emit-rtl.c (active_insn_p): Consider a clobber of the function return value to be...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconstm1;
112
113 /* All references to the following fixed hard registers go through
114 these unique rtl objects. On machines where the frame-pointer and
115 arg-pointer are the same register, they use the same unique object.
116
117 After register allocation, other rtl objects which used to be pseudo-regs
118 may be clobbered to refer to the frame-pointer register.
119 But references that were originally to the frame-pointer can be
120 distinguished from the others because they contain frame_pointer_rtx.
121
122 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
123 tricky: until register elimination has taken place hard_frame_pointer_rtx
124 should be used if it is being set, and frame_pointer_rtx otherwise. After
125 register elimination hard_frame_pointer_rtx should always be used.
126 On machines where the two registers are same (most) then these are the
127 same.
128
129 In an inline procedure, the stack and frame pointer rtxs may not be
130 used for anything else. */
131 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
132 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
133 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
134 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
135 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
136
137 /* This is used to implement __builtin_return_address for some machines.
138 See for instance the MIPS port. */
139 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
140
141 /* We make one copy of (const_int C) where C is in
142 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
143 to save space during the compilation and simplify comparisons of
144 integers. */
145
146 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
147
148 /* A hash table storing CONST_INTs whose absolute value is greater
149 than MAX_SAVED_CONST_INT. */
150
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
152 htab_t const_int_htab;
153
154 /* A hash table storing memory attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
156 htab_t mem_attrs_htab;
157
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
161
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_linenum (cfun->emit->x_last_linenum)
166 #define last_filename (cfun->emit->x_last_filename)
167 #define first_label_num (cfun->emit->x_first_label_num)
168
169 static rtx make_jump_insn_raw PARAMS ((rtx));
170 static rtx make_call_insn_raw PARAMS ((rtx));
171 static rtx find_line_note PARAMS ((rtx));
172 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
173 int));
174 static void unshare_all_rtl_1 PARAMS ((rtx));
175 static void unshare_all_decls PARAMS ((tree));
176 static void reset_used_decls PARAMS ((tree));
177 static void mark_label_nuses PARAMS ((rtx));
178 static hashval_t const_int_htab_hash PARAMS ((const void *));
179 static int const_int_htab_eq PARAMS ((const void *,
180 const void *));
181 static hashval_t const_double_htab_hash PARAMS ((const void *));
182 static int const_double_htab_eq PARAMS ((const void *,
183 const void *));
184 static rtx lookup_const_double PARAMS ((rtx));
185 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
186 static int mem_attrs_htab_eq PARAMS ((const void *,
187 const void *));
188 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
189 rtx, unsigned int,
190 enum machine_mode));
191 static tree component_ref_for_mem_expr PARAMS ((tree));
192 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
193
194 /* Probability of the conditional branch currently proceeded by try_split.
195 Set to -1 otherwise. */
196 int split_branch_probability = -1;
197 \f
198 /* Returns a hash code for X (which is a really a CONST_INT). */
199
200 static hashval_t
201 const_int_htab_hash (x)
202 const void *x;
203 {
204 return (hashval_t) INTVAL ((struct rtx_def *) x);
205 }
206
207 /* Returns nonzero if the value represented by X (which is really a
208 CONST_INT) is the same as that given by Y (which is really a
209 HOST_WIDE_INT *). */
210
211 static int
212 const_int_htab_eq (x, y)
213 const void *x;
214 const void *y;
215 {
216 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
217 }
218
219 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
220 static hashval_t
221 const_double_htab_hash (x)
222 const void *x;
223 {
224 rtx value = (rtx) x;
225 hashval_t h;
226
227 if (GET_MODE (value) == VOIDmode)
228 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
229 else
230 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
231 return h;
232 }
233
234 /* Returns nonzero if the value represented by X (really a ...)
235 is the same as that represented by Y (really a ...) */
236 static int
237 const_double_htab_eq (x, y)
238 const void *x;
239 const void *y;
240 {
241 rtx a = (rtx)x, b = (rtx)y;
242 size_t i;
243
244 if (GET_MODE (a) != GET_MODE (b))
245 return 0;
246 if (GET_MODE (a) == VOIDmode)
247 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
248 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
249 else
250 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
251 CONST_DOUBLE_REAL_VALUE (b));
252 }
253
254 /* Returns a hash code for X (which is a really a mem_attrs *). */
255
256 static hashval_t
257 mem_attrs_htab_hash (x)
258 const void *x;
259 {
260 mem_attrs *p = (mem_attrs *) x;
261
262 return (p->alias ^ (p->align * 1000)
263 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
264 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
265 ^ (size_t) p->expr);
266 }
267
268 /* Returns nonzero if the value represented by X (which is really a
269 mem_attrs *) is the same as that given by Y (which is also really a
270 mem_attrs *). */
271
272 static int
273 mem_attrs_htab_eq (x, y)
274 const void *x;
275 const void *y;
276 {
277 mem_attrs *p = (mem_attrs *) x;
278 mem_attrs *q = (mem_attrs *) y;
279
280 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
281 && p->size == q->size && p->align == q->align);
282 }
283
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
287
288 static mem_attrs *
289 get_mem_attrs (alias, expr, offset, size, align, mode)
290 HOST_WIDE_INT alias;
291 tree expr;
292 rtx offset;
293 rtx size;
294 unsigned int align;
295 enum machine_mode mode;
296 {
297 mem_attrs attrs;
298 void **slot;
299
300 /* If everything is the default, we can just return zero. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (align == BITS_PER_UNIT
305 || (STRICT_ALIGNMENT
306 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
307 return 0;
308
309 attrs.alias = alias;
310 attrs.expr = expr;
311 attrs.offset = offset;
312 attrs.size = size;
313 attrs.align = align;
314
315 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
316 if (*slot == 0)
317 {
318 *slot = ggc_alloc (sizeof (mem_attrs));
319 memcpy (*slot, &attrs, sizeof (mem_attrs));
320 }
321
322 return *slot;
323 }
324
325 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
326 don't attempt to share with the various global pieces of rtl (such as
327 frame_pointer_rtx). */
328
329 rtx
330 gen_raw_REG (mode, regno)
331 enum machine_mode mode;
332 int regno;
333 {
334 rtx x = gen_rtx_raw_REG (mode, regno);
335 ORIGINAL_REGNO (x) = regno;
336 return x;
337 }
338
339 /* There are some RTL codes that require special attention; the generation
340 functions do the raw handling. If you add to this list, modify
341 special_rtx in gengenrtl.c as well. */
342
343 rtx
344 gen_rtx_CONST_INT (mode, arg)
345 enum machine_mode mode ATTRIBUTE_UNUSED;
346 HOST_WIDE_INT arg;
347 {
348 void **slot;
349
350 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
351 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
352
353 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
354 if (const_true_rtx && arg == STORE_FLAG_VALUE)
355 return const_true_rtx;
356 #endif
357
358 /* Look up the CONST_INT in the hash table. */
359 slot = htab_find_slot_with_hash (const_int_htab, &arg,
360 (hashval_t) arg, INSERT);
361 if (*slot == 0)
362 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
363
364 return (rtx) *slot;
365 }
366
367 rtx
368 gen_int_mode (c, mode)
369 HOST_WIDE_INT c;
370 enum machine_mode mode;
371 {
372 return GEN_INT (trunc_int_for_mode (c, mode));
373 }
374
375 /* CONST_DOUBLEs might be created from pairs of integers, or from
376 REAL_VALUE_TYPEs. Also, their length is known only at run time,
377 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
378
379 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
380 hash table. If so, return its counterpart; otherwise add it
381 to the hash table and return it. */
382 static rtx
383 lookup_const_double (real)
384 rtx real;
385 {
386 void **slot = htab_find_slot (const_double_htab, real, INSERT);
387 if (*slot == 0)
388 *slot = real;
389
390 return (rtx) *slot;
391 }
392
393 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
394 VALUE in mode MODE. */
395 rtx
396 const_double_from_real_value (value, mode)
397 REAL_VALUE_TYPE value;
398 enum machine_mode mode;
399 {
400 rtx real = rtx_alloc (CONST_DOUBLE);
401 PUT_MODE (real, mode);
402
403 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
404
405 return lookup_const_double (real);
406 }
407
408 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
409 of ints: I0 is the low-order word and I1 is the high-order word.
410 Do not use this routine for non-integer modes; convert to
411 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
412
413 rtx
414 immed_double_const (i0, i1, mode)
415 HOST_WIDE_INT i0, i1;
416 enum machine_mode mode;
417 {
418 rtx value;
419 unsigned int i;
420
421 if (mode != VOIDmode)
422 {
423 int width;
424 if (GET_MODE_CLASS (mode) != MODE_INT
425 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
426 /* We can get a 0 for an error mark. */
427 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
428 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
429 abort ();
430
431 /* We clear out all bits that don't belong in MODE, unless they and
432 our sign bit are all one. So we get either a reasonable negative
433 value or a reasonable unsigned value for this mode. */
434 width = GET_MODE_BITSIZE (mode);
435 if (width < HOST_BITS_PER_WIDE_INT
436 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
437 != ((HOST_WIDE_INT) (-1) << (width - 1))))
438 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
439 else if (width == HOST_BITS_PER_WIDE_INT
440 && ! (i1 == ~0 && i0 < 0))
441 i1 = 0;
442 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
443 /* We cannot represent this value as a constant. */
444 abort ();
445
446 /* If this would be an entire word for the target, but is not for
447 the host, then sign-extend on the host so that the number will
448 look the same way on the host that it would on the target.
449
450 For example, when building a 64 bit alpha hosted 32 bit sparc
451 targeted compiler, then we want the 32 bit unsigned value -1 to be
452 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
453 The latter confuses the sparc backend. */
454
455 if (width < HOST_BITS_PER_WIDE_INT
456 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
457 i0 |= ((HOST_WIDE_INT) (-1) << width);
458
459 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
460 CONST_INT.
461
462 ??? Strictly speaking, this is wrong if we create a CONST_INT for
463 a large unsigned constant with the size of MODE being
464 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
465 in a wider mode. In that case we will mis-interpret it as a
466 negative number.
467
468 Unfortunately, the only alternative is to make a CONST_DOUBLE for
469 any constant in any mode if it is an unsigned constant larger
470 than the maximum signed integer in an int on the host. However,
471 doing this will break everyone that always expects to see a
472 CONST_INT for SImode and smaller.
473
474 We have always been making CONST_INTs in this case, so nothing
475 new is being broken. */
476
477 if (width <= HOST_BITS_PER_WIDE_INT)
478 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
479 }
480
481 /* If this integer fits in one word, return a CONST_INT. */
482 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
483 return GEN_INT (i0);
484
485 /* We use VOIDmode for integers. */
486 value = rtx_alloc (CONST_DOUBLE);
487 PUT_MODE (value, VOIDmode);
488
489 CONST_DOUBLE_LOW (value) = i0;
490 CONST_DOUBLE_HIGH (value) = i1;
491
492 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
493 XWINT (value, i) = 0;
494
495 return lookup_const_double (value);
496 }
497
498 rtx
499 gen_rtx_REG (mode, regno)
500 enum machine_mode mode;
501 unsigned int regno;
502 {
503 /* In case the MD file explicitly references the frame pointer, have
504 all such references point to the same frame pointer. This is
505 used during frame pointer elimination to distinguish the explicit
506 references to these registers from pseudos that happened to be
507 assigned to them.
508
509 If we have eliminated the frame pointer or arg pointer, we will
510 be using it as a normal register, for example as a spill
511 register. In such cases, we might be accessing it in a mode that
512 is not Pmode and therefore cannot use the pre-allocated rtx.
513
514 Also don't do this when we are making new REGs in reload, since
515 we don't want to get confused with the real pointers. */
516
517 if (mode == Pmode && !reload_in_progress)
518 {
519 if (regno == FRAME_POINTER_REGNUM
520 && (!reload_completed || frame_pointer_needed))
521 return frame_pointer_rtx;
522 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
523 if (regno == HARD_FRAME_POINTER_REGNUM
524 && (!reload_completed || frame_pointer_needed))
525 return hard_frame_pointer_rtx;
526 #endif
527 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
528 if (regno == ARG_POINTER_REGNUM)
529 return arg_pointer_rtx;
530 #endif
531 #ifdef RETURN_ADDRESS_POINTER_REGNUM
532 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
533 return return_address_pointer_rtx;
534 #endif
535 if (regno == PIC_OFFSET_TABLE_REGNUM
536 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
537 return pic_offset_table_rtx;
538 if (regno == STACK_POINTER_REGNUM)
539 return stack_pointer_rtx;
540 }
541
542 #if 0
543 /* If the per-function register table has been set up, try to re-use
544 an existing entry in that table to avoid useless generation of RTL.
545
546 This code is disabled for now until we can fix the various backends
547 which depend on having non-shared hard registers in some cases. Long
548 term we want to re-enable this code as it can significantly cut down
549 on the amount of useless RTL that gets generated.
550
551 We'll also need to fix some code that runs after reload that wants to
552 set ORIGINAL_REGNO. */
553
554 if (cfun
555 && cfun->emit
556 && regno_reg_rtx
557 && regno < FIRST_PSEUDO_REGISTER
558 && reg_raw_mode[regno] == mode)
559 return regno_reg_rtx[regno];
560 #endif
561
562 return gen_raw_REG (mode, regno);
563 }
564
565 rtx
566 gen_rtx_MEM (mode, addr)
567 enum machine_mode mode;
568 rtx addr;
569 {
570 rtx rt = gen_rtx_raw_MEM (mode, addr);
571
572 /* This field is not cleared by the mere allocation of the rtx, so
573 we clear it here. */
574 MEM_ATTRS (rt) = 0;
575
576 return rt;
577 }
578
579 rtx
580 gen_rtx_SUBREG (mode, reg, offset)
581 enum machine_mode mode;
582 rtx reg;
583 int offset;
584 {
585 /* This is the most common failure type.
586 Catch it early so we can see who does it. */
587 if ((offset % GET_MODE_SIZE (mode)) != 0)
588 abort ();
589
590 /* This check isn't usable right now because combine will
591 throw arbitrary crap like a CALL into a SUBREG in
592 gen_lowpart_for_combine so we must just eat it. */
593 #if 0
594 /* Check for this too. */
595 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
596 abort ();
597 #endif
598 return gen_rtx_raw_SUBREG (mode, reg, offset);
599 }
600
601 /* Generate a SUBREG representing the least-significant part of REG if MODE
602 is smaller than mode of REG, otherwise paradoxical SUBREG. */
603
604 rtx
605 gen_lowpart_SUBREG (mode, reg)
606 enum machine_mode mode;
607 rtx reg;
608 {
609 enum machine_mode inmode;
610
611 inmode = GET_MODE (reg);
612 if (inmode == VOIDmode)
613 inmode = mode;
614 return gen_rtx_SUBREG (mode, reg,
615 subreg_lowpart_offset (mode, inmode));
616 }
617 \f
618 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
619 **
620 ** This routine generates an RTX of the size specified by
621 ** <code>, which is an RTX code. The RTX structure is initialized
622 ** from the arguments <element1> through <elementn>, which are
623 ** interpreted according to the specific RTX type's format. The
624 ** special machine mode associated with the rtx (if any) is specified
625 ** in <mode>.
626 **
627 ** gen_rtx can be invoked in a way which resembles the lisp-like
628 ** rtx it will generate. For example, the following rtx structure:
629 **
630 ** (plus:QI (mem:QI (reg:SI 1))
631 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
632 **
633 ** ...would be generated by the following C code:
634 **
635 ** gen_rtx (PLUS, QImode,
636 ** gen_rtx (MEM, QImode,
637 ** gen_rtx (REG, SImode, 1)),
638 ** gen_rtx (MEM, QImode,
639 ** gen_rtx (PLUS, SImode,
640 ** gen_rtx (REG, SImode, 2),
641 ** gen_rtx (REG, SImode, 3)))),
642 */
643
644 /*VARARGS2*/
645 rtx
646 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
647 {
648 int i; /* Array indices... */
649 const char *fmt; /* Current rtx's format... */
650 rtx rt_val; /* RTX to return to caller... */
651
652 VA_OPEN (p, mode);
653 VA_FIXEDARG (p, enum rtx_code, code);
654 VA_FIXEDARG (p, enum machine_mode, mode);
655
656 switch (code)
657 {
658 case CONST_INT:
659 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
660 break;
661
662 case CONST_DOUBLE:
663 {
664 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
665 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
666
667 rt_val = immed_double_const (arg0, arg1, mode);
668 }
669 break;
670
671 case REG:
672 rt_val = gen_rtx_REG (mode, va_arg (p, int));
673 break;
674
675 case MEM:
676 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
677 break;
678
679 default:
680 rt_val = rtx_alloc (code); /* Allocate the storage space. */
681 rt_val->mode = mode; /* Store the machine mode... */
682
683 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
684 for (i = 0; i < GET_RTX_LENGTH (code); i++)
685 {
686 switch (*fmt++)
687 {
688 case '0': /* Unused field. */
689 break;
690
691 case 'i': /* An integer? */
692 XINT (rt_val, i) = va_arg (p, int);
693 break;
694
695 case 'w': /* A wide integer? */
696 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
697 break;
698
699 case 's': /* A string? */
700 XSTR (rt_val, i) = va_arg (p, char *);
701 break;
702
703 case 'e': /* An expression? */
704 case 'u': /* An insn? Same except when printing. */
705 XEXP (rt_val, i) = va_arg (p, rtx);
706 break;
707
708 case 'E': /* An RTX vector? */
709 XVEC (rt_val, i) = va_arg (p, rtvec);
710 break;
711
712 case 'b': /* A bitmap? */
713 XBITMAP (rt_val, i) = va_arg (p, bitmap);
714 break;
715
716 case 't': /* A tree? */
717 XTREE (rt_val, i) = va_arg (p, tree);
718 break;
719
720 default:
721 abort ();
722 }
723 }
724 break;
725 }
726
727 VA_CLOSE (p);
728 return rt_val;
729 }
730
731 /* gen_rtvec (n, [rt1, ..., rtn])
732 **
733 ** This routine creates an rtvec and stores within it the
734 ** pointers to rtx's which are its arguments.
735 */
736
737 /*VARARGS1*/
738 rtvec
739 gen_rtvec VPARAMS ((int n, ...))
740 {
741 int i, save_n;
742 rtx *vector;
743
744 VA_OPEN (p, n);
745 VA_FIXEDARG (p, int, n);
746
747 if (n == 0)
748 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
749
750 vector = (rtx *) alloca (n * sizeof (rtx));
751
752 for (i = 0; i < n; i++)
753 vector[i] = va_arg (p, rtx);
754
755 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
756 save_n = n;
757 VA_CLOSE (p);
758
759 return gen_rtvec_v (save_n, vector);
760 }
761
762 rtvec
763 gen_rtvec_v (n, argp)
764 int n;
765 rtx *argp;
766 {
767 int i;
768 rtvec rt_val;
769
770 if (n == 0)
771 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
772
773 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
774
775 for (i = 0; i < n; i++)
776 rt_val->elem[i] = *argp++;
777
778 return rt_val;
779 }
780 \f
781 /* Generate a REG rtx for a new pseudo register of mode MODE.
782 This pseudo is assigned the next sequential register number. */
783
784 rtx
785 gen_reg_rtx (mode)
786 enum machine_mode mode;
787 {
788 struct function *f = cfun;
789 rtx val;
790
791 /* Don't let anything called after initial flow analysis create new
792 registers. */
793 if (no_new_pseudos)
794 abort ();
795
796 if (generating_concat_p
797 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
798 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
799 {
800 /* For complex modes, don't make a single pseudo.
801 Instead, make a CONCAT of two pseudos.
802 This allows noncontiguous allocation of the real and imaginary parts,
803 which makes much better code. Besides, allocating DCmode
804 pseudos overstrains reload on some machines like the 386. */
805 rtx realpart, imagpart;
806 int size = GET_MODE_UNIT_SIZE (mode);
807 enum machine_mode partmode
808 = mode_for_size (size * BITS_PER_UNIT,
809 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
810 ? MODE_FLOAT : MODE_INT),
811 0);
812
813 realpart = gen_reg_rtx (partmode);
814 imagpart = gen_reg_rtx (partmode);
815 return gen_rtx_CONCAT (mode, realpart, imagpart);
816 }
817
818 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
819 enough to have an element for this pseudo reg number. */
820
821 if (reg_rtx_no == f->emit->regno_pointer_align_length)
822 {
823 int old_size = f->emit->regno_pointer_align_length;
824 char *new;
825 rtx *new1;
826 tree *new2;
827
828 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
829 memset (new + old_size, 0, old_size);
830 f->emit->regno_pointer_align = (unsigned char *) new;
831
832 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
833 old_size * 2 * sizeof (rtx));
834 memset (new1 + old_size, 0, old_size * sizeof (rtx));
835 regno_reg_rtx = new1;
836
837 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
838 old_size * 2 * sizeof (tree));
839 memset (new2 + old_size, 0, old_size * sizeof (tree));
840 f->emit->regno_decl = new2;
841
842 f->emit->regno_pointer_align_length = old_size * 2;
843 }
844
845 val = gen_raw_REG (mode, reg_rtx_no);
846 regno_reg_rtx[reg_rtx_no++] = val;
847 return val;
848 }
849
850 /* Identify REG (which may be a CONCAT) as a user register. */
851
852 void
853 mark_user_reg (reg)
854 rtx reg;
855 {
856 if (GET_CODE (reg) == CONCAT)
857 {
858 REG_USERVAR_P (XEXP (reg, 0)) = 1;
859 REG_USERVAR_P (XEXP (reg, 1)) = 1;
860 }
861 else if (GET_CODE (reg) == REG)
862 REG_USERVAR_P (reg) = 1;
863 else
864 abort ();
865 }
866
867 /* Identify REG as a probable pointer register and show its alignment
868 as ALIGN, if nonzero. */
869
870 void
871 mark_reg_pointer (reg, align)
872 rtx reg;
873 int align;
874 {
875 if (! REG_POINTER (reg))
876 {
877 REG_POINTER (reg) = 1;
878
879 if (align)
880 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
881 }
882 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
883 /* We can no-longer be sure just how aligned this pointer is */
884 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
885 }
886
887 /* Return 1 plus largest pseudo reg number used in the current function. */
888
889 int
890 max_reg_num ()
891 {
892 return reg_rtx_no;
893 }
894
895 /* Return 1 + the largest label number used so far in the current function. */
896
897 int
898 max_label_num ()
899 {
900 if (last_label_num && label_num == base_label_num)
901 return last_label_num;
902 return label_num;
903 }
904
905 /* Return first label number used in this function (if any were used). */
906
907 int
908 get_first_label_num ()
909 {
910 return first_label_num;
911 }
912 \f
913 /* Return the final regno of X, which is a SUBREG of a hard
914 register. */
915 int
916 subreg_hard_regno (x, check_mode)
917 rtx x;
918 int check_mode;
919 {
920 enum machine_mode mode = GET_MODE (x);
921 unsigned int byte_offset, base_regno, final_regno;
922 rtx reg = SUBREG_REG (x);
923
924 /* This is where we attempt to catch illegal subregs
925 created by the compiler. */
926 if (GET_CODE (x) != SUBREG
927 || GET_CODE (reg) != REG)
928 abort ();
929 base_regno = REGNO (reg);
930 if (base_regno >= FIRST_PSEUDO_REGISTER)
931 abort ();
932 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
933 abort ();
934
935 /* Catch non-congruent offsets too. */
936 byte_offset = SUBREG_BYTE (x);
937 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
938 abort ();
939
940 final_regno = subreg_regno (x);
941
942 return final_regno;
943 }
944
945 /* Return a value representing some low-order bits of X, where the number
946 of low-order bits is given by MODE. Note that no conversion is done
947 between floating-point and fixed-point values, rather, the bit
948 representation is returned.
949
950 This function handles the cases in common between gen_lowpart, below,
951 and two variants in cse.c and combine.c. These are the cases that can
952 be safely handled at all points in the compilation.
953
954 If this is not a case we can handle, return 0. */
955
956 rtx
957 gen_lowpart_common (mode, x)
958 enum machine_mode mode;
959 rtx x;
960 {
961 int msize = GET_MODE_SIZE (mode);
962 int xsize = GET_MODE_SIZE (GET_MODE (x));
963 int offset = 0;
964
965 if (GET_MODE (x) == mode)
966 return x;
967
968 /* MODE must occupy no more words than the mode of X. */
969 if (GET_MODE (x) != VOIDmode
970 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
971 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
972 return 0;
973
974 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
975 if (GET_MODE_CLASS (mode) == MODE_FLOAT
976 && GET_MODE (x) != VOIDmode && msize > xsize)
977 return 0;
978
979 offset = subreg_lowpart_offset (mode, GET_MODE (x));
980
981 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
982 && (GET_MODE_CLASS (mode) == MODE_INT
983 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
984 {
985 /* If we are getting the low-order part of something that has been
986 sign- or zero-extended, we can either just use the object being
987 extended or make a narrower extension. If we want an even smaller
988 piece than the size of the object being extended, call ourselves
989 recursively.
990
991 This case is used mostly by combine and cse. */
992
993 if (GET_MODE (XEXP (x, 0)) == mode)
994 return XEXP (x, 0);
995 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
996 return gen_lowpart_common (mode, XEXP (x, 0));
997 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
998 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
999 }
1000 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1001 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1002 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1003 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1004 from the low-order part of the constant. */
1005 else if ((GET_MODE_CLASS (mode) == MODE_INT
1006 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1007 && GET_MODE (x) == VOIDmode
1008 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1009 {
1010 /* If MODE is twice the host word size, X is already the desired
1011 representation. Otherwise, if MODE is wider than a word, we can't
1012 do this. If MODE is exactly a word, return just one CONST_INT. */
1013
1014 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1015 return x;
1016 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1017 return 0;
1018 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1019 return (GET_CODE (x) == CONST_INT ? x
1020 : GEN_INT (CONST_DOUBLE_LOW (x)));
1021 else
1022 {
1023 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1024 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1025 : CONST_DOUBLE_LOW (x));
1026
1027 /* Sign extend to HOST_WIDE_INT. */
1028 val = trunc_int_for_mode (val, mode);
1029
1030 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1031 : GEN_INT (val));
1032 }
1033 }
1034
1035 /* The floating-point emulator can handle all conversions between
1036 FP and integer operands. This simplifies reload because it
1037 doesn't have to deal with constructs like (subreg:DI
1038 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1039 /* Single-precision floats are always 32-bits and double-precision
1040 floats are always 64-bits. */
1041
1042 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1043 && GET_MODE_BITSIZE (mode) == 32
1044 && GET_CODE (x) == CONST_INT)
1045 {
1046 REAL_VALUE_TYPE r;
1047 long i = INTVAL (x);
1048
1049 real_from_target (&r, &i, mode);
1050 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1051 }
1052 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1053 && GET_MODE_BITSIZE (mode) == 64
1054 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1055 && GET_MODE (x) == VOIDmode)
1056 {
1057 REAL_VALUE_TYPE r;
1058 HOST_WIDE_INT low, high;
1059 long i[2];
1060
1061 if (GET_CODE (x) == CONST_INT)
1062 {
1063 low = INTVAL (x);
1064 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1065 }
1066 else
1067 {
1068 low = CONST_DOUBLE_LOW (x);
1069 high = CONST_DOUBLE_HIGH (x);
1070 }
1071
1072 if (HOST_BITS_PER_WIDE_INT > 32)
1073 high = low >> 31 >> 1;
1074
1075 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1076 target machine. */
1077 if (WORDS_BIG_ENDIAN)
1078 i[0] = high, i[1] = low;
1079 else
1080 i[0] = low, i[1] = high;
1081
1082 real_from_target (&r, i, mode);
1083 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1084 }
1085 else if ((GET_MODE_CLASS (mode) == MODE_INT
1086 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1087 && GET_CODE (x) == CONST_DOUBLE
1088 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1089 {
1090 REAL_VALUE_TYPE r;
1091 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1092 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1093
1094 /* Convert 'r' into an array of four 32-bit words in target word
1095 order. */
1096 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1097 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1098 {
1099 case 32:
1100 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1101 i[1] = 0;
1102 i[2] = 0;
1103 i[3 - 3 * endian] = 0;
1104 break;
1105 case 64:
1106 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1107 i[2 - 2 * endian] = 0;
1108 i[3 - 2 * endian] = 0;
1109 break;
1110 case 96:
1111 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1112 i[3 - 3 * endian] = 0;
1113 break;
1114 case 128:
1115 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1116 break;
1117 default:
1118 abort ();
1119 }
1120 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1121 and return it. */
1122 #if HOST_BITS_PER_WIDE_INT == 32
1123 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1124 #else
1125 if (HOST_BITS_PER_WIDE_INT != 64)
1126 abort ();
1127
1128 return immed_double_const ((((unsigned long) i[3 * endian])
1129 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1130 (((unsigned long) i[2 - endian])
1131 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1132 mode);
1133 #endif
1134 }
1135
1136 /* Otherwise, we can't do this. */
1137 return 0;
1138 }
1139 \f
1140 /* Return the real part (which has mode MODE) of a complex value X.
1141 This always comes at the low address in memory. */
1142
1143 rtx
1144 gen_realpart (mode, x)
1145 enum machine_mode mode;
1146 rtx x;
1147 {
1148 if (WORDS_BIG_ENDIAN
1149 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1150 && REG_P (x)
1151 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1152 internal_error
1153 ("can't access real part of complex value in hard register");
1154 else if (WORDS_BIG_ENDIAN)
1155 return gen_highpart (mode, x);
1156 else
1157 return gen_lowpart (mode, x);
1158 }
1159
1160 /* Return the imaginary part (which has mode MODE) of a complex value X.
1161 This always comes at the high address in memory. */
1162
1163 rtx
1164 gen_imagpart (mode, x)
1165 enum machine_mode mode;
1166 rtx x;
1167 {
1168 if (WORDS_BIG_ENDIAN)
1169 return gen_lowpart (mode, x);
1170 else if (! WORDS_BIG_ENDIAN
1171 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1172 && REG_P (x)
1173 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1174 internal_error
1175 ("can't access imaginary part of complex value in hard register");
1176 else
1177 return gen_highpart (mode, x);
1178 }
1179
1180 /* Return 1 iff X, assumed to be a SUBREG,
1181 refers to the real part of the complex value in its containing reg.
1182 Complex values are always stored with the real part in the first word,
1183 regardless of WORDS_BIG_ENDIAN. */
1184
1185 int
1186 subreg_realpart_p (x)
1187 rtx x;
1188 {
1189 if (GET_CODE (x) != SUBREG)
1190 abort ();
1191
1192 return ((unsigned int) SUBREG_BYTE (x)
1193 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1194 }
1195 \f
1196 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1197 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1198 least-significant part of X.
1199 MODE specifies how big a part of X to return;
1200 it usually should not be larger than a word.
1201 If X is a MEM whose address is a QUEUED, the value may be so also. */
1202
1203 rtx
1204 gen_lowpart (mode, x)
1205 enum machine_mode mode;
1206 rtx x;
1207 {
1208 rtx result = gen_lowpart_common (mode, x);
1209
1210 if (result)
1211 return result;
1212 else if (GET_CODE (x) == REG)
1213 {
1214 /* Must be a hard reg that's not valid in MODE. */
1215 result = gen_lowpart_common (mode, copy_to_reg (x));
1216 if (result == 0)
1217 abort ();
1218 return result;
1219 }
1220 else if (GET_CODE (x) == MEM)
1221 {
1222 /* The only additional case we can do is MEM. */
1223 int offset = 0;
1224 if (WORDS_BIG_ENDIAN)
1225 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1226 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1227
1228 if (BYTES_BIG_ENDIAN)
1229 /* Adjust the address so that the address-after-the-data
1230 is unchanged. */
1231 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1232 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1233
1234 return adjust_address (x, mode, offset);
1235 }
1236 else if (GET_CODE (x) == ADDRESSOF)
1237 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1238 else
1239 abort ();
1240 }
1241
1242 /* Like `gen_lowpart', but refer to the most significant part.
1243 This is used to access the imaginary part of a complex number. */
1244
1245 rtx
1246 gen_highpart (mode, x)
1247 enum machine_mode mode;
1248 rtx x;
1249 {
1250 unsigned int msize = GET_MODE_SIZE (mode);
1251 rtx result;
1252
1253 /* This case loses if X is a subreg. To catch bugs early,
1254 complain if an invalid MODE is used even in other cases. */
1255 if (msize > UNITS_PER_WORD
1256 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1257 abort ();
1258
1259 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1260 subreg_highpart_offset (mode, GET_MODE (x)));
1261
1262 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1263 the target if we have a MEM. gen_highpart must return a valid operand,
1264 emitting code if necessary to do so. */
1265 if (result != NULL_RTX && GET_CODE (result) == MEM)
1266 result = validize_mem (result);
1267
1268 if (!result)
1269 abort ();
1270 return result;
1271 }
1272
1273 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1274 be VOIDmode constant. */
1275 rtx
1276 gen_highpart_mode (outermode, innermode, exp)
1277 enum machine_mode outermode, innermode;
1278 rtx exp;
1279 {
1280 if (GET_MODE (exp) != VOIDmode)
1281 {
1282 if (GET_MODE (exp) != innermode)
1283 abort ();
1284 return gen_highpart (outermode, exp);
1285 }
1286 return simplify_gen_subreg (outermode, exp, innermode,
1287 subreg_highpart_offset (outermode, innermode));
1288 }
1289
1290 /* Return offset in bytes to get OUTERMODE low part
1291 of the value in mode INNERMODE stored in memory in target format. */
1292
1293 unsigned int
1294 subreg_lowpart_offset (outermode, innermode)
1295 enum machine_mode outermode, innermode;
1296 {
1297 unsigned int offset = 0;
1298 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1299
1300 if (difference > 0)
1301 {
1302 if (WORDS_BIG_ENDIAN)
1303 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1304 if (BYTES_BIG_ENDIAN)
1305 offset += difference % UNITS_PER_WORD;
1306 }
1307
1308 return offset;
1309 }
1310
1311 /* Return offset in bytes to get OUTERMODE high part
1312 of the value in mode INNERMODE stored in memory in target format. */
1313 unsigned int
1314 subreg_highpart_offset (outermode, innermode)
1315 enum machine_mode outermode, innermode;
1316 {
1317 unsigned int offset = 0;
1318 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1319
1320 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1321 abort ();
1322
1323 if (difference > 0)
1324 {
1325 if (! WORDS_BIG_ENDIAN)
1326 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1327 if (! BYTES_BIG_ENDIAN)
1328 offset += difference % UNITS_PER_WORD;
1329 }
1330
1331 return offset;
1332 }
1333
1334 /* Return 1 iff X, assumed to be a SUBREG,
1335 refers to the least significant part of its containing reg.
1336 If X is not a SUBREG, always return 1 (it is its own low part!). */
1337
1338 int
1339 subreg_lowpart_p (x)
1340 rtx x;
1341 {
1342 if (GET_CODE (x) != SUBREG)
1343 return 1;
1344 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1345 return 0;
1346
1347 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1348 == SUBREG_BYTE (x));
1349 }
1350 \f
1351
1352 /* Helper routine for all the constant cases of operand_subword.
1353 Some places invoke this directly. */
1354
1355 rtx
1356 constant_subword (op, offset, mode)
1357 rtx op;
1358 int offset;
1359 enum machine_mode mode;
1360 {
1361 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1362 HOST_WIDE_INT val;
1363
1364 /* If OP is already an integer word, return it. */
1365 if (GET_MODE_CLASS (mode) == MODE_INT
1366 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1367 return op;
1368
1369 /* The output is some bits, the width of the target machine's word.
1370 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1371 host can't. */
1372 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1373 && GET_MODE_CLASS (mode) == MODE_FLOAT
1374 && GET_MODE_BITSIZE (mode) == 64
1375 && GET_CODE (op) == CONST_DOUBLE)
1376 {
1377 long k[2];
1378 REAL_VALUE_TYPE rv;
1379
1380 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1381 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1382
1383 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1384 which the words are written depends on the word endianness.
1385 ??? This is a potential portability problem and should
1386 be fixed at some point.
1387
1388 We must exercise caution with the sign bit. By definition there
1389 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1390 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1391 So we explicitly mask and sign-extend as necessary. */
1392 if (BITS_PER_WORD == 32)
1393 {
1394 val = k[offset];
1395 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1396 return GEN_INT (val);
1397 }
1398 #if HOST_BITS_PER_WIDE_INT >= 64
1399 else if (BITS_PER_WORD >= 64 && offset == 0)
1400 {
1401 val = k[! WORDS_BIG_ENDIAN];
1402 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1403 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1404 return GEN_INT (val);
1405 }
1406 #endif
1407 else if (BITS_PER_WORD == 16)
1408 {
1409 val = k[offset >> 1];
1410 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1411 val >>= 16;
1412 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1413 return GEN_INT (val);
1414 }
1415 else
1416 abort ();
1417 }
1418 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1419 && GET_MODE_CLASS (mode) == MODE_FLOAT
1420 && GET_MODE_BITSIZE (mode) > 64
1421 && GET_CODE (op) == CONST_DOUBLE)
1422 {
1423 long k[4];
1424 REAL_VALUE_TYPE rv;
1425
1426 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1427 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1428
1429 if (BITS_PER_WORD == 32)
1430 {
1431 val = k[offset];
1432 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1433 return GEN_INT (val);
1434 }
1435 #if HOST_BITS_PER_WIDE_INT >= 64
1436 else if (BITS_PER_WORD >= 64 && offset <= 1)
1437 {
1438 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1439 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1440 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1441 return GEN_INT (val);
1442 }
1443 #endif
1444 else
1445 abort ();
1446 }
1447
1448 /* Single word float is a little harder, since single- and double-word
1449 values often do not have the same high-order bits. We have already
1450 verified that we want the only defined word of the single-word value. */
1451 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1452 && GET_MODE_BITSIZE (mode) == 32
1453 && GET_CODE (op) == CONST_DOUBLE)
1454 {
1455 long l;
1456 REAL_VALUE_TYPE rv;
1457
1458 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1459 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1460
1461 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1462 val = l;
1463 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1464
1465 if (BITS_PER_WORD == 16)
1466 {
1467 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1468 val >>= 16;
1469 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1470 }
1471
1472 return GEN_INT (val);
1473 }
1474
1475 /* The only remaining cases that we can handle are integers.
1476 Convert to proper endianness now since these cases need it.
1477 At this point, offset == 0 means the low-order word.
1478
1479 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1480 in general. However, if OP is (const_int 0), we can just return
1481 it for any word. */
1482
1483 if (op == const0_rtx)
1484 return op;
1485
1486 if (GET_MODE_CLASS (mode) != MODE_INT
1487 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1488 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1489 return 0;
1490
1491 if (WORDS_BIG_ENDIAN)
1492 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1493
1494 /* Find out which word on the host machine this value is in and get
1495 it from the constant. */
1496 val = (offset / size_ratio == 0
1497 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1498 : (GET_CODE (op) == CONST_INT
1499 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1500
1501 /* Get the value we want into the low bits of val. */
1502 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1503 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1504
1505 val = trunc_int_for_mode (val, word_mode);
1506
1507 return GEN_INT (val);
1508 }
1509
1510 /* Return subword OFFSET of operand OP.
1511 The word number, OFFSET, is interpreted as the word number starting
1512 at the low-order address. OFFSET 0 is the low-order word if not
1513 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1514
1515 If we cannot extract the required word, we return zero. Otherwise,
1516 an rtx corresponding to the requested word will be returned.
1517
1518 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1519 reload has completed, a valid address will always be returned. After
1520 reload, if a valid address cannot be returned, we return zero.
1521
1522 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1523 it is the responsibility of the caller.
1524
1525 MODE is the mode of OP in case it is a CONST_INT.
1526
1527 ??? This is still rather broken for some cases. The problem for the
1528 moment is that all callers of this thing provide no 'goal mode' to
1529 tell us to work with. This exists because all callers were written
1530 in a word based SUBREG world.
1531 Now use of this function can be deprecated by simplify_subreg in most
1532 cases.
1533 */
1534
1535 rtx
1536 operand_subword (op, offset, validate_address, mode)
1537 rtx op;
1538 unsigned int offset;
1539 int validate_address;
1540 enum machine_mode mode;
1541 {
1542 if (mode == VOIDmode)
1543 mode = GET_MODE (op);
1544
1545 if (mode == VOIDmode)
1546 abort ();
1547
1548 /* If OP is narrower than a word, fail. */
1549 if (mode != BLKmode
1550 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1551 return 0;
1552
1553 /* If we want a word outside OP, return zero. */
1554 if (mode != BLKmode
1555 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1556 return const0_rtx;
1557
1558 /* Form a new MEM at the requested address. */
1559 if (GET_CODE (op) == MEM)
1560 {
1561 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1562
1563 if (! validate_address)
1564 return new;
1565
1566 else if (reload_completed)
1567 {
1568 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1569 return 0;
1570 }
1571 else
1572 return replace_equiv_address (new, XEXP (new, 0));
1573 }
1574
1575 /* Rest can be handled by simplify_subreg. */
1576 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1577 }
1578
1579 /* Similar to `operand_subword', but never return 0. If we can't extract
1580 the required subword, put OP into a register and try again. If that fails,
1581 abort. We always validate the address in this case.
1582
1583 MODE is the mode of OP, in case it is CONST_INT. */
1584
1585 rtx
1586 operand_subword_force (op, offset, mode)
1587 rtx op;
1588 unsigned int offset;
1589 enum machine_mode mode;
1590 {
1591 rtx result = operand_subword (op, offset, 1, mode);
1592
1593 if (result)
1594 return result;
1595
1596 if (mode != BLKmode && mode != VOIDmode)
1597 {
1598 /* If this is a register which can not be accessed by words, copy it
1599 to a pseudo register. */
1600 if (GET_CODE (op) == REG)
1601 op = copy_to_reg (op);
1602 else
1603 op = force_reg (mode, op);
1604 }
1605
1606 result = operand_subword (op, offset, 1, mode);
1607 if (result == 0)
1608 abort ();
1609
1610 return result;
1611 }
1612 \f
1613 /* Given a compare instruction, swap the operands.
1614 A test instruction is changed into a compare of 0 against the operand. */
1615
1616 void
1617 reverse_comparison (insn)
1618 rtx insn;
1619 {
1620 rtx body = PATTERN (insn);
1621 rtx comp;
1622
1623 if (GET_CODE (body) == SET)
1624 comp = SET_SRC (body);
1625 else
1626 comp = SET_SRC (XVECEXP (body, 0, 0));
1627
1628 if (GET_CODE (comp) == COMPARE)
1629 {
1630 rtx op0 = XEXP (comp, 0);
1631 rtx op1 = XEXP (comp, 1);
1632 XEXP (comp, 0) = op1;
1633 XEXP (comp, 1) = op0;
1634 }
1635 else
1636 {
1637 rtx new = gen_rtx_COMPARE (VOIDmode,
1638 CONST0_RTX (GET_MODE (comp)), comp);
1639 if (GET_CODE (body) == SET)
1640 SET_SRC (body) = new;
1641 else
1642 SET_SRC (XVECEXP (body, 0, 0)) = new;
1643 }
1644 }
1645 \f
1646 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1647 or (2) a component ref of something variable. Represent the later with
1648 a NULL expression. */
1649
1650 static tree
1651 component_ref_for_mem_expr (ref)
1652 tree ref;
1653 {
1654 tree inner = TREE_OPERAND (ref, 0);
1655
1656 if (TREE_CODE (inner) == COMPONENT_REF)
1657 inner = component_ref_for_mem_expr (inner);
1658 else
1659 {
1660 tree placeholder_ptr = 0;
1661
1662 /* Now remove any conversions: they don't change what the underlying
1663 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1664 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1665 || TREE_CODE (inner) == NON_LVALUE_EXPR
1666 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1667 || TREE_CODE (inner) == SAVE_EXPR
1668 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1669 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1670 inner = find_placeholder (inner, &placeholder_ptr);
1671 else
1672 inner = TREE_OPERAND (inner, 0);
1673
1674 if (! DECL_P (inner))
1675 inner = NULL_TREE;
1676 }
1677
1678 if (inner == TREE_OPERAND (ref, 0))
1679 return ref;
1680 else
1681 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1682 TREE_OPERAND (ref, 1));
1683 }
1684
1685 /* Given REF, a MEM, and T, either the type of X or the expression
1686 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1687 if we are making a new object of this type. BITPOS is nonzero if
1688 there is an offset outstanding on T that will be applied later. */
1689
1690 void
1691 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
1692 rtx ref;
1693 tree t;
1694 int objectp;
1695 HOST_WIDE_INT bitpos;
1696 {
1697 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1698 tree expr = MEM_EXPR (ref);
1699 rtx offset = MEM_OFFSET (ref);
1700 rtx size = MEM_SIZE (ref);
1701 unsigned int align = MEM_ALIGN (ref);
1702 HOST_WIDE_INT apply_bitpos = 0;
1703 tree type;
1704
1705 /* It can happen that type_for_mode was given a mode for which there
1706 is no language-level type. In which case it returns NULL, which
1707 we can see here. */
1708 if (t == NULL_TREE)
1709 return;
1710
1711 type = TYPE_P (t) ? t : TREE_TYPE (t);
1712
1713 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1714 wrong answer, as it assumes that DECL_RTL already has the right alias
1715 info. Callers should not set DECL_RTL until after the call to
1716 set_mem_attributes. */
1717 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1718 abort ();
1719
1720 /* Get the alias set from the expression or type (perhaps using a
1721 front-end routine) and use it. */
1722 alias = get_alias_set (t);
1723
1724 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1725 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1726 RTX_UNCHANGING_P (ref)
1727 |= ((lang_hooks.honor_readonly
1728 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1729 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1730
1731 /* If we are making an object of this type, or if this is a DECL, we know
1732 that it is a scalar if the type is not an aggregate. */
1733 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1734 MEM_SCALAR_P (ref) = 1;
1735
1736 /* We can set the alignment from the type if we are making an object,
1737 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1738 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1739 align = MAX (align, TYPE_ALIGN (type));
1740
1741 /* If the size is known, we can set that. */
1742 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1743 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1744
1745 /* If T is not a type, we may be able to deduce some more information about
1746 the expression. */
1747 if (! TYPE_P (t))
1748 {
1749 maybe_set_unchanging (ref, t);
1750 if (TREE_THIS_VOLATILE (t))
1751 MEM_VOLATILE_P (ref) = 1;
1752
1753 /* Now remove any conversions: they don't change what the underlying
1754 object is. Likewise for SAVE_EXPR. */
1755 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1756 || TREE_CODE (t) == NON_LVALUE_EXPR
1757 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1758 || TREE_CODE (t) == SAVE_EXPR)
1759 t = TREE_OPERAND (t, 0);
1760
1761 /* If this expression can't be addressed (e.g., it contains a reference
1762 to a non-addressable field), show we don't change its alias set. */
1763 if (! can_address_p (t))
1764 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1765
1766 /* If this is a decl, set the attributes of the MEM from it. */
1767 if (DECL_P (t))
1768 {
1769 expr = t;
1770 offset = const0_rtx;
1771 apply_bitpos = bitpos;
1772 size = (DECL_SIZE_UNIT (t)
1773 && host_integerp (DECL_SIZE_UNIT (t), 1)
1774 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1775 align = DECL_ALIGN (t);
1776 }
1777
1778 /* If this is a constant, we know the alignment. */
1779 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1780 {
1781 align = TYPE_ALIGN (type);
1782 #ifdef CONSTANT_ALIGNMENT
1783 align = CONSTANT_ALIGNMENT (t, align);
1784 #endif
1785 }
1786
1787 /* If this is a field reference and not a bit-field, record it. */
1788 /* ??? There is some information that can be gleened from bit-fields,
1789 such as the word offset in the structure that might be modified.
1790 But skip it for now. */
1791 else if (TREE_CODE (t) == COMPONENT_REF
1792 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1793 {
1794 expr = component_ref_for_mem_expr (t);
1795 offset = const0_rtx;
1796 apply_bitpos = bitpos;
1797 /* ??? Any reason the field size would be different than
1798 the size we got from the type? */
1799 }
1800
1801 /* If this is an array reference, look for an outer field reference. */
1802 else if (TREE_CODE (t) == ARRAY_REF)
1803 {
1804 tree off_tree = size_zero_node;
1805
1806 do
1807 {
1808 tree index = TREE_OPERAND (t, 1);
1809 tree array = TREE_OPERAND (t, 0);
1810 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1811 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1812 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1813
1814 /* We assume all arrays have sizes that are a multiple of a byte.
1815 First subtract the lower bound, if any, in the type of the
1816 index, then convert to sizetype and multiply by the size of the
1817 array element. */
1818 if (low_bound != 0 && ! integer_zerop (low_bound))
1819 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1820 index, low_bound));
1821
1822 /* If the index has a self-referential type, pass it to a
1823 WITH_RECORD_EXPR; if the component size is, pass our
1824 component to one. */
1825 if (! TREE_CONSTANT (index)
1826 && contains_placeholder_p (index))
1827 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t);
1828 if (! TREE_CONSTANT (unit_size)
1829 && contains_placeholder_p (unit_size))
1830 unit_size = build (WITH_RECORD_EXPR, sizetype,
1831 unit_size, array);
1832
1833 off_tree
1834 = fold (build (PLUS_EXPR, sizetype,
1835 fold (build (MULT_EXPR, sizetype,
1836 index,
1837 unit_size)),
1838 off_tree));
1839 t = TREE_OPERAND (t, 0);
1840 }
1841 while (TREE_CODE (t) == ARRAY_REF);
1842
1843 if (DECL_P (t))
1844 {
1845 expr = t;
1846 offset = NULL;
1847 if (host_integerp (off_tree, 1))
1848 {
1849 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1850 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1851 align = DECL_ALIGN (t);
1852 if (aoff && aoff < align)
1853 align = aoff;
1854 offset = GEN_INT (ioff);
1855 apply_bitpos = bitpos;
1856 }
1857 }
1858 else if (TREE_CODE (t) == COMPONENT_REF)
1859 {
1860 expr = component_ref_for_mem_expr (t);
1861 if (host_integerp (off_tree, 1))
1862 {
1863 offset = GEN_INT (tree_low_cst (off_tree, 1));
1864 apply_bitpos = bitpos;
1865 }
1866 /* ??? Any reason the field size would be different than
1867 the size we got from the type? */
1868 }
1869 else if (flag_argument_noalias > 1
1870 && TREE_CODE (t) == INDIRECT_REF
1871 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1872 {
1873 expr = t;
1874 offset = NULL;
1875 }
1876 }
1877
1878 /* If this is a Fortran indirect argument reference, record the
1879 parameter decl. */
1880 else if (flag_argument_noalias > 1
1881 && TREE_CODE (t) == INDIRECT_REF
1882 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1883 {
1884 expr = t;
1885 offset = NULL;
1886 }
1887 }
1888
1889 /* If we modified OFFSET based on T, then subtract the outstanding
1890 bit position offset. Similarly, increase the size of the accessed
1891 object to contain the negative offset. */
1892 if (apply_bitpos)
1893 {
1894 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1895 if (size)
1896 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1897 }
1898
1899 /* Now set the attributes we computed above. */
1900 MEM_ATTRS (ref)
1901 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1902
1903 /* If this is already known to be a scalar or aggregate, we are done. */
1904 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1905 return;
1906
1907 /* If it is a reference into an aggregate, this is part of an aggregate.
1908 Otherwise we don't know. */
1909 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1910 || TREE_CODE (t) == ARRAY_RANGE_REF
1911 || TREE_CODE (t) == BIT_FIELD_REF)
1912 MEM_IN_STRUCT_P (ref) = 1;
1913 }
1914
1915 void
1916 set_mem_attributes (ref, t, objectp)
1917 rtx ref;
1918 tree t;
1919 int objectp;
1920 {
1921 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1922 }
1923
1924 /* Set the alias set of MEM to SET. */
1925
1926 void
1927 set_mem_alias_set (mem, set)
1928 rtx mem;
1929 HOST_WIDE_INT set;
1930 {
1931 #ifdef ENABLE_CHECKING
1932 /* If the new and old alias sets don't conflict, something is wrong. */
1933 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1934 abort ();
1935 #endif
1936
1937 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1938 MEM_SIZE (mem), MEM_ALIGN (mem),
1939 GET_MODE (mem));
1940 }
1941
1942 /* Set the alignment of MEM to ALIGN bits. */
1943
1944 void
1945 set_mem_align (mem, align)
1946 rtx mem;
1947 unsigned int align;
1948 {
1949 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1950 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1951 GET_MODE (mem));
1952 }
1953
1954 /* Set the expr for MEM to EXPR. */
1955
1956 void
1957 set_mem_expr (mem, expr)
1958 rtx mem;
1959 tree expr;
1960 {
1961 MEM_ATTRS (mem)
1962 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1963 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1964 }
1965
1966 /* Set the offset of MEM to OFFSET. */
1967
1968 void
1969 set_mem_offset (mem, offset)
1970 rtx mem, offset;
1971 {
1972 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1973 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1974 GET_MODE (mem));
1975 }
1976
1977 /* Set the size of MEM to SIZE. */
1978
1979 void
1980 set_mem_size (mem, size)
1981 rtx mem, size;
1982 {
1983 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1984 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1985 GET_MODE (mem));
1986 }
1987 \f
1988 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1989 and its address changed to ADDR. (VOIDmode means don't change the mode.
1990 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1991 returned memory location is required to be valid. The memory
1992 attributes are not changed. */
1993
1994 static rtx
1995 change_address_1 (memref, mode, addr, validate)
1996 rtx memref;
1997 enum machine_mode mode;
1998 rtx addr;
1999 int validate;
2000 {
2001 rtx new;
2002
2003 if (GET_CODE (memref) != MEM)
2004 abort ();
2005 if (mode == VOIDmode)
2006 mode = GET_MODE (memref);
2007 if (addr == 0)
2008 addr = XEXP (memref, 0);
2009
2010 if (validate)
2011 {
2012 if (reload_in_progress || reload_completed)
2013 {
2014 if (! memory_address_p (mode, addr))
2015 abort ();
2016 }
2017 else
2018 addr = memory_address (mode, addr);
2019 }
2020
2021 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2022 return memref;
2023
2024 new = gen_rtx_MEM (mode, addr);
2025 MEM_COPY_ATTRIBUTES (new, memref);
2026 return new;
2027 }
2028
2029 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2030 way we are changing MEMREF, so we only preserve the alias set. */
2031
2032 rtx
2033 change_address (memref, mode, addr)
2034 rtx memref;
2035 enum machine_mode mode;
2036 rtx addr;
2037 {
2038 rtx new = change_address_1 (memref, mode, addr, 1);
2039 enum machine_mode mmode = GET_MODE (new);
2040
2041 MEM_ATTRS (new)
2042 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2043 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2044 (mmode == BLKmode ? BITS_PER_UNIT
2045 : GET_MODE_ALIGNMENT (mmode)),
2046 mmode);
2047
2048 return new;
2049 }
2050
2051 /* Return a memory reference like MEMREF, but with its mode changed
2052 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2053 nonzero, the memory address is forced to be valid.
2054 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2055 and caller is responsible for adjusting MEMREF base register. */
2056
2057 rtx
2058 adjust_address_1 (memref, mode, offset, validate, adjust)
2059 rtx memref;
2060 enum machine_mode mode;
2061 HOST_WIDE_INT offset;
2062 int validate, adjust;
2063 {
2064 rtx addr = XEXP (memref, 0);
2065 rtx new;
2066 rtx memoffset = MEM_OFFSET (memref);
2067 rtx size = 0;
2068 unsigned int memalign = MEM_ALIGN (memref);
2069
2070 /* ??? Prefer to create garbage instead of creating shared rtl.
2071 This may happen even if offset is nonzero -- consider
2072 (plus (plus reg reg) const_int) -- so do this always. */
2073 addr = copy_rtx (addr);
2074
2075 if (adjust)
2076 {
2077 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2078 object, we can merge it into the LO_SUM. */
2079 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2080 && offset >= 0
2081 && (unsigned HOST_WIDE_INT) offset
2082 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2083 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2084 plus_constant (XEXP (addr, 1), offset));
2085 else
2086 addr = plus_constant (addr, offset);
2087 }
2088
2089 new = change_address_1 (memref, mode, addr, validate);
2090
2091 /* Compute the new values of the memory attributes due to this adjustment.
2092 We add the offsets and update the alignment. */
2093 if (memoffset)
2094 memoffset = GEN_INT (offset + INTVAL (memoffset));
2095
2096 /* Compute the new alignment by taking the MIN of the alignment and the
2097 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2098 if zero. */
2099 if (offset != 0)
2100 memalign
2101 = MIN (memalign,
2102 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2103
2104 /* We can compute the size in a number of ways. */
2105 if (GET_MODE (new) != BLKmode)
2106 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2107 else if (MEM_SIZE (memref))
2108 size = plus_constant (MEM_SIZE (memref), -offset);
2109
2110 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2111 memoffset, size, memalign, GET_MODE (new));
2112
2113 /* At some point, we should validate that this offset is within the object,
2114 if all the appropriate values are known. */
2115 return new;
2116 }
2117
2118 /* Return a memory reference like MEMREF, but with its mode changed
2119 to MODE and its address changed to ADDR, which is assumed to be
2120 MEMREF offseted by OFFSET bytes. If VALIDATE is
2121 nonzero, the memory address is forced to be valid. */
2122
2123 rtx
2124 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2125 rtx memref;
2126 enum machine_mode mode;
2127 rtx addr;
2128 HOST_WIDE_INT offset;
2129 int validate;
2130 {
2131 memref = change_address_1 (memref, VOIDmode, addr, validate);
2132 return adjust_address_1 (memref, mode, offset, validate, 0);
2133 }
2134
2135 /* Return a memory reference like MEMREF, but whose address is changed by
2136 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2137 known to be in OFFSET (possibly 1). */
2138
2139 rtx
2140 offset_address (memref, offset, pow2)
2141 rtx memref;
2142 rtx offset;
2143 HOST_WIDE_INT pow2;
2144 {
2145 rtx new, addr = XEXP (memref, 0);
2146
2147 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2148
2149 /* At this point we don't know _why_ the address is invalid. It
2150 could have secondary memory refereces, multiplies or anything.
2151
2152 However, if we did go and rearrange things, we can wind up not
2153 being able to recognize the magic around pic_offset_table_rtx.
2154 This stuff is fragile, and is yet another example of why it is
2155 bad to expose PIC machinery too early. */
2156 if (! memory_address_p (GET_MODE (memref), new)
2157 && GET_CODE (addr) == PLUS
2158 && XEXP (addr, 0) == pic_offset_table_rtx)
2159 {
2160 addr = force_reg (GET_MODE (addr), addr);
2161 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2162 }
2163
2164 update_temp_slot_address (XEXP (memref, 0), new);
2165 new = change_address_1 (memref, VOIDmode, new, 1);
2166
2167 /* Update the alignment to reflect the offset. Reset the offset, which
2168 we don't know. */
2169 MEM_ATTRS (new)
2170 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2171 MIN (MEM_ALIGN (memref),
2172 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2173 GET_MODE (new));
2174 return new;
2175 }
2176
2177 /* Return a memory reference like MEMREF, but with its address changed to
2178 ADDR. The caller is asserting that the actual piece of memory pointed
2179 to is the same, just the form of the address is being changed, such as
2180 by putting something into a register. */
2181
2182 rtx
2183 replace_equiv_address (memref, addr)
2184 rtx memref;
2185 rtx addr;
2186 {
2187 /* change_address_1 copies the memory attribute structure without change
2188 and that's exactly what we want here. */
2189 update_temp_slot_address (XEXP (memref, 0), addr);
2190 return change_address_1 (memref, VOIDmode, addr, 1);
2191 }
2192
2193 /* Likewise, but the reference is not required to be valid. */
2194
2195 rtx
2196 replace_equiv_address_nv (memref, addr)
2197 rtx memref;
2198 rtx addr;
2199 {
2200 return change_address_1 (memref, VOIDmode, addr, 0);
2201 }
2202
2203 /* Return a memory reference like MEMREF, but with its mode widened to
2204 MODE and offset by OFFSET. This would be used by targets that e.g.
2205 cannot issue QImode memory operations and have to use SImode memory
2206 operations plus masking logic. */
2207
2208 rtx
2209 widen_memory_access (memref, mode, offset)
2210 rtx memref;
2211 enum machine_mode mode;
2212 HOST_WIDE_INT offset;
2213 {
2214 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2215 tree expr = MEM_EXPR (new);
2216 rtx memoffset = MEM_OFFSET (new);
2217 unsigned int size = GET_MODE_SIZE (mode);
2218
2219 /* If we don't know what offset we were at within the expression, then
2220 we can't know if we've overstepped the bounds. */
2221 if (! memoffset)
2222 expr = NULL_TREE;
2223
2224 while (expr)
2225 {
2226 if (TREE_CODE (expr) == COMPONENT_REF)
2227 {
2228 tree field = TREE_OPERAND (expr, 1);
2229
2230 if (! DECL_SIZE_UNIT (field))
2231 {
2232 expr = NULL_TREE;
2233 break;
2234 }
2235
2236 /* Is the field at least as large as the access? If so, ok,
2237 otherwise strip back to the containing structure. */
2238 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2239 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2240 && INTVAL (memoffset) >= 0)
2241 break;
2242
2243 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2244 {
2245 expr = NULL_TREE;
2246 break;
2247 }
2248
2249 expr = TREE_OPERAND (expr, 0);
2250 memoffset = (GEN_INT (INTVAL (memoffset)
2251 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2252 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2253 / BITS_PER_UNIT)));
2254 }
2255 /* Similarly for the decl. */
2256 else if (DECL_P (expr)
2257 && DECL_SIZE_UNIT (expr)
2258 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2259 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2260 && (! memoffset || INTVAL (memoffset) >= 0))
2261 break;
2262 else
2263 {
2264 /* The widened memory access overflows the expression, which means
2265 that it could alias another expression. Zap it. */
2266 expr = NULL_TREE;
2267 break;
2268 }
2269 }
2270
2271 if (! expr)
2272 memoffset = NULL_RTX;
2273
2274 /* The widened memory may alias other stuff, so zap the alias set. */
2275 /* ??? Maybe use get_alias_set on any remaining expression. */
2276
2277 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2278 MEM_ALIGN (new), mode);
2279
2280 return new;
2281 }
2282 \f
2283 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2284
2285 rtx
2286 gen_label_rtx ()
2287 {
2288 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2289 NULL, label_num++, NULL);
2290 }
2291 \f
2292 /* For procedure integration. */
2293
2294 /* Install new pointers to the first and last insns in the chain.
2295 Also, set cur_insn_uid to one higher than the last in use.
2296 Used for an inline-procedure after copying the insn chain. */
2297
2298 void
2299 set_new_first_and_last_insn (first, last)
2300 rtx first, last;
2301 {
2302 rtx insn;
2303
2304 first_insn = first;
2305 last_insn = last;
2306 cur_insn_uid = 0;
2307
2308 for (insn = first; insn; insn = NEXT_INSN (insn))
2309 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2310
2311 cur_insn_uid++;
2312 }
2313
2314 /* Set the range of label numbers found in the current function.
2315 This is used when belatedly compiling an inline function. */
2316
2317 void
2318 set_new_first_and_last_label_num (first, last)
2319 int first, last;
2320 {
2321 base_label_num = label_num;
2322 first_label_num = first;
2323 last_label_num = last;
2324 }
2325
2326 /* Set the last label number found in the current function.
2327 This is used when belatedly compiling an inline function. */
2328
2329 void
2330 set_new_last_label_num (last)
2331 int last;
2332 {
2333 base_label_num = label_num;
2334 last_label_num = last;
2335 }
2336 \f
2337 /* Restore all variables describing the current status from the structure *P.
2338 This is used after a nested function. */
2339
2340 void
2341 restore_emit_status (p)
2342 struct function *p ATTRIBUTE_UNUSED;
2343 {
2344 last_label_num = 0;
2345 }
2346 \f
2347 /* Go through all the RTL insn bodies and copy any invalid shared
2348 structure. This routine should only be called once. */
2349
2350 void
2351 unshare_all_rtl (fndecl, insn)
2352 tree fndecl;
2353 rtx insn;
2354 {
2355 tree decl;
2356
2357 /* Make sure that virtual parameters are not shared. */
2358 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2359 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2360
2361 /* Make sure that virtual stack slots are not shared. */
2362 unshare_all_decls (DECL_INITIAL (fndecl));
2363
2364 /* Unshare just about everything else. */
2365 unshare_all_rtl_1 (insn);
2366
2367 /* Make sure the addresses of stack slots found outside the insn chain
2368 (such as, in DECL_RTL of a variable) are not shared
2369 with the insn chain.
2370
2371 This special care is necessary when the stack slot MEM does not
2372 actually appear in the insn chain. If it does appear, its address
2373 is unshared from all else at that point. */
2374 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2375 }
2376
2377 /* Go through all the RTL insn bodies and copy any invalid shared
2378 structure, again. This is a fairly expensive thing to do so it
2379 should be done sparingly. */
2380
2381 void
2382 unshare_all_rtl_again (insn)
2383 rtx insn;
2384 {
2385 rtx p;
2386 tree decl;
2387
2388 for (p = insn; p; p = NEXT_INSN (p))
2389 if (INSN_P (p))
2390 {
2391 reset_used_flags (PATTERN (p));
2392 reset_used_flags (REG_NOTES (p));
2393 reset_used_flags (LOG_LINKS (p));
2394 }
2395
2396 /* Make sure that virtual stack slots are not shared. */
2397 reset_used_decls (DECL_INITIAL (cfun->decl));
2398
2399 /* Make sure that virtual parameters are not shared. */
2400 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2401 reset_used_flags (DECL_RTL (decl));
2402
2403 reset_used_flags (stack_slot_list);
2404
2405 unshare_all_rtl (cfun->decl, insn);
2406 }
2407
2408 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2409 Assumes the mark bits are cleared at entry. */
2410
2411 static void
2412 unshare_all_rtl_1 (insn)
2413 rtx insn;
2414 {
2415 for (; insn; insn = NEXT_INSN (insn))
2416 if (INSN_P (insn))
2417 {
2418 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2419 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2420 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2421 }
2422 }
2423
2424 /* Go through all virtual stack slots of a function and copy any
2425 shared structure. */
2426 static void
2427 unshare_all_decls (blk)
2428 tree blk;
2429 {
2430 tree t;
2431
2432 /* Copy shared decls. */
2433 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2434 if (DECL_RTL_SET_P (t))
2435 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2436
2437 /* Now process sub-blocks. */
2438 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2439 unshare_all_decls (t);
2440 }
2441
2442 /* Go through all virtual stack slots of a function and mark them as
2443 not shared. */
2444 static void
2445 reset_used_decls (blk)
2446 tree blk;
2447 {
2448 tree t;
2449
2450 /* Mark decls. */
2451 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2452 if (DECL_RTL_SET_P (t))
2453 reset_used_flags (DECL_RTL (t));
2454
2455 /* Now process sub-blocks. */
2456 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2457 reset_used_decls (t);
2458 }
2459
2460 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2461 placed in the result directly, rather than being copied. MAY_SHARE is
2462 either a MEM of an EXPR_LIST of MEMs. */
2463
2464 rtx
2465 copy_most_rtx (orig, may_share)
2466 rtx orig;
2467 rtx may_share;
2468 {
2469 rtx copy;
2470 int i, j;
2471 RTX_CODE code;
2472 const char *format_ptr;
2473
2474 if (orig == may_share
2475 || (GET_CODE (may_share) == EXPR_LIST
2476 && in_expr_list_p (may_share, orig)))
2477 return orig;
2478
2479 code = GET_CODE (orig);
2480
2481 switch (code)
2482 {
2483 case REG:
2484 case QUEUED:
2485 case CONST_INT:
2486 case CONST_DOUBLE:
2487 case CONST_VECTOR:
2488 case SYMBOL_REF:
2489 case CODE_LABEL:
2490 case PC:
2491 case CC0:
2492 return orig;
2493 default:
2494 break;
2495 }
2496
2497 copy = rtx_alloc (code);
2498 PUT_MODE (copy, GET_MODE (orig));
2499 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2500 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2501 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2502 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2503 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2504
2505 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2506
2507 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2508 {
2509 switch (*format_ptr++)
2510 {
2511 case 'e':
2512 XEXP (copy, i) = XEXP (orig, i);
2513 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2514 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2515 break;
2516
2517 case 'u':
2518 XEXP (copy, i) = XEXP (orig, i);
2519 break;
2520
2521 case 'E':
2522 case 'V':
2523 XVEC (copy, i) = XVEC (orig, i);
2524 if (XVEC (orig, i) != NULL)
2525 {
2526 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2527 for (j = 0; j < XVECLEN (copy, i); j++)
2528 XVECEXP (copy, i, j)
2529 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2530 }
2531 break;
2532
2533 case 'w':
2534 XWINT (copy, i) = XWINT (orig, i);
2535 break;
2536
2537 case 'n':
2538 case 'i':
2539 XINT (copy, i) = XINT (orig, i);
2540 break;
2541
2542 case 't':
2543 XTREE (copy, i) = XTREE (orig, i);
2544 break;
2545
2546 case 's':
2547 case 'S':
2548 XSTR (copy, i) = XSTR (orig, i);
2549 break;
2550
2551 case '0':
2552 /* Copy this through the wide int field; that's safest. */
2553 X0WINT (copy, i) = X0WINT (orig, i);
2554 break;
2555
2556 default:
2557 abort ();
2558 }
2559 }
2560 return copy;
2561 }
2562
2563 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2564 Recursively does the same for subexpressions. */
2565
2566 rtx
2567 copy_rtx_if_shared (orig)
2568 rtx orig;
2569 {
2570 rtx x = orig;
2571 int i;
2572 enum rtx_code code;
2573 const char *format_ptr;
2574 int copied = 0;
2575
2576 if (x == 0)
2577 return 0;
2578
2579 code = GET_CODE (x);
2580
2581 /* These types may be freely shared. */
2582
2583 switch (code)
2584 {
2585 case REG:
2586 case QUEUED:
2587 case CONST_INT:
2588 case CONST_DOUBLE:
2589 case CONST_VECTOR:
2590 case SYMBOL_REF:
2591 case CODE_LABEL:
2592 case PC:
2593 case CC0:
2594 case SCRATCH:
2595 /* SCRATCH must be shared because they represent distinct values. */
2596 return x;
2597
2598 case CONST:
2599 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2600 a LABEL_REF, it isn't sharable. */
2601 if (GET_CODE (XEXP (x, 0)) == PLUS
2602 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2603 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2604 return x;
2605 break;
2606
2607 case INSN:
2608 case JUMP_INSN:
2609 case CALL_INSN:
2610 case NOTE:
2611 case BARRIER:
2612 /* The chain of insns is not being copied. */
2613 return x;
2614
2615 case MEM:
2616 /* A MEM is allowed to be shared if its address is constant.
2617
2618 We used to allow sharing of MEMs which referenced
2619 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2620 that can lose. instantiate_virtual_regs will not unshare
2621 the MEMs, and combine may change the structure of the address
2622 because it looks safe and profitable in one context, but
2623 in some other context it creates unrecognizable RTL. */
2624 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2625 return x;
2626
2627 break;
2628
2629 default:
2630 break;
2631 }
2632
2633 /* This rtx may not be shared. If it has already been seen,
2634 replace it with a copy of itself. */
2635
2636 if (RTX_FLAG (x, used))
2637 {
2638 rtx copy;
2639
2640 copy = rtx_alloc (code);
2641 memcpy (copy, x,
2642 (sizeof (*copy) - sizeof (copy->fld)
2643 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2644 x = copy;
2645 copied = 1;
2646 }
2647 RTX_FLAG (x, used) = 1;
2648
2649 /* Now scan the subexpressions recursively.
2650 We can store any replaced subexpressions directly into X
2651 since we know X is not shared! Any vectors in X
2652 must be copied if X was copied. */
2653
2654 format_ptr = GET_RTX_FORMAT (code);
2655
2656 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2657 {
2658 switch (*format_ptr++)
2659 {
2660 case 'e':
2661 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2662 break;
2663
2664 case 'E':
2665 if (XVEC (x, i) != NULL)
2666 {
2667 int j;
2668 int len = XVECLEN (x, i);
2669
2670 if (copied && len > 0)
2671 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2672 for (j = 0; j < len; j++)
2673 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2674 }
2675 break;
2676 }
2677 }
2678 return x;
2679 }
2680
2681 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2682 to look for shared sub-parts. */
2683
2684 void
2685 reset_used_flags (x)
2686 rtx x;
2687 {
2688 int i, j;
2689 enum rtx_code code;
2690 const char *format_ptr;
2691
2692 if (x == 0)
2693 return;
2694
2695 code = GET_CODE (x);
2696
2697 /* These types may be freely shared so we needn't do any resetting
2698 for them. */
2699
2700 switch (code)
2701 {
2702 case REG:
2703 case QUEUED:
2704 case CONST_INT:
2705 case CONST_DOUBLE:
2706 case CONST_VECTOR:
2707 case SYMBOL_REF:
2708 case CODE_LABEL:
2709 case PC:
2710 case CC0:
2711 return;
2712
2713 case INSN:
2714 case JUMP_INSN:
2715 case CALL_INSN:
2716 case NOTE:
2717 case LABEL_REF:
2718 case BARRIER:
2719 /* The chain of insns is not being copied. */
2720 return;
2721
2722 default:
2723 break;
2724 }
2725
2726 RTX_FLAG (x, used) = 0;
2727
2728 format_ptr = GET_RTX_FORMAT (code);
2729 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2730 {
2731 switch (*format_ptr++)
2732 {
2733 case 'e':
2734 reset_used_flags (XEXP (x, i));
2735 break;
2736
2737 case 'E':
2738 for (j = 0; j < XVECLEN (x, i); j++)
2739 reset_used_flags (XVECEXP (x, i, j));
2740 break;
2741 }
2742 }
2743 }
2744 \f
2745 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2746 Return X or the rtx for the pseudo reg the value of X was copied into.
2747 OTHER must be valid as a SET_DEST. */
2748
2749 rtx
2750 make_safe_from (x, other)
2751 rtx x, other;
2752 {
2753 while (1)
2754 switch (GET_CODE (other))
2755 {
2756 case SUBREG:
2757 other = SUBREG_REG (other);
2758 break;
2759 case STRICT_LOW_PART:
2760 case SIGN_EXTEND:
2761 case ZERO_EXTEND:
2762 other = XEXP (other, 0);
2763 break;
2764 default:
2765 goto done;
2766 }
2767 done:
2768 if ((GET_CODE (other) == MEM
2769 && ! CONSTANT_P (x)
2770 && GET_CODE (x) != REG
2771 && GET_CODE (x) != SUBREG)
2772 || (GET_CODE (other) == REG
2773 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2774 || reg_mentioned_p (other, x))))
2775 {
2776 rtx temp = gen_reg_rtx (GET_MODE (x));
2777 emit_move_insn (temp, x);
2778 return temp;
2779 }
2780 return x;
2781 }
2782 \f
2783 /* Emission of insns (adding them to the doubly-linked list). */
2784
2785 /* Return the first insn of the current sequence or current function. */
2786
2787 rtx
2788 get_insns ()
2789 {
2790 return first_insn;
2791 }
2792
2793 /* Specify a new insn as the first in the chain. */
2794
2795 void
2796 set_first_insn (insn)
2797 rtx insn;
2798 {
2799 if (PREV_INSN (insn) != 0)
2800 abort ();
2801 first_insn = insn;
2802 }
2803
2804 /* Return the last insn emitted in current sequence or current function. */
2805
2806 rtx
2807 get_last_insn ()
2808 {
2809 return last_insn;
2810 }
2811
2812 /* Specify a new insn as the last in the chain. */
2813
2814 void
2815 set_last_insn (insn)
2816 rtx insn;
2817 {
2818 if (NEXT_INSN (insn) != 0)
2819 abort ();
2820 last_insn = insn;
2821 }
2822
2823 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2824
2825 rtx
2826 get_last_insn_anywhere ()
2827 {
2828 struct sequence_stack *stack;
2829 if (last_insn)
2830 return last_insn;
2831 for (stack = seq_stack; stack; stack = stack->next)
2832 if (stack->last != 0)
2833 return stack->last;
2834 return 0;
2835 }
2836
2837 /* Return the first nonnote insn emitted in current sequence or current
2838 function. This routine looks inside SEQUENCEs. */
2839
2840 rtx
2841 get_first_nonnote_insn ()
2842 {
2843 rtx insn = first_insn;
2844
2845 while (insn)
2846 {
2847 insn = next_insn (insn);
2848 if (insn == 0 || GET_CODE (insn) != NOTE)
2849 break;
2850 }
2851
2852 return insn;
2853 }
2854
2855 /* Return the last nonnote insn emitted in current sequence or current
2856 function. This routine looks inside SEQUENCEs. */
2857
2858 rtx
2859 get_last_nonnote_insn ()
2860 {
2861 rtx insn = last_insn;
2862
2863 while (insn)
2864 {
2865 insn = previous_insn (insn);
2866 if (insn == 0 || GET_CODE (insn) != NOTE)
2867 break;
2868 }
2869
2870 return insn;
2871 }
2872
2873 /* Return a number larger than any instruction's uid in this function. */
2874
2875 int
2876 get_max_uid ()
2877 {
2878 return cur_insn_uid;
2879 }
2880
2881 /* Renumber instructions so that no instruction UIDs are wasted. */
2882
2883 void
2884 renumber_insns (stream)
2885 FILE *stream;
2886 {
2887 rtx insn;
2888
2889 /* If we're not supposed to renumber instructions, don't. */
2890 if (!flag_renumber_insns)
2891 return;
2892
2893 /* If there aren't that many instructions, then it's not really
2894 worth renumbering them. */
2895 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2896 return;
2897
2898 cur_insn_uid = 1;
2899
2900 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2901 {
2902 if (stream)
2903 fprintf (stream, "Renumbering insn %d to %d\n",
2904 INSN_UID (insn), cur_insn_uid);
2905 INSN_UID (insn) = cur_insn_uid++;
2906 }
2907 }
2908 \f
2909 /* Return the next insn. If it is a SEQUENCE, return the first insn
2910 of the sequence. */
2911
2912 rtx
2913 next_insn (insn)
2914 rtx insn;
2915 {
2916 if (insn)
2917 {
2918 insn = NEXT_INSN (insn);
2919 if (insn && GET_CODE (insn) == INSN
2920 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2921 insn = XVECEXP (PATTERN (insn), 0, 0);
2922 }
2923
2924 return insn;
2925 }
2926
2927 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2928 of the sequence. */
2929
2930 rtx
2931 previous_insn (insn)
2932 rtx insn;
2933 {
2934 if (insn)
2935 {
2936 insn = PREV_INSN (insn);
2937 if (insn && GET_CODE (insn) == INSN
2938 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2939 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2940 }
2941
2942 return insn;
2943 }
2944
2945 /* Return the next insn after INSN that is not a NOTE. This routine does not
2946 look inside SEQUENCEs. */
2947
2948 rtx
2949 next_nonnote_insn (insn)
2950 rtx insn;
2951 {
2952 while (insn)
2953 {
2954 insn = NEXT_INSN (insn);
2955 if (insn == 0 || GET_CODE (insn) != NOTE)
2956 break;
2957 }
2958
2959 return insn;
2960 }
2961
2962 /* Return the previous insn before INSN that is not a NOTE. This routine does
2963 not look inside SEQUENCEs. */
2964
2965 rtx
2966 prev_nonnote_insn (insn)
2967 rtx insn;
2968 {
2969 while (insn)
2970 {
2971 insn = PREV_INSN (insn);
2972 if (insn == 0 || GET_CODE (insn) != NOTE)
2973 break;
2974 }
2975
2976 return insn;
2977 }
2978
2979 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2980 or 0, if there is none. This routine does not look inside
2981 SEQUENCEs. */
2982
2983 rtx
2984 next_real_insn (insn)
2985 rtx insn;
2986 {
2987 while (insn)
2988 {
2989 insn = NEXT_INSN (insn);
2990 if (insn == 0 || GET_CODE (insn) == INSN
2991 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2992 break;
2993 }
2994
2995 return insn;
2996 }
2997
2998 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2999 or 0, if there is none. This routine does not look inside
3000 SEQUENCEs. */
3001
3002 rtx
3003 prev_real_insn (insn)
3004 rtx insn;
3005 {
3006 while (insn)
3007 {
3008 insn = PREV_INSN (insn);
3009 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3010 || GET_CODE (insn) == JUMP_INSN)
3011 break;
3012 }
3013
3014 return insn;
3015 }
3016
3017 /* Find the next insn after INSN that really does something. This routine
3018 does not look inside SEQUENCEs. Until reload has completed, this is the
3019 same as next_real_insn. */
3020
3021 int
3022 active_insn_p (insn)
3023 rtx insn;
3024 {
3025 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3026 return true;
3027 if (GET_CODE (insn) == INSN)
3028 {
3029 if (reload_completed)
3030 {
3031 rtx pat = PATTERN (insn);
3032
3033 /* After reload, remaining USE insns are noops. */
3034 if (GET_CODE (pat) == USE)
3035 return false;
3036
3037 if (GET_CODE (pat) == CLOBBER)
3038 {
3039 /* ??? Don't skip past the clobber of the return register.
3040 If we eliminate it, we risk a variety of life analysis
3041 problems on broken code. */
3042 if (GET_CODE (XEXP (pat, 0)) == REG
3043 && REG_FUNCTION_VALUE_P (XEXP (pat, 0)))
3044 return true;
3045
3046 /* Otherwise, clobbers don't do anything either. */
3047 return false;
3048 }
3049 }
3050 return true;
3051 }
3052 return false;
3053 }
3054
3055 rtx
3056 next_active_insn (insn)
3057 rtx insn;
3058 {
3059 while (insn)
3060 {
3061 insn = NEXT_INSN (insn);
3062 if (insn == 0 || active_insn_p (insn))
3063 break;
3064 }
3065
3066 return insn;
3067 }
3068
3069 /* Find the last insn before INSN that really does something. This routine
3070 does not look inside SEQUENCEs. Until reload has completed, this is the
3071 same as prev_real_insn. */
3072
3073 rtx
3074 prev_active_insn (insn)
3075 rtx insn;
3076 {
3077 while (insn)
3078 {
3079 insn = PREV_INSN (insn);
3080 if (insn == 0 || active_insn_p (insn))
3081 break;
3082 }
3083
3084 return insn;
3085 }
3086
3087 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3088
3089 rtx
3090 next_label (insn)
3091 rtx insn;
3092 {
3093 while (insn)
3094 {
3095 insn = NEXT_INSN (insn);
3096 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3097 break;
3098 }
3099
3100 return insn;
3101 }
3102
3103 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3104
3105 rtx
3106 prev_label (insn)
3107 rtx insn;
3108 {
3109 while (insn)
3110 {
3111 insn = PREV_INSN (insn);
3112 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3113 break;
3114 }
3115
3116 return insn;
3117 }
3118 \f
3119 #ifdef HAVE_cc0
3120 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3121 and REG_CC_USER notes so we can find it. */
3122
3123 void
3124 link_cc0_insns (insn)
3125 rtx insn;
3126 {
3127 rtx user = next_nonnote_insn (insn);
3128
3129 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3130 user = XVECEXP (PATTERN (user), 0, 0);
3131
3132 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3133 REG_NOTES (user));
3134 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3135 }
3136
3137 /* Return the next insn that uses CC0 after INSN, which is assumed to
3138 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3139 applied to the result of this function should yield INSN).
3140
3141 Normally, this is simply the next insn. However, if a REG_CC_USER note
3142 is present, it contains the insn that uses CC0.
3143
3144 Return 0 if we can't find the insn. */
3145
3146 rtx
3147 next_cc0_user (insn)
3148 rtx insn;
3149 {
3150 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3151
3152 if (note)
3153 return XEXP (note, 0);
3154
3155 insn = next_nonnote_insn (insn);
3156 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3157 insn = XVECEXP (PATTERN (insn), 0, 0);
3158
3159 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3160 return insn;
3161
3162 return 0;
3163 }
3164
3165 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3166 note, it is the previous insn. */
3167
3168 rtx
3169 prev_cc0_setter (insn)
3170 rtx insn;
3171 {
3172 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3173
3174 if (note)
3175 return XEXP (note, 0);
3176
3177 insn = prev_nonnote_insn (insn);
3178 if (! sets_cc0_p (PATTERN (insn)))
3179 abort ();
3180
3181 return insn;
3182 }
3183 #endif
3184
3185 /* Increment the label uses for all labels present in rtx. */
3186
3187 static void
3188 mark_label_nuses (x)
3189 rtx x;
3190 {
3191 enum rtx_code code;
3192 int i, j;
3193 const char *fmt;
3194
3195 code = GET_CODE (x);
3196 if (code == LABEL_REF)
3197 LABEL_NUSES (XEXP (x, 0))++;
3198
3199 fmt = GET_RTX_FORMAT (code);
3200 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3201 {
3202 if (fmt[i] == 'e')
3203 mark_label_nuses (XEXP (x, i));
3204 else if (fmt[i] == 'E')
3205 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3206 mark_label_nuses (XVECEXP (x, i, j));
3207 }
3208 }
3209
3210 \f
3211 /* Try splitting insns that can be split for better scheduling.
3212 PAT is the pattern which might split.
3213 TRIAL is the insn providing PAT.
3214 LAST is nonzero if we should return the last insn of the sequence produced.
3215
3216 If this routine succeeds in splitting, it returns the first or last
3217 replacement insn depending on the value of LAST. Otherwise, it
3218 returns TRIAL. If the insn to be returned can be split, it will be. */
3219
3220 rtx
3221 try_split (pat, trial, last)
3222 rtx pat, trial;
3223 int last;
3224 {
3225 rtx before = PREV_INSN (trial);
3226 rtx after = NEXT_INSN (trial);
3227 int has_barrier = 0;
3228 rtx tem;
3229 rtx note, seq;
3230 int probability;
3231
3232 if (any_condjump_p (trial)
3233 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3234 split_branch_probability = INTVAL (XEXP (note, 0));
3235 probability = split_branch_probability;
3236
3237 seq = split_insns (pat, trial);
3238
3239 split_branch_probability = -1;
3240
3241 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3242 We may need to handle this specially. */
3243 if (after && GET_CODE (after) == BARRIER)
3244 {
3245 has_barrier = 1;
3246 after = NEXT_INSN (after);
3247 }
3248
3249 if (seq)
3250 {
3251 /* Sometimes there will be only one insn in that list, this case will
3252 normally arise only when we want it in turn to be split (SFmode on
3253 the 29k is an example). */
3254 if (NEXT_INSN (seq) != NULL_RTX)
3255 {
3256 rtx insn_last, insn;
3257 int njumps = 0;
3258
3259 /* Avoid infinite loop if any insn of the result matches
3260 the original pattern. */
3261 insn_last = seq;
3262 while (1)
3263 {
3264 if (INSN_P (insn_last)
3265 && rtx_equal_p (PATTERN (insn_last), pat))
3266 return trial;
3267 if (NEXT_INSN (insn_last) == NULL_RTX)
3268 break;
3269 insn_last = NEXT_INSN (insn_last);
3270 }
3271
3272 /* Mark labels. */
3273 insn = insn_last;
3274 while (insn != NULL_RTX)
3275 {
3276 if (GET_CODE (insn) == JUMP_INSN)
3277 {
3278 mark_jump_label (PATTERN (insn), insn, 0);
3279 njumps++;
3280 if (probability != -1
3281 && any_condjump_p (insn)
3282 && !find_reg_note (insn, REG_BR_PROB, 0))
3283 {
3284 /* We can preserve the REG_BR_PROB notes only if exactly
3285 one jump is created, otherwise the machine description
3286 is responsible for this step using
3287 split_branch_probability variable. */
3288 if (njumps != 1)
3289 abort ();
3290 REG_NOTES (insn)
3291 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3292 GEN_INT (probability),
3293 REG_NOTES (insn));
3294 }
3295 }
3296
3297 insn = PREV_INSN (insn);
3298 }
3299
3300 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3301 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3302 if (GET_CODE (trial) == CALL_INSN)
3303 {
3304 insn = insn_last;
3305 while (insn != NULL_RTX)
3306 {
3307 if (GET_CODE (insn) == CALL_INSN)
3308 CALL_INSN_FUNCTION_USAGE (insn)
3309 = CALL_INSN_FUNCTION_USAGE (trial);
3310
3311 insn = PREV_INSN (insn);
3312 }
3313 }
3314
3315 /* Copy notes, particularly those related to the CFG. */
3316 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3317 {
3318 switch (REG_NOTE_KIND (note))
3319 {
3320 case REG_EH_REGION:
3321 insn = insn_last;
3322 while (insn != NULL_RTX)
3323 {
3324 if (GET_CODE (insn) == CALL_INSN
3325 || (flag_non_call_exceptions
3326 && may_trap_p (PATTERN (insn))))
3327 REG_NOTES (insn)
3328 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3329 XEXP (note, 0),
3330 REG_NOTES (insn));
3331 insn = PREV_INSN (insn);
3332 }
3333 break;
3334
3335 case REG_NORETURN:
3336 case REG_SETJMP:
3337 case REG_ALWAYS_RETURN:
3338 insn = insn_last;
3339 while (insn != NULL_RTX)
3340 {
3341 if (GET_CODE (insn) == CALL_INSN)
3342 REG_NOTES (insn)
3343 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3344 XEXP (note, 0),
3345 REG_NOTES (insn));
3346 insn = PREV_INSN (insn);
3347 }
3348 break;
3349
3350 case REG_NON_LOCAL_GOTO:
3351 insn = insn_last;
3352 while (insn != NULL_RTX)
3353 {
3354 if (GET_CODE (insn) == JUMP_INSN)
3355 REG_NOTES (insn)
3356 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3357 XEXP (note, 0),
3358 REG_NOTES (insn));
3359 insn = PREV_INSN (insn);
3360 }
3361 break;
3362
3363 default:
3364 break;
3365 }
3366 }
3367
3368 /* If there are LABELS inside the split insns increment the
3369 usage count so we don't delete the label. */
3370 if (GET_CODE (trial) == INSN)
3371 {
3372 insn = insn_last;
3373 while (insn != NULL_RTX)
3374 {
3375 if (GET_CODE (insn) == INSN)
3376 mark_label_nuses (PATTERN (insn));
3377
3378 insn = PREV_INSN (insn);
3379 }
3380 }
3381
3382 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
3383
3384 delete_insn (trial);
3385 if (has_barrier)
3386 emit_barrier_after (tem);
3387
3388 /* Recursively call try_split for each new insn created; by the
3389 time control returns here that insn will be fully split, so
3390 set LAST and continue from the insn after the one returned.
3391 We can't use next_active_insn here since AFTER may be a note.
3392 Ignore deleted insns, which can be occur if not optimizing. */
3393 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3394 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3395 tem = try_split (PATTERN (tem), tem, 1);
3396 }
3397 /* Avoid infinite loop if the result matches the original pattern. */
3398 else if (rtx_equal_p (PATTERN (seq), pat))
3399 return trial;
3400 else
3401 {
3402 PATTERN (trial) = PATTERN (seq);
3403 INSN_CODE (trial) = -1;
3404 try_split (PATTERN (trial), trial, last);
3405 }
3406
3407 /* Return either the first or the last insn, depending on which was
3408 requested. */
3409 return last
3410 ? (after ? PREV_INSN (after) : last_insn)
3411 : NEXT_INSN (before);
3412 }
3413
3414 return trial;
3415 }
3416 \f
3417 /* Make and return an INSN rtx, initializing all its slots.
3418 Store PATTERN in the pattern slots. */
3419
3420 rtx
3421 make_insn_raw (pattern)
3422 rtx pattern;
3423 {
3424 rtx insn;
3425
3426 insn = rtx_alloc (INSN);
3427
3428 INSN_UID (insn) = cur_insn_uid++;
3429 PATTERN (insn) = pattern;
3430 INSN_CODE (insn) = -1;
3431 LOG_LINKS (insn) = NULL;
3432 REG_NOTES (insn) = NULL;
3433 INSN_SCOPE (insn) = NULL;
3434 BLOCK_FOR_INSN (insn) = NULL;
3435
3436 #ifdef ENABLE_RTL_CHECKING
3437 if (insn
3438 && INSN_P (insn)
3439 && (returnjump_p (insn)
3440 || (GET_CODE (insn) == SET
3441 && SET_DEST (insn) == pc_rtx)))
3442 {
3443 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3444 debug_rtx (insn);
3445 }
3446 #endif
3447
3448 return insn;
3449 }
3450
3451 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3452
3453 static rtx
3454 make_jump_insn_raw (pattern)
3455 rtx pattern;
3456 {
3457 rtx insn;
3458
3459 insn = rtx_alloc (JUMP_INSN);
3460 INSN_UID (insn) = cur_insn_uid++;
3461
3462 PATTERN (insn) = pattern;
3463 INSN_CODE (insn) = -1;
3464 LOG_LINKS (insn) = NULL;
3465 REG_NOTES (insn) = NULL;
3466 JUMP_LABEL (insn) = NULL;
3467 INSN_SCOPE (insn) = NULL;
3468 BLOCK_FOR_INSN (insn) = NULL;
3469
3470 return insn;
3471 }
3472
3473 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3474
3475 static rtx
3476 make_call_insn_raw (pattern)
3477 rtx pattern;
3478 {
3479 rtx insn;
3480
3481 insn = rtx_alloc (CALL_INSN);
3482 INSN_UID (insn) = cur_insn_uid++;
3483
3484 PATTERN (insn) = pattern;
3485 INSN_CODE (insn) = -1;
3486 LOG_LINKS (insn) = NULL;
3487 REG_NOTES (insn) = NULL;
3488 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3489 INSN_SCOPE (insn) = NULL;
3490 BLOCK_FOR_INSN (insn) = NULL;
3491
3492 return insn;
3493 }
3494 \f
3495 /* Add INSN to the end of the doubly-linked list.
3496 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3497
3498 void
3499 add_insn (insn)
3500 rtx insn;
3501 {
3502 PREV_INSN (insn) = last_insn;
3503 NEXT_INSN (insn) = 0;
3504
3505 if (NULL != last_insn)
3506 NEXT_INSN (last_insn) = insn;
3507
3508 if (NULL == first_insn)
3509 first_insn = insn;
3510
3511 last_insn = insn;
3512 }
3513
3514 /* Add INSN into the doubly-linked list after insn AFTER. This and
3515 the next should be the only functions called to insert an insn once
3516 delay slots have been filled since only they know how to update a
3517 SEQUENCE. */
3518
3519 void
3520 add_insn_after (insn, after)
3521 rtx insn, after;
3522 {
3523 rtx next = NEXT_INSN (after);
3524 basic_block bb;
3525
3526 if (optimize && INSN_DELETED_P (after))
3527 abort ();
3528
3529 NEXT_INSN (insn) = next;
3530 PREV_INSN (insn) = after;
3531
3532 if (next)
3533 {
3534 PREV_INSN (next) = insn;
3535 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3536 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3537 }
3538 else if (last_insn == after)
3539 last_insn = insn;
3540 else
3541 {
3542 struct sequence_stack *stack = seq_stack;
3543 /* Scan all pending sequences too. */
3544 for (; stack; stack = stack->next)
3545 if (after == stack->last)
3546 {
3547 stack->last = insn;
3548 break;
3549 }
3550
3551 if (stack == 0)
3552 abort ();
3553 }
3554
3555 if (GET_CODE (after) != BARRIER
3556 && GET_CODE (insn) != BARRIER
3557 && (bb = BLOCK_FOR_INSN (after)))
3558 {
3559 set_block_for_insn (insn, bb);
3560 if (INSN_P (insn))
3561 bb->flags |= BB_DIRTY;
3562 /* Should not happen as first in the BB is always
3563 either NOTE or LABEL. */
3564 if (bb->end == after
3565 /* Avoid clobbering of structure when creating new BB. */
3566 && GET_CODE (insn) != BARRIER
3567 && (GET_CODE (insn) != NOTE
3568 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3569 bb->end = insn;
3570 }
3571
3572 NEXT_INSN (after) = insn;
3573 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3574 {
3575 rtx sequence = PATTERN (after);
3576 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3577 }
3578 }
3579
3580 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3581 the previous should be the only functions called to insert an insn once
3582 delay slots have been filled since only they know how to update a
3583 SEQUENCE. */
3584
3585 void
3586 add_insn_before (insn, before)
3587 rtx insn, before;
3588 {
3589 rtx prev = PREV_INSN (before);
3590 basic_block bb;
3591
3592 if (optimize && INSN_DELETED_P (before))
3593 abort ();
3594
3595 PREV_INSN (insn) = prev;
3596 NEXT_INSN (insn) = before;
3597
3598 if (prev)
3599 {
3600 NEXT_INSN (prev) = insn;
3601 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3602 {
3603 rtx sequence = PATTERN (prev);
3604 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3605 }
3606 }
3607 else if (first_insn == before)
3608 first_insn = insn;
3609 else
3610 {
3611 struct sequence_stack *stack = seq_stack;
3612 /* Scan all pending sequences too. */
3613 for (; stack; stack = stack->next)
3614 if (before == stack->first)
3615 {
3616 stack->first = insn;
3617 break;
3618 }
3619
3620 if (stack == 0)
3621 abort ();
3622 }
3623
3624 if (GET_CODE (before) != BARRIER
3625 && GET_CODE (insn) != BARRIER
3626 && (bb = BLOCK_FOR_INSN (before)))
3627 {
3628 set_block_for_insn (insn, bb);
3629 if (INSN_P (insn))
3630 bb->flags |= BB_DIRTY;
3631 /* Should not happen as first in the BB is always
3632 either NOTE or LABEl. */
3633 if (bb->head == insn
3634 /* Avoid clobbering of structure when creating new BB. */
3635 && GET_CODE (insn) != BARRIER
3636 && (GET_CODE (insn) != NOTE
3637 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3638 abort ();
3639 }
3640
3641 PREV_INSN (before) = insn;
3642 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3643 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3644 }
3645
3646 /* Remove an insn from its doubly-linked list. This function knows how
3647 to handle sequences. */
3648 void
3649 remove_insn (insn)
3650 rtx insn;
3651 {
3652 rtx next = NEXT_INSN (insn);
3653 rtx prev = PREV_INSN (insn);
3654 basic_block bb;
3655
3656 if (prev)
3657 {
3658 NEXT_INSN (prev) = next;
3659 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3660 {
3661 rtx sequence = PATTERN (prev);
3662 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3663 }
3664 }
3665 else if (first_insn == insn)
3666 first_insn = next;
3667 else
3668 {
3669 struct sequence_stack *stack = seq_stack;
3670 /* Scan all pending sequences too. */
3671 for (; stack; stack = stack->next)
3672 if (insn == stack->first)
3673 {
3674 stack->first = next;
3675 break;
3676 }
3677
3678 if (stack == 0)
3679 abort ();
3680 }
3681
3682 if (next)
3683 {
3684 PREV_INSN (next) = prev;
3685 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3686 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3687 }
3688 else if (last_insn == insn)
3689 last_insn = prev;
3690 else
3691 {
3692 struct sequence_stack *stack = seq_stack;
3693 /* Scan all pending sequences too. */
3694 for (; stack; stack = stack->next)
3695 if (insn == stack->last)
3696 {
3697 stack->last = prev;
3698 break;
3699 }
3700
3701 if (stack == 0)
3702 abort ();
3703 }
3704 if (GET_CODE (insn) != BARRIER
3705 && (bb = BLOCK_FOR_INSN (insn)))
3706 {
3707 if (INSN_P (insn))
3708 bb->flags |= BB_DIRTY;
3709 if (bb->head == insn)
3710 {
3711 /* Never ever delete the basic block note without deleting whole
3712 basic block. */
3713 if (GET_CODE (insn) == NOTE)
3714 abort ();
3715 bb->head = next;
3716 }
3717 if (bb->end == insn)
3718 bb->end = prev;
3719 }
3720 }
3721
3722 /* Delete all insns made since FROM.
3723 FROM becomes the new last instruction. */
3724
3725 void
3726 delete_insns_since (from)
3727 rtx from;
3728 {
3729 if (from == 0)
3730 first_insn = 0;
3731 else
3732 NEXT_INSN (from) = 0;
3733 last_insn = from;
3734 }
3735
3736 /* This function is deprecated, please use sequences instead.
3737
3738 Move a consecutive bunch of insns to a different place in the chain.
3739 The insns to be moved are those between FROM and TO.
3740 They are moved to a new position after the insn AFTER.
3741 AFTER must not be FROM or TO or any insn in between.
3742
3743 This function does not know about SEQUENCEs and hence should not be
3744 called after delay-slot filling has been done. */
3745
3746 void
3747 reorder_insns_nobb (from, to, after)
3748 rtx from, to, after;
3749 {
3750 /* Splice this bunch out of where it is now. */
3751 if (PREV_INSN (from))
3752 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3753 if (NEXT_INSN (to))
3754 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3755 if (last_insn == to)
3756 last_insn = PREV_INSN (from);
3757 if (first_insn == from)
3758 first_insn = NEXT_INSN (to);
3759
3760 /* Make the new neighbors point to it and it to them. */
3761 if (NEXT_INSN (after))
3762 PREV_INSN (NEXT_INSN (after)) = to;
3763
3764 NEXT_INSN (to) = NEXT_INSN (after);
3765 PREV_INSN (from) = after;
3766 NEXT_INSN (after) = from;
3767 if (after == last_insn)
3768 last_insn = to;
3769 }
3770
3771 /* Same as function above, but take care to update BB boundaries. */
3772 void
3773 reorder_insns (from, to, after)
3774 rtx from, to, after;
3775 {
3776 rtx prev = PREV_INSN (from);
3777 basic_block bb, bb2;
3778
3779 reorder_insns_nobb (from, to, after);
3780
3781 if (GET_CODE (after) != BARRIER
3782 && (bb = BLOCK_FOR_INSN (after)))
3783 {
3784 rtx x;
3785 bb->flags |= BB_DIRTY;
3786
3787 if (GET_CODE (from) != BARRIER
3788 && (bb2 = BLOCK_FOR_INSN (from)))
3789 {
3790 if (bb2->end == to)
3791 bb2->end = prev;
3792 bb2->flags |= BB_DIRTY;
3793 }
3794
3795 if (bb->end == after)
3796 bb->end = to;
3797
3798 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3799 set_block_for_insn (x, bb);
3800 }
3801 }
3802
3803 /* Return the line note insn preceding INSN. */
3804
3805 static rtx
3806 find_line_note (insn)
3807 rtx insn;
3808 {
3809 if (no_line_numbers)
3810 return 0;
3811
3812 for (; insn; insn = PREV_INSN (insn))
3813 if (GET_CODE (insn) == NOTE
3814 && NOTE_LINE_NUMBER (insn) >= 0)
3815 break;
3816
3817 return insn;
3818 }
3819
3820 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3821 of the moved insns when debugging. This may insert a note between AFTER
3822 and FROM, and another one after TO. */
3823
3824 void
3825 reorder_insns_with_line_notes (from, to, after)
3826 rtx from, to, after;
3827 {
3828 rtx from_line = find_line_note (from);
3829 rtx after_line = find_line_note (after);
3830
3831 reorder_insns (from, to, after);
3832
3833 if (from_line == after_line)
3834 return;
3835
3836 if (from_line)
3837 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3838 NOTE_LINE_NUMBER (from_line),
3839 after);
3840 if (after_line)
3841 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3842 NOTE_LINE_NUMBER (after_line),
3843 to);
3844 }
3845
3846 /* Remove unnecessary notes from the instruction stream. */
3847
3848 void
3849 remove_unnecessary_notes ()
3850 {
3851 rtx block_stack = NULL_RTX;
3852 rtx eh_stack = NULL_RTX;
3853 rtx insn;
3854 rtx next;
3855 rtx tmp;
3856
3857 /* We must not remove the first instruction in the function because
3858 the compiler depends on the first instruction being a note. */
3859 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3860 {
3861 /* Remember what's next. */
3862 next = NEXT_INSN (insn);
3863
3864 /* We're only interested in notes. */
3865 if (GET_CODE (insn) != NOTE)
3866 continue;
3867
3868 switch (NOTE_LINE_NUMBER (insn))
3869 {
3870 case NOTE_INSN_DELETED:
3871 case NOTE_INSN_LOOP_END_TOP_COND:
3872 remove_insn (insn);
3873 break;
3874
3875 case NOTE_INSN_EH_REGION_BEG:
3876 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3877 break;
3878
3879 case NOTE_INSN_EH_REGION_END:
3880 /* Too many end notes. */
3881 if (eh_stack == NULL_RTX)
3882 abort ();
3883 /* Mismatched nesting. */
3884 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3885 abort ();
3886 tmp = eh_stack;
3887 eh_stack = XEXP (eh_stack, 1);
3888 free_INSN_LIST_node (tmp);
3889 break;
3890
3891 case NOTE_INSN_BLOCK_BEG:
3892 /* By now, all notes indicating lexical blocks should have
3893 NOTE_BLOCK filled in. */
3894 if (NOTE_BLOCK (insn) == NULL_TREE)
3895 abort ();
3896 block_stack = alloc_INSN_LIST (insn, block_stack);
3897 break;
3898
3899 case NOTE_INSN_BLOCK_END:
3900 /* Too many end notes. */
3901 if (block_stack == NULL_RTX)
3902 abort ();
3903 /* Mismatched nesting. */
3904 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3905 abort ();
3906 tmp = block_stack;
3907 block_stack = XEXP (block_stack, 1);
3908 free_INSN_LIST_node (tmp);
3909
3910 /* Scan back to see if there are any non-note instructions
3911 between INSN and the beginning of this block. If not,
3912 then there is no PC range in the generated code that will
3913 actually be in this block, so there's no point in
3914 remembering the existence of the block. */
3915 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3916 {
3917 /* This block contains a real instruction. Note that we
3918 don't include labels; if the only thing in the block
3919 is a label, then there are still no PC values that
3920 lie within the block. */
3921 if (INSN_P (tmp))
3922 break;
3923
3924 /* We're only interested in NOTEs. */
3925 if (GET_CODE (tmp) != NOTE)
3926 continue;
3927
3928 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3929 {
3930 /* We just verified that this BLOCK matches us with
3931 the block_stack check above. Never delete the
3932 BLOCK for the outermost scope of the function; we
3933 can refer to names from that scope even if the
3934 block notes are messed up. */
3935 if (! is_body_block (NOTE_BLOCK (insn))
3936 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3937 {
3938 remove_insn (tmp);
3939 remove_insn (insn);
3940 }
3941 break;
3942 }
3943 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3944 /* There's a nested block. We need to leave the
3945 current block in place since otherwise the debugger
3946 wouldn't be able to show symbols from our block in
3947 the nested block. */
3948 break;
3949 }
3950 }
3951 }
3952
3953 /* Too many begin notes. */
3954 if (block_stack || eh_stack)
3955 abort ();
3956 }
3957
3958 \f
3959 /* Emit insn(s) of given code and pattern
3960 at a specified place within the doubly-linked list.
3961
3962 All of the emit_foo global entry points accept an object
3963 X which is either an insn list or a PATTERN of a single
3964 instruction.
3965
3966 There are thus a few canonical ways to generate code and
3967 emit it at a specific place in the instruction stream. For
3968 example, consider the instruction named SPOT and the fact that
3969 we would like to emit some instructions before SPOT. We might
3970 do it like this:
3971
3972 start_sequence ();
3973 ... emit the new instructions ...
3974 insns_head = get_insns ();
3975 end_sequence ();
3976
3977 emit_insn_before (insns_head, SPOT);
3978
3979 It used to be common to generate SEQUENCE rtl instead, but that
3980 is a relic of the past which no longer occurs. The reason is that
3981 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3982 generated would almost certainly die right after it was created. */
3983
3984 /* Make X be output before the instruction BEFORE. */
3985
3986 rtx
3987 emit_insn_before (x, before)
3988 rtx x, before;
3989 {
3990 rtx last = before;
3991 rtx insn;
3992
3993 #ifdef ENABLE_RTL_CHECKING
3994 if (before == NULL_RTX)
3995 abort ();
3996 #endif
3997
3998 if (x == NULL_RTX)
3999 return last;
4000
4001 switch (GET_CODE (x))
4002 {
4003 case INSN:
4004 case JUMP_INSN:
4005 case CALL_INSN:
4006 case CODE_LABEL:
4007 case BARRIER:
4008 case NOTE:
4009 insn = x;
4010 while (insn)
4011 {
4012 rtx next = NEXT_INSN (insn);
4013 add_insn_before (insn, before);
4014 last = insn;
4015 insn = next;
4016 }
4017 break;
4018
4019 #ifdef ENABLE_RTL_CHECKING
4020 case SEQUENCE:
4021 abort ();
4022 break;
4023 #endif
4024
4025 default:
4026 last = make_insn_raw (x);
4027 add_insn_before (last, before);
4028 break;
4029 }
4030
4031 return last;
4032 }
4033
4034 /* Make an instruction with body X and code JUMP_INSN
4035 and output it before the instruction BEFORE. */
4036
4037 rtx
4038 emit_jump_insn_before (x, before)
4039 rtx x, before;
4040 {
4041 rtx insn, last = NULL_RTX;
4042
4043 #ifdef ENABLE_RTL_CHECKING
4044 if (before == NULL_RTX)
4045 abort ();
4046 #endif
4047
4048 switch (GET_CODE (x))
4049 {
4050 case INSN:
4051 case JUMP_INSN:
4052 case CALL_INSN:
4053 case CODE_LABEL:
4054 case BARRIER:
4055 case NOTE:
4056 insn = x;
4057 while (insn)
4058 {
4059 rtx next = NEXT_INSN (insn);
4060 add_insn_before (insn, before);
4061 last = insn;
4062 insn = next;
4063 }
4064 break;
4065
4066 #ifdef ENABLE_RTL_CHECKING
4067 case SEQUENCE:
4068 abort ();
4069 break;
4070 #endif
4071
4072 default:
4073 last = make_jump_insn_raw (x);
4074 add_insn_before (last, before);
4075 break;
4076 }
4077
4078 return last;
4079 }
4080
4081 /* Make an instruction with body X and code CALL_INSN
4082 and output it before the instruction BEFORE. */
4083
4084 rtx
4085 emit_call_insn_before (x, before)
4086 rtx x, before;
4087 {
4088 rtx last = NULL_RTX, insn;
4089
4090 #ifdef ENABLE_RTL_CHECKING
4091 if (before == NULL_RTX)
4092 abort ();
4093 #endif
4094
4095 switch (GET_CODE (x))
4096 {
4097 case INSN:
4098 case JUMP_INSN:
4099 case CALL_INSN:
4100 case CODE_LABEL:
4101 case BARRIER:
4102 case NOTE:
4103 insn = x;
4104 while (insn)
4105 {
4106 rtx next = NEXT_INSN (insn);
4107 add_insn_before (insn, before);
4108 last = insn;
4109 insn = next;
4110 }
4111 break;
4112
4113 #ifdef ENABLE_RTL_CHECKING
4114 case SEQUENCE:
4115 abort ();
4116 break;
4117 #endif
4118
4119 default:
4120 last = make_call_insn_raw (x);
4121 add_insn_before (last, before);
4122 break;
4123 }
4124
4125 return last;
4126 }
4127
4128 /* Make an insn of code BARRIER
4129 and output it before the insn BEFORE. */
4130
4131 rtx
4132 emit_barrier_before (before)
4133 rtx before;
4134 {
4135 rtx insn = rtx_alloc (BARRIER);
4136
4137 INSN_UID (insn) = cur_insn_uid++;
4138
4139 add_insn_before (insn, before);
4140 return insn;
4141 }
4142
4143 /* Emit the label LABEL before the insn BEFORE. */
4144
4145 rtx
4146 emit_label_before (label, before)
4147 rtx label, before;
4148 {
4149 /* This can be called twice for the same label as a result of the
4150 confusion that follows a syntax error! So make it harmless. */
4151 if (INSN_UID (label) == 0)
4152 {
4153 INSN_UID (label) = cur_insn_uid++;
4154 add_insn_before (label, before);
4155 }
4156
4157 return label;
4158 }
4159
4160 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4161
4162 rtx
4163 emit_note_before (subtype, before)
4164 int subtype;
4165 rtx before;
4166 {
4167 rtx note = rtx_alloc (NOTE);
4168 INSN_UID (note) = cur_insn_uid++;
4169 NOTE_SOURCE_FILE (note) = 0;
4170 NOTE_LINE_NUMBER (note) = subtype;
4171 BLOCK_FOR_INSN (note) = NULL;
4172
4173 add_insn_before (note, before);
4174 return note;
4175 }
4176 \f
4177 /* Helper for emit_insn_after, handles lists of instructions
4178 efficiently. */
4179
4180 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4181
4182 static rtx
4183 emit_insn_after_1 (first, after)
4184 rtx first, after;
4185 {
4186 rtx last;
4187 rtx after_after;
4188 basic_block bb;
4189
4190 if (GET_CODE (after) != BARRIER
4191 && (bb = BLOCK_FOR_INSN (after)))
4192 {
4193 bb->flags |= BB_DIRTY;
4194 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4195 if (GET_CODE (last) != BARRIER)
4196 set_block_for_insn (last, bb);
4197 if (GET_CODE (last) != BARRIER)
4198 set_block_for_insn (last, bb);
4199 if (bb->end == after)
4200 bb->end = last;
4201 }
4202 else
4203 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4204 continue;
4205
4206 after_after = NEXT_INSN (after);
4207
4208 NEXT_INSN (after) = first;
4209 PREV_INSN (first) = after;
4210 NEXT_INSN (last) = after_after;
4211 if (after_after)
4212 PREV_INSN (after_after) = last;
4213
4214 if (after == last_insn)
4215 last_insn = last;
4216 return last;
4217 }
4218
4219 /* Make X be output after the insn AFTER. */
4220
4221 rtx
4222 emit_insn_after (x, after)
4223 rtx x, after;
4224 {
4225 rtx last = after;
4226
4227 #ifdef ENABLE_RTL_CHECKING
4228 if (after == NULL_RTX)
4229 abort ();
4230 #endif
4231
4232 if (x == NULL_RTX)
4233 return last;
4234
4235 switch (GET_CODE (x))
4236 {
4237 case INSN:
4238 case JUMP_INSN:
4239 case CALL_INSN:
4240 case CODE_LABEL:
4241 case BARRIER:
4242 case NOTE:
4243 last = emit_insn_after_1 (x, after);
4244 break;
4245
4246 #ifdef ENABLE_RTL_CHECKING
4247 case SEQUENCE:
4248 abort ();
4249 break;
4250 #endif
4251
4252 default:
4253 last = make_insn_raw (x);
4254 add_insn_after (last, after);
4255 break;
4256 }
4257
4258 return last;
4259 }
4260
4261 /* Similar to emit_insn_after, except that line notes are to be inserted so
4262 as to act as if this insn were at FROM. */
4263
4264 void
4265 emit_insn_after_with_line_notes (x, after, from)
4266 rtx x, after, from;
4267 {
4268 rtx from_line = find_line_note (from);
4269 rtx after_line = find_line_note (after);
4270 rtx insn = emit_insn_after (x, after);
4271
4272 if (from_line)
4273 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4274 NOTE_LINE_NUMBER (from_line),
4275 after);
4276
4277 if (after_line)
4278 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4279 NOTE_LINE_NUMBER (after_line),
4280 insn);
4281 }
4282
4283 /* Make an insn of code JUMP_INSN with body X
4284 and output it after the insn AFTER. */
4285
4286 rtx
4287 emit_jump_insn_after (x, after)
4288 rtx x, after;
4289 {
4290 rtx last;
4291
4292 #ifdef ENABLE_RTL_CHECKING
4293 if (after == NULL_RTX)
4294 abort ();
4295 #endif
4296
4297 switch (GET_CODE (x))
4298 {
4299 case INSN:
4300 case JUMP_INSN:
4301 case CALL_INSN:
4302 case CODE_LABEL:
4303 case BARRIER:
4304 case NOTE:
4305 last = emit_insn_after_1 (x, after);
4306 break;
4307
4308 #ifdef ENABLE_RTL_CHECKING
4309 case SEQUENCE:
4310 abort ();
4311 break;
4312 #endif
4313
4314 default:
4315 last = make_jump_insn_raw (x);
4316 add_insn_after (last, after);
4317 break;
4318 }
4319
4320 return last;
4321 }
4322
4323 /* Make an instruction with body X and code CALL_INSN
4324 and output it after the instruction AFTER. */
4325
4326 rtx
4327 emit_call_insn_after (x, after)
4328 rtx x, after;
4329 {
4330 rtx last;
4331
4332 #ifdef ENABLE_RTL_CHECKING
4333 if (after == NULL_RTX)
4334 abort ();
4335 #endif
4336
4337 switch (GET_CODE (x))
4338 {
4339 case INSN:
4340 case JUMP_INSN:
4341 case CALL_INSN:
4342 case CODE_LABEL:
4343 case BARRIER:
4344 case NOTE:
4345 last = emit_insn_after_1 (x, after);
4346 break;
4347
4348 #ifdef ENABLE_RTL_CHECKING
4349 case SEQUENCE:
4350 abort ();
4351 break;
4352 #endif
4353
4354 default:
4355 last = make_call_insn_raw (x);
4356 add_insn_after (last, after);
4357 break;
4358 }
4359
4360 return last;
4361 }
4362
4363 /* Make an insn of code BARRIER
4364 and output it after the insn AFTER. */
4365
4366 rtx
4367 emit_barrier_after (after)
4368 rtx after;
4369 {
4370 rtx insn = rtx_alloc (BARRIER);
4371
4372 INSN_UID (insn) = cur_insn_uid++;
4373
4374 add_insn_after (insn, after);
4375 return insn;
4376 }
4377
4378 /* Emit the label LABEL after the insn AFTER. */
4379
4380 rtx
4381 emit_label_after (label, after)
4382 rtx label, after;
4383 {
4384 /* This can be called twice for the same label
4385 as a result of the confusion that follows a syntax error!
4386 So make it harmless. */
4387 if (INSN_UID (label) == 0)
4388 {
4389 INSN_UID (label) = cur_insn_uid++;
4390 add_insn_after (label, after);
4391 }
4392
4393 return label;
4394 }
4395
4396 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4397
4398 rtx
4399 emit_note_after (subtype, after)
4400 int subtype;
4401 rtx after;
4402 {
4403 rtx note = rtx_alloc (NOTE);
4404 INSN_UID (note) = cur_insn_uid++;
4405 NOTE_SOURCE_FILE (note) = 0;
4406 NOTE_LINE_NUMBER (note) = subtype;
4407 BLOCK_FOR_INSN (note) = NULL;
4408 add_insn_after (note, after);
4409 return note;
4410 }
4411
4412 /* Emit a line note for FILE and LINE after the insn AFTER. */
4413
4414 rtx
4415 emit_line_note_after (file, line, after)
4416 const char *file;
4417 int line;
4418 rtx after;
4419 {
4420 rtx note;
4421
4422 if (no_line_numbers && line > 0)
4423 {
4424 cur_insn_uid++;
4425 return 0;
4426 }
4427
4428 note = rtx_alloc (NOTE);
4429 INSN_UID (note) = cur_insn_uid++;
4430 NOTE_SOURCE_FILE (note) = file;
4431 NOTE_LINE_NUMBER (note) = line;
4432 BLOCK_FOR_INSN (note) = NULL;
4433 add_insn_after (note, after);
4434 return note;
4435 }
4436 \f
4437 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4438 rtx
4439 emit_insn_after_scope (pattern, after, scope)
4440 rtx pattern, after;
4441 tree scope;
4442 {
4443 rtx last = emit_insn_after (pattern, after);
4444
4445 after = NEXT_INSN (after);
4446 while (1)
4447 {
4448 if (active_insn_p (after))
4449 INSN_SCOPE (after) = scope;
4450 if (after == last)
4451 break;
4452 after = NEXT_INSN (after);
4453 }
4454 return last;
4455 }
4456
4457 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4458 rtx
4459 emit_jump_insn_after_scope (pattern, after, scope)
4460 rtx pattern, after;
4461 tree scope;
4462 {
4463 rtx last = emit_jump_insn_after (pattern, after);
4464
4465 after = NEXT_INSN (after);
4466 while (1)
4467 {
4468 if (active_insn_p (after))
4469 INSN_SCOPE (after) = scope;
4470 if (after == last)
4471 break;
4472 after = NEXT_INSN (after);
4473 }
4474 return last;
4475 }
4476
4477 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4478 rtx
4479 emit_call_insn_after_scope (pattern, after, scope)
4480 rtx pattern, after;
4481 tree scope;
4482 {
4483 rtx last = emit_call_insn_after (pattern, after);
4484
4485 after = NEXT_INSN (after);
4486 while (1)
4487 {
4488 if (active_insn_p (after))
4489 INSN_SCOPE (after) = scope;
4490 if (after == last)
4491 break;
4492 after = NEXT_INSN (after);
4493 }
4494 return last;
4495 }
4496
4497 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4498 rtx
4499 emit_insn_before_scope (pattern, before, scope)
4500 rtx pattern, before;
4501 tree scope;
4502 {
4503 rtx first = PREV_INSN (before);
4504 rtx last = emit_insn_before (pattern, before);
4505
4506 first = NEXT_INSN (first);
4507 while (1)
4508 {
4509 if (active_insn_p (first))
4510 INSN_SCOPE (first) = scope;
4511 if (first == last)
4512 break;
4513 first = NEXT_INSN (first);
4514 }
4515 return last;
4516 }
4517 \f
4518 /* Take X and emit it at the end of the doubly-linked
4519 INSN list.
4520
4521 Returns the last insn emitted. */
4522
4523 rtx
4524 emit_insn (x)
4525 rtx x;
4526 {
4527 rtx last = last_insn;
4528 rtx insn;
4529
4530 if (x == NULL_RTX)
4531 return last;
4532
4533 switch (GET_CODE (x))
4534 {
4535 case INSN:
4536 case JUMP_INSN:
4537 case CALL_INSN:
4538 case CODE_LABEL:
4539 case BARRIER:
4540 case NOTE:
4541 insn = x;
4542 while (insn)
4543 {
4544 rtx next = NEXT_INSN (insn);
4545 add_insn (insn);
4546 last = insn;
4547 insn = next;
4548 }
4549 break;
4550
4551 #ifdef ENABLE_RTL_CHECKING
4552 case SEQUENCE:
4553 abort ();
4554 break;
4555 #endif
4556
4557 default:
4558 last = make_insn_raw (x);
4559 add_insn (last);
4560 break;
4561 }
4562
4563 return last;
4564 }
4565
4566 /* Make an insn of code JUMP_INSN with pattern X
4567 and add it to the end of the doubly-linked list. */
4568
4569 rtx
4570 emit_jump_insn (x)
4571 rtx x;
4572 {
4573 rtx last = NULL_RTX, insn;
4574
4575 switch (GET_CODE (x))
4576 {
4577 case INSN:
4578 case JUMP_INSN:
4579 case CALL_INSN:
4580 case CODE_LABEL:
4581 case BARRIER:
4582 case NOTE:
4583 insn = x;
4584 while (insn)
4585 {
4586 rtx next = NEXT_INSN (insn);
4587 add_insn (insn);
4588 last = insn;
4589 insn = next;
4590 }
4591 break;
4592
4593 #ifdef ENABLE_RTL_CHECKING
4594 case SEQUENCE:
4595 abort ();
4596 break;
4597 #endif
4598
4599 default:
4600 last = make_jump_insn_raw (x);
4601 add_insn (last);
4602 break;
4603 }
4604
4605 return last;
4606 }
4607
4608 /* Make an insn of code CALL_INSN with pattern X
4609 and add it to the end of the doubly-linked list. */
4610
4611 rtx
4612 emit_call_insn (x)
4613 rtx x;
4614 {
4615 rtx insn;
4616
4617 switch (GET_CODE (x))
4618 {
4619 case INSN:
4620 case JUMP_INSN:
4621 case CALL_INSN:
4622 case CODE_LABEL:
4623 case BARRIER:
4624 case NOTE:
4625 insn = emit_insn (x);
4626 break;
4627
4628 #ifdef ENABLE_RTL_CHECKING
4629 case SEQUENCE:
4630 abort ();
4631 break;
4632 #endif
4633
4634 default:
4635 insn = make_call_insn_raw (x);
4636 add_insn (insn);
4637 break;
4638 }
4639
4640 return insn;
4641 }
4642
4643 /* Add the label LABEL to the end of the doubly-linked list. */
4644
4645 rtx
4646 emit_label (label)
4647 rtx label;
4648 {
4649 /* This can be called twice for the same label
4650 as a result of the confusion that follows a syntax error!
4651 So make it harmless. */
4652 if (INSN_UID (label) == 0)
4653 {
4654 INSN_UID (label) = cur_insn_uid++;
4655 add_insn (label);
4656 }
4657 return label;
4658 }
4659
4660 /* Make an insn of code BARRIER
4661 and add it to the end of the doubly-linked list. */
4662
4663 rtx
4664 emit_barrier ()
4665 {
4666 rtx barrier = rtx_alloc (BARRIER);
4667 INSN_UID (barrier) = cur_insn_uid++;
4668 add_insn (barrier);
4669 return barrier;
4670 }
4671
4672 /* Make an insn of code NOTE
4673 with data-fields specified by FILE and LINE
4674 and add it to the end of the doubly-linked list,
4675 but only if line-numbers are desired for debugging info. */
4676
4677 rtx
4678 emit_line_note (file, line)
4679 const char *file;
4680 int line;
4681 {
4682 set_file_and_line_for_stmt (file, line);
4683
4684 #if 0
4685 if (no_line_numbers)
4686 return 0;
4687 #endif
4688
4689 return emit_note (file, line);
4690 }
4691
4692 /* Make an insn of code NOTE
4693 with data-fields specified by FILE and LINE
4694 and add it to the end of the doubly-linked list.
4695 If it is a line-number NOTE, omit it if it matches the previous one. */
4696
4697 rtx
4698 emit_note (file, line)
4699 const char *file;
4700 int line;
4701 {
4702 rtx note;
4703
4704 if (line > 0)
4705 {
4706 if (file && last_filename && !strcmp (file, last_filename)
4707 && line == last_linenum)
4708 return 0;
4709 last_filename = file;
4710 last_linenum = line;
4711 }
4712
4713 if (no_line_numbers && line > 0)
4714 {
4715 cur_insn_uid++;
4716 return 0;
4717 }
4718
4719 note = rtx_alloc (NOTE);
4720 INSN_UID (note) = cur_insn_uid++;
4721 NOTE_SOURCE_FILE (note) = file;
4722 NOTE_LINE_NUMBER (note) = line;
4723 BLOCK_FOR_INSN (note) = NULL;
4724 add_insn (note);
4725 return note;
4726 }
4727
4728 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4729
4730 rtx
4731 emit_line_note_force (file, line)
4732 const char *file;
4733 int line;
4734 {
4735 last_linenum = -1;
4736 return emit_line_note (file, line);
4737 }
4738
4739 /* Cause next statement to emit a line note even if the line number
4740 has not changed. This is used at the beginning of a function. */
4741
4742 void
4743 force_next_line_note ()
4744 {
4745 last_linenum = -1;
4746 }
4747
4748 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4749 note of this type already exists, remove it first. */
4750
4751 rtx
4752 set_unique_reg_note (insn, kind, datum)
4753 rtx insn;
4754 enum reg_note kind;
4755 rtx datum;
4756 {
4757 rtx note = find_reg_note (insn, kind, NULL_RTX);
4758
4759 switch (kind)
4760 {
4761 case REG_EQUAL:
4762 case REG_EQUIV:
4763 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4764 has multiple sets (some callers assume single_set
4765 means the insn only has one set, when in fact it
4766 means the insn only has one * useful * set). */
4767 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4768 {
4769 if (note)
4770 abort ();
4771 return NULL_RTX;
4772 }
4773
4774 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4775 It serves no useful purpose and breaks eliminate_regs. */
4776 if (GET_CODE (datum) == ASM_OPERANDS)
4777 return NULL_RTX;
4778 break;
4779
4780 default:
4781 break;
4782 }
4783
4784 if (note)
4785 {
4786 XEXP (note, 0) = datum;
4787 return note;
4788 }
4789
4790 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4791 return REG_NOTES (insn);
4792 }
4793 \f
4794 /* Return an indication of which type of insn should have X as a body.
4795 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4796
4797 enum rtx_code
4798 classify_insn (x)
4799 rtx x;
4800 {
4801 if (GET_CODE (x) == CODE_LABEL)
4802 return CODE_LABEL;
4803 if (GET_CODE (x) == CALL)
4804 return CALL_INSN;
4805 if (GET_CODE (x) == RETURN)
4806 return JUMP_INSN;
4807 if (GET_CODE (x) == SET)
4808 {
4809 if (SET_DEST (x) == pc_rtx)
4810 return JUMP_INSN;
4811 else if (GET_CODE (SET_SRC (x)) == CALL)
4812 return CALL_INSN;
4813 else
4814 return INSN;
4815 }
4816 if (GET_CODE (x) == PARALLEL)
4817 {
4818 int j;
4819 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4820 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4821 return CALL_INSN;
4822 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4823 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4824 return JUMP_INSN;
4825 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4826 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4827 return CALL_INSN;
4828 }
4829 return INSN;
4830 }
4831
4832 /* Emit the rtl pattern X as an appropriate kind of insn.
4833 If X is a label, it is simply added into the insn chain. */
4834
4835 rtx
4836 emit (x)
4837 rtx x;
4838 {
4839 enum rtx_code code = classify_insn (x);
4840
4841 if (code == CODE_LABEL)
4842 return emit_label (x);
4843 else if (code == INSN)
4844 return emit_insn (x);
4845 else if (code == JUMP_INSN)
4846 {
4847 rtx insn = emit_jump_insn (x);
4848 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4849 return emit_barrier ();
4850 return insn;
4851 }
4852 else if (code == CALL_INSN)
4853 return emit_call_insn (x);
4854 else
4855 abort ();
4856 }
4857 \f
4858 /* Space for free sequence stack entries. */
4859 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4860
4861 /* Begin emitting insns to a sequence which can be packaged in an
4862 RTL_EXPR. If this sequence will contain something that might cause
4863 the compiler to pop arguments to function calls (because those
4864 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4865 details), use do_pending_stack_adjust before calling this function.
4866 That will ensure that the deferred pops are not accidentally
4867 emitted in the middle of this sequence. */
4868
4869 void
4870 start_sequence ()
4871 {
4872 struct sequence_stack *tem;
4873
4874 if (free_sequence_stack != NULL)
4875 {
4876 tem = free_sequence_stack;
4877 free_sequence_stack = tem->next;
4878 }
4879 else
4880 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4881
4882 tem->next = seq_stack;
4883 tem->first = first_insn;
4884 tem->last = last_insn;
4885 tem->sequence_rtl_expr = seq_rtl_expr;
4886
4887 seq_stack = tem;
4888
4889 first_insn = 0;
4890 last_insn = 0;
4891 }
4892
4893 /* Similarly, but indicate that this sequence will be placed in T, an
4894 RTL_EXPR. See the documentation for start_sequence for more
4895 information about how to use this function. */
4896
4897 void
4898 start_sequence_for_rtl_expr (t)
4899 tree t;
4900 {
4901 start_sequence ();
4902
4903 seq_rtl_expr = t;
4904 }
4905
4906 /* Set up the insn chain starting with FIRST as the current sequence,
4907 saving the previously current one. See the documentation for
4908 start_sequence for more information about how to use this function. */
4909
4910 void
4911 push_to_sequence (first)
4912 rtx first;
4913 {
4914 rtx last;
4915
4916 start_sequence ();
4917
4918 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4919
4920 first_insn = first;
4921 last_insn = last;
4922 }
4923
4924 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4925
4926 void
4927 push_to_full_sequence (first, last)
4928 rtx first, last;
4929 {
4930 start_sequence ();
4931 first_insn = first;
4932 last_insn = last;
4933 /* We really should have the end of the insn chain here. */
4934 if (last && NEXT_INSN (last))
4935 abort ();
4936 }
4937
4938 /* Set up the outer-level insn chain
4939 as the current sequence, saving the previously current one. */
4940
4941 void
4942 push_topmost_sequence ()
4943 {
4944 struct sequence_stack *stack, *top = NULL;
4945
4946 start_sequence ();
4947
4948 for (stack = seq_stack; stack; stack = stack->next)
4949 top = stack;
4950
4951 first_insn = top->first;
4952 last_insn = top->last;
4953 seq_rtl_expr = top->sequence_rtl_expr;
4954 }
4955
4956 /* After emitting to the outer-level insn chain, update the outer-level
4957 insn chain, and restore the previous saved state. */
4958
4959 void
4960 pop_topmost_sequence ()
4961 {
4962 struct sequence_stack *stack, *top = NULL;
4963
4964 for (stack = seq_stack; stack; stack = stack->next)
4965 top = stack;
4966
4967 top->first = first_insn;
4968 top->last = last_insn;
4969 /* ??? Why don't we save seq_rtl_expr here? */
4970
4971 end_sequence ();
4972 }
4973
4974 /* After emitting to a sequence, restore previous saved state.
4975
4976 To get the contents of the sequence just made, you must call
4977 `get_insns' *before* calling here.
4978
4979 If the compiler might have deferred popping arguments while
4980 generating this sequence, and this sequence will not be immediately
4981 inserted into the instruction stream, use do_pending_stack_adjust
4982 before calling get_insns. That will ensure that the deferred
4983 pops are inserted into this sequence, and not into some random
4984 location in the instruction stream. See INHIBIT_DEFER_POP for more
4985 information about deferred popping of arguments. */
4986
4987 void
4988 end_sequence ()
4989 {
4990 struct sequence_stack *tem = seq_stack;
4991
4992 first_insn = tem->first;
4993 last_insn = tem->last;
4994 seq_rtl_expr = tem->sequence_rtl_expr;
4995 seq_stack = tem->next;
4996
4997 memset (tem, 0, sizeof (*tem));
4998 tem->next = free_sequence_stack;
4999 free_sequence_stack = tem;
5000 }
5001
5002 /* This works like end_sequence, but records the old sequence in FIRST
5003 and LAST. */
5004
5005 void
5006 end_full_sequence (first, last)
5007 rtx *first, *last;
5008 {
5009 *first = first_insn;
5010 *last = last_insn;
5011 end_sequence ();
5012 }
5013
5014 /* Return 1 if currently emitting into a sequence. */
5015
5016 int
5017 in_sequence_p ()
5018 {
5019 return seq_stack != 0;
5020 }
5021 \f
5022 /* Put the various virtual registers into REGNO_REG_RTX. */
5023
5024 void
5025 init_virtual_regs (es)
5026 struct emit_status *es;
5027 {
5028 rtx *ptr = es->x_regno_reg_rtx;
5029 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5030 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5031 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5032 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5033 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5034 }
5035
5036 \f
5037 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5038 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5039 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5040 static int copy_insn_n_scratches;
5041
5042 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5043 copied an ASM_OPERANDS.
5044 In that case, it is the original input-operand vector. */
5045 static rtvec orig_asm_operands_vector;
5046
5047 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5048 copied an ASM_OPERANDS.
5049 In that case, it is the copied input-operand vector. */
5050 static rtvec copy_asm_operands_vector;
5051
5052 /* Likewise for the constraints vector. */
5053 static rtvec orig_asm_constraints_vector;
5054 static rtvec copy_asm_constraints_vector;
5055
5056 /* Recursively create a new copy of an rtx for copy_insn.
5057 This function differs from copy_rtx in that it handles SCRATCHes and
5058 ASM_OPERANDs properly.
5059 Normally, this function is not used directly; use copy_insn as front end.
5060 However, you could first copy an insn pattern with copy_insn and then use
5061 this function afterwards to properly copy any REG_NOTEs containing
5062 SCRATCHes. */
5063
5064 rtx
5065 copy_insn_1 (orig)
5066 rtx orig;
5067 {
5068 rtx copy;
5069 int i, j;
5070 RTX_CODE code;
5071 const char *format_ptr;
5072
5073 code = GET_CODE (orig);
5074
5075 switch (code)
5076 {
5077 case REG:
5078 case QUEUED:
5079 case CONST_INT:
5080 case CONST_DOUBLE:
5081 case CONST_VECTOR:
5082 case SYMBOL_REF:
5083 case CODE_LABEL:
5084 case PC:
5085 case CC0:
5086 case ADDRESSOF:
5087 return orig;
5088
5089 case SCRATCH:
5090 for (i = 0; i < copy_insn_n_scratches; i++)
5091 if (copy_insn_scratch_in[i] == orig)
5092 return copy_insn_scratch_out[i];
5093 break;
5094
5095 case CONST:
5096 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5097 a LABEL_REF, it isn't sharable. */
5098 if (GET_CODE (XEXP (orig, 0)) == PLUS
5099 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5100 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5101 return orig;
5102 break;
5103
5104 /* A MEM with a constant address is not sharable. The problem is that
5105 the constant address may need to be reloaded. If the mem is shared,
5106 then reloading one copy of this mem will cause all copies to appear
5107 to have been reloaded. */
5108
5109 default:
5110 break;
5111 }
5112
5113 copy = rtx_alloc (code);
5114
5115 /* Copy the various flags, and other information. We assume that
5116 all fields need copying, and then clear the fields that should
5117 not be copied. That is the sensible default behavior, and forces
5118 us to explicitly document why we are *not* copying a flag. */
5119 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5120
5121 /* We do not copy the USED flag, which is used as a mark bit during
5122 walks over the RTL. */
5123 RTX_FLAG (copy, used) = 0;
5124
5125 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5126 if (GET_RTX_CLASS (code) == 'i')
5127 {
5128 RTX_FLAG (copy, jump) = 0;
5129 RTX_FLAG (copy, call) = 0;
5130 RTX_FLAG (copy, frame_related) = 0;
5131 }
5132
5133 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5134
5135 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5136 {
5137 copy->fld[i] = orig->fld[i];
5138 switch (*format_ptr++)
5139 {
5140 case 'e':
5141 if (XEXP (orig, i) != NULL)
5142 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5143 break;
5144
5145 case 'E':
5146 case 'V':
5147 if (XVEC (orig, i) == orig_asm_constraints_vector)
5148 XVEC (copy, i) = copy_asm_constraints_vector;
5149 else if (XVEC (orig, i) == orig_asm_operands_vector)
5150 XVEC (copy, i) = copy_asm_operands_vector;
5151 else if (XVEC (orig, i) != NULL)
5152 {
5153 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5154 for (j = 0; j < XVECLEN (copy, i); j++)
5155 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5156 }
5157 break;
5158
5159 case 't':
5160 case 'w':
5161 case 'i':
5162 case 's':
5163 case 'S':
5164 case 'u':
5165 case '0':
5166 /* These are left unchanged. */
5167 break;
5168
5169 default:
5170 abort ();
5171 }
5172 }
5173
5174 if (code == SCRATCH)
5175 {
5176 i = copy_insn_n_scratches++;
5177 if (i >= MAX_RECOG_OPERANDS)
5178 abort ();
5179 copy_insn_scratch_in[i] = orig;
5180 copy_insn_scratch_out[i] = copy;
5181 }
5182 else if (code == ASM_OPERANDS)
5183 {
5184 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5185 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5186 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5187 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5188 }
5189
5190 return copy;
5191 }
5192
5193 /* Create a new copy of an rtx.
5194 This function differs from copy_rtx in that it handles SCRATCHes and
5195 ASM_OPERANDs properly.
5196 INSN doesn't really have to be a full INSN; it could be just the
5197 pattern. */
5198 rtx
5199 copy_insn (insn)
5200 rtx insn;
5201 {
5202 copy_insn_n_scratches = 0;
5203 orig_asm_operands_vector = 0;
5204 orig_asm_constraints_vector = 0;
5205 copy_asm_operands_vector = 0;
5206 copy_asm_constraints_vector = 0;
5207 return copy_insn_1 (insn);
5208 }
5209
5210 /* Initialize data structures and variables in this file
5211 before generating rtl for each function. */
5212
5213 void
5214 init_emit ()
5215 {
5216 struct function *f = cfun;
5217
5218 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5219 first_insn = NULL;
5220 last_insn = NULL;
5221 seq_rtl_expr = NULL;
5222 cur_insn_uid = 1;
5223 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5224 last_linenum = 0;
5225 last_filename = 0;
5226 first_label_num = label_num;
5227 last_label_num = 0;
5228 seq_stack = NULL;
5229
5230 /* Init the tables that describe all the pseudo regs. */
5231
5232 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5233
5234 f->emit->regno_pointer_align
5235 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5236 * sizeof (unsigned char));
5237
5238 regno_reg_rtx
5239 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5240 * sizeof (rtx));
5241
5242 f->emit->regno_decl
5243 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5244 * sizeof (tree));
5245
5246 /* Put copies of all the hard registers into regno_reg_rtx. */
5247 memcpy (regno_reg_rtx,
5248 static_regno_reg_rtx,
5249 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5250
5251 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5252 init_virtual_regs (f->emit);
5253
5254 /* Indicate that the virtual registers and stack locations are
5255 all pointers. */
5256 REG_POINTER (stack_pointer_rtx) = 1;
5257 REG_POINTER (frame_pointer_rtx) = 1;
5258 REG_POINTER (hard_frame_pointer_rtx) = 1;
5259 REG_POINTER (arg_pointer_rtx) = 1;
5260
5261 REG_POINTER (virtual_incoming_args_rtx) = 1;
5262 REG_POINTER (virtual_stack_vars_rtx) = 1;
5263 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5264 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5265 REG_POINTER (virtual_cfa_rtx) = 1;
5266
5267 #ifdef STACK_BOUNDARY
5268 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5269 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5270 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5271 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5272
5273 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5274 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5275 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5276 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5277 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5278 #endif
5279
5280 #ifdef INIT_EXPANDERS
5281 INIT_EXPANDERS;
5282 #endif
5283 }
5284
5285 /* Generate the constant 0. */
5286
5287 static rtx
5288 gen_const_vector_0 (mode)
5289 enum machine_mode mode;
5290 {
5291 rtx tem;
5292 rtvec v;
5293 int units, i;
5294 enum machine_mode inner;
5295
5296 units = GET_MODE_NUNITS (mode);
5297 inner = GET_MODE_INNER (mode);
5298
5299 v = rtvec_alloc (units);
5300
5301 /* We need to call this function after we to set CONST0_RTX first. */
5302 if (!CONST0_RTX (inner))
5303 abort ();
5304
5305 for (i = 0; i < units; ++i)
5306 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5307
5308 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5309 return tem;
5310 }
5311
5312 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5313 all elements are zero. */
5314 rtx
5315 gen_rtx_CONST_VECTOR (mode, v)
5316 enum machine_mode mode;
5317 rtvec v;
5318 {
5319 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5320 int i;
5321
5322 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5323 if (RTVEC_ELT (v, i) != inner_zero)
5324 return gen_rtx_raw_CONST_VECTOR (mode, v);
5325 return CONST0_RTX (mode);
5326 }
5327
5328 /* Create some permanent unique rtl objects shared between all functions.
5329 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5330
5331 void
5332 init_emit_once (line_numbers)
5333 int line_numbers;
5334 {
5335 int i;
5336 enum machine_mode mode;
5337 enum machine_mode double_mode;
5338
5339 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5340 tables. */
5341 const_int_htab = htab_create (37, const_int_htab_hash,
5342 const_int_htab_eq, NULL);
5343
5344 const_double_htab = htab_create (37, const_double_htab_hash,
5345 const_double_htab_eq, NULL);
5346
5347 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
5348 mem_attrs_htab_eq, NULL);
5349
5350 no_line_numbers = ! line_numbers;
5351
5352 /* Compute the word and byte modes. */
5353
5354 byte_mode = VOIDmode;
5355 word_mode = VOIDmode;
5356 double_mode = VOIDmode;
5357
5358 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5359 mode = GET_MODE_WIDER_MODE (mode))
5360 {
5361 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5362 && byte_mode == VOIDmode)
5363 byte_mode = mode;
5364
5365 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5366 && word_mode == VOIDmode)
5367 word_mode = mode;
5368 }
5369
5370 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5371 mode = GET_MODE_WIDER_MODE (mode))
5372 {
5373 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5374 && double_mode == VOIDmode)
5375 double_mode = mode;
5376 }
5377
5378 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5379
5380 /* Assign register numbers to the globally defined register rtx.
5381 This must be done at runtime because the register number field
5382 is in a union and some compilers can't initialize unions. */
5383
5384 pc_rtx = gen_rtx (PC, VOIDmode);
5385 cc0_rtx = gen_rtx (CC0, VOIDmode);
5386 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5387 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5388 if (hard_frame_pointer_rtx == 0)
5389 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5390 HARD_FRAME_POINTER_REGNUM);
5391 if (arg_pointer_rtx == 0)
5392 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5393 virtual_incoming_args_rtx =
5394 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5395 virtual_stack_vars_rtx =
5396 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5397 virtual_stack_dynamic_rtx =
5398 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5399 virtual_outgoing_args_rtx =
5400 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5401 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5402
5403 /* Initialize RTL for commonly used hard registers. These are
5404 copied into regno_reg_rtx as we begin to compile each function. */
5405 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5406 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5407
5408 #ifdef INIT_EXPANDERS
5409 /* This is to initialize {init|mark|free}_machine_status before the first
5410 call to push_function_context_to. This is needed by the Chill front
5411 end which calls push_function_context_to before the first call to
5412 init_function_start. */
5413 INIT_EXPANDERS;
5414 #endif
5415
5416 /* Create the unique rtx's for certain rtx codes and operand values. */
5417
5418 /* Don't use gen_rtx here since gen_rtx in this case
5419 tries to use these variables. */
5420 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5421 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5422 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5423
5424 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5425 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5426 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5427 else
5428 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5429
5430 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5431 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5432 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5433 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5434
5435 for (i = 0; i <= 2; i++)
5436 {
5437 REAL_VALUE_TYPE *r =
5438 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5439
5440 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5441 mode = GET_MODE_WIDER_MODE (mode))
5442 const_tiny_rtx[i][(int) mode] =
5443 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5444
5445 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5446
5447 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5448 mode = GET_MODE_WIDER_MODE (mode))
5449 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5450
5451 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5452 mode != VOIDmode;
5453 mode = GET_MODE_WIDER_MODE (mode))
5454 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5455 }
5456
5457 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5458 mode != VOIDmode;
5459 mode = GET_MODE_WIDER_MODE (mode))
5460 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5461
5462 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5463 mode != VOIDmode;
5464 mode = GET_MODE_WIDER_MODE (mode))
5465 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5466
5467 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5468 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5469 const_tiny_rtx[0][i] = const0_rtx;
5470
5471 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5472 if (STORE_FLAG_VALUE == 1)
5473 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5474
5475 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5476 return_address_pointer_rtx
5477 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5478 #endif
5479
5480 #ifdef STRUCT_VALUE
5481 struct_value_rtx = STRUCT_VALUE;
5482 #else
5483 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5484 #endif
5485
5486 #ifdef STRUCT_VALUE_INCOMING
5487 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5488 #else
5489 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5490 struct_value_incoming_rtx
5491 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5492 #else
5493 struct_value_incoming_rtx = struct_value_rtx;
5494 #endif
5495 #endif
5496
5497 #ifdef STATIC_CHAIN_REGNUM
5498 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5499
5500 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5501 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5502 static_chain_incoming_rtx
5503 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5504 else
5505 #endif
5506 static_chain_incoming_rtx = static_chain_rtx;
5507 #endif
5508
5509 #ifdef STATIC_CHAIN
5510 static_chain_rtx = STATIC_CHAIN;
5511
5512 #ifdef STATIC_CHAIN_INCOMING
5513 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5514 #else
5515 static_chain_incoming_rtx = static_chain_rtx;
5516 #endif
5517 #endif
5518
5519 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5520 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5521 }
5522 \f
5523 /* Query and clear/ restore no_line_numbers. This is used by the
5524 switch / case handling in stmt.c to give proper line numbers in
5525 warnings about unreachable code. */
5526
5527 int
5528 force_line_numbers ()
5529 {
5530 int old = no_line_numbers;
5531
5532 no_line_numbers = 0;
5533 if (old)
5534 force_next_line_note ();
5535 return old;
5536 }
5537
5538 void
5539 restore_line_number_status (old_value)
5540 int old_value;
5541 {
5542 no_line_numbers = old_value;
5543 }
5544
5545 /* Produce exact duplicate of insn INSN after AFTER.
5546 Care updating of libcall regions if present. */
5547
5548 rtx
5549 emit_copy_of_insn_after (insn, after)
5550 rtx insn, after;
5551 {
5552 rtx new;
5553 rtx note1, note2, link;
5554
5555 switch (GET_CODE (insn))
5556 {
5557 case INSN:
5558 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5559 break;
5560
5561 case JUMP_INSN:
5562 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5563 break;
5564
5565 case CALL_INSN:
5566 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5567 if (CALL_INSN_FUNCTION_USAGE (insn))
5568 CALL_INSN_FUNCTION_USAGE (new)
5569 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5570 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5571 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5572 break;
5573
5574 default:
5575 abort ();
5576 }
5577
5578 /* Update LABEL_NUSES. */
5579 mark_jump_label (PATTERN (new), new, 0);
5580
5581 INSN_SCOPE (new) = INSN_SCOPE (insn);
5582
5583 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5584 make them. */
5585 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5586 if (REG_NOTE_KIND (link) != REG_LABEL)
5587 {
5588 if (GET_CODE (link) == EXPR_LIST)
5589 REG_NOTES (new)
5590 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5591 XEXP (link, 0),
5592 REG_NOTES (new)));
5593 else
5594 REG_NOTES (new)
5595 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5596 XEXP (link, 0),
5597 REG_NOTES (new)));
5598 }
5599
5600 /* Fix the libcall sequences. */
5601 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5602 {
5603 rtx p = new;
5604 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5605 p = PREV_INSN (p);
5606 XEXP (note1, 0) = p;
5607 XEXP (note2, 0) = new;
5608 }
5609 return new;
5610 }
5611
5612 #include "gt-emit-rtl.h"