adjust for format string changes.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* Middle-to-low level generation of rtx code and insns.
25
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
28
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "params.h"
62 #include "target.h"
63
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
68
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
71 /* Commonly used modes. */
72
73 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
77
78 /* Datastructures maintained for currently processed function in RTL form. */
79
80 struct rtl_data x_rtl;
81
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
86
87 rtx * regno_reg_rtx;
88
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
91
92 static GTY(()) int label_num = 1;
93
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
97
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
121
122 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
123 htab_t const_int_htab;
124
125 /* A hash table storing memory attribute structures. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
127 htab_t mem_attrs_htab;
128
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
131 htab_t reg_attrs_htab;
132
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
135 htab_t const_double_htab;
136
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_fixed_htab;
140
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define last_location (crtl->emit.x_last_location)
144 #define first_label_num (crtl->emit.x_first_label_num)
145
146 static rtx make_call_insn_raw (rtx);
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
161 addr_space_t, enum machine_mode);
162 static hashval_t reg_attrs_htab_hash (const void *);
163 static int reg_attrs_htab_eq (const void *, const void *);
164 static reg_attrs *get_reg_attrs (tree, int);
165 static rtx gen_const_vector (enum machine_mode, int);
166 static void copy_rtx_if_shared_1 (rtx *orig);
167
168 /* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170 int split_branch_probability = -1;
171 \f
172 /* Returns a hash code for X (which is a really a CONST_INT). */
173
174 static hashval_t
175 const_int_htab_hash (const void *x)
176 {
177 return (hashval_t) INTVAL ((const_rtx) x);
178 }
179
180 /* Returns nonzero if the value represented by X (which is really a
181 CONST_INT) is the same as that given by Y (which is really a
182 HOST_WIDE_INT *). */
183
184 static int
185 const_int_htab_eq (const void *x, const void *y)
186 {
187 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
188 }
189
190 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
191 static hashval_t
192 const_double_htab_hash (const void *x)
193 {
194 const_rtx const value = (const_rtx) x;
195 hashval_t h;
196
197 if (GET_MODE (value) == VOIDmode)
198 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
199 else
200 {
201 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h ^= GET_MODE (value);
204 }
205 return h;
206 }
207
208 /* Returns nonzero if the value represented by X (really a ...)
209 is the same as that represented by Y (really a ...) */
210 static int
211 const_double_htab_eq (const void *x, const void *y)
212 {
213 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
214
215 if (GET_MODE (a) != GET_MODE (b))
216 return 0;
217 if (GET_MODE (a) == VOIDmode)
218 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
219 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
220 else
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
222 CONST_DOUBLE_REAL_VALUE (b));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_FIXED). */
226
227 static hashval_t
228 const_fixed_htab_hash (const void *x)
229 {
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
232
233 h = fixed_hash (CONST_FIXED_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 return h;
237 }
238
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
241
242 static int
243 const_fixed_htab_eq (const void *x, const void *y)
244 {
245 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
246
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
250 }
251
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
253
254 static hashval_t
255 mem_attrs_htab_hash (const void *x)
256 {
257 const mem_attrs *const p = (const mem_attrs *) x;
258
259 return (p->alias ^ (p->align * 1000)
260 ^ (p->addrspace * 4000)
261 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
262 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
263 ^ (size_t) iterative_hash_expr (p->expr, 0));
264 }
265
266 /* Returns nonzero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
268 mem_attrs *). */
269
270 static int
271 mem_attrs_htab_eq (const void *x, const void *y)
272 {
273 const mem_attrs *const p = (const mem_attrs *) x;
274 const mem_attrs *const q = (const mem_attrs *) y;
275
276 return (p->alias == q->alias && p->offset == q->offset
277 && p->size == q->size && p->align == q->align
278 && p->addrspace == q->addrspace
279 && (p->expr == q->expr
280 || (p->expr != NULL_TREE && q->expr != NULL_TREE
281 && operand_equal_p (p->expr, q->expr, 0))));
282 }
283
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
287
288 static mem_attrs *
289 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
290 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
291 {
292 mem_attrs attrs;
293 void **slot;
294
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
298 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
299 && (size == 0
300 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
301 && (STRICT_ALIGNMENT && mode != BLKmode
302 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
303 return 0;
304
305 attrs.alias = alias;
306 attrs.expr = expr;
307 attrs.offset = offset;
308 attrs.size = size;
309 attrs.align = align;
310 attrs.addrspace = addrspace;
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
315 *slot = ggc_alloc_mem_attrs ();
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
319 return (mem_attrs *) *slot;
320 }
321
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
323
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
326 {
327 const reg_attrs *const p = (const reg_attrs *) x;
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330 }
331
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
338 {
339 const reg_attrs *const p = (const reg_attrs *) x;
340 const reg_attrs *const q = (const reg_attrs *) y;
341
342 return (p->decl == q->decl && p->offset == q->offset);
343 }
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
350 {
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
364 *slot = ggc_alloc_reg_attrs ();
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
368 return (reg_attrs *) *slot;
369 }
370
371
372 #if !HAVE_blockage
373 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
374 across this insn. */
375
376 rtx
377 gen_blockage (void)
378 {
379 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
380 MEM_VOLATILE_P (x) = true;
381 return x;
382 }
383 #endif
384
385
386 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
389
390 rtx
391 gen_raw_REG (enum machine_mode mode, int regno)
392 {
393 rtx x = gen_rtx_raw_REG (mode, regno);
394 ORIGINAL_REGNO (x) = regno;
395 return x;
396 }
397
398 /* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
401
402 rtx
403 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
404 {
405 void **slot;
406
407 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
408 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
409
410 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx && arg == STORE_FLAG_VALUE)
412 return const_true_rtx;
413 #endif
414
415 /* Look up the CONST_INT in the hash table. */
416 slot = htab_find_slot_with_hash (const_int_htab, &arg,
417 (hashval_t) arg, INSERT);
418 if (*slot == 0)
419 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
420
421 return (rtx) *slot;
422 }
423
424 rtx
425 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
426 {
427 return GEN_INT (trunc_int_for_mode (c, mode));
428 }
429
430 /* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
433
434 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
437 static rtx
438 lookup_const_double (rtx real)
439 {
440 void **slot = htab_find_slot (const_double_htab, real, INSERT);
441 if (*slot == 0)
442 *slot = real;
443
444 return (rtx) *slot;
445 }
446
447 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
449 rtx
450 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
451 {
452 rtx real = rtx_alloc (CONST_DOUBLE);
453 PUT_MODE (real, mode);
454
455 real->u.rv = value;
456
457 return lookup_const_double (real);
458 }
459
460 /* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
463
464 static rtx
465 lookup_const_fixed (rtx fixed)
466 {
467 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
468 if (*slot == 0)
469 *slot = fixed;
470
471 return (rtx) *slot;
472 }
473
474 /* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
476
477 rtx
478 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
479 {
480 rtx fixed = rtx_alloc (CONST_FIXED);
481 PUT_MODE (fixed, mode);
482
483 fixed->u.fv = value;
484
485 return lookup_const_fixed (fixed);
486 }
487
488 /* Constructs double_int from rtx CST. */
489
490 double_int
491 rtx_to_double_int (const_rtx cst)
492 {
493 double_int r;
494
495 if (CONST_INT_P (cst))
496 r = shwi_to_double_int (INTVAL (cst));
497 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
498 {
499 r.low = CONST_DOUBLE_LOW (cst);
500 r.high = CONST_DOUBLE_HIGH (cst);
501 }
502 else
503 gcc_unreachable ();
504
505 return r;
506 }
507
508
509 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
510 a double_int. */
511
512 rtx
513 immed_double_int_const (double_int i, enum machine_mode mode)
514 {
515 return immed_double_const (i.low, i.high, mode);
516 }
517
518 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
522
523 rtx
524 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
525 {
526 rtx value;
527 unsigned int i;
528
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
531
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
536 from copies of the sign bit, and sign of i0 and i1 are the same), then
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
539 if (mode != VOIDmode)
540 {
541 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
542 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
546
547 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
548 return gen_int_mode (i0, mode);
549
550 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
551 }
552
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
555 return GEN_INT (i0);
556
557 /* We use VOIDmode for integers. */
558 value = rtx_alloc (CONST_DOUBLE);
559 PUT_MODE (value, VOIDmode);
560
561 CONST_DOUBLE_LOW (value) = i0;
562 CONST_DOUBLE_HIGH (value) = i1;
563
564 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
565 XWINT (value, i) = 0;
566
567 return lookup_const_double (value);
568 }
569
570 rtx
571 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
572 {
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
577 assigned to them.
578
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
583
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
586
587 if (mode == Pmode && !reload_in_progress)
588 {
589 if (regno == FRAME_POINTER_REGNUM
590 && (!reload_completed || frame_pointer_needed))
591 return frame_pointer_rtx;
592 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
593 if (regno == HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed || frame_pointer_needed))
595 return hard_frame_pointer_rtx;
596 #endif
597 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
598 if (regno == ARG_POINTER_REGNUM)
599 return arg_pointer_rtx;
600 #endif
601 #ifdef RETURN_ADDRESS_POINTER_REGNUM
602 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
603 return return_address_pointer_rtx;
604 #endif
605 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
606 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
607 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
608 return pic_offset_table_rtx;
609 if (regno == STACK_POINTER_REGNUM)
610 return stack_pointer_rtx;
611 }
612
613 #if 0
614 /* If the per-function register table has been set up, try to re-use
615 an existing entry in that table to avoid useless generation of RTL.
616
617 This code is disabled for now until we can fix the various backends
618 which depend on having non-shared hard registers in some cases. Long
619 term we want to re-enable this code as it can significantly cut down
620 on the amount of useless RTL that gets generated.
621
622 We'll also need to fix some code that runs after reload that wants to
623 set ORIGINAL_REGNO. */
624
625 if (cfun
626 && cfun->emit
627 && regno_reg_rtx
628 && regno < FIRST_PSEUDO_REGISTER
629 && reg_raw_mode[regno] == mode)
630 return regno_reg_rtx[regno];
631 #endif
632
633 return gen_raw_REG (mode, regno);
634 }
635
636 rtx
637 gen_rtx_MEM (enum machine_mode mode, rtx addr)
638 {
639 rtx rt = gen_rtx_raw_MEM (mode, addr);
640
641 /* This field is not cleared by the mere allocation of the rtx, so
642 we clear it here. */
643 MEM_ATTRS (rt) = 0;
644
645 return rt;
646 }
647
648 /* Generate a memory referring to non-trapping constant memory. */
649
650 rtx
651 gen_const_mem (enum machine_mode mode, rtx addr)
652 {
653 rtx mem = gen_rtx_MEM (mode, addr);
654 MEM_READONLY_P (mem) = 1;
655 MEM_NOTRAP_P (mem) = 1;
656 return mem;
657 }
658
659 /* Generate a MEM referring to fixed portions of the frame, e.g., register
660 save areas. */
661
662 rtx
663 gen_frame_mem (enum machine_mode mode, rtx addr)
664 {
665 rtx mem = gen_rtx_MEM (mode, addr);
666 MEM_NOTRAP_P (mem) = 1;
667 set_mem_alias_set (mem, get_frame_alias_set ());
668 return mem;
669 }
670
671 /* Generate a MEM referring to a temporary use of the stack, not part
672 of the fixed stack frame. For example, something which is pushed
673 by a target splitter. */
674 rtx
675 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
676 {
677 rtx mem = gen_rtx_MEM (mode, addr);
678 MEM_NOTRAP_P (mem) = 1;
679 if (!cfun->calls_alloca)
680 set_mem_alias_set (mem, get_frame_alias_set ());
681 return mem;
682 }
683
684 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
685 this construct would be valid, and false otherwise. */
686
687 bool
688 validate_subreg (enum machine_mode omode, enum machine_mode imode,
689 const_rtx reg, unsigned int offset)
690 {
691 unsigned int isize = GET_MODE_SIZE (imode);
692 unsigned int osize = GET_MODE_SIZE (omode);
693
694 /* All subregs must be aligned. */
695 if (offset % osize != 0)
696 return false;
697
698 /* The subreg offset cannot be outside the inner object. */
699 if (offset >= isize)
700 return false;
701
702 /* ??? This should not be here. Temporarily continue to allow word_mode
703 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
704 Generally, backends are doing something sketchy but it'll take time to
705 fix them all. */
706 if (omode == word_mode)
707 ;
708 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
709 is the culprit here, and not the backends. */
710 else if (osize >= UNITS_PER_WORD && isize >= osize)
711 ;
712 /* Allow component subregs of complex and vector. Though given the below
713 extraction rules, it's not always clear what that means. */
714 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
715 && GET_MODE_INNER (imode) == omode)
716 ;
717 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
718 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
719 represent this. It's questionable if this ought to be represented at
720 all -- why can't this all be hidden in post-reload splitters that make
721 arbitrarily mode changes to the registers themselves. */
722 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
723 ;
724 /* Subregs involving floating point modes are not allowed to
725 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
726 (subreg:SI (reg:DF) 0) isn't. */
727 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
728 {
729 if (isize != osize)
730 return false;
731 }
732
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
736
737 /* This is a normal subreg. Verify that the offset is representable. */
738
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
742 {
743 unsigned int regno = REGNO (reg);
744
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
748 ;
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
752
753 return subreg_offset_representable_p (regno, imode, offset, omode);
754 }
755
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD)
763 {
764 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
765 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
766 if (offset % UNITS_PER_WORD != low_off)
767 return false;
768 }
769 return true;
770 }
771
772 rtx
773 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
774 {
775 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
776 return gen_rtx_raw_SUBREG (mode, reg, offset);
777 }
778
779 /* Generate a SUBREG representing the least-significant part of REG if MODE
780 is smaller than mode of REG, otherwise paradoxical SUBREG. */
781
782 rtx
783 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
784 {
785 enum machine_mode inmode;
786
787 inmode = GET_MODE (reg);
788 if (inmode == VOIDmode)
789 inmode = mode;
790 return gen_rtx_SUBREG (mode, reg,
791 subreg_lowpart_offset (mode, inmode));
792 }
793 \f
794
795 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
796
797 rtvec
798 gen_rtvec (int n, ...)
799 {
800 int i;
801 rtvec rt_val;
802 va_list p;
803
804 va_start (p, n);
805
806 /* Don't allocate an empty rtvec... */
807 if (n == 0)
808 return NULL_RTVEC;
809
810 rt_val = rtvec_alloc (n);
811
812 for (i = 0; i < n; i++)
813 rt_val->elem[i] = va_arg (p, rtx);
814
815 va_end (p);
816 return rt_val;
817 }
818
819 rtvec
820 gen_rtvec_v (int n, rtx *argp)
821 {
822 int i;
823 rtvec rt_val;
824
825 /* Don't allocate an empty rtvec... */
826 if (n == 0)
827 return NULL_RTVEC;
828
829 rt_val = rtvec_alloc (n);
830
831 for (i = 0; i < n; i++)
832 rt_val->elem[i] = *argp++;
833
834 return rt_val;
835 }
836 \f
837 /* Return the number of bytes between the start of an OUTER_MODE
838 in-memory value and the start of an INNER_MODE in-memory value,
839 given that the former is a lowpart of the latter. It may be a
840 paradoxical lowpart, in which case the offset will be negative
841 on big-endian targets. */
842
843 int
844 byte_lowpart_offset (enum machine_mode outer_mode,
845 enum machine_mode inner_mode)
846 {
847 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
848 return subreg_lowpart_offset (outer_mode, inner_mode);
849 else
850 return -subreg_lowpart_offset (inner_mode, outer_mode);
851 }
852 \f
853 /* Generate a REG rtx for a new pseudo register of mode MODE.
854 This pseudo is assigned the next sequential register number. */
855
856 rtx
857 gen_reg_rtx (enum machine_mode mode)
858 {
859 rtx val;
860 unsigned int align = GET_MODE_ALIGNMENT (mode);
861
862 gcc_assert (can_create_pseudo_p ());
863
864 /* If a virtual register with bigger mode alignment is generated,
865 increase stack alignment estimation because it might be spilled
866 to stack later. */
867 if (SUPPORTS_STACK_ALIGNMENT
868 && crtl->stack_alignment_estimated < align
869 && !crtl->stack_realign_processed)
870 {
871 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
872 if (crtl->stack_alignment_estimated < min_align)
873 crtl->stack_alignment_estimated = min_align;
874 }
875
876 if (generating_concat_p
877 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
878 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
879 {
880 /* For complex modes, don't make a single pseudo.
881 Instead, make a CONCAT of two pseudos.
882 This allows noncontiguous allocation of the real and imaginary parts,
883 which makes much better code. Besides, allocating DCmode
884 pseudos overstrains reload on some machines like the 386. */
885 rtx realpart, imagpart;
886 enum machine_mode partmode = GET_MODE_INNER (mode);
887
888 realpart = gen_reg_rtx (partmode);
889 imagpart = gen_reg_rtx (partmode);
890 return gen_rtx_CONCAT (mode, realpart, imagpart);
891 }
892
893 /* Make sure regno_pointer_align, and regno_reg_rtx are large
894 enough to have an element for this pseudo reg number. */
895
896 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
897 {
898 int old_size = crtl->emit.regno_pointer_align_length;
899 char *tmp;
900 rtx *new1;
901
902 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
903 memset (tmp + old_size, 0, old_size);
904 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
905
906 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
907 memset (new1 + old_size, 0, old_size * sizeof (rtx));
908 regno_reg_rtx = new1;
909
910 crtl->emit.regno_pointer_align_length = old_size * 2;
911 }
912
913 val = gen_raw_REG (mode, reg_rtx_no);
914 regno_reg_rtx[reg_rtx_no++] = val;
915 return val;
916 }
917
918 /* Update NEW with the same attributes as REG, but with OFFSET added
919 to the REG_OFFSET. */
920
921 static void
922 update_reg_offset (rtx new_rtx, rtx reg, int offset)
923 {
924 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
925 REG_OFFSET (reg) + offset);
926 }
927
928 /* Generate a register with same attributes as REG, but with OFFSET
929 added to the REG_OFFSET. */
930
931 rtx
932 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
933 int offset)
934 {
935 rtx new_rtx = gen_rtx_REG (mode, regno);
936
937 update_reg_offset (new_rtx, reg, offset);
938 return new_rtx;
939 }
940
941 /* Generate a new pseudo-register with the same attributes as REG, but
942 with OFFSET added to the REG_OFFSET. */
943
944 rtx
945 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
946 {
947 rtx new_rtx = gen_reg_rtx (mode);
948
949 update_reg_offset (new_rtx, reg, offset);
950 return new_rtx;
951 }
952
953 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
954 new register is a (possibly paradoxical) lowpart of the old one. */
955
956 void
957 adjust_reg_mode (rtx reg, enum machine_mode mode)
958 {
959 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
960 PUT_MODE (reg, mode);
961 }
962
963 /* Copy REG's attributes from X, if X has any attributes. If REG and X
964 have different modes, REG is a (possibly paradoxical) lowpart of X. */
965
966 void
967 set_reg_attrs_from_value (rtx reg, rtx x)
968 {
969 int offset;
970
971 /* Hard registers can be reused for multiple purposes within the same
972 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
973 on them is wrong. */
974 if (HARD_REGISTER_P (reg))
975 return;
976
977 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
978 if (MEM_P (x))
979 {
980 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
981 REG_ATTRS (reg)
982 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
983 if (MEM_POINTER (x))
984 mark_reg_pointer (reg, 0);
985 }
986 else if (REG_P (x))
987 {
988 if (REG_ATTRS (x))
989 update_reg_offset (reg, x, offset);
990 if (REG_POINTER (x))
991 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
992 }
993 }
994
995 /* Generate a REG rtx for a new pseudo register, copying the mode
996 and attributes from X. */
997
998 rtx
999 gen_reg_rtx_and_attrs (rtx x)
1000 {
1001 rtx reg = gen_reg_rtx (GET_MODE (x));
1002 set_reg_attrs_from_value (reg, x);
1003 return reg;
1004 }
1005
1006 /* Set the register attributes for registers contained in PARM_RTX.
1007 Use needed values from memory attributes of MEM. */
1008
1009 void
1010 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1011 {
1012 if (REG_P (parm_rtx))
1013 set_reg_attrs_from_value (parm_rtx, mem);
1014 else if (GET_CODE (parm_rtx) == PARALLEL)
1015 {
1016 /* Check for a NULL entry in the first slot, used to indicate that the
1017 parameter goes both on the stack and in registers. */
1018 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1019 for (; i < XVECLEN (parm_rtx, 0); i++)
1020 {
1021 rtx x = XVECEXP (parm_rtx, 0, i);
1022 if (REG_P (XEXP (x, 0)))
1023 REG_ATTRS (XEXP (x, 0))
1024 = get_reg_attrs (MEM_EXPR (mem),
1025 INTVAL (XEXP (x, 1)));
1026 }
1027 }
1028 }
1029
1030 /* Set the REG_ATTRS for registers in value X, given that X represents
1031 decl T. */
1032
1033 void
1034 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1035 {
1036 if (GET_CODE (x) == SUBREG)
1037 {
1038 gcc_assert (subreg_lowpart_p (x));
1039 x = SUBREG_REG (x);
1040 }
1041 if (REG_P (x))
1042 REG_ATTRS (x)
1043 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1044 DECL_MODE (t)));
1045 if (GET_CODE (x) == CONCAT)
1046 {
1047 if (REG_P (XEXP (x, 0)))
1048 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1049 if (REG_P (XEXP (x, 1)))
1050 REG_ATTRS (XEXP (x, 1))
1051 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1052 }
1053 if (GET_CODE (x) == PARALLEL)
1054 {
1055 int i, start;
1056
1057 /* Check for a NULL entry, used to indicate that the parameter goes
1058 both on the stack and in registers. */
1059 if (XEXP (XVECEXP (x, 0, 0), 0))
1060 start = 0;
1061 else
1062 start = 1;
1063
1064 for (i = start; i < XVECLEN (x, 0); i++)
1065 {
1066 rtx y = XVECEXP (x, 0, i);
1067 if (REG_P (XEXP (y, 0)))
1068 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1069 }
1070 }
1071 }
1072
1073 /* Assign the RTX X to declaration T. */
1074
1075 void
1076 set_decl_rtl (tree t, rtx x)
1077 {
1078 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1079 if (x)
1080 set_reg_attrs_for_decl_rtl (t, x);
1081 }
1082
1083 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1084 if the ABI requires the parameter to be passed by reference. */
1085
1086 void
1087 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1088 {
1089 DECL_INCOMING_RTL (t) = x;
1090 if (x && !by_reference_p)
1091 set_reg_attrs_for_decl_rtl (t, x);
1092 }
1093
1094 /* Identify REG (which may be a CONCAT) as a user register. */
1095
1096 void
1097 mark_user_reg (rtx reg)
1098 {
1099 if (GET_CODE (reg) == CONCAT)
1100 {
1101 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1102 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1103 }
1104 else
1105 {
1106 gcc_assert (REG_P (reg));
1107 REG_USERVAR_P (reg) = 1;
1108 }
1109 }
1110
1111 /* Identify REG as a probable pointer register and show its alignment
1112 as ALIGN, if nonzero. */
1113
1114 void
1115 mark_reg_pointer (rtx reg, int align)
1116 {
1117 if (! REG_POINTER (reg))
1118 {
1119 REG_POINTER (reg) = 1;
1120
1121 if (align)
1122 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1123 }
1124 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1125 /* We can no-longer be sure just how aligned this pointer is. */
1126 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1127 }
1128
1129 /* Return 1 plus largest pseudo reg number used in the current function. */
1130
1131 int
1132 max_reg_num (void)
1133 {
1134 return reg_rtx_no;
1135 }
1136
1137 /* Return 1 + the largest label number used so far in the current function. */
1138
1139 int
1140 max_label_num (void)
1141 {
1142 return label_num;
1143 }
1144
1145 /* Return first label number used in this function (if any were used). */
1146
1147 int
1148 get_first_label_num (void)
1149 {
1150 return first_label_num;
1151 }
1152
1153 /* If the rtx for label was created during the expansion of a nested
1154 function, then first_label_num won't include this label number.
1155 Fix this now so that array indices work later. */
1156
1157 void
1158 maybe_set_first_label_num (rtx x)
1159 {
1160 if (CODE_LABEL_NUMBER (x) < first_label_num)
1161 first_label_num = CODE_LABEL_NUMBER (x);
1162 }
1163 \f
1164 /* Return a value representing some low-order bits of X, where the number
1165 of low-order bits is given by MODE. Note that no conversion is done
1166 between floating-point and fixed-point values, rather, the bit
1167 representation is returned.
1168
1169 This function handles the cases in common between gen_lowpart, below,
1170 and two variants in cse.c and combine.c. These are the cases that can
1171 be safely handled at all points in the compilation.
1172
1173 If this is not a case we can handle, return 0. */
1174
1175 rtx
1176 gen_lowpart_common (enum machine_mode mode, rtx x)
1177 {
1178 int msize = GET_MODE_SIZE (mode);
1179 int xsize;
1180 int offset = 0;
1181 enum machine_mode innermode;
1182
1183 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1184 so we have to make one up. Yuk. */
1185 innermode = GET_MODE (x);
1186 if (CONST_INT_P (x)
1187 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1188 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1189 else if (innermode == VOIDmode)
1190 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1191
1192 xsize = GET_MODE_SIZE (innermode);
1193
1194 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1195
1196 if (innermode == mode)
1197 return x;
1198
1199 /* MODE must occupy no more words than the mode of X. */
1200 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1201 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1202 return 0;
1203
1204 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1205 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1206 return 0;
1207
1208 offset = subreg_lowpart_offset (mode, innermode);
1209
1210 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1211 && (GET_MODE_CLASS (mode) == MODE_INT
1212 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1213 {
1214 /* If we are getting the low-order part of something that has been
1215 sign- or zero-extended, we can either just use the object being
1216 extended or make a narrower extension. If we want an even smaller
1217 piece than the size of the object being extended, call ourselves
1218 recursively.
1219
1220 This case is used mostly by combine and cse. */
1221
1222 if (GET_MODE (XEXP (x, 0)) == mode)
1223 return XEXP (x, 0);
1224 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1225 return gen_lowpart_common (mode, XEXP (x, 0));
1226 else if (msize < xsize)
1227 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1228 }
1229 else if (GET_CODE (x) == SUBREG || REG_P (x)
1230 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1231 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1232 return simplify_gen_subreg (mode, x, innermode, offset);
1233
1234 /* Otherwise, we can't do this. */
1235 return 0;
1236 }
1237 \f
1238 rtx
1239 gen_highpart (enum machine_mode mode, rtx x)
1240 {
1241 unsigned int msize = GET_MODE_SIZE (mode);
1242 rtx result;
1243
1244 /* This case loses if X is a subreg. To catch bugs early,
1245 complain if an invalid MODE is used even in other cases. */
1246 gcc_assert (msize <= UNITS_PER_WORD
1247 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1248
1249 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1250 subreg_highpart_offset (mode, GET_MODE (x)));
1251 gcc_assert (result);
1252
1253 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1254 the target if we have a MEM. gen_highpart must return a valid operand,
1255 emitting code if necessary to do so. */
1256 if (MEM_P (result))
1257 {
1258 result = validize_mem (result);
1259 gcc_assert (result);
1260 }
1261
1262 return result;
1263 }
1264
1265 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1266 be VOIDmode constant. */
1267 rtx
1268 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1269 {
1270 if (GET_MODE (exp) != VOIDmode)
1271 {
1272 gcc_assert (GET_MODE (exp) == innermode);
1273 return gen_highpart (outermode, exp);
1274 }
1275 return simplify_gen_subreg (outermode, exp, innermode,
1276 subreg_highpart_offset (outermode, innermode));
1277 }
1278
1279 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1280
1281 unsigned int
1282 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1283 {
1284 unsigned int offset = 0;
1285 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1286
1287 if (difference > 0)
1288 {
1289 if (WORDS_BIG_ENDIAN)
1290 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1291 if (BYTES_BIG_ENDIAN)
1292 offset += difference % UNITS_PER_WORD;
1293 }
1294
1295 return offset;
1296 }
1297
1298 /* Return offset in bytes to get OUTERMODE high part
1299 of the value in mode INNERMODE stored in memory in target format. */
1300 unsigned int
1301 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1302 {
1303 unsigned int offset = 0;
1304 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1305
1306 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1307
1308 if (difference > 0)
1309 {
1310 if (! WORDS_BIG_ENDIAN)
1311 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1312 if (! BYTES_BIG_ENDIAN)
1313 offset += difference % UNITS_PER_WORD;
1314 }
1315
1316 return offset;
1317 }
1318
1319 /* Return 1 iff X, assumed to be a SUBREG,
1320 refers to the least significant part of its containing reg.
1321 If X is not a SUBREG, always return 1 (it is its own low part!). */
1322
1323 int
1324 subreg_lowpart_p (const_rtx x)
1325 {
1326 if (GET_CODE (x) != SUBREG)
1327 return 1;
1328 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1329 return 0;
1330
1331 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1332 == SUBREG_BYTE (x));
1333 }
1334 \f
1335 /* Return subword OFFSET of operand OP.
1336 The word number, OFFSET, is interpreted as the word number starting
1337 at the low-order address. OFFSET 0 is the low-order word if not
1338 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1339
1340 If we cannot extract the required word, we return zero. Otherwise,
1341 an rtx corresponding to the requested word will be returned.
1342
1343 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1344 reload has completed, a valid address will always be returned. After
1345 reload, if a valid address cannot be returned, we return zero.
1346
1347 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1348 it is the responsibility of the caller.
1349
1350 MODE is the mode of OP in case it is a CONST_INT.
1351
1352 ??? This is still rather broken for some cases. The problem for the
1353 moment is that all callers of this thing provide no 'goal mode' to
1354 tell us to work with. This exists because all callers were written
1355 in a word based SUBREG world.
1356 Now use of this function can be deprecated by simplify_subreg in most
1357 cases.
1358 */
1359
1360 rtx
1361 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1362 {
1363 if (mode == VOIDmode)
1364 mode = GET_MODE (op);
1365
1366 gcc_assert (mode != VOIDmode);
1367
1368 /* If OP is narrower than a word, fail. */
1369 if (mode != BLKmode
1370 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1371 return 0;
1372
1373 /* If we want a word outside OP, return zero. */
1374 if (mode != BLKmode
1375 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1376 return const0_rtx;
1377
1378 /* Form a new MEM at the requested address. */
1379 if (MEM_P (op))
1380 {
1381 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1382
1383 if (! validate_address)
1384 return new_rtx;
1385
1386 else if (reload_completed)
1387 {
1388 if (! strict_memory_address_addr_space_p (word_mode,
1389 XEXP (new_rtx, 0),
1390 MEM_ADDR_SPACE (op)))
1391 return 0;
1392 }
1393 else
1394 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1395 }
1396
1397 /* Rest can be handled by simplify_subreg. */
1398 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1399 }
1400
1401 /* Similar to `operand_subword', but never return 0. If we can't
1402 extract the required subword, put OP into a register and try again.
1403 The second attempt must succeed. We always validate the address in
1404 this case.
1405
1406 MODE is the mode of OP, in case it is CONST_INT. */
1407
1408 rtx
1409 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1410 {
1411 rtx result = operand_subword (op, offset, 1, mode);
1412
1413 if (result)
1414 return result;
1415
1416 if (mode != BLKmode && mode != VOIDmode)
1417 {
1418 /* If this is a register which can not be accessed by words, copy it
1419 to a pseudo register. */
1420 if (REG_P (op))
1421 op = copy_to_reg (op);
1422 else
1423 op = force_reg (mode, op);
1424 }
1425
1426 result = operand_subword (op, offset, 1, mode);
1427 gcc_assert (result);
1428
1429 return result;
1430 }
1431 \f
1432 /* Returns 1 if both MEM_EXPR can be considered equal
1433 and 0 otherwise. */
1434
1435 int
1436 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1437 {
1438 if (expr1 == expr2)
1439 return 1;
1440
1441 if (! expr1 || ! expr2)
1442 return 0;
1443
1444 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1445 return 0;
1446
1447 return operand_equal_p (expr1, expr2, 0);
1448 }
1449
1450 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1451 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1452 -1 if not known. */
1453
1454 int
1455 get_mem_align_offset (rtx mem, unsigned int align)
1456 {
1457 tree expr;
1458 unsigned HOST_WIDE_INT offset;
1459
1460 /* This function can't use
1461 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1462 || !CONST_INT_P (MEM_OFFSET (mem))
1463 || (MAX (MEM_ALIGN (mem),
1464 get_object_alignment (MEM_EXPR (mem), align))
1465 < align))
1466 return -1;
1467 else
1468 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469 for two reasons:
1470 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471 for <variable>. get_inner_reference doesn't handle it and
1472 even if it did, the alignment in that case needs to be determined
1473 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475 isn't sufficiently aligned, the object it is in might be. */
1476 gcc_assert (MEM_P (mem));
1477 expr = MEM_EXPR (mem);
1478 if (expr == NULL_TREE
1479 || MEM_OFFSET (mem) == NULL_RTX
1480 || !CONST_INT_P (MEM_OFFSET (mem)))
1481 return -1;
1482
1483 offset = INTVAL (MEM_OFFSET (mem));
1484 if (DECL_P (expr))
1485 {
1486 if (DECL_ALIGN (expr) < align)
1487 return -1;
1488 }
1489 else if (INDIRECT_REF_P (expr))
1490 {
1491 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1492 return -1;
1493 }
1494 else if (TREE_CODE (expr) == COMPONENT_REF)
1495 {
1496 while (1)
1497 {
1498 tree inner = TREE_OPERAND (expr, 0);
1499 tree field = TREE_OPERAND (expr, 1);
1500 tree byte_offset = component_ref_field_offset (expr);
1501 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1502
1503 if (!byte_offset
1504 || !host_integerp (byte_offset, 1)
1505 || !host_integerp (bit_offset, 1))
1506 return -1;
1507
1508 offset += tree_low_cst (byte_offset, 1);
1509 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1510
1511 if (inner == NULL_TREE)
1512 {
1513 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1514 < (unsigned int) align)
1515 return -1;
1516 break;
1517 }
1518 else if (DECL_P (inner))
1519 {
1520 if (DECL_ALIGN (inner) < align)
1521 return -1;
1522 break;
1523 }
1524 else if (TREE_CODE (inner) != COMPONENT_REF)
1525 return -1;
1526 expr = inner;
1527 }
1528 }
1529 else
1530 return -1;
1531
1532 return offset & ((align / BITS_PER_UNIT) - 1);
1533 }
1534
1535 /* Given REF (a MEM) and T, either the type of X or the expression
1536 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1537 if we are making a new object of this type. BITPOS is nonzero if
1538 there is an offset outstanding on T that will be applied later. */
1539
1540 void
1541 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1542 HOST_WIDE_INT bitpos)
1543 {
1544 alias_set_type alias = MEM_ALIAS_SET (ref);
1545 tree expr = MEM_EXPR (ref);
1546 rtx offset = MEM_OFFSET (ref);
1547 rtx size = MEM_SIZE (ref);
1548 unsigned int align = MEM_ALIGN (ref);
1549 HOST_WIDE_INT apply_bitpos = 0;
1550 tree type;
1551
1552 /* It can happen that type_for_mode was given a mode for which there
1553 is no language-level type. In which case it returns NULL, which
1554 we can see here. */
1555 if (t == NULL_TREE)
1556 return;
1557
1558 type = TYPE_P (t) ? t : TREE_TYPE (t);
1559 if (type == error_mark_node)
1560 return;
1561
1562 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563 wrong answer, as it assumes that DECL_RTL already has the right alias
1564 info. Callers should not set DECL_RTL until after the call to
1565 set_mem_attributes. */
1566 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1567
1568 /* Get the alias set from the expression or type (perhaps using a
1569 front-end routine) and use it. */
1570 alias = get_alias_set (t);
1571
1572 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1573 MEM_IN_STRUCT_P (ref)
1574 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1575 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1576
1577 /* If we are making an object of this type, or if this is a DECL, we know
1578 that it is a scalar if the type is not an aggregate. */
1579 if ((objectp || DECL_P (t))
1580 && ! AGGREGATE_TYPE_P (type)
1581 && TREE_CODE (type) != COMPLEX_TYPE)
1582 MEM_SCALAR_P (ref) = 1;
1583
1584 /* We can set the alignment from the type if we are making an object,
1585 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1586 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1587 align = MAX (align, TYPE_ALIGN (type));
1588
1589 else if (TREE_CODE (t) == MEM_REF)
1590 {
1591 tree op0 = TREE_OPERAND (t, 0);
1592 if (TREE_CODE (op0) == ADDR_EXPR
1593 && (DECL_P (TREE_OPERAND (op0, 0))
1594 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1595 {
1596 if (DECL_P (TREE_OPERAND (op0, 0)))
1597 align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1598 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1599 {
1600 align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1601 #ifdef CONSTANT_ALIGNMENT
1602 align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0), align);
1603 #endif
1604 }
1605 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1606 {
1607 unsigned HOST_WIDE_INT ioff
1608 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1609 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1610 align = MIN (aoff, align);
1611 }
1612 }
1613 else
1614 /* ??? This isn't fully correct, we can't set the alignment from the
1615 type in all cases. */
1616 align = MAX (align, TYPE_ALIGN (type));
1617 }
1618
1619 else if (TREE_CODE (t) == TARGET_MEM_REF)
1620 /* ??? This isn't fully correct, we can't set the alignment from the
1621 type in all cases. */
1622 align = MAX (align, TYPE_ALIGN (type));
1623
1624 /* If the size is known, we can set that. */
1625 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1626 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1627
1628 /* If T is not a type, we may be able to deduce some more information about
1629 the expression. */
1630 if (! TYPE_P (t))
1631 {
1632 tree base;
1633 bool align_computed = false;
1634
1635 if (TREE_THIS_VOLATILE (t))
1636 MEM_VOLATILE_P (ref) = 1;
1637
1638 /* Now remove any conversions: they don't change what the underlying
1639 object is. Likewise for SAVE_EXPR. */
1640 while (CONVERT_EXPR_P (t)
1641 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1642 || TREE_CODE (t) == SAVE_EXPR)
1643 t = TREE_OPERAND (t, 0);
1644
1645 /* We may look through structure-like accesses for the purposes of
1646 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1647 base = t;
1648 while (TREE_CODE (base) == COMPONENT_REF
1649 || TREE_CODE (base) == REALPART_EXPR
1650 || TREE_CODE (base) == IMAGPART_EXPR
1651 || TREE_CODE (base) == BIT_FIELD_REF)
1652 base = TREE_OPERAND (base, 0);
1653
1654 if (TREE_CODE (base) == MEM_REF
1655 && TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
1656 base = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
1657 if (DECL_P (base))
1658 {
1659 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1660 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1661 else
1662 MEM_NOTRAP_P (ref) = 1;
1663 }
1664 else if (TREE_CODE (base) == INDIRECT_REF
1665 || TREE_CODE (base) == MEM_REF
1666 || TREE_CODE (base) == TARGET_MEM_REF
1667 || TREE_CODE (base) == ARRAY_REF
1668 || TREE_CODE (base) == ARRAY_RANGE_REF)
1669 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1670
1671 base = get_base_address (base);
1672 if (base && DECL_P (base)
1673 && TREE_READONLY (base)
1674 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1675 MEM_READONLY_P (ref) = 1;
1676
1677 /* If this expression uses it's parent's alias set, mark it such
1678 that we won't change it. */
1679 if (component_uses_parent_alias_set (t))
1680 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1681
1682 /* If this is a decl, set the attributes of the MEM from it. */
1683 if (DECL_P (t))
1684 {
1685 expr = t;
1686 offset = const0_rtx;
1687 apply_bitpos = bitpos;
1688 size = (DECL_SIZE_UNIT (t)
1689 && host_integerp (DECL_SIZE_UNIT (t), 1)
1690 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1691 align = DECL_ALIGN (t);
1692 align_computed = true;
1693 }
1694
1695 /* If this is a constant, we know the alignment. */
1696 else if (CONSTANT_CLASS_P (t))
1697 {
1698 align = TYPE_ALIGN (type);
1699 #ifdef CONSTANT_ALIGNMENT
1700 align = CONSTANT_ALIGNMENT (t, align);
1701 #endif
1702 align_computed = true;
1703 }
1704
1705 /* If this is a field reference and not a bit-field, record it. */
1706 /* ??? There is some information that can be gleaned from bit-fields,
1707 such as the word offset in the structure that might be modified.
1708 But skip it for now. */
1709 else if (TREE_CODE (t) == COMPONENT_REF
1710 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1711 {
1712 expr = t;
1713 offset = const0_rtx;
1714 apply_bitpos = bitpos;
1715 /* ??? Any reason the field size would be different than
1716 the size we got from the type? */
1717 }
1718
1719 /* If this is an array reference, look for an outer field reference. */
1720 else if (TREE_CODE (t) == ARRAY_REF)
1721 {
1722 tree off_tree = size_zero_node;
1723 /* We can't modify t, because we use it at the end of the
1724 function. */
1725 tree t2 = t;
1726
1727 do
1728 {
1729 tree index = TREE_OPERAND (t2, 1);
1730 tree low_bound = array_ref_low_bound (t2);
1731 tree unit_size = array_ref_element_size (t2);
1732
1733 /* We assume all arrays have sizes that are a multiple of a byte.
1734 First subtract the lower bound, if any, in the type of the
1735 index, then convert to sizetype and multiply by the size of
1736 the array element. */
1737 if (! integer_zerop (low_bound))
1738 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1739 index, low_bound);
1740
1741 off_tree = size_binop (PLUS_EXPR,
1742 size_binop (MULT_EXPR,
1743 fold_convert (sizetype,
1744 index),
1745 unit_size),
1746 off_tree);
1747 t2 = TREE_OPERAND (t2, 0);
1748 }
1749 while (TREE_CODE (t2) == ARRAY_REF);
1750
1751 if (DECL_P (t2))
1752 {
1753 expr = t2;
1754 offset = NULL;
1755 if (host_integerp (off_tree, 1))
1756 {
1757 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1758 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1759 align = DECL_ALIGN (t2);
1760 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1761 align = aoff;
1762 align_computed = true;
1763 offset = GEN_INT (ioff);
1764 apply_bitpos = bitpos;
1765 }
1766 }
1767 else if (TREE_CODE (t2) == COMPONENT_REF)
1768 {
1769 expr = t2;
1770 offset = NULL;
1771 if (host_integerp (off_tree, 1))
1772 {
1773 offset = GEN_INT (tree_low_cst (off_tree, 1));
1774 apply_bitpos = bitpos;
1775 }
1776 /* ??? Any reason the field size would be different than
1777 the size we got from the type? */
1778 }
1779
1780 /* If this is an indirect reference, record it. */
1781 else if (TREE_CODE (t) == MEM_REF)
1782 {
1783 expr = t;
1784 offset = const0_rtx;
1785 apply_bitpos = bitpos;
1786 }
1787 }
1788
1789 /* If this is an indirect reference, record it. */
1790 else if (TREE_CODE (t) == MEM_REF
1791 || TREE_CODE (t) == TARGET_MEM_REF)
1792 {
1793 expr = t;
1794 offset = const0_rtx;
1795 apply_bitpos = bitpos;
1796 }
1797
1798 if (!align_computed && !INDIRECT_REF_P (t))
1799 {
1800 unsigned int obj_align = get_object_alignment (t, BIGGEST_ALIGNMENT);
1801 align = MAX (align, obj_align);
1802 }
1803 }
1804
1805 /* If we modified OFFSET based on T, then subtract the outstanding
1806 bit position offset. Similarly, increase the size of the accessed
1807 object to contain the negative offset. */
1808 if (apply_bitpos)
1809 {
1810 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1811 if (size)
1812 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1813 }
1814
1815 /* Now set the attributes we computed above. */
1816 MEM_ATTRS (ref)
1817 = get_mem_attrs (alias, expr, offset, size, align,
1818 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1819
1820 /* If this is already known to be a scalar or aggregate, we are done. */
1821 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1822 return;
1823
1824 /* If it is a reference into an aggregate, this is part of an aggregate.
1825 Otherwise we don't know. */
1826 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1827 || TREE_CODE (t) == ARRAY_RANGE_REF
1828 || TREE_CODE (t) == BIT_FIELD_REF)
1829 MEM_IN_STRUCT_P (ref) = 1;
1830 }
1831
1832 void
1833 set_mem_attributes (rtx ref, tree t, int objectp)
1834 {
1835 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1836 }
1837
1838 /* Set the alias set of MEM to SET. */
1839
1840 void
1841 set_mem_alias_set (rtx mem, alias_set_type set)
1842 {
1843 /* If the new and old alias sets don't conflict, something is wrong. */
1844 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1845
1846 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1847 MEM_SIZE (mem), MEM_ALIGN (mem),
1848 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1849 }
1850
1851 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1852
1853 void
1854 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1855 {
1856 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1857 MEM_OFFSET (mem), MEM_SIZE (mem),
1858 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1859 }
1860
1861 /* Set the alignment of MEM to ALIGN bits. */
1862
1863 void
1864 set_mem_align (rtx mem, unsigned int align)
1865 {
1866 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1867 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1868 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1869 }
1870
1871 /* Set the expr for MEM to EXPR. */
1872
1873 void
1874 set_mem_expr (rtx mem, tree expr)
1875 {
1876 MEM_ATTRS (mem)
1877 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1878 MEM_SIZE (mem), MEM_ALIGN (mem),
1879 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1880 }
1881
1882 /* Set the offset of MEM to OFFSET. */
1883
1884 void
1885 set_mem_offset (rtx mem, rtx offset)
1886 {
1887 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1888 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1889 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1890 }
1891
1892 /* Set the size of MEM to SIZE. */
1893
1894 void
1895 set_mem_size (rtx mem, rtx size)
1896 {
1897 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1898 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1899 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1900 }
1901 \f
1902 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1903 and its address changed to ADDR. (VOIDmode means don't change the mode.
1904 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1905 returned memory location is required to be valid. The memory
1906 attributes are not changed. */
1907
1908 static rtx
1909 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1910 {
1911 addr_space_t as;
1912 rtx new_rtx;
1913
1914 gcc_assert (MEM_P (memref));
1915 as = MEM_ADDR_SPACE (memref);
1916 if (mode == VOIDmode)
1917 mode = GET_MODE (memref);
1918 if (addr == 0)
1919 addr = XEXP (memref, 0);
1920 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1921 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1922 return memref;
1923
1924 if (validate)
1925 {
1926 if (reload_in_progress || reload_completed)
1927 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1928 else
1929 addr = memory_address_addr_space (mode, addr, as);
1930 }
1931
1932 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1933 return memref;
1934
1935 new_rtx = gen_rtx_MEM (mode, addr);
1936 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1937 return new_rtx;
1938 }
1939
1940 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1941 way we are changing MEMREF, so we only preserve the alias set. */
1942
1943 rtx
1944 change_address (rtx memref, enum machine_mode mode, rtx addr)
1945 {
1946 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1947 enum machine_mode mmode = GET_MODE (new_rtx);
1948 unsigned int align;
1949
1950 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1951 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1952
1953 /* If there are no changes, just return the original memory reference. */
1954 if (new_rtx == memref)
1955 {
1956 if (MEM_ATTRS (memref) == 0
1957 || (MEM_EXPR (memref) == NULL
1958 && MEM_OFFSET (memref) == NULL
1959 && MEM_SIZE (memref) == size
1960 && MEM_ALIGN (memref) == align))
1961 return new_rtx;
1962
1963 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1964 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1965 }
1966
1967 MEM_ATTRS (new_rtx)
1968 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1969 MEM_ADDR_SPACE (memref), mmode);
1970
1971 return new_rtx;
1972 }
1973
1974 /* Return a memory reference like MEMREF, but with its mode changed
1975 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1976 nonzero, the memory address is forced to be valid.
1977 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1978 and caller is responsible for adjusting MEMREF base register. */
1979
1980 rtx
1981 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1982 int validate, int adjust)
1983 {
1984 rtx addr = XEXP (memref, 0);
1985 rtx new_rtx;
1986 rtx memoffset = MEM_OFFSET (memref);
1987 rtx size = 0;
1988 unsigned int memalign = MEM_ALIGN (memref);
1989 addr_space_t as = MEM_ADDR_SPACE (memref);
1990 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1991 int pbits;
1992
1993 /* If there are no changes, just return the original memory reference. */
1994 if (mode == GET_MODE (memref) && !offset
1995 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1996 return memref;
1997
1998 /* ??? Prefer to create garbage instead of creating shared rtl.
1999 This may happen even if offset is nonzero -- consider
2000 (plus (plus reg reg) const_int) -- so do this always. */
2001 addr = copy_rtx (addr);
2002
2003 /* Convert a possibly large offset to a signed value within the
2004 range of the target address space. */
2005 pbits = GET_MODE_BITSIZE (address_mode);
2006 if (HOST_BITS_PER_WIDE_INT > pbits)
2007 {
2008 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2009 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2010 >> shift);
2011 }
2012
2013 if (adjust)
2014 {
2015 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2016 object, we can merge it into the LO_SUM. */
2017 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2018 && offset >= 0
2019 && (unsigned HOST_WIDE_INT) offset
2020 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2021 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2022 plus_constant (XEXP (addr, 1), offset));
2023 else
2024 addr = plus_constant (addr, offset);
2025 }
2026
2027 new_rtx = change_address_1 (memref, mode, addr, validate);
2028
2029 /* If the address is a REG, change_address_1 rightfully returns memref,
2030 but this would destroy memref's MEM_ATTRS. */
2031 if (new_rtx == memref && offset != 0)
2032 new_rtx = copy_rtx (new_rtx);
2033
2034 /* Compute the new values of the memory attributes due to this adjustment.
2035 We add the offsets and update the alignment. */
2036 if (memoffset)
2037 memoffset = GEN_INT (offset + INTVAL (memoffset));
2038
2039 /* Compute the new alignment by taking the MIN of the alignment and the
2040 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2041 if zero. */
2042 if (offset != 0)
2043 memalign
2044 = MIN (memalign,
2045 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2046
2047 /* We can compute the size in a number of ways. */
2048 if (GET_MODE (new_rtx) != BLKmode)
2049 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2050 else if (MEM_SIZE (memref))
2051 size = plus_constant (MEM_SIZE (memref), -offset);
2052
2053 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2054 memoffset, size, memalign, as,
2055 GET_MODE (new_rtx));
2056
2057 /* At some point, we should validate that this offset is within the object,
2058 if all the appropriate values are known. */
2059 return new_rtx;
2060 }
2061
2062 /* Return a memory reference like MEMREF, but with its mode changed
2063 to MODE and its address changed to ADDR, which is assumed to be
2064 MEMREF offset by OFFSET bytes. If VALIDATE is
2065 nonzero, the memory address is forced to be valid. */
2066
2067 rtx
2068 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2069 HOST_WIDE_INT offset, int validate)
2070 {
2071 memref = change_address_1 (memref, VOIDmode, addr, validate);
2072 return adjust_address_1 (memref, mode, offset, validate, 0);
2073 }
2074
2075 /* Return a memory reference like MEMREF, but whose address is changed by
2076 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2077 known to be in OFFSET (possibly 1). */
2078
2079 rtx
2080 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2081 {
2082 rtx new_rtx, addr = XEXP (memref, 0);
2083 addr_space_t as = MEM_ADDR_SPACE (memref);
2084 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2085
2086 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2087
2088 /* At this point we don't know _why_ the address is invalid. It
2089 could have secondary memory references, multiplies or anything.
2090
2091 However, if we did go and rearrange things, we can wind up not
2092 being able to recognize the magic around pic_offset_table_rtx.
2093 This stuff is fragile, and is yet another example of why it is
2094 bad to expose PIC machinery too early. */
2095 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2096 && GET_CODE (addr) == PLUS
2097 && XEXP (addr, 0) == pic_offset_table_rtx)
2098 {
2099 addr = force_reg (GET_MODE (addr), addr);
2100 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2101 }
2102
2103 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2104 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2105
2106 /* If there are no changes, just return the original memory reference. */
2107 if (new_rtx == memref)
2108 return new_rtx;
2109
2110 /* Update the alignment to reflect the offset. Reset the offset, which
2111 we don't know. */
2112 MEM_ATTRS (new_rtx)
2113 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2114 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2115 as, GET_MODE (new_rtx));
2116 return new_rtx;
2117 }
2118
2119 /* Return a memory reference like MEMREF, but with its address changed to
2120 ADDR. The caller is asserting that the actual piece of memory pointed
2121 to is the same, just the form of the address is being changed, such as
2122 by putting something into a register. */
2123
2124 rtx
2125 replace_equiv_address (rtx memref, rtx addr)
2126 {
2127 /* change_address_1 copies the memory attribute structure without change
2128 and that's exactly what we want here. */
2129 update_temp_slot_address (XEXP (memref, 0), addr);
2130 return change_address_1 (memref, VOIDmode, addr, 1);
2131 }
2132
2133 /* Likewise, but the reference is not required to be valid. */
2134
2135 rtx
2136 replace_equiv_address_nv (rtx memref, rtx addr)
2137 {
2138 return change_address_1 (memref, VOIDmode, addr, 0);
2139 }
2140
2141 /* Return a memory reference like MEMREF, but with its mode widened to
2142 MODE and offset by OFFSET. This would be used by targets that e.g.
2143 cannot issue QImode memory operations and have to use SImode memory
2144 operations plus masking logic. */
2145
2146 rtx
2147 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2148 {
2149 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2150 tree expr = MEM_EXPR (new_rtx);
2151 rtx memoffset = MEM_OFFSET (new_rtx);
2152 unsigned int size = GET_MODE_SIZE (mode);
2153
2154 /* If there are no changes, just return the original memory reference. */
2155 if (new_rtx == memref)
2156 return new_rtx;
2157
2158 /* If we don't know what offset we were at within the expression, then
2159 we can't know if we've overstepped the bounds. */
2160 if (! memoffset)
2161 expr = NULL_TREE;
2162
2163 while (expr)
2164 {
2165 if (TREE_CODE (expr) == COMPONENT_REF)
2166 {
2167 tree field = TREE_OPERAND (expr, 1);
2168 tree offset = component_ref_field_offset (expr);
2169
2170 if (! DECL_SIZE_UNIT (field))
2171 {
2172 expr = NULL_TREE;
2173 break;
2174 }
2175
2176 /* Is the field at least as large as the access? If so, ok,
2177 otherwise strip back to the containing structure. */
2178 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2179 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2180 && INTVAL (memoffset) >= 0)
2181 break;
2182
2183 if (! host_integerp (offset, 1))
2184 {
2185 expr = NULL_TREE;
2186 break;
2187 }
2188
2189 expr = TREE_OPERAND (expr, 0);
2190 memoffset
2191 = (GEN_INT (INTVAL (memoffset)
2192 + tree_low_cst (offset, 1)
2193 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2194 / BITS_PER_UNIT)));
2195 }
2196 /* Similarly for the decl. */
2197 else if (DECL_P (expr)
2198 && DECL_SIZE_UNIT (expr)
2199 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2200 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2201 && (! memoffset || INTVAL (memoffset) >= 0))
2202 break;
2203 else
2204 {
2205 /* The widened memory access overflows the expression, which means
2206 that it could alias another expression. Zap it. */
2207 expr = NULL_TREE;
2208 break;
2209 }
2210 }
2211
2212 if (! expr)
2213 memoffset = NULL_RTX;
2214
2215 /* The widened memory may alias other stuff, so zap the alias set. */
2216 /* ??? Maybe use get_alias_set on any remaining expression. */
2217
2218 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2219 MEM_ALIGN (new_rtx),
2220 MEM_ADDR_SPACE (new_rtx), mode);
2221
2222 return new_rtx;
2223 }
2224 \f
2225 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2226 static GTY(()) tree spill_slot_decl;
2227
2228 tree
2229 get_spill_slot_decl (bool force_build_p)
2230 {
2231 tree d = spill_slot_decl;
2232 rtx rd;
2233
2234 if (d || !force_build_p)
2235 return d;
2236
2237 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2238 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2239 DECL_ARTIFICIAL (d) = 1;
2240 DECL_IGNORED_P (d) = 1;
2241 TREE_USED (d) = 1;
2242 spill_slot_decl = d;
2243
2244 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2245 MEM_NOTRAP_P (rd) = 1;
2246 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2247 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2248 SET_DECL_RTL (d, rd);
2249
2250 return d;
2251 }
2252
2253 /* Given MEM, a result from assign_stack_local, fill in the memory
2254 attributes as appropriate for a register allocator spill slot.
2255 These slots are not aliasable by other memory. We arrange for
2256 them all to use a single MEM_EXPR, so that the aliasing code can
2257 work properly in the case of shared spill slots. */
2258
2259 void
2260 set_mem_attrs_for_spill (rtx mem)
2261 {
2262 alias_set_type alias;
2263 rtx addr, offset;
2264 tree expr;
2265
2266 expr = get_spill_slot_decl (true);
2267 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2268
2269 /* We expect the incoming memory to be of the form:
2270 (mem:MODE (plus (reg sfp) (const_int offset)))
2271 with perhaps the plus missing for offset = 0. */
2272 addr = XEXP (mem, 0);
2273 offset = const0_rtx;
2274 if (GET_CODE (addr) == PLUS
2275 && CONST_INT_P (XEXP (addr, 1)))
2276 offset = XEXP (addr, 1);
2277
2278 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2279 MEM_SIZE (mem), MEM_ALIGN (mem),
2280 ADDR_SPACE_GENERIC, GET_MODE (mem));
2281 MEM_NOTRAP_P (mem) = 1;
2282 }
2283 \f
2284 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2285
2286 rtx
2287 gen_label_rtx (void)
2288 {
2289 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2290 NULL, label_num++, NULL);
2291 }
2292 \f
2293 /* For procedure integration. */
2294
2295 /* Install new pointers to the first and last insns in the chain.
2296 Also, set cur_insn_uid to one higher than the last in use.
2297 Used for an inline-procedure after copying the insn chain. */
2298
2299 void
2300 set_new_first_and_last_insn (rtx first, rtx last)
2301 {
2302 rtx insn;
2303
2304 set_first_insn (first);
2305 set_last_insn (last);
2306 cur_insn_uid = 0;
2307
2308 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2309 {
2310 int debug_count = 0;
2311
2312 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2313 cur_debug_insn_uid = 0;
2314
2315 for (insn = first; insn; insn = NEXT_INSN (insn))
2316 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2317 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2318 else
2319 {
2320 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2321 if (DEBUG_INSN_P (insn))
2322 debug_count++;
2323 }
2324
2325 if (debug_count)
2326 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2327 else
2328 cur_debug_insn_uid++;
2329 }
2330 else
2331 for (insn = first; insn; insn = NEXT_INSN (insn))
2332 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2333
2334 cur_insn_uid++;
2335 }
2336 \f
2337 /* Go through all the RTL insn bodies and copy any invalid shared
2338 structure. This routine should only be called once. */
2339
2340 static void
2341 unshare_all_rtl_1 (rtx insn)
2342 {
2343 /* Unshare just about everything else. */
2344 unshare_all_rtl_in_chain (insn);
2345
2346 /* Make sure the addresses of stack slots found outside the insn chain
2347 (such as, in DECL_RTL of a variable) are not shared
2348 with the insn chain.
2349
2350 This special care is necessary when the stack slot MEM does not
2351 actually appear in the insn chain. If it does appear, its address
2352 is unshared from all else at that point. */
2353 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2354 }
2355
2356 /* Go through all the RTL insn bodies and copy any invalid shared
2357 structure, again. This is a fairly expensive thing to do so it
2358 should be done sparingly. */
2359
2360 void
2361 unshare_all_rtl_again (rtx insn)
2362 {
2363 rtx p;
2364 tree decl;
2365
2366 for (p = insn; p; p = NEXT_INSN (p))
2367 if (INSN_P (p))
2368 {
2369 reset_used_flags (PATTERN (p));
2370 reset_used_flags (REG_NOTES (p));
2371 }
2372
2373 /* Make sure that virtual stack slots are not shared. */
2374 set_used_decls (DECL_INITIAL (cfun->decl));
2375
2376 /* Make sure that virtual parameters are not shared. */
2377 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2378 set_used_flags (DECL_RTL (decl));
2379
2380 reset_used_flags (stack_slot_list);
2381
2382 unshare_all_rtl_1 (insn);
2383 }
2384
2385 unsigned int
2386 unshare_all_rtl (void)
2387 {
2388 unshare_all_rtl_1 (get_insns ());
2389 return 0;
2390 }
2391
2392 struct rtl_opt_pass pass_unshare_all_rtl =
2393 {
2394 {
2395 RTL_PASS,
2396 "unshare", /* name */
2397 NULL, /* gate */
2398 unshare_all_rtl, /* execute */
2399 NULL, /* sub */
2400 NULL, /* next */
2401 0, /* static_pass_number */
2402 TV_NONE, /* tv_id */
2403 0, /* properties_required */
2404 0, /* properties_provided */
2405 0, /* properties_destroyed */
2406 0, /* todo_flags_start */
2407 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2408 }
2409 };
2410
2411
2412 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2413 Recursively does the same for subexpressions. */
2414
2415 static void
2416 verify_rtx_sharing (rtx orig, rtx insn)
2417 {
2418 rtx x = orig;
2419 int i;
2420 enum rtx_code code;
2421 const char *format_ptr;
2422
2423 if (x == 0)
2424 return;
2425
2426 code = GET_CODE (x);
2427
2428 /* These types may be freely shared. */
2429
2430 switch (code)
2431 {
2432 case REG:
2433 case DEBUG_EXPR:
2434 case VALUE:
2435 case CONST_INT:
2436 case CONST_DOUBLE:
2437 case CONST_FIXED:
2438 case CONST_VECTOR:
2439 case SYMBOL_REF:
2440 case LABEL_REF:
2441 case CODE_LABEL:
2442 case PC:
2443 case CC0:
2444 case SCRATCH:
2445 return;
2446 /* SCRATCH must be shared because they represent distinct values. */
2447 case CLOBBER:
2448 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2449 return;
2450 break;
2451
2452 case CONST:
2453 if (shared_const_p (orig))
2454 return;
2455 break;
2456
2457 case MEM:
2458 /* A MEM is allowed to be shared if its address is constant. */
2459 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2460 || reload_completed || reload_in_progress)
2461 return;
2462
2463 break;
2464
2465 default:
2466 break;
2467 }
2468
2469 /* This rtx may not be shared. If it has already been seen,
2470 replace it with a copy of itself. */
2471 #ifdef ENABLE_CHECKING
2472 if (RTX_FLAG (x, used))
2473 {
2474 error ("invalid rtl sharing found in the insn");
2475 debug_rtx (insn);
2476 error ("shared rtx");
2477 debug_rtx (x);
2478 internal_error ("internal consistency failure");
2479 }
2480 #endif
2481 gcc_assert (!RTX_FLAG (x, used));
2482
2483 RTX_FLAG (x, used) = 1;
2484
2485 /* Now scan the subexpressions recursively. */
2486
2487 format_ptr = GET_RTX_FORMAT (code);
2488
2489 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2490 {
2491 switch (*format_ptr++)
2492 {
2493 case 'e':
2494 verify_rtx_sharing (XEXP (x, i), insn);
2495 break;
2496
2497 case 'E':
2498 if (XVEC (x, i) != NULL)
2499 {
2500 int j;
2501 int len = XVECLEN (x, i);
2502
2503 for (j = 0; j < len; j++)
2504 {
2505 /* We allow sharing of ASM_OPERANDS inside single
2506 instruction. */
2507 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2508 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2509 == ASM_OPERANDS))
2510 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2511 else
2512 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2513 }
2514 }
2515 break;
2516 }
2517 }
2518 return;
2519 }
2520
2521 /* Go through all the RTL insn bodies and check that there is no unexpected
2522 sharing in between the subexpressions. */
2523
2524 DEBUG_FUNCTION void
2525 verify_rtl_sharing (void)
2526 {
2527 rtx p;
2528
2529 timevar_push (TV_VERIFY_RTL_SHARING);
2530
2531 for (p = get_insns (); p; p = NEXT_INSN (p))
2532 if (INSN_P (p))
2533 {
2534 reset_used_flags (PATTERN (p));
2535 reset_used_flags (REG_NOTES (p));
2536 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2537 {
2538 int i;
2539 rtx q, sequence = PATTERN (p);
2540
2541 for (i = 0; i < XVECLEN (sequence, 0); i++)
2542 {
2543 q = XVECEXP (sequence, 0, i);
2544 gcc_assert (INSN_P (q));
2545 reset_used_flags (PATTERN (q));
2546 reset_used_flags (REG_NOTES (q));
2547 }
2548 }
2549 }
2550
2551 for (p = get_insns (); p; p = NEXT_INSN (p))
2552 if (INSN_P (p))
2553 {
2554 verify_rtx_sharing (PATTERN (p), p);
2555 verify_rtx_sharing (REG_NOTES (p), p);
2556 }
2557
2558 timevar_pop (TV_VERIFY_RTL_SHARING);
2559 }
2560
2561 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2562 Assumes the mark bits are cleared at entry. */
2563
2564 void
2565 unshare_all_rtl_in_chain (rtx insn)
2566 {
2567 for (; insn; insn = NEXT_INSN (insn))
2568 if (INSN_P (insn))
2569 {
2570 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2571 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2572 }
2573 }
2574
2575 /* Go through all virtual stack slots of a function and mark them as
2576 shared. We never replace the DECL_RTLs themselves with a copy,
2577 but expressions mentioned into a DECL_RTL cannot be shared with
2578 expressions in the instruction stream.
2579
2580 Note that reload may convert pseudo registers into memories in-place.
2581 Pseudo registers are always shared, but MEMs never are. Thus if we
2582 reset the used flags on MEMs in the instruction stream, we must set
2583 them again on MEMs that appear in DECL_RTLs. */
2584
2585 static void
2586 set_used_decls (tree blk)
2587 {
2588 tree t;
2589
2590 /* Mark decls. */
2591 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2592 if (DECL_RTL_SET_P (t))
2593 set_used_flags (DECL_RTL (t));
2594
2595 /* Now process sub-blocks. */
2596 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2597 set_used_decls (t);
2598 }
2599
2600 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2601 Recursively does the same for subexpressions. Uses
2602 copy_rtx_if_shared_1 to reduce stack space. */
2603
2604 rtx
2605 copy_rtx_if_shared (rtx orig)
2606 {
2607 copy_rtx_if_shared_1 (&orig);
2608 return orig;
2609 }
2610
2611 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2612 use. Recursively does the same for subexpressions. */
2613
2614 static void
2615 copy_rtx_if_shared_1 (rtx *orig1)
2616 {
2617 rtx x;
2618 int i;
2619 enum rtx_code code;
2620 rtx *last_ptr;
2621 const char *format_ptr;
2622 int copied = 0;
2623 int length;
2624
2625 /* Repeat is used to turn tail-recursion into iteration. */
2626 repeat:
2627 x = *orig1;
2628
2629 if (x == 0)
2630 return;
2631
2632 code = GET_CODE (x);
2633
2634 /* These types may be freely shared. */
2635
2636 switch (code)
2637 {
2638 case REG:
2639 case DEBUG_EXPR:
2640 case VALUE:
2641 case CONST_INT:
2642 case CONST_DOUBLE:
2643 case CONST_FIXED:
2644 case CONST_VECTOR:
2645 case SYMBOL_REF:
2646 case LABEL_REF:
2647 case CODE_LABEL:
2648 case PC:
2649 case CC0:
2650 case SCRATCH:
2651 /* SCRATCH must be shared because they represent distinct values. */
2652 return;
2653 case CLOBBER:
2654 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2655 return;
2656 break;
2657
2658 case CONST:
2659 if (shared_const_p (x))
2660 return;
2661 break;
2662
2663 case DEBUG_INSN:
2664 case INSN:
2665 case JUMP_INSN:
2666 case CALL_INSN:
2667 case NOTE:
2668 case BARRIER:
2669 /* The chain of insns is not being copied. */
2670 return;
2671
2672 default:
2673 break;
2674 }
2675
2676 /* This rtx may not be shared. If it has already been seen,
2677 replace it with a copy of itself. */
2678
2679 if (RTX_FLAG (x, used))
2680 {
2681 x = shallow_copy_rtx (x);
2682 copied = 1;
2683 }
2684 RTX_FLAG (x, used) = 1;
2685
2686 /* Now scan the subexpressions recursively.
2687 We can store any replaced subexpressions directly into X
2688 since we know X is not shared! Any vectors in X
2689 must be copied if X was copied. */
2690
2691 format_ptr = GET_RTX_FORMAT (code);
2692 length = GET_RTX_LENGTH (code);
2693 last_ptr = NULL;
2694
2695 for (i = 0; i < length; i++)
2696 {
2697 switch (*format_ptr++)
2698 {
2699 case 'e':
2700 if (last_ptr)
2701 copy_rtx_if_shared_1 (last_ptr);
2702 last_ptr = &XEXP (x, i);
2703 break;
2704
2705 case 'E':
2706 if (XVEC (x, i) != NULL)
2707 {
2708 int j;
2709 int len = XVECLEN (x, i);
2710
2711 /* Copy the vector iff I copied the rtx and the length
2712 is nonzero. */
2713 if (copied && len > 0)
2714 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2715
2716 /* Call recursively on all inside the vector. */
2717 for (j = 0; j < len; j++)
2718 {
2719 if (last_ptr)
2720 copy_rtx_if_shared_1 (last_ptr);
2721 last_ptr = &XVECEXP (x, i, j);
2722 }
2723 }
2724 break;
2725 }
2726 }
2727 *orig1 = x;
2728 if (last_ptr)
2729 {
2730 orig1 = last_ptr;
2731 goto repeat;
2732 }
2733 return;
2734 }
2735
2736 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2737
2738 static void
2739 mark_used_flags (rtx x, int flag)
2740 {
2741 int i, j;
2742 enum rtx_code code;
2743 const char *format_ptr;
2744 int length;
2745
2746 /* Repeat is used to turn tail-recursion into iteration. */
2747 repeat:
2748 if (x == 0)
2749 return;
2750
2751 code = GET_CODE (x);
2752
2753 /* These types may be freely shared so we needn't do any resetting
2754 for them. */
2755
2756 switch (code)
2757 {
2758 case REG:
2759 case DEBUG_EXPR:
2760 case VALUE:
2761 case CONST_INT:
2762 case CONST_DOUBLE:
2763 case CONST_FIXED:
2764 case CONST_VECTOR:
2765 case SYMBOL_REF:
2766 case CODE_LABEL:
2767 case PC:
2768 case CC0:
2769 return;
2770
2771 case DEBUG_INSN:
2772 case INSN:
2773 case JUMP_INSN:
2774 case CALL_INSN:
2775 case NOTE:
2776 case LABEL_REF:
2777 case BARRIER:
2778 /* The chain of insns is not being copied. */
2779 return;
2780
2781 default:
2782 break;
2783 }
2784
2785 RTX_FLAG (x, used) = flag;
2786
2787 format_ptr = GET_RTX_FORMAT (code);
2788 length = GET_RTX_LENGTH (code);
2789
2790 for (i = 0; i < length; i++)
2791 {
2792 switch (*format_ptr++)
2793 {
2794 case 'e':
2795 if (i == length-1)
2796 {
2797 x = XEXP (x, i);
2798 goto repeat;
2799 }
2800 mark_used_flags (XEXP (x, i), flag);
2801 break;
2802
2803 case 'E':
2804 for (j = 0; j < XVECLEN (x, i); j++)
2805 mark_used_flags (XVECEXP (x, i, j), flag);
2806 break;
2807 }
2808 }
2809 }
2810
2811 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2812 to look for shared sub-parts. */
2813
2814 void
2815 reset_used_flags (rtx x)
2816 {
2817 mark_used_flags (x, 0);
2818 }
2819
2820 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2821 to look for shared sub-parts. */
2822
2823 void
2824 set_used_flags (rtx x)
2825 {
2826 mark_used_flags (x, 1);
2827 }
2828 \f
2829 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2830 Return X or the rtx for the pseudo reg the value of X was copied into.
2831 OTHER must be valid as a SET_DEST. */
2832
2833 rtx
2834 make_safe_from (rtx x, rtx other)
2835 {
2836 while (1)
2837 switch (GET_CODE (other))
2838 {
2839 case SUBREG:
2840 other = SUBREG_REG (other);
2841 break;
2842 case STRICT_LOW_PART:
2843 case SIGN_EXTEND:
2844 case ZERO_EXTEND:
2845 other = XEXP (other, 0);
2846 break;
2847 default:
2848 goto done;
2849 }
2850 done:
2851 if ((MEM_P (other)
2852 && ! CONSTANT_P (x)
2853 && !REG_P (x)
2854 && GET_CODE (x) != SUBREG)
2855 || (REG_P (other)
2856 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2857 || reg_mentioned_p (other, x))))
2858 {
2859 rtx temp = gen_reg_rtx (GET_MODE (x));
2860 emit_move_insn (temp, x);
2861 return temp;
2862 }
2863 return x;
2864 }
2865 \f
2866 /* Emission of insns (adding them to the doubly-linked list). */
2867
2868 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2869
2870 rtx
2871 get_last_insn_anywhere (void)
2872 {
2873 struct sequence_stack *stack;
2874 if (get_last_insn ())
2875 return get_last_insn ();
2876 for (stack = seq_stack; stack; stack = stack->next)
2877 if (stack->last != 0)
2878 return stack->last;
2879 return 0;
2880 }
2881
2882 /* Return the first nonnote insn emitted in current sequence or current
2883 function. This routine looks inside SEQUENCEs. */
2884
2885 rtx
2886 get_first_nonnote_insn (void)
2887 {
2888 rtx insn = get_insns ();
2889
2890 if (insn)
2891 {
2892 if (NOTE_P (insn))
2893 for (insn = next_insn (insn);
2894 insn && NOTE_P (insn);
2895 insn = next_insn (insn))
2896 continue;
2897 else
2898 {
2899 if (NONJUMP_INSN_P (insn)
2900 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2901 insn = XVECEXP (PATTERN (insn), 0, 0);
2902 }
2903 }
2904
2905 return insn;
2906 }
2907
2908 /* Return the last nonnote insn emitted in current sequence or current
2909 function. This routine looks inside SEQUENCEs. */
2910
2911 rtx
2912 get_last_nonnote_insn (void)
2913 {
2914 rtx insn = get_last_insn ();
2915
2916 if (insn)
2917 {
2918 if (NOTE_P (insn))
2919 for (insn = previous_insn (insn);
2920 insn && NOTE_P (insn);
2921 insn = previous_insn (insn))
2922 continue;
2923 else
2924 {
2925 if (NONJUMP_INSN_P (insn)
2926 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2927 insn = XVECEXP (PATTERN (insn), 0,
2928 XVECLEN (PATTERN (insn), 0) - 1);
2929 }
2930 }
2931
2932 return insn;
2933 }
2934
2935 /* Return the number of actual (non-debug) insns emitted in this
2936 function. */
2937
2938 int
2939 get_max_insn_count (void)
2940 {
2941 int n = cur_insn_uid;
2942
2943 /* The table size must be stable across -g, to avoid codegen
2944 differences due to debug insns, and not be affected by
2945 -fmin-insn-uid, to avoid excessive table size and to simplify
2946 debugging of -fcompare-debug failures. */
2947 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
2948 n -= cur_debug_insn_uid;
2949 else
2950 n -= MIN_NONDEBUG_INSN_UID;
2951
2952 return n;
2953 }
2954
2955 \f
2956 /* Return the next insn. If it is a SEQUENCE, return the first insn
2957 of the sequence. */
2958
2959 rtx
2960 next_insn (rtx insn)
2961 {
2962 if (insn)
2963 {
2964 insn = NEXT_INSN (insn);
2965 if (insn && NONJUMP_INSN_P (insn)
2966 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2967 insn = XVECEXP (PATTERN (insn), 0, 0);
2968 }
2969
2970 return insn;
2971 }
2972
2973 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2974 of the sequence. */
2975
2976 rtx
2977 previous_insn (rtx insn)
2978 {
2979 if (insn)
2980 {
2981 insn = PREV_INSN (insn);
2982 if (insn && NONJUMP_INSN_P (insn)
2983 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2984 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2985 }
2986
2987 return insn;
2988 }
2989
2990 /* Return the next insn after INSN that is not a NOTE. This routine does not
2991 look inside SEQUENCEs. */
2992
2993 rtx
2994 next_nonnote_insn (rtx insn)
2995 {
2996 while (insn)
2997 {
2998 insn = NEXT_INSN (insn);
2999 if (insn == 0 || !NOTE_P (insn))
3000 break;
3001 }
3002
3003 return insn;
3004 }
3005
3006 /* Return the next insn after INSN that is not a NOTE, but stop the
3007 search before we enter another basic block. This routine does not
3008 look inside SEQUENCEs. */
3009
3010 rtx
3011 next_nonnote_insn_bb (rtx insn)
3012 {
3013 while (insn)
3014 {
3015 insn = NEXT_INSN (insn);
3016 if (insn == 0 || !NOTE_P (insn))
3017 break;
3018 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3019 return NULL_RTX;
3020 }
3021
3022 return insn;
3023 }
3024
3025 /* Return the previous insn before INSN that is not a NOTE. This routine does
3026 not look inside SEQUENCEs. */
3027
3028 rtx
3029 prev_nonnote_insn (rtx insn)
3030 {
3031 while (insn)
3032 {
3033 insn = PREV_INSN (insn);
3034 if (insn == 0 || !NOTE_P (insn))
3035 break;
3036 }
3037
3038 return insn;
3039 }
3040
3041 /* Return the previous insn before INSN that is not a NOTE, but stop
3042 the search before we enter another basic block. This routine does
3043 not look inside SEQUENCEs. */
3044
3045 rtx
3046 prev_nonnote_insn_bb (rtx insn)
3047 {
3048 while (insn)
3049 {
3050 insn = PREV_INSN (insn);
3051 if (insn == 0 || !NOTE_P (insn))
3052 break;
3053 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3054 return NULL_RTX;
3055 }
3056
3057 return insn;
3058 }
3059
3060 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3061 routine does not look inside SEQUENCEs. */
3062
3063 rtx
3064 next_nondebug_insn (rtx insn)
3065 {
3066 while (insn)
3067 {
3068 insn = NEXT_INSN (insn);
3069 if (insn == 0 || !DEBUG_INSN_P (insn))
3070 break;
3071 }
3072
3073 return insn;
3074 }
3075
3076 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3077 This routine does not look inside SEQUENCEs. */
3078
3079 rtx
3080 prev_nondebug_insn (rtx insn)
3081 {
3082 while (insn)
3083 {
3084 insn = PREV_INSN (insn);
3085 if (insn == 0 || !DEBUG_INSN_P (insn))
3086 break;
3087 }
3088
3089 return insn;
3090 }
3091
3092 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3093 This routine does not look inside SEQUENCEs. */
3094
3095 rtx
3096 next_nonnote_nondebug_insn (rtx insn)
3097 {
3098 while (insn)
3099 {
3100 insn = NEXT_INSN (insn);
3101 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3102 break;
3103 }
3104
3105 return insn;
3106 }
3107
3108 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3109 This routine does not look inside SEQUENCEs. */
3110
3111 rtx
3112 prev_nonnote_nondebug_insn (rtx insn)
3113 {
3114 while (insn)
3115 {
3116 insn = PREV_INSN (insn);
3117 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3118 break;
3119 }
3120
3121 return insn;
3122 }
3123
3124 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3125 or 0, if there is none. This routine does not look inside
3126 SEQUENCEs. */
3127
3128 rtx
3129 next_real_insn (rtx insn)
3130 {
3131 while (insn)
3132 {
3133 insn = NEXT_INSN (insn);
3134 if (insn == 0 || INSN_P (insn))
3135 break;
3136 }
3137
3138 return insn;
3139 }
3140
3141 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3142 or 0, if there is none. This routine does not look inside
3143 SEQUENCEs. */
3144
3145 rtx
3146 prev_real_insn (rtx insn)
3147 {
3148 while (insn)
3149 {
3150 insn = PREV_INSN (insn);
3151 if (insn == 0 || INSN_P (insn))
3152 break;
3153 }
3154
3155 return insn;
3156 }
3157
3158 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3159 This routine does not look inside SEQUENCEs. */
3160
3161 rtx
3162 last_call_insn (void)
3163 {
3164 rtx insn;
3165
3166 for (insn = get_last_insn ();
3167 insn && !CALL_P (insn);
3168 insn = PREV_INSN (insn))
3169 ;
3170
3171 return insn;
3172 }
3173
3174 /* Find the next insn after INSN that really does something. This routine
3175 does not look inside SEQUENCEs. After reload this also skips over
3176 standalone USE and CLOBBER insn. */
3177
3178 int
3179 active_insn_p (const_rtx insn)
3180 {
3181 return (CALL_P (insn) || JUMP_P (insn)
3182 || (NONJUMP_INSN_P (insn)
3183 && (! reload_completed
3184 || (GET_CODE (PATTERN (insn)) != USE
3185 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3186 }
3187
3188 rtx
3189 next_active_insn (rtx insn)
3190 {
3191 while (insn)
3192 {
3193 insn = NEXT_INSN (insn);
3194 if (insn == 0 || active_insn_p (insn))
3195 break;
3196 }
3197
3198 return insn;
3199 }
3200
3201 /* Find the last insn before INSN that really does something. This routine
3202 does not look inside SEQUENCEs. After reload this also skips over
3203 standalone USE and CLOBBER insn. */
3204
3205 rtx
3206 prev_active_insn (rtx insn)
3207 {
3208 while (insn)
3209 {
3210 insn = PREV_INSN (insn);
3211 if (insn == 0 || active_insn_p (insn))
3212 break;
3213 }
3214
3215 return insn;
3216 }
3217
3218 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3219
3220 rtx
3221 next_label (rtx insn)
3222 {
3223 while (insn)
3224 {
3225 insn = NEXT_INSN (insn);
3226 if (insn == 0 || LABEL_P (insn))
3227 break;
3228 }
3229
3230 return insn;
3231 }
3232
3233 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3234
3235 rtx
3236 prev_label (rtx insn)
3237 {
3238 while (insn)
3239 {
3240 insn = PREV_INSN (insn);
3241 if (insn == 0 || LABEL_P (insn))
3242 break;
3243 }
3244
3245 return insn;
3246 }
3247
3248 /* Return the last label to mark the same position as LABEL. Return null
3249 if LABEL itself is null. */
3250
3251 rtx
3252 skip_consecutive_labels (rtx label)
3253 {
3254 rtx insn;
3255
3256 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3257 if (LABEL_P (insn))
3258 label = insn;
3259
3260 return label;
3261 }
3262 \f
3263 #ifdef HAVE_cc0
3264 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3265 and REG_CC_USER notes so we can find it. */
3266
3267 void
3268 link_cc0_insns (rtx insn)
3269 {
3270 rtx user = next_nonnote_insn (insn);
3271
3272 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3273 user = XVECEXP (PATTERN (user), 0, 0);
3274
3275 add_reg_note (user, REG_CC_SETTER, insn);
3276 add_reg_note (insn, REG_CC_USER, user);
3277 }
3278
3279 /* Return the next insn that uses CC0 after INSN, which is assumed to
3280 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3281 applied to the result of this function should yield INSN).
3282
3283 Normally, this is simply the next insn. However, if a REG_CC_USER note
3284 is present, it contains the insn that uses CC0.
3285
3286 Return 0 if we can't find the insn. */
3287
3288 rtx
3289 next_cc0_user (rtx insn)
3290 {
3291 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3292
3293 if (note)
3294 return XEXP (note, 0);
3295
3296 insn = next_nonnote_insn (insn);
3297 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3298 insn = XVECEXP (PATTERN (insn), 0, 0);
3299
3300 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3301 return insn;
3302
3303 return 0;
3304 }
3305
3306 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3307 note, it is the previous insn. */
3308
3309 rtx
3310 prev_cc0_setter (rtx insn)
3311 {
3312 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3313
3314 if (note)
3315 return XEXP (note, 0);
3316
3317 insn = prev_nonnote_insn (insn);
3318 gcc_assert (sets_cc0_p (PATTERN (insn)));
3319
3320 return insn;
3321 }
3322 #endif
3323
3324 #ifdef AUTO_INC_DEC
3325 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3326
3327 static int
3328 find_auto_inc (rtx *xp, void *data)
3329 {
3330 rtx x = *xp;
3331 rtx reg = (rtx) data;
3332
3333 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3334 return 0;
3335
3336 switch (GET_CODE (x))
3337 {
3338 case PRE_DEC:
3339 case PRE_INC:
3340 case POST_DEC:
3341 case POST_INC:
3342 case PRE_MODIFY:
3343 case POST_MODIFY:
3344 if (rtx_equal_p (reg, XEXP (x, 0)))
3345 return 1;
3346 break;
3347
3348 default:
3349 gcc_unreachable ();
3350 }
3351 return -1;
3352 }
3353 #endif
3354
3355 /* Increment the label uses for all labels present in rtx. */
3356
3357 static void
3358 mark_label_nuses (rtx x)
3359 {
3360 enum rtx_code code;
3361 int i, j;
3362 const char *fmt;
3363
3364 code = GET_CODE (x);
3365 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3366 LABEL_NUSES (XEXP (x, 0))++;
3367
3368 fmt = GET_RTX_FORMAT (code);
3369 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3370 {
3371 if (fmt[i] == 'e')
3372 mark_label_nuses (XEXP (x, i));
3373 else if (fmt[i] == 'E')
3374 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3375 mark_label_nuses (XVECEXP (x, i, j));
3376 }
3377 }
3378
3379 \f
3380 /* Try splitting insns that can be split for better scheduling.
3381 PAT is the pattern which might split.
3382 TRIAL is the insn providing PAT.
3383 LAST is nonzero if we should return the last insn of the sequence produced.
3384
3385 If this routine succeeds in splitting, it returns the first or last
3386 replacement insn depending on the value of LAST. Otherwise, it
3387 returns TRIAL. If the insn to be returned can be split, it will be. */
3388
3389 rtx
3390 try_split (rtx pat, rtx trial, int last)
3391 {
3392 rtx before = PREV_INSN (trial);
3393 rtx after = NEXT_INSN (trial);
3394 int has_barrier = 0;
3395 rtx note, seq, tem;
3396 int probability;
3397 rtx insn_last, insn;
3398 int njumps = 0;
3399
3400 /* We're not good at redistributing frame information. */
3401 if (RTX_FRAME_RELATED_P (trial))
3402 return trial;
3403
3404 if (any_condjump_p (trial)
3405 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3406 split_branch_probability = INTVAL (XEXP (note, 0));
3407 probability = split_branch_probability;
3408
3409 seq = split_insns (pat, trial);
3410
3411 split_branch_probability = -1;
3412
3413 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3414 We may need to handle this specially. */
3415 if (after && BARRIER_P (after))
3416 {
3417 has_barrier = 1;
3418 after = NEXT_INSN (after);
3419 }
3420
3421 if (!seq)
3422 return trial;
3423
3424 /* Avoid infinite loop if any insn of the result matches
3425 the original pattern. */
3426 insn_last = seq;
3427 while (1)
3428 {
3429 if (INSN_P (insn_last)
3430 && rtx_equal_p (PATTERN (insn_last), pat))
3431 return trial;
3432 if (!NEXT_INSN (insn_last))
3433 break;
3434 insn_last = NEXT_INSN (insn_last);
3435 }
3436
3437 /* We will be adding the new sequence to the function. The splitters
3438 may have introduced invalid RTL sharing, so unshare the sequence now. */
3439 unshare_all_rtl_in_chain (seq);
3440
3441 /* Mark labels. */
3442 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3443 {
3444 if (JUMP_P (insn))
3445 {
3446 mark_jump_label (PATTERN (insn), insn, 0);
3447 njumps++;
3448 if (probability != -1
3449 && any_condjump_p (insn)
3450 && !find_reg_note (insn, REG_BR_PROB, 0))
3451 {
3452 /* We can preserve the REG_BR_PROB notes only if exactly
3453 one jump is created, otherwise the machine description
3454 is responsible for this step using
3455 split_branch_probability variable. */
3456 gcc_assert (njumps == 1);
3457 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3458 }
3459 }
3460 }
3461
3462 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3463 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3464 if (CALL_P (trial))
3465 {
3466 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3467 if (CALL_P (insn))
3468 {
3469 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3470 while (*p)
3471 p = &XEXP (*p, 1);
3472 *p = CALL_INSN_FUNCTION_USAGE (trial);
3473 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3474
3475 /* Update the debug information for the CALL_INSN. */
3476 if (flag_enable_icf_debug)
3477 (*debug_hooks->copy_call_info) (trial, insn);
3478 }
3479 }
3480
3481 /* Copy notes, particularly those related to the CFG. */
3482 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3483 {
3484 switch (REG_NOTE_KIND (note))
3485 {
3486 case REG_EH_REGION:
3487 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3488 break;
3489
3490 case REG_NORETURN:
3491 case REG_SETJMP:
3492 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3493 {
3494 if (CALL_P (insn))
3495 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3496 }
3497 break;
3498
3499 case REG_NON_LOCAL_GOTO:
3500 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3501 {
3502 if (JUMP_P (insn))
3503 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3504 }
3505 break;
3506
3507 #ifdef AUTO_INC_DEC
3508 case REG_INC:
3509 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3510 {
3511 rtx reg = XEXP (note, 0);
3512 if (!FIND_REG_INC_NOTE (insn, reg)
3513 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3514 add_reg_note (insn, REG_INC, reg);
3515 }
3516 break;
3517 #endif
3518
3519 default:
3520 break;
3521 }
3522 }
3523
3524 /* If there are LABELS inside the split insns increment the
3525 usage count so we don't delete the label. */
3526 if (INSN_P (trial))
3527 {
3528 insn = insn_last;
3529 while (insn != NULL_RTX)
3530 {
3531 /* JUMP_P insns have already been "marked" above. */
3532 if (NONJUMP_INSN_P (insn))
3533 mark_label_nuses (PATTERN (insn));
3534
3535 insn = PREV_INSN (insn);
3536 }
3537 }
3538
3539 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3540
3541 delete_insn (trial);
3542 if (has_barrier)
3543 emit_barrier_after (tem);
3544
3545 /* Recursively call try_split for each new insn created; by the
3546 time control returns here that insn will be fully split, so
3547 set LAST and continue from the insn after the one returned.
3548 We can't use next_active_insn here since AFTER may be a note.
3549 Ignore deleted insns, which can be occur if not optimizing. */
3550 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3551 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3552 tem = try_split (PATTERN (tem), tem, 1);
3553
3554 /* Return either the first or the last insn, depending on which was
3555 requested. */
3556 return last
3557 ? (after ? PREV_INSN (after) : get_last_insn ())
3558 : NEXT_INSN (before);
3559 }
3560 \f
3561 /* Make and return an INSN rtx, initializing all its slots.
3562 Store PATTERN in the pattern slots. */
3563
3564 rtx
3565 make_insn_raw (rtx pattern)
3566 {
3567 rtx insn;
3568
3569 insn = rtx_alloc (INSN);
3570
3571 INSN_UID (insn) = cur_insn_uid++;
3572 PATTERN (insn) = pattern;
3573 INSN_CODE (insn) = -1;
3574 REG_NOTES (insn) = NULL;
3575 INSN_LOCATOR (insn) = curr_insn_locator ();
3576 BLOCK_FOR_INSN (insn) = NULL;
3577
3578 #ifdef ENABLE_RTL_CHECKING
3579 if (insn
3580 && INSN_P (insn)
3581 && (returnjump_p (insn)
3582 || (GET_CODE (insn) == SET
3583 && SET_DEST (insn) == pc_rtx)))
3584 {
3585 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3586 debug_rtx (insn);
3587 }
3588 #endif
3589
3590 return insn;
3591 }
3592
3593 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3594
3595 rtx
3596 make_debug_insn_raw (rtx pattern)
3597 {
3598 rtx insn;
3599
3600 insn = rtx_alloc (DEBUG_INSN);
3601 INSN_UID (insn) = cur_debug_insn_uid++;
3602 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3603 INSN_UID (insn) = cur_insn_uid++;
3604
3605 PATTERN (insn) = pattern;
3606 INSN_CODE (insn) = -1;
3607 REG_NOTES (insn) = NULL;
3608 INSN_LOCATOR (insn) = curr_insn_locator ();
3609 BLOCK_FOR_INSN (insn) = NULL;
3610
3611 return insn;
3612 }
3613
3614 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3615
3616 rtx
3617 make_jump_insn_raw (rtx pattern)
3618 {
3619 rtx insn;
3620
3621 insn = rtx_alloc (JUMP_INSN);
3622 INSN_UID (insn) = cur_insn_uid++;
3623
3624 PATTERN (insn) = pattern;
3625 INSN_CODE (insn) = -1;
3626 REG_NOTES (insn) = NULL;
3627 JUMP_LABEL (insn) = NULL;
3628 INSN_LOCATOR (insn) = curr_insn_locator ();
3629 BLOCK_FOR_INSN (insn) = NULL;
3630
3631 return insn;
3632 }
3633
3634 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3635
3636 static rtx
3637 make_call_insn_raw (rtx pattern)
3638 {
3639 rtx insn;
3640
3641 insn = rtx_alloc (CALL_INSN);
3642 INSN_UID (insn) = cur_insn_uid++;
3643
3644 PATTERN (insn) = pattern;
3645 INSN_CODE (insn) = -1;
3646 REG_NOTES (insn) = NULL;
3647 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3648 INSN_LOCATOR (insn) = curr_insn_locator ();
3649 BLOCK_FOR_INSN (insn) = NULL;
3650
3651 return insn;
3652 }
3653 \f
3654 /* Add INSN to the end of the doubly-linked list.
3655 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3656
3657 void
3658 add_insn (rtx insn)
3659 {
3660 PREV_INSN (insn) = get_last_insn();
3661 NEXT_INSN (insn) = 0;
3662
3663 if (NULL != get_last_insn())
3664 NEXT_INSN (get_last_insn ()) = insn;
3665
3666 if (NULL == get_insns ())
3667 set_first_insn (insn);
3668
3669 set_last_insn (insn);
3670 }
3671
3672 /* Add INSN into the doubly-linked list after insn AFTER. This and
3673 the next should be the only functions called to insert an insn once
3674 delay slots have been filled since only they know how to update a
3675 SEQUENCE. */
3676
3677 void
3678 add_insn_after (rtx insn, rtx after, basic_block bb)
3679 {
3680 rtx next = NEXT_INSN (after);
3681
3682 gcc_assert (!optimize || !INSN_DELETED_P (after));
3683
3684 NEXT_INSN (insn) = next;
3685 PREV_INSN (insn) = after;
3686
3687 if (next)
3688 {
3689 PREV_INSN (next) = insn;
3690 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3691 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3692 }
3693 else if (get_last_insn () == after)
3694 set_last_insn (insn);
3695 else
3696 {
3697 struct sequence_stack *stack = seq_stack;
3698 /* Scan all pending sequences too. */
3699 for (; stack; stack = stack->next)
3700 if (after == stack->last)
3701 {
3702 stack->last = insn;
3703 break;
3704 }
3705
3706 gcc_assert (stack);
3707 }
3708
3709 if (!BARRIER_P (after)
3710 && !BARRIER_P (insn)
3711 && (bb = BLOCK_FOR_INSN (after)))
3712 {
3713 set_block_for_insn (insn, bb);
3714 if (INSN_P (insn))
3715 df_insn_rescan (insn);
3716 /* Should not happen as first in the BB is always
3717 either NOTE or LABEL. */
3718 if (BB_END (bb) == after
3719 /* Avoid clobbering of structure when creating new BB. */
3720 && !BARRIER_P (insn)
3721 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3722 BB_END (bb) = insn;
3723 }
3724
3725 NEXT_INSN (after) = insn;
3726 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3727 {
3728 rtx sequence = PATTERN (after);
3729 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3730 }
3731 }
3732
3733 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3734 the previous should be the only functions called to insert an insn
3735 once delay slots have been filled since only they know how to
3736 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3737 bb from before. */
3738
3739 void
3740 add_insn_before (rtx insn, rtx before, basic_block bb)
3741 {
3742 rtx prev = PREV_INSN (before);
3743
3744 gcc_assert (!optimize || !INSN_DELETED_P (before));
3745
3746 PREV_INSN (insn) = prev;
3747 NEXT_INSN (insn) = before;
3748
3749 if (prev)
3750 {
3751 NEXT_INSN (prev) = insn;
3752 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3753 {
3754 rtx sequence = PATTERN (prev);
3755 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3756 }
3757 }
3758 else if (get_insns () == before)
3759 set_first_insn (insn);
3760 else
3761 {
3762 struct sequence_stack *stack = seq_stack;
3763 /* Scan all pending sequences too. */
3764 for (; stack; stack = stack->next)
3765 if (before == stack->first)
3766 {
3767 stack->first = insn;
3768 break;
3769 }
3770
3771 gcc_assert (stack);
3772 }
3773
3774 if (!bb
3775 && !BARRIER_P (before)
3776 && !BARRIER_P (insn))
3777 bb = BLOCK_FOR_INSN (before);
3778
3779 if (bb)
3780 {
3781 set_block_for_insn (insn, bb);
3782 if (INSN_P (insn))
3783 df_insn_rescan (insn);
3784 /* Should not happen as first in the BB is always either NOTE or
3785 LABEL. */
3786 gcc_assert (BB_HEAD (bb) != insn
3787 /* Avoid clobbering of structure when creating new BB. */
3788 || BARRIER_P (insn)
3789 || NOTE_INSN_BASIC_BLOCK_P (insn));
3790 }
3791
3792 PREV_INSN (before) = insn;
3793 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3794 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3795 }
3796
3797
3798 /* Replace insn with an deleted instruction note. */
3799
3800 void
3801 set_insn_deleted (rtx insn)
3802 {
3803 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3804 PUT_CODE (insn, NOTE);
3805 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3806 }
3807
3808
3809 /* Remove an insn from its doubly-linked list. This function knows how
3810 to handle sequences. */
3811 void
3812 remove_insn (rtx insn)
3813 {
3814 rtx next = NEXT_INSN (insn);
3815 rtx prev = PREV_INSN (insn);
3816 basic_block bb;
3817
3818 /* Later in the code, the block will be marked dirty. */
3819 df_insn_delete (NULL, INSN_UID (insn));
3820
3821 if (prev)
3822 {
3823 NEXT_INSN (prev) = next;
3824 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3825 {
3826 rtx sequence = PATTERN (prev);
3827 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3828 }
3829 }
3830 else if (get_insns () == insn)
3831 {
3832 if (next)
3833 PREV_INSN (next) = NULL;
3834 set_first_insn (next);
3835 }
3836 else
3837 {
3838 struct sequence_stack *stack = seq_stack;
3839 /* Scan all pending sequences too. */
3840 for (; stack; stack = stack->next)
3841 if (insn == stack->first)
3842 {
3843 stack->first = next;
3844 break;
3845 }
3846
3847 gcc_assert (stack);
3848 }
3849
3850 if (next)
3851 {
3852 PREV_INSN (next) = prev;
3853 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3854 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3855 }
3856 else if (get_last_insn () == insn)
3857 set_last_insn (prev);
3858 else
3859 {
3860 struct sequence_stack *stack = seq_stack;
3861 /* Scan all pending sequences too. */
3862 for (; stack; stack = stack->next)
3863 if (insn == stack->last)
3864 {
3865 stack->last = prev;
3866 break;
3867 }
3868
3869 gcc_assert (stack);
3870 }
3871 if (!BARRIER_P (insn)
3872 && (bb = BLOCK_FOR_INSN (insn)))
3873 {
3874 if (NONDEBUG_INSN_P (insn))
3875 df_set_bb_dirty (bb);
3876 if (BB_HEAD (bb) == insn)
3877 {
3878 /* Never ever delete the basic block note without deleting whole
3879 basic block. */
3880 gcc_assert (!NOTE_P (insn));
3881 BB_HEAD (bb) = next;
3882 }
3883 if (BB_END (bb) == insn)
3884 BB_END (bb) = prev;
3885 }
3886 }
3887
3888 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3889
3890 void
3891 add_function_usage_to (rtx call_insn, rtx call_fusage)
3892 {
3893 gcc_assert (call_insn && CALL_P (call_insn));
3894
3895 /* Put the register usage information on the CALL. If there is already
3896 some usage information, put ours at the end. */
3897 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3898 {
3899 rtx link;
3900
3901 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3902 link = XEXP (link, 1))
3903 ;
3904
3905 XEXP (link, 1) = call_fusage;
3906 }
3907 else
3908 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3909 }
3910
3911 /* Delete all insns made since FROM.
3912 FROM becomes the new last instruction. */
3913
3914 void
3915 delete_insns_since (rtx from)
3916 {
3917 if (from == 0)
3918 set_first_insn (0);
3919 else
3920 NEXT_INSN (from) = 0;
3921 set_last_insn (from);
3922 }
3923
3924 /* This function is deprecated, please use sequences instead.
3925
3926 Move a consecutive bunch of insns to a different place in the chain.
3927 The insns to be moved are those between FROM and TO.
3928 They are moved to a new position after the insn AFTER.
3929 AFTER must not be FROM or TO or any insn in between.
3930
3931 This function does not know about SEQUENCEs and hence should not be
3932 called after delay-slot filling has been done. */
3933
3934 void
3935 reorder_insns_nobb (rtx from, rtx to, rtx after)
3936 {
3937 #ifdef ENABLE_CHECKING
3938 rtx x;
3939 for (x = from; x != to; x = NEXT_INSN (x))
3940 gcc_assert (after != x);
3941 gcc_assert (after != to);
3942 #endif
3943
3944 /* Splice this bunch out of where it is now. */
3945 if (PREV_INSN (from))
3946 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3947 if (NEXT_INSN (to))
3948 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3949 if (get_last_insn () == to)
3950 set_last_insn (PREV_INSN (from));
3951 if (get_insns () == from)
3952 set_first_insn (NEXT_INSN (to));
3953
3954 /* Make the new neighbors point to it and it to them. */
3955 if (NEXT_INSN (after))
3956 PREV_INSN (NEXT_INSN (after)) = to;
3957
3958 NEXT_INSN (to) = NEXT_INSN (after);
3959 PREV_INSN (from) = after;
3960 NEXT_INSN (after) = from;
3961 if (after == get_last_insn())
3962 set_last_insn (to);
3963 }
3964
3965 /* Same as function above, but take care to update BB boundaries. */
3966 void
3967 reorder_insns (rtx from, rtx to, rtx after)
3968 {
3969 rtx prev = PREV_INSN (from);
3970 basic_block bb, bb2;
3971
3972 reorder_insns_nobb (from, to, after);
3973
3974 if (!BARRIER_P (after)
3975 && (bb = BLOCK_FOR_INSN (after)))
3976 {
3977 rtx x;
3978 df_set_bb_dirty (bb);
3979
3980 if (!BARRIER_P (from)
3981 && (bb2 = BLOCK_FOR_INSN (from)))
3982 {
3983 if (BB_END (bb2) == to)
3984 BB_END (bb2) = prev;
3985 df_set_bb_dirty (bb2);
3986 }
3987
3988 if (BB_END (bb) == after)
3989 BB_END (bb) = to;
3990
3991 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3992 if (!BARRIER_P (x))
3993 df_insn_change_bb (x, bb);
3994 }
3995 }
3996
3997 \f
3998 /* Emit insn(s) of given code and pattern
3999 at a specified place within the doubly-linked list.
4000
4001 All of the emit_foo global entry points accept an object
4002 X which is either an insn list or a PATTERN of a single
4003 instruction.
4004
4005 There are thus a few canonical ways to generate code and
4006 emit it at a specific place in the instruction stream. For
4007 example, consider the instruction named SPOT and the fact that
4008 we would like to emit some instructions before SPOT. We might
4009 do it like this:
4010
4011 start_sequence ();
4012 ... emit the new instructions ...
4013 insns_head = get_insns ();
4014 end_sequence ();
4015
4016 emit_insn_before (insns_head, SPOT);
4017
4018 It used to be common to generate SEQUENCE rtl instead, but that
4019 is a relic of the past which no longer occurs. The reason is that
4020 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4021 generated would almost certainly die right after it was created. */
4022
4023 /* Make X be output before the instruction BEFORE. */
4024
4025 rtx
4026 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4027 {
4028 rtx last = before;
4029 rtx insn;
4030
4031 gcc_assert (before);
4032
4033 if (x == NULL_RTX)
4034 return last;
4035
4036 switch (GET_CODE (x))
4037 {
4038 case DEBUG_INSN:
4039 case INSN:
4040 case JUMP_INSN:
4041 case CALL_INSN:
4042 case CODE_LABEL:
4043 case BARRIER:
4044 case NOTE:
4045 insn = x;
4046 while (insn)
4047 {
4048 rtx next = NEXT_INSN (insn);
4049 add_insn_before (insn, before, bb);
4050 last = insn;
4051 insn = next;
4052 }
4053 break;
4054
4055 #ifdef ENABLE_RTL_CHECKING
4056 case SEQUENCE:
4057 gcc_unreachable ();
4058 break;
4059 #endif
4060
4061 default:
4062 last = make_insn_raw (x);
4063 add_insn_before (last, before, bb);
4064 break;
4065 }
4066
4067 return last;
4068 }
4069
4070 /* Make an instruction with body X and code JUMP_INSN
4071 and output it before the instruction BEFORE. */
4072
4073 rtx
4074 emit_jump_insn_before_noloc (rtx x, rtx before)
4075 {
4076 rtx insn, last = NULL_RTX;
4077
4078 gcc_assert (before);
4079
4080 switch (GET_CODE (x))
4081 {
4082 case DEBUG_INSN:
4083 case INSN:
4084 case JUMP_INSN:
4085 case CALL_INSN:
4086 case CODE_LABEL:
4087 case BARRIER:
4088 case NOTE:
4089 insn = x;
4090 while (insn)
4091 {
4092 rtx next = NEXT_INSN (insn);
4093 add_insn_before (insn, before, NULL);
4094 last = insn;
4095 insn = next;
4096 }
4097 break;
4098
4099 #ifdef ENABLE_RTL_CHECKING
4100 case SEQUENCE:
4101 gcc_unreachable ();
4102 break;
4103 #endif
4104
4105 default:
4106 last = make_jump_insn_raw (x);
4107 add_insn_before (last, before, NULL);
4108 break;
4109 }
4110
4111 return last;
4112 }
4113
4114 /* Make an instruction with body X and code CALL_INSN
4115 and output it before the instruction BEFORE. */
4116
4117 rtx
4118 emit_call_insn_before_noloc (rtx x, rtx before)
4119 {
4120 rtx last = NULL_RTX, insn;
4121
4122 gcc_assert (before);
4123
4124 switch (GET_CODE (x))
4125 {
4126 case DEBUG_INSN:
4127 case INSN:
4128 case JUMP_INSN:
4129 case CALL_INSN:
4130 case CODE_LABEL:
4131 case BARRIER:
4132 case NOTE:
4133 insn = x;
4134 while (insn)
4135 {
4136 rtx next = NEXT_INSN (insn);
4137 add_insn_before (insn, before, NULL);
4138 last = insn;
4139 insn = next;
4140 }
4141 break;
4142
4143 #ifdef ENABLE_RTL_CHECKING
4144 case SEQUENCE:
4145 gcc_unreachable ();
4146 break;
4147 #endif
4148
4149 default:
4150 last = make_call_insn_raw (x);
4151 add_insn_before (last, before, NULL);
4152 break;
4153 }
4154
4155 return last;
4156 }
4157
4158 /* Make an instruction with body X and code DEBUG_INSN
4159 and output it before the instruction BEFORE. */
4160
4161 rtx
4162 emit_debug_insn_before_noloc (rtx x, rtx before)
4163 {
4164 rtx last = NULL_RTX, insn;
4165
4166 gcc_assert (before);
4167
4168 switch (GET_CODE (x))
4169 {
4170 case DEBUG_INSN:
4171 case INSN:
4172 case JUMP_INSN:
4173 case CALL_INSN:
4174 case CODE_LABEL:
4175 case BARRIER:
4176 case NOTE:
4177 insn = x;
4178 while (insn)
4179 {
4180 rtx next = NEXT_INSN (insn);
4181 add_insn_before (insn, before, NULL);
4182 last = insn;
4183 insn = next;
4184 }
4185 break;
4186
4187 #ifdef ENABLE_RTL_CHECKING
4188 case SEQUENCE:
4189 gcc_unreachable ();
4190 break;
4191 #endif
4192
4193 default:
4194 last = make_debug_insn_raw (x);
4195 add_insn_before (last, before, NULL);
4196 break;
4197 }
4198
4199 return last;
4200 }
4201
4202 /* Make an insn of code BARRIER
4203 and output it before the insn BEFORE. */
4204
4205 rtx
4206 emit_barrier_before (rtx before)
4207 {
4208 rtx insn = rtx_alloc (BARRIER);
4209
4210 INSN_UID (insn) = cur_insn_uid++;
4211
4212 add_insn_before (insn, before, NULL);
4213 return insn;
4214 }
4215
4216 /* Emit the label LABEL before the insn BEFORE. */
4217
4218 rtx
4219 emit_label_before (rtx label, rtx before)
4220 {
4221 /* This can be called twice for the same label as a result of the
4222 confusion that follows a syntax error! So make it harmless. */
4223 if (INSN_UID (label) == 0)
4224 {
4225 INSN_UID (label) = cur_insn_uid++;
4226 add_insn_before (label, before, NULL);
4227 }
4228
4229 return label;
4230 }
4231
4232 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4233
4234 rtx
4235 emit_note_before (enum insn_note subtype, rtx before)
4236 {
4237 rtx note = rtx_alloc (NOTE);
4238 INSN_UID (note) = cur_insn_uid++;
4239 NOTE_KIND (note) = subtype;
4240 BLOCK_FOR_INSN (note) = NULL;
4241 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4242
4243 add_insn_before (note, before, NULL);
4244 return note;
4245 }
4246 \f
4247 /* Helper for emit_insn_after, handles lists of instructions
4248 efficiently. */
4249
4250 static rtx
4251 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4252 {
4253 rtx last;
4254 rtx after_after;
4255 if (!bb && !BARRIER_P (after))
4256 bb = BLOCK_FOR_INSN (after);
4257
4258 if (bb)
4259 {
4260 df_set_bb_dirty (bb);
4261 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4262 if (!BARRIER_P (last))
4263 {
4264 set_block_for_insn (last, bb);
4265 df_insn_rescan (last);
4266 }
4267 if (!BARRIER_P (last))
4268 {
4269 set_block_for_insn (last, bb);
4270 df_insn_rescan (last);
4271 }
4272 if (BB_END (bb) == after)
4273 BB_END (bb) = last;
4274 }
4275 else
4276 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4277 continue;
4278
4279 after_after = NEXT_INSN (after);
4280
4281 NEXT_INSN (after) = first;
4282 PREV_INSN (first) = after;
4283 NEXT_INSN (last) = after_after;
4284 if (after_after)
4285 PREV_INSN (after_after) = last;
4286
4287 if (after == get_last_insn())
4288 set_last_insn (last);
4289
4290 return last;
4291 }
4292
4293 /* Make X be output after the insn AFTER and set the BB of insn. If
4294 BB is NULL, an attempt is made to infer the BB from AFTER. */
4295
4296 rtx
4297 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4298 {
4299 rtx last = after;
4300
4301 gcc_assert (after);
4302
4303 if (x == NULL_RTX)
4304 return last;
4305
4306 switch (GET_CODE (x))
4307 {
4308 case DEBUG_INSN:
4309 case INSN:
4310 case JUMP_INSN:
4311 case CALL_INSN:
4312 case CODE_LABEL:
4313 case BARRIER:
4314 case NOTE:
4315 last = emit_insn_after_1 (x, after, bb);
4316 break;
4317
4318 #ifdef ENABLE_RTL_CHECKING
4319 case SEQUENCE:
4320 gcc_unreachable ();
4321 break;
4322 #endif
4323
4324 default:
4325 last = make_insn_raw (x);
4326 add_insn_after (last, after, bb);
4327 break;
4328 }
4329
4330 return last;
4331 }
4332
4333
4334 /* Make an insn of code JUMP_INSN with body X
4335 and output it after the insn AFTER. */
4336
4337 rtx
4338 emit_jump_insn_after_noloc (rtx x, rtx after)
4339 {
4340 rtx last;
4341
4342 gcc_assert (after);
4343
4344 switch (GET_CODE (x))
4345 {
4346 case DEBUG_INSN:
4347 case INSN:
4348 case JUMP_INSN:
4349 case CALL_INSN:
4350 case CODE_LABEL:
4351 case BARRIER:
4352 case NOTE:
4353 last = emit_insn_after_1 (x, after, NULL);
4354 break;
4355
4356 #ifdef ENABLE_RTL_CHECKING
4357 case SEQUENCE:
4358 gcc_unreachable ();
4359 break;
4360 #endif
4361
4362 default:
4363 last = make_jump_insn_raw (x);
4364 add_insn_after (last, after, NULL);
4365 break;
4366 }
4367
4368 return last;
4369 }
4370
4371 /* Make an instruction with body X and code CALL_INSN
4372 and output it after the instruction AFTER. */
4373
4374 rtx
4375 emit_call_insn_after_noloc (rtx x, rtx after)
4376 {
4377 rtx last;
4378
4379 gcc_assert (after);
4380
4381 switch (GET_CODE (x))
4382 {
4383 case DEBUG_INSN:
4384 case INSN:
4385 case JUMP_INSN:
4386 case CALL_INSN:
4387 case CODE_LABEL:
4388 case BARRIER:
4389 case NOTE:
4390 last = emit_insn_after_1 (x, after, NULL);
4391 break;
4392
4393 #ifdef ENABLE_RTL_CHECKING
4394 case SEQUENCE:
4395 gcc_unreachable ();
4396 break;
4397 #endif
4398
4399 default:
4400 last = make_call_insn_raw (x);
4401 add_insn_after (last, after, NULL);
4402 break;
4403 }
4404
4405 return last;
4406 }
4407
4408 /* Make an instruction with body X and code CALL_INSN
4409 and output it after the instruction AFTER. */
4410
4411 rtx
4412 emit_debug_insn_after_noloc (rtx x, rtx after)
4413 {
4414 rtx last;
4415
4416 gcc_assert (after);
4417
4418 switch (GET_CODE (x))
4419 {
4420 case DEBUG_INSN:
4421 case INSN:
4422 case JUMP_INSN:
4423 case CALL_INSN:
4424 case CODE_LABEL:
4425 case BARRIER:
4426 case NOTE:
4427 last = emit_insn_after_1 (x, after, NULL);
4428 break;
4429
4430 #ifdef ENABLE_RTL_CHECKING
4431 case SEQUENCE:
4432 gcc_unreachable ();
4433 break;
4434 #endif
4435
4436 default:
4437 last = make_debug_insn_raw (x);
4438 add_insn_after (last, after, NULL);
4439 break;
4440 }
4441
4442 return last;
4443 }
4444
4445 /* Make an insn of code BARRIER
4446 and output it after the insn AFTER. */
4447
4448 rtx
4449 emit_barrier_after (rtx after)
4450 {
4451 rtx insn = rtx_alloc (BARRIER);
4452
4453 INSN_UID (insn) = cur_insn_uid++;
4454
4455 add_insn_after (insn, after, NULL);
4456 return insn;
4457 }
4458
4459 /* Emit the label LABEL after the insn AFTER. */
4460
4461 rtx
4462 emit_label_after (rtx label, rtx after)
4463 {
4464 /* This can be called twice for the same label
4465 as a result of the confusion that follows a syntax error!
4466 So make it harmless. */
4467 if (INSN_UID (label) == 0)
4468 {
4469 INSN_UID (label) = cur_insn_uid++;
4470 add_insn_after (label, after, NULL);
4471 }
4472
4473 return label;
4474 }
4475
4476 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4477
4478 rtx
4479 emit_note_after (enum insn_note subtype, rtx after)
4480 {
4481 rtx note = rtx_alloc (NOTE);
4482 INSN_UID (note) = cur_insn_uid++;
4483 NOTE_KIND (note) = subtype;
4484 BLOCK_FOR_INSN (note) = NULL;
4485 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4486 add_insn_after (note, after, NULL);
4487 return note;
4488 }
4489 \f
4490 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4491 rtx
4492 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4493 {
4494 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4495
4496 if (pattern == NULL_RTX || !loc)
4497 return last;
4498
4499 after = NEXT_INSN (after);
4500 while (1)
4501 {
4502 if (active_insn_p (after) && !INSN_LOCATOR (after))
4503 INSN_LOCATOR (after) = loc;
4504 if (after == last)
4505 break;
4506 after = NEXT_INSN (after);
4507 }
4508 return last;
4509 }
4510
4511 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4512 rtx
4513 emit_insn_after (rtx pattern, rtx after)
4514 {
4515 rtx prev = after;
4516
4517 while (DEBUG_INSN_P (prev))
4518 prev = PREV_INSN (prev);
4519
4520 if (INSN_P (prev))
4521 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4522 else
4523 return emit_insn_after_noloc (pattern, after, NULL);
4524 }
4525
4526 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4527 rtx
4528 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4529 {
4530 rtx last = emit_jump_insn_after_noloc (pattern, after);
4531
4532 if (pattern == NULL_RTX || !loc)
4533 return last;
4534
4535 after = NEXT_INSN (after);
4536 while (1)
4537 {
4538 if (active_insn_p (after) && !INSN_LOCATOR (after))
4539 INSN_LOCATOR (after) = loc;
4540 if (after == last)
4541 break;
4542 after = NEXT_INSN (after);
4543 }
4544 return last;
4545 }
4546
4547 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4548 rtx
4549 emit_jump_insn_after (rtx pattern, rtx after)
4550 {
4551 rtx prev = after;
4552
4553 while (DEBUG_INSN_P (prev))
4554 prev = PREV_INSN (prev);
4555
4556 if (INSN_P (prev))
4557 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4558 else
4559 return emit_jump_insn_after_noloc (pattern, after);
4560 }
4561
4562 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4563 rtx
4564 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4565 {
4566 rtx last = emit_call_insn_after_noloc (pattern, after);
4567
4568 if (pattern == NULL_RTX || !loc)
4569 return last;
4570
4571 after = NEXT_INSN (after);
4572 while (1)
4573 {
4574 if (active_insn_p (after) && !INSN_LOCATOR (after))
4575 INSN_LOCATOR (after) = loc;
4576 if (after == last)
4577 break;
4578 after = NEXT_INSN (after);
4579 }
4580 return last;
4581 }
4582
4583 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4584 rtx
4585 emit_call_insn_after (rtx pattern, rtx after)
4586 {
4587 rtx prev = after;
4588
4589 while (DEBUG_INSN_P (prev))
4590 prev = PREV_INSN (prev);
4591
4592 if (INSN_P (prev))
4593 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4594 else
4595 return emit_call_insn_after_noloc (pattern, after);
4596 }
4597
4598 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4599 rtx
4600 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4601 {
4602 rtx last = emit_debug_insn_after_noloc (pattern, after);
4603
4604 if (pattern == NULL_RTX || !loc)
4605 return last;
4606
4607 after = NEXT_INSN (after);
4608 while (1)
4609 {
4610 if (active_insn_p (after) && !INSN_LOCATOR (after))
4611 INSN_LOCATOR (after) = loc;
4612 if (after == last)
4613 break;
4614 after = NEXT_INSN (after);
4615 }
4616 return last;
4617 }
4618
4619 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4620 rtx
4621 emit_debug_insn_after (rtx pattern, rtx after)
4622 {
4623 if (INSN_P (after))
4624 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4625 else
4626 return emit_debug_insn_after_noloc (pattern, after);
4627 }
4628
4629 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4630 rtx
4631 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4632 {
4633 rtx first = PREV_INSN (before);
4634 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4635
4636 if (pattern == NULL_RTX || !loc)
4637 return last;
4638
4639 if (!first)
4640 first = get_insns ();
4641 else
4642 first = NEXT_INSN (first);
4643 while (1)
4644 {
4645 if (active_insn_p (first) && !INSN_LOCATOR (first))
4646 INSN_LOCATOR (first) = loc;
4647 if (first == last)
4648 break;
4649 first = NEXT_INSN (first);
4650 }
4651 return last;
4652 }
4653
4654 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4655 rtx
4656 emit_insn_before (rtx pattern, rtx before)
4657 {
4658 rtx next = before;
4659
4660 while (DEBUG_INSN_P (next))
4661 next = PREV_INSN (next);
4662
4663 if (INSN_P (next))
4664 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4665 else
4666 return emit_insn_before_noloc (pattern, before, NULL);
4667 }
4668
4669 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4670 rtx
4671 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4672 {
4673 rtx first = PREV_INSN (before);
4674 rtx last = emit_jump_insn_before_noloc (pattern, before);
4675
4676 if (pattern == NULL_RTX)
4677 return last;
4678
4679 first = NEXT_INSN (first);
4680 while (1)
4681 {
4682 if (active_insn_p (first) && !INSN_LOCATOR (first))
4683 INSN_LOCATOR (first) = loc;
4684 if (first == last)
4685 break;
4686 first = NEXT_INSN (first);
4687 }
4688 return last;
4689 }
4690
4691 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4692 rtx
4693 emit_jump_insn_before (rtx pattern, rtx before)
4694 {
4695 rtx next = before;
4696
4697 while (DEBUG_INSN_P (next))
4698 next = PREV_INSN (next);
4699
4700 if (INSN_P (next))
4701 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4702 else
4703 return emit_jump_insn_before_noloc (pattern, before);
4704 }
4705
4706 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4707 rtx
4708 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4709 {
4710 rtx first = PREV_INSN (before);
4711 rtx last = emit_call_insn_before_noloc (pattern, before);
4712
4713 if (pattern == NULL_RTX)
4714 return last;
4715
4716 first = NEXT_INSN (first);
4717 while (1)
4718 {
4719 if (active_insn_p (first) && !INSN_LOCATOR (first))
4720 INSN_LOCATOR (first) = loc;
4721 if (first == last)
4722 break;
4723 first = NEXT_INSN (first);
4724 }
4725 return last;
4726 }
4727
4728 /* like emit_call_insn_before_noloc,
4729 but set insn_locator according to before. */
4730 rtx
4731 emit_call_insn_before (rtx pattern, rtx before)
4732 {
4733 rtx next = before;
4734
4735 while (DEBUG_INSN_P (next))
4736 next = PREV_INSN (next);
4737
4738 if (INSN_P (next))
4739 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4740 else
4741 return emit_call_insn_before_noloc (pattern, before);
4742 }
4743
4744 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4745 rtx
4746 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4747 {
4748 rtx first = PREV_INSN (before);
4749 rtx last = emit_debug_insn_before_noloc (pattern, before);
4750
4751 if (pattern == NULL_RTX)
4752 return last;
4753
4754 first = NEXT_INSN (first);
4755 while (1)
4756 {
4757 if (active_insn_p (first) && !INSN_LOCATOR (first))
4758 INSN_LOCATOR (first) = loc;
4759 if (first == last)
4760 break;
4761 first = NEXT_INSN (first);
4762 }
4763 return last;
4764 }
4765
4766 /* like emit_debug_insn_before_noloc,
4767 but set insn_locator according to before. */
4768 rtx
4769 emit_debug_insn_before (rtx pattern, rtx before)
4770 {
4771 if (INSN_P (before))
4772 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4773 else
4774 return emit_debug_insn_before_noloc (pattern, before);
4775 }
4776 \f
4777 /* Take X and emit it at the end of the doubly-linked
4778 INSN list.
4779
4780 Returns the last insn emitted. */
4781
4782 rtx
4783 emit_insn (rtx x)
4784 {
4785 rtx last = get_last_insn();
4786 rtx insn;
4787
4788 if (x == NULL_RTX)
4789 return last;
4790
4791 switch (GET_CODE (x))
4792 {
4793 case DEBUG_INSN:
4794 case INSN:
4795 case JUMP_INSN:
4796 case CALL_INSN:
4797 case CODE_LABEL:
4798 case BARRIER:
4799 case NOTE:
4800 insn = x;
4801 while (insn)
4802 {
4803 rtx next = NEXT_INSN (insn);
4804 add_insn (insn);
4805 last = insn;
4806 insn = next;
4807 }
4808 break;
4809
4810 #ifdef ENABLE_RTL_CHECKING
4811 case SEQUENCE:
4812 gcc_unreachable ();
4813 break;
4814 #endif
4815
4816 default:
4817 last = make_insn_raw (x);
4818 add_insn (last);
4819 break;
4820 }
4821
4822 return last;
4823 }
4824
4825 /* Make an insn of code DEBUG_INSN with pattern X
4826 and add it to the end of the doubly-linked list. */
4827
4828 rtx
4829 emit_debug_insn (rtx x)
4830 {
4831 rtx last = get_last_insn();
4832 rtx insn;
4833
4834 if (x == NULL_RTX)
4835 return last;
4836
4837 switch (GET_CODE (x))
4838 {
4839 case DEBUG_INSN:
4840 case INSN:
4841 case JUMP_INSN:
4842 case CALL_INSN:
4843 case CODE_LABEL:
4844 case BARRIER:
4845 case NOTE:
4846 insn = x;
4847 while (insn)
4848 {
4849 rtx next = NEXT_INSN (insn);
4850 add_insn (insn);
4851 last = insn;
4852 insn = next;
4853 }
4854 break;
4855
4856 #ifdef ENABLE_RTL_CHECKING
4857 case SEQUENCE:
4858 gcc_unreachable ();
4859 break;
4860 #endif
4861
4862 default:
4863 last = make_debug_insn_raw (x);
4864 add_insn (last);
4865 break;
4866 }
4867
4868 return last;
4869 }
4870
4871 /* Make an insn of code JUMP_INSN with pattern X
4872 and add it to the end of the doubly-linked list. */
4873
4874 rtx
4875 emit_jump_insn (rtx x)
4876 {
4877 rtx last = NULL_RTX, insn;
4878
4879 switch (GET_CODE (x))
4880 {
4881 case DEBUG_INSN:
4882 case INSN:
4883 case JUMP_INSN:
4884 case CALL_INSN:
4885 case CODE_LABEL:
4886 case BARRIER:
4887 case NOTE:
4888 insn = x;
4889 while (insn)
4890 {
4891 rtx next = NEXT_INSN (insn);
4892 add_insn (insn);
4893 last = insn;
4894 insn = next;
4895 }
4896 break;
4897
4898 #ifdef ENABLE_RTL_CHECKING
4899 case SEQUENCE:
4900 gcc_unreachable ();
4901 break;
4902 #endif
4903
4904 default:
4905 last = make_jump_insn_raw (x);
4906 add_insn (last);
4907 break;
4908 }
4909
4910 return last;
4911 }
4912
4913 /* Make an insn of code CALL_INSN with pattern X
4914 and add it to the end of the doubly-linked list. */
4915
4916 rtx
4917 emit_call_insn (rtx x)
4918 {
4919 rtx insn;
4920
4921 switch (GET_CODE (x))
4922 {
4923 case DEBUG_INSN:
4924 case INSN:
4925 case JUMP_INSN:
4926 case CALL_INSN:
4927 case CODE_LABEL:
4928 case BARRIER:
4929 case NOTE:
4930 insn = emit_insn (x);
4931 break;
4932
4933 #ifdef ENABLE_RTL_CHECKING
4934 case SEQUENCE:
4935 gcc_unreachable ();
4936 break;
4937 #endif
4938
4939 default:
4940 insn = make_call_insn_raw (x);
4941 add_insn (insn);
4942 break;
4943 }
4944
4945 return insn;
4946 }
4947
4948 /* Add the label LABEL to the end of the doubly-linked list. */
4949
4950 rtx
4951 emit_label (rtx label)
4952 {
4953 /* This can be called twice for the same label
4954 as a result of the confusion that follows a syntax error!
4955 So make it harmless. */
4956 if (INSN_UID (label) == 0)
4957 {
4958 INSN_UID (label) = cur_insn_uid++;
4959 add_insn (label);
4960 }
4961 return label;
4962 }
4963
4964 /* Make an insn of code BARRIER
4965 and add it to the end of the doubly-linked list. */
4966
4967 rtx
4968 emit_barrier (void)
4969 {
4970 rtx barrier = rtx_alloc (BARRIER);
4971 INSN_UID (barrier) = cur_insn_uid++;
4972 add_insn (barrier);
4973 return barrier;
4974 }
4975
4976 /* Emit a copy of note ORIG. */
4977
4978 rtx
4979 emit_note_copy (rtx orig)
4980 {
4981 rtx note;
4982
4983 note = rtx_alloc (NOTE);
4984
4985 INSN_UID (note) = cur_insn_uid++;
4986 NOTE_DATA (note) = NOTE_DATA (orig);
4987 NOTE_KIND (note) = NOTE_KIND (orig);
4988 BLOCK_FOR_INSN (note) = NULL;
4989 add_insn (note);
4990
4991 return note;
4992 }
4993
4994 /* Make an insn of code NOTE or type NOTE_NO
4995 and add it to the end of the doubly-linked list. */
4996
4997 rtx
4998 emit_note (enum insn_note kind)
4999 {
5000 rtx note;
5001
5002 note = rtx_alloc (NOTE);
5003 INSN_UID (note) = cur_insn_uid++;
5004 NOTE_KIND (note) = kind;
5005 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5006 BLOCK_FOR_INSN (note) = NULL;
5007 add_insn (note);
5008 return note;
5009 }
5010
5011 /* Emit a clobber of lvalue X. */
5012
5013 rtx
5014 emit_clobber (rtx x)
5015 {
5016 /* CONCATs should not appear in the insn stream. */
5017 if (GET_CODE (x) == CONCAT)
5018 {
5019 emit_clobber (XEXP (x, 0));
5020 return emit_clobber (XEXP (x, 1));
5021 }
5022 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5023 }
5024
5025 /* Return a sequence of insns to clobber lvalue X. */
5026
5027 rtx
5028 gen_clobber (rtx x)
5029 {
5030 rtx seq;
5031
5032 start_sequence ();
5033 emit_clobber (x);
5034 seq = get_insns ();
5035 end_sequence ();
5036 return seq;
5037 }
5038
5039 /* Emit a use of rvalue X. */
5040
5041 rtx
5042 emit_use (rtx x)
5043 {
5044 /* CONCATs should not appear in the insn stream. */
5045 if (GET_CODE (x) == CONCAT)
5046 {
5047 emit_use (XEXP (x, 0));
5048 return emit_use (XEXP (x, 1));
5049 }
5050 return emit_insn (gen_rtx_USE (VOIDmode, x));
5051 }
5052
5053 /* Return a sequence of insns to use rvalue X. */
5054
5055 rtx
5056 gen_use (rtx x)
5057 {
5058 rtx seq;
5059
5060 start_sequence ();
5061 emit_use (x);
5062 seq = get_insns ();
5063 end_sequence ();
5064 return seq;
5065 }
5066
5067 /* Cause next statement to emit a line note even if the line number
5068 has not changed. */
5069
5070 void
5071 force_next_line_note (void)
5072 {
5073 last_location = -1;
5074 }
5075
5076 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5077 note of this type already exists, remove it first. */
5078
5079 rtx
5080 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5081 {
5082 rtx note = find_reg_note (insn, kind, NULL_RTX);
5083
5084 switch (kind)
5085 {
5086 case REG_EQUAL:
5087 case REG_EQUIV:
5088 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5089 has multiple sets (some callers assume single_set
5090 means the insn only has one set, when in fact it
5091 means the insn only has one * useful * set). */
5092 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5093 {
5094 gcc_assert (!note);
5095 return NULL_RTX;
5096 }
5097
5098 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5099 It serves no useful purpose and breaks eliminate_regs. */
5100 if (GET_CODE (datum) == ASM_OPERANDS)
5101 return NULL_RTX;
5102
5103 if (note)
5104 {
5105 XEXP (note, 0) = datum;
5106 df_notes_rescan (insn);
5107 return note;
5108 }
5109 break;
5110
5111 default:
5112 if (note)
5113 {
5114 XEXP (note, 0) = datum;
5115 return note;
5116 }
5117 break;
5118 }
5119
5120 add_reg_note (insn, kind, datum);
5121
5122 switch (kind)
5123 {
5124 case REG_EQUAL:
5125 case REG_EQUIV:
5126 df_notes_rescan (insn);
5127 break;
5128 default:
5129 break;
5130 }
5131
5132 return REG_NOTES (insn);
5133 }
5134 \f
5135 /* Return an indication of which type of insn should have X as a body.
5136 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5137
5138 static enum rtx_code
5139 classify_insn (rtx x)
5140 {
5141 if (LABEL_P (x))
5142 return CODE_LABEL;
5143 if (GET_CODE (x) == CALL)
5144 return CALL_INSN;
5145 if (GET_CODE (x) == RETURN)
5146 return JUMP_INSN;
5147 if (GET_CODE (x) == SET)
5148 {
5149 if (SET_DEST (x) == pc_rtx)
5150 return JUMP_INSN;
5151 else if (GET_CODE (SET_SRC (x)) == CALL)
5152 return CALL_INSN;
5153 else
5154 return INSN;
5155 }
5156 if (GET_CODE (x) == PARALLEL)
5157 {
5158 int j;
5159 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5160 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5161 return CALL_INSN;
5162 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5163 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5164 return JUMP_INSN;
5165 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5166 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5167 return CALL_INSN;
5168 }
5169 return INSN;
5170 }
5171
5172 /* Emit the rtl pattern X as an appropriate kind of insn.
5173 If X is a label, it is simply added into the insn chain. */
5174
5175 rtx
5176 emit (rtx x)
5177 {
5178 enum rtx_code code = classify_insn (x);
5179
5180 switch (code)
5181 {
5182 case CODE_LABEL:
5183 return emit_label (x);
5184 case INSN:
5185 return emit_insn (x);
5186 case JUMP_INSN:
5187 {
5188 rtx insn = emit_jump_insn (x);
5189 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5190 return emit_barrier ();
5191 return insn;
5192 }
5193 case CALL_INSN:
5194 return emit_call_insn (x);
5195 case DEBUG_INSN:
5196 return emit_debug_insn (x);
5197 default:
5198 gcc_unreachable ();
5199 }
5200 }
5201 \f
5202 /* Space for free sequence stack entries. */
5203 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5204
5205 /* Begin emitting insns to a sequence. If this sequence will contain
5206 something that might cause the compiler to pop arguments to function
5207 calls (because those pops have previously been deferred; see
5208 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5209 before calling this function. That will ensure that the deferred
5210 pops are not accidentally emitted in the middle of this sequence. */
5211
5212 void
5213 start_sequence (void)
5214 {
5215 struct sequence_stack *tem;
5216
5217 if (free_sequence_stack != NULL)
5218 {
5219 tem = free_sequence_stack;
5220 free_sequence_stack = tem->next;
5221 }
5222 else
5223 tem = ggc_alloc_sequence_stack ();
5224
5225 tem->next = seq_stack;
5226 tem->first = get_insns ();
5227 tem->last = get_last_insn ();
5228
5229 seq_stack = tem;
5230
5231 set_first_insn (0);
5232 set_last_insn (0);
5233 }
5234
5235 /* Set up the insn chain starting with FIRST as the current sequence,
5236 saving the previously current one. See the documentation for
5237 start_sequence for more information about how to use this function. */
5238
5239 void
5240 push_to_sequence (rtx first)
5241 {
5242 rtx last;
5243
5244 start_sequence ();
5245
5246 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5247
5248 set_first_insn (first);
5249 set_last_insn (last);
5250 }
5251
5252 /* Like push_to_sequence, but take the last insn as an argument to avoid
5253 looping through the list. */
5254
5255 void
5256 push_to_sequence2 (rtx first, rtx last)
5257 {
5258 start_sequence ();
5259
5260 set_first_insn (first);
5261 set_last_insn (last);
5262 }
5263
5264 /* Set up the outer-level insn chain
5265 as the current sequence, saving the previously current one. */
5266
5267 void
5268 push_topmost_sequence (void)
5269 {
5270 struct sequence_stack *stack, *top = NULL;
5271
5272 start_sequence ();
5273
5274 for (stack = seq_stack; stack; stack = stack->next)
5275 top = stack;
5276
5277 set_first_insn (top->first);
5278 set_last_insn (top->last);
5279 }
5280
5281 /* After emitting to the outer-level insn chain, update the outer-level
5282 insn chain, and restore the previous saved state. */
5283
5284 void
5285 pop_topmost_sequence (void)
5286 {
5287 struct sequence_stack *stack, *top = NULL;
5288
5289 for (stack = seq_stack; stack; stack = stack->next)
5290 top = stack;
5291
5292 top->first = get_insns ();
5293 top->last = get_last_insn ();
5294
5295 end_sequence ();
5296 }
5297
5298 /* After emitting to a sequence, restore previous saved state.
5299
5300 To get the contents of the sequence just made, you must call
5301 `get_insns' *before* calling here.
5302
5303 If the compiler might have deferred popping arguments while
5304 generating this sequence, and this sequence will not be immediately
5305 inserted into the instruction stream, use do_pending_stack_adjust
5306 before calling get_insns. That will ensure that the deferred
5307 pops are inserted into this sequence, and not into some random
5308 location in the instruction stream. See INHIBIT_DEFER_POP for more
5309 information about deferred popping of arguments. */
5310
5311 void
5312 end_sequence (void)
5313 {
5314 struct sequence_stack *tem = seq_stack;
5315
5316 set_first_insn (tem->first);
5317 set_last_insn (tem->last);
5318 seq_stack = tem->next;
5319
5320 memset (tem, 0, sizeof (*tem));
5321 tem->next = free_sequence_stack;
5322 free_sequence_stack = tem;
5323 }
5324
5325 /* Return 1 if currently emitting into a sequence. */
5326
5327 int
5328 in_sequence_p (void)
5329 {
5330 return seq_stack != 0;
5331 }
5332 \f
5333 /* Put the various virtual registers into REGNO_REG_RTX. */
5334
5335 static void
5336 init_virtual_regs (void)
5337 {
5338 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5339 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5340 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5341 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5342 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5343 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5344 = virtual_preferred_stack_boundary_rtx;
5345 }
5346
5347 \f
5348 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5349 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5350 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5351 static int copy_insn_n_scratches;
5352
5353 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5354 copied an ASM_OPERANDS.
5355 In that case, it is the original input-operand vector. */
5356 static rtvec orig_asm_operands_vector;
5357
5358 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5359 copied an ASM_OPERANDS.
5360 In that case, it is the copied input-operand vector. */
5361 static rtvec copy_asm_operands_vector;
5362
5363 /* Likewise for the constraints vector. */
5364 static rtvec orig_asm_constraints_vector;
5365 static rtvec copy_asm_constraints_vector;
5366
5367 /* Recursively create a new copy of an rtx for copy_insn.
5368 This function differs from copy_rtx in that it handles SCRATCHes and
5369 ASM_OPERANDs properly.
5370 Normally, this function is not used directly; use copy_insn as front end.
5371 However, you could first copy an insn pattern with copy_insn and then use
5372 this function afterwards to properly copy any REG_NOTEs containing
5373 SCRATCHes. */
5374
5375 rtx
5376 copy_insn_1 (rtx orig)
5377 {
5378 rtx copy;
5379 int i, j;
5380 RTX_CODE code;
5381 const char *format_ptr;
5382
5383 if (orig == NULL)
5384 return NULL;
5385
5386 code = GET_CODE (orig);
5387
5388 switch (code)
5389 {
5390 case REG:
5391 case CONST_INT:
5392 case CONST_DOUBLE:
5393 case CONST_FIXED:
5394 case CONST_VECTOR:
5395 case SYMBOL_REF:
5396 case CODE_LABEL:
5397 case PC:
5398 case CC0:
5399 return orig;
5400 case CLOBBER:
5401 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5402 return orig;
5403 break;
5404
5405 case SCRATCH:
5406 for (i = 0; i < copy_insn_n_scratches; i++)
5407 if (copy_insn_scratch_in[i] == orig)
5408 return copy_insn_scratch_out[i];
5409 break;
5410
5411 case CONST:
5412 if (shared_const_p (orig))
5413 return orig;
5414 break;
5415
5416 /* A MEM with a constant address is not sharable. The problem is that
5417 the constant address may need to be reloaded. If the mem is shared,
5418 then reloading one copy of this mem will cause all copies to appear
5419 to have been reloaded. */
5420
5421 default:
5422 break;
5423 }
5424
5425 /* Copy the various flags, fields, and other information. We assume
5426 that all fields need copying, and then clear the fields that should
5427 not be copied. That is the sensible default behavior, and forces
5428 us to explicitly document why we are *not* copying a flag. */
5429 copy = shallow_copy_rtx (orig);
5430
5431 /* We do not copy the USED flag, which is used as a mark bit during
5432 walks over the RTL. */
5433 RTX_FLAG (copy, used) = 0;
5434
5435 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5436 if (INSN_P (orig))
5437 {
5438 RTX_FLAG (copy, jump) = 0;
5439 RTX_FLAG (copy, call) = 0;
5440 RTX_FLAG (copy, frame_related) = 0;
5441 }
5442
5443 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5444
5445 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5446 switch (*format_ptr++)
5447 {
5448 case 'e':
5449 if (XEXP (orig, i) != NULL)
5450 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5451 break;
5452
5453 case 'E':
5454 case 'V':
5455 if (XVEC (orig, i) == orig_asm_constraints_vector)
5456 XVEC (copy, i) = copy_asm_constraints_vector;
5457 else if (XVEC (orig, i) == orig_asm_operands_vector)
5458 XVEC (copy, i) = copy_asm_operands_vector;
5459 else if (XVEC (orig, i) != NULL)
5460 {
5461 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5462 for (j = 0; j < XVECLEN (copy, i); j++)
5463 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5464 }
5465 break;
5466
5467 case 't':
5468 case 'w':
5469 case 'i':
5470 case 's':
5471 case 'S':
5472 case 'u':
5473 case '0':
5474 /* These are left unchanged. */
5475 break;
5476
5477 default:
5478 gcc_unreachable ();
5479 }
5480
5481 if (code == SCRATCH)
5482 {
5483 i = copy_insn_n_scratches++;
5484 gcc_assert (i < MAX_RECOG_OPERANDS);
5485 copy_insn_scratch_in[i] = orig;
5486 copy_insn_scratch_out[i] = copy;
5487 }
5488 else if (code == ASM_OPERANDS)
5489 {
5490 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5491 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5492 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5493 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5494 }
5495
5496 return copy;
5497 }
5498
5499 /* Create a new copy of an rtx.
5500 This function differs from copy_rtx in that it handles SCRATCHes and
5501 ASM_OPERANDs properly.
5502 INSN doesn't really have to be a full INSN; it could be just the
5503 pattern. */
5504 rtx
5505 copy_insn (rtx insn)
5506 {
5507 copy_insn_n_scratches = 0;
5508 orig_asm_operands_vector = 0;
5509 orig_asm_constraints_vector = 0;
5510 copy_asm_operands_vector = 0;
5511 copy_asm_constraints_vector = 0;
5512 return copy_insn_1 (insn);
5513 }
5514
5515 /* Initialize data structures and variables in this file
5516 before generating rtl for each function. */
5517
5518 void
5519 init_emit (void)
5520 {
5521 set_first_insn (NULL);
5522 set_last_insn (NULL);
5523 if (MIN_NONDEBUG_INSN_UID)
5524 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5525 else
5526 cur_insn_uid = 1;
5527 cur_debug_insn_uid = 1;
5528 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5529 last_location = UNKNOWN_LOCATION;
5530 first_label_num = label_num;
5531 seq_stack = NULL;
5532
5533 /* Init the tables that describe all the pseudo regs. */
5534
5535 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5536
5537 crtl->emit.regno_pointer_align
5538 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5539
5540 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5541
5542 /* Put copies of all the hard registers into regno_reg_rtx. */
5543 memcpy (regno_reg_rtx,
5544 initial_regno_reg_rtx,
5545 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5546
5547 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5548 init_virtual_regs ();
5549
5550 /* Indicate that the virtual registers and stack locations are
5551 all pointers. */
5552 REG_POINTER (stack_pointer_rtx) = 1;
5553 REG_POINTER (frame_pointer_rtx) = 1;
5554 REG_POINTER (hard_frame_pointer_rtx) = 1;
5555 REG_POINTER (arg_pointer_rtx) = 1;
5556
5557 REG_POINTER (virtual_incoming_args_rtx) = 1;
5558 REG_POINTER (virtual_stack_vars_rtx) = 1;
5559 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5560 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5561 REG_POINTER (virtual_cfa_rtx) = 1;
5562
5563 #ifdef STACK_BOUNDARY
5564 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5565 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5566 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5567 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5568
5569 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5570 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5571 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5572 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5573 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5574 #endif
5575
5576 #ifdef INIT_EXPANDERS
5577 INIT_EXPANDERS;
5578 #endif
5579 }
5580
5581 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5582
5583 static rtx
5584 gen_const_vector (enum machine_mode mode, int constant)
5585 {
5586 rtx tem;
5587 rtvec v;
5588 int units, i;
5589 enum machine_mode inner;
5590
5591 units = GET_MODE_NUNITS (mode);
5592 inner = GET_MODE_INNER (mode);
5593
5594 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5595
5596 v = rtvec_alloc (units);
5597
5598 /* We need to call this function after we set the scalar const_tiny_rtx
5599 entries. */
5600 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5601
5602 for (i = 0; i < units; ++i)
5603 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5604
5605 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5606 return tem;
5607 }
5608
5609 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5610 all elements are zero, and the one vector when all elements are one. */
5611 rtx
5612 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5613 {
5614 enum machine_mode inner = GET_MODE_INNER (mode);
5615 int nunits = GET_MODE_NUNITS (mode);
5616 rtx x;
5617 int i;
5618
5619 /* Check to see if all of the elements have the same value. */
5620 x = RTVEC_ELT (v, nunits - 1);
5621 for (i = nunits - 2; i >= 0; i--)
5622 if (RTVEC_ELT (v, i) != x)
5623 break;
5624
5625 /* If the values are all the same, check to see if we can use one of the
5626 standard constant vectors. */
5627 if (i == -1)
5628 {
5629 if (x == CONST0_RTX (inner))
5630 return CONST0_RTX (mode);
5631 else if (x == CONST1_RTX (inner))
5632 return CONST1_RTX (mode);
5633 }
5634
5635 return gen_rtx_raw_CONST_VECTOR (mode, v);
5636 }
5637
5638 /* Initialise global register information required by all functions. */
5639
5640 void
5641 init_emit_regs (void)
5642 {
5643 int i;
5644
5645 /* Reset register attributes */
5646 htab_empty (reg_attrs_htab);
5647
5648 /* We need reg_raw_mode, so initialize the modes now. */
5649 init_reg_modes_target ();
5650
5651 /* Assign register numbers to the globally defined register rtx. */
5652 pc_rtx = gen_rtx_PC (VOIDmode);
5653 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5654 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5655 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5656 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5657 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5658 virtual_incoming_args_rtx =
5659 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5660 virtual_stack_vars_rtx =
5661 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5662 virtual_stack_dynamic_rtx =
5663 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5664 virtual_outgoing_args_rtx =
5665 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5666 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5667 virtual_preferred_stack_boundary_rtx =
5668 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5669
5670 /* Initialize RTL for commonly used hard registers. These are
5671 copied into regno_reg_rtx as we begin to compile each function. */
5672 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5673 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5674
5675 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5676 return_address_pointer_rtx
5677 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5678 #endif
5679
5680 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5681 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5682 else
5683 pic_offset_table_rtx = NULL_RTX;
5684 }
5685
5686 /* Create some permanent unique rtl objects shared between all functions. */
5687
5688 void
5689 init_emit_once (void)
5690 {
5691 int i;
5692 enum machine_mode mode;
5693 enum machine_mode double_mode;
5694
5695 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5696 hash tables. */
5697 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5698 const_int_htab_eq, NULL);
5699
5700 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5701 const_double_htab_eq, NULL);
5702
5703 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5704 const_fixed_htab_eq, NULL);
5705
5706 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5707 mem_attrs_htab_eq, NULL);
5708 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5709 reg_attrs_htab_eq, NULL);
5710
5711 /* Compute the word and byte modes. */
5712
5713 byte_mode = VOIDmode;
5714 word_mode = VOIDmode;
5715 double_mode = VOIDmode;
5716
5717 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5718 mode != VOIDmode;
5719 mode = GET_MODE_WIDER_MODE (mode))
5720 {
5721 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5722 && byte_mode == VOIDmode)
5723 byte_mode = mode;
5724
5725 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5726 && word_mode == VOIDmode)
5727 word_mode = mode;
5728 }
5729
5730 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5731 mode != VOIDmode;
5732 mode = GET_MODE_WIDER_MODE (mode))
5733 {
5734 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5735 && double_mode == VOIDmode)
5736 double_mode = mode;
5737 }
5738
5739 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5740
5741 #ifdef INIT_EXPANDERS
5742 /* This is to initialize {init|mark|free}_machine_status before the first
5743 call to push_function_context_to. This is needed by the Chill front
5744 end which calls push_function_context_to before the first call to
5745 init_function_start. */
5746 INIT_EXPANDERS;
5747 #endif
5748
5749 /* Create the unique rtx's for certain rtx codes and operand values. */
5750
5751 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5752 tries to use these variables. */
5753 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5754 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5755 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5756
5757 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5758 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5759 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5760 else
5761 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5762
5763 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5764 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5765 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5766
5767 dconstm1 = dconst1;
5768 dconstm1.sign = 1;
5769
5770 dconsthalf = dconst1;
5771 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5772
5773 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5774 {
5775 const REAL_VALUE_TYPE *const r =
5776 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5777
5778 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5779 mode != VOIDmode;
5780 mode = GET_MODE_WIDER_MODE (mode))
5781 const_tiny_rtx[i][(int) mode] =
5782 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5783
5784 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5785 mode != VOIDmode;
5786 mode = GET_MODE_WIDER_MODE (mode))
5787 const_tiny_rtx[i][(int) mode] =
5788 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5789
5790 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5791
5792 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5793 mode != VOIDmode;
5794 mode = GET_MODE_WIDER_MODE (mode))
5795 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5796
5797 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5798 mode != VOIDmode;
5799 mode = GET_MODE_WIDER_MODE (mode))
5800 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5801 }
5802
5803 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5804 mode != VOIDmode;
5805 mode = GET_MODE_WIDER_MODE (mode))
5806 {
5807 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5808 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5809 }
5810
5811 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5812 mode != VOIDmode;
5813 mode = GET_MODE_WIDER_MODE (mode))
5814 {
5815 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5816 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5817 }
5818
5819 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5820 mode != VOIDmode;
5821 mode = GET_MODE_WIDER_MODE (mode))
5822 {
5823 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5824 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5825 }
5826
5827 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5828 mode != VOIDmode;
5829 mode = GET_MODE_WIDER_MODE (mode))
5830 {
5831 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5832 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5833 }
5834
5835 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5836 mode != VOIDmode;
5837 mode = GET_MODE_WIDER_MODE (mode))
5838 {
5839 FCONST0(mode).data.high = 0;
5840 FCONST0(mode).data.low = 0;
5841 FCONST0(mode).mode = mode;
5842 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5843 FCONST0 (mode), mode);
5844 }
5845
5846 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5847 mode != VOIDmode;
5848 mode = GET_MODE_WIDER_MODE (mode))
5849 {
5850 FCONST0(mode).data.high = 0;
5851 FCONST0(mode).data.low = 0;
5852 FCONST0(mode).mode = mode;
5853 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5854 FCONST0 (mode), mode);
5855 }
5856
5857 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5858 mode != VOIDmode;
5859 mode = GET_MODE_WIDER_MODE (mode))
5860 {
5861 FCONST0(mode).data.high = 0;
5862 FCONST0(mode).data.low = 0;
5863 FCONST0(mode).mode = mode;
5864 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5865 FCONST0 (mode), mode);
5866
5867 /* We store the value 1. */
5868 FCONST1(mode).data.high = 0;
5869 FCONST1(mode).data.low = 0;
5870 FCONST1(mode).mode = mode;
5871 lshift_double (1, 0, GET_MODE_FBIT (mode),
5872 2 * HOST_BITS_PER_WIDE_INT,
5873 &FCONST1(mode).data.low,
5874 &FCONST1(mode).data.high,
5875 SIGNED_FIXED_POINT_MODE_P (mode));
5876 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5877 FCONST1 (mode), mode);
5878 }
5879
5880 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5881 mode != VOIDmode;
5882 mode = GET_MODE_WIDER_MODE (mode))
5883 {
5884 FCONST0(mode).data.high = 0;
5885 FCONST0(mode).data.low = 0;
5886 FCONST0(mode).mode = mode;
5887 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5888 FCONST0 (mode), mode);
5889
5890 /* We store the value 1. */
5891 FCONST1(mode).data.high = 0;
5892 FCONST1(mode).data.low = 0;
5893 FCONST1(mode).mode = mode;
5894 lshift_double (1, 0, GET_MODE_FBIT (mode),
5895 2 * HOST_BITS_PER_WIDE_INT,
5896 &FCONST1(mode).data.low,
5897 &FCONST1(mode).data.high,
5898 SIGNED_FIXED_POINT_MODE_P (mode));
5899 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5900 FCONST1 (mode), mode);
5901 }
5902
5903 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5904 mode != VOIDmode;
5905 mode = GET_MODE_WIDER_MODE (mode))
5906 {
5907 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5908 }
5909
5910 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5911 mode != VOIDmode;
5912 mode = GET_MODE_WIDER_MODE (mode))
5913 {
5914 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5915 }
5916
5917 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5918 mode != VOIDmode;
5919 mode = GET_MODE_WIDER_MODE (mode))
5920 {
5921 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5922 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5923 }
5924
5925 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5926 mode != VOIDmode;
5927 mode = GET_MODE_WIDER_MODE (mode))
5928 {
5929 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5930 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5931 }
5932
5933 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5934 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5935 const_tiny_rtx[0][i] = const0_rtx;
5936
5937 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5938 if (STORE_FLAG_VALUE == 1)
5939 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5940 }
5941 \f
5942 /* Produce exact duplicate of insn INSN after AFTER.
5943 Care updating of libcall regions if present. */
5944
5945 rtx
5946 emit_copy_of_insn_after (rtx insn, rtx after)
5947 {
5948 rtx new_rtx, link;
5949
5950 switch (GET_CODE (insn))
5951 {
5952 case INSN:
5953 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5954 break;
5955
5956 case JUMP_INSN:
5957 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5958 break;
5959
5960 case DEBUG_INSN:
5961 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5962 break;
5963
5964 case CALL_INSN:
5965 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5966 if (CALL_INSN_FUNCTION_USAGE (insn))
5967 CALL_INSN_FUNCTION_USAGE (new_rtx)
5968 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5969 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5970 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5971 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5972 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5973 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5974 break;
5975
5976 default:
5977 gcc_unreachable ();
5978 }
5979
5980 /* Update LABEL_NUSES. */
5981 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5982
5983 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5984
5985 /* If the old insn is frame related, then so is the new one. This is
5986 primarily needed for IA-64 unwind info which marks epilogue insns,
5987 which may be duplicated by the basic block reordering code. */
5988 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5989
5990 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5991 will make them. REG_LABEL_TARGETs are created there too, but are
5992 supposed to be sticky, so we copy them. */
5993 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5994 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5995 {
5996 if (GET_CODE (link) == EXPR_LIST)
5997 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5998 copy_insn_1 (XEXP (link, 0)));
5999 else
6000 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6001 }
6002
6003 INSN_CODE (new_rtx) = INSN_CODE (insn);
6004 return new_rtx;
6005 }
6006
6007 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6008 rtx
6009 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6010 {
6011 if (hard_reg_clobbers[mode][regno])
6012 return hard_reg_clobbers[mode][regno];
6013 else
6014 return (hard_reg_clobbers[mode][regno] =
6015 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6016 }
6017
6018 #include "gt-emit-rtl.h"