ffitarget.h (ffi_abi): Add FFI_LINUX and FFI_LINUX_SOFT_FLOAT to the POWERPC_FREEBSD...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61
62 /* Commonly used modes. */
63
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68
69 /* Datastructures maintained for currently processed function in RTL form. */
70
71 struct rtl_data x_rtl;
72
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
77
78 rtx * regno_reg_rtx;
79
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
82
83 static GTY(()) int label_num = 1;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
115
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
174
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
180
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
203
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
207 \f
208 /* Returns a hash code for X (which is a really a CONST_INT). */
209
210 static hashval_t
211 const_int_htab_hash (const void *x)
212 {
213 return (hashval_t) INTVAL ((const_rtx) x);
214 }
215
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
220 static int
221 const_int_htab_eq (const void *x, const void *y)
222 {
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
224 }
225
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
229 {
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
232
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
236 {
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
240 }
241 return h;
242 }
243
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
248 {
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
250
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
259 }
260
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
262
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
265 {
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
268
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
273 }
274
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
277
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
280 {
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
282
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
286 }
287
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
289
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
292 {
293 const mem_attrs *const p = (const mem_attrs *) x;
294
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
299 }
300
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
304
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
307 {
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
310
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
316 }
317
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
321
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
325 {
326 mem_attrs attrs;
327 void **slot;
328
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
338
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
344
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
347 {
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
350 }
351
352 return (mem_attrs *) *slot;
353 }
354
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
356
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
359 {
360 const reg_attrs *const p = (const reg_attrs *) x;
361
362 return ((p->offset * 1000) ^ (long) p->decl);
363 }
364
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
368
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
371 {
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
374
375 return (p->decl == q->decl && p->offset == q->offset);
376 }
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
380
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
383 {
384 reg_attrs attrs;
385 void **slot;
386
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
390
391 attrs.decl = decl;
392 attrs.offset = offset;
393
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
396 {
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
399 }
400
401 return (reg_attrs *) *slot;
402 }
403
404
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
408
409 rtx
410 gen_blockage (void)
411 {
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
415 }
416 #endif
417
418
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
422
423 rtx
424 gen_raw_REG (enum machine_mode mode, int regno)
425 {
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
429 }
430
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
434
435 rtx
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
437 {
438 void **slot;
439
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
442
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
447
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
453
454 return (rtx) *slot;
455 }
456
457 rtx
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
459 {
460 return GEN_INT (trunc_int_for_mode (c, mode));
461 }
462
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
466
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
472 {
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
476
477 return (rtx) *slot;
478 }
479
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
482 rtx
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
484 {
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
487
488 real->u.rv = value;
489
490 return lookup_const_double (real);
491 }
492
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
496
497 static rtx
498 lookup_const_fixed (rtx fixed)
499 {
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
503
504 return (rtx) *slot;
505 }
506
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
509
510 rtx
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
512 {
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
515
516 fixed->u.fv = value;
517
518 return lookup_const_fixed (fixed);
519 }
520
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
525
526 rtx
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
528 {
529 rtx value;
530 unsigned int i;
531
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
534
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
543 {
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
549
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
552
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
554 }
555
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
559
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
563
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
566
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
569
570 return lookup_const_double (value);
571 }
572
573 rtx
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
575 {
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
581
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
586
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
589
590 if (mode == Pmode && !reload_in_progress)
591 {
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
613 }
614
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
618
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
623
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
626
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
634
635 return gen_raw_REG (mode, regno);
636 }
637
638 rtx
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
640 {
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
642
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
646
647 return rt;
648 }
649
650 /* Generate a memory referring to non-trapping constant memory. */
651
652 rtx
653 gen_const_mem (enum machine_mode mode, rtx addr)
654 {
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
659 }
660
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
663
664 rtx
665 gen_frame_mem (enum machine_mode mode, rtx addr)
666 {
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
671 }
672
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
676 rtx
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
678 {
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!cfun->calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
684 }
685
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
688
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
692 {
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
695
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
699
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
703
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
709 ;
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
713 ;
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
718 ;
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
725 ;
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
730 {
731 if (isize != osize)
732 return false;
733 }
734
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
738
739 /* This is a normal subreg. Verify that the offset is representable. */
740
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
744 {
745 unsigned int regno = REGNO (reg);
746
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
750 ;
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
754
755 return subreg_offset_representable_p (regno, imode, offset, omode);
756 }
757
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
765 {
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
770 }
771 return true;
772 }
773
774 rtx
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776 {
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
779 }
780
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783
784 rtx
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
786 {
787 enum machine_mode inmode;
788
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
794 }
795 \f
796 /* gen_rtvec (n, [rt1, ..., rtn])
797 **
798 ** This routine creates an rtvec and stores within it the
799 ** pointers to rtx's which are its arguments.
800 */
801
802 /*VARARGS1*/
803 rtvec
804 gen_rtvec (int n, ...)
805 {
806 int i, save_n;
807 rtx *vector;
808 va_list p;
809
810 va_start (p, n);
811
812 if (n == 0)
813 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
814
815 vector = XALLOCAVEC (rtx, n);
816
817 for (i = 0; i < n; i++)
818 vector[i] = va_arg (p, rtx);
819
820 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
821 save_n = n;
822 va_end (p);
823
824 return gen_rtvec_v (save_n, vector);
825 }
826
827 rtvec
828 gen_rtvec_v (int n, rtx *argp)
829 {
830 int i;
831 rtvec rt_val;
832
833 if (n == 0)
834 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
835
836 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
837
838 for (i = 0; i < n; i++)
839 rt_val->elem[i] = *argp++;
840
841 return rt_val;
842 }
843 \f
844 /* Return the number of bytes between the start of an OUTER_MODE
845 in-memory value and the start of an INNER_MODE in-memory value,
846 given that the former is a lowpart of the latter. It may be a
847 paradoxical lowpart, in which case the offset will be negative
848 on big-endian targets. */
849
850 int
851 byte_lowpart_offset (enum machine_mode outer_mode,
852 enum machine_mode inner_mode)
853 {
854 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
855 return subreg_lowpart_offset (outer_mode, inner_mode);
856 else
857 return -subreg_lowpart_offset (inner_mode, outer_mode);
858 }
859 \f
860 /* Generate a REG rtx for a new pseudo register of mode MODE.
861 This pseudo is assigned the next sequential register number. */
862
863 rtx
864 gen_reg_rtx (enum machine_mode mode)
865 {
866 rtx val;
867 unsigned int align = GET_MODE_ALIGNMENT (mode);
868
869 gcc_assert (can_create_pseudo_p ());
870
871 /* If a virtual register with bigger mode alignment is generated,
872 increase stack alignment estimation because it might be spilled
873 to stack later. */
874 if (SUPPORTS_STACK_ALIGNMENT
875 && crtl->stack_alignment_estimated < align
876 && !crtl->stack_realign_processed)
877 crtl->stack_alignment_estimated = align;
878
879 if (generating_concat_p
880 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
881 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
882 {
883 /* For complex modes, don't make a single pseudo.
884 Instead, make a CONCAT of two pseudos.
885 This allows noncontiguous allocation of the real and imaginary parts,
886 which makes much better code. Besides, allocating DCmode
887 pseudos overstrains reload on some machines like the 386. */
888 rtx realpart, imagpart;
889 enum machine_mode partmode = GET_MODE_INNER (mode);
890
891 realpart = gen_reg_rtx (partmode);
892 imagpart = gen_reg_rtx (partmode);
893 return gen_rtx_CONCAT (mode, realpart, imagpart);
894 }
895
896 /* Make sure regno_pointer_align, and regno_reg_rtx are large
897 enough to have an element for this pseudo reg number. */
898
899 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
900 {
901 int old_size = crtl->emit.regno_pointer_align_length;
902 char *tmp;
903 rtx *new1;
904
905 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
906 memset (tmp + old_size, 0, old_size);
907 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
908
909 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
910 memset (new1 + old_size, 0, old_size * sizeof (rtx));
911 regno_reg_rtx = new1;
912
913 crtl->emit.regno_pointer_align_length = old_size * 2;
914 }
915
916 val = gen_raw_REG (mode, reg_rtx_no);
917 regno_reg_rtx[reg_rtx_no++] = val;
918 return val;
919 }
920
921 /* Update NEW with the same attributes as REG, but with OFFSET added
922 to the REG_OFFSET. */
923
924 static void
925 update_reg_offset (rtx new_rtx, rtx reg, int offset)
926 {
927 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
928 REG_OFFSET (reg) + offset);
929 }
930
931 /* Generate a register with same attributes as REG, but with OFFSET
932 added to the REG_OFFSET. */
933
934 rtx
935 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
936 int offset)
937 {
938 rtx new_rtx = gen_rtx_REG (mode, regno);
939
940 update_reg_offset (new_rtx, reg, offset);
941 return new_rtx;
942 }
943
944 /* Generate a new pseudo-register with the same attributes as REG, but
945 with OFFSET added to the REG_OFFSET. */
946
947 rtx
948 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
949 {
950 rtx new_rtx = gen_reg_rtx (mode);
951
952 update_reg_offset (new_rtx, reg, offset);
953 return new_rtx;
954 }
955
956 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
957 new register is a (possibly paradoxical) lowpart of the old one. */
958
959 void
960 adjust_reg_mode (rtx reg, enum machine_mode mode)
961 {
962 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
963 PUT_MODE (reg, mode);
964 }
965
966 /* Copy REG's attributes from X, if X has any attributes. If REG and X
967 have different modes, REG is a (possibly paradoxical) lowpart of X. */
968
969 void
970 set_reg_attrs_from_value (rtx reg, rtx x)
971 {
972 int offset;
973
974 /* Hard registers can be reused for multiple purposes within the same
975 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
976 on them is wrong. */
977 if (HARD_REGISTER_P (reg))
978 return;
979
980 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
981 if (MEM_P (x))
982 {
983 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
984 REG_ATTRS (reg)
985 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
986 if (MEM_POINTER (x))
987 mark_reg_pointer (reg, MEM_ALIGN (x));
988 }
989 else if (REG_P (x))
990 {
991 if (REG_ATTRS (x))
992 update_reg_offset (reg, x, offset);
993 if (REG_POINTER (x))
994 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
995 }
996 }
997
998 /* Generate a REG rtx for a new pseudo register, copying the mode
999 and attributes from X. */
1000
1001 rtx
1002 gen_reg_rtx_and_attrs (rtx x)
1003 {
1004 rtx reg = gen_reg_rtx (GET_MODE (x));
1005 set_reg_attrs_from_value (reg, x);
1006 return reg;
1007 }
1008
1009 /* Set the register attributes for registers contained in PARM_RTX.
1010 Use needed values from memory attributes of MEM. */
1011
1012 void
1013 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1014 {
1015 if (REG_P (parm_rtx))
1016 set_reg_attrs_from_value (parm_rtx, mem);
1017 else if (GET_CODE (parm_rtx) == PARALLEL)
1018 {
1019 /* Check for a NULL entry in the first slot, used to indicate that the
1020 parameter goes both on the stack and in registers. */
1021 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1022 for (; i < XVECLEN (parm_rtx, 0); i++)
1023 {
1024 rtx x = XVECEXP (parm_rtx, 0, i);
1025 if (REG_P (XEXP (x, 0)))
1026 REG_ATTRS (XEXP (x, 0))
1027 = get_reg_attrs (MEM_EXPR (mem),
1028 INTVAL (XEXP (x, 1)));
1029 }
1030 }
1031 }
1032
1033 /* Set the REG_ATTRS for registers in value X, given that X represents
1034 decl T. */
1035
1036 static void
1037 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1038 {
1039 if (GET_CODE (x) == SUBREG)
1040 {
1041 gcc_assert (subreg_lowpart_p (x));
1042 x = SUBREG_REG (x);
1043 }
1044 if (REG_P (x))
1045 REG_ATTRS (x)
1046 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1047 DECL_MODE (t)));
1048 if (GET_CODE (x) == CONCAT)
1049 {
1050 if (REG_P (XEXP (x, 0)))
1051 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1052 if (REG_P (XEXP (x, 1)))
1053 REG_ATTRS (XEXP (x, 1))
1054 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1055 }
1056 if (GET_CODE (x) == PARALLEL)
1057 {
1058 int i, start;
1059
1060 /* Check for a NULL entry, used to indicate that the parameter goes
1061 both on the stack and in registers. */
1062 if (XEXP (XVECEXP (x, 0, 0), 0))
1063 start = 0;
1064 else
1065 start = 1;
1066
1067 for (i = start; i < XVECLEN (x, 0); i++)
1068 {
1069 rtx y = XVECEXP (x, 0, i);
1070 if (REG_P (XEXP (y, 0)))
1071 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1072 }
1073 }
1074 }
1075
1076 /* Assign the RTX X to declaration T. */
1077
1078 void
1079 set_decl_rtl (tree t, rtx x)
1080 {
1081 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1082 if (x)
1083 set_reg_attrs_for_decl_rtl (t, x);
1084 }
1085
1086 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1087 if the ABI requires the parameter to be passed by reference. */
1088
1089 void
1090 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1091 {
1092 DECL_INCOMING_RTL (t) = x;
1093 if (x && !by_reference_p)
1094 set_reg_attrs_for_decl_rtl (t, x);
1095 }
1096
1097 /* Identify REG (which may be a CONCAT) as a user register. */
1098
1099 void
1100 mark_user_reg (rtx reg)
1101 {
1102 if (GET_CODE (reg) == CONCAT)
1103 {
1104 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1105 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1106 }
1107 else
1108 {
1109 gcc_assert (REG_P (reg));
1110 REG_USERVAR_P (reg) = 1;
1111 }
1112 }
1113
1114 /* Identify REG as a probable pointer register and show its alignment
1115 as ALIGN, if nonzero. */
1116
1117 void
1118 mark_reg_pointer (rtx reg, int align)
1119 {
1120 if (! REG_POINTER (reg))
1121 {
1122 REG_POINTER (reg) = 1;
1123
1124 if (align)
1125 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1126 }
1127 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1128 /* We can no-longer be sure just how aligned this pointer is. */
1129 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1130 }
1131
1132 /* Return 1 plus largest pseudo reg number used in the current function. */
1133
1134 int
1135 max_reg_num (void)
1136 {
1137 return reg_rtx_no;
1138 }
1139
1140 /* Return 1 + the largest label number used so far in the current function. */
1141
1142 int
1143 max_label_num (void)
1144 {
1145 return label_num;
1146 }
1147
1148 /* Return first label number used in this function (if any were used). */
1149
1150 int
1151 get_first_label_num (void)
1152 {
1153 return first_label_num;
1154 }
1155
1156 /* If the rtx for label was created during the expansion of a nested
1157 function, then first_label_num won't include this label number.
1158 Fix this now so that array indices work later. */
1159
1160 void
1161 maybe_set_first_label_num (rtx x)
1162 {
1163 if (CODE_LABEL_NUMBER (x) < first_label_num)
1164 first_label_num = CODE_LABEL_NUMBER (x);
1165 }
1166 \f
1167 /* Return a value representing some low-order bits of X, where the number
1168 of low-order bits is given by MODE. Note that no conversion is done
1169 between floating-point and fixed-point values, rather, the bit
1170 representation is returned.
1171
1172 This function handles the cases in common between gen_lowpart, below,
1173 and two variants in cse.c and combine.c. These are the cases that can
1174 be safely handled at all points in the compilation.
1175
1176 If this is not a case we can handle, return 0. */
1177
1178 rtx
1179 gen_lowpart_common (enum machine_mode mode, rtx x)
1180 {
1181 int msize = GET_MODE_SIZE (mode);
1182 int xsize;
1183 int offset = 0;
1184 enum machine_mode innermode;
1185
1186 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1187 so we have to make one up. Yuk. */
1188 innermode = GET_MODE (x);
1189 if (GET_CODE (x) == CONST_INT
1190 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1191 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1192 else if (innermode == VOIDmode)
1193 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1194
1195 xsize = GET_MODE_SIZE (innermode);
1196
1197 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1198
1199 if (innermode == mode)
1200 return x;
1201
1202 /* MODE must occupy no more words than the mode of X. */
1203 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1204 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1205 return 0;
1206
1207 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1208 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1209 return 0;
1210
1211 offset = subreg_lowpart_offset (mode, innermode);
1212
1213 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1214 && (GET_MODE_CLASS (mode) == MODE_INT
1215 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1216 {
1217 /* If we are getting the low-order part of something that has been
1218 sign- or zero-extended, we can either just use the object being
1219 extended or make a narrower extension. If we want an even smaller
1220 piece than the size of the object being extended, call ourselves
1221 recursively.
1222
1223 This case is used mostly by combine and cse. */
1224
1225 if (GET_MODE (XEXP (x, 0)) == mode)
1226 return XEXP (x, 0);
1227 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1228 return gen_lowpart_common (mode, XEXP (x, 0));
1229 else if (msize < xsize)
1230 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1231 }
1232 else if (GET_CODE (x) == SUBREG || REG_P (x)
1233 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1234 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1235 return simplify_gen_subreg (mode, x, innermode, offset);
1236
1237 /* Otherwise, we can't do this. */
1238 return 0;
1239 }
1240 \f
1241 rtx
1242 gen_highpart (enum machine_mode mode, rtx x)
1243 {
1244 unsigned int msize = GET_MODE_SIZE (mode);
1245 rtx result;
1246
1247 /* This case loses if X is a subreg. To catch bugs early,
1248 complain if an invalid MODE is used even in other cases. */
1249 gcc_assert (msize <= UNITS_PER_WORD
1250 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1251
1252 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1253 subreg_highpart_offset (mode, GET_MODE (x)));
1254 gcc_assert (result);
1255
1256 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1257 the target if we have a MEM. gen_highpart must return a valid operand,
1258 emitting code if necessary to do so. */
1259 if (MEM_P (result))
1260 {
1261 result = validize_mem (result);
1262 gcc_assert (result);
1263 }
1264
1265 return result;
1266 }
1267
1268 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1269 be VOIDmode constant. */
1270 rtx
1271 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1272 {
1273 if (GET_MODE (exp) != VOIDmode)
1274 {
1275 gcc_assert (GET_MODE (exp) == innermode);
1276 return gen_highpart (outermode, exp);
1277 }
1278 return simplify_gen_subreg (outermode, exp, innermode,
1279 subreg_highpart_offset (outermode, innermode));
1280 }
1281
1282 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1283
1284 unsigned int
1285 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1286 {
1287 unsigned int offset = 0;
1288 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1289
1290 if (difference > 0)
1291 {
1292 if (WORDS_BIG_ENDIAN)
1293 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1294 if (BYTES_BIG_ENDIAN)
1295 offset += difference % UNITS_PER_WORD;
1296 }
1297
1298 return offset;
1299 }
1300
1301 /* Return offset in bytes to get OUTERMODE high part
1302 of the value in mode INNERMODE stored in memory in target format. */
1303 unsigned int
1304 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1305 {
1306 unsigned int offset = 0;
1307 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1308
1309 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1310
1311 if (difference > 0)
1312 {
1313 if (! WORDS_BIG_ENDIAN)
1314 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1315 if (! BYTES_BIG_ENDIAN)
1316 offset += difference % UNITS_PER_WORD;
1317 }
1318
1319 return offset;
1320 }
1321
1322 /* Return 1 iff X, assumed to be a SUBREG,
1323 refers to the least significant part of its containing reg.
1324 If X is not a SUBREG, always return 1 (it is its own low part!). */
1325
1326 int
1327 subreg_lowpart_p (const_rtx x)
1328 {
1329 if (GET_CODE (x) != SUBREG)
1330 return 1;
1331 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1332 return 0;
1333
1334 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1335 == SUBREG_BYTE (x));
1336 }
1337 \f
1338 /* Return subword OFFSET of operand OP.
1339 The word number, OFFSET, is interpreted as the word number starting
1340 at the low-order address. OFFSET 0 is the low-order word if not
1341 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1342
1343 If we cannot extract the required word, we return zero. Otherwise,
1344 an rtx corresponding to the requested word will be returned.
1345
1346 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1347 reload has completed, a valid address will always be returned. After
1348 reload, if a valid address cannot be returned, we return zero.
1349
1350 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1351 it is the responsibility of the caller.
1352
1353 MODE is the mode of OP in case it is a CONST_INT.
1354
1355 ??? This is still rather broken for some cases. The problem for the
1356 moment is that all callers of this thing provide no 'goal mode' to
1357 tell us to work with. This exists because all callers were written
1358 in a word based SUBREG world.
1359 Now use of this function can be deprecated by simplify_subreg in most
1360 cases.
1361 */
1362
1363 rtx
1364 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1365 {
1366 if (mode == VOIDmode)
1367 mode = GET_MODE (op);
1368
1369 gcc_assert (mode != VOIDmode);
1370
1371 /* If OP is narrower than a word, fail. */
1372 if (mode != BLKmode
1373 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1374 return 0;
1375
1376 /* If we want a word outside OP, return zero. */
1377 if (mode != BLKmode
1378 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1379 return const0_rtx;
1380
1381 /* Form a new MEM at the requested address. */
1382 if (MEM_P (op))
1383 {
1384 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1385
1386 if (! validate_address)
1387 return new_rtx;
1388
1389 else if (reload_completed)
1390 {
1391 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1392 return 0;
1393 }
1394 else
1395 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1396 }
1397
1398 /* Rest can be handled by simplify_subreg. */
1399 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1400 }
1401
1402 /* Similar to `operand_subword', but never return 0. If we can't
1403 extract the required subword, put OP into a register and try again.
1404 The second attempt must succeed. We always validate the address in
1405 this case.
1406
1407 MODE is the mode of OP, in case it is CONST_INT. */
1408
1409 rtx
1410 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1411 {
1412 rtx result = operand_subword (op, offset, 1, mode);
1413
1414 if (result)
1415 return result;
1416
1417 if (mode != BLKmode && mode != VOIDmode)
1418 {
1419 /* If this is a register which can not be accessed by words, copy it
1420 to a pseudo register. */
1421 if (REG_P (op))
1422 op = copy_to_reg (op);
1423 else
1424 op = force_reg (mode, op);
1425 }
1426
1427 result = operand_subword (op, offset, 1, mode);
1428 gcc_assert (result);
1429
1430 return result;
1431 }
1432 \f
1433 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1434 or (2) a component ref of something variable. Represent the later with
1435 a NULL expression. */
1436
1437 static tree
1438 component_ref_for_mem_expr (tree ref)
1439 {
1440 tree inner = TREE_OPERAND (ref, 0);
1441
1442 if (TREE_CODE (inner) == COMPONENT_REF)
1443 inner = component_ref_for_mem_expr (inner);
1444 else
1445 {
1446 /* Now remove any conversions: they don't change what the underlying
1447 object is. Likewise for SAVE_EXPR. */
1448 while (CONVERT_EXPR_P (inner)
1449 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1450 || TREE_CODE (inner) == SAVE_EXPR)
1451 inner = TREE_OPERAND (inner, 0);
1452
1453 if (! DECL_P (inner))
1454 inner = NULL_TREE;
1455 }
1456
1457 if (inner == TREE_OPERAND (ref, 0))
1458 return ref;
1459 else
1460 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1461 TREE_OPERAND (ref, 1), NULL_TREE);
1462 }
1463
1464 /* Returns 1 if both MEM_EXPR can be considered equal
1465 and 0 otherwise. */
1466
1467 int
1468 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1469 {
1470 if (expr1 == expr2)
1471 return 1;
1472
1473 if (! expr1 || ! expr2)
1474 return 0;
1475
1476 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1477 return 0;
1478
1479 if (TREE_CODE (expr1) == COMPONENT_REF)
1480 return
1481 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1482 TREE_OPERAND (expr2, 0))
1483 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1484 TREE_OPERAND (expr2, 1));
1485
1486 if (INDIRECT_REF_P (expr1))
1487 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1488 TREE_OPERAND (expr2, 0));
1489
1490 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1491 have been resolved here. */
1492 gcc_assert (DECL_P (expr1));
1493
1494 /* Decls with different pointers can't be equal. */
1495 return 0;
1496 }
1497
1498 /* Given REF (a MEM) and T, either the type of X or the expression
1499 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1500 if we are making a new object of this type. BITPOS is nonzero if
1501 there is an offset outstanding on T that will be applied later. */
1502
1503 void
1504 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1505 HOST_WIDE_INT bitpos)
1506 {
1507 alias_set_type alias = MEM_ALIAS_SET (ref);
1508 tree expr = MEM_EXPR (ref);
1509 rtx offset = MEM_OFFSET (ref);
1510 rtx size = MEM_SIZE (ref);
1511 unsigned int align = MEM_ALIGN (ref);
1512 HOST_WIDE_INT apply_bitpos = 0;
1513 tree type;
1514
1515 /* It can happen that type_for_mode was given a mode for which there
1516 is no language-level type. In which case it returns NULL, which
1517 we can see here. */
1518 if (t == NULL_TREE)
1519 return;
1520
1521 type = TYPE_P (t) ? t : TREE_TYPE (t);
1522 if (type == error_mark_node)
1523 return;
1524
1525 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1526 wrong answer, as it assumes that DECL_RTL already has the right alias
1527 info. Callers should not set DECL_RTL until after the call to
1528 set_mem_attributes. */
1529 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1530
1531 /* Get the alias set from the expression or type (perhaps using a
1532 front-end routine) and use it. */
1533 alias = get_alias_set (t);
1534
1535 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1536 MEM_IN_STRUCT_P (ref)
1537 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1538 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1539
1540 /* If we are making an object of this type, or if this is a DECL, we know
1541 that it is a scalar if the type is not an aggregate. */
1542 if ((objectp || DECL_P (t))
1543 && ! AGGREGATE_TYPE_P (type)
1544 && TREE_CODE (type) != COMPLEX_TYPE)
1545 MEM_SCALAR_P (ref) = 1;
1546
1547 /* We can set the alignment from the type if we are making an object,
1548 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1549 if (objectp || TREE_CODE (t) == INDIRECT_REF
1550 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1551 || TYPE_ALIGN_OK (type))
1552 align = MAX (align, TYPE_ALIGN (type));
1553 else
1554 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1555 {
1556 if (integer_zerop (TREE_OPERAND (t, 1)))
1557 /* We don't know anything about the alignment. */
1558 align = BITS_PER_UNIT;
1559 else
1560 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1561 }
1562
1563 /* If the size is known, we can set that. */
1564 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1565 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1566
1567 /* If T is not a type, we may be able to deduce some more information about
1568 the expression. */
1569 if (! TYPE_P (t))
1570 {
1571 tree base;
1572
1573 if (TREE_THIS_VOLATILE (t))
1574 MEM_VOLATILE_P (ref) = 1;
1575
1576 /* Now remove any conversions: they don't change what the underlying
1577 object is. Likewise for SAVE_EXPR. */
1578 while (CONVERT_EXPR_P (t)
1579 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1580 || TREE_CODE (t) == SAVE_EXPR)
1581 t = TREE_OPERAND (t, 0);
1582
1583 /* We may look through structure-like accesses for the purposes of
1584 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1585 base = t;
1586 while (TREE_CODE (base) == COMPONENT_REF
1587 || TREE_CODE (base) == REALPART_EXPR
1588 || TREE_CODE (base) == IMAGPART_EXPR
1589 || TREE_CODE (base) == BIT_FIELD_REF)
1590 base = TREE_OPERAND (base, 0);
1591
1592 if (DECL_P (base))
1593 {
1594 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1595 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1596 else
1597 MEM_NOTRAP_P (ref) = 1;
1598 }
1599 else
1600 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1601
1602 base = get_base_address (base);
1603 if (base && DECL_P (base)
1604 && TREE_READONLY (base)
1605 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1606 {
1607 tree base_type = TREE_TYPE (base);
1608 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1609 || DECL_ARTIFICIAL (base));
1610 MEM_READONLY_P (ref) = 1;
1611 }
1612
1613 /* If this expression uses it's parent's alias set, mark it such
1614 that we won't change it. */
1615 if (component_uses_parent_alias_set (t))
1616 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1617
1618 /* If this is a decl, set the attributes of the MEM from it. */
1619 if (DECL_P (t))
1620 {
1621 expr = t;
1622 offset = const0_rtx;
1623 apply_bitpos = bitpos;
1624 size = (DECL_SIZE_UNIT (t)
1625 && host_integerp (DECL_SIZE_UNIT (t), 1)
1626 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1627 align = DECL_ALIGN (t);
1628 }
1629
1630 /* If this is a constant, we know the alignment. */
1631 else if (CONSTANT_CLASS_P (t))
1632 {
1633 align = TYPE_ALIGN (type);
1634 #ifdef CONSTANT_ALIGNMENT
1635 align = CONSTANT_ALIGNMENT (t, align);
1636 #endif
1637 }
1638
1639 /* If this is a field reference and not a bit-field, record it. */
1640 /* ??? There is some information that can be gleaned from bit-fields,
1641 such as the word offset in the structure that might be modified.
1642 But skip it for now. */
1643 else if (TREE_CODE (t) == COMPONENT_REF
1644 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1645 {
1646 expr = component_ref_for_mem_expr (t);
1647 offset = const0_rtx;
1648 apply_bitpos = bitpos;
1649 /* ??? Any reason the field size would be different than
1650 the size we got from the type? */
1651 }
1652
1653 /* If this is an array reference, look for an outer field reference. */
1654 else if (TREE_CODE (t) == ARRAY_REF)
1655 {
1656 tree off_tree = size_zero_node;
1657 /* We can't modify t, because we use it at the end of the
1658 function. */
1659 tree t2 = t;
1660
1661 do
1662 {
1663 tree index = TREE_OPERAND (t2, 1);
1664 tree low_bound = array_ref_low_bound (t2);
1665 tree unit_size = array_ref_element_size (t2);
1666
1667 /* We assume all arrays have sizes that are a multiple of a byte.
1668 First subtract the lower bound, if any, in the type of the
1669 index, then convert to sizetype and multiply by the size of
1670 the array element. */
1671 if (! integer_zerop (low_bound))
1672 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1673 index, low_bound);
1674
1675 off_tree = size_binop (PLUS_EXPR,
1676 size_binop (MULT_EXPR,
1677 fold_convert (sizetype,
1678 index),
1679 unit_size),
1680 off_tree);
1681 t2 = TREE_OPERAND (t2, 0);
1682 }
1683 while (TREE_CODE (t2) == ARRAY_REF);
1684
1685 if (DECL_P (t2))
1686 {
1687 expr = t2;
1688 offset = NULL;
1689 if (host_integerp (off_tree, 1))
1690 {
1691 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1692 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1693 align = DECL_ALIGN (t2);
1694 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1695 align = aoff;
1696 offset = GEN_INT (ioff);
1697 apply_bitpos = bitpos;
1698 }
1699 }
1700 else if (TREE_CODE (t2) == COMPONENT_REF)
1701 {
1702 expr = component_ref_for_mem_expr (t2);
1703 if (host_integerp (off_tree, 1))
1704 {
1705 offset = GEN_INT (tree_low_cst (off_tree, 1));
1706 apply_bitpos = bitpos;
1707 }
1708 /* ??? Any reason the field size would be different than
1709 the size we got from the type? */
1710 }
1711 else if (flag_argument_noalias > 1
1712 && (INDIRECT_REF_P (t2))
1713 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1714 {
1715 expr = t2;
1716 offset = NULL;
1717 }
1718 }
1719
1720 /* If this is a Fortran indirect argument reference, record the
1721 parameter decl. */
1722 else if (flag_argument_noalias > 1
1723 && (INDIRECT_REF_P (t))
1724 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1725 {
1726 expr = t;
1727 offset = NULL;
1728 }
1729 }
1730
1731 /* If we modified OFFSET based on T, then subtract the outstanding
1732 bit position offset. Similarly, increase the size of the accessed
1733 object to contain the negative offset. */
1734 if (apply_bitpos)
1735 {
1736 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1737 if (size)
1738 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1739 }
1740
1741 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1742 {
1743 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1744 we're overlapping. */
1745 offset = NULL;
1746 expr = NULL;
1747 }
1748
1749 /* Now set the attributes we computed above. */
1750 MEM_ATTRS (ref)
1751 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1752
1753 /* If this is already known to be a scalar or aggregate, we are done. */
1754 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1755 return;
1756
1757 /* If it is a reference into an aggregate, this is part of an aggregate.
1758 Otherwise we don't know. */
1759 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1760 || TREE_CODE (t) == ARRAY_RANGE_REF
1761 || TREE_CODE (t) == BIT_FIELD_REF)
1762 MEM_IN_STRUCT_P (ref) = 1;
1763 }
1764
1765 void
1766 set_mem_attributes (rtx ref, tree t, int objectp)
1767 {
1768 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1769 }
1770
1771 /* Set MEM to the decl that REG refers to. */
1772
1773 void
1774 set_mem_attrs_from_reg (rtx mem, rtx reg)
1775 {
1776 MEM_ATTRS (mem)
1777 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1778 GEN_INT (REG_OFFSET (reg)),
1779 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1780 }
1781
1782 /* Set the alias set of MEM to SET. */
1783
1784 void
1785 set_mem_alias_set (rtx mem, alias_set_type set)
1786 {
1787 #ifdef ENABLE_CHECKING
1788 /* If the new and old alias sets don't conflict, something is wrong. */
1789 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1790 #endif
1791
1792 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1793 MEM_SIZE (mem), MEM_ALIGN (mem),
1794 GET_MODE (mem));
1795 }
1796
1797 /* Set the alignment of MEM to ALIGN bits. */
1798
1799 void
1800 set_mem_align (rtx mem, unsigned int align)
1801 {
1802 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1803 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1804 GET_MODE (mem));
1805 }
1806
1807 /* Set the expr for MEM to EXPR. */
1808
1809 void
1810 set_mem_expr (rtx mem, tree expr)
1811 {
1812 MEM_ATTRS (mem)
1813 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1814 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1815 }
1816
1817 /* Set the offset of MEM to OFFSET. */
1818
1819 void
1820 set_mem_offset (rtx mem, rtx offset)
1821 {
1822 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1823 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1824 GET_MODE (mem));
1825 }
1826
1827 /* Set the size of MEM to SIZE. */
1828
1829 void
1830 set_mem_size (rtx mem, rtx size)
1831 {
1832 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1833 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1834 GET_MODE (mem));
1835 }
1836 \f
1837 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1838 and its address changed to ADDR. (VOIDmode means don't change the mode.
1839 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1840 returned memory location is required to be valid. The memory
1841 attributes are not changed. */
1842
1843 static rtx
1844 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1845 {
1846 rtx new_rtx;
1847
1848 gcc_assert (MEM_P (memref));
1849 if (mode == VOIDmode)
1850 mode = GET_MODE (memref);
1851 if (addr == 0)
1852 addr = XEXP (memref, 0);
1853 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1854 && (!validate || memory_address_p (mode, addr)))
1855 return memref;
1856
1857 if (validate)
1858 {
1859 if (reload_in_progress || reload_completed)
1860 gcc_assert (memory_address_p (mode, addr));
1861 else
1862 addr = memory_address (mode, addr);
1863 }
1864
1865 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1866 return memref;
1867
1868 new_rtx = gen_rtx_MEM (mode, addr);
1869 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1870 return new_rtx;
1871 }
1872
1873 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1874 way we are changing MEMREF, so we only preserve the alias set. */
1875
1876 rtx
1877 change_address (rtx memref, enum machine_mode mode, rtx addr)
1878 {
1879 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1880 enum machine_mode mmode = GET_MODE (new_rtx);
1881 unsigned int align;
1882
1883 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1884 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1885
1886 /* If there are no changes, just return the original memory reference. */
1887 if (new_rtx == memref)
1888 {
1889 if (MEM_ATTRS (memref) == 0
1890 || (MEM_EXPR (memref) == NULL
1891 && MEM_OFFSET (memref) == NULL
1892 && MEM_SIZE (memref) == size
1893 && MEM_ALIGN (memref) == align))
1894 return new_rtx;
1895
1896 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1897 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1898 }
1899
1900 MEM_ATTRS (new_rtx)
1901 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1902
1903 return new_rtx;
1904 }
1905
1906 /* Return a memory reference like MEMREF, but with its mode changed
1907 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1908 nonzero, the memory address is forced to be valid.
1909 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1910 and caller is responsible for adjusting MEMREF base register. */
1911
1912 rtx
1913 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1914 int validate, int adjust)
1915 {
1916 rtx addr = XEXP (memref, 0);
1917 rtx new_rtx;
1918 rtx memoffset = MEM_OFFSET (memref);
1919 rtx size = 0;
1920 unsigned int memalign = MEM_ALIGN (memref);
1921
1922 /* If there are no changes, just return the original memory reference. */
1923 if (mode == GET_MODE (memref) && !offset
1924 && (!validate || memory_address_p (mode, addr)))
1925 return memref;
1926
1927 /* ??? Prefer to create garbage instead of creating shared rtl.
1928 This may happen even if offset is nonzero -- consider
1929 (plus (plus reg reg) const_int) -- so do this always. */
1930 addr = copy_rtx (addr);
1931
1932 if (adjust)
1933 {
1934 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1935 object, we can merge it into the LO_SUM. */
1936 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1937 && offset >= 0
1938 && (unsigned HOST_WIDE_INT) offset
1939 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1940 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1941 plus_constant (XEXP (addr, 1), offset));
1942 else
1943 addr = plus_constant (addr, offset);
1944 }
1945
1946 new_rtx = change_address_1 (memref, mode, addr, validate);
1947
1948 /* Compute the new values of the memory attributes due to this adjustment.
1949 We add the offsets and update the alignment. */
1950 if (memoffset)
1951 memoffset = GEN_INT (offset + INTVAL (memoffset));
1952
1953 /* Compute the new alignment by taking the MIN of the alignment and the
1954 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1955 if zero. */
1956 if (offset != 0)
1957 memalign
1958 = MIN (memalign,
1959 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1960
1961 /* We can compute the size in a number of ways. */
1962 if (GET_MODE (new_rtx) != BLKmode)
1963 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
1964 else if (MEM_SIZE (memref))
1965 size = plus_constant (MEM_SIZE (memref), -offset);
1966
1967 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1968 memoffset, size, memalign, GET_MODE (new_rtx));
1969
1970 /* At some point, we should validate that this offset is within the object,
1971 if all the appropriate values are known. */
1972 return new_rtx;
1973 }
1974
1975 /* Return a memory reference like MEMREF, but with its mode changed
1976 to MODE and its address changed to ADDR, which is assumed to be
1977 MEMREF offset by OFFSET bytes. If VALIDATE is
1978 nonzero, the memory address is forced to be valid. */
1979
1980 rtx
1981 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1982 HOST_WIDE_INT offset, int validate)
1983 {
1984 memref = change_address_1 (memref, VOIDmode, addr, validate);
1985 return adjust_address_1 (memref, mode, offset, validate, 0);
1986 }
1987
1988 /* Return a memory reference like MEMREF, but whose address is changed by
1989 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1990 known to be in OFFSET (possibly 1). */
1991
1992 rtx
1993 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1994 {
1995 rtx new_rtx, addr = XEXP (memref, 0);
1996
1997 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
1998
1999 /* At this point we don't know _why_ the address is invalid. It
2000 could have secondary memory references, multiplies or anything.
2001
2002 However, if we did go and rearrange things, we can wind up not
2003 being able to recognize the magic around pic_offset_table_rtx.
2004 This stuff is fragile, and is yet another example of why it is
2005 bad to expose PIC machinery too early. */
2006 if (! memory_address_p (GET_MODE (memref), new_rtx)
2007 && GET_CODE (addr) == PLUS
2008 && XEXP (addr, 0) == pic_offset_table_rtx)
2009 {
2010 addr = force_reg (GET_MODE (addr), addr);
2011 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2012 }
2013
2014 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2015 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2016
2017 /* If there are no changes, just return the original memory reference. */
2018 if (new_rtx == memref)
2019 return new_rtx;
2020
2021 /* Update the alignment to reflect the offset. Reset the offset, which
2022 we don't know. */
2023 MEM_ATTRS (new_rtx)
2024 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2025 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2026 GET_MODE (new_rtx));
2027 return new_rtx;
2028 }
2029
2030 /* Return a memory reference like MEMREF, but with its address changed to
2031 ADDR. The caller is asserting that the actual piece of memory pointed
2032 to is the same, just the form of the address is being changed, such as
2033 by putting something into a register. */
2034
2035 rtx
2036 replace_equiv_address (rtx memref, rtx addr)
2037 {
2038 /* change_address_1 copies the memory attribute structure without change
2039 and that's exactly what we want here. */
2040 update_temp_slot_address (XEXP (memref, 0), addr);
2041 return change_address_1 (memref, VOIDmode, addr, 1);
2042 }
2043
2044 /* Likewise, but the reference is not required to be valid. */
2045
2046 rtx
2047 replace_equiv_address_nv (rtx memref, rtx addr)
2048 {
2049 return change_address_1 (memref, VOIDmode, addr, 0);
2050 }
2051
2052 /* Return a memory reference like MEMREF, but with its mode widened to
2053 MODE and offset by OFFSET. This would be used by targets that e.g.
2054 cannot issue QImode memory operations and have to use SImode memory
2055 operations plus masking logic. */
2056
2057 rtx
2058 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2059 {
2060 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2061 tree expr = MEM_EXPR (new_rtx);
2062 rtx memoffset = MEM_OFFSET (new_rtx);
2063 unsigned int size = GET_MODE_SIZE (mode);
2064
2065 /* If there are no changes, just return the original memory reference. */
2066 if (new_rtx == memref)
2067 return new_rtx;
2068
2069 /* If we don't know what offset we were at within the expression, then
2070 we can't know if we've overstepped the bounds. */
2071 if (! memoffset)
2072 expr = NULL_TREE;
2073
2074 while (expr)
2075 {
2076 if (TREE_CODE (expr) == COMPONENT_REF)
2077 {
2078 tree field = TREE_OPERAND (expr, 1);
2079 tree offset = component_ref_field_offset (expr);
2080
2081 if (! DECL_SIZE_UNIT (field))
2082 {
2083 expr = NULL_TREE;
2084 break;
2085 }
2086
2087 /* Is the field at least as large as the access? If so, ok,
2088 otherwise strip back to the containing structure. */
2089 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2090 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2091 && INTVAL (memoffset) >= 0)
2092 break;
2093
2094 if (! host_integerp (offset, 1))
2095 {
2096 expr = NULL_TREE;
2097 break;
2098 }
2099
2100 expr = TREE_OPERAND (expr, 0);
2101 memoffset
2102 = (GEN_INT (INTVAL (memoffset)
2103 + tree_low_cst (offset, 1)
2104 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2105 / BITS_PER_UNIT)));
2106 }
2107 /* Similarly for the decl. */
2108 else if (DECL_P (expr)
2109 && DECL_SIZE_UNIT (expr)
2110 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2111 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2112 && (! memoffset || INTVAL (memoffset) >= 0))
2113 break;
2114 else
2115 {
2116 /* The widened memory access overflows the expression, which means
2117 that it could alias another expression. Zap it. */
2118 expr = NULL_TREE;
2119 break;
2120 }
2121 }
2122
2123 if (! expr)
2124 memoffset = NULL_RTX;
2125
2126 /* The widened memory may alias other stuff, so zap the alias set. */
2127 /* ??? Maybe use get_alias_set on any remaining expression. */
2128
2129 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2130 MEM_ALIGN (new_rtx), mode);
2131
2132 return new_rtx;
2133 }
2134 \f
2135 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2136
2137 rtx
2138 gen_label_rtx (void)
2139 {
2140 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2141 NULL, label_num++, NULL);
2142 }
2143 \f
2144 /* For procedure integration. */
2145
2146 /* Install new pointers to the first and last insns in the chain.
2147 Also, set cur_insn_uid to one higher than the last in use.
2148 Used for an inline-procedure after copying the insn chain. */
2149
2150 void
2151 set_new_first_and_last_insn (rtx first, rtx last)
2152 {
2153 rtx insn;
2154
2155 first_insn = first;
2156 last_insn = last;
2157 cur_insn_uid = 0;
2158
2159 for (insn = first; insn; insn = NEXT_INSN (insn))
2160 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2161
2162 cur_insn_uid++;
2163 }
2164 \f
2165 /* Go through all the RTL insn bodies and copy any invalid shared
2166 structure. This routine should only be called once. */
2167
2168 static void
2169 unshare_all_rtl_1 (rtx insn)
2170 {
2171 /* Unshare just about everything else. */
2172 unshare_all_rtl_in_chain (insn);
2173
2174 /* Make sure the addresses of stack slots found outside the insn chain
2175 (such as, in DECL_RTL of a variable) are not shared
2176 with the insn chain.
2177
2178 This special care is necessary when the stack slot MEM does not
2179 actually appear in the insn chain. If it does appear, its address
2180 is unshared from all else at that point. */
2181 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2182 }
2183
2184 /* Go through all the RTL insn bodies and copy any invalid shared
2185 structure, again. This is a fairly expensive thing to do so it
2186 should be done sparingly. */
2187
2188 void
2189 unshare_all_rtl_again (rtx insn)
2190 {
2191 rtx p;
2192 tree decl;
2193
2194 for (p = insn; p; p = NEXT_INSN (p))
2195 if (INSN_P (p))
2196 {
2197 reset_used_flags (PATTERN (p));
2198 reset_used_flags (REG_NOTES (p));
2199 }
2200
2201 /* Make sure that virtual stack slots are not shared. */
2202 set_used_decls (DECL_INITIAL (cfun->decl));
2203
2204 /* Make sure that virtual parameters are not shared. */
2205 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2206 set_used_flags (DECL_RTL (decl));
2207
2208 reset_used_flags (stack_slot_list);
2209
2210 unshare_all_rtl_1 (insn);
2211 }
2212
2213 unsigned int
2214 unshare_all_rtl (void)
2215 {
2216 unshare_all_rtl_1 (get_insns ());
2217 return 0;
2218 }
2219
2220 struct rtl_opt_pass pass_unshare_all_rtl =
2221 {
2222 {
2223 RTL_PASS,
2224 "unshare", /* name */
2225 NULL, /* gate */
2226 unshare_all_rtl, /* execute */
2227 NULL, /* sub */
2228 NULL, /* next */
2229 0, /* static_pass_number */
2230 0, /* tv_id */
2231 0, /* properties_required */
2232 0, /* properties_provided */
2233 0, /* properties_destroyed */
2234 0, /* todo_flags_start */
2235 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2236 }
2237 };
2238
2239
2240 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2241 Recursively does the same for subexpressions. */
2242
2243 static void
2244 verify_rtx_sharing (rtx orig, rtx insn)
2245 {
2246 rtx x = orig;
2247 int i;
2248 enum rtx_code code;
2249 const char *format_ptr;
2250
2251 if (x == 0)
2252 return;
2253
2254 code = GET_CODE (x);
2255
2256 /* These types may be freely shared. */
2257
2258 switch (code)
2259 {
2260 case REG:
2261 case CONST_INT:
2262 case CONST_DOUBLE:
2263 case CONST_FIXED:
2264 case CONST_VECTOR:
2265 case SYMBOL_REF:
2266 case LABEL_REF:
2267 case CODE_LABEL:
2268 case PC:
2269 case CC0:
2270 case SCRATCH:
2271 return;
2272 /* SCRATCH must be shared because they represent distinct values. */
2273 case CLOBBER:
2274 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2275 return;
2276 break;
2277
2278 case CONST:
2279 if (shared_const_p (orig))
2280 return;
2281 break;
2282
2283 case MEM:
2284 /* A MEM is allowed to be shared if its address is constant. */
2285 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2286 || reload_completed || reload_in_progress)
2287 return;
2288
2289 break;
2290
2291 default:
2292 break;
2293 }
2294
2295 /* This rtx may not be shared. If it has already been seen,
2296 replace it with a copy of itself. */
2297 #ifdef ENABLE_CHECKING
2298 if (RTX_FLAG (x, used))
2299 {
2300 error ("invalid rtl sharing found in the insn");
2301 debug_rtx (insn);
2302 error ("shared rtx");
2303 debug_rtx (x);
2304 internal_error ("internal consistency failure");
2305 }
2306 #endif
2307 gcc_assert (!RTX_FLAG (x, used));
2308
2309 RTX_FLAG (x, used) = 1;
2310
2311 /* Now scan the subexpressions recursively. */
2312
2313 format_ptr = GET_RTX_FORMAT (code);
2314
2315 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2316 {
2317 switch (*format_ptr++)
2318 {
2319 case 'e':
2320 verify_rtx_sharing (XEXP (x, i), insn);
2321 break;
2322
2323 case 'E':
2324 if (XVEC (x, i) != NULL)
2325 {
2326 int j;
2327 int len = XVECLEN (x, i);
2328
2329 for (j = 0; j < len; j++)
2330 {
2331 /* We allow sharing of ASM_OPERANDS inside single
2332 instruction. */
2333 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2334 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2335 == ASM_OPERANDS))
2336 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2337 else
2338 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2339 }
2340 }
2341 break;
2342 }
2343 }
2344 return;
2345 }
2346
2347 /* Go through all the RTL insn bodies and check that there is no unexpected
2348 sharing in between the subexpressions. */
2349
2350 void
2351 verify_rtl_sharing (void)
2352 {
2353 rtx p;
2354
2355 for (p = get_insns (); p; p = NEXT_INSN (p))
2356 if (INSN_P (p))
2357 {
2358 reset_used_flags (PATTERN (p));
2359 reset_used_flags (REG_NOTES (p));
2360 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2361 {
2362 int i;
2363 rtx q, sequence = PATTERN (p);
2364
2365 for (i = 0; i < XVECLEN (sequence, 0); i++)
2366 {
2367 q = XVECEXP (sequence, 0, i);
2368 gcc_assert (INSN_P (q));
2369 reset_used_flags (PATTERN (q));
2370 reset_used_flags (REG_NOTES (q));
2371 }
2372 }
2373 }
2374
2375 for (p = get_insns (); p; p = NEXT_INSN (p))
2376 if (INSN_P (p))
2377 {
2378 verify_rtx_sharing (PATTERN (p), p);
2379 verify_rtx_sharing (REG_NOTES (p), p);
2380 }
2381 }
2382
2383 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2384 Assumes the mark bits are cleared at entry. */
2385
2386 void
2387 unshare_all_rtl_in_chain (rtx insn)
2388 {
2389 for (; insn; insn = NEXT_INSN (insn))
2390 if (INSN_P (insn))
2391 {
2392 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2393 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2394 }
2395 }
2396
2397 /* Go through all virtual stack slots of a function and mark them as
2398 shared. We never replace the DECL_RTLs themselves with a copy,
2399 but expressions mentioned into a DECL_RTL cannot be shared with
2400 expressions in the instruction stream.
2401
2402 Note that reload may convert pseudo registers into memories in-place.
2403 Pseudo registers are always shared, but MEMs never are. Thus if we
2404 reset the used flags on MEMs in the instruction stream, we must set
2405 them again on MEMs that appear in DECL_RTLs. */
2406
2407 static void
2408 set_used_decls (tree blk)
2409 {
2410 tree t;
2411
2412 /* Mark decls. */
2413 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2414 if (DECL_RTL_SET_P (t))
2415 set_used_flags (DECL_RTL (t));
2416
2417 /* Now process sub-blocks. */
2418 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2419 set_used_decls (t);
2420 }
2421
2422 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2423 Recursively does the same for subexpressions. Uses
2424 copy_rtx_if_shared_1 to reduce stack space. */
2425
2426 rtx
2427 copy_rtx_if_shared (rtx orig)
2428 {
2429 copy_rtx_if_shared_1 (&orig);
2430 return orig;
2431 }
2432
2433 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2434 use. Recursively does the same for subexpressions. */
2435
2436 static void
2437 copy_rtx_if_shared_1 (rtx *orig1)
2438 {
2439 rtx x;
2440 int i;
2441 enum rtx_code code;
2442 rtx *last_ptr;
2443 const char *format_ptr;
2444 int copied = 0;
2445 int length;
2446
2447 /* Repeat is used to turn tail-recursion into iteration. */
2448 repeat:
2449 x = *orig1;
2450
2451 if (x == 0)
2452 return;
2453
2454 code = GET_CODE (x);
2455
2456 /* These types may be freely shared. */
2457
2458 switch (code)
2459 {
2460 case REG:
2461 case CONST_INT:
2462 case CONST_DOUBLE:
2463 case CONST_FIXED:
2464 case CONST_VECTOR:
2465 case SYMBOL_REF:
2466 case LABEL_REF:
2467 case CODE_LABEL:
2468 case PC:
2469 case CC0:
2470 case SCRATCH:
2471 /* SCRATCH must be shared because they represent distinct values. */
2472 return;
2473 case CLOBBER:
2474 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2475 return;
2476 break;
2477
2478 case CONST:
2479 if (shared_const_p (x))
2480 return;
2481 break;
2482
2483 case INSN:
2484 case JUMP_INSN:
2485 case CALL_INSN:
2486 case NOTE:
2487 case BARRIER:
2488 /* The chain of insns is not being copied. */
2489 return;
2490
2491 default:
2492 break;
2493 }
2494
2495 /* This rtx may not be shared. If it has already been seen,
2496 replace it with a copy of itself. */
2497
2498 if (RTX_FLAG (x, used))
2499 {
2500 x = shallow_copy_rtx (x);
2501 copied = 1;
2502 }
2503 RTX_FLAG (x, used) = 1;
2504
2505 /* Now scan the subexpressions recursively.
2506 We can store any replaced subexpressions directly into X
2507 since we know X is not shared! Any vectors in X
2508 must be copied if X was copied. */
2509
2510 format_ptr = GET_RTX_FORMAT (code);
2511 length = GET_RTX_LENGTH (code);
2512 last_ptr = NULL;
2513
2514 for (i = 0; i < length; i++)
2515 {
2516 switch (*format_ptr++)
2517 {
2518 case 'e':
2519 if (last_ptr)
2520 copy_rtx_if_shared_1 (last_ptr);
2521 last_ptr = &XEXP (x, i);
2522 break;
2523
2524 case 'E':
2525 if (XVEC (x, i) != NULL)
2526 {
2527 int j;
2528 int len = XVECLEN (x, i);
2529
2530 /* Copy the vector iff I copied the rtx and the length
2531 is nonzero. */
2532 if (copied && len > 0)
2533 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2534
2535 /* Call recursively on all inside the vector. */
2536 for (j = 0; j < len; j++)
2537 {
2538 if (last_ptr)
2539 copy_rtx_if_shared_1 (last_ptr);
2540 last_ptr = &XVECEXP (x, i, j);
2541 }
2542 }
2543 break;
2544 }
2545 }
2546 *orig1 = x;
2547 if (last_ptr)
2548 {
2549 orig1 = last_ptr;
2550 goto repeat;
2551 }
2552 return;
2553 }
2554
2555 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2556 to look for shared sub-parts. */
2557
2558 void
2559 reset_used_flags (rtx x)
2560 {
2561 int i, j;
2562 enum rtx_code code;
2563 const char *format_ptr;
2564 int length;
2565
2566 /* Repeat is used to turn tail-recursion into iteration. */
2567 repeat:
2568 if (x == 0)
2569 return;
2570
2571 code = GET_CODE (x);
2572
2573 /* These types may be freely shared so we needn't do any resetting
2574 for them. */
2575
2576 switch (code)
2577 {
2578 case REG:
2579 case CONST_INT:
2580 case CONST_DOUBLE:
2581 case CONST_FIXED:
2582 case CONST_VECTOR:
2583 case SYMBOL_REF:
2584 case CODE_LABEL:
2585 case PC:
2586 case CC0:
2587 return;
2588
2589 case INSN:
2590 case JUMP_INSN:
2591 case CALL_INSN:
2592 case NOTE:
2593 case LABEL_REF:
2594 case BARRIER:
2595 /* The chain of insns is not being copied. */
2596 return;
2597
2598 default:
2599 break;
2600 }
2601
2602 RTX_FLAG (x, used) = 0;
2603
2604 format_ptr = GET_RTX_FORMAT (code);
2605 length = GET_RTX_LENGTH (code);
2606
2607 for (i = 0; i < length; i++)
2608 {
2609 switch (*format_ptr++)
2610 {
2611 case 'e':
2612 if (i == length-1)
2613 {
2614 x = XEXP (x, i);
2615 goto repeat;
2616 }
2617 reset_used_flags (XEXP (x, i));
2618 break;
2619
2620 case 'E':
2621 for (j = 0; j < XVECLEN (x, i); j++)
2622 reset_used_flags (XVECEXP (x, i, j));
2623 break;
2624 }
2625 }
2626 }
2627
2628 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2629 to look for shared sub-parts. */
2630
2631 void
2632 set_used_flags (rtx x)
2633 {
2634 int i, j;
2635 enum rtx_code code;
2636 const char *format_ptr;
2637
2638 if (x == 0)
2639 return;
2640
2641 code = GET_CODE (x);
2642
2643 /* These types may be freely shared so we needn't do any resetting
2644 for them. */
2645
2646 switch (code)
2647 {
2648 case REG:
2649 case CONST_INT:
2650 case CONST_DOUBLE:
2651 case CONST_FIXED:
2652 case CONST_VECTOR:
2653 case SYMBOL_REF:
2654 case CODE_LABEL:
2655 case PC:
2656 case CC0:
2657 return;
2658
2659 case INSN:
2660 case JUMP_INSN:
2661 case CALL_INSN:
2662 case NOTE:
2663 case LABEL_REF:
2664 case BARRIER:
2665 /* The chain of insns is not being copied. */
2666 return;
2667
2668 default:
2669 break;
2670 }
2671
2672 RTX_FLAG (x, used) = 1;
2673
2674 format_ptr = GET_RTX_FORMAT (code);
2675 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2676 {
2677 switch (*format_ptr++)
2678 {
2679 case 'e':
2680 set_used_flags (XEXP (x, i));
2681 break;
2682
2683 case 'E':
2684 for (j = 0; j < XVECLEN (x, i); j++)
2685 set_used_flags (XVECEXP (x, i, j));
2686 break;
2687 }
2688 }
2689 }
2690 \f
2691 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2692 Return X or the rtx for the pseudo reg the value of X was copied into.
2693 OTHER must be valid as a SET_DEST. */
2694
2695 rtx
2696 make_safe_from (rtx x, rtx other)
2697 {
2698 while (1)
2699 switch (GET_CODE (other))
2700 {
2701 case SUBREG:
2702 other = SUBREG_REG (other);
2703 break;
2704 case STRICT_LOW_PART:
2705 case SIGN_EXTEND:
2706 case ZERO_EXTEND:
2707 other = XEXP (other, 0);
2708 break;
2709 default:
2710 goto done;
2711 }
2712 done:
2713 if ((MEM_P (other)
2714 && ! CONSTANT_P (x)
2715 && !REG_P (x)
2716 && GET_CODE (x) != SUBREG)
2717 || (REG_P (other)
2718 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2719 || reg_mentioned_p (other, x))))
2720 {
2721 rtx temp = gen_reg_rtx (GET_MODE (x));
2722 emit_move_insn (temp, x);
2723 return temp;
2724 }
2725 return x;
2726 }
2727 \f
2728 /* Emission of insns (adding them to the doubly-linked list). */
2729
2730 /* Return the first insn of the current sequence or current function. */
2731
2732 rtx
2733 get_insns (void)
2734 {
2735 return first_insn;
2736 }
2737
2738 /* Specify a new insn as the first in the chain. */
2739
2740 void
2741 set_first_insn (rtx insn)
2742 {
2743 gcc_assert (!PREV_INSN (insn));
2744 first_insn = insn;
2745 }
2746
2747 /* Return the last insn emitted in current sequence or current function. */
2748
2749 rtx
2750 get_last_insn (void)
2751 {
2752 return last_insn;
2753 }
2754
2755 /* Specify a new insn as the last in the chain. */
2756
2757 void
2758 set_last_insn (rtx insn)
2759 {
2760 gcc_assert (!NEXT_INSN (insn));
2761 last_insn = insn;
2762 }
2763
2764 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2765
2766 rtx
2767 get_last_insn_anywhere (void)
2768 {
2769 struct sequence_stack *stack;
2770 if (last_insn)
2771 return last_insn;
2772 for (stack = seq_stack; stack; stack = stack->next)
2773 if (stack->last != 0)
2774 return stack->last;
2775 return 0;
2776 }
2777
2778 /* Return the first nonnote insn emitted in current sequence or current
2779 function. This routine looks inside SEQUENCEs. */
2780
2781 rtx
2782 get_first_nonnote_insn (void)
2783 {
2784 rtx insn = first_insn;
2785
2786 if (insn)
2787 {
2788 if (NOTE_P (insn))
2789 for (insn = next_insn (insn);
2790 insn && NOTE_P (insn);
2791 insn = next_insn (insn))
2792 continue;
2793 else
2794 {
2795 if (NONJUMP_INSN_P (insn)
2796 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2797 insn = XVECEXP (PATTERN (insn), 0, 0);
2798 }
2799 }
2800
2801 return insn;
2802 }
2803
2804 /* Return the last nonnote insn emitted in current sequence or current
2805 function. This routine looks inside SEQUENCEs. */
2806
2807 rtx
2808 get_last_nonnote_insn (void)
2809 {
2810 rtx insn = last_insn;
2811
2812 if (insn)
2813 {
2814 if (NOTE_P (insn))
2815 for (insn = previous_insn (insn);
2816 insn && NOTE_P (insn);
2817 insn = previous_insn (insn))
2818 continue;
2819 else
2820 {
2821 if (NONJUMP_INSN_P (insn)
2822 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2823 insn = XVECEXP (PATTERN (insn), 0,
2824 XVECLEN (PATTERN (insn), 0) - 1);
2825 }
2826 }
2827
2828 return insn;
2829 }
2830
2831 /* Return a number larger than any instruction's uid in this function. */
2832
2833 int
2834 get_max_uid (void)
2835 {
2836 return cur_insn_uid;
2837 }
2838 \f
2839 /* Return the next insn. If it is a SEQUENCE, return the first insn
2840 of the sequence. */
2841
2842 rtx
2843 next_insn (rtx insn)
2844 {
2845 if (insn)
2846 {
2847 insn = NEXT_INSN (insn);
2848 if (insn && NONJUMP_INSN_P (insn)
2849 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2850 insn = XVECEXP (PATTERN (insn), 0, 0);
2851 }
2852
2853 return insn;
2854 }
2855
2856 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2857 of the sequence. */
2858
2859 rtx
2860 previous_insn (rtx insn)
2861 {
2862 if (insn)
2863 {
2864 insn = PREV_INSN (insn);
2865 if (insn && NONJUMP_INSN_P (insn)
2866 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2867 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2868 }
2869
2870 return insn;
2871 }
2872
2873 /* Return the next insn after INSN that is not a NOTE. This routine does not
2874 look inside SEQUENCEs. */
2875
2876 rtx
2877 next_nonnote_insn (rtx insn)
2878 {
2879 while (insn)
2880 {
2881 insn = NEXT_INSN (insn);
2882 if (insn == 0 || !NOTE_P (insn))
2883 break;
2884 }
2885
2886 return insn;
2887 }
2888
2889 /* Return the previous insn before INSN that is not a NOTE. This routine does
2890 not look inside SEQUENCEs. */
2891
2892 rtx
2893 prev_nonnote_insn (rtx insn)
2894 {
2895 while (insn)
2896 {
2897 insn = PREV_INSN (insn);
2898 if (insn == 0 || !NOTE_P (insn))
2899 break;
2900 }
2901
2902 return insn;
2903 }
2904
2905 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2906 or 0, if there is none. This routine does not look inside
2907 SEQUENCEs. */
2908
2909 rtx
2910 next_real_insn (rtx insn)
2911 {
2912 while (insn)
2913 {
2914 insn = NEXT_INSN (insn);
2915 if (insn == 0 || INSN_P (insn))
2916 break;
2917 }
2918
2919 return insn;
2920 }
2921
2922 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2923 or 0, if there is none. This routine does not look inside
2924 SEQUENCEs. */
2925
2926 rtx
2927 prev_real_insn (rtx insn)
2928 {
2929 while (insn)
2930 {
2931 insn = PREV_INSN (insn);
2932 if (insn == 0 || INSN_P (insn))
2933 break;
2934 }
2935
2936 return insn;
2937 }
2938
2939 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2940 This routine does not look inside SEQUENCEs. */
2941
2942 rtx
2943 last_call_insn (void)
2944 {
2945 rtx insn;
2946
2947 for (insn = get_last_insn ();
2948 insn && !CALL_P (insn);
2949 insn = PREV_INSN (insn))
2950 ;
2951
2952 return insn;
2953 }
2954
2955 /* Find the next insn after INSN that really does something. This routine
2956 does not look inside SEQUENCEs. Until reload has completed, this is the
2957 same as next_real_insn. */
2958
2959 int
2960 active_insn_p (const_rtx insn)
2961 {
2962 return (CALL_P (insn) || JUMP_P (insn)
2963 || (NONJUMP_INSN_P (insn)
2964 && (! reload_completed
2965 || (GET_CODE (PATTERN (insn)) != USE
2966 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2967 }
2968
2969 rtx
2970 next_active_insn (rtx insn)
2971 {
2972 while (insn)
2973 {
2974 insn = NEXT_INSN (insn);
2975 if (insn == 0 || active_insn_p (insn))
2976 break;
2977 }
2978
2979 return insn;
2980 }
2981
2982 /* Find the last insn before INSN that really does something. This routine
2983 does not look inside SEQUENCEs. Until reload has completed, this is the
2984 same as prev_real_insn. */
2985
2986 rtx
2987 prev_active_insn (rtx insn)
2988 {
2989 while (insn)
2990 {
2991 insn = PREV_INSN (insn);
2992 if (insn == 0 || active_insn_p (insn))
2993 break;
2994 }
2995
2996 return insn;
2997 }
2998
2999 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3000
3001 rtx
3002 next_label (rtx insn)
3003 {
3004 while (insn)
3005 {
3006 insn = NEXT_INSN (insn);
3007 if (insn == 0 || LABEL_P (insn))
3008 break;
3009 }
3010
3011 return insn;
3012 }
3013
3014 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3015
3016 rtx
3017 prev_label (rtx insn)
3018 {
3019 while (insn)
3020 {
3021 insn = PREV_INSN (insn);
3022 if (insn == 0 || LABEL_P (insn))
3023 break;
3024 }
3025
3026 return insn;
3027 }
3028
3029 /* Return the last label to mark the same position as LABEL. Return null
3030 if LABEL itself is null. */
3031
3032 rtx
3033 skip_consecutive_labels (rtx label)
3034 {
3035 rtx insn;
3036
3037 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3038 if (LABEL_P (insn))
3039 label = insn;
3040
3041 return label;
3042 }
3043 \f
3044 #ifdef HAVE_cc0
3045 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3046 and REG_CC_USER notes so we can find it. */
3047
3048 void
3049 link_cc0_insns (rtx insn)
3050 {
3051 rtx user = next_nonnote_insn (insn);
3052
3053 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3054 user = XVECEXP (PATTERN (user), 0, 0);
3055
3056 add_reg_note (user, REG_CC_SETTER, insn);
3057 add_reg_note (insn, REG_CC_USER, user);
3058 }
3059
3060 /* Return the next insn that uses CC0 after INSN, which is assumed to
3061 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3062 applied to the result of this function should yield INSN).
3063
3064 Normally, this is simply the next insn. However, if a REG_CC_USER note
3065 is present, it contains the insn that uses CC0.
3066
3067 Return 0 if we can't find the insn. */
3068
3069 rtx
3070 next_cc0_user (rtx insn)
3071 {
3072 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3073
3074 if (note)
3075 return XEXP (note, 0);
3076
3077 insn = next_nonnote_insn (insn);
3078 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3079 insn = XVECEXP (PATTERN (insn), 0, 0);
3080
3081 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3082 return insn;
3083
3084 return 0;
3085 }
3086
3087 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3088 note, it is the previous insn. */
3089
3090 rtx
3091 prev_cc0_setter (rtx insn)
3092 {
3093 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3094
3095 if (note)
3096 return XEXP (note, 0);
3097
3098 insn = prev_nonnote_insn (insn);
3099 gcc_assert (sets_cc0_p (PATTERN (insn)));
3100
3101 return insn;
3102 }
3103 #endif
3104
3105 #ifdef AUTO_INC_DEC
3106 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3107
3108 static int
3109 find_auto_inc (rtx *xp, void *data)
3110 {
3111 rtx x = *xp;
3112 rtx reg = (rtx) data;
3113
3114 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3115 return 0;
3116
3117 switch (GET_CODE (x))
3118 {
3119 case PRE_DEC:
3120 case PRE_INC:
3121 case POST_DEC:
3122 case POST_INC:
3123 case PRE_MODIFY:
3124 case POST_MODIFY:
3125 if (rtx_equal_p (reg, XEXP (x, 0)))
3126 return 1;
3127 break;
3128
3129 default:
3130 gcc_unreachable ();
3131 }
3132 return -1;
3133 }
3134 #endif
3135
3136 /* Increment the label uses for all labels present in rtx. */
3137
3138 static void
3139 mark_label_nuses (rtx x)
3140 {
3141 enum rtx_code code;
3142 int i, j;
3143 const char *fmt;
3144
3145 code = GET_CODE (x);
3146 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3147 LABEL_NUSES (XEXP (x, 0))++;
3148
3149 fmt = GET_RTX_FORMAT (code);
3150 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3151 {
3152 if (fmt[i] == 'e')
3153 mark_label_nuses (XEXP (x, i));
3154 else if (fmt[i] == 'E')
3155 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3156 mark_label_nuses (XVECEXP (x, i, j));
3157 }
3158 }
3159
3160 \f
3161 /* Try splitting insns that can be split for better scheduling.
3162 PAT is the pattern which might split.
3163 TRIAL is the insn providing PAT.
3164 LAST is nonzero if we should return the last insn of the sequence produced.
3165
3166 If this routine succeeds in splitting, it returns the first or last
3167 replacement insn depending on the value of LAST. Otherwise, it
3168 returns TRIAL. If the insn to be returned can be split, it will be. */
3169
3170 rtx
3171 try_split (rtx pat, rtx trial, int last)
3172 {
3173 rtx before = PREV_INSN (trial);
3174 rtx after = NEXT_INSN (trial);
3175 int has_barrier = 0;
3176 rtx note, seq, tem;
3177 int probability;
3178 rtx insn_last, insn;
3179 int njumps = 0;
3180
3181 if (any_condjump_p (trial)
3182 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3183 split_branch_probability = INTVAL (XEXP (note, 0));
3184 probability = split_branch_probability;
3185
3186 seq = split_insns (pat, trial);
3187
3188 split_branch_probability = -1;
3189
3190 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3191 We may need to handle this specially. */
3192 if (after && BARRIER_P (after))
3193 {
3194 has_barrier = 1;
3195 after = NEXT_INSN (after);
3196 }
3197
3198 if (!seq)
3199 return trial;
3200
3201 /* Avoid infinite loop if any insn of the result matches
3202 the original pattern. */
3203 insn_last = seq;
3204 while (1)
3205 {
3206 if (INSN_P (insn_last)
3207 && rtx_equal_p (PATTERN (insn_last), pat))
3208 return trial;
3209 if (!NEXT_INSN (insn_last))
3210 break;
3211 insn_last = NEXT_INSN (insn_last);
3212 }
3213
3214 /* We will be adding the new sequence to the function. The splitters
3215 may have introduced invalid RTL sharing, so unshare the sequence now. */
3216 unshare_all_rtl_in_chain (seq);
3217
3218 /* Mark labels. */
3219 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3220 {
3221 if (JUMP_P (insn))
3222 {
3223 mark_jump_label (PATTERN (insn), insn, 0);
3224 njumps++;
3225 if (probability != -1
3226 && any_condjump_p (insn)
3227 && !find_reg_note (insn, REG_BR_PROB, 0))
3228 {
3229 /* We can preserve the REG_BR_PROB notes only if exactly
3230 one jump is created, otherwise the machine description
3231 is responsible for this step using
3232 split_branch_probability variable. */
3233 gcc_assert (njumps == 1);
3234 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3235 }
3236 }
3237 }
3238
3239 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3240 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3241 if (CALL_P (trial))
3242 {
3243 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3244 if (CALL_P (insn))
3245 {
3246 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3247 while (*p)
3248 p = &XEXP (*p, 1);
3249 *p = CALL_INSN_FUNCTION_USAGE (trial);
3250 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3251 }
3252 }
3253
3254 /* Copy notes, particularly those related to the CFG. */
3255 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3256 {
3257 switch (REG_NOTE_KIND (note))
3258 {
3259 case REG_EH_REGION:
3260 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3261 {
3262 if (CALL_P (insn)
3263 || (flag_non_call_exceptions && INSN_P (insn)
3264 && may_trap_p (PATTERN (insn))))
3265 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
3266 }
3267 break;
3268
3269 case REG_NORETURN:
3270 case REG_SETJMP:
3271 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3272 {
3273 if (CALL_P (insn))
3274 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3275 }
3276 break;
3277
3278 case REG_NON_LOCAL_GOTO:
3279 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3280 {
3281 if (JUMP_P (insn))
3282 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3283 }
3284 break;
3285
3286 #ifdef AUTO_INC_DEC
3287 case REG_INC:
3288 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3289 {
3290 rtx reg = XEXP (note, 0);
3291 if (!FIND_REG_INC_NOTE (insn, reg)
3292 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3293 add_reg_note (insn, REG_INC, reg);
3294 }
3295 break;
3296 #endif
3297
3298 default:
3299 break;
3300 }
3301 }
3302
3303 /* If there are LABELS inside the split insns increment the
3304 usage count so we don't delete the label. */
3305 if (INSN_P (trial))
3306 {
3307 insn = insn_last;
3308 while (insn != NULL_RTX)
3309 {
3310 /* JUMP_P insns have already been "marked" above. */
3311 if (NONJUMP_INSN_P (insn))
3312 mark_label_nuses (PATTERN (insn));
3313
3314 insn = PREV_INSN (insn);
3315 }
3316 }
3317
3318 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3319
3320 delete_insn (trial);
3321 if (has_barrier)
3322 emit_barrier_after (tem);
3323
3324 /* Recursively call try_split for each new insn created; by the
3325 time control returns here that insn will be fully split, so
3326 set LAST and continue from the insn after the one returned.
3327 We can't use next_active_insn here since AFTER may be a note.
3328 Ignore deleted insns, which can be occur if not optimizing. */
3329 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3330 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3331 tem = try_split (PATTERN (tem), tem, 1);
3332
3333 /* Return either the first or the last insn, depending on which was
3334 requested. */
3335 return last
3336 ? (after ? PREV_INSN (after) : last_insn)
3337 : NEXT_INSN (before);
3338 }
3339 \f
3340 /* Make and return an INSN rtx, initializing all its slots.
3341 Store PATTERN in the pattern slots. */
3342
3343 rtx
3344 make_insn_raw (rtx pattern)
3345 {
3346 rtx insn;
3347
3348 insn = rtx_alloc (INSN);
3349
3350 INSN_UID (insn) = cur_insn_uid++;
3351 PATTERN (insn) = pattern;
3352 INSN_CODE (insn) = -1;
3353 REG_NOTES (insn) = NULL;
3354 INSN_LOCATOR (insn) = curr_insn_locator ();
3355 BLOCK_FOR_INSN (insn) = NULL;
3356
3357 #ifdef ENABLE_RTL_CHECKING
3358 if (insn
3359 && INSN_P (insn)
3360 && (returnjump_p (insn)
3361 || (GET_CODE (insn) == SET
3362 && SET_DEST (insn) == pc_rtx)))
3363 {
3364 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3365 debug_rtx (insn);
3366 }
3367 #endif
3368
3369 return insn;
3370 }
3371
3372 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3373
3374 rtx
3375 make_jump_insn_raw (rtx pattern)
3376 {
3377 rtx insn;
3378
3379 insn = rtx_alloc (JUMP_INSN);
3380 INSN_UID (insn) = cur_insn_uid++;
3381
3382 PATTERN (insn) = pattern;
3383 INSN_CODE (insn) = -1;
3384 REG_NOTES (insn) = NULL;
3385 JUMP_LABEL (insn) = NULL;
3386 INSN_LOCATOR (insn) = curr_insn_locator ();
3387 BLOCK_FOR_INSN (insn) = NULL;
3388
3389 return insn;
3390 }
3391
3392 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3393
3394 static rtx
3395 make_call_insn_raw (rtx pattern)
3396 {
3397 rtx insn;
3398
3399 insn = rtx_alloc (CALL_INSN);
3400 INSN_UID (insn) = cur_insn_uid++;
3401
3402 PATTERN (insn) = pattern;
3403 INSN_CODE (insn) = -1;
3404 REG_NOTES (insn) = NULL;
3405 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3406 INSN_LOCATOR (insn) = curr_insn_locator ();
3407 BLOCK_FOR_INSN (insn) = NULL;
3408
3409 return insn;
3410 }
3411 \f
3412 /* Add INSN to the end of the doubly-linked list.
3413 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3414
3415 void
3416 add_insn (rtx insn)
3417 {
3418 PREV_INSN (insn) = last_insn;
3419 NEXT_INSN (insn) = 0;
3420
3421 if (NULL != last_insn)
3422 NEXT_INSN (last_insn) = insn;
3423
3424 if (NULL == first_insn)
3425 first_insn = insn;
3426
3427 last_insn = insn;
3428 }
3429
3430 /* Add INSN into the doubly-linked list after insn AFTER. This and
3431 the next should be the only functions called to insert an insn once
3432 delay slots have been filled since only they know how to update a
3433 SEQUENCE. */
3434
3435 void
3436 add_insn_after (rtx insn, rtx after, basic_block bb)
3437 {
3438 rtx next = NEXT_INSN (after);
3439
3440 gcc_assert (!optimize || !INSN_DELETED_P (after));
3441
3442 NEXT_INSN (insn) = next;
3443 PREV_INSN (insn) = after;
3444
3445 if (next)
3446 {
3447 PREV_INSN (next) = insn;
3448 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3449 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3450 }
3451 else if (last_insn == after)
3452 last_insn = insn;
3453 else
3454 {
3455 struct sequence_stack *stack = seq_stack;
3456 /* Scan all pending sequences too. */
3457 for (; stack; stack = stack->next)
3458 if (after == stack->last)
3459 {
3460 stack->last = insn;
3461 break;
3462 }
3463
3464 gcc_assert (stack);
3465 }
3466
3467 if (!BARRIER_P (after)
3468 && !BARRIER_P (insn)
3469 && (bb = BLOCK_FOR_INSN (after)))
3470 {
3471 set_block_for_insn (insn, bb);
3472 if (INSN_P (insn))
3473 df_insn_rescan (insn);
3474 /* Should not happen as first in the BB is always
3475 either NOTE or LABEL. */
3476 if (BB_END (bb) == after
3477 /* Avoid clobbering of structure when creating new BB. */
3478 && !BARRIER_P (insn)
3479 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3480 BB_END (bb) = insn;
3481 }
3482
3483 NEXT_INSN (after) = insn;
3484 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3485 {
3486 rtx sequence = PATTERN (after);
3487 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3488 }
3489 }
3490
3491 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3492 the previous should be the only functions called to insert an insn
3493 once delay slots have been filled since only they know how to
3494 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3495 bb from before. */
3496
3497 void
3498 add_insn_before (rtx insn, rtx before, basic_block bb)
3499 {
3500 rtx prev = PREV_INSN (before);
3501
3502 gcc_assert (!optimize || !INSN_DELETED_P (before));
3503
3504 PREV_INSN (insn) = prev;
3505 NEXT_INSN (insn) = before;
3506
3507 if (prev)
3508 {
3509 NEXT_INSN (prev) = insn;
3510 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3511 {
3512 rtx sequence = PATTERN (prev);
3513 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3514 }
3515 }
3516 else if (first_insn == before)
3517 first_insn = insn;
3518 else
3519 {
3520 struct sequence_stack *stack = seq_stack;
3521 /* Scan all pending sequences too. */
3522 for (; stack; stack = stack->next)
3523 if (before == stack->first)
3524 {
3525 stack->first = insn;
3526 break;
3527 }
3528
3529 gcc_assert (stack);
3530 }
3531
3532 if (!bb
3533 && !BARRIER_P (before)
3534 && !BARRIER_P (insn))
3535 bb = BLOCK_FOR_INSN (before);
3536
3537 if (bb)
3538 {
3539 set_block_for_insn (insn, bb);
3540 if (INSN_P (insn))
3541 df_insn_rescan (insn);
3542 /* Should not happen as first in the BB is always either NOTE or
3543 LABEL. */
3544 gcc_assert (BB_HEAD (bb) != insn
3545 /* Avoid clobbering of structure when creating new BB. */
3546 || BARRIER_P (insn)
3547 || NOTE_INSN_BASIC_BLOCK_P (insn));
3548 }
3549
3550 PREV_INSN (before) = insn;
3551 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3552 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3553 }
3554
3555
3556 /* Replace insn with an deleted instruction note. */
3557
3558 void set_insn_deleted (rtx insn)
3559 {
3560 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3561 PUT_CODE (insn, NOTE);
3562 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3563 }
3564
3565
3566 /* Remove an insn from its doubly-linked list. This function knows how
3567 to handle sequences. */
3568 void
3569 remove_insn (rtx insn)
3570 {
3571 rtx next = NEXT_INSN (insn);
3572 rtx prev = PREV_INSN (insn);
3573 basic_block bb;
3574
3575 /* Later in the code, the block will be marked dirty. */
3576 df_insn_delete (NULL, INSN_UID (insn));
3577
3578 if (prev)
3579 {
3580 NEXT_INSN (prev) = next;
3581 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3582 {
3583 rtx sequence = PATTERN (prev);
3584 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3585 }
3586 }
3587 else if (first_insn == insn)
3588 first_insn = next;
3589 else
3590 {
3591 struct sequence_stack *stack = seq_stack;
3592 /* Scan all pending sequences too. */
3593 for (; stack; stack = stack->next)
3594 if (insn == stack->first)
3595 {
3596 stack->first = next;
3597 break;
3598 }
3599
3600 gcc_assert (stack);
3601 }
3602
3603 if (next)
3604 {
3605 PREV_INSN (next) = prev;
3606 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3607 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3608 }
3609 else if (last_insn == insn)
3610 last_insn = prev;
3611 else
3612 {
3613 struct sequence_stack *stack = seq_stack;
3614 /* Scan all pending sequences too. */
3615 for (; stack; stack = stack->next)
3616 if (insn == stack->last)
3617 {
3618 stack->last = prev;
3619 break;
3620 }
3621
3622 gcc_assert (stack);
3623 }
3624 if (!BARRIER_P (insn)
3625 && (bb = BLOCK_FOR_INSN (insn)))
3626 {
3627 if (INSN_P (insn))
3628 df_set_bb_dirty (bb);
3629 if (BB_HEAD (bb) == insn)
3630 {
3631 /* Never ever delete the basic block note without deleting whole
3632 basic block. */
3633 gcc_assert (!NOTE_P (insn));
3634 BB_HEAD (bb) = next;
3635 }
3636 if (BB_END (bb) == insn)
3637 BB_END (bb) = prev;
3638 }
3639 }
3640
3641 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3642
3643 void
3644 add_function_usage_to (rtx call_insn, rtx call_fusage)
3645 {
3646 gcc_assert (call_insn && CALL_P (call_insn));
3647
3648 /* Put the register usage information on the CALL. If there is already
3649 some usage information, put ours at the end. */
3650 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3651 {
3652 rtx link;
3653
3654 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3655 link = XEXP (link, 1))
3656 ;
3657
3658 XEXP (link, 1) = call_fusage;
3659 }
3660 else
3661 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3662 }
3663
3664 /* Delete all insns made since FROM.
3665 FROM becomes the new last instruction. */
3666
3667 void
3668 delete_insns_since (rtx from)
3669 {
3670 if (from == 0)
3671 first_insn = 0;
3672 else
3673 NEXT_INSN (from) = 0;
3674 last_insn = from;
3675 }
3676
3677 /* This function is deprecated, please use sequences instead.
3678
3679 Move a consecutive bunch of insns to a different place in the chain.
3680 The insns to be moved are those between FROM and TO.
3681 They are moved to a new position after the insn AFTER.
3682 AFTER must not be FROM or TO or any insn in between.
3683
3684 This function does not know about SEQUENCEs and hence should not be
3685 called after delay-slot filling has been done. */
3686
3687 void
3688 reorder_insns_nobb (rtx from, rtx to, rtx after)
3689 {
3690 /* Splice this bunch out of where it is now. */
3691 if (PREV_INSN (from))
3692 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3693 if (NEXT_INSN (to))
3694 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3695 if (last_insn == to)
3696 last_insn = PREV_INSN (from);
3697 if (first_insn == from)
3698 first_insn = NEXT_INSN (to);
3699
3700 /* Make the new neighbors point to it and it to them. */
3701 if (NEXT_INSN (after))
3702 PREV_INSN (NEXT_INSN (after)) = to;
3703
3704 NEXT_INSN (to) = NEXT_INSN (after);
3705 PREV_INSN (from) = after;
3706 NEXT_INSN (after) = from;
3707 if (after == last_insn)
3708 last_insn = to;
3709 }
3710
3711 /* Same as function above, but take care to update BB boundaries. */
3712 void
3713 reorder_insns (rtx from, rtx to, rtx after)
3714 {
3715 rtx prev = PREV_INSN (from);
3716 basic_block bb, bb2;
3717
3718 reorder_insns_nobb (from, to, after);
3719
3720 if (!BARRIER_P (after)
3721 && (bb = BLOCK_FOR_INSN (after)))
3722 {
3723 rtx x;
3724 df_set_bb_dirty (bb);
3725
3726 if (!BARRIER_P (from)
3727 && (bb2 = BLOCK_FOR_INSN (from)))
3728 {
3729 if (BB_END (bb2) == to)
3730 BB_END (bb2) = prev;
3731 df_set_bb_dirty (bb2);
3732 }
3733
3734 if (BB_END (bb) == after)
3735 BB_END (bb) = to;
3736
3737 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3738 if (!BARRIER_P (x))
3739 df_insn_change_bb (x, bb);
3740 }
3741 }
3742
3743 \f
3744 /* Emit insn(s) of given code and pattern
3745 at a specified place within the doubly-linked list.
3746
3747 All of the emit_foo global entry points accept an object
3748 X which is either an insn list or a PATTERN of a single
3749 instruction.
3750
3751 There are thus a few canonical ways to generate code and
3752 emit it at a specific place in the instruction stream. For
3753 example, consider the instruction named SPOT and the fact that
3754 we would like to emit some instructions before SPOT. We might
3755 do it like this:
3756
3757 start_sequence ();
3758 ... emit the new instructions ...
3759 insns_head = get_insns ();
3760 end_sequence ();
3761
3762 emit_insn_before (insns_head, SPOT);
3763
3764 It used to be common to generate SEQUENCE rtl instead, but that
3765 is a relic of the past which no longer occurs. The reason is that
3766 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3767 generated would almost certainly die right after it was created. */
3768
3769 /* Make X be output before the instruction BEFORE. */
3770
3771 rtx
3772 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3773 {
3774 rtx last = before;
3775 rtx insn;
3776
3777 gcc_assert (before);
3778
3779 if (x == NULL_RTX)
3780 return last;
3781
3782 switch (GET_CODE (x))
3783 {
3784 case INSN:
3785 case JUMP_INSN:
3786 case CALL_INSN:
3787 case CODE_LABEL:
3788 case BARRIER:
3789 case NOTE:
3790 insn = x;
3791 while (insn)
3792 {
3793 rtx next = NEXT_INSN (insn);
3794 add_insn_before (insn, before, bb);
3795 last = insn;
3796 insn = next;
3797 }
3798 break;
3799
3800 #ifdef ENABLE_RTL_CHECKING
3801 case SEQUENCE:
3802 gcc_unreachable ();
3803 break;
3804 #endif
3805
3806 default:
3807 last = make_insn_raw (x);
3808 add_insn_before (last, before, bb);
3809 break;
3810 }
3811
3812 return last;
3813 }
3814
3815 /* Make an instruction with body X and code JUMP_INSN
3816 and output it before the instruction BEFORE. */
3817
3818 rtx
3819 emit_jump_insn_before_noloc (rtx x, rtx before)
3820 {
3821 rtx insn, last = NULL_RTX;
3822
3823 gcc_assert (before);
3824
3825 switch (GET_CODE (x))
3826 {
3827 case INSN:
3828 case JUMP_INSN:
3829 case CALL_INSN:
3830 case CODE_LABEL:
3831 case BARRIER:
3832 case NOTE:
3833 insn = x;
3834 while (insn)
3835 {
3836 rtx next = NEXT_INSN (insn);
3837 add_insn_before (insn, before, NULL);
3838 last = insn;
3839 insn = next;
3840 }
3841 break;
3842
3843 #ifdef ENABLE_RTL_CHECKING
3844 case SEQUENCE:
3845 gcc_unreachable ();
3846 break;
3847 #endif
3848
3849 default:
3850 last = make_jump_insn_raw (x);
3851 add_insn_before (last, before, NULL);
3852 break;
3853 }
3854
3855 return last;
3856 }
3857
3858 /* Make an instruction with body X and code CALL_INSN
3859 and output it before the instruction BEFORE. */
3860
3861 rtx
3862 emit_call_insn_before_noloc (rtx x, rtx before)
3863 {
3864 rtx last = NULL_RTX, insn;
3865
3866 gcc_assert (before);
3867
3868 switch (GET_CODE (x))
3869 {
3870 case INSN:
3871 case JUMP_INSN:
3872 case CALL_INSN:
3873 case CODE_LABEL:
3874 case BARRIER:
3875 case NOTE:
3876 insn = x;
3877 while (insn)
3878 {
3879 rtx next = NEXT_INSN (insn);
3880 add_insn_before (insn, before, NULL);
3881 last = insn;
3882 insn = next;
3883 }
3884 break;
3885
3886 #ifdef ENABLE_RTL_CHECKING
3887 case SEQUENCE:
3888 gcc_unreachable ();
3889 break;
3890 #endif
3891
3892 default:
3893 last = make_call_insn_raw (x);
3894 add_insn_before (last, before, NULL);
3895 break;
3896 }
3897
3898 return last;
3899 }
3900
3901 /* Make an insn of code BARRIER
3902 and output it before the insn BEFORE. */
3903
3904 rtx
3905 emit_barrier_before (rtx before)
3906 {
3907 rtx insn = rtx_alloc (BARRIER);
3908
3909 INSN_UID (insn) = cur_insn_uid++;
3910
3911 add_insn_before (insn, before, NULL);
3912 return insn;
3913 }
3914
3915 /* Emit the label LABEL before the insn BEFORE. */
3916
3917 rtx
3918 emit_label_before (rtx label, rtx before)
3919 {
3920 /* This can be called twice for the same label as a result of the
3921 confusion that follows a syntax error! So make it harmless. */
3922 if (INSN_UID (label) == 0)
3923 {
3924 INSN_UID (label) = cur_insn_uid++;
3925 add_insn_before (label, before, NULL);
3926 }
3927
3928 return label;
3929 }
3930
3931 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3932
3933 rtx
3934 emit_note_before (enum insn_note subtype, rtx before)
3935 {
3936 rtx note = rtx_alloc (NOTE);
3937 INSN_UID (note) = cur_insn_uid++;
3938 NOTE_KIND (note) = subtype;
3939 BLOCK_FOR_INSN (note) = NULL;
3940 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3941
3942 add_insn_before (note, before, NULL);
3943 return note;
3944 }
3945 \f
3946 /* Helper for emit_insn_after, handles lists of instructions
3947 efficiently. */
3948
3949 static rtx
3950 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
3951 {
3952 rtx last;
3953 rtx after_after;
3954 if (!bb && !BARRIER_P (after))
3955 bb = BLOCK_FOR_INSN (after);
3956
3957 if (bb)
3958 {
3959 df_set_bb_dirty (bb);
3960 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3961 if (!BARRIER_P (last))
3962 {
3963 set_block_for_insn (last, bb);
3964 df_insn_rescan (last);
3965 }
3966 if (!BARRIER_P (last))
3967 {
3968 set_block_for_insn (last, bb);
3969 df_insn_rescan (last);
3970 }
3971 if (BB_END (bb) == after)
3972 BB_END (bb) = last;
3973 }
3974 else
3975 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3976 continue;
3977
3978 after_after = NEXT_INSN (after);
3979
3980 NEXT_INSN (after) = first;
3981 PREV_INSN (first) = after;
3982 NEXT_INSN (last) = after_after;
3983 if (after_after)
3984 PREV_INSN (after_after) = last;
3985
3986 if (after == last_insn)
3987 last_insn = last;
3988 return last;
3989 }
3990
3991 /* Make X be output after the insn AFTER and set the BB of insn. If
3992 BB is NULL, an attempt is made to infer the BB from AFTER. */
3993
3994 rtx
3995 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
3996 {
3997 rtx last = after;
3998
3999 gcc_assert (after);
4000
4001 if (x == NULL_RTX)
4002 return last;
4003
4004 switch (GET_CODE (x))
4005 {
4006 case INSN:
4007 case JUMP_INSN:
4008 case CALL_INSN:
4009 case CODE_LABEL:
4010 case BARRIER:
4011 case NOTE:
4012 last = emit_insn_after_1 (x, after, bb);
4013 break;
4014
4015 #ifdef ENABLE_RTL_CHECKING
4016 case SEQUENCE:
4017 gcc_unreachable ();
4018 break;
4019 #endif
4020
4021 default:
4022 last = make_insn_raw (x);
4023 add_insn_after (last, after, bb);
4024 break;
4025 }
4026
4027 return last;
4028 }
4029
4030
4031 /* Make an insn of code JUMP_INSN with body X
4032 and output it after the insn AFTER. */
4033
4034 rtx
4035 emit_jump_insn_after_noloc (rtx x, rtx after)
4036 {
4037 rtx last;
4038
4039 gcc_assert (after);
4040
4041 switch (GET_CODE (x))
4042 {
4043 case INSN:
4044 case JUMP_INSN:
4045 case CALL_INSN:
4046 case CODE_LABEL:
4047 case BARRIER:
4048 case NOTE:
4049 last = emit_insn_after_1 (x, after, NULL);
4050 break;
4051
4052 #ifdef ENABLE_RTL_CHECKING
4053 case SEQUENCE:
4054 gcc_unreachable ();
4055 break;
4056 #endif
4057
4058 default:
4059 last = make_jump_insn_raw (x);
4060 add_insn_after (last, after, NULL);
4061 break;
4062 }
4063
4064 return last;
4065 }
4066
4067 /* Make an instruction with body X and code CALL_INSN
4068 and output it after the instruction AFTER. */
4069
4070 rtx
4071 emit_call_insn_after_noloc (rtx x, rtx after)
4072 {
4073 rtx last;
4074
4075 gcc_assert (after);
4076
4077 switch (GET_CODE (x))
4078 {
4079 case INSN:
4080 case JUMP_INSN:
4081 case CALL_INSN:
4082 case CODE_LABEL:
4083 case BARRIER:
4084 case NOTE:
4085 last = emit_insn_after_1 (x, after, NULL);
4086 break;
4087
4088 #ifdef ENABLE_RTL_CHECKING
4089 case SEQUENCE:
4090 gcc_unreachable ();
4091 break;
4092 #endif
4093
4094 default:
4095 last = make_call_insn_raw (x);
4096 add_insn_after (last, after, NULL);
4097 break;
4098 }
4099
4100 return last;
4101 }
4102
4103 /* Make an insn of code BARRIER
4104 and output it after the insn AFTER. */
4105
4106 rtx
4107 emit_barrier_after (rtx after)
4108 {
4109 rtx insn = rtx_alloc (BARRIER);
4110
4111 INSN_UID (insn) = cur_insn_uid++;
4112
4113 add_insn_after (insn, after, NULL);
4114 return insn;
4115 }
4116
4117 /* Emit the label LABEL after the insn AFTER. */
4118
4119 rtx
4120 emit_label_after (rtx label, rtx after)
4121 {
4122 /* This can be called twice for the same label
4123 as a result of the confusion that follows a syntax error!
4124 So make it harmless. */
4125 if (INSN_UID (label) == 0)
4126 {
4127 INSN_UID (label) = cur_insn_uid++;
4128 add_insn_after (label, after, NULL);
4129 }
4130
4131 return label;
4132 }
4133
4134 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4135
4136 rtx
4137 emit_note_after (enum insn_note subtype, rtx after)
4138 {
4139 rtx note = rtx_alloc (NOTE);
4140 INSN_UID (note) = cur_insn_uid++;
4141 NOTE_KIND (note) = subtype;
4142 BLOCK_FOR_INSN (note) = NULL;
4143 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4144 add_insn_after (note, after, NULL);
4145 return note;
4146 }
4147 \f
4148 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4149 rtx
4150 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4151 {
4152 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4153
4154 if (pattern == NULL_RTX || !loc)
4155 return last;
4156
4157 after = NEXT_INSN (after);
4158 while (1)
4159 {
4160 if (active_insn_p (after) && !INSN_LOCATOR (after))
4161 INSN_LOCATOR (after) = loc;
4162 if (after == last)
4163 break;
4164 after = NEXT_INSN (after);
4165 }
4166 return last;
4167 }
4168
4169 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4170 rtx
4171 emit_insn_after (rtx pattern, rtx after)
4172 {
4173 if (INSN_P (after))
4174 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4175 else
4176 return emit_insn_after_noloc (pattern, after, NULL);
4177 }
4178
4179 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4180 rtx
4181 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4182 {
4183 rtx last = emit_jump_insn_after_noloc (pattern, after);
4184
4185 if (pattern == NULL_RTX || !loc)
4186 return last;
4187
4188 after = NEXT_INSN (after);
4189 while (1)
4190 {
4191 if (active_insn_p (after) && !INSN_LOCATOR (after))
4192 INSN_LOCATOR (after) = loc;
4193 if (after == last)
4194 break;
4195 after = NEXT_INSN (after);
4196 }
4197 return last;
4198 }
4199
4200 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4201 rtx
4202 emit_jump_insn_after (rtx pattern, rtx after)
4203 {
4204 if (INSN_P (after))
4205 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4206 else
4207 return emit_jump_insn_after_noloc (pattern, after);
4208 }
4209
4210 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4211 rtx
4212 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4213 {
4214 rtx last = emit_call_insn_after_noloc (pattern, after);
4215
4216 if (pattern == NULL_RTX || !loc)
4217 return last;
4218
4219 after = NEXT_INSN (after);
4220 while (1)
4221 {
4222 if (active_insn_p (after) && !INSN_LOCATOR (after))
4223 INSN_LOCATOR (after) = loc;
4224 if (after == last)
4225 break;
4226 after = NEXT_INSN (after);
4227 }
4228 return last;
4229 }
4230
4231 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4232 rtx
4233 emit_call_insn_after (rtx pattern, rtx after)
4234 {
4235 if (INSN_P (after))
4236 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4237 else
4238 return emit_call_insn_after_noloc (pattern, after);
4239 }
4240
4241 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4242 rtx
4243 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4244 {
4245 rtx first = PREV_INSN (before);
4246 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4247
4248 if (pattern == NULL_RTX || !loc)
4249 return last;
4250
4251 if (!first)
4252 first = get_insns ();
4253 else
4254 first = NEXT_INSN (first);
4255 while (1)
4256 {
4257 if (active_insn_p (first) && !INSN_LOCATOR (first))
4258 INSN_LOCATOR (first) = loc;
4259 if (first == last)
4260 break;
4261 first = NEXT_INSN (first);
4262 }
4263 return last;
4264 }
4265
4266 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4267 rtx
4268 emit_insn_before (rtx pattern, rtx before)
4269 {
4270 if (INSN_P (before))
4271 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4272 else
4273 return emit_insn_before_noloc (pattern, before, NULL);
4274 }
4275
4276 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4277 rtx
4278 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4279 {
4280 rtx first = PREV_INSN (before);
4281 rtx last = emit_jump_insn_before_noloc (pattern, before);
4282
4283 if (pattern == NULL_RTX)
4284 return last;
4285
4286 first = NEXT_INSN (first);
4287 while (1)
4288 {
4289 if (active_insn_p (first) && !INSN_LOCATOR (first))
4290 INSN_LOCATOR (first) = loc;
4291 if (first == last)
4292 break;
4293 first = NEXT_INSN (first);
4294 }
4295 return last;
4296 }
4297
4298 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4299 rtx
4300 emit_jump_insn_before (rtx pattern, rtx before)
4301 {
4302 if (INSN_P (before))
4303 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4304 else
4305 return emit_jump_insn_before_noloc (pattern, before);
4306 }
4307
4308 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4309 rtx
4310 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4311 {
4312 rtx first = PREV_INSN (before);
4313 rtx last = emit_call_insn_before_noloc (pattern, before);
4314
4315 if (pattern == NULL_RTX)
4316 return last;
4317
4318 first = NEXT_INSN (first);
4319 while (1)
4320 {
4321 if (active_insn_p (first) && !INSN_LOCATOR (first))
4322 INSN_LOCATOR (first) = loc;
4323 if (first == last)
4324 break;
4325 first = NEXT_INSN (first);
4326 }
4327 return last;
4328 }
4329
4330 /* like emit_call_insn_before_noloc,
4331 but set insn_locator according to before. */
4332 rtx
4333 emit_call_insn_before (rtx pattern, rtx before)
4334 {
4335 if (INSN_P (before))
4336 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4337 else
4338 return emit_call_insn_before_noloc (pattern, before);
4339 }
4340 \f
4341 /* Take X and emit it at the end of the doubly-linked
4342 INSN list.
4343
4344 Returns the last insn emitted. */
4345
4346 rtx
4347 emit_insn (rtx x)
4348 {
4349 rtx last = last_insn;
4350 rtx insn;
4351
4352 if (x == NULL_RTX)
4353 return last;
4354
4355 switch (GET_CODE (x))
4356 {
4357 case INSN:
4358 case JUMP_INSN:
4359 case CALL_INSN:
4360 case CODE_LABEL:
4361 case BARRIER:
4362 case NOTE:
4363 insn = x;
4364 while (insn)
4365 {
4366 rtx next = NEXT_INSN (insn);
4367 add_insn (insn);
4368 last = insn;
4369 insn = next;
4370 }
4371 break;
4372
4373 #ifdef ENABLE_RTL_CHECKING
4374 case SEQUENCE:
4375 gcc_unreachable ();
4376 break;
4377 #endif
4378
4379 default:
4380 last = make_insn_raw (x);
4381 add_insn (last);
4382 break;
4383 }
4384
4385 return last;
4386 }
4387
4388 /* Make an insn of code JUMP_INSN with pattern X
4389 and add it to the end of the doubly-linked list. */
4390
4391 rtx
4392 emit_jump_insn (rtx x)
4393 {
4394 rtx last = NULL_RTX, insn;
4395
4396 switch (GET_CODE (x))
4397 {
4398 case INSN:
4399 case JUMP_INSN:
4400 case CALL_INSN:
4401 case CODE_LABEL:
4402 case BARRIER:
4403 case NOTE:
4404 insn = x;
4405 while (insn)
4406 {
4407 rtx next = NEXT_INSN (insn);
4408 add_insn (insn);
4409 last = insn;
4410 insn = next;
4411 }
4412 break;
4413
4414 #ifdef ENABLE_RTL_CHECKING
4415 case SEQUENCE:
4416 gcc_unreachable ();
4417 break;
4418 #endif
4419
4420 default:
4421 last = make_jump_insn_raw (x);
4422 add_insn (last);
4423 break;
4424 }
4425
4426 return last;
4427 }
4428
4429 /* Make an insn of code CALL_INSN with pattern X
4430 and add it to the end of the doubly-linked list. */
4431
4432 rtx
4433 emit_call_insn (rtx x)
4434 {
4435 rtx insn;
4436
4437 switch (GET_CODE (x))
4438 {
4439 case INSN:
4440 case JUMP_INSN:
4441 case CALL_INSN:
4442 case CODE_LABEL:
4443 case BARRIER:
4444 case NOTE:
4445 insn = emit_insn (x);
4446 break;
4447
4448 #ifdef ENABLE_RTL_CHECKING
4449 case SEQUENCE:
4450 gcc_unreachable ();
4451 break;
4452 #endif
4453
4454 default:
4455 insn = make_call_insn_raw (x);
4456 add_insn (insn);
4457 break;
4458 }
4459
4460 return insn;
4461 }
4462
4463 /* Add the label LABEL to the end of the doubly-linked list. */
4464
4465 rtx
4466 emit_label (rtx label)
4467 {
4468 /* This can be called twice for the same label
4469 as a result of the confusion that follows a syntax error!
4470 So make it harmless. */
4471 if (INSN_UID (label) == 0)
4472 {
4473 INSN_UID (label) = cur_insn_uid++;
4474 add_insn (label);
4475 }
4476 return label;
4477 }
4478
4479 /* Make an insn of code BARRIER
4480 and add it to the end of the doubly-linked list. */
4481
4482 rtx
4483 emit_barrier (void)
4484 {
4485 rtx barrier = rtx_alloc (BARRIER);
4486 INSN_UID (barrier) = cur_insn_uid++;
4487 add_insn (barrier);
4488 return barrier;
4489 }
4490
4491 /* Emit a copy of note ORIG. */
4492
4493 rtx
4494 emit_note_copy (rtx orig)
4495 {
4496 rtx note;
4497
4498 note = rtx_alloc (NOTE);
4499
4500 INSN_UID (note) = cur_insn_uid++;
4501 NOTE_DATA (note) = NOTE_DATA (orig);
4502 NOTE_KIND (note) = NOTE_KIND (orig);
4503 BLOCK_FOR_INSN (note) = NULL;
4504 add_insn (note);
4505
4506 return note;
4507 }
4508
4509 /* Make an insn of code NOTE or type NOTE_NO
4510 and add it to the end of the doubly-linked list. */
4511
4512 rtx
4513 emit_note (enum insn_note kind)
4514 {
4515 rtx note;
4516
4517 note = rtx_alloc (NOTE);
4518 INSN_UID (note) = cur_insn_uid++;
4519 NOTE_KIND (note) = kind;
4520 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4521 BLOCK_FOR_INSN (note) = NULL;
4522 add_insn (note);
4523 return note;
4524 }
4525
4526 /* Emit a clobber of lvalue X. */
4527
4528 rtx
4529 emit_clobber (rtx x)
4530 {
4531 /* CONCATs should not appear in the insn stream. */
4532 if (GET_CODE (x) == CONCAT)
4533 {
4534 emit_clobber (XEXP (x, 0));
4535 return emit_clobber (XEXP (x, 1));
4536 }
4537 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4538 }
4539
4540 /* Return a sequence of insns to clobber lvalue X. */
4541
4542 rtx
4543 gen_clobber (rtx x)
4544 {
4545 rtx seq;
4546
4547 start_sequence ();
4548 emit_clobber (x);
4549 seq = get_insns ();
4550 end_sequence ();
4551 return seq;
4552 }
4553
4554 /* Emit a use of rvalue X. */
4555
4556 rtx
4557 emit_use (rtx x)
4558 {
4559 /* CONCATs should not appear in the insn stream. */
4560 if (GET_CODE (x) == CONCAT)
4561 {
4562 emit_use (XEXP (x, 0));
4563 return emit_use (XEXP (x, 1));
4564 }
4565 return emit_insn (gen_rtx_USE (VOIDmode, x));
4566 }
4567
4568 /* Return a sequence of insns to use rvalue X. */
4569
4570 rtx
4571 gen_use (rtx x)
4572 {
4573 rtx seq;
4574
4575 start_sequence ();
4576 emit_use (x);
4577 seq = get_insns ();
4578 end_sequence ();
4579 return seq;
4580 }
4581
4582 /* Cause next statement to emit a line note even if the line number
4583 has not changed. */
4584
4585 void
4586 force_next_line_note (void)
4587 {
4588 last_location = -1;
4589 }
4590
4591 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4592 note of this type already exists, remove it first. */
4593
4594 rtx
4595 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4596 {
4597 rtx note = find_reg_note (insn, kind, NULL_RTX);
4598
4599 switch (kind)
4600 {
4601 case REG_EQUAL:
4602 case REG_EQUIV:
4603 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4604 has multiple sets (some callers assume single_set
4605 means the insn only has one set, when in fact it
4606 means the insn only has one * useful * set). */
4607 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4608 {
4609 gcc_assert (!note);
4610 return NULL_RTX;
4611 }
4612
4613 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4614 It serves no useful purpose and breaks eliminate_regs. */
4615 if (GET_CODE (datum) == ASM_OPERANDS)
4616 return NULL_RTX;
4617
4618 if (note)
4619 {
4620 XEXP (note, 0) = datum;
4621 df_notes_rescan (insn);
4622 return note;
4623 }
4624 break;
4625
4626 default:
4627 if (note)
4628 {
4629 XEXP (note, 0) = datum;
4630 return note;
4631 }
4632 break;
4633 }
4634
4635 add_reg_note (insn, kind, datum);
4636
4637 switch (kind)
4638 {
4639 case REG_EQUAL:
4640 case REG_EQUIV:
4641 df_notes_rescan (insn);
4642 break;
4643 default:
4644 break;
4645 }
4646
4647 return REG_NOTES (insn);
4648 }
4649 \f
4650 /* Return an indication of which type of insn should have X as a body.
4651 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4652
4653 static enum rtx_code
4654 classify_insn (rtx x)
4655 {
4656 if (LABEL_P (x))
4657 return CODE_LABEL;
4658 if (GET_CODE (x) == CALL)
4659 return CALL_INSN;
4660 if (GET_CODE (x) == RETURN)
4661 return JUMP_INSN;
4662 if (GET_CODE (x) == SET)
4663 {
4664 if (SET_DEST (x) == pc_rtx)
4665 return JUMP_INSN;
4666 else if (GET_CODE (SET_SRC (x)) == CALL)
4667 return CALL_INSN;
4668 else
4669 return INSN;
4670 }
4671 if (GET_CODE (x) == PARALLEL)
4672 {
4673 int j;
4674 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4675 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4676 return CALL_INSN;
4677 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4678 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4679 return JUMP_INSN;
4680 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4681 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4682 return CALL_INSN;
4683 }
4684 return INSN;
4685 }
4686
4687 /* Emit the rtl pattern X as an appropriate kind of insn.
4688 If X is a label, it is simply added into the insn chain. */
4689
4690 rtx
4691 emit (rtx x)
4692 {
4693 enum rtx_code code = classify_insn (x);
4694
4695 switch (code)
4696 {
4697 case CODE_LABEL:
4698 return emit_label (x);
4699 case INSN:
4700 return emit_insn (x);
4701 case JUMP_INSN:
4702 {
4703 rtx insn = emit_jump_insn (x);
4704 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4705 return emit_barrier ();
4706 return insn;
4707 }
4708 case CALL_INSN:
4709 return emit_call_insn (x);
4710 default:
4711 gcc_unreachable ();
4712 }
4713 }
4714 \f
4715 /* Space for free sequence stack entries. */
4716 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4717
4718 /* Begin emitting insns to a sequence. If this sequence will contain
4719 something that might cause the compiler to pop arguments to function
4720 calls (because those pops have previously been deferred; see
4721 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4722 before calling this function. That will ensure that the deferred
4723 pops are not accidentally emitted in the middle of this sequence. */
4724
4725 void
4726 start_sequence (void)
4727 {
4728 struct sequence_stack *tem;
4729
4730 if (free_sequence_stack != NULL)
4731 {
4732 tem = free_sequence_stack;
4733 free_sequence_stack = tem->next;
4734 }
4735 else
4736 tem = GGC_NEW (struct sequence_stack);
4737
4738 tem->next = seq_stack;
4739 tem->first = first_insn;
4740 tem->last = last_insn;
4741
4742 seq_stack = tem;
4743
4744 first_insn = 0;
4745 last_insn = 0;
4746 }
4747
4748 /* Set up the insn chain starting with FIRST as the current sequence,
4749 saving the previously current one. See the documentation for
4750 start_sequence for more information about how to use this function. */
4751
4752 void
4753 push_to_sequence (rtx first)
4754 {
4755 rtx last;
4756
4757 start_sequence ();
4758
4759 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4760
4761 first_insn = first;
4762 last_insn = last;
4763 }
4764
4765 /* Like push_to_sequence, but take the last insn as an argument to avoid
4766 looping through the list. */
4767
4768 void
4769 push_to_sequence2 (rtx first, rtx last)
4770 {
4771 start_sequence ();
4772
4773 first_insn = first;
4774 last_insn = last;
4775 }
4776
4777 /* Set up the outer-level insn chain
4778 as the current sequence, saving the previously current one. */
4779
4780 void
4781 push_topmost_sequence (void)
4782 {
4783 struct sequence_stack *stack, *top = NULL;
4784
4785 start_sequence ();
4786
4787 for (stack = seq_stack; stack; stack = stack->next)
4788 top = stack;
4789
4790 first_insn = top->first;
4791 last_insn = top->last;
4792 }
4793
4794 /* After emitting to the outer-level insn chain, update the outer-level
4795 insn chain, and restore the previous saved state. */
4796
4797 void
4798 pop_topmost_sequence (void)
4799 {
4800 struct sequence_stack *stack, *top = NULL;
4801
4802 for (stack = seq_stack; stack; stack = stack->next)
4803 top = stack;
4804
4805 top->first = first_insn;
4806 top->last = last_insn;
4807
4808 end_sequence ();
4809 }
4810
4811 /* After emitting to a sequence, restore previous saved state.
4812
4813 To get the contents of the sequence just made, you must call
4814 `get_insns' *before* calling here.
4815
4816 If the compiler might have deferred popping arguments while
4817 generating this sequence, and this sequence will not be immediately
4818 inserted into the instruction stream, use do_pending_stack_adjust
4819 before calling get_insns. That will ensure that the deferred
4820 pops are inserted into this sequence, and not into some random
4821 location in the instruction stream. See INHIBIT_DEFER_POP for more
4822 information about deferred popping of arguments. */
4823
4824 void
4825 end_sequence (void)
4826 {
4827 struct sequence_stack *tem = seq_stack;
4828
4829 first_insn = tem->first;
4830 last_insn = tem->last;
4831 seq_stack = tem->next;
4832
4833 memset (tem, 0, sizeof (*tem));
4834 tem->next = free_sequence_stack;
4835 free_sequence_stack = tem;
4836 }
4837
4838 /* Return 1 if currently emitting into a sequence. */
4839
4840 int
4841 in_sequence_p (void)
4842 {
4843 return seq_stack != 0;
4844 }
4845 \f
4846 /* Put the various virtual registers into REGNO_REG_RTX. */
4847
4848 static void
4849 init_virtual_regs (void)
4850 {
4851 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4852 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4853 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4854 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4855 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4856 }
4857
4858 \f
4859 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4860 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4861 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4862 static int copy_insn_n_scratches;
4863
4864 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4865 copied an ASM_OPERANDS.
4866 In that case, it is the original input-operand vector. */
4867 static rtvec orig_asm_operands_vector;
4868
4869 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4870 copied an ASM_OPERANDS.
4871 In that case, it is the copied input-operand vector. */
4872 static rtvec copy_asm_operands_vector;
4873
4874 /* Likewise for the constraints vector. */
4875 static rtvec orig_asm_constraints_vector;
4876 static rtvec copy_asm_constraints_vector;
4877
4878 /* Recursively create a new copy of an rtx for copy_insn.
4879 This function differs from copy_rtx in that it handles SCRATCHes and
4880 ASM_OPERANDs properly.
4881 Normally, this function is not used directly; use copy_insn as front end.
4882 However, you could first copy an insn pattern with copy_insn and then use
4883 this function afterwards to properly copy any REG_NOTEs containing
4884 SCRATCHes. */
4885
4886 rtx
4887 copy_insn_1 (rtx orig)
4888 {
4889 rtx copy;
4890 int i, j;
4891 RTX_CODE code;
4892 const char *format_ptr;
4893
4894 code = GET_CODE (orig);
4895
4896 switch (code)
4897 {
4898 case REG:
4899 case CONST_INT:
4900 case CONST_DOUBLE:
4901 case CONST_FIXED:
4902 case CONST_VECTOR:
4903 case SYMBOL_REF:
4904 case CODE_LABEL:
4905 case PC:
4906 case CC0:
4907 return orig;
4908 case CLOBBER:
4909 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4910 return orig;
4911 break;
4912
4913 case SCRATCH:
4914 for (i = 0; i < copy_insn_n_scratches; i++)
4915 if (copy_insn_scratch_in[i] == orig)
4916 return copy_insn_scratch_out[i];
4917 break;
4918
4919 case CONST:
4920 if (shared_const_p (orig))
4921 return orig;
4922 break;
4923
4924 /* A MEM with a constant address is not sharable. The problem is that
4925 the constant address may need to be reloaded. If the mem is shared,
4926 then reloading one copy of this mem will cause all copies to appear
4927 to have been reloaded. */
4928
4929 default:
4930 break;
4931 }
4932
4933 /* Copy the various flags, fields, and other information. We assume
4934 that all fields need copying, and then clear the fields that should
4935 not be copied. That is the sensible default behavior, and forces
4936 us to explicitly document why we are *not* copying a flag. */
4937 copy = shallow_copy_rtx (orig);
4938
4939 /* We do not copy the USED flag, which is used as a mark bit during
4940 walks over the RTL. */
4941 RTX_FLAG (copy, used) = 0;
4942
4943 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4944 if (INSN_P (orig))
4945 {
4946 RTX_FLAG (copy, jump) = 0;
4947 RTX_FLAG (copy, call) = 0;
4948 RTX_FLAG (copy, frame_related) = 0;
4949 }
4950
4951 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4952
4953 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4954 switch (*format_ptr++)
4955 {
4956 case 'e':
4957 if (XEXP (orig, i) != NULL)
4958 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4959 break;
4960
4961 case 'E':
4962 case 'V':
4963 if (XVEC (orig, i) == orig_asm_constraints_vector)
4964 XVEC (copy, i) = copy_asm_constraints_vector;
4965 else if (XVEC (orig, i) == orig_asm_operands_vector)
4966 XVEC (copy, i) = copy_asm_operands_vector;
4967 else if (XVEC (orig, i) != NULL)
4968 {
4969 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4970 for (j = 0; j < XVECLEN (copy, i); j++)
4971 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4972 }
4973 break;
4974
4975 case 't':
4976 case 'w':
4977 case 'i':
4978 case 's':
4979 case 'S':
4980 case 'u':
4981 case '0':
4982 /* These are left unchanged. */
4983 break;
4984
4985 default:
4986 gcc_unreachable ();
4987 }
4988
4989 if (code == SCRATCH)
4990 {
4991 i = copy_insn_n_scratches++;
4992 gcc_assert (i < MAX_RECOG_OPERANDS);
4993 copy_insn_scratch_in[i] = orig;
4994 copy_insn_scratch_out[i] = copy;
4995 }
4996 else if (code == ASM_OPERANDS)
4997 {
4998 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4999 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5000 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5001 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5002 }
5003
5004 return copy;
5005 }
5006
5007 /* Create a new copy of an rtx.
5008 This function differs from copy_rtx in that it handles SCRATCHes and
5009 ASM_OPERANDs properly.
5010 INSN doesn't really have to be a full INSN; it could be just the
5011 pattern. */
5012 rtx
5013 copy_insn (rtx insn)
5014 {
5015 copy_insn_n_scratches = 0;
5016 orig_asm_operands_vector = 0;
5017 orig_asm_constraints_vector = 0;
5018 copy_asm_operands_vector = 0;
5019 copy_asm_constraints_vector = 0;
5020 return copy_insn_1 (insn);
5021 }
5022
5023 /* Initialize data structures and variables in this file
5024 before generating rtl for each function. */
5025
5026 void
5027 init_emit (void)
5028 {
5029 first_insn = NULL;
5030 last_insn = NULL;
5031 cur_insn_uid = 1;
5032 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5033 last_location = UNKNOWN_LOCATION;
5034 first_label_num = label_num;
5035 seq_stack = NULL;
5036
5037 /* Init the tables that describe all the pseudo regs. */
5038
5039 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5040
5041 crtl->emit.regno_pointer_align
5042 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5043
5044 regno_reg_rtx
5045 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5046
5047 /* Put copies of all the hard registers into regno_reg_rtx. */
5048 memcpy (regno_reg_rtx,
5049 static_regno_reg_rtx,
5050 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5051
5052 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5053 init_virtual_regs ();
5054
5055 /* Indicate that the virtual registers and stack locations are
5056 all pointers. */
5057 REG_POINTER (stack_pointer_rtx) = 1;
5058 REG_POINTER (frame_pointer_rtx) = 1;
5059 REG_POINTER (hard_frame_pointer_rtx) = 1;
5060 REG_POINTER (arg_pointer_rtx) = 1;
5061
5062 REG_POINTER (virtual_incoming_args_rtx) = 1;
5063 REG_POINTER (virtual_stack_vars_rtx) = 1;
5064 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5065 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5066 REG_POINTER (virtual_cfa_rtx) = 1;
5067
5068 #ifdef STACK_BOUNDARY
5069 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5070 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5071 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5072 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5073
5074 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5075 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5076 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5077 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5078 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5079 #endif
5080
5081 #ifdef INIT_EXPANDERS
5082 INIT_EXPANDERS;
5083 #endif
5084 }
5085
5086 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5087
5088 static rtx
5089 gen_const_vector (enum machine_mode mode, int constant)
5090 {
5091 rtx tem;
5092 rtvec v;
5093 int units, i;
5094 enum machine_mode inner;
5095
5096 units = GET_MODE_NUNITS (mode);
5097 inner = GET_MODE_INNER (mode);
5098
5099 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5100
5101 v = rtvec_alloc (units);
5102
5103 /* We need to call this function after we set the scalar const_tiny_rtx
5104 entries. */
5105 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5106
5107 for (i = 0; i < units; ++i)
5108 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5109
5110 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5111 return tem;
5112 }
5113
5114 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5115 all elements are zero, and the one vector when all elements are one. */
5116 rtx
5117 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5118 {
5119 enum machine_mode inner = GET_MODE_INNER (mode);
5120 int nunits = GET_MODE_NUNITS (mode);
5121 rtx x;
5122 int i;
5123
5124 /* Check to see if all of the elements have the same value. */
5125 x = RTVEC_ELT (v, nunits - 1);
5126 for (i = nunits - 2; i >= 0; i--)
5127 if (RTVEC_ELT (v, i) != x)
5128 break;
5129
5130 /* If the values are all the same, check to see if we can use one of the
5131 standard constant vectors. */
5132 if (i == -1)
5133 {
5134 if (x == CONST0_RTX (inner))
5135 return CONST0_RTX (mode);
5136 else if (x == CONST1_RTX (inner))
5137 return CONST1_RTX (mode);
5138 }
5139
5140 return gen_rtx_raw_CONST_VECTOR (mode, v);
5141 }
5142
5143 /* Initialise global register information required by all functions. */
5144
5145 void
5146 init_emit_regs (void)
5147 {
5148 int i;
5149
5150 /* Reset register attributes */
5151 htab_empty (reg_attrs_htab);
5152
5153 /* We need reg_raw_mode, so initialize the modes now. */
5154 init_reg_modes_target ();
5155
5156 /* Assign register numbers to the globally defined register rtx. */
5157 pc_rtx = gen_rtx_PC (VOIDmode);
5158 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5159 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5160 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5161 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5162 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5163 virtual_incoming_args_rtx =
5164 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5165 virtual_stack_vars_rtx =
5166 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5167 virtual_stack_dynamic_rtx =
5168 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5169 virtual_outgoing_args_rtx =
5170 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5171 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5172
5173 /* Initialize RTL for commonly used hard registers. These are
5174 copied into regno_reg_rtx as we begin to compile each function. */
5175 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5176 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5177
5178 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5179 return_address_pointer_rtx
5180 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5181 #endif
5182
5183 #ifdef STATIC_CHAIN_REGNUM
5184 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5185
5186 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5187 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5188 static_chain_incoming_rtx
5189 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5190 else
5191 #endif
5192 static_chain_incoming_rtx = static_chain_rtx;
5193 #endif
5194
5195 #ifdef STATIC_CHAIN
5196 static_chain_rtx = STATIC_CHAIN;
5197
5198 #ifdef STATIC_CHAIN_INCOMING
5199 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5200 #else
5201 static_chain_incoming_rtx = static_chain_rtx;
5202 #endif
5203 #endif
5204
5205 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5206 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5207 else
5208 pic_offset_table_rtx = NULL_RTX;
5209 }
5210
5211 /* Create some permanent unique rtl objects shared between all functions.
5212 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5213
5214 void
5215 init_emit_once (int line_numbers)
5216 {
5217 int i;
5218 enum machine_mode mode;
5219 enum machine_mode double_mode;
5220
5221 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5222 hash tables. */
5223 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5224 const_int_htab_eq, NULL);
5225
5226 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5227 const_double_htab_eq, NULL);
5228
5229 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5230 const_fixed_htab_eq, NULL);
5231
5232 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5233 mem_attrs_htab_eq, NULL);
5234 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5235 reg_attrs_htab_eq, NULL);
5236
5237 no_line_numbers = ! line_numbers;
5238
5239 /* Compute the word and byte modes. */
5240
5241 byte_mode = VOIDmode;
5242 word_mode = VOIDmode;
5243 double_mode = VOIDmode;
5244
5245 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5246 mode != VOIDmode;
5247 mode = GET_MODE_WIDER_MODE (mode))
5248 {
5249 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5250 && byte_mode == VOIDmode)
5251 byte_mode = mode;
5252
5253 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5254 && word_mode == VOIDmode)
5255 word_mode = mode;
5256 }
5257
5258 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5259 mode != VOIDmode;
5260 mode = GET_MODE_WIDER_MODE (mode))
5261 {
5262 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5263 && double_mode == VOIDmode)
5264 double_mode = mode;
5265 }
5266
5267 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5268
5269 #ifdef INIT_EXPANDERS
5270 /* This is to initialize {init|mark|free}_machine_status before the first
5271 call to push_function_context_to. This is needed by the Chill front
5272 end which calls push_function_context_to before the first call to
5273 init_function_start. */
5274 INIT_EXPANDERS;
5275 #endif
5276
5277 /* Create the unique rtx's for certain rtx codes and operand values. */
5278
5279 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5280 tries to use these variables. */
5281 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5282 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5283 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5284
5285 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5286 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5287 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5288 else
5289 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5290
5291 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5292 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5293 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5294
5295 dconstm1 = dconst1;
5296 dconstm1.sign = 1;
5297
5298 dconsthalf = dconst1;
5299 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5300
5301 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5302 {
5303 const REAL_VALUE_TYPE *const r =
5304 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5305
5306 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5307 mode != VOIDmode;
5308 mode = GET_MODE_WIDER_MODE (mode))
5309 const_tiny_rtx[i][(int) mode] =
5310 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5311
5312 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5313 mode != VOIDmode;
5314 mode = GET_MODE_WIDER_MODE (mode))
5315 const_tiny_rtx[i][(int) mode] =
5316 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5317
5318 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5319
5320 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5321 mode != VOIDmode;
5322 mode = GET_MODE_WIDER_MODE (mode))
5323 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5324
5325 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5326 mode != VOIDmode;
5327 mode = GET_MODE_WIDER_MODE (mode))
5328 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5329 }
5330
5331 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5332 mode != VOIDmode;
5333 mode = GET_MODE_WIDER_MODE (mode))
5334 {
5335 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5336 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5337 }
5338
5339 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5340 mode != VOIDmode;
5341 mode = GET_MODE_WIDER_MODE (mode))
5342 {
5343 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5344 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5345 }
5346
5347 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5348 mode != VOIDmode;
5349 mode = GET_MODE_WIDER_MODE (mode))
5350 {
5351 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5352 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5353 }
5354
5355 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5356 mode != VOIDmode;
5357 mode = GET_MODE_WIDER_MODE (mode))
5358 {
5359 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5360 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5361 }
5362
5363 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5364 mode != VOIDmode;
5365 mode = GET_MODE_WIDER_MODE (mode))
5366 {
5367 FCONST0(mode).data.high = 0;
5368 FCONST0(mode).data.low = 0;
5369 FCONST0(mode).mode = mode;
5370 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5371 FCONST0 (mode), mode);
5372 }
5373
5374 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5375 mode != VOIDmode;
5376 mode = GET_MODE_WIDER_MODE (mode))
5377 {
5378 FCONST0(mode).data.high = 0;
5379 FCONST0(mode).data.low = 0;
5380 FCONST0(mode).mode = mode;
5381 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5382 FCONST0 (mode), mode);
5383 }
5384
5385 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5386 mode != VOIDmode;
5387 mode = GET_MODE_WIDER_MODE (mode))
5388 {
5389 FCONST0(mode).data.high = 0;
5390 FCONST0(mode).data.low = 0;
5391 FCONST0(mode).mode = mode;
5392 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5393 FCONST0 (mode), mode);
5394
5395 /* We store the value 1. */
5396 FCONST1(mode).data.high = 0;
5397 FCONST1(mode).data.low = 0;
5398 FCONST1(mode).mode = mode;
5399 lshift_double (1, 0, GET_MODE_FBIT (mode),
5400 2 * HOST_BITS_PER_WIDE_INT,
5401 &FCONST1(mode).data.low,
5402 &FCONST1(mode).data.high,
5403 SIGNED_FIXED_POINT_MODE_P (mode));
5404 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5405 FCONST1 (mode), mode);
5406 }
5407
5408 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5409 mode != VOIDmode;
5410 mode = GET_MODE_WIDER_MODE (mode))
5411 {
5412 FCONST0(mode).data.high = 0;
5413 FCONST0(mode).data.low = 0;
5414 FCONST0(mode).mode = mode;
5415 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5416 FCONST0 (mode), mode);
5417
5418 /* We store the value 1. */
5419 FCONST1(mode).data.high = 0;
5420 FCONST1(mode).data.low = 0;
5421 FCONST1(mode).mode = mode;
5422 lshift_double (1, 0, GET_MODE_FBIT (mode),
5423 2 * HOST_BITS_PER_WIDE_INT,
5424 &FCONST1(mode).data.low,
5425 &FCONST1(mode).data.high,
5426 SIGNED_FIXED_POINT_MODE_P (mode));
5427 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5428 FCONST1 (mode), mode);
5429 }
5430
5431 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5432 mode != VOIDmode;
5433 mode = GET_MODE_WIDER_MODE (mode))
5434 {
5435 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5436 }
5437
5438 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5439 mode != VOIDmode;
5440 mode = GET_MODE_WIDER_MODE (mode))
5441 {
5442 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5443 }
5444
5445 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5446 mode != VOIDmode;
5447 mode = GET_MODE_WIDER_MODE (mode))
5448 {
5449 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5450 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5451 }
5452
5453 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5454 mode != VOIDmode;
5455 mode = GET_MODE_WIDER_MODE (mode))
5456 {
5457 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5458 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5459 }
5460
5461 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5462 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5463 const_tiny_rtx[0][i] = const0_rtx;
5464
5465 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5466 if (STORE_FLAG_VALUE == 1)
5467 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5468 }
5469 \f
5470 /* Produce exact duplicate of insn INSN after AFTER.
5471 Care updating of libcall regions if present. */
5472
5473 rtx
5474 emit_copy_of_insn_after (rtx insn, rtx after)
5475 {
5476 rtx new_rtx, link;
5477
5478 switch (GET_CODE (insn))
5479 {
5480 case INSN:
5481 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5482 break;
5483
5484 case JUMP_INSN:
5485 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5486 break;
5487
5488 case CALL_INSN:
5489 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5490 if (CALL_INSN_FUNCTION_USAGE (insn))
5491 CALL_INSN_FUNCTION_USAGE (new_rtx)
5492 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5493 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5494 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5495 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5496 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5497 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5498 break;
5499
5500 default:
5501 gcc_unreachable ();
5502 }
5503
5504 /* Update LABEL_NUSES. */
5505 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5506
5507 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5508
5509 /* If the old insn is frame related, then so is the new one. This is
5510 primarily needed for IA-64 unwind info which marks epilogue insns,
5511 which may be duplicated by the basic block reordering code. */
5512 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5513
5514 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5515 will make them. REG_LABEL_TARGETs are created there too, but are
5516 supposed to be sticky, so we copy them. */
5517 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5518 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5519 {
5520 if (GET_CODE (link) == EXPR_LIST)
5521 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5522 copy_insn_1 (XEXP (link, 0)));
5523 else
5524 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5525 }
5526
5527 INSN_CODE (new_rtx) = INSN_CODE (insn);
5528 return new_rtx;
5529 }
5530
5531 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5532 rtx
5533 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5534 {
5535 if (hard_reg_clobbers[mode][regno])
5536 return hard_reg_clobbers[mode][regno];
5537 else
5538 return (hard_reg_clobbers[mode][regno] =
5539 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5540 }
5541
5542 #include "gt-emit-rtl.h"