fold-const.c (maybe_lvalue_p): Return false for M(IN|AX)_EXPR.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "params.h"
62
63 /* Commonly used modes. */
64
65 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
66 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
67 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
68 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69
70 /* Datastructures maintained for currently processed function in RTL form. */
71
72 struct rtl_data x_rtl;
73
74 /* Indexed by pseudo register number, gives the rtx for that pseudo.
75 Allocated in parallel with regno_pointer_align.
76 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
77 with length attribute nested in top level structures. */
78
79 rtx * regno_reg_rtx;
80
81 /* This is *not* reset after each function. It gives each CODE_LABEL
82 in the entire compilation a unique label number. */
83
84 static GTY(()) int label_num = 1;
85
86 /* Nonzero means do not generate NOTEs for source line numbers. */
87
88 static int no_line_numbers;
89
90 /* Commonly used rtx's, so that we only need space for one copy.
91 These are initialized once for the entire compilation.
92 All of these are unique; no other rtx-object will be equal to any
93 of these. */
94
95 rtx global_rtl[GR_MAX];
96
97 /* Commonly used RTL for hard registers. These objects are not necessarily
98 unique, so we allocate them separately from global_rtl. They are
99 initialized once per compilation unit, then copied into regno_reg_rtx
100 at the beginning of each function. */
101 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102
103 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
104 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
105 record a copy of const[012]_rtx. */
106
107 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108
109 rtx const_true_rtx;
110
111 REAL_VALUE_TYPE dconst0;
112 REAL_VALUE_TYPE dconst1;
113 REAL_VALUE_TYPE dconst2;
114 REAL_VALUE_TYPE dconstm1;
115 REAL_VALUE_TYPE dconsthalf;
116
117 /* Record fixed-point constant 0 and 1. */
118 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
119 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
120
121 /* All references to the following fixed hard registers go through
122 these unique rtl objects. On machines where the frame-pointer and
123 arg-pointer are the same register, they use the same unique object.
124
125 After register allocation, other rtl objects which used to be pseudo-regs
126 may be clobbered to refer to the frame-pointer register.
127 But references that were originally to the frame-pointer can be
128 distinguished from the others because they contain frame_pointer_rtx.
129
130 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
131 tricky: until register elimination has taken place hard_frame_pointer_rtx
132 should be used if it is being set, and frame_pointer_rtx otherwise. After
133 register elimination hard_frame_pointer_rtx should always be used.
134 On machines where the two registers are same (most) then these are the
135 same.
136
137 In an inline procedure, the stack and frame pointer rtxs may not be
138 used for anything else. */
139 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
140
141 /* This is used to implement __builtin_return_address for some machines.
142 See for instance the MIPS port. */
143 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
144
145 /* We make one copy of (const_int C) where C is in
146 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
147 to save space during the compilation and simplify comparisons of
148 integers. */
149
150 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
151
152 /* A hash table storing CONST_INTs whose absolute value is greater
153 than MAX_SAVED_CONST_INT. */
154
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
156 htab_t const_int_htab;
157
158 /* A hash table storing memory attribute structures. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
160 htab_t mem_attrs_htab;
161
162 /* A hash table storing register attribute structures. */
163 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
164 htab_t reg_attrs_htab;
165
166 /* A hash table storing all CONST_DOUBLEs. */
167 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
168 htab_t const_double_htab;
169
170 /* A hash table storing all CONST_FIXEDs. */
171 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
172 htab_t const_fixed_htab;
173
174 #define first_insn (crtl->emit.x_first_insn)
175 #define last_insn (crtl->emit.x_last_insn)
176 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
177 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
180
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static rtx gen_const_vector (enum machine_mode, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((const_rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 const_rtx const value = (const_rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is really a CONST_FIXED). */
261
262 static hashval_t
263 const_fixed_htab_hash (const void *x)
264 {
265 const_rtx const value = (const_rtx) x;
266 hashval_t h;
267
268 h = fixed_hash (CONST_FIXED_VALUE (value));
269 /* MODE is used in the comparison, so it should be in the hash. */
270 h ^= GET_MODE (value);
271 return h;
272 }
273
274 /* Returns nonzero if the value represented by X (really a ...)
275 is the same as that represented by Y (really a ...). */
276
277 static int
278 const_fixed_htab_eq (const void *x, const void *y)
279 {
280 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
281
282 if (GET_MODE (a) != GET_MODE (b))
283 return 0;
284 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
285 }
286
287 /* Returns a hash code for X (which is a really a mem_attrs *). */
288
289 static hashval_t
290 mem_attrs_htab_hash (const void *x)
291 {
292 const mem_attrs *const p = (const mem_attrs *) x;
293
294 return (p->alias ^ (p->align * 1000)
295 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
296 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
297 ^ (size_t) iterative_hash_expr (p->expr, 0));
298 }
299
300 /* Returns nonzero if the value represented by X (which is really a
301 mem_attrs *) is the same as that given by Y (which is also really a
302 mem_attrs *). */
303
304 static int
305 mem_attrs_htab_eq (const void *x, const void *y)
306 {
307 const mem_attrs *const p = (const mem_attrs *) x;
308 const mem_attrs *const q = (const mem_attrs *) y;
309
310 return (p->alias == q->alias && p->offset == q->offset
311 && p->size == q->size && p->align == q->align
312 && (p->expr == q->expr
313 || (p->expr != NULL_TREE && q->expr != NULL_TREE
314 && operand_equal_p (p->expr, q->expr, 0))));
315 }
316
317 /* Allocate a new mem_attrs structure and insert it into the hash table if
318 one identical to it is not already in the table. We are doing this for
319 MEM of mode MODE. */
320
321 static mem_attrs *
322 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
323 unsigned int align, enum machine_mode mode)
324 {
325 mem_attrs attrs;
326 void **slot;
327
328 /* If everything is the default, we can just return zero.
329 This must match what the corresponding MEM_* macros return when the
330 field is not present. */
331 if (alias == 0 && expr == 0 && offset == 0
332 && (size == 0
333 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
334 && (STRICT_ALIGNMENT && mode != BLKmode
335 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
336 return 0;
337
338 attrs.alias = alias;
339 attrs.expr = expr;
340 attrs.offset = offset;
341 attrs.size = size;
342 attrs.align = align;
343
344 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
345 if (*slot == 0)
346 {
347 *slot = ggc_alloc (sizeof (mem_attrs));
348 memcpy (*slot, &attrs, sizeof (mem_attrs));
349 }
350
351 return (mem_attrs *) *slot;
352 }
353
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
355
356 static hashval_t
357 reg_attrs_htab_hash (const void *x)
358 {
359 const reg_attrs *const p = (const reg_attrs *) x;
360
361 return ((p->offset * 1000) ^ (long) p->decl);
362 }
363
364 /* Returns nonzero if the value represented by X (which is really a
365 reg_attrs *) is the same as that given by Y (which is also really a
366 reg_attrs *). */
367
368 static int
369 reg_attrs_htab_eq (const void *x, const void *y)
370 {
371 const reg_attrs *const p = (const reg_attrs *) x;
372 const reg_attrs *const q = (const reg_attrs *) y;
373
374 return (p->decl == q->decl && p->offset == q->offset);
375 }
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
378 MEM of mode MODE. */
379
380 static reg_attrs *
381 get_reg_attrs (tree decl, int offset)
382 {
383 reg_attrs attrs;
384 void **slot;
385
386 /* If everything is the default, we can just return zero. */
387 if (decl == 0 && offset == 0)
388 return 0;
389
390 attrs.decl = decl;
391 attrs.offset = offset;
392
393 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
394 if (*slot == 0)
395 {
396 *slot = ggc_alloc (sizeof (reg_attrs));
397 memcpy (*slot, &attrs, sizeof (reg_attrs));
398 }
399
400 return (reg_attrs *) *slot;
401 }
402
403
404 #if !HAVE_blockage
405 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
406 across this insn. */
407
408 rtx
409 gen_blockage (void)
410 {
411 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
412 MEM_VOLATILE_P (x) = true;
413 return x;
414 }
415 #endif
416
417
418 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
419 don't attempt to share with the various global pieces of rtl (such as
420 frame_pointer_rtx). */
421
422 rtx
423 gen_raw_REG (enum machine_mode mode, int regno)
424 {
425 rtx x = gen_rtx_raw_REG (mode, regno);
426 ORIGINAL_REGNO (x) = regno;
427 return x;
428 }
429
430 /* There are some RTL codes that require special attention; the generation
431 functions do the raw handling. If you add to this list, modify
432 special_rtx in gengenrtl.c as well. */
433
434 rtx
435 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
436 {
437 void **slot;
438
439 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
440 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
441
442 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
443 if (const_true_rtx && arg == STORE_FLAG_VALUE)
444 return const_true_rtx;
445 #endif
446
447 /* Look up the CONST_INT in the hash table. */
448 slot = htab_find_slot_with_hash (const_int_htab, &arg,
449 (hashval_t) arg, INSERT);
450 if (*slot == 0)
451 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
452
453 return (rtx) *slot;
454 }
455
456 rtx
457 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
458 {
459 return GEN_INT (trunc_int_for_mode (c, mode));
460 }
461
462 /* CONST_DOUBLEs might be created from pairs of integers, or from
463 REAL_VALUE_TYPEs. Also, their length is known only at run time,
464 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
465
466 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
467 hash table. If so, return its counterpart; otherwise add it
468 to the hash table and return it. */
469 static rtx
470 lookup_const_double (rtx real)
471 {
472 void **slot = htab_find_slot (const_double_htab, real, INSERT);
473 if (*slot == 0)
474 *slot = real;
475
476 return (rtx) *slot;
477 }
478
479 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
480 VALUE in mode MODE. */
481 rtx
482 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
483 {
484 rtx real = rtx_alloc (CONST_DOUBLE);
485 PUT_MODE (real, mode);
486
487 real->u.rv = value;
488
489 return lookup_const_double (real);
490 }
491
492 /* Determine whether FIXED, a CONST_FIXED, already exists in the
493 hash table. If so, return its counterpart; otherwise add it
494 to the hash table and return it. */
495
496 static rtx
497 lookup_const_fixed (rtx fixed)
498 {
499 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
500 if (*slot == 0)
501 *slot = fixed;
502
503 return (rtx) *slot;
504 }
505
506 /* Return a CONST_FIXED rtx for a fixed-point value specified by
507 VALUE in mode MODE. */
508
509 rtx
510 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
511 {
512 rtx fixed = rtx_alloc (CONST_FIXED);
513 PUT_MODE (fixed, mode);
514
515 fixed->u.fv = value;
516
517 return lookup_const_fixed (fixed);
518 }
519
520 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
521 of ints: I0 is the low-order word and I1 is the high-order word.
522 Do not use this routine for non-integer modes; convert to
523 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
524
525 rtx
526 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
527 {
528 rtx value;
529 unsigned int i;
530
531 /* There are the following cases (note that there are no modes with
532 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
533
534 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
535 gen_int_mode.
536 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
537 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
538 from copies of the sign bit, and sign of i0 and i1 are the same), then
539 we return a CONST_INT for i0.
540 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
541 if (mode != VOIDmode)
542 {
543 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
544 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
545 /* We can get a 0 for an error mark. */
546 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
548
549 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
550 return gen_int_mode (i0, mode);
551
552 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
553 }
554
555 /* If this integer fits in one word, return a CONST_INT. */
556 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
557 return GEN_INT (i0);
558
559 /* We use VOIDmode for integers. */
560 value = rtx_alloc (CONST_DOUBLE);
561 PUT_MODE (value, VOIDmode);
562
563 CONST_DOUBLE_LOW (value) = i0;
564 CONST_DOUBLE_HIGH (value) = i1;
565
566 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
567 XWINT (value, i) = 0;
568
569 return lookup_const_double (value);
570 }
571
572 rtx
573 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
574 {
575 /* In case the MD file explicitly references the frame pointer, have
576 all such references point to the same frame pointer. This is
577 used during frame pointer elimination to distinguish the explicit
578 references to these registers from pseudos that happened to be
579 assigned to them.
580
581 If we have eliminated the frame pointer or arg pointer, we will
582 be using it as a normal register, for example as a spill
583 register. In such cases, we might be accessing it in a mode that
584 is not Pmode and therefore cannot use the pre-allocated rtx.
585
586 Also don't do this when we are making new REGs in reload, since
587 we don't want to get confused with the real pointers. */
588
589 if (mode == Pmode && !reload_in_progress)
590 {
591 if (regno == FRAME_POINTER_REGNUM
592 && (!reload_completed || frame_pointer_needed))
593 return frame_pointer_rtx;
594 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
595 if (regno == HARD_FRAME_POINTER_REGNUM
596 && (!reload_completed || frame_pointer_needed))
597 return hard_frame_pointer_rtx;
598 #endif
599 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
600 if (regno == ARG_POINTER_REGNUM)
601 return arg_pointer_rtx;
602 #endif
603 #ifdef RETURN_ADDRESS_POINTER_REGNUM
604 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
605 return return_address_pointer_rtx;
606 #endif
607 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
608 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
609 return pic_offset_table_rtx;
610 if (regno == STACK_POINTER_REGNUM)
611 return stack_pointer_rtx;
612 }
613
614 #if 0
615 /* If the per-function register table has been set up, try to re-use
616 an existing entry in that table to avoid useless generation of RTL.
617
618 This code is disabled for now until we can fix the various backends
619 which depend on having non-shared hard registers in some cases. Long
620 term we want to re-enable this code as it can significantly cut down
621 on the amount of useless RTL that gets generated.
622
623 We'll also need to fix some code that runs after reload that wants to
624 set ORIGINAL_REGNO. */
625
626 if (cfun
627 && cfun->emit
628 && regno_reg_rtx
629 && regno < FIRST_PSEUDO_REGISTER
630 && reg_raw_mode[regno] == mode)
631 return regno_reg_rtx[regno];
632 #endif
633
634 return gen_raw_REG (mode, regno);
635 }
636
637 rtx
638 gen_rtx_MEM (enum machine_mode mode, rtx addr)
639 {
640 rtx rt = gen_rtx_raw_MEM (mode, addr);
641
642 /* This field is not cleared by the mere allocation of the rtx, so
643 we clear it here. */
644 MEM_ATTRS (rt) = 0;
645
646 return rt;
647 }
648
649 /* Generate a memory referring to non-trapping constant memory. */
650
651 rtx
652 gen_const_mem (enum machine_mode mode, rtx addr)
653 {
654 rtx mem = gen_rtx_MEM (mode, addr);
655 MEM_READONLY_P (mem) = 1;
656 MEM_NOTRAP_P (mem) = 1;
657 return mem;
658 }
659
660 /* Generate a MEM referring to fixed portions of the frame, e.g., register
661 save areas. */
662
663 rtx
664 gen_frame_mem (enum machine_mode mode, rtx addr)
665 {
666 rtx mem = gen_rtx_MEM (mode, addr);
667 MEM_NOTRAP_P (mem) = 1;
668 set_mem_alias_set (mem, get_frame_alias_set ());
669 return mem;
670 }
671
672 /* Generate a MEM referring to a temporary use of the stack, not part
673 of the fixed stack frame. For example, something which is pushed
674 by a target splitter. */
675 rtx
676 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
677 {
678 rtx mem = gen_rtx_MEM (mode, addr);
679 MEM_NOTRAP_P (mem) = 1;
680 if (!cfun->calls_alloca)
681 set_mem_alias_set (mem, get_frame_alias_set ());
682 return mem;
683 }
684
685 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
686 this construct would be valid, and false otherwise. */
687
688 bool
689 validate_subreg (enum machine_mode omode, enum machine_mode imode,
690 const_rtx reg, unsigned int offset)
691 {
692 unsigned int isize = GET_MODE_SIZE (imode);
693 unsigned int osize = GET_MODE_SIZE (omode);
694
695 /* All subregs must be aligned. */
696 if (offset % osize != 0)
697 return false;
698
699 /* The subreg offset cannot be outside the inner object. */
700 if (offset >= isize)
701 return false;
702
703 /* ??? This should not be here. Temporarily continue to allow word_mode
704 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
705 Generally, backends are doing something sketchy but it'll take time to
706 fix them all. */
707 if (omode == word_mode)
708 ;
709 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
710 is the culprit here, and not the backends. */
711 else if (osize >= UNITS_PER_WORD && isize >= osize)
712 ;
713 /* Allow component subregs of complex and vector. Though given the below
714 extraction rules, it's not always clear what that means. */
715 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
716 && GET_MODE_INNER (imode) == omode)
717 ;
718 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
719 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
720 represent this. It's questionable if this ought to be represented at
721 all -- why can't this all be hidden in post-reload splitters that make
722 arbitrarily mode changes to the registers themselves. */
723 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
724 ;
725 /* Subregs involving floating point modes are not allowed to
726 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
727 (subreg:SI (reg:DF) 0) isn't. */
728 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
729 {
730 if (isize != osize)
731 return false;
732 }
733
734 /* Paradoxical subregs must have offset zero. */
735 if (osize > isize)
736 return offset == 0;
737
738 /* This is a normal subreg. Verify that the offset is representable. */
739
740 /* For hard registers, we already have most of these rules collected in
741 subreg_offset_representable_p. */
742 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 {
744 unsigned int regno = REGNO (reg);
745
746 #ifdef CANNOT_CHANGE_MODE_CLASS
747 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
748 && GET_MODE_INNER (imode) == omode)
749 ;
750 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
751 return false;
752 #endif
753
754 return subreg_offset_representable_p (regno, imode, offset, omode);
755 }
756
757 /* For pseudo registers, we want most of the same checks. Namely:
758 If the register no larger than a word, the subreg must be lowpart.
759 If the register is larger than a word, the subreg must be the lowpart
760 of a subword. A subreg does *not* perform arbitrary bit extraction.
761 Given that we've already checked mode/offset alignment, we only have
762 to check subword subregs here. */
763 if (osize < UNITS_PER_WORD)
764 {
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
769 }
770 return true;
771 }
772
773 rtx
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 {
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777 return gen_rtx_raw_SUBREG (mode, reg, offset);
778 }
779
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
782
783 rtx
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 {
786 enum machine_mode inmode;
787
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
793 }
794 \f
795
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797
798 rtvec
799 gen_rtvec (int n, ...)
800 {
801 int i;
802 rtvec rt_val;
803 va_list p;
804
805 va_start (p, n);
806
807 /* Don't allocate an empty rtvec... */
808 if (n == 0)
809 return NULL_RTVEC;
810
811 rt_val = rtvec_alloc (n);
812
813 for (i = 0; i < n; i++)
814 rt_val->elem[i] = va_arg (p, rtx);
815
816 va_end (p);
817 return rt_val;
818 }
819
820 rtvec
821 gen_rtvec_v (int n, rtx *argp)
822 {
823 int i;
824 rtvec rt_val;
825
826 /* Don't allocate an empty rtvec... */
827 if (n == 0)
828 return NULL_RTVEC;
829
830 rt_val = rtvec_alloc (n);
831
832 for (i = 0; i < n; i++)
833 rt_val->elem[i] = *argp++;
834
835 return rt_val;
836 }
837 \f
838 /* Return the number of bytes between the start of an OUTER_MODE
839 in-memory value and the start of an INNER_MODE in-memory value,
840 given that the former is a lowpart of the latter. It may be a
841 paradoxical lowpart, in which case the offset will be negative
842 on big-endian targets. */
843
844 int
845 byte_lowpart_offset (enum machine_mode outer_mode,
846 enum machine_mode inner_mode)
847 {
848 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
849 return subreg_lowpart_offset (outer_mode, inner_mode);
850 else
851 return -subreg_lowpart_offset (inner_mode, outer_mode);
852 }
853 \f
854 /* Generate a REG rtx for a new pseudo register of mode MODE.
855 This pseudo is assigned the next sequential register number. */
856
857 rtx
858 gen_reg_rtx (enum machine_mode mode)
859 {
860 rtx val;
861 unsigned int align = GET_MODE_ALIGNMENT (mode);
862
863 gcc_assert (can_create_pseudo_p ());
864
865 /* If a virtual register with bigger mode alignment is generated,
866 increase stack alignment estimation because it might be spilled
867 to stack later. */
868 if (SUPPORTS_STACK_ALIGNMENT
869 && crtl->stack_alignment_estimated < align
870 && !crtl->stack_realign_processed)
871 {
872 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
873 if (crtl->stack_alignment_estimated < min_align)
874 crtl->stack_alignment_estimated = min_align;
875 }
876
877 if (generating_concat_p
878 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
879 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
880 {
881 /* For complex modes, don't make a single pseudo.
882 Instead, make a CONCAT of two pseudos.
883 This allows noncontiguous allocation of the real and imaginary parts,
884 which makes much better code. Besides, allocating DCmode
885 pseudos overstrains reload on some machines like the 386. */
886 rtx realpart, imagpart;
887 enum machine_mode partmode = GET_MODE_INNER (mode);
888
889 realpart = gen_reg_rtx (partmode);
890 imagpart = gen_reg_rtx (partmode);
891 return gen_rtx_CONCAT (mode, realpart, imagpart);
892 }
893
894 /* Make sure regno_pointer_align, and regno_reg_rtx are large
895 enough to have an element for this pseudo reg number. */
896
897 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
898 {
899 int old_size = crtl->emit.regno_pointer_align_length;
900 char *tmp;
901 rtx *new1;
902
903 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
904 memset (tmp + old_size, 0, old_size);
905 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
906
907 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
908 memset (new1 + old_size, 0, old_size * sizeof (rtx));
909 regno_reg_rtx = new1;
910
911 crtl->emit.regno_pointer_align_length = old_size * 2;
912 }
913
914 val = gen_raw_REG (mode, reg_rtx_no);
915 regno_reg_rtx[reg_rtx_no++] = val;
916 return val;
917 }
918
919 /* Update NEW with the same attributes as REG, but with OFFSET added
920 to the REG_OFFSET. */
921
922 static void
923 update_reg_offset (rtx new_rtx, rtx reg, int offset)
924 {
925 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
926 REG_OFFSET (reg) + offset);
927 }
928
929 /* Generate a register with same attributes as REG, but with OFFSET
930 added to the REG_OFFSET. */
931
932 rtx
933 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
934 int offset)
935 {
936 rtx new_rtx = gen_rtx_REG (mode, regno);
937
938 update_reg_offset (new_rtx, reg, offset);
939 return new_rtx;
940 }
941
942 /* Generate a new pseudo-register with the same attributes as REG, but
943 with OFFSET added to the REG_OFFSET. */
944
945 rtx
946 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
947 {
948 rtx new_rtx = gen_reg_rtx (mode);
949
950 update_reg_offset (new_rtx, reg, offset);
951 return new_rtx;
952 }
953
954 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
955 new register is a (possibly paradoxical) lowpart of the old one. */
956
957 void
958 adjust_reg_mode (rtx reg, enum machine_mode mode)
959 {
960 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
961 PUT_MODE (reg, mode);
962 }
963
964 /* Copy REG's attributes from X, if X has any attributes. If REG and X
965 have different modes, REG is a (possibly paradoxical) lowpart of X. */
966
967 void
968 set_reg_attrs_from_value (rtx reg, rtx x)
969 {
970 int offset;
971
972 /* Hard registers can be reused for multiple purposes within the same
973 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
974 on them is wrong. */
975 if (HARD_REGISTER_P (reg))
976 return;
977
978 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
979 if (MEM_P (x))
980 {
981 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
982 REG_ATTRS (reg)
983 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
984 if (MEM_POINTER (x))
985 mark_reg_pointer (reg, 0);
986 }
987 else if (REG_P (x))
988 {
989 if (REG_ATTRS (x))
990 update_reg_offset (reg, x, offset);
991 if (REG_POINTER (x))
992 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993 }
994 }
995
996 /* Generate a REG rtx for a new pseudo register, copying the mode
997 and attributes from X. */
998
999 rtx
1000 gen_reg_rtx_and_attrs (rtx x)
1001 {
1002 rtx reg = gen_reg_rtx (GET_MODE (x));
1003 set_reg_attrs_from_value (reg, x);
1004 return reg;
1005 }
1006
1007 /* Set the register attributes for registers contained in PARM_RTX.
1008 Use needed values from memory attributes of MEM. */
1009
1010 void
1011 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1012 {
1013 if (REG_P (parm_rtx))
1014 set_reg_attrs_from_value (parm_rtx, mem);
1015 else if (GET_CODE (parm_rtx) == PARALLEL)
1016 {
1017 /* Check for a NULL entry in the first slot, used to indicate that the
1018 parameter goes both on the stack and in registers. */
1019 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1020 for (; i < XVECLEN (parm_rtx, 0); i++)
1021 {
1022 rtx x = XVECEXP (parm_rtx, 0, i);
1023 if (REG_P (XEXP (x, 0)))
1024 REG_ATTRS (XEXP (x, 0))
1025 = get_reg_attrs (MEM_EXPR (mem),
1026 INTVAL (XEXP (x, 1)));
1027 }
1028 }
1029 }
1030
1031 /* Set the REG_ATTRS for registers in value X, given that X represents
1032 decl T. */
1033
1034 void
1035 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1036 {
1037 if (GET_CODE (x) == SUBREG)
1038 {
1039 gcc_assert (subreg_lowpart_p (x));
1040 x = SUBREG_REG (x);
1041 }
1042 if (REG_P (x))
1043 REG_ATTRS (x)
1044 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1045 DECL_MODE (t)));
1046 if (GET_CODE (x) == CONCAT)
1047 {
1048 if (REG_P (XEXP (x, 0)))
1049 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1050 if (REG_P (XEXP (x, 1)))
1051 REG_ATTRS (XEXP (x, 1))
1052 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1053 }
1054 if (GET_CODE (x) == PARALLEL)
1055 {
1056 int i, start;
1057
1058 /* Check for a NULL entry, used to indicate that the parameter goes
1059 both on the stack and in registers. */
1060 if (XEXP (XVECEXP (x, 0, 0), 0))
1061 start = 0;
1062 else
1063 start = 1;
1064
1065 for (i = start; i < XVECLEN (x, 0); i++)
1066 {
1067 rtx y = XVECEXP (x, 0, i);
1068 if (REG_P (XEXP (y, 0)))
1069 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1070 }
1071 }
1072 }
1073
1074 /* Assign the RTX X to declaration T. */
1075
1076 void
1077 set_decl_rtl (tree t, rtx x)
1078 {
1079 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1080 if (x)
1081 set_reg_attrs_for_decl_rtl (t, x);
1082 }
1083
1084 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1085 if the ABI requires the parameter to be passed by reference. */
1086
1087 void
1088 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1089 {
1090 DECL_INCOMING_RTL (t) = x;
1091 if (x && !by_reference_p)
1092 set_reg_attrs_for_decl_rtl (t, x);
1093 }
1094
1095 /* Identify REG (which may be a CONCAT) as a user register. */
1096
1097 void
1098 mark_user_reg (rtx reg)
1099 {
1100 if (GET_CODE (reg) == CONCAT)
1101 {
1102 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1103 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1104 }
1105 else
1106 {
1107 gcc_assert (REG_P (reg));
1108 REG_USERVAR_P (reg) = 1;
1109 }
1110 }
1111
1112 /* Identify REG as a probable pointer register and show its alignment
1113 as ALIGN, if nonzero. */
1114
1115 void
1116 mark_reg_pointer (rtx reg, int align)
1117 {
1118 if (! REG_POINTER (reg))
1119 {
1120 REG_POINTER (reg) = 1;
1121
1122 if (align)
1123 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1124 }
1125 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1126 /* We can no-longer be sure just how aligned this pointer is. */
1127 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1128 }
1129
1130 /* Return 1 plus largest pseudo reg number used in the current function. */
1131
1132 int
1133 max_reg_num (void)
1134 {
1135 return reg_rtx_no;
1136 }
1137
1138 /* Return 1 + the largest label number used so far in the current function. */
1139
1140 int
1141 max_label_num (void)
1142 {
1143 return label_num;
1144 }
1145
1146 /* Return first label number used in this function (if any were used). */
1147
1148 int
1149 get_first_label_num (void)
1150 {
1151 return first_label_num;
1152 }
1153
1154 /* If the rtx for label was created during the expansion of a nested
1155 function, then first_label_num won't include this label number.
1156 Fix this now so that array indices work later. */
1157
1158 void
1159 maybe_set_first_label_num (rtx x)
1160 {
1161 if (CODE_LABEL_NUMBER (x) < first_label_num)
1162 first_label_num = CODE_LABEL_NUMBER (x);
1163 }
1164 \f
1165 /* Return a value representing some low-order bits of X, where the number
1166 of low-order bits is given by MODE. Note that no conversion is done
1167 between floating-point and fixed-point values, rather, the bit
1168 representation is returned.
1169
1170 This function handles the cases in common between gen_lowpart, below,
1171 and two variants in cse.c and combine.c. These are the cases that can
1172 be safely handled at all points in the compilation.
1173
1174 If this is not a case we can handle, return 0. */
1175
1176 rtx
1177 gen_lowpart_common (enum machine_mode mode, rtx x)
1178 {
1179 int msize = GET_MODE_SIZE (mode);
1180 int xsize;
1181 int offset = 0;
1182 enum machine_mode innermode;
1183
1184 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1185 so we have to make one up. Yuk. */
1186 innermode = GET_MODE (x);
1187 if (CONST_INT_P (x)
1188 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1189 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1190 else if (innermode == VOIDmode)
1191 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1192
1193 xsize = GET_MODE_SIZE (innermode);
1194
1195 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1196
1197 if (innermode == mode)
1198 return x;
1199
1200 /* MODE must occupy no more words than the mode of X. */
1201 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1202 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1203 return 0;
1204
1205 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1206 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1207 return 0;
1208
1209 offset = subreg_lowpart_offset (mode, innermode);
1210
1211 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1212 && (GET_MODE_CLASS (mode) == MODE_INT
1213 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1214 {
1215 /* If we are getting the low-order part of something that has been
1216 sign- or zero-extended, we can either just use the object being
1217 extended or make a narrower extension. If we want an even smaller
1218 piece than the size of the object being extended, call ourselves
1219 recursively.
1220
1221 This case is used mostly by combine and cse. */
1222
1223 if (GET_MODE (XEXP (x, 0)) == mode)
1224 return XEXP (x, 0);
1225 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1226 return gen_lowpart_common (mode, XEXP (x, 0));
1227 else if (msize < xsize)
1228 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1229 }
1230 else if (GET_CODE (x) == SUBREG || REG_P (x)
1231 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1232 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1233 return simplify_gen_subreg (mode, x, innermode, offset);
1234
1235 /* Otherwise, we can't do this. */
1236 return 0;
1237 }
1238 \f
1239 rtx
1240 gen_highpart (enum machine_mode mode, rtx x)
1241 {
1242 unsigned int msize = GET_MODE_SIZE (mode);
1243 rtx result;
1244
1245 /* This case loses if X is a subreg. To catch bugs early,
1246 complain if an invalid MODE is used even in other cases. */
1247 gcc_assert (msize <= UNITS_PER_WORD
1248 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1249
1250 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1251 subreg_highpart_offset (mode, GET_MODE (x)));
1252 gcc_assert (result);
1253
1254 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1255 the target if we have a MEM. gen_highpart must return a valid operand,
1256 emitting code if necessary to do so. */
1257 if (MEM_P (result))
1258 {
1259 result = validize_mem (result);
1260 gcc_assert (result);
1261 }
1262
1263 return result;
1264 }
1265
1266 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1267 be VOIDmode constant. */
1268 rtx
1269 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1270 {
1271 if (GET_MODE (exp) != VOIDmode)
1272 {
1273 gcc_assert (GET_MODE (exp) == innermode);
1274 return gen_highpart (outermode, exp);
1275 }
1276 return simplify_gen_subreg (outermode, exp, innermode,
1277 subreg_highpart_offset (outermode, innermode));
1278 }
1279
1280 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1281
1282 unsigned int
1283 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1284 {
1285 unsigned int offset = 0;
1286 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1287
1288 if (difference > 0)
1289 {
1290 if (WORDS_BIG_ENDIAN)
1291 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1292 if (BYTES_BIG_ENDIAN)
1293 offset += difference % UNITS_PER_WORD;
1294 }
1295
1296 return offset;
1297 }
1298
1299 /* Return offset in bytes to get OUTERMODE high part
1300 of the value in mode INNERMODE stored in memory in target format. */
1301 unsigned int
1302 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303 {
1304 unsigned int offset = 0;
1305 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306
1307 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1308
1309 if (difference > 0)
1310 {
1311 if (! WORDS_BIG_ENDIAN)
1312 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1313 if (! BYTES_BIG_ENDIAN)
1314 offset += difference % UNITS_PER_WORD;
1315 }
1316
1317 return offset;
1318 }
1319
1320 /* Return 1 iff X, assumed to be a SUBREG,
1321 refers to the least significant part of its containing reg.
1322 If X is not a SUBREG, always return 1 (it is its own low part!). */
1323
1324 int
1325 subreg_lowpart_p (const_rtx x)
1326 {
1327 if (GET_CODE (x) != SUBREG)
1328 return 1;
1329 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1330 return 0;
1331
1332 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1333 == SUBREG_BYTE (x));
1334 }
1335 \f
1336 /* Return subword OFFSET of operand OP.
1337 The word number, OFFSET, is interpreted as the word number starting
1338 at the low-order address. OFFSET 0 is the low-order word if not
1339 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1340
1341 If we cannot extract the required word, we return zero. Otherwise,
1342 an rtx corresponding to the requested word will be returned.
1343
1344 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1345 reload has completed, a valid address will always be returned. After
1346 reload, if a valid address cannot be returned, we return zero.
1347
1348 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1349 it is the responsibility of the caller.
1350
1351 MODE is the mode of OP in case it is a CONST_INT.
1352
1353 ??? This is still rather broken for some cases. The problem for the
1354 moment is that all callers of this thing provide no 'goal mode' to
1355 tell us to work with. This exists because all callers were written
1356 in a word based SUBREG world.
1357 Now use of this function can be deprecated by simplify_subreg in most
1358 cases.
1359 */
1360
1361 rtx
1362 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1363 {
1364 if (mode == VOIDmode)
1365 mode = GET_MODE (op);
1366
1367 gcc_assert (mode != VOIDmode);
1368
1369 /* If OP is narrower than a word, fail. */
1370 if (mode != BLKmode
1371 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1372 return 0;
1373
1374 /* If we want a word outside OP, return zero. */
1375 if (mode != BLKmode
1376 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1377 return const0_rtx;
1378
1379 /* Form a new MEM at the requested address. */
1380 if (MEM_P (op))
1381 {
1382 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1383
1384 if (! validate_address)
1385 return new_rtx;
1386
1387 else if (reload_completed)
1388 {
1389 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1390 return 0;
1391 }
1392 else
1393 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1394 }
1395
1396 /* Rest can be handled by simplify_subreg. */
1397 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1398 }
1399
1400 /* Similar to `operand_subword', but never return 0. If we can't
1401 extract the required subword, put OP into a register and try again.
1402 The second attempt must succeed. We always validate the address in
1403 this case.
1404
1405 MODE is the mode of OP, in case it is CONST_INT. */
1406
1407 rtx
1408 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1409 {
1410 rtx result = operand_subword (op, offset, 1, mode);
1411
1412 if (result)
1413 return result;
1414
1415 if (mode != BLKmode && mode != VOIDmode)
1416 {
1417 /* If this is a register which can not be accessed by words, copy it
1418 to a pseudo register. */
1419 if (REG_P (op))
1420 op = copy_to_reg (op);
1421 else
1422 op = force_reg (mode, op);
1423 }
1424
1425 result = operand_subword (op, offset, 1, mode);
1426 gcc_assert (result);
1427
1428 return result;
1429 }
1430 \f
1431 /* Returns 1 if both MEM_EXPR can be considered equal
1432 and 0 otherwise. */
1433
1434 int
1435 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1436 {
1437 if (expr1 == expr2)
1438 return 1;
1439
1440 if (! expr1 || ! expr2)
1441 return 0;
1442
1443 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1444 return 0;
1445
1446 return operand_equal_p (expr1, expr2, 0);
1447 }
1448
1449 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1450 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1451 -1 if not known. */
1452
1453 int
1454 get_mem_align_offset (rtx mem, unsigned int align)
1455 {
1456 tree expr;
1457 unsigned HOST_WIDE_INT offset;
1458
1459 /* This function can't use
1460 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1461 || !CONST_INT_P (MEM_OFFSET (mem))
1462 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1463 < align))
1464 return -1;
1465 else
1466 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1467 for two reasons:
1468 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1469 for <variable>. get_inner_reference doesn't handle it and
1470 even if it did, the alignment in that case needs to be determined
1471 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1472 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1473 isn't sufficiently aligned, the object it is in might be. */
1474 gcc_assert (MEM_P (mem));
1475 expr = MEM_EXPR (mem);
1476 if (expr == NULL_TREE
1477 || MEM_OFFSET (mem) == NULL_RTX
1478 || !CONST_INT_P (MEM_OFFSET (mem)))
1479 return -1;
1480
1481 offset = INTVAL (MEM_OFFSET (mem));
1482 if (DECL_P (expr))
1483 {
1484 if (DECL_ALIGN (expr) < align)
1485 return -1;
1486 }
1487 else if (INDIRECT_REF_P (expr))
1488 {
1489 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1490 return -1;
1491 }
1492 else if (TREE_CODE (expr) == COMPONENT_REF)
1493 {
1494 while (1)
1495 {
1496 tree inner = TREE_OPERAND (expr, 0);
1497 tree field = TREE_OPERAND (expr, 1);
1498 tree byte_offset = component_ref_field_offset (expr);
1499 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1500
1501 if (!byte_offset
1502 || !host_integerp (byte_offset, 1)
1503 || !host_integerp (bit_offset, 1))
1504 return -1;
1505
1506 offset += tree_low_cst (byte_offset, 1);
1507 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1508
1509 if (inner == NULL_TREE)
1510 {
1511 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1512 < (unsigned int) align)
1513 return -1;
1514 break;
1515 }
1516 else if (DECL_P (inner))
1517 {
1518 if (DECL_ALIGN (inner) < align)
1519 return -1;
1520 break;
1521 }
1522 else if (TREE_CODE (inner) != COMPONENT_REF)
1523 return -1;
1524 expr = inner;
1525 }
1526 }
1527 else
1528 return -1;
1529
1530 return offset & ((align / BITS_PER_UNIT) - 1);
1531 }
1532
1533 /* Given REF (a MEM) and T, either the type of X or the expression
1534 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1535 if we are making a new object of this type. BITPOS is nonzero if
1536 there is an offset outstanding on T that will be applied later. */
1537
1538 void
1539 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1540 HOST_WIDE_INT bitpos)
1541 {
1542 alias_set_type alias = MEM_ALIAS_SET (ref);
1543 tree expr = MEM_EXPR (ref);
1544 rtx offset = MEM_OFFSET (ref);
1545 rtx size = MEM_SIZE (ref);
1546 unsigned int align = MEM_ALIGN (ref);
1547 HOST_WIDE_INT apply_bitpos = 0;
1548 tree type;
1549
1550 /* It can happen that type_for_mode was given a mode for which there
1551 is no language-level type. In which case it returns NULL, which
1552 we can see here. */
1553 if (t == NULL_TREE)
1554 return;
1555
1556 type = TYPE_P (t) ? t : TREE_TYPE (t);
1557 if (type == error_mark_node)
1558 return;
1559
1560 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1561 wrong answer, as it assumes that DECL_RTL already has the right alias
1562 info. Callers should not set DECL_RTL until after the call to
1563 set_mem_attributes. */
1564 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1565
1566 /* Get the alias set from the expression or type (perhaps using a
1567 front-end routine) and use it. */
1568 alias = get_alias_set (t);
1569
1570 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1571 MEM_IN_STRUCT_P (ref)
1572 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1573 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1574
1575 /* If we are making an object of this type, or if this is a DECL, we know
1576 that it is a scalar if the type is not an aggregate. */
1577 if ((objectp || DECL_P (t))
1578 && ! AGGREGATE_TYPE_P (type)
1579 && TREE_CODE (type) != COMPLEX_TYPE)
1580 MEM_SCALAR_P (ref) = 1;
1581
1582 /* We can set the alignment from the type if we are making an object,
1583 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1584 if (objectp || TREE_CODE (t) == INDIRECT_REF
1585 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1586 || TYPE_ALIGN_OK (type))
1587 align = MAX (align, TYPE_ALIGN (type));
1588 else
1589 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1590 {
1591 if (integer_zerop (TREE_OPERAND (t, 1)))
1592 /* We don't know anything about the alignment. */
1593 align = BITS_PER_UNIT;
1594 else
1595 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1596 }
1597
1598 /* If the size is known, we can set that. */
1599 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1600 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1601
1602 /* If T is not a type, we may be able to deduce some more information about
1603 the expression. */
1604 if (! TYPE_P (t))
1605 {
1606 tree base;
1607 bool align_computed = false;
1608
1609 if (TREE_THIS_VOLATILE (t))
1610 MEM_VOLATILE_P (ref) = 1;
1611
1612 /* Now remove any conversions: they don't change what the underlying
1613 object is. Likewise for SAVE_EXPR. */
1614 while (CONVERT_EXPR_P (t)
1615 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1616 || TREE_CODE (t) == SAVE_EXPR)
1617 t = TREE_OPERAND (t, 0);
1618
1619 /* We may look through structure-like accesses for the purposes of
1620 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1621 base = t;
1622 while (TREE_CODE (base) == COMPONENT_REF
1623 || TREE_CODE (base) == REALPART_EXPR
1624 || TREE_CODE (base) == IMAGPART_EXPR
1625 || TREE_CODE (base) == BIT_FIELD_REF)
1626 base = TREE_OPERAND (base, 0);
1627
1628 if (DECL_P (base))
1629 {
1630 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1631 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1632 else
1633 MEM_NOTRAP_P (ref) = 1;
1634 }
1635 else
1636 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1637
1638 base = get_base_address (base);
1639 if (base && DECL_P (base)
1640 && TREE_READONLY (base)
1641 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1642 {
1643 tree base_type = TREE_TYPE (base);
1644 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1645 || DECL_ARTIFICIAL (base));
1646 MEM_READONLY_P (ref) = 1;
1647 }
1648
1649 /* If this expression uses it's parent's alias set, mark it such
1650 that we won't change it. */
1651 if (component_uses_parent_alias_set (t))
1652 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1653
1654 /* If this is a decl, set the attributes of the MEM from it. */
1655 if (DECL_P (t))
1656 {
1657 expr = t;
1658 offset = const0_rtx;
1659 apply_bitpos = bitpos;
1660 size = (DECL_SIZE_UNIT (t)
1661 && host_integerp (DECL_SIZE_UNIT (t), 1)
1662 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1663 align = DECL_ALIGN (t);
1664 align_computed = true;
1665 }
1666
1667 /* If this is a constant, we know the alignment. */
1668 else if (CONSTANT_CLASS_P (t))
1669 {
1670 align = TYPE_ALIGN (type);
1671 #ifdef CONSTANT_ALIGNMENT
1672 align = CONSTANT_ALIGNMENT (t, align);
1673 #endif
1674 align_computed = true;
1675 }
1676
1677 /* If this is a field reference and not a bit-field, record it. */
1678 /* ??? There is some information that can be gleaned from bit-fields,
1679 such as the word offset in the structure that might be modified.
1680 But skip it for now. */
1681 else if (TREE_CODE (t) == COMPONENT_REF
1682 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1683 {
1684 expr = t;
1685 offset = const0_rtx;
1686 apply_bitpos = bitpos;
1687 /* ??? Any reason the field size would be different than
1688 the size we got from the type? */
1689 }
1690
1691 /* If this is an array reference, look for an outer field reference. */
1692 else if (TREE_CODE (t) == ARRAY_REF)
1693 {
1694 tree off_tree = size_zero_node;
1695 /* We can't modify t, because we use it at the end of the
1696 function. */
1697 tree t2 = t;
1698
1699 do
1700 {
1701 tree index = TREE_OPERAND (t2, 1);
1702 tree low_bound = array_ref_low_bound (t2);
1703 tree unit_size = array_ref_element_size (t2);
1704
1705 /* We assume all arrays have sizes that are a multiple of a byte.
1706 First subtract the lower bound, if any, in the type of the
1707 index, then convert to sizetype and multiply by the size of
1708 the array element. */
1709 if (! integer_zerop (low_bound))
1710 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1711 index, low_bound);
1712
1713 off_tree = size_binop (PLUS_EXPR,
1714 size_binop (MULT_EXPR,
1715 fold_convert (sizetype,
1716 index),
1717 unit_size),
1718 off_tree);
1719 t2 = TREE_OPERAND (t2, 0);
1720 }
1721 while (TREE_CODE (t2) == ARRAY_REF);
1722
1723 if (DECL_P (t2))
1724 {
1725 expr = t2;
1726 offset = NULL;
1727 if (host_integerp (off_tree, 1))
1728 {
1729 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1730 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1731 align = DECL_ALIGN (t2);
1732 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1733 align = aoff;
1734 align_computed = true;
1735 offset = GEN_INT (ioff);
1736 apply_bitpos = bitpos;
1737 }
1738 }
1739 else if (TREE_CODE (t2) == COMPONENT_REF)
1740 {
1741 expr = t2;
1742 offset = NULL;
1743 if (host_integerp (off_tree, 1))
1744 {
1745 offset = GEN_INT (tree_low_cst (off_tree, 1));
1746 apply_bitpos = bitpos;
1747 }
1748 /* ??? Any reason the field size would be different than
1749 the size we got from the type? */
1750 }
1751 else if (flag_argument_noalias > 1
1752 && (INDIRECT_REF_P (t2))
1753 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1754 {
1755 expr = t2;
1756 offset = NULL;
1757 }
1758 }
1759
1760 /* If this is a Fortran indirect argument reference, record the
1761 parameter decl. */
1762 else if (flag_argument_noalias > 1
1763 && (INDIRECT_REF_P (t))
1764 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1765 {
1766 expr = t;
1767 offset = NULL;
1768 }
1769
1770 if (!align_computed && !INDIRECT_REF_P (t))
1771 {
1772 unsigned int obj_align
1773 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1774 align = MAX (align, obj_align);
1775 }
1776 }
1777
1778 /* If we modified OFFSET based on T, then subtract the outstanding
1779 bit position offset. Similarly, increase the size of the accessed
1780 object to contain the negative offset. */
1781 if (apply_bitpos)
1782 {
1783 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1784 if (size)
1785 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1786 }
1787
1788 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1789 {
1790 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1791 we're overlapping. */
1792 offset = NULL;
1793 expr = NULL;
1794 }
1795
1796 /* Now set the attributes we computed above. */
1797 MEM_ATTRS (ref)
1798 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1799
1800 /* If this is already known to be a scalar or aggregate, we are done. */
1801 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1802 return;
1803
1804 /* If it is a reference into an aggregate, this is part of an aggregate.
1805 Otherwise we don't know. */
1806 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1807 || TREE_CODE (t) == ARRAY_RANGE_REF
1808 || TREE_CODE (t) == BIT_FIELD_REF)
1809 MEM_IN_STRUCT_P (ref) = 1;
1810 }
1811
1812 void
1813 set_mem_attributes (rtx ref, tree t, int objectp)
1814 {
1815 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1816 }
1817
1818 /* Set the alias set of MEM to SET. */
1819
1820 void
1821 set_mem_alias_set (rtx mem, alias_set_type set)
1822 {
1823 #ifdef ENABLE_CHECKING
1824 /* If the new and old alias sets don't conflict, something is wrong. */
1825 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1826 #endif
1827
1828 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1829 MEM_SIZE (mem), MEM_ALIGN (mem),
1830 GET_MODE (mem));
1831 }
1832
1833 /* Set the alignment of MEM to ALIGN bits. */
1834
1835 void
1836 set_mem_align (rtx mem, unsigned int align)
1837 {
1838 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1839 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1840 GET_MODE (mem));
1841 }
1842
1843 /* Set the expr for MEM to EXPR. */
1844
1845 void
1846 set_mem_expr (rtx mem, tree expr)
1847 {
1848 MEM_ATTRS (mem)
1849 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1850 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1851 }
1852
1853 /* Set the offset of MEM to OFFSET. */
1854
1855 void
1856 set_mem_offset (rtx mem, rtx offset)
1857 {
1858 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1859 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1860 GET_MODE (mem));
1861 }
1862
1863 /* Set the size of MEM to SIZE. */
1864
1865 void
1866 set_mem_size (rtx mem, rtx size)
1867 {
1868 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1869 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1870 GET_MODE (mem));
1871 }
1872 \f
1873 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1874 and its address changed to ADDR. (VOIDmode means don't change the mode.
1875 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1876 returned memory location is required to be valid. The memory
1877 attributes are not changed. */
1878
1879 static rtx
1880 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1881 {
1882 rtx new_rtx;
1883
1884 gcc_assert (MEM_P (memref));
1885 if (mode == VOIDmode)
1886 mode = GET_MODE (memref);
1887 if (addr == 0)
1888 addr = XEXP (memref, 0);
1889 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1890 && (!validate || memory_address_p (mode, addr)))
1891 return memref;
1892
1893 if (validate)
1894 {
1895 if (reload_in_progress || reload_completed)
1896 gcc_assert (memory_address_p (mode, addr));
1897 else
1898 addr = memory_address (mode, addr);
1899 }
1900
1901 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1902 return memref;
1903
1904 new_rtx = gen_rtx_MEM (mode, addr);
1905 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1906 return new_rtx;
1907 }
1908
1909 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1910 way we are changing MEMREF, so we only preserve the alias set. */
1911
1912 rtx
1913 change_address (rtx memref, enum machine_mode mode, rtx addr)
1914 {
1915 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1916 enum machine_mode mmode = GET_MODE (new_rtx);
1917 unsigned int align;
1918
1919 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1920 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1921
1922 /* If there are no changes, just return the original memory reference. */
1923 if (new_rtx == memref)
1924 {
1925 if (MEM_ATTRS (memref) == 0
1926 || (MEM_EXPR (memref) == NULL
1927 && MEM_OFFSET (memref) == NULL
1928 && MEM_SIZE (memref) == size
1929 && MEM_ALIGN (memref) == align))
1930 return new_rtx;
1931
1932 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1933 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1934 }
1935
1936 MEM_ATTRS (new_rtx)
1937 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1938
1939 return new_rtx;
1940 }
1941
1942 /* Return a memory reference like MEMREF, but with its mode changed
1943 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1944 nonzero, the memory address is forced to be valid.
1945 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1946 and caller is responsible for adjusting MEMREF base register. */
1947
1948 rtx
1949 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1950 int validate, int adjust)
1951 {
1952 rtx addr = XEXP (memref, 0);
1953 rtx new_rtx;
1954 rtx memoffset = MEM_OFFSET (memref);
1955 rtx size = 0;
1956 unsigned int memalign = MEM_ALIGN (memref);
1957 int pbits;
1958
1959 /* If there are no changes, just return the original memory reference. */
1960 if (mode == GET_MODE (memref) && !offset
1961 && (!validate || memory_address_p (mode, addr)))
1962 return memref;
1963
1964 /* ??? Prefer to create garbage instead of creating shared rtl.
1965 This may happen even if offset is nonzero -- consider
1966 (plus (plus reg reg) const_int) -- so do this always. */
1967 addr = copy_rtx (addr);
1968
1969 /* Convert a possibly large offset to a signed value within the
1970 range of the target address space. */
1971 pbits = GET_MODE_BITSIZE (Pmode);
1972 if (HOST_BITS_PER_WIDE_INT > pbits)
1973 {
1974 int shift = HOST_BITS_PER_WIDE_INT - pbits;
1975 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
1976 >> shift);
1977 }
1978
1979 if (adjust)
1980 {
1981 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1982 object, we can merge it into the LO_SUM. */
1983 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1984 && offset >= 0
1985 && (unsigned HOST_WIDE_INT) offset
1986 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1987 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1988 plus_constant (XEXP (addr, 1), offset));
1989 else
1990 addr = plus_constant (addr, offset);
1991 }
1992
1993 new_rtx = change_address_1 (memref, mode, addr, validate);
1994
1995 /* If the address is a REG, change_address_1 rightfully returns memref,
1996 but this would destroy memref's MEM_ATTRS. */
1997 if (new_rtx == memref && offset != 0)
1998 new_rtx = copy_rtx (new_rtx);
1999
2000 /* Compute the new values of the memory attributes due to this adjustment.
2001 We add the offsets and update the alignment. */
2002 if (memoffset)
2003 memoffset = GEN_INT (offset + INTVAL (memoffset));
2004
2005 /* Compute the new alignment by taking the MIN of the alignment and the
2006 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2007 if zero. */
2008 if (offset != 0)
2009 memalign
2010 = MIN (memalign,
2011 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2012
2013 /* We can compute the size in a number of ways. */
2014 if (GET_MODE (new_rtx) != BLKmode)
2015 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2016 else if (MEM_SIZE (memref))
2017 size = plus_constant (MEM_SIZE (memref), -offset);
2018
2019 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2020 memoffset, size, memalign, GET_MODE (new_rtx));
2021
2022 /* At some point, we should validate that this offset is within the object,
2023 if all the appropriate values are known. */
2024 return new_rtx;
2025 }
2026
2027 /* Return a memory reference like MEMREF, but with its mode changed
2028 to MODE and its address changed to ADDR, which is assumed to be
2029 MEMREF offset by OFFSET bytes. If VALIDATE is
2030 nonzero, the memory address is forced to be valid. */
2031
2032 rtx
2033 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2034 HOST_WIDE_INT offset, int validate)
2035 {
2036 memref = change_address_1 (memref, VOIDmode, addr, validate);
2037 return adjust_address_1 (memref, mode, offset, validate, 0);
2038 }
2039
2040 /* Return a memory reference like MEMREF, but whose address is changed by
2041 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2042 known to be in OFFSET (possibly 1). */
2043
2044 rtx
2045 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2046 {
2047 rtx new_rtx, addr = XEXP (memref, 0);
2048
2049 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2050
2051 /* At this point we don't know _why_ the address is invalid. It
2052 could have secondary memory references, multiplies or anything.
2053
2054 However, if we did go and rearrange things, we can wind up not
2055 being able to recognize the magic around pic_offset_table_rtx.
2056 This stuff is fragile, and is yet another example of why it is
2057 bad to expose PIC machinery too early. */
2058 if (! memory_address_p (GET_MODE (memref), new_rtx)
2059 && GET_CODE (addr) == PLUS
2060 && XEXP (addr, 0) == pic_offset_table_rtx)
2061 {
2062 addr = force_reg (GET_MODE (addr), addr);
2063 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2064 }
2065
2066 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2067 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2068
2069 /* If there are no changes, just return the original memory reference. */
2070 if (new_rtx == memref)
2071 return new_rtx;
2072
2073 /* Update the alignment to reflect the offset. Reset the offset, which
2074 we don't know. */
2075 MEM_ATTRS (new_rtx)
2076 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2077 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2078 GET_MODE (new_rtx));
2079 return new_rtx;
2080 }
2081
2082 /* Return a memory reference like MEMREF, but with its address changed to
2083 ADDR. The caller is asserting that the actual piece of memory pointed
2084 to is the same, just the form of the address is being changed, such as
2085 by putting something into a register. */
2086
2087 rtx
2088 replace_equiv_address (rtx memref, rtx addr)
2089 {
2090 /* change_address_1 copies the memory attribute structure without change
2091 and that's exactly what we want here. */
2092 update_temp_slot_address (XEXP (memref, 0), addr);
2093 return change_address_1 (memref, VOIDmode, addr, 1);
2094 }
2095
2096 /* Likewise, but the reference is not required to be valid. */
2097
2098 rtx
2099 replace_equiv_address_nv (rtx memref, rtx addr)
2100 {
2101 return change_address_1 (memref, VOIDmode, addr, 0);
2102 }
2103
2104 /* Return a memory reference like MEMREF, but with its mode widened to
2105 MODE and offset by OFFSET. This would be used by targets that e.g.
2106 cannot issue QImode memory operations and have to use SImode memory
2107 operations plus masking logic. */
2108
2109 rtx
2110 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2111 {
2112 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2113 tree expr = MEM_EXPR (new_rtx);
2114 rtx memoffset = MEM_OFFSET (new_rtx);
2115 unsigned int size = GET_MODE_SIZE (mode);
2116
2117 /* If there are no changes, just return the original memory reference. */
2118 if (new_rtx == memref)
2119 return new_rtx;
2120
2121 /* If we don't know what offset we were at within the expression, then
2122 we can't know if we've overstepped the bounds. */
2123 if (! memoffset)
2124 expr = NULL_TREE;
2125
2126 while (expr)
2127 {
2128 if (TREE_CODE (expr) == COMPONENT_REF)
2129 {
2130 tree field = TREE_OPERAND (expr, 1);
2131 tree offset = component_ref_field_offset (expr);
2132
2133 if (! DECL_SIZE_UNIT (field))
2134 {
2135 expr = NULL_TREE;
2136 break;
2137 }
2138
2139 /* Is the field at least as large as the access? If so, ok,
2140 otherwise strip back to the containing structure. */
2141 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2142 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2143 && INTVAL (memoffset) >= 0)
2144 break;
2145
2146 if (! host_integerp (offset, 1))
2147 {
2148 expr = NULL_TREE;
2149 break;
2150 }
2151
2152 expr = TREE_OPERAND (expr, 0);
2153 memoffset
2154 = (GEN_INT (INTVAL (memoffset)
2155 + tree_low_cst (offset, 1)
2156 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2157 / BITS_PER_UNIT)));
2158 }
2159 /* Similarly for the decl. */
2160 else if (DECL_P (expr)
2161 && DECL_SIZE_UNIT (expr)
2162 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2163 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2164 && (! memoffset || INTVAL (memoffset) >= 0))
2165 break;
2166 else
2167 {
2168 /* The widened memory access overflows the expression, which means
2169 that it could alias another expression. Zap it. */
2170 expr = NULL_TREE;
2171 break;
2172 }
2173 }
2174
2175 if (! expr)
2176 memoffset = NULL_RTX;
2177
2178 /* The widened memory may alias other stuff, so zap the alias set. */
2179 /* ??? Maybe use get_alias_set on any remaining expression. */
2180
2181 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2182 MEM_ALIGN (new_rtx), mode);
2183
2184 return new_rtx;
2185 }
2186 \f
2187 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2188 static GTY(()) tree spill_slot_decl;
2189
2190 tree
2191 get_spill_slot_decl (bool force_build_p)
2192 {
2193 tree d = spill_slot_decl;
2194 rtx rd;
2195
2196 if (d || !force_build_p)
2197 return d;
2198
2199 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2200 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2201 DECL_ARTIFICIAL (d) = 1;
2202 DECL_IGNORED_P (d) = 1;
2203 TREE_USED (d) = 1;
2204 TREE_THIS_NOTRAP (d) = 1;
2205 spill_slot_decl = d;
2206
2207 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2208 MEM_NOTRAP_P (rd) = 1;
2209 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2210 NULL_RTX, 0, BLKmode);
2211 SET_DECL_RTL (d, rd);
2212
2213 return d;
2214 }
2215
2216 /* Given MEM, a result from assign_stack_local, fill in the memory
2217 attributes as appropriate for a register allocator spill slot.
2218 These slots are not aliasable by other memory. We arrange for
2219 them all to use a single MEM_EXPR, so that the aliasing code can
2220 work properly in the case of shared spill slots. */
2221
2222 void
2223 set_mem_attrs_for_spill (rtx mem)
2224 {
2225 alias_set_type alias;
2226 rtx addr, offset;
2227 tree expr;
2228
2229 expr = get_spill_slot_decl (true);
2230 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2231
2232 /* We expect the incoming memory to be of the form:
2233 (mem:MODE (plus (reg sfp) (const_int offset)))
2234 with perhaps the plus missing for offset = 0. */
2235 addr = XEXP (mem, 0);
2236 offset = const0_rtx;
2237 if (GET_CODE (addr) == PLUS
2238 && CONST_INT_P (XEXP (addr, 1)))
2239 offset = XEXP (addr, 1);
2240
2241 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2242 MEM_SIZE (mem), MEM_ALIGN (mem),
2243 GET_MODE (mem));
2244 MEM_NOTRAP_P (mem) = 1;
2245 }
2246 \f
2247 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2248
2249 rtx
2250 gen_label_rtx (void)
2251 {
2252 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2253 NULL, label_num++, NULL);
2254 }
2255 \f
2256 /* For procedure integration. */
2257
2258 /* Install new pointers to the first and last insns in the chain.
2259 Also, set cur_insn_uid to one higher than the last in use.
2260 Used for an inline-procedure after copying the insn chain. */
2261
2262 void
2263 set_new_first_and_last_insn (rtx first, rtx last)
2264 {
2265 rtx insn;
2266
2267 first_insn = first;
2268 last_insn = last;
2269 cur_insn_uid = 0;
2270
2271 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2272 {
2273 int debug_count = 0;
2274
2275 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2276 cur_debug_insn_uid = 0;
2277
2278 for (insn = first; insn; insn = NEXT_INSN (insn))
2279 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2280 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2281 else
2282 {
2283 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2284 if (DEBUG_INSN_P (insn))
2285 debug_count++;
2286 }
2287
2288 if (debug_count)
2289 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2290 else
2291 cur_debug_insn_uid++;
2292 }
2293 else
2294 for (insn = first; insn; insn = NEXT_INSN (insn))
2295 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2296
2297 cur_insn_uid++;
2298 }
2299 \f
2300 /* Go through all the RTL insn bodies and copy any invalid shared
2301 structure. This routine should only be called once. */
2302
2303 static void
2304 unshare_all_rtl_1 (rtx insn)
2305 {
2306 /* Unshare just about everything else. */
2307 unshare_all_rtl_in_chain (insn);
2308
2309 /* Make sure the addresses of stack slots found outside the insn chain
2310 (such as, in DECL_RTL of a variable) are not shared
2311 with the insn chain.
2312
2313 This special care is necessary when the stack slot MEM does not
2314 actually appear in the insn chain. If it does appear, its address
2315 is unshared from all else at that point. */
2316 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2317 }
2318
2319 /* Go through all the RTL insn bodies and copy any invalid shared
2320 structure, again. This is a fairly expensive thing to do so it
2321 should be done sparingly. */
2322
2323 void
2324 unshare_all_rtl_again (rtx insn)
2325 {
2326 rtx p;
2327 tree decl;
2328
2329 for (p = insn; p; p = NEXT_INSN (p))
2330 if (INSN_P (p))
2331 {
2332 reset_used_flags (PATTERN (p));
2333 reset_used_flags (REG_NOTES (p));
2334 }
2335
2336 /* Make sure that virtual stack slots are not shared. */
2337 set_used_decls (DECL_INITIAL (cfun->decl));
2338
2339 /* Make sure that virtual parameters are not shared. */
2340 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2341 set_used_flags (DECL_RTL (decl));
2342
2343 reset_used_flags (stack_slot_list);
2344
2345 unshare_all_rtl_1 (insn);
2346 }
2347
2348 unsigned int
2349 unshare_all_rtl (void)
2350 {
2351 unshare_all_rtl_1 (get_insns ());
2352 return 0;
2353 }
2354
2355 struct rtl_opt_pass pass_unshare_all_rtl =
2356 {
2357 {
2358 RTL_PASS,
2359 "unshare", /* name */
2360 NULL, /* gate */
2361 unshare_all_rtl, /* execute */
2362 NULL, /* sub */
2363 NULL, /* next */
2364 0, /* static_pass_number */
2365 TV_NONE, /* tv_id */
2366 0, /* properties_required */
2367 0, /* properties_provided */
2368 0, /* properties_destroyed */
2369 0, /* todo_flags_start */
2370 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2371 }
2372 };
2373
2374
2375 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2376 Recursively does the same for subexpressions. */
2377
2378 static void
2379 verify_rtx_sharing (rtx orig, rtx insn)
2380 {
2381 rtx x = orig;
2382 int i;
2383 enum rtx_code code;
2384 const char *format_ptr;
2385
2386 if (x == 0)
2387 return;
2388
2389 code = GET_CODE (x);
2390
2391 /* These types may be freely shared. */
2392
2393 switch (code)
2394 {
2395 case REG:
2396 case CONST_INT:
2397 case CONST_DOUBLE:
2398 case CONST_FIXED:
2399 case CONST_VECTOR:
2400 case SYMBOL_REF:
2401 case LABEL_REF:
2402 case CODE_LABEL:
2403 case PC:
2404 case CC0:
2405 case SCRATCH:
2406 return;
2407 /* SCRATCH must be shared because they represent distinct values. */
2408 case CLOBBER:
2409 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2410 return;
2411 break;
2412
2413 case CONST:
2414 if (shared_const_p (orig))
2415 return;
2416 break;
2417
2418 case MEM:
2419 /* A MEM is allowed to be shared if its address is constant. */
2420 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2421 || reload_completed || reload_in_progress)
2422 return;
2423
2424 break;
2425
2426 default:
2427 break;
2428 }
2429
2430 /* This rtx may not be shared. If it has already been seen,
2431 replace it with a copy of itself. */
2432 #ifdef ENABLE_CHECKING
2433 if (RTX_FLAG (x, used))
2434 {
2435 error ("invalid rtl sharing found in the insn");
2436 debug_rtx (insn);
2437 error ("shared rtx");
2438 debug_rtx (x);
2439 internal_error ("internal consistency failure");
2440 }
2441 #endif
2442 gcc_assert (!RTX_FLAG (x, used));
2443
2444 RTX_FLAG (x, used) = 1;
2445
2446 /* Now scan the subexpressions recursively. */
2447
2448 format_ptr = GET_RTX_FORMAT (code);
2449
2450 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2451 {
2452 switch (*format_ptr++)
2453 {
2454 case 'e':
2455 verify_rtx_sharing (XEXP (x, i), insn);
2456 break;
2457
2458 case 'E':
2459 if (XVEC (x, i) != NULL)
2460 {
2461 int j;
2462 int len = XVECLEN (x, i);
2463
2464 for (j = 0; j < len; j++)
2465 {
2466 /* We allow sharing of ASM_OPERANDS inside single
2467 instruction. */
2468 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2469 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2470 == ASM_OPERANDS))
2471 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2472 else
2473 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2474 }
2475 }
2476 break;
2477 }
2478 }
2479 return;
2480 }
2481
2482 /* Go through all the RTL insn bodies and check that there is no unexpected
2483 sharing in between the subexpressions. */
2484
2485 void
2486 verify_rtl_sharing (void)
2487 {
2488 rtx p;
2489
2490 for (p = get_insns (); p; p = NEXT_INSN (p))
2491 if (INSN_P (p))
2492 {
2493 reset_used_flags (PATTERN (p));
2494 reset_used_flags (REG_NOTES (p));
2495 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2496 {
2497 int i;
2498 rtx q, sequence = PATTERN (p);
2499
2500 for (i = 0; i < XVECLEN (sequence, 0); i++)
2501 {
2502 q = XVECEXP (sequence, 0, i);
2503 gcc_assert (INSN_P (q));
2504 reset_used_flags (PATTERN (q));
2505 reset_used_flags (REG_NOTES (q));
2506 }
2507 }
2508 }
2509
2510 for (p = get_insns (); p; p = NEXT_INSN (p))
2511 if (INSN_P (p))
2512 {
2513 verify_rtx_sharing (PATTERN (p), p);
2514 verify_rtx_sharing (REG_NOTES (p), p);
2515 }
2516 }
2517
2518 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2519 Assumes the mark bits are cleared at entry. */
2520
2521 void
2522 unshare_all_rtl_in_chain (rtx insn)
2523 {
2524 for (; insn; insn = NEXT_INSN (insn))
2525 if (INSN_P (insn))
2526 {
2527 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2528 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2529 }
2530 }
2531
2532 /* Go through all virtual stack slots of a function and mark them as
2533 shared. We never replace the DECL_RTLs themselves with a copy,
2534 but expressions mentioned into a DECL_RTL cannot be shared with
2535 expressions in the instruction stream.
2536
2537 Note that reload may convert pseudo registers into memories in-place.
2538 Pseudo registers are always shared, but MEMs never are. Thus if we
2539 reset the used flags on MEMs in the instruction stream, we must set
2540 them again on MEMs that appear in DECL_RTLs. */
2541
2542 static void
2543 set_used_decls (tree blk)
2544 {
2545 tree t;
2546
2547 /* Mark decls. */
2548 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2549 if (DECL_RTL_SET_P (t))
2550 set_used_flags (DECL_RTL (t));
2551
2552 /* Now process sub-blocks. */
2553 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2554 set_used_decls (t);
2555 }
2556
2557 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2558 Recursively does the same for subexpressions. Uses
2559 copy_rtx_if_shared_1 to reduce stack space. */
2560
2561 rtx
2562 copy_rtx_if_shared (rtx orig)
2563 {
2564 copy_rtx_if_shared_1 (&orig);
2565 return orig;
2566 }
2567
2568 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2569 use. Recursively does the same for subexpressions. */
2570
2571 static void
2572 copy_rtx_if_shared_1 (rtx *orig1)
2573 {
2574 rtx x;
2575 int i;
2576 enum rtx_code code;
2577 rtx *last_ptr;
2578 const char *format_ptr;
2579 int copied = 0;
2580 int length;
2581
2582 /* Repeat is used to turn tail-recursion into iteration. */
2583 repeat:
2584 x = *orig1;
2585
2586 if (x == 0)
2587 return;
2588
2589 code = GET_CODE (x);
2590
2591 /* These types may be freely shared. */
2592
2593 switch (code)
2594 {
2595 case REG:
2596 case CONST_INT:
2597 case CONST_DOUBLE:
2598 case CONST_FIXED:
2599 case CONST_VECTOR:
2600 case SYMBOL_REF:
2601 case LABEL_REF:
2602 case CODE_LABEL:
2603 case PC:
2604 case CC0:
2605 case SCRATCH:
2606 /* SCRATCH must be shared because they represent distinct values. */
2607 return;
2608 case CLOBBER:
2609 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2610 return;
2611 break;
2612
2613 case CONST:
2614 if (shared_const_p (x))
2615 return;
2616 break;
2617
2618 case DEBUG_INSN:
2619 case INSN:
2620 case JUMP_INSN:
2621 case CALL_INSN:
2622 case NOTE:
2623 case BARRIER:
2624 /* The chain of insns is not being copied. */
2625 return;
2626
2627 default:
2628 break;
2629 }
2630
2631 /* This rtx may not be shared. If it has already been seen,
2632 replace it with a copy of itself. */
2633
2634 if (RTX_FLAG (x, used))
2635 {
2636 x = shallow_copy_rtx (x);
2637 copied = 1;
2638 }
2639 RTX_FLAG (x, used) = 1;
2640
2641 /* Now scan the subexpressions recursively.
2642 We can store any replaced subexpressions directly into X
2643 since we know X is not shared! Any vectors in X
2644 must be copied if X was copied. */
2645
2646 format_ptr = GET_RTX_FORMAT (code);
2647 length = GET_RTX_LENGTH (code);
2648 last_ptr = NULL;
2649
2650 for (i = 0; i < length; i++)
2651 {
2652 switch (*format_ptr++)
2653 {
2654 case 'e':
2655 if (last_ptr)
2656 copy_rtx_if_shared_1 (last_ptr);
2657 last_ptr = &XEXP (x, i);
2658 break;
2659
2660 case 'E':
2661 if (XVEC (x, i) != NULL)
2662 {
2663 int j;
2664 int len = XVECLEN (x, i);
2665
2666 /* Copy the vector iff I copied the rtx and the length
2667 is nonzero. */
2668 if (copied && len > 0)
2669 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2670
2671 /* Call recursively on all inside the vector. */
2672 for (j = 0; j < len; j++)
2673 {
2674 if (last_ptr)
2675 copy_rtx_if_shared_1 (last_ptr);
2676 last_ptr = &XVECEXP (x, i, j);
2677 }
2678 }
2679 break;
2680 }
2681 }
2682 *orig1 = x;
2683 if (last_ptr)
2684 {
2685 orig1 = last_ptr;
2686 goto repeat;
2687 }
2688 return;
2689 }
2690
2691 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2692 to look for shared sub-parts. */
2693
2694 void
2695 reset_used_flags (rtx x)
2696 {
2697 int i, j;
2698 enum rtx_code code;
2699 const char *format_ptr;
2700 int length;
2701
2702 /* Repeat is used to turn tail-recursion into iteration. */
2703 repeat:
2704 if (x == 0)
2705 return;
2706
2707 code = GET_CODE (x);
2708
2709 /* These types may be freely shared so we needn't do any resetting
2710 for them. */
2711
2712 switch (code)
2713 {
2714 case REG:
2715 case CONST_INT:
2716 case CONST_DOUBLE:
2717 case CONST_FIXED:
2718 case CONST_VECTOR:
2719 case SYMBOL_REF:
2720 case CODE_LABEL:
2721 case PC:
2722 case CC0:
2723 return;
2724
2725 case DEBUG_INSN:
2726 case INSN:
2727 case JUMP_INSN:
2728 case CALL_INSN:
2729 case NOTE:
2730 case LABEL_REF:
2731 case BARRIER:
2732 /* The chain of insns is not being copied. */
2733 return;
2734
2735 default:
2736 break;
2737 }
2738
2739 RTX_FLAG (x, used) = 0;
2740
2741 format_ptr = GET_RTX_FORMAT (code);
2742 length = GET_RTX_LENGTH (code);
2743
2744 for (i = 0; i < length; i++)
2745 {
2746 switch (*format_ptr++)
2747 {
2748 case 'e':
2749 if (i == length-1)
2750 {
2751 x = XEXP (x, i);
2752 goto repeat;
2753 }
2754 reset_used_flags (XEXP (x, i));
2755 break;
2756
2757 case 'E':
2758 for (j = 0; j < XVECLEN (x, i); j++)
2759 reset_used_flags (XVECEXP (x, i, j));
2760 break;
2761 }
2762 }
2763 }
2764
2765 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2766 to look for shared sub-parts. */
2767
2768 void
2769 set_used_flags (rtx x)
2770 {
2771 int i, j;
2772 enum rtx_code code;
2773 const char *format_ptr;
2774
2775 if (x == 0)
2776 return;
2777
2778 code = GET_CODE (x);
2779
2780 /* These types may be freely shared so we needn't do any resetting
2781 for them. */
2782
2783 switch (code)
2784 {
2785 case REG:
2786 case CONST_INT:
2787 case CONST_DOUBLE:
2788 case CONST_FIXED:
2789 case CONST_VECTOR:
2790 case SYMBOL_REF:
2791 case CODE_LABEL:
2792 case PC:
2793 case CC0:
2794 return;
2795
2796 case DEBUG_INSN:
2797 case INSN:
2798 case JUMP_INSN:
2799 case CALL_INSN:
2800 case NOTE:
2801 case LABEL_REF:
2802 case BARRIER:
2803 /* The chain of insns is not being copied. */
2804 return;
2805
2806 default:
2807 break;
2808 }
2809
2810 RTX_FLAG (x, used) = 1;
2811
2812 format_ptr = GET_RTX_FORMAT (code);
2813 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2814 {
2815 switch (*format_ptr++)
2816 {
2817 case 'e':
2818 set_used_flags (XEXP (x, i));
2819 break;
2820
2821 case 'E':
2822 for (j = 0; j < XVECLEN (x, i); j++)
2823 set_used_flags (XVECEXP (x, i, j));
2824 break;
2825 }
2826 }
2827 }
2828 \f
2829 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2830 Return X or the rtx for the pseudo reg the value of X was copied into.
2831 OTHER must be valid as a SET_DEST. */
2832
2833 rtx
2834 make_safe_from (rtx x, rtx other)
2835 {
2836 while (1)
2837 switch (GET_CODE (other))
2838 {
2839 case SUBREG:
2840 other = SUBREG_REG (other);
2841 break;
2842 case STRICT_LOW_PART:
2843 case SIGN_EXTEND:
2844 case ZERO_EXTEND:
2845 other = XEXP (other, 0);
2846 break;
2847 default:
2848 goto done;
2849 }
2850 done:
2851 if ((MEM_P (other)
2852 && ! CONSTANT_P (x)
2853 && !REG_P (x)
2854 && GET_CODE (x) != SUBREG)
2855 || (REG_P (other)
2856 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2857 || reg_mentioned_p (other, x))))
2858 {
2859 rtx temp = gen_reg_rtx (GET_MODE (x));
2860 emit_move_insn (temp, x);
2861 return temp;
2862 }
2863 return x;
2864 }
2865 \f
2866 /* Emission of insns (adding them to the doubly-linked list). */
2867
2868 /* Return the first insn of the current sequence or current function. */
2869
2870 rtx
2871 get_insns (void)
2872 {
2873 return first_insn;
2874 }
2875
2876 /* Specify a new insn as the first in the chain. */
2877
2878 void
2879 set_first_insn (rtx insn)
2880 {
2881 gcc_assert (!PREV_INSN (insn));
2882 first_insn = insn;
2883 }
2884
2885 /* Return the last insn emitted in current sequence or current function. */
2886
2887 rtx
2888 get_last_insn (void)
2889 {
2890 return last_insn;
2891 }
2892
2893 /* Specify a new insn as the last in the chain. */
2894
2895 void
2896 set_last_insn (rtx insn)
2897 {
2898 gcc_assert (!NEXT_INSN (insn));
2899 last_insn = insn;
2900 }
2901
2902 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2903
2904 rtx
2905 get_last_insn_anywhere (void)
2906 {
2907 struct sequence_stack *stack;
2908 if (last_insn)
2909 return last_insn;
2910 for (stack = seq_stack; stack; stack = stack->next)
2911 if (stack->last != 0)
2912 return stack->last;
2913 return 0;
2914 }
2915
2916 /* Return the first nonnote insn emitted in current sequence or current
2917 function. This routine looks inside SEQUENCEs. */
2918
2919 rtx
2920 get_first_nonnote_insn (void)
2921 {
2922 rtx insn = first_insn;
2923
2924 if (insn)
2925 {
2926 if (NOTE_P (insn))
2927 for (insn = next_insn (insn);
2928 insn && NOTE_P (insn);
2929 insn = next_insn (insn))
2930 continue;
2931 else
2932 {
2933 if (NONJUMP_INSN_P (insn)
2934 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2935 insn = XVECEXP (PATTERN (insn), 0, 0);
2936 }
2937 }
2938
2939 return insn;
2940 }
2941
2942 /* Return the last nonnote insn emitted in current sequence or current
2943 function. This routine looks inside SEQUENCEs. */
2944
2945 rtx
2946 get_last_nonnote_insn (void)
2947 {
2948 rtx insn = last_insn;
2949
2950 if (insn)
2951 {
2952 if (NOTE_P (insn))
2953 for (insn = previous_insn (insn);
2954 insn && NOTE_P (insn);
2955 insn = previous_insn (insn))
2956 continue;
2957 else
2958 {
2959 if (NONJUMP_INSN_P (insn)
2960 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2961 insn = XVECEXP (PATTERN (insn), 0,
2962 XVECLEN (PATTERN (insn), 0) - 1);
2963 }
2964 }
2965
2966 return insn;
2967 }
2968
2969 /* Return a number larger than any instruction's uid in this function. */
2970
2971 int
2972 get_max_uid (void)
2973 {
2974 return cur_insn_uid;
2975 }
2976
2977 /* Return the number of actual (non-debug) insns emitted in this
2978 function. */
2979
2980 int
2981 get_max_insn_count (void)
2982 {
2983 int n = cur_insn_uid;
2984
2985 /* The table size must be stable across -g, to avoid codegen
2986 differences due to debug insns, and not be affected by
2987 -fmin-insn-uid, to avoid excessive table size and to simplify
2988 debugging of -fcompare-debug failures. */
2989 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
2990 n -= cur_debug_insn_uid;
2991 else
2992 n -= MIN_NONDEBUG_INSN_UID;
2993
2994 return n;
2995 }
2996
2997 \f
2998 /* Return the next insn. If it is a SEQUENCE, return the first insn
2999 of the sequence. */
3000
3001 rtx
3002 next_insn (rtx insn)
3003 {
3004 if (insn)
3005 {
3006 insn = NEXT_INSN (insn);
3007 if (insn && NONJUMP_INSN_P (insn)
3008 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3009 insn = XVECEXP (PATTERN (insn), 0, 0);
3010 }
3011
3012 return insn;
3013 }
3014
3015 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3016 of the sequence. */
3017
3018 rtx
3019 previous_insn (rtx insn)
3020 {
3021 if (insn)
3022 {
3023 insn = PREV_INSN (insn);
3024 if (insn && NONJUMP_INSN_P (insn)
3025 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3026 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3027 }
3028
3029 return insn;
3030 }
3031
3032 /* Return the next insn after INSN that is not a NOTE. This routine does not
3033 look inside SEQUENCEs. */
3034
3035 rtx
3036 next_nonnote_insn (rtx insn)
3037 {
3038 while (insn)
3039 {
3040 insn = NEXT_INSN (insn);
3041 if (insn == 0 || !NOTE_P (insn))
3042 break;
3043 }
3044
3045 return insn;
3046 }
3047
3048 /* Return the next insn after INSN that is not a NOTE, but stop the
3049 search before we enter another basic block. This routine does not
3050 look inside SEQUENCEs. */
3051
3052 rtx
3053 next_nonnote_insn_bb (rtx insn)
3054 {
3055 while (insn)
3056 {
3057 insn = NEXT_INSN (insn);
3058 if (insn == 0 || !NOTE_P (insn))
3059 break;
3060 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3061 return NULL_RTX;
3062 }
3063
3064 return insn;
3065 }
3066
3067 /* Return the previous insn before INSN that is not a NOTE. This routine does
3068 not look inside SEQUENCEs. */
3069
3070 rtx
3071 prev_nonnote_insn (rtx insn)
3072 {
3073 while (insn)
3074 {
3075 insn = PREV_INSN (insn);
3076 if (insn == 0 || !NOTE_P (insn))
3077 break;
3078 }
3079
3080 return insn;
3081 }
3082
3083 /* Return the previous insn before INSN that is not a NOTE, but stop
3084 the search before we enter another basic block. This routine does
3085 not look inside SEQUENCEs. */
3086
3087 rtx
3088 prev_nonnote_insn_bb (rtx insn)
3089 {
3090 while (insn)
3091 {
3092 insn = PREV_INSN (insn);
3093 if (insn == 0 || !NOTE_P (insn))
3094 break;
3095 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3096 return NULL_RTX;
3097 }
3098
3099 return insn;
3100 }
3101
3102 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3103 routine does not look inside SEQUENCEs. */
3104
3105 rtx
3106 next_nondebug_insn (rtx insn)
3107 {
3108 while (insn)
3109 {
3110 insn = NEXT_INSN (insn);
3111 if (insn == 0 || !DEBUG_INSN_P (insn))
3112 break;
3113 }
3114
3115 return insn;
3116 }
3117
3118 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3119 This routine does not look inside SEQUENCEs. */
3120
3121 rtx
3122 prev_nondebug_insn (rtx insn)
3123 {
3124 while (insn)
3125 {
3126 insn = PREV_INSN (insn);
3127 if (insn == 0 || !DEBUG_INSN_P (insn))
3128 break;
3129 }
3130
3131 return insn;
3132 }
3133
3134 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3135 or 0, if there is none. This routine does not look inside
3136 SEQUENCEs. */
3137
3138 rtx
3139 next_real_insn (rtx insn)
3140 {
3141 while (insn)
3142 {
3143 insn = NEXT_INSN (insn);
3144 if (insn == 0 || INSN_P (insn))
3145 break;
3146 }
3147
3148 return insn;
3149 }
3150
3151 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3152 or 0, if there is none. This routine does not look inside
3153 SEQUENCEs. */
3154
3155 rtx
3156 prev_real_insn (rtx insn)
3157 {
3158 while (insn)
3159 {
3160 insn = PREV_INSN (insn);
3161 if (insn == 0 || INSN_P (insn))
3162 break;
3163 }
3164
3165 return insn;
3166 }
3167
3168 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3169 This routine does not look inside SEQUENCEs. */
3170
3171 rtx
3172 last_call_insn (void)
3173 {
3174 rtx insn;
3175
3176 for (insn = get_last_insn ();
3177 insn && !CALL_P (insn);
3178 insn = PREV_INSN (insn))
3179 ;
3180
3181 return insn;
3182 }
3183
3184 /* Find the next insn after INSN that really does something. This routine
3185 does not look inside SEQUENCEs. Until reload has completed, this is the
3186 same as next_real_insn. */
3187
3188 int
3189 active_insn_p (const_rtx insn)
3190 {
3191 return (CALL_P (insn) || JUMP_P (insn)
3192 || (NONJUMP_INSN_P (insn)
3193 && (! reload_completed
3194 || (GET_CODE (PATTERN (insn)) != USE
3195 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3196 }
3197
3198 rtx
3199 next_active_insn (rtx insn)
3200 {
3201 while (insn)
3202 {
3203 insn = NEXT_INSN (insn);
3204 if (insn == 0 || active_insn_p (insn))
3205 break;
3206 }
3207
3208 return insn;
3209 }
3210
3211 /* Find the last insn before INSN that really does something. This routine
3212 does not look inside SEQUENCEs. Until reload has completed, this is the
3213 same as prev_real_insn. */
3214
3215 rtx
3216 prev_active_insn (rtx insn)
3217 {
3218 while (insn)
3219 {
3220 insn = PREV_INSN (insn);
3221 if (insn == 0 || active_insn_p (insn))
3222 break;
3223 }
3224
3225 return insn;
3226 }
3227
3228 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3229
3230 rtx
3231 next_label (rtx insn)
3232 {
3233 while (insn)
3234 {
3235 insn = NEXT_INSN (insn);
3236 if (insn == 0 || LABEL_P (insn))
3237 break;
3238 }
3239
3240 return insn;
3241 }
3242
3243 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3244
3245 rtx
3246 prev_label (rtx insn)
3247 {
3248 while (insn)
3249 {
3250 insn = PREV_INSN (insn);
3251 if (insn == 0 || LABEL_P (insn))
3252 break;
3253 }
3254
3255 return insn;
3256 }
3257
3258 /* Return the last label to mark the same position as LABEL. Return null
3259 if LABEL itself is null. */
3260
3261 rtx
3262 skip_consecutive_labels (rtx label)
3263 {
3264 rtx insn;
3265
3266 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3267 if (LABEL_P (insn))
3268 label = insn;
3269
3270 return label;
3271 }
3272 \f
3273 #ifdef HAVE_cc0
3274 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3275 and REG_CC_USER notes so we can find it. */
3276
3277 void
3278 link_cc0_insns (rtx insn)
3279 {
3280 rtx user = next_nonnote_insn (insn);
3281
3282 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3283 user = XVECEXP (PATTERN (user), 0, 0);
3284
3285 add_reg_note (user, REG_CC_SETTER, insn);
3286 add_reg_note (insn, REG_CC_USER, user);
3287 }
3288
3289 /* Return the next insn that uses CC0 after INSN, which is assumed to
3290 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3291 applied to the result of this function should yield INSN).
3292
3293 Normally, this is simply the next insn. However, if a REG_CC_USER note
3294 is present, it contains the insn that uses CC0.
3295
3296 Return 0 if we can't find the insn. */
3297
3298 rtx
3299 next_cc0_user (rtx insn)
3300 {
3301 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3302
3303 if (note)
3304 return XEXP (note, 0);
3305
3306 insn = next_nonnote_insn (insn);
3307 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3308 insn = XVECEXP (PATTERN (insn), 0, 0);
3309
3310 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3311 return insn;
3312
3313 return 0;
3314 }
3315
3316 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3317 note, it is the previous insn. */
3318
3319 rtx
3320 prev_cc0_setter (rtx insn)
3321 {
3322 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3323
3324 if (note)
3325 return XEXP (note, 0);
3326
3327 insn = prev_nonnote_insn (insn);
3328 gcc_assert (sets_cc0_p (PATTERN (insn)));
3329
3330 return insn;
3331 }
3332 #endif
3333
3334 #ifdef AUTO_INC_DEC
3335 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3336
3337 static int
3338 find_auto_inc (rtx *xp, void *data)
3339 {
3340 rtx x = *xp;
3341 rtx reg = (rtx) data;
3342
3343 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3344 return 0;
3345
3346 switch (GET_CODE (x))
3347 {
3348 case PRE_DEC:
3349 case PRE_INC:
3350 case POST_DEC:
3351 case POST_INC:
3352 case PRE_MODIFY:
3353 case POST_MODIFY:
3354 if (rtx_equal_p (reg, XEXP (x, 0)))
3355 return 1;
3356 break;
3357
3358 default:
3359 gcc_unreachable ();
3360 }
3361 return -1;
3362 }
3363 #endif
3364
3365 /* Increment the label uses for all labels present in rtx. */
3366
3367 static void
3368 mark_label_nuses (rtx x)
3369 {
3370 enum rtx_code code;
3371 int i, j;
3372 const char *fmt;
3373
3374 code = GET_CODE (x);
3375 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3376 LABEL_NUSES (XEXP (x, 0))++;
3377
3378 fmt = GET_RTX_FORMAT (code);
3379 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3380 {
3381 if (fmt[i] == 'e')
3382 mark_label_nuses (XEXP (x, i));
3383 else if (fmt[i] == 'E')
3384 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3385 mark_label_nuses (XVECEXP (x, i, j));
3386 }
3387 }
3388
3389 \f
3390 /* Try splitting insns that can be split for better scheduling.
3391 PAT is the pattern which might split.
3392 TRIAL is the insn providing PAT.
3393 LAST is nonzero if we should return the last insn of the sequence produced.
3394
3395 If this routine succeeds in splitting, it returns the first or last
3396 replacement insn depending on the value of LAST. Otherwise, it
3397 returns TRIAL. If the insn to be returned can be split, it will be. */
3398
3399 rtx
3400 try_split (rtx pat, rtx trial, int last)
3401 {
3402 rtx before = PREV_INSN (trial);
3403 rtx after = NEXT_INSN (trial);
3404 int has_barrier = 0;
3405 rtx note, seq, tem;
3406 int probability;
3407 rtx insn_last, insn;
3408 int njumps = 0;
3409
3410 /* We're not good at redistributing frame information. */
3411 if (RTX_FRAME_RELATED_P (trial))
3412 return trial;
3413
3414 if (any_condjump_p (trial)
3415 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3416 split_branch_probability = INTVAL (XEXP (note, 0));
3417 probability = split_branch_probability;
3418
3419 seq = split_insns (pat, trial);
3420
3421 split_branch_probability = -1;
3422
3423 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3424 We may need to handle this specially. */
3425 if (after && BARRIER_P (after))
3426 {
3427 has_barrier = 1;
3428 after = NEXT_INSN (after);
3429 }
3430
3431 if (!seq)
3432 return trial;
3433
3434 /* Avoid infinite loop if any insn of the result matches
3435 the original pattern. */
3436 insn_last = seq;
3437 while (1)
3438 {
3439 if (INSN_P (insn_last)
3440 && rtx_equal_p (PATTERN (insn_last), pat))
3441 return trial;
3442 if (!NEXT_INSN (insn_last))
3443 break;
3444 insn_last = NEXT_INSN (insn_last);
3445 }
3446
3447 /* We will be adding the new sequence to the function. The splitters
3448 may have introduced invalid RTL sharing, so unshare the sequence now. */
3449 unshare_all_rtl_in_chain (seq);
3450
3451 /* Mark labels. */
3452 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3453 {
3454 if (JUMP_P (insn))
3455 {
3456 mark_jump_label (PATTERN (insn), insn, 0);
3457 njumps++;
3458 if (probability != -1
3459 && any_condjump_p (insn)
3460 && !find_reg_note (insn, REG_BR_PROB, 0))
3461 {
3462 /* We can preserve the REG_BR_PROB notes only if exactly
3463 one jump is created, otherwise the machine description
3464 is responsible for this step using
3465 split_branch_probability variable. */
3466 gcc_assert (njumps == 1);
3467 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3468 }
3469 }
3470 }
3471
3472 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3473 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3474 if (CALL_P (trial))
3475 {
3476 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3477 if (CALL_P (insn))
3478 {
3479 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3480 while (*p)
3481 p = &XEXP (*p, 1);
3482 *p = CALL_INSN_FUNCTION_USAGE (trial);
3483 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3484 }
3485 }
3486
3487 /* Copy notes, particularly those related to the CFG. */
3488 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3489 {
3490 switch (REG_NOTE_KIND (note))
3491 {
3492 case REG_EH_REGION:
3493 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3494 break;
3495
3496 case REG_NORETURN:
3497 case REG_SETJMP:
3498 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3499 {
3500 if (CALL_P (insn))
3501 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3502 }
3503 break;
3504
3505 case REG_NON_LOCAL_GOTO:
3506 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3507 {
3508 if (JUMP_P (insn))
3509 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3510 }
3511 break;
3512
3513 #ifdef AUTO_INC_DEC
3514 case REG_INC:
3515 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3516 {
3517 rtx reg = XEXP (note, 0);
3518 if (!FIND_REG_INC_NOTE (insn, reg)
3519 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3520 add_reg_note (insn, REG_INC, reg);
3521 }
3522 break;
3523 #endif
3524
3525 default:
3526 break;
3527 }
3528 }
3529
3530 /* If there are LABELS inside the split insns increment the
3531 usage count so we don't delete the label. */
3532 if (INSN_P (trial))
3533 {
3534 insn = insn_last;
3535 while (insn != NULL_RTX)
3536 {
3537 /* JUMP_P insns have already been "marked" above. */
3538 if (NONJUMP_INSN_P (insn))
3539 mark_label_nuses (PATTERN (insn));
3540
3541 insn = PREV_INSN (insn);
3542 }
3543 }
3544
3545 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3546
3547 delete_insn (trial);
3548 if (has_barrier)
3549 emit_barrier_after (tem);
3550
3551 /* Recursively call try_split for each new insn created; by the
3552 time control returns here that insn will be fully split, so
3553 set LAST and continue from the insn after the one returned.
3554 We can't use next_active_insn here since AFTER may be a note.
3555 Ignore deleted insns, which can be occur if not optimizing. */
3556 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3557 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3558 tem = try_split (PATTERN (tem), tem, 1);
3559
3560 /* Return either the first or the last insn, depending on which was
3561 requested. */
3562 return last
3563 ? (after ? PREV_INSN (after) : last_insn)
3564 : NEXT_INSN (before);
3565 }
3566 \f
3567 /* Make and return an INSN rtx, initializing all its slots.
3568 Store PATTERN in the pattern slots. */
3569
3570 rtx
3571 make_insn_raw (rtx pattern)
3572 {
3573 rtx insn;
3574
3575 insn = rtx_alloc (INSN);
3576
3577 INSN_UID (insn) = cur_insn_uid++;
3578 PATTERN (insn) = pattern;
3579 INSN_CODE (insn) = -1;
3580 REG_NOTES (insn) = NULL;
3581 INSN_LOCATOR (insn) = curr_insn_locator ();
3582 BLOCK_FOR_INSN (insn) = NULL;
3583
3584 #ifdef ENABLE_RTL_CHECKING
3585 if (insn
3586 && INSN_P (insn)
3587 && (returnjump_p (insn)
3588 || (GET_CODE (insn) == SET
3589 && SET_DEST (insn) == pc_rtx)))
3590 {
3591 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3592 debug_rtx (insn);
3593 }
3594 #endif
3595
3596 return insn;
3597 }
3598
3599 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3600
3601 rtx
3602 make_debug_insn_raw (rtx pattern)
3603 {
3604 rtx insn;
3605
3606 insn = rtx_alloc (DEBUG_INSN);
3607 INSN_UID (insn) = cur_debug_insn_uid++;
3608 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3609 INSN_UID (insn) = cur_insn_uid++;
3610
3611 PATTERN (insn) = pattern;
3612 INSN_CODE (insn) = -1;
3613 REG_NOTES (insn) = NULL;
3614 INSN_LOCATOR (insn) = curr_insn_locator ();
3615 BLOCK_FOR_INSN (insn) = NULL;
3616
3617 return insn;
3618 }
3619
3620 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3621
3622 rtx
3623 make_jump_insn_raw (rtx pattern)
3624 {
3625 rtx insn;
3626
3627 insn = rtx_alloc (JUMP_INSN);
3628 INSN_UID (insn) = cur_insn_uid++;
3629
3630 PATTERN (insn) = pattern;
3631 INSN_CODE (insn) = -1;
3632 REG_NOTES (insn) = NULL;
3633 JUMP_LABEL (insn) = NULL;
3634 INSN_LOCATOR (insn) = curr_insn_locator ();
3635 BLOCK_FOR_INSN (insn) = NULL;
3636
3637 return insn;
3638 }
3639
3640 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3641
3642 static rtx
3643 make_call_insn_raw (rtx pattern)
3644 {
3645 rtx insn;
3646
3647 insn = rtx_alloc (CALL_INSN);
3648 INSN_UID (insn) = cur_insn_uid++;
3649
3650 PATTERN (insn) = pattern;
3651 INSN_CODE (insn) = -1;
3652 REG_NOTES (insn) = NULL;
3653 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3654 INSN_LOCATOR (insn) = curr_insn_locator ();
3655 BLOCK_FOR_INSN (insn) = NULL;
3656
3657 return insn;
3658 }
3659 \f
3660 /* Add INSN to the end of the doubly-linked list.
3661 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3662
3663 void
3664 add_insn (rtx insn)
3665 {
3666 PREV_INSN (insn) = last_insn;
3667 NEXT_INSN (insn) = 0;
3668
3669 if (NULL != last_insn)
3670 NEXT_INSN (last_insn) = insn;
3671
3672 if (NULL == first_insn)
3673 first_insn = insn;
3674
3675 last_insn = insn;
3676 }
3677
3678 /* Add INSN into the doubly-linked list after insn AFTER. This and
3679 the next should be the only functions called to insert an insn once
3680 delay slots have been filled since only they know how to update a
3681 SEQUENCE. */
3682
3683 void
3684 add_insn_after (rtx insn, rtx after, basic_block bb)
3685 {
3686 rtx next = NEXT_INSN (after);
3687
3688 gcc_assert (!optimize || !INSN_DELETED_P (after));
3689
3690 NEXT_INSN (insn) = next;
3691 PREV_INSN (insn) = after;
3692
3693 if (next)
3694 {
3695 PREV_INSN (next) = insn;
3696 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3697 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3698 }
3699 else if (last_insn == after)
3700 last_insn = insn;
3701 else
3702 {
3703 struct sequence_stack *stack = seq_stack;
3704 /* Scan all pending sequences too. */
3705 for (; stack; stack = stack->next)
3706 if (after == stack->last)
3707 {
3708 stack->last = insn;
3709 break;
3710 }
3711
3712 gcc_assert (stack);
3713 }
3714
3715 if (!BARRIER_P (after)
3716 && !BARRIER_P (insn)
3717 && (bb = BLOCK_FOR_INSN (after)))
3718 {
3719 set_block_for_insn (insn, bb);
3720 if (INSN_P (insn))
3721 df_insn_rescan (insn);
3722 /* Should not happen as first in the BB is always
3723 either NOTE or LABEL. */
3724 if (BB_END (bb) == after
3725 /* Avoid clobbering of structure when creating new BB. */
3726 && !BARRIER_P (insn)
3727 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3728 BB_END (bb) = insn;
3729 }
3730
3731 NEXT_INSN (after) = insn;
3732 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3733 {
3734 rtx sequence = PATTERN (after);
3735 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3736 }
3737 }
3738
3739 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3740 the previous should be the only functions called to insert an insn
3741 once delay slots have been filled since only they know how to
3742 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3743 bb from before. */
3744
3745 void
3746 add_insn_before (rtx insn, rtx before, basic_block bb)
3747 {
3748 rtx prev = PREV_INSN (before);
3749
3750 gcc_assert (!optimize || !INSN_DELETED_P (before));
3751
3752 PREV_INSN (insn) = prev;
3753 NEXT_INSN (insn) = before;
3754
3755 if (prev)
3756 {
3757 NEXT_INSN (prev) = insn;
3758 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3759 {
3760 rtx sequence = PATTERN (prev);
3761 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3762 }
3763 }
3764 else if (first_insn == before)
3765 first_insn = insn;
3766 else
3767 {
3768 struct sequence_stack *stack = seq_stack;
3769 /* Scan all pending sequences too. */
3770 for (; stack; stack = stack->next)
3771 if (before == stack->first)
3772 {
3773 stack->first = insn;
3774 break;
3775 }
3776
3777 gcc_assert (stack);
3778 }
3779
3780 if (!bb
3781 && !BARRIER_P (before)
3782 && !BARRIER_P (insn))
3783 bb = BLOCK_FOR_INSN (before);
3784
3785 if (bb)
3786 {
3787 set_block_for_insn (insn, bb);
3788 if (INSN_P (insn))
3789 df_insn_rescan (insn);
3790 /* Should not happen as first in the BB is always either NOTE or
3791 LABEL. */
3792 gcc_assert (BB_HEAD (bb) != insn
3793 /* Avoid clobbering of structure when creating new BB. */
3794 || BARRIER_P (insn)
3795 || NOTE_INSN_BASIC_BLOCK_P (insn));
3796 }
3797
3798 PREV_INSN (before) = insn;
3799 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3800 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3801 }
3802
3803
3804 /* Replace insn with an deleted instruction note. */
3805
3806 void
3807 set_insn_deleted (rtx insn)
3808 {
3809 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3810 PUT_CODE (insn, NOTE);
3811 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3812 }
3813
3814
3815 /* Remove an insn from its doubly-linked list. This function knows how
3816 to handle sequences. */
3817 void
3818 remove_insn (rtx insn)
3819 {
3820 rtx next = NEXT_INSN (insn);
3821 rtx prev = PREV_INSN (insn);
3822 basic_block bb;
3823
3824 /* Later in the code, the block will be marked dirty. */
3825 df_insn_delete (NULL, INSN_UID (insn));
3826
3827 if (prev)
3828 {
3829 NEXT_INSN (prev) = next;
3830 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3831 {
3832 rtx sequence = PATTERN (prev);
3833 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3834 }
3835 }
3836 else if (first_insn == insn)
3837 first_insn = next;
3838 else
3839 {
3840 struct sequence_stack *stack = seq_stack;
3841 /* Scan all pending sequences too. */
3842 for (; stack; stack = stack->next)
3843 if (insn == stack->first)
3844 {
3845 stack->first = next;
3846 break;
3847 }
3848
3849 gcc_assert (stack);
3850 }
3851
3852 if (next)
3853 {
3854 PREV_INSN (next) = prev;
3855 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3856 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3857 }
3858 else if (last_insn == insn)
3859 last_insn = prev;
3860 else
3861 {
3862 struct sequence_stack *stack = seq_stack;
3863 /* Scan all pending sequences too. */
3864 for (; stack; stack = stack->next)
3865 if (insn == stack->last)
3866 {
3867 stack->last = prev;
3868 break;
3869 }
3870
3871 gcc_assert (stack);
3872 }
3873 if (!BARRIER_P (insn)
3874 && (bb = BLOCK_FOR_INSN (insn)))
3875 {
3876 if (INSN_P (insn))
3877 df_set_bb_dirty (bb);
3878 if (BB_HEAD (bb) == insn)
3879 {
3880 /* Never ever delete the basic block note without deleting whole
3881 basic block. */
3882 gcc_assert (!NOTE_P (insn));
3883 BB_HEAD (bb) = next;
3884 }
3885 if (BB_END (bb) == insn)
3886 BB_END (bb) = prev;
3887 }
3888 }
3889
3890 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3891
3892 void
3893 add_function_usage_to (rtx call_insn, rtx call_fusage)
3894 {
3895 gcc_assert (call_insn && CALL_P (call_insn));
3896
3897 /* Put the register usage information on the CALL. If there is already
3898 some usage information, put ours at the end. */
3899 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3900 {
3901 rtx link;
3902
3903 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3904 link = XEXP (link, 1))
3905 ;
3906
3907 XEXP (link, 1) = call_fusage;
3908 }
3909 else
3910 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3911 }
3912
3913 /* Delete all insns made since FROM.
3914 FROM becomes the new last instruction. */
3915
3916 void
3917 delete_insns_since (rtx from)
3918 {
3919 if (from == 0)
3920 first_insn = 0;
3921 else
3922 NEXT_INSN (from) = 0;
3923 last_insn = from;
3924 }
3925
3926 /* This function is deprecated, please use sequences instead.
3927
3928 Move a consecutive bunch of insns to a different place in the chain.
3929 The insns to be moved are those between FROM and TO.
3930 They are moved to a new position after the insn AFTER.
3931 AFTER must not be FROM or TO or any insn in between.
3932
3933 This function does not know about SEQUENCEs and hence should not be
3934 called after delay-slot filling has been done. */
3935
3936 void
3937 reorder_insns_nobb (rtx from, rtx to, rtx after)
3938 {
3939 /* Splice this bunch out of where it is now. */
3940 if (PREV_INSN (from))
3941 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3942 if (NEXT_INSN (to))
3943 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3944 if (last_insn == to)
3945 last_insn = PREV_INSN (from);
3946 if (first_insn == from)
3947 first_insn = NEXT_INSN (to);
3948
3949 /* Make the new neighbors point to it and it to them. */
3950 if (NEXT_INSN (after))
3951 PREV_INSN (NEXT_INSN (after)) = to;
3952
3953 NEXT_INSN (to) = NEXT_INSN (after);
3954 PREV_INSN (from) = after;
3955 NEXT_INSN (after) = from;
3956 if (after == last_insn)
3957 last_insn = to;
3958 }
3959
3960 /* Same as function above, but take care to update BB boundaries. */
3961 void
3962 reorder_insns (rtx from, rtx to, rtx after)
3963 {
3964 rtx prev = PREV_INSN (from);
3965 basic_block bb, bb2;
3966
3967 reorder_insns_nobb (from, to, after);
3968
3969 if (!BARRIER_P (after)
3970 && (bb = BLOCK_FOR_INSN (after)))
3971 {
3972 rtx x;
3973 df_set_bb_dirty (bb);
3974
3975 if (!BARRIER_P (from)
3976 && (bb2 = BLOCK_FOR_INSN (from)))
3977 {
3978 if (BB_END (bb2) == to)
3979 BB_END (bb2) = prev;
3980 df_set_bb_dirty (bb2);
3981 }
3982
3983 if (BB_END (bb) == after)
3984 BB_END (bb) = to;
3985
3986 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3987 if (!BARRIER_P (x))
3988 df_insn_change_bb (x, bb);
3989 }
3990 }
3991
3992 \f
3993 /* Emit insn(s) of given code and pattern
3994 at a specified place within the doubly-linked list.
3995
3996 All of the emit_foo global entry points accept an object
3997 X which is either an insn list or a PATTERN of a single
3998 instruction.
3999
4000 There are thus a few canonical ways to generate code and
4001 emit it at a specific place in the instruction stream. For
4002 example, consider the instruction named SPOT and the fact that
4003 we would like to emit some instructions before SPOT. We might
4004 do it like this:
4005
4006 start_sequence ();
4007 ... emit the new instructions ...
4008 insns_head = get_insns ();
4009 end_sequence ();
4010
4011 emit_insn_before (insns_head, SPOT);
4012
4013 It used to be common to generate SEQUENCE rtl instead, but that
4014 is a relic of the past which no longer occurs. The reason is that
4015 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4016 generated would almost certainly die right after it was created. */
4017
4018 /* Make X be output before the instruction BEFORE. */
4019
4020 rtx
4021 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4022 {
4023 rtx last = before;
4024 rtx insn;
4025
4026 gcc_assert (before);
4027
4028 if (x == NULL_RTX)
4029 return last;
4030
4031 switch (GET_CODE (x))
4032 {
4033 case DEBUG_INSN:
4034 case INSN:
4035 case JUMP_INSN:
4036 case CALL_INSN:
4037 case CODE_LABEL:
4038 case BARRIER:
4039 case NOTE:
4040 insn = x;
4041 while (insn)
4042 {
4043 rtx next = NEXT_INSN (insn);
4044 add_insn_before (insn, before, bb);
4045 last = insn;
4046 insn = next;
4047 }
4048 break;
4049
4050 #ifdef ENABLE_RTL_CHECKING
4051 case SEQUENCE:
4052 gcc_unreachable ();
4053 break;
4054 #endif
4055
4056 default:
4057 last = make_insn_raw (x);
4058 add_insn_before (last, before, bb);
4059 break;
4060 }
4061
4062 return last;
4063 }
4064
4065 /* Make an instruction with body X and code JUMP_INSN
4066 and output it before the instruction BEFORE. */
4067
4068 rtx
4069 emit_jump_insn_before_noloc (rtx x, rtx before)
4070 {
4071 rtx insn, last = NULL_RTX;
4072
4073 gcc_assert (before);
4074
4075 switch (GET_CODE (x))
4076 {
4077 case DEBUG_INSN:
4078 case INSN:
4079 case JUMP_INSN:
4080 case CALL_INSN:
4081 case CODE_LABEL:
4082 case BARRIER:
4083 case NOTE:
4084 insn = x;
4085 while (insn)
4086 {
4087 rtx next = NEXT_INSN (insn);
4088 add_insn_before (insn, before, NULL);
4089 last = insn;
4090 insn = next;
4091 }
4092 break;
4093
4094 #ifdef ENABLE_RTL_CHECKING
4095 case SEQUENCE:
4096 gcc_unreachable ();
4097 break;
4098 #endif
4099
4100 default:
4101 last = make_jump_insn_raw (x);
4102 add_insn_before (last, before, NULL);
4103 break;
4104 }
4105
4106 return last;
4107 }
4108
4109 /* Make an instruction with body X and code CALL_INSN
4110 and output it before the instruction BEFORE. */
4111
4112 rtx
4113 emit_call_insn_before_noloc (rtx x, rtx before)
4114 {
4115 rtx last = NULL_RTX, insn;
4116
4117 gcc_assert (before);
4118
4119 switch (GET_CODE (x))
4120 {
4121 case DEBUG_INSN:
4122 case INSN:
4123 case JUMP_INSN:
4124 case CALL_INSN:
4125 case CODE_LABEL:
4126 case BARRIER:
4127 case NOTE:
4128 insn = x;
4129 while (insn)
4130 {
4131 rtx next = NEXT_INSN (insn);
4132 add_insn_before (insn, before, NULL);
4133 last = insn;
4134 insn = next;
4135 }
4136 break;
4137
4138 #ifdef ENABLE_RTL_CHECKING
4139 case SEQUENCE:
4140 gcc_unreachable ();
4141 break;
4142 #endif
4143
4144 default:
4145 last = make_call_insn_raw (x);
4146 add_insn_before (last, before, NULL);
4147 break;
4148 }
4149
4150 return last;
4151 }
4152
4153 /* Make an instruction with body X and code DEBUG_INSN
4154 and output it before the instruction BEFORE. */
4155
4156 rtx
4157 emit_debug_insn_before_noloc (rtx x, rtx before)
4158 {
4159 rtx last = NULL_RTX, insn;
4160
4161 gcc_assert (before);
4162
4163 switch (GET_CODE (x))
4164 {
4165 case DEBUG_INSN:
4166 case INSN:
4167 case JUMP_INSN:
4168 case CALL_INSN:
4169 case CODE_LABEL:
4170 case BARRIER:
4171 case NOTE:
4172 insn = x;
4173 while (insn)
4174 {
4175 rtx next = NEXT_INSN (insn);
4176 add_insn_before (insn, before, NULL);
4177 last = insn;
4178 insn = next;
4179 }
4180 break;
4181
4182 #ifdef ENABLE_RTL_CHECKING
4183 case SEQUENCE:
4184 gcc_unreachable ();
4185 break;
4186 #endif
4187
4188 default:
4189 last = make_debug_insn_raw (x);
4190 add_insn_before (last, before, NULL);
4191 break;
4192 }
4193
4194 return last;
4195 }
4196
4197 /* Make an insn of code BARRIER
4198 and output it before the insn BEFORE. */
4199
4200 rtx
4201 emit_barrier_before (rtx before)
4202 {
4203 rtx insn = rtx_alloc (BARRIER);
4204
4205 INSN_UID (insn) = cur_insn_uid++;
4206
4207 add_insn_before (insn, before, NULL);
4208 return insn;
4209 }
4210
4211 /* Emit the label LABEL before the insn BEFORE. */
4212
4213 rtx
4214 emit_label_before (rtx label, rtx before)
4215 {
4216 /* This can be called twice for the same label as a result of the
4217 confusion that follows a syntax error! So make it harmless. */
4218 if (INSN_UID (label) == 0)
4219 {
4220 INSN_UID (label) = cur_insn_uid++;
4221 add_insn_before (label, before, NULL);
4222 }
4223
4224 return label;
4225 }
4226
4227 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4228
4229 rtx
4230 emit_note_before (enum insn_note subtype, rtx before)
4231 {
4232 rtx note = rtx_alloc (NOTE);
4233 INSN_UID (note) = cur_insn_uid++;
4234 NOTE_KIND (note) = subtype;
4235 BLOCK_FOR_INSN (note) = NULL;
4236 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4237
4238 add_insn_before (note, before, NULL);
4239 return note;
4240 }
4241 \f
4242 /* Helper for emit_insn_after, handles lists of instructions
4243 efficiently. */
4244
4245 static rtx
4246 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4247 {
4248 rtx last;
4249 rtx after_after;
4250 if (!bb && !BARRIER_P (after))
4251 bb = BLOCK_FOR_INSN (after);
4252
4253 if (bb)
4254 {
4255 df_set_bb_dirty (bb);
4256 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4257 if (!BARRIER_P (last))
4258 {
4259 set_block_for_insn (last, bb);
4260 df_insn_rescan (last);
4261 }
4262 if (!BARRIER_P (last))
4263 {
4264 set_block_for_insn (last, bb);
4265 df_insn_rescan (last);
4266 }
4267 if (BB_END (bb) == after)
4268 BB_END (bb) = last;
4269 }
4270 else
4271 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4272 continue;
4273
4274 after_after = NEXT_INSN (after);
4275
4276 NEXT_INSN (after) = first;
4277 PREV_INSN (first) = after;
4278 NEXT_INSN (last) = after_after;
4279 if (after_after)
4280 PREV_INSN (after_after) = last;
4281
4282 if (after == last_insn)
4283 last_insn = last;
4284
4285 return last;
4286 }
4287
4288 /* Make X be output after the insn AFTER and set the BB of insn. If
4289 BB is NULL, an attempt is made to infer the BB from AFTER. */
4290
4291 rtx
4292 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4293 {
4294 rtx last = after;
4295
4296 gcc_assert (after);
4297
4298 if (x == NULL_RTX)
4299 return last;
4300
4301 switch (GET_CODE (x))
4302 {
4303 case DEBUG_INSN:
4304 case INSN:
4305 case JUMP_INSN:
4306 case CALL_INSN:
4307 case CODE_LABEL:
4308 case BARRIER:
4309 case NOTE:
4310 last = emit_insn_after_1 (x, after, bb);
4311 break;
4312
4313 #ifdef ENABLE_RTL_CHECKING
4314 case SEQUENCE:
4315 gcc_unreachable ();
4316 break;
4317 #endif
4318
4319 default:
4320 last = make_insn_raw (x);
4321 add_insn_after (last, after, bb);
4322 break;
4323 }
4324
4325 return last;
4326 }
4327
4328
4329 /* Make an insn of code JUMP_INSN with body X
4330 and output it after the insn AFTER. */
4331
4332 rtx
4333 emit_jump_insn_after_noloc (rtx x, rtx after)
4334 {
4335 rtx last;
4336
4337 gcc_assert (after);
4338
4339 switch (GET_CODE (x))
4340 {
4341 case DEBUG_INSN:
4342 case INSN:
4343 case JUMP_INSN:
4344 case CALL_INSN:
4345 case CODE_LABEL:
4346 case BARRIER:
4347 case NOTE:
4348 last = emit_insn_after_1 (x, after, NULL);
4349 break;
4350
4351 #ifdef ENABLE_RTL_CHECKING
4352 case SEQUENCE:
4353 gcc_unreachable ();
4354 break;
4355 #endif
4356
4357 default:
4358 last = make_jump_insn_raw (x);
4359 add_insn_after (last, after, NULL);
4360 break;
4361 }
4362
4363 return last;
4364 }
4365
4366 /* Make an instruction with body X and code CALL_INSN
4367 and output it after the instruction AFTER. */
4368
4369 rtx
4370 emit_call_insn_after_noloc (rtx x, rtx after)
4371 {
4372 rtx last;
4373
4374 gcc_assert (after);
4375
4376 switch (GET_CODE (x))
4377 {
4378 case DEBUG_INSN:
4379 case INSN:
4380 case JUMP_INSN:
4381 case CALL_INSN:
4382 case CODE_LABEL:
4383 case BARRIER:
4384 case NOTE:
4385 last = emit_insn_after_1 (x, after, NULL);
4386 break;
4387
4388 #ifdef ENABLE_RTL_CHECKING
4389 case SEQUENCE:
4390 gcc_unreachable ();
4391 break;
4392 #endif
4393
4394 default:
4395 last = make_call_insn_raw (x);
4396 add_insn_after (last, after, NULL);
4397 break;
4398 }
4399
4400 return last;
4401 }
4402
4403 /* Make an instruction with body X and code CALL_INSN
4404 and output it after the instruction AFTER. */
4405
4406 rtx
4407 emit_debug_insn_after_noloc (rtx x, rtx after)
4408 {
4409 rtx last;
4410
4411 gcc_assert (after);
4412
4413 switch (GET_CODE (x))
4414 {
4415 case DEBUG_INSN:
4416 case INSN:
4417 case JUMP_INSN:
4418 case CALL_INSN:
4419 case CODE_LABEL:
4420 case BARRIER:
4421 case NOTE:
4422 last = emit_insn_after_1 (x, after, NULL);
4423 break;
4424
4425 #ifdef ENABLE_RTL_CHECKING
4426 case SEQUENCE:
4427 gcc_unreachable ();
4428 break;
4429 #endif
4430
4431 default:
4432 last = make_debug_insn_raw (x);
4433 add_insn_after (last, after, NULL);
4434 break;
4435 }
4436
4437 return last;
4438 }
4439
4440 /* Make an insn of code BARRIER
4441 and output it after the insn AFTER. */
4442
4443 rtx
4444 emit_barrier_after (rtx after)
4445 {
4446 rtx insn = rtx_alloc (BARRIER);
4447
4448 INSN_UID (insn) = cur_insn_uid++;
4449
4450 add_insn_after (insn, after, NULL);
4451 return insn;
4452 }
4453
4454 /* Emit the label LABEL after the insn AFTER. */
4455
4456 rtx
4457 emit_label_after (rtx label, rtx after)
4458 {
4459 /* This can be called twice for the same label
4460 as a result of the confusion that follows a syntax error!
4461 So make it harmless. */
4462 if (INSN_UID (label) == 0)
4463 {
4464 INSN_UID (label) = cur_insn_uid++;
4465 add_insn_after (label, after, NULL);
4466 }
4467
4468 return label;
4469 }
4470
4471 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4472
4473 rtx
4474 emit_note_after (enum insn_note subtype, rtx after)
4475 {
4476 rtx note = rtx_alloc (NOTE);
4477 INSN_UID (note) = cur_insn_uid++;
4478 NOTE_KIND (note) = subtype;
4479 BLOCK_FOR_INSN (note) = NULL;
4480 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4481 add_insn_after (note, after, NULL);
4482 return note;
4483 }
4484 \f
4485 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4486 rtx
4487 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4488 {
4489 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4490
4491 if (pattern == NULL_RTX || !loc)
4492 return last;
4493
4494 after = NEXT_INSN (after);
4495 while (1)
4496 {
4497 if (active_insn_p (after) && !INSN_LOCATOR (after))
4498 INSN_LOCATOR (after) = loc;
4499 if (after == last)
4500 break;
4501 after = NEXT_INSN (after);
4502 }
4503 return last;
4504 }
4505
4506 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4507 rtx
4508 emit_insn_after (rtx pattern, rtx after)
4509 {
4510 rtx prev = after;
4511
4512 while (DEBUG_INSN_P (prev))
4513 prev = PREV_INSN (prev);
4514
4515 if (INSN_P (prev))
4516 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4517 else
4518 return emit_insn_after_noloc (pattern, after, NULL);
4519 }
4520
4521 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4522 rtx
4523 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4524 {
4525 rtx last = emit_jump_insn_after_noloc (pattern, after);
4526
4527 if (pattern == NULL_RTX || !loc)
4528 return last;
4529
4530 after = NEXT_INSN (after);
4531 while (1)
4532 {
4533 if (active_insn_p (after) && !INSN_LOCATOR (after))
4534 INSN_LOCATOR (after) = loc;
4535 if (after == last)
4536 break;
4537 after = NEXT_INSN (after);
4538 }
4539 return last;
4540 }
4541
4542 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4543 rtx
4544 emit_jump_insn_after (rtx pattern, rtx after)
4545 {
4546 rtx prev = after;
4547
4548 while (DEBUG_INSN_P (prev))
4549 prev = PREV_INSN (prev);
4550
4551 if (INSN_P (prev))
4552 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4553 else
4554 return emit_jump_insn_after_noloc (pattern, after);
4555 }
4556
4557 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4558 rtx
4559 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4560 {
4561 rtx last = emit_call_insn_after_noloc (pattern, after);
4562
4563 if (pattern == NULL_RTX || !loc)
4564 return last;
4565
4566 after = NEXT_INSN (after);
4567 while (1)
4568 {
4569 if (active_insn_p (after) && !INSN_LOCATOR (after))
4570 INSN_LOCATOR (after) = loc;
4571 if (after == last)
4572 break;
4573 after = NEXT_INSN (after);
4574 }
4575 return last;
4576 }
4577
4578 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4579 rtx
4580 emit_call_insn_after (rtx pattern, rtx after)
4581 {
4582 rtx prev = after;
4583
4584 while (DEBUG_INSN_P (prev))
4585 prev = PREV_INSN (prev);
4586
4587 if (INSN_P (prev))
4588 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4589 else
4590 return emit_call_insn_after_noloc (pattern, after);
4591 }
4592
4593 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4594 rtx
4595 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4596 {
4597 rtx last = emit_debug_insn_after_noloc (pattern, after);
4598
4599 if (pattern == NULL_RTX || !loc)
4600 return last;
4601
4602 after = NEXT_INSN (after);
4603 while (1)
4604 {
4605 if (active_insn_p (after) && !INSN_LOCATOR (after))
4606 INSN_LOCATOR (after) = loc;
4607 if (after == last)
4608 break;
4609 after = NEXT_INSN (after);
4610 }
4611 return last;
4612 }
4613
4614 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4615 rtx
4616 emit_debug_insn_after (rtx pattern, rtx after)
4617 {
4618 if (INSN_P (after))
4619 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4620 else
4621 return emit_debug_insn_after_noloc (pattern, after);
4622 }
4623
4624 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4625 rtx
4626 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4627 {
4628 rtx first = PREV_INSN (before);
4629 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4630
4631 if (pattern == NULL_RTX || !loc)
4632 return last;
4633
4634 if (!first)
4635 first = get_insns ();
4636 else
4637 first = NEXT_INSN (first);
4638 while (1)
4639 {
4640 if (active_insn_p (first) && !INSN_LOCATOR (first))
4641 INSN_LOCATOR (first) = loc;
4642 if (first == last)
4643 break;
4644 first = NEXT_INSN (first);
4645 }
4646 return last;
4647 }
4648
4649 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4650 rtx
4651 emit_insn_before (rtx pattern, rtx before)
4652 {
4653 rtx next = before;
4654
4655 while (DEBUG_INSN_P (next))
4656 next = PREV_INSN (next);
4657
4658 if (INSN_P (next))
4659 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4660 else
4661 return emit_insn_before_noloc (pattern, before, NULL);
4662 }
4663
4664 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4665 rtx
4666 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4667 {
4668 rtx first = PREV_INSN (before);
4669 rtx last = emit_jump_insn_before_noloc (pattern, before);
4670
4671 if (pattern == NULL_RTX)
4672 return last;
4673
4674 first = NEXT_INSN (first);
4675 while (1)
4676 {
4677 if (active_insn_p (first) && !INSN_LOCATOR (first))
4678 INSN_LOCATOR (first) = loc;
4679 if (first == last)
4680 break;
4681 first = NEXT_INSN (first);
4682 }
4683 return last;
4684 }
4685
4686 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4687 rtx
4688 emit_jump_insn_before (rtx pattern, rtx before)
4689 {
4690 rtx next = before;
4691
4692 while (DEBUG_INSN_P (next))
4693 next = PREV_INSN (next);
4694
4695 if (INSN_P (next))
4696 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4697 else
4698 return emit_jump_insn_before_noloc (pattern, before);
4699 }
4700
4701 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4702 rtx
4703 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4704 {
4705 rtx first = PREV_INSN (before);
4706 rtx last = emit_call_insn_before_noloc (pattern, before);
4707
4708 if (pattern == NULL_RTX)
4709 return last;
4710
4711 first = NEXT_INSN (first);
4712 while (1)
4713 {
4714 if (active_insn_p (first) && !INSN_LOCATOR (first))
4715 INSN_LOCATOR (first) = loc;
4716 if (first == last)
4717 break;
4718 first = NEXT_INSN (first);
4719 }
4720 return last;
4721 }
4722
4723 /* like emit_call_insn_before_noloc,
4724 but set insn_locator according to before. */
4725 rtx
4726 emit_call_insn_before (rtx pattern, rtx before)
4727 {
4728 rtx next = before;
4729
4730 while (DEBUG_INSN_P (next))
4731 next = PREV_INSN (next);
4732
4733 if (INSN_P (next))
4734 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4735 else
4736 return emit_call_insn_before_noloc (pattern, before);
4737 }
4738
4739 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4740 rtx
4741 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4742 {
4743 rtx first = PREV_INSN (before);
4744 rtx last = emit_debug_insn_before_noloc (pattern, before);
4745
4746 if (pattern == NULL_RTX)
4747 return last;
4748
4749 first = NEXT_INSN (first);
4750 while (1)
4751 {
4752 if (active_insn_p (first) && !INSN_LOCATOR (first))
4753 INSN_LOCATOR (first) = loc;
4754 if (first == last)
4755 break;
4756 first = NEXT_INSN (first);
4757 }
4758 return last;
4759 }
4760
4761 /* like emit_debug_insn_before_noloc,
4762 but set insn_locator according to before. */
4763 rtx
4764 emit_debug_insn_before (rtx pattern, rtx before)
4765 {
4766 if (INSN_P (before))
4767 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4768 else
4769 return emit_debug_insn_before_noloc (pattern, before);
4770 }
4771 \f
4772 /* Take X and emit it at the end of the doubly-linked
4773 INSN list.
4774
4775 Returns the last insn emitted. */
4776
4777 rtx
4778 emit_insn (rtx x)
4779 {
4780 rtx last = last_insn;
4781 rtx insn;
4782
4783 if (x == NULL_RTX)
4784 return last;
4785
4786 switch (GET_CODE (x))
4787 {
4788 case DEBUG_INSN:
4789 case INSN:
4790 case JUMP_INSN:
4791 case CALL_INSN:
4792 case CODE_LABEL:
4793 case BARRIER:
4794 case NOTE:
4795 insn = x;
4796 while (insn)
4797 {
4798 rtx next = NEXT_INSN (insn);
4799 add_insn (insn);
4800 last = insn;
4801 insn = next;
4802 }
4803 break;
4804
4805 #ifdef ENABLE_RTL_CHECKING
4806 case SEQUENCE:
4807 gcc_unreachable ();
4808 break;
4809 #endif
4810
4811 default:
4812 last = make_insn_raw (x);
4813 add_insn (last);
4814 break;
4815 }
4816
4817 return last;
4818 }
4819
4820 /* Make an insn of code DEBUG_INSN with pattern X
4821 and add it to the end of the doubly-linked list. */
4822
4823 rtx
4824 emit_debug_insn (rtx x)
4825 {
4826 rtx last = last_insn;
4827 rtx insn;
4828
4829 if (x == NULL_RTX)
4830 return last;
4831
4832 switch (GET_CODE (x))
4833 {
4834 case DEBUG_INSN:
4835 case INSN:
4836 case JUMP_INSN:
4837 case CALL_INSN:
4838 case CODE_LABEL:
4839 case BARRIER:
4840 case NOTE:
4841 insn = x;
4842 while (insn)
4843 {
4844 rtx next = NEXT_INSN (insn);
4845 add_insn (insn);
4846 last = insn;
4847 insn = next;
4848 }
4849 break;
4850
4851 #ifdef ENABLE_RTL_CHECKING
4852 case SEQUENCE:
4853 gcc_unreachable ();
4854 break;
4855 #endif
4856
4857 default:
4858 last = make_debug_insn_raw (x);
4859 add_insn (last);
4860 break;
4861 }
4862
4863 return last;
4864 }
4865
4866 /* Make an insn of code JUMP_INSN with pattern X
4867 and add it to the end of the doubly-linked list. */
4868
4869 rtx
4870 emit_jump_insn (rtx x)
4871 {
4872 rtx last = NULL_RTX, insn;
4873
4874 switch (GET_CODE (x))
4875 {
4876 case DEBUG_INSN:
4877 case INSN:
4878 case JUMP_INSN:
4879 case CALL_INSN:
4880 case CODE_LABEL:
4881 case BARRIER:
4882 case NOTE:
4883 insn = x;
4884 while (insn)
4885 {
4886 rtx next = NEXT_INSN (insn);
4887 add_insn (insn);
4888 last = insn;
4889 insn = next;
4890 }
4891 break;
4892
4893 #ifdef ENABLE_RTL_CHECKING
4894 case SEQUENCE:
4895 gcc_unreachable ();
4896 break;
4897 #endif
4898
4899 default:
4900 last = make_jump_insn_raw (x);
4901 add_insn (last);
4902 break;
4903 }
4904
4905 return last;
4906 }
4907
4908 /* Make an insn of code CALL_INSN with pattern X
4909 and add it to the end of the doubly-linked list. */
4910
4911 rtx
4912 emit_call_insn (rtx x)
4913 {
4914 rtx insn;
4915
4916 switch (GET_CODE (x))
4917 {
4918 case DEBUG_INSN:
4919 case INSN:
4920 case JUMP_INSN:
4921 case CALL_INSN:
4922 case CODE_LABEL:
4923 case BARRIER:
4924 case NOTE:
4925 insn = emit_insn (x);
4926 break;
4927
4928 #ifdef ENABLE_RTL_CHECKING
4929 case SEQUENCE:
4930 gcc_unreachable ();
4931 break;
4932 #endif
4933
4934 default:
4935 insn = make_call_insn_raw (x);
4936 add_insn (insn);
4937 break;
4938 }
4939
4940 return insn;
4941 }
4942
4943 /* Add the label LABEL to the end of the doubly-linked list. */
4944
4945 rtx
4946 emit_label (rtx label)
4947 {
4948 /* This can be called twice for the same label
4949 as a result of the confusion that follows a syntax error!
4950 So make it harmless. */
4951 if (INSN_UID (label) == 0)
4952 {
4953 INSN_UID (label) = cur_insn_uid++;
4954 add_insn (label);
4955 }
4956 return label;
4957 }
4958
4959 /* Make an insn of code BARRIER
4960 and add it to the end of the doubly-linked list. */
4961
4962 rtx
4963 emit_barrier (void)
4964 {
4965 rtx barrier = rtx_alloc (BARRIER);
4966 INSN_UID (barrier) = cur_insn_uid++;
4967 add_insn (barrier);
4968 return barrier;
4969 }
4970
4971 /* Emit a copy of note ORIG. */
4972
4973 rtx
4974 emit_note_copy (rtx orig)
4975 {
4976 rtx note;
4977
4978 note = rtx_alloc (NOTE);
4979
4980 INSN_UID (note) = cur_insn_uid++;
4981 NOTE_DATA (note) = NOTE_DATA (orig);
4982 NOTE_KIND (note) = NOTE_KIND (orig);
4983 BLOCK_FOR_INSN (note) = NULL;
4984 add_insn (note);
4985
4986 return note;
4987 }
4988
4989 /* Make an insn of code NOTE or type NOTE_NO
4990 and add it to the end of the doubly-linked list. */
4991
4992 rtx
4993 emit_note (enum insn_note kind)
4994 {
4995 rtx note;
4996
4997 note = rtx_alloc (NOTE);
4998 INSN_UID (note) = cur_insn_uid++;
4999 NOTE_KIND (note) = kind;
5000 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5001 BLOCK_FOR_INSN (note) = NULL;
5002 add_insn (note);
5003 return note;
5004 }
5005
5006 /* Emit a clobber of lvalue X. */
5007
5008 rtx
5009 emit_clobber (rtx x)
5010 {
5011 /* CONCATs should not appear in the insn stream. */
5012 if (GET_CODE (x) == CONCAT)
5013 {
5014 emit_clobber (XEXP (x, 0));
5015 return emit_clobber (XEXP (x, 1));
5016 }
5017 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5018 }
5019
5020 /* Return a sequence of insns to clobber lvalue X. */
5021
5022 rtx
5023 gen_clobber (rtx x)
5024 {
5025 rtx seq;
5026
5027 start_sequence ();
5028 emit_clobber (x);
5029 seq = get_insns ();
5030 end_sequence ();
5031 return seq;
5032 }
5033
5034 /* Emit a use of rvalue X. */
5035
5036 rtx
5037 emit_use (rtx x)
5038 {
5039 /* CONCATs should not appear in the insn stream. */
5040 if (GET_CODE (x) == CONCAT)
5041 {
5042 emit_use (XEXP (x, 0));
5043 return emit_use (XEXP (x, 1));
5044 }
5045 return emit_insn (gen_rtx_USE (VOIDmode, x));
5046 }
5047
5048 /* Return a sequence of insns to use rvalue X. */
5049
5050 rtx
5051 gen_use (rtx x)
5052 {
5053 rtx seq;
5054
5055 start_sequence ();
5056 emit_use (x);
5057 seq = get_insns ();
5058 end_sequence ();
5059 return seq;
5060 }
5061
5062 /* Cause next statement to emit a line note even if the line number
5063 has not changed. */
5064
5065 void
5066 force_next_line_note (void)
5067 {
5068 last_location = -1;
5069 }
5070
5071 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5072 note of this type already exists, remove it first. */
5073
5074 rtx
5075 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5076 {
5077 rtx note = find_reg_note (insn, kind, NULL_RTX);
5078
5079 switch (kind)
5080 {
5081 case REG_EQUAL:
5082 case REG_EQUIV:
5083 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5084 has multiple sets (some callers assume single_set
5085 means the insn only has one set, when in fact it
5086 means the insn only has one * useful * set). */
5087 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5088 {
5089 gcc_assert (!note);
5090 return NULL_RTX;
5091 }
5092
5093 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5094 It serves no useful purpose and breaks eliminate_regs. */
5095 if (GET_CODE (datum) == ASM_OPERANDS)
5096 return NULL_RTX;
5097
5098 if (note)
5099 {
5100 XEXP (note, 0) = datum;
5101 df_notes_rescan (insn);
5102 return note;
5103 }
5104 break;
5105
5106 default:
5107 if (note)
5108 {
5109 XEXP (note, 0) = datum;
5110 return note;
5111 }
5112 break;
5113 }
5114
5115 add_reg_note (insn, kind, datum);
5116
5117 switch (kind)
5118 {
5119 case REG_EQUAL:
5120 case REG_EQUIV:
5121 df_notes_rescan (insn);
5122 break;
5123 default:
5124 break;
5125 }
5126
5127 return REG_NOTES (insn);
5128 }
5129 \f
5130 /* Return an indication of which type of insn should have X as a body.
5131 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5132
5133 static enum rtx_code
5134 classify_insn (rtx x)
5135 {
5136 if (LABEL_P (x))
5137 return CODE_LABEL;
5138 if (GET_CODE (x) == CALL)
5139 return CALL_INSN;
5140 if (GET_CODE (x) == RETURN)
5141 return JUMP_INSN;
5142 if (GET_CODE (x) == SET)
5143 {
5144 if (SET_DEST (x) == pc_rtx)
5145 return JUMP_INSN;
5146 else if (GET_CODE (SET_SRC (x)) == CALL)
5147 return CALL_INSN;
5148 else
5149 return INSN;
5150 }
5151 if (GET_CODE (x) == PARALLEL)
5152 {
5153 int j;
5154 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5155 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5156 return CALL_INSN;
5157 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5158 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5159 return JUMP_INSN;
5160 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5161 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5162 return CALL_INSN;
5163 }
5164 return INSN;
5165 }
5166
5167 /* Emit the rtl pattern X as an appropriate kind of insn.
5168 If X is a label, it is simply added into the insn chain. */
5169
5170 rtx
5171 emit (rtx x)
5172 {
5173 enum rtx_code code = classify_insn (x);
5174
5175 switch (code)
5176 {
5177 case CODE_LABEL:
5178 return emit_label (x);
5179 case INSN:
5180 return emit_insn (x);
5181 case JUMP_INSN:
5182 {
5183 rtx insn = emit_jump_insn (x);
5184 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5185 return emit_barrier ();
5186 return insn;
5187 }
5188 case CALL_INSN:
5189 return emit_call_insn (x);
5190 case DEBUG_INSN:
5191 return emit_debug_insn (x);
5192 default:
5193 gcc_unreachable ();
5194 }
5195 }
5196 \f
5197 /* Space for free sequence stack entries. */
5198 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5199
5200 /* Begin emitting insns to a sequence. If this sequence will contain
5201 something that might cause the compiler to pop arguments to function
5202 calls (because those pops have previously been deferred; see
5203 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5204 before calling this function. That will ensure that the deferred
5205 pops are not accidentally emitted in the middle of this sequence. */
5206
5207 void
5208 start_sequence (void)
5209 {
5210 struct sequence_stack *tem;
5211
5212 if (free_sequence_stack != NULL)
5213 {
5214 tem = free_sequence_stack;
5215 free_sequence_stack = tem->next;
5216 }
5217 else
5218 tem = GGC_NEW (struct sequence_stack);
5219
5220 tem->next = seq_stack;
5221 tem->first = first_insn;
5222 tem->last = last_insn;
5223
5224 seq_stack = tem;
5225
5226 first_insn = 0;
5227 last_insn = 0;
5228 }
5229
5230 /* Set up the insn chain starting with FIRST as the current sequence,
5231 saving the previously current one. See the documentation for
5232 start_sequence for more information about how to use this function. */
5233
5234 void
5235 push_to_sequence (rtx first)
5236 {
5237 rtx last;
5238
5239 start_sequence ();
5240
5241 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5242
5243 first_insn = first;
5244 last_insn = last;
5245 }
5246
5247 /* Like push_to_sequence, but take the last insn as an argument to avoid
5248 looping through the list. */
5249
5250 void
5251 push_to_sequence2 (rtx first, rtx last)
5252 {
5253 start_sequence ();
5254
5255 first_insn = first;
5256 last_insn = last;
5257 }
5258
5259 /* Set up the outer-level insn chain
5260 as the current sequence, saving the previously current one. */
5261
5262 void
5263 push_topmost_sequence (void)
5264 {
5265 struct sequence_stack *stack, *top = NULL;
5266
5267 start_sequence ();
5268
5269 for (stack = seq_stack; stack; stack = stack->next)
5270 top = stack;
5271
5272 first_insn = top->first;
5273 last_insn = top->last;
5274 }
5275
5276 /* After emitting to the outer-level insn chain, update the outer-level
5277 insn chain, and restore the previous saved state. */
5278
5279 void
5280 pop_topmost_sequence (void)
5281 {
5282 struct sequence_stack *stack, *top = NULL;
5283
5284 for (stack = seq_stack; stack; stack = stack->next)
5285 top = stack;
5286
5287 top->first = first_insn;
5288 top->last = last_insn;
5289
5290 end_sequence ();
5291 }
5292
5293 /* After emitting to a sequence, restore previous saved state.
5294
5295 To get the contents of the sequence just made, you must call
5296 `get_insns' *before* calling here.
5297
5298 If the compiler might have deferred popping arguments while
5299 generating this sequence, and this sequence will not be immediately
5300 inserted into the instruction stream, use do_pending_stack_adjust
5301 before calling get_insns. That will ensure that the deferred
5302 pops are inserted into this sequence, and not into some random
5303 location in the instruction stream. See INHIBIT_DEFER_POP for more
5304 information about deferred popping of arguments. */
5305
5306 void
5307 end_sequence (void)
5308 {
5309 struct sequence_stack *tem = seq_stack;
5310
5311 first_insn = tem->first;
5312 last_insn = tem->last;
5313 seq_stack = tem->next;
5314
5315 memset (tem, 0, sizeof (*tem));
5316 tem->next = free_sequence_stack;
5317 free_sequence_stack = tem;
5318 }
5319
5320 /* Return 1 if currently emitting into a sequence. */
5321
5322 int
5323 in_sequence_p (void)
5324 {
5325 return seq_stack != 0;
5326 }
5327 \f
5328 /* Put the various virtual registers into REGNO_REG_RTX. */
5329
5330 static void
5331 init_virtual_regs (void)
5332 {
5333 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5334 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5335 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5336 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5337 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5338 }
5339
5340 \f
5341 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5342 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5343 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5344 static int copy_insn_n_scratches;
5345
5346 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5347 copied an ASM_OPERANDS.
5348 In that case, it is the original input-operand vector. */
5349 static rtvec orig_asm_operands_vector;
5350
5351 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5352 copied an ASM_OPERANDS.
5353 In that case, it is the copied input-operand vector. */
5354 static rtvec copy_asm_operands_vector;
5355
5356 /* Likewise for the constraints vector. */
5357 static rtvec orig_asm_constraints_vector;
5358 static rtvec copy_asm_constraints_vector;
5359
5360 /* Recursively create a new copy of an rtx for copy_insn.
5361 This function differs from copy_rtx in that it handles SCRATCHes and
5362 ASM_OPERANDs properly.
5363 Normally, this function is not used directly; use copy_insn as front end.
5364 However, you could first copy an insn pattern with copy_insn and then use
5365 this function afterwards to properly copy any REG_NOTEs containing
5366 SCRATCHes. */
5367
5368 rtx
5369 copy_insn_1 (rtx orig)
5370 {
5371 rtx copy;
5372 int i, j;
5373 RTX_CODE code;
5374 const char *format_ptr;
5375
5376 if (orig == NULL)
5377 return NULL;
5378
5379 code = GET_CODE (orig);
5380
5381 switch (code)
5382 {
5383 case REG:
5384 case CONST_INT:
5385 case CONST_DOUBLE:
5386 case CONST_FIXED:
5387 case CONST_VECTOR:
5388 case SYMBOL_REF:
5389 case CODE_LABEL:
5390 case PC:
5391 case CC0:
5392 return orig;
5393 case CLOBBER:
5394 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5395 return orig;
5396 break;
5397
5398 case SCRATCH:
5399 for (i = 0; i < copy_insn_n_scratches; i++)
5400 if (copy_insn_scratch_in[i] == orig)
5401 return copy_insn_scratch_out[i];
5402 break;
5403
5404 case CONST:
5405 if (shared_const_p (orig))
5406 return orig;
5407 break;
5408
5409 /* A MEM with a constant address is not sharable. The problem is that
5410 the constant address may need to be reloaded. If the mem is shared,
5411 then reloading one copy of this mem will cause all copies to appear
5412 to have been reloaded. */
5413
5414 default:
5415 break;
5416 }
5417
5418 /* Copy the various flags, fields, and other information. We assume
5419 that all fields need copying, and then clear the fields that should
5420 not be copied. That is the sensible default behavior, and forces
5421 us to explicitly document why we are *not* copying a flag. */
5422 copy = shallow_copy_rtx (orig);
5423
5424 /* We do not copy the USED flag, which is used as a mark bit during
5425 walks over the RTL. */
5426 RTX_FLAG (copy, used) = 0;
5427
5428 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5429 if (INSN_P (orig))
5430 {
5431 RTX_FLAG (copy, jump) = 0;
5432 RTX_FLAG (copy, call) = 0;
5433 RTX_FLAG (copy, frame_related) = 0;
5434 }
5435
5436 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5437
5438 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5439 switch (*format_ptr++)
5440 {
5441 case 'e':
5442 if (XEXP (orig, i) != NULL)
5443 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5444 break;
5445
5446 case 'E':
5447 case 'V':
5448 if (XVEC (orig, i) == orig_asm_constraints_vector)
5449 XVEC (copy, i) = copy_asm_constraints_vector;
5450 else if (XVEC (orig, i) == orig_asm_operands_vector)
5451 XVEC (copy, i) = copy_asm_operands_vector;
5452 else if (XVEC (orig, i) != NULL)
5453 {
5454 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5455 for (j = 0; j < XVECLEN (copy, i); j++)
5456 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5457 }
5458 break;
5459
5460 case 't':
5461 case 'w':
5462 case 'i':
5463 case 's':
5464 case 'S':
5465 case 'u':
5466 case '0':
5467 /* These are left unchanged. */
5468 break;
5469
5470 default:
5471 gcc_unreachable ();
5472 }
5473
5474 if (code == SCRATCH)
5475 {
5476 i = copy_insn_n_scratches++;
5477 gcc_assert (i < MAX_RECOG_OPERANDS);
5478 copy_insn_scratch_in[i] = orig;
5479 copy_insn_scratch_out[i] = copy;
5480 }
5481 else if (code == ASM_OPERANDS)
5482 {
5483 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5484 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5485 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5486 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5487 }
5488
5489 return copy;
5490 }
5491
5492 /* Create a new copy of an rtx.
5493 This function differs from copy_rtx in that it handles SCRATCHes and
5494 ASM_OPERANDs properly.
5495 INSN doesn't really have to be a full INSN; it could be just the
5496 pattern. */
5497 rtx
5498 copy_insn (rtx insn)
5499 {
5500 copy_insn_n_scratches = 0;
5501 orig_asm_operands_vector = 0;
5502 orig_asm_constraints_vector = 0;
5503 copy_asm_operands_vector = 0;
5504 copy_asm_constraints_vector = 0;
5505 return copy_insn_1 (insn);
5506 }
5507
5508 /* Initialize data structures and variables in this file
5509 before generating rtl for each function. */
5510
5511 void
5512 init_emit (void)
5513 {
5514 first_insn = NULL;
5515 last_insn = NULL;
5516 if (MIN_NONDEBUG_INSN_UID)
5517 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5518 else
5519 cur_insn_uid = 1;
5520 cur_debug_insn_uid = 1;
5521 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5522 last_location = UNKNOWN_LOCATION;
5523 first_label_num = label_num;
5524 seq_stack = NULL;
5525
5526 /* Init the tables that describe all the pseudo regs. */
5527
5528 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5529
5530 crtl->emit.regno_pointer_align
5531 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5532
5533 regno_reg_rtx
5534 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5535
5536 /* Put copies of all the hard registers into regno_reg_rtx. */
5537 memcpy (regno_reg_rtx,
5538 static_regno_reg_rtx,
5539 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5540
5541 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5542 init_virtual_regs ();
5543
5544 /* Indicate that the virtual registers and stack locations are
5545 all pointers. */
5546 REG_POINTER (stack_pointer_rtx) = 1;
5547 REG_POINTER (frame_pointer_rtx) = 1;
5548 REG_POINTER (hard_frame_pointer_rtx) = 1;
5549 REG_POINTER (arg_pointer_rtx) = 1;
5550
5551 REG_POINTER (virtual_incoming_args_rtx) = 1;
5552 REG_POINTER (virtual_stack_vars_rtx) = 1;
5553 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5554 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5555 REG_POINTER (virtual_cfa_rtx) = 1;
5556
5557 #ifdef STACK_BOUNDARY
5558 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5559 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5560 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5561 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5562
5563 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5564 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5565 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5566 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5567 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5568 #endif
5569
5570 #ifdef INIT_EXPANDERS
5571 INIT_EXPANDERS;
5572 #endif
5573 }
5574
5575 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5576
5577 static rtx
5578 gen_const_vector (enum machine_mode mode, int constant)
5579 {
5580 rtx tem;
5581 rtvec v;
5582 int units, i;
5583 enum machine_mode inner;
5584
5585 units = GET_MODE_NUNITS (mode);
5586 inner = GET_MODE_INNER (mode);
5587
5588 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5589
5590 v = rtvec_alloc (units);
5591
5592 /* We need to call this function after we set the scalar const_tiny_rtx
5593 entries. */
5594 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5595
5596 for (i = 0; i < units; ++i)
5597 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5598
5599 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5600 return tem;
5601 }
5602
5603 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5604 all elements are zero, and the one vector when all elements are one. */
5605 rtx
5606 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5607 {
5608 enum machine_mode inner = GET_MODE_INNER (mode);
5609 int nunits = GET_MODE_NUNITS (mode);
5610 rtx x;
5611 int i;
5612
5613 /* Check to see if all of the elements have the same value. */
5614 x = RTVEC_ELT (v, nunits - 1);
5615 for (i = nunits - 2; i >= 0; i--)
5616 if (RTVEC_ELT (v, i) != x)
5617 break;
5618
5619 /* If the values are all the same, check to see if we can use one of the
5620 standard constant vectors. */
5621 if (i == -1)
5622 {
5623 if (x == CONST0_RTX (inner))
5624 return CONST0_RTX (mode);
5625 else if (x == CONST1_RTX (inner))
5626 return CONST1_RTX (mode);
5627 }
5628
5629 return gen_rtx_raw_CONST_VECTOR (mode, v);
5630 }
5631
5632 /* Initialise global register information required by all functions. */
5633
5634 void
5635 init_emit_regs (void)
5636 {
5637 int i;
5638
5639 /* Reset register attributes */
5640 htab_empty (reg_attrs_htab);
5641
5642 /* We need reg_raw_mode, so initialize the modes now. */
5643 init_reg_modes_target ();
5644
5645 /* Assign register numbers to the globally defined register rtx. */
5646 pc_rtx = gen_rtx_PC (VOIDmode);
5647 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5648 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5649 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5650 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5651 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5652 virtual_incoming_args_rtx =
5653 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5654 virtual_stack_vars_rtx =
5655 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5656 virtual_stack_dynamic_rtx =
5657 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5658 virtual_outgoing_args_rtx =
5659 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5660 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5661
5662 /* Initialize RTL for commonly used hard registers. These are
5663 copied into regno_reg_rtx as we begin to compile each function. */
5664 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5665 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5666
5667 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5668 return_address_pointer_rtx
5669 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5670 #endif
5671
5672 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5673 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5674 else
5675 pic_offset_table_rtx = NULL_RTX;
5676 }
5677
5678 /* Create some permanent unique rtl objects shared between all functions.
5679 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5680
5681 void
5682 init_emit_once (int line_numbers)
5683 {
5684 int i;
5685 enum machine_mode mode;
5686 enum machine_mode double_mode;
5687
5688 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5689 hash tables. */
5690 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5691 const_int_htab_eq, NULL);
5692
5693 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5694 const_double_htab_eq, NULL);
5695
5696 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5697 const_fixed_htab_eq, NULL);
5698
5699 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5700 mem_attrs_htab_eq, NULL);
5701 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5702 reg_attrs_htab_eq, NULL);
5703
5704 no_line_numbers = ! line_numbers;
5705
5706 /* Compute the word and byte modes. */
5707
5708 byte_mode = VOIDmode;
5709 word_mode = VOIDmode;
5710 double_mode = VOIDmode;
5711
5712 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5713 mode != VOIDmode;
5714 mode = GET_MODE_WIDER_MODE (mode))
5715 {
5716 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5717 && byte_mode == VOIDmode)
5718 byte_mode = mode;
5719
5720 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5721 && word_mode == VOIDmode)
5722 word_mode = mode;
5723 }
5724
5725 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5726 mode != VOIDmode;
5727 mode = GET_MODE_WIDER_MODE (mode))
5728 {
5729 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5730 && double_mode == VOIDmode)
5731 double_mode = mode;
5732 }
5733
5734 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5735
5736 #ifdef INIT_EXPANDERS
5737 /* This is to initialize {init|mark|free}_machine_status before the first
5738 call to push_function_context_to. This is needed by the Chill front
5739 end which calls push_function_context_to before the first call to
5740 init_function_start. */
5741 INIT_EXPANDERS;
5742 #endif
5743
5744 /* Create the unique rtx's for certain rtx codes and operand values. */
5745
5746 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5747 tries to use these variables. */
5748 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5749 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5750 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5751
5752 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5753 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5754 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5755 else
5756 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5757
5758 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5759 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5760 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5761
5762 dconstm1 = dconst1;
5763 dconstm1.sign = 1;
5764
5765 dconsthalf = dconst1;
5766 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5767
5768 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5769 {
5770 const REAL_VALUE_TYPE *const r =
5771 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5772
5773 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5774 mode != VOIDmode;
5775 mode = GET_MODE_WIDER_MODE (mode))
5776 const_tiny_rtx[i][(int) mode] =
5777 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5778
5779 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5780 mode != VOIDmode;
5781 mode = GET_MODE_WIDER_MODE (mode))
5782 const_tiny_rtx[i][(int) mode] =
5783 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5784
5785 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5786
5787 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5788 mode != VOIDmode;
5789 mode = GET_MODE_WIDER_MODE (mode))
5790 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5791
5792 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5793 mode != VOIDmode;
5794 mode = GET_MODE_WIDER_MODE (mode))
5795 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5796 }
5797
5798 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5799 mode != VOIDmode;
5800 mode = GET_MODE_WIDER_MODE (mode))
5801 {
5802 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5803 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5804 }
5805
5806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5807 mode != VOIDmode;
5808 mode = GET_MODE_WIDER_MODE (mode))
5809 {
5810 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5811 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5812 }
5813
5814 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5815 mode != VOIDmode;
5816 mode = GET_MODE_WIDER_MODE (mode))
5817 {
5818 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5819 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5820 }
5821
5822 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5823 mode != VOIDmode;
5824 mode = GET_MODE_WIDER_MODE (mode))
5825 {
5826 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5827 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5828 }
5829
5830 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5831 mode != VOIDmode;
5832 mode = GET_MODE_WIDER_MODE (mode))
5833 {
5834 FCONST0(mode).data.high = 0;
5835 FCONST0(mode).data.low = 0;
5836 FCONST0(mode).mode = mode;
5837 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5838 FCONST0 (mode), mode);
5839 }
5840
5841 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5842 mode != VOIDmode;
5843 mode = GET_MODE_WIDER_MODE (mode))
5844 {
5845 FCONST0(mode).data.high = 0;
5846 FCONST0(mode).data.low = 0;
5847 FCONST0(mode).mode = mode;
5848 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5849 FCONST0 (mode), mode);
5850 }
5851
5852 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5853 mode != VOIDmode;
5854 mode = GET_MODE_WIDER_MODE (mode))
5855 {
5856 FCONST0(mode).data.high = 0;
5857 FCONST0(mode).data.low = 0;
5858 FCONST0(mode).mode = mode;
5859 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5860 FCONST0 (mode), mode);
5861
5862 /* We store the value 1. */
5863 FCONST1(mode).data.high = 0;
5864 FCONST1(mode).data.low = 0;
5865 FCONST1(mode).mode = mode;
5866 lshift_double (1, 0, GET_MODE_FBIT (mode),
5867 2 * HOST_BITS_PER_WIDE_INT,
5868 &FCONST1(mode).data.low,
5869 &FCONST1(mode).data.high,
5870 SIGNED_FIXED_POINT_MODE_P (mode));
5871 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5872 FCONST1 (mode), mode);
5873 }
5874
5875 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5876 mode != VOIDmode;
5877 mode = GET_MODE_WIDER_MODE (mode))
5878 {
5879 FCONST0(mode).data.high = 0;
5880 FCONST0(mode).data.low = 0;
5881 FCONST0(mode).mode = mode;
5882 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5883 FCONST0 (mode), mode);
5884
5885 /* We store the value 1. */
5886 FCONST1(mode).data.high = 0;
5887 FCONST1(mode).data.low = 0;
5888 FCONST1(mode).mode = mode;
5889 lshift_double (1, 0, GET_MODE_FBIT (mode),
5890 2 * HOST_BITS_PER_WIDE_INT,
5891 &FCONST1(mode).data.low,
5892 &FCONST1(mode).data.high,
5893 SIGNED_FIXED_POINT_MODE_P (mode));
5894 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5895 FCONST1 (mode), mode);
5896 }
5897
5898 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5899 mode != VOIDmode;
5900 mode = GET_MODE_WIDER_MODE (mode))
5901 {
5902 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5903 }
5904
5905 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5906 mode != VOIDmode;
5907 mode = GET_MODE_WIDER_MODE (mode))
5908 {
5909 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5910 }
5911
5912 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5913 mode != VOIDmode;
5914 mode = GET_MODE_WIDER_MODE (mode))
5915 {
5916 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5917 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5918 }
5919
5920 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5921 mode != VOIDmode;
5922 mode = GET_MODE_WIDER_MODE (mode))
5923 {
5924 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5925 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5926 }
5927
5928 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5929 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5930 const_tiny_rtx[0][i] = const0_rtx;
5931
5932 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5933 if (STORE_FLAG_VALUE == 1)
5934 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5935 }
5936 \f
5937 /* Produce exact duplicate of insn INSN after AFTER.
5938 Care updating of libcall regions if present. */
5939
5940 rtx
5941 emit_copy_of_insn_after (rtx insn, rtx after)
5942 {
5943 rtx new_rtx, link;
5944
5945 switch (GET_CODE (insn))
5946 {
5947 case INSN:
5948 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5949 break;
5950
5951 case JUMP_INSN:
5952 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5953 break;
5954
5955 case DEBUG_INSN:
5956 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5957 break;
5958
5959 case CALL_INSN:
5960 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5961 if (CALL_INSN_FUNCTION_USAGE (insn))
5962 CALL_INSN_FUNCTION_USAGE (new_rtx)
5963 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5964 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5965 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5966 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5967 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5968 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5969 break;
5970
5971 default:
5972 gcc_unreachable ();
5973 }
5974
5975 /* Update LABEL_NUSES. */
5976 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5977
5978 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5979
5980 /* If the old insn is frame related, then so is the new one. This is
5981 primarily needed for IA-64 unwind info which marks epilogue insns,
5982 which may be duplicated by the basic block reordering code. */
5983 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5984
5985 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5986 will make them. REG_LABEL_TARGETs are created there too, but are
5987 supposed to be sticky, so we copy them. */
5988 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5989 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5990 {
5991 if (GET_CODE (link) == EXPR_LIST)
5992 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5993 copy_insn_1 (XEXP (link, 0)));
5994 else
5995 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5996 }
5997
5998 INSN_CODE (new_rtx) = INSN_CODE (insn);
5999 return new_rtx;
6000 }
6001
6002 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6003 rtx
6004 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6005 {
6006 if (hard_reg_clobbers[mode][regno])
6007 return hard_reg_clobbers[mode][regno];
6008 else
6009 return (hard_reg_clobbers[mode][regno] =
6010 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6011 }
6012
6013 #include "gt-emit-rtl.h"