Add -static-libasan option to the GCC driver
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992-2012 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "vecprim.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "hashtab.h"
49 #include "insn-config.h"
50 #include "recog.h"
51 #include "bitmap.h"
52 #include "basic-block.h"
53 #include "ggc.h"
54 #include "debug.h"
55 #include "langhooks.h"
56 #include "df.h"
57 #include "params.h"
58 #include "target.h"
59
60 struct target_rtl default_target_rtl;
61 #if SWITCHABLE_TARGET
62 struct target_rtl *this_target_rtl = &default_target_rtl;
63 #endif
64
65 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
66
67 /* Commonly used modes. */
68
69 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
70 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
71 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
72 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
73
74 /* Datastructures maintained for currently processed function in RTL form. */
75
76 struct rtl_data x_rtl;
77
78 /* Indexed by pseudo register number, gives the rtx for that pseudo.
79 Allocated in parallel with regno_pointer_align.
80 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
81 with length attribute nested in top level structures. */
82
83 rtx * regno_reg_rtx;
84
85 /* This is *not* reset after each function. It gives each CODE_LABEL
86 in the entire compilation a unique label number. */
87
88 static GTY(()) int label_num = 1;
89
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
93 is set only for MODE_INT and MODE_VECTOR_INT modes. */
94
95 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
96
97 rtx const_true_rtx;
98
99 REAL_VALUE_TYPE dconst0;
100 REAL_VALUE_TYPE dconst1;
101 REAL_VALUE_TYPE dconst2;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconsthalf;
104
105 /* Record fixed-point constant 0 and 1. */
106 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
107 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
108
109 /* We make one copy of (const_int C) where C is in
110 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
111 to save space during the compilation and simplify comparisons of
112 integers. */
113
114 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
115
116 /* Standard pieces of rtx, to be substituted directly into things. */
117 rtx pc_rtx;
118 rtx ret_rtx;
119 rtx simple_return_rtx;
120 rtx cc0_rtx;
121
122 /* A hash table storing CONST_INTs whose absolute value is greater
123 than MAX_SAVED_CONST_INT. */
124
125 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
126 htab_t const_int_htab;
127
128 /* A hash table storing memory attribute structures. */
129 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
130 htab_t mem_attrs_htab;
131
132 /* A hash table storing register attribute structures. */
133 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
134 htab_t reg_attrs_htab;
135
136 /* A hash table storing all CONST_DOUBLEs. */
137 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
138 htab_t const_double_htab;
139
140 /* A hash table storing all CONST_FIXEDs. */
141 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
142 htab_t const_fixed_htab;
143
144 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
145 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
146 #define first_label_num (crtl->emit.x_first_label_num)
147
148 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 static hashval_t const_double_htab_hash (const void *);
154 static int const_double_htab_eq (const void *, const void *);
155 static rtx lookup_const_double (rtx);
156 static hashval_t const_fixed_htab_hash (const void *);
157 static int const_fixed_htab_eq (const void *, const void *);
158 static rtx lookup_const_fixed (rtx);
159 static hashval_t mem_attrs_htab_hash (const void *);
160 static int mem_attrs_htab_eq (const void *, const void *);
161 static hashval_t reg_attrs_htab_hash (const void *);
162 static int reg_attrs_htab_eq (const void *, const void *);
163 static reg_attrs *get_reg_attrs (tree, int);
164 static rtx gen_const_vector (enum machine_mode, int);
165 static void copy_rtx_if_shared_1 (rtx *orig);
166
167 /* Probability of the conditional branch currently proceeded by try_split.
168 Set to -1 otherwise. */
169 int split_branch_probability = -1;
170 \f
171 /* Returns a hash code for X (which is a really a CONST_INT). */
172
173 static hashval_t
174 const_int_htab_hash (const void *x)
175 {
176 return (hashval_t) INTVAL ((const_rtx) x);
177 }
178
179 /* Returns nonzero if the value represented by X (which is really a
180 CONST_INT) is the same as that given by Y (which is really a
181 HOST_WIDE_INT *). */
182
183 static int
184 const_int_htab_eq (const void *x, const void *y)
185 {
186 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
187 }
188
189 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
190 static hashval_t
191 const_double_htab_hash (const void *x)
192 {
193 const_rtx const value = (const_rtx) x;
194 hashval_t h;
195
196 if (GET_MODE (value) == VOIDmode)
197 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
198 else
199 {
200 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
201 /* MODE is used in the comparison, so it should be in the hash. */
202 h ^= GET_MODE (value);
203 }
204 return h;
205 }
206
207 /* Returns nonzero if the value represented by X (really a ...)
208 is the same as that represented by Y (really a ...) */
209 static int
210 const_double_htab_eq (const void *x, const void *y)
211 {
212 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
213
214 if (GET_MODE (a) != GET_MODE (b))
215 return 0;
216 if (GET_MODE (a) == VOIDmode)
217 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
218 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
219 else
220 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
221 CONST_DOUBLE_REAL_VALUE (b));
222 }
223
224 /* Returns a hash code for X (which is really a CONST_FIXED). */
225
226 static hashval_t
227 const_fixed_htab_hash (const void *x)
228 {
229 const_rtx const value = (const_rtx) x;
230 hashval_t h;
231
232 h = fixed_hash (CONST_FIXED_VALUE (value));
233 /* MODE is used in the comparison, so it should be in the hash. */
234 h ^= GET_MODE (value);
235 return h;
236 }
237
238 /* Returns nonzero if the value represented by X (really a ...)
239 is the same as that represented by Y (really a ...). */
240
241 static int
242 const_fixed_htab_eq (const void *x, const void *y)
243 {
244 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
245
246 if (GET_MODE (a) != GET_MODE (b))
247 return 0;
248 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
249 }
250
251 /* Returns a hash code for X (which is a really a mem_attrs *). */
252
253 static hashval_t
254 mem_attrs_htab_hash (const void *x)
255 {
256 const mem_attrs *const p = (const mem_attrs *) x;
257
258 return (p->alias ^ (p->align * 1000)
259 ^ (p->addrspace * 4000)
260 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
261 ^ ((p->size_known_p ? p->size : 0) * 2500000)
262 ^ (size_t) iterative_hash_expr (p->expr, 0));
263 }
264
265 /* Return true if the given memory attributes are equal. */
266
267 static bool
268 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
269 {
270 return (p->alias == q->alias
271 && p->offset_known_p == q->offset_known_p
272 && (!p->offset_known_p || p->offset == q->offset)
273 && p->size_known_p == q->size_known_p
274 && (!p->size_known_p || p->size == q->size)
275 && p->align == q->align
276 && p->addrspace == q->addrspace
277 && (p->expr == q->expr
278 || (p->expr != NULL_TREE && q->expr != NULL_TREE
279 && operand_equal_p (p->expr, q->expr, 0))));
280 }
281
282 /* Returns nonzero if the value represented by X (which is really a
283 mem_attrs *) is the same as that given by Y (which is also really a
284 mem_attrs *). */
285
286 static int
287 mem_attrs_htab_eq (const void *x, const void *y)
288 {
289 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
290 }
291
292 /* Set MEM's memory attributes so that they are the same as ATTRS. */
293
294 static void
295 set_mem_attrs (rtx mem, mem_attrs *attrs)
296 {
297 void **slot;
298
299 /* If everything is the default, we can just clear the attributes. */
300 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
301 {
302 MEM_ATTRS (mem) = 0;
303 return;
304 }
305
306 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
307 if (*slot == 0)
308 {
309 *slot = ggc_alloc_mem_attrs ();
310 memcpy (*slot, attrs, sizeof (mem_attrs));
311 }
312
313 MEM_ATTRS (mem) = (mem_attrs *) *slot;
314 }
315
316 /* Returns a hash code for X (which is a really a reg_attrs *). */
317
318 static hashval_t
319 reg_attrs_htab_hash (const void *x)
320 {
321 const reg_attrs *const p = (const reg_attrs *) x;
322
323 return ((p->offset * 1000) ^ (intptr_t) p->decl);
324 }
325
326 /* Returns nonzero if the value represented by X (which is really a
327 reg_attrs *) is the same as that given by Y (which is also really a
328 reg_attrs *). */
329
330 static int
331 reg_attrs_htab_eq (const void *x, const void *y)
332 {
333 const reg_attrs *const p = (const reg_attrs *) x;
334 const reg_attrs *const q = (const reg_attrs *) y;
335
336 return (p->decl == q->decl && p->offset == q->offset);
337 }
338 /* Allocate a new reg_attrs structure and insert it into the hash table if
339 one identical to it is not already in the table. We are doing this for
340 MEM of mode MODE. */
341
342 static reg_attrs *
343 get_reg_attrs (tree decl, int offset)
344 {
345 reg_attrs attrs;
346 void **slot;
347
348 /* If everything is the default, we can just return zero. */
349 if (decl == 0 && offset == 0)
350 return 0;
351
352 attrs.decl = decl;
353 attrs.offset = offset;
354
355 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
356 if (*slot == 0)
357 {
358 *slot = ggc_alloc_reg_attrs ();
359 memcpy (*slot, &attrs, sizeof (reg_attrs));
360 }
361
362 return (reg_attrs *) *slot;
363 }
364
365
366 #if !HAVE_blockage
367 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
368 across this insn. */
369
370 rtx
371 gen_blockage (void)
372 {
373 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
374 MEM_VOLATILE_P (x) = true;
375 return x;
376 }
377 #endif
378
379
380 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
381 don't attempt to share with the various global pieces of rtl (such as
382 frame_pointer_rtx). */
383
384 rtx
385 gen_raw_REG (enum machine_mode mode, int regno)
386 {
387 rtx x = gen_rtx_raw_REG (mode, regno);
388 ORIGINAL_REGNO (x) = regno;
389 return x;
390 }
391
392 /* There are some RTL codes that require special attention; the generation
393 functions do the raw handling. If you add to this list, modify
394 special_rtx in gengenrtl.c as well. */
395
396 rtx
397 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
398 {
399 void **slot;
400
401 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
402 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
403
404 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
405 if (const_true_rtx && arg == STORE_FLAG_VALUE)
406 return const_true_rtx;
407 #endif
408
409 /* Look up the CONST_INT in the hash table. */
410 slot = htab_find_slot_with_hash (const_int_htab, &arg,
411 (hashval_t) arg, INSERT);
412 if (*slot == 0)
413 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
414
415 return (rtx) *slot;
416 }
417
418 rtx
419 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
420 {
421 return GEN_INT (trunc_int_for_mode (c, mode));
422 }
423
424 /* CONST_DOUBLEs might be created from pairs of integers, or from
425 REAL_VALUE_TYPEs. Also, their length is known only at run time,
426 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427
428 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
429 hash table. If so, return its counterpart; otherwise add it
430 to the hash table and return it. */
431 static rtx
432 lookup_const_double (rtx real)
433 {
434 void **slot = htab_find_slot (const_double_htab, real, INSERT);
435 if (*slot == 0)
436 *slot = real;
437
438 return (rtx) *slot;
439 }
440
441 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
442 VALUE in mode MODE. */
443 rtx
444 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
445 {
446 rtx real = rtx_alloc (CONST_DOUBLE);
447 PUT_MODE (real, mode);
448
449 real->u.rv = value;
450
451 return lookup_const_double (real);
452 }
453
454 /* Determine whether FIXED, a CONST_FIXED, already exists in the
455 hash table. If so, return its counterpart; otherwise add it
456 to the hash table and return it. */
457
458 static rtx
459 lookup_const_fixed (rtx fixed)
460 {
461 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
462 if (*slot == 0)
463 *slot = fixed;
464
465 return (rtx) *slot;
466 }
467
468 /* Return a CONST_FIXED rtx for a fixed-point value specified by
469 VALUE in mode MODE. */
470
471 rtx
472 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
473 {
474 rtx fixed = rtx_alloc (CONST_FIXED);
475 PUT_MODE (fixed, mode);
476
477 fixed->u.fv = value;
478
479 return lookup_const_fixed (fixed);
480 }
481
482 /* Constructs double_int from rtx CST. */
483
484 double_int
485 rtx_to_double_int (const_rtx cst)
486 {
487 double_int r;
488
489 if (CONST_INT_P (cst))
490 r = double_int::from_shwi (INTVAL (cst));
491 else if (CONST_DOUBLE_AS_INT_P (cst))
492 {
493 r.low = CONST_DOUBLE_LOW (cst);
494 r.high = CONST_DOUBLE_HIGH (cst);
495 }
496 else
497 gcc_unreachable ();
498
499 return r;
500 }
501
502
503 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
504 a double_int. */
505
506 rtx
507 immed_double_int_const (double_int i, enum machine_mode mode)
508 {
509 return immed_double_const (i.low, i.high, mode);
510 }
511
512 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
513 of ints: I0 is the low-order word and I1 is the high-order word.
514 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
515 implied upper bits are copies of the high bit of i1. The value
516 itself is neither signed nor unsigned. Do not use this routine for
517 non-integer modes; convert to REAL_VALUE_TYPE and use
518 CONST_DOUBLE_FROM_REAL_VALUE. */
519
520 rtx
521 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
522 {
523 rtx value;
524 unsigned int i;
525
526 /* There are the following cases (note that there are no modes with
527 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
528
529 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
530 gen_int_mode.
531 2) If the value of the integer fits into HOST_WIDE_INT anyway
532 (i.e., i1 consists only from copies of the sign bit, and sign
533 of i0 and i1 are the same), then we return a CONST_INT for i0.
534 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
535 if (mode != VOIDmode)
536 {
537 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
538 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
539 /* We can get a 0 for an error mark. */
540 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
541 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
542
543 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
544 return gen_int_mode (i0, mode);
545 }
546
547 /* If this integer fits in one word, return a CONST_INT. */
548 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
549 return GEN_INT (i0);
550
551 /* We use VOIDmode for integers. */
552 value = rtx_alloc (CONST_DOUBLE);
553 PUT_MODE (value, VOIDmode);
554
555 CONST_DOUBLE_LOW (value) = i0;
556 CONST_DOUBLE_HIGH (value) = i1;
557
558 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
559 XWINT (value, i) = 0;
560
561 return lookup_const_double (value);
562 }
563
564 rtx
565 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
566 {
567 /* In case the MD file explicitly references the frame pointer, have
568 all such references point to the same frame pointer. This is
569 used during frame pointer elimination to distinguish the explicit
570 references to these registers from pseudos that happened to be
571 assigned to them.
572
573 If we have eliminated the frame pointer or arg pointer, we will
574 be using it as a normal register, for example as a spill
575 register. In such cases, we might be accessing it in a mode that
576 is not Pmode and therefore cannot use the pre-allocated rtx.
577
578 Also don't do this when we are making new REGs in reload, since
579 we don't want to get confused with the real pointers. */
580
581 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
582 {
583 if (regno == FRAME_POINTER_REGNUM
584 && (!reload_completed || frame_pointer_needed))
585 return frame_pointer_rtx;
586 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
587 if (regno == HARD_FRAME_POINTER_REGNUM
588 && (!reload_completed || frame_pointer_needed))
589 return hard_frame_pointer_rtx;
590 #endif
591 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
592 if (regno == ARG_POINTER_REGNUM)
593 return arg_pointer_rtx;
594 #endif
595 #ifdef RETURN_ADDRESS_POINTER_REGNUM
596 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
597 return return_address_pointer_rtx;
598 #endif
599 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
600 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
601 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
602 return pic_offset_table_rtx;
603 if (regno == STACK_POINTER_REGNUM)
604 return stack_pointer_rtx;
605 }
606
607 #if 0
608 /* If the per-function register table has been set up, try to re-use
609 an existing entry in that table to avoid useless generation of RTL.
610
611 This code is disabled for now until we can fix the various backends
612 which depend on having non-shared hard registers in some cases. Long
613 term we want to re-enable this code as it can significantly cut down
614 on the amount of useless RTL that gets generated.
615
616 We'll also need to fix some code that runs after reload that wants to
617 set ORIGINAL_REGNO. */
618
619 if (cfun
620 && cfun->emit
621 && regno_reg_rtx
622 && regno < FIRST_PSEUDO_REGISTER
623 && reg_raw_mode[regno] == mode)
624 return regno_reg_rtx[regno];
625 #endif
626
627 return gen_raw_REG (mode, regno);
628 }
629
630 rtx
631 gen_rtx_MEM (enum machine_mode mode, rtx addr)
632 {
633 rtx rt = gen_rtx_raw_MEM (mode, addr);
634
635 /* This field is not cleared by the mere allocation of the rtx, so
636 we clear it here. */
637 MEM_ATTRS (rt) = 0;
638
639 return rt;
640 }
641
642 /* Generate a memory referring to non-trapping constant memory. */
643
644 rtx
645 gen_const_mem (enum machine_mode mode, rtx addr)
646 {
647 rtx mem = gen_rtx_MEM (mode, addr);
648 MEM_READONLY_P (mem) = 1;
649 MEM_NOTRAP_P (mem) = 1;
650 return mem;
651 }
652
653 /* Generate a MEM referring to fixed portions of the frame, e.g., register
654 save areas. */
655
656 rtx
657 gen_frame_mem (enum machine_mode mode, rtx addr)
658 {
659 rtx mem = gen_rtx_MEM (mode, addr);
660 MEM_NOTRAP_P (mem) = 1;
661 set_mem_alias_set (mem, get_frame_alias_set ());
662 return mem;
663 }
664
665 /* Generate a MEM referring to a temporary use of the stack, not part
666 of the fixed stack frame. For example, something which is pushed
667 by a target splitter. */
668 rtx
669 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
670 {
671 rtx mem = gen_rtx_MEM (mode, addr);
672 MEM_NOTRAP_P (mem) = 1;
673 if (!cfun->calls_alloca)
674 set_mem_alias_set (mem, get_frame_alias_set ());
675 return mem;
676 }
677
678 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
679 this construct would be valid, and false otherwise. */
680
681 bool
682 validate_subreg (enum machine_mode omode, enum machine_mode imode,
683 const_rtx reg, unsigned int offset)
684 {
685 unsigned int isize = GET_MODE_SIZE (imode);
686 unsigned int osize = GET_MODE_SIZE (omode);
687
688 /* All subregs must be aligned. */
689 if (offset % osize != 0)
690 return false;
691
692 /* The subreg offset cannot be outside the inner object. */
693 if (offset >= isize)
694 return false;
695
696 /* ??? This should not be here. Temporarily continue to allow word_mode
697 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
698 Generally, backends are doing something sketchy but it'll take time to
699 fix them all. */
700 if (omode == word_mode)
701 ;
702 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
703 is the culprit here, and not the backends. */
704 else if (osize >= UNITS_PER_WORD && isize >= osize)
705 ;
706 /* Allow component subregs of complex and vector. Though given the below
707 extraction rules, it's not always clear what that means. */
708 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
709 && GET_MODE_INNER (imode) == omode)
710 ;
711 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
712 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
713 represent this. It's questionable if this ought to be represented at
714 all -- why can't this all be hidden in post-reload splitters that make
715 arbitrarily mode changes to the registers themselves. */
716 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
717 ;
718 /* Subregs involving floating point modes are not allowed to
719 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
720 (subreg:SI (reg:DF) 0) isn't. */
721 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
722 {
723 if (! (isize == osize
724 /* LRA can use subreg to store a floating point value in
725 an integer mode. Although the floating point and the
726 integer modes need the same number of hard registers,
727 the size of floating point mode can be less than the
728 integer mode. LRA also uses subregs for a register
729 should be used in different mode in on insn. */
730 || lra_in_progress))
731 return false;
732 }
733
734 /* Paradoxical subregs must have offset zero. */
735 if (osize > isize)
736 return offset == 0;
737
738 /* This is a normal subreg. Verify that the offset is representable. */
739
740 /* For hard registers, we already have most of these rules collected in
741 subreg_offset_representable_p. */
742 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 {
744 unsigned int regno = REGNO (reg);
745
746 #ifdef CANNOT_CHANGE_MODE_CLASS
747 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
748 && GET_MODE_INNER (imode) == omode)
749 ;
750 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
751 return false;
752 #endif
753
754 return subreg_offset_representable_p (regno, imode, offset, omode);
755 }
756
757 /* For pseudo registers, we want most of the same checks. Namely:
758 If the register no larger than a word, the subreg must be lowpart.
759 If the register is larger than a word, the subreg must be the lowpart
760 of a subword. A subreg does *not* perform arbitrary bit extraction.
761 Given that we've already checked mode/offset alignment, we only have
762 to check subword subregs here. */
763 if (osize < UNITS_PER_WORD
764 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
765 {
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
770 }
771 return true;
772 }
773
774 rtx
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776 {
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
779 }
780
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783
784 rtx
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
786 {
787 enum machine_mode inmode;
788
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
794 }
795 \f
796
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
798
799 rtvec
800 gen_rtvec (int n, ...)
801 {
802 int i;
803 rtvec rt_val;
804 va_list p;
805
806 va_start (p, n);
807
808 /* Don't allocate an empty rtvec... */
809 if (n == 0)
810 {
811 va_end (p);
812 return NULL_RTVEC;
813 }
814
815 rt_val = rtvec_alloc (n);
816
817 for (i = 0; i < n; i++)
818 rt_val->elem[i] = va_arg (p, rtx);
819
820 va_end (p);
821 return rt_val;
822 }
823
824 rtvec
825 gen_rtvec_v (int n, rtx *argp)
826 {
827 int i;
828 rtvec rt_val;
829
830 /* Don't allocate an empty rtvec... */
831 if (n == 0)
832 return NULL_RTVEC;
833
834 rt_val = rtvec_alloc (n);
835
836 for (i = 0; i < n; i++)
837 rt_val->elem[i] = *argp++;
838
839 return rt_val;
840 }
841 \f
842 /* Return the number of bytes between the start of an OUTER_MODE
843 in-memory value and the start of an INNER_MODE in-memory value,
844 given that the former is a lowpart of the latter. It may be a
845 paradoxical lowpart, in which case the offset will be negative
846 on big-endian targets. */
847
848 int
849 byte_lowpart_offset (enum machine_mode outer_mode,
850 enum machine_mode inner_mode)
851 {
852 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
853 return subreg_lowpart_offset (outer_mode, inner_mode);
854 else
855 return -subreg_lowpart_offset (inner_mode, outer_mode);
856 }
857 \f
858 /* Generate a REG rtx for a new pseudo register of mode MODE.
859 This pseudo is assigned the next sequential register number. */
860
861 rtx
862 gen_reg_rtx (enum machine_mode mode)
863 {
864 rtx val;
865 unsigned int align = GET_MODE_ALIGNMENT (mode);
866
867 gcc_assert (can_create_pseudo_p ());
868
869 /* If a virtual register with bigger mode alignment is generated,
870 increase stack alignment estimation because it might be spilled
871 to stack later. */
872 if (SUPPORTS_STACK_ALIGNMENT
873 && crtl->stack_alignment_estimated < align
874 && !crtl->stack_realign_processed)
875 {
876 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
877 if (crtl->stack_alignment_estimated < min_align)
878 crtl->stack_alignment_estimated = min_align;
879 }
880
881 if (generating_concat_p
882 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
883 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
884 {
885 /* For complex modes, don't make a single pseudo.
886 Instead, make a CONCAT of two pseudos.
887 This allows noncontiguous allocation of the real and imaginary parts,
888 which makes much better code. Besides, allocating DCmode
889 pseudos overstrains reload on some machines like the 386. */
890 rtx realpart, imagpart;
891 enum machine_mode partmode = GET_MODE_INNER (mode);
892
893 realpart = gen_reg_rtx (partmode);
894 imagpart = gen_reg_rtx (partmode);
895 return gen_rtx_CONCAT (mode, realpart, imagpart);
896 }
897
898 /* Make sure regno_pointer_align, and regno_reg_rtx are large
899 enough to have an element for this pseudo reg number. */
900
901 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
902 {
903 int old_size = crtl->emit.regno_pointer_align_length;
904 char *tmp;
905 rtx *new1;
906
907 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
908 memset (tmp + old_size, 0, old_size);
909 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
910
911 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
912 memset (new1 + old_size, 0, old_size * sizeof (rtx));
913 regno_reg_rtx = new1;
914
915 crtl->emit.regno_pointer_align_length = old_size * 2;
916 }
917
918 val = gen_raw_REG (mode, reg_rtx_no);
919 regno_reg_rtx[reg_rtx_no++] = val;
920 return val;
921 }
922
923 /* Update NEW with the same attributes as REG, but with OFFSET added
924 to the REG_OFFSET. */
925
926 static void
927 update_reg_offset (rtx new_rtx, rtx reg, int offset)
928 {
929 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
930 REG_OFFSET (reg) + offset);
931 }
932
933 /* Generate a register with same attributes as REG, but with OFFSET
934 added to the REG_OFFSET. */
935
936 rtx
937 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
938 int offset)
939 {
940 rtx new_rtx = gen_rtx_REG (mode, regno);
941
942 update_reg_offset (new_rtx, reg, offset);
943 return new_rtx;
944 }
945
946 /* Generate a new pseudo-register with the same attributes as REG, but
947 with OFFSET added to the REG_OFFSET. */
948
949 rtx
950 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
951 {
952 rtx new_rtx = gen_reg_rtx (mode);
953
954 update_reg_offset (new_rtx, reg, offset);
955 return new_rtx;
956 }
957
958 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
959 new register is a (possibly paradoxical) lowpart of the old one. */
960
961 void
962 adjust_reg_mode (rtx reg, enum machine_mode mode)
963 {
964 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
965 PUT_MODE (reg, mode);
966 }
967
968 /* Copy REG's attributes from X, if X has any attributes. If REG and X
969 have different modes, REG is a (possibly paradoxical) lowpart of X. */
970
971 void
972 set_reg_attrs_from_value (rtx reg, rtx x)
973 {
974 int offset;
975 bool can_be_reg_pointer = true;
976
977 /* Don't call mark_reg_pointer for incompatible pointer sign
978 extension. */
979 while (GET_CODE (x) == SIGN_EXTEND
980 || GET_CODE (x) == ZERO_EXTEND
981 || GET_CODE (x) == TRUNCATE
982 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
983 {
984 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
985 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
986 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
987 can_be_reg_pointer = false;
988 #endif
989 x = XEXP (x, 0);
990 }
991
992 /* Hard registers can be reused for multiple purposes within the same
993 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
994 on them is wrong. */
995 if (HARD_REGISTER_P (reg))
996 return;
997
998 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
999 if (MEM_P (x))
1000 {
1001 if (MEM_OFFSET_KNOWN_P (x))
1002 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1003 MEM_OFFSET (x) + offset);
1004 if (can_be_reg_pointer && MEM_POINTER (x))
1005 mark_reg_pointer (reg, 0);
1006 }
1007 else if (REG_P (x))
1008 {
1009 if (REG_ATTRS (x))
1010 update_reg_offset (reg, x, offset);
1011 if (can_be_reg_pointer && REG_POINTER (x))
1012 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1013 }
1014 }
1015
1016 /* Generate a REG rtx for a new pseudo register, copying the mode
1017 and attributes from X. */
1018
1019 rtx
1020 gen_reg_rtx_and_attrs (rtx x)
1021 {
1022 rtx reg = gen_reg_rtx (GET_MODE (x));
1023 set_reg_attrs_from_value (reg, x);
1024 return reg;
1025 }
1026
1027 /* Set the register attributes for registers contained in PARM_RTX.
1028 Use needed values from memory attributes of MEM. */
1029
1030 void
1031 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1032 {
1033 if (REG_P (parm_rtx))
1034 set_reg_attrs_from_value (parm_rtx, mem);
1035 else if (GET_CODE (parm_rtx) == PARALLEL)
1036 {
1037 /* Check for a NULL entry in the first slot, used to indicate that the
1038 parameter goes both on the stack and in registers. */
1039 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1040 for (; i < XVECLEN (parm_rtx, 0); i++)
1041 {
1042 rtx x = XVECEXP (parm_rtx, 0, i);
1043 if (REG_P (XEXP (x, 0)))
1044 REG_ATTRS (XEXP (x, 0))
1045 = get_reg_attrs (MEM_EXPR (mem),
1046 INTVAL (XEXP (x, 1)));
1047 }
1048 }
1049 }
1050
1051 /* Set the REG_ATTRS for registers in value X, given that X represents
1052 decl T. */
1053
1054 void
1055 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1056 {
1057 if (GET_CODE (x) == SUBREG)
1058 {
1059 gcc_assert (subreg_lowpart_p (x));
1060 x = SUBREG_REG (x);
1061 }
1062 if (REG_P (x))
1063 REG_ATTRS (x)
1064 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1065 DECL_MODE (t)));
1066 if (GET_CODE (x) == CONCAT)
1067 {
1068 if (REG_P (XEXP (x, 0)))
1069 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1070 if (REG_P (XEXP (x, 1)))
1071 REG_ATTRS (XEXP (x, 1))
1072 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1073 }
1074 if (GET_CODE (x) == PARALLEL)
1075 {
1076 int i, start;
1077
1078 /* Check for a NULL entry, used to indicate that the parameter goes
1079 both on the stack and in registers. */
1080 if (XEXP (XVECEXP (x, 0, 0), 0))
1081 start = 0;
1082 else
1083 start = 1;
1084
1085 for (i = start; i < XVECLEN (x, 0); i++)
1086 {
1087 rtx y = XVECEXP (x, 0, i);
1088 if (REG_P (XEXP (y, 0)))
1089 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1090 }
1091 }
1092 }
1093
1094 /* Assign the RTX X to declaration T. */
1095
1096 void
1097 set_decl_rtl (tree t, rtx x)
1098 {
1099 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1100 if (x)
1101 set_reg_attrs_for_decl_rtl (t, x);
1102 }
1103
1104 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1105 if the ABI requires the parameter to be passed by reference. */
1106
1107 void
1108 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1109 {
1110 DECL_INCOMING_RTL (t) = x;
1111 if (x && !by_reference_p)
1112 set_reg_attrs_for_decl_rtl (t, x);
1113 }
1114
1115 /* Identify REG (which may be a CONCAT) as a user register. */
1116
1117 void
1118 mark_user_reg (rtx reg)
1119 {
1120 if (GET_CODE (reg) == CONCAT)
1121 {
1122 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1123 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1124 }
1125 else
1126 {
1127 gcc_assert (REG_P (reg));
1128 REG_USERVAR_P (reg) = 1;
1129 }
1130 }
1131
1132 /* Identify REG as a probable pointer register and show its alignment
1133 as ALIGN, if nonzero. */
1134
1135 void
1136 mark_reg_pointer (rtx reg, int align)
1137 {
1138 if (! REG_POINTER (reg))
1139 {
1140 REG_POINTER (reg) = 1;
1141
1142 if (align)
1143 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1144 }
1145 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1146 /* We can no-longer be sure just how aligned this pointer is. */
1147 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1148 }
1149
1150 /* Return 1 plus largest pseudo reg number used in the current function. */
1151
1152 int
1153 max_reg_num (void)
1154 {
1155 return reg_rtx_no;
1156 }
1157
1158 /* Return 1 + the largest label number used so far in the current function. */
1159
1160 int
1161 max_label_num (void)
1162 {
1163 return label_num;
1164 }
1165
1166 /* Return first label number used in this function (if any were used). */
1167
1168 int
1169 get_first_label_num (void)
1170 {
1171 return first_label_num;
1172 }
1173
1174 /* If the rtx for label was created during the expansion of a nested
1175 function, then first_label_num won't include this label number.
1176 Fix this now so that array indices work later. */
1177
1178 void
1179 maybe_set_first_label_num (rtx x)
1180 {
1181 if (CODE_LABEL_NUMBER (x) < first_label_num)
1182 first_label_num = CODE_LABEL_NUMBER (x);
1183 }
1184 \f
1185 /* Return a value representing some low-order bits of X, where the number
1186 of low-order bits is given by MODE. Note that no conversion is done
1187 between floating-point and fixed-point values, rather, the bit
1188 representation is returned.
1189
1190 This function handles the cases in common between gen_lowpart, below,
1191 and two variants in cse.c and combine.c. These are the cases that can
1192 be safely handled at all points in the compilation.
1193
1194 If this is not a case we can handle, return 0. */
1195
1196 rtx
1197 gen_lowpart_common (enum machine_mode mode, rtx x)
1198 {
1199 int msize = GET_MODE_SIZE (mode);
1200 int xsize;
1201 int offset = 0;
1202 enum machine_mode innermode;
1203
1204 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1205 so we have to make one up. Yuk. */
1206 innermode = GET_MODE (x);
1207 if (CONST_INT_P (x)
1208 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1209 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1210 else if (innermode == VOIDmode)
1211 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1212
1213 xsize = GET_MODE_SIZE (innermode);
1214
1215 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1216
1217 if (innermode == mode)
1218 return x;
1219
1220 /* MODE must occupy no more words than the mode of X. */
1221 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1222 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1223 return 0;
1224
1225 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1226 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1227 return 0;
1228
1229 offset = subreg_lowpart_offset (mode, innermode);
1230
1231 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1232 && (GET_MODE_CLASS (mode) == MODE_INT
1233 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1234 {
1235 /* If we are getting the low-order part of something that has been
1236 sign- or zero-extended, we can either just use the object being
1237 extended or make a narrower extension. If we want an even smaller
1238 piece than the size of the object being extended, call ourselves
1239 recursively.
1240
1241 This case is used mostly by combine and cse. */
1242
1243 if (GET_MODE (XEXP (x, 0)) == mode)
1244 return XEXP (x, 0);
1245 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1246 return gen_lowpart_common (mode, XEXP (x, 0));
1247 else if (msize < xsize)
1248 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1249 }
1250 else if (GET_CODE (x) == SUBREG || REG_P (x)
1251 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1252 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1253 return simplify_gen_subreg (mode, x, innermode, offset);
1254
1255 /* Otherwise, we can't do this. */
1256 return 0;
1257 }
1258 \f
1259 rtx
1260 gen_highpart (enum machine_mode mode, rtx x)
1261 {
1262 unsigned int msize = GET_MODE_SIZE (mode);
1263 rtx result;
1264
1265 /* This case loses if X is a subreg. To catch bugs early,
1266 complain if an invalid MODE is used even in other cases. */
1267 gcc_assert (msize <= UNITS_PER_WORD
1268 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1269
1270 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1271 subreg_highpart_offset (mode, GET_MODE (x)));
1272 gcc_assert (result);
1273
1274 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1275 the target if we have a MEM. gen_highpart must return a valid operand,
1276 emitting code if necessary to do so. */
1277 if (MEM_P (result))
1278 {
1279 result = validize_mem (result);
1280 gcc_assert (result);
1281 }
1282
1283 return result;
1284 }
1285
1286 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1287 be VOIDmode constant. */
1288 rtx
1289 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1290 {
1291 if (GET_MODE (exp) != VOIDmode)
1292 {
1293 gcc_assert (GET_MODE (exp) == innermode);
1294 return gen_highpart (outermode, exp);
1295 }
1296 return simplify_gen_subreg (outermode, exp, innermode,
1297 subreg_highpart_offset (outermode, innermode));
1298 }
1299
1300 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1301
1302 unsigned int
1303 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1304 {
1305 unsigned int offset = 0;
1306 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1307
1308 if (difference > 0)
1309 {
1310 if (WORDS_BIG_ENDIAN)
1311 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1312 if (BYTES_BIG_ENDIAN)
1313 offset += difference % UNITS_PER_WORD;
1314 }
1315
1316 return offset;
1317 }
1318
1319 /* Return offset in bytes to get OUTERMODE high part
1320 of the value in mode INNERMODE stored in memory in target format. */
1321 unsigned int
1322 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1323 {
1324 unsigned int offset = 0;
1325 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1326
1327 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1328
1329 if (difference > 0)
1330 {
1331 if (! WORDS_BIG_ENDIAN)
1332 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1333 if (! BYTES_BIG_ENDIAN)
1334 offset += difference % UNITS_PER_WORD;
1335 }
1336
1337 return offset;
1338 }
1339
1340 /* Return 1 iff X, assumed to be a SUBREG,
1341 refers to the least significant part of its containing reg.
1342 If X is not a SUBREG, always return 1 (it is its own low part!). */
1343
1344 int
1345 subreg_lowpart_p (const_rtx x)
1346 {
1347 if (GET_CODE (x) != SUBREG)
1348 return 1;
1349 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1350 return 0;
1351
1352 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1353 == SUBREG_BYTE (x));
1354 }
1355
1356 /* Return true if X is a paradoxical subreg, false otherwise. */
1357 bool
1358 paradoxical_subreg_p (const_rtx x)
1359 {
1360 if (GET_CODE (x) != SUBREG)
1361 return false;
1362 return (GET_MODE_PRECISION (GET_MODE (x))
1363 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1364 }
1365 \f
1366 /* Return subword OFFSET of operand OP.
1367 The word number, OFFSET, is interpreted as the word number starting
1368 at the low-order address. OFFSET 0 is the low-order word if not
1369 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1370
1371 If we cannot extract the required word, we return zero. Otherwise,
1372 an rtx corresponding to the requested word will be returned.
1373
1374 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1375 reload has completed, a valid address will always be returned. After
1376 reload, if a valid address cannot be returned, we return zero.
1377
1378 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1379 it is the responsibility of the caller.
1380
1381 MODE is the mode of OP in case it is a CONST_INT.
1382
1383 ??? This is still rather broken for some cases. The problem for the
1384 moment is that all callers of this thing provide no 'goal mode' to
1385 tell us to work with. This exists because all callers were written
1386 in a word based SUBREG world.
1387 Now use of this function can be deprecated by simplify_subreg in most
1388 cases.
1389 */
1390
1391 rtx
1392 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1393 {
1394 if (mode == VOIDmode)
1395 mode = GET_MODE (op);
1396
1397 gcc_assert (mode != VOIDmode);
1398
1399 /* If OP is narrower than a word, fail. */
1400 if (mode != BLKmode
1401 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1402 return 0;
1403
1404 /* If we want a word outside OP, return zero. */
1405 if (mode != BLKmode
1406 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1407 return const0_rtx;
1408
1409 /* Form a new MEM at the requested address. */
1410 if (MEM_P (op))
1411 {
1412 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1413
1414 if (! validate_address)
1415 return new_rtx;
1416
1417 else if (reload_completed)
1418 {
1419 if (! strict_memory_address_addr_space_p (word_mode,
1420 XEXP (new_rtx, 0),
1421 MEM_ADDR_SPACE (op)))
1422 return 0;
1423 }
1424 else
1425 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1426 }
1427
1428 /* Rest can be handled by simplify_subreg. */
1429 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1430 }
1431
1432 /* Similar to `operand_subword', but never return 0. If we can't
1433 extract the required subword, put OP into a register and try again.
1434 The second attempt must succeed. We always validate the address in
1435 this case.
1436
1437 MODE is the mode of OP, in case it is CONST_INT. */
1438
1439 rtx
1440 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1441 {
1442 rtx result = operand_subword (op, offset, 1, mode);
1443
1444 if (result)
1445 return result;
1446
1447 if (mode != BLKmode && mode != VOIDmode)
1448 {
1449 /* If this is a register which can not be accessed by words, copy it
1450 to a pseudo register. */
1451 if (REG_P (op))
1452 op = copy_to_reg (op);
1453 else
1454 op = force_reg (mode, op);
1455 }
1456
1457 result = operand_subword (op, offset, 1, mode);
1458 gcc_assert (result);
1459
1460 return result;
1461 }
1462 \f
1463 /* Returns 1 if both MEM_EXPR can be considered equal
1464 and 0 otherwise. */
1465
1466 int
1467 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1468 {
1469 if (expr1 == expr2)
1470 return 1;
1471
1472 if (! expr1 || ! expr2)
1473 return 0;
1474
1475 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1476 return 0;
1477
1478 return operand_equal_p (expr1, expr2, 0);
1479 }
1480
1481 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1482 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1483 -1 if not known. */
1484
1485 int
1486 get_mem_align_offset (rtx mem, unsigned int align)
1487 {
1488 tree expr;
1489 unsigned HOST_WIDE_INT offset;
1490
1491 /* This function can't use
1492 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1493 || (MAX (MEM_ALIGN (mem),
1494 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1495 < align))
1496 return -1;
1497 else
1498 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1499 for two reasons:
1500 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1501 for <variable>. get_inner_reference doesn't handle it and
1502 even if it did, the alignment in that case needs to be determined
1503 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1504 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1505 isn't sufficiently aligned, the object it is in might be. */
1506 gcc_assert (MEM_P (mem));
1507 expr = MEM_EXPR (mem);
1508 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1509 return -1;
1510
1511 offset = MEM_OFFSET (mem);
1512 if (DECL_P (expr))
1513 {
1514 if (DECL_ALIGN (expr) < align)
1515 return -1;
1516 }
1517 else if (INDIRECT_REF_P (expr))
1518 {
1519 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1520 return -1;
1521 }
1522 else if (TREE_CODE (expr) == COMPONENT_REF)
1523 {
1524 while (1)
1525 {
1526 tree inner = TREE_OPERAND (expr, 0);
1527 tree field = TREE_OPERAND (expr, 1);
1528 tree byte_offset = component_ref_field_offset (expr);
1529 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1530
1531 if (!byte_offset
1532 || !host_integerp (byte_offset, 1)
1533 || !host_integerp (bit_offset, 1))
1534 return -1;
1535
1536 offset += tree_low_cst (byte_offset, 1);
1537 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1538
1539 if (inner == NULL_TREE)
1540 {
1541 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1542 < (unsigned int) align)
1543 return -1;
1544 break;
1545 }
1546 else if (DECL_P (inner))
1547 {
1548 if (DECL_ALIGN (inner) < align)
1549 return -1;
1550 break;
1551 }
1552 else if (TREE_CODE (inner) != COMPONENT_REF)
1553 return -1;
1554 expr = inner;
1555 }
1556 }
1557 else
1558 return -1;
1559
1560 return offset & ((align / BITS_PER_UNIT) - 1);
1561 }
1562
1563 /* Given REF (a MEM) and T, either the type of X or the expression
1564 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1565 if we are making a new object of this type. BITPOS is nonzero if
1566 there is an offset outstanding on T that will be applied later. */
1567
1568 void
1569 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1570 HOST_WIDE_INT bitpos)
1571 {
1572 HOST_WIDE_INT apply_bitpos = 0;
1573 tree type;
1574 struct mem_attrs attrs, *defattrs, *refattrs;
1575 addr_space_t as;
1576
1577 /* It can happen that type_for_mode was given a mode for which there
1578 is no language-level type. In which case it returns NULL, which
1579 we can see here. */
1580 if (t == NULL_TREE)
1581 return;
1582
1583 type = TYPE_P (t) ? t : TREE_TYPE (t);
1584 if (type == error_mark_node)
1585 return;
1586
1587 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1588 wrong answer, as it assumes that DECL_RTL already has the right alias
1589 info. Callers should not set DECL_RTL until after the call to
1590 set_mem_attributes. */
1591 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1592
1593 memset (&attrs, 0, sizeof (attrs));
1594
1595 /* Get the alias set from the expression or type (perhaps using a
1596 front-end routine) and use it. */
1597 attrs.alias = get_alias_set (t);
1598
1599 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1600 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1601
1602 /* Default values from pre-existing memory attributes if present. */
1603 refattrs = MEM_ATTRS (ref);
1604 if (refattrs)
1605 {
1606 /* ??? Can this ever happen? Calling this routine on a MEM that
1607 already carries memory attributes should probably be invalid. */
1608 attrs.expr = refattrs->expr;
1609 attrs.offset_known_p = refattrs->offset_known_p;
1610 attrs.offset = refattrs->offset;
1611 attrs.size_known_p = refattrs->size_known_p;
1612 attrs.size = refattrs->size;
1613 attrs.align = refattrs->align;
1614 }
1615
1616 /* Otherwise, default values from the mode of the MEM reference. */
1617 else
1618 {
1619 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1620 gcc_assert (!defattrs->expr);
1621 gcc_assert (!defattrs->offset_known_p);
1622
1623 /* Respect mode size. */
1624 attrs.size_known_p = defattrs->size_known_p;
1625 attrs.size = defattrs->size;
1626 /* ??? Is this really necessary? We probably should always get
1627 the size from the type below. */
1628
1629 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1630 if T is an object, always compute the object alignment below. */
1631 if (TYPE_P (t))
1632 attrs.align = defattrs->align;
1633 else
1634 attrs.align = BITS_PER_UNIT;
1635 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1636 e.g. if the type carries an alignment attribute. Should we be
1637 able to simply always use TYPE_ALIGN? */
1638 }
1639
1640 /* We can set the alignment from the type if we are making an object,
1641 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1642 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1643 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1644
1645 else if (TREE_CODE (t) == MEM_REF)
1646 {
1647 tree op0 = TREE_OPERAND (t, 0);
1648 if (TREE_CODE (op0) == ADDR_EXPR
1649 && (DECL_P (TREE_OPERAND (op0, 0))
1650 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1651 {
1652 if (DECL_P (TREE_OPERAND (op0, 0)))
1653 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1654 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1655 {
1656 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1657 #ifdef CONSTANT_ALIGNMENT
1658 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1659 attrs.align);
1660 #endif
1661 }
1662 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1663 {
1664 unsigned HOST_WIDE_INT ioff
1665 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1666 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1667 attrs.align = MIN (aoff, attrs.align);
1668 }
1669 }
1670 else
1671 /* ??? This isn't fully correct, we can't set the alignment from the
1672 type in all cases. */
1673 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1674 }
1675
1676 else if (TREE_CODE (t) == TARGET_MEM_REF)
1677 /* ??? This isn't fully correct, we can't set the alignment from the
1678 type in all cases. */
1679 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1680
1681 /* If the size is known, we can set that. */
1682 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1683 {
1684 attrs.size_known_p = true;
1685 attrs.size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1686 }
1687
1688 /* If T is not a type, we may be able to deduce some more information about
1689 the expression. */
1690 if (! TYPE_P (t))
1691 {
1692 tree base;
1693 bool align_computed = false;
1694
1695 if (TREE_THIS_VOLATILE (t))
1696 MEM_VOLATILE_P (ref) = 1;
1697
1698 /* Now remove any conversions: they don't change what the underlying
1699 object is. Likewise for SAVE_EXPR. */
1700 while (CONVERT_EXPR_P (t)
1701 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1702 || TREE_CODE (t) == SAVE_EXPR)
1703 t = TREE_OPERAND (t, 0);
1704
1705 /* Note whether this expression can trap. */
1706 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1707
1708 base = get_base_address (t);
1709 if (base)
1710 {
1711 if (DECL_P (base)
1712 && TREE_READONLY (base)
1713 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1714 && !TREE_THIS_VOLATILE (base))
1715 MEM_READONLY_P (ref) = 1;
1716
1717 /* Mark static const strings readonly as well. */
1718 if (TREE_CODE (base) == STRING_CST
1719 && TREE_READONLY (base)
1720 && TREE_STATIC (base))
1721 MEM_READONLY_P (ref) = 1;
1722
1723 if (TREE_CODE (base) == MEM_REF
1724 || TREE_CODE (base) == TARGET_MEM_REF)
1725 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1726 0))));
1727 else
1728 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1729 }
1730 else
1731 as = TYPE_ADDR_SPACE (type);
1732
1733 /* If this expression uses it's parent's alias set, mark it such
1734 that we won't change it. */
1735 if (component_uses_parent_alias_set (t))
1736 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1737
1738 /* If this is a decl, set the attributes of the MEM from it. */
1739 if (DECL_P (t))
1740 {
1741 attrs.expr = t;
1742 attrs.offset_known_p = true;
1743 attrs.offset = 0;
1744 apply_bitpos = bitpos;
1745 if (DECL_SIZE_UNIT (t) && host_integerp (DECL_SIZE_UNIT (t), 1))
1746 {
1747 attrs.size_known_p = true;
1748 attrs.size = tree_low_cst (DECL_SIZE_UNIT (t), 1);
1749 }
1750 else
1751 attrs.size_known_p = false;
1752 attrs.align = DECL_ALIGN (t);
1753 align_computed = true;
1754 }
1755
1756 /* If this is a constant, we know the alignment. */
1757 else if (CONSTANT_CLASS_P (t))
1758 {
1759 attrs.align = TYPE_ALIGN (type);
1760 #ifdef CONSTANT_ALIGNMENT
1761 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1762 #endif
1763 align_computed = true;
1764 }
1765
1766 /* If this is a field reference and not a bit-field, record it. */
1767 /* ??? There is some information that can be gleaned from bit-fields,
1768 such as the word offset in the structure that might be modified.
1769 But skip it for now. */
1770 else if (TREE_CODE (t) == COMPONENT_REF
1771 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1772 {
1773 attrs.expr = t;
1774 attrs.offset_known_p = true;
1775 attrs.offset = 0;
1776 apply_bitpos = bitpos;
1777 /* ??? Any reason the field size would be different than
1778 the size we got from the type? */
1779 }
1780
1781 /* If this is an array reference, look for an outer field reference. */
1782 else if (TREE_CODE (t) == ARRAY_REF)
1783 {
1784 tree off_tree = size_zero_node;
1785 /* We can't modify t, because we use it at the end of the
1786 function. */
1787 tree t2 = t;
1788
1789 do
1790 {
1791 tree index = TREE_OPERAND (t2, 1);
1792 tree low_bound = array_ref_low_bound (t2);
1793 tree unit_size = array_ref_element_size (t2);
1794
1795 /* We assume all arrays have sizes that are a multiple of a byte.
1796 First subtract the lower bound, if any, in the type of the
1797 index, then convert to sizetype and multiply by the size of
1798 the array element. */
1799 if (! integer_zerop (low_bound))
1800 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1801 index, low_bound);
1802
1803 off_tree = size_binop (PLUS_EXPR,
1804 size_binop (MULT_EXPR,
1805 fold_convert (sizetype,
1806 index),
1807 unit_size),
1808 off_tree);
1809 t2 = TREE_OPERAND (t2, 0);
1810 }
1811 while (TREE_CODE (t2) == ARRAY_REF);
1812
1813 if (DECL_P (t2))
1814 {
1815 attrs.expr = t2;
1816 attrs.offset_known_p = false;
1817 if (host_integerp (off_tree, 1))
1818 {
1819 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1820 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1821 attrs.align = DECL_ALIGN (t2);
1822 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1823 attrs.align = aoff;
1824 align_computed = true;
1825 attrs.offset_known_p = true;
1826 attrs.offset = ioff;
1827 apply_bitpos = bitpos;
1828 }
1829 }
1830 else if (TREE_CODE (t2) == COMPONENT_REF)
1831 {
1832 attrs.expr = t2;
1833 attrs.offset_known_p = false;
1834 if (host_integerp (off_tree, 1))
1835 {
1836 attrs.offset_known_p = true;
1837 attrs.offset = tree_low_cst (off_tree, 1);
1838 apply_bitpos = bitpos;
1839 }
1840 /* ??? Any reason the field size would be different than
1841 the size we got from the type? */
1842 }
1843 }
1844
1845 /* If this is an indirect reference, record it. */
1846 else if (TREE_CODE (t) == MEM_REF
1847 || TREE_CODE (t) == TARGET_MEM_REF)
1848 {
1849 attrs.expr = t;
1850 attrs.offset_known_p = true;
1851 attrs.offset = 0;
1852 apply_bitpos = bitpos;
1853 }
1854
1855 if (!align_computed)
1856 {
1857 unsigned int obj_align = get_object_alignment (t);
1858 attrs.align = MAX (attrs.align, obj_align);
1859 }
1860 }
1861 else
1862 as = TYPE_ADDR_SPACE (type);
1863
1864 /* If we modified OFFSET based on T, then subtract the outstanding
1865 bit position offset. Similarly, increase the size of the accessed
1866 object to contain the negative offset. */
1867 if (apply_bitpos)
1868 {
1869 gcc_assert (attrs.offset_known_p);
1870 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1871 if (attrs.size_known_p)
1872 attrs.size += apply_bitpos / BITS_PER_UNIT;
1873 }
1874
1875 /* Now set the attributes we computed above. */
1876 attrs.addrspace = as;
1877 set_mem_attrs (ref, &attrs);
1878 }
1879
1880 void
1881 set_mem_attributes (rtx ref, tree t, int objectp)
1882 {
1883 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1884 }
1885
1886 /* Set the alias set of MEM to SET. */
1887
1888 void
1889 set_mem_alias_set (rtx mem, alias_set_type set)
1890 {
1891 struct mem_attrs attrs;
1892
1893 /* If the new and old alias sets don't conflict, something is wrong. */
1894 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1895 attrs = *get_mem_attrs (mem);
1896 attrs.alias = set;
1897 set_mem_attrs (mem, &attrs);
1898 }
1899
1900 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1901
1902 void
1903 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1904 {
1905 struct mem_attrs attrs;
1906
1907 attrs = *get_mem_attrs (mem);
1908 attrs.addrspace = addrspace;
1909 set_mem_attrs (mem, &attrs);
1910 }
1911
1912 /* Set the alignment of MEM to ALIGN bits. */
1913
1914 void
1915 set_mem_align (rtx mem, unsigned int align)
1916 {
1917 struct mem_attrs attrs;
1918
1919 attrs = *get_mem_attrs (mem);
1920 attrs.align = align;
1921 set_mem_attrs (mem, &attrs);
1922 }
1923
1924 /* Set the expr for MEM to EXPR. */
1925
1926 void
1927 set_mem_expr (rtx mem, tree expr)
1928 {
1929 struct mem_attrs attrs;
1930
1931 attrs = *get_mem_attrs (mem);
1932 attrs.expr = expr;
1933 set_mem_attrs (mem, &attrs);
1934 }
1935
1936 /* Set the offset of MEM to OFFSET. */
1937
1938 void
1939 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1940 {
1941 struct mem_attrs attrs;
1942
1943 attrs = *get_mem_attrs (mem);
1944 attrs.offset_known_p = true;
1945 attrs.offset = offset;
1946 set_mem_attrs (mem, &attrs);
1947 }
1948
1949 /* Clear the offset of MEM. */
1950
1951 void
1952 clear_mem_offset (rtx mem)
1953 {
1954 struct mem_attrs attrs;
1955
1956 attrs = *get_mem_attrs (mem);
1957 attrs.offset_known_p = false;
1958 set_mem_attrs (mem, &attrs);
1959 }
1960
1961 /* Set the size of MEM to SIZE. */
1962
1963 void
1964 set_mem_size (rtx mem, HOST_WIDE_INT size)
1965 {
1966 struct mem_attrs attrs;
1967
1968 attrs = *get_mem_attrs (mem);
1969 attrs.size_known_p = true;
1970 attrs.size = size;
1971 set_mem_attrs (mem, &attrs);
1972 }
1973
1974 /* Clear the size of MEM. */
1975
1976 void
1977 clear_mem_size (rtx mem)
1978 {
1979 struct mem_attrs attrs;
1980
1981 attrs = *get_mem_attrs (mem);
1982 attrs.size_known_p = false;
1983 set_mem_attrs (mem, &attrs);
1984 }
1985 \f
1986 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1987 and its address changed to ADDR. (VOIDmode means don't change the mode.
1988 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1989 returned memory location is required to be valid. The memory
1990 attributes are not changed. */
1991
1992 static rtx
1993 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1994 {
1995 addr_space_t as;
1996 rtx new_rtx;
1997
1998 gcc_assert (MEM_P (memref));
1999 as = MEM_ADDR_SPACE (memref);
2000 if (mode == VOIDmode)
2001 mode = GET_MODE (memref);
2002 if (addr == 0)
2003 addr = XEXP (memref, 0);
2004 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2005 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2006 return memref;
2007
2008 if (validate)
2009 {
2010 if (reload_in_progress || reload_completed)
2011 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2012 else
2013 addr = memory_address_addr_space (mode, addr, as);
2014 }
2015
2016 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2017 return memref;
2018
2019 new_rtx = gen_rtx_MEM (mode, addr);
2020 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2021 return new_rtx;
2022 }
2023
2024 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2025 way we are changing MEMREF, so we only preserve the alias set. */
2026
2027 rtx
2028 change_address (rtx memref, enum machine_mode mode, rtx addr)
2029 {
2030 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2031 enum machine_mode mmode = GET_MODE (new_rtx);
2032 struct mem_attrs attrs, *defattrs;
2033
2034 attrs = *get_mem_attrs (memref);
2035 defattrs = mode_mem_attrs[(int) mmode];
2036 attrs.expr = NULL_TREE;
2037 attrs.offset_known_p = false;
2038 attrs.size_known_p = defattrs->size_known_p;
2039 attrs.size = defattrs->size;
2040 attrs.align = defattrs->align;
2041
2042 /* If there are no changes, just return the original memory reference. */
2043 if (new_rtx == memref)
2044 {
2045 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2046 return new_rtx;
2047
2048 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2049 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2050 }
2051
2052 set_mem_attrs (new_rtx, &attrs);
2053 return new_rtx;
2054 }
2055
2056 /* Return a memory reference like MEMREF, but with its mode changed
2057 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2058 nonzero, the memory address is forced to be valid.
2059 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2060 and the caller is responsible for adjusting MEMREF base register.
2061 If ADJUST_OBJECT is zero, the underlying object associated with the
2062 memory reference is left unchanged and the caller is responsible for
2063 dealing with it. Otherwise, if the new memory reference is outside
2064 the underlying object, even partially, then the object is dropped. */
2065
2066 rtx
2067 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2068 int validate, int adjust_address, int adjust_object)
2069 {
2070 rtx addr = XEXP (memref, 0);
2071 rtx new_rtx;
2072 enum machine_mode address_mode;
2073 int pbits;
2074 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2075 unsigned HOST_WIDE_INT max_align;
2076 #ifdef POINTERS_EXTEND_UNSIGNED
2077 enum machine_mode pointer_mode
2078 = targetm.addr_space.pointer_mode (attrs.addrspace);
2079 #endif
2080
2081 /* If there are no changes, just return the original memory reference. */
2082 if (mode == GET_MODE (memref) && !offset
2083 && (!validate || memory_address_addr_space_p (mode, addr,
2084 attrs.addrspace)))
2085 return memref;
2086
2087 /* ??? Prefer to create garbage instead of creating shared rtl.
2088 This may happen even if offset is nonzero -- consider
2089 (plus (plus reg reg) const_int) -- so do this always. */
2090 addr = copy_rtx (addr);
2091
2092 /* Convert a possibly large offset to a signed value within the
2093 range of the target address space. */
2094 address_mode = get_address_mode (memref);
2095 pbits = GET_MODE_BITSIZE (address_mode);
2096 if (HOST_BITS_PER_WIDE_INT > pbits)
2097 {
2098 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2099 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2100 >> shift);
2101 }
2102
2103 if (adjust_address)
2104 {
2105 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2106 object, we can merge it into the LO_SUM. */
2107 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2108 && offset >= 0
2109 && (unsigned HOST_WIDE_INT) offset
2110 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2111 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2112 plus_constant (address_mode,
2113 XEXP (addr, 1), offset));
2114 #ifdef POINTERS_EXTEND_UNSIGNED
2115 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2116 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2117 the fact that pointers are not allowed to overflow. */
2118 else if (POINTERS_EXTEND_UNSIGNED > 0
2119 && GET_CODE (addr) == ZERO_EXTEND
2120 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2121 && trunc_int_for_mode (offset, pointer_mode) == offset)
2122 addr = gen_rtx_ZERO_EXTEND (address_mode,
2123 plus_constant (pointer_mode,
2124 XEXP (addr, 0), offset));
2125 #endif
2126 else
2127 addr = plus_constant (address_mode, addr, offset);
2128 }
2129
2130 new_rtx = change_address_1 (memref, mode, addr, validate);
2131
2132 /* If the address is a REG, change_address_1 rightfully returns memref,
2133 but this would destroy memref's MEM_ATTRS. */
2134 if (new_rtx == memref && offset != 0)
2135 new_rtx = copy_rtx (new_rtx);
2136
2137 /* Conservatively drop the object if we don't know where we start from. */
2138 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2139 {
2140 attrs.expr = NULL_TREE;
2141 attrs.alias = 0;
2142 }
2143
2144 /* Compute the new values of the memory attributes due to this adjustment.
2145 We add the offsets and update the alignment. */
2146 if (attrs.offset_known_p)
2147 {
2148 attrs.offset += offset;
2149
2150 /* Drop the object if the new left end is not within its bounds. */
2151 if (adjust_object && attrs.offset < 0)
2152 {
2153 attrs.expr = NULL_TREE;
2154 attrs.alias = 0;
2155 }
2156 }
2157
2158 /* Compute the new alignment by taking the MIN of the alignment and the
2159 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2160 if zero. */
2161 if (offset != 0)
2162 {
2163 max_align = (offset & -offset) * BITS_PER_UNIT;
2164 attrs.align = MIN (attrs.align, max_align);
2165 }
2166
2167 /* We can compute the size in a number of ways. */
2168 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2169 if (defattrs->size_known_p)
2170 {
2171 /* Drop the object if the new right end is not within its bounds. */
2172 if (adjust_object && (offset + defattrs->size) > attrs.size)
2173 {
2174 attrs.expr = NULL_TREE;
2175 attrs.alias = 0;
2176 }
2177 attrs.size_known_p = true;
2178 attrs.size = defattrs->size;
2179 }
2180 else if (attrs.size_known_p)
2181 {
2182 attrs.size -= offset;
2183 /* ??? The store_by_pieces machinery generates negative sizes. */
2184 gcc_assert (!(adjust_object && attrs.size < 0));
2185 }
2186
2187 set_mem_attrs (new_rtx, &attrs);
2188
2189 return new_rtx;
2190 }
2191
2192 /* Return a memory reference like MEMREF, but with its mode changed
2193 to MODE and its address changed to ADDR, which is assumed to be
2194 MEMREF offset by OFFSET bytes. If VALIDATE is
2195 nonzero, the memory address is forced to be valid. */
2196
2197 rtx
2198 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2199 HOST_WIDE_INT offset, int validate)
2200 {
2201 memref = change_address_1 (memref, VOIDmode, addr, validate);
2202 return adjust_address_1 (memref, mode, offset, validate, 0, 0);
2203 }
2204
2205 /* Return a memory reference like MEMREF, but whose address is changed by
2206 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2207 known to be in OFFSET (possibly 1). */
2208
2209 rtx
2210 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2211 {
2212 rtx new_rtx, addr = XEXP (memref, 0);
2213 enum machine_mode address_mode;
2214 struct mem_attrs attrs, *defattrs;
2215
2216 attrs = *get_mem_attrs (memref);
2217 address_mode = get_address_mode (memref);
2218 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2219
2220 /* At this point we don't know _why_ the address is invalid. It
2221 could have secondary memory references, multiplies or anything.
2222
2223 However, if we did go and rearrange things, we can wind up not
2224 being able to recognize the magic around pic_offset_table_rtx.
2225 This stuff is fragile, and is yet another example of why it is
2226 bad to expose PIC machinery too early. */
2227 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2228 attrs.addrspace)
2229 && GET_CODE (addr) == PLUS
2230 && XEXP (addr, 0) == pic_offset_table_rtx)
2231 {
2232 addr = force_reg (GET_MODE (addr), addr);
2233 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2234 }
2235
2236 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2237 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2238
2239 /* If there are no changes, just return the original memory reference. */
2240 if (new_rtx == memref)
2241 return new_rtx;
2242
2243 /* Update the alignment to reflect the offset. Reset the offset, which
2244 we don't know. */
2245 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2246 attrs.offset_known_p = false;
2247 attrs.size_known_p = defattrs->size_known_p;
2248 attrs.size = defattrs->size;
2249 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2250 set_mem_attrs (new_rtx, &attrs);
2251 return new_rtx;
2252 }
2253
2254 /* Return a memory reference like MEMREF, but with its address changed to
2255 ADDR. The caller is asserting that the actual piece of memory pointed
2256 to is the same, just the form of the address is being changed, such as
2257 by putting something into a register. */
2258
2259 rtx
2260 replace_equiv_address (rtx memref, rtx addr)
2261 {
2262 /* change_address_1 copies the memory attribute structure without change
2263 and that's exactly what we want here. */
2264 update_temp_slot_address (XEXP (memref, 0), addr);
2265 return change_address_1 (memref, VOIDmode, addr, 1);
2266 }
2267
2268 /* Likewise, but the reference is not required to be valid. */
2269
2270 rtx
2271 replace_equiv_address_nv (rtx memref, rtx addr)
2272 {
2273 return change_address_1 (memref, VOIDmode, addr, 0);
2274 }
2275
2276 /* Return a memory reference like MEMREF, but with its mode widened to
2277 MODE and offset by OFFSET. This would be used by targets that e.g.
2278 cannot issue QImode memory operations and have to use SImode memory
2279 operations plus masking logic. */
2280
2281 rtx
2282 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2283 {
2284 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0);
2285 struct mem_attrs attrs;
2286 unsigned int size = GET_MODE_SIZE (mode);
2287
2288 /* If there are no changes, just return the original memory reference. */
2289 if (new_rtx == memref)
2290 return new_rtx;
2291
2292 attrs = *get_mem_attrs (new_rtx);
2293
2294 /* If we don't know what offset we were at within the expression, then
2295 we can't know if we've overstepped the bounds. */
2296 if (! attrs.offset_known_p)
2297 attrs.expr = NULL_TREE;
2298
2299 while (attrs.expr)
2300 {
2301 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2302 {
2303 tree field = TREE_OPERAND (attrs.expr, 1);
2304 tree offset = component_ref_field_offset (attrs.expr);
2305
2306 if (! DECL_SIZE_UNIT (field))
2307 {
2308 attrs.expr = NULL_TREE;
2309 break;
2310 }
2311
2312 /* Is the field at least as large as the access? If so, ok,
2313 otherwise strip back to the containing structure. */
2314 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2315 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2316 && attrs.offset >= 0)
2317 break;
2318
2319 if (! host_integerp (offset, 1))
2320 {
2321 attrs.expr = NULL_TREE;
2322 break;
2323 }
2324
2325 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2326 attrs.offset += tree_low_cst (offset, 1);
2327 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2328 / BITS_PER_UNIT);
2329 }
2330 /* Similarly for the decl. */
2331 else if (DECL_P (attrs.expr)
2332 && DECL_SIZE_UNIT (attrs.expr)
2333 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2334 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2335 && (! attrs.offset_known_p || attrs.offset >= 0))
2336 break;
2337 else
2338 {
2339 /* The widened memory access overflows the expression, which means
2340 that it could alias another expression. Zap it. */
2341 attrs.expr = NULL_TREE;
2342 break;
2343 }
2344 }
2345
2346 if (! attrs.expr)
2347 attrs.offset_known_p = false;
2348
2349 /* The widened memory may alias other stuff, so zap the alias set. */
2350 /* ??? Maybe use get_alias_set on any remaining expression. */
2351 attrs.alias = 0;
2352 attrs.size_known_p = true;
2353 attrs.size = size;
2354 set_mem_attrs (new_rtx, &attrs);
2355 return new_rtx;
2356 }
2357 \f
2358 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2359 static GTY(()) tree spill_slot_decl;
2360
2361 tree
2362 get_spill_slot_decl (bool force_build_p)
2363 {
2364 tree d = spill_slot_decl;
2365 rtx rd;
2366 struct mem_attrs attrs;
2367
2368 if (d || !force_build_p)
2369 return d;
2370
2371 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2372 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2373 DECL_ARTIFICIAL (d) = 1;
2374 DECL_IGNORED_P (d) = 1;
2375 TREE_USED (d) = 1;
2376 spill_slot_decl = d;
2377
2378 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2379 MEM_NOTRAP_P (rd) = 1;
2380 attrs = *mode_mem_attrs[(int) BLKmode];
2381 attrs.alias = new_alias_set ();
2382 attrs.expr = d;
2383 set_mem_attrs (rd, &attrs);
2384 SET_DECL_RTL (d, rd);
2385
2386 return d;
2387 }
2388
2389 /* Given MEM, a result from assign_stack_local, fill in the memory
2390 attributes as appropriate for a register allocator spill slot.
2391 These slots are not aliasable by other memory. We arrange for
2392 them all to use a single MEM_EXPR, so that the aliasing code can
2393 work properly in the case of shared spill slots. */
2394
2395 void
2396 set_mem_attrs_for_spill (rtx mem)
2397 {
2398 struct mem_attrs attrs;
2399 rtx addr;
2400
2401 attrs = *get_mem_attrs (mem);
2402 attrs.expr = get_spill_slot_decl (true);
2403 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2404 attrs.addrspace = ADDR_SPACE_GENERIC;
2405
2406 /* We expect the incoming memory to be of the form:
2407 (mem:MODE (plus (reg sfp) (const_int offset)))
2408 with perhaps the plus missing for offset = 0. */
2409 addr = XEXP (mem, 0);
2410 attrs.offset_known_p = true;
2411 attrs.offset = 0;
2412 if (GET_CODE (addr) == PLUS
2413 && CONST_INT_P (XEXP (addr, 1)))
2414 attrs.offset = INTVAL (XEXP (addr, 1));
2415
2416 set_mem_attrs (mem, &attrs);
2417 MEM_NOTRAP_P (mem) = 1;
2418 }
2419 \f
2420 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2421
2422 rtx
2423 gen_label_rtx (void)
2424 {
2425 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2426 NULL, label_num++, NULL);
2427 }
2428 \f
2429 /* For procedure integration. */
2430
2431 /* Install new pointers to the first and last insns in the chain.
2432 Also, set cur_insn_uid to one higher than the last in use.
2433 Used for an inline-procedure after copying the insn chain. */
2434
2435 void
2436 set_new_first_and_last_insn (rtx first, rtx last)
2437 {
2438 rtx insn;
2439
2440 set_first_insn (first);
2441 set_last_insn (last);
2442 cur_insn_uid = 0;
2443
2444 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2445 {
2446 int debug_count = 0;
2447
2448 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2449 cur_debug_insn_uid = 0;
2450
2451 for (insn = first; insn; insn = NEXT_INSN (insn))
2452 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2453 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2454 else
2455 {
2456 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2457 if (DEBUG_INSN_P (insn))
2458 debug_count++;
2459 }
2460
2461 if (debug_count)
2462 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2463 else
2464 cur_debug_insn_uid++;
2465 }
2466 else
2467 for (insn = first; insn; insn = NEXT_INSN (insn))
2468 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2469
2470 cur_insn_uid++;
2471 }
2472 \f
2473 /* Go through all the RTL insn bodies and copy any invalid shared
2474 structure. This routine should only be called once. */
2475
2476 static void
2477 unshare_all_rtl_1 (rtx insn)
2478 {
2479 /* Unshare just about everything else. */
2480 unshare_all_rtl_in_chain (insn);
2481
2482 /* Make sure the addresses of stack slots found outside the insn chain
2483 (such as, in DECL_RTL of a variable) are not shared
2484 with the insn chain.
2485
2486 This special care is necessary when the stack slot MEM does not
2487 actually appear in the insn chain. If it does appear, its address
2488 is unshared from all else at that point. */
2489 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2490 }
2491
2492 /* Go through all the RTL insn bodies and copy any invalid shared
2493 structure, again. This is a fairly expensive thing to do so it
2494 should be done sparingly. */
2495
2496 void
2497 unshare_all_rtl_again (rtx insn)
2498 {
2499 rtx p;
2500 tree decl;
2501
2502 for (p = insn; p; p = NEXT_INSN (p))
2503 if (INSN_P (p))
2504 {
2505 reset_used_flags (PATTERN (p));
2506 reset_used_flags (REG_NOTES (p));
2507 if (CALL_P (p))
2508 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2509 }
2510
2511 /* Make sure that virtual stack slots are not shared. */
2512 set_used_decls (DECL_INITIAL (cfun->decl));
2513
2514 /* Make sure that virtual parameters are not shared. */
2515 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2516 set_used_flags (DECL_RTL (decl));
2517
2518 reset_used_flags (stack_slot_list);
2519
2520 unshare_all_rtl_1 (insn);
2521 }
2522
2523 unsigned int
2524 unshare_all_rtl (void)
2525 {
2526 unshare_all_rtl_1 (get_insns ());
2527 return 0;
2528 }
2529
2530
2531 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2532 Recursively does the same for subexpressions. */
2533
2534 static void
2535 verify_rtx_sharing (rtx orig, rtx insn)
2536 {
2537 rtx x = orig;
2538 int i;
2539 enum rtx_code code;
2540 const char *format_ptr;
2541
2542 if (x == 0)
2543 return;
2544
2545 code = GET_CODE (x);
2546
2547 /* These types may be freely shared. */
2548
2549 switch (code)
2550 {
2551 case REG:
2552 case DEBUG_EXPR:
2553 case VALUE:
2554 CASE_CONST_ANY:
2555 case SYMBOL_REF:
2556 case LABEL_REF:
2557 case CODE_LABEL:
2558 case PC:
2559 case CC0:
2560 case RETURN:
2561 case SIMPLE_RETURN:
2562 case SCRATCH:
2563 return;
2564 /* SCRATCH must be shared because they represent distinct values. */
2565 case CLOBBER:
2566 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2567 return;
2568 break;
2569
2570 case CONST:
2571 if (shared_const_p (orig))
2572 return;
2573 break;
2574
2575 case MEM:
2576 /* A MEM is allowed to be shared if its address is constant. */
2577 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2578 || reload_completed || reload_in_progress)
2579 return;
2580
2581 break;
2582
2583 default:
2584 break;
2585 }
2586
2587 /* This rtx may not be shared. If it has already been seen,
2588 replace it with a copy of itself. */
2589 #ifdef ENABLE_CHECKING
2590 if (RTX_FLAG (x, used))
2591 {
2592 error ("invalid rtl sharing found in the insn");
2593 debug_rtx (insn);
2594 error ("shared rtx");
2595 debug_rtx (x);
2596 internal_error ("internal consistency failure");
2597 }
2598 #endif
2599 gcc_assert (!RTX_FLAG (x, used));
2600
2601 RTX_FLAG (x, used) = 1;
2602
2603 /* Now scan the subexpressions recursively. */
2604
2605 format_ptr = GET_RTX_FORMAT (code);
2606
2607 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2608 {
2609 switch (*format_ptr++)
2610 {
2611 case 'e':
2612 verify_rtx_sharing (XEXP (x, i), insn);
2613 break;
2614
2615 case 'E':
2616 if (XVEC (x, i) != NULL)
2617 {
2618 int j;
2619 int len = XVECLEN (x, i);
2620
2621 for (j = 0; j < len; j++)
2622 {
2623 /* We allow sharing of ASM_OPERANDS inside single
2624 instruction. */
2625 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2626 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2627 == ASM_OPERANDS))
2628 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2629 else
2630 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2631 }
2632 }
2633 break;
2634 }
2635 }
2636 return;
2637 }
2638
2639 /* Go through all the RTL insn bodies and check that there is no unexpected
2640 sharing in between the subexpressions. */
2641
2642 DEBUG_FUNCTION void
2643 verify_rtl_sharing (void)
2644 {
2645 rtx p;
2646
2647 timevar_push (TV_VERIFY_RTL_SHARING);
2648
2649 for (p = get_insns (); p; p = NEXT_INSN (p))
2650 if (INSN_P (p))
2651 {
2652 reset_used_flags (PATTERN (p));
2653 reset_used_flags (REG_NOTES (p));
2654 if (CALL_P (p))
2655 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2656 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2657 {
2658 int i;
2659 rtx q, sequence = PATTERN (p);
2660
2661 for (i = 0; i < XVECLEN (sequence, 0); i++)
2662 {
2663 q = XVECEXP (sequence, 0, i);
2664 gcc_assert (INSN_P (q));
2665 reset_used_flags (PATTERN (q));
2666 reset_used_flags (REG_NOTES (q));
2667 if (CALL_P (q))
2668 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2669 }
2670 }
2671 }
2672
2673 for (p = get_insns (); p; p = NEXT_INSN (p))
2674 if (INSN_P (p))
2675 {
2676 verify_rtx_sharing (PATTERN (p), p);
2677 verify_rtx_sharing (REG_NOTES (p), p);
2678 if (CALL_P (p))
2679 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2680 }
2681
2682 timevar_pop (TV_VERIFY_RTL_SHARING);
2683 }
2684
2685 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2686 Assumes the mark bits are cleared at entry. */
2687
2688 void
2689 unshare_all_rtl_in_chain (rtx insn)
2690 {
2691 for (; insn; insn = NEXT_INSN (insn))
2692 if (INSN_P (insn))
2693 {
2694 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2695 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2696 if (CALL_P (insn))
2697 CALL_INSN_FUNCTION_USAGE (insn)
2698 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2699 }
2700 }
2701
2702 /* Go through all virtual stack slots of a function and mark them as
2703 shared. We never replace the DECL_RTLs themselves with a copy,
2704 but expressions mentioned into a DECL_RTL cannot be shared with
2705 expressions in the instruction stream.
2706
2707 Note that reload may convert pseudo registers into memories in-place.
2708 Pseudo registers are always shared, but MEMs never are. Thus if we
2709 reset the used flags on MEMs in the instruction stream, we must set
2710 them again on MEMs that appear in DECL_RTLs. */
2711
2712 static void
2713 set_used_decls (tree blk)
2714 {
2715 tree t;
2716
2717 /* Mark decls. */
2718 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2719 if (DECL_RTL_SET_P (t))
2720 set_used_flags (DECL_RTL (t));
2721
2722 /* Now process sub-blocks. */
2723 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2724 set_used_decls (t);
2725 }
2726
2727 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2728 Recursively does the same for subexpressions. Uses
2729 copy_rtx_if_shared_1 to reduce stack space. */
2730
2731 rtx
2732 copy_rtx_if_shared (rtx orig)
2733 {
2734 copy_rtx_if_shared_1 (&orig);
2735 return orig;
2736 }
2737
2738 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2739 use. Recursively does the same for subexpressions. */
2740
2741 static void
2742 copy_rtx_if_shared_1 (rtx *orig1)
2743 {
2744 rtx x;
2745 int i;
2746 enum rtx_code code;
2747 rtx *last_ptr;
2748 const char *format_ptr;
2749 int copied = 0;
2750 int length;
2751
2752 /* Repeat is used to turn tail-recursion into iteration. */
2753 repeat:
2754 x = *orig1;
2755
2756 if (x == 0)
2757 return;
2758
2759 code = GET_CODE (x);
2760
2761 /* These types may be freely shared. */
2762
2763 switch (code)
2764 {
2765 case REG:
2766 case DEBUG_EXPR:
2767 case VALUE:
2768 CASE_CONST_ANY:
2769 case SYMBOL_REF:
2770 case LABEL_REF:
2771 case CODE_LABEL:
2772 case PC:
2773 case CC0:
2774 case RETURN:
2775 case SIMPLE_RETURN:
2776 case SCRATCH:
2777 /* SCRATCH must be shared because they represent distinct values. */
2778 return;
2779 case CLOBBER:
2780 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2781 return;
2782 break;
2783
2784 case CONST:
2785 if (shared_const_p (x))
2786 return;
2787 break;
2788
2789 case DEBUG_INSN:
2790 case INSN:
2791 case JUMP_INSN:
2792 case CALL_INSN:
2793 case NOTE:
2794 case BARRIER:
2795 /* The chain of insns is not being copied. */
2796 return;
2797
2798 default:
2799 break;
2800 }
2801
2802 /* This rtx may not be shared. If it has already been seen,
2803 replace it with a copy of itself. */
2804
2805 if (RTX_FLAG (x, used))
2806 {
2807 x = shallow_copy_rtx (x);
2808 copied = 1;
2809 }
2810 RTX_FLAG (x, used) = 1;
2811
2812 /* Now scan the subexpressions recursively.
2813 We can store any replaced subexpressions directly into X
2814 since we know X is not shared! Any vectors in X
2815 must be copied if X was copied. */
2816
2817 format_ptr = GET_RTX_FORMAT (code);
2818 length = GET_RTX_LENGTH (code);
2819 last_ptr = NULL;
2820
2821 for (i = 0; i < length; i++)
2822 {
2823 switch (*format_ptr++)
2824 {
2825 case 'e':
2826 if (last_ptr)
2827 copy_rtx_if_shared_1 (last_ptr);
2828 last_ptr = &XEXP (x, i);
2829 break;
2830
2831 case 'E':
2832 if (XVEC (x, i) != NULL)
2833 {
2834 int j;
2835 int len = XVECLEN (x, i);
2836
2837 /* Copy the vector iff I copied the rtx and the length
2838 is nonzero. */
2839 if (copied && len > 0)
2840 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2841
2842 /* Call recursively on all inside the vector. */
2843 for (j = 0; j < len; j++)
2844 {
2845 if (last_ptr)
2846 copy_rtx_if_shared_1 (last_ptr);
2847 last_ptr = &XVECEXP (x, i, j);
2848 }
2849 }
2850 break;
2851 }
2852 }
2853 *orig1 = x;
2854 if (last_ptr)
2855 {
2856 orig1 = last_ptr;
2857 goto repeat;
2858 }
2859 return;
2860 }
2861
2862 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2863
2864 static void
2865 mark_used_flags (rtx x, int flag)
2866 {
2867 int i, j;
2868 enum rtx_code code;
2869 const char *format_ptr;
2870 int length;
2871
2872 /* Repeat is used to turn tail-recursion into iteration. */
2873 repeat:
2874 if (x == 0)
2875 return;
2876
2877 code = GET_CODE (x);
2878
2879 /* These types may be freely shared so we needn't do any resetting
2880 for them. */
2881
2882 switch (code)
2883 {
2884 case REG:
2885 case DEBUG_EXPR:
2886 case VALUE:
2887 CASE_CONST_ANY:
2888 case SYMBOL_REF:
2889 case CODE_LABEL:
2890 case PC:
2891 case CC0:
2892 case RETURN:
2893 case SIMPLE_RETURN:
2894 return;
2895
2896 case DEBUG_INSN:
2897 case INSN:
2898 case JUMP_INSN:
2899 case CALL_INSN:
2900 case NOTE:
2901 case LABEL_REF:
2902 case BARRIER:
2903 /* The chain of insns is not being copied. */
2904 return;
2905
2906 default:
2907 break;
2908 }
2909
2910 RTX_FLAG (x, used) = flag;
2911
2912 format_ptr = GET_RTX_FORMAT (code);
2913 length = GET_RTX_LENGTH (code);
2914
2915 for (i = 0; i < length; i++)
2916 {
2917 switch (*format_ptr++)
2918 {
2919 case 'e':
2920 if (i == length-1)
2921 {
2922 x = XEXP (x, i);
2923 goto repeat;
2924 }
2925 mark_used_flags (XEXP (x, i), flag);
2926 break;
2927
2928 case 'E':
2929 for (j = 0; j < XVECLEN (x, i); j++)
2930 mark_used_flags (XVECEXP (x, i, j), flag);
2931 break;
2932 }
2933 }
2934 }
2935
2936 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2937 to look for shared sub-parts. */
2938
2939 void
2940 reset_used_flags (rtx x)
2941 {
2942 mark_used_flags (x, 0);
2943 }
2944
2945 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2946 to look for shared sub-parts. */
2947
2948 void
2949 set_used_flags (rtx x)
2950 {
2951 mark_used_flags (x, 1);
2952 }
2953 \f
2954 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2955 Return X or the rtx for the pseudo reg the value of X was copied into.
2956 OTHER must be valid as a SET_DEST. */
2957
2958 rtx
2959 make_safe_from (rtx x, rtx other)
2960 {
2961 while (1)
2962 switch (GET_CODE (other))
2963 {
2964 case SUBREG:
2965 other = SUBREG_REG (other);
2966 break;
2967 case STRICT_LOW_PART:
2968 case SIGN_EXTEND:
2969 case ZERO_EXTEND:
2970 other = XEXP (other, 0);
2971 break;
2972 default:
2973 goto done;
2974 }
2975 done:
2976 if ((MEM_P (other)
2977 && ! CONSTANT_P (x)
2978 && !REG_P (x)
2979 && GET_CODE (x) != SUBREG)
2980 || (REG_P (other)
2981 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2982 || reg_mentioned_p (other, x))))
2983 {
2984 rtx temp = gen_reg_rtx (GET_MODE (x));
2985 emit_move_insn (temp, x);
2986 return temp;
2987 }
2988 return x;
2989 }
2990 \f
2991 /* Emission of insns (adding them to the doubly-linked list). */
2992
2993 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2994
2995 rtx
2996 get_last_insn_anywhere (void)
2997 {
2998 struct sequence_stack *stack;
2999 if (get_last_insn ())
3000 return get_last_insn ();
3001 for (stack = seq_stack; stack; stack = stack->next)
3002 if (stack->last != 0)
3003 return stack->last;
3004 return 0;
3005 }
3006
3007 /* Return the first nonnote insn emitted in current sequence or current
3008 function. This routine looks inside SEQUENCEs. */
3009
3010 rtx
3011 get_first_nonnote_insn (void)
3012 {
3013 rtx insn = get_insns ();
3014
3015 if (insn)
3016 {
3017 if (NOTE_P (insn))
3018 for (insn = next_insn (insn);
3019 insn && NOTE_P (insn);
3020 insn = next_insn (insn))
3021 continue;
3022 else
3023 {
3024 if (NONJUMP_INSN_P (insn)
3025 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3026 insn = XVECEXP (PATTERN (insn), 0, 0);
3027 }
3028 }
3029
3030 return insn;
3031 }
3032
3033 /* Return the last nonnote insn emitted in current sequence or current
3034 function. This routine looks inside SEQUENCEs. */
3035
3036 rtx
3037 get_last_nonnote_insn (void)
3038 {
3039 rtx insn = get_last_insn ();
3040
3041 if (insn)
3042 {
3043 if (NOTE_P (insn))
3044 for (insn = previous_insn (insn);
3045 insn && NOTE_P (insn);
3046 insn = previous_insn (insn))
3047 continue;
3048 else
3049 {
3050 if (NONJUMP_INSN_P (insn)
3051 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3052 insn = XVECEXP (PATTERN (insn), 0,
3053 XVECLEN (PATTERN (insn), 0) - 1);
3054 }
3055 }
3056
3057 return insn;
3058 }
3059
3060 /* Return the number of actual (non-debug) insns emitted in this
3061 function. */
3062
3063 int
3064 get_max_insn_count (void)
3065 {
3066 int n = cur_insn_uid;
3067
3068 /* The table size must be stable across -g, to avoid codegen
3069 differences due to debug insns, and not be affected by
3070 -fmin-insn-uid, to avoid excessive table size and to simplify
3071 debugging of -fcompare-debug failures. */
3072 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3073 n -= cur_debug_insn_uid;
3074 else
3075 n -= MIN_NONDEBUG_INSN_UID;
3076
3077 return n;
3078 }
3079
3080 \f
3081 /* Return the next insn. If it is a SEQUENCE, return the first insn
3082 of the sequence. */
3083
3084 rtx
3085 next_insn (rtx insn)
3086 {
3087 if (insn)
3088 {
3089 insn = NEXT_INSN (insn);
3090 if (insn && NONJUMP_INSN_P (insn)
3091 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3092 insn = XVECEXP (PATTERN (insn), 0, 0);
3093 }
3094
3095 return insn;
3096 }
3097
3098 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3099 of the sequence. */
3100
3101 rtx
3102 previous_insn (rtx insn)
3103 {
3104 if (insn)
3105 {
3106 insn = PREV_INSN (insn);
3107 if (insn && NONJUMP_INSN_P (insn)
3108 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3109 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3110 }
3111
3112 return insn;
3113 }
3114
3115 /* Return the next insn after INSN that is not a NOTE. This routine does not
3116 look inside SEQUENCEs. */
3117
3118 rtx
3119 next_nonnote_insn (rtx insn)
3120 {
3121 while (insn)
3122 {
3123 insn = NEXT_INSN (insn);
3124 if (insn == 0 || !NOTE_P (insn))
3125 break;
3126 }
3127
3128 return insn;
3129 }
3130
3131 /* Return the next insn after INSN that is not a NOTE, but stop the
3132 search before we enter another basic block. This routine does not
3133 look inside SEQUENCEs. */
3134
3135 rtx
3136 next_nonnote_insn_bb (rtx insn)
3137 {
3138 while (insn)
3139 {
3140 insn = NEXT_INSN (insn);
3141 if (insn == 0 || !NOTE_P (insn))
3142 break;
3143 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3144 return NULL_RTX;
3145 }
3146
3147 return insn;
3148 }
3149
3150 /* Return the previous insn before INSN that is not a NOTE. This routine does
3151 not look inside SEQUENCEs. */
3152
3153 rtx
3154 prev_nonnote_insn (rtx insn)
3155 {
3156 while (insn)
3157 {
3158 insn = PREV_INSN (insn);
3159 if (insn == 0 || !NOTE_P (insn))
3160 break;
3161 }
3162
3163 return insn;
3164 }
3165
3166 /* Return the previous insn before INSN that is not a NOTE, but stop
3167 the search before we enter another basic block. This routine does
3168 not look inside SEQUENCEs. */
3169
3170 rtx
3171 prev_nonnote_insn_bb (rtx insn)
3172 {
3173 while (insn)
3174 {
3175 insn = PREV_INSN (insn);
3176 if (insn == 0 || !NOTE_P (insn))
3177 break;
3178 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3179 return NULL_RTX;
3180 }
3181
3182 return insn;
3183 }
3184
3185 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3186 routine does not look inside SEQUENCEs. */
3187
3188 rtx
3189 next_nondebug_insn (rtx insn)
3190 {
3191 while (insn)
3192 {
3193 insn = NEXT_INSN (insn);
3194 if (insn == 0 || !DEBUG_INSN_P (insn))
3195 break;
3196 }
3197
3198 return insn;
3199 }
3200
3201 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3202 This routine does not look inside SEQUENCEs. */
3203
3204 rtx
3205 prev_nondebug_insn (rtx insn)
3206 {
3207 while (insn)
3208 {
3209 insn = PREV_INSN (insn);
3210 if (insn == 0 || !DEBUG_INSN_P (insn))
3211 break;
3212 }
3213
3214 return insn;
3215 }
3216
3217 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3218 This routine does not look inside SEQUENCEs. */
3219
3220 rtx
3221 next_nonnote_nondebug_insn (rtx insn)
3222 {
3223 while (insn)
3224 {
3225 insn = NEXT_INSN (insn);
3226 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3227 break;
3228 }
3229
3230 return insn;
3231 }
3232
3233 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3234 This routine does not look inside SEQUENCEs. */
3235
3236 rtx
3237 prev_nonnote_nondebug_insn (rtx insn)
3238 {
3239 while (insn)
3240 {
3241 insn = PREV_INSN (insn);
3242 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3243 break;
3244 }
3245
3246 return insn;
3247 }
3248
3249 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3250 or 0, if there is none. This routine does not look inside
3251 SEQUENCEs. */
3252
3253 rtx
3254 next_real_insn (rtx insn)
3255 {
3256 while (insn)
3257 {
3258 insn = NEXT_INSN (insn);
3259 if (insn == 0 || INSN_P (insn))
3260 break;
3261 }
3262
3263 return insn;
3264 }
3265
3266 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3267 or 0, if there is none. This routine does not look inside
3268 SEQUENCEs. */
3269
3270 rtx
3271 prev_real_insn (rtx insn)
3272 {
3273 while (insn)
3274 {
3275 insn = PREV_INSN (insn);
3276 if (insn == 0 || INSN_P (insn))
3277 break;
3278 }
3279
3280 return insn;
3281 }
3282
3283 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3284 This routine does not look inside SEQUENCEs. */
3285
3286 rtx
3287 last_call_insn (void)
3288 {
3289 rtx insn;
3290
3291 for (insn = get_last_insn ();
3292 insn && !CALL_P (insn);
3293 insn = PREV_INSN (insn))
3294 ;
3295
3296 return insn;
3297 }
3298
3299 /* Find the next insn after INSN that really does something. This routine
3300 does not look inside SEQUENCEs. After reload this also skips over
3301 standalone USE and CLOBBER insn. */
3302
3303 int
3304 active_insn_p (const_rtx insn)
3305 {
3306 return (CALL_P (insn) || JUMP_P (insn)
3307 || (NONJUMP_INSN_P (insn)
3308 && (! reload_completed
3309 || (GET_CODE (PATTERN (insn)) != USE
3310 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3311 }
3312
3313 rtx
3314 next_active_insn (rtx insn)
3315 {
3316 while (insn)
3317 {
3318 insn = NEXT_INSN (insn);
3319 if (insn == 0 || active_insn_p (insn))
3320 break;
3321 }
3322
3323 return insn;
3324 }
3325
3326 /* Find the last insn before INSN that really does something. This routine
3327 does not look inside SEQUENCEs. After reload this also skips over
3328 standalone USE and CLOBBER insn. */
3329
3330 rtx
3331 prev_active_insn (rtx insn)
3332 {
3333 while (insn)
3334 {
3335 insn = PREV_INSN (insn);
3336 if (insn == 0 || active_insn_p (insn))
3337 break;
3338 }
3339
3340 return insn;
3341 }
3342
3343 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3344
3345 rtx
3346 next_label (rtx insn)
3347 {
3348 while (insn)
3349 {
3350 insn = NEXT_INSN (insn);
3351 if (insn == 0 || LABEL_P (insn))
3352 break;
3353 }
3354
3355 return insn;
3356 }
3357
3358 /* Return the last label to mark the same position as LABEL. Return LABEL
3359 itself if it is null or any return rtx. */
3360
3361 rtx
3362 skip_consecutive_labels (rtx label)
3363 {
3364 rtx insn;
3365
3366 if (label && ANY_RETURN_P (label))
3367 return label;
3368
3369 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3370 if (LABEL_P (insn))
3371 label = insn;
3372
3373 return label;
3374 }
3375 \f
3376 #ifdef HAVE_cc0
3377 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3378 and REG_CC_USER notes so we can find it. */
3379
3380 void
3381 link_cc0_insns (rtx insn)
3382 {
3383 rtx user = next_nonnote_insn (insn);
3384
3385 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3386 user = XVECEXP (PATTERN (user), 0, 0);
3387
3388 add_reg_note (user, REG_CC_SETTER, insn);
3389 add_reg_note (insn, REG_CC_USER, user);
3390 }
3391
3392 /* Return the next insn that uses CC0 after INSN, which is assumed to
3393 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3394 applied to the result of this function should yield INSN).
3395
3396 Normally, this is simply the next insn. However, if a REG_CC_USER note
3397 is present, it contains the insn that uses CC0.
3398
3399 Return 0 if we can't find the insn. */
3400
3401 rtx
3402 next_cc0_user (rtx insn)
3403 {
3404 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3405
3406 if (note)
3407 return XEXP (note, 0);
3408
3409 insn = next_nonnote_insn (insn);
3410 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3411 insn = XVECEXP (PATTERN (insn), 0, 0);
3412
3413 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3414 return insn;
3415
3416 return 0;
3417 }
3418
3419 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3420 note, it is the previous insn. */
3421
3422 rtx
3423 prev_cc0_setter (rtx insn)
3424 {
3425 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3426
3427 if (note)
3428 return XEXP (note, 0);
3429
3430 insn = prev_nonnote_insn (insn);
3431 gcc_assert (sets_cc0_p (PATTERN (insn)));
3432
3433 return insn;
3434 }
3435 #endif
3436
3437 #ifdef AUTO_INC_DEC
3438 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3439
3440 static int
3441 find_auto_inc (rtx *xp, void *data)
3442 {
3443 rtx x = *xp;
3444 rtx reg = (rtx) data;
3445
3446 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3447 return 0;
3448
3449 switch (GET_CODE (x))
3450 {
3451 case PRE_DEC:
3452 case PRE_INC:
3453 case POST_DEC:
3454 case POST_INC:
3455 case PRE_MODIFY:
3456 case POST_MODIFY:
3457 if (rtx_equal_p (reg, XEXP (x, 0)))
3458 return 1;
3459 break;
3460
3461 default:
3462 gcc_unreachable ();
3463 }
3464 return -1;
3465 }
3466 #endif
3467
3468 /* Increment the label uses for all labels present in rtx. */
3469
3470 static void
3471 mark_label_nuses (rtx x)
3472 {
3473 enum rtx_code code;
3474 int i, j;
3475 const char *fmt;
3476
3477 code = GET_CODE (x);
3478 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3479 LABEL_NUSES (XEXP (x, 0))++;
3480
3481 fmt = GET_RTX_FORMAT (code);
3482 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3483 {
3484 if (fmt[i] == 'e')
3485 mark_label_nuses (XEXP (x, i));
3486 else if (fmt[i] == 'E')
3487 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3488 mark_label_nuses (XVECEXP (x, i, j));
3489 }
3490 }
3491
3492 \f
3493 /* Try splitting insns that can be split for better scheduling.
3494 PAT is the pattern which might split.
3495 TRIAL is the insn providing PAT.
3496 LAST is nonzero if we should return the last insn of the sequence produced.
3497
3498 If this routine succeeds in splitting, it returns the first or last
3499 replacement insn depending on the value of LAST. Otherwise, it
3500 returns TRIAL. If the insn to be returned can be split, it will be. */
3501
3502 rtx
3503 try_split (rtx pat, rtx trial, int last)
3504 {
3505 rtx before = PREV_INSN (trial);
3506 rtx after = NEXT_INSN (trial);
3507 int has_barrier = 0;
3508 rtx note, seq, tem;
3509 int probability;
3510 rtx insn_last, insn;
3511 int njumps = 0;
3512
3513 /* We're not good at redistributing frame information. */
3514 if (RTX_FRAME_RELATED_P (trial))
3515 return trial;
3516
3517 if (any_condjump_p (trial)
3518 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3519 split_branch_probability = INTVAL (XEXP (note, 0));
3520 probability = split_branch_probability;
3521
3522 seq = split_insns (pat, trial);
3523
3524 split_branch_probability = -1;
3525
3526 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3527 We may need to handle this specially. */
3528 if (after && BARRIER_P (after))
3529 {
3530 has_barrier = 1;
3531 after = NEXT_INSN (after);
3532 }
3533
3534 if (!seq)
3535 return trial;
3536
3537 /* Avoid infinite loop if any insn of the result matches
3538 the original pattern. */
3539 insn_last = seq;
3540 while (1)
3541 {
3542 if (INSN_P (insn_last)
3543 && rtx_equal_p (PATTERN (insn_last), pat))
3544 return trial;
3545 if (!NEXT_INSN (insn_last))
3546 break;
3547 insn_last = NEXT_INSN (insn_last);
3548 }
3549
3550 /* We will be adding the new sequence to the function. The splitters
3551 may have introduced invalid RTL sharing, so unshare the sequence now. */
3552 unshare_all_rtl_in_chain (seq);
3553
3554 /* Mark labels. */
3555 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3556 {
3557 if (JUMP_P (insn))
3558 {
3559 mark_jump_label (PATTERN (insn), insn, 0);
3560 njumps++;
3561 if (probability != -1
3562 && any_condjump_p (insn)
3563 && !find_reg_note (insn, REG_BR_PROB, 0))
3564 {
3565 /* We can preserve the REG_BR_PROB notes only if exactly
3566 one jump is created, otherwise the machine description
3567 is responsible for this step using
3568 split_branch_probability variable. */
3569 gcc_assert (njumps == 1);
3570 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3571 }
3572 }
3573 }
3574
3575 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3576 in SEQ and copy any additional information across. */
3577 if (CALL_P (trial))
3578 {
3579 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3580 if (CALL_P (insn))
3581 {
3582 rtx next, *p;
3583
3584 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3585 target may have explicitly specified. */
3586 p = &CALL_INSN_FUNCTION_USAGE (insn);
3587 while (*p)
3588 p = &XEXP (*p, 1);
3589 *p = CALL_INSN_FUNCTION_USAGE (trial);
3590
3591 /* If the old call was a sibling call, the new one must
3592 be too. */
3593 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3594
3595 /* If the new call is the last instruction in the sequence,
3596 it will effectively replace the old call in-situ. Otherwise
3597 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3598 so that it comes immediately after the new call. */
3599 if (NEXT_INSN (insn))
3600 for (next = NEXT_INSN (trial);
3601 next && NOTE_P (next);
3602 next = NEXT_INSN (next))
3603 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3604 {
3605 remove_insn (next);
3606 add_insn_after (next, insn, NULL);
3607 break;
3608 }
3609 }
3610 }
3611
3612 /* Copy notes, particularly those related to the CFG. */
3613 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3614 {
3615 switch (REG_NOTE_KIND (note))
3616 {
3617 case REG_EH_REGION:
3618 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3619 break;
3620
3621 case REG_NORETURN:
3622 case REG_SETJMP:
3623 case REG_TM:
3624 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3625 {
3626 if (CALL_P (insn))
3627 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3628 }
3629 break;
3630
3631 case REG_NON_LOCAL_GOTO:
3632 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3633 {
3634 if (JUMP_P (insn))
3635 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3636 }
3637 break;
3638
3639 #ifdef AUTO_INC_DEC
3640 case REG_INC:
3641 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3642 {
3643 rtx reg = XEXP (note, 0);
3644 if (!FIND_REG_INC_NOTE (insn, reg)
3645 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3646 add_reg_note (insn, REG_INC, reg);
3647 }
3648 break;
3649 #endif
3650
3651 case REG_ARGS_SIZE:
3652 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3653 break;
3654
3655 default:
3656 break;
3657 }
3658 }
3659
3660 /* If there are LABELS inside the split insns increment the
3661 usage count so we don't delete the label. */
3662 if (INSN_P (trial))
3663 {
3664 insn = insn_last;
3665 while (insn != NULL_RTX)
3666 {
3667 /* JUMP_P insns have already been "marked" above. */
3668 if (NONJUMP_INSN_P (insn))
3669 mark_label_nuses (PATTERN (insn));
3670
3671 insn = PREV_INSN (insn);
3672 }
3673 }
3674
3675 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3676
3677 delete_insn (trial);
3678 if (has_barrier)
3679 emit_barrier_after (tem);
3680
3681 /* Recursively call try_split for each new insn created; by the
3682 time control returns here that insn will be fully split, so
3683 set LAST and continue from the insn after the one returned.
3684 We can't use next_active_insn here since AFTER may be a note.
3685 Ignore deleted insns, which can be occur if not optimizing. */
3686 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3687 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3688 tem = try_split (PATTERN (tem), tem, 1);
3689
3690 /* Return either the first or the last insn, depending on which was
3691 requested. */
3692 return last
3693 ? (after ? PREV_INSN (after) : get_last_insn ())
3694 : NEXT_INSN (before);
3695 }
3696 \f
3697 /* Make and return an INSN rtx, initializing all its slots.
3698 Store PATTERN in the pattern slots. */
3699
3700 rtx
3701 make_insn_raw (rtx pattern)
3702 {
3703 rtx insn;
3704
3705 insn = rtx_alloc (INSN);
3706
3707 INSN_UID (insn) = cur_insn_uid++;
3708 PATTERN (insn) = pattern;
3709 INSN_CODE (insn) = -1;
3710 REG_NOTES (insn) = NULL;
3711 INSN_LOCATION (insn) = curr_insn_location ();
3712 BLOCK_FOR_INSN (insn) = NULL;
3713
3714 #ifdef ENABLE_RTL_CHECKING
3715 if (insn
3716 && INSN_P (insn)
3717 && (returnjump_p (insn)
3718 || (GET_CODE (insn) == SET
3719 && SET_DEST (insn) == pc_rtx)))
3720 {
3721 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3722 debug_rtx (insn);
3723 }
3724 #endif
3725
3726 return insn;
3727 }
3728
3729 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3730
3731 static rtx
3732 make_debug_insn_raw (rtx pattern)
3733 {
3734 rtx insn;
3735
3736 insn = rtx_alloc (DEBUG_INSN);
3737 INSN_UID (insn) = cur_debug_insn_uid++;
3738 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3739 INSN_UID (insn) = cur_insn_uid++;
3740
3741 PATTERN (insn) = pattern;
3742 INSN_CODE (insn) = -1;
3743 REG_NOTES (insn) = NULL;
3744 INSN_LOCATION (insn) = curr_insn_location ();
3745 BLOCK_FOR_INSN (insn) = NULL;
3746
3747 return insn;
3748 }
3749
3750 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3751
3752 static rtx
3753 make_jump_insn_raw (rtx pattern)
3754 {
3755 rtx insn;
3756
3757 insn = rtx_alloc (JUMP_INSN);
3758 INSN_UID (insn) = cur_insn_uid++;
3759
3760 PATTERN (insn) = pattern;
3761 INSN_CODE (insn) = -1;
3762 REG_NOTES (insn) = NULL;
3763 JUMP_LABEL (insn) = NULL;
3764 INSN_LOCATION (insn) = curr_insn_location ();
3765 BLOCK_FOR_INSN (insn) = NULL;
3766
3767 return insn;
3768 }
3769
3770 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3771
3772 static rtx
3773 make_call_insn_raw (rtx pattern)
3774 {
3775 rtx insn;
3776
3777 insn = rtx_alloc (CALL_INSN);
3778 INSN_UID (insn) = cur_insn_uid++;
3779
3780 PATTERN (insn) = pattern;
3781 INSN_CODE (insn) = -1;
3782 REG_NOTES (insn) = NULL;
3783 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3784 INSN_LOCATION (insn) = curr_insn_location ();
3785 BLOCK_FOR_INSN (insn) = NULL;
3786
3787 return insn;
3788 }
3789 \f
3790 /* Add INSN to the end of the doubly-linked list.
3791 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3792
3793 void
3794 add_insn (rtx insn)
3795 {
3796 PREV_INSN (insn) = get_last_insn();
3797 NEXT_INSN (insn) = 0;
3798
3799 if (NULL != get_last_insn())
3800 NEXT_INSN (get_last_insn ()) = insn;
3801
3802 if (NULL == get_insns ())
3803 set_first_insn (insn);
3804
3805 set_last_insn (insn);
3806 }
3807
3808 /* Add INSN into the doubly-linked list after insn AFTER. This and
3809 the next should be the only functions called to insert an insn once
3810 delay slots have been filled since only they know how to update a
3811 SEQUENCE. */
3812
3813 void
3814 add_insn_after (rtx insn, rtx after, basic_block bb)
3815 {
3816 rtx next = NEXT_INSN (after);
3817
3818 gcc_assert (!optimize || !INSN_DELETED_P (after));
3819
3820 NEXT_INSN (insn) = next;
3821 PREV_INSN (insn) = after;
3822
3823 if (next)
3824 {
3825 PREV_INSN (next) = insn;
3826 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3827 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3828 }
3829 else if (get_last_insn () == after)
3830 set_last_insn (insn);
3831 else
3832 {
3833 struct sequence_stack *stack = seq_stack;
3834 /* Scan all pending sequences too. */
3835 for (; stack; stack = stack->next)
3836 if (after == stack->last)
3837 {
3838 stack->last = insn;
3839 break;
3840 }
3841
3842 gcc_assert (stack);
3843 }
3844
3845 if (!BARRIER_P (after)
3846 && !BARRIER_P (insn)
3847 && (bb = BLOCK_FOR_INSN (after)))
3848 {
3849 set_block_for_insn (insn, bb);
3850 if (INSN_P (insn))
3851 df_insn_rescan (insn);
3852 /* Should not happen as first in the BB is always
3853 either NOTE or LABEL. */
3854 if (BB_END (bb) == after
3855 /* Avoid clobbering of structure when creating new BB. */
3856 && !BARRIER_P (insn)
3857 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3858 BB_END (bb) = insn;
3859 }
3860
3861 NEXT_INSN (after) = insn;
3862 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3863 {
3864 rtx sequence = PATTERN (after);
3865 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3866 }
3867 }
3868
3869 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3870 the previous should be the only functions called to insert an insn
3871 once delay slots have been filled since only they know how to
3872 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3873 bb from before. */
3874
3875 void
3876 add_insn_before (rtx insn, rtx before, basic_block bb)
3877 {
3878 rtx prev = PREV_INSN (before);
3879
3880 gcc_assert (!optimize || !INSN_DELETED_P (before));
3881
3882 PREV_INSN (insn) = prev;
3883 NEXT_INSN (insn) = before;
3884
3885 if (prev)
3886 {
3887 NEXT_INSN (prev) = insn;
3888 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3889 {
3890 rtx sequence = PATTERN (prev);
3891 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3892 }
3893 }
3894 else if (get_insns () == before)
3895 set_first_insn (insn);
3896 else
3897 {
3898 struct sequence_stack *stack = seq_stack;
3899 /* Scan all pending sequences too. */
3900 for (; stack; stack = stack->next)
3901 if (before == stack->first)
3902 {
3903 stack->first = insn;
3904 break;
3905 }
3906
3907 gcc_assert (stack);
3908 }
3909
3910 if (!bb
3911 && !BARRIER_P (before)
3912 && !BARRIER_P (insn))
3913 bb = BLOCK_FOR_INSN (before);
3914
3915 if (bb)
3916 {
3917 set_block_for_insn (insn, bb);
3918 if (INSN_P (insn))
3919 df_insn_rescan (insn);
3920 /* Should not happen as first in the BB is always either NOTE or
3921 LABEL. */
3922 gcc_assert (BB_HEAD (bb) != insn
3923 /* Avoid clobbering of structure when creating new BB. */
3924 || BARRIER_P (insn)
3925 || NOTE_INSN_BASIC_BLOCK_P (insn));
3926 }
3927
3928 PREV_INSN (before) = insn;
3929 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3930 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3931 }
3932
3933
3934 /* Replace insn with an deleted instruction note. */
3935
3936 void
3937 set_insn_deleted (rtx insn)
3938 {
3939 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3940 PUT_CODE (insn, NOTE);
3941 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3942 }
3943
3944
3945 /* Remove an insn from its doubly-linked list. This function knows how
3946 to handle sequences. */
3947 void
3948 remove_insn (rtx insn)
3949 {
3950 rtx next = NEXT_INSN (insn);
3951 rtx prev = PREV_INSN (insn);
3952 basic_block bb;
3953
3954 /* Later in the code, the block will be marked dirty. */
3955 df_insn_delete (NULL, INSN_UID (insn));
3956
3957 if (prev)
3958 {
3959 NEXT_INSN (prev) = next;
3960 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3961 {
3962 rtx sequence = PATTERN (prev);
3963 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3964 }
3965 }
3966 else if (get_insns () == insn)
3967 {
3968 if (next)
3969 PREV_INSN (next) = NULL;
3970 set_first_insn (next);
3971 }
3972 else
3973 {
3974 struct sequence_stack *stack = seq_stack;
3975 /* Scan all pending sequences too. */
3976 for (; stack; stack = stack->next)
3977 if (insn == stack->first)
3978 {
3979 stack->first = next;
3980 break;
3981 }
3982
3983 gcc_assert (stack);
3984 }
3985
3986 if (next)
3987 {
3988 PREV_INSN (next) = prev;
3989 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3990 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3991 }
3992 else if (get_last_insn () == insn)
3993 set_last_insn (prev);
3994 else
3995 {
3996 struct sequence_stack *stack = seq_stack;
3997 /* Scan all pending sequences too. */
3998 for (; stack; stack = stack->next)
3999 if (insn == stack->last)
4000 {
4001 stack->last = prev;
4002 break;
4003 }
4004
4005 gcc_assert (stack);
4006 }
4007 if (!BARRIER_P (insn)
4008 && (bb = BLOCK_FOR_INSN (insn)))
4009 {
4010 if (NONDEBUG_INSN_P (insn))
4011 df_set_bb_dirty (bb);
4012 if (BB_HEAD (bb) == insn)
4013 {
4014 /* Never ever delete the basic block note without deleting whole
4015 basic block. */
4016 gcc_assert (!NOTE_P (insn));
4017 BB_HEAD (bb) = next;
4018 }
4019 if (BB_END (bb) == insn)
4020 BB_END (bb) = prev;
4021 }
4022 }
4023
4024 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4025
4026 void
4027 add_function_usage_to (rtx call_insn, rtx call_fusage)
4028 {
4029 gcc_assert (call_insn && CALL_P (call_insn));
4030
4031 /* Put the register usage information on the CALL. If there is already
4032 some usage information, put ours at the end. */
4033 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4034 {
4035 rtx link;
4036
4037 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4038 link = XEXP (link, 1))
4039 ;
4040
4041 XEXP (link, 1) = call_fusage;
4042 }
4043 else
4044 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4045 }
4046
4047 /* Delete all insns made since FROM.
4048 FROM becomes the new last instruction. */
4049
4050 void
4051 delete_insns_since (rtx from)
4052 {
4053 if (from == 0)
4054 set_first_insn (0);
4055 else
4056 NEXT_INSN (from) = 0;
4057 set_last_insn (from);
4058 }
4059
4060 /* This function is deprecated, please use sequences instead.
4061
4062 Move a consecutive bunch of insns to a different place in the chain.
4063 The insns to be moved are those between FROM and TO.
4064 They are moved to a new position after the insn AFTER.
4065 AFTER must not be FROM or TO or any insn in between.
4066
4067 This function does not know about SEQUENCEs and hence should not be
4068 called after delay-slot filling has been done. */
4069
4070 void
4071 reorder_insns_nobb (rtx from, rtx to, rtx after)
4072 {
4073 #ifdef ENABLE_CHECKING
4074 rtx x;
4075 for (x = from; x != to; x = NEXT_INSN (x))
4076 gcc_assert (after != x);
4077 gcc_assert (after != to);
4078 #endif
4079
4080 /* Splice this bunch out of where it is now. */
4081 if (PREV_INSN (from))
4082 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4083 if (NEXT_INSN (to))
4084 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4085 if (get_last_insn () == to)
4086 set_last_insn (PREV_INSN (from));
4087 if (get_insns () == from)
4088 set_first_insn (NEXT_INSN (to));
4089
4090 /* Make the new neighbors point to it and it to them. */
4091 if (NEXT_INSN (after))
4092 PREV_INSN (NEXT_INSN (after)) = to;
4093
4094 NEXT_INSN (to) = NEXT_INSN (after);
4095 PREV_INSN (from) = after;
4096 NEXT_INSN (after) = from;
4097 if (after == get_last_insn())
4098 set_last_insn (to);
4099 }
4100
4101 /* Same as function above, but take care to update BB boundaries. */
4102 void
4103 reorder_insns (rtx from, rtx to, rtx after)
4104 {
4105 rtx prev = PREV_INSN (from);
4106 basic_block bb, bb2;
4107
4108 reorder_insns_nobb (from, to, after);
4109
4110 if (!BARRIER_P (after)
4111 && (bb = BLOCK_FOR_INSN (after)))
4112 {
4113 rtx x;
4114 df_set_bb_dirty (bb);
4115
4116 if (!BARRIER_P (from)
4117 && (bb2 = BLOCK_FOR_INSN (from)))
4118 {
4119 if (BB_END (bb2) == to)
4120 BB_END (bb2) = prev;
4121 df_set_bb_dirty (bb2);
4122 }
4123
4124 if (BB_END (bb) == after)
4125 BB_END (bb) = to;
4126
4127 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4128 if (!BARRIER_P (x))
4129 df_insn_change_bb (x, bb);
4130 }
4131 }
4132
4133 \f
4134 /* Emit insn(s) of given code and pattern
4135 at a specified place within the doubly-linked list.
4136
4137 All of the emit_foo global entry points accept an object
4138 X which is either an insn list or a PATTERN of a single
4139 instruction.
4140
4141 There are thus a few canonical ways to generate code and
4142 emit it at a specific place in the instruction stream. For
4143 example, consider the instruction named SPOT and the fact that
4144 we would like to emit some instructions before SPOT. We might
4145 do it like this:
4146
4147 start_sequence ();
4148 ... emit the new instructions ...
4149 insns_head = get_insns ();
4150 end_sequence ();
4151
4152 emit_insn_before (insns_head, SPOT);
4153
4154 It used to be common to generate SEQUENCE rtl instead, but that
4155 is a relic of the past which no longer occurs. The reason is that
4156 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4157 generated would almost certainly die right after it was created. */
4158
4159 static rtx
4160 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4161 rtx (*make_raw) (rtx))
4162 {
4163 rtx insn;
4164
4165 gcc_assert (before);
4166
4167 if (x == NULL_RTX)
4168 return last;
4169
4170 switch (GET_CODE (x))
4171 {
4172 case DEBUG_INSN:
4173 case INSN:
4174 case JUMP_INSN:
4175 case CALL_INSN:
4176 case CODE_LABEL:
4177 case BARRIER:
4178 case NOTE:
4179 insn = x;
4180 while (insn)
4181 {
4182 rtx next = NEXT_INSN (insn);
4183 add_insn_before (insn, before, bb);
4184 last = insn;
4185 insn = next;
4186 }
4187 break;
4188
4189 #ifdef ENABLE_RTL_CHECKING
4190 case SEQUENCE:
4191 gcc_unreachable ();
4192 break;
4193 #endif
4194
4195 default:
4196 last = (*make_raw) (x);
4197 add_insn_before (last, before, bb);
4198 break;
4199 }
4200
4201 return last;
4202 }
4203
4204 /* Make X be output before the instruction BEFORE. */
4205
4206 rtx
4207 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4208 {
4209 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4210 }
4211
4212 /* Make an instruction with body X and code JUMP_INSN
4213 and output it before the instruction BEFORE. */
4214
4215 rtx
4216 emit_jump_insn_before_noloc (rtx x, rtx before)
4217 {
4218 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4219 make_jump_insn_raw);
4220 }
4221
4222 /* Make an instruction with body X and code CALL_INSN
4223 and output it before the instruction BEFORE. */
4224
4225 rtx
4226 emit_call_insn_before_noloc (rtx x, rtx before)
4227 {
4228 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4229 make_call_insn_raw);
4230 }
4231
4232 /* Make an instruction with body X and code DEBUG_INSN
4233 and output it before the instruction BEFORE. */
4234
4235 rtx
4236 emit_debug_insn_before_noloc (rtx x, rtx before)
4237 {
4238 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4239 make_debug_insn_raw);
4240 }
4241
4242 /* Make an insn of code BARRIER
4243 and output it before the insn BEFORE. */
4244
4245 rtx
4246 emit_barrier_before (rtx before)
4247 {
4248 rtx insn = rtx_alloc (BARRIER);
4249
4250 INSN_UID (insn) = cur_insn_uid++;
4251
4252 add_insn_before (insn, before, NULL);
4253 return insn;
4254 }
4255
4256 /* Emit the label LABEL before the insn BEFORE. */
4257
4258 rtx
4259 emit_label_before (rtx label, rtx before)
4260 {
4261 gcc_checking_assert (INSN_UID (label) == 0);
4262 INSN_UID (label) = cur_insn_uid++;
4263 add_insn_before (label, before, NULL);
4264 return label;
4265 }
4266
4267 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4268
4269 rtx
4270 emit_note_before (enum insn_note subtype, rtx before)
4271 {
4272 rtx note = rtx_alloc (NOTE);
4273 INSN_UID (note) = cur_insn_uid++;
4274 NOTE_KIND (note) = subtype;
4275 BLOCK_FOR_INSN (note) = NULL;
4276 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4277
4278 add_insn_before (note, before, NULL);
4279 return note;
4280 }
4281 \f
4282 /* Helper for emit_insn_after, handles lists of instructions
4283 efficiently. */
4284
4285 static rtx
4286 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4287 {
4288 rtx last;
4289 rtx after_after;
4290 if (!bb && !BARRIER_P (after))
4291 bb = BLOCK_FOR_INSN (after);
4292
4293 if (bb)
4294 {
4295 df_set_bb_dirty (bb);
4296 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4297 if (!BARRIER_P (last))
4298 {
4299 set_block_for_insn (last, bb);
4300 df_insn_rescan (last);
4301 }
4302 if (!BARRIER_P (last))
4303 {
4304 set_block_for_insn (last, bb);
4305 df_insn_rescan (last);
4306 }
4307 if (BB_END (bb) == after)
4308 BB_END (bb) = last;
4309 }
4310 else
4311 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4312 continue;
4313
4314 after_after = NEXT_INSN (after);
4315
4316 NEXT_INSN (after) = first;
4317 PREV_INSN (first) = after;
4318 NEXT_INSN (last) = after_after;
4319 if (after_after)
4320 PREV_INSN (after_after) = last;
4321
4322 if (after == get_last_insn())
4323 set_last_insn (last);
4324
4325 return last;
4326 }
4327
4328 static rtx
4329 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4330 rtx (*make_raw)(rtx))
4331 {
4332 rtx last = after;
4333
4334 gcc_assert (after);
4335
4336 if (x == NULL_RTX)
4337 return last;
4338
4339 switch (GET_CODE (x))
4340 {
4341 case DEBUG_INSN:
4342 case INSN:
4343 case JUMP_INSN:
4344 case CALL_INSN:
4345 case CODE_LABEL:
4346 case BARRIER:
4347 case NOTE:
4348 last = emit_insn_after_1 (x, after, bb);
4349 break;
4350
4351 #ifdef ENABLE_RTL_CHECKING
4352 case SEQUENCE:
4353 gcc_unreachable ();
4354 break;
4355 #endif
4356
4357 default:
4358 last = (*make_raw) (x);
4359 add_insn_after (last, after, bb);
4360 break;
4361 }
4362
4363 return last;
4364 }
4365
4366 /* Make X be output after the insn AFTER and set the BB of insn. If
4367 BB is NULL, an attempt is made to infer the BB from AFTER. */
4368
4369 rtx
4370 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4371 {
4372 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4373 }
4374
4375
4376 /* Make an insn of code JUMP_INSN with body X
4377 and output it after the insn AFTER. */
4378
4379 rtx
4380 emit_jump_insn_after_noloc (rtx x, rtx after)
4381 {
4382 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4383 }
4384
4385 /* Make an instruction with body X and code CALL_INSN
4386 and output it after the instruction AFTER. */
4387
4388 rtx
4389 emit_call_insn_after_noloc (rtx x, rtx after)
4390 {
4391 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4392 }
4393
4394 /* Make an instruction with body X and code CALL_INSN
4395 and output it after the instruction AFTER. */
4396
4397 rtx
4398 emit_debug_insn_after_noloc (rtx x, rtx after)
4399 {
4400 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4401 }
4402
4403 /* Make an insn of code BARRIER
4404 and output it after the insn AFTER. */
4405
4406 rtx
4407 emit_barrier_after (rtx after)
4408 {
4409 rtx insn = rtx_alloc (BARRIER);
4410
4411 INSN_UID (insn) = cur_insn_uid++;
4412
4413 add_insn_after (insn, after, NULL);
4414 return insn;
4415 }
4416
4417 /* Emit the label LABEL after the insn AFTER. */
4418
4419 rtx
4420 emit_label_after (rtx label, rtx after)
4421 {
4422 gcc_checking_assert (INSN_UID (label) == 0);
4423 INSN_UID (label) = cur_insn_uid++;
4424 add_insn_after (label, after, NULL);
4425 return label;
4426 }
4427
4428 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4429
4430 rtx
4431 emit_note_after (enum insn_note subtype, rtx after)
4432 {
4433 rtx note = rtx_alloc (NOTE);
4434 INSN_UID (note) = cur_insn_uid++;
4435 NOTE_KIND (note) = subtype;
4436 BLOCK_FOR_INSN (note) = NULL;
4437 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4438 add_insn_after (note, after, NULL);
4439 return note;
4440 }
4441 \f
4442 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4443 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4444
4445 static rtx
4446 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4447 rtx (*make_raw) (rtx))
4448 {
4449 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4450
4451 if (pattern == NULL_RTX || !loc)
4452 return last;
4453
4454 after = NEXT_INSN (after);
4455 while (1)
4456 {
4457 if (active_insn_p (after) && !INSN_LOCATION (after))
4458 INSN_LOCATION (after) = loc;
4459 if (after == last)
4460 break;
4461 after = NEXT_INSN (after);
4462 }
4463 return last;
4464 }
4465
4466 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4467 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4468 any DEBUG_INSNs. */
4469
4470 static rtx
4471 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4472 rtx (*make_raw) (rtx))
4473 {
4474 rtx prev = after;
4475
4476 if (skip_debug_insns)
4477 while (DEBUG_INSN_P (prev))
4478 prev = PREV_INSN (prev);
4479
4480 if (INSN_P (prev))
4481 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4482 make_raw);
4483 else
4484 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4485 }
4486
4487 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4488 rtx
4489 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4490 {
4491 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4492 }
4493
4494 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4495 rtx
4496 emit_insn_after (rtx pattern, rtx after)
4497 {
4498 return emit_pattern_after (pattern, after, true, make_insn_raw);
4499 }
4500
4501 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4502 rtx
4503 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4504 {
4505 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4506 }
4507
4508 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4509 rtx
4510 emit_jump_insn_after (rtx pattern, rtx after)
4511 {
4512 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4513 }
4514
4515 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4516 rtx
4517 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4518 {
4519 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4520 }
4521
4522 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4523 rtx
4524 emit_call_insn_after (rtx pattern, rtx after)
4525 {
4526 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4527 }
4528
4529 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4530 rtx
4531 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4532 {
4533 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4534 }
4535
4536 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4537 rtx
4538 emit_debug_insn_after (rtx pattern, rtx after)
4539 {
4540 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4541 }
4542
4543 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4544 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4545 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4546 CALL_INSN, etc. */
4547
4548 static rtx
4549 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4550 rtx (*make_raw) (rtx))
4551 {
4552 rtx first = PREV_INSN (before);
4553 rtx last = emit_pattern_before_noloc (pattern, before,
4554 insnp ? before : NULL_RTX,
4555 NULL, make_raw);
4556
4557 if (pattern == NULL_RTX || !loc)
4558 return last;
4559
4560 if (!first)
4561 first = get_insns ();
4562 else
4563 first = NEXT_INSN (first);
4564 while (1)
4565 {
4566 if (active_insn_p (first) && !INSN_LOCATION (first))
4567 INSN_LOCATION (first) = loc;
4568 if (first == last)
4569 break;
4570 first = NEXT_INSN (first);
4571 }
4572 return last;
4573 }
4574
4575 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4576 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4577 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4578 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4579
4580 static rtx
4581 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4582 bool insnp, rtx (*make_raw) (rtx))
4583 {
4584 rtx next = before;
4585
4586 if (skip_debug_insns)
4587 while (DEBUG_INSN_P (next))
4588 next = PREV_INSN (next);
4589
4590 if (INSN_P (next))
4591 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4592 insnp, make_raw);
4593 else
4594 return emit_pattern_before_noloc (pattern, before,
4595 insnp ? before : NULL_RTX,
4596 NULL, make_raw);
4597 }
4598
4599 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4600 rtx
4601 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4602 {
4603 return emit_pattern_before_setloc (pattern, before, loc, true,
4604 make_insn_raw);
4605 }
4606
4607 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4608 rtx
4609 emit_insn_before (rtx pattern, rtx before)
4610 {
4611 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4612 }
4613
4614 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4615 rtx
4616 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4617 {
4618 return emit_pattern_before_setloc (pattern, before, loc, false,
4619 make_jump_insn_raw);
4620 }
4621
4622 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4623 rtx
4624 emit_jump_insn_before (rtx pattern, rtx before)
4625 {
4626 return emit_pattern_before (pattern, before, true, false,
4627 make_jump_insn_raw);
4628 }
4629
4630 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4631 rtx
4632 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4633 {
4634 return emit_pattern_before_setloc (pattern, before, loc, false,
4635 make_call_insn_raw);
4636 }
4637
4638 /* Like emit_call_insn_before_noloc,
4639 but set insn_location according to BEFORE. */
4640 rtx
4641 emit_call_insn_before (rtx pattern, rtx before)
4642 {
4643 return emit_pattern_before (pattern, before, true, false,
4644 make_call_insn_raw);
4645 }
4646
4647 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4648 rtx
4649 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4650 {
4651 return emit_pattern_before_setloc (pattern, before, loc, false,
4652 make_debug_insn_raw);
4653 }
4654
4655 /* Like emit_debug_insn_before_noloc,
4656 but set insn_location according to BEFORE. */
4657 rtx
4658 emit_debug_insn_before (rtx pattern, rtx before)
4659 {
4660 return emit_pattern_before (pattern, before, false, false,
4661 make_debug_insn_raw);
4662 }
4663 \f
4664 /* Take X and emit it at the end of the doubly-linked
4665 INSN list.
4666
4667 Returns the last insn emitted. */
4668
4669 rtx
4670 emit_insn (rtx x)
4671 {
4672 rtx last = get_last_insn();
4673 rtx insn;
4674
4675 if (x == NULL_RTX)
4676 return last;
4677
4678 switch (GET_CODE (x))
4679 {
4680 case DEBUG_INSN:
4681 case INSN:
4682 case JUMP_INSN:
4683 case CALL_INSN:
4684 case CODE_LABEL:
4685 case BARRIER:
4686 case NOTE:
4687 insn = x;
4688 while (insn)
4689 {
4690 rtx next = NEXT_INSN (insn);
4691 add_insn (insn);
4692 last = insn;
4693 insn = next;
4694 }
4695 break;
4696
4697 #ifdef ENABLE_RTL_CHECKING
4698 case SEQUENCE:
4699 gcc_unreachable ();
4700 break;
4701 #endif
4702
4703 default:
4704 last = make_insn_raw (x);
4705 add_insn (last);
4706 break;
4707 }
4708
4709 return last;
4710 }
4711
4712 /* Make an insn of code DEBUG_INSN with pattern X
4713 and add it to the end of the doubly-linked list. */
4714
4715 rtx
4716 emit_debug_insn (rtx x)
4717 {
4718 rtx last = get_last_insn();
4719 rtx insn;
4720
4721 if (x == NULL_RTX)
4722 return last;
4723
4724 switch (GET_CODE (x))
4725 {
4726 case DEBUG_INSN:
4727 case INSN:
4728 case JUMP_INSN:
4729 case CALL_INSN:
4730 case CODE_LABEL:
4731 case BARRIER:
4732 case NOTE:
4733 insn = x;
4734 while (insn)
4735 {
4736 rtx next = NEXT_INSN (insn);
4737 add_insn (insn);
4738 last = insn;
4739 insn = next;
4740 }
4741 break;
4742
4743 #ifdef ENABLE_RTL_CHECKING
4744 case SEQUENCE:
4745 gcc_unreachable ();
4746 break;
4747 #endif
4748
4749 default:
4750 last = make_debug_insn_raw (x);
4751 add_insn (last);
4752 break;
4753 }
4754
4755 return last;
4756 }
4757
4758 /* Make an insn of code JUMP_INSN with pattern X
4759 and add it to the end of the doubly-linked list. */
4760
4761 rtx
4762 emit_jump_insn (rtx x)
4763 {
4764 rtx last = NULL_RTX, insn;
4765
4766 switch (GET_CODE (x))
4767 {
4768 case DEBUG_INSN:
4769 case INSN:
4770 case JUMP_INSN:
4771 case CALL_INSN:
4772 case CODE_LABEL:
4773 case BARRIER:
4774 case NOTE:
4775 insn = x;
4776 while (insn)
4777 {
4778 rtx next = NEXT_INSN (insn);
4779 add_insn (insn);
4780 last = insn;
4781 insn = next;
4782 }
4783 break;
4784
4785 #ifdef ENABLE_RTL_CHECKING
4786 case SEQUENCE:
4787 gcc_unreachable ();
4788 break;
4789 #endif
4790
4791 default:
4792 last = make_jump_insn_raw (x);
4793 add_insn (last);
4794 break;
4795 }
4796
4797 return last;
4798 }
4799
4800 /* Make an insn of code CALL_INSN with pattern X
4801 and add it to the end of the doubly-linked list. */
4802
4803 rtx
4804 emit_call_insn (rtx x)
4805 {
4806 rtx insn;
4807
4808 switch (GET_CODE (x))
4809 {
4810 case DEBUG_INSN:
4811 case INSN:
4812 case JUMP_INSN:
4813 case CALL_INSN:
4814 case CODE_LABEL:
4815 case BARRIER:
4816 case NOTE:
4817 insn = emit_insn (x);
4818 break;
4819
4820 #ifdef ENABLE_RTL_CHECKING
4821 case SEQUENCE:
4822 gcc_unreachable ();
4823 break;
4824 #endif
4825
4826 default:
4827 insn = make_call_insn_raw (x);
4828 add_insn (insn);
4829 break;
4830 }
4831
4832 return insn;
4833 }
4834
4835 /* Add the label LABEL to the end of the doubly-linked list. */
4836
4837 rtx
4838 emit_label (rtx label)
4839 {
4840 gcc_checking_assert (INSN_UID (label) == 0);
4841 INSN_UID (label) = cur_insn_uid++;
4842 add_insn (label);
4843 return label;
4844 }
4845
4846 /* Make an insn of code BARRIER
4847 and add it to the end of the doubly-linked list. */
4848
4849 rtx
4850 emit_barrier (void)
4851 {
4852 rtx barrier = rtx_alloc (BARRIER);
4853 INSN_UID (barrier) = cur_insn_uid++;
4854 add_insn (barrier);
4855 return barrier;
4856 }
4857
4858 /* Emit a copy of note ORIG. */
4859
4860 rtx
4861 emit_note_copy (rtx orig)
4862 {
4863 rtx note;
4864
4865 note = rtx_alloc (NOTE);
4866
4867 INSN_UID (note) = cur_insn_uid++;
4868 NOTE_DATA (note) = NOTE_DATA (orig);
4869 NOTE_KIND (note) = NOTE_KIND (orig);
4870 BLOCK_FOR_INSN (note) = NULL;
4871 add_insn (note);
4872
4873 return note;
4874 }
4875
4876 /* Make an insn of code NOTE or type NOTE_NO
4877 and add it to the end of the doubly-linked list. */
4878
4879 rtx
4880 emit_note (enum insn_note kind)
4881 {
4882 rtx note;
4883
4884 note = rtx_alloc (NOTE);
4885 INSN_UID (note) = cur_insn_uid++;
4886 NOTE_KIND (note) = kind;
4887 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4888 BLOCK_FOR_INSN (note) = NULL;
4889 add_insn (note);
4890 return note;
4891 }
4892
4893 /* Emit a clobber of lvalue X. */
4894
4895 rtx
4896 emit_clobber (rtx x)
4897 {
4898 /* CONCATs should not appear in the insn stream. */
4899 if (GET_CODE (x) == CONCAT)
4900 {
4901 emit_clobber (XEXP (x, 0));
4902 return emit_clobber (XEXP (x, 1));
4903 }
4904 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4905 }
4906
4907 /* Return a sequence of insns to clobber lvalue X. */
4908
4909 rtx
4910 gen_clobber (rtx x)
4911 {
4912 rtx seq;
4913
4914 start_sequence ();
4915 emit_clobber (x);
4916 seq = get_insns ();
4917 end_sequence ();
4918 return seq;
4919 }
4920
4921 /* Emit a use of rvalue X. */
4922
4923 rtx
4924 emit_use (rtx x)
4925 {
4926 /* CONCATs should not appear in the insn stream. */
4927 if (GET_CODE (x) == CONCAT)
4928 {
4929 emit_use (XEXP (x, 0));
4930 return emit_use (XEXP (x, 1));
4931 }
4932 return emit_insn (gen_rtx_USE (VOIDmode, x));
4933 }
4934
4935 /* Return a sequence of insns to use rvalue X. */
4936
4937 rtx
4938 gen_use (rtx x)
4939 {
4940 rtx seq;
4941
4942 start_sequence ();
4943 emit_use (x);
4944 seq = get_insns ();
4945 end_sequence ();
4946 return seq;
4947 }
4948
4949 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4950 note of this type already exists, remove it first. */
4951
4952 rtx
4953 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4954 {
4955 rtx note = find_reg_note (insn, kind, NULL_RTX);
4956
4957 switch (kind)
4958 {
4959 case REG_EQUAL:
4960 case REG_EQUIV:
4961 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4962 has multiple sets (some callers assume single_set
4963 means the insn only has one set, when in fact it
4964 means the insn only has one * useful * set). */
4965 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4966 {
4967 gcc_assert (!note);
4968 return NULL_RTX;
4969 }
4970
4971 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4972 It serves no useful purpose and breaks eliminate_regs. */
4973 if (GET_CODE (datum) == ASM_OPERANDS)
4974 return NULL_RTX;
4975
4976 if (note)
4977 {
4978 XEXP (note, 0) = datum;
4979 df_notes_rescan (insn);
4980 return note;
4981 }
4982 break;
4983
4984 default:
4985 if (note)
4986 {
4987 XEXP (note, 0) = datum;
4988 return note;
4989 }
4990 break;
4991 }
4992
4993 add_reg_note (insn, kind, datum);
4994
4995 switch (kind)
4996 {
4997 case REG_EQUAL:
4998 case REG_EQUIV:
4999 df_notes_rescan (insn);
5000 break;
5001 default:
5002 break;
5003 }
5004
5005 return REG_NOTES (insn);
5006 }
5007
5008 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5009 rtx
5010 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5011 {
5012 rtx set = single_set (insn);
5013
5014 if (set && SET_DEST (set) == dst)
5015 return set_unique_reg_note (insn, kind, datum);
5016 return NULL_RTX;
5017 }
5018 \f
5019 /* Return an indication of which type of insn should have X as a body.
5020 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5021
5022 static enum rtx_code
5023 classify_insn (rtx x)
5024 {
5025 if (LABEL_P (x))
5026 return CODE_LABEL;
5027 if (GET_CODE (x) == CALL)
5028 return CALL_INSN;
5029 if (ANY_RETURN_P (x))
5030 return JUMP_INSN;
5031 if (GET_CODE (x) == SET)
5032 {
5033 if (SET_DEST (x) == pc_rtx)
5034 return JUMP_INSN;
5035 else if (GET_CODE (SET_SRC (x)) == CALL)
5036 return CALL_INSN;
5037 else
5038 return INSN;
5039 }
5040 if (GET_CODE (x) == PARALLEL)
5041 {
5042 int j;
5043 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5044 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5045 return CALL_INSN;
5046 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5047 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5048 return JUMP_INSN;
5049 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5050 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5051 return CALL_INSN;
5052 }
5053 return INSN;
5054 }
5055
5056 /* Emit the rtl pattern X as an appropriate kind of insn.
5057 If X is a label, it is simply added into the insn chain. */
5058
5059 rtx
5060 emit (rtx x)
5061 {
5062 enum rtx_code code = classify_insn (x);
5063
5064 switch (code)
5065 {
5066 case CODE_LABEL:
5067 return emit_label (x);
5068 case INSN:
5069 return emit_insn (x);
5070 case JUMP_INSN:
5071 {
5072 rtx insn = emit_jump_insn (x);
5073 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5074 return emit_barrier ();
5075 return insn;
5076 }
5077 case CALL_INSN:
5078 return emit_call_insn (x);
5079 case DEBUG_INSN:
5080 return emit_debug_insn (x);
5081 default:
5082 gcc_unreachable ();
5083 }
5084 }
5085 \f
5086 /* Space for free sequence stack entries. */
5087 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5088
5089 /* Begin emitting insns to a sequence. If this sequence will contain
5090 something that might cause the compiler to pop arguments to function
5091 calls (because those pops have previously been deferred; see
5092 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5093 before calling this function. That will ensure that the deferred
5094 pops are not accidentally emitted in the middle of this sequence. */
5095
5096 void
5097 start_sequence (void)
5098 {
5099 struct sequence_stack *tem;
5100
5101 if (free_sequence_stack != NULL)
5102 {
5103 tem = free_sequence_stack;
5104 free_sequence_stack = tem->next;
5105 }
5106 else
5107 tem = ggc_alloc_sequence_stack ();
5108
5109 tem->next = seq_stack;
5110 tem->first = get_insns ();
5111 tem->last = get_last_insn ();
5112
5113 seq_stack = tem;
5114
5115 set_first_insn (0);
5116 set_last_insn (0);
5117 }
5118
5119 /* Set up the insn chain starting with FIRST as the current sequence,
5120 saving the previously current one. See the documentation for
5121 start_sequence for more information about how to use this function. */
5122
5123 void
5124 push_to_sequence (rtx first)
5125 {
5126 rtx last;
5127
5128 start_sequence ();
5129
5130 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5131 ;
5132
5133 set_first_insn (first);
5134 set_last_insn (last);
5135 }
5136
5137 /* Like push_to_sequence, but take the last insn as an argument to avoid
5138 looping through the list. */
5139
5140 void
5141 push_to_sequence2 (rtx first, rtx last)
5142 {
5143 start_sequence ();
5144
5145 set_first_insn (first);
5146 set_last_insn (last);
5147 }
5148
5149 /* Set up the outer-level insn chain
5150 as the current sequence, saving the previously current one. */
5151
5152 void
5153 push_topmost_sequence (void)
5154 {
5155 struct sequence_stack *stack, *top = NULL;
5156
5157 start_sequence ();
5158
5159 for (stack = seq_stack; stack; stack = stack->next)
5160 top = stack;
5161
5162 set_first_insn (top->first);
5163 set_last_insn (top->last);
5164 }
5165
5166 /* After emitting to the outer-level insn chain, update the outer-level
5167 insn chain, and restore the previous saved state. */
5168
5169 void
5170 pop_topmost_sequence (void)
5171 {
5172 struct sequence_stack *stack, *top = NULL;
5173
5174 for (stack = seq_stack; stack; stack = stack->next)
5175 top = stack;
5176
5177 top->first = get_insns ();
5178 top->last = get_last_insn ();
5179
5180 end_sequence ();
5181 }
5182
5183 /* After emitting to a sequence, restore previous saved state.
5184
5185 To get the contents of the sequence just made, you must call
5186 `get_insns' *before* calling here.
5187
5188 If the compiler might have deferred popping arguments while
5189 generating this sequence, and this sequence will not be immediately
5190 inserted into the instruction stream, use do_pending_stack_adjust
5191 before calling get_insns. That will ensure that the deferred
5192 pops are inserted into this sequence, and not into some random
5193 location in the instruction stream. See INHIBIT_DEFER_POP for more
5194 information about deferred popping of arguments. */
5195
5196 void
5197 end_sequence (void)
5198 {
5199 struct sequence_stack *tem = seq_stack;
5200
5201 set_first_insn (tem->first);
5202 set_last_insn (tem->last);
5203 seq_stack = tem->next;
5204
5205 memset (tem, 0, sizeof (*tem));
5206 tem->next = free_sequence_stack;
5207 free_sequence_stack = tem;
5208 }
5209
5210 /* Return 1 if currently emitting into a sequence. */
5211
5212 int
5213 in_sequence_p (void)
5214 {
5215 return seq_stack != 0;
5216 }
5217 \f
5218 /* Put the various virtual registers into REGNO_REG_RTX. */
5219
5220 static void
5221 init_virtual_regs (void)
5222 {
5223 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5224 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5225 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5226 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5227 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5228 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5229 = virtual_preferred_stack_boundary_rtx;
5230 }
5231
5232 \f
5233 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5234 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5235 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5236 static int copy_insn_n_scratches;
5237
5238 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5239 copied an ASM_OPERANDS.
5240 In that case, it is the original input-operand vector. */
5241 static rtvec orig_asm_operands_vector;
5242
5243 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5244 copied an ASM_OPERANDS.
5245 In that case, it is the copied input-operand vector. */
5246 static rtvec copy_asm_operands_vector;
5247
5248 /* Likewise for the constraints vector. */
5249 static rtvec orig_asm_constraints_vector;
5250 static rtvec copy_asm_constraints_vector;
5251
5252 /* Recursively create a new copy of an rtx for copy_insn.
5253 This function differs from copy_rtx in that it handles SCRATCHes and
5254 ASM_OPERANDs properly.
5255 Normally, this function is not used directly; use copy_insn as front end.
5256 However, you could first copy an insn pattern with copy_insn and then use
5257 this function afterwards to properly copy any REG_NOTEs containing
5258 SCRATCHes. */
5259
5260 rtx
5261 copy_insn_1 (rtx orig)
5262 {
5263 rtx copy;
5264 int i, j;
5265 RTX_CODE code;
5266 const char *format_ptr;
5267
5268 if (orig == NULL)
5269 return NULL;
5270
5271 code = GET_CODE (orig);
5272
5273 switch (code)
5274 {
5275 case REG:
5276 case DEBUG_EXPR:
5277 CASE_CONST_ANY:
5278 case SYMBOL_REF:
5279 case CODE_LABEL:
5280 case PC:
5281 case CC0:
5282 case RETURN:
5283 case SIMPLE_RETURN:
5284 return orig;
5285 case CLOBBER:
5286 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5287 return orig;
5288 break;
5289
5290 case SCRATCH:
5291 for (i = 0; i < copy_insn_n_scratches; i++)
5292 if (copy_insn_scratch_in[i] == orig)
5293 return copy_insn_scratch_out[i];
5294 break;
5295
5296 case CONST:
5297 if (shared_const_p (orig))
5298 return orig;
5299 break;
5300
5301 /* A MEM with a constant address is not sharable. The problem is that
5302 the constant address may need to be reloaded. If the mem is shared,
5303 then reloading one copy of this mem will cause all copies to appear
5304 to have been reloaded. */
5305
5306 default:
5307 break;
5308 }
5309
5310 /* Copy the various flags, fields, and other information. We assume
5311 that all fields need copying, and then clear the fields that should
5312 not be copied. That is the sensible default behavior, and forces
5313 us to explicitly document why we are *not* copying a flag. */
5314 copy = shallow_copy_rtx (orig);
5315
5316 /* We do not copy the USED flag, which is used as a mark bit during
5317 walks over the RTL. */
5318 RTX_FLAG (copy, used) = 0;
5319
5320 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5321 if (INSN_P (orig))
5322 {
5323 RTX_FLAG (copy, jump) = 0;
5324 RTX_FLAG (copy, call) = 0;
5325 RTX_FLAG (copy, frame_related) = 0;
5326 }
5327
5328 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5329
5330 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5331 switch (*format_ptr++)
5332 {
5333 case 'e':
5334 if (XEXP (orig, i) != NULL)
5335 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5336 break;
5337
5338 case 'E':
5339 case 'V':
5340 if (XVEC (orig, i) == orig_asm_constraints_vector)
5341 XVEC (copy, i) = copy_asm_constraints_vector;
5342 else if (XVEC (orig, i) == orig_asm_operands_vector)
5343 XVEC (copy, i) = copy_asm_operands_vector;
5344 else if (XVEC (orig, i) != NULL)
5345 {
5346 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5347 for (j = 0; j < XVECLEN (copy, i); j++)
5348 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5349 }
5350 break;
5351
5352 case 't':
5353 case 'w':
5354 case 'i':
5355 case 's':
5356 case 'S':
5357 case 'u':
5358 case '0':
5359 /* These are left unchanged. */
5360 break;
5361
5362 default:
5363 gcc_unreachable ();
5364 }
5365
5366 if (code == SCRATCH)
5367 {
5368 i = copy_insn_n_scratches++;
5369 gcc_assert (i < MAX_RECOG_OPERANDS);
5370 copy_insn_scratch_in[i] = orig;
5371 copy_insn_scratch_out[i] = copy;
5372 }
5373 else if (code == ASM_OPERANDS)
5374 {
5375 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5376 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5377 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5378 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5379 }
5380
5381 return copy;
5382 }
5383
5384 /* Create a new copy of an rtx.
5385 This function differs from copy_rtx in that it handles SCRATCHes and
5386 ASM_OPERANDs properly.
5387 INSN doesn't really have to be a full INSN; it could be just the
5388 pattern. */
5389 rtx
5390 copy_insn (rtx insn)
5391 {
5392 copy_insn_n_scratches = 0;
5393 orig_asm_operands_vector = 0;
5394 orig_asm_constraints_vector = 0;
5395 copy_asm_operands_vector = 0;
5396 copy_asm_constraints_vector = 0;
5397 return copy_insn_1 (insn);
5398 }
5399
5400 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5401 on that assumption that INSN itself remains in its original place. */
5402
5403 rtx
5404 copy_delay_slot_insn (rtx insn)
5405 {
5406 /* Copy INSN with its rtx_code, all its notes, location etc. */
5407 insn = copy_rtx (insn);
5408 INSN_UID (insn) = cur_insn_uid++;
5409 return insn;
5410 }
5411
5412 /* Initialize data structures and variables in this file
5413 before generating rtl for each function. */
5414
5415 void
5416 init_emit (void)
5417 {
5418 set_first_insn (NULL);
5419 set_last_insn (NULL);
5420 if (MIN_NONDEBUG_INSN_UID)
5421 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5422 else
5423 cur_insn_uid = 1;
5424 cur_debug_insn_uid = 1;
5425 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5426 first_label_num = label_num;
5427 seq_stack = NULL;
5428
5429 /* Init the tables that describe all the pseudo regs. */
5430
5431 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5432
5433 crtl->emit.regno_pointer_align
5434 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5435
5436 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5437
5438 /* Put copies of all the hard registers into regno_reg_rtx. */
5439 memcpy (regno_reg_rtx,
5440 initial_regno_reg_rtx,
5441 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5442
5443 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5444 init_virtual_regs ();
5445
5446 /* Indicate that the virtual registers and stack locations are
5447 all pointers. */
5448 REG_POINTER (stack_pointer_rtx) = 1;
5449 REG_POINTER (frame_pointer_rtx) = 1;
5450 REG_POINTER (hard_frame_pointer_rtx) = 1;
5451 REG_POINTER (arg_pointer_rtx) = 1;
5452
5453 REG_POINTER (virtual_incoming_args_rtx) = 1;
5454 REG_POINTER (virtual_stack_vars_rtx) = 1;
5455 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5456 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5457 REG_POINTER (virtual_cfa_rtx) = 1;
5458
5459 #ifdef STACK_BOUNDARY
5460 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5461 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5462 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5463 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5464
5465 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5466 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5467 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5468 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5469 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5470 #endif
5471
5472 #ifdef INIT_EXPANDERS
5473 INIT_EXPANDERS;
5474 #endif
5475 }
5476
5477 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5478
5479 static rtx
5480 gen_const_vector (enum machine_mode mode, int constant)
5481 {
5482 rtx tem;
5483 rtvec v;
5484 int units, i;
5485 enum machine_mode inner;
5486
5487 units = GET_MODE_NUNITS (mode);
5488 inner = GET_MODE_INNER (mode);
5489
5490 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5491
5492 v = rtvec_alloc (units);
5493
5494 /* We need to call this function after we set the scalar const_tiny_rtx
5495 entries. */
5496 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5497
5498 for (i = 0; i < units; ++i)
5499 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5500
5501 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5502 return tem;
5503 }
5504
5505 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5506 all elements are zero, and the one vector when all elements are one. */
5507 rtx
5508 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5509 {
5510 enum machine_mode inner = GET_MODE_INNER (mode);
5511 int nunits = GET_MODE_NUNITS (mode);
5512 rtx x;
5513 int i;
5514
5515 /* Check to see if all of the elements have the same value. */
5516 x = RTVEC_ELT (v, nunits - 1);
5517 for (i = nunits - 2; i >= 0; i--)
5518 if (RTVEC_ELT (v, i) != x)
5519 break;
5520
5521 /* If the values are all the same, check to see if we can use one of the
5522 standard constant vectors. */
5523 if (i == -1)
5524 {
5525 if (x == CONST0_RTX (inner))
5526 return CONST0_RTX (mode);
5527 else if (x == CONST1_RTX (inner))
5528 return CONST1_RTX (mode);
5529 else if (x == CONSTM1_RTX (inner))
5530 return CONSTM1_RTX (mode);
5531 }
5532
5533 return gen_rtx_raw_CONST_VECTOR (mode, v);
5534 }
5535
5536 /* Initialise global register information required by all functions. */
5537
5538 void
5539 init_emit_regs (void)
5540 {
5541 int i;
5542 enum machine_mode mode;
5543 mem_attrs *attrs;
5544
5545 /* Reset register attributes */
5546 htab_empty (reg_attrs_htab);
5547
5548 /* We need reg_raw_mode, so initialize the modes now. */
5549 init_reg_modes_target ();
5550
5551 /* Assign register numbers to the globally defined register rtx. */
5552 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5553 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5554 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5555 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5556 virtual_incoming_args_rtx =
5557 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5558 virtual_stack_vars_rtx =
5559 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5560 virtual_stack_dynamic_rtx =
5561 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5562 virtual_outgoing_args_rtx =
5563 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5564 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5565 virtual_preferred_stack_boundary_rtx =
5566 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5567
5568 /* Initialize RTL for commonly used hard registers. These are
5569 copied into regno_reg_rtx as we begin to compile each function. */
5570 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5571 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5572
5573 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5574 return_address_pointer_rtx
5575 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5576 #endif
5577
5578 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5579 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5580 else
5581 pic_offset_table_rtx = NULL_RTX;
5582
5583 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5584 {
5585 mode = (enum machine_mode) i;
5586 attrs = ggc_alloc_cleared_mem_attrs ();
5587 attrs->align = BITS_PER_UNIT;
5588 attrs->addrspace = ADDR_SPACE_GENERIC;
5589 if (mode != BLKmode)
5590 {
5591 attrs->size_known_p = true;
5592 attrs->size = GET_MODE_SIZE (mode);
5593 if (STRICT_ALIGNMENT)
5594 attrs->align = GET_MODE_ALIGNMENT (mode);
5595 }
5596 mode_mem_attrs[i] = attrs;
5597 }
5598 }
5599
5600 /* Create some permanent unique rtl objects shared between all functions. */
5601
5602 void
5603 init_emit_once (void)
5604 {
5605 int i;
5606 enum machine_mode mode;
5607 enum machine_mode double_mode;
5608
5609 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5610 hash tables. */
5611 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5612 const_int_htab_eq, NULL);
5613
5614 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5615 const_double_htab_eq, NULL);
5616
5617 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5618 const_fixed_htab_eq, NULL);
5619
5620 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5621 mem_attrs_htab_eq, NULL);
5622 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5623 reg_attrs_htab_eq, NULL);
5624
5625 /* Compute the word and byte modes. */
5626
5627 byte_mode = VOIDmode;
5628 word_mode = VOIDmode;
5629 double_mode = VOIDmode;
5630
5631 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5632 mode != VOIDmode;
5633 mode = GET_MODE_WIDER_MODE (mode))
5634 {
5635 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5636 && byte_mode == VOIDmode)
5637 byte_mode = mode;
5638
5639 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5640 && word_mode == VOIDmode)
5641 word_mode = mode;
5642 }
5643
5644 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5645 mode != VOIDmode;
5646 mode = GET_MODE_WIDER_MODE (mode))
5647 {
5648 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5649 && double_mode == VOIDmode)
5650 double_mode = mode;
5651 }
5652
5653 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5654
5655 #ifdef INIT_EXPANDERS
5656 /* This is to initialize {init|mark|free}_machine_status before the first
5657 call to push_function_context_to. This is needed by the Chill front
5658 end which calls push_function_context_to before the first call to
5659 init_function_start. */
5660 INIT_EXPANDERS;
5661 #endif
5662
5663 /* Create the unique rtx's for certain rtx codes and operand values. */
5664
5665 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5666 tries to use these variables. */
5667 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5668 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5669 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5670
5671 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5672 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5673 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5674 else
5675 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5676
5677 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5678 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5679 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5680
5681 dconstm1 = dconst1;
5682 dconstm1.sign = 1;
5683
5684 dconsthalf = dconst1;
5685 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5686
5687 for (i = 0; i < 3; i++)
5688 {
5689 const REAL_VALUE_TYPE *const r =
5690 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5691
5692 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5693 mode != VOIDmode;
5694 mode = GET_MODE_WIDER_MODE (mode))
5695 const_tiny_rtx[i][(int) mode] =
5696 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5697
5698 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5699 mode != VOIDmode;
5700 mode = GET_MODE_WIDER_MODE (mode))
5701 const_tiny_rtx[i][(int) mode] =
5702 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5703
5704 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5705
5706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5707 mode != VOIDmode;
5708 mode = GET_MODE_WIDER_MODE (mode))
5709 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5710
5711 for (mode = MIN_MODE_PARTIAL_INT;
5712 mode <= MAX_MODE_PARTIAL_INT;
5713 mode = (enum machine_mode)((int)(mode) + 1))
5714 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5715 }
5716
5717 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5718
5719 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5720 mode != VOIDmode;
5721 mode = GET_MODE_WIDER_MODE (mode))
5722 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5723
5724 for (mode = MIN_MODE_PARTIAL_INT;
5725 mode <= MAX_MODE_PARTIAL_INT;
5726 mode = (enum machine_mode)((int)(mode) + 1))
5727 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5728
5729 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5730 mode != VOIDmode;
5731 mode = GET_MODE_WIDER_MODE (mode))
5732 {
5733 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5734 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5735 }
5736
5737 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5738 mode != VOIDmode;
5739 mode = GET_MODE_WIDER_MODE (mode))
5740 {
5741 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5742 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5743 }
5744
5745 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5746 mode != VOIDmode;
5747 mode = GET_MODE_WIDER_MODE (mode))
5748 {
5749 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5750 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5751 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5752 }
5753
5754 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5755 mode != VOIDmode;
5756 mode = GET_MODE_WIDER_MODE (mode))
5757 {
5758 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5759 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5760 }
5761
5762 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5763 mode != VOIDmode;
5764 mode = GET_MODE_WIDER_MODE (mode))
5765 {
5766 FCONST0(mode).data.high = 0;
5767 FCONST0(mode).data.low = 0;
5768 FCONST0(mode).mode = mode;
5769 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5770 FCONST0 (mode), mode);
5771 }
5772
5773 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5774 mode != VOIDmode;
5775 mode = GET_MODE_WIDER_MODE (mode))
5776 {
5777 FCONST0(mode).data.high = 0;
5778 FCONST0(mode).data.low = 0;
5779 FCONST0(mode).mode = mode;
5780 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5781 FCONST0 (mode), mode);
5782 }
5783
5784 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5785 mode != VOIDmode;
5786 mode = GET_MODE_WIDER_MODE (mode))
5787 {
5788 FCONST0(mode).data.high = 0;
5789 FCONST0(mode).data.low = 0;
5790 FCONST0(mode).mode = mode;
5791 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5792 FCONST0 (mode), mode);
5793
5794 /* We store the value 1. */
5795 FCONST1(mode).data.high = 0;
5796 FCONST1(mode).data.low = 0;
5797 FCONST1(mode).mode = mode;
5798 FCONST1(mode).data
5799 = double_int_one.lshift (GET_MODE_FBIT (mode),
5800 HOST_BITS_PER_DOUBLE_INT,
5801 SIGNED_FIXED_POINT_MODE_P (mode));
5802 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5803 FCONST1 (mode), mode);
5804 }
5805
5806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5807 mode != VOIDmode;
5808 mode = GET_MODE_WIDER_MODE (mode))
5809 {
5810 FCONST0(mode).data.high = 0;
5811 FCONST0(mode).data.low = 0;
5812 FCONST0(mode).mode = mode;
5813 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5814 FCONST0 (mode), mode);
5815
5816 /* We store the value 1. */
5817 FCONST1(mode).data.high = 0;
5818 FCONST1(mode).data.low = 0;
5819 FCONST1(mode).mode = mode;
5820 FCONST1(mode).data
5821 = double_int_one.lshift (GET_MODE_FBIT (mode),
5822 HOST_BITS_PER_DOUBLE_INT,
5823 SIGNED_FIXED_POINT_MODE_P (mode));
5824 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5825 FCONST1 (mode), mode);
5826 }
5827
5828 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5829 mode != VOIDmode;
5830 mode = GET_MODE_WIDER_MODE (mode))
5831 {
5832 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5833 }
5834
5835 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5836 mode != VOIDmode;
5837 mode = GET_MODE_WIDER_MODE (mode))
5838 {
5839 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5840 }
5841
5842 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5843 mode != VOIDmode;
5844 mode = GET_MODE_WIDER_MODE (mode))
5845 {
5846 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5847 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5848 }
5849
5850 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5851 mode != VOIDmode;
5852 mode = GET_MODE_WIDER_MODE (mode))
5853 {
5854 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5855 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5856 }
5857
5858 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5859 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5860 const_tiny_rtx[0][i] = const0_rtx;
5861
5862 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5863 if (STORE_FLAG_VALUE == 1)
5864 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5865
5866 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5867 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5868 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5869 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5870 }
5871 \f
5872 /* Produce exact duplicate of insn INSN after AFTER.
5873 Care updating of libcall regions if present. */
5874
5875 rtx
5876 emit_copy_of_insn_after (rtx insn, rtx after)
5877 {
5878 rtx new_rtx, link;
5879
5880 switch (GET_CODE (insn))
5881 {
5882 case INSN:
5883 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5884 break;
5885
5886 case JUMP_INSN:
5887 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5888 break;
5889
5890 case DEBUG_INSN:
5891 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5892 break;
5893
5894 case CALL_INSN:
5895 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5896 if (CALL_INSN_FUNCTION_USAGE (insn))
5897 CALL_INSN_FUNCTION_USAGE (new_rtx)
5898 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5899 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5900 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5901 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5902 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5903 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5904 break;
5905
5906 default:
5907 gcc_unreachable ();
5908 }
5909
5910 /* Update LABEL_NUSES. */
5911 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5912
5913 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
5914
5915 /* If the old insn is frame related, then so is the new one. This is
5916 primarily needed for IA-64 unwind info which marks epilogue insns,
5917 which may be duplicated by the basic block reordering code. */
5918 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5919
5920 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5921 will make them. REG_LABEL_TARGETs are created there too, but are
5922 supposed to be sticky, so we copy them. */
5923 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5924 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5925 {
5926 if (GET_CODE (link) == EXPR_LIST)
5927 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5928 copy_insn_1 (XEXP (link, 0)));
5929 else
5930 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5931 }
5932
5933 INSN_CODE (new_rtx) = INSN_CODE (insn);
5934 return new_rtx;
5935 }
5936
5937 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5938 rtx
5939 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5940 {
5941 if (hard_reg_clobbers[mode][regno])
5942 return hard_reg_clobbers[mode][regno];
5943 else
5944 return (hard_reg_clobbers[mode][regno] =
5945 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5946 }
5947
5948 location_t prologue_location;
5949 location_t epilogue_location;
5950
5951 /* Hold current location information and last location information, so the
5952 datastructures are built lazily only when some instructions in given
5953 place are needed. */
5954 static location_t curr_location, last_location;
5955
5956 /* Allocate insn location datastructure. */
5957 void
5958 insn_locations_init (void)
5959 {
5960 prologue_location = epilogue_location = 0;
5961 curr_location = UNKNOWN_LOCATION;
5962 last_location = UNKNOWN_LOCATION;
5963 }
5964
5965 /* At the end of emit stage, clear current location. */
5966 void
5967 insn_locations_finalize (void)
5968 {
5969 epilogue_location = curr_location;
5970 curr_location = UNKNOWN_LOCATION;
5971 }
5972
5973 /* Set current location. */
5974 void
5975 set_curr_insn_location (location_t location)
5976 {
5977 curr_location = location;
5978 }
5979
5980 /* Get current location. */
5981 location_t
5982 curr_insn_location (void)
5983 {
5984 return curr_location;
5985 }
5986
5987 /* Return lexical scope block insn belongs to. */
5988 tree
5989 insn_scope (const_rtx insn)
5990 {
5991 return LOCATION_BLOCK (INSN_LOCATION (insn));
5992 }
5993
5994 /* Return line number of the statement that produced this insn. */
5995 int
5996 insn_line (const_rtx insn)
5997 {
5998 return LOCATION_LINE (INSN_LOCATION (insn));
5999 }
6000
6001 /* Return source file of the statement that produced this insn. */
6002 const char *
6003 insn_file (const_rtx insn)
6004 {
6005 return LOCATION_FILE (INSN_LOCATION (insn));
6006 }
6007
6008 /* Return true if memory model MODEL requires a pre-operation (release-style)
6009 barrier or a post-operation (acquire-style) barrier. While not universal,
6010 this function matches behavior of several targets. */
6011
6012 bool
6013 need_atomic_barrier_p (enum memmodel model, bool pre)
6014 {
6015 switch (model)
6016 {
6017 case MEMMODEL_RELAXED:
6018 case MEMMODEL_CONSUME:
6019 return false;
6020 case MEMMODEL_RELEASE:
6021 return pre;
6022 case MEMMODEL_ACQUIRE:
6023 return !pre;
6024 case MEMMODEL_ACQ_REL:
6025 case MEMMODEL_SEQ_CST:
6026 return true;
6027 default:
6028 gcc_unreachable ();
6029 }
6030 }
6031 \f
6032 #include "gt-emit-rtl.h"