re PR c++/29234 (Call to operator() of temporary object wrongly parsed)
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "regs.h"
46 #include "hard-reg-set.h"
47 #include "hashtab.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "bitmap.h"
51 #include "basic-block.h"
52 #include "ggc.h"
53 #include "debug.h"
54 #include "langhooks.h"
55 #include "df.h"
56 #include "params.h"
57 #include "target.h"
58 #include "tree-eh.h"
59
60 struct target_rtl default_target_rtl;
61 #if SWITCHABLE_TARGET
62 struct target_rtl *this_target_rtl = &default_target_rtl;
63 #endif
64
65 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
66
67 /* Commonly used modes. */
68
69 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
70 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
71 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
72 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
73
74 /* Datastructures maintained for currently processed function in RTL form. */
75
76 struct rtl_data x_rtl;
77
78 /* Indexed by pseudo register number, gives the rtx for that pseudo.
79 Allocated in parallel with regno_pointer_align.
80 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
81 with length attribute nested in top level structures. */
82
83 rtx * regno_reg_rtx;
84
85 /* This is *not* reset after each function. It gives each CODE_LABEL
86 in the entire compilation a unique label number. */
87
88 static GTY(()) int label_num = 1;
89
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
93 is set only for MODE_INT and MODE_VECTOR_INT modes. */
94
95 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
96
97 rtx const_true_rtx;
98
99 REAL_VALUE_TYPE dconst0;
100 REAL_VALUE_TYPE dconst1;
101 REAL_VALUE_TYPE dconst2;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconsthalf;
104
105 /* Record fixed-point constant 0 and 1. */
106 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
107 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
108
109 /* We make one copy of (const_int C) where C is in
110 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
111 to save space during the compilation and simplify comparisons of
112 integers. */
113
114 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
115
116 /* Standard pieces of rtx, to be substituted directly into things. */
117 rtx pc_rtx;
118 rtx ret_rtx;
119 rtx simple_return_rtx;
120 rtx cc0_rtx;
121
122 /* A hash table storing CONST_INTs whose absolute value is greater
123 than MAX_SAVED_CONST_INT. */
124
125 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
126 htab_t const_int_htab;
127
128 /* A hash table storing memory attribute structures. */
129 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
130 htab_t mem_attrs_htab;
131
132 /* A hash table storing register attribute structures. */
133 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
134 htab_t reg_attrs_htab;
135
136 /* A hash table storing all CONST_DOUBLEs. */
137 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
138 htab_t const_double_htab;
139
140 /* A hash table storing all CONST_FIXEDs. */
141 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
142 htab_t const_fixed_htab;
143
144 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
145 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
146 #define first_label_num (crtl->emit.x_first_label_num)
147
148 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 static hashval_t const_double_htab_hash (const void *);
154 static int const_double_htab_eq (const void *, const void *);
155 static rtx lookup_const_double (rtx);
156 static hashval_t const_fixed_htab_hash (const void *);
157 static int const_fixed_htab_eq (const void *, const void *);
158 static rtx lookup_const_fixed (rtx);
159 static hashval_t mem_attrs_htab_hash (const void *);
160 static int mem_attrs_htab_eq (const void *, const void *);
161 static hashval_t reg_attrs_htab_hash (const void *);
162 static int reg_attrs_htab_eq (const void *, const void *);
163 static reg_attrs *get_reg_attrs (tree, int);
164 static rtx gen_const_vector (enum machine_mode, int);
165 static void copy_rtx_if_shared_1 (rtx *orig);
166
167 /* Probability of the conditional branch currently proceeded by try_split.
168 Set to -1 otherwise. */
169 int split_branch_probability = -1;
170 \f
171 /* Returns a hash code for X (which is a really a CONST_INT). */
172
173 static hashval_t
174 const_int_htab_hash (const void *x)
175 {
176 return (hashval_t) INTVAL ((const_rtx) x);
177 }
178
179 /* Returns nonzero if the value represented by X (which is really a
180 CONST_INT) is the same as that given by Y (which is really a
181 HOST_WIDE_INT *). */
182
183 static int
184 const_int_htab_eq (const void *x, const void *y)
185 {
186 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
187 }
188
189 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
190 static hashval_t
191 const_double_htab_hash (const void *x)
192 {
193 const_rtx const value = (const_rtx) x;
194 hashval_t h;
195
196 if (GET_MODE (value) == VOIDmode)
197 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
198 else
199 {
200 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
201 /* MODE is used in the comparison, so it should be in the hash. */
202 h ^= GET_MODE (value);
203 }
204 return h;
205 }
206
207 /* Returns nonzero if the value represented by X (really a ...)
208 is the same as that represented by Y (really a ...) */
209 static int
210 const_double_htab_eq (const void *x, const void *y)
211 {
212 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
213
214 if (GET_MODE (a) != GET_MODE (b))
215 return 0;
216 if (GET_MODE (a) == VOIDmode)
217 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
218 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
219 else
220 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
221 CONST_DOUBLE_REAL_VALUE (b));
222 }
223
224 /* Returns a hash code for X (which is really a CONST_FIXED). */
225
226 static hashval_t
227 const_fixed_htab_hash (const void *x)
228 {
229 const_rtx const value = (const_rtx) x;
230 hashval_t h;
231
232 h = fixed_hash (CONST_FIXED_VALUE (value));
233 /* MODE is used in the comparison, so it should be in the hash. */
234 h ^= GET_MODE (value);
235 return h;
236 }
237
238 /* Returns nonzero if the value represented by X (really a ...)
239 is the same as that represented by Y (really a ...). */
240
241 static int
242 const_fixed_htab_eq (const void *x, const void *y)
243 {
244 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
245
246 if (GET_MODE (a) != GET_MODE (b))
247 return 0;
248 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
249 }
250
251 /* Returns a hash code for X (which is a really a mem_attrs *). */
252
253 static hashval_t
254 mem_attrs_htab_hash (const void *x)
255 {
256 const mem_attrs *const p = (const mem_attrs *) x;
257
258 return (p->alias ^ (p->align * 1000)
259 ^ (p->addrspace * 4000)
260 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
261 ^ ((p->size_known_p ? p->size : 0) * 2500000)
262 ^ (size_t) iterative_hash_expr (p->expr, 0));
263 }
264
265 /* Return true if the given memory attributes are equal. */
266
267 static bool
268 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
269 {
270 return (p->alias == q->alias
271 && p->offset_known_p == q->offset_known_p
272 && (!p->offset_known_p || p->offset == q->offset)
273 && p->size_known_p == q->size_known_p
274 && (!p->size_known_p || p->size == q->size)
275 && p->align == q->align
276 && p->addrspace == q->addrspace
277 && (p->expr == q->expr
278 || (p->expr != NULL_TREE && q->expr != NULL_TREE
279 && operand_equal_p (p->expr, q->expr, 0))));
280 }
281
282 /* Returns nonzero if the value represented by X (which is really a
283 mem_attrs *) is the same as that given by Y (which is also really a
284 mem_attrs *). */
285
286 static int
287 mem_attrs_htab_eq (const void *x, const void *y)
288 {
289 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
290 }
291
292 /* Set MEM's memory attributes so that they are the same as ATTRS. */
293
294 static void
295 set_mem_attrs (rtx mem, mem_attrs *attrs)
296 {
297 void **slot;
298
299 /* If everything is the default, we can just clear the attributes. */
300 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
301 {
302 MEM_ATTRS (mem) = 0;
303 return;
304 }
305
306 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
307 if (*slot == 0)
308 {
309 *slot = ggc_alloc_mem_attrs ();
310 memcpy (*slot, attrs, sizeof (mem_attrs));
311 }
312
313 MEM_ATTRS (mem) = (mem_attrs *) *slot;
314 }
315
316 /* Returns a hash code for X (which is a really a reg_attrs *). */
317
318 static hashval_t
319 reg_attrs_htab_hash (const void *x)
320 {
321 const reg_attrs *const p = (const reg_attrs *) x;
322
323 return ((p->offset * 1000) ^ (intptr_t) p->decl);
324 }
325
326 /* Returns nonzero if the value represented by X (which is really a
327 reg_attrs *) is the same as that given by Y (which is also really a
328 reg_attrs *). */
329
330 static int
331 reg_attrs_htab_eq (const void *x, const void *y)
332 {
333 const reg_attrs *const p = (const reg_attrs *) x;
334 const reg_attrs *const q = (const reg_attrs *) y;
335
336 return (p->decl == q->decl && p->offset == q->offset);
337 }
338 /* Allocate a new reg_attrs structure and insert it into the hash table if
339 one identical to it is not already in the table. We are doing this for
340 MEM of mode MODE. */
341
342 static reg_attrs *
343 get_reg_attrs (tree decl, int offset)
344 {
345 reg_attrs attrs;
346 void **slot;
347
348 /* If everything is the default, we can just return zero. */
349 if (decl == 0 && offset == 0)
350 return 0;
351
352 attrs.decl = decl;
353 attrs.offset = offset;
354
355 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
356 if (*slot == 0)
357 {
358 *slot = ggc_alloc_reg_attrs ();
359 memcpy (*slot, &attrs, sizeof (reg_attrs));
360 }
361
362 return (reg_attrs *) *slot;
363 }
364
365
366 #if !HAVE_blockage
367 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
368 and to block register equivalences to be seen across this insn. */
369
370 rtx
371 gen_blockage (void)
372 {
373 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
374 MEM_VOLATILE_P (x) = true;
375 return x;
376 }
377 #endif
378
379
380 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
381 don't attempt to share with the various global pieces of rtl (such as
382 frame_pointer_rtx). */
383
384 rtx
385 gen_raw_REG (enum machine_mode mode, int regno)
386 {
387 rtx x = gen_rtx_raw_REG (mode, regno);
388 ORIGINAL_REGNO (x) = regno;
389 return x;
390 }
391
392 /* There are some RTL codes that require special attention; the generation
393 functions do the raw handling. If you add to this list, modify
394 special_rtx in gengenrtl.c as well. */
395
396 rtx
397 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
398 {
399 void **slot;
400
401 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
402 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
403
404 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
405 if (const_true_rtx && arg == STORE_FLAG_VALUE)
406 return const_true_rtx;
407 #endif
408
409 /* Look up the CONST_INT in the hash table. */
410 slot = htab_find_slot_with_hash (const_int_htab, &arg,
411 (hashval_t) arg, INSERT);
412 if (*slot == 0)
413 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
414
415 return (rtx) *slot;
416 }
417
418 rtx
419 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
420 {
421 return GEN_INT (trunc_int_for_mode (c, mode));
422 }
423
424 /* CONST_DOUBLEs might be created from pairs of integers, or from
425 REAL_VALUE_TYPEs. Also, their length is known only at run time,
426 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427
428 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
429 hash table. If so, return its counterpart; otherwise add it
430 to the hash table and return it. */
431 static rtx
432 lookup_const_double (rtx real)
433 {
434 void **slot = htab_find_slot (const_double_htab, real, INSERT);
435 if (*slot == 0)
436 *slot = real;
437
438 return (rtx) *slot;
439 }
440
441 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
442 VALUE in mode MODE. */
443 rtx
444 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
445 {
446 rtx real = rtx_alloc (CONST_DOUBLE);
447 PUT_MODE (real, mode);
448
449 real->u.rv = value;
450
451 return lookup_const_double (real);
452 }
453
454 /* Determine whether FIXED, a CONST_FIXED, already exists in the
455 hash table. If so, return its counterpart; otherwise add it
456 to the hash table and return it. */
457
458 static rtx
459 lookup_const_fixed (rtx fixed)
460 {
461 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
462 if (*slot == 0)
463 *slot = fixed;
464
465 return (rtx) *slot;
466 }
467
468 /* Return a CONST_FIXED rtx for a fixed-point value specified by
469 VALUE in mode MODE. */
470
471 rtx
472 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
473 {
474 rtx fixed = rtx_alloc (CONST_FIXED);
475 PUT_MODE (fixed, mode);
476
477 fixed->u.fv = value;
478
479 return lookup_const_fixed (fixed);
480 }
481
482 /* Constructs double_int from rtx CST. */
483
484 double_int
485 rtx_to_double_int (const_rtx cst)
486 {
487 double_int r;
488
489 if (CONST_INT_P (cst))
490 r = double_int::from_shwi (INTVAL (cst));
491 else if (CONST_DOUBLE_AS_INT_P (cst))
492 {
493 r.low = CONST_DOUBLE_LOW (cst);
494 r.high = CONST_DOUBLE_HIGH (cst);
495 }
496 else
497 gcc_unreachable ();
498
499 return r;
500 }
501
502
503 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
504 a double_int. */
505
506 rtx
507 immed_double_int_const (double_int i, enum machine_mode mode)
508 {
509 return immed_double_const (i.low, i.high, mode);
510 }
511
512 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
513 of ints: I0 is the low-order word and I1 is the high-order word.
514 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
515 implied upper bits are copies of the high bit of i1. The value
516 itself is neither signed nor unsigned. Do not use this routine for
517 non-integer modes; convert to REAL_VALUE_TYPE and use
518 CONST_DOUBLE_FROM_REAL_VALUE. */
519
520 rtx
521 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
522 {
523 rtx value;
524 unsigned int i;
525
526 /* There are the following cases (note that there are no modes with
527 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
528
529 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
530 gen_int_mode.
531 2) If the value of the integer fits into HOST_WIDE_INT anyway
532 (i.e., i1 consists only from copies of the sign bit, and sign
533 of i0 and i1 are the same), then we return a CONST_INT for i0.
534 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
535 if (mode != VOIDmode)
536 {
537 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
538 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
539 /* We can get a 0 for an error mark. */
540 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
541 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
542
543 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
544 return gen_int_mode (i0, mode);
545 }
546
547 /* If this integer fits in one word, return a CONST_INT. */
548 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
549 return GEN_INT (i0);
550
551 /* We use VOIDmode for integers. */
552 value = rtx_alloc (CONST_DOUBLE);
553 PUT_MODE (value, VOIDmode);
554
555 CONST_DOUBLE_LOW (value) = i0;
556 CONST_DOUBLE_HIGH (value) = i1;
557
558 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
559 XWINT (value, i) = 0;
560
561 return lookup_const_double (value);
562 }
563
564 rtx
565 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
566 {
567 /* In case the MD file explicitly references the frame pointer, have
568 all such references point to the same frame pointer. This is
569 used during frame pointer elimination to distinguish the explicit
570 references to these registers from pseudos that happened to be
571 assigned to them.
572
573 If we have eliminated the frame pointer or arg pointer, we will
574 be using it as a normal register, for example as a spill
575 register. In such cases, we might be accessing it in a mode that
576 is not Pmode and therefore cannot use the pre-allocated rtx.
577
578 Also don't do this when we are making new REGs in reload, since
579 we don't want to get confused with the real pointers. */
580
581 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
582 {
583 if (regno == FRAME_POINTER_REGNUM
584 && (!reload_completed || frame_pointer_needed))
585 return frame_pointer_rtx;
586 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
587 if (regno == HARD_FRAME_POINTER_REGNUM
588 && (!reload_completed || frame_pointer_needed))
589 return hard_frame_pointer_rtx;
590 #endif
591 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
592 if (regno == ARG_POINTER_REGNUM)
593 return arg_pointer_rtx;
594 #endif
595 #ifdef RETURN_ADDRESS_POINTER_REGNUM
596 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
597 return return_address_pointer_rtx;
598 #endif
599 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
600 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
601 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
602 return pic_offset_table_rtx;
603 if (regno == STACK_POINTER_REGNUM)
604 return stack_pointer_rtx;
605 }
606
607 #if 0
608 /* If the per-function register table has been set up, try to re-use
609 an existing entry in that table to avoid useless generation of RTL.
610
611 This code is disabled for now until we can fix the various backends
612 which depend on having non-shared hard registers in some cases. Long
613 term we want to re-enable this code as it can significantly cut down
614 on the amount of useless RTL that gets generated.
615
616 We'll also need to fix some code that runs after reload that wants to
617 set ORIGINAL_REGNO. */
618
619 if (cfun
620 && cfun->emit
621 && regno_reg_rtx
622 && regno < FIRST_PSEUDO_REGISTER
623 && reg_raw_mode[regno] == mode)
624 return regno_reg_rtx[regno];
625 #endif
626
627 return gen_raw_REG (mode, regno);
628 }
629
630 rtx
631 gen_rtx_MEM (enum machine_mode mode, rtx addr)
632 {
633 rtx rt = gen_rtx_raw_MEM (mode, addr);
634
635 /* This field is not cleared by the mere allocation of the rtx, so
636 we clear it here. */
637 MEM_ATTRS (rt) = 0;
638
639 return rt;
640 }
641
642 /* Generate a memory referring to non-trapping constant memory. */
643
644 rtx
645 gen_const_mem (enum machine_mode mode, rtx addr)
646 {
647 rtx mem = gen_rtx_MEM (mode, addr);
648 MEM_READONLY_P (mem) = 1;
649 MEM_NOTRAP_P (mem) = 1;
650 return mem;
651 }
652
653 /* Generate a MEM referring to fixed portions of the frame, e.g., register
654 save areas. */
655
656 rtx
657 gen_frame_mem (enum machine_mode mode, rtx addr)
658 {
659 rtx mem = gen_rtx_MEM (mode, addr);
660 MEM_NOTRAP_P (mem) = 1;
661 set_mem_alias_set (mem, get_frame_alias_set ());
662 return mem;
663 }
664
665 /* Generate a MEM referring to a temporary use of the stack, not part
666 of the fixed stack frame. For example, something which is pushed
667 by a target splitter. */
668 rtx
669 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
670 {
671 rtx mem = gen_rtx_MEM (mode, addr);
672 MEM_NOTRAP_P (mem) = 1;
673 if (!cfun->calls_alloca)
674 set_mem_alias_set (mem, get_frame_alias_set ());
675 return mem;
676 }
677
678 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
679 this construct would be valid, and false otherwise. */
680
681 bool
682 validate_subreg (enum machine_mode omode, enum machine_mode imode,
683 const_rtx reg, unsigned int offset)
684 {
685 unsigned int isize = GET_MODE_SIZE (imode);
686 unsigned int osize = GET_MODE_SIZE (omode);
687
688 /* All subregs must be aligned. */
689 if (offset % osize != 0)
690 return false;
691
692 /* The subreg offset cannot be outside the inner object. */
693 if (offset >= isize)
694 return false;
695
696 /* ??? This should not be here. Temporarily continue to allow word_mode
697 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
698 Generally, backends are doing something sketchy but it'll take time to
699 fix them all. */
700 if (omode == word_mode)
701 ;
702 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
703 is the culprit here, and not the backends. */
704 else if (osize >= UNITS_PER_WORD && isize >= osize)
705 ;
706 /* Allow component subregs of complex and vector. Though given the below
707 extraction rules, it's not always clear what that means. */
708 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
709 && GET_MODE_INNER (imode) == omode)
710 ;
711 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
712 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
713 represent this. It's questionable if this ought to be represented at
714 all -- why can't this all be hidden in post-reload splitters that make
715 arbitrarily mode changes to the registers themselves. */
716 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
717 ;
718 /* Subregs involving floating point modes are not allowed to
719 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
720 (subreg:SI (reg:DF) 0) isn't. */
721 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
722 {
723 if (! (isize == osize
724 /* LRA can use subreg to store a floating point value in
725 an integer mode. Although the floating point and the
726 integer modes need the same number of hard registers,
727 the size of floating point mode can be less than the
728 integer mode. LRA also uses subregs for a register
729 should be used in different mode in on insn. */
730 || lra_in_progress))
731 return false;
732 }
733
734 /* Paradoxical subregs must have offset zero. */
735 if (osize > isize)
736 return offset == 0;
737
738 /* This is a normal subreg. Verify that the offset is representable. */
739
740 /* For hard registers, we already have most of these rules collected in
741 subreg_offset_representable_p. */
742 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 {
744 unsigned int regno = REGNO (reg);
745
746 #ifdef CANNOT_CHANGE_MODE_CLASS
747 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
748 && GET_MODE_INNER (imode) == omode)
749 ;
750 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
751 return false;
752 #endif
753
754 return subreg_offset_representable_p (regno, imode, offset, omode);
755 }
756
757 /* For pseudo registers, we want most of the same checks. Namely:
758 If the register no larger than a word, the subreg must be lowpart.
759 If the register is larger than a word, the subreg must be the lowpart
760 of a subword. A subreg does *not* perform arbitrary bit extraction.
761 Given that we've already checked mode/offset alignment, we only have
762 to check subword subregs here. */
763 if (osize < UNITS_PER_WORD
764 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
765 {
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
770 }
771 return true;
772 }
773
774 rtx
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776 {
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
779 }
780
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783
784 rtx
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
786 {
787 enum machine_mode inmode;
788
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
794 }
795 \f
796
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
798
799 rtvec
800 gen_rtvec (int n, ...)
801 {
802 int i;
803 rtvec rt_val;
804 va_list p;
805
806 va_start (p, n);
807
808 /* Don't allocate an empty rtvec... */
809 if (n == 0)
810 {
811 va_end (p);
812 return NULL_RTVEC;
813 }
814
815 rt_val = rtvec_alloc (n);
816
817 for (i = 0; i < n; i++)
818 rt_val->elem[i] = va_arg (p, rtx);
819
820 va_end (p);
821 return rt_val;
822 }
823
824 rtvec
825 gen_rtvec_v (int n, rtx *argp)
826 {
827 int i;
828 rtvec rt_val;
829
830 /* Don't allocate an empty rtvec... */
831 if (n == 0)
832 return NULL_RTVEC;
833
834 rt_val = rtvec_alloc (n);
835
836 for (i = 0; i < n; i++)
837 rt_val->elem[i] = *argp++;
838
839 return rt_val;
840 }
841 \f
842 /* Return the number of bytes between the start of an OUTER_MODE
843 in-memory value and the start of an INNER_MODE in-memory value,
844 given that the former is a lowpart of the latter. It may be a
845 paradoxical lowpart, in which case the offset will be negative
846 on big-endian targets. */
847
848 int
849 byte_lowpart_offset (enum machine_mode outer_mode,
850 enum machine_mode inner_mode)
851 {
852 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
853 return subreg_lowpart_offset (outer_mode, inner_mode);
854 else
855 return -subreg_lowpart_offset (inner_mode, outer_mode);
856 }
857 \f
858 /* Generate a REG rtx for a new pseudo register of mode MODE.
859 This pseudo is assigned the next sequential register number. */
860
861 rtx
862 gen_reg_rtx (enum machine_mode mode)
863 {
864 rtx val;
865 unsigned int align = GET_MODE_ALIGNMENT (mode);
866
867 gcc_assert (can_create_pseudo_p ());
868
869 /* If a virtual register with bigger mode alignment is generated,
870 increase stack alignment estimation because it might be spilled
871 to stack later. */
872 if (SUPPORTS_STACK_ALIGNMENT
873 && crtl->stack_alignment_estimated < align
874 && !crtl->stack_realign_processed)
875 {
876 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
877 if (crtl->stack_alignment_estimated < min_align)
878 crtl->stack_alignment_estimated = min_align;
879 }
880
881 if (generating_concat_p
882 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
883 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
884 {
885 /* For complex modes, don't make a single pseudo.
886 Instead, make a CONCAT of two pseudos.
887 This allows noncontiguous allocation of the real and imaginary parts,
888 which makes much better code. Besides, allocating DCmode
889 pseudos overstrains reload on some machines like the 386. */
890 rtx realpart, imagpart;
891 enum machine_mode partmode = GET_MODE_INNER (mode);
892
893 realpart = gen_reg_rtx (partmode);
894 imagpart = gen_reg_rtx (partmode);
895 return gen_rtx_CONCAT (mode, realpart, imagpart);
896 }
897
898 /* Make sure regno_pointer_align, and regno_reg_rtx are large
899 enough to have an element for this pseudo reg number. */
900
901 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
902 {
903 int old_size = crtl->emit.regno_pointer_align_length;
904 char *tmp;
905 rtx *new1;
906
907 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
908 memset (tmp + old_size, 0, old_size);
909 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
910
911 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
912 memset (new1 + old_size, 0, old_size * sizeof (rtx));
913 regno_reg_rtx = new1;
914
915 crtl->emit.regno_pointer_align_length = old_size * 2;
916 }
917
918 val = gen_raw_REG (mode, reg_rtx_no);
919 regno_reg_rtx[reg_rtx_no++] = val;
920 return val;
921 }
922
923 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
924
925 bool
926 reg_is_parm_p (rtx reg)
927 {
928 tree decl;
929
930 gcc_assert (REG_P (reg));
931 decl = REG_EXPR (reg);
932 return (decl && TREE_CODE (decl) == PARM_DECL);
933 }
934
935 /* Update NEW with the same attributes as REG, but with OFFSET added
936 to the REG_OFFSET. */
937
938 static void
939 update_reg_offset (rtx new_rtx, rtx reg, int offset)
940 {
941 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
942 REG_OFFSET (reg) + offset);
943 }
944
945 /* Generate a register with same attributes as REG, but with OFFSET
946 added to the REG_OFFSET. */
947
948 rtx
949 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
950 int offset)
951 {
952 rtx new_rtx = gen_rtx_REG (mode, regno);
953
954 update_reg_offset (new_rtx, reg, offset);
955 return new_rtx;
956 }
957
958 /* Generate a new pseudo-register with the same attributes as REG, but
959 with OFFSET added to the REG_OFFSET. */
960
961 rtx
962 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
963 {
964 rtx new_rtx = gen_reg_rtx (mode);
965
966 update_reg_offset (new_rtx, reg, offset);
967 return new_rtx;
968 }
969
970 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
971 new register is a (possibly paradoxical) lowpart of the old one. */
972
973 void
974 adjust_reg_mode (rtx reg, enum machine_mode mode)
975 {
976 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
977 PUT_MODE (reg, mode);
978 }
979
980 /* Copy REG's attributes from X, if X has any attributes. If REG and X
981 have different modes, REG is a (possibly paradoxical) lowpart of X. */
982
983 void
984 set_reg_attrs_from_value (rtx reg, rtx x)
985 {
986 int offset;
987 bool can_be_reg_pointer = true;
988
989 /* Don't call mark_reg_pointer for incompatible pointer sign
990 extension. */
991 while (GET_CODE (x) == SIGN_EXTEND
992 || GET_CODE (x) == ZERO_EXTEND
993 || GET_CODE (x) == TRUNCATE
994 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
995 {
996 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
997 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
998 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
999 can_be_reg_pointer = false;
1000 #endif
1001 x = XEXP (x, 0);
1002 }
1003
1004 /* Hard registers can be reused for multiple purposes within the same
1005 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1006 on them is wrong. */
1007 if (HARD_REGISTER_P (reg))
1008 return;
1009
1010 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1011 if (MEM_P (x))
1012 {
1013 if (MEM_OFFSET_KNOWN_P (x))
1014 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1015 MEM_OFFSET (x) + offset);
1016 if (can_be_reg_pointer && MEM_POINTER (x))
1017 mark_reg_pointer (reg, 0);
1018 }
1019 else if (REG_P (x))
1020 {
1021 if (REG_ATTRS (x))
1022 update_reg_offset (reg, x, offset);
1023 if (can_be_reg_pointer && REG_POINTER (x))
1024 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1025 }
1026 }
1027
1028 /* Generate a REG rtx for a new pseudo register, copying the mode
1029 and attributes from X. */
1030
1031 rtx
1032 gen_reg_rtx_and_attrs (rtx x)
1033 {
1034 rtx reg = gen_reg_rtx (GET_MODE (x));
1035 set_reg_attrs_from_value (reg, x);
1036 return reg;
1037 }
1038
1039 /* Set the register attributes for registers contained in PARM_RTX.
1040 Use needed values from memory attributes of MEM. */
1041
1042 void
1043 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1044 {
1045 if (REG_P (parm_rtx))
1046 set_reg_attrs_from_value (parm_rtx, mem);
1047 else if (GET_CODE (parm_rtx) == PARALLEL)
1048 {
1049 /* Check for a NULL entry in the first slot, used to indicate that the
1050 parameter goes both on the stack and in registers. */
1051 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1052 for (; i < XVECLEN (parm_rtx, 0); i++)
1053 {
1054 rtx x = XVECEXP (parm_rtx, 0, i);
1055 if (REG_P (XEXP (x, 0)))
1056 REG_ATTRS (XEXP (x, 0))
1057 = get_reg_attrs (MEM_EXPR (mem),
1058 INTVAL (XEXP (x, 1)));
1059 }
1060 }
1061 }
1062
1063 /* Set the REG_ATTRS for registers in value X, given that X represents
1064 decl T. */
1065
1066 void
1067 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1068 {
1069 if (GET_CODE (x) == SUBREG)
1070 {
1071 gcc_assert (subreg_lowpart_p (x));
1072 x = SUBREG_REG (x);
1073 }
1074 if (REG_P (x))
1075 REG_ATTRS (x)
1076 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1077 DECL_MODE (t)));
1078 if (GET_CODE (x) == CONCAT)
1079 {
1080 if (REG_P (XEXP (x, 0)))
1081 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1082 if (REG_P (XEXP (x, 1)))
1083 REG_ATTRS (XEXP (x, 1))
1084 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1085 }
1086 if (GET_CODE (x) == PARALLEL)
1087 {
1088 int i, start;
1089
1090 /* Check for a NULL entry, used to indicate that the parameter goes
1091 both on the stack and in registers. */
1092 if (XEXP (XVECEXP (x, 0, 0), 0))
1093 start = 0;
1094 else
1095 start = 1;
1096
1097 for (i = start; i < XVECLEN (x, 0); i++)
1098 {
1099 rtx y = XVECEXP (x, 0, i);
1100 if (REG_P (XEXP (y, 0)))
1101 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1102 }
1103 }
1104 }
1105
1106 /* Assign the RTX X to declaration T. */
1107
1108 void
1109 set_decl_rtl (tree t, rtx x)
1110 {
1111 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1112 if (x)
1113 set_reg_attrs_for_decl_rtl (t, x);
1114 }
1115
1116 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1117 if the ABI requires the parameter to be passed by reference. */
1118
1119 void
1120 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1121 {
1122 DECL_INCOMING_RTL (t) = x;
1123 if (x && !by_reference_p)
1124 set_reg_attrs_for_decl_rtl (t, x);
1125 }
1126
1127 /* Identify REG (which may be a CONCAT) as a user register. */
1128
1129 void
1130 mark_user_reg (rtx reg)
1131 {
1132 if (GET_CODE (reg) == CONCAT)
1133 {
1134 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1135 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1136 }
1137 else
1138 {
1139 gcc_assert (REG_P (reg));
1140 REG_USERVAR_P (reg) = 1;
1141 }
1142 }
1143
1144 /* Identify REG as a probable pointer register and show its alignment
1145 as ALIGN, if nonzero. */
1146
1147 void
1148 mark_reg_pointer (rtx reg, int align)
1149 {
1150 if (! REG_POINTER (reg))
1151 {
1152 REG_POINTER (reg) = 1;
1153
1154 if (align)
1155 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1156 }
1157 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1158 /* We can no-longer be sure just how aligned this pointer is. */
1159 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1160 }
1161
1162 /* Return 1 plus largest pseudo reg number used in the current function. */
1163
1164 int
1165 max_reg_num (void)
1166 {
1167 return reg_rtx_no;
1168 }
1169
1170 /* Return 1 + the largest label number used so far in the current function. */
1171
1172 int
1173 max_label_num (void)
1174 {
1175 return label_num;
1176 }
1177
1178 /* Return first label number used in this function (if any were used). */
1179
1180 int
1181 get_first_label_num (void)
1182 {
1183 return first_label_num;
1184 }
1185
1186 /* If the rtx for label was created during the expansion of a nested
1187 function, then first_label_num won't include this label number.
1188 Fix this now so that array indices work later. */
1189
1190 void
1191 maybe_set_first_label_num (rtx x)
1192 {
1193 if (CODE_LABEL_NUMBER (x) < first_label_num)
1194 first_label_num = CODE_LABEL_NUMBER (x);
1195 }
1196 \f
1197 /* Return a value representing some low-order bits of X, where the number
1198 of low-order bits is given by MODE. Note that no conversion is done
1199 between floating-point and fixed-point values, rather, the bit
1200 representation is returned.
1201
1202 This function handles the cases in common between gen_lowpart, below,
1203 and two variants in cse.c and combine.c. These are the cases that can
1204 be safely handled at all points in the compilation.
1205
1206 If this is not a case we can handle, return 0. */
1207
1208 rtx
1209 gen_lowpart_common (enum machine_mode mode, rtx x)
1210 {
1211 int msize = GET_MODE_SIZE (mode);
1212 int xsize;
1213 int offset = 0;
1214 enum machine_mode innermode;
1215
1216 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1217 so we have to make one up. Yuk. */
1218 innermode = GET_MODE (x);
1219 if (CONST_INT_P (x)
1220 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1221 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1222 else if (innermode == VOIDmode)
1223 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1224
1225 xsize = GET_MODE_SIZE (innermode);
1226
1227 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1228
1229 if (innermode == mode)
1230 return x;
1231
1232 /* MODE must occupy no more words than the mode of X. */
1233 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1234 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1235 return 0;
1236
1237 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1238 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1239 return 0;
1240
1241 offset = subreg_lowpart_offset (mode, innermode);
1242
1243 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1244 && (GET_MODE_CLASS (mode) == MODE_INT
1245 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1246 {
1247 /* If we are getting the low-order part of something that has been
1248 sign- or zero-extended, we can either just use the object being
1249 extended or make a narrower extension. If we want an even smaller
1250 piece than the size of the object being extended, call ourselves
1251 recursively.
1252
1253 This case is used mostly by combine and cse. */
1254
1255 if (GET_MODE (XEXP (x, 0)) == mode)
1256 return XEXP (x, 0);
1257 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1258 return gen_lowpart_common (mode, XEXP (x, 0));
1259 else if (msize < xsize)
1260 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1261 }
1262 else if (GET_CODE (x) == SUBREG || REG_P (x)
1263 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1264 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1265 return simplify_gen_subreg (mode, x, innermode, offset);
1266
1267 /* Otherwise, we can't do this. */
1268 return 0;
1269 }
1270 \f
1271 rtx
1272 gen_highpart (enum machine_mode mode, rtx x)
1273 {
1274 unsigned int msize = GET_MODE_SIZE (mode);
1275 rtx result;
1276
1277 /* This case loses if X is a subreg. To catch bugs early,
1278 complain if an invalid MODE is used even in other cases. */
1279 gcc_assert (msize <= UNITS_PER_WORD
1280 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1281
1282 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1283 subreg_highpart_offset (mode, GET_MODE (x)));
1284 gcc_assert (result);
1285
1286 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1287 the target if we have a MEM. gen_highpart must return a valid operand,
1288 emitting code if necessary to do so. */
1289 if (MEM_P (result))
1290 {
1291 result = validize_mem (result);
1292 gcc_assert (result);
1293 }
1294
1295 return result;
1296 }
1297
1298 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1299 be VOIDmode constant. */
1300 rtx
1301 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1302 {
1303 if (GET_MODE (exp) != VOIDmode)
1304 {
1305 gcc_assert (GET_MODE (exp) == innermode);
1306 return gen_highpart (outermode, exp);
1307 }
1308 return simplify_gen_subreg (outermode, exp, innermode,
1309 subreg_highpart_offset (outermode, innermode));
1310 }
1311
1312 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1313
1314 unsigned int
1315 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1316 {
1317 unsigned int offset = 0;
1318 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1319
1320 if (difference > 0)
1321 {
1322 if (WORDS_BIG_ENDIAN)
1323 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1324 if (BYTES_BIG_ENDIAN)
1325 offset += difference % UNITS_PER_WORD;
1326 }
1327
1328 return offset;
1329 }
1330
1331 /* Return offset in bytes to get OUTERMODE high part
1332 of the value in mode INNERMODE stored in memory in target format. */
1333 unsigned int
1334 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1335 {
1336 unsigned int offset = 0;
1337 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1338
1339 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1340
1341 if (difference > 0)
1342 {
1343 if (! WORDS_BIG_ENDIAN)
1344 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1345 if (! BYTES_BIG_ENDIAN)
1346 offset += difference % UNITS_PER_WORD;
1347 }
1348
1349 return offset;
1350 }
1351
1352 /* Return 1 iff X, assumed to be a SUBREG,
1353 refers to the least significant part of its containing reg.
1354 If X is not a SUBREG, always return 1 (it is its own low part!). */
1355
1356 int
1357 subreg_lowpart_p (const_rtx x)
1358 {
1359 if (GET_CODE (x) != SUBREG)
1360 return 1;
1361 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1362 return 0;
1363
1364 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1365 == SUBREG_BYTE (x));
1366 }
1367
1368 /* Return true if X is a paradoxical subreg, false otherwise. */
1369 bool
1370 paradoxical_subreg_p (const_rtx x)
1371 {
1372 if (GET_CODE (x) != SUBREG)
1373 return false;
1374 return (GET_MODE_PRECISION (GET_MODE (x))
1375 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1376 }
1377 \f
1378 /* Return subword OFFSET of operand OP.
1379 The word number, OFFSET, is interpreted as the word number starting
1380 at the low-order address. OFFSET 0 is the low-order word if not
1381 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1382
1383 If we cannot extract the required word, we return zero. Otherwise,
1384 an rtx corresponding to the requested word will be returned.
1385
1386 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1387 reload has completed, a valid address will always be returned. After
1388 reload, if a valid address cannot be returned, we return zero.
1389
1390 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1391 it is the responsibility of the caller.
1392
1393 MODE is the mode of OP in case it is a CONST_INT.
1394
1395 ??? This is still rather broken for some cases. The problem for the
1396 moment is that all callers of this thing provide no 'goal mode' to
1397 tell us to work with. This exists because all callers were written
1398 in a word based SUBREG world.
1399 Now use of this function can be deprecated by simplify_subreg in most
1400 cases.
1401 */
1402
1403 rtx
1404 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1405 {
1406 if (mode == VOIDmode)
1407 mode = GET_MODE (op);
1408
1409 gcc_assert (mode != VOIDmode);
1410
1411 /* If OP is narrower than a word, fail. */
1412 if (mode != BLKmode
1413 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1414 return 0;
1415
1416 /* If we want a word outside OP, return zero. */
1417 if (mode != BLKmode
1418 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1419 return const0_rtx;
1420
1421 /* Form a new MEM at the requested address. */
1422 if (MEM_P (op))
1423 {
1424 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1425
1426 if (! validate_address)
1427 return new_rtx;
1428
1429 else if (reload_completed)
1430 {
1431 if (! strict_memory_address_addr_space_p (word_mode,
1432 XEXP (new_rtx, 0),
1433 MEM_ADDR_SPACE (op)))
1434 return 0;
1435 }
1436 else
1437 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1438 }
1439
1440 /* Rest can be handled by simplify_subreg. */
1441 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1442 }
1443
1444 /* Similar to `operand_subword', but never return 0. If we can't
1445 extract the required subword, put OP into a register and try again.
1446 The second attempt must succeed. We always validate the address in
1447 this case.
1448
1449 MODE is the mode of OP, in case it is CONST_INT. */
1450
1451 rtx
1452 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1453 {
1454 rtx result = operand_subword (op, offset, 1, mode);
1455
1456 if (result)
1457 return result;
1458
1459 if (mode != BLKmode && mode != VOIDmode)
1460 {
1461 /* If this is a register which can not be accessed by words, copy it
1462 to a pseudo register. */
1463 if (REG_P (op))
1464 op = copy_to_reg (op);
1465 else
1466 op = force_reg (mode, op);
1467 }
1468
1469 result = operand_subword (op, offset, 1, mode);
1470 gcc_assert (result);
1471
1472 return result;
1473 }
1474 \f
1475 /* Returns 1 if both MEM_EXPR can be considered equal
1476 and 0 otherwise. */
1477
1478 int
1479 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1480 {
1481 if (expr1 == expr2)
1482 return 1;
1483
1484 if (! expr1 || ! expr2)
1485 return 0;
1486
1487 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1488 return 0;
1489
1490 return operand_equal_p (expr1, expr2, 0);
1491 }
1492
1493 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1494 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1495 -1 if not known. */
1496
1497 int
1498 get_mem_align_offset (rtx mem, unsigned int align)
1499 {
1500 tree expr;
1501 unsigned HOST_WIDE_INT offset;
1502
1503 /* This function can't use
1504 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1505 || (MAX (MEM_ALIGN (mem),
1506 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1507 < align))
1508 return -1;
1509 else
1510 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1511 for two reasons:
1512 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1513 for <variable>. get_inner_reference doesn't handle it and
1514 even if it did, the alignment in that case needs to be determined
1515 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1516 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1517 isn't sufficiently aligned, the object it is in might be. */
1518 gcc_assert (MEM_P (mem));
1519 expr = MEM_EXPR (mem);
1520 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1521 return -1;
1522
1523 offset = MEM_OFFSET (mem);
1524 if (DECL_P (expr))
1525 {
1526 if (DECL_ALIGN (expr) < align)
1527 return -1;
1528 }
1529 else if (INDIRECT_REF_P (expr))
1530 {
1531 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1532 return -1;
1533 }
1534 else if (TREE_CODE (expr) == COMPONENT_REF)
1535 {
1536 while (1)
1537 {
1538 tree inner = TREE_OPERAND (expr, 0);
1539 tree field = TREE_OPERAND (expr, 1);
1540 tree byte_offset = component_ref_field_offset (expr);
1541 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1542
1543 if (!byte_offset
1544 || !host_integerp (byte_offset, 1)
1545 || !host_integerp (bit_offset, 1))
1546 return -1;
1547
1548 offset += tree_low_cst (byte_offset, 1);
1549 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1550
1551 if (inner == NULL_TREE)
1552 {
1553 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1554 < (unsigned int) align)
1555 return -1;
1556 break;
1557 }
1558 else if (DECL_P (inner))
1559 {
1560 if (DECL_ALIGN (inner) < align)
1561 return -1;
1562 break;
1563 }
1564 else if (TREE_CODE (inner) != COMPONENT_REF)
1565 return -1;
1566 expr = inner;
1567 }
1568 }
1569 else
1570 return -1;
1571
1572 return offset & ((align / BITS_PER_UNIT) - 1);
1573 }
1574
1575 /* Given REF (a MEM) and T, either the type of X or the expression
1576 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1577 if we are making a new object of this type. BITPOS is nonzero if
1578 there is an offset outstanding on T that will be applied later. */
1579
1580 void
1581 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1582 HOST_WIDE_INT bitpos)
1583 {
1584 HOST_WIDE_INT apply_bitpos = 0;
1585 tree type;
1586 struct mem_attrs attrs, *defattrs, *refattrs;
1587 addr_space_t as;
1588
1589 /* It can happen that type_for_mode was given a mode for which there
1590 is no language-level type. In which case it returns NULL, which
1591 we can see here. */
1592 if (t == NULL_TREE)
1593 return;
1594
1595 type = TYPE_P (t) ? t : TREE_TYPE (t);
1596 if (type == error_mark_node)
1597 return;
1598
1599 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1600 wrong answer, as it assumes that DECL_RTL already has the right alias
1601 info. Callers should not set DECL_RTL until after the call to
1602 set_mem_attributes. */
1603 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1604
1605 memset (&attrs, 0, sizeof (attrs));
1606
1607 /* Get the alias set from the expression or type (perhaps using a
1608 front-end routine) and use it. */
1609 attrs.alias = get_alias_set (t);
1610
1611 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1612 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1613
1614 /* Default values from pre-existing memory attributes if present. */
1615 refattrs = MEM_ATTRS (ref);
1616 if (refattrs)
1617 {
1618 /* ??? Can this ever happen? Calling this routine on a MEM that
1619 already carries memory attributes should probably be invalid. */
1620 attrs.expr = refattrs->expr;
1621 attrs.offset_known_p = refattrs->offset_known_p;
1622 attrs.offset = refattrs->offset;
1623 attrs.size_known_p = refattrs->size_known_p;
1624 attrs.size = refattrs->size;
1625 attrs.align = refattrs->align;
1626 }
1627
1628 /* Otherwise, default values from the mode of the MEM reference. */
1629 else
1630 {
1631 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1632 gcc_assert (!defattrs->expr);
1633 gcc_assert (!defattrs->offset_known_p);
1634
1635 /* Respect mode size. */
1636 attrs.size_known_p = defattrs->size_known_p;
1637 attrs.size = defattrs->size;
1638 /* ??? Is this really necessary? We probably should always get
1639 the size from the type below. */
1640
1641 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1642 if T is an object, always compute the object alignment below. */
1643 if (TYPE_P (t))
1644 attrs.align = defattrs->align;
1645 else
1646 attrs.align = BITS_PER_UNIT;
1647 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1648 e.g. if the type carries an alignment attribute. Should we be
1649 able to simply always use TYPE_ALIGN? */
1650 }
1651
1652 /* We can set the alignment from the type if we are making an object,
1653 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1654 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1655 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1656
1657 /* If the size is known, we can set that. */
1658 tree new_size = TYPE_SIZE_UNIT (type);
1659
1660 /* The address-space is that of the type. */
1661 as = TYPE_ADDR_SPACE (type);
1662
1663 /* If T is not a type, we may be able to deduce some more information about
1664 the expression. */
1665 if (! TYPE_P (t))
1666 {
1667 tree base;
1668
1669 if (TREE_THIS_VOLATILE (t))
1670 MEM_VOLATILE_P (ref) = 1;
1671
1672 /* Now remove any conversions: they don't change what the underlying
1673 object is. Likewise for SAVE_EXPR. */
1674 while (CONVERT_EXPR_P (t)
1675 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1676 || TREE_CODE (t) == SAVE_EXPR)
1677 t = TREE_OPERAND (t, 0);
1678
1679 /* Note whether this expression can trap. */
1680 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1681
1682 base = get_base_address (t);
1683 if (base)
1684 {
1685 if (DECL_P (base)
1686 && TREE_READONLY (base)
1687 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1688 && !TREE_THIS_VOLATILE (base))
1689 MEM_READONLY_P (ref) = 1;
1690
1691 /* Mark static const strings readonly as well. */
1692 if (TREE_CODE (base) == STRING_CST
1693 && TREE_READONLY (base)
1694 && TREE_STATIC (base))
1695 MEM_READONLY_P (ref) = 1;
1696
1697 /* Address-space information is on the base object. */
1698 if (TREE_CODE (base) == MEM_REF
1699 || TREE_CODE (base) == TARGET_MEM_REF)
1700 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1701 0))));
1702 else
1703 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1704 }
1705
1706 /* If this expression uses it's parent's alias set, mark it such
1707 that we won't change it. */
1708 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1709 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1710
1711 /* If this is a decl, set the attributes of the MEM from it. */
1712 if (DECL_P (t))
1713 {
1714 attrs.expr = t;
1715 attrs.offset_known_p = true;
1716 attrs.offset = 0;
1717 apply_bitpos = bitpos;
1718 new_size = DECL_SIZE_UNIT (t);
1719 }
1720
1721 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1722 else if (CONSTANT_CLASS_P (t))
1723 ;
1724
1725 /* If this is a field reference, record it. */
1726 else if (TREE_CODE (t) == COMPONENT_REF)
1727 {
1728 attrs.expr = t;
1729 attrs.offset_known_p = true;
1730 attrs.offset = 0;
1731 apply_bitpos = bitpos;
1732 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1733 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1734 }
1735
1736 /* If this is an array reference, look for an outer field reference. */
1737 else if (TREE_CODE (t) == ARRAY_REF)
1738 {
1739 tree off_tree = size_zero_node;
1740 /* We can't modify t, because we use it at the end of the
1741 function. */
1742 tree t2 = t;
1743
1744 do
1745 {
1746 tree index = TREE_OPERAND (t2, 1);
1747 tree low_bound = array_ref_low_bound (t2);
1748 tree unit_size = array_ref_element_size (t2);
1749
1750 /* We assume all arrays have sizes that are a multiple of a byte.
1751 First subtract the lower bound, if any, in the type of the
1752 index, then convert to sizetype and multiply by the size of
1753 the array element. */
1754 if (! integer_zerop (low_bound))
1755 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1756 index, low_bound);
1757
1758 off_tree = size_binop (PLUS_EXPR,
1759 size_binop (MULT_EXPR,
1760 fold_convert (sizetype,
1761 index),
1762 unit_size),
1763 off_tree);
1764 t2 = TREE_OPERAND (t2, 0);
1765 }
1766 while (TREE_CODE (t2) == ARRAY_REF);
1767
1768 if (DECL_P (t2)
1769 || TREE_CODE (t2) == COMPONENT_REF)
1770 {
1771 attrs.expr = t2;
1772 attrs.offset_known_p = false;
1773 if (host_integerp (off_tree, 1))
1774 {
1775 attrs.offset_known_p = true;
1776 attrs.offset = tree_low_cst (off_tree, 1);
1777 apply_bitpos = bitpos;
1778 }
1779 }
1780 /* Else do not record a MEM_EXPR. */
1781 }
1782
1783 /* If this is an indirect reference, record it. */
1784 else if (TREE_CODE (t) == MEM_REF
1785 || TREE_CODE (t) == TARGET_MEM_REF)
1786 {
1787 attrs.expr = t;
1788 attrs.offset_known_p = true;
1789 attrs.offset = 0;
1790 apply_bitpos = bitpos;
1791 }
1792
1793 /* Compute the alignment. */
1794 unsigned int obj_align;
1795 unsigned HOST_WIDE_INT obj_bitpos;
1796 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1797 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1798 if (obj_bitpos != 0)
1799 obj_align = (obj_bitpos & -obj_bitpos);
1800 attrs.align = MAX (attrs.align, obj_align);
1801 }
1802
1803 if (host_integerp (new_size, 1))
1804 {
1805 attrs.size_known_p = true;
1806 attrs.size = tree_low_cst (new_size, 1);
1807 }
1808
1809 /* If we modified OFFSET based on T, then subtract the outstanding
1810 bit position offset. Similarly, increase the size of the accessed
1811 object to contain the negative offset. */
1812 if (apply_bitpos)
1813 {
1814 gcc_assert (attrs.offset_known_p);
1815 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1816 if (attrs.size_known_p)
1817 attrs.size += apply_bitpos / BITS_PER_UNIT;
1818 }
1819
1820 /* Now set the attributes we computed above. */
1821 attrs.addrspace = as;
1822 set_mem_attrs (ref, &attrs);
1823 }
1824
1825 void
1826 set_mem_attributes (rtx ref, tree t, int objectp)
1827 {
1828 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1829 }
1830
1831 /* Set the alias set of MEM to SET. */
1832
1833 void
1834 set_mem_alias_set (rtx mem, alias_set_type set)
1835 {
1836 struct mem_attrs attrs;
1837
1838 /* If the new and old alias sets don't conflict, something is wrong. */
1839 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1840 attrs = *get_mem_attrs (mem);
1841 attrs.alias = set;
1842 set_mem_attrs (mem, &attrs);
1843 }
1844
1845 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1846
1847 void
1848 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1849 {
1850 struct mem_attrs attrs;
1851
1852 attrs = *get_mem_attrs (mem);
1853 attrs.addrspace = addrspace;
1854 set_mem_attrs (mem, &attrs);
1855 }
1856
1857 /* Set the alignment of MEM to ALIGN bits. */
1858
1859 void
1860 set_mem_align (rtx mem, unsigned int align)
1861 {
1862 struct mem_attrs attrs;
1863
1864 attrs = *get_mem_attrs (mem);
1865 attrs.align = align;
1866 set_mem_attrs (mem, &attrs);
1867 }
1868
1869 /* Set the expr for MEM to EXPR. */
1870
1871 void
1872 set_mem_expr (rtx mem, tree expr)
1873 {
1874 struct mem_attrs attrs;
1875
1876 attrs = *get_mem_attrs (mem);
1877 attrs.expr = expr;
1878 set_mem_attrs (mem, &attrs);
1879 }
1880
1881 /* Set the offset of MEM to OFFSET. */
1882
1883 void
1884 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1885 {
1886 struct mem_attrs attrs;
1887
1888 attrs = *get_mem_attrs (mem);
1889 attrs.offset_known_p = true;
1890 attrs.offset = offset;
1891 set_mem_attrs (mem, &attrs);
1892 }
1893
1894 /* Clear the offset of MEM. */
1895
1896 void
1897 clear_mem_offset (rtx mem)
1898 {
1899 struct mem_attrs attrs;
1900
1901 attrs = *get_mem_attrs (mem);
1902 attrs.offset_known_p = false;
1903 set_mem_attrs (mem, &attrs);
1904 }
1905
1906 /* Set the size of MEM to SIZE. */
1907
1908 void
1909 set_mem_size (rtx mem, HOST_WIDE_INT size)
1910 {
1911 struct mem_attrs attrs;
1912
1913 attrs = *get_mem_attrs (mem);
1914 attrs.size_known_p = true;
1915 attrs.size = size;
1916 set_mem_attrs (mem, &attrs);
1917 }
1918
1919 /* Clear the size of MEM. */
1920
1921 void
1922 clear_mem_size (rtx mem)
1923 {
1924 struct mem_attrs attrs;
1925
1926 attrs = *get_mem_attrs (mem);
1927 attrs.size_known_p = false;
1928 set_mem_attrs (mem, &attrs);
1929 }
1930 \f
1931 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1932 and its address changed to ADDR. (VOIDmode means don't change the mode.
1933 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1934 returned memory location is required to be valid. The memory
1935 attributes are not changed. */
1936
1937 static rtx
1938 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1939 {
1940 addr_space_t as;
1941 rtx new_rtx;
1942
1943 gcc_assert (MEM_P (memref));
1944 as = MEM_ADDR_SPACE (memref);
1945 if (mode == VOIDmode)
1946 mode = GET_MODE (memref);
1947 if (addr == 0)
1948 addr = XEXP (memref, 0);
1949 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1950 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1951 return memref;
1952
1953 if (validate)
1954 {
1955 if (reload_in_progress || reload_completed)
1956 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1957 else
1958 addr = memory_address_addr_space (mode, addr, as);
1959 }
1960
1961 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1962 return memref;
1963
1964 new_rtx = gen_rtx_MEM (mode, addr);
1965 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1966 return new_rtx;
1967 }
1968
1969 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1970 way we are changing MEMREF, so we only preserve the alias set. */
1971
1972 rtx
1973 change_address (rtx memref, enum machine_mode mode, rtx addr)
1974 {
1975 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
1976 enum machine_mode mmode = GET_MODE (new_rtx);
1977 struct mem_attrs attrs, *defattrs;
1978
1979 attrs = *get_mem_attrs (memref);
1980 defattrs = mode_mem_attrs[(int) mmode];
1981 attrs.expr = NULL_TREE;
1982 attrs.offset_known_p = false;
1983 attrs.size_known_p = defattrs->size_known_p;
1984 attrs.size = defattrs->size;
1985 attrs.align = defattrs->align;
1986
1987 /* If there are no changes, just return the original memory reference. */
1988 if (new_rtx == memref)
1989 {
1990 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
1991 return new_rtx;
1992
1993 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1994 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1995 }
1996
1997 set_mem_attrs (new_rtx, &attrs);
1998 return new_rtx;
1999 }
2000
2001 /* Return a memory reference like MEMREF, but with its mode changed
2002 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2003 nonzero, the memory address is forced to be valid.
2004 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2005 and the caller is responsible for adjusting MEMREF base register.
2006 If ADJUST_OBJECT is zero, the underlying object associated with the
2007 memory reference is left unchanged and the caller is responsible for
2008 dealing with it. Otherwise, if the new memory reference is outside
2009 the underlying object, even partially, then the object is dropped.
2010 SIZE, if nonzero, is the size of an access in cases where MODE
2011 has no inherent size. */
2012
2013 rtx
2014 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2015 int validate, int adjust_address, int adjust_object,
2016 HOST_WIDE_INT size)
2017 {
2018 rtx addr = XEXP (memref, 0);
2019 rtx new_rtx;
2020 enum machine_mode address_mode;
2021 int pbits;
2022 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2023 unsigned HOST_WIDE_INT max_align;
2024 #ifdef POINTERS_EXTEND_UNSIGNED
2025 enum machine_mode pointer_mode
2026 = targetm.addr_space.pointer_mode (attrs.addrspace);
2027 #endif
2028
2029 /* VOIDmode means no mode change for change_address_1. */
2030 if (mode == VOIDmode)
2031 mode = GET_MODE (memref);
2032
2033 /* Take the size of non-BLKmode accesses from the mode. */
2034 defattrs = mode_mem_attrs[(int) mode];
2035 if (defattrs->size_known_p)
2036 size = defattrs->size;
2037
2038 /* If there are no changes, just return the original memory reference. */
2039 if (mode == GET_MODE (memref) && !offset
2040 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2041 && (!validate || memory_address_addr_space_p (mode, addr,
2042 attrs.addrspace)))
2043 return memref;
2044
2045 /* ??? Prefer to create garbage instead of creating shared rtl.
2046 This may happen even if offset is nonzero -- consider
2047 (plus (plus reg reg) const_int) -- so do this always. */
2048 addr = copy_rtx (addr);
2049
2050 /* Convert a possibly large offset to a signed value within the
2051 range of the target address space. */
2052 address_mode = get_address_mode (memref);
2053 pbits = GET_MODE_BITSIZE (address_mode);
2054 if (HOST_BITS_PER_WIDE_INT > pbits)
2055 {
2056 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2057 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2058 >> shift);
2059 }
2060
2061 if (adjust_address)
2062 {
2063 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2064 object, we can merge it into the LO_SUM. */
2065 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2066 && offset >= 0
2067 && (unsigned HOST_WIDE_INT) offset
2068 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2069 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2070 plus_constant (address_mode,
2071 XEXP (addr, 1), offset));
2072 #ifdef POINTERS_EXTEND_UNSIGNED
2073 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2074 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2075 the fact that pointers are not allowed to overflow. */
2076 else if (POINTERS_EXTEND_UNSIGNED > 0
2077 && GET_CODE (addr) == ZERO_EXTEND
2078 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2079 && trunc_int_for_mode (offset, pointer_mode) == offset)
2080 addr = gen_rtx_ZERO_EXTEND (address_mode,
2081 plus_constant (pointer_mode,
2082 XEXP (addr, 0), offset));
2083 #endif
2084 else
2085 addr = plus_constant (address_mode, addr, offset);
2086 }
2087
2088 new_rtx = change_address_1 (memref, mode, addr, validate);
2089
2090 /* If the address is a REG, change_address_1 rightfully returns memref,
2091 but this would destroy memref's MEM_ATTRS. */
2092 if (new_rtx == memref && offset != 0)
2093 new_rtx = copy_rtx (new_rtx);
2094
2095 /* Conservatively drop the object if we don't know where we start from. */
2096 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2097 {
2098 attrs.expr = NULL_TREE;
2099 attrs.alias = 0;
2100 }
2101
2102 /* Compute the new values of the memory attributes due to this adjustment.
2103 We add the offsets and update the alignment. */
2104 if (attrs.offset_known_p)
2105 {
2106 attrs.offset += offset;
2107
2108 /* Drop the object if the new left end is not within its bounds. */
2109 if (adjust_object && attrs.offset < 0)
2110 {
2111 attrs.expr = NULL_TREE;
2112 attrs.alias = 0;
2113 }
2114 }
2115
2116 /* Compute the new alignment by taking the MIN of the alignment and the
2117 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2118 if zero. */
2119 if (offset != 0)
2120 {
2121 max_align = (offset & -offset) * BITS_PER_UNIT;
2122 attrs.align = MIN (attrs.align, max_align);
2123 }
2124
2125 if (size)
2126 {
2127 /* Drop the object if the new right end is not within its bounds. */
2128 if (adjust_object && (offset + size) > attrs.size)
2129 {
2130 attrs.expr = NULL_TREE;
2131 attrs.alias = 0;
2132 }
2133 attrs.size_known_p = true;
2134 attrs.size = size;
2135 }
2136 else if (attrs.size_known_p)
2137 {
2138 gcc_assert (!adjust_object);
2139 attrs.size -= offset;
2140 /* ??? The store_by_pieces machinery generates negative sizes,
2141 so don't assert for that here. */
2142 }
2143
2144 set_mem_attrs (new_rtx, &attrs);
2145
2146 return new_rtx;
2147 }
2148
2149 /* Return a memory reference like MEMREF, but with its mode changed
2150 to MODE and its address changed to ADDR, which is assumed to be
2151 MEMREF offset by OFFSET bytes. If VALIDATE is
2152 nonzero, the memory address is forced to be valid. */
2153
2154 rtx
2155 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2156 HOST_WIDE_INT offset, int validate)
2157 {
2158 memref = change_address_1 (memref, VOIDmode, addr, validate);
2159 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2160 }
2161
2162 /* Return a memory reference like MEMREF, but whose address is changed by
2163 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2164 known to be in OFFSET (possibly 1). */
2165
2166 rtx
2167 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2168 {
2169 rtx new_rtx, addr = XEXP (memref, 0);
2170 enum machine_mode address_mode;
2171 struct mem_attrs attrs, *defattrs;
2172
2173 attrs = *get_mem_attrs (memref);
2174 address_mode = get_address_mode (memref);
2175 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2176
2177 /* At this point we don't know _why_ the address is invalid. It
2178 could have secondary memory references, multiplies or anything.
2179
2180 However, if we did go and rearrange things, we can wind up not
2181 being able to recognize the magic around pic_offset_table_rtx.
2182 This stuff is fragile, and is yet another example of why it is
2183 bad to expose PIC machinery too early. */
2184 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2185 attrs.addrspace)
2186 && GET_CODE (addr) == PLUS
2187 && XEXP (addr, 0) == pic_offset_table_rtx)
2188 {
2189 addr = force_reg (GET_MODE (addr), addr);
2190 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2191 }
2192
2193 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2194 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2195
2196 /* If there are no changes, just return the original memory reference. */
2197 if (new_rtx == memref)
2198 return new_rtx;
2199
2200 /* Update the alignment to reflect the offset. Reset the offset, which
2201 we don't know. */
2202 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2203 attrs.offset_known_p = false;
2204 attrs.size_known_p = defattrs->size_known_p;
2205 attrs.size = defattrs->size;
2206 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2207 set_mem_attrs (new_rtx, &attrs);
2208 return new_rtx;
2209 }
2210
2211 /* Return a memory reference like MEMREF, but with its address changed to
2212 ADDR. The caller is asserting that the actual piece of memory pointed
2213 to is the same, just the form of the address is being changed, such as
2214 by putting something into a register. */
2215
2216 rtx
2217 replace_equiv_address (rtx memref, rtx addr)
2218 {
2219 /* change_address_1 copies the memory attribute structure without change
2220 and that's exactly what we want here. */
2221 update_temp_slot_address (XEXP (memref, 0), addr);
2222 return change_address_1 (memref, VOIDmode, addr, 1);
2223 }
2224
2225 /* Likewise, but the reference is not required to be valid. */
2226
2227 rtx
2228 replace_equiv_address_nv (rtx memref, rtx addr)
2229 {
2230 return change_address_1 (memref, VOIDmode, addr, 0);
2231 }
2232
2233 /* Return a memory reference like MEMREF, but with its mode widened to
2234 MODE and offset by OFFSET. This would be used by targets that e.g.
2235 cannot issue QImode memory operations and have to use SImode memory
2236 operations plus masking logic. */
2237
2238 rtx
2239 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2240 {
2241 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2242 struct mem_attrs attrs;
2243 unsigned int size = GET_MODE_SIZE (mode);
2244
2245 /* If there are no changes, just return the original memory reference. */
2246 if (new_rtx == memref)
2247 return new_rtx;
2248
2249 attrs = *get_mem_attrs (new_rtx);
2250
2251 /* If we don't know what offset we were at within the expression, then
2252 we can't know if we've overstepped the bounds. */
2253 if (! attrs.offset_known_p)
2254 attrs.expr = NULL_TREE;
2255
2256 while (attrs.expr)
2257 {
2258 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2259 {
2260 tree field = TREE_OPERAND (attrs.expr, 1);
2261 tree offset = component_ref_field_offset (attrs.expr);
2262
2263 if (! DECL_SIZE_UNIT (field))
2264 {
2265 attrs.expr = NULL_TREE;
2266 break;
2267 }
2268
2269 /* Is the field at least as large as the access? If so, ok,
2270 otherwise strip back to the containing structure. */
2271 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2272 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2273 && attrs.offset >= 0)
2274 break;
2275
2276 if (! host_integerp (offset, 1))
2277 {
2278 attrs.expr = NULL_TREE;
2279 break;
2280 }
2281
2282 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2283 attrs.offset += tree_low_cst (offset, 1);
2284 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2285 / BITS_PER_UNIT);
2286 }
2287 /* Similarly for the decl. */
2288 else if (DECL_P (attrs.expr)
2289 && DECL_SIZE_UNIT (attrs.expr)
2290 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2291 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2292 && (! attrs.offset_known_p || attrs.offset >= 0))
2293 break;
2294 else
2295 {
2296 /* The widened memory access overflows the expression, which means
2297 that it could alias another expression. Zap it. */
2298 attrs.expr = NULL_TREE;
2299 break;
2300 }
2301 }
2302
2303 if (! attrs.expr)
2304 attrs.offset_known_p = false;
2305
2306 /* The widened memory may alias other stuff, so zap the alias set. */
2307 /* ??? Maybe use get_alias_set on any remaining expression. */
2308 attrs.alias = 0;
2309 attrs.size_known_p = true;
2310 attrs.size = size;
2311 set_mem_attrs (new_rtx, &attrs);
2312 return new_rtx;
2313 }
2314 \f
2315 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2316 static GTY(()) tree spill_slot_decl;
2317
2318 tree
2319 get_spill_slot_decl (bool force_build_p)
2320 {
2321 tree d = spill_slot_decl;
2322 rtx rd;
2323 struct mem_attrs attrs;
2324
2325 if (d || !force_build_p)
2326 return d;
2327
2328 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2329 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2330 DECL_ARTIFICIAL (d) = 1;
2331 DECL_IGNORED_P (d) = 1;
2332 TREE_USED (d) = 1;
2333 spill_slot_decl = d;
2334
2335 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2336 MEM_NOTRAP_P (rd) = 1;
2337 attrs = *mode_mem_attrs[(int) BLKmode];
2338 attrs.alias = new_alias_set ();
2339 attrs.expr = d;
2340 set_mem_attrs (rd, &attrs);
2341 SET_DECL_RTL (d, rd);
2342
2343 return d;
2344 }
2345
2346 /* Given MEM, a result from assign_stack_local, fill in the memory
2347 attributes as appropriate for a register allocator spill slot.
2348 These slots are not aliasable by other memory. We arrange for
2349 them all to use a single MEM_EXPR, so that the aliasing code can
2350 work properly in the case of shared spill slots. */
2351
2352 void
2353 set_mem_attrs_for_spill (rtx mem)
2354 {
2355 struct mem_attrs attrs;
2356 rtx addr;
2357
2358 attrs = *get_mem_attrs (mem);
2359 attrs.expr = get_spill_slot_decl (true);
2360 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2361 attrs.addrspace = ADDR_SPACE_GENERIC;
2362
2363 /* We expect the incoming memory to be of the form:
2364 (mem:MODE (plus (reg sfp) (const_int offset)))
2365 with perhaps the plus missing for offset = 0. */
2366 addr = XEXP (mem, 0);
2367 attrs.offset_known_p = true;
2368 attrs.offset = 0;
2369 if (GET_CODE (addr) == PLUS
2370 && CONST_INT_P (XEXP (addr, 1)))
2371 attrs.offset = INTVAL (XEXP (addr, 1));
2372
2373 set_mem_attrs (mem, &attrs);
2374 MEM_NOTRAP_P (mem) = 1;
2375 }
2376 \f
2377 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2378
2379 rtx
2380 gen_label_rtx (void)
2381 {
2382 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2383 NULL, label_num++, NULL);
2384 }
2385 \f
2386 /* For procedure integration. */
2387
2388 /* Install new pointers to the first and last insns in the chain.
2389 Also, set cur_insn_uid to one higher than the last in use.
2390 Used for an inline-procedure after copying the insn chain. */
2391
2392 void
2393 set_new_first_and_last_insn (rtx first, rtx last)
2394 {
2395 rtx insn;
2396
2397 set_first_insn (first);
2398 set_last_insn (last);
2399 cur_insn_uid = 0;
2400
2401 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2402 {
2403 int debug_count = 0;
2404
2405 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2406 cur_debug_insn_uid = 0;
2407
2408 for (insn = first; insn; insn = NEXT_INSN (insn))
2409 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2410 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2411 else
2412 {
2413 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2414 if (DEBUG_INSN_P (insn))
2415 debug_count++;
2416 }
2417
2418 if (debug_count)
2419 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2420 else
2421 cur_debug_insn_uid++;
2422 }
2423 else
2424 for (insn = first; insn; insn = NEXT_INSN (insn))
2425 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2426
2427 cur_insn_uid++;
2428 }
2429 \f
2430 /* Go through all the RTL insn bodies and copy any invalid shared
2431 structure. This routine should only be called once. */
2432
2433 static void
2434 unshare_all_rtl_1 (rtx insn)
2435 {
2436 /* Unshare just about everything else. */
2437 unshare_all_rtl_in_chain (insn);
2438
2439 /* Make sure the addresses of stack slots found outside the insn chain
2440 (such as, in DECL_RTL of a variable) are not shared
2441 with the insn chain.
2442
2443 This special care is necessary when the stack slot MEM does not
2444 actually appear in the insn chain. If it does appear, its address
2445 is unshared from all else at that point. */
2446 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2447 }
2448
2449 /* Go through all the RTL insn bodies and copy any invalid shared
2450 structure, again. This is a fairly expensive thing to do so it
2451 should be done sparingly. */
2452
2453 void
2454 unshare_all_rtl_again (rtx insn)
2455 {
2456 rtx p;
2457 tree decl;
2458
2459 for (p = insn; p; p = NEXT_INSN (p))
2460 if (INSN_P (p))
2461 {
2462 reset_used_flags (PATTERN (p));
2463 reset_used_flags (REG_NOTES (p));
2464 if (CALL_P (p))
2465 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2466 }
2467
2468 /* Make sure that virtual stack slots are not shared. */
2469 set_used_decls (DECL_INITIAL (cfun->decl));
2470
2471 /* Make sure that virtual parameters are not shared. */
2472 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2473 set_used_flags (DECL_RTL (decl));
2474
2475 reset_used_flags (stack_slot_list);
2476
2477 unshare_all_rtl_1 (insn);
2478 }
2479
2480 unsigned int
2481 unshare_all_rtl (void)
2482 {
2483 unshare_all_rtl_1 (get_insns ());
2484 return 0;
2485 }
2486
2487
2488 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2489 Recursively does the same for subexpressions. */
2490
2491 static void
2492 verify_rtx_sharing (rtx orig, rtx insn)
2493 {
2494 rtx x = orig;
2495 int i;
2496 enum rtx_code code;
2497 const char *format_ptr;
2498
2499 if (x == 0)
2500 return;
2501
2502 code = GET_CODE (x);
2503
2504 /* These types may be freely shared. */
2505
2506 switch (code)
2507 {
2508 case REG:
2509 case DEBUG_EXPR:
2510 case VALUE:
2511 CASE_CONST_ANY:
2512 case SYMBOL_REF:
2513 case LABEL_REF:
2514 case CODE_LABEL:
2515 case PC:
2516 case CC0:
2517 case RETURN:
2518 case SIMPLE_RETURN:
2519 case SCRATCH:
2520 /* SCRATCH must be shared because they represent distinct values. */
2521 return;
2522 case CLOBBER:
2523 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2524 clobbers or clobbers of hard registers that originated as pseudos.
2525 This is needed to allow safe register renaming. */
2526 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2527 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2528 return;
2529 break;
2530
2531 case CONST:
2532 if (shared_const_p (orig))
2533 return;
2534 break;
2535
2536 case MEM:
2537 /* A MEM is allowed to be shared if its address is constant. */
2538 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2539 || reload_completed || reload_in_progress)
2540 return;
2541
2542 break;
2543
2544 default:
2545 break;
2546 }
2547
2548 /* This rtx may not be shared. If it has already been seen,
2549 replace it with a copy of itself. */
2550 #ifdef ENABLE_CHECKING
2551 if (RTX_FLAG (x, used))
2552 {
2553 error ("invalid rtl sharing found in the insn");
2554 debug_rtx (insn);
2555 error ("shared rtx");
2556 debug_rtx (x);
2557 internal_error ("internal consistency failure");
2558 }
2559 #endif
2560 gcc_assert (!RTX_FLAG (x, used));
2561
2562 RTX_FLAG (x, used) = 1;
2563
2564 /* Now scan the subexpressions recursively. */
2565
2566 format_ptr = GET_RTX_FORMAT (code);
2567
2568 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2569 {
2570 switch (*format_ptr++)
2571 {
2572 case 'e':
2573 verify_rtx_sharing (XEXP (x, i), insn);
2574 break;
2575
2576 case 'E':
2577 if (XVEC (x, i) != NULL)
2578 {
2579 int j;
2580 int len = XVECLEN (x, i);
2581
2582 for (j = 0; j < len; j++)
2583 {
2584 /* We allow sharing of ASM_OPERANDS inside single
2585 instruction. */
2586 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2587 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2588 == ASM_OPERANDS))
2589 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2590 else
2591 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2592 }
2593 }
2594 break;
2595 }
2596 }
2597 return;
2598 }
2599
2600 /* Reset used-flags for INSN. */
2601
2602 static void
2603 reset_insn_used_flags (rtx insn)
2604 {
2605 gcc_assert (INSN_P (insn));
2606 reset_used_flags (PATTERN (insn));
2607 reset_used_flags (REG_NOTES (insn));
2608 if (CALL_P (insn))
2609 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2610 }
2611
2612 /* Go through all the RTL insn bodies and clear all the USED bits. */
2613
2614 static void
2615 reset_all_used_flags (void)
2616 {
2617 rtx p;
2618
2619 for (p = get_insns (); p; p = NEXT_INSN (p))
2620 if (INSN_P (p))
2621 {
2622 rtx pat = PATTERN (p);
2623 if (GET_CODE (pat) != SEQUENCE)
2624 reset_insn_used_flags (p);
2625 else
2626 {
2627 gcc_assert (REG_NOTES (p) == NULL);
2628 for (int i = 0; i < XVECLEN (pat, 0); i++)
2629 reset_insn_used_flags (XVECEXP (pat, 0, i));
2630 }
2631 }
2632 }
2633
2634 /* Verify sharing in INSN. */
2635
2636 static void
2637 verify_insn_sharing (rtx insn)
2638 {
2639 gcc_assert (INSN_P (insn));
2640 reset_used_flags (PATTERN (insn));
2641 reset_used_flags (REG_NOTES (insn));
2642 if (CALL_P (insn))
2643 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2644 }
2645
2646 /* Go through all the RTL insn bodies and check that there is no unexpected
2647 sharing in between the subexpressions. */
2648
2649 DEBUG_FUNCTION void
2650 verify_rtl_sharing (void)
2651 {
2652 rtx p;
2653
2654 timevar_push (TV_VERIFY_RTL_SHARING);
2655
2656 reset_all_used_flags ();
2657
2658 for (p = get_insns (); p; p = NEXT_INSN (p))
2659 if (INSN_P (p))
2660 {
2661 rtx pat = PATTERN (p);
2662 if (GET_CODE (pat) != SEQUENCE)
2663 verify_insn_sharing (p);
2664 else
2665 for (int i = 0; i < XVECLEN (pat, 0); i++)
2666 verify_insn_sharing (XVECEXP (pat, 0, i));
2667 }
2668
2669 reset_all_used_flags ();
2670
2671 timevar_pop (TV_VERIFY_RTL_SHARING);
2672 }
2673
2674 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2675 Assumes the mark bits are cleared at entry. */
2676
2677 void
2678 unshare_all_rtl_in_chain (rtx insn)
2679 {
2680 for (; insn; insn = NEXT_INSN (insn))
2681 if (INSN_P (insn))
2682 {
2683 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2684 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2685 if (CALL_P (insn))
2686 CALL_INSN_FUNCTION_USAGE (insn)
2687 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2688 }
2689 }
2690
2691 /* Go through all virtual stack slots of a function and mark them as
2692 shared. We never replace the DECL_RTLs themselves with a copy,
2693 but expressions mentioned into a DECL_RTL cannot be shared with
2694 expressions in the instruction stream.
2695
2696 Note that reload may convert pseudo registers into memories in-place.
2697 Pseudo registers are always shared, but MEMs never are. Thus if we
2698 reset the used flags on MEMs in the instruction stream, we must set
2699 them again on MEMs that appear in DECL_RTLs. */
2700
2701 static void
2702 set_used_decls (tree blk)
2703 {
2704 tree t;
2705
2706 /* Mark decls. */
2707 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2708 if (DECL_RTL_SET_P (t))
2709 set_used_flags (DECL_RTL (t));
2710
2711 /* Now process sub-blocks. */
2712 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2713 set_used_decls (t);
2714 }
2715
2716 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2717 Recursively does the same for subexpressions. Uses
2718 copy_rtx_if_shared_1 to reduce stack space. */
2719
2720 rtx
2721 copy_rtx_if_shared (rtx orig)
2722 {
2723 copy_rtx_if_shared_1 (&orig);
2724 return orig;
2725 }
2726
2727 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2728 use. Recursively does the same for subexpressions. */
2729
2730 static void
2731 copy_rtx_if_shared_1 (rtx *orig1)
2732 {
2733 rtx x;
2734 int i;
2735 enum rtx_code code;
2736 rtx *last_ptr;
2737 const char *format_ptr;
2738 int copied = 0;
2739 int length;
2740
2741 /* Repeat is used to turn tail-recursion into iteration. */
2742 repeat:
2743 x = *orig1;
2744
2745 if (x == 0)
2746 return;
2747
2748 code = GET_CODE (x);
2749
2750 /* These types may be freely shared. */
2751
2752 switch (code)
2753 {
2754 case REG:
2755 case DEBUG_EXPR:
2756 case VALUE:
2757 CASE_CONST_ANY:
2758 case SYMBOL_REF:
2759 case LABEL_REF:
2760 case CODE_LABEL:
2761 case PC:
2762 case CC0:
2763 case RETURN:
2764 case SIMPLE_RETURN:
2765 case SCRATCH:
2766 /* SCRATCH must be shared because they represent distinct values. */
2767 return;
2768 case CLOBBER:
2769 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2770 clobbers or clobbers of hard registers that originated as pseudos.
2771 This is needed to allow safe register renaming. */
2772 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2773 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2774 return;
2775 break;
2776
2777 case CONST:
2778 if (shared_const_p (x))
2779 return;
2780 break;
2781
2782 case DEBUG_INSN:
2783 case INSN:
2784 case JUMP_INSN:
2785 case CALL_INSN:
2786 case NOTE:
2787 case BARRIER:
2788 /* The chain of insns is not being copied. */
2789 return;
2790
2791 default:
2792 break;
2793 }
2794
2795 /* This rtx may not be shared. If it has already been seen,
2796 replace it with a copy of itself. */
2797
2798 if (RTX_FLAG (x, used))
2799 {
2800 x = shallow_copy_rtx (x);
2801 copied = 1;
2802 }
2803 RTX_FLAG (x, used) = 1;
2804
2805 /* Now scan the subexpressions recursively.
2806 We can store any replaced subexpressions directly into X
2807 since we know X is not shared! Any vectors in X
2808 must be copied if X was copied. */
2809
2810 format_ptr = GET_RTX_FORMAT (code);
2811 length = GET_RTX_LENGTH (code);
2812 last_ptr = NULL;
2813
2814 for (i = 0; i < length; i++)
2815 {
2816 switch (*format_ptr++)
2817 {
2818 case 'e':
2819 if (last_ptr)
2820 copy_rtx_if_shared_1 (last_ptr);
2821 last_ptr = &XEXP (x, i);
2822 break;
2823
2824 case 'E':
2825 if (XVEC (x, i) != NULL)
2826 {
2827 int j;
2828 int len = XVECLEN (x, i);
2829
2830 /* Copy the vector iff I copied the rtx and the length
2831 is nonzero. */
2832 if (copied && len > 0)
2833 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2834
2835 /* Call recursively on all inside the vector. */
2836 for (j = 0; j < len; j++)
2837 {
2838 if (last_ptr)
2839 copy_rtx_if_shared_1 (last_ptr);
2840 last_ptr = &XVECEXP (x, i, j);
2841 }
2842 }
2843 break;
2844 }
2845 }
2846 *orig1 = x;
2847 if (last_ptr)
2848 {
2849 orig1 = last_ptr;
2850 goto repeat;
2851 }
2852 return;
2853 }
2854
2855 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2856
2857 static void
2858 mark_used_flags (rtx x, int flag)
2859 {
2860 int i, j;
2861 enum rtx_code code;
2862 const char *format_ptr;
2863 int length;
2864
2865 /* Repeat is used to turn tail-recursion into iteration. */
2866 repeat:
2867 if (x == 0)
2868 return;
2869
2870 code = GET_CODE (x);
2871
2872 /* These types may be freely shared so we needn't do any resetting
2873 for them. */
2874
2875 switch (code)
2876 {
2877 case REG:
2878 case DEBUG_EXPR:
2879 case VALUE:
2880 CASE_CONST_ANY:
2881 case SYMBOL_REF:
2882 case CODE_LABEL:
2883 case PC:
2884 case CC0:
2885 case RETURN:
2886 case SIMPLE_RETURN:
2887 return;
2888
2889 case DEBUG_INSN:
2890 case INSN:
2891 case JUMP_INSN:
2892 case CALL_INSN:
2893 case NOTE:
2894 case LABEL_REF:
2895 case BARRIER:
2896 /* The chain of insns is not being copied. */
2897 return;
2898
2899 default:
2900 break;
2901 }
2902
2903 RTX_FLAG (x, used) = flag;
2904
2905 format_ptr = GET_RTX_FORMAT (code);
2906 length = GET_RTX_LENGTH (code);
2907
2908 for (i = 0; i < length; i++)
2909 {
2910 switch (*format_ptr++)
2911 {
2912 case 'e':
2913 if (i == length-1)
2914 {
2915 x = XEXP (x, i);
2916 goto repeat;
2917 }
2918 mark_used_flags (XEXP (x, i), flag);
2919 break;
2920
2921 case 'E':
2922 for (j = 0; j < XVECLEN (x, i); j++)
2923 mark_used_flags (XVECEXP (x, i, j), flag);
2924 break;
2925 }
2926 }
2927 }
2928
2929 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2930 to look for shared sub-parts. */
2931
2932 void
2933 reset_used_flags (rtx x)
2934 {
2935 mark_used_flags (x, 0);
2936 }
2937
2938 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2939 to look for shared sub-parts. */
2940
2941 void
2942 set_used_flags (rtx x)
2943 {
2944 mark_used_flags (x, 1);
2945 }
2946 \f
2947 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2948 Return X or the rtx for the pseudo reg the value of X was copied into.
2949 OTHER must be valid as a SET_DEST. */
2950
2951 rtx
2952 make_safe_from (rtx x, rtx other)
2953 {
2954 while (1)
2955 switch (GET_CODE (other))
2956 {
2957 case SUBREG:
2958 other = SUBREG_REG (other);
2959 break;
2960 case STRICT_LOW_PART:
2961 case SIGN_EXTEND:
2962 case ZERO_EXTEND:
2963 other = XEXP (other, 0);
2964 break;
2965 default:
2966 goto done;
2967 }
2968 done:
2969 if ((MEM_P (other)
2970 && ! CONSTANT_P (x)
2971 && !REG_P (x)
2972 && GET_CODE (x) != SUBREG)
2973 || (REG_P (other)
2974 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2975 || reg_mentioned_p (other, x))))
2976 {
2977 rtx temp = gen_reg_rtx (GET_MODE (x));
2978 emit_move_insn (temp, x);
2979 return temp;
2980 }
2981 return x;
2982 }
2983 \f
2984 /* Emission of insns (adding them to the doubly-linked list). */
2985
2986 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2987
2988 rtx
2989 get_last_insn_anywhere (void)
2990 {
2991 struct sequence_stack *stack;
2992 if (get_last_insn ())
2993 return get_last_insn ();
2994 for (stack = seq_stack; stack; stack = stack->next)
2995 if (stack->last != 0)
2996 return stack->last;
2997 return 0;
2998 }
2999
3000 /* Return the first nonnote insn emitted in current sequence or current
3001 function. This routine looks inside SEQUENCEs. */
3002
3003 rtx
3004 get_first_nonnote_insn (void)
3005 {
3006 rtx insn = get_insns ();
3007
3008 if (insn)
3009 {
3010 if (NOTE_P (insn))
3011 for (insn = next_insn (insn);
3012 insn && NOTE_P (insn);
3013 insn = next_insn (insn))
3014 continue;
3015 else
3016 {
3017 if (NONJUMP_INSN_P (insn)
3018 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3019 insn = XVECEXP (PATTERN (insn), 0, 0);
3020 }
3021 }
3022
3023 return insn;
3024 }
3025
3026 /* Return the last nonnote insn emitted in current sequence or current
3027 function. This routine looks inside SEQUENCEs. */
3028
3029 rtx
3030 get_last_nonnote_insn (void)
3031 {
3032 rtx insn = get_last_insn ();
3033
3034 if (insn)
3035 {
3036 if (NOTE_P (insn))
3037 for (insn = previous_insn (insn);
3038 insn && NOTE_P (insn);
3039 insn = previous_insn (insn))
3040 continue;
3041 else
3042 {
3043 if (NONJUMP_INSN_P (insn)
3044 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3045 insn = XVECEXP (PATTERN (insn), 0,
3046 XVECLEN (PATTERN (insn), 0) - 1);
3047 }
3048 }
3049
3050 return insn;
3051 }
3052
3053 /* Return the number of actual (non-debug) insns emitted in this
3054 function. */
3055
3056 int
3057 get_max_insn_count (void)
3058 {
3059 int n = cur_insn_uid;
3060
3061 /* The table size must be stable across -g, to avoid codegen
3062 differences due to debug insns, and not be affected by
3063 -fmin-insn-uid, to avoid excessive table size and to simplify
3064 debugging of -fcompare-debug failures. */
3065 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3066 n -= cur_debug_insn_uid;
3067 else
3068 n -= MIN_NONDEBUG_INSN_UID;
3069
3070 return n;
3071 }
3072
3073 \f
3074 /* Return the next insn. If it is a SEQUENCE, return the first insn
3075 of the sequence. */
3076
3077 rtx
3078 next_insn (rtx insn)
3079 {
3080 if (insn)
3081 {
3082 insn = NEXT_INSN (insn);
3083 if (insn && NONJUMP_INSN_P (insn)
3084 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3085 insn = XVECEXP (PATTERN (insn), 0, 0);
3086 }
3087
3088 return insn;
3089 }
3090
3091 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3092 of the sequence. */
3093
3094 rtx
3095 previous_insn (rtx insn)
3096 {
3097 if (insn)
3098 {
3099 insn = PREV_INSN (insn);
3100 if (insn && NONJUMP_INSN_P (insn)
3101 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3102 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3103 }
3104
3105 return insn;
3106 }
3107
3108 /* Return the next insn after INSN that is not a NOTE. This routine does not
3109 look inside SEQUENCEs. */
3110
3111 rtx
3112 next_nonnote_insn (rtx insn)
3113 {
3114 while (insn)
3115 {
3116 insn = NEXT_INSN (insn);
3117 if (insn == 0 || !NOTE_P (insn))
3118 break;
3119 }
3120
3121 return insn;
3122 }
3123
3124 /* Return the next insn after INSN that is not a NOTE, but stop the
3125 search before we enter another basic block. This routine does not
3126 look inside SEQUENCEs. */
3127
3128 rtx
3129 next_nonnote_insn_bb (rtx insn)
3130 {
3131 while (insn)
3132 {
3133 insn = NEXT_INSN (insn);
3134 if (insn == 0 || !NOTE_P (insn))
3135 break;
3136 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3137 return NULL_RTX;
3138 }
3139
3140 return insn;
3141 }
3142
3143 /* Return the previous insn before INSN that is not a NOTE. This routine does
3144 not look inside SEQUENCEs. */
3145
3146 rtx
3147 prev_nonnote_insn (rtx insn)
3148 {
3149 while (insn)
3150 {
3151 insn = PREV_INSN (insn);
3152 if (insn == 0 || !NOTE_P (insn))
3153 break;
3154 }
3155
3156 return insn;
3157 }
3158
3159 /* Return the previous insn before INSN that is not a NOTE, but stop
3160 the search before we enter another basic block. This routine does
3161 not look inside SEQUENCEs. */
3162
3163 rtx
3164 prev_nonnote_insn_bb (rtx insn)
3165 {
3166 while (insn)
3167 {
3168 insn = PREV_INSN (insn);
3169 if (insn == 0 || !NOTE_P (insn))
3170 break;
3171 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3172 return NULL_RTX;
3173 }
3174
3175 return insn;
3176 }
3177
3178 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3179 routine does not look inside SEQUENCEs. */
3180
3181 rtx
3182 next_nondebug_insn (rtx insn)
3183 {
3184 while (insn)
3185 {
3186 insn = NEXT_INSN (insn);
3187 if (insn == 0 || !DEBUG_INSN_P (insn))
3188 break;
3189 }
3190
3191 return insn;
3192 }
3193
3194 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3195 This routine does not look inside SEQUENCEs. */
3196
3197 rtx
3198 prev_nondebug_insn (rtx insn)
3199 {
3200 while (insn)
3201 {
3202 insn = PREV_INSN (insn);
3203 if (insn == 0 || !DEBUG_INSN_P (insn))
3204 break;
3205 }
3206
3207 return insn;
3208 }
3209
3210 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3211 This routine does not look inside SEQUENCEs. */
3212
3213 rtx
3214 next_nonnote_nondebug_insn (rtx insn)
3215 {
3216 while (insn)
3217 {
3218 insn = NEXT_INSN (insn);
3219 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3220 break;
3221 }
3222
3223 return insn;
3224 }
3225
3226 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3227 This routine does not look inside SEQUENCEs. */
3228
3229 rtx
3230 prev_nonnote_nondebug_insn (rtx insn)
3231 {
3232 while (insn)
3233 {
3234 insn = PREV_INSN (insn);
3235 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3236 break;
3237 }
3238
3239 return insn;
3240 }
3241
3242 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3243 or 0, if there is none. This routine does not look inside
3244 SEQUENCEs. */
3245
3246 rtx
3247 next_real_insn (rtx insn)
3248 {
3249 while (insn)
3250 {
3251 insn = NEXT_INSN (insn);
3252 if (insn == 0 || INSN_P (insn))
3253 break;
3254 }
3255
3256 return insn;
3257 }
3258
3259 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3260 or 0, if there is none. This routine does not look inside
3261 SEQUENCEs. */
3262
3263 rtx
3264 prev_real_insn (rtx insn)
3265 {
3266 while (insn)
3267 {
3268 insn = PREV_INSN (insn);
3269 if (insn == 0 || INSN_P (insn))
3270 break;
3271 }
3272
3273 return insn;
3274 }
3275
3276 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3277 This routine does not look inside SEQUENCEs. */
3278
3279 rtx
3280 last_call_insn (void)
3281 {
3282 rtx insn;
3283
3284 for (insn = get_last_insn ();
3285 insn && !CALL_P (insn);
3286 insn = PREV_INSN (insn))
3287 ;
3288
3289 return insn;
3290 }
3291
3292 /* Find the next insn after INSN that really does something. This routine
3293 does not look inside SEQUENCEs. After reload this also skips over
3294 standalone USE and CLOBBER insn. */
3295
3296 int
3297 active_insn_p (const_rtx insn)
3298 {
3299 return (CALL_P (insn) || JUMP_P (insn)
3300 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3301 || (NONJUMP_INSN_P (insn)
3302 && (! reload_completed
3303 || (GET_CODE (PATTERN (insn)) != USE
3304 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3305 }
3306
3307 rtx
3308 next_active_insn (rtx insn)
3309 {
3310 while (insn)
3311 {
3312 insn = NEXT_INSN (insn);
3313 if (insn == 0 || active_insn_p (insn))
3314 break;
3315 }
3316
3317 return insn;
3318 }
3319
3320 /* Find the last insn before INSN that really does something. This routine
3321 does not look inside SEQUENCEs. After reload this also skips over
3322 standalone USE and CLOBBER insn. */
3323
3324 rtx
3325 prev_active_insn (rtx insn)
3326 {
3327 while (insn)
3328 {
3329 insn = PREV_INSN (insn);
3330 if (insn == 0 || active_insn_p (insn))
3331 break;
3332 }
3333
3334 return insn;
3335 }
3336 \f
3337 #ifdef HAVE_cc0
3338 /* Return the next insn that uses CC0 after INSN, which is assumed to
3339 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3340 applied to the result of this function should yield INSN).
3341
3342 Normally, this is simply the next insn. However, if a REG_CC_USER note
3343 is present, it contains the insn that uses CC0.
3344
3345 Return 0 if we can't find the insn. */
3346
3347 rtx
3348 next_cc0_user (rtx insn)
3349 {
3350 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3351
3352 if (note)
3353 return XEXP (note, 0);
3354
3355 insn = next_nonnote_insn (insn);
3356 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3357 insn = XVECEXP (PATTERN (insn), 0, 0);
3358
3359 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3360 return insn;
3361
3362 return 0;
3363 }
3364
3365 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3366 note, it is the previous insn. */
3367
3368 rtx
3369 prev_cc0_setter (rtx insn)
3370 {
3371 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3372
3373 if (note)
3374 return XEXP (note, 0);
3375
3376 insn = prev_nonnote_insn (insn);
3377 gcc_assert (sets_cc0_p (PATTERN (insn)));
3378
3379 return insn;
3380 }
3381 #endif
3382
3383 #ifdef AUTO_INC_DEC
3384 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3385
3386 static int
3387 find_auto_inc (rtx *xp, void *data)
3388 {
3389 rtx x = *xp;
3390 rtx reg = (rtx) data;
3391
3392 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3393 return 0;
3394
3395 switch (GET_CODE (x))
3396 {
3397 case PRE_DEC:
3398 case PRE_INC:
3399 case POST_DEC:
3400 case POST_INC:
3401 case PRE_MODIFY:
3402 case POST_MODIFY:
3403 if (rtx_equal_p (reg, XEXP (x, 0)))
3404 return 1;
3405 break;
3406
3407 default:
3408 gcc_unreachable ();
3409 }
3410 return -1;
3411 }
3412 #endif
3413
3414 /* Increment the label uses for all labels present in rtx. */
3415
3416 static void
3417 mark_label_nuses (rtx x)
3418 {
3419 enum rtx_code code;
3420 int i, j;
3421 const char *fmt;
3422
3423 code = GET_CODE (x);
3424 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3425 LABEL_NUSES (XEXP (x, 0))++;
3426
3427 fmt = GET_RTX_FORMAT (code);
3428 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3429 {
3430 if (fmt[i] == 'e')
3431 mark_label_nuses (XEXP (x, i));
3432 else if (fmt[i] == 'E')
3433 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3434 mark_label_nuses (XVECEXP (x, i, j));
3435 }
3436 }
3437
3438 \f
3439 /* Try splitting insns that can be split for better scheduling.
3440 PAT is the pattern which might split.
3441 TRIAL is the insn providing PAT.
3442 LAST is nonzero if we should return the last insn of the sequence produced.
3443
3444 If this routine succeeds in splitting, it returns the first or last
3445 replacement insn depending on the value of LAST. Otherwise, it
3446 returns TRIAL. If the insn to be returned can be split, it will be. */
3447
3448 rtx
3449 try_split (rtx pat, rtx trial, int last)
3450 {
3451 rtx before = PREV_INSN (trial);
3452 rtx after = NEXT_INSN (trial);
3453 int has_barrier = 0;
3454 rtx note, seq, tem;
3455 int probability;
3456 rtx insn_last, insn;
3457 int njumps = 0;
3458
3459 /* We're not good at redistributing frame information. */
3460 if (RTX_FRAME_RELATED_P (trial))
3461 return trial;
3462
3463 if (any_condjump_p (trial)
3464 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3465 split_branch_probability = XINT (note, 0);
3466 probability = split_branch_probability;
3467
3468 seq = split_insns (pat, trial);
3469
3470 split_branch_probability = -1;
3471
3472 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3473 We may need to handle this specially. */
3474 if (after && BARRIER_P (after))
3475 {
3476 has_barrier = 1;
3477 after = NEXT_INSN (after);
3478 }
3479
3480 if (!seq)
3481 return trial;
3482
3483 /* Avoid infinite loop if any insn of the result matches
3484 the original pattern. */
3485 insn_last = seq;
3486 while (1)
3487 {
3488 if (INSN_P (insn_last)
3489 && rtx_equal_p (PATTERN (insn_last), pat))
3490 return trial;
3491 if (!NEXT_INSN (insn_last))
3492 break;
3493 insn_last = NEXT_INSN (insn_last);
3494 }
3495
3496 /* We will be adding the new sequence to the function. The splitters
3497 may have introduced invalid RTL sharing, so unshare the sequence now. */
3498 unshare_all_rtl_in_chain (seq);
3499
3500 /* Mark labels. */
3501 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3502 {
3503 if (JUMP_P (insn))
3504 {
3505 mark_jump_label (PATTERN (insn), insn, 0);
3506 njumps++;
3507 if (probability != -1
3508 && any_condjump_p (insn)
3509 && !find_reg_note (insn, REG_BR_PROB, 0))
3510 {
3511 /* We can preserve the REG_BR_PROB notes only if exactly
3512 one jump is created, otherwise the machine description
3513 is responsible for this step using
3514 split_branch_probability variable. */
3515 gcc_assert (njumps == 1);
3516 add_int_reg_note (insn, REG_BR_PROB, probability);
3517 }
3518 }
3519 }
3520
3521 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3522 in SEQ and copy any additional information across. */
3523 if (CALL_P (trial))
3524 {
3525 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3526 if (CALL_P (insn))
3527 {
3528 rtx next, *p;
3529
3530 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3531 target may have explicitly specified. */
3532 p = &CALL_INSN_FUNCTION_USAGE (insn);
3533 while (*p)
3534 p = &XEXP (*p, 1);
3535 *p = CALL_INSN_FUNCTION_USAGE (trial);
3536
3537 /* If the old call was a sibling call, the new one must
3538 be too. */
3539 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3540
3541 /* If the new call is the last instruction in the sequence,
3542 it will effectively replace the old call in-situ. Otherwise
3543 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3544 so that it comes immediately after the new call. */
3545 if (NEXT_INSN (insn))
3546 for (next = NEXT_INSN (trial);
3547 next && NOTE_P (next);
3548 next = NEXT_INSN (next))
3549 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3550 {
3551 remove_insn (next);
3552 add_insn_after (next, insn, NULL);
3553 break;
3554 }
3555 }
3556 }
3557
3558 /* Copy notes, particularly those related to the CFG. */
3559 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3560 {
3561 switch (REG_NOTE_KIND (note))
3562 {
3563 case REG_EH_REGION:
3564 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3565 break;
3566
3567 case REG_NORETURN:
3568 case REG_SETJMP:
3569 case REG_TM:
3570 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3571 {
3572 if (CALL_P (insn))
3573 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3574 }
3575 break;
3576
3577 case REG_NON_LOCAL_GOTO:
3578 case REG_CROSSING_JUMP:
3579 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3580 {
3581 if (JUMP_P (insn))
3582 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3583 }
3584 break;
3585
3586 #ifdef AUTO_INC_DEC
3587 case REG_INC:
3588 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3589 {
3590 rtx reg = XEXP (note, 0);
3591 if (!FIND_REG_INC_NOTE (insn, reg)
3592 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3593 add_reg_note (insn, REG_INC, reg);
3594 }
3595 break;
3596 #endif
3597
3598 case REG_ARGS_SIZE:
3599 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3600 break;
3601
3602 default:
3603 break;
3604 }
3605 }
3606
3607 /* If there are LABELS inside the split insns increment the
3608 usage count so we don't delete the label. */
3609 if (INSN_P (trial))
3610 {
3611 insn = insn_last;
3612 while (insn != NULL_RTX)
3613 {
3614 /* JUMP_P insns have already been "marked" above. */
3615 if (NONJUMP_INSN_P (insn))
3616 mark_label_nuses (PATTERN (insn));
3617
3618 insn = PREV_INSN (insn);
3619 }
3620 }
3621
3622 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3623
3624 delete_insn (trial);
3625 if (has_barrier)
3626 emit_barrier_after (tem);
3627
3628 /* Recursively call try_split for each new insn created; by the
3629 time control returns here that insn will be fully split, so
3630 set LAST and continue from the insn after the one returned.
3631 We can't use next_active_insn here since AFTER may be a note.
3632 Ignore deleted insns, which can be occur if not optimizing. */
3633 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3634 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3635 tem = try_split (PATTERN (tem), tem, 1);
3636
3637 /* Return either the first or the last insn, depending on which was
3638 requested. */
3639 return last
3640 ? (after ? PREV_INSN (after) : get_last_insn ())
3641 : NEXT_INSN (before);
3642 }
3643 \f
3644 /* Make and return an INSN rtx, initializing all its slots.
3645 Store PATTERN in the pattern slots. */
3646
3647 rtx
3648 make_insn_raw (rtx pattern)
3649 {
3650 rtx insn;
3651
3652 insn = rtx_alloc (INSN);
3653
3654 INSN_UID (insn) = cur_insn_uid++;
3655 PATTERN (insn) = pattern;
3656 INSN_CODE (insn) = -1;
3657 REG_NOTES (insn) = NULL;
3658 INSN_LOCATION (insn) = curr_insn_location ();
3659 BLOCK_FOR_INSN (insn) = NULL;
3660
3661 #ifdef ENABLE_RTL_CHECKING
3662 if (insn
3663 && INSN_P (insn)
3664 && (returnjump_p (insn)
3665 || (GET_CODE (insn) == SET
3666 && SET_DEST (insn) == pc_rtx)))
3667 {
3668 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3669 debug_rtx (insn);
3670 }
3671 #endif
3672
3673 return insn;
3674 }
3675
3676 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3677
3678 static rtx
3679 make_debug_insn_raw (rtx pattern)
3680 {
3681 rtx insn;
3682
3683 insn = rtx_alloc (DEBUG_INSN);
3684 INSN_UID (insn) = cur_debug_insn_uid++;
3685 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3686 INSN_UID (insn) = cur_insn_uid++;
3687
3688 PATTERN (insn) = pattern;
3689 INSN_CODE (insn) = -1;
3690 REG_NOTES (insn) = NULL;
3691 INSN_LOCATION (insn) = curr_insn_location ();
3692 BLOCK_FOR_INSN (insn) = NULL;
3693
3694 return insn;
3695 }
3696
3697 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3698
3699 static rtx
3700 make_jump_insn_raw (rtx pattern)
3701 {
3702 rtx insn;
3703
3704 insn = rtx_alloc (JUMP_INSN);
3705 INSN_UID (insn) = cur_insn_uid++;
3706
3707 PATTERN (insn) = pattern;
3708 INSN_CODE (insn) = -1;
3709 REG_NOTES (insn) = NULL;
3710 JUMP_LABEL (insn) = NULL;
3711 INSN_LOCATION (insn) = curr_insn_location ();
3712 BLOCK_FOR_INSN (insn) = NULL;
3713
3714 return insn;
3715 }
3716
3717 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3718
3719 static rtx
3720 make_call_insn_raw (rtx pattern)
3721 {
3722 rtx insn;
3723
3724 insn = rtx_alloc (CALL_INSN);
3725 INSN_UID (insn) = cur_insn_uid++;
3726
3727 PATTERN (insn) = pattern;
3728 INSN_CODE (insn) = -1;
3729 REG_NOTES (insn) = NULL;
3730 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3731 INSN_LOCATION (insn) = curr_insn_location ();
3732 BLOCK_FOR_INSN (insn) = NULL;
3733
3734 return insn;
3735 }
3736
3737 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3738
3739 static rtx
3740 make_note_raw (enum insn_note subtype)
3741 {
3742 /* Some notes are never created this way at all. These notes are
3743 only created by patching out insns. */
3744 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3745 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3746
3747 rtx note = rtx_alloc (NOTE);
3748 INSN_UID (note) = cur_insn_uid++;
3749 NOTE_KIND (note) = subtype;
3750 BLOCK_FOR_INSN (note) = NULL;
3751 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3752 return note;
3753 }
3754 \f
3755 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3756 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3757 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3758
3759 static inline void
3760 link_insn_into_chain (rtx insn, rtx prev, rtx next)
3761 {
3762 PREV_INSN (insn) = prev;
3763 NEXT_INSN (insn) = next;
3764 if (prev != NULL)
3765 {
3766 NEXT_INSN (prev) = insn;
3767 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3768 {
3769 rtx sequence = PATTERN (prev);
3770 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3771 }
3772 }
3773 if (next != NULL)
3774 {
3775 PREV_INSN (next) = insn;
3776 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3777 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3778 }
3779
3780 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3781 {
3782 rtx sequence = PATTERN (insn);
3783 PREV_INSN (XVECEXP (sequence, 0, 0)) = prev;
3784 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3785 }
3786 }
3787
3788 /* Add INSN to the end of the doubly-linked list.
3789 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3790
3791 void
3792 add_insn (rtx insn)
3793 {
3794 rtx prev = get_last_insn ();
3795 link_insn_into_chain (insn, prev, NULL);
3796 if (NULL == get_insns ())
3797 set_first_insn (insn);
3798 set_last_insn (insn);
3799 }
3800
3801 /* Add INSN into the doubly-linked list after insn AFTER. */
3802
3803 static void
3804 add_insn_after_nobb (rtx insn, rtx after)
3805 {
3806 rtx next = NEXT_INSN (after);
3807
3808 gcc_assert (!optimize || !INSN_DELETED_P (after));
3809
3810 link_insn_into_chain (insn, after, next);
3811
3812 if (next == NULL)
3813 {
3814 if (get_last_insn () == after)
3815 set_last_insn (insn);
3816 else
3817 {
3818 struct sequence_stack *stack = seq_stack;
3819 /* Scan all pending sequences too. */
3820 for (; stack; stack = stack->next)
3821 if (after == stack->last)
3822 {
3823 stack->last = insn;
3824 break;
3825 }
3826 }
3827 }
3828 }
3829
3830 /* Add INSN into the doubly-linked list before insn BEFORE. */
3831
3832 static void
3833 add_insn_before_nobb (rtx insn, rtx before)
3834 {
3835 rtx prev = PREV_INSN (before);
3836
3837 gcc_assert (!optimize || !INSN_DELETED_P (before));
3838
3839 link_insn_into_chain (insn, prev, before);
3840
3841 if (prev == NULL)
3842 {
3843 if (get_insns () == before)
3844 set_first_insn (insn);
3845 else
3846 {
3847 struct sequence_stack *stack = seq_stack;
3848 /* Scan all pending sequences too. */
3849 for (; stack; stack = stack->next)
3850 if (before == stack->first)
3851 {
3852 stack->first = insn;
3853 break;
3854 }
3855
3856 gcc_assert (stack);
3857 }
3858 }
3859 }
3860
3861 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3862 If BB is NULL, an attempt is made to infer the bb from before.
3863
3864 This and the next function should be the only functions called
3865 to insert an insn once delay slots have been filled since only
3866 they know how to update a SEQUENCE. */
3867
3868 void
3869 add_insn_after (rtx insn, rtx after, basic_block bb)
3870 {
3871 add_insn_after_nobb (insn, after);
3872 if (!BARRIER_P (after)
3873 && !BARRIER_P (insn)
3874 && (bb = BLOCK_FOR_INSN (after)))
3875 {
3876 set_block_for_insn (insn, bb);
3877 if (INSN_P (insn))
3878 df_insn_rescan (insn);
3879 /* Should not happen as first in the BB is always
3880 either NOTE or LABEL. */
3881 if (BB_END (bb) == after
3882 /* Avoid clobbering of structure when creating new BB. */
3883 && !BARRIER_P (insn)
3884 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3885 BB_END (bb) = insn;
3886 }
3887 }
3888
3889 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
3890 If BB is NULL, an attempt is made to infer the bb from before.
3891
3892 This and the previous function should be the only functions called
3893 to insert an insn once delay slots have been filled since only
3894 they know how to update a SEQUENCE. */
3895
3896 void
3897 add_insn_before (rtx insn, rtx before, basic_block bb)
3898 {
3899 add_insn_before_nobb (insn, before);
3900
3901 if (!bb
3902 && !BARRIER_P (before)
3903 && !BARRIER_P (insn))
3904 bb = BLOCK_FOR_INSN (before);
3905
3906 if (bb)
3907 {
3908 set_block_for_insn (insn, bb);
3909 if (INSN_P (insn))
3910 df_insn_rescan (insn);
3911 /* Should not happen as first in the BB is always either NOTE or
3912 LABEL. */
3913 gcc_assert (BB_HEAD (bb) != insn
3914 /* Avoid clobbering of structure when creating new BB. */
3915 || BARRIER_P (insn)
3916 || NOTE_INSN_BASIC_BLOCK_P (insn));
3917 }
3918 }
3919
3920 /* Replace insn with an deleted instruction note. */
3921
3922 void
3923 set_insn_deleted (rtx insn)
3924 {
3925 if (INSN_P (insn))
3926 df_insn_delete (insn);
3927 PUT_CODE (insn, NOTE);
3928 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3929 }
3930
3931
3932 /* Unlink INSN from the insn chain.
3933
3934 This function knows how to handle sequences.
3935
3936 This function does not invalidate data flow information associated with
3937 INSN (i.e. does not call df_insn_delete). That makes this function
3938 usable for only disconnecting an insn from the chain, and re-emit it
3939 elsewhere later.
3940
3941 To later insert INSN elsewhere in the insn chain via add_insn and
3942 similar functions, PREV_INSN and NEXT_INSN must be nullified by
3943 the caller. Nullifying them here breaks many insn chain walks.
3944
3945 To really delete an insn and related DF information, use delete_insn. */
3946
3947 void
3948 remove_insn (rtx insn)
3949 {
3950 rtx next = NEXT_INSN (insn);
3951 rtx prev = PREV_INSN (insn);
3952 basic_block bb;
3953
3954 if (prev)
3955 {
3956 NEXT_INSN (prev) = next;
3957 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3958 {
3959 rtx sequence = PATTERN (prev);
3960 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3961 }
3962 }
3963 else if (get_insns () == insn)
3964 {
3965 if (next)
3966 PREV_INSN (next) = NULL;
3967 set_first_insn (next);
3968 }
3969 else
3970 {
3971 struct sequence_stack *stack = seq_stack;
3972 /* Scan all pending sequences too. */
3973 for (; stack; stack = stack->next)
3974 if (insn == stack->first)
3975 {
3976 stack->first = next;
3977 break;
3978 }
3979
3980 gcc_assert (stack);
3981 }
3982
3983 if (next)
3984 {
3985 PREV_INSN (next) = prev;
3986 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3987 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3988 }
3989 else if (get_last_insn () == insn)
3990 set_last_insn (prev);
3991 else
3992 {
3993 struct sequence_stack *stack = seq_stack;
3994 /* Scan all pending sequences too. */
3995 for (; stack; stack = stack->next)
3996 if (insn == stack->last)
3997 {
3998 stack->last = prev;
3999 break;
4000 }
4001
4002 gcc_assert (stack);
4003 }
4004
4005 /* Fix up basic block boundaries, if necessary. */
4006 if (!BARRIER_P (insn)
4007 && (bb = BLOCK_FOR_INSN (insn)))
4008 {
4009 if (BB_HEAD (bb) == insn)
4010 {
4011 /* Never ever delete the basic block note without deleting whole
4012 basic block. */
4013 gcc_assert (!NOTE_P (insn));
4014 BB_HEAD (bb) = next;
4015 }
4016 if (BB_END (bb) == insn)
4017 BB_END (bb) = prev;
4018 }
4019 }
4020
4021 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4022
4023 void
4024 add_function_usage_to (rtx call_insn, rtx call_fusage)
4025 {
4026 gcc_assert (call_insn && CALL_P (call_insn));
4027
4028 /* Put the register usage information on the CALL. If there is already
4029 some usage information, put ours at the end. */
4030 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4031 {
4032 rtx link;
4033
4034 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4035 link = XEXP (link, 1))
4036 ;
4037
4038 XEXP (link, 1) = call_fusage;
4039 }
4040 else
4041 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4042 }
4043
4044 /* Delete all insns made since FROM.
4045 FROM becomes the new last instruction. */
4046
4047 void
4048 delete_insns_since (rtx from)
4049 {
4050 if (from == 0)
4051 set_first_insn (0);
4052 else
4053 NEXT_INSN (from) = 0;
4054 set_last_insn (from);
4055 }
4056
4057 /* This function is deprecated, please use sequences instead.
4058
4059 Move a consecutive bunch of insns to a different place in the chain.
4060 The insns to be moved are those between FROM and TO.
4061 They are moved to a new position after the insn AFTER.
4062 AFTER must not be FROM or TO or any insn in between.
4063
4064 This function does not know about SEQUENCEs and hence should not be
4065 called after delay-slot filling has been done. */
4066
4067 void
4068 reorder_insns_nobb (rtx from, rtx to, rtx after)
4069 {
4070 #ifdef ENABLE_CHECKING
4071 rtx x;
4072 for (x = from; x != to; x = NEXT_INSN (x))
4073 gcc_assert (after != x);
4074 gcc_assert (after != to);
4075 #endif
4076
4077 /* Splice this bunch out of where it is now. */
4078 if (PREV_INSN (from))
4079 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4080 if (NEXT_INSN (to))
4081 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4082 if (get_last_insn () == to)
4083 set_last_insn (PREV_INSN (from));
4084 if (get_insns () == from)
4085 set_first_insn (NEXT_INSN (to));
4086
4087 /* Make the new neighbors point to it and it to them. */
4088 if (NEXT_INSN (after))
4089 PREV_INSN (NEXT_INSN (after)) = to;
4090
4091 NEXT_INSN (to) = NEXT_INSN (after);
4092 PREV_INSN (from) = after;
4093 NEXT_INSN (after) = from;
4094 if (after == get_last_insn ())
4095 set_last_insn (to);
4096 }
4097
4098 /* Same as function above, but take care to update BB boundaries. */
4099 void
4100 reorder_insns (rtx from, rtx to, rtx after)
4101 {
4102 rtx prev = PREV_INSN (from);
4103 basic_block bb, bb2;
4104
4105 reorder_insns_nobb (from, to, after);
4106
4107 if (!BARRIER_P (after)
4108 && (bb = BLOCK_FOR_INSN (after)))
4109 {
4110 rtx x;
4111 df_set_bb_dirty (bb);
4112
4113 if (!BARRIER_P (from)
4114 && (bb2 = BLOCK_FOR_INSN (from)))
4115 {
4116 if (BB_END (bb2) == to)
4117 BB_END (bb2) = prev;
4118 df_set_bb_dirty (bb2);
4119 }
4120
4121 if (BB_END (bb) == after)
4122 BB_END (bb) = to;
4123
4124 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4125 if (!BARRIER_P (x))
4126 df_insn_change_bb (x, bb);
4127 }
4128 }
4129
4130 \f
4131 /* Emit insn(s) of given code and pattern
4132 at a specified place within the doubly-linked list.
4133
4134 All of the emit_foo global entry points accept an object
4135 X which is either an insn list or a PATTERN of a single
4136 instruction.
4137
4138 There are thus a few canonical ways to generate code and
4139 emit it at a specific place in the instruction stream. For
4140 example, consider the instruction named SPOT and the fact that
4141 we would like to emit some instructions before SPOT. We might
4142 do it like this:
4143
4144 start_sequence ();
4145 ... emit the new instructions ...
4146 insns_head = get_insns ();
4147 end_sequence ();
4148
4149 emit_insn_before (insns_head, SPOT);
4150
4151 It used to be common to generate SEQUENCE rtl instead, but that
4152 is a relic of the past which no longer occurs. The reason is that
4153 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4154 generated would almost certainly die right after it was created. */
4155
4156 static rtx
4157 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4158 rtx (*make_raw) (rtx))
4159 {
4160 rtx insn;
4161
4162 gcc_assert (before);
4163
4164 if (x == NULL_RTX)
4165 return last;
4166
4167 switch (GET_CODE (x))
4168 {
4169 case DEBUG_INSN:
4170 case INSN:
4171 case JUMP_INSN:
4172 case CALL_INSN:
4173 case CODE_LABEL:
4174 case BARRIER:
4175 case NOTE:
4176 insn = x;
4177 while (insn)
4178 {
4179 rtx next = NEXT_INSN (insn);
4180 add_insn_before (insn, before, bb);
4181 last = insn;
4182 insn = next;
4183 }
4184 break;
4185
4186 #ifdef ENABLE_RTL_CHECKING
4187 case SEQUENCE:
4188 gcc_unreachable ();
4189 break;
4190 #endif
4191
4192 default:
4193 last = (*make_raw) (x);
4194 add_insn_before (last, before, bb);
4195 break;
4196 }
4197
4198 return last;
4199 }
4200
4201 /* Make X be output before the instruction BEFORE. */
4202
4203 rtx
4204 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4205 {
4206 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4207 }
4208
4209 /* Make an instruction with body X and code JUMP_INSN
4210 and output it before the instruction BEFORE. */
4211
4212 rtx
4213 emit_jump_insn_before_noloc (rtx x, rtx before)
4214 {
4215 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4216 make_jump_insn_raw);
4217 }
4218
4219 /* Make an instruction with body X and code CALL_INSN
4220 and output it before the instruction BEFORE. */
4221
4222 rtx
4223 emit_call_insn_before_noloc (rtx x, rtx before)
4224 {
4225 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4226 make_call_insn_raw);
4227 }
4228
4229 /* Make an instruction with body X and code DEBUG_INSN
4230 and output it before the instruction BEFORE. */
4231
4232 rtx
4233 emit_debug_insn_before_noloc (rtx x, rtx before)
4234 {
4235 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4236 make_debug_insn_raw);
4237 }
4238
4239 /* Make an insn of code BARRIER
4240 and output it before the insn BEFORE. */
4241
4242 rtx
4243 emit_barrier_before (rtx before)
4244 {
4245 rtx insn = rtx_alloc (BARRIER);
4246
4247 INSN_UID (insn) = cur_insn_uid++;
4248
4249 add_insn_before (insn, before, NULL);
4250 return insn;
4251 }
4252
4253 /* Emit the label LABEL before the insn BEFORE. */
4254
4255 rtx
4256 emit_label_before (rtx label, rtx before)
4257 {
4258 gcc_checking_assert (INSN_UID (label) == 0);
4259 INSN_UID (label) = cur_insn_uid++;
4260 add_insn_before (label, before, NULL);
4261 return label;
4262 }
4263 \f
4264 /* Helper for emit_insn_after, handles lists of instructions
4265 efficiently. */
4266
4267 static rtx
4268 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4269 {
4270 rtx last;
4271 rtx after_after;
4272 if (!bb && !BARRIER_P (after))
4273 bb = BLOCK_FOR_INSN (after);
4274
4275 if (bb)
4276 {
4277 df_set_bb_dirty (bb);
4278 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4279 if (!BARRIER_P (last))
4280 {
4281 set_block_for_insn (last, bb);
4282 df_insn_rescan (last);
4283 }
4284 if (!BARRIER_P (last))
4285 {
4286 set_block_for_insn (last, bb);
4287 df_insn_rescan (last);
4288 }
4289 if (BB_END (bb) == after)
4290 BB_END (bb) = last;
4291 }
4292 else
4293 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4294 continue;
4295
4296 after_after = NEXT_INSN (after);
4297
4298 NEXT_INSN (after) = first;
4299 PREV_INSN (first) = after;
4300 NEXT_INSN (last) = after_after;
4301 if (after_after)
4302 PREV_INSN (after_after) = last;
4303
4304 if (after == get_last_insn ())
4305 set_last_insn (last);
4306
4307 return last;
4308 }
4309
4310 static rtx
4311 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4312 rtx (*make_raw)(rtx))
4313 {
4314 rtx last = after;
4315
4316 gcc_assert (after);
4317
4318 if (x == NULL_RTX)
4319 return last;
4320
4321 switch (GET_CODE (x))
4322 {
4323 case DEBUG_INSN:
4324 case INSN:
4325 case JUMP_INSN:
4326 case CALL_INSN:
4327 case CODE_LABEL:
4328 case BARRIER:
4329 case NOTE:
4330 last = emit_insn_after_1 (x, after, bb);
4331 break;
4332
4333 #ifdef ENABLE_RTL_CHECKING
4334 case SEQUENCE:
4335 gcc_unreachable ();
4336 break;
4337 #endif
4338
4339 default:
4340 last = (*make_raw) (x);
4341 add_insn_after (last, after, bb);
4342 break;
4343 }
4344
4345 return last;
4346 }
4347
4348 /* Make X be output after the insn AFTER and set the BB of insn. If
4349 BB is NULL, an attempt is made to infer the BB from AFTER. */
4350
4351 rtx
4352 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4353 {
4354 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4355 }
4356
4357
4358 /* Make an insn of code JUMP_INSN with body X
4359 and output it after the insn AFTER. */
4360
4361 rtx
4362 emit_jump_insn_after_noloc (rtx x, rtx after)
4363 {
4364 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4365 }
4366
4367 /* Make an instruction with body X and code CALL_INSN
4368 and output it after the instruction AFTER. */
4369
4370 rtx
4371 emit_call_insn_after_noloc (rtx x, rtx after)
4372 {
4373 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4374 }
4375
4376 /* Make an instruction with body X and code CALL_INSN
4377 and output it after the instruction AFTER. */
4378
4379 rtx
4380 emit_debug_insn_after_noloc (rtx x, rtx after)
4381 {
4382 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4383 }
4384
4385 /* Make an insn of code BARRIER
4386 and output it after the insn AFTER. */
4387
4388 rtx
4389 emit_barrier_after (rtx after)
4390 {
4391 rtx insn = rtx_alloc (BARRIER);
4392
4393 INSN_UID (insn) = cur_insn_uid++;
4394
4395 add_insn_after (insn, after, NULL);
4396 return insn;
4397 }
4398
4399 /* Emit the label LABEL after the insn AFTER. */
4400
4401 rtx
4402 emit_label_after (rtx label, rtx after)
4403 {
4404 gcc_checking_assert (INSN_UID (label) == 0);
4405 INSN_UID (label) = cur_insn_uid++;
4406 add_insn_after (label, after, NULL);
4407 return label;
4408 }
4409 \f
4410 /* Notes require a bit of special handling: Some notes need to have their
4411 BLOCK_FOR_INSN set, others should never have it set, and some should
4412 have it set or clear depending on the context. */
4413
4414 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4415 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4416 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4417
4418 static bool
4419 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4420 {
4421 switch (subtype)
4422 {
4423 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4424 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4425 return true;
4426
4427 /* Notes for var tracking and EH region markers can appear between or
4428 inside basic blocks. If the caller is emitting on the basic block
4429 boundary, do not set BLOCK_FOR_INSN on the new note. */
4430 case NOTE_INSN_VAR_LOCATION:
4431 case NOTE_INSN_CALL_ARG_LOCATION:
4432 case NOTE_INSN_EH_REGION_BEG:
4433 case NOTE_INSN_EH_REGION_END:
4434 return on_bb_boundary_p;
4435
4436 /* Otherwise, BLOCK_FOR_INSN must be set. */
4437 default:
4438 return false;
4439 }
4440 }
4441
4442 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4443
4444 rtx
4445 emit_note_after (enum insn_note subtype, rtx after)
4446 {
4447 rtx note = make_note_raw (subtype);
4448 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4449 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4450
4451 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4452 add_insn_after_nobb (note, after);
4453 else
4454 add_insn_after (note, after, bb);
4455 return note;
4456 }
4457
4458 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4459
4460 rtx
4461 emit_note_before (enum insn_note subtype, rtx before)
4462 {
4463 rtx note = make_note_raw (subtype);
4464 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4465 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4466
4467 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4468 add_insn_before_nobb (note, before);
4469 else
4470 add_insn_before (note, before, bb);
4471 return note;
4472 }
4473 \f
4474 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4475 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4476
4477 static rtx
4478 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4479 rtx (*make_raw) (rtx))
4480 {
4481 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4482
4483 if (pattern == NULL_RTX || !loc)
4484 return last;
4485
4486 after = NEXT_INSN (after);
4487 while (1)
4488 {
4489 if (active_insn_p (after) && !INSN_LOCATION (after))
4490 INSN_LOCATION (after) = loc;
4491 if (after == last)
4492 break;
4493 after = NEXT_INSN (after);
4494 }
4495 return last;
4496 }
4497
4498 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4499 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4500 any DEBUG_INSNs. */
4501
4502 static rtx
4503 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4504 rtx (*make_raw) (rtx))
4505 {
4506 rtx prev = after;
4507
4508 if (skip_debug_insns)
4509 while (DEBUG_INSN_P (prev))
4510 prev = PREV_INSN (prev);
4511
4512 if (INSN_P (prev))
4513 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4514 make_raw);
4515 else
4516 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4517 }
4518
4519 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4520 rtx
4521 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4522 {
4523 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4524 }
4525
4526 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4527 rtx
4528 emit_insn_after (rtx pattern, rtx after)
4529 {
4530 return emit_pattern_after (pattern, after, true, make_insn_raw);
4531 }
4532
4533 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4534 rtx
4535 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4536 {
4537 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4538 }
4539
4540 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4541 rtx
4542 emit_jump_insn_after (rtx pattern, rtx after)
4543 {
4544 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4545 }
4546
4547 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4548 rtx
4549 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4550 {
4551 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4552 }
4553
4554 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4555 rtx
4556 emit_call_insn_after (rtx pattern, rtx after)
4557 {
4558 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4559 }
4560
4561 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4562 rtx
4563 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4564 {
4565 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4566 }
4567
4568 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4569 rtx
4570 emit_debug_insn_after (rtx pattern, rtx after)
4571 {
4572 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4573 }
4574
4575 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4576 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4577 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4578 CALL_INSN, etc. */
4579
4580 static rtx
4581 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4582 rtx (*make_raw) (rtx))
4583 {
4584 rtx first = PREV_INSN (before);
4585 rtx last = emit_pattern_before_noloc (pattern, before,
4586 insnp ? before : NULL_RTX,
4587 NULL, make_raw);
4588
4589 if (pattern == NULL_RTX || !loc)
4590 return last;
4591
4592 if (!first)
4593 first = get_insns ();
4594 else
4595 first = NEXT_INSN (first);
4596 while (1)
4597 {
4598 if (active_insn_p (first) && !INSN_LOCATION (first))
4599 INSN_LOCATION (first) = loc;
4600 if (first == last)
4601 break;
4602 first = NEXT_INSN (first);
4603 }
4604 return last;
4605 }
4606
4607 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4608 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4609 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4610 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4611
4612 static rtx
4613 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4614 bool insnp, rtx (*make_raw) (rtx))
4615 {
4616 rtx next = before;
4617
4618 if (skip_debug_insns)
4619 while (DEBUG_INSN_P (next))
4620 next = PREV_INSN (next);
4621
4622 if (INSN_P (next))
4623 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4624 insnp, make_raw);
4625 else
4626 return emit_pattern_before_noloc (pattern, before,
4627 insnp ? before : NULL_RTX,
4628 NULL, make_raw);
4629 }
4630
4631 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4632 rtx
4633 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4634 {
4635 return emit_pattern_before_setloc (pattern, before, loc, true,
4636 make_insn_raw);
4637 }
4638
4639 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4640 rtx
4641 emit_insn_before (rtx pattern, rtx before)
4642 {
4643 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4644 }
4645
4646 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4647 rtx
4648 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4649 {
4650 return emit_pattern_before_setloc (pattern, before, loc, false,
4651 make_jump_insn_raw);
4652 }
4653
4654 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4655 rtx
4656 emit_jump_insn_before (rtx pattern, rtx before)
4657 {
4658 return emit_pattern_before (pattern, before, true, false,
4659 make_jump_insn_raw);
4660 }
4661
4662 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4663 rtx
4664 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4665 {
4666 return emit_pattern_before_setloc (pattern, before, loc, false,
4667 make_call_insn_raw);
4668 }
4669
4670 /* Like emit_call_insn_before_noloc,
4671 but set insn_location according to BEFORE. */
4672 rtx
4673 emit_call_insn_before (rtx pattern, rtx before)
4674 {
4675 return emit_pattern_before (pattern, before, true, false,
4676 make_call_insn_raw);
4677 }
4678
4679 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4680 rtx
4681 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4682 {
4683 return emit_pattern_before_setloc (pattern, before, loc, false,
4684 make_debug_insn_raw);
4685 }
4686
4687 /* Like emit_debug_insn_before_noloc,
4688 but set insn_location according to BEFORE. */
4689 rtx
4690 emit_debug_insn_before (rtx pattern, rtx before)
4691 {
4692 return emit_pattern_before (pattern, before, false, false,
4693 make_debug_insn_raw);
4694 }
4695 \f
4696 /* Take X and emit it at the end of the doubly-linked
4697 INSN list.
4698
4699 Returns the last insn emitted. */
4700
4701 rtx
4702 emit_insn (rtx x)
4703 {
4704 rtx last = get_last_insn ();
4705 rtx insn;
4706
4707 if (x == NULL_RTX)
4708 return last;
4709
4710 switch (GET_CODE (x))
4711 {
4712 case DEBUG_INSN:
4713 case INSN:
4714 case JUMP_INSN:
4715 case CALL_INSN:
4716 case CODE_LABEL:
4717 case BARRIER:
4718 case NOTE:
4719 insn = x;
4720 while (insn)
4721 {
4722 rtx next = NEXT_INSN (insn);
4723 add_insn (insn);
4724 last = insn;
4725 insn = next;
4726 }
4727 break;
4728
4729 #ifdef ENABLE_RTL_CHECKING
4730 case JUMP_TABLE_DATA:
4731 case SEQUENCE:
4732 gcc_unreachable ();
4733 break;
4734 #endif
4735
4736 default:
4737 last = make_insn_raw (x);
4738 add_insn (last);
4739 break;
4740 }
4741
4742 return last;
4743 }
4744
4745 /* Make an insn of code DEBUG_INSN with pattern X
4746 and add it to the end of the doubly-linked list. */
4747
4748 rtx
4749 emit_debug_insn (rtx x)
4750 {
4751 rtx last = get_last_insn ();
4752 rtx insn;
4753
4754 if (x == NULL_RTX)
4755 return last;
4756
4757 switch (GET_CODE (x))
4758 {
4759 case DEBUG_INSN:
4760 case INSN:
4761 case JUMP_INSN:
4762 case CALL_INSN:
4763 case CODE_LABEL:
4764 case BARRIER:
4765 case NOTE:
4766 insn = x;
4767 while (insn)
4768 {
4769 rtx next = NEXT_INSN (insn);
4770 add_insn (insn);
4771 last = insn;
4772 insn = next;
4773 }
4774 break;
4775
4776 #ifdef ENABLE_RTL_CHECKING
4777 case JUMP_TABLE_DATA:
4778 case SEQUENCE:
4779 gcc_unreachable ();
4780 break;
4781 #endif
4782
4783 default:
4784 last = make_debug_insn_raw (x);
4785 add_insn (last);
4786 break;
4787 }
4788
4789 return last;
4790 }
4791
4792 /* Make an insn of code JUMP_INSN with pattern X
4793 and add it to the end of the doubly-linked list. */
4794
4795 rtx
4796 emit_jump_insn (rtx x)
4797 {
4798 rtx last = NULL_RTX, insn;
4799
4800 switch (GET_CODE (x))
4801 {
4802 case DEBUG_INSN:
4803 case INSN:
4804 case JUMP_INSN:
4805 case CALL_INSN:
4806 case CODE_LABEL:
4807 case BARRIER:
4808 case NOTE:
4809 insn = x;
4810 while (insn)
4811 {
4812 rtx next = NEXT_INSN (insn);
4813 add_insn (insn);
4814 last = insn;
4815 insn = next;
4816 }
4817 break;
4818
4819 #ifdef ENABLE_RTL_CHECKING
4820 case JUMP_TABLE_DATA:
4821 case SEQUENCE:
4822 gcc_unreachable ();
4823 break;
4824 #endif
4825
4826 default:
4827 last = make_jump_insn_raw (x);
4828 add_insn (last);
4829 break;
4830 }
4831
4832 return last;
4833 }
4834
4835 /* Make an insn of code CALL_INSN with pattern X
4836 and add it to the end of the doubly-linked list. */
4837
4838 rtx
4839 emit_call_insn (rtx x)
4840 {
4841 rtx insn;
4842
4843 switch (GET_CODE (x))
4844 {
4845 case DEBUG_INSN:
4846 case INSN:
4847 case JUMP_INSN:
4848 case CALL_INSN:
4849 case CODE_LABEL:
4850 case BARRIER:
4851 case NOTE:
4852 insn = emit_insn (x);
4853 break;
4854
4855 #ifdef ENABLE_RTL_CHECKING
4856 case SEQUENCE:
4857 case JUMP_TABLE_DATA:
4858 gcc_unreachable ();
4859 break;
4860 #endif
4861
4862 default:
4863 insn = make_call_insn_raw (x);
4864 add_insn (insn);
4865 break;
4866 }
4867
4868 return insn;
4869 }
4870
4871 /* Add the label LABEL to the end of the doubly-linked list. */
4872
4873 rtx
4874 emit_label (rtx label)
4875 {
4876 gcc_checking_assert (INSN_UID (label) == 0);
4877 INSN_UID (label) = cur_insn_uid++;
4878 add_insn (label);
4879 return label;
4880 }
4881
4882 /* Make an insn of code JUMP_TABLE_DATA
4883 and add it to the end of the doubly-linked list. */
4884
4885 rtx
4886 emit_jump_table_data (rtx table)
4887 {
4888 rtx jump_table_data = rtx_alloc (JUMP_TABLE_DATA);
4889 INSN_UID (jump_table_data) = cur_insn_uid++;
4890 PATTERN (jump_table_data) = table;
4891 BLOCK_FOR_INSN (jump_table_data) = NULL;
4892 add_insn (jump_table_data);
4893 return jump_table_data;
4894 }
4895
4896 /* Make an insn of code BARRIER
4897 and add it to the end of the doubly-linked list. */
4898
4899 rtx
4900 emit_barrier (void)
4901 {
4902 rtx barrier = rtx_alloc (BARRIER);
4903 INSN_UID (barrier) = cur_insn_uid++;
4904 add_insn (barrier);
4905 return barrier;
4906 }
4907
4908 /* Emit a copy of note ORIG. */
4909
4910 rtx
4911 emit_note_copy (rtx orig)
4912 {
4913 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
4914 rtx note = make_note_raw (kind);
4915 NOTE_DATA (note) = NOTE_DATA (orig);
4916 add_insn (note);
4917 return note;
4918 }
4919
4920 /* Make an insn of code NOTE or type NOTE_NO
4921 and add it to the end of the doubly-linked list. */
4922
4923 rtx
4924 emit_note (enum insn_note kind)
4925 {
4926 rtx note = make_note_raw (kind);
4927 add_insn (note);
4928 return note;
4929 }
4930
4931 /* Emit a clobber of lvalue X. */
4932
4933 rtx
4934 emit_clobber (rtx x)
4935 {
4936 /* CONCATs should not appear in the insn stream. */
4937 if (GET_CODE (x) == CONCAT)
4938 {
4939 emit_clobber (XEXP (x, 0));
4940 return emit_clobber (XEXP (x, 1));
4941 }
4942 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4943 }
4944
4945 /* Return a sequence of insns to clobber lvalue X. */
4946
4947 rtx
4948 gen_clobber (rtx x)
4949 {
4950 rtx seq;
4951
4952 start_sequence ();
4953 emit_clobber (x);
4954 seq = get_insns ();
4955 end_sequence ();
4956 return seq;
4957 }
4958
4959 /* Emit a use of rvalue X. */
4960
4961 rtx
4962 emit_use (rtx x)
4963 {
4964 /* CONCATs should not appear in the insn stream. */
4965 if (GET_CODE (x) == CONCAT)
4966 {
4967 emit_use (XEXP (x, 0));
4968 return emit_use (XEXP (x, 1));
4969 }
4970 return emit_insn (gen_rtx_USE (VOIDmode, x));
4971 }
4972
4973 /* Return a sequence of insns to use rvalue X. */
4974
4975 rtx
4976 gen_use (rtx x)
4977 {
4978 rtx seq;
4979
4980 start_sequence ();
4981 emit_use (x);
4982 seq = get_insns ();
4983 end_sequence ();
4984 return seq;
4985 }
4986
4987 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4988 note of this type already exists, remove it first. */
4989
4990 rtx
4991 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4992 {
4993 rtx note = find_reg_note (insn, kind, NULL_RTX);
4994
4995 switch (kind)
4996 {
4997 case REG_EQUAL:
4998 case REG_EQUIV:
4999 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5000 has multiple sets (some callers assume single_set
5001 means the insn only has one set, when in fact it
5002 means the insn only has one * useful * set). */
5003 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5004 {
5005 gcc_assert (!note);
5006 return NULL_RTX;
5007 }
5008
5009 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5010 It serves no useful purpose and breaks eliminate_regs. */
5011 if (GET_CODE (datum) == ASM_OPERANDS)
5012 return NULL_RTX;
5013
5014 if (note)
5015 {
5016 XEXP (note, 0) = datum;
5017 df_notes_rescan (insn);
5018 return note;
5019 }
5020 break;
5021
5022 default:
5023 if (note)
5024 {
5025 XEXP (note, 0) = datum;
5026 return note;
5027 }
5028 break;
5029 }
5030
5031 add_reg_note (insn, kind, datum);
5032
5033 switch (kind)
5034 {
5035 case REG_EQUAL:
5036 case REG_EQUIV:
5037 df_notes_rescan (insn);
5038 break;
5039 default:
5040 break;
5041 }
5042
5043 return REG_NOTES (insn);
5044 }
5045
5046 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5047 rtx
5048 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5049 {
5050 rtx set = single_set (insn);
5051
5052 if (set && SET_DEST (set) == dst)
5053 return set_unique_reg_note (insn, kind, datum);
5054 return NULL_RTX;
5055 }
5056 \f
5057 /* Return an indication of which type of insn should have X as a body.
5058 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5059
5060 static enum rtx_code
5061 classify_insn (rtx x)
5062 {
5063 if (LABEL_P (x))
5064 return CODE_LABEL;
5065 if (GET_CODE (x) == CALL)
5066 return CALL_INSN;
5067 if (ANY_RETURN_P (x))
5068 return JUMP_INSN;
5069 if (GET_CODE (x) == SET)
5070 {
5071 if (SET_DEST (x) == pc_rtx)
5072 return JUMP_INSN;
5073 else if (GET_CODE (SET_SRC (x)) == CALL)
5074 return CALL_INSN;
5075 else
5076 return INSN;
5077 }
5078 if (GET_CODE (x) == PARALLEL)
5079 {
5080 int j;
5081 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5082 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5083 return CALL_INSN;
5084 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5085 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5086 return JUMP_INSN;
5087 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5088 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5089 return CALL_INSN;
5090 }
5091 return INSN;
5092 }
5093
5094 /* Emit the rtl pattern X as an appropriate kind of insn.
5095 If X is a label, it is simply added into the insn chain. */
5096
5097 rtx
5098 emit (rtx x)
5099 {
5100 enum rtx_code code = classify_insn (x);
5101
5102 switch (code)
5103 {
5104 case CODE_LABEL:
5105 return emit_label (x);
5106 case INSN:
5107 return emit_insn (x);
5108 case JUMP_INSN:
5109 {
5110 rtx insn = emit_jump_insn (x);
5111 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5112 return emit_barrier ();
5113 return insn;
5114 }
5115 case CALL_INSN:
5116 return emit_call_insn (x);
5117 case DEBUG_INSN:
5118 return emit_debug_insn (x);
5119 default:
5120 gcc_unreachable ();
5121 }
5122 }
5123 \f
5124 /* Space for free sequence stack entries. */
5125 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5126
5127 /* Begin emitting insns to a sequence. If this sequence will contain
5128 something that might cause the compiler to pop arguments to function
5129 calls (because those pops have previously been deferred; see
5130 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5131 before calling this function. That will ensure that the deferred
5132 pops are not accidentally emitted in the middle of this sequence. */
5133
5134 void
5135 start_sequence (void)
5136 {
5137 struct sequence_stack *tem;
5138
5139 if (free_sequence_stack != NULL)
5140 {
5141 tem = free_sequence_stack;
5142 free_sequence_stack = tem->next;
5143 }
5144 else
5145 tem = ggc_alloc_sequence_stack ();
5146
5147 tem->next = seq_stack;
5148 tem->first = get_insns ();
5149 tem->last = get_last_insn ();
5150
5151 seq_stack = tem;
5152
5153 set_first_insn (0);
5154 set_last_insn (0);
5155 }
5156
5157 /* Set up the insn chain starting with FIRST as the current sequence,
5158 saving the previously current one. See the documentation for
5159 start_sequence for more information about how to use this function. */
5160
5161 void
5162 push_to_sequence (rtx first)
5163 {
5164 rtx last;
5165
5166 start_sequence ();
5167
5168 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5169 ;
5170
5171 set_first_insn (first);
5172 set_last_insn (last);
5173 }
5174
5175 /* Like push_to_sequence, but take the last insn as an argument to avoid
5176 looping through the list. */
5177
5178 void
5179 push_to_sequence2 (rtx first, rtx last)
5180 {
5181 start_sequence ();
5182
5183 set_first_insn (first);
5184 set_last_insn (last);
5185 }
5186
5187 /* Set up the outer-level insn chain
5188 as the current sequence, saving the previously current one. */
5189
5190 void
5191 push_topmost_sequence (void)
5192 {
5193 struct sequence_stack *stack, *top = NULL;
5194
5195 start_sequence ();
5196
5197 for (stack = seq_stack; stack; stack = stack->next)
5198 top = stack;
5199
5200 set_first_insn (top->first);
5201 set_last_insn (top->last);
5202 }
5203
5204 /* After emitting to the outer-level insn chain, update the outer-level
5205 insn chain, and restore the previous saved state. */
5206
5207 void
5208 pop_topmost_sequence (void)
5209 {
5210 struct sequence_stack *stack, *top = NULL;
5211
5212 for (stack = seq_stack; stack; stack = stack->next)
5213 top = stack;
5214
5215 top->first = get_insns ();
5216 top->last = get_last_insn ();
5217
5218 end_sequence ();
5219 }
5220
5221 /* After emitting to a sequence, restore previous saved state.
5222
5223 To get the contents of the sequence just made, you must call
5224 `get_insns' *before* calling here.
5225
5226 If the compiler might have deferred popping arguments while
5227 generating this sequence, and this sequence will not be immediately
5228 inserted into the instruction stream, use do_pending_stack_adjust
5229 before calling get_insns. That will ensure that the deferred
5230 pops are inserted into this sequence, and not into some random
5231 location in the instruction stream. See INHIBIT_DEFER_POP for more
5232 information about deferred popping of arguments. */
5233
5234 void
5235 end_sequence (void)
5236 {
5237 struct sequence_stack *tem = seq_stack;
5238
5239 set_first_insn (tem->first);
5240 set_last_insn (tem->last);
5241 seq_stack = tem->next;
5242
5243 memset (tem, 0, sizeof (*tem));
5244 tem->next = free_sequence_stack;
5245 free_sequence_stack = tem;
5246 }
5247
5248 /* Return 1 if currently emitting into a sequence. */
5249
5250 int
5251 in_sequence_p (void)
5252 {
5253 return seq_stack != 0;
5254 }
5255 \f
5256 /* Put the various virtual registers into REGNO_REG_RTX. */
5257
5258 static void
5259 init_virtual_regs (void)
5260 {
5261 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5262 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5263 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5264 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5265 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5266 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5267 = virtual_preferred_stack_boundary_rtx;
5268 }
5269
5270 \f
5271 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5272 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5273 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5274 static int copy_insn_n_scratches;
5275
5276 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5277 copied an ASM_OPERANDS.
5278 In that case, it is the original input-operand vector. */
5279 static rtvec orig_asm_operands_vector;
5280
5281 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5282 copied an ASM_OPERANDS.
5283 In that case, it is the copied input-operand vector. */
5284 static rtvec copy_asm_operands_vector;
5285
5286 /* Likewise for the constraints vector. */
5287 static rtvec orig_asm_constraints_vector;
5288 static rtvec copy_asm_constraints_vector;
5289
5290 /* Recursively create a new copy of an rtx for copy_insn.
5291 This function differs from copy_rtx in that it handles SCRATCHes and
5292 ASM_OPERANDs properly.
5293 Normally, this function is not used directly; use copy_insn as front end.
5294 However, you could first copy an insn pattern with copy_insn and then use
5295 this function afterwards to properly copy any REG_NOTEs containing
5296 SCRATCHes. */
5297
5298 rtx
5299 copy_insn_1 (rtx orig)
5300 {
5301 rtx copy;
5302 int i, j;
5303 RTX_CODE code;
5304 const char *format_ptr;
5305
5306 if (orig == NULL)
5307 return NULL;
5308
5309 code = GET_CODE (orig);
5310
5311 switch (code)
5312 {
5313 case REG:
5314 case DEBUG_EXPR:
5315 CASE_CONST_ANY:
5316 case SYMBOL_REF:
5317 case CODE_LABEL:
5318 case PC:
5319 case CC0:
5320 case RETURN:
5321 case SIMPLE_RETURN:
5322 return orig;
5323 case CLOBBER:
5324 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5325 clobbers or clobbers of hard registers that originated as pseudos.
5326 This is needed to allow safe register renaming. */
5327 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5328 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5329 return orig;
5330 break;
5331
5332 case SCRATCH:
5333 for (i = 0; i < copy_insn_n_scratches; i++)
5334 if (copy_insn_scratch_in[i] == orig)
5335 return copy_insn_scratch_out[i];
5336 break;
5337
5338 case CONST:
5339 if (shared_const_p (orig))
5340 return orig;
5341 break;
5342
5343 /* A MEM with a constant address is not sharable. The problem is that
5344 the constant address may need to be reloaded. If the mem is shared,
5345 then reloading one copy of this mem will cause all copies to appear
5346 to have been reloaded. */
5347
5348 default:
5349 break;
5350 }
5351
5352 /* Copy the various flags, fields, and other information. We assume
5353 that all fields need copying, and then clear the fields that should
5354 not be copied. That is the sensible default behavior, and forces
5355 us to explicitly document why we are *not* copying a flag. */
5356 copy = shallow_copy_rtx (orig);
5357
5358 /* We do not copy the USED flag, which is used as a mark bit during
5359 walks over the RTL. */
5360 RTX_FLAG (copy, used) = 0;
5361
5362 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5363 if (INSN_P (orig))
5364 {
5365 RTX_FLAG (copy, jump) = 0;
5366 RTX_FLAG (copy, call) = 0;
5367 RTX_FLAG (copy, frame_related) = 0;
5368 }
5369
5370 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5371
5372 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5373 switch (*format_ptr++)
5374 {
5375 case 'e':
5376 if (XEXP (orig, i) != NULL)
5377 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5378 break;
5379
5380 case 'E':
5381 case 'V':
5382 if (XVEC (orig, i) == orig_asm_constraints_vector)
5383 XVEC (copy, i) = copy_asm_constraints_vector;
5384 else if (XVEC (orig, i) == orig_asm_operands_vector)
5385 XVEC (copy, i) = copy_asm_operands_vector;
5386 else if (XVEC (orig, i) != NULL)
5387 {
5388 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5389 for (j = 0; j < XVECLEN (copy, i); j++)
5390 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5391 }
5392 break;
5393
5394 case 't':
5395 case 'w':
5396 case 'i':
5397 case 's':
5398 case 'S':
5399 case 'u':
5400 case '0':
5401 /* These are left unchanged. */
5402 break;
5403
5404 default:
5405 gcc_unreachable ();
5406 }
5407
5408 if (code == SCRATCH)
5409 {
5410 i = copy_insn_n_scratches++;
5411 gcc_assert (i < MAX_RECOG_OPERANDS);
5412 copy_insn_scratch_in[i] = orig;
5413 copy_insn_scratch_out[i] = copy;
5414 }
5415 else if (code == ASM_OPERANDS)
5416 {
5417 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5418 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5419 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5420 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5421 }
5422
5423 return copy;
5424 }
5425
5426 /* Create a new copy of an rtx.
5427 This function differs from copy_rtx in that it handles SCRATCHes and
5428 ASM_OPERANDs properly.
5429 INSN doesn't really have to be a full INSN; it could be just the
5430 pattern. */
5431 rtx
5432 copy_insn (rtx insn)
5433 {
5434 copy_insn_n_scratches = 0;
5435 orig_asm_operands_vector = 0;
5436 orig_asm_constraints_vector = 0;
5437 copy_asm_operands_vector = 0;
5438 copy_asm_constraints_vector = 0;
5439 return copy_insn_1 (insn);
5440 }
5441
5442 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5443 on that assumption that INSN itself remains in its original place. */
5444
5445 rtx
5446 copy_delay_slot_insn (rtx insn)
5447 {
5448 /* Copy INSN with its rtx_code, all its notes, location etc. */
5449 insn = copy_rtx (insn);
5450 INSN_UID (insn) = cur_insn_uid++;
5451 return insn;
5452 }
5453
5454 /* Initialize data structures and variables in this file
5455 before generating rtl for each function. */
5456
5457 void
5458 init_emit (void)
5459 {
5460 set_first_insn (NULL);
5461 set_last_insn (NULL);
5462 if (MIN_NONDEBUG_INSN_UID)
5463 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5464 else
5465 cur_insn_uid = 1;
5466 cur_debug_insn_uid = 1;
5467 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5468 first_label_num = label_num;
5469 seq_stack = NULL;
5470
5471 /* Init the tables that describe all the pseudo regs. */
5472
5473 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5474
5475 crtl->emit.regno_pointer_align
5476 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5477
5478 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5479
5480 /* Put copies of all the hard registers into regno_reg_rtx. */
5481 memcpy (regno_reg_rtx,
5482 initial_regno_reg_rtx,
5483 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5484
5485 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5486 init_virtual_regs ();
5487
5488 /* Indicate that the virtual registers and stack locations are
5489 all pointers. */
5490 REG_POINTER (stack_pointer_rtx) = 1;
5491 REG_POINTER (frame_pointer_rtx) = 1;
5492 REG_POINTER (hard_frame_pointer_rtx) = 1;
5493 REG_POINTER (arg_pointer_rtx) = 1;
5494
5495 REG_POINTER (virtual_incoming_args_rtx) = 1;
5496 REG_POINTER (virtual_stack_vars_rtx) = 1;
5497 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5498 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5499 REG_POINTER (virtual_cfa_rtx) = 1;
5500
5501 #ifdef STACK_BOUNDARY
5502 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5503 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5504 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5505 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5506
5507 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5508 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5509 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5510 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5511 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5512 #endif
5513
5514 #ifdef INIT_EXPANDERS
5515 INIT_EXPANDERS;
5516 #endif
5517 }
5518
5519 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5520
5521 static rtx
5522 gen_const_vector (enum machine_mode mode, int constant)
5523 {
5524 rtx tem;
5525 rtvec v;
5526 int units, i;
5527 enum machine_mode inner;
5528
5529 units = GET_MODE_NUNITS (mode);
5530 inner = GET_MODE_INNER (mode);
5531
5532 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5533
5534 v = rtvec_alloc (units);
5535
5536 /* We need to call this function after we set the scalar const_tiny_rtx
5537 entries. */
5538 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5539
5540 for (i = 0; i < units; ++i)
5541 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5542
5543 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5544 return tem;
5545 }
5546
5547 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5548 all elements are zero, and the one vector when all elements are one. */
5549 rtx
5550 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5551 {
5552 enum machine_mode inner = GET_MODE_INNER (mode);
5553 int nunits = GET_MODE_NUNITS (mode);
5554 rtx x;
5555 int i;
5556
5557 /* Check to see if all of the elements have the same value. */
5558 x = RTVEC_ELT (v, nunits - 1);
5559 for (i = nunits - 2; i >= 0; i--)
5560 if (RTVEC_ELT (v, i) != x)
5561 break;
5562
5563 /* If the values are all the same, check to see if we can use one of the
5564 standard constant vectors. */
5565 if (i == -1)
5566 {
5567 if (x == CONST0_RTX (inner))
5568 return CONST0_RTX (mode);
5569 else if (x == CONST1_RTX (inner))
5570 return CONST1_RTX (mode);
5571 else if (x == CONSTM1_RTX (inner))
5572 return CONSTM1_RTX (mode);
5573 }
5574
5575 return gen_rtx_raw_CONST_VECTOR (mode, v);
5576 }
5577
5578 /* Initialise global register information required by all functions. */
5579
5580 void
5581 init_emit_regs (void)
5582 {
5583 int i;
5584 enum machine_mode mode;
5585 mem_attrs *attrs;
5586
5587 /* Reset register attributes */
5588 htab_empty (reg_attrs_htab);
5589
5590 /* We need reg_raw_mode, so initialize the modes now. */
5591 init_reg_modes_target ();
5592
5593 /* Assign register numbers to the globally defined register rtx. */
5594 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5595 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5596 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5597 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5598 virtual_incoming_args_rtx =
5599 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5600 virtual_stack_vars_rtx =
5601 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5602 virtual_stack_dynamic_rtx =
5603 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5604 virtual_outgoing_args_rtx =
5605 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5606 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5607 virtual_preferred_stack_boundary_rtx =
5608 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5609
5610 /* Initialize RTL for commonly used hard registers. These are
5611 copied into regno_reg_rtx as we begin to compile each function. */
5612 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5613 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5614
5615 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5616 return_address_pointer_rtx
5617 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5618 #endif
5619
5620 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5621 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5622 else
5623 pic_offset_table_rtx = NULL_RTX;
5624
5625 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5626 {
5627 mode = (enum machine_mode) i;
5628 attrs = ggc_alloc_cleared_mem_attrs ();
5629 attrs->align = BITS_PER_UNIT;
5630 attrs->addrspace = ADDR_SPACE_GENERIC;
5631 if (mode != BLKmode)
5632 {
5633 attrs->size_known_p = true;
5634 attrs->size = GET_MODE_SIZE (mode);
5635 if (STRICT_ALIGNMENT)
5636 attrs->align = GET_MODE_ALIGNMENT (mode);
5637 }
5638 mode_mem_attrs[i] = attrs;
5639 }
5640 }
5641
5642 /* Create some permanent unique rtl objects shared between all functions. */
5643
5644 void
5645 init_emit_once (void)
5646 {
5647 int i;
5648 enum machine_mode mode;
5649 enum machine_mode double_mode;
5650
5651 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5652 hash tables. */
5653 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5654 const_int_htab_eq, NULL);
5655
5656 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5657 const_double_htab_eq, NULL);
5658
5659 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5660 const_fixed_htab_eq, NULL);
5661
5662 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5663 mem_attrs_htab_eq, NULL);
5664 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5665 reg_attrs_htab_eq, NULL);
5666
5667 /* Compute the word and byte modes. */
5668
5669 byte_mode = VOIDmode;
5670 word_mode = VOIDmode;
5671 double_mode = VOIDmode;
5672
5673 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5674 mode != VOIDmode;
5675 mode = GET_MODE_WIDER_MODE (mode))
5676 {
5677 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5678 && byte_mode == VOIDmode)
5679 byte_mode = mode;
5680
5681 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5682 && word_mode == VOIDmode)
5683 word_mode = mode;
5684 }
5685
5686 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5687 mode != VOIDmode;
5688 mode = GET_MODE_WIDER_MODE (mode))
5689 {
5690 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5691 && double_mode == VOIDmode)
5692 double_mode = mode;
5693 }
5694
5695 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5696
5697 #ifdef INIT_EXPANDERS
5698 /* This is to initialize {init|mark|free}_machine_status before the first
5699 call to push_function_context_to. This is needed by the Chill front
5700 end which calls push_function_context_to before the first call to
5701 init_function_start. */
5702 INIT_EXPANDERS;
5703 #endif
5704
5705 /* Create the unique rtx's for certain rtx codes and operand values. */
5706
5707 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5708 tries to use these variables. */
5709 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5710 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5711 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5712
5713 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5714 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5715 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5716 else
5717 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5718
5719 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5720 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5721 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5722
5723 dconstm1 = dconst1;
5724 dconstm1.sign = 1;
5725
5726 dconsthalf = dconst1;
5727 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5728
5729 for (i = 0; i < 3; i++)
5730 {
5731 const REAL_VALUE_TYPE *const r =
5732 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5733
5734 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5735 mode != VOIDmode;
5736 mode = GET_MODE_WIDER_MODE (mode))
5737 const_tiny_rtx[i][(int) mode] =
5738 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5739
5740 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5741 mode != VOIDmode;
5742 mode = GET_MODE_WIDER_MODE (mode))
5743 const_tiny_rtx[i][(int) mode] =
5744 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5745
5746 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5747
5748 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5749 mode != VOIDmode;
5750 mode = GET_MODE_WIDER_MODE (mode))
5751 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5752
5753 for (mode = MIN_MODE_PARTIAL_INT;
5754 mode <= MAX_MODE_PARTIAL_INT;
5755 mode = (enum machine_mode)((int)(mode) + 1))
5756 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5757 }
5758
5759 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5760
5761 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5762 mode != VOIDmode;
5763 mode = GET_MODE_WIDER_MODE (mode))
5764 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5765
5766 for (mode = MIN_MODE_PARTIAL_INT;
5767 mode <= MAX_MODE_PARTIAL_INT;
5768 mode = (enum machine_mode)((int)(mode) + 1))
5769 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5770
5771 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5772 mode != VOIDmode;
5773 mode = GET_MODE_WIDER_MODE (mode))
5774 {
5775 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5776 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5777 }
5778
5779 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5780 mode != VOIDmode;
5781 mode = GET_MODE_WIDER_MODE (mode))
5782 {
5783 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5784 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5785 }
5786
5787 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5788 mode != VOIDmode;
5789 mode = GET_MODE_WIDER_MODE (mode))
5790 {
5791 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5792 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5793 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5794 }
5795
5796 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5797 mode != VOIDmode;
5798 mode = GET_MODE_WIDER_MODE (mode))
5799 {
5800 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5801 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5802 }
5803
5804 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5805 mode != VOIDmode;
5806 mode = GET_MODE_WIDER_MODE (mode))
5807 {
5808 FCONST0 (mode).data.high = 0;
5809 FCONST0 (mode).data.low = 0;
5810 FCONST0 (mode).mode = mode;
5811 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5812 FCONST0 (mode), mode);
5813 }
5814
5815 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5816 mode != VOIDmode;
5817 mode = GET_MODE_WIDER_MODE (mode))
5818 {
5819 FCONST0 (mode).data.high = 0;
5820 FCONST0 (mode).data.low = 0;
5821 FCONST0 (mode).mode = mode;
5822 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5823 FCONST0 (mode), mode);
5824 }
5825
5826 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5827 mode != VOIDmode;
5828 mode = GET_MODE_WIDER_MODE (mode))
5829 {
5830 FCONST0 (mode).data.high = 0;
5831 FCONST0 (mode).data.low = 0;
5832 FCONST0 (mode).mode = mode;
5833 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5834 FCONST0 (mode), mode);
5835
5836 /* We store the value 1. */
5837 FCONST1 (mode).data.high = 0;
5838 FCONST1 (mode).data.low = 0;
5839 FCONST1 (mode).mode = mode;
5840 FCONST1 (mode).data
5841 = double_int_one.lshift (GET_MODE_FBIT (mode),
5842 HOST_BITS_PER_DOUBLE_INT,
5843 SIGNED_FIXED_POINT_MODE_P (mode));
5844 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5845 FCONST1 (mode), mode);
5846 }
5847
5848 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5849 mode != VOIDmode;
5850 mode = GET_MODE_WIDER_MODE (mode))
5851 {
5852 FCONST0 (mode).data.high = 0;
5853 FCONST0 (mode).data.low = 0;
5854 FCONST0 (mode).mode = mode;
5855 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5856 FCONST0 (mode), mode);
5857
5858 /* We store the value 1. */
5859 FCONST1 (mode).data.high = 0;
5860 FCONST1 (mode).data.low = 0;
5861 FCONST1 (mode).mode = mode;
5862 FCONST1 (mode).data
5863 = double_int_one.lshift (GET_MODE_FBIT (mode),
5864 HOST_BITS_PER_DOUBLE_INT,
5865 SIGNED_FIXED_POINT_MODE_P (mode));
5866 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5867 FCONST1 (mode), mode);
5868 }
5869
5870 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5871 mode != VOIDmode;
5872 mode = GET_MODE_WIDER_MODE (mode))
5873 {
5874 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5875 }
5876
5877 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5878 mode != VOIDmode;
5879 mode = GET_MODE_WIDER_MODE (mode))
5880 {
5881 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5882 }
5883
5884 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5885 mode != VOIDmode;
5886 mode = GET_MODE_WIDER_MODE (mode))
5887 {
5888 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5889 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5890 }
5891
5892 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5893 mode != VOIDmode;
5894 mode = GET_MODE_WIDER_MODE (mode))
5895 {
5896 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5897 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5898 }
5899
5900 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5901 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5902 const_tiny_rtx[0][i] = const0_rtx;
5903
5904 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5905 if (STORE_FLAG_VALUE == 1)
5906 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5907
5908 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5909 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5910 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5911 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5912 }
5913 \f
5914 /* Produce exact duplicate of insn INSN after AFTER.
5915 Care updating of libcall regions if present. */
5916
5917 rtx
5918 emit_copy_of_insn_after (rtx insn, rtx after)
5919 {
5920 rtx new_rtx, link;
5921
5922 switch (GET_CODE (insn))
5923 {
5924 case INSN:
5925 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5926 break;
5927
5928 case JUMP_INSN:
5929 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5930 break;
5931
5932 case DEBUG_INSN:
5933 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5934 break;
5935
5936 case CALL_INSN:
5937 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5938 if (CALL_INSN_FUNCTION_USAGE (insn))
5939 CALL_INSN_FUNCTION_USAGE (new_rtx)
5940 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5941 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5942 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5943 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5944 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5945 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5946 break;
5947
5948 default:
5949 gcc_unreachable ();
5950 }
5951
5952 /* Update LABEL_NUSES. */
5953 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5954
5955 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
5956
5957 /* If the old insn is frame related, then so is the new one. This is
5958 primarily needed for IA-64 unwind info which marks epilogue insns,
5959 which may be duplicated by the basic block reordering code. */
5960 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5961
5962 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5963 will make them. REG_LABEL_TARGETs are created there too, but are
5964 supposed to be sticky, so we copy them. */
5965 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5966 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5967 {
5968 if (GET_CODE (link) == EXPR_LIST)
5969 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5970 copy_insn_1 (XEXP (link, 0)));
5971 else
5972 add_shallow_copy_of_reg_note (new_rtx, link);
5973 }
5974
5975 INSN_CODE (new_rtx) = INSN_CODE (insn);
5976 return new_rtx;
5977 }
5978
5979 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5980 rtx
5981 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5982 {
5983 if (hard_reg_clobbers[mode][regno])
5984 return hard_reg_clobbers[mode][regno];
5985 else
5986 return (hard_reg_clobbers[mode][regno] =
5987 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5988 }
5989
5990 location_t prologue_location;
5991 location_t epilogue_location;
5992
5993 /* Hold current location information and last location information, so the
5994 datastructures are built lazily only when some instructions in given
5995 place are needed. */
5996 static location_t curr_location;
5997
5998 /* Allocate insn location datastructure. */
5999 void
6000 insn_locations_init (void)
6001 {
6002 prologue_location = epilogue_location = 0;
6003 curr_location = UNKNOWN_LOCATION;
6004 }
6005
6006 /* At the end of emit stage, clear current location. */
6007 void
6008 insn_locations_finalize (void)
6009 {
6010 epilogue_location = curr_location;
6011 curr_location = UNKNOWN_LOCATION;
6012 }
6013
6014 /* Set current location. */
6015 void
6016 set_curr_insn_location (location_t location)
6017 {
6018 curr_location = location;
6019 }
6020
6021 /* Get current location. */
6022 location_t
6023 curr_insn_location (void)
6024 {
6025 return curr_location;
6026 }
6027
6028 /* Return lexical scope block insn belongs to. */
6029 tree
6030 insn_scope (const_rtx insn)
6031 {
6032 return LOCATION_BLOCK (INSN_LOCATION (insn));
6033 }
6034
6035 /* Return line number of the statement that produced this insn. */
6036 int
6037 insn_line (const_rtx insn)
6038 {
6039 return LOCATION_LINE (INSN_LOCATION (insn));
6040 }
6041
6042 /* Return source file of the statement that produced this insn. */
6043 const char *
6044 insn_file (const_rtx insn)
6045 {
6046 return LOCATION_FILE (INSN_LOCATION (insn));
6047 }
6048
6049 /* Return true if memory model MODEL requires a pre-operation (release-style)
6050 barrier or a post-operation (acquire-style) barrier. While not universal,
6051 this function matches behavior of several targets. */
6052
6053 bool
6054 need_atomic_barrier_p (enum memmodel model, bool pre)
6055 {
6056 switch (model & MEMMODEL_MASK)
6057 {
6058 case MEMMODEL_RELAXED:
6059 case MEMMODEL_CONSUME:
6060 return false;
6061 case MEMMODEL_RELEASE:
6062 return pre;
6063 case MEMMODEL_ACQUIRE:
6064 return !pre;
6065 case MEMMODEL_ACQ_REL:
6066 case MEMMODEL_SEQ_CST:
6067 return true;
6068 default:
6069 gcc_unreachable ();
6070 }
6071 }
6072 \f
6073 #include "gt-emit-rtl.h"