re PR tree-optimization/37027 (SLP loop vectorization missing support for reductions)
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "params.h"
62 #include "target.h"
63
64 /* Commonly used modes. */
65
66 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
67 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
68 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
69 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
70
71 /* Datastructures maintained for currently processed function in RTL form. */
72
73 struct rtl_data x_rtl;
74
75 /* Indexed by pseudo register number, gives the rtx for that pseudo.
76 Allocated in parallel with regno_pointer_align.
77 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
78 with length attribute nested in top level structures. */
79
80 rtx * regno_reg_rtx;
81
82 /* This is *not* reset after each function. It gives each CODE_LABEL
83 in the entire compilation a unique label number. */
84
85 static GTY(()) int label_num = 1;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconstm1;
112 REAL_VALUE_TYPE dconsthalf;
113
114 /* Record fixed-point constant 0 and 1. */
115 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
116 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
117
118 /* All references to the following fixed hard registers go through
119 these unique rtl objects. On machines where the frame-pointer and
120 arg-pointer are the same register, they use the same unique object.
121
122 After register allocation, other rtl objects which used to be pseudo-regs
123 may be clobbered to refer to the frame-pointer register.
124 But references that were originally to the frame-pointer can be
125 distinguished from the others because they contain frame_pointer_rtx.
126
127 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
128 tricky: until register elimination has taken place hard_frame_pointer_rtx
129 should be used if it is being set, and frame_pointer_rtx otherwise. After
130 register elimination hard_frame_pointer_rtx should always be used.
131 On machines where the two registers are same (most) then these are the
132 same.
133
134 In an inline procedure, the stack and frame pointer rtxs may not be
135 used for anything else. */
136 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137
138 /* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141
142 /* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
145 integers. */
146
147 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
148
149 /* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
151
152 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153 htab_t const_int_htab;
154
155 /* A hash table storing memory attribute structures. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157 htab_t mem_attrs_htab;
158
159 /* A hash table storing register attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
161 htab_t reg_attrs_htab;
162
163 /* A hash table storing all CONST_DOUBLEs. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
165 htab_t const_double_htab;
166
167 /* A hash table storing all CONST_FIXEDs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_fixed_htab;
170
171 #define first_insn (crtl->emit.x_first_insn)
172 #define last_insn (crtl->emit.x_last_insn)
173 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
174 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
175 #define last_location (crtl->emit.x_last_location)
176 #define first_label_num (crtl->emit.x_first_label_num)
177
178 static rtx make_call_insn_raw (rtx);
179 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
180 static void set_used_decls (tree);
181 static void mark_label_nuses (rtx);
182 static hashval_t const_int_htab_hash (const void *);
183 static int const_int_htab_eq (const void *, const void *);
184 static hashval_t const_double_htab_hash (const void *);
185 static int const_double_htab_eq (const void *, const void *);
186 static rtx lookup_const_double (rtx);
187 static hashval_t const_fixed_htab_hash (const void *);
188 static int const_fixed_htab_eq (const void *, const void *);
189 static rtx lookup_const_fixed (rtx);
190 static hashval_t mem_attrs_htab_hash (const void *);
191 static int mem_attrs_htab_eq (const void *, const void *);
192 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
193 addr_space_t, enum machine_mode);
194 static hashval_t reg_attrs_htab_hash (const void *);
195 static int reg_attrs_htab_eq (const void *, const void *);
196 static reg_attrs *get_reg_attrs (tree, int);
197 static rtx gen_const_vector (enum machine_mode, int);
198 static void copy_rtx_if_shared_1 (rtx *orig);
199
200 /* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202 int split_branch_probability = -1;
203 \f
204 /* Returns a hash code for X (which is a really a CONST_INT). */
205
206 static hashval_t
207 const_int_htab_hash (const void *x)
208 {
209 return (hashval_t) INTVAL ((const_rtx) x);
210 }
211
212 /* Returns nonzero if the value represented by X (which is really a
213 CONST_INT) is the same as that given by Y (which is really a
214 HOST_WIDE_INT *). */
215
216 static int
217 const_int_htab_eq (const void *x, const void *y)
218 {
219 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
220 }
221
222 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
223 static hashval_t
224 const_double_htab_hash (const void *x)
225 {
226 const_rtx const value = (const_rtx) x;
227 hashval_t h;
228
229 if (GET_MODE (value) == VOIDmode)
230 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231 else
232 {
233 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 }
237 return h;
238 }
239
240 /* Returns nonzero if the value represented by X (really a ...)
241 is the same as that represented by Y (really a ...) */
242 static int
243 const_double_htab_eq (const void *x, const void *y)
244 {
245 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
246
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 if (GET_MODE (a) == VOIDmode)
250 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252 else
253 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254 CONST_DOUBLE_REAL_VALUE (b));
255 }
256
257 /* Returns a hash code for X (which is really a CONST_FIXED). */
258
259 static hashval_t
260 const_fixed_htab_hash (const void *x)
261 {
262 const_rtx const value = (const_rtx) x;
263 hashval_t h;
264
265 h = fixed_hash (CONST_FIXED_VALUE (value));
266 /* MODE is used in the comparison, so it should be in the hash. */
267 h ^= GET_MODE (value);
268 return h;
269 }
270
271 /* Returns nonzero if the value represented by X (really a ...)
272 is the same as that represented by Y (really a ...). */
273
274 static int
275 const_fixed_htab_eq (const void *x, const void *y)
276 {
277 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
278
279 if (GET_MODE (a) != GET_MODE (b))
280 return 0;
281 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
282 }
283
284 /* Returns a hash code for X (which is a really a mem_attrs *). */
285
286 static hashval_t
287 mem_attrs_htab_hash (const void *x)
288 {
289 const mem_attrs *const p = (const mem_attrs *) x;
290
291 return (p->alias ^ (p->align * 1000)
292 ^ (p->addrspace * 4000)
293 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
294 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
295 ^ (size_t) iterative_hash_expr (p->expr, 0));
296 }
297
298 /* Returns nonzero if the value represented by X (which is really a
299 mem_attrs *) is the same as that given by Y (which is also really a
300 mem_attrs *). */
301
302 static int
303 mem_attrs_htab_eq (const void *x, const void *y)
304 {
305 const mem_attrs *const p = (const mem_attrs *) x;
306 const mem_attrs *const q = (const mem_attrs *) y;
307
308 return (p->alias == q->alias && p->offset == q->offset
309 && p->size == q->size && p->align == q->align
310 && p->addrspace == q->addrspace
311 && (p->expr == q->expr
312 || (p->expr != NULL_TREE && q->expr != NULL_TREE
313 && operand_equal_p (p->expr, q->expr, 0))));
314 }
315
316 /* Allocate a new mem_attrs structure and insert it into the hash table if
317 one identical to it is not already in the table. We are doing this for
318 MEM of mode MODE. */
319
320 static mem_attrs *
321 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
322 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
323 {
324 mem_attrs attrs;
325 void **slot;
326
327 /* If everything is the default, we can just return zero.
328 This must match what the corresponding MEM_* macros return when the
329 field is not present. */
330 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
331 && (size == 0
332 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
333 && (STRICT_ALIGNMENT && mode != BLKmode
334 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
335 return 0;
336
337 attrs.alias = alias;
338 attrs.expr = expr;
339 attrs.offset = offset;
340 attrs.size = size;
341 attrs.align = align;
342 attrs.addrspace = addrspace;
343
344 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
345 if (*slot == 0)
346 {
347 *slot = ggc_alloc (sizeof (mem_attrs));
348 memcpy (*slot, &attrs, sizeof (mem_attrs));
349 }
350
351 return (mem_attrs *) *slot;
352 }
353
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
355
356 static hashval_t
357 reg_attrs_htab_hash (const void *x)
358 {
359 const reg_attrs *const p = (const reg_attrs *) x;
360
361 return ((p->offset * 1000) ^ (long) p->decl);
362 }
363
364 /* Returns nonzero if the value represented by X (which is really a
365 reg_attrs *) is the same as that given by Y (which is also really a
366 reg_attrs *). */
367
368 static int
369 reg_attrs_htab_eq (const void *x, const void *y)
370 {
371 const reg_attrs *const p = (const reg_attrs *) x;
372 const reg_attrs *const q = (const reg_attrs *) y;
373
374 return (p->decl == q->decl && p->offset == q->offset);
375 }
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
378 MEM of mode MODE. */
379
380 static reg_attrs *
381 get_reg_attrs (tree decl, int offset)
382 {
383 reg_attrs attrs;
384 void **slot;
385
386 /* If everything is the default, we can just return zero. */
387 if (decl == 0 && offset == 0)
388 return 0;
389
390 attrs.decl = decl;
391 attrs.offset = offset;
392
393 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
394 if (*slot == 0)
395 {
396 *slot = ggc_alloc (sizeof (reg_attrs));
397 memcpy (*slot, &attrs, sizeof (reg_attrs));
398 }
399
400 return (reg_attrs *) *slot;
401 }
402
403
404 #if !HAVE_blockage
405 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
406 across this insn. */
407
408 rtx
409 gen_blockage (void)
410 {
411 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
412 MEM_VOLATILE_P (x) = true;
413 return x;
414 }
415 #endif
416
417
418 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
419 don't attempt to share with the various global pieces of rtl (such as
420 frame_pointer_rtx). */
421
422 rtx
423 gen_raw_REG (enum machine_mode mode, int regno)
424 {
425 rtx x = gen_rtx_raw_REG (mode, regno);
426 ORIGINAL_REGNO (x) = regno;
427 return x;
428 }
429
430 /* There are some RTL codes that require special attention; the generation
431 functions do the raw handling. If you add to this list, modify
432 special_rtx in gengenrtl.c as well. */
433
434 rtx
435 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
436 {
437 void **slot;
438
439 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
440 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
441
442 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
443 if (const_true_rtx && arg == STORE_FLAG_VALUE)
444 return const_true_rtx;
445 #endif
446
447 /* Look up the CONST_INT in the hash table. */
448 slot = htab_find_slot_with_hash (const_int_htab, &arg,
449 (hashval_t) arg, INSERT);
450 if (*slot == 0)
451 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
452
453 return (rtx) *slot;
454 }
455
456 rtx
457 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
458 {
459 return GEN_INT (trunc_int_for_mode (c, mode));
460 }
461
462 /* CONST_DOUBLEs might be created from pairs of integers, or from
463 REAL_VALUE_TYPEs. Also, their length is known only at run time,
464 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
465
466 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
467 hash table. If so, return its counterpart; otherwise add it
468 to the hash table and return it. */
469 static rtx
470 lookup_const_double (rtx real)
471 {
472 void **slot = htab_find_slot (const_double_htab, real, INSERT);
473 if (*slot == 0)
474 *slot = real;
475
476 return (rtx) *slot;
477 }
478
479 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
480 VALUE in mode MODE. */
481 rtx
482 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
483 {
484 rtx real = rtx_alloc (CONST_DOUBLE);
485 PUT_MODE (real, mode);
486
487 real->u.rv = value;
488
489 return lookup_const_double (real);
490 }
491
492 /* Determine whether FIXED, a CONST_FIXED, already exists in the
493 hash table. If so, return its counterpart; otherwise add it
494 to the hash table and return it. */
495
496 static rtx
497 lookup_const_fixed (rtx fixed)
498 {
499 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
500 if (*slot == 0)
501 *slot = fixed;
502
503 return (rtx) *slot;
504 }
505
506 /* Return a CONST_FIXED rtx for a fixed-point value specified by
507 VALUE in mode MODE. */
508
509 rtx
510 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
511 {
512 rtx fixed = rtx_alloc (CONST_FIXED);
513 PUT_MODE (fixed, mode);
514
515 fixed->u.fv = value;
516
517 return lookup_const_fixed (fixed);
518 }
519
520 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
521 of ints: I0 is the low-order word and I1 is the high-order word.
522 Do not use this routine for non-integer modes; convert to
523 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
524
525 rtx
526 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
527 {
528 rtx value;
529 unsigned int i;
530
531 /* There are the following cases (note that there are no modes with
532 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
533
534 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
535 gen_int_mode.
536 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
537 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
538 from copies of the sign bit, and sign of i0 and i1 are the same), then
539 we return a CONST_INT for i0.
540 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
541 if (mode != VOIDmode)
542 {
543 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
544 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
545 /* We can get a 0 for an error mark. */
546 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
548
549 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
550 return gen_int_mode (i0, mode);
551
552 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
553 }
554
555 /* If this integer fits in one word, return a CONST_INT. */
556 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
557 return GEN_INT (i0);
558
559 /* We use VOIDmode for integers. */
560 value = rtx_alloc (CONST_DOUBLE);
561 PUT_MODE (value, VOIDmode);
562
563 CONST_DOUBLE_LOW (value) = i0;
564 CONST_DOUBLE_HIGH (value) = i1;
565
566 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
567 XWINT (value, i) = 0;
568
569 return lookup_const_double (value);
570 }
571
572 rtx
573 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
574 {
575 /* In case the MD file explicitly references the frame pointer, have
576 all such references point to the same frame pointer. This is
577 used during frame pointer elimination to distinguish the explicit
578 references to these registers from pseudos that happened to be
579 assigned to them.
580
581 If we have eliminated the frame pointer or arg pointer, we will
582 be using it as a normal register, for example as a spill
583 register. In such cases, we might be accessing it in a mode that
584 is not Pmode and therefore cannot use the pre-allocated rtx.
585
586 Also don't do this when we are making new REGs in reload, since
587 we don't want to get confused with the real pointers. */
588
589 if (mode == Pmode && !reload_in_progress)
590 {
591 if (regno == FRAME_POINTER_REGNUM
592 && (!reload_completed || frame_pointer_needed))
593 return frame_pointer_rtx;
594 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
595 if (regno == HARD_FRAME_POINTER_REGNUM
596 && (!reload_completed || frame_pointer_needed))
597 return hard_frame_pointer_rtx;
598 #endif
599 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
600 if (regno == ARG_POINTER_REGNUM)
601 return arg_pointer_rtx;
602 #endif
603 #ifdef RETURN_ADDRESS_POINTER_REGNUM
604 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
605 return return_address_pointer_rtx;
606 #endif
607 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
608 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
609 return pic_offset_table_rtx;
610 if (regno == STACK_POINTER_REGNUM)
611 return stack_pointer_rtx;
612 }
613
614 #if 0
615 /* If the per-function register table has been set up, try to re-use
616 an existing entry in that table to avoid useless generation of RTL.
617
618 This code is disabled for now until we can fix the various backends
619 which depend on having non-shared hard registers in some cases. Long
620 term we want to re-enable this code as it can significantly cut down
621 on the amount of useless RTL that gets generated.
622
623 We'll also need to fix some code that runs after reload that wants to
624 set ORIGINAL_REGNO. */
625
626 if (cfun
627 && cfun->emit
628 && regno_reg_rtx
629 && regno < FIRST_PSEUDO_REGISTER
630 && reg_raw_mode[regno] == mode)
631 return regno_reg_rtx[regno];
632 #endif
633
634 return gen_raw_REG (mode, regno);
635 }
636
637 rtx
638 gen_rtx_MEM (enum machine_mode mode, rtx addr)
639 {
640 rtx rt = gen_rtx_raw_MEM (mode, addr);
641
642 /* This field is not cleared by the mere allocation of the rtx, so
643 we clear it here. */
644 MEM_ATTRS (rt) = 0;
645
646 return rt;
647 }
648
649 /* Generate a memory referring to non-trapping constant memory. */
650
651 rtx
652 gen_const_mem (enum machine_mode mode, rtx addr)
653 {
654 rtx mem = gen_rtx_MEM (mode, addr);
655 MEM_READONLY_P (mem) = 1;
656 MEM_NOTRAP_P (mem) = 1;
657 return mem;
658 }
659
660 /* Generate a MEM referring to fixed portions of the frame, e.g., register
661 save areas. */
662
663 rtx
664 gen_frame_mem (enum machine_mode mode, rtx addr)
665 {
666 rtx mem = gen_rtx_MEM (mode, addr);
667 MEM_NOTRAP_P (mem) = 1;
668 set_mem_alias_set (mem, get_frame_alias_set ());
669 return mem;
670 }
671
672 /* Generate a MEM referring to a temporary use of the stack, not part
673 of the fixed stack frame. For example, something which is pushed
674 by a target splitter. */
675 rtx
676 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
677 {
678 rtx mem = gen_rtx_MEM (mode, addr);
679 MEM_NOTRAP_P (mem) = 1;
680 if (!cfun->calls_alloca)
681 set_mem_alias_set (mem, get_frame_alias_set ());
682 return mem;
683 }
684
685 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
686 this construct would be valid, and false otherwise. */
687
688 bool
689 validate_subreg (enum machine_mode omode, enum machine_mode imode,
690 const_rtx reg, unsigned int offset)
691 {
692 unsigned int isize = GET_MODE_SIZE (imode);
693 unsigned int osize = GET_MODE_SIZE (omode);
694
695 /* All subregs must be aligned. */
696 if (offset % osize != 0)
697 return false;
698
699 /* The subreg offset cannot be outside the inner object. */
700 if (offset >= isize)
701 return false;
702
703 /* ??? This should not be here. Temporarily continue to allow word_mode
704 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
705 Generally, backends are doing something sketchy but it'll take time to
706 fix them all. */
707 if (omode == word_mode)
708 ;
709 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
710 is the culprit here, and not the backends. */
711 else if (osize >= UNITS_PER_WORD && isize >= osize)
712 ;
713 /* Allow component subregs of complex and vector. Though given the below
714 extraction rules, it's not always clear what that means. */
715 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
716 && GET_MODE_INNER (imode) == omode)
717 ;
718 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
719 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
720 represent this. It's questionable if this ought to be represented at
721 all -- why can't this all be hidden in post-reload splitters that make
722 arbitrarily mode changes to the registers themselves. */
723 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
724 ;
725 /* Subregs involving floating point modes are not allowed to
726 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
727 (subreg:SI (reg:DF) 0) isn't. */
728 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
729 {
730 if (isize != osize)
731 return false;
732 }
733
734 /* Paradoxical subregs must have offset zero. */
735 if (osize > isize)
736 return offset == 0;
737
738 /* This is a normal subreg. Verify that the offset is representable. */
739
740 /* For hard registers, we already have most of these rules collected in
741 subreg_offset_representable_p. */
742 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 {
744 unsigned int regno = REGNO (reg);
745
746 #ifdef CANNOT_CHANGE_MODE_CLASS
747 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
748 && GET_MODE_INNER (imode) == omode)
749 ;
750 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
751 return false;
752 #endif
753
754 return subreg_offset_representable_p (regno, imode, offset, omode);
755 }
756
757 /* For pseudo registers, we want most of the same checks. Namely:
758 If the register no larger than a word, the subreg must be lowpart.
759 If the register is larger than a word, the subreg must be the lowpart
760 of a subword. A subreg does *not* perform arbitrary bit extraction.
761 Given that we've already checked mode/offset alignment, we only have
762 to check subword subregs here. */
763 if (osize < UNITS_PER_WORD)
764 {
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
769 }
770 return true;
771 }
772
773 rtx
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 {
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777 return gen_rtx_raw_SUBREG (mode, reg, offset);
778 }
779
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
782
783 rtx
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 {
786 enum machine_mode inmode;
787
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
793 }
794 \f
795
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797
798 rtvec
799 gen_rtvec (int n, ...)
800 {
801 int i;
802 rtvec rt_val;
803 va_list p;
804
805 va_start (p, n);
806
807 /* Don't allocate an empty rtvec... */
808 if (n == 0)
809 return NULL_RTVEC;
810
811 rt_val = rtvec_alloc (n);
812
813 for (i = 0; i < n; i++)
814 rt_val->elem[i] = va_arg (p, rtx);
815
816 va_end (p);
817 return rt_val;
818 }
819
820 rtvec
821 gen_rtvec_v (int n, rtx *argp)
822 {
823 int i;
824 rtvec rt_val;
825
826 /* Don't allocate an empty rtvec... */
827 if (n == 0)
828 return NULL_RTVEC;
829
830 rt_val = rtvec_alloc (n);
831
832 for (i = 0; i < n; i++)
833 rt_val->elem[i] = *argp++;
834
835 return rt_val;
836 }
837 \f
838 /* Return the number of bytes between the start of an OUTER_MODE
839 in-memory value and the start of an INNER_MODE in-memory value,
840 given that the former is a lowpart of the latter. It may be a
841 paradoxical lowpart, in which case the offset will be negative
842 on big-endian targets. */
843
844 int
845 byte_lowpart_offset (enum machine_mode outer_mode,
846 enum machine_mode inner_mode)
847 {
848 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
849 return subreg_lowpart_offset (outer_mode, inner_mode);
850 else
851 return -subreg_lowpart_offset (inner_mode, outer_mode);
852 }
853 \f
854 /* Generate a REG rtx for a new pseudo register of mode MODE.
855 This pseudo is assigned the next sequential register number. */
856
857 rtx
858 gen_reg_rtx (enum machine_mode mode)
859 {
860 rtx val;
861 unsigned int align = GET_MODE_ALIGNMENT (mode);
862
863 gcc_assert (can_create_pseudo_p ());
864
865 /* If a virtual register with bigger mode alignment is generated,
866 increase stack alignment estimation because it might be spilled
867 to stack later. */
868 if (SUPPORTS_STACK_ALIGNMENT
869 && crtl->stack_alignment_estimated < align
870 && !crtl->stack_realign_processed)
871 {
872 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
873 if (crtl->stack_alignment_estimated < min_align)
874 crtl->stack_alignment_estimated = min_align;
875 }
876
877 if (generating_concat_p
878 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
879 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
880 {
881 /* For complex modes, don't make a single pseudo.
882 Instead, make a CONCAT of two pseudos.
883 This allows noncontiguous allocation of the real and imaginary parts,
884 which makes much better code. Besides, allocating DCmode
885 pseudos overstrains reload on some machines like the 386. */
886 rtx realpart, imagpart;
887 enum machine_mode partmode = GET_MODE_INNER (mode);
888
889 realpart = gen_reg_rtx (partmode);
890 imagpart = gen_reg_rtx (partmode);
891 return gen_rtx_CONCAT (mode, realpart, imagpart);
892 }
893
894 /* Make sure regno_pointer_align, and regno_reg_rtx are large
895 enough to have an element for this pseudo reg number. */
896
897 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
898 {
899 int old_size = crtl->emit.regno_pointer_align_length;
900 char *tmp;
901 rtx *new1;
902
903 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
904 memset (tmp + old_size, 0, old_size);
905 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
906
907 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
908 memset (new1 + old_size, 0, old_size * sizeof (rtx));
909 regno_reg_rtx = new1;
910
911 crtl->emit.regno_pointer_align_length = old_size * 2;
912 }
913
914 val = gen_raw_REG (mode, reg_rtx_no);
915 regno_reg_rtx[reg_rtx_no++] = val;
916 return val;
917 }
918
919 /* Update NEW with the same attributes as REG, but with OFFSET added
920 to the REG_OFFSET. */
921
922 static void
923 update_reg_offset (rtx new_rtx, rtx reg, int offset)
924 {
925 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
926 REG_OFFSET (reg) + offset);
927 }
928
929 /* Generate a register with same attributes as REG, but with OFFSET
930 added to the REG_OFFSET. */
931
932 rtx
933 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
934 int offset)
935 {
936 rtx new_rtx = gen_rtx_REG (mode, regno);
937
938 update_reg_offset (new_rtx, reg, offset);
939 return new_rtx;
940 }
941
942 /* Generate a new pseudo-register with the same attributes as REG, but
943 with OFFSET added to the REG_OFFSET. */
944
945 rtx
946 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
947 {
948 rtx new_rtx = gen_reg_rtx (mode);
949
950 update_reg_offset (new_rtx, reg, offset);
951 return new_rtx;
952 }
953
954 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
955 new register is a (possibly paradoxical) lowpart of the old one. */
956
957 void
958 adjust_reg_mode (rtx reg, enum machine_mode mode)
959 {
960 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
961 PUT_MODE (reg, mode);
962 }
963
964 /* Copy REG's attributes from X, if X has any attributes. If REG and X
965 have different modes, REG is a (possibly paradoxical) lowpart of X. */
966
967 void
968 set_reg_attrs_from_value (rtx reg, rtx x)
969 {
970 int offset;
971
972 /* Hard registers can be reused for multiple purposes within the same
973 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
974 on them is wrong. */
975 if (HARD_REGISTER_P (reg))
976 return;
977
978 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
979 if (MEM_P (x))
980 {
981 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
982 REG_ATTRS (reg)
983 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
984 if (MEM_POINTER (x))
985 mark_reg_pointer (reg, 0);
986 }
987 else if (REG_P (x))
988 {
989 if (REG_ATTRS (x))
990 update_reg_offset (reg, x, offset);
991 if (REG_POINTER (x))
992 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993 }
994 }
995
996 /* Generate a REG rtx for a new pseudo register, copying the mode
997 and attributes from X. */
998
999 rtx
1000 gen_reg_rtx_and_attrs (rtx x)
1001 {
1002 rtx reg = gen_reg_rtx (GET_MODE (x));
1003 set_reg_attrs_from_value (reg, x);
1004 return reg;
1005 }
1006
1007 /* Set the register attributes for registers contained in PARM_RTX.
1008 Use needed values from memory attributes of MEM. */
1009
1010 void
1011 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1012 {
1013 if (REG_P (parm_rtx))
1014 set_reg_attrs_from_value (parm_rtx, mem);
1015 else if (GET_CODE (parm_rtx) == PARALLEL)
1016 {
1017 /* Check for a NULL entry in the first slot, used to indicate that the
1018 parameter goes both on the stack and in registers. */
1019 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1020 for (; i < XVECLEN (parm_rtx, 0); i++)
1021 {
1022 rtx x = XVECEXP (parm_rtx, 0, i);
1023 if (REG_P (XEXP (x, 0)))
1024 REG_ATTRS (XEXP (x, 0))
1025 = get_reg_attrs (MEM_EXPR (mem),
1026 INTVAL (XEXP (x, 1)));
1027 }
1028 }
1029 }
1030
1031 /* Set the REG_ATTRS for registers in value X, given that X represents
1032 decl T. */
1033
1034 void
1035 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1036 {
1037 if (GET_CODE (x) == SUBREG)
1038 {
1039 gcc_assert (subreg_lowpart_p (x));
1040 x = SUBREG_REG (x);
1041 }
1042 if (REG_P (x))
1043 REG_ATTRS (x)
1044 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1045 DECL_MODE (t)));
1046 if (GET_CODE (x) == CONCAT)
1047 {
1048 if (REG_P (XEXP (x, 0)))
1049 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1050 if (REG_P (XEXP (x, 1)))
1051 REG_ATTRS (XEXP (x, 1))
1052 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1053 }
1054 if (GET_CODE (x) == PARALLEL)
1055 {
1056 int i, start;
1057
1058 /* Check for a NULL entry, used to indicate that the parameter goes
1059 both on the stack and in registers. */
1060 if (XEXP (XVECEXP (x, 0, 0), 0))
1061 start = 0;
1062 else
1063 start = 1;
1064
1065 for (i = start; i < XVECLEN (x, 0); i++)
1066 {
1067 rtx y = XVECEXP (x, 0, i);
1068 if (REG_P (XEXP (y, 0)))
1069 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1070 }
1071 }
1072 }
1073
1074 /* Assign the RTX X to declaration T. */
1075
1076 void
1077 set_decl_rtl (tree t, rtx x)
1078 {
1079 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1080 if (x)
1081 set_reg_attrs_for_decl_rtl (t, x);
1082 }
1083
1084 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1085 if the ABI requires the parameter to be passed by reference. */
1086
1087 void
1088 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1089 {
1090 DECL_INCOMING_RTL (t) = x;
1091 if (x && !by_reference_p)
1092 set_reg_attrs_for_decl_rtl (t, x);
1093 }
1094
1095 /* Identify REG (which may be a CONCAT) as a user register. */
1096
1097 void
1098 mark_user_reg (rtx reg)
1099 {
1100 if (GET_CODE (reg) == CONCAT)
1101 {
1102 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1103 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1104 }
1105 else
1106 {
1107 gcc_assert (REG_P (reg));
1108 REG_USERVAR_P (reg) = 1;
1109 }
1110 }
1111
1112 /* Identify REG as a probable pointer register and show its alignment
1113 as ALIGN, if nonzero. */
1114
1115 void
1116 mark_reg_pointer (rtx reg, int align)
1117 {
1118 if (! REG_POINTER (reg))
1119 {
1120 REG_POINTER (reg) = 1;
1121
1122 if (align)
1123 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1124 }
1125 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1126 /* We can no-longer be sure just how aligned this pointer is. */
1127 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1128 }
1129
1130 /* Return 1 plus largest pseudo reg number used in the current function. */
1131
1132 int
1133 max_reg_num (void)
1134 {
1135 return reg_rtx_no;
1136 }
1137
1138 /* Return 1 + the largest label number used so far in the current function. */
1139
1140 int
1141 max_label_num (void)
1142 {
1143 return label_num;
1144 }
1145
1146 /* Return first label number used in this function (if any were used). */
1147
1148 int
1149 get_first_label_num (void)
1150 {
1151 return first_label_num;
1152 }
1153
1154 /* If the rtx for label was created during the expansion of a nested
1155 function, then first_label_num won't include this label number.
1156 Fix this now so that array indices work later. */
1157
1158 void
1159 maybe_set_first_label_num (rtx x)
1160 {
1161 if (CODE_LABEL_NUMBER (x) < first_label_num)
1162 first_label_num = CODE_LABEL_NUMBER (x);
1163 }
1164 \f
1165 /* Return a value representing some low-order bits of X, where the number
1166 of low-order bits is given by MODE. Note that no conversion is done
1167 between floating-point and fixed-point values, rather, the bit
1168 representation is returned.
1169
1170 This function handles the cases in common between gen_lowpart, below,
1171 and two variants in cse.c and combine.c. These are the cases that can
1172 be safely handled at all points in the compilation.
1173
1174 If this is not a case we can handle, return 0. */
1175
1176 rtx
1177 gen_lowpart_common (enum machine_mode mode, rtx x)
1178 {
1179 int msize = GET_MODE_SIZE (mode);
1180 int xsize;
1181 int offset = 0;
1182 enum machine_mode innermode;
1183
1184 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1185 so we have to make one up. Yuk. */
1186 innermode = GET_MODE (x);
1187 if (CONST_INT_P (x)
1188 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1189 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1190 else if (innermode == VOIDmode)
1191 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1192
1193 xsize = GET_MODE_SIZE (innermode);
1194
1195 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1196
1197 if (innermode == mode)
1198 return x;
1199
1200 /* MODE must occupy no more words than the mode of X. */
1201 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1202 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1203 return 0;
1204
1205 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1206 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1207 return 0;
1208
1209 offset = subreg_lowpart_offset (mode, innermode);
1210
1211 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1212 && (GET_MODE_CLASS (mode) == MODE_INT
1213 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1214 {
1215 /* If we are getting the low-order part of something that has been
1216 sign- or zero-extended, we can either just use the object being
1217 extended or make a narrower extension. If we want an even smaller
1218 piece than the size of the object being extended, call ourselves
1219 recursively.
1220
1221 This case is used mostly by combine and cse. */
1222
1223 if (GET_MODE (XEXP (x, 0)) == mode)
1224 return XEXP (x, 0);
1225 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1226 return gen_lowpart_common (mode, XEXP (x, 0));
1227 else if (msize < xsize)
1228 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1229 }
1230 else if (GET_CODE (x) == SUBREG || REG_P (x)
1231 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1232 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1233 return simplify_gen_subreg (mode, x, innermode, offset);
1234
1235 /* Otherwise, we can't do this. */
1236 return 0;
1237 }
1238 \f
1239 rtx
1240 gen_highpart (enum machine_mode mode, rtx x)
1241 {
1242 unsigned int msize = GET_MODE_SIZE (mode);
1243 rtx result;
1244
1245 /* This case loses if X is a subreg. To catch bugs early,
1246 complain if an invalid MODE is used even in other cases. */
1247 gcc_assert (msize <= UNITS_PER_WORD
1248 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1249
1250 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1251 subreg_highpart_offset (mode, GET_MODE (x)));
1252 gcc_assert (result);
1253
1254 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1255 the target if we have a MEM. gen_highpart must return a valid operand,
1256 emitting code if necessary to do so. */
1257 if (MEM_P (result))
1258 {
1259 result = validize_mem (result);
1260 gcc_assert (result);
1261 }
1262
1263 return result;
1264 }
1265
1266 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1267 be VOIDmode constant. */
1268 rtx
1269 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1270 {
1271 if (GET_MODE (exp) != VOIDmode)
1272 {
1273 gcc_assert (GET_MODE (exp) == innermode);
1274 return gen_highpart (outermode, exp);
1275 }
1276 return simplify_gen_subreg (outermode, exp, innermode,
1277 subreg_highpart_offset (outermode, innermode));
1278 }
1279
1280 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1281
1282 unsigned int
1283 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1284 {
1285 unsigned int offset = 0;
1286 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1287
1288 if (difference > 0)
1289 {
1290 if (WORDS_BIG_ENDIAN)
1291 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1292 if (BYTES_BIG_ENDIAN)
1293 offset += difference % UNITS_PER_WORD;
1294 }
1295
1296 return offset;
1297 }
1298
1299 /* Return offset in bytes to get OUTERMODE high part
1300 of the value in mode INNERMODE stored in memory in target format. */
1301 unsigned int
1302 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303 {
1304 unsigned int offset = 0;
1305 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306
1307 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1308
1309 if (difference > 0)
1310 {
1311 if (! WORDS_BIG_ENDIAN)
1312 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1313 if (! BYTES_BIG_ENDIAN)
1314 offset += difference % UNITS_PER_WORD;
1315 }
1316
1317 return offset;
1318 }
1319
1320 /* Return 1 iff X, assumed to be a SUBREG,
1321 refers to the least significant part of its containing reg.
1322 If X is not a SUBREG, always return 1 (it is its own low part!). */
1323
1324 int
1325 subreg_lowpart_p (const_rtx x)
1326 {
1327 if (GET_CODE (x) != SUBREG)
1328 return 1;
1329 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1330 return 0;
1331
1332 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1333 == SUBREG_BYTE (x));
1334 }
1335 \f
1336 /* Return subword OFFSET of operand OP.
1337 The word number, OFFSET, is interpreted as the word number starting
1338 at the low-order address. OFFSET 0 is the low-order word if not
1339 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1340
1341 If we cannot extract the required word, we return zero. Otherwise,
1342 an rtx corresponding to the requested word will be returned.
1343
1344 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1345 reload has completed, a valid address will always be returned. After
1346 reload, if a valid address cannot be returned, we return zero.
1347
1348 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1349 it is the responsibility of the caller.
1350
1351 MODE is the mode of OP in case it is a CONST_INT.
1352
1353 ??? This is still rather broken for some cases. The problem for the
1354 moment is that all callers of this thing provide no 'goal mode' to
1355 tell us to work with. This exists because all callers were written
1356 in a word based SUBREG world.
1357 Now use of this function can be deprecated by simplify_subreg in most
1358 cases.
1359 */
1360
1361 rtx
1362 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1363 {
1364 if (mode == VOIDmode)
1365 mode = GET_MODE (op);
1366
1367 gcc_assert (mode != VOIDmode);
1368
1369 /* If OP is narrower than a word, fail. */
1370 if (mode != BLKmode
1371 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1372 return 0;
1373
1374 /* If we want a word outside OP, return zero. */
1375 if (mode != BLKmode
1376 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1377 return const0_rtx;
1378
1379 /* Form a new MEM at the requested address. */
1380 if (MEM_P (op))
1381 {
1382 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1383
1384 if (! validate_address)
1385 return new_rtx;
1386
1387 else if (reload_completed)
1388 {
1389 if (! strict_memory_address_addr_space_p (word_mode,
1390 XEXP (new_rtx, 0),
1391 MEM_ADDR_SPACE (op)))
1392 return 0;
1393 }
1394 else
1395 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1396 }
1397
1398 /* Rest can be handled by simplify_subreg. */
1399 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1400 }
1401
1402 /* Similar to `operand_subword', but never return 0. If we can't
1403 extract the required subword, put OP into a register and try again.
1404 The second attempt must succeed. We always validate the address in
1405 this case.
1406
1407 MODE is the mode of OP, in case it is CONST_INT. */
1408
1409 rtx
1410 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1411 {
1412 rtx result = operand_subword (op, offset, 1, mode);
1413
1414 if (result)
1415 return result;
1416
1417 if (mode != BLKmode && mode != VOIDmode)
1418 {
1419 /* If this is a register which can not be accessed by words, copy it
1420 to a pseudo register. */
1421 if (REG_P (op))
1422 op = copy_to_reg (op);
1423 else
1424 op = force_reg (mode, op);
1425 }
1426
1427 result = operand_subword (op, offset, 1, mode);
1428 gcc_assert (result);
1429
1430 return result;
1431 }
1432 \f
1433 /* Returns 1 if both MEM_EXPR can be considered equal
1434 and 0 otherwise. */
1435
1436 int
1437 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1438 {
1439 if (expr1 == expr2)
1440 return 1;
1441
1442 if (! expr1 || ! expr2)
1443 return 0;
1444
1445 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1446 return 0;
1447
1448 return operand_equal_p (expr1, expr2, 0);
1449 }
1450
1451 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1452 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1453 -1 if not known. */
1454
1455 int
1456 get_mem_align_offset (rtx mem, unsigned int align)
1457 {
1458 tree expr;
1459 unsigned HOST_WIDE_INT offset;
1460
1461 /* This function can't use
1462 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1463 || !CONST_INT_P (MEM_OFFSET (mem))
1464 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1465 < align))
1466 return -1;
1467 else
1468 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469 for two reasons:
1470 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471 for <variable>. get_inner_reference doesn't handle it and
1472 even if it did, the alignment in that case needs to be determined
1473 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475 isn't sufficiently aligned, the object it is in might be. */
1476 gcc_assert (MEM_P (mem));
1477 expr = MEM_EXPR (mem);
1478 if (expr == NULL_TREE
1479 || MEM_OFFSET (mem) == NULL_RTX
1480 || !CONST_INT_P (MEM_OFFSET (mem)))
1481 return -1;
1482
1483 offset = INTVAL (MEM_OFFSET (mem));
1484 if (DECL_P (expr))
1485 {
1486 if (DECL_ALIGN (expr) < align)
1487 return -1;
1488 }
1489 else if (INDIRECT_REF_P (expr))
1490 {
1491 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1492 return -1;
1493 }
1494 else if (TREE_CODE (expr) == COMPONENT_REF)
1495 {
1496 while (1)
1497 {
1498 tree inner = TREE_OPERAND (expr, 0);
1499 tree field = TREE_OPERAND (expr, 1);
1500 tree byte_offset = component_ref_field_offset (expr);
1501 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1502
1503 if (!byte_offset
1504 || !host_integerp (byte_offset, 1)
1505 || !host_integerp (bit_offset, 1))
1506 return -1;
1507
1508 offset += tree_low_cst (byte_offset, 1);
1509 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1510
1511 if (inner == NULL_TREE)
1512 {
1513 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1514 < (unsigned int) align)
1515 return -1;
1516 break;
1517 }
1518 else if (DECL_P (inner))
1519 {
1520 if (DECL_ALIGN (inner) < align)
1521 return -1;
1522 break;
1523 }
1524 else if (TREE_CODE (inner) != COMPONENT_REF)
1525 return -1;
1526 expr = inner;
1527 }
1528 }
1529 else
1530 return -1;
1531
1532 return offset & ((align / BITS_PER_UNIT) - 1);
1533 }
1534
1535 /* Given REF (a MEM) and T, either the type of X or the expression
1536 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1537 if we are making a new object of this type. BITPOS is nonzero if
1538 there is an offset outstanding on T that will be applied later. */
1539
1540 void
1541 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1542 HOST_WIDE_INT bitpos)
1543 {
1544 alias_set_type alias = MEM_ALIAS_SET (ref);
1545 tree expr = MEM_EXPR (ref);
1546 rtx offset = MEM_OFFSET (ref);
1547 rtx size = MEM_SIZE (ref);
1548 unsigned int align = MEM_ALIGN (ref);
1549 HOST_WIDE_INT apply_bitpos = 0;
1550 tree type;
1551
1552 /* It can happen that type_for_mode was given a mode for which there
1553 is no language-level type. In which case it returns NULL, which
1554 we can see here. */
1555 if (t == NULL_TREE)
1556 return;
1557
1558 type = TYPE_P (t) ? t : TREE_TYPE (t);
1559 if (type == error_mark_node)
1560 return;
1561
1562 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563 wrong answer, as it assumes that DECL_RTL already has the right alias
1564 info. Callers should not set DECL_RTL until after the call to
1565 set_mem_attributes. */
1566 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1567
1568 /* Get the alias set from the expression or type (perhaps using a
1569 front-end routine) and use it. */
1570 alias = get_alias_set (t);
1571
1572 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1573 MEM_IN_STRUCT_P (ref)
1574 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1575 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1576
1577 /* If we are making an object of this type, or if this is a DECL, we know
1578 that it is a scalar if the type is not an aggregate. */
1579 if ((objectp || DECL_P (t))
1580 && ! AGGREGATE_TYPE_P (type)
1581 && TREE_CODE (type) != COMPLEX_TYPE)
1582 MEM_SCALAR_P (ref) = 1;
1583
1584 /* We can set the alignment from the type if we are making an object,
1585 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1586 if (objectp || TREE_CODE (t) == INDIRECT_REF
1587 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1588 || TYPE_ALIGN_OK (type))
1589 align = MAX (align, TYPE_ALIGN (type));
1590 else
1591 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1592 {
1593 if (integer_zerop (TREE_OPERAND (t, 1)))
1594 /* We don't know anything about the alignment. */
1595 align = BITS_PER_UNIT;
1596 else
1597 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1598 }
1599
1600 /* If the size is known, we can set that. */
1601 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1602 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1603
1604 /* If T is not a type, we may be able to deduce some more information about
1605 the expression. */
1606 if (! TYPE_P (t))
1607 {
1608 tree base;
1609 bool align_computed = false;
1610
1611 if (TREE_THIS_VOLATILE (t))
1612 MEM_VOLATILE_P (ref) = 1;
1613
1614 /* Now remove any conversions: they don't change what the underlying
1615 object is. Likewise for SAVE_EXPR. */
1616 while (CONVERT_EXPR_P (t)
1617 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1618 || TREE_CODE (t) == SAVE_EXPR)
1619 t = TREE_OPERAND (t, 0);
1620
1621 /* We may look through structure-like accesses for the purposes of
1622 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1623 base = t;
1624 while (TREE_CODE (base) == COMPONENT_REF
1625 || TREE_CODE (base) == REALPART_EXPR
1626 || TREE_CODE (base) == IMAGPART_EXPR
1627 || TREE_CODE (base) == BIT_FIELD_REF)
1628 base = TREE_OPERAND (base, 0);
1629
1630 if (DECL_P (base))
1631 {
1632 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1633 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1634 else
1635 MEM_NOTRAP_P (ref) = 1;
1636 }
1637 else
1638 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1639
1640 base = get_base_address (base);
1641 if (base && DECL_P (base)
1642 && TREE_READONLY (base)
1643 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1644 {
1645 tree base_type = TREE_TYPE (base);
1646 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1647 || DECL_ARTIFICIAL (base));
1648 MEM_READONLY_P (ref) = 1;
1649 }
1650
1651 /* If this expression uses it's parent's alias set, mark it such
1652 that we won't change it. */
1653 if (component_uses_parent_alias_set (t))
1654 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1655
1656 /* If this is a decl, set the attributes of the MEM from it. */
1657 if (DECL_P (t))
1658 {
1659 expr = t;
1660 offset = const0_rtx;
1661 apply_bitpos = bitpos;
1662 size = (DECL_SIZE_UNIT (t)
1663 && host_integerp (DECL_SIZE_UNIT (t), 1)
1664 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1665 align = DECL_ALIGN (t);
1666 align_computed = true;
1667 }
1668
1669 /* If this is a constant, we know the alignment. */
1670 else if (CONSTANT_CLASS_P (t))
1671 {
1672 align = TYPE_ALIGN (type);
1673 #ifdef CONSTANT_ALIGNMENT
1674 align = CONSTANT_ALIGNMENT (t, align);
1675 #endif
1676 align_computed = true;
1677 }
1678
1679 /* If this is a field reference and not a bit-field, record it. */
1680 /* ??? There is some information that can be gleaned from bit-fields,
1681 such as the word offset in the structure that might be modified.
1682 But skip it for now. */
1683 else if (TREE_CODE (t) == COMPONENT_REF
1684 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1685 {
1686 expr = t;
1687 offset = const0_rtx;
1688 apply_bitpos = bitpos;
1689 /* ??? Any reason the field size would be different than
1690 the size we got from the type? */
1691 }
1692
1693 /* If this is an array reference, look for an outer field reference. */
1694 else if (TREE_CODE (t) == ARRAY_REF)
1695 {
1696 tree off_tree = size_zero_node;
1697 /* We can't modify t, because we use it at the end of the
1698 function. */
1699 tree t2 = t;
1700
1701 do
1702 {
1703 tree index = TREE_OPERAND (t2, 1);
1704 tree low_bound = array_ref_low_bound (t2);
1705 tree unit_size = array_ref_element_size (t2);
1706
1707 /* We assume all arrays have sizes that are a multiple of a byte.
1708 First subtract the lower bound, if any, in the type of the
1709 index, then convert to sizetype and multiply by the size of
1710 the array element. */
1711 if (! integer_zerop (low_bound))
1712 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1713 index, low_bound);
1714
1715 off_tree = size_binop (PLUS_EXPR,
1716 size_binop (MULT_EXPR,
1717 fold_convert (sizetype,
1718 index),
1719 unit_size),
1720 off_tree);
1721 t2 = TREE_OPERAND (t2, 0);
1722 }
1723 while (TREE_CODE (t2) == ARRAY_REF);
1724
1725 if (DECL_P (t2))
1726 {
1727 expr = t2;
1728 offset = NULL;
1729 if (host_integerp (off_tree, 1))
1730 {
1731 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1732 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1733 align = DECL_ALIGN (t2);
1734 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1735 align = aoff;
1736 align_computed = true;
1737 offset = GEN_INT (ioff);
1738 apply_bitpos = bitpos;
1739 }
1740 }
1741 else if (TREE_CODE (t2) == COMPONENT_REF)
1742 {
1743 expr = t2;
1744 offset = NULL;
1745 if (host_integerp (off_tree, 1))
1746 {
1747 offset = GEN_INT (tree_low_cst (off_tree, 1));
1748 apply_bitpos = bitpos;
1749 }
1750 /* ??? Any reason the field size would be different than
1751 the size we got from the type? */
1752 }
1753
1754 /* If this is an indirect reference, record it. */
1755 else if (TREE_CODE (t) == INDIRECT_REF
1756 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1757 {
1758 expr = t;
1759 offset = const0_rtx;
1760 apply_bitpos = bitpos;
1761 }
1762 }
1763
1764 /* If this is an indirect reference, record it. */
1765 else if (TREE_CODE (t) == INDIRECT_REF
1766 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1767 {
1768 expr = t;
1769 offset = const0_rtx;
1770 apply_bitpos = bitpos;
1771 }
1772
1773 if (!align_computed && !INDIRECT_REF_P (t))
1774 {
1775 unsigned int obj_align
1776 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1777 align = MAX (align, obj_align);
1778 }
1779 }
1780
1781 /* If we modified OFFSET based on T, then subtract the outstanding
1782 bit position offset. Similarly, increase the size of the accessed
1783 object to contain the negative offset. */
1784 if (apply_bitpos)
1785 {
1786 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1787 if (size)
1788 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1789 }
1790
1791 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1792 {
1793 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1794 we're overlapping. */
1795 offset = NULL;
1796 expr = NULL;
1797 }
1798
1799 /* Now set the attributes we computed above. */
1800 MEM_ATTRS (ref)
1801 = get_mem_attrs (alias, expr, offset, size, align,
1802 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1803
1804 /* If this is already known to be a scalar or aggregate, we are done. */
1805 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1806 return;
1807
1808 /* If it is a reference into an aggregate, this is part of an aggregate.
1809 Otherwise we don't know. */
1810 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1811 || TREE_CODE (t) == ARRAY_RANGE_REF
1812 || TREE_CODE (t) == BIT_FIELD_REF)
1813 MEM_IN_STRUCT_P (ref) = 1;
1814 }
1815
1816 void
1817 set_mem_attributes (rtx ref, tree t, int objectp)
1818 {
1819 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1820 }
1821
1822 /* Set the alias set of MEM to SET. */
1823
1824 void
1825 set_mem_alias_set (rtx mem, alias_set_type set)
1826 {
1827 #ifdef ENABLE_CHECKING
1828 /* If the new and old alias sets don't conflict, something is wrong. */
1829 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1830 #endif
1831
1832 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1833 MEM_SIZE (mem), MEM_ALIGN (mem),
1834 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1835 }
1836
1837 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1838
1839 void
1840 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1841 {
1842 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1843 MEM_OFFSET (mem), MEM_SIZE (mem),
1844 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1845 }
1846
1847 /* Set the alignment of MEM to ALIGN bits. */
1848
1849 void
1850 set_mem_align (rtx mem, unsigned int align)
1851 {
1852 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1853 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1854 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1855 }
1856
1857 /* Set the expr for MEM to EXPR. */
1858
1859 void
1860 set_mem_expr (rtx mem, tree expr)
1861 {
1862 MEM_ATTRS (mem)
1863 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1864 MEM_SIZE (mem), MEM_ALIGN (mem),
1865 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1866 }
1867
1868 /* Set the offset of MEM to OFFSET. */
1869
1870 void
1871 set_mem_offset (rtx mem, rtx offset)
1872 {
1873 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1874 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1875 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1876 }
1877
1878 /* Set the size of MEM to SIZE. */
1879
1880 void
1881 set_mem_size (rtx mem, rtx size)
1882 {
1883 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1884 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1885 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1886 }
1887 \f
1888 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1889 and its address changed to ADDR. (VOIDmode means don't change the mode.
1890 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1891 returned memory location is required to be valid. The memory
1892 attributes are not changed. */
1893
1894 static rtx
1895 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1896 {
1897 addr_space_t as;
1898 rtx new_rtx;
1899
1900 gcc_assert (MEM_P (memref));
1901 as = MEM_ADDR_SPACE (memref);
1902 if (mode == VOIDmode)
1903 mode = GET_MODE (memref);
1904 if (addr == 0)
1905 addr = XEXP (memref, 0);
1906 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1907 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1908 return memref;
1909
1910 if (validate)
1911 {
1912 if (reload_in_progress || reload_completed)
1913 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1914 else
1915 addr = memory_address_addr_space (mode, addr, as);
1916 }
1917
1918 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1919 return memref;
1920
1921 new_rtx = gen_rtx_MEM (mode, addr);
1922 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1923 return new_rtx;
1924 }
1925
1926 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1927 way we are changing MEMREF, so we only preserve the alias set. */
1928
1929 rtx
1930 change_address (rtx memref, enum machine_mode mode, rtx addr)
1931 {
1932 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1933 enum machine_mode mmode = GET_MODE (new_rtx);
1934 unsigned int align;
1935
1936 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1937 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1938
1939 /* If there are no changes, just return the original memory reference. */
1940 if (new_rtx == memref)
1941 {
1942 if (MEM_ATTRS (memref) == 0
1943 || (MEM_EXPR (memref) == NULL
1944 && MEM_OFFSET (memref) == NULL
1945 && MEM_SIZE (memref) == size
1946 && MEM_ALIGN (memref) == align))
1947 return new_rtx;
1948
1949 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1950 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1951 }
1952
1953 MEM_ATTRS (new_rtx)
1954 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1955 MEM_ADDR_SPACE (memref), mmode);
1956
1957 return new_rtx;
1958 }
1959
1960 /* Return a memory reference like MEMREF, but with its mode changed
1961 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1962 nonzero, the memory address is forced to be valid.
1963 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1964 and caller is responsible for adjusting MEMREF base register. */
1965
1966 rtx
1967 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1968 int validate, int adjust)
1969 {
1970 rtx addr = XEXP (memref, 0);
1971 rtx new_rtx;
1972 rtx memoffset = MEM_OFFSET (memref);
1973 rtx size = 0;
1974 unsigned int memalign = MEM_ALIGN (memref);
1975 addr_space_t as = MEM_ADDR_SPACE (memref);
1976 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1977 int pbits;
1978
1979 /* If there are no changes, just return the original memory reference. */
1980 if (mode == GET_MODE (memref) && !offset
1981 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1982 return memref;
1983
1984 /* ??? Prefer to create garbage instead of creating shared rtl.
1985 This may happen even if offset is nonzero -- consider
1986 (plus (plus reg reg) const_int) -- so do this always. */
1987 addr = copy_rtx (addr);
1988
1989 /* Convert a possibly large offset to a signed value within the
1990 range of the target address space. */
1991 pbits = GET_MODE_BITSIZE (address_mode);
1992 if (HOST_BITS_PER_WIDE_INT > pbits)
1993 {
1994 int shift = HOST_BITS_PER_WIDE_INT - pbits;
1995 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
1996 >> shift);
1997 }
1998
1999 if (adjust)
2000 {
2001 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2002 object, we can merge it into the LO_SUM. */
2003 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2004 && offset >= 0
2005 && (unsigned HOST_WIDE_INT) offset
2006 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2007 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2008 plus_constant (XEXP (addr, 1), offset));
2009 else
2010 addr = plus_constant (addr, offset);
2011 }
2012
2013 new_rtx = change_address_1 (memref, mode, addr, validate);
2014
2015 /* If the address is a REG, change_address_1 rightfully returns memref,
2016 but this would destroy memref's MEM_ATTRS. */
2017 if (new_rtx == memref && offset != 0)
2018 new_rtx = copy_rtx (new_rtx);
2019
2020 /* Compute the new values of the memory attributes due to this adjustment.
2021 We add the offsets and update the alignment. */
2022 if (memoffset)
2023 memoffset = GEN_INT (offset + INTVAL (memoffset));
2024
2025 /* Compute the new alignment by taking the MIN of the alignment and the
2026 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2027 if zero. */
2028 if (offset != 0)
2029 memalign
2030 = MIN (memalign,
2031 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2032
2033 /* We can compute the size in a number of ways. */
2034 if (GET_MODE (new_rtx) != BLKmode)
2035 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2036 else if (MEM_SIZE (memref))
2037 size = plus_constant (MEM_SIZE (memref), -offset);
2038
2039 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2040 memoffset, size, memalign, as,
2041 GET_MODE (new_rtx));
2042
2043 /* At some point, we should validate that this offset is within the object,
2044 if all the appropriate values are known. */
2045 return new_rtx;
2046 }
2047
2048 /* Return a memory reference like MEMREF, but with its mode changed
2049 to MODE and its address changed to ADDR, which is assumed to be
2050 MEMREF offset by OFFSET bytes. If VALIDATE is
2051 nonzero, the memory address is forced to be valid. */
2052
2053 rtx
2054 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2055 HOST_WIDE_INT offset, int validate)
2056 {
2057 memref = change_address_1 (memref, VOIDmode, addr, validate);
2058 return adjust_address_1 (memref, mode, offset, validate, 0);
2059 }
2060
2061 /* Return a memory reference like MEMREF, but whose address is changed by
2062 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2063 known to be in OFFSET (possibly 1). */
2064
2065 rtx
2066 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2067 {
2068 rtx new_rtx, addr = XEXP (memref, 0);
2069 addr_space_t as = MEM_ADDR_SPACE (memref);
2070 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2071
2072 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2073
2074 /* At this point we don't know _why_ the address is invalid. It
2075 could have secondary memory references, multiplies or anything.
2076
2077 However, if we did go and rearrange things, we can wind up not
2078 being able to recognize the magic around pic_offset_table_rtx.
2079 This stuff is fragile, and is yet another example of why it is
2080 bad to expose PIC machinery too early. */
2081 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2082 && GET_CODE (addr) == PLUS
2083 && XEXP (addr, 0) == pic_offset_table_rtx)
2084 {
2085 addr = force_reg (GET_MODE (addr), addr);
2086 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2087 }
2088
2089 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2090 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2091
2092 /* If there are no changes, just return the original memory reference. */
2093 if (new_rtx == memref)
2094 return new_rtx;
2095
2096 /* Update the alignment to reflect the offset. Reset the offset, which
2097 we don't know. */
2098 MEM_ATTRS (new_rtx)
2099 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2100 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2101 as, GET_MODE (new_rtx));
2102 return new_rtx;
2103 }
2104
2105 /* Return a memory reference like MEMREF, but with its address changed to
2106 ADDR. The caller is asserting that the actual piece of memory pointed
2107 to is the same, just the form of the address is being changed, such as
2108 by putting something into a register. */
2109
2110 rtx
2111 replace_equiv_address (rtx memref, rtx addr)
2112 {
2113 /* change_address_1 copies the memory attribute structure without change
2114 and that's exactly what we want here. */
2115 update_temp_slot_address (XEXP (memref, 0), addr);
2116 return change_address_1 (memref, VOIDmode, addr, 1);
2117 }
2118
2119 /* Likewise, but the reference is not required to be valid. */
2120
2121 rtx
2122 replace_equiv_address_nv (rtx memref, rtx addr)
2123 {
2124 return change_address_1 (memref, VOIDmode, addr, 0);
2125 }
2126
2127 /* Return a memory reference like MEMREF, but with its mode widened to
2128 MODE and offset by OFFSET. This would be used by targets that e.g.
2129 cannot issue QImode memory operations and have to use SImode memory
2130 operations plus masking logic. */
2131
2132 rtx
2133 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2134 {
2135 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2136 tree expr = MEM_EXPR (new_rtx);
2137 rtx memoffset = MEM_OFFSET (new_rtx);
2138 unsigned int size = GET_MODE_SIZE (mode);
2139
2140 /* If there are no changes, just return the original memory reference. */
2141 if (new_rtx == memref)
2142 return new_rtx;
2143
2144 /* If we don't know what offset we were at within the expression, then
2145 we can't know if we've overstepped the bounds. */
2146 if (! memoffset)
2147 expr = NULL_TREE;
2148
2149 while (expr)
2150 {
2151 if (TREE_CODE (expr) == COMPONENT_REF)
2152 {
2153 tree field = TREE_OPERAND (expr, 1);
2154 tree offset = component_ref_field_offset (expr);
2155
2156 if (! DECL_SIZE_UNIT (field))
2157 {
2158 expr = NULL_TREE;
2159 break;
2160 }
2161
2162 /* Is the field at least as large as the access? If so, ok,
2163 otherwise strip back to the containing structure. */
2164 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2165 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2166 && INTVAL (memoffset) >= 0)
2167 break;
2168
2169 if (! host_integerp (offset, 1))
2170 {
2171 expr = NULL_TREE;
2172 break;
2173 }
2174
2175 expr = TREE_OPERAND (expr, 0);
2176 memoffset
2177 = (GEN_INT (INTVAL (memoffset)
2178 + tree_low_cst (offset, 1)
2179 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2180 / BITS_PER_UNIT)));
2181 }
2182 /* Similarly for the decl. */
2183 else if (DECL_P (expr)
2184 && DECL_SIZE_UNIT (expr)
2185 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2186 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2187 && (! memoffset || INTVAL (memoffset) >= 0))
2188 break;
2189 else
2190 {
2191 /* The widened memory access overflows the expression, which means
2192 that it could alias another expression. Zap it. */
2193 expr = NULL_TREE;
2194 break;
2195 }
2196 }
2197
2198 if (! expr)
2199 memoffset = NULL_RTX;
2200
2201 /* The widened memory may alias other stuff, so zap the alias set. */
2202 /* ??? Maybe use get_alias_set on any remaining expression. */
2203
2204 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2205 MEM_ALIGN (new_rtx),
2206 MEM_ADDR_SPACE (new_rtx), mode);
2207
2208 return new_rtx;
2209 }
2210 \f
2211 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2212 static GTY(()) tree spill_slot_decl;
2213
2214 tree
2215 get_spill_slot_decl (bool force_build_p)
2216 {
2217 tree d = spill_slot_decl;
2218 rtx rd;
2219
2220 if (d || !force_build_p)
2221 return d;
2222
2223 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2224 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2225 DECL_ARTIFICIAL (d) = 1;
2226 DECL_IGNORED_P (d) = 1;
2227 TREE_USED (d) = 1;
2228 TREE_THIS_NOTRAP (d) = 1;
2229 spill_slot_decl = d;
2230
2231 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2232 MEM_NOTRAP_P (rd) = 1;
2233 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2234 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2235 SET_DECL_RTL (d, rd);
2236
2237 return d;
2238 }
2239
2240 /* Given MEM, a result from assign_stack_local, fill in the memory
2241 attributes as appropriate for a register allocator spill slot.
2242 These slots are not aliasable by other memory. We arrange for
2243 them all to use a single MEM_EXPR, so that the aliasing code can
2244 work properly in the case of shared spill slots. */
2245
2246 void
2247 set_mem_attrs_for_spill (rtx mem)
2248 {
2249 alias_set_type alias;
2250 rtx addr, offset;
2251 tree expr;
2252
2253 expr = get_spill_slot_decl (true);
2254 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2255
2256 /* We expect the incoming memory to be of the form:
2257 (mem:MODE (plus (reg sfp) (const_int offset)))
2258 with perhaps the plus missing for offset = 0. */
2259 addr = XEXP (mem, 0);
2260 offset = const0_rtx;
2261 if (GET_CODE (addr) == PLUS
2262 && CONST_INT_P (XEXP (addr, 1)))
2263 offset = XEXP (addr, 1);
2264
2265 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2266 MEM_SIZE (mem), MEM_ALIGN (mem),
2267 ADDR_SPACE_GENERIC, GET_MODE (mem));
2268 MEM_NOTRAP_P (mem) = 1;
2269 }
2270 \f
2271 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2272
2273 rtx
2274 gen_label_rtx (void)
2275 {
2276 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2277 NULL, label_num++, NULL);
2278 }
2279 \f
2280 /* For procedure integration. */
2281
2282 /* Install new pointers to the first and last insns in the chain.
2283 Also, set cur_insn_uid to one higher than the last in use.
2284 Used for an inline-procedure after copying the insn chain. */
2285
2286 void
2287 set_new_first_and_last_insn (rtx first, rtx last)
2288 {
2289 rtx insn;
2290
2291 first_insn = first;
2292 last_insn = last;
2293 cur_insn_uid = 0;
2294
2295 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2296 {
2297 int debug_count = 0;
2298
2299 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2300 cur_debug_insn_uid = 0;
2301
2302 for (insn = first; insn; insn = NEXT_INSN (insn))
2303 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2304 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2305 else
2306 {
2307 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2308 if (DEBUG_INSN_P (insn))
2309 debug_count++;
2310 }
2311
2312 if (debug_count)
2313 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2314 else
2315 cur_debug_insn_uid++;
2316 }
2317 else
2318 for (insn = first; insn; insn = NEXT_INSN (insn))
2319 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2320
2321 cur_insn_uid++;
2322 }
2323 \f
2324 /* Go through all the RTL insn bodies and copy any invalid shared
2325 structure. This routine should only be called once. */
2326
2327 static void
2328 unshare_all_rtl_1 (rtx insn)
2329 {
2330 /* Unshare just about everything else. */
2331 unshare_all_rtl_in_chain (insn);
2332
2333 /* Make sure the addresses of stack slots found outside the insn chain
2334 (such as, in DECL_RTL of a variable) are not shared
2335 with the insn chain.
2336
2337 This special care is necessary when the stack slot MEM does not
2338 actually appear in the insn chain. If it does appear, its address
2339 is unshared from all else at that point. */
2340 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2341 }
2342
2343 /* Go through all the RTL insn bodies and copy any invalid shared
2344 structure, again. This is a fairly expensive thing to do so it
2345 should be done sparingly. */
2346
2347 void
2348 unshare_all_rtl_again (rtx insn)
2349 {
2350 rtx p;
2351 tree decl;
2352
2353 for (p = insn; p; p = NEXT_INSN (p))
2354 if (INSN_P (p))
2355 {
2356 reset_used_flags (PATTERN (p));
2357 reset_used_flags (REG_NOTES (p));
2358 }
2359
2360 /* Make sure that virtual stack slots are not shared. */
2361 set_used_decls (DECL_INITIAL (cfun->decl));
2362
2363 /* Make sure that virtual parameters are not shared. */
2364 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2365 set_used_flags (DECL_RTL (decl));
2366
2367 reset_used_flags (stack_slot_list);
2368
2369 unshare_all_rtl_1 (insn);
2370 }
2371
2372 unsigned int
2373 unshare_all_rtl (void)
2374 {
2375 unshare_all_rtl_1 (get_insns ());
2376 return 0;
2377 }
2378
2379 struct rtl_opt_pass pass_unshare_all_rtl =
2380 {
2381 {
2382 RTL_PASS,
2383 "unshare", /* name */
2384 NULL, /* gate */
2385 unshare_all_rtl, /* execute */
2386 NULL, /* sub */
2387 NULL, /* next */
2388 0, /* static_pass_number */
2389 TV_NONE, /* tv_id */
2390 0, /* properties_required */
2391 0, /* properties_provided */
2392 0, /* properties_destroyed */
2393 0, /* todo_flags_start */
2394 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2395 }
2396 };
2397
2398
2399 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2400 Recursively does the same for subexpressions. */
2401
2402 static void
2403 verify_rtx_sharing (rtx orig, rtx insn)
2404 {
2405 rtx x = orig;
2406 int i;
2407 enum rtx_code code;
2408 const char *format_ptr;
2409
2410 if (x == 0)
2411 return;
2412
2413 code = GET_CODE (x);
2414
2415 /* These types may be freely shared. */
2416
2417 switch (code)
2418 {
2419 case REG:
2420 case DEBUG_EXPR:
2421 case VALUE:
2422 case CONST_INT:
2423 case CONST_DOUBLE:
2424 case CONST_FIXED:
2425 case CONST_VECTOR:
2426 case SYMBOL_REF:
2427 case LABEL_REF:
2428 case CODE_LABEL:
2429 case PC:
2430 case CC0:
2431 case SCRATCH:
2432 return;
2433 /* SCRATCH must be shared because they represent distinct values. */
2434 case CLOBBER:
2435 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2436 return;
2437 break;
2438
2439 case CONST:
2440 if (shared_const_p (orig))
2441 return;
2442 break;
2443
2444 case MEM:
2445 /* A MEM is allowed to be shared if its address is constant. */
2446 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2447 || reload_completed || reload_in_progress)
2448 return;
2449
2450 break;
2451
2452 default:
2453 break;
2454 }
2455
2456 /* This rtx may not be shared. If it has already been seen,
2457 replace it with a copy of itself. */
2458 #ifdef ENABLE_CHECKING
2459 if (RTX_FLAG (x, used))
2460 {
2461 error ("invalid rtl sharing found in the insn");
2462 debug_rtx (insn);
2463 error ("shared rtx");
2464 debug_rtx (x);
2465 internal_error ("internal consistency failure");
2466 }
2467 #endif
2468 gcc_assert (!RTX_FLAG (x, used));
2469
2470 RTX_FLAG (x, used) = 1;
2471
2472 /* Now scan the subexpressions recursively. */
2473
2474 format_ptr = GET_RTX_FORMAT (code);
2475
2476 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2477 {
2478 switch (*format_ptr++)
2479 {
2480 case 'e':
2481 verify_rtx_sharing (XEXP (x, i), insn);
2482 break;
2483
2484 case 'E':
2485 if (XVEC (x, i) != NULL)
2486 {
2487 int j;
2488 int len = XVECLEN (x, i);
2489
2490 for (j = 0; j < len; j++)
2491 {
2492 /* We allow sharing of ASM_OPERANDS inside single
2493 instruction. */
2494 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2495 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2496 == ASM_OPERANDS))
2497 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2498 else
2499 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2500 }
2501 }
2502 break;
2503 }
2504 }
2505 return;
2506 }
2507
2508 /* Go through all the RTL insn bodies and check that there is no unexpected
2509 sharing in between the subexpressions. */
2510
2511 void
2512 verify_rtl_sharing (void)
2513 {
2514 rtx p;
2515
2516 for (p = get_insns (); p; p = NEXT_INSN (p))
2517 if (INSN_P (p))
2518 {
2519 reset_used_flags (PATTERN (p));
2520 reset_used_flags (REG_NOTES (p));
2521 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2522 {
2523 int i;
2524 rtx q, sequence = PATTERN (p);
2525
2526 for (i = 0; i < XVECLEN (sequence, 0); i++)
2527 {
2528 q = XVECEXP (sequence, 0, i);
2529 gcc_assert (INSN_P (q));
2530 reset_used_flags (PATTERN (q));
2531 reset_used_flags (REG_NOTES (q));
2532 }
2533 }
2534 }
2535
2536 for (p = get_insns (); p; p = NEXT_INSN (p))
2537 if (INSN_P (p))
2538 {
2539 verify_rtx_sharing (PATTERN (p), p);
2540 verify_rtx_sharing (REG_NOTES (p), p);
2541 }
2542 }
2543
2544 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2545 Assumes the mark bits are cleared at entry. */
2546
2547 void
2548 unshare_all_rtl_in_chain (rtx insn)
2549 {
2550 for (; insn; insn = NEXT_INSN (insn))
2551 if (INSN_P (insn))
2552 {
2553 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2554 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2555 }
2556 }
2557
2558 /* Go through all virtual stack slots of a function and mark them as
2559 shared. We never replace the DECL_RTLs themselves with a copy,
2560 but expressions mentioned into a DECL_RTL cannot be shared with
2561 expressions in the instruction stream.
2562
2563 Note that reload may convert pseudo registers into memories in-place.
2564 Pseudo registers are always shared, but MEMs never are. Thus if we
2565 reset the used flags on MEMs in the instruction stream, we must set
2566 them again on MEMs that appear in DECL_RTLs. */
2567
2568 static void
2569 set_used_decls (tree blk)
2570 {
2571 tree t;
2572
2573 /* Mark decls. */
2574 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2575 if (DECL_RTL_SET_P (t))
2576 set_used_flags (DECL_RTL (t));
2577
2578 /* Now process sub-blocks. */
2579 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2580 set_used_decls (t);
2581 }
2582
2583 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2584 Recursively does the same for subexpressions. Uses
2585 copy_rtx_if_shared_1 to reduce stack space. */
2586
2587 rtx
2588 copy_rtx_if_shared (rtx orig)
2589 {
2590 copy_rtx_if_shared_1 (&orig);
2591 return orig;
2592 }
2593
2594 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2595 use. Recursively does the same for subexpressions. */
2596
2597 static void
2598 copy_rtx_if_shared_1 (rtx *orig1)
2599 {
2600 rtx x;
2601 int i;
2602 enum rtx_code code;
2603 rtx *last_ptr;
2604 const char *format_ptr;
2605 int copied = 0;
2606 int length;
2607
2608 /* Repeat is used to turn tail-recursion into iteration. */
2609 repeat:
2610 x = *orig1;
2611
2612 if (x == 0)
2613 return;
2614
2615 code = GET_CODE (x);
2616
2617 /* These types may be freely shared. */
2618
2619 switch (code)
2620 {
2621 case REG:
2622 case DEBUG_EXPR:
2623 case VALUE:
2624 case CONST_INT:
2625 case CONST_DOUBLE:
2626 case CONST_FIXED:
2627 case CONST_VECTOR:
2628 case SYMBOL_REF:
2629 case LABEL_REF:
2630 case CODE_LABEL:
2631 case PC:
2632 case CC0:
2633 case SCRATCH:
2634 /* SCRATCH must be shared because they represent distinct values. */
2635 return;
2636 case CLOBBER:
2637 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2638 return;
2639 break;
2640
2641 case CONST:
2642 if (shared_const_p (x))
2643 return;
2644 break;
2645
2646 case DEBUG_INSN:
2647 case INSN:
2648 case JUMP_INSN:
2649 case CALL_INSN:
2650 case NOTE:
2651 case BARRIER:
2652 /* The chain of insns is not being copied. */
2653 return;
2654
2655 default:
2656 break;
2657 }
2658
2659 /* This rtx may not be shared. If it has already been seen,
2660 replace it with a copy of itself. */
2661
2662 if (RTX_FLAG (x, used))
2663 {
2664 x = shallow_copy_rtx (x);
2665 copied = 1;
2666 }
2667 RTX_FLAG (x, used) = 1;
2668
2669 /* Now scan the subexpressions recursively.
2670 We can store any replaced subexpressions directly into X
2671 since we know X is not shared! Any vectors in X
2672 must be copied if X was copied. */
2673
2674 format_ptr = GET_RTX_FORMAT (code);
2675 length = GET_RTX_LENGTH (code);
2676 last_ptr = NULL;
2677
2678 for (i = 0; i < length; i++)
2679 {
2680 switch (*format_ptr++)
2681 {
2682 case 'e':
2683 if (last_ptr)
2684 copy_rtx_if_shared_1 (last_ptr);
2685 last_ptr = &XEXP (x, i);
2686 break;
2687
2688 case 'E':
2689 if (XVEC (x, i) != NULL)
2690 {
2691 int j;
2692 int len = XVECLEN (x, i);
2693
2694 /* Copy the vector iff I copied the rtx and the length
2695 is nonzero. */
2696 if (copied && len > 0)
2697 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2698
2699 /* Call recursively on all inside the vector. */
2700 for (j = 0; j < len; j++)
2701 {
2702 if (last_ptr)
2703 copy_rtx_if_shared_1 (last_ptr);
2704 last_ptr = &XVECEXP (x, i, j);
2705 }
2706 }
2707 break;
2708 }
2709 }
2710 *orig1 = x;
2711 if (last_ptr)
2712 {
2713 orig1 = last_ptr;
2714 goto repeat;
2715 }
2716 return;
2717 }
2718
2719 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2720 to look for shared sub-parts. */
2721
2722 void
2723 reset_used_flags (rtx x)
2724 {
2725 int i, j;
2726 enum rtx_code code;
2727 const char *format_ptr;
2728 int length;
2729
2730 /* Repeat is used to turn tail-recursion into iteration. */
2731 repeat:
2732 if (x == 0)
2733 return;
2734
2735 code = GET_CODE (x);
2736
2737 /* These types may be freely shared so we needn't do any resetting
2738 for them. */
2739
2740 switch (code)
2741 {
2742 case REG:
2743 case DEBUG_EXPR:
2744 case VALUE:
2745 case CONST_INT:
2746 case CONST_DOUBLE:
2747 case CONST_FIXED:
2748 case CONST_VECTOR:
2749 case SYMBOL_REF:
2750 case CODE_LABEL:
2751 case PC:
2752 case CC0:
2753 return;
2754
2755 case DEBUG_INSN:
2756 case INSN:
2757 case JUMP_INSN:
2758 case CALL_INSN:
2759 case NOTE:
2760 case LABEL_REF:
2761 case BARRIER:
2762 /* The chain of insns is not being copied. */
2763 return;
2764
2765 default:
2766 break;
2767 }
2768
2769 RTX_FLAG (x, used) = 0;
2770
2771 format_ptr = GET_RTX_FORMAT (code);
2772 length = GET_RTX_LENGTH (code);
2773
2774 for (i = 0; i < length; i++)
2775 {
2776 switch (*format_ptr++)
2777 {
2778 case 'e':
2779 if (i == length-1)
2780 {
2781 x = XEXP (x, i);
2782 goto repeat;
2783 }
2784 reset_used_flags (XEXP (x, i));
2785 break;
2786
2787 case 'E':
2788 for (j = 0; j < XVECLEN (x, i); j++)
2789 reset_used_flags (XVECEXP (x, i, j));
2790 break;
2791 }
2792 }
2793 }
2794
2795 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2796 to look for shared sub-parts. */
2797
2798 void
2799 set_used_flags (rtx x)
2800 {
2801 int i, j;
2802 enum rtx_code code;
2803 const char *format_ptr;
2804
2805 if (x == 0)
2806 return;
2807
2808 code = GET_CODE (x);
2809
2810 /* These types may be freely shared so we needn't do any resetting
2811 for them. */
2812
2813 switch (code)
2814 {
2815 case REG:
2816 case DEBUG_EXPR:
2817 case VALUE:
2818 case CONST_INT:
2819 case CONST_DOUBLE:
2820 case CONST_FIXED:
2821 case CONST_VECTOR:
2822 case SYMBOL_REF:
2823 case CODE_LABEL:
2824 case PC:
2825 case CC0:
2826 return;
2827
2828 case DEBUG_INSN:
2829 case INSN:
2830 case JUMP_INSN:
2831 case CALL_INSN:
2832 case NOTE:
2833 case LABEL_REF:
2834 case BARRIER:
2835 /* The chain of insns is not being copied. */
2836 return;
2837
2838 default:
2839 break;
2840 }
2841
2842 RTX_FLAG (x, used) = 1;
2843
2844 format_ptr = GET_RTX_FORMAT (code);
2845 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2846 {
2847 switch (*format_ptr++)
2848 {
2849 case 'e':
2850 set_used_flags (XEXP (x, i));
2851 break;
2852
2853 case 'E':
2854 for (j = 0; j < XVECLEN (x, i); j++)
2855 set_used_flags (XVECEXP (x, i, j));
2856 break;
2857 }
2858 }
2859 }
2860 \f
2861 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2862 Return X or the rtx for the pseudo reg the value of X was copied into.
2863 OTHER must be valid as a SET_DEST. */
2864
2865 rtx
2866 make_safe_from (rtx x, rtx other)
2867 {
2868 while (1)
2869 switch (GET_CODE (other))
2870 {
2871 case SUBREG:
2872 other = SUBREG_REG (other);
2873 break;
2874 case STRICT_LOW_PART:
2875 case SIGN_EXTEND:
2876 case ZERO_EXTEND:
2877 other = XEXP (other, 0);
2878 break;
2879 default:
2880 goto done;
2881 }
2882 done:
2883 if ((MEM_P (other)
2884 && ! CONSTANT_P (x)
2885 && !REG_P (x)
2886 && GET_CODE (x) != SUBREG)
2887 || (REG_P (other)
2888 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2889 || reg_mentioned_p (other, x))))
2890 {
2891 rtx temp = gen_reg_rtx (GET_MODE (x));
2892 emit_move_insn (temp, x);
2893 return temp;
2894 }
2895 return x;
2896 }
2897 \f
2898 /* Emission of insns (adding them to the doubly-linked list). */
2899
2900 /* Return the first insn of the current sequence or current function. */
2901
2902 rtx
2903 get_insns (void)
2904 {
2905 return first_insn;
2906 }
2907
2908 /* Specify a new insn as the first in the chain. */
2909
2910 void
2911 set_first_insn (rtx insn)
2912 {
2913 gcc_assert (!PREV_INSN (insn));
2914 first_insn = insn;
2915 }
2916
2917 /* Return the last insn emitted in current sequence or current function. */
2918
2919 rtx
2920 get_last_insn (void)
2921 {
2922 return last_insn;
2923 }
2924
2925 /* Specify a new insn as the last in the chain. */
2926
2927 void
2928 set_last_insn (rtx insn)
2929 {
2930 gcc_assert (!NEXT_INSN (insn));
2931 last_insn = insn;
2932 }
2933
2934 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2935
2936 rtx
2937 get_last_insn_anywhere (void)
2938 {
2939 struct sequence_stack *stack;
2940 if (last_insn)
2941 return last_insn;
2942 for (stack = seq_stack; stack; stack = stack->next)
2943 if (stack->last != 0)
2944 return stack->last;
2945 return 0;
2946 }
2947
2948 /* Return the first nonnote insn emitted in current sequence or current
2949 function. This routine looks inside SEQUENCEs. */
2950
2951 rtx
2952 get_first_nonnote_insn (void)
2953 {
2954 rtx insn = first_insn;
2955
2956 if (insn)
2957 {
2958 if (NOTE_P (insn))
2959 for (insn = next_insn (insn);
2960 insn && NOTE_P (insn);
2961 insn = next_insn (insn))
2962 continue;
2963 else
2964 {
2965 if (NONJUMP_INSN_P (insn)
2966 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2967 insn = XVECEXP (PATTERN (insn), 0, 0);
2968 }
2969 }
2970
2971 return insn;
2972 }
2973
2974 /* Return the last nonnote insn emitted in current sequence or current
2975 function. This routine looks inside SEQUENCEs. */
2976
2977 rtx
2978 get_last_nonnote_insn (void)
2979 {
2980 rtx insn = last_insn;
2981
2982 if (insn)
2983 {
2984 if (NOTE_P (insn))
2985 for (insn = previous_insn (insn);
2986 insn && NOTE_P (insn);
2987 insn = previous_insn (insn))
2988 continue;
2989 else
2990 {
2991 if (NONJUMP_INSN_P (insn)
2992 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2993 insn = XVECEXP (PATTERN (insn), 0,
2994 XVECLEN (PATTERN (insn), 0) - 1);
2995 }
2996 }
2997
2998 return insn;
2999 }
3000
3001 /* Return a number larger than any instruction's uid in this function. */
3002
3003 int
3004 get_max_uid (void)
3005 {
3006 return cur_insn_uid;
3007 }
3008
3009 /* Return the number of actual (non-debug) insns emitted in this
3010 function. */
3011
3012 int
3013 get_max_insn_count (void)
3014 {
3015 int n = cur_insn_uid;
3016
3017 /* The table size must be stable across -g, to avoid codegen
3018 differences due to debug insns, and not be affected by
3019 -fmin-insn-uid, to avoid excessive table size and to simplify
3020 debugging of -fcompare-debug failures. */
3021 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3022 n -= cur_debug_insn_uid;
3023 else
3024 n -= MIN_NONDEBUG_INSN_UID;
3025
3026 return n;
3027 }
3028
3029 \f
3030 /* Return the next insn. If it is a SEQUENCE, return the first insn
3031 of the sequence. */
3032
3033 rtx
3034 next_insn (rtx insn)
3035 {
3036 if (insn)
3037 {
3038 insn = NEXT_INSN (insn);
3039 if (insn && NONJUMP_INSN_P (insn)
3040 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3041 insn = XVECEXP (PATTERN (insn), 0, 0);
3042 }
3043
3044 return insn;
3045 }
3046
3047 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3048 of the sequence. */
3049
3050 rtx
3051 previous_insn (rtx insn)
3052 {
3053 if (insn)
3054 {
3055 insn = PREV_INSN (insn);
3056 if (insn && NONJUMP_INSN_P (insn)
3057 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3058 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3059 }
3060
3061 return insn;
3062 }
3063
3064 /* Return the next insn after INSN that is not a NOTE. This routine does not
3065 look inside SEQUENCEs. */
3066
3067 rtx
3068 next_nonnote_insn (rtx insn)
3069 {
3070 while (insn)
3071 {
3072 insn = NEXT_INSN (insn);
3073 if (insn == 0 || !NOTE_P (insn))
3074 break;
3075 }
3076
3077 return insn;
3078 }
3079
3080 /* Return the next insn after INSN that is not a NOTE, but stop the
3081 search before we enter another basic block. This routine does not
3082 look inside SEQUENCEs. */
3083
3084 rtx
3085 next_nonnote_insn_bb (rtx insn)
3086 {
3087 while (insn)
3088 {
3089 insn = NEXT_INSN (insn);
3090 if (insn == 0 || !NOTE_P (insn))
3091 break;
3092 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3093 return NULL_RTX;
3094 }
3095
3096 return insn;
3097 }
3098
3099 /* Return the previous insn before INSN that is not a NOTE. This routine does
3100 not look inside SEQUENCEs. */
3101
3102 rtx
3103 prev_nonnote_insn (rtx insn)
3104 {
3105 while (insn)
3106 {
3107 insn = PREV_INSN (insn);
3108 if (insn == 0 || !NOTE_P (insn))
3109 break;
3110 }
3111
3112 return insn;
3113 }
3114
3115 /* Return the previous insn before INSN that is not a NOTE, but stop
3116 the search before we enter another basic block. This routine does
3117 not look inside SEQUENCEs. */
3118
3119 rtx
3120 prev_nonnote_insn_bb (rtx insn)
3121 {
3122 while (insn)
3123 {
3124 insn = PREV_INSN (insn);
3125 if (insn == 0 || !NOTE_P (insn))
3126 break;
3127 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3128 return NULL_RTX;
3129 }
3130
3131 return insn;
3132 }
3133
3134 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3135 routine does not look inside SEQUENCEs. */
3136
3137 rtx
3138 next_nondebug_insn (rtx insn)
3139 {
3140 while (insn)
3141 {
3142 insn = NEXT_INSN (insn);
3143 if (insn == 0 || !DEBUG_INSN_P (insn))
3144 break;
3145 }
3146
3147 return insn;
3148 }
3149
3150 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3151 This routine does not look inside SEQUENCEs. */
3152
3153 rtx
3154 prev_nondebug_insn (rtx insn)
3155 {
3156 while (insn)
3157 {
3158 insn = PREV_INSN (insn);
3159 if (insn == 0 || !DEBUG_INSN_P (insn))
3160 break;
3161 }
3162
3163 return insn;
3164 }
3165
3166 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3167 or 0, if there is none. This routine does not look inside
3168 SEQUENCEs. */
3169
3170 rtx
3171 next_real_insn (rtx insn)
3172 {
3173 while (insn)
3174 {
3175 insn = NEXT_INSN (insn);
3176 if (insn == 0 || INSN_P (insn))
3177 break;
3178 }
3179
3180 return insn;
3181 }
3182
3183 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3184 or 0, if there is none. This routine does not look inside
3185 SEQUENCEs. */
3186
3187 rtx
3188 prev_real_insn (rtx insn)
3189 {
3190 while (insn)
3191 {
3192 insn = PREV_INSN (insn);
3193 if (insn == 0 || INSN_P (insn))
3194 break;
3195 }
3196
3197 return insn;
3198 }
3199
3200 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3201 This routine does not look inside SEQUENCEs. */
3202
3203 rtx
3204 last_call_insn (void)
3205 {
3206 rtx insn;
3207
3208 for (insn = get_last_insn ();
3209 insn && !CALL_P (insn);
3210 insn = PREV_INSN (insn))
3211 ;
3212
3213 return insn;
3214 }
3215
3216 /* Find the next insn after INSN that really does something. This routine
3217 does not look inside SEQUENCEs. After reload this also skips over
3218 standalone USE and CLOBBER insn. */
3219
3220 int
3221 active_insn_p (const_rtx insn)
3222 {
3223 return (CALL_P (insn) || JUMP_P (insn)
3224 || (NONJUMP_INSN_P (insn)
3225 && (! reload_completed
3226 || (GET_CODE (PATTERN (insn)) != USE
3227 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3228 }
3229
3230 rtx
3231 next_active_insn (rtx insn)
3232 {
3233 while (insn)
3234 {
3235 insn = NEXT_INSN (insn);
3236 if (insn == 0 || active_insn_p (insn))
3237 break;
3238 }
3239
3240 return insn;
3241 }
3242
3243 /* Find the last insn before INSN that really does something. This routine
3244 does not look inside SEQUENCEs. After reload this also skips over
3245 standalone USE and CLOBBER insn. */
3246
3247 rtx
3248 prev_active_insn (rtx insn)
3249 {
3250 while (insn)
3251 {
3252 insn = PREV_INSN (insn);
3253 if (insn == 0 || active_insn_p (insn))
3254 break;
3255 }
3256
3257 return insn;
3258 }
3259
3260 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3261
3262 rtx
3263 next_label (rtx insn)
3264 {
3265 while (insn)
3266 {
3267 insn = NEXT_INSN (insn);
3268 if (insn == 0 || LABEL_P (insn))
3269 break;
3270 }
3271
3272 return insn;
3273 }
3274
3275 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3276
3277 rtx
3278 prev_label (rtx insn)
3279 {
3280 while (insn)
3281 {
3282 insn = PREV_INSN (insn);
3283 if (insn == 0 || LABEL_P (insn))
3284 break;
3285 }
3286
3287 return insn;
3288 }
3289
3290 /* Return the last label to mark the same position as LABEL. Return null
3291 if LABEL itself is null. */
3292
3293 rtx
3294 skip_consecutive_labels (rtx label)
3295 {
3296 rtx insn;
3297
3298 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3299 if (LABEL_P (insn))
3300 label = insn;
3301
3302 return label;
3303 }
3304 \f
3305 #ifdef HAVE_cc0
3306 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3307 and REG_CC_USER notes so we can find it. */
3308
3309 void
3310 link_cc0_insns (rtx insn)
3311 {
3312 rtx user = next_nonnote_insn (insn);
3313
3314 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3315 user = XVECEXP (PATTERN (user), 0, 0);
3316
3317 add_reg_note (user, REG_CC_SETTER, insn);
3318 add_reg_note (insn, REG_CC_USER, user);
3319 }
3320
3321 /* Return the next insn that uses CC0 after INSN, which is assumed to
3322 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3323 applied to the result of this function should yield INSN).
3324
3325 Normally, this is simply the next insn. However, if a REG_CC_USER note
3326 is present, it contains the insn that uses CC0.
3327
3328 Return 0 if we can't find the insn. */
3329
3330 rtx
3331 next_cc0_user (rtx insn)
3332 {
3333 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3334
3335 if (note)
3336 return XEXP (note, 0);
3337
3338 insn = next_nonnote_insn (insn);
3339 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3340 insn = XVECEXP (PATTERN (insn), 0, 0);
3341
3342 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3343 return insn;
3344
3345 return 0;
3346 }
3347
3348 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3349 note, it is the previous insn. */
3350
3351 rtx
3352 prev_cc0_setter (rtx insn)
3353 {
3354 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3355
3356 if (note)
3357 return XEXP (note, 0);
3358
3359 insn = prev_nonnote_insn (insn);
3360 gcc_assert (sets_cc0_p (PATTERN (insn)));
3361
3362 return insn;
3363 }
3364 #endif
3365
3366 #ifdef AUTO_INC_DEC
3367 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3368
3369 static int
3370 find_auto_inc (rtx *xp, void *data)
3371 {
3372 rtx x = *xp;
3373 rtx reg = (rtx) data;
3374
3375 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3376 return 0;
3377
3378 switch (GET_CODE (x))
3379 {
3380 case PRE_DEC:
3381 case PRE_INC:
3382 case POST_DEC:
3383 case POST_INC:
3384 case PRE_MODIFY:
3385 case POST_MODIFY:
3386 if (rtx_equal_p (reg, XEXP (x, 0)))
3387 return 1;
3388 break;
3389
3390 default:
3391 gcc_unreachable ();
3392 }
3393 return -1;
3394 }
3395 #endif
3396
3397 /* Increment the label uses for all labels present in rtx. */
3398
3399 static void
3400 mark_label_nuses (rtx x)
3401 {
3402 enum rtx_code code;
3403 int i, j;
3404 const char *fmt;
3405
3406 code = GET_CODE (x);
3407 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3408 LABEL_NUSES (XEXP (x, 0))++;
3409
3410 fmt = GET_RTX_FORMAT (code);
3411 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3412 {
3413 if (fmt[i] == 'e')
3414 mark_label_nuses (XEXP (x, i));
3415 else if (fmt[i] == 'E')
3416 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3417 mark_label_nuses (XVECEXP (x, i, j));
3418 }
3419 }
3420
3421 \f
3422 /* Try splitting insns that can be split for better scheduling.
3423 PAT is the pattern which might split.
3424 TRIAL is the insn providing PAT.
3425 LAST is nonzero if we should return the last insn of the sequence produced.
3426
3427 If this routine succeeds in splitting, it returns the first or last
3428 replacement insn depending on the value of LAST. Otherwise, it
3429 returns TRIAL. If the insn to be returned can be split, it will be. */
3430
3431 rtx
3432 try_split (rtx pat, rtx trial, int last)
3433 {
3434 rtx before = PREV_INSN (trial);
3435 rtx after = NEXT_INSN (trial);
3436 int has_barrier = 0;
3437 rtx note, seq, tem;
3438 int probability;
3439 rtx insn_last, insn;
3440 int njumps = 0;
3441
3442 /* We're not good at redistributing frame information. */
3443 if (RTX_FRAME_RELATED_P (trial))
3444 return trial;
3445
3446 if (any_condjump_p (trial)
3447 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3448 split_branch_probability = INTVAL (XEXP (note, 0));
3449 probability = split_branch_probability;
3450
3451 seq = split_insns (pat, trial);
3452
3453 split_branch_probability = -1;
3454
3455 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3456 We may need to handle this specially. */
3457 if (after && BARRIER_P (after))
3458 {
3459 has_barrier = 1;
3460 after = NEXT_INSN (after);
3461 }
3462
3463 if (!seq)
3464 return trial;
3465
3466 /* Avoid infinite loop if any insn of the result matches
3467 the original pattern. */
3468 insn_last = seq;
3469 while (1)
3470 {
3471 if (INSN_P (insn_last)
3472 && rtx_equal_p (PATTERN (insn_last), pat))
3473 return trial;
3474 if (!NEXT_INSN (insn_last))
3475 break;
3476 insn_last = NEXT_INSN (insn_last);
3477 }
3478
3479 /* We will be adding the new sequence to the function. The splitters
3480 may have introduced invalid RTL sharing, so unshare the sequence now. */
3481 unshare_all_rtl_in_chain (seq);
3482
3483 /* Mark labels. */
3484 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3485 {
3486 if (JUMP_P (insn))
3487 {
3488 mark_jump_label (PATTERN (insn), insn, 0);
3489 njumps++;
3490 if (probability != -1
3491 && any_condjump_p (insn)
3492 && !find_reg_note (insn, REG_BR_PROB, 0))
3493 {
3494 /* We can preserve the REG_BR_PROB notes only if exactly
3495 one jump is created, otherwise the machine description
3496 is responsible for this step using
3497 split_branch_probability variable. */
3498 gcc_assert (njumps == 1);
3499 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3500 }
3501 }
3502 }
3503
3504 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3505 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3506 if (CALL_P (trial))
3507 {
3508 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3509 if (CALL_P (insn))
3510 {
3511 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3512 while (*p)
3513 p = &XEXP (*p, 1);
3514 *p = CALL_INSN_FUNCTION_USAGE (trial);
3515 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3516
3517 /* Update the debug information for the CALL_INSN. */
3518 if (flag_enable_icf_debug)
3519 (*debug_hooks->copy_call_info) (trial, insn);
3520 }
3521 }
3522
3523 /* Copy notes, particularly those related to the CFG. */
3524 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3525 {
3526 switch (REG_NOTE_KIND (note))
3527 {
3528 case REG_EH_REGION:
3529 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3530 break;
3531
3532 case REG_NORETURN:
3533 case REG_SETJMP:
3534 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3535 {
3536 if (CALL_P (insn))
3537 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3538 }
3539 break;
3540
3541 case REG_NON_LOCAL_GOTO:
3542 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3543 {
3544 if (JUMP_P (insn))
3545 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3546 }
3547 break;
3548
3549 #ifdef AUTO_INC_DEC
3550 case REG_INC:
3551 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3552 {
3553 rtx reg = XEXP (note, 0);
3554 if (!FIND_REG_INC_NOTE (insn, reg)
3555 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3556 add_reg_note (insn, REG_INC, reg);
3557 }
3558 break;
3559 #endif
3560
3561 default:
3562 break;
3563 }
3564 }
3565
3566 /* If there are LABELS inside the split insns increment the
3567 usage count so we don't delete the label. */
3568 if (INSN_P (trial))
3569 {
3570 insn = insn_last;
3571 while (insn != NULL_RTX)
3572 {
3573 /* JUMP_P insns have already been "marked" above. */
3574 if (NONJUMP_INSN_P (insn))
3575 mark_label_nuses (PATTERN (insn));
3576
3577 insn = PREV_INSN (insn);
3578 }
3579 }
3580
3581 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3582
3583 delete_insn (trial);
3584 if (has_barrier)
3585 emit_barrier_after (tem);
3586
3587 /* Recursively call try_split for each new insn created; by the
3588 time control returns here that insn will be fully split, so
3589 set LAST and continue from the insn after the one returned.
3590 We can't use next_active_insn here since AFTER may be a note.
3591 Ignore deleted insns, which can be occur if not optimizing. */
3592 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3593 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3594 tem = try_split (PATTERN (tem), tem, 1);
3595
3596 /* Return either the first or the last insn, depending on which was
3597 requested. */
3598 return last
3599 ? (after ? PREV_INSN (after) : last_insn)
3600 : NEXT_INSN (before);
3601 }
3602 \f
3603 /* Make and return an INSN rtx, initializing all its slots.
3604 Store PATTERN in the pattern slots. */
3605
3606 rtx
3607 make_insn_raw (rtx pattern)
3608 {
3609 rtx insn;
3610
3611 insn = rtx_alloc (INSN);
3612
3613 INSN_UID (insn) = cur_insn_uid++;
3614 PATTERN (insn) = pattern;
3615 INSN_CODE (insn) = -1;
3616 REG_NOTES (insn) = NULL;
3617 INSN_LOCATOR (insn) = curr_insn_locator ();
3618 BLOCK_FOR_INSN (insn) = NULL;
3619
3620 #ifdef ENABLE_RTL_CHECKING
3621 if (insn
3622 && INSN_P (insn)
3623 && (returnjump_p (insn)
3624 || (GET_CODE (insn) == SET
3625 && SET_DEST (insn) == pc_rtx)))
3626 {
3627 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3628 debug_rtx (insn);
3629 }
3630 #endif
3631
3632 return insn;
3633 }
3634
3635 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3636
3637 rtx
3638 make_debug_insn_raw (rtx pattern)
3639 {
3640 rtx insn;
3641
3642 insn = rtx_alloc (DEBUG_INSN);
3643 INSN_UID (insn) = cur_debug_insn_uid++;
3644 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3645 INSN_UID (insn) = cur_insn_uid++;
3646
3647 PATTERN (insn) = pattern;
3648 INSN_CODE (insn) = -1;
3649 REG_NOTES (insn) = NULL;
3650 INSN_LOCATOR (insn) = curr_insn_locator ();
3651 BLOCK_FOR_INSN (insn) = NULL;
3652
3653 return insn;
3654 }
3655
3656 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3657
3658 rtx
3659 make_jump_insn_raw (rtx pattern)
3660 {
3661 rtx insn;
3662
3663 insn = rtx_alloc (JUMP_INSN);
3664 INSN_UID (insn) = cur_insn_uid++;
3665
3666 PATTERN (insn) = pattern;
3667 INSN_CODE (insn) = -1;
3668 REG_NOTES (insn) = NULL;
3669 JUMP_LABEL (insn) = NULL;
3670 INSN_LOCATOR (insn) = curr_insn_locator ();
3671 BLOCK_FOR_INSN (insn) = NULL;
3672
3673 return insn;
3674 }
3675
3676 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3677
3678 static rtx
3679 make_call_insn_raw (rtx pattern)
3680 {
3681 rtx insn;
3682
3683 insn = rtx_alloc (CALL_INSN);
3684 INSN_UID (insn) = cur_insn_uid++;
3685
3686 PATTERN (insn) = pattern;
3687 INSN_CODE (insn) = -1;
3688 REG_NOTES (insn) = NULL;
3689 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3690 INSN_LOCATOR (insn) = curr_insn_locator ();
3691 BLOCK_FOR_INSN (insn) = NULL;
3692
3693 return insn;
3694 }
3695 \f
3696 /* Add INSN to the end of the doubly-linked list.
3697 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3698
3699 void
3700 add_insn (rtx insn)
3701 {
3702 PREV_INSN (insn) = last_insn;
3703 NEXT_INSN (insn) = 0;
3704
3705 if (NULL != last_insn)
3706 NEXT_INSN (last_insn) = insn;
3707
3708 if (NULL == first_insn)
3709 first_insn = insn;
3710
3711 last_insn = insn;
3712 }
3713
3714 /* Add INSN into the doubly-linked list after insn AFTER. This and
3715 the next should be the only functions called to insert an insn once
3716 delay slots have been filled since only they know how to update a
3717 SEQUENCE. */
3718
3719 void
3720 add_insn_after (rtx insn, rtx after, basic_block bb)
3721 {
3722 rtx next = NEXT_INSN (after);
3723
3724 gcc_assert (!optimize || !INSN_DELETED_P (after));
3725
3726 NEXT_INSN (insn) = next;
3727 PREV_INSN (insn) = after;
3728
3729 if (next)
3730 {
3731 PREV_INSN (next) = insn;
3732 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3733 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3734 }
3735 else if (last_insn == after)
3736 last_insn = insn;
3737 else
3738 {
3739 struct sequence_stack *stack = seq_stack;
3740 /* Scan all pending sequences too. */
3741 for (; stack; stack = stack->next)
3742 if (after == stack->last)
3743 {
3744 stack->last = insn;
3745 break;
3746 }
3747
3748 gcc_assert (stack);
3749 }
3750
3751 if (!BARRIER_P (after)
3752 && !BARRIER_P (insn)
3753 && (bb = BLOCK_FOR_INSN (after)))
3754 {
3755 set_block_for_insn (insn, bb);
3756 if (INSN_P (insn))
3757 df_insn_rescan (insn);
3758 /* Should not happen as first in the BB is always
3759 either NOTE or LABEL. */
3760 if (BB_END (bb) == after
3761 /* Avoid clobbering of structure when creating new BB. */
3762 && !BARRIER_P (insn)
3763 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3764 BB_END (bb) = insn;
3765 }
3766
3767 NEXT_INSN (after) = insn;
3768 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3769 {
3770 rtx sequence = PATTERN (after);
3771 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3772 }
3773 }
3774
3775 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3776 the previous should be the only functions called to insert an insn
3777 once delay slots have been filled since only they know how to
3778 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3779 bb from before. */
3780
3781 void
3782 add_insn_before (rtx insn, rtx before, basic_block bb)
3783 {
3784 rtx prev = PREV_INSN (before);
3785
3786 gcc_assert (!optimize || !INSN_DELETED_P (before));
3787
3788 PREV_INSN (insn) = prev;
3789 NEXT_INSN (insn) = before;
3790
3791 if (prev)
3792 {
3793 NEXT_INSN (prev) = insn;
3794 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3795 {
3796 rtx sequence = PATTERN (prev);
3797 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3798 }
3799 }
3800 else if (first_insn == before)
3801 first_insn = insn;
3802 else
3803 {
3804 struct sequence_stack *stack = seq_stack;
3805 /* Scan all pending sequences too. */
3806 for (; stack; stack = stack->next)
3807 if (before == stack->first)
3808 {
3809 stack->first = insn;
3810 break;
3811 }
3812
3813 gcc_assert (stack);
3814 }
3815
3816 if (!bb
3817 && !BARRIER_P (before)
3818 && !BARRIER_P (insn))
3819 bb = BLOCK_FOR_INSN (before);
3820
3821 if (bb)
3822 {
3823 set_block_for_insn (insn, bb);
3824 if (INSN_P (insn))
3825 df_insn_rescan (insn);
3826 /* Should not happen as first in the BB is always either NOTE or
3827 LABEL. */
3828 gcc_assert (BB_HEAD (bb) != insn
3829 /* Avoid clobbering of structure when creating new BB. */
3830 || BARRIER_P (insn)
3831 || NOTE_INSN_BASIC_BLOCK_P (insn));
3832 }
3833
3834 PREV_INSN (before) = insn;
3835 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3836 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3837 }
3838
3839
3840 /* Replace insn with an deleted instruction note. */
3841
3842 void
3843 set_insn_deleted (rtx insn)
3844 {
3845 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3846 PUT_CODE (insn, NOTE);
3847 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3848 }
3849
3850
3851 /* Remove an insn from its doubly-linked list. This function knows how
3852 to handle sequences. */
3853 void
3854 remove_insn (rtx insn)
3855 {
3856 rtx next = NEXT_INSN (insn);
3857 rtx prev = PREV_INSN (insn);
3858 basic_block bb;
3859
3860 /* Later in the code, the block will be marked dirty. */
3861 df_insn_delete (NULL, INSN_UID (insn));
3862
3863 if (prev)
3864 {
3865 NEXT_INSN (prev) = next;
3866 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3867 {
3868 rtx sequence = PATTERN (prev);
3869 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3870 }
3871 }
3872 else if (first_insn == insn)
3873 first_insn = next;
3874 else
3875 {
3876 struct sequence_stack *stack = seq_stack;
3877 /* Scan all pending sequences too. */
3878 for (; stack; stack = stack->next)
3879 if (insn == stack->first)
3880 {
3881 stack->first = next;
3882 break;
3883 }
3884
3885 gcc_assert (stack);
3886 }
3887
3888 if (next)
3889 {
3890 PREV_INSN (next) = prev;
3891 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3892 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3893 }
3894 else if (last_insn == insn)
3895 last_insn = prev;
3896 else
3897 {
3898 struct sequence_stack *stack = seq_stack;
3899 /* Scan all pending sequences too. */
3900 for (; stack; stack = stack->next)
3901 if (insn == stack->last)
3902 {
3903 stack->last = prev;
3904 break;
3905 }
3906
3907 gcc_assert (stack);
3908 }
3909 if (!BARRIER_P (insn)
3910 && (bb = BLOCK_FOR_INSN (insn)))
3911 {
3912 if (INSN_P (insn))
3913 df_set_bb_dirty (bb);
3914 if (BB_HEAD (bb) == insn)
3915 {
3916 /* Never ever delete the basic block note without deleting whole
3917 basic block. */
3918 gcc_assert (!NOTE_P (insn));
3919 BB_HEAD (bb) = next;
3920 }
3921 if (BB_END (bb) == insn)
3922 BB_END (bb) = prev;
3923 }
3924 }
3925
3926 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3927
3928 void
3929 add_function_usage_to (rtx call_insn, rtx call_fusage)
3930 {
3931 gcc_assert (call_insn && CALL_P (call_insn));
3932
3933 /* Put the register usage information on the CALL. If there is already
3934 some usage information, put ours at the end. */
3935 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3936 {
3937 rtx link;
3938
3939 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3940 link = XEXP (link, 1))
3941 ;
3942
3943 XEXP (link, 1) = call_fusage;
3944 }
3945 else
3946 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3947 }
3948
3949 /* Delete all insns made since FROM.
3950 FROM becomes the new last instruction. */
3951
3952 void
3953 delete_insns_since (rtx from)
3954 {
3955 if (from == 0)
3956 first_insn = 0;
3957 else
3958 NEXT_INSN (from) = 0;
3959 last_insn = from;
3960 }
3961
3962 /* This function is deprecated, please use sequences instead.
3963
3964 Move a consecutive bunch of insns to a different place in the chain.
3965 The insns to be moved are those between FROM and TO.
3966 They are moved to a new position after the insn AFTER.
3967 AFTER must not be FROM or TO or any insn in between.
3968
3969 This function does not know about SEQUENCEs and hence should not be
3970 called after delay-slot filling has been done. */
3971
3972 void
3973 reorder_insns_nobb (rtx from, rtx to, rtx after)
3974 {
3975 /* Splice this bunch out of where it is now. */
3976 if (PREV_INSN (from))
3977 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3978 if (NEXT_INSN (to))
3979 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3980 if (last_insn == to)
3981 last_insn = PREV_INSN (from);
3982 if (first_insn == from)
3983 first_insn = NEXT_INSN (to);
3984
3985 /* Make the new neighbors point to it and it to them. */
3986 if (NEXT_INSN (after))
3987 PREV_INSN (NEXT_INSN (after)) = to;
3988
3989 NEXT_INSN (to) = NEXT_INSN (after);
3990 PREV_INSN (from) = after;
3991 NEXT_INSN (after) = from;
3992 if (after == last_insn)
3993 last_insn = to;
3994 }
3995
3996 /* Same as function above, but take care to update BB boundaries. */
3997 void
3998 reorder_insns (rtx from, rtx to, rtx after)
3999 {
4000 rtx prev = PREV_INSN (from);
4001 basic_block bb, bb2;
4002
4003 reorder_insns_nobb (from, to, after);
4004
4005 if (!BARRIER_P (after)
4006 && (bb = BLOCK_FOR_INSN (after)))
4007 {
4008 rtx x;
4009 df_set_bb_dirty (bb);
4010
4011 if (!BARRIER_P (from)
4012 && (bb2 = BLOCK_FOR_INSN (from)))
4013 {
4014 if (BB_END (bb2) == to)
4015 BB_END (bb2) = prev;
4016 df_set_bb_dirty (bb2);
4017 }
4018
4019 if (BB_END (bb) == after)
4020 BB_END (bb) = to;
4021
4022 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4023 if (!BARRIER_P (x))
4024 df_insn_change_bb (x, bb);
4025 }
4026 }
4027
4028 \f
4029 /* Emit insn(s) of given code and pattern
4030 at a specified place within the doubly-linked list.
4031
4032 All of the emit_foo global entry points accept an object
4033 X which is either an insn list or a PATTERN of a single
4034 instruction.
4035
4036 There are thus a few canonical ways to generate code and
4037 emit it at a specific place in the instruction stream. For
4038 example, consider the instruction named SPOT and the fact that
4039 we would like to emit some instructions before SPOT. We might
4040 do it like this:
4041
4042 start_sequence ();
4043 ... emit the new instructions ...
4044 insns_head = get_insns ();
4045 end_sequence ();
4046
4047 emit_insn_before (insns_head, SPOT);
4048
4049 It used to be common to generate SEQUENCE rtl instead, but that
4050 is a relic of the past which no longer occurs. The reason is that
4051 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4052 generated would almost certainly die right after it was created. */
4053
4054 /* Make X be output before the instruction BEFORE. */
4055
4056 rtx
4057 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4058 {
4059 rtx last = before;
4060 rtx insn;
4061
4062 gcc_assert (before);
4063
4064 if (x == NULL_RTX)
4065 return last;
4066
4067 switch (GET_CODE (x))
4068 {
4069 case DEBUG_INSN:
4070 case INSN:
4071 case JUMP_INSN:
4072 case CALL_INSN:
4073 case CODE_LABEL:
4074 case BARRIER:
4075 case NOTE:
4076 insn = x;
4077 while (insn)
4078 {
4079 rtx next = NEXT_INSN (insn);
4080 add_insn_before (insn, before, bb);
4081 last = insn;
4082 insn = next;
4083 }
4084 break;
4085
4086 #ifdef ENABLE_RTL_CHECKING
4087 case SEQUENCE:
4088 gcc_unreachable ();
4089 break;
4090 #endif
4091
4092 default:
4093 last = make_insn_raw (x);
4094 add_insn_before (last, before, bb);
4095 break;
4096 }
4097
4098 return last;
4099 }
4100
4101 /* Make an instruction with body X and code JUMP_INSN
4102 and output it before the instruction BEFORE. */
4103
4104 rtx
4105 emit_jump_insn_before_noloc (rtx x, rtx before)
4106 {
4107 rtx insn, last = NULL_RTX;
4108
4109 gcc_assert (before);
4110
4111 switch (GET_CODE (x))
4112 {
4113 case DEBUG_INSN:
4114 case INSN:
4115 case JUMP_INSN:
4116 case CALL_INSN:
4117 case CODE_LABEL:
4118 case BARRIER:
4119 case NOTE:
4120 insn = x;
4121 while (insn)
4122 {
4123 rtx next = NEXT_INSN (insn);
4124 add_insn_before (insn, before, NULL);
4125 last = insn;
4126 insn = next;
4127 }
4128 break;
4129
4130 #ifdef ENABLE_RTL_CHECKING
4131 case SEQUENCE:
4132 gcc_unreachable ();
4133 break;
4134 #endif
4135
4136 default:
4137 last = make_jump_insn_raw (x);
4138 add_insn_before (last, before, NULL);
4139 break;
4140 }
4141
4142 return last;
4143 }
4144
4145 /* Make an instruction with body X and code CALL_INSN
4146 and output it before the instruction BEFORE. */
4147
4148 rtx
4149 emit_call_insn_before_noloc (rtx x, rtx before)
4150 {
4151 rtx last = NULL_RTX, insn;
4152
4153 gcc_assert (before);
4154
4155 switch (GET_CODE (x))
4156 {
4157 case DEBUG_INSN:
4158 case INSN:
4159 case JUMP_INSN:
4160 case CALL_INSN:
4161 case CODE_LABEL:
4162 case BARRIER:
4163 case NOTE:
4164 insn = x;
4165 while (insn)
4166 {
4167 rtx next = NEXT_INSN (insn);
4168 add_insn_before (insn, before, NULL);
4169 last = insn;
4170 insn = next;
4171 }
4172 break;
4173
4174 #ifdef ENABLE_RTL_CHECKING
4175 case SEQUENCE:
4176 gcc_unreachable ();
4177 break;
4178 #endif
4179
4180 default:
4181 last = make_call_insn_raw (x);
4182 add_insn_before (last, before, NULL);
4183 break;
4184 }
4185
4186 return last;
4187 }
4188
4189 /* Make an instruction with body X and code DEBUG_INSN
4190 and output it before the instruction BEFORE. */
4191
4192 rtx
4193 emit_debug_insn_before_noloc (rtx x, rtx before)
4194 {
4195 rtx last = NULL_RTX, insn;
4196
4197 gcc_assert (before);
4198
4199 switch (GET_CODE (x))
4200 {
4201 case DEBUG_INSN:
4202 case INSN:
4203 case JUMP_INSN:
4204 case CALL_INSN:
4205 case CODE_LABEL:
4206 case BARRIER:
4207 case NOTE:
4208 insn = x;
4209 while (insn)
4210 {
4211 rtx next = NEXT_INSN (insn);
4212 add_insn_before (insn, before, NULL);
4213 last = insn;
4214 insn = next;
4215 }
4216 break;
4217
4218 #ifdef ENABLE_RTL_CHECKING
4219 case SEQUENCE:
4220 gcc_unreachable ();
4221 break;
4222 #endif
4223
4224 default:
4225 last = make_debug_insn_raw (x);
4226 add_insn_before (last, before, NULL);
4227 break;
4228 }
4229
4230 return last;
4231 }
4232
4233 /* Make an insn of code BARRIER
4234 and output it before the insn BEFORE. */
4235
4236 rtx
4237 emit_barrier_before (rtx before)
4238 {
4239 rtx insn = rtx_alloc (BARRIER);
4240
4241 INSN_UID (insn) = cur_insn_uid++;
4242
4243 add_insn_before (insn, before, NULL);
4244 return insn;
4245 }
4246
4247 /* Emit the label LABEL before the insn BEFORE. */
4248
4249 rtx
4250 emit_label_before (rtx label, rtx before)
4251 {
4252 /* This can be called twice for the same label as a result of the
4253 confusion that follows a syntax error! So make it harmless. */
4254 if (INSN_UID (label) == 0)
4255 {
4256 INSN_UID (label) = cur_insn_uid++;
4257 add_insn_before (label, before, NULL);
4258 }
4259
4260 return label;
4261 }
4262
4263 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4264
4265 rtx
4266 emit_note_before (enum insn_note subtype, rtx before)
4267 {
4268 rtx note = rtx_alloc (NOTE);
4269 INSN_UID (note) = cur_insn_uid++;
4270 NOTE_KIND (note) = subtype;
4271 BLOCK_FOR_INSN (note) = NULL;
4272 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4273
4274 add_insn_before (note, before, NULL);
4275 return note;
4276 }
4277 \f
4278 /* Helper for emit_insn_after, handles lists of instructions
4279 efficiently. */
4280
4281 static rtx
4282 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4283 {
4284 rtx last;
4285 rtx after_after;
4286 if (!bb && !BARRIER_P (after))
4287 bb = BLOCK_FOR_INSN (after);
4288
4289 if (bb)
4290 {
4291 df_set_bb_dirty (bb);
4292 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4293 if (!BARRIER_P (last))
4294 {
4295 set_block_for_insn (last, bb);
4296 df_insn_rescan (last);
4297 }
4298 if (!BARRIER_P (last))
4299 {
4300 set_block_for_insn (last, bb);
4301 df_insn_rescan (last);
4302 }
4303 if (BB_END (bb) == after)
4304 BB_END (bb) = last;
4305 }
4306 else
4307 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4308 continue;
4309
4310 after_after = NEXT_INSN (after);
4311
4312 NEXT_INSN (after) = first;
4313 PREV_INSN (first) = after;
4314 NEXT_INSN (last) = after_after;
4315 if (after_after)
4316 PREV_INSN (after_after) = last;
4317
4318 if (after == last_insn)
4319 last_insn = last;
4320
4321 return last;
4322 }
4323
4324 /* Make X be output after the insn AFTER and set the BB of insn. If
4325 BB is NULL, an attempt is made to infer the BB from AFTER. */
4326
4327 rtx
4328 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4329 {
4330 rtx last = after;
4331
4332 gcc_assert (after);
4333
4334 if (x == NULL_RTX)
4335 return last;
4336
4337 switch (GET_CODE (x))
4338 {
4339 case DEBUG_INSN:
4340 case INSN:
4341 case JUMP_INSN:
4342 case CALL_INSN:
4343 case CODE_LABEL:
4344 case BARRIER:
4345 case NOTE:
4346 last = emit_insn_after_1 (x, after, bb);
4347 break;
4348
4349 #ifdef ENABLE_RTL_CHECKING
4350 case SEQUENCE:
4351 gcc_unreachable ();
4352 break;
4353 #endif
4354
4355 default:
4356 last = make_insn_raw (x);
4357 add_insn_after (last, after, bb);
4358 break;
4359 }
4360
4361 return last;
4362 }
4363
4364
4365 /* Make an insn of code JUMP_INSN with body X
4366 and output it after the insn AFTER. */
4367
4368 rtx
4369 emit_jump_insn_after_noloc (rtx x, rtx after)
4370 {
4371 rtx last;
4372
4373 gcc_assert (after);
4374
4375 switch (GET_CODE (x))
4376 {
4377 case DEBUG_INSN:
4378 case INSN:
4379 case JUMP_INSN:
4380 case CALL_INSN:
4381 case CODE_LABEL:
4382 case BARRIER:
4383 case NOTE:
4384 last = emit_insn_after_1 (x, after, NULL);
4385 break;
4386
4387 #ifdef ENABLE_RTL_CHECKING
4388 case SEQUENCE:
4389 gcc_unreachable ();
4390 break;
4391 #endif
4392
4393 default:
4394 last = make_jump_insn_raw (x);
4395 add_insn_after (last, after, NULL);
4396 break;
4397 }
4398
4399 return last;
4400 }
4401
4402 /* Make an instruction with body X and code CALL_INSN
4403 and output it after the instruction AFTER. */
4404
4405 rtx
4406 emit_call_insn_after_noloc (rtx x, rtx after)
4407 {
4408 rtx last;
4409
4410 gcc_assert (after);
4411
4412 switch (GET_CODE (x))
4413 {
4414 case DEBUG_INSN:
4415 case INSN:
4416 case JUMP_INSN:
4417 case CALL_INSN:
4418 case CODE_LABEL:
4419 case BARRIER:
4420 case NOTE:
4421 last = emit_insn_after_1 (x, after, NULL);
4422 break;
4423
4424 #ifdef ENABLE_RTL_CHECKING
4425 case SEQUENCE:
4426 gcc_unreachable ();
4427 break;
4428 #endif
4429
4430 default:
4431 last = make_call_insn_raw (x);
4432 add_insn_after (last, after, NULL);
4433 break;
4434 }
4435
4436 return last;
4437 }
4438
4439 /* Make an instruction with body X and code CALL_INSN
4440 and output it after the instruction AFTER. */
4441
4442 rtx
4443 emit_debug_insn_after_noloc (rtx x, rtx after)
4444 {
4445 rtx last;
4446
4447 gcc_assert (after);
4448
4449 switch (GET_CODE (x))
4450 {
4451 case DEBUG_INSN:
4452 case INSN:
4453 case JUMP_INSN:
4454 case CALL_INSN:
4455 case CODE_LABEL:
4456 case BARRIER:
4457 case NOTE:
4458 last = emit_insn_after_1 (x, after, NULL);
4459 break;
4460
4461 #ifdef ENABLE_RTL_CHECKING
4462 case SEQUENCE:
4463 gcc_unreachable ();
4464 break;
4465 #endif
4466
4467 default:
4468 last = make_debug_insn_raw (x);
4469 add_insn_after (last, after, NULL);
4470 break;
4471 }
4472
4473 return last;
4474 }
4475
4476 /* Make an insn of code BARRIER
4477 and output it after the insn AFTER. */
4478
4479 rtx
4480 emit_barrier_after (rtx after)
4481 {
4482 rtx insn = rtx_alloc (BARRIER);
4483
4484 INSN_UID (insn) = cur_insn_uid++;
4485
4486 add_insn_after (insn, after, NULL);
4487 return insn;
4488 }
4489
4490 /* Emit the label LABEL after the insn AFTER. */
4491
4492 rtx
4493 emit_label_after (rtx label, rtx after)
4494 {
4495 /* This can be called twice for the same label
4496 as a result of the confusion that follows a syntax error!
4497 So make it harmless. */
4498 if (INSN_UID (label) == 0)
4499 {
4500 INSN_UID (label) = cur_insn_uid++;
4501 add_insn_after (label, after, NULL);
4502 }
4503
4504 return label;
4505 }
4506
4507 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4508
4509 rtx
4510 emit_note_after (enum insn_note subtype, rtx after)
4511 {
4512 rtx note = rtx_alloc (NOTE);
4513 INSN_UID (note) = cur_insn_uid++;
4514 NOTE_KIND (note) = subtype;
4515 BLOCK_FOR_INSN (note) = NULL;
4516 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4517 add_insn_after (note, after, NULL);
4518 return note;
4519 }
4520 \f
4521 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4522 rtx
4523 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4524 {
4525 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4526
4527 if (pattern == NULL_RTX || !loc)
4528 return last;
4529
4530 after = NEXT_INSN (after);
4531 while (1)
4532 {
4533 if (active_insn_p (after) && !INSN_LOCATOR (after))
4534 INSN_LOCATOR (after) = loc;
4535 if (after == last)
4536 break;
4537 after = NEXT_INSN (after);
4538 }
4539 return last;
4540 }
4541
4542 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4543 rtx
4544 emit_insn_after (rtx pattern, rtx after)
4545 {
4546 rtx prev = after;
4547
4548 while (DEBUG_INSN_P (prev))
4549 prev = PREV_INSN (prev);
4550
4551 if (INSN_P (prev))
4552 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4553 else
4554 return emit_insn_after_noloc (pattern, after, NULL);
4555 }
4556
4557 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4558 rtx
4559 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4560 {
4561 rtx last = emit_jump_insn_after_noloc (pattern, after);
4562
4563 if (pattern == NULL_RTX || !loc)
4564 return last;
4565
4566 after = NEXT_INSN (after);
4567 while (1)
4568 {
4569 if (active_insn_p (after) && !INSN_LOCATOR (after))
4570 INSN_LOCATOR (after) = loc;
4571 if (after == last)
4572 break;
4573 after = NEXT_INSN (after);
4574 }
4575 return last;
4576 }
4577
4578 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4579 rtx
4580 emit_jump_insn_after (rtx pattern, rtx after)
4581 {
4582 rtx prev = after;
4583
4584 while (DEBUG_INSN_P (prev))
4585 prev = PREV_INSN (prev);
4586
4587 if (INSN_P (prev))
4588 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4589 else
4590 return emit_jump_insn_after_noloc (pattern, after);
4591 }
4592
4593 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4594 rtx
4595 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4596 {
4597 rtx last = emit_call_insn_after_noloc (pattern, after);
4598
4599 if (pattern == NULL_RTX || !loc)
4600 return last;
4601
4602 after = NEXT_INSN (after);
4603 while (1)
4604 {
4605 if (active_insn_p (after) && !INSN_LOCATOR (after))
4606 INSN_LOCATOR (after) = loc;
4607 if (after == last)
4608 break;
4609 after = NEXT_INSN (after);
4610 }
4611 return last;
4612 }
4613
4614 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4615 rtx
4616 emit_call_insn_after (rtx pattern, rtx after)
4617 {
4618 rtx prev = after;
4619
4620 while (DEBUG_INSN_P (prev))
4621 prev = PREV_INSN (prev);
4622
4623 if (INSN_P (prev))
4624 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4625 else
4626 return emit_call_insn_after_noloc (pattern, after);
4627 }
4628
4629 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4630 rtx
4631 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4632 {
4633 rtx last = emit_debug_insn_after_noloc (pattern, after);
4634
4635 if (pattern == NULL_RTX || !loc)
4636 return last;
4637
4638 after = NEXT_INSN (after);
4639 while (1)
4640 {
4641 if (active_insn_p (after) && !INSN_LOCATOR (after))
4642 INSN_LOCATOR (after) = loc;
4643 if (after == last)
4644 break;
4645 after = NEXT_INSN (after);
4646 }
4647 return last;
4648 }
4649
4650 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4651 rtx
4652 emit_debug_insn_after (rtx pattern, rtx after)
4653 {
4654 if (INSN_P (after))
4655 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4656 else
4657 return emit_debug_insn_after_noloc (pattern, after);
4658 }
4659
4660 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4661 rtx
4662 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4663 {
4664 rtx first = PREV_INSN (before);
4665 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4666
4667 if (pattern == NULL_RTX || !loc)
4668 return last;
4669
4670 if (!first)
4671 first = get_insns ();
4672 else
4673 first = NEXT_INSN (first);
4674 while (1)
4675 {
4676 if (active_insn_p (first) && !INSN_LOCATOR (first))
4677 INSN_LOCATOR (first) = loc;
4678 if (first == last)
4679 break;
4680 first = NEXT_INSN (first);
4681 }
4682 return last;
4683 }
4684
4685 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4686 rtx
4687 emit_insn_before (rtx pattern, rtx before)
4688 {
4689 rtx next = before;
4690
4691 while (DEBUG_INSN_P (next))
4692 next = PREV_INSN (next);
4693
4694 if (INSN_P (next))
4695 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4696 else
4697 return emit_insn_before_noloc (pattern, before, NULL);
4698 }
4699
4700 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4701 rtx
4702 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4703 {
4704 rtx first = PREV_INSN (before);
4705 rtx last = emit_jump_insn_before_noloc (pattern, before);
4706
4707 if (pattern == NULL_RTX)
4708 return last;
4709
4710 first = NEXT_INSN (first);
4711 while (1)
4712 {
4713 if (active_insn_p (first) && !INSN_LOCATOR (first))
4714 INSN_LOCATOR (first) = loc;
4715 if (first == last)
4716 break;
4717 first = NEXT_INSN (first);
4718 }
4719 return last;
4720 }
4721
4722 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4723 rtx
4724 emit_jump_insn_before (rtx pattern, rtx before)
4725 {
4726 rtx next = before;
4727
4728 while (DEBUG_INSN_P (next))
4729 next = PREV_INSN (next);
4730
4731 if (INSN_P (next))
4732 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4733 else
4734 return emit_jump_insn_before_noloc (pattern, before);
4735 }
4736
4737 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4738 rtx
4739 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4740 {
4741 rtx first = PREV_INSN (before);
4742 rtx last = emit_call_insn_before_noloc (pattern, before);
4743
4744 if (pattern == NULL_RTX)
4745 return last;
4746
4747 first = NEXT_INSN (first);
4748 while (1)
4749 {
4750 if (active_insn_p (first) && !INSN_LOCATOR (first))
4751 INSN_LOCATOR (first) = loc;
4752 if (first == last)
4753 break;
4754 first = NEXT_INSN (first);
4755 }
4756 return last;
4757 }
4758
4759 /* like emit_call_insn_before_noloc,
4760 but set insn_locator according to before. */
4761 rtx
4762 emit_call_insn_before (rtx pattern, rtx before)
4763 {
4764 rtx next = before;
4765
4766 while (DEBUG_INSN_P (next))
4767 next = PREV_INSN (next);
4768
4769 if (INSN_P (next))
4770 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4771 else
4772 return emit_call_insn_before_noloc (pattern, before);
4773 }
4774
4775 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4776 rtx
4777 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4778 {
4779 rtx first = PREV_INSN (before);
4780 rtx last = emit_debug_insn_before_noloc (pattern, before);
4781
4782 if (pattern == NULL_RTX)
4783 return last;
4784
4785 first = NEXT_INSN (first);
4786 while (1)
4787 {
4788 if (active_insn_p (first) && !INSN_LOCATOR (first))
4789 INSN_LOCATOR (first) = loc;
4790 if (first == last)
4791 break;
4792 first = NEXT_INSN (first);
4793 }
4794 return last;
4795 }
4796
4797 /* like emit_debug_insn_before_noloc,
4798 but set insn_locator according to before. */
4799 rtx
4800 emit_debug_insn_before (rtx pattern, rtx before)
4801 {
4802 if (INSN_P (before))
4803 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4804 else
4805 return emit_debug_insn_before_noloc (pattern, before);
4806 }
4807 \f
4808 /* Take X and emit it at the end of the doubly-linked
4809 INSN list.
4810
4811 Returns the last insn emitted. */
4812
4813 rtx
4814 emit_insn (rtx x)
4815 {
4816 rtx last = last_insn;
4817 rtx insn;
4818
4819 if (x == NULL_RTX)
4820 return last;
4821
4822 switch (GET_CODE (x))
4823 {
4824 case DEBUG_INSN:
4825 case INSN:
4826 case JUMP_INSN:
4827 case CALL_INSN:
4828 case CODE_LABEL:
4829 case BARRIER:
4830 case NOTE:
4831 insn = x;
4832 while (insn)
4833 {
4834 rtx next = NEXT_INSN (insn);
4835 add_insn (insn);
4836 last = insn;
4837 insn = next;
4838 }
4839 break;
4840
4841 #ifdef ENABLE_RTL_CHECKING
4842 case SEQUENCE:
4843 gcc_unreachable ();
4844 break;
4845 #endif
4846
4847 default:
4848 last = make_insn_raw (x);
4849 add_insn (last);
4850 break;
4851 }
4852
4853 return last;
4854 }
4855
4856 /* Make an insn of code DEBUG_INSN with pattern X
4857 and add it to the end of the doubly-linked list. */
4858
4859 rtx
4860 emit_debug_insn (rtx x)
4861 {
4862 rtx last = last_insn;
4863 rtx insn;
4864
4865 if (x == NULL_RTX)
4866 return last;
4867
4868 switch (GET_CODE (x))
4869 {
4870 case DEBUG_INSN:
4871 case INSN:
4872 case JUMP_INSN:
4873 case CALL_INSN:
4874 case CODE_LABEL:
4875 case BARRIER:
4876 case NOTE:
4877 insn = x;
4878 while (insn)
4879 {
4880 rtx next = NEXT_INSN (insn);
4881 add_insn (insn);
4882 last = insn;
4883 insn = next;
4884 }
4885 break;
4886
4887 #ifdef ENABLE_RTL_CHECKING
4888 case SEQUENCE:
4889 gcc_unreachable ();
4890 break;
4891 #endif
4892
4893 default:
4894 last = make_debug_insn_raw (x);
4895 add_insn (last);
4896 break;
4897 }
4898
4899 return last;
4900 }
4901
4902 /* Make an insn of code JUMP_INSN with pattern X
4903 and add it to the end of the doubly-linked list. */
4904
4905 rtx
4906 emit_jump_insn (rtx x)
4907 {
4908 rtx last = NULL_RTX, insn;
4909
4910 switch (GET_CODE (x))
4911 {
4912 case DEBUG_INSN:
4913 case INSN:
4914 case JUMP_INSN:
4915 case CALL_INSN:
4916 case CODE_LABEL:
4917 case BARRIER:
4918 case NOTE:
4919 insn = x;
4920 while (insn)
4921 {
4922 rtx next = NEXT_INSN (insn);
4923 add_insn (insn);
4924 last = insn;
4925 insn = next;
4926 }
4927 break;
4928
4929 #ifdef ENABLE_RTL_CHECKING
4930 case SEQUENCE:
4931 gcc_unreachable ();
4932 break;
4933 #endif
4934
4935 default:
4936 last = make_jump_insn_raw (x);
4937 add_insn (last);
4938 break;
4939 }
4940
4941 return last;
4942 }
4943
4944 /* Make an insn of code CALL_INSN with pattern X
4945 and add it to the end of the doubly-linked list. */
4946
4947 rtx
4948 emit_call_insn (rtx x)
4949 {
4950 rtx insn;
4951
4952 switch (GET_CODE (x))
4953 {
4954 case DEBUG_INSN:
4955 case INSN:
4956 case JUMP_INSN:
4957 case CALL_INSN:
4958 case CODE_LABEL:
4959 case BARRIER:
4960 case NOTE:
4961 insn = emit_insn (x);
4962 break;
4963
4964 #ifdef ENABLE_RTL_CHECKING
4965 case SEQUENCE:
4966 gcc_unreachable ();
4967 break;
4968 #endif
4969
4970 default:
4971 insn = make_call_insn_raw (x);
4972 add_insn (insn);
4973 break;
4974 }
4975
4976 return insn;
4977 }
4978
4979 /* Add the label LABEL to the end of the doubly-linked list. */
4980
4981 rtx
4982 emit_label (rtx label)
4983 {
4984 /* This can be called twice for the same label
4985 as a result of the confusion that follows a syntax error!
4986 So make it harmless. */
4987 if (INSN_UID (label) == 0)
4988 {
4989 INSN_UID (label) = cur_insn_uid++;
4990 add_insn (label);
4991 }
4992 return label;
4993 }
4994
4995 /* Make an insn of code BARRIER
4996 and add it to the end of the doubly-linked list. */
4997
4998 rtx
4999 emit_barrier (void)
5000 {
5001 rtx barrier = rtx_alloc (BARRIER);
5002 INSN_UID (barrier) = cur_insn_uid++;
5003 add_insn (barrier);
5004 return barrier;
5005 }
5006
5007 /* Emit a copy of note ORIG. */
5008
5009 rtx
5010 emit_note_copy (rtx orig)
5011 {
5012 rtx note;
5013
5014 note = rtx_alloc (NOTE);
5015
5016 INSN_UID (note) = cur_insn_uid++;
5017 NOTE_DATA (note) = NOTE_DATA (orig);
5018 NOTE_KIND (note) = NOTE_KIND (orig);
5019 BLOCK_FOR_INSN (note) = NULL;
5020 add_insn (note);
5021
5022 return note;
5023 }
5024
5025 /* Make an insn of code NOTE or type NOTE_NO
5026 and add it to the end of the doubly-linked list. */
5027
5028 rtx
5029 emit_note (enum insn_note kind)
5030 {
5031 rtx note;
5032
5033 note = rtx_alloc (NOTE);
5034 INSN_UID (note) = cur_insn_uid++;
5035 NOTE_KIND (note) = kind;
5036 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5037 BLOCK_FOR_INSN (note) = NULL;
5038 add_insn (note);
5039 return note;
5040 }
5041
5042 /* Emit a clobber of lvalue X. */
5043
5044 rtx
5045 emit_clobber (rtx x)
5046 {
5047 /* CONCATs should not appear in the insn stream. */
5048 if (GET_CODE (x) == CONCAT)
5049 {
5050 emit_clobber (XEXP (x, 0));
5051 return emit_clobber (XEXP (x, 1));
5052 }
5053 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5054 }
5055
5056 /* Return a sequence of insns to clobber lvalue X. */
5057
5058 rtx
5059 gen_clobber (rtx x)
5060 {
5061 rtx seq;
5062
5063 start_sequence ();
5064 emit_clobber (x);
5065 seq = get_insns ();
5066 end_sequence ();
5067 return seq;
5068 }
5069
5070 /* Emit a use of rvalue X. */
5071
5072 rtx
5073 emit_use (rtx x)
5074 {
5075 /* CONCATs should not appear in the insn stream. */
5076 if (GET_CODE (x) == CONCAT)
5077 {
5078 emit_use (XEXP (x, 0));
5079 return emit_use (XEXP (x, 1));
5080 }
5081 return emit_insn (gen_rtx_USE (VOIDmode, x));
5082 }
5083
5084 /* Return a sequence of insns to use rvalue X. */
5085
5086 rtx
5087 gen_use (rtx x)
5088 {
5089 rtx seq;
5090
5091 start_sequence ();
5092 emit_use (x);
5093 seq = get_insns ();
5094 end_sequence ();
5095 return seq;
5096 }
5097
5098 /* Cause next statement to emit a line note even if the line number
5099 has not changed. */
5100
5101 void
5102 force_next_line_note (void)
5103 {
5104 last_location = -1;
5105 }
5106
5107 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5108 note of this type already exists, remove it first. */
5109
5110 rtx
5111 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5112 {
5113 rtx note = find_reg_note (insn, kind, NULL_RTX);
5114
5115 switch (kind)
5116 {
5117 case REG_EQUAL:
5118 case REG_EQUIV:
5119 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5120 has multiple sets (some callers assume single_set
5121 means the insn only has one set, when in fact it
5122 means the insn only has one * useful * set). */
5123 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5124 {
5125 gcc_assert (!note);
5126 return NULL_RTX;
5127 }
5128
5129 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5130 It serves no useful purpose and breaks eliminate_regs. */
5131 if (GET_CODE (datum) == ASM_OPERANDS)
5132 return NULL_RTX;
5133
5134 if (note)
5135 {
5136 XEXP (note, 0) = datum;
5137 df_notes_rescan (insn);
5138 return note;
5139 }
5140 break;
5141
5142 default:
5143 if (note)
5144 {
5145 XEXP (note, 0) = datum;
5146 return note;
5147 }
5148 break;
5149 }
5150
5151 add_reg_note (insn, kind, datum);
5152
5153 switch (kind)
5154 {
5155 case REG_EQUAL:
5156 case REG_EQUIV:
5157 df_notes_rescan (insn);
5158 break;
5159 default:
5160 break;
5161 }
5162
5163 return REG_NOTES (insn);
5164 }
5165 \f
5166 /* Return an indication of which type of insn should have X as a body.
5167 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5168
5169 static enum rtx_code
5170 classify_insn (rtx x)
5171 {
5172 if (LABEL_P (x))
5173 return CODE_LABEL;
5174 if (GET_CODE (x) == CALL)
5175 return CALL_INSN;
5176 if (GET_CODE (x) == RETURN)
5177 return JUMP_INSN;
5178 if (GET_CODE (x) == SET)
5179 {
5180 if (SET_DEST (x) == pc_rtx)
5181 return JUMP_INSN;
5182 else if (GET_CODE (SET_SRC (x)) == CALL)
5183 return CALL_INSN;
5184 else
5185 return INSN;
5186 }
5187 if (GET_CODE (x) == PARALLEL)
5188 {
5189 int j;
5190 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5191 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5192 return CALL_INSN;
5193 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5194 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5195 return JUMP_INSN;
5196 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5197 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5198 return CALL_INSN;
5199 }
5200 return INSN;
5201 }
5202
5203 /* Emit the rtl pattern X as an appropriate kind of insn.
5204 If X is a label, it is simply added into the insn chain. */
5205
5206 rtx
5207 emit (rtx x)
5208 {
5209 enum rtx_code code = classify_insn (x);
5210
5211 switch (code)
5212 {
5213 case CODE_LABEL:
5214 return emit_label (x);
5215 case INSN:
5216 return emit_insn (x);
5217 case JUMP_INSN:
5218 {
5219 rtx insn = emit_jump_insn (x);
5220 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5221 return emit_barrier ();
5222 return insn;
5223 }
5224 case CALL_INSN:
5225 return emit_call_insn (x);
5226 case DEBUG_INSN:
5227 return emit_debug_insn (x);
5228 default:
5229 gcc_unreachable ();
5230 }
5231 }
5232 \f
5233 /* Space for free sequence stack entries. */
5234 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5235
5236 /* Begin emitting insns to a sequence. If this sequence will contain
5237 something that might cause the compiler to pop arguments to function
5238 calls (because those pops have previously been deferred; see
5239 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5240 before calling this function. That will ensure that the deferred
5241 pops are not accidentally emitted in the middle of this sequence. */
5242
5243 void
5244 start_sequence (void)
5245 {
5246 struct sequence_stack *tem;
5247
5248 if (free_sequence_stack != NULL)
5249 {
5250 tem = free_sequence_stack;
5251 free_sequence_stack = tem->next;
5252 }
5253 else
5254 tem = GGC_NEW (struct sequence_stack);
5255
5256 tem->next = seq_stack;
5257 tem->first = first_insn;
5258 tem->last = last_insn;
5259
5260 seq_stack = tem;
5261
5262 first_insn = 0;
5263 last_insn = 0;
5264 }
5265
5266 /* Set up the insn chain starting with FIRST as the current sequence,
5267 saving the previously current one. See the documentation for
5268 start_sequence for more information about how to use this function. */
5269
5270 void
5271 push_to_sequence (rtx first)
5272 {
5273 rtx last;
5274
5275 start_sequence ();
5276
5277 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5278
5279 first_insn = first;
5280 last_insn = last;
5281 }
5282
5283 /* Like push_to_sequence, but take the last insn as an argument to avoid
5284 looping through the list. */
5285
5286 void
5287 push_to_sequence2 (rtx first, rtx last)
5288 {
5289 start_sequence ();
5290
5291 first_insn = first;
5292 last_insn = last;
5293 }
5294
5295 /* Set up the outer-level insn chain
5296 as the current sequence, saving the previously current one. */
5297
5298 void
5299 push_topmost_sequence (void)
5300 {
5301 struct sequence_stack *stack, *top = NULL;
5302
5303 start_sequence ();
5304
5305 for (stack = seq_stack; stack; stack = stack->next)
5306 top = stack;
5307
5308 first_insn = top->first;
5309 last_insn = top->last;
5310 }
5311
5312 /* After emitting to the outer-level insn chain, update the outer-level
5313 insn chain, and restore the previous saved state. */
5314
5315 void
5316 pop_topmost_sequence (void)
5317 {
5318 struct sequence_stack *stack, *top = NULL;
5319
5320 for (stack = seq_stack; stack; stack = stack->next)
5321 top = stack;
5322
5323 top->first = first_insn;
5324 top->last = last_insn;
5325
5326 end_sequence ();
5327 }
5328
5329 /* After emitting to a sequence, restore previous saved state.
5330
5331 To get the contents of the sequence just made, you must call
5332 `get_insns' *before* calling here.
5333
5334 If the compiler might have deferred popping arguments while
5335 generating this sequence, and this sequence will not be immediately
5336 inserted into the instruction stream, use do_pending_stack_adjust
5337 before calling get_insns. That will ensure that the deferred
5338 pops are inserted into this sequence, and not into some random
5339 location in the instruction stream. See INHIBIT_DEFER_POP for more
5340 information about deferred popping of arguments. */
5341
5342 void
5343 end_sequence (void)
5344 {
5345 struct sequence_stack *tem = seq_stack;
5346
5347 first_insn = tem->first;
5348 last_insn = tem->last;
5349 seq_stack = tem->next;
5350
5351 memset (tem, 0, sizeof (*tem));
5352 tem->next = free_sequence_stack;
5353 free_sequence_stack = tem;
5354 }
5355
5356 /* Return 1 if currently emitting into a sequence. */
5357
5358 int
5359 in_sequence_p (void)
5360 {
5361 return seq_stack != 0;
5362 }
5363 \f
5364 /* Put the various virtual registers into REGNO_REG_RTX. */
5365
5366 static void
5367 init_virtual_regs (void)
5368 {
5369 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5370 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5371 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5372 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5373 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5374 }
5375
5376 \f
5377 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5378 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5379 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5380 static int copy_insn_n_scratches;
5381
5382 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5383 copied an ASM_OPERANDS.
5384 In that case, it is the original input-operand vector. */
5385 static rtvec orig_asm_operands_vector;
5386
5387 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5388 copied an ASM_OPERANDS.
5389 In that case, it is the copied input-operand vector. */
5390 static rtvec copy_asm_operands_vector;
5391
5392 /* Likewise for the constraints vector. */
5393 static rtvec orig_asm_constraints_vector;
5394 static rtvec copy_asm_constraints_vector;
5395
5396 /* Recursively create a new copy of an rtx for copy_insn.
5397 This function differs from copy_rtx in that it handles SCRATCHes and
5398 ASM_OPERANDs properly.
5399 Normally, this function is not used directly; use copy_insn as front end.
5400 However, you could first copy an insn pattern with copy_insn and then use
5401 this function afterwards to properly copy any REG_NOTEs containing
5402 SCRATCHes. */
5403
5404 rtx
5405 copy_insn_1 (rtx orig)
5406 {
5407 rtx copy;
5408 int i, j;
5409 RTX_CODE code;
5410 const char *format_ptr;
5411
5412 if (orig == NULL)
5413 return NULL;
5414
5415 code = GET_CODE (orig);
5416
5417 switch (code)
5418 {
5419 case REG:
5420 case CONST_INT:
5421 case CONST_DOUBLE:
5422 case CONST_FIXED:
5423 case CONST_VECTOR:
5424 case SYMBOL_REF:
5425 case CODE_LABEL:
5426 case PC:
5427 case CC0:
5428 return orig;
5429 case CLOBBER:
5430 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5431 return orig;
5432 break;
5433
5434 case SCRATCH:
5435 for (i = 0; i < copy_insn_n_scratches; i++)
5436 if (copy_insn_scratch_in[i] == orig)
5437 return copy_insn_scratch_out[i];
5438 break;
5439
5440 case CONST:
5441 if (shared_const_p (orig))
5442 return orig;
5443 break;
5444
5445 /* A MEM with a constant address is not sharable. The problem is that
5446 the constant address may need to be reloaded. If the mem is shared,
5447 then reloading one copy of this mem will cause all copies to appear
5448 to have been reloaded. */
5449
5450 default:
5451 break;
5452 }
5453
5454 /* Copy the various flags, fields, and other information. We assume
5455 that all fields need copying, and then clear the fields that should
5456 not be copied. That is the sensible default behavior, and forces
5457 us to explicitly document why we are *not* copying a flag. */
5458 copy = shallow_copy_rtx (orig);
5459
5460 /* We do not copy the USED flag, which is used as a mark bit during
5461 walks over the RTL. */
5462 RTX_FLAG (copy, used) = 0;
5463
5464 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5465 if (INSN_P (orig))
5466 {
5467 RTX_FLAG (copy, jump) = 0;
5468 RTX_FLAG (copy, call) = 0;
5469 RTX_FLAG (copy, frame_related) = 0;
5470 }
5471
5472 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5473
5474 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5475 switch (*format_ptr++)
5476 {
5477 case 'e':
5478 if (XEXP (orig, i) != NULL)
5479 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5480 break;
5481
5482 case 'E':
5483 case 'V':
5484 if (XVEC (orig, i) == orig_asm_constraints_vector)
5485 XVEC (copy, i) = copy_asm_constraints_vector;
5486 else if (XVEC (orig, i) == orig_asm_operands_vector)
5487 XVEC (copy, i) = copy_asm_operands_vector;
5488 else if (XVEC (orig, i) != NULL)
5489 {
5490 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5491 for (j = 0; j < XVECLEN (copy, i); j++)
5492 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5493 }
5494 break;
5495
5496 case 't':
5497 case 'w':
5498 case 'i':
5499 case 's':
5500 case 'S':
5501 case 'u':
5502 case '0':
5503 /* These are left unchanged. */
5504 break;
5505
5506 default:
5507 gcc_unreachable ();
5508 }
5509
5510 if (code == SCRATCH)
5511 {
5512 i = copy_insn_n_scratches++;
5513 gcc_assert (i < MAX_RECOG_OPERANDS);
5514 copy_insn_scratch_in[i] = orig;
5515 copy_insn_scratch_out[i] = copy;
5516 }
5517 else if (code == ASM_OPERANDS)
5518 {
5519 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5520 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5521 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5522 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5523 }
5524
5525 return copy;
5526 }
5527
5528 /* Create a new copy of an rtx.
5529 This function differs from copy_rtx in that it handles SCRATCHes and
5530 ASM_OPERANDs properly.
5531 INSN doesn't really have to be a full INSN; it could be just the
5532 pattern. */
5533 rtx
5534 copy_insn (rtx insn)
5535 {
5536 copy_insn_n_scratches = 0;
5537 orig_asm_operands_vector = 0;
5538 orig_asm_constraints_vector = 0;
5539 copy_asm_operands_vector = 0;
5540 copy_asm_constraints_vector = 0;
5541 return copy_insn_1 (insn);
5542 }
5543
5544 /* Initialize data structures and variables in this file
5545 before generating rtl for each function. */
5546
5547 void
5548 init_emit (void)
5549 {
5550 first_insn = NULL;
5551 last_insn = NULL;
5552 if (MIN_NONDEBUG_INSN_UID)
5553 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5554 else
5555 cur_insn_uid = 1;
5556 cur_debug_insn_uid = 1;
5557 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5558 last_location = UNKNOWN_LOCATION;
5559 first_label_num = label_num;
5560 seq_stack = NULL;
5561
5562 /* Init the tables that describe all the pseudo regs. */
5563
5564 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5565
5566 crtl->emit.regno_pointer_align
5567 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5568
5569 regno_reg_rtx
5570 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5571
5572 /* Put copies of all the hard registers into regno_reg_rtx. */
5573 memcpy (regno_reg_rtx,
5574 static_regno_reg_rtx,
5575 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5576
5577 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5578 init_virtual_regs ();
5579
5580 /* Indicate that the virtual registers and stack locations are
5581 all pointers. */
5582 REG_POINTER (stack_pointer_rtx) = 1;
5583 REG_POINTER (frame_pointer_rtx) = 1;
5584 REG_POINTER (hard_frame_pointer_rtx) = 1;
5585 REG_POINTER (arg_pointer_rtx) = 1;
5586
5587 REG_POINTER (virtual_incoming_args_rtx) = 1;
5588 REG_POINTER (virtual_stack_vars_rtx) = 1;
5589 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5590 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5591 REG_POINTER (virtual_cfa_rtx) = 1;
5592
5593 #ifdef STACK_BOUNDARY
5594 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5595 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5596 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5597 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5598
5599 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5600 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5601 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5602 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5603 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5604 #endif
5605
5606 #ifdef INIT_EXPANDERS
5607 INIT_EXPANDERS;
5608 #endif
5609 }
5610
5611 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5612
5613 static rtx
5614 gen_const_vector (enum machine_mode mode, int constant)
5615 {
5616 rtx tem;
5617 rtvec v;
5618 int units, i;
5619 enum machine_mode inner;
5620
5621 units = GET_MODE_NUNITS (mode);
5622 inner = GET_MODE_INNER (mode);
5623
5624 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5625
5626 v = rtvec_alloc (units);
5627
5628 /* We need to call this function after we set the scalar const_tiny_rtx
5629 entries. */
5630 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5631
5632 for (i = 0; i < units; ++i)
5633 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5634
5635 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5636 return tem;
5637 }
5638
5639 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5640 all elements are zero, and the one vector when all elements are one. */
5641 rtx
5642 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5643 {
5644 enum machine_mode inner = GET_MODE_INNER (mode);
5645 int nunits = GET_MODE_NUNITS (mode);
5646 rtx x;
5647 int i;
5648
5649 /* Check to see if all of the elements have the same value. */
5650 x = RTVEC_ELT (v, nunits - 1);
5651 for (i = nunits - 2; i >= 0; i--)
5652 if (RTVEC_ELT (v, i) != x)
5653 break;
5654
5655 /* If the values are all the same, check to see if we can use one of the
5656 standard constant vectors. */
5657 if (i == -1)
5658 {
5659 if (x == CONST0_RTX (inner))
5660 return CONST0_RTX (mode);
5661 else if (x == CONST1_RTX (inner))
5662 return CONST1_RTX (mode);
5663 }
5664
5665 return gen_rtx_raw_CONST_VECTOR (mode, v);
5666 }
5667
5668 /* Initialise global register information required by all functions. */
5669
5670 void
5671 init_emit_regs (void)
5672 {
5673 int i;
5674
5675 /* Reset register attributes */
5676 htab_empty (reg_attrs_htab);
5677
5678 /* We need reg_raw_mode, so initialize the modes now. */
5679 init_reg_modes_target ();
5680
5681 /* Assign register numbers to the globally defined register rtx. */
5682 pc_rtx = gen_rtx_PC (VOIDmode);
5683 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5684 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5685 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5686 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5687 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5688 virtual_incoming_args_rtx =
5689 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5690 virtual_stack_vars_rtx =
5691 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5692 virtual_stack_dynamic_rtx =
5693 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5694 virtual_outgoing_args_rtx =
5695 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5696 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5697
5698 /* Initialize RTL for commonly used hard registers. These are
5699 copied into regno_reg_rtx as we begin to compile each function. */
5700 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5701 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5702
5703 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5704 return_address_pointer_rtx
5705 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5706 #endif
5707
5708 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5709 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5710 else
5711 pic_offset_table_rtx = NULL_RTX;
5712 }
5713
5714 /* Create some permanent unique rtl objects shared between all functions. */
5715
5716 void
5717 init_emit_once (void)
5718 {
5719 int i;
5720 enum machine_mode mode;
5721 enum machine_mode double_mode;
5722
5723 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5724 hash tables. */
5725 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5726 const_int_htab_eq, NULL);
5727
5728 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5729 const_double_htab_eq, NULL);
5730
5731 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5732 const_fixed_htab_eq, NULL);
5733
5734 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5735 mem_attrs_htab_eq, NULL);
5736 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5737 reg_attrs_htab_eq, NULL);
5738
5739 /* Compute the word and byte modes. */
5740
5741 byte_mode = VOIDmode;
5742 word_mode = VOIDmode;
5743 double_mode = VOIDmode;
5744
5745 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5746 mode != VOIDmode;
5747 mode = GET_MODE_WIDER_MODE (mode))
5748 {
5749 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5750 && byte_mode == VOIDmode)
5751 byte_mode = mode;
5752
5753 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5754 && word_mode == VOIDmode)
5755 word_mode = mode;
5756 }
5757
5758 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5759 mode != VOIDmode;
5760 mode = GET_MODE_WIDER_MODE (mode))
5761 {
5762 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5763 && double_mode == VOIDmode)
5764 double_mode = mode;
5765 }
5766
5767 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5768
5769 #ifdef INIT_EXPANDERS
5770 /* This is to initialize {init|mark|free}_machine_status before the first
5771 call to push_function_context_to. This is needed by the Chill front
5772 end which calls push_function_context_to before the first call to
5773 init_function_start. */
5774 INIT_EXPANDERS;
5775 #endif
5776
5777 /* Create the unique rtx's for certain rtx codes and operand values. */
5778
5779 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5780 tries to use these variables. */
5781 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5782 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5783 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5784
5785 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5786 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5787 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5788 else
5789 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5790
5791 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5792 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5793 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5794
5795 dconstm1 = dconst1;
5796 dconstm1.sign = 1;
5797
5798 dconsthalf = dconst1;
5799 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5800
5801 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5802 {
5803 const REAL_VALUE_TYPE *const r =
5804 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5805
5806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5807 mode != VOIDmode;
5808 mode = GET_MODE_WIDER_MODE (mode))
5809 const_tiny_rtx[i][(int) mode] =
5810 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5811
5812 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5813 mode != VOIDmode;
5814 mode = GET_MODE_WIDER_MODE (mode))
5815 const_tiny_rtx[i][(int) mode] =
5816 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5817
5818 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5819
5820 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5821 mode != VOIDmode;
5822 mode = GET_MODE_WIDER_MODE (mode))
5823 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5824
5825 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5826 mode != VOIDmode;
5827 mode = GET_MODE_WIDER_MODE (mode))
5828 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5829 }
5830
5831 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5832 mode != VOIDmode;
5833 mode = GET_MODE_WIDER_MODE (mode))
5834 {
5835 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5836 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5837 }
5838
5839 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5840 mode != VOIDmode;
5841 mode = GET_MODE_WIDER_MODE (mode))
5842 {
5843 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5844 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5845 }
5846
5847 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5848 mode != VOIDmode;
5849 mode = GET_MODE_WIDER_MODE (mode))
5850 {
5851 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5852 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5853 }
5854
5855 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5856 mode != VOIDmode;
5857 mode = GET_MODE_WIDER_MODE (mode))
5858 {
5859 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5860 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5861 }
5862
5863 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5864 mode != VOIDmode;
5865 mode = GET_MODE_WIDER_MODE (mode))
5866 {
5867 FCONST0(mode).data.high = 0;
5868 FCONST0(mode).data.low = 0;
5869 FCONST0(mode).mode = mode;
5870 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5871 FCONST0 (mode), mode);
5872 }
5873
5874 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5875 mode != VOIDmode;
5876 mode = GET_MODE_WIDER_MODE (mode))
5877 {
5878 FCONST0(mode).data.high = 0;
5879 FCONST0(mode).data.low = 0;
5880 FCONST0(mode).mode = mode;
5881 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5882 FCONST0 (mode), mode);
5883 }
5884
5885 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5886 mode != VOIDmode;
5887 mode = GET_MODE_WIDER_MODE (mode))
5888 {
5889 FCONST0(mode).data.high = 0;
5890 FCONST0(mode).data.low = 0;
5891 FCONST0(mode).mode = mode;
5892 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5893 FCONST0 (mode), mode);
5894
5895 /* We store the value 1. */
5896 FCONST1(mode).data.high = 0;
5897 FCONST1(mode).data.low = 0;
5898 FCONST1(mode).mode = mode;
5899 lshift_double (1, 0, GET_MODE_FBIT (mode),
5900 2 * HOST_BITS_PER_WIDE_INT,
5901 &FCONST1(mode).data.low,
5902 &FCONST1(mode).data.high,
5903 SIGNED_FIXED_POINT_MODE_P (mode));
5904 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5905 FCONST1 (mode), mode);
5906 }
5907
5908 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5909 mode != VOIDmode;
5910 mode = GET_MODE_WIDER_MODE (mode))
5911 {
5912 FCONST0(mode).data.high = 0;
5913 FCONST0(mode).data.low = 0;
5914 FCONST0(mode).mode = mode;
5915 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5916 FCONST0 (mode), mode);
5917
5918 /* We store the value 1. */
5919 FCONST1(mode).data.high = 0;
5920 FCONST1(mode).data.low = 0;
5921 FCONST1(mode).mode = mode;
5922 lshift_double (1, 0, GET_MODE_FBIT (mode),
5923 2 * HOST_BITS_PER_WIDE_INT,
5924 &FCONST1(mode).data.low,
5925 &FCONST1(mode).data.high,
5926 SIGNED_FIXED_POINT_MODE_P (mode));
5927 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5928 FCONST1 (mode), mode);
5929 }
5930
5931 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5932 mode != VOIDmode;
5933 mode = GET_MODE_WIDER_MODE (mode))
5934 {
5935 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5936 }
5937
5938 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5939 mode != VOIDmode;
5940 mode = GET_MODE_WIDER_MODE (mode))
5941 {
5942 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5943 }
5944
5945 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5946 mode != VOIDmode;
5947 mode = GET_MODE_WIDER_MODE (mode))
5948 {
5949 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5950 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5951 }
5952
5953 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5954 mode != VOIDmode;
5955 mode = GET_MODE_WIDER_MODE (mode))
5956 {
5957 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5958 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5959 }
5960
5961 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5962 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5963 const_tiny_rtx[0][i] = const0_rtx;
5964
5965 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5966 if (STORE_FLAG_VALUE == 1)
5967 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5968 }
5969 \f
5970 /* Produce exact duplicate of insn INSN after AFTER.
5971 Care updating of libcall regions if present. */
5972
5973 rtx
5974 emit_copy_of_insn_after (rtx insn, rtx after)
5975 {
5976 rtx new_rtx, link;
5977
5978 switch (GET_CODE (insn))
5979 {
5980 case INSN:
5981 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5982 break;
5983
5984 case JUMP_INSN:
5985 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5986 break;
5987
5988 case DEBUG_INSN:
5989 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5990 break;
5991
5992 case CALL_INSN:
5993 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5994 if (CALL_INSN_FUNCTION_USAGE (insn))
5995 CALL_INSN_FUNCTION_USAGE (new_rtx)
5996 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5997 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5998 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5999 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6000 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6001 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6002 break;
6003
6004 default:
6005 gcc_unreachable ();
6006 }
6007
6008 /* Update LABEL_NUSES. */
6009 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6010
6011 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
6012
6013 /* If the old insn is frame related, then so is the new one. This is
6014 primarily needed for IA-64 unwind info which marks epilogue insns,
6015 which may be duplicated by the basic block reordering code. */
6016 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6017
6018 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6019 will make them. REG_LABEL_TARGETs are created there too, but are
6020 supposed to be sticky, so we copy them. */
6021 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6022 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6023 {
6024 if (GET_CODE (link) == EXPR_LIST)
6025 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6026 copy_insn_1 (XEXP (link, 0)));
6027 else
6028 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6029 }
6030
6031 INSN_CODE (new_rtx) = INSN_CODE (insn);
6032 return new_rtx;
6033 }
6034
6035 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6036 rtx
6037 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6038 {
6039 if (hard_reg_clobbers[mode][regno])
6040 return hard_reg_clobbers[mode][regno];
6041 else
6042 return (hard_reg_clobbers[mode][regno] =
6043 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6044 }
6045
6046 #include "gt-emit-rtl.h"