909 /* Set the size of MEM to SIZE. */
1910
1911 void
1912 set_mem_size (rtx mem, rtx size)
1913 {
1914 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1915 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1916 GET_MODE (mem));
1917 }
1918 \f
1919 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1920 and its address changed to ADDR. (VOIDmode means don't change the mode.
1921 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1922 returned memory location is required to be valid. The memory
1923 attributes are not changed. */
1924
1925 static rtx
1926 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1927 {
1928 rtx new_rtx;
1929
1930 gcc_assert (MEM_P (memref));
1931 if (mode == VOIDmode)
1932 mode = GET_MODE (memref);
1933 if (addr == 0)
1934 addr = XEXP (memref, 0);
1935 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1936 && (!validate || memory_address_p (mode, addr)))
1937 return memref;
1938
1939 if (validate)
1940 {
1941 if (reload_in_progress || reload_completed)
1942 gcc_assert (memory_address_p (mode, addr));
1943 else
1944 addr = memory_address (mode, addr);
1945 }
1946
1947 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1948 return memref;
1949
1950 new_rtx = gen_rtx_MEM (mode, addr);
1951 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1952 return new_rtx;
1953 }
1954
1955 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1956 way we are changing MEMREF, so we only preserve the alias set. */
1957
1958 rtx
1959 change_address (rtx memref, enum machine_mode mode, rtx addr)
1960 {
1961 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1962 enum machine_mode mmode = GET_MODE (new_rtx);
1963 unsigned int align;
1964
1965 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1966 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1967
1968 /* If there are no changes, just return the original memory reference. */
1969 if (new_rtx == memref)
1970 {
1971 if (MEM_ATTRS (memref) == 0
1972 || (MEM_EXPR (memref) == NULL
1973 && MEM_OFFSET (memref) == NULL
1974 && MEM_SIZE (memref) == size
1975 && MEM_ALIGN (memref) == align))
1976 return new_rtx;
1977
1978 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1979 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1980 }
1981
1982 MEM_ATTRS (new_rtx)
1983 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1984
1985 return new_rtx;
1986 }
1987
1988 /* Return a memory reference like MEMREF, but with its mode changed
1989 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1990 nonzero, the memory address is forced to be valid.
1991 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1992 and caller is responsible for adjusting MEMREF base register. */
1993
1994 rtx
1995 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1996 int validate, int adjust)
1997 {
1998 rtx addr = XEXP (memref, 0);
1999 rtx new_rtx;
2000 rtx memoffset = MEM_OFFSET (memref);
2001 rtx size = 0;
2002 unsigned int memalign = MEM_ALIGN (memref);
2003 int pbits;
2004
2005 /* If there are no changes, just return the original memory reference. */
2006 if (mode == GET_MODE (memref) && !offset
2007 && (!validate || memory_address_p (mode, addr)))
2008 return memref;
2009
2010 /* ??? Prefer to create garbage instead of creating shared rtl.
2011 This may happen even if offset is nonzero -- consider
2012 (plus (plus reg reg) const_int) -- so do this always. */
2013 addr = copy_rtx (addr);
2014
2015 /* Convert a possibly large offset to a signed value within the
2016 range of the target address space. */
2017 pbits = GET_MODE_BITSIZE (Pmode);
2018 if (HOST_BITS_PER_WIDE_INT > pbits)
2019 {
2020 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2021 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2022 >> shift);
2023 }
2024
2025 if (adjust)
2026 {
2027 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2028 object, we can merge it into the LO_SUM. */
2029 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2030 && offset >= 0
2031 && (unsigned HOST_WIDE_INT) offset
2032 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2033 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2034 plus_constant (XEXP (addr, 1), offset));
2035 else
2036 addr = plus_constant (addr, offset);
2037 }
2038
2039 new_rtx = change_address_1 (memref, mode, addr, validate);
2040
2041 /* If the address is a REG, change_address_1 rightfully returns memref,
2042 but this would destroy memref's MEM_ATTRS. */
2043 if (new_rtx == memref && offset != 0)
2044 new_rtx = copy_rtx (new_rtx);
2045
2046 /* Compute the new values of the memory attributes due to this adjustment.
2047 We add the offsets and update the alignment. */
2048 if (memoffset)
2049 memoffset = GEN_INT (offset + INTVAL (memoffset));
2050
2051 /* Compute the new alignment by taking the MIN of the alignment and the
2052 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2053 if zero. */
2054 if (offset != 0)
2055 memalign
2056 = MIN (memalign,
2057 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2058
2059 /* We can compute the size in a number of ways. */
2060 if (GET_MODE (new_rtx) != BLKmode)
2061 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2062 else if (MEM_SIZE (memref))
2063 size = plus_constant (MEM_SIZE (memref), -offset);
2064
2065 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2066 memoffset, size, memalign, GET_MODE (new_rtx));
2067
2068 /* At some point, we should validate that this offset is within the object,
2069 if all the appropriate values are known. */
2070 return new_rtx;
2071 }
2072
2073 /* Return a memory reference like MEMREF, but with its mode changed
2074 to MODE and its address changed to ADDR, which is assumed to be
2075 MEMREF offset by OFFSET bytes. If VALIDATE is
2076 nonzero, the memory address is forced to be valid. */
2077
2078 rtx
2079 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2080 HOST_WIDE_INT offset, int validate)
2081 {
2082 memref = change_address_1 (memref, VOIDmode, addr, validate);
2083 return adjust_address_1 (memref, mode, offset, validate, 0);
2084 }
2085
2086 /* Return a memory reference like MEMREF, but whose address is changed by
2087 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2088 known to be in OFFSET (possibly 1). */
2089
2090 rtx
2091 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2092 {
2093 rtx new_rtx, addr = XEXP (memref, 0);
2094
2095 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2096
2097 /* At this point we don't know _why_ the address is invalid. It
2098 could have secondary memory references, multiplies or anything.
2099
2100 However, if we did go and rearrange things, we can wind up not
2101 being able to recognize the magic around pic_offset_table_rtx.
2102 This stuff is fragile, and is yet another example of why it is
2103 bad to expose PIC machinery too early. */
2104 if (! memory_address_p (GET_MODE (memref), new_rtx)
2105 && GET_CODE (addr) == PLUS
2106 && XEXP (addr, 0) == pic_offset_table_rtx)
2107 {
2108 addr = force_reg (GET_MODE (addr), addr);
2109 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2110 }
2111
2112 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2113 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2114
2115 /* If there are no changes, just return the original memory reference. */
2116 if (new_rtx == memref)
2117 return new_rtx;
2118
2119 /* Update the alignment to reflect the offset. Reset the offset, which
2120 we don't know. */
2121 MEM_ATTRS (new_rtx)
2122 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2123 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2124 GET_MODE (new_rtx));
2125 return new_rtx;
2126 }
2127
2128 /* Return a memory reference like MEMREF, but with its address changed to
2129 ADDR. The caller is asserting that the actual piece of memory pointed
2130 to is the same, just the form of the address is being changed, such as
2131 by putting something into a register. */
2132
2133 rtx
2134 replace_equiv_address (rtx memref, rtx addr)
2135 {
2136 /* change_address_1 copies the memory attribute structure without change
2137 and that's exactly what we want here. */
2138 update_temp_slot_address (XEXP (memref, 0), addr);
2139 return change_address_1 (memref, VOIDmode, addr, 1);
2140 }
2141
2142 /* Likewise, but the reference is not required to be valid. */
2143
2144 rtx
2145 replace_equiv_address_nv (rtx memref, rtx addr)
2146 {
2147 return change_address_1 (memref, VOIDmode, addr, 0);
2148 }
2149
2150 /* Return a memory reference like MEMREF, but with its mode widened to
2151 MODE and offset by OFFSET. This would be used by targets that e.g.
2152 cannot issue QImode memory operations and have to use SImode memory
2153 operations plus masking logic. */
2154
2155 rtx
2156 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2157 {
2158 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2159 tree expr = MEM_EXPR (new_rtx);
2160 rtx memoffset = MEM_OFFSET (new_rtx);
2161 unsigned int size = GET_MODE_SIZE (mode);
2162
2163 /* If there are no changes, just return the original memory reference. */
2164 if (new_rtx == memref)
2165 return new_rtx;
2166
2167 /* If we don't know what offset we were at within the expression, then
2168 we can't know if we've overstepped the bounds. */
2169 if (! memoffset)
2170 expr = NULL_TREE;
2171
2172 while (expr)
2173 {
2174 if (TREE_CODE (expr) == COMPONENT_REF)
2175 {
2176 tree field = TREE_OPERAND (expr, 1);
2177 tree offset = component_ref_field_offset (expr);
2178
2179 if (! DECL_SIZE_UNIT (field))
2180 {
2181 expr = NULL_TREE;
2182 break;
2183 }
2184
2185 /* Is the field at least as large as the access? If so, ok,
2186 otherwise strip back to the containing structure. */
2187 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2188 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2189 && INTVAL (memoffset) >= 0)
2190 break;
2191
2192 if (! host_integerp (offset, 1))
2193 {
2194 expr = NULL_TREE;
2195 break;
2196 }
2197
2198 expr = TREE_OPERAND (expr, 0);
2199 memoffset
2200 = (GEN_INT (INTVAL (memoffset)
2201 + tree_low_cst (offset, 1)
2202 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2203 / BITS_PER_UNIT)));
2204 }
2205 /* Similarly for the decl. */
2206 else if (DECL_P (expr)
2207 && DECL_SIZE_UNIT (expr)
2208 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2209 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2210 && (! memoffset || INTVAL (memoffset) >= 0))
2211 break;
2212 else
2213 {
2214 /* The widened memory access overflows the expression, which means
2215 that it could alias another expression. Zap it. */
2216 expr = NULL_TREE;
2217 break;
2218 }
2219 }
2220
2221 if (! expr)
2222 memoffset = NULL_RTX;
2223
2224 /* The widened memory may alias other stuff, so zap the alias set. */
2225 /* ??? Maybe use get_alias_set on any remaining expression. */
2226
2227 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2228 MEM_ALIGN (new_rtx), mode);
2229
2230 return new_rtx;
2231 }
2232 \f
2233 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2234 static GTY(()) tree spill_slot_decl;
2235
2236 tree
2237 get_spill_slot_decl (bool force_build_p)
2238 {
2239 tree d = spill_slot_decl;
2240 rtx rd;
2241
2242 if (d || !force_build_p)
2243 return d;
2244
2245 d = build_decl (VAR_DECL, get_identifier ("%sfp"), void_type_node);
2246 DECL_ARTIFICIAL (d) = 1;
2247 DECL_IGNORED_P (d) = 1;
2248 TREE_USED (d) = 1;
2249 TREE_THIS_NOTRAP (d) = 1;
2250 spill_slot_decl = d;
2251
2252 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2253 MEM_NOTRAP_P (rd) = 1;
2254 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2255 NULL_RTX, 0, BLKmode);
2256 SET_DECL_RTL (d, rd);
2257
2258 return d;
2259 }
2260
2261 /* Given MEM, a result from assign_stack_local, fill in the memory
2262 attributes as appropriate for a register allocator spill slot.
2263 These slots are not aliasable by other memory. We arrange for
2264 them all to use a single MEM_EXPR, so that the aliasing code can
2265 work properly in the case of shared spill slots. */
2266
2267 void
2268 set_mem_attrs_for_spill (rtx mem)
2269 {
2270 alias_set_type alias;
2271 rtx addr, offset;
2272 tree expr;
2273
2274 expr = get_spill_slot_decl (true);
2275 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2276
2277 /* We expect the incoming memory to be of the form:
2278 (mem:MODE (plus (reg sfp) (const_int offset)))
2279 with perhaps the plus missing for offset = 0. */
2280 addr = XEXP (mem, 0);
2281 offset = const0_rtx;
2282 if (GET_CODE (addr) == PLUS
2283 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2284 offset = XEXP (addr, 1);
2285
2286 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2287 MEM_SIZE (mem), MEM_ALIGN (mem),
2288 GET_MODE (mem));
2289 MEM_NOTRAP_P (mem) = 1;
2290 }
2291 \f
2292 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2293
2294 rtx
2295 gen_label_rtx (void)
2296 {
2297 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2298 NULL, label_num++, NULL);
2299 }
2300 \f
2301 /* For procedure integration. */
2302
2303 /* Install new pointers to the first and last insns in the chain.
2304 Also, set cur_insn_uid to one higher than the last in use.
2305 Used for an inline-procedure after copying the insn chain. */
2306
2307 void
2308 set_new_first_and_last_insn (rtx first, rtx last)
2309 {
2310 rtx insn;
2311
2312 first_insn = first;
2313 last_insn = last;
2314 cur_insn_uid = 0;
2315
2316 for (insn = first; insn; insn = NEXT_INSN (insn))
2317 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2318
2319 cur_insn_uid++;
2320 }
2321 \f
2322 /* Go through all the RTL insn bodies and copy any invalid shared
2323 structure. This routine should only be called once. */
2324
2325 static void
2326 unshare_all_rtl_1 (rtx insn)
2327 {
2328 /* Unshare just about everything else. */
2329 unshare_all_rtl_in_chain (insn);
2330
2331 /* Make sure the addresses of stack slots found outside the insn chain
2332 (such as, in DECL_RTL of a variable) are not shared
2333 with the insn chain.
2334
2335 This special care is necessary when the stack slot MEM does not
2336 actually appear in the insn chain. If it does appear, its address
2337 is unshared from all else at that point. */
2338 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2339 }
2340
2341 /* Go through all the RTL insn bodies and copy any invalid shared
2342 structure, again. This is a fairly expensive thing to do so it
2343 should be done sparingly. */
2344
2345 void
2346 unshare_all_rtl_again (rtx insn)
2347 {
2348 rtx p;
2349 tree decl;
2350
2351 for (p = insn; p; p = NEXT_INSN (p))
2352 if (INSN_P (p))
2353 {
2354 reset_used_flags (PATTERN (p));
2355 reset_used_flags (REG_NOTES (p));
2356 }
2357
2358 /* Make sure that virtual stack slots are not shared. */
2359 set_used_decls (DECL_INITIAL (cfun->decl));
2360
2361 /* Make sure that virtual parameters are not shared. */
2362 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2363 set_used_flags (DECL_RTL (decl));
2364
2365 reset_used_flags (stack_slot_list);
2366
2367 unshare_all_rtl_1 (insn);
2368 }
2369
2370 unsigned int
2371 unshare_all_rtl (void)
2372 {
2373 unshare_all_rtl_1 (get_insns ());
2374 return 0;
2375 }
2376
2377 struct rtl_opt_pass pass_unshare_all_rtl =
2378 {
2379 {
2380 RTL_PASS,
2381 "unshare", /* name */
2382 NULL, /* gate */
2383 unshare_all_rtl, /* execute */
2384 NULL, /* sub */
2385 NULL, /* next */
2386 0, /* static_pass_number */
2387 TV_NONE, /* tv_id */
2388 0, /* properties_required */
2389 0, /* properties_provided */
2390 0, /* properties_destroyed */
2391 0, /* todo_flags_start */
2392 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2393 }
2394 };
2395
2396
2397 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2398 Recursively does the same for subexpressions. */
2399
2400 static void
2401 verify_rtx_sharing (rtx orig, rtx insn)
2402 {
2403 rtx x = orig;
2404 int i;
2405 enum rtx_code code;
2406 const char *format_ptr;
2407
2408 if (x == 0)
2409 return;
2410
2411 code = GET_CODE (x);
2412
2413 /* These types may be freely shared. */
2414
2415 switch (code)
2416 {
2417 case REG:
2418 case CONST_INT:
2419 case CONST_DOUBLE:
2420 case CONST_FIXED:
2421 case CONST_VECTOR:
2422 case SYMBOL_REF:
2423 case LABEL_REF:
2424 case CODE_LABEL:
2425 case PC:
2426 case CC0:
2427 case SCRATCH:
2428 return;
2429 /* SCRATCH must be shared because they represent distinct values. */
2430 case CLOBBER:
2431 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2432 return;
2433 break;
2434
2435 case CONST:
2436 if (shared_const_p (orig))
2437 return;
2438 break;
2439
2440 case MEM:
2441 /* A MEM is allowed to be shared if its address is constant. */
2442 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2443 || reload_completed || reload_in_progress)
2444 return;
2445
2446 break;
2447
2448 default:
2449 break;
2450 }
2451
2452 /* This rtx may not be shared. If it has already been seen,
2453 replace it with a copy of itself. */
2454 #ifdef ENABLE_CHECKING
2455 if (RTX_FLAG (x, used))
2456 {
2457 error ("invalid rtl sharing found in the insn");
2458 debug_rtx (insn);
2459 error ("shared rtx");
2460 debug_rtx (x);
2461 internal_error ("internal consistency failure");
2462 }
2463 #endif
2464 gcc_assert (!RTX_FLAG (x, used));
2465
2466 RTX_FLAG (x, used) = 1;
2467
2468 /* Now scan the subexpressions recursively. */
2469
2470 format_ptr = GET_RTX_FORMAT (code);
2471
2472 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2473 {
2474 switch (*format_ptr++)
2475 {
2476 case 'e':
2477 verify_rtx_sharing (XEXP (x, i), insn);
2478 break;
2479
2480 case 'E':
2481 if (XVEC (x, i) != NULL)
2482 {
2483 int j;
2484 int len = XVECLEN (x, i);
2485
2486 for (j = 0; j < len; j++)
2487 {
2488 /* We allow sharing of ASM_OPERANDS inside single
2489 instruction. */
2490 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2491 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2492 == ASM_OPERANDS))
2493 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2494 else
2495 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2496 }
2497 }
2498 break;
2499 }
2500 }
2501 return;
2502 }
2503
2504 /* Go through all the RTL insn bodies and check that there is no unexpected
2505 sharing in between the subexpressions. */
2506
2507 void
2508 verify_rtl_sharing (void)
2509 {
2510 rtx p;
2511
2512 for (p = get_insns (); p; p = NEXT_INSN (p))
2513 if (INSN_P (p))
2514 {
2515 reset_used_flags (PATTERN (p));
2516 reset_used_flags (REG_NOTES (p));
2517 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2518 {
2519 int i;
2520 rtx q, sequence = PATTERN (p);
2521
2522 for (i = 0; i < XVECLEN (sequence, 0); i++)
2523 {
2524 q = XVECEXP (sequence, 0, i);
2525 gcc_assert (INSN_P (q));
2526 reset_used_flags (PATTERN (q));
2527 reset_used_flags (REG_NOTES (q));
2528 }
2529 }
2530 }
2531
2532 for (p = get_insns (); p; p = NEXT_INSN (p))
2533 if (INSN_P (p))
2534 {
2535 verify_rtx_sharing (PATTERN (p), p);
2536 verify_rtx_sharing (REG_NOTES (p), p);
2537 }
2538 }
2539
2540 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2541 Assumes the mark bits are cleared at entry. */
2542
2543 void
2544 unshare_all_rtl_in_chain (rtx insn)
2545 {
2546 for (; insn; insn = NEXT_INSN (insn))
2547 if (INSN_P (insn))
2548 {
2549 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2550 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2551 }
2552 }
2553
2554 /* Go through all virtual stack slots of a function and mark them as
2555 shared. We never replace the DECL_RTLs themselves with a copy,
2556 but expressions mentioned into a DECL_RTL cannot be shared with
2557 expressions in the instruction stream.
2558
2559 Note that reload may convert pseudo registers into memories in-place.
2560 Pseudo registers are always shared, but MEMs never are. Thus if we
2561 reset the used flags on MEMs in the instruction stream, we must set
2562 them again on MEMs that appear in DECL_RTLs. */
2563
2564 static void
2565 set_used_decls (tree blk)
2566 {
2567 tree t;
2568
2569 /* Mark decls. */
2570 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2571 if (DECL_RTL_SET_P (t))
2572 set_used_flags (DECL_RTL (t));
2573
2574 /* Now process sub-blocks. */
2575 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2576 set_used_decls (t);
2577 }
2578
2579 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2580 Recursively does the same for subexpressions. Uses
2581 copy_rtx_if_shared_1 to reduce stack space. */
2582
2583 rtx
2584 copy_rtx_if_shared (rtx orig)
2585 {
2586 copy_rtx_if_shared_1 (&orig);
2587 return orig;
2588 }
2589
2590 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2591 use. Recursively does the same for subexpressions. */
2592
2593 static void
2594 copy_rtx_if_shared_1 (rtx *orig1)
2595 {
2596 rtx x;
2597 int i;
2598 enum rtx_code code;
2599 rtx *last_ptr;
2600 const char *format_ptr;
2601 int copied = 0;
2602 int length;
2603
2604 /* Repeat is used to turn tail-recursion into iteration. */
2605 repeat:
2606 x = *orig1;
2607
2608 if (x == 0)
2609 return;
2610
2611 code = GET_CODE (x);
2612
2613 /* These types may be freely shared. */
2614
2615 switch (code)
2616 {
2617 case REG:
2618 case CONST_INT:
2619 case CONST_DOUBLE:
2620 case CONST_FIXED:
2621 case CONST_VECTOR:
2622 case SYMBOL_REF:
2623 case LABEL_REF:
2624 case CODE_LABEL:
2625 case PC:
2626 case CC0:
2627 case SCRATCH:
2628 /* SCRATCH must be shared because they represent distinct values. */
2629 return;
2630 case CLOBBER:
2631 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2632 return;
2633 break;
2634
2635 case CONST:
2636 if (shared_const_p (x))
2637 return;
2638 break;
2639
2640 case INSN:
2641 case JUMP_INSN:
2642 case CALL_INSN:
2643 case NOTE:
2644 case BARRIER:
2645 /* The chain of insns is not being copied. */
2646 return;
2647
2648 default:
2649 break;
2650 }
2651
2652 /* This rtx may not be shared. If it has already been seen,
2653 replace it with a copy of itself. */
2654
2655 if (RTX_FLAG (x, used))
2656 {
2657 x = shallow_copy_rtx (x);
2658 copied = 1;
2659 }
2660 RTX_FLAG (x, used) = 1;
2661
2662 /* Now scan the subexpressions recursively.
2663 We can store any replaced subexpressions directly into X
2664 since we know X is not shared! Any vectors in X
2665 must be copied if X was copied. */
2666
2667 format_ptr = GET_RTX_FORMAT (code);
2668 length = GET_RTX_LENGTH (code);
2669 last_ptr = NULL;
2670
2671 for (i = 0; i < length; i++)
2672 {
2673 switch (*format_ptr++)
2674 {
2675 case 'e':
2676 if (last_ptr)
2677 copy_rtx_if_shared_1 (last_ptr);
2678 last_ptr = &XEXP (x, i);
2679 break;
2680
2681 case 'E':
2682 if (XVEC (x, i) != NULL)
2683 {
2684 int j;
2685 int len = XVECLEN (x, i);
2686
2687 /* Copy the vector iff I copied the rtx and the length
2688 is nonzero. */
2689 if (copied && len > 0)
2690 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2691
2692 /* Call recursively on all inside the vector. */
2693 for (j = 0; j < len; j++)
2694 {
2695 if (last_ptr)
2696 copy_rtx_if_shared_1 (last_ptr);
2697 last_ptr = &XVECEXP (x, i, j);
2698 }
2699 }
2700 break;
2701 }
2702 }
2703 *orig1 = x;
2704 if (last_ptr)
2705 {
2706 orig1 = last_ptr;
2707 goto repeat;
2708 }
2709 return;
2710 }
2711
2712 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2713 to look for shared sub-parts. */
2714
2715 void
2716 reset_used_flags (rtx x)
2717 {
2718 int i, j;
2719 enum rtx_code code;
2720 const char *format_ptr;
2721 int length;
2722
2723 /* Repeat is used to turn tail-recursion into iteration. */
2724 repeat:
2725 if (x == 0)
2726 return;
2727
2728 code = GET_CODE (x);
2729
2730 /* These types may be freely shared so we needn't do any resetting
2731 for them. */
2732
2733 switch (code)
2734 {
2735 case REG:
2736 case CONST_INT:
2737 case CONST_DOUBLE:
2738 case CONST_FIXED:
2739 case CONST_VECTOR:
2740 case SYMBOL_REF:
2741 case CODE_LABEL:
2742 case PC:
2743 case CC0:
2744 return;
2745
2746 case INSN:
2747 case JUMP_INSN:
2748 case CALL_INSN:
2749 case NOTE:
2750 case LABEL_REF:
2751 case BARRIER:
2752 /* The chain of insns is not being copied. */
2753 return;
2754
2755 default:
2756 break;
2757 }
2758
2759 RTX_FLAG (x, used) = 0;
2760
2761 format_ptr = GET_RTX_FORMAT (code);
2762 length = GET_RTX_LENGTH (code);
2763
2764 for (i = 0; i < length; i++)
2765 {
2766 switch (*format_ptr++)
2767 {
2768 case 'e':
2769 if (i == length-1)
2770 {
2771 x = XEXP (x, i);
2772 goto repeat;
2773 }
2774 reset_used_flags (XEXP (x, i));
2775 break;
2776
2777 case 'E':
2778 for (j = 0; j < XVECLEN (x, i); j++)
2779 reset_used_flags (XVECEXP (x, i, j));
2780 break;
2781 }
2782 }
2783 }
2784
2785 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2786 to look for shared sub-parts. */
2787
2788 void
2789 set_used_flags (rtx x)
2790 {
2791 int i, j;
2792 enum rtx_code code;
2793 const char *format_ptr;
2794
2795 if (x == 0)
2796 return;
2797
2798 code = GET_CODE (x);
2799
2800 /* These types may be freely shared so we needn't do any resetting
2801 for them. */
2802
2803 switch (code)
2804 {
2805 case REG:
2806 case CONST_INT:
2807 case CONST_DOUBLE:
2808 case CONST_FIXED:
2809 case CONST_VECTOR:
2810 case SYMBOL_REF:
2811 case CODE_LABEL:
2812 case PC:
2813 case CC0:
2814 return;
2815
2816 case INSN:
2817 case JUMP_INSN:
2818 case CALL_INSN:
2819 case NOTE:
2820 case LABEL_REF:
2821 case BARRIER:
2822 /* The chain of insns is not being copied. */
2823 return;
2824
2825 default:
2826 break;
2827 }
2828
2829 RTX_FLAG (x, used) = 1;
2830
2831 format_ptr = GET_RTX_FORMAT (code);
2832 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2833 {
2834 switch (*format_ptr++)
2835 {
2836 case 'e':
2837 set_used_flags (XEXP (x, i));
2838 break;
2839
2840 case 'E':
2841 for (j = 0; j < XVECLEN (x, i); j++)
2842 set_used_flags (XVECEXP (x, i, j));
2843 break;
2844 }
2845 }
2846 }
2847 \f
2848 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2849 Return X or the rtx for the pseudo reg the value of X was copied into.
2850 OTHER must be valid as a SET_DEST. */
2851
2852 rtx
2853 make_safe_from (rtx x, rtx other)
2854 {
2855 while (1)
2856 switch (GET_CODE (other))
2857 {
2858 case SUBREG:
2859 other = SUBREG_REG (other);
2860 break;
2861 case STRICT_LOW_PART:
2862 case SIGN_EXTEND:
2863 case ZERO_EXTEND:
2864 other = XEXP (other, 0);
2865 break;
2866 default:
2867 goto done;
2868 }
2869 done:
2870 if ((MEM_P (other)
2871 && ! CONSTANT_P (x)
2872 && !REG_P (x)
2873 && GET_CODE (x) != SUBREG)
2874 || (REG_P (other)
2875 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2876 || reg_mentioned_p (other, x))))
2877 {
2878 rtx temp = gen_reg_rtx (GET_MODE (x));
2879 emit_move_insn (temp, x);
2880 return temp;
2881 }
2882 return x;
2883 }
2884 \f
2885 /* Emission of insns (adding them to the doubly-linked list). */
2886
2887 /* Return the first insn of the current sequence or current function. */
2888
2889 rtx
2890 get_insns (void)
2891 {
2892 return first_insn;
2893 }
2894
2895 /* Specify a new insn as the first in the chain. */
2896
2897 void
2898 set_first_insn (rtx insn)
2899 {
2900 gcc_assert (!PREV_INSN (insn));
2901 first_insn = insn;
2902 }
2903
2904 /* Return the last insn emitted in current sequence or current function. */
2905
2906 rtx
2907 get_last_insn (void)
2908 {
2909 return last_insn;
2910 }
2911
2912 /* Specify a new insn as the last in the chain. */
2913
2914 void
2915 set_last_insn (rtx insn)
2916 {
2917 gcc_assert (!NEXT_INSN (insn));
2918 last_insn = insn;
2919 }
2920
2921 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2922
2923 rtx
2924 get_last_insn_anywhere (void)
2925 {
2926 struct sequence_stack *stack;
2927 if (last_insn)
2928 return last_insn;
2929 for (stack = seq_stack; stack; stack = stack->next)
2930 if (stack->last != 0)
2931 return stack->last;
2932 return 0;
2933 }
2934
2935 /* Return the first nonnote insn emitted in current sequence or current
2936 function. This routine looks inside SEQUENCEs. */
2937
2938 rtx
2939 get_first_nonnote_insn (void)
2940 {
2941 rtx insn = first_insn;
2942
2943 if (insn)
2944 {
2945 if (NOTE_P (insn))
2946 for (insn = next_insn (insn);
2947 insn && NOTE_P (insn);
2948 insn = next_insn (insn))
2949 continue;
2950 else
2951 {
2952 if (NONJUMP_INSN_P (insn)
2953 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2954 insn = XVECEXP (PATTERN (insn), 0, 0);
2955 }
2956 }
2957
2958 return insn;
2959 }
2960
2961 /* Return the last nonnote insn emitted in current sequence or current
2962 function. This routine looks inside SEQUENCEs. */
2963
2964 rtx
2965 get_last_nonnote_insn (void)
2966 {
2967 rtx insn = last_insn;
2968
2969 if (insn)
2970 {
2971 if (NOTE_P (insn))
2972 for (insn = previous_insn (insn);
2973 insn && NOTE_P (insn);
2974 insn = previous_insn (insn))
2975 continue;
2976 else
2977 {
2978 if (NONJUMP_INSN_P (insn)
2979 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2980 insn = XVECEXP (PATTERN (insn), 0,
2981 XVECLEN (PATTERN (insn), 0) - 1);
2982 }
2983 }
2984
2985 return insn;
2986 }
2987
2988 /* Return a number larger than any instruction's uid in this function. */
2989
2990 int
2991 get_max_uid (void)
2992 {
2993 return cur_insn_uid;
2994 }
2995 \f
2996 /* Return the next insn. If it is a SEQUENCE, return the first insn
2997 of the sequence. */
2998
2999 rtx
3000 next_insn (rtx insn)
3001 {
3002 if (insn)
3003 {
3004 insn = NEXT_INSN (insn);
3005 if (insn && NONJUMP_INSN_P (insn)
3006 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3007 insn = XVECEXP (PATTERN (insn), 0, 0);
3008 }
3009
3010 return insn;
3011 }
3012
3013 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3014 of the sequence. */
3015
3016 rtx
3017 previous_insn (rtx insn)
3018 {
3019 if (insn)
3020 {
3021 insn = PREV_INSN (insn);
3022 if (insn && NONJUMP_INSN_P (insn)
3023 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3024 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3025 }
3026
3027 return insn;
3028 }
3029
3030 /* Return the next insn after INSN that is not a NOTE. This routine does not
3031 look inside SEQUENCEs. */
3032
3033 rtx
3034 next_nonnote_insn (rtx insn)
3035 {
3036 while (insn)
3037 {
3038 insn = NEXT_INSN (insn);
3039 if (insn == 0 || !NOTE_P (insn))
3040 break;
3041 }
3042
3043 return insn;
3044 }
3045
3046 /* Return the previous insn before INSN that is not a NOTE. This routine does
3047 not look inside SEQUENCEs. */
3048
3049 rtx
3050 prev_nonnote_insn (rtx insn)
3051 {
3052 while (insn)
3053 {
3054 insn = PREV_INSN (insn);
3055 if (insn == 0 || !NOTE_P (insn))
3056 break;
3057 }
3058
3059 return insn;
3060 }
3061
3062 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3063 or 0, if there is none. This routine does not look inside
3064 SEQUENCEs. */
3065
3066 rtx
3067 next_real_insn (rtx insn)
3068 {
3069 while (insn)
3070 {
3071 insn = NEXT_INSN (insn);
3072 if (insn == 0 || INSN_P (insn))
3073 break;
3074 }
3075
3076 return insn;
3077 }
3078
3079 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3080 or 0, if there is none. This routine does not look inside
3081 SEQUENCEs. */
3082
3083 rtx
3084 prev_real_insn (rtx insn)
3085 {
3086 while (insn)
3087 {
3088 insn = PREV_INSN (insn);
3089 if (insn == 0 || INSN_P (insn))
3090 break;
3091 }
3092
3093 return insn;
3094 }
3095
3096 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3097 This routine does not look inside SEQUENCEs. */
3098
3099 rtx
3100 last_call_insn (void)
3101 {
3102 rtx insn;
3103
3104 for (insn = get_last_insn ();
3105 insn && !CALL_P (insn);
3106 insn = PREV_INSN (insn))
3107 ;
3108
3109 return insn;
3110 }
3111
3112 /* Find the next insn after INSN that really does something. This routine
3113 does not look inside SEQUENCEs. Until reload has completed, this is the
3114 same as next_real_insn. */
3115
3116 int
3117 active_insn_p (const_rtx insn)
3118 {
3119 return (CALL_P (insn) || JUMP_P (insn)
3120 || (NONJUMP_INSN_P (insn)
3121 && (! reload_completed
3122 || (GET_CODE (PATTERN (insn)) != USE
3123 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3124 }
3125
3126 rtx
3127 next_active_insn (rtx insn)
3128 {
3129 while (insn)
3130 {
3131 insn = NEXT_INSN (insn);
3132 if (insn == 0 || active_insn_p (insn))
3133 break;
3134 }
3135
3136 return insn;
3137 }
3138
3139 /* Find the last insn before INSN that really does something. This routine
3140 does not look inside SEQUENCEs. Until reload has completed, this is the
3141 same as prev_real_insn. */
3142
3143 rtx
3144 prev_active_insn (rtx insn)
3145 {
3146 while (insn)
3147 {
3148 insn = PREV_INSN (insn);
3149 if (insn == 0 || active_insn_p (insn))
3150 break;
3151 }
3152
3153 return insn;
3154 }
3155
3156 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3157
3158 rtx
3159 next_label (rtx insn)
3160 {
3161 while (insn)
3162 {
3163 insn = NEXT_INSN (insn);
3164 if (insn == 0 || LABEL_P (insn))
3165 break;
3166 }
3167
3168 return insn;
3169 }
3170
3171 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3172
3173 rtx
3174 prev_label (rtx insn)
3175 {
3176 while (insn)
3177 {
3178 insn = PREV_INSN (insn);
3179 if (insn == 0 || LABEL_P (insn))
3180 break;
3181 }
3182
3183 return insn;
3184 }
3185
3186 /* Return the last label to mark the same position as LABEL. Return null
3187 if LABEL itself is null. */
3188
3189 rtx
3190 skip_consecutive_labels (rtx label)
3191 {
3192 rtx insn;
3193
3194 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3195 if (LABEL_P (insn))
3196 label = insn;
3197
3198 return label;
3199 }
3200 \f
3201 #ifdef HAVE_cc0
3202 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3203 and REG_CC_USER notes so we can find it. */
3204
3205 void
3206 link_cc0_insns (rtx insn)
3207 {
3208 rtx user = next_nonnote_insn (insn);
3209
3210 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3211 user = XVECEXP (PATTERN (user), 0, 0);
3212
3213 add_reg_note (user, REG_CC_SETTER, insn);
3214 add_reg_note (insn, REG_CC_USER, user);
3215 }
3216
3217 /* Return the next insn that uses CC0 after INSN, which is assumed to
3218 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3219 applied to the result of this function should yield INSN).
3220
3221 Normally, this is simply the next insn. However, if a REG_CC_USER note
3222 is present, it contains the insn that uses CC0.
3223
3224 Return 0 if we can't find the insn. */
3225
3226 rtx
3227 next_cc0_user (rtx insn)
3228 {
3229 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3230
3231 if (note)
3232 return XEXP (note, 0);
3233
3234 insn = next_nonnote_insn (insn);
3235 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3236 insn = XVECEXP (PATTERN (insn), 0, 0);
3237
3238 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3239 return insn;
3240
3241 return 0;
3242 }
3243
3244 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3245 note, it is the previous insn. */
3246
3247 rtx
3248 prev_cc0_setter (rtx insn)
3249 {
3250 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3251
3252 if (note)
3253 return XEXP (note, 0);
3254
3255 insn = prev_nonnote_insn (insn);
3256 gcc_assert (sets_cc0_p (PATTERN (insn)));
3257
3258 return insn;
3259 }
3260 #endif
3261
3262 #ifdef AUTO_INC_DEC
3263 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3264
3265 static int
3266 find_auto_inc (rtx *xp, void *data)
3267 {
3268 rtx x = *xp;
3269 rtx reg = (rtx) data;
3270
3271 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3272 return 0;
3273
3274 switch (GET_CODE (x))
3275 {
3276 case PRE_DEC:
3277 case PRE_INC:
3278 case POST_DEC:
3279 case POST_INC:
3280 case PRE_MODIFY:
3281 case POST_MODIFY:
3282 if (rtx_equal_p (reg, XEXP (x, 0)))
3283 return 1;
3284 break;
3285
3286 default:
3287 gcc_unreachable ();
3288 }
3289 return -1;
3290 }
3291 #endif
3292
3293 /* Increment the label uses for all labels present in rtx. */
3294
3295 static void
3296 mark_label_nuses (rtx x)
3297 {
3298 enum rtx_code code;
3299 int i, j;
3300 const char *fmt;
3301
3302 code = GET_CODE (x);
3303 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3304 LABEL_NUSES (XEXP (x, 0))++;
3305
3306 fmt = GET_RTX_FORMAT (code);
3307 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3308 {
3309 if (fmt[i] == 'e')
3310 mark_label_nuses (XEXP (x, i));
3311 else if (fmt[i] == 'E')
3312 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3313 mark_label_nuses (XVECEXP (x, i, j));
3314 }
3315 }
3316
3317 \f
3318 /* Try splitting insns that can be split for better scheduling.
3319 PAT is the pattern which might split.
3320 TRIAL is the insn providing PAT.
3321 LAST is nonzero if we should return the last insn of the sequence produced.
3322
3323 If this routine succeeds in splitting, it returns the first or last
3324 replacement insn depending on the value of LAST. Otherwise, it
3325 returns TRIAL. If the insn to be returned can be split, it will be. */
3326
3327 rtx
3328 try_split (rtx pat, rtx trial, int last)
3329 {
3330 rtx before = PREV_INSN (trial);
3331 rtx after = NEXT_INSN (trial);
3332 int has_barrier = 0;
3333 rtx note, seq, tem;
3334 int probability;
3335 rtx insn_last, insn;
3336 int njumps = 0;
3337
3338 if (any_condjump_p (trial)
3339 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3340 split_branch_probability = INTVAL (XEXP (note, 0));
3341 probability = split_branch_probability;
3342
3343 seq = split_insns (pat, trial);
3344
3345 split_branch_probability = -1;
3346
3347 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3348 We may need to handle this specially. */
3349 if (after && BARRIER_P (after))
3350 {
3351 has_barrier = 1;
3352 after = NEXT_INSN (after);
3353 }
3354
3355 if (!seq)
3356 return trial;
3357
3358 /* Avoid infinite loop if any insn of the result matches
3359 the original pattern. */
3360 insn_last = seq;
3361 while (1)
3362 {
3363 if (INSN_P (insn_last)
3364 && rtx_equal_p (PATTERN (insn_last), pat))
3365 return trial;
3366 if (!NEXT_INSN (insn_last))
3367 break;
3368 insn_last = NEXT_INSN (insn_last);
3369 }
3370
3371 /* We will be adding the new sequence to the function. The splitters
3372 may have introduced invalid RTL sharing, so unshare the sequence now. */
3373 unshare_all_rtl_in_chain (seq);
3374
3375 /* Mark labels. */
3376 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3377 {
3378 if (JUMP_P (insn))
3379 {
3380 mark_jump_label (PATTERN (insn), insn, 0);
3381 njumps++;
3382 if (probability != -1
3383 && any_condjump_p (insn)
3384 && !find_reg_note (insn, REG_BR_PROB, 0))
3385 {
3386 /* We can preserve the REG_BR_PROB notes only if exactly
3387 one jump is created, otherwise the machine description
3388 is responsible for this step using
3389 split_branch_probability variable. */
3390 gcc_assert (njumps == 1);
3391 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3392 }
3393 }
3394 }
3395
3396 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3397 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3398 if (CALL_P (trial))
3399 {
3400 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3401 if (CALL_P (insn))
3402 {
3403 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3404 while (*p)
3405 p = &XEXP (*p, 1);
3406 *p = CALL_INSN_FUNCTION_USAGE (trial);
3407 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3408 }
3409 }
3410
3411 /* Copy notes, particularly those related to the CFG. */
3412 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3413 {
3414 switch (REG_NOTE_KIND (note))
3415 {
3416 case REG_EH_REGION:
3417 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3418 {
3419 if (CALL_P (insn)
3420 || (flag_non_call_exceptions && INSN_P (insn)
3421 && may_trap_p (PATTERN (insn))))
3422 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
3423 }
3424 break;
3425
3426 case REG_NORETURN:
3427 case REG_SETJMP:
3428 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3429 {
3430 if (CALL_P (insn))
3431 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3432 }
3433 break;
3434
3435 case REG_NON_LOCAL_GOTO:
3436 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3437 {
3438 if (JUMP_P (insn))
3439 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3440 }
3441 break;
3442
3443 #ifdef AUTO_INC_DEC
3444 case REG_INC:
3445 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3446 {
3447 rtx reg = XEXP (note, 0);
3448 if (!FIND_REG_INC_NOTE (insn, reg)
3449 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3450 add_reg_note (insn, REG_INC, reg);
3451 }
3452 break;
3453 #endif
3454
3455 default:
3456 break;
3457 }
3458 }
3459
3460 /* If there are LABELS inside the split insns increment the
3461 usage count so we don't delete the label. */
3462 if (INSN_P (trial))
3463 {
3464 insn = insn_last;
3465 while (insn != NULL_RTX)
3466 {
3467 /* JUMP_P insns have already been "marked" above. */
3468 if (NONJUMP_INSN_P (insn))
3469 mark_label_nuses (PATTERN (insn));
3470
3471 insn = PREV_INSN (insn);
3472 }
3473 }
3474
3475 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3476
3477 delete_insn (trial);
3478 if (has_barrier)
3479 emit_barrier_after (tem);
3480
3481 /* Recursively call try_split for each new insn created; by the
3482 time control returns here that insn will be fully split, so
3483 set LAST and continue from the insn after the one returned.
3484 We can't use next_active_insn here since AFTER may be a note.
3485 Ignore deleted insns, which can be occur if not optimizing. */
3486 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3487 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3488 tem = try_split (PATTERN (tem), tem, 1);
3489
3490 /* Return either the first or the last insn, depending on which was
3491 requested. */
3492 return last
3493 ? (after ? PREV_INSN (after) : last_insn)
3494 : NEXT_INSN (before);
3495 }
3496 \f
3497 /* Make and return an INSN rtx, initializing all its slots.
3498 Store PATTERN in the pattern slots. */
3499
3500 rtx
3501 make_insn_raw (rtx pattern)
3502 {
3503 rtx insn;
3504
3505 insn = rtx_alloc (INSN);
3506
3507 INSN_UID (insn) = cur_insn_uid++;
3508 PATTERN (insn) = pattern;
3509 INSN_CODE (insn) = -1;
3510 REG_NOTES (insn) = NULL;
3511 INSN_LOCATOR (insn) = curr_insn_locator ();
3512 BLOCK_FOR_INSN (insn) = NULL;
3513
3514 #ifdef ENABLE_RTL_CHECKING
3515 if (insn
3516 && INSN_P (insn)
3517 && (returnjump_p (insn)
3518 || (GET_CODE (insn) == SET
3519 && SET_DEST (insn) == pc_rtx)))
3520 {
3521 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3522 debug_rtx (insn);
3523 }
3524 #endif
3525
3526 return insn;
3527 }
3528
3529 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3530
3531 rtx
3532 make_jump_insn_raw (rtx pattern)
3533 {
3534 rtx insn;
3535
3536 insn = rtx_alloc (JUMP_INSN);
3537 INSN_UID (insn) = cur_insn_uid++;
3538
3539 PATTERN (insn) = pattern;
3540 INSN_CODE (insn) = -1;
3541 REG_NOTES (insn) = NULL;
3542 JUMP_LABEL (insn) = NULL;
3543 INSN_LOCATOR (insn) = curr_insn_locator ();
3544 BLOCK_FOR_INSN (insn) = NULL;
3545
3546 return insn;
3547 }
3548
3549 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3550
3551 static rtx
3552 make_call_insn_raw (rtx pattern)
3553 {
3554 rtx insn;
3555
3556 insn = rtx_alloc (CALL_INSN);
3557 INSN_UID (insn) = cur_insn_uid++;
3558
3559 PATTERN (insn) = pattern;
3560 INSN_CODE (insn) = -1;
3561 REG_NOTES (insn) = NULL;
3562 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3563 INSN_LOCATOR (insn) = curr_insn_locator ();
3564 BLOCK_FOR_INSN (insn) = NULL;
3565
3566 return insn;
3567 }
3568 \f
3569 /* Add INSN to the end of the doubly-linked list.
3570 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3571
3572 void
3573 add_insn (rtx insn)
3574 {
3575 PREV_INSN (insn) = last_insn;
3576 NEXT_INSN (insn) = 0;
3577
3578 if (NULL != last_insn)
3579 NEXT_INSN (last_insn) = insn;
3580
3581 if (NULL == first_insn)
3582 first_insn = insn;
3583
3584 last_insn = insn;
3585 }
3586
3587 /* Add INSN into the doubly-linked list after insn AFTER. This and
3588 the next should be the only functions called to insert an insn once
3589 delay slots have been filled since only they know how to update a
3590 SEQUENCE. */
3591
3592 void
3593 add_insn_after (rtx insn, rtx after, basic_block bb)
3594 {
3595 rtx next = NEXT_INSN (after);
3596
3597 gcc_assert (!optimize || !INSN_DELETED_P (after));
3598
3599 NEXT_INSN (insn) = next;
3600 PREV_INSN (insn) = after;
3601
3602 if (next)
3603 {
3604 PREV_INSN (next) = insn;
3605 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3606 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3607 }
3608 else if (last_insn == after)
3609 last_insn = insn;
3610 else
3611 {
3612 struct sequence_stack *stack = seq_stack;
3613 /* Scan all pending sequences too. */
3614 for (; stack; stack = stack->next)
3615 if (after == stack->last)
3616 {
3617 stack->last = insn;
3618 break;
3619 }
3620
3621 gcc_assert (stack);
3622 }
3623
3624 if (!BARRIER_P (after)
3625 && !BARRIER_P (insn)
3626 && (bb = BLOCK_FOR_INSN (after)))
3627 {
3628 set_block_for_insn (insn, bb);
3629 if (INSN_P (insn))
3630 df_insn_rescan (insn);
3631 /* Should not happen as first in the BB is always
3632 either NOTE or LABEL. */
3633 if (BB_END (bb) == after
3634 /* Avoid clobbering of structure when creating new BB. */
3635 && !BARRIER_P (insn)
3636 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3637 BB_END (bb) = insn;
3638 }
3639
3640 NEXT_INSN (after) = insn;
3641 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3642 {
3643 rtx sequence = PATTERN (after);
3644 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3645 }
3646 }
3647
3648 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3649 the previous should be the only functions called to insert an insn
3650 once delay slots have been filled since only they know how to
3651 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3652 bb from before. */
3653
3654 void
3655 add_insn_before (rtx insn, rtx before, basic_block bb)
3656 {
3657 rtx prev = PREV_INSN (before);
3658
3659 gcc_assert (!optimize || !INSN_DELETED_P (before));
3660
3661 PREV_INSN (insn) = prev;
3662 NEXT_INSN (insn) = before;
3663
3664 if (prev)
3665 {
3666 NEXT_INSN (prev) = insn;
3667 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3668 {
3669 rtx sequence = PATTERN (prev);
3670 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3671 }
3672 }
3673 else if (first_insn == before)
3674 first_insn = insn;
3675 else
3676 {
3677 struct sequence_stack *stack = seq_stack;
3678 /* Scan all pending sequences too. */
3679 for (; stack; stack = stack->next)
3680 if (before == stack->first)
3681 {
3682 stack->first = insn;
3683 break;
3684 }
3685
3686 gcc_assert (stack);
3687 }
3688
3689 if (!bb
3690 && !BARRIER_P (before)
3691 && !BARRIER_P (insn))
3692 bb = BLOCK_FOR_INSN (before);
3693
3694 if (bb)
3695 {
3696 set_block_for_insn (insn, bb);
3697 if (INSN_P (insn))
3698 df_insn_rescan (insn);
3699 /* Should not happen as first in the BB is always either NOTE or
3700 LABEL. */
3701 gcc_assert (BB_HEAD (bb) != insn
3702 /* Avoid clobbering of structure when creating new BB. */
3703 || BARRIER_P (insn)
3704 || NOTE_INSN_BASIC_BLOCK_P (insn));
3705 }
3706
3707 PREV_INSN (before) = insn;
3708 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3709 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3710 }
3711
3712
3713 /* Replace insn with an deleted instruction note. */
3714
3715 void
3716 set_insn_deleted (rtx insn)
3717 {
3718 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3719 PUT_CODE (insn, NOTE);
3720 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3721 }
3722
3723
3724 /* Remove an insn from its doubly-linked list. This function knows how
3725 to handle sequences. */
3726 void
3727 remove_insn (rtx insn)
3728 {
3729 rtx next = NEXT_INSN (insn);
3730 rtx prev = PREV_INSN (insn);
3731 basic_block bb;
3732
3733 /* Later in the code, the block will be marked dirty. */
3734 df_insn_delete (NULL, INSN_UID (insn));
3735
3736 if (prev)
3737 {
3738 NEXT_INSN (prev) = next;
3739 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3740 {
3741 rtx sequence = PATTERN (prev);
3742 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3743 }
3744 }
3745 else if (first_insn == insn)
3746 first_insn = next;
3747 else
3748 {
3749 struct sequence_stack *stack = seq_stack;
3750 /* Scan all pending sequences too. */
3751 for (; stack; stack = stack->next)
3752 if (insn == stack->first)
3753 {
3754 stack->first = next;
3755 break;
3756 }
3757
3758 gcc_assert (stack);
3759 }
3760
3761 if (next)
3762 {
3763 PREV_INSN (next) = prev;
3764 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3765 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3766 }
3767 else if (last_insn == insn)
3768 last_insn = prev;
3769 else
3770 {
3771 struct sequence_stack *stack = seq_stack;
3772 /* Scan all pending sequences too. */
3773 for (; stack; stack = stack->next)
3774 if (insn == stack->last)
3775 {
3776 stack->last = prev;
3777 break;
3778 }
3779
3780 gcc_assert (stack);
3781 }
3782 if (!BARRIER_P (insn)
3783 && (bb = BLOCK_FOR_INSN (insn)))
3784 {
3785 if (INSN_P (insn))
3786 df_set_bb_dirty (bb);
3787 if (BB_HEAD (bb) == insn)
3788 {
3789 /* Never ever delete the basic block note without deleting whole
3790 basic block. */
3791 gcc_assert (!NOTE_P (insn));
3792 BB_HEAD (bb) = next;
3793 }
3794 if (BB_END (bb) == insn)
3795 BB_END (bb) = prev;
3796 }
3797 }
3798
3799 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3800
3801 void
3802 add_function_usage_to (rtx call_insn, rtx call_fusage)
3803 {
3804 gcc_assert (call_insn && CALL_P (call_insn));
3805
3806 /* Put the register usage information on the CALL. If there is already
3807 some usage information, put ours at the end. */
3808 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3809 {
3810 rtx link;
3811
3812 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3813 link = XEXP (link, 1))
3814 ;
3815
3816 XEXP (link, 1) = call_fusage;
3817 }
3818 else
3819 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3820 }
3821
3822 /* Delete all insns made since FROM.
3823 FROM becomes the new last instruction. */
3824
3825 void
3826 delete_insns_since (rtx from)
3827 {
3828 if (from == 0)
3829 first_insn = 0;
3830 else
3831 NEXT_INSN (from) = 0;
3832 last_insn = from;
3833 }
3834
3835 /* This function is deprecated, please use sequences instead.
3836
3837 Move a consecutive bunch of insns to a different place in the chain.
3838 The insns to be moved are those between FROM and TO.
3839 They are moved to a new position after the insn AFTER.
3840 AFTER must not be FROM or TO or any insn in between.
3841
3842 This function does not know about SEQUENCEs and hence should not be
3843 called after delay-slot filling has been done. */
3844
3845 void
3846 reorder_insns_nobb (rtx from, rtx to, rtx after)
3847 {
3848 /* Splice this bunch out of where it is now. */
3849 if (PREV_INSN (from))
3850 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3851 if (NEXT_INSN (to))
3852 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3853 if (last_insn == to)
3854 last_insn = PREV_INSN (from);
3855 if (first_insn == from)
3856 first_insn = NEXT_INSN (to);
3857
3858 /* Make the new neighbors point to it and it to them. */
3859 if (NEXT_INSN (after))
3860 PREV_INSN (NEXT_INSN (after)) = to;
3861
3862 NEXT_INSN (to) = NEXT_INSN (after);
3863 PREV_INSN (from) = after;
3864 NEXT_INSN (after) = from;
3865 if (after == last_insn)
3866 last_insn = to;
3867 }
3868
3869 /* Same as function above, but take care to update BB boundaries. */
3870 void
3871 reorder_insns (rtx from, rtx to, rtx after)
3872 {
3873 rtx prev = PREV_INSN (from);
3874 basic_block bb, bb2;
3875
3876 reorder_insns_nobb (from, to, after);
3877
3878 if (!BARRIER_P (after)
3879 && (bb = BLOCK_FOR_INSN (after)))
3880 {
3881 rtx x;
3882 df_set_bb_dirty (bb);
3883
3884 if (!BARRIER_P (from)
3885 && (bb2 = BLOCK_FOR_INSN (from)))
3886 {
3887 if (BB_END (bb2) == to)
3888 BB_END (bb2) = prev;
3889 df_set_bb_dirty (bb2);
3890 }
3891
3892 if (BB_END (bb) == after)
3893 BB_END (bb) = to;
3894
3895 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3896 if (!BARRIER_P (x))
3897 df_insn_change_bb (x, bb);
3898 }
3899 }
3900
3901 \f
3902 /* Emit insn(s) of given code and pattern
3903 at a specified place within the doubly-linked list.
3904
3905 All of the emit_foo global entry points accept an object
3906 X which is either an insn list or a PATTERN of a single
3907 instruction.
3908
3909 There are thus a few canonical ways to generate code and
3910 emit it at a specific place in the instruction stream. For
3911 example, consider the instruction named SPOT and the fact that
3912 we would like to emit some instructions before SPOT. We might
3913 do it like this:
3914
3915 start_sequence ();
3916 ... emit the new instructions ...
3917 insns_head = get_insns ();
3918 end_sequence ();
3919
3920 emit_insn_before (insns_head, SPOT);
3921
3922 It used to be common to generate SEQUENCE rtl instead, but that
3923 is a relic of the past which no longer occurs. The reason is that
3924 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3925 generated would almost certainly die right after it was created. */
3926
3927 /* Make X be output before the instruction BEFORE. */
3928
3929 rtx
3930 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3931 {
3932 rtx last = before;
3933 rtx insn;
3934
3935 gcc_assert (before);
3936
3937 if (x == NULL_RTX)
3938 return last;
3939
3940 switch (GET_CODE (x))
3941 {
3942 case INSN:
3943 case JUMP_INSN:
3944 case CALL_INSN:
3945 case CODE_LABEL:
3946 case BARRIER:
3947 case NOTE:
3948 insn = x;
3949 while (insn)
3950 {
3951 rtx next = NEXT_INSN (insn);
3952 add_insn_before (insn, before, bb);
3953 last = insn;
3954 insn = next;
3955 }
3956 break;
3957
3958 #ifdef ENABLE_RTL_CHECKING
3959 case SEQUENCE:
3960 gcc_unreachable ();
3961 break;
3962 #endif
3963
3964 default:
3965 last = make_insn_raw (x);
3966 add_insn_before (last, before, bb);
3967 break;
3968 }
3969
3970 return last;
3971 }
3972
3973 /* Make an instruction with body X and code JUMP_INSN
3974 and output it before the instruction BEFORE. */
3975
3976 rtx
3977 emit_jump_insn_before_noloc (rtx x, rtx before)
3978 {
3979 rtx insn, last = NULL_RTX;
3980
3981 gcc_assert (before);
3982
3983 switch (GET_CODE (x))
3984 {
3985 case INSN:
3986 case JUMP_INSN:
3987 case CALL_INSN:
3988 case CODE_LABEL:
3989 case BARRIER:
3990 case NOTE:
3991 insn = x;
3992 while (insn)
3993 {
3994 rtx next = NEXT_INSN (insn);
3995 add_insn_before (insn, before, NULL);
3996 last = insn;
3997 insn = next;
3998 }
3999 break;
4000
4001 #ifdef ENABLE_RTL_CHECKING
4002 case SEQUENCE:
4003 gcc_unreachable ();
4004 break;
4005 #endif
4006
4007 default:
4008 last = make_jump_insn_raw (x);
4009 add_insn_before (last, before, NULL);
4010 break;
4011 }
4012
4013 return last;
4014 }
4015
4016 /* Make an instruction with body X and code CALL_INSN
4017 and output it before the instruction BEFORE. */
4018
4019 rtx
4020 emit_call_insn_before_noloc (rtx x, rtx before)
4021 {
4022 rtx last = NULL_RTX, insn;
4023
4024 gcc_assert (before);
4025
4026 switch (GET_CODE (x))
4027 {
4028 case INSN:
4029 case JUMP_INSN:
4030 case CALL_INSN:
4031 case CODE_LABEL:
4032 case BARRIER:
4033 case NOTE:
4034 insn = x;
4035 while (insn)
4036 {
4037 rtx next = NEXT_INSN (insn);
4038 add_insn_before (insn, before, NULL);
4039 last = insn;
4040 insn = next;
4041 }
4042 break;
4043
4044 #ifdef ENABLE_RTL_CHECKING
4045 case SEQUENCE:
4046 gcc_unreachable ();
4047 break;
4048 #endif
4049
4050 default:
4051 last = make_call_insn_raw (x);
4052 add_insn_before (last, before, NULL);
4053 break;
4054 }
4055
4056 return last;
4057 }
4058
4059 /* Make an insn of code BARRIER
4060 and output it before the insn BEFORE. */
4061
4062 rtx
4063 emit_barrier_before (rtx before)
4064 {
4065 rtx insn = rtx_alloc (BARRIER);
4066
4067 INSN_UID (insn) = cur_insn_uid++;
4068
4069 add_insn_before (insn, before, NULL);
4070 return insn;
4071 }
4072
4073 /* Emit the label LABEL before the insn BEFORE. */
4074
4075 rtx
4076 emit_label_before (rtx label, rtx before)
4077 {
4078 /* This can be called twice for the same label as a result of the
4079 confusion that follows a syntax error! So make it harmless. */
4080 if (INSN_UID (label) == 0)
4081 {
4082 INSN_UID (label) = cur_insn_uid++;
4083 add_insn_before (label, before, NULL);
4084 }
4085
4086 return label;
4087 }
4088
4089 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4090
4091 rtx
4092 emit_note_before (enum insn_note subtype, rtx before)
4093 {
4094 rtx note = rtx_alloc (NOTE);
4095 INSN_UID (note) = cur_insn_uid++;
4096 NOTE_KIND (note) = subtype;
4097 BLOCK_FOR_INSN (note) = NULL;
4098 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4099
4100 add_insn_before (note, before, NULL);
4101 return note;
4102 }
4103 \f
4104 /* Helper for emit_insn_after, handles lists of instructions
4105 efficiently. */
4106
4107 static rtx
4108 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4109 {
4110 rtx last;
4111 rtx after_after;
4112 if (!bb && !BARRIER_P (after))
4113 bb = BLOCK_FOR_INSN (after);
4114
4115 if (bb)
4116 {
4117 df_set_bb_dirty (bb);
4118 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4119 if (!BARRIER_P (last))
4120 {
4121 set_block_for_insn (last, bb);
4122 df_insn_rescan (last);
4123 }
4124 if (!BARRIER_P (last))
4125 {
4126 set_block_for_insn (last, bb);
4127 df_insn_rescan (last);
4128 }
4129 if (BB_END (bb) == after)
4130 BB_END (bb) = last;
4131 }
4132 else
4133 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4134 continue;
4135
4136 after_after = NEXT_INSN (after);
4137
4138 NEXT_INSN (after) = first;
4139 PREV_INSN (first) = after;
4140 NEXT_INSN (last) = after_after;
4141 if (after_after)
4142 PREV_INSN (after_after) = last;
4143
4144 if (after == last_insn)
4145 last_insn = last;
4146
4147 return last;
4148 }
4149
4150 /* Make X be output after the insn AFTER and set the BB of insn. If
4151 BB is NULL, an attempt is made to infer the BB from AFTER. */
4152
4153 rtx
4154 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4155 {
4156 rtx last = after;
4157
4158 gcc_assert (after);
4159
4160 if (x == NULL_RTX)
4161 return last;
4162
4163 switch (GET_CODE (x))
4164 {
4165 case INSN:
4166 case JUMP_INSN:
4167 case CALL_INSN:
4168 case CODE_LABEL:
4169 case BARRIER:
4170 case NOTE:
4171 last = emit_insn_after_1 (x, after, bb);
4172 break;
4173
4174 #ifdef ENABLE_RTL_CHECKING
4175 case SEQUENCE:
4176 gcc_unreachable ();
4177 break;
4178 #endif
4179
4180 default:
4181 last = make_insn_raw (x);
4182 add_insn_after (last, after, bb);
4183 break;
4184 }
4185
4186 return last;
4187 }
4188
4189
4190 /* Make an insn of code JUMP_INSN with body X
4191 and output it after the insn AFTER. */
4192
4193 rtx
4194 emit_jump_insn_after_noloc (rtx x, rtx after)
4195 {
4196 rtx last;
4197
4198 gcc_assert (after);
4199
4200 switch (GET_CODE (x))
4201 {
4202 case INSN:
4203 case JUMP_INSN:
4204 case CALL_INSN:
4205 case CODE_LABEL:
4206 case BARRIER:
4207 case NOTE:
4208 last = emit_insn_after_1 (x, after, NULL);
4209 break;
4210
4211 #ifdef ENABLE_RTL_CHECKING
4212 case SEQUENCE:
4213 gcc_unreachable ();
4214 break;
4215 #endif
4216
4217 default:
4218 last = make_jump_insn_raw (x);
4219 add_insn_after (last, after, NULL);
4220 break;
4221 }
4222
4223 return last;
4224 }
4225
4226 /* Make an instruction with body X and code CALL_INSN
4227 and output it after the instruction AFTER. */
4228
4229 rtx
4230 emit_call_insn_after_noloc (rtx x, rtx after)
4231 {
4232 rtx last;
4233
4234 gcc_assert (after);
4235
4236 switch (GET_CODE (x))
4237 {
4238 case INSN:
4239 case JUMP_INSN:
4240 case CALL_INSN:
4241 case CODE_LABEL:
4242 case BARRIER:
4243 case NOTE:
4244 last = emit_insn_after_1 (x, after, NULL);
4245 break;
4246
4247 #ifdef ENABLE_RTL_CHECKING
4248 case SEQUENCE:
4249 gcc_unreachable ();
4250 break;
4251 #endif
4252
4253 default:
4254 last = make_call_insn_raw (x);
4255 add_insn_after (last, after, NULL);
4256 break;
4257 }
4258
4259 return last;
4260 }
4261
4262 /* Make an insn of code BARRIER
4263 and output it after the insn AFTER. */
4264
4265 rtx
4266 emit_barrier_after (rtx after)
4267 {
4268 rtx insn = rtx_alloc (BARRIER);
4269
4270 INSN_UID (insn) = cur_insn_uid++;
4271
4272 add_insn_after (insn, after, NULL);
4273 return insn;
4274 }
4275
4276 /* Emit the label LABEL after the insn AFTER. */
4277
4278 rtx
4279 emit_label_after (rtx label, rtx after)
4280 {
4281 /* This can be called twice for the same label
4282 as a result of the confusion that follows a syntax error!
4283 So make it harmless. */
4284 if (INSN_UID (label) == 0)
4285 {
4286 INSN_UID (label) = cur_insn_uid++;
4287 add_insn_after (label, after, NULL);
4288 }
4289
4290 return label;
4291 }
4292
4293 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4294
4295 rtx
4296 emit_note_after (enum insn_note subtype, rtx after)
4297 {
4298 rtx note = rtx_alloc (NOTE);
4299 INSN_UID (note) = cur_insn_uid++;
4300 NOTE_KIND (note) = subtype;
4301 BLOCK_FOR_INSN (note) = NULL;
4302 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4303 add_insn_after (note, after, NULL);
4304 return note;
4305 }
4306 \f
4307 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4308 rtx
4309 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4310 {
4311 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4312
4313 if (pattern == NULL_RTX || !loc)
4314 return last;
4315
4316 after = NEXT_INSN (after);
4317 while (1)
4318 {
4319 if (active_insn_p (after) && !INSN_LOCATOR (after))
4320 INSN_LOCATOR (after) = loc;
4321 if (after == last)
4322 break;
4323 after = NEXT_INSN (after);
4324 }
4325 return last;
4326 }
4327
4328 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4329 rtx
4330 emit_insn_after (rtx pattern, rtx after)
4331 {
4332 if (INSN_P (after))
4333 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4334 else
4335 return emit_insn_after_noloc (pattern, after, NULL);
4336 }
4337
4338 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4339 rtx
4340 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4341 {
4342 rtx last = emit_jump_insn_after_noloc (pattern, after);
4343
4344 if (pattern == NULL_RTX || !loc)
4345 return last;
4346
4347 after = NEXT_INSN (after);
4348 while (1)
4349 {
4350 if (active_insn_p (after) && !INSN_LOCATOR (after))
4351 INSN_LOCATOR (after) = loc;
4352 if (after == last)
4353 break;
4354 after = NEXT_INSN (after);
4355 }
4356 return last;
4357 }
4358
4359 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4360 rtx
4361 emit_jump_insn_after (rtx pattern, rtx after)
4362 {
4363 if (INSN_P (after))
4364 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4365 else
4366 return emit_jump_insn_after_noloc (pattern, after);
4367 }
4368
4369 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4370 rtx
4371 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4372 {
4373 rtx last = emit_call_insn_after_noloc (pattern, after);
4374
4375 if (pattern == NULL_RTX || !loc)
4376 return last;
4377
4378 after = NEXT_INSN (after);
4379 while (1)
4380 {
4381 if (active_insn_p (after) && !INSN_LOCATOR (after))
4382 INSN_LOCATOR (after) = loc;
4383 if (after == last)
4384 break;
4385 after = NEXT_INSN (after);
4386 }
4387 return last;
4388 }
4389
4390 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4391 rtx
4392 emit_call_insn_after (rtx pattern, rtx after)
4393 {
4394 if (INSN_P (after))
4395 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4396 else
4397 return emit_call_insn_after_noloc (pattern, after);
4398 }
4399
4400 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4401 rtx
4402 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4403 {
4404 rtx first = PREV_INSN (before);
4405 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4406
4407 if (pattern == NULL_RTX || !loc)
4408 return last;
4409
4410 if (!first)
4411 first = get_insns ();
4412 else
4413 first = NEXT_INSN (first);
4414 while (1)
4415 {
4416 if (active_insn_p (first) && !INSN_LOCATOR (first))
4417 INSN_LOCATOR (first) = loc;
4418 if (first == last)
4419 break;
4420 first = NEXT_INSN (first);
4421 }
4422 return last;
4423 }
4424
4425 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4426 rtx
4427 emit_insn_before (rtx pattern, rtx before)
4428 {
4429 if (INSN_P (before))
4430 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4431 else
4432 return emit_insn_before_noloc (pattern, before, NULL);
4433 }
4434
4435 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4436 rtx
4437 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4438 {
4439 rtx first = PREV_INSN (before);
4440 rtx last = emit_jump_insn_before_noloc (pattern, before);
4441
4442 if (pattern == NULL_RTX)
4443 return last;
4444
4445 first = NEXT_INSN (first);
4446 while (1)
4447 {
4448 if (active_insn_p (first) && !INSN_LOCATOR (first))
4449 INSN_LOCATOR (first) = loc;
4450 if (first == last)
4451 break;
4452 first = NEXT_INSN (first);
4453 }
4454 return last;
4455 }
4456
4457 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4458 rtx
4459 emit_jump_insn_before (rtx pattern, rtx before)
4460 {
4461 if (INSN_P (before))
4462 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4463 else
4464 return emit_jump_insn_before_noloc (pattern, before);
4465 }
4466
4467 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4468 rtx
4469 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4470 {
4471 rtx first = PREV_INSN (before);
4472 rtx last = emit_call_insn_before_noloc (pattern, before);
4473
4474 if (pattern == NULL_RTX)
4475 return last;
4476
4477 first = NEXT_INSN (first);
4478 while (1)
4479 {
4480 if (active_insn_p (first) && !INSN_LOCATOR (first))
4481 INSN_LOCATOR (first) = loc;
4482 if (first == last)
4483 break;
4484 first = NEXT_INSN (first);
4485 }
4486 return last;
4487 }
4488
4489 /* like emit_call_insn_before_noloc,
4490 but set insn_locator according to before. */
4491 rtx
4492 emit_call_insn_before (rtx pattern, rtx before)
4493 {
4494 if (INSN_P (before))
4495 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4496 else
4497 return emit_call_insn_before_noloc (pattern, before);
4498 }
4499 \f
4500 /* Take X and emit it at the end of the doubly-linked
4501 INSN list.
4502
4503 Returns the last insn emitted. */
4504
4505 rtx
4506 emit_insn (rtx x)
4507 {
4508 rtx last = last_insn;
4509 rtx insn;
4510
4511 if (x == NULL_RTX)
4512 return last;
4513
4514 switch (GET_CODE (x))
4515 {
4516 case INSN:
4517 case JUMP_INSN:
4518 case CALL_INSN:
4519 case CODE_LABEL:
4520 case BARRIER:
4521 case NOTE:
4522 insn = x;
4523 while (insn)
4524 {
4525 rtx next = NEXT_INSN (insn);
4526 add_insn (insn);
4527 last = insn;
4528 insn = next;
4529 }
4530 break;
4531
4532 #ifdef ENABLE_RTL_CHECKING
4533 case SEQUENCE:
4534 gcc_unreachable ();
4535 break;
4536 #endif
4537
4538 default:
4539 last = make_insn_raw (x);
4540 add_insn (last);
4541 break;
4542 }
4543
4544 return last;
4545 }
4546
4547 /* Make an insn of code JUMP_INSN with pattern X
4548 and add it to the end of the doubly-linked list. */
4549
4550 rtx
4551 emit_jump_insn (rtx x)
4552 {
4553 rtx last = NULL_RTX, insn;
4554
4555 switch (GET_CODE (x))
4556 {
4557 case INSN:
4558 case JUMP_INSN:
4559 case CALL_INSN:
4560 case CODE_LABEL:
4561 case BARRIER:
4562 case NOTE:
4563 insn = x;
4564 while (insn)
4565 {
4566 rtx next = NEXT_INSN (insn);
4567 add_insn (insn);
4568 last = insn;
4569 insn = next;
4570 }
4571 break;
4572
4573 #ifdef ENABLE_RTL_CHECKING
4574 case SEQUENCE:
4575 gcc_unreachable ();
4576 break;
4577 #endif
4578
4579 default:
4580 last = make_jump_insn_raw (x);
4581 add_insn (last);
4582 break;
4583 }
4584
4585 return last;
4586 }
4587
4588 /* Make an insn of code CALL_INSN with pattern X
4589 and add it to the end of the doubly-linked list. */
4590
4591 rtx
4592 emit_call_insn (rtx x)
4593 {
4594 rtx insn;
4595
4596 switch (GET_CODE (x))
4597 {
4598 case INSN:
4599 case JUMP_INSN:
4600 case CALL_INSN:
4601 case CODE_LABEL:
4602 case BARRIER:
4603 case NOTE:
4604 insn = emit_insn (x);
4605 break;
4606
4607 #ifdef ENABLE_RTL_CHECKING
4608 case SEQUENCE:
4609 gcc_unreachable ();
4610 break;
4611 #endif
4612
4613 default:
4614 insn = make_call_insn_raw (x);
4615 add_insn (insn);
4616 break;
4617 }
4618
4619 return insn;
4620 }
4621
4622 /* Add the label LABEL to the end of the doubly-linked list. */
4623
4624 rtx
4625 emit_label (rtx label)
4626 {
4627 /* This can be called twice for the same label
4628 as a result of the confusion that follows a syntax error!
4629 So make it harmless. */
4630 if (INSN_UID (label) == 0)
4631 {
4632 INSN_UID (label) = cur_insn_uid++;
4633 add_insn (label);
4634 }
4635 return label;
4636 }
4637
4638 /* Make an insn of code BARRIER
4639 and add it to the end of the doubly-linked list. */
4640
4641 rtx
4642 emit_barrier (void)
4643 {
4644 rtx barrier = rtx_alloc (BARRIER);
4645 INSN_UID (barrier) = cur_insn_uid++;
4646 add_insn (barrier);
4647 return barrier;
4648 }
4649
4650 /* Emit a copy of note ORIG. */
4651
4652 rtx
4653 emit_note_copy (rtx orig)
4654 {
4655 rtx note;
4656
4657 note = rtx_alloc (NOTE);
4658
4659 INSN_UID (note) = cur_insn_uid++;
4660 NOTE_DATA (note) = NOTE_DATA (orig);
4661 NOTE_KIND (note) = NOTE_KIND (orig);
4662 BLOCK_FOR_INSN (note) = NULL;
4663 add_insn (note);
4664
4665 return note;
4666 }
4667
4668 /* Make an insn of code NOTE or type NOTE_NO
4669 and add it to the end of the doubly-linked list. */
4670
4671 rtx
4672 emit_note (enum insn_note kind)
4673 {
4674 rtx note;
4675
4676 note = rtx_alloc (NOTE);
4677 INSN_UID (note) = cur_insn_uid++;
4678 NOTE_KIND (note) = kind;
4679 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4680 BLOCK_FOR_INSN (note) = NULL;
4681 add_insn (note);
4682 return note;
4683 }
4684
4685 /* Emit a clobber of lvalue X. */
4686
4687 rtx
4688 emit_clobber (rtx x)
4689 {
4690 /* CONCATs should not appear in the insn stream. */
4691 if (GET_CODE (x) == CONCAT)
4692 {
4693 emit_clobber (XEXP (x, 0));
4694 return emit_clobber (XEXP (x, 1));
4695 }
4696 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4697 }
4698
4699 /* Return a sequence of insns to clobber lvalue X. */
4700
4701 rtx
4702 gen_clobber (rtx x)
4703 {
4704 rtx seq;
4705
4706 start_sequence ();
4707 emit_clobber (x);
4708 seq = get_insns ();
4709 end_sequence ();
4710 return seq;
4711 }
4712
4713 /* Emit a use of rvalue X. */
4714
4715 rtx
4716 emit_use (rtx x)
4717 {
4718 /* CONCATs should not appear in the insn stream. */
4719 if (GET_CODE (x) == CONCAT)
4720 {
4721 emit_use (XEXP (x, 0));
4722 return emit_use (XEXP (x, 1));
4723 }
4724 return emit_insn (gen_rtx_USE (VOIDmode, x));
4725 }
4726
4727 /* Return a sequence of insns to use rvalue X. */
4728
4729 rtx
4730 gen_use (rtx x)
4731 {
4732 rtx seq;
4733
4734 start_sequence ();
4735 emit_use (x);
4736 seq = get_insns ();
4737 end_sequence ();
4738 return seq;
4739 }
4740
4741 /* Cause next statement to emit a line note even if the line number
4742 has not changed. */
4743
4744 void
4745 force_next_line_note (void)
4746 {
4747 last_location = -1;
4748 }
4749
4750 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4751 note of this type already exists, remove it first. */
4752
4753 rtx
4754 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4755 {
4756 rtx note = find_reg_note (insn, kind, NULL_RTX);
4757
4758 switch (kind)
4759 {
4760 case REG_EQUAL:
4761 case REG_EQUIV:
4762 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4763 has multiple sets (some callers assume single_set
4764 means the insn only has one set, when in fact it
4765 means the insn only has one * useful * set). */
4766 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4767 {
4768 gcc_assert (!note);
4769 return NULL_RTX;
4770 }
4771
4772 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4773 It serves no useful purpose and breaks eliminate_regs. */
4774 if (GET_CODE (datum) == ASM_OPERANDS)
4775 return NULL_RTX;
4776
4777 if (note)
4778 {
4779 XEXP (note, 0) = datum;
4780 df_notes_rescan (insn);
4781 return note;
4782 }
4783 break;
4784
4785 default:
4786 if (note)
4787 {
4788 XEXP (note, 0) = datum;
4789 return note;
4790 }
4791 break;
4792 }
4793
4794 add_reg_note (insn, kind, datum);
4795
4796 switch (kind)
4797 {
4798 case REG_EQUAL:
4799 case REG_EQUIV:
4800 df_notes_rescan (insn);
4801 break;
4802 default:
4803 break;
4804 }
4805
4806 return REG_NOTES (insn);
4807 }
4808 \f
4809 /* Return an indication of which type of insn should have X as a body.
4810 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4811
4812 static enum rtx_code
4813 classify_insn (rtx x)
4814 {
4815 if (LABEL_P (x))
4816 return CODE_LABEL;
4817 if (GET_CODE (x) == CALL)
4818 return CALL_INSN;
4819 if (GET_CODE (x) == RETURN)
4820 return JUMP_INSN;
4821 if (GET_CODE (x) == SET)
4822 {
4823 if (SET_DEST (x) == pc_rtx)
4824 return JUMP_INSN;
4825 else if (GET_CODE (SET_SRC (x)) == CALL)
4826 return CALL_INSN;
4827 else
4828 return INSN;
4829 }
4830 if (GET_CODE (x) == PARALLEL)
4831 {
4832 int j;
4833 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4834 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4835 return CALL_INSN;
4836 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4837 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4838 return JUMP_INSN;
4839 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4840 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4841 return CALL_INSN;
4842 }
4843 return INSN;
4844 }
4845
4846 /* Emit the rtl pattern X as an appropriate kind of insn.
4847 If X is a label, it is simply added into the insn chain. */
4848
4849 rtx
4850 emit (rtx x)
4851 {
4852 enum rtx_code code = classify_insn (x);
4853
4854 switch (code)
4855 {
4856 case CODE_LABEL:
4857 return emit_label (x);
4858 case INSN:
4859 return emit_insn (x);
4860 case JUMP_INSN:
4861 {
4862 rtx insn = emit_jump_insn (x);
4863 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4864 return emit_barrier ();
4865 return insn;
4866 }
4867 case CALL_INSN:
4868 return emit_call_insn (x);
4869 default:
4870 gcc_unreachable ();
4871 }
4872 }
4873 \f
4874 /* Space for free sequence stack entries. */
4875 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4876
4877 /* Begin emitting insns to a sequence. If this sequence will contain
4878 something that might cause the compiler to pop arguments to function
4879 calls (because those pops have previously been deferred; see
4880 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4881 before calling this function. That will ensure that the deferred
4882 pops are not accidentally emitted in the middle of this sequence. */
4883
4884 void
4885 start_sequence (void)
4886 {
4887 struct sequence_stack *tem;
4888
4889 if (free_sequence_stack != NULL)
4890 {
4891 tem = free_sequence_stack;
4892 free_sequence_stack = tem->next;
4893 }
4894 else
4895 tem = GGC_NEW (struct sequence_stack);
4896
4897 tem->next = seq_stack;
4898 tem->first = first_insn;
4899 tem->last = last_insn;
4900
4901 seq_stack = tem;
4902
4903 first_insn = 0;
4904 last_insn = 0;
4905 }
4906
4907 /* Set up the insn chain starting with FIRST as the current sequence,
4908 saving the previously current one. See the documentation for
4909 start_sequence for more information about how to use this function. */
4910
4911 void
4912 push_to_sequence (rtx first)
4913 {
4914 rtx last;
4915
4916 start_sequence ();
4917
4918 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4919
4920 first_insn = first;
4921 last_insn = last;
4922 }
4923
4924 /* Like push_to_sequence, but take the last insn as an argument to avoid
4925 looping through the list. */
4926
4927 void
4928 push_to_sequence2 (rtx first, rtx last)
4929 {
4930 start_sequence ();
4931
4932 first_insn = first;
4933 last_insn = last;
4934 }
4935
4936 /* Set up the outer-level insn chain
4937 as the current sequence, saving the previously current one. */
4938
4939 void
4940 push_topmost_sequence (void)
4941 {
4942 struct sequence_stack *stack, *top = NULL;
4943
4944 start_sequence ();
4945
4946 for (stack = seq_stack; stack; stack = stack->next)
4947 top = stack;
4948
4949 first_insn = top->first;
4950 last_insn = top->last;
4951 }
4952
4953 /* After emitting to the outer-level insn chain, update the outer-level
4954 insn chain, and restore the previous saved state. */
4955
4956 void
4957 pop_topmost_sequence (void)
4958 {
4959 struct sequence_stack *stack, *top = NULL;
4960
4961 for (stack = seq_stack; stack; stack = stack->next)
4962 top = stack;
4963
4964 top->first = first_insn;
4965 top->last = last_insn;
4966
4967 end_sequence ();
4968 }
4969
4970 /* After emitting to a sequence, restore previous saved state.
4971
4972 To get the contents of the sequence just made, you must call
4973 `get_insns' *before* calling here.
4974
4975 If the compiler might have deferred popping arguments while
4976 generating this sequence, and this sequence will not be immediately
4977 inserted into the instruction stream, use do_pending_stack_adjust
4978 before calling get_insns. That will ensure that the deferred
4979 pops are inserted into this sequence, and not into some random
4980 location in the instruction stream. See INHIBIT_DEFER_POP for more
4981 information about deferred popping of arguments. */
4982
4983 void
4984 end_sequence (void)
4985 {
4986 struct sequence_stack *tem = seq_stack;
4987
4988 first_insn = tem->first;
4989 last_insn = tem->last;
4990 seq_stack = tem->next;
4991
4992 memset (tem, 0, sizeof (*tem));
4993 tem->next = free_sequence_stack;
4994 free_sequence_stack = tem;
4995 }
4996
4997 /* Return 1 if currently emitting into a sequence. */
4998
4999 int
5000 in_sequence_p (void)
5001 {
5002 return seq_stack != 0;
5003 }
5004 \f
5005 /* Put the various virtual registers into REGNO_REG_RTX. */
5006
5007 static void
5008 init_virtual_regs (void)
5009 {
5010 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5011 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5012 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5013 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5014 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5015 }
5016
5017 \f
5018 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5019 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5020 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5021 static int copy_insn_n_scratches;
5022
5023 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5024 copied an ASM_OPERANDS.
5025 In that case, it is the original input-operand vector. */
5026 static rtvec orig_asm_operands_vector;
5027
5028 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5029 copied an ASM_OPERANDS.
5030 In that case, it is the copied input-operand vector. */
5031 static rtvec copy_asm_operands_vector;
5032
5033 /* Likewise for the constraints vector. */
5034 static rtvec orig_asm_constraints_vector;
5035 static rtvec copy_asm_constraints_vector;
5036
5037 /* Recursively create a new copy of an rtx for copy_insn.
5038 This function differs from copy_rtx in that it handles SCRATCHes and
5039 ASM_OPERANDs properly.
5040 Normally, this function is not used directly; use copy_insn as front end.
5041 However, you could first copy an insn pattern with copy_insn and then use
5042 this function afterwards to properly copy any REG_NOTEs containing
5043 SCRATCHes. */
5044
5045 rtx
5046 copy_insn_1 (rtx orig)
5047 {
5048 rtx copy;
5049 int i, j;
5050 RTX_CODE code;
5051 const char *format_ptr;
5052
5053 code = GET_CODE (orig);
5054
5055 switch (code)
5056 {
5057 case REG:
5058 case CONST_INT:
5059 case CONST_DOUBLE:
5060 case CONST_FIXED:
5061 case CONST_VECTOR:
5062 case SYMBOL_REF:
5063 case CODE_LABEL:
5064 case PC:
5065 case CC0:
5066 return orig;
5067 case CLOBBER:
5068 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5069 return orig;
5070 break;
5071
5072 case SCRATCH:
5073 for (i = 0; i < copy_insn_n_scratches; i++)
5074 if (copy_insn_scratch_in[i] == orig)
5075 return copy_insn_scratch_out[i];
5076 break;
5077
5078 case CONST:
5079 if (shared_const_p (orig))
5080 return orig;
5081 break;
5082
5083 /* A MEM with a constant address is not sharable. The problem is that
5084 the constant address may need to be reloaded. If the mem is shared,
5085 then reloading one copy of this mem will cause all copies to appear
5086 to have been reloaded. */
5087
5088 default:
5089 break;
5090 }
5091
5092 /* Copy the various flags, fields, and other information. We assume
5093 that all fields need copying, and then clear the fields that should
5094 not be copied. That is the sensible default behavior, and forces
5095 us to explicitly document why we are *not* copying a flag. */
5096 copy = shallow_copy_rtx (orig);
5097
5098 /* We do not copy the USED flag, which is used as a mark bit during
5099 walks over the RTL. */
5100 RTX_FLAG (copy, used) = 0;
5101
5102 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5103 if (INSN_P (orig))
5104 {
5105 RTX_FLAG (copy, jump) = 0;
5106 RTX_FLAG (copy, call) = 0;
5107 RTX_FLAG (copy, frame_related) = 0;
5108 }
5109
5110 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5111
5112 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5113 switch (*format_ptr++)
5114 {
5115 case 'e':
5116 if (XEXP (orig, i) != NULL)
5117 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5118 break;
5119
5120 case 'E':
5121 case 'V':
5122 if (XVEC (orig, i) == orig_asm_constraints_vector)
5123 XVEC (copy, i) = copy_asm_constraints_vector;
5124 else if (XVEC (orig, i) == orig_asm_operands_vector)
5125 XVEC (copy, i) = copy_asm_operands_vector;
5126 else if (XVEC (orig, i) != NULL)
5127 {
5128 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5129 for (j = 0; j < XVECLEN (copy, i); j++)
5130 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5131 }
5132 break;
5133
5134 case 't':
5135 case 'w':
5136 case 'i':
5137 case 's':
5138 case 'S':
5139 case 'u':
5140 case '0':
5141 /* These are left unchanged. */
5142 break;
5143
5144 default:
5145 gcc_unreachable ();
5146 }
5147
5148 if (code == SCRATCH)
5149 {
5150 i = copy_insn_n_scratches++;
5151 gcc_assert (i < MAX_RECOG_OPERANDS);
5152 copy_insn_scratch_in[i] = orig;
5153 copy_insn_scratch_out[i] = copy;
5154 }
5155 else if (code == ASM_OPERANDS)
5156 {
5157 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5158 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5159 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5160 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5161 }
5162
5163 return copy;
5164 }
5165
5166 /* Create a new copy of an rtx.
5167 This function differs from copy_rtx in that it handles SCRATCHes and
5168 ASM_OPERANDs properly.
5169 INSN doesn't really have to be a full INSN; it could be just the
5170 pattern. */
5171 rtx
5172 copy_insn (rtx insn)
5173 {
5174 copy_insn_n_scratches = 0;
5175 orig_asm_operands_vector = 0;
5176 orig_asm_constraints_vector = 0;
5177 copy_asm_operands_vector = 0;
5178 copy_asm_constraints_vector = 0;
5179 return copy_insn_1 (insn);
5180 }
5181
5182 /* Initialize data structures and variables in this file
5183 before generating rtl for each function. */
5184
5185 void
5186 init_emit (void)
5187 {
5188 first_insn = NULL;
5189 last_insn = NULL;
5190 cur_insn_uid = 1;
5191 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5192 last_location = UNKNOWN_LOCATION;
5193 first_label_num = label_num;
5194 seq_stack = NULL;
5195
5196 /* Init the tables that describe all the pseudo regs. */
5197
5198 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5199
5200 crtl->emit.regno_pointer_align
5201 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5202
5203 regno_reg_rtx
5204 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5205
5206 /* Put copies of all the hard registers into regno_reg_rtx. */
5207 memcpy (regno_reg_rtx,
5208 static_regno_reg_rtx,
5209 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5210
5211 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5212 init_virtual_regs ();
5213
5214 /* Indicate that the virtual registers and stack locations are
5215 all pointers. */
5216 REG_POINTER (stack_pointer_rtx) = 1;
5217 REG_POINTER (frame_pointer_rtx) = 1;
5218 REG_POINTER (hard_frame_pointer_rtx) = 1;
5219 REG_POINTER (arg_pointer_rtx) = 1;
5220
5221 REG_POINTER (virtual_incoming_args_rtx) = 1;
5222 REG_POINTER (virtual_stack_vars_rtx) = 1;
5223 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5224 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5225 REG_POINTER (virtual_cfa_rtx) = 1;
5226
5227 #ifdef STACK_BOUNDARY
5228 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5229 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5230 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5231 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5232
5233 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5234 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5235 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5236 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5237 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5238 #endif
5239
5240 #ifdef INIT_EXPANDERS
5241 INIT_EXPANDERS;
5242 #endif
5243 }
5244
5245 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5246
5247 static rtx
5248 gen_const_vector (enum machine_mode mode, int constant)
5249 {
5250 rtx tem;
5251 rtvec v;
5252 int units, i;
5253 enum machine_mode inner;
5254
5255 units = GET_MODE_NUNITS (mode);
5256 inner = GET_MODE_INNER (mode);
5257
5258 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5259
5260 v = rtvec_alloc (units);
5261
5262 /* We need to call this function after we set the scalar const_tiny_rtx
5263 entries. */
5264 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5265
5266 for (i = 0; i < units; ++i)
5267 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5268
5269 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5270 return tem;
5271 }
5272
5273 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5274 all elements are zero, and the one vector when all elements are one. */
5275 rtx
5276 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5277 {
5278 enum machine_mode inner = GET_MODE_INNER (mode);
5279 int nunits = GET_MODE_NUNITS (mode);
5280 rtx x;
5281 int i;
5282
5283 /* Check to see if all of the elements have the same value. */
5284 x = RTVEC_ELT (v, nunits - 1);
5285 for (i = nunits - 2; i >= 0; i--)
5286 if (RTVEC_ELT (v, i) != x)
5287 break;
5288
5289 /* If the values are all the same, check to see if we can use one of the
5290 standard constant vectors. */
5291 if (i == -1)
5292 {
5293 if (x == CONST0_RTX (inner))
5294 return CONST0_RTX (mode);
5295 else if (x == CONST1_RTX (inner))
5296 return CONST1_RTX (mode);
5297 }
5298
5299 return gen_rtx_raw_CONST_VECTOR (mode, v);
5300 }
5301
5302 /* Initialise global register information required by all functions. */
5303
5304 void
5305 init_emit_regs (void)
5306 {
5307 int i;
5308
5309 /* Reset register attributes */
5310 htab_empty (reg_attrs_htab);
5311
5312 /* We need reg_raw_mode, so initialize the modes now. */
5313 init_reg_modes_target ();
5314
5315 /* Assign register numbers to the globally defined register rtx. */
5316 pc_rtx = gen_rtx_PC (VOIDmode);
5317 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5318 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5319 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5320 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5321 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5322 virtual_incoming_args_rtx =
5323 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5324 virtual_stack_vars_rtx =
5325 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5326 virtual_stack_dynamic_rtx =
5327 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5328 virtual_outgoing_args_rtx =
5329 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5330 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5331
5332 /* Initialize RTL for commonly used hard registers. These are
5333 copied into regno_reg_rtx as we begin to compile each function. */
5334 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5335 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5336
5337 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5338 return_address_pointer_rtx
5339 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5340 #endif
5341
5342 #ifdef STATIC_CHAIN_REGNUM
5343 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5344
5345 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5346 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5347 static_chain_incoming_rtx
5348 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5349 else
5350 #endif
5351 static_chain_incoming_rtx = static_chain_rtx;
5352 #endif
5353
5354 #ifdef STATIC_CHAIN
5355 static_chain_rtx = STATIC_CHAIN;
5356
5357 #ifdef STATIC_CHAIN_INCOMING
5358 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5359 #else
5360 static_chain_incoming_rtx = static_chain_rtx;
5361 #endif
5362 #endif
5363
5364 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5365 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5366 else
5367 pic_offset_table_rtx = NULL_RTX;
5368 }
5369
5370 /* Create some permanent unique rtl objects shared between all functions.
5371 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5372
5373 void
5374 init_emit_once (int line_numbers)
5375 {
5376 int i;
5377 enum machine_mode mode;
5378 enum machine_mode double_mode;
5379
5380 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5381 hash tables. */
5382 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5383 const_int_htab_eq, NULL);
5384
5385 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5386 const_double_htab_eq, NULL);
5387
5388 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5389 const_fixed_htab_eq, NULL);
5390
5391 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5392 mem_attrs_htab_eq, NULL);
5393 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5394 reg_attrs_htab_eq, NULL);
5395
5396 no_line_numbers = ! line_numbers;
5397
5398 /* Compute the word and byte modes. */
5399
5400 byte_mode = VOIDmode;
5401 word_mode = VOIDmode;
5402 double_mode = VOIDmode;
5403
5404 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5405 mode != VOIDmode;
5406 mode = GET_MODE_WIDER_MODE (mode))
5407 {
5408 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5409 && byte_mode == VOIDmode)
5410 byte_mode = mode;
5411
5412 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5413 && word_mode == VOIDmode)
5414 word_mode = mode;
5415 }
5416
5417 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5418 mode != VOIDmode;
5419 mode = GET_MODE_WIDER_MODE (mode))
5420 {
5421 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5422 && double_mode == VOIDmode)
5423 double_mode = mode;
5424 }
5425
5426 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5427
5428 #ifdef INIT_EXPANDERS
5429 /* This is to initialize {init|mark|free}_machine_status before the first
5430 call to push_function_context_to. This is needed by the Chill front
5431 end which calls push_function_context_to before the first call to
5432 init_function_start. */
5433 INIT_EXPANDERS;
5434 #endif
5435
5436 /* Create the unique rtx's for certain rtx codes and operand values. */
5437
5438 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5439 tries to use these variables. */
5440 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5441 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5442 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5443
5444 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5445 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5446 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5447 else
5448 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5449
5450 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5451 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5452 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5453
5454 dconstm1 = dconst1;
5455 dconstm1.sign = 1;
5456
5457 dconsthalf = dconst1;
5458 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5459
5460 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5461 {
5462 const REAL_VALUE_TYPE *const r =
5463 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5464
5465 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5466 mode != VOIDmode;
5467 mode = GET_MODE_WIDER_MODE (mode))
5468 const_tiny_rtx[i][(int) mode] =
5469 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5470
5471 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5472 mode != VOIDmode;
5473 mode = GET_MODE_WIDER_MODE (mode))
5474 const_tiny_rtx[i][(int) mode] =
5475 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5476
5477 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5478
5479 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5480 mode != VOIDmode;
5481 mode = GET_MODE_WIDER_MODE (mode))
5482 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5483
5484 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5485 mode != VOIDmode;
5486 mode = GET_MODE_WIDER_MODE (mode))
5487 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5488 }
5489
5490 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5491 mode != VOIDmode;
5492 mode = GET_MODE_WIDER_MODE (mode))
5493 {
5494 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5495 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5496 }
5497
5498 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5499 mode != VOIDmode;
5500 mode = GET_MODE_WIDER_MODE (mode))
5501 {
5502 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5503 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5504 }
5505
5506 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5507 mode != VOIDmode;
5508 mode = GET_MODE_WIDER_MODE (mode))
5509 {
5510 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5511 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5512 }
5513
5514 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5515 mode != VOIDmode;
5516 mode = GET_MODE_WIDER_MODE (mode))
5517 {
5518 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5519 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5520 }
5521
5522 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5523 mode != VOIDmode;
5524 mode = GET_MODE_WIDER_MODE (mode))
5525 {
5526 FCONST0(mode).data.high = 0;
5527 FCONST0(mode).data.low = 0;
5528 FCONST0(mode).mode = mode;
5529 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5530 FCONST0 (mode), mode);
5531 }
5532
5533 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5534 mode != VOIDmode;
5535 mode = GET_MODE_WIDER_MODE (mode))
5536 {
5537 FCONST0(mode).data.high = 0;
5538 FCONST0(mode).data.low = 0;
5539 FCONST0(mode).mode = mode;
5540 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5541 FCONST0 (mode), mode);
5542 }
5543
5544 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5545 mode != VOIDmode;
5546 mode = GET_MODE_WIDER_MODE (mode))
5547 {
5548 FCONST0(mode).data.high = 0;
5549 FCONST0(mode).data.low = 0;
5550 FCONST0(mode).mode = mode;
5551 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5552 FCONST0 (mode), mode);
5553
5554 /* We store the value 1. */
5555 FCONST1(mode).data.high = 0;
5556 FCONST1(mode).data.low = 0;
5557 FCONST1(mode).mode = mode;
5558 lshift_double (1, 0, GET_MODE_FBIT (mode),
5559 2 * HOST_BITS_PER_WIDE_INT,
5560 &FCONST1(mode).data.low,
5561 &FCONST1(mode).data.high,
5562 SIGNED_FIXED_POINT_MODE_P (mode));
5563 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5564 FCONST1 (mode), mode);
5565 }
5566
5567 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5568 mode != VOIDmode;
5569 mode = GET_MODE_WIDER_MODE (mode))
5570 {
5571 FCONST0(mode).data.high = 0;
5572 FCONST0(mode).data.low = 0;
5573 FCONST0(mode).mode = mode;
5574 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5575 FCONST0 (mode), mode);
5576
5577 /* We store the value 1. */
5578 FCONST1(mode).data.high = 0;
5579 FCONST1(mode).data.low = 0;
5580 FCONST1(mode).mode = mode;
5581 lshift_double (1, 0, GET_MODE_FBIT (mode),
5582 2 * HOST_BITS_PER_WIDE_INT,
5583 &FCONST1(mode).data.low,
5584 &FCONST1(mode).data.high,
5585 SIGNED_FIXED_POINT_MODE_P (mode));
5586 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5587 FCONST1 (mode), mode);
5588 }
5589
5590 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5591 mode != VOIDmode;
5592 mode = GET_MODE_WIDER_MODE (mode))
5593 {
5594 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5595 }
5596
5597 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5598 mode != VOIDmode;
5599 mode = GET_MODE_WIDER_MODE (mode))
5600 {
5601 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5602 }
5603
5604 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5605 mode != VOIDmode;
5606 mode = GET_MODE_WIDER_MODE (mode))
5607 {
5608 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5609 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5610 }
5611
5612 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5613 mode != VOIDmode;
5614 mode = GET_MODE_WIDER_MODE (mode))
5615 {
5616 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5617 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5618 }
5619
5620 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5621 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5622 const_tiny_rtx[0][i] = const0_rtx;
5623
5624 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5625 if (STORE_FLAG_VALUE == 1)
5626 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5627 }
5628 \f
5629 /* Produce exact duplicate of insn INSN after AFTER.
5630 Care updating of libcall regions if present. */
5631
5632 rtx
5633 emit_copy_of_insn_after (rtx insn, rtx after)
5634 {
5635 rtx new_rtx, link;
5636
5637 switch (GET_CODE (insn))
5638 {
5639 case INSN:
5640 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5641 break;
5642
5643 case JUMP_INSN:
5644 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5645 break;
5646
5647 case CALL_INSN:
5648 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5649 if (CALL_INSN_FUNCTION_USAGE (insn))
5650 CALL_INSN_FUNCTION_USAGE (new_rtx)
5651 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5652 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5653 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5654 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5655 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5656 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5657 break;
5658
5659 default:
5660 gcc_unreachable ();
5661 }
5662
5663 /* Update LABEL_NUSES. */
5664 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5665
5666 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5667
5668 /* If the old insn is frame related, then so is the new one. This is
5669 primarily needed for IA-64 unwind info which marks epilogue insns,
5670 which may be duplicated by the basic block reordering code. */
5671 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5672
5673 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5674 will make them. REG_LABEL_TARGETs are created there too, but are
5675 supposed to be sticky, so we copy them. */
5676 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5677 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5678 {
5679 if (GET_CODE (link) == EXPR_LIST)
5680 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5681 copy_insn_1 (XEXP (link, 0)));
5682 else
5683 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5684 }
5685
5686 INSN_CODE (new_rtx) = INSN_CODE (insn);
5687 return new_rtx;
5688 }
5689
5690 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5691 rtx
5692 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5693 {
5694 if (hard_reg_clobbers[mode][regno])
5695 return hard_reg_clobbers[mode][regno];
5696 else
5697 return (hard_reg_clobbers[mode][regno] =
5698 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5699 }
5700
5701 #include "gt-emit-rtl.h"