[62/77] Big machine_mode to scalar_int_mode replacement
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62 #include "predict.h"
63
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
68
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
71 /* Commonly used modes. */
72
73 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn *invalid_insn_rtx;
129
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
133 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 {
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139 };
140
141 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
143 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 {
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147 };
148
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 {
154 static hashval_t hash (reg_attrs *x);
155 static bool equal (reg_attrs *a, reg_attrs *b);
156 };
157
158 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
159
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
162 {
163 static hashval_t hash (rtx x);
164 static bool equal (rtx x, rtx y);
165 };
166
167 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
168
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
171 {
172 static hashval_t hash (rtx x);
173 static bool equal (rtx x, rtx y);
174 };
175
176 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
177
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
181
182 static void set_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx lookup_const_wide_int (rtx);
186 #endif
187 static rtx lookup_const_double (rtx);
188 static rtx lookup_const_fixed (rtx);
189 static reg_attrs *get_reg_attrs (tree, int);
190 static rtx gen_const_vector (machine_mode, int);
191 static void copy_rtx_if_shared_1 (rtx *orig);
192
193 /* Probability of the conditional branch currently proceeded by try_split. */
194 profile_probability split_branch_probability;
195 \f
196 /* Returns a hash code for X (which is a really a CONST_INT). */
197
198 hashval_t
199 const_int_hasher::hash (rtx x)
200 {
201 return (hashval_t) INTVAL (x);
202 }
203
204 /* Returns nonzero if the value represented by X (which is really a
205 CONST_INT) is the same as that given by Y (which is really a
206 HOST_WIDE_INT *). */
207
208 bool
209 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
210 {
211 return (INTVAL (x) == y);
212 }
213
214 #if TARGET_SUPPORTS_WIDE_INT
215 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
216
217 hashval_t
218 const_wide_int_hasher::hash (rtx x)
219 {
220 int i;
221 unsigned HOST_WIDE_INT hash = 0;
222 const_rtx xr = x;
223
224 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
225 hash += CONST_WIDE_INT_ELT (xr, i);
226
227 return (hashval_t) hash;
228 }
229
230 /* Returns nonzero if the value represented by X (which is really a
231 CONST_WIDE_INT) is the same as that given by Y (which is really a
232 CONST_WIDE_INT). */
233
234 bool
235 const_wide_int_hasher::equal (rtx x, rtx y)
236 {
237 int i;
238 const_rtx xr = x;
239 const_rtx yr = y;
240 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
241 return false;
242
243 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
244 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
245 return false;
246
247 return true;
248 }
249 #endif
250
251 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
252 hashval_t
253 const_double_hasher::hash (rtx x)
254 {
255 const_rtx const value = x;
256 hashval_t h;
257
258 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
259 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
260 else
261 {
262 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
263 /* MODE is used in the comparison, so it should be in the hash. */
264 h ^= GET_MODE (value);
265 }
266 return h;
267 }
268
269 /* Returns nonzero if the value represented by X (really a ...)
270 is the same as that represented by Y (really a ...) */
271 bool
272 const_double_hasher::equal (rtx x, rtx y)
273 {
274 const_rtx const a = x, b = y;
275
276 if (GET_MODE (a) != GET_MODE (b))
277 return 0;
278 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
279 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
280 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
281 else
282 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
283 CONST_DOUBLE_REAL_VALUE (b));
284 }
285
286 /* Returns a hash code for X (which is really a CONST_FIXED). */
287
288 hashval_t
289 const_fixed_hasher::hash (rtx x)
290 {
291 const_rtx const value = x;
292 hashval_t h;
293
294 h = fixed_hash (CONST_FIXED_VALUE (value));
295 /* MODE is used in the comparison, so it should be in the hash. */
296 h ^= GET_MODE (value);
297 return h;
298 }
299
300 /* Returns nonzero if the value represented by X is the same as that
301 represented by Y. */
302
303 bool
304 const_fixed_hasher::equal (rtx x, rtx y)
305 {
306 const_rtx const a = x, b = y;
307
308 if (GET_MODE (a) != GET_MODE (b))
309 return 0;
310 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
311 }
312
313 /* Return true if the given memory attributes are equal. */
314
315 bool
316 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
317 {
318 if (p == q)
319 return true;
320 if (!p || !q)
321 return false;
322 return (p->alias == q->alias
323 && p->offset_known_p == q->offset_known_p
324 && (!p->offset_known_p || p->offset == q->offset)
325 && p->size_known_p == q->size_known_p
326 && (!p->size_known_p || p->size == q->size)
327 && p->align == q->align
328 && p->addrspace == q->addrspace
329 && (p->expr == q->expr
330 || (p->expr != NULL_TREE && q->expr != NULL_TREE
331 && operand_equal_p (p->expr, q->expr, 0))));
332 }
333
334 /* Set MEM's memory attributes so that they are the same as ATTRS. */
335
336 static void
337 set_mem_attrs (rtx mem, mem_attrs *attrs)
338 {
339 /* If everything is the default, we can just clear the attributes. */
340 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
341 {
342 MEM_ATTRS (mem) = 0;
343 return;
344 }
345
346 if (!MEM_ATTRS (mem)
347 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
348 {
349 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
350 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
351 }
352 }
353
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
355
356 hashval_t
357 reg_attr_hasher::hash (reg_attrs *x)
358 {
359 const reg_attrs *const p = x;
360
361 return ((p->offset * 1000) ^ (intptr_t) p->decl);
362 }
363
364 /* Returns nonzero if the value represented by X is the same as that given by
365 Y. */
366
367 bool
368 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
369 {
370 const reg_attrs *const p = x;
371 const reg_attrs *const q = y;
372
373 return (p->decl == q->decl && p->offset == q->offset);
374 }
375 /* Allocate a new reg_attrs structure and insert it into the hash table if
376 one identical to it is not already in the table. We are doing this for
377 MEM of mode MODE. */
378
379 static reg_attrs *
380 get_reg_attrs (tree decl, int offset)
381 {
382 reg_attrs attrs;
383
384 /* If everything is the default, we can just return zero. */
385 if (decl == 0 && offset == 0)
386 return 0;
387
388 attrs.decl = decl;
389 attrs.offset = offset;
390
391 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
392 if (*slot == 0)
393 {
394 *slot = ggc_alloc<reg_attrs> ();
395 memcpy (*slot, &attrs, sizeof (reg_attrs));
396 }
397
398 return *slot;
399 }
400
401
402 #if !HAVE_blockage
403 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
404 and to block register equivalences to be seen across this insn. */
405
406 rtx
407 gen_blockage (void)
408 {
409 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
410 MEM_VOLATILE_P (x) = true;
411 return x;
412 }
413 #endif
414
415
416 /* Set the mode and register number of X to MODE and REGNO. */
417
418 void
419 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
420 {
421 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
422 ? hard_regno_nregs[regno][mode]
423 : 1);
424 PUT_MODE_RAW (x, mode);
425 set_regno_raw (x, regno, nregs);
426 }
427
428 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
429 don't attempt to share with the various global pieces of rtl (such as
430 frame_pointer_rtx). */
431
432 rtx
433 gen_raw_REG (machine_mode mode, unsigned int regno)
434 {
435 rtx x = rtx_alloc (REG MEM_STAT_INFO);
436 set_mode_and_regno (x, mode, regno);
437 REG_ATTRS (x) = NULL;
438 ORIGINAL_REGNO (x) = regno;
439 return x;
440 }
441
442 /* There are some RTL codes that require special attention; the generation
443 functions do the raw handling. If you add to this list, modify
444 special_rtx in gengenrtl.c as well. */
445
446 rtx_expr_list *
447 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
448 {
449 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
450 expr_list));
451 }
452
453 rtx_insn_list *
454 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
455 {
456 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
457 insn_list));
458 }
459
460 rtx_insn *
461 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
462 basic_block bb, rtx pattern, int location, int code,
463 rtx reg_notes)
464 {
465 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
466 prev_insn, next_insn,
467 bb, pattern, location, code,
468 reg_notes));
469 }
470
471 rtx
472 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
473 {
474 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
475 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
476
477 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
478 if (const_true_rtx && arg == STORE_FLAG_VALUE)
479 return const_true_rtx;
480 #endif
481
482 /* Look up the CONST_INT in the hash table. */
483 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
484 INSERT);
485 if (*slot == 0)
486 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
487
488 return *slot;
489 }
490
491 rtx
492 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
493 {
494 return GEN_INT (trunc_int_for_mode (c, mode));
495 }
496
497 /* CONST_DOUBLEs might be created from pairs of integers, or from
498 REAL_VALUE_TYPEs. Also, their length is known only at run time,
499 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
500
501 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
502 hash table. If so, return its counterpart; otherwise add it
503 to the hash table and return it. */
504 static rtx
505 lookup_const_double (rtx real)
506 {
507 rtx *slot = const_double_htab->find_slot (real, INSERT);
508 if (*slot == 0)
509 *slot = real;
510
511 return *slot;
512 }
513
514 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
515 VALUE in mode MODE. */
516 rtx
517 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
518 {
519 rtx real = rtx_alloc (CONST_DOUBLE);
520 PUT_MODE (real, mode);
521
522 real->u.rv = value;
523
524 return lookup_const_double (real);
525 }
526
527 /* Determine whether FIXED, a CONST_FIXED, already exists in the
528 hash table. If so, return its counterpart; otherwise add it
529 to the hash table and return it. */
530
531 static rtx
532 lookup_const_fixed (rtx fixed)
533 {
534 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
535 if (*slot == 0)
536 *slot = fixed;
537
538 return *slot;
539 }
540
541 /* Return a CONST_FIXED rtx for a fixed-point value specified by
542 VALUE in mode MODE. */
543
544 rtx
545 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
546 {
547 rtx fixed = rtx_alloc (CONST_FIXED);
548 PUT_MODE (fixed, mode);
549
550 fixed->u.fv = value;
551
552 return lookup_const_fixed (fixed);
553 }
554
555 #if TARGET_SUPPORTS_WIDE_INT == 0
556 /* Constructs double_int from rtx CST. */
557
558 double_int
559 rtx_to_double_int (const_rtx cst)
560 {
561 double_int r;
562
563 if (CONST_INT_P (cst))
564 r = double_int::from_shwi (INTVAL (cst));
565 else if (CONST_DOUBLE_AS_INT_P (cst))
566 {
567 r.low = CONST_DOUBLE_LOW (cst);
568 r.high = CONST_DOUBLE_HIGH (cst);
569 }
570 else
571 gcc_unreachable ();
572
573 return r;
574 }
575 #endif
576
577 #if TARGET_SUPPORTS_WIDE_INT
578 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
579 If so, return its counterpart; otherwise add it to the hash table and
580 return it. */
581
582 static rtx
583 lookup_const_wide_int (rtx wint)
584 {
585 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
586 if (*slot == 0)
587 *slot = wint;
588
589 return *slot;
590 }
591 #endif
592
593 /* Return an rtx constant for V, given that the constant has mode MODE.
594 The returned rtx will be a CONST_INT if V fits, otherwise it will be
595 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
596 (if TARGET_SUPPORTS_WIDE_INT). */
597
598 rtx
599 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
600 {
601 unsigned int len = v.get_len ();
602 unsigned int prec = GET_MODE_PRECISION (mode);
603
604 /* Allow truncation but not extension since we do not know if the
605 number is signed or unsigned. */
606 gcc_assert (prec <= v.get_precision ());
607
608 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
609 return gen_int_mode (v.elt (0), mode);
610
611 #if TARGET_SUPPORTS_WIDE_INT
612 {
613 unsigned int i;
614 rtx value;
615 unsigned int blocks_needed
616 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
617
618 if (len > blocks_needed)
619 len = blocks_needed;
620
621 value = const_wide_int_alloc (len);
622
623 /* It is so tempting to just put the mode in here. Must control
624 myself ... */
625 PUT_MODE (value, VOIDmode);
626 CWI_PUT_NUM_ELEM (value, len);
627
628 for (i = 0; i < len; i++)
629 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
630
631 return lookup_const_wide_int (value);
632 }
633 #else
634 return immed_double_const (v.elt (0), v.elt (1), mode);
635 #endif
636 }
637
638 #if TARGET_SUPPORTS_WIDE_INT == 0
639 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
640 of ints: I0 is the low-order word and I1 is the high-order word.
641 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
642 implied upper bits are copies of the high bit of i1. The value
643 itself is neither signed nor unsigned. Do not use this routine for
644 non-integer modes; convert to REAL_VALUE_TYPE and use
645 const_double_from_real_value. */
646
647 rtx
648 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
649 {
650 rtx value;
651 unsigned int i;
652
653 /* There are the following cases (note that there are no modes with
654 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
655
656 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
657 gen_int_mode.
658 2) If the value of the integer fits into HOST_WIDE_INT anyway
659 (i.e., i1 consists only from copies of the sign bit, and sign
660 of i0 and i1 are the same), then we return a CONST_INT for i0.
661 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
662 if (mode != VOIDmode)
663 {
664 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
665 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
666 /* We can get a 0 for an error mark. */
667 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
668 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
669 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
670
671 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
672 return gen_int_mode (i0, mode);
673 }
674
675 /* If this integer fits in one word, return a CONST_INT. */
676 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
677 return GEN_INT (i0);
678
679 /* We use VOIDmode for integers. */
680 value = rtx_alloc (CONST_DOUBLE);
681 PUT_MODE (value, VOIDmode);
682
683 CONST_DOUBLE_LOW (value) = i0;
684 CONST_DOUBLE_HIGH (value) = i1;
685
686 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
687 XWINT (value, i) = 0;
688
689 return lookup_const_double (value);
690 }
691 #endif
692
693 rtx
694 gen_rtx_REG (machine_mode mode, unsigned int regno)
695 {
696 /* In case the MD file explicitly references the frame pointer, have
697 all such references point to the same frame pointer. This is
698 used during frame pointer elimination to distinguish the explicit
699 references to these registers from pseudos that happened to be
700 assigned to them.
701
702 If we have eliminated the frame pointer or arg pointer, we will
703 be using it as a normal register, for example as a spill
704 register. In such cases, we might be accessing it in a mode that
705 is not Pmode and therefore cannot use the pre-allocated rtx.
706
707 Also don't do this when we are making new REGs in reload, since
708 we don't want to get confused with the real pointers. */
709
710 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
711 {
712 if (regno == FRAME_POINTER_REGNUM
713 && (!reload_completed || frame_pointer_needed))
714 return frame_pointer_rtx;
715
716 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
717 && regno == HARD_FRAME_POINTER_REGNUM
718 && (!reload_completed || frame_pointer_needed))
719 return hard_frame_pointer_rtx;
720 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
721 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
722 && regno == ARG_POINTER_REGNUM)
723 return arg_pointer_rtx;
724 #endif
725 #ifdef RETURN_ADDRESS_POINTER_REGNUM
726 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
727 return return_address_pointer_rtx;
728 #endif
729 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
730 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
731 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
732 return pic_offset_table_rtx;
733 if (regno == STACK_POINTER_REGNUM)
734 return stack_pointer_rtx;
735 }
736
737 #if 0
738 /* If the per-function register table has been set up, try to re-use
739 an existing entry in that table to avoid useless generation of RTL.
740
741 This code is disabled for now until we can fix the various backends
742 which depend on having non-shared hard registers in some cases. Long
743 term we want to re-enable this code as it can significantly cut down
744 on the amount of useless RTL that gets generated.
745
746 We'll also need to fix some code that runs after reload that wants to
747 set ORIGINAL_REGNO. */
748
749 if (cfun
750 && cfun->emit
751 && regno_reg_rtx
752 && regno < FIRST_PSEUDO_REGISTER
753 && reg_raw_mode[regno] == mode)
754 return regno_reg_rtx[regno];
755 #endif
756
757 return gen_raw_REG (mode, regno);
758 }
759
760 rtx
761 gen_rtx_MEM (machine_mode mode, rtx addr)
762 {
763 rtx rt = gen_rtx_raw_MEM (mode, addr);
764
765 /* This field is not cleared by the mere allocation of the rtx, so
766 we clear it here. */
767 MEM_ATTRS (rt) = 0;
768
769 return rt;
770 }
771
772 /* Generate a memory referring to non-trapping constant memory. */
773
774 rtx
775 gen_const_mem (machine_mode mode, rtx addr)
776 {
777 rtx mem = gen_rtx_MEM (mode, addr);
778 MEM_READONLY_P (mem) = 1;
779 MEM_NOTRAP_P (mem) = 1;
780 return mem;
781 }
782
783 /* Generate a MEM referring to fixed portions of the frame, e.g., register
784 save areas. */
785
786 rtx
787 gen_frame_mem (machine_mode mode, rtx addr)
788 {
789 rtx mem = gen_rtx_MEM (mode, addr);
790 MEM_NOTRAP_P (mem) = 1;
791 set_mem_alias_set (mem, get_frame_alias_set ());
792 return mem;
793 }
794
795 /* Generate a MEM referring to a temporary use of the stack, not part
796 of the fixed stack frame. For example, something which is pushed
797 by a target splitter. */
798 rtx
799 gen_tmp_stack_mem (machine_mode mode, rtx addr)
800 {
801 rtx mem = gen_rtx_MEM (mode, addr);
802 MEM_NOTRAP_P (mem) = 1;
803 if (!cfun->calls_alloca)
804 set_mem_alias_set (mem, get_frame_alias_set ());
805 return mem;
806 }
807
808 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
809 this construct would be valid, and false otherwise. */
810
811 bool
812 validate_subreg (machine_mode omode, machine_mode imode,
813 const_rtx reg, unsigned int offset)
814 {
815 unsigned int isize = GET_MODE_SIZE (imode);
816 unsigned int osize = GET_MODE_SIZE (omode);
817
818 /* All subregs must be aligned. */
819 if (offset % osize != 0)
820 return false;
821
822 /* The subreg offset cannot be outside the inner object. */
823 if (offset >= isize)
824 return false;
825
826 /* ??? This should not be here. Temporarily continue to allow word_mode
827 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
828 Generally, backends are doing something sketchy but it'll take time to
829 fix them all. */
830 if (omode == word_mode)
831 ;
832 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
833 is the culprit here, and not the backends. */
834 else if (osize >= UNITS_PER_WORD && isize >= osize)
835 ;
836 /* Allow component subregs of complex and vector. Though given the below
837 extraction rules, it's not always clear what that means. */
838 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
839 && GET_MODE_INNER (imode) == omode)
840 ;
841 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
842 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
843 represent this. It's questionable if this ought to be represented at
844 all -- why can't this all be hidden in post-reload splitters that make
845 arbitrarily mode changes to the registers themselves. */
846 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
847 ;
848 /* Subregs involving floating point modes are not allowed to
849 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
850 (subreg:SI (reg:DF) 0) isn't. */
851 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
852 {
853 if (! (isize == osize
854 /* LRA can use subreg to store a floating point value in
855 an integer mode. Although the floating point and the
856 integer modes need the same number of hard registers,
857 the size of floating point mode can be less than the
858 integer mode. LRA also uses subregs for a register
859 should be used in different mode in on insn. */
860 || lra_in_progress))
861 return false;
862 }
863
864 /* Paradoxical subregs must have offset zero. */
865 if (osize > isize)
866 return offset == 0;
867
868 /* This is a normal subreg. Verify that the offset is representable. */
869
870 /* For hard registers, we already have most of these rules collected in
871 subreg_offset_representable_p. */
872 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
873 {
874 unsigned int regno = REGNO (reg);
875
876 #ifdef CANNOT_CHANGE_MODE_CLASS
877 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
878 && GET_MODE_INNER (imode) == omode)
879 ;
880 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
881 return false;
882 #endif
883
884 return subreg_offset_representable_p (regno, imode, offset, omode);
885 }
886
887 /* For pseudo registers, we want most of the same checks. Namely:
888 If the register no larger than a word, the subreg must be lowpart.
889 If the register is larger than a word, the subreg must be the lowpart
890 of a subword. A subreg does *not* perform arbitrary bit extraction.
891 Given that we've already checked mode/offset alignment, we only have
892 to check subword subregs here. */
893 if (osize < UNITS_PER_WORD
894 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
895 {
896 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
897 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
898 if (offset % UNITS_PER_WORD != low_off)
899 return false;
900 }
901 return true;
902 }
903
904 rtx
905 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
906 {
907 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
908 return gen_rtx_raw_SUBREG (mode, reg, offset);
909 }
910
911 /* Generate a SUBREG representing the least-significant part of REG if MODE
912 is smaller than mode of REG, otherwise paradoxical SUBREG. */
913
914 rtx
915 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
916 {
917 machine_mode inmode;
918
919 inmode = GET_MODE (reg);
920 if (inmode == VOIDmode)
921 inmode = mode;
922 return gen_rtx_SUBREG (mode, reg,
923 subreg_lowpart_offset (mode, inmode));
924 }
925
926 rtx
927 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
928 enum var_init_status status)
929 {
930 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
931 PAT_VAR_LOCATION_STATUS (x) = status;
932 return x;
933 }
934 \f
935
936 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
937
938 rtvec
939 gen_rtvec (int n, ...)
940 {
941 int i;
942 rtvec rt_val;
943 va_list p;
944
945 va_start (p, n);
946
947 /* Don't allocate an empty rtvec... */
948 if (n == 0)
949 {
950 va_end (p);
951 return NULL_RTVEC;
952 }
953
954 rt_val = rtvec_alloc (n);
955
956 for (i = 0; i < n; i++)
957 rt_val->elem[i] = va_arg (p, rtx);
958
959 va_end (p);
960 return rt_val;
961 }
962
963 rtvec
964 gen_rtvec_v (int n, rtx *argp)
965 {
966 int i;
967 rtvec rt_val;
968
969 /* Don't allocate an empty rtvec... */
970 if (n == 0)
971 return NULL_RTVEC;
972
973 rt_val = rtvec_alloc (n);
974
975 for (i = 0; i < n; i++)
976 rt_val->elem[i] = *argp++;
977
978 return rt_val;
979 }
980
981 rtvec
982 gen_rtvec_v (int n, rtx_insn **argp)
983 {
984 int i;
985 rtvec rt_val;
986
987 /* Don't allocate an empty rtvec... */
988 if (n == 0)
989 return NULL_RTVEC;
990
991 rt_val = rtvec_alloc (n);
992
993 for (i = 0; i < n; i++)
994 rt_val->elem[i] = *argp++;
995
996 return rt_val;
997 }
998
999 \f
1000 /* Return the number of bytes between the start of an OUTER_MODE
1001 in-memory value and the start of an INNER_MODE in-memory value,
1002 given that the former is a lowpart of the latter. It may be a
1003 paradoxical lowpart, in which case the offset will be negative
1004 on big-endian targets. */
1005
1006 int
1007 byte_lowpart_offset (machine_mode outer_mode,
1008 machine_mode inner_mode)
1009 {
1010 if (paradoxical_subreg_p (outer_mode, inner_mode))
1011 return -subreg_lowpart_offset (inner_mode, outer_mode);
1012 else
1013 return subreg_lowpart_offset (outer_mode, inner_mode);
1014 }
1015 \f
1016 /* Generate a REG rtx for a new pseudo register of mode MODE.
1017 This pseudo is assigned the next sequential register number. */
1018
1019 rtx
1020 gen_reg_rtx (machine_mode mode)
1021 {
1022 rtx val;
1023 unsigned int align = GET_MODE_ALIGNMENT (mode);
1024
1025 gcc_assert (can_create_pseudo_p ());
1026
1027 /* If a virtual register with bigger mode alignment is generated,
1028 increase stack alignment estimation because it might be spilled
1029 to stack later. */
1030 if (SUPPORTS_STACK_ALIGNMENT
1031 && crtl->stack_alignment_estimated < align
1032 && !crtl->stack_realign_processed)
1033 {
1034 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1035 if (crtl->stack_alignment_estimated < min_align)
1036 crtl->stack_alignment_estimated = min_align;
1037 }
1038
1039 if (generating_concat_p
1040 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1041 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1042 {
1043 /* For complex modes, don't make a single pseudo.
1044 Instead, make a CONCAT of two pseudos.
1045 This allows noncontiguous allocation of the real and imaginary parts,
1046 which makes much better code. Besides, allocating DCmode
1047 pseudos overstrains reload on some machines like the 386. */
1048 rtx realpart, imagpart;
1049 machine_mode partmode = GET_MODE_INNER (mode);
1050
1051 realpart = gen_reg_rtx (partmode);
1052 imagpart = gen_reg_rtx (partmode);
1053 return gen_rtx_CONCAT (mode, realpart, imagpart);
1054 }
1055
1056 /* Do not call gen_reg_rtx with uninitialized crtl. */
1057 gcc_assert (crtl->emit.regno_pointer_align_length);
1058
1059 crtl->emit.ensure_regno_capacity ();
1060 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1061
1062 val = gen_raw_REG (mode, reg_rtx_no);
1063 regno_reg_rtx[reg_rtx_no++] = val;
1064 return val;
1065 }
1066
1067 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1068 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1069
1070 void
1071 emit_status::ensure_regno_capacity ()
1072 {
1073 int old_size = regno_pointer_align_length;
1074
1075 if (reg_rtx_no < old_size)
1076 return;
1077
1078 int new_size = old_size * 2;
1079 while (reg_rtx_no >= new_size)
1080 new_size *= 2;
1081
1082 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1083 memset (tmp + old_size, 0, new_size - old_size);
1084 regno_pointer_align = (unsigned char *) tmp;
1085
1086 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1087 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1088 regno_reg_rtx = new1;
1089
1090 crtl->emit.regno_pointer_align_length = new_size;
1091 }
1092
1093 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1094
1095 bool
1096 reg_is_parm_p (rtx reg)
1097 {
1098 tree decl;
1099
1100 gcc_assert (REG_P (reg));
1101 decl = REG_EXPR (reg);
1102 return (decl && TREE_CODE (decl) == PARM_DECL);
1103 }
1104
1105 /* Update NEW with the same attributes as REG, but with OFFSET added
1106 to the REG_OFFSET. */
1107
1108 static void
1109 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1110 {
1111 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1112 REG_OFFSET (reg) + offset);
1113 }
1114
1115 /* Generate a register with same attributes as REG, but with OFFSET
1116 added to the REG_OFFSET. */
1117
1118 rtx
1119 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1120 int offset)
1121 {
1122 rtx new_rtx = gen_rtx_REG (mode, regno);
1123
1124 update_reg_offset (new_rtx, reg, offset);
1125 return new_rtx;
1126 }
1127
1128 /* Generate a new pseudo-register with the same attributes as REG, but
1129 with OFFSET added to the REG_OFFSET. */
1130
1131 rtx
1132 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1133 {
1134 rtx new_rtx = gen_reg_rtx (mode);
1135
1136 update_reg_offset (new_rtx, reg, offset);
1137 return new_rtx;
1138 }
1139
1140 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1141 new register is a (possibly paradoxical) lowpart of the old one. */
1142
1143 void
1144 adjust_reg_mode (rtx reg, machine_mode mode)
1145 {
1146 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1147 PUT_MODE (reg, mode);
1148 }
1149
1150 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1151 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1152
1153 void
1154 set_reg_attrs_from_value (rtx reg, rtx x)
1155 {
1156 int offset;
1157 bool can_be_reg_pointer = true;
1158
1159 /* Don't call mark_reg_pointer for incompatible pointer sign
1160 extension. */
1161 while (GET_CODE (x) == SIGN_EXTEND
1162 || GET_CODE (x) == ZERO_EXTEND
1163 || GET_CODE (x) == TRUNCATE
1164 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1165 {
1166 #if defined(POINTERS_EXTEND_UNSIGNED)
1167 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1168 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1169 || (paradoxical_subreg_p (x)
1170 && ! (SUBREG_PROMOTED_VAR_P (x)
1171 && SUBREG_CHECK_PROMOTED_SIGN (x,
1172 POINTERS_EXTEND_UNSIGNED))))
1173 && !targetm.have_ptr_extend ())
1174 can_be_reg_pointer = false;
1175 #endif
1176 x = XEXP (x, 0);
1177 }
1178
1179 /* Hard registers can be reused for multiple purposes within the same
1180 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1181 on them is wrong. */
1182 if (HARD_REGISTER_P (reg))
1183 return;
1184
1185 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1186 if (MEM_P (x))
1187 {
1188 if (MEM_OFFSET_KNOWN_P (x))
1189 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1190 MEM_OFFSET (x) + offset);
1191 if (can_be_reg_pointer && MEM_POINTER (x))
1192 mark_reg_pointer (reg, 0);
1193 }
1194 else if (REG_P (x))
1195 {
1196 if (REG_ATTRS (x))
1197 update_reg_offset (reg, x, offset);
1198 if (can_be_reg_pointer && REG_POINTER (x))
1199 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1200 }
1201 }
1202
1203 /* Generate a REG rtx for a new pseudo register, copying the mode
1204 and attributes from X. */
1205
1206 rtx
1207 gen_reg_rtx_and_attrs (rtx x)
1208 {
1209 rtx reg = gen_reg_rtx (GET_MODE (x));
1210 set_reg_attrs_from_value (reg, x);
1211 return reg;
1212 }
1213
1214 /* Set the register attributes for registers contained in PARM_RTX.
1215 Use needed values from memory attributes of MEM. */
1216
1217 void
1218 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1219 {
1220 if (REG_P (parm_rtx))
1221 set_reg_attrs_from_value (parm_rtx, mem);
1222 else if (GET_CODE (parm_rtx) == PARALLEL)
1223 {
1224 /* Check for a NULL entry in the first slot, used to indicate that the
1225 parameter goes both on the stack and in registers. */
1226 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1227 for (; i < XVECLEN (parm_rtx, 0); i++)
1228 {
1229 rtx x = XVECEXP (parm_rtx, 0, i);
1230 if (REG_P (XEXP (x, 0)))
1231 REG_ATTRS (XEXP (x, 0))
1232 = get_reg_attrs (MEM_EXPR (mem),
1233 INTVAL (XEXP (x, 1)));
1234 }
1235 }
1236 }
1237
1238 /* Set the REG_ATTRS for registers in value X, given that X represents
1239 decl T. */
1240
1241 void
1242 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1243 {
1244 if (!t)
1245 return;
1246 tree tdecl = t;
1247 if (GET_CODE (x) == SUBREG)
1248 {
1249 gcc_assert (subreg_lowpart_p (x));
1250 x = SUBREG_REG (x);
1251 }
1252 if (REG_P (x))
1253 REG_ATTRS (x)
1254 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1255 DECL_P (tdecl)
1256 ? DECL_MODE (tdecl)
1257 : TYPE_MODE (TREE_TYPE (tdecl))));
1258 if (GET_CODE (x) == CONCAT)
1259 {
1260 if (REG_P (XEXP (x, 0)))
1261 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1262 if (REG_P (XEXP (x, 1)))
1263 REG_ATTRS (XEXP (x, 1))
1264 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1265 }
1266 if (GET_CODE (x) == PARALLEL)
1267 {
1268 int i, start;
1269
1270 /* Check for a NULL entry, used to indicate that the parameter goes
1271 both on the stack and in registers. */
1272 if (XEXP (XVECEXP (x, 0, 0), 0))
1273 start = 0;
1274 else
1275 start = 1;
1276
1277 for (i = start; i < XVECLEN (x, 0); i++)
1278 {
1279 rtx y = XVECEXP (x, 0, i);
1280 if (REG_P (XEXP (y, 0)))
1281 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1282 }
1283 }
1284 }
1285
1286 /* Assign the RTX X to declaration T. */
1287
1288 void
1289 set_decl_rtl (tree t, rtx x)
1290 {
1291 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1292 if (x)
1293 set_reg_attrs_for_decl_rtl (t, x);
1294 }
1295
1296 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1297 if the ABI requires the parameter to be passed by reference. */
1298
1299 void
1300 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1301 {
1302 DECL_INCOMING_RTL (t) = x;
1303 if (x && !by_reference_p)
1304 set_reg_attrs_for_decl_rtl (t, x);
1305 }
1306
1307 /* Identify REG (which may be a CONCAT) as a user register. */
1308
1309 void
1310 mark_user_reg (rtx reg)
1311 {
1312 if (GET_CODE (reg) == CONCAT)
1313 {
1314 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1315 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1316 }
1317 else
1318 {
1319 gcc_assert (REG_P (reg));
1320 REG_USERVAR_P (reg) = 1;
1321 }
1322 }
1323
1324 /* Identify REG as a probable pointer register and show its alignment
1325 as ALIGN, if nonzero. */
1326
1327 void
1328 mark_reg_pointer (rtx reg, int align)
1329 {
1330 if (! REG_POINTER (reg))
1331 {
1332 REG_POINTER (reg) = 1;
1333
1334 if (align)
1335 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1336 }
1337 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1338 /* We can no-longer be sure just how aligned this pointer is. */
1339 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1340 }
1341
1342 /* Return 1 plus largest pseudo reg number used in the current function. */
1343
1344 int
1345 max_reg_num (void)
1346 {
1347 return reg_rtx_no;
1348 }
1349
1350 /* Return 1 + the largest label number used so far in the current function. */
1351
1352 int
1353 max_label_num (void)
1354 {
1355 return label_num;
1356 }
1357
1358 /* Return first label number used in this function (if any were used). */
1359
1360 int
1361 get_first_label_num (void)
1362 {
1363 return first_label_num;
1364 }
1365
1366 /* If the rtx for label was created during the expansion of a nested
1367 function, then first_label_num won't include this label number.
1368 Fix this now so that array indices work later. */
1369
1370 void
1371 maybe_set_first_label_num (rtx_code_label *x)
1372 {
1373 if (CODE_LABEL_NUMBER (x) < first_label_num)
1374 first_label_num = CODE_LABEL_NUMBER (x);
1375 }
1376
1377 /* For use by the RTL function loader, when mingling with normal
1378 functions.
1379 Ensure that label_num is greater than the label num of X, to avoid
1380 duplicate labels in the generated assembler. */
1381
1382 void
1383 maybe_set_max_label_num (rtx_code_label *x)
1384 {
1385 if (CODE_LABEL_NUMBER (x) >= label_num)
1386 label_num = CODE_LABEL_NUMBER (x) + 1;
1387 }
1388
1389 \f
1390 /* Return a value representing some low-order bits of X, where the number
1391 of low-order bits is given by MODE. Note that no conversion is done
1392 between floating-point and fixed-point values, rather, the bit
1393 representation is returned.
1394
1395 This function handles the cases in common between gen_lowpart, below,
1396 and two variants in cse.c and combine.c. These are the cases that can
1397 be safely handled at all points in the compilation.
1398
1399 If this is not a case we can handle, return 0. */
1400
1401 rtx
1402 gen_lowpart_common (machine_mode mode, rtx x)
1403 {
1404 int msize = GET_MODE_SIZE (mode);
1405 int xsize;
1406 machine_mode innermode;
1407
1408 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1409 so we have to make one up. Yuk. */
1410 innermode = GET_MODE (x);
1411 if (CONST_INT_P (x)
1412 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1413 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1414 else if (innermode == VOIDmode)
1415 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1416
1417 xsize = GET_MODE_SIZE (innermode);
1418
1419 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1420
1421 if (innermode == mode)
1422 return x;
1423
1424 /* MODE must occupy no more words than the mode of X. */
1425 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1426 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1427 return 0;
1428
1429 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1430 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1431 return 0;
1432
1433 scalar_int_mode int_mode, int_innermode, from_mode;
1434 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1435 && is_a <scalar_int_mode> (mode, &int_mode)
1436 && is_a <scalar_int_mode> (innermode, &int_innermode)
1437 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1438 {
1439 /* If we are getting the low-order part of something that has been
1440 sign- or zero-extended, we can either just use the object being
1441 extended or make a narrower extension. If we want an even smaller
1442 piece than the size of the object being extended, call ourselves
1443 recursively.
1444
1445 This case is used mostly by combine and cse. */
1446
1447 if (from_mode == int_mode)
1448 return XEXP (x, 0);
1449 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1450 return gen_lowpart_common (int_mode, XEXP (x, 0));
1451 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1452 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1453 }
1454 else if (GET_CODE (x) == SUBREG || REG_P (x)
1455 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1456 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1457 return lowpart_subreg (mode, x, innermode);
1458
1459 /* Otherwise, we can't do this. */
1460 return 0;
1461 }
1462 \f
1463 rtx
1464 gen_highpart (machine_mode mode, rtx x)
1465 {
1466 unsigned int msize = GET_MODE_SIZE (mode);
1467 rtx result;
1468
1469 /* This case loses if X is a subreg. To catch bugs early,
1470 complain if an invalid MODE is used even in other cases. */
1471 gcc_assert (msize <= UNITS_PER_WORD
1472 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1473
1474 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1475 subreg_highpart_offset (mode, GET_MODE (x)));
1476 gcc_assert (result);
1477
1478 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1479 the target if we have a MEM. gen_highpart must return a valid operand,
1480 emitting code if necessary to do so. */
1481 if (MEM_P (result))
1482 {
1483 result = validize_mem (result);
1484 gcc_assert (result);
1485 }
1486
1487 return result;
1488 }
1489
1490 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1491 be VOIDmode constant. */
1492 rtx
1493 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1494 {
1495 if (GET_MODE (exp) != VOIDmode)
1496 {
1497 gcc_assert (GET_MODE (exp) == innermode);
1498 return gen_highpart (outermode, exp);
1499 }
1500 return simplify_gen_subreg (outermode, exp, innermode,
1501 subreg_highpart_offset (outermode, innermode));
1502 }
1503
1504 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1505 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1506
1507 unsigned int
1508 subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes)
1509 {
1510 if (outer_bytes > inner_bytes)
1511 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1512 return 0;
1513
1514 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1515 return inner_bytes - outer_bytes;
1516 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1517 return 0;
1518 else
1519 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1520 }
1521
1522 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1523 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1524
1525 unsigned int
1526 subreg_size_highpart_offset (unsigned int outer_bytes,
1527 unsigned int inner_bytes)
1528 {
1529 gcc_assert (inner_bytes >= outer_bytes);
1530
1531 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1532 return 0;
1533 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1534 return inner_bytes - outer_bytes;
1535 else
1536 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1537 (inner_bytes - outer_bytes)
1538 * BITS_PER_UNIT);
1539 }
1540
1541 /* Return 1 iff X, assumed to be a SUBREG,
1542 refers to the least significant part of its containing reg.
1543 If X is not a SUBREG, always return 1 (it is its own low part!). */
1544
1545 int
1546 subreg_lowpart_p (const_rtx x)
1547 {
1548 if (GET_CODE (x) != SUBREG)
1549 return 1;
1550 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1551 return 0;
1552
1553 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1554 == SUBREG_BYTE (x));
1555 }
1556 \f
1557 /* Return subword OFFSET of operand OP.
1558 The word number, OFFSET, is interpreted as the word number starting
1559 at the low-order address. OFFSET 0 is the low-order word if not
1560 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1561
1562 If we cannot extract the required word, we return zero. Otherwise,
1563 an rtx corresponding to the requested word will be returned.
1564
1565 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1566 reload has completed, a valid address will always be returned. After
1567 reload, if a valid address cannot be returned, we return zero.
1568
1569 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1570 it is the responsibility of the caller.
1571
1572 MODE is the mode of OP in case it is a CONST_INT.
1573
1574 ??? This is still rather broken for some cases. The problem for the
1575 moment is that all callers of this thing provide no 'goal mode' to
1576 tell us to work with. This exists because all callers were written
1577 in a word based SUBREG world.
1578 Now use of this function can be deprecated by simplify_subreg in most
1579 cases.
1580 */
1581
1582 rtx
1583 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1584 {
1585 if (mode == VOIDmode)
1586 mode = GET_MODE (op);
1587
1588 gcc_assert (mode != VOIDmode);
1589
1590 /* If OP is narrower than a word, fail. */
1591 if (mode != BLKmode
1592 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1593 return 0;
1594
1595 /* If we want a word outside OP, return zero. */
1596 if (mode != BLKmode
1597 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1598 return const0_rtx;
1599
1600 /* Form a new MEM at the requested address. */
1601 if (MEM_P (op))
1602 {
1603 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1604
1605 if (! validate_address)
1606 return new_rtx;
1607
1608 else if (reload_completed)
1609 {
1610 if (! strict_memory_address_addr_space_p (word_mode,
1611 XEXP (new_rtx, 0),
1612 MEM_ADDR_SPACE (op)))
1613 return 0;
1614 }
1615 else
1616 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1617 }
1618
1619 /* Rest can be handled by simplify_subreg. */
1620 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1621 }
1622
1623 /* Similar to `operand_subword', but never return 0. If we can't
1624 extract the required subword, put OP into a register and try again.
1625 The second attempt must succeed. We always validate the address in
1626 this case.
1627
1628 MODE is the mode of OP, in case it is CONST_INT. */
1629
1630 rtx
1631 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1632 {
1633 rtx result = operand_subword (op, offset, 1, mode);
1634
1635 if (result)
1636 return result;
1637
1638 if (mode != BLKmode && mode != VOIDmode)
1639 {
1640 /* If this is a register which can not be accessed by words, copy it
1641 to a pseudo register. */
1642 if (REG_P (op))
1643 op = copy_to_reg (op);
1644 else
1645 op = force_reg (mode, op);
1646 }
1647
1648 result = operand_subword (op, offset, 1, mode);
1649 gcc_assert (result);
1650
1651 return result;
1652 }
1653 \f
1654 /* Returns 1 if both MEM_EXPR can be considered equal
1655 and 0 otherwise. */
1656
1657 int
1658 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1659 {
1660 if (expr1 == expr2)
1661 return 1;
1662
1663 if (! expr1 || ! expr2)
1664 return 0;
1665
1666 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1667 return 0;
1668
1669 return operand_equal_p (expr1, expr2, 0);
1670 }
1671
1672 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1673 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1674 -1 if not known. */
1675
1676 int
1677 get_mem_align_offset (rtx mem, unsigned int align)
1678 {
1679 tree expr;
1680 unsigned HOST_WIDE_INT offset;
1681
1682 /* This function can't use
1683 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1684 || (MAX (MEM_ALIGN (mem),
1685 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1686 < align))
1687 return -1;
1688 else
1689 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1690 for two reasons:
1691 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1692 for <variable>. get_inner_reference doesn't handle it and
1693 even if it did, the alignment in that case needs to be determined
1694 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1695 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1696 isn't sufficiently aligned, the object it is in might be. */
1697 gcc_assert (MEM_P (mem));
1698 expr = MEM_EXPR (mem);
1699 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1700 return -1;
1701
1702 offset = MEM_OFFSET (mem);
1703 if (DECL_P (expr))
1704 {
1705 if (DECL_ALIGN (expr) < align)
1706 return -1;
1707 }
1708 else if (INDIRECT_REF_P (expr))
1709 {
1710 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1711 return -1;
1712 }
1713 else if (TREE_CODE (expr) == COMPONENT_REF)
1714 {
1715 while (1)
1716 {
1717 tree inner = TREE_OPERAND (expr, 0);
1718 tree field = TREE_OPERAND (expr, 1);
1719 tree byte_offset = component_ref_field_offset (expr);
1720 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1721
1722 if (!byte_offset
1723 || !tree_fits_uhwi_p (byte_offset)
1724 || !tree_fits_uhwi_p (bit_offset))
1725 return -1;
1726
1727 offset += tree_to_uhwi (byte_offset);
1728 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1729
1730 if (inner == NULL_TREE)
1731 {
1732 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1733 < (unsigned int) align)
1734 return -1;
1735 break;
1736 }
1737 else if (DECL_P (inner))
1738 {
1739 if (DECL_ALIGN (inner) < align)
1740 return -1;
1741 break;
1742 }
1743 else if (TREE_CODE (inner) != COMPONENT_REF)
1744 return -1;
1745 expr = inner;
1746 }
1747 }
1748 else
1749 return -1;
1750
1751 return offset & ((align / BITS_PER_UNIT) - 1);
1752 }
1753
1754 /* Given REF (a MEM) and T, either the type of X or the expression
1755 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1756 if we are making a new object of this type. BITPOS is nonzero if
1757 there is an offset outstanding on T that will be applied later. */
1758
1759 void
1760 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1761 HOST_WIDE_INT bitpos)
1762 {
1763 HOST_WIDE_INT apply_bitpos = 0;
1764 tree type;
1765 struct mem_attrs attrs, *defattrs, *refattrs;
1766 addr_space_t as;
1767
1768 /* It can happen that type_for_mode was given a mode for which there
1769 is no language-level type. In which case it returns NULL, which
1770 we can see here. */
1771 if (t == NULL_TREE)
1772 return;
1773
1774 type = TYPE_P (t) ? t : TREE_TYPE (t);
1775 if (type == error_mark_node)
1776 return;
1777
1778 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1779 wrong answer, as it assumes that DECL_RTL already has the right alias
1780 info. Callers should not set DECL_RTL until after the call to
1781 set_mem_attributes. */
1782 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1783
1784 memset (&attrs, 0, sizeof (attrs));
1785
1786 /* Get the alias set from the expression or type (perhaps using a
1787 front-end routine) and use it. */
1788 attrs.alias = get_alias_set (t);
1789
1790 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1791 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1792
1793 /* Default values from pre-existing memory attributes if present. */
1794 refattrs = MEM_ATTRS (ref);
1795 if (refattrs)
1796 {
1797 /* ??? Can this ever happen? Calling this routine on a MEM that
1798 already carries memory attributes should probably be invalid. */
1799 attrs.expr = refattrs->expr;
1800 attrs.offset_known_p = refattrs->offset_known_p;
1801 attrs.offset = refattrs->offset;
1802 attrs.size_known_p = refattrs->size_known_p;
1803 attrs.size = refattrs->size;
1804 attrs.align = refattrs->align;
1805 }
1806
1807 /* Otherwise, default values from the mode of the MEM reference. */
1808 else
1809 {
1810 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1811 gcc_assert (!defattrs->expr);
1812 gcc_assert (!defattrs->offset_known_p);
1813
1814 /* Respect mode size. */
1815 attrs.size_known_p = defattrs->size_known_p;
1816 attrs.size = defattrs->size;
1817 /* ??? Is this really necessary? We probably should always get
1818 the size from the type below. */
1819
1820 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1821 if T is an object, always compute the object alignment below. */
1822 if (TYPE_P (t))
1823 attrs.align = defattrs->align;
1824 else
1825 attrs.align = BITS_PER_UNIT;
1826 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1827 e.g. if the type carries an alignment attribute. Should we be
1828 able to simply always use TYPE_ALIGN? */
1829 }
1830
1831 /* We can set the alignment from the type if we are making an object or if
1832 this is an INDIRECT_REF. */
1833 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1834 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1835
1836 /* If the size is known, we can set that. */
1837 tree new_size = TYPE_SIZE_UNIT (type);
1838
1839 /* The address-space is that of the type. */
1840 as = TYPE_ADDR_SPACE (type);
1841
1842 /* If T is not a type, we may be able to deduce some more information about
1843 the expression. */
1844 if (! TYPE_P (t))
1845 {
1846 tree base;
1847
1848 if (TREE_THIS_VOLATILE (t))
1849 MEM_VOLATILE_P (ref) = 1;
1850
1851 /* Now remove any conversions: they don't change what the underlying
1852 object is. Likewise for SAVE_EXPR. */
1853 while (CONVERT_EXPR_P (t)
1854 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1855 || TREE_CODE (t) == SAVE_EXPR)
1856 t = TREE_OPERAND (t, 0);
1857
1858 /* Note whether this expression can trap. */
1859 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1860
1861 base = get_base_address (t);
1862 if (base)
1863 {
1864 if (DECL_P (base)
1865 && TREE_READONLY (base)
1866 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1867 && !TREE_THIS_VOLATILE (base))
1868 MEM_READONLY_P (ref) = 1;
1869
1870 /* Mark static const strings readonly as well. */
1871 if (TREE_CODE (base) == STRING_CST
1872 && TREE_READONLY (base)
1873 && TREE_STATIC (base))
1874 MEM_READONLY_P (ref) = 1;
1875
1876 /* Address-space information is on the base object. */
1877 if (TREE_CODE (base) == MEM_REF
1878 || TREE_CODE (base) == TARGET_MEM_REF)
1879 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1880 0))));
1881 else
1882 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1883 }
1884
1885 /* If this expression uses it's parent's alias set, mark it such
1886 that we won't change it. */
1887 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1888 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1889
1890 /* If this is a decl, set the attributes of the MEM from it. */
1891 if (DECL_P (t))
1892 {
1893 attrs.expr = t;
1894 attrs.offset_known_p = true;
1895 attrs.offset = 0;
1896 apply_bitpos = bitpos;
1897 new_size = DECL_SIZE_UNIT (t);
1898 }
1899
1900 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1901 else if (CONSTANT_CLASS_P (t))
1902 ;
1903
1904 /* If this is a field reference, record it. */
1905 else if (TREE_CODE (t) == COMPONENT_REF)
1906 {
1907 attrs.expr = t;
1908 attrs.offset_known_p = true;
1909 attrs.offset = 0;
1910 apply_bitpos = bitpos;
1911 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1912 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1913 }
1914
1915 /* If this is an array reference, look for an outer field reference. */
1916 else if (TREE_CODE (t) == ARRAY_REF)
1917 {
1918 tree off_tree = size_zero_node;
1919 /* We can't modify t, because we use it at the end of the
1920 function. */
1921 tree t2 = t;
1922
1923 do
1924 {
1925 tree index = TREE_OPERAND (t2, 1);
1926 tree low_bound = array_ref_low_bound (t2);
1927 tree unit_size = array_ref_element_size (t2);
1928
1929 /* We assume all arrays have sizes that are a multiple of a byte.
1930 First subtract the lower bound, if any, in the type of the
1931 index, then convert to sizetype and multiply by the size of
1932 the array element. */
1933 if (! integer_zerop (low_bound))
1934 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1935 index, low_bound);
1936
1937 off_tree = size_binop (PLUS_EXPR,
1938 size_binop (MULT_EXPR,
1939 fold_convert (sizetype,
1940 index),
1941 unit_size),
1942 off_tree);
1943 t2 = TREE_OPERAND (t2, 0);
1944 }
1945 while (TREE_CODE (t2) == ARRAY_REF);
1946
1947 if (DECL_P (t2)
1948 || (TREE_CODE (t2) == COMPONENT_REF
1949 /* For trailing arrays t2 doesn't have a size that
1950 covers all valid accesses. */
1951 && ! array_at_struct_end_p (t)))
1952 {
1953 attrs.expr = t2;
1954 attrs.offset_known_p = false;
1955 if (tree_fits_uhwi_p (off_tree))
1956 {
1957 attrs.offset_known_p = true;
1958 attrs.offset = tree_to_uhwi (off_tree);
1959 apply_bitpos = bitpos;
1960 }
1961 }
1962 /* Else do not record a MEM_EXPR. */
1963 }
1964
1965 /* If this is an indirect reference, record it. */
1966 else if (TREE_CODE (t) == MEM_REF
1967 || TREE_CODE (t) == TARGET_MEM_REF)
1968 {
1969 attrs.expr = t;
1970 attrs.offset_known_p = true;
1971 attrs.offset = 0;
1972 apply_bitpos = bitpos;
1973 }
1974
1975 /* Compute the alignment. */
1976 unsigned int obj_align;
1977 unsigned HOST_WIDE_INT obj_bitpos;
1978 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1979 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1980 if (obj_bitpos != 0)
1981 obj_align = least_bit_hwi (obj_bitpos);
1982 attrs.align = MAX (attrs.align, obj_align);
1983 }
1984
1985 if (tree_fits_uhwi_p (new_size))
1986 {
1987 attrs.size_known_p = true;
1988 attrs.size = tree_to_uhwi (new_size);
1989 }
1990
1991 /* If we modified OFFSET based on T, then subtract the outstanding
1992 bit position offset. Similarly, increase the size of the accessed
1993 object to contain the negative offset. */
1994 if (apply_bitpos)
1995 {
1996 gcc_assert (attrs.offset_known_p);
1997 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1998 if (attrs.size_known_p)
1999 attrs.size += apply_bitpos / BITS_PER_UNIT;
2000 }
2001
2002 /* Now set the attributes we computed above. */
2003 attrs.addrspace = as;
2004 set_mem_attrs (ref, &attrs);
2005 }
2006
2007 void
2008 set_mem_attributes (rtx ref, tree t, int objectp)
2009 {
2010 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2011 }
2012
2013 /* Set the alias set of MEM to SET. */
2014
2015 void
2016 set_mem_alias_set (rtx mem, alias_set_type set)
2017 {
2018 struct mem_attrs attrs;
2019
2020 /* If the new and old alias sets don't conflict, something is wrong. */
2021 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2022 attrs = *get_mem_attrs (mem);
2023 attrs.alias = set;
2024 set_mem_attrs (mem, &attrs);
2025 }
2026
2027 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2028
2029 void
2030 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2031 {
2032 struct mem_attrs attrs;
2033
2034 attrs = *get_mem_attrs (mem);
2035 attrs.addrspace = addrspace;
2036 set_mem_attrs (mem, &attrs);
2037 }
2038
2039 /* Set the alignment of MEM to ALIGN bits. */
2040
2041 void
2042 set_mem_align (rtx mem, unsigned int align)
2043 {
2044 struct mem_attrs attrs;
2045
2046 attrs = *get_mem_attrs (mem);
2047 attrs.align = align;
2048 set_mem_attrs (mem, &attrs);
2049 }
2050
2051 /* Set the expr for MEM to EXPR. */
2052
2053 void
2054 set_mem_expr (rtx mem, tree expr)
2055 {
2056 struct mem_attrs attrs;
2057
2058 attrs = *get_mem_attrs (mem);
2059 attrs.expr = expr;
2060 set_mem_attrs (mem, &attrs);
2061 }
2062
2063 /* Set the offset of MEM to OFFSET. */
2064
2065 void
2066 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2067 {
2068 struct mem_attrs attrs;
2069
2070 attrs = *get_mem_attrs (mem);
2071 attrs.offset_known_p = true;
2072 attrs.offset = offset;
2073 set_mem_attrs (mem, &attrs);
2074 }
2075
2076 /* Clear the offset of MEM. */
2077
2078 void
2079 clear_mem_offset (rtx mem)
2080 {
2081 struct mem_attrs attrs;
2082
2083 attrs = *get_mem_attrs (mem);
2084 attrs.offset_known_p = false;
2085 set_mem_attrs (mem, &attrs);
2086 }
2087
2088 /* Set the size of MEM to SIZE. */
2089
2090 void
2091 set_mem_size (rtx mem, HOST_WIDE_INT size)
2092 {
2093 struct mem_attrs attrs;
2094
2095 attrs = *get_mem_attrs (mem);
2096 attrs.size_known_p = true;
2097 attrs.size = size;
2098 set_mem_attrs (mem, &attrs);
2099 }
2100
2101 /* Clear the size of MEM. */
2102
2103 void
2104 clear_mem_size (rtx mem)
2105 {
2106 struct mem_attrs attrs;
2107
2108 attrs = *get_mem_attrs (mem);
2109 attrs.size_known_p = false;
2110 set_mem_attrs (mem, &attrs);
2111 }
2112 \f
2113 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2114 and its address changed to ADDR. (VOIDmode means don't change the mode.
2115 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2116 returned memory location is required to be valid. INPLACE is true if any
2117 changes can be made directly to MEMREF or false if MEMREF must be treated
2118 as immutable.
2119
2120 The memory attributes are not changed. */
2121
2122 static rtx
2123 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2124 bool inplace)
2125 {
2126 addr_space_t as;
2127 rtx new_rtx;
2128
2129 gcc_assert (MEM_P (memref));
2130 as = MEM_ADDR_SPACE (memref);
2131 if (mode == VOIDmode)
2132 mode = GET_MODE (memref);
2133 if (addr == 0)
2134 addr = XEXP (memref, 0);
2135 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2136 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2137 return memref;
2138
2139 /* Don't validate address for LRA. LRA can make the address valid
2140 by itself in most efficient way. */
2141 if (validate && !lra_in_progress)
2142 {
2143 if (reload_in_progress || reload_completed)
2144 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2145 else
2146 addr = memory_address_addr_space (mode, addr, as);
2147 }
2148
2149 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2150 return memref;
2151
2152 if (inplace)
2153 {
2154 XEXP (memref, 0) = addr;
2155 return memref;
2156 }
2157
2158 new_rtx = gen_rtx_MEM (mode, addr);
2159 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2160 return new_rtx;
2161 }
2162
2163 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2164 way we are changing MEMREF, so we only preserve the alias set. */
2165
2166 rtx
2167 change_address (rtx memref, machine_mode mode, rtx addr)
2168 {
2169 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2170 machine_mode mmode = GET_MODE (new_rtx);
2171 struct mem_attrs attrs, *defattrs;
2172
2173 attrs = *get_mem_attrs (memref);
2174 defattrs = mode_mem_attrs[(int) mmode];
2175 attrs.expr = NULL_TREE;
2176 attrs.offset_known_p = false;
2177 attrs.size_known_p = defattrs->size_known_p;
2178 attrs.size = defattrs->size;
2179 attrs.align = defattrs->align;
2180
2181 /* If there are no changes, just return the original memory reference. */
2182 if (new_rtx == memref)
2183 {
2184 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2185 return new_rtx;
2186
2187 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2188 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2189 }
2190
2191 set_mem_attrs (new_rtx, &attrs);
2192 return new_rtx;
2193 }
2194
2195 /* Return a memory reference like MEMREF, but with its mode changed
2196 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2197 nonzero, the memory address is forced to be valid.
2198 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2199 and the caller is responsible for adjusting MEMREF base register.
2200 If ADJUST_OBJECT is zero, the underlying object associated with the
2201 memory reference is left unchanged and the caller is responsible for
2202 dealing with it. Otherwise, if the new memory reference is outside
2203 the underlying object, even partially, then the object is dropped.
2204 SIZE, if nonzero, is the size of an access in cases where MODE
2205 has no inherent size. */
2206
2207 rtx
2208 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2209 int validate, int adjust_address, int adjust_object,
2210 HOST_WIDE_INT size)
2211 {
2212 rtx addr = XEXP (memref, 0);
2213 rtx new_rtx;
2214 scalar_int_mode address_mode;
2215 int pbits;
2216 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2217 unsigned HOST_WIDE_INT max_align;
2218 #ifdef POINTERS_EXTEND_UNSIGNED
2219 scalar_int_mode pointer_mode
2220 = targetm.addr_space.pointer_mode (attrs.addrspace);
2221 #endif
2222
2223 /* VOIDmode means no mode change for change_address_1. */
2224 if (mode == VOIDmode)
2225 mode = GET_MODE (memref);
2226
2227 /* Take the size of non-BLKmode accesses from the mode. */
2228 defattrs = mode_mem_attrs[(int) mode];
2229 if (defattrs->size_known_p)
2230 size = defattrs->size;
2231
2232 /* If there are no changes, just return the original memory reference. */
2233 if (mode == GET_MODE (memref) && !offset
2234 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2235 && (!validate || memory_address_addr_space_p (mode, addr,
2236 attrs.addrspace)))
2237 return memref;
2238
2239 /* ??? Prefer to create garbage instead of creating shared rtl.
2240 This may happen even if offset is nonzero -- consider
2241 (plus (plus reg reg) const_int) -- so do this always. */
2242 addr = copy_rtx (addr);
2243
2244 /* Convert a possibly large offset to a signed value within the
2245 range of the target address space. */
2246 address_mode = get_address_mode (memref);
2247 pbits = GET_MODE_BITSIZE (address_mode);
2248 if (HOST_BITS_PER_WIDE_INT > pbits)
2249 {
2250 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2251 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2252 >> shift);
2253 }
2254
2255 if (adjust_address)
2256 {
2257 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2258 object, we can merge it into the LO_SUM. */
2259 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2260 && offset >= 0
2261 && (unsigned HOST_WIDE_INT) offset
2262 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2263 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2264 plus_constant (address_mode,
2265 XEXP (addr, 1), offset));
2266 #ifdef POINTERS_EXTEND_UNSIGNED
2267 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2268 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2269 the fact that pointers are not allowed to overflow. */
2270 else if (POINTERS_EXTEND_UNSIGNED > 0
2271 && GET_CODE (addr) == ZERO_EXTEND
2272 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2273 && trunc_int_for_mode (offset, pointer_mode) == offset)
2274 addr = gen_rtx_ZERO_EXTEND (address_mode,
2275 plus_constant (pointer_mode,
2276 XEXP (addr, 0), offset));
2277 #endif
2278 else
2279 addr = plus_constant (address_mode, addr, offset);
2280 }
2281
2282 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2283
2284 /* If the address is a REG, change_address_1 rightfully returns memref,
2285 but this would destroy memref's MEM_ATTRS. */
2286 if (new_rtx == memref && offset != 0)
2287 new_rtx = copy_rtx (new_rtx);
2288
2289 /* Conservatively drop the object if we don't know where we start from. */
2290 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2291 {
2292 attrs.expr = NULL_TREE;
2293 attrs.alias = 0;
2294 }
2295
2296 /* Compute the new values of the memory attributes due to this adjustment.
2297 We add the offsets and update the alignment. */
2298 if (attrs.offset_known_p)
2299 {
2300 attrs.offset += offset;
2301
2302 /* Drop the object if the new left end is not within its bounds. */
2303 if (adjust_object && attrs.offset < 0)
2304 {
2305 attrs.expr = NULL_TREE;
2306 attrs.alias = 0;
2307 }
2308 }
2309
2310 /* Compute the new alignment by taking the MIN of the alignment and the
2311 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2312 if zero. */
2313 if (offset != 0)
2314 {
2315 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
2316 attrs.align = MIN (attrs.align, max_align);
2317 }
2318
2319 if (size)
2320 {
2321 /* Drop the object if the new right end is not within its bounds. */
2322 if (adjust_object && (offset + size) > attrs.size)
2323 {
2324 attrs.expr = NULL_TREE;
2325 attrs.alias = 0;
2326 }
2327 attrs.size_known_p = true;
2328 attrs.size = size;
2329 }
2330 else if (attrs.size_known_p)
2331 {
2332 gcc_assert (!adjust_object);
2333 attrs.size -= offset;
2334 /* ??? The store_by_pieces machinery generates negative sizes,
2335 so don't assert for that here. */
2336 }
2337
2338 set_mem_attrs (new_rtx, &attrs);
2339
2340 return new_rtx;
2341 }
2342
2343 /* Return a memory reference like MEMREF, but with its mode changed
2344 to MODE and its address changed to ADDR, which is assumed to be
2345 MEMREF offset by OFFSET bytes. If VALIDATE is
2346 nonzero, the memory address is forced to be valid. */
2347
2348 rtx
2349 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2350 HOST_WIDE_INT offset, int validate)
2351 {
2352 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2353 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2354 }
2355
2356 /* Return a memory reference like MEMREF, but whose address is changed by
2357 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2358 known to be in OFFSET (possibly 1). */
2359
2360 rtx
2361 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2362 {
2363 rtx new_rtx, addr = XEXP (memref, 0);
2364 machine_mode address_mode;
2365 struct mem_attrs attrs, *defattrs;
2366
2367 attrs = *get_mem_attrs (memref);
2368 address_mode = get_address_mode (memref);
2369 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2370
2371 /* At this point we don't know _why_ the address is invalid. It
2372 could have secondary memory references, multiplies or anything.
2373
2374 However, if we did go and rearrange things, we can wind up not
2375 being able to recognize the magic around pic_offset_table_rtx.
2376 This stuff is fragile, and is yet another example of why it is
2377 bad to expose PIC machinery too early. */
2378 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2379 attrs.addrspace)
2380 && GET_CODE (addr) == PLUS
2381 && XEXP (addr, 0) == pic_offset_table_rtx)
2382 {
2383 addr = force_reg (GET_MODE (addr), addr);
2384 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2385 }
2386
2387 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2388 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2389
2390 /* If there are no changes, just return the original memory reference. */
2391 if (new_rtx == memref)
2392 return new_rtx;
2393
2394 /* Update the alignment to reflect the offset. Reset the offset, which
2395 we don't know. */
2396 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2397 attrs.offset_known_p = false;
2398 attrs.size_known_p = defattrs->size_known_p;
2399 attrs.size = defattrs->size;
2400 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2401 set_mem_attrs (new_rtx, &attrs);
2402 return new_rtx;
2403 }
2404
2405 /* Return a memory reference like MEMREF, but with its address changed to
2406 ADDR. The caller is asserting that the actual piece of memory pointed
2407 to is the same, just the form of the address is being changed, such as
2408 by putting something into a register. INPLACE is true if any changes
2409 can be made directly to MEMREF or false if MEMREF must be treated as
2410 immutable. */
2411
2412 rtx
2413 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2414 {
2415 /* change_address_1 copies the memory attribute structure without change
2416 and that's exactly what we want here. */
2417 update_temp_slot_address (XEXP (memref, 0), addr);
2418 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2419 }
2420
2421 /* Likewise, but the reference is not required to be valid. */
2422
2423 rtx
2424 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2425 {
2426 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2427 }
2428
2429 /* Return a memory reference like MEMREF, but with its mode widened to
2430 MODE and offset by OFFSET. This would be used by targets that e.g.
2431 cannot issue QImode memory operations and have to use SImode memory
2432 operations plus masking logic. */
2433
2434 rtx
2435 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2436 {
2437 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2438 struct mem_attrs attrs;
2439 unsigned int size = GET_MODE_SIZE (mode);
2440
2441 /* If there are no changes, just return the original memory reference. */
2442 if (new_rtx == memref)
2443 return new_rtx;
2444
2445 attrs = *get_mem_attrs (new_rtx);
2446
2447 /* If we don't know what offset we were at within the expression, then
2448 we can't know if we've overstepped the bounds. */
2449 if (! attrs.offset_known_p)
2450 attrs.expr = NULL_TREE;
2451
2452 while (attrs.expr)
2453 {
2454 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2455 {
2456 tree field = TREE_OPERAND (attrs.expr, 1);
2457 tree offset = component_ref_field_offset (attrs.expr);
2458
2459 if (! DECL_SIZE_UNIT (field))
2460 {
2461 attrs.expr = NULL_TREE;
2462 break;
2463 }
2464
2465 /* Is the field at least as large as the access? If so, ok,
2466 otherwise strip back to the containing structure. */
2467 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2468 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2469 && attrs.offset >= 0)
2470 break;
2471
2472 if (! tree_fits_uhwi_p (offset))
2473 {
2474 attrs.expr = NULL_TREE;
2475 break;
2476 }
2477
2478 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2479 attrs.offset += tree_to_uhwi (offset);
2480 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2481 / BITS_PER_UNIT);
2482 }
2483 /* Similarly for the decl. */
2484 else if (DECL_P (attrs.expr)
2485 && DECL_SIZE_UNIT (attrs.expr)
2486 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2487 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2488 && (! attrs.offset_known_p || attrs.offset >= 0))
2489 break;
2490 else
2491 {
2492 /* The widened memory access overflows the expression, which means
2493 that it could alias another expression. Zap it. */
2494 attrs.expr = NULL_TREE;
2495 break;
2496 }
2497 }
2498
2499 if (! attrs.expr)
2500 attrs.offset_known_p = false;
2501
2502 /* The widened memory may alias other stuff, so zap the alias set. */
2503 /* ??? Maybe use get_alias_set on any remaining expression. */
2504 attrs.alias = 0;
2505 attrs.size_known_p = true;
2506 attrs.size = size;
2507 set_mem_attrs (new_rtx, &attrs);
2508 return new_rtx;
2509 }
2510 \f
2511 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2512 static GTY(()) tree spill_slot_decl;
2513
2514 tree
2515 get_spill_slot_decl (bool force_build_p)
2516 {
2517 tree d = spill_slot_decl;
2518 rtx rd;
2519 struct mem_attrs attrs;
2520
2521 if (d || !force_build_p)
2522 return d;
2523
2524 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2525 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2526 DECL_ARTIFICIAL (d) = 1;
2527 DECL_IGNORED_P (d) = 1;
2528 TREE_USED (d) = 1;
2529 spill_slot_decl = d;
2530
2531 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2532 MEM_NOTRAP_P (rd) = 1;
2533 attrs = *mode_mem_attrs[(int) BLKmode];
2534 attrs.alias = new_alias_set ();
2535 attrs.expr = d;
2536 set_mem_attrs (rd, &attrs);
2537 SET_DECL_RTL (d, rd);
2538
2539 return d;
2540 }
2541
2542 /* Given MEM, a result from assign_stack_local, fill in the memory
2543 attributes as appropriate for a register allocator spill slot.
2544 These slots are not aliasable by other memory. We arrange for
2545 them all to use a single MEM_EXPR, so that the aliasing code can
2546 work properly in the case of shared spill slots. */
2547
2548 void
2549 set_mem_attrs_for_spill (rtx mem)
2550 {
2551 struct mem_attrs attrs;
2552 rtx addr;
2553
2554 attrs = *get_mem_attrs (mem);
2555 attrs.expr = get_spill_slot_decl (true);
2556 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2557 attrs.addrspace = ADDR_SPACE_GENERIC;
2558
2559 /* We expect the incoming memory to be of the form:
2560 (mem:MODE (plus (reg sfp) (const_int offset)))
2561 with perhaps the plus missing for offset = 0. */
2562 addr = XEXP (mem, 0);
2563 attrs.offset_known_p = true;
2564 attrs.offset = 0;
2565 if (GET_CODE (addr) == PLUS
2566 && CONST_INT_P (XEXP (addr, 1)))
2567 attrs.offset = INTVAL (XEXP (addr, 1));
2568
2569 set_mem_attrs (mem, &attrs);
2570 MEM_NOTRAP_P (mem) = 1;
2571 }
2572 \f
2573 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2574
2575 rtx_code_label *
2576 gen_label_rtx (void)
2577 {
2578 return as_a <rtx_code_label *> (
2579 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2580 NULL, label_num++, NULL));
2581 }
2582 \f
2583 /* For procedure integration. */
2584
2585 /* Install new pointers to the first and last insns in the chain.
2586 Also, set cur_insn_uid to one higher than the last in use.
2587 Used for an inline-procedure after copying the insn chain. */
2588
2589 void
2590 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2591 {
2592 rtx_insn *insn;
2593
2594 set_first_insn (first);
2595 set_last_insn (last);
2596 cur_insn_uid = 0;
2597
2598 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2599 {
2600 int debug_count = 0;
2601
2602 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2603 cur_debug_insn_uid = 0;
2604
2605 for (insn = first; insn; insn = NEXT_INSN (insn))
2606 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2607 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2608 else
2609 {
2610 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2611 if (DEBUG_INSN_P (insn))
2612 debug_count++;
2613 }
2614
2615 if (debug_count)
2616 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2617 else
2618 cur_debug_insn_uid++;
2619 }
2620 else
2621 for (insn = first; insn; insn = NEXT_INSN (insn))
2622 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2623
2624 cur_insn_uid++;
2625 }
2626 \f
2627 /* Go through all the RTL insn bodies and copy any invalid shared
2628 structure. This routine should only be called once. */
2629
2630 static void
2631 unshare_all_rtl_1 (rtx_insn *insn)
2632 {
2633 /* Unshare just about everything else. */
2634 unshare_all_rtl_in_chain (insn);
2635
2636 /* Make sure the addresses of stack slots found outside the insn chain
2637 (such as, in DECL_RTL of a variable) are not shared
2638 with the insn chain.
2639
2640 This special care is necessary when the stack slot MEM does not
2641 actually appear in the insn chain. If it does appear, its address
2642 is unshared from all else at that point. */
2643 unsigned int i;
2644 rtx temp;
2645 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2646 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2647 }
2648
2649 /* Go through all the RTL insn bodies and copy any invalid shared
2650 structure, again. This is a fairly expensive thing to do so it
2651 should be done sparingly. */
2652
2653 void
2654 unshare_all_rtl_again (rtx_insn *insn)
2655 {
2656 rtx_insn *p;
2657 tree decl;
2658
2659 for (p = insn; p; p = NEXT_INSN (p))
2660 if (INSN_P (p))
2661 {
2662 reset_used_flags (PATTERN (p));
2663 reset_used_flags (REG_NOTES (p));
2664 if (CALL_P (p))
2665 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2666 }
2667
2668 /* Make sure that virtual stack slots are not shared. */
2669 set_used_decls (DECL_INITIAL (cfun->decl));
2670
2671 /* Make sure that virtual parameters are not shared. */
2672 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2673 set_used_flags (DECL_RTL (decl));
2674
2675 rtx temp;
2676 unsigned int i;
2677 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2678 reset_used_flags (temp);
2679
2680 unshare_all_rtl_1 (insn);
2681 }
2682
2683 unsigned int
2684 unshare_all_rtl (void)
2685 {
2686 unshare_all_rtl_1 (get_insns ());
2687
2688 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2689 {
2690 if (DECL_RTL_SET_P (decl))
2691 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2692 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2693 }
2694
2695 return 0;
2696 }
2697
2698
2699 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2700 Recursively does the same for subexpressions. */
2701
2702 static void
2703 verify_rtx_sharing (rtx orig, rtx insn)
2704 {
2705 rtx x = orig;
2706 int i;
2707 enum rtx_code code;
2708 const char *format_ptr;
2709
2710 if (x == 0)
2711 return;
2712
2713 code = GET_CODE (x);
2714
2715 /* These types may be freely shared. */
2716
2717 switch (code)
2718 {
2719 case REG:
2720 case DEBUG_EXPR:
2721 case VALUE:
2722 CASE_CONST_ANY:
2723 case SYMBOL_REF:
2724 case LABEL_REF:
2725 case CODE_LABEL:
2726 case PC:
2727 case CC0:
2728 case RETURN:
2729 case SIMPLE_RETURN:
2730 case SCRATCH:
2731 /* SCRATCH must be shared because they represent distinct values. */
2732 return;
2733 case CLOBBER:
2734 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2735 clobbers or clobbers of hard registers that originated as pseudos.
2736 This is needed to allow safe register renaming. */
2737 if (REG_P (XEXP (x, 0))
2738 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2739 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2740 return;
2741 break;
2742
2743 case CONST:
2744 if (shared_const_p (orig))
2745 return;
2746 break;
2747
2748 case MEM:
2749 /* A MEM is allowed to be shared if its address is constant. */
2750 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2751 || reload_completed || reload_in_progress)
2752 return;
2753
2754 break;
2755
2756 default:
2757 break;
2758 }
2759
2760 /* This rtx may not be shared. If it has already been seen,
2761 replace it with a copy of itself. */
2762 if (flag_checking && RTX_FLAG (x, used))
2763 {
2764 error ("invalid rtl sharing found in the insn");
2765 debug_rtx (insn);
2766 error ("shared rtx");
2767 debug_rtx (x);
2768 internal_error ("internal consistency failure");
2769 }
2770 gcc_assert (!RTX_FLAG (x, used));
2771
2772 RTX_FLAG (x, used) = 1;
2773
2774 /* Now scan the subexpressions recursively. */
2775
2776 format_ptr = GET_RTX_FORMAT (code);
2777
2778 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2779 {
2780 switch (*format_ptr++)
2781 {
2782 case 'e':
2783 verify_rtx_sharing (XEXP (x, i), insn);
2784 break;
2785
2786 case 'E':
2787 if (XVEC (x, i) != NULL)
2788 {
2789 int j;
2790 int len = XVECLEN (x, i);
2791
2792 for (j = 0; j < len; j++)
2793 {
2794 /* We allow sharing of ASM_OPERANDS inside single
2795 instruction. */
2796 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2797 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2798 == ASM_OPERANDS))
2799 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2800 else
2801 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2802 }
2803 }
2804 break;
2805 }
2806 }
2807 return;
2808 }
2809
2810 /* Reset used-flags for INSN. */
2811
2812 static void
2813 reset_insn_used_flags (rtx insn)
2814 {
2815 gcc_assert (INSN_P (insn));
2816 reset_used_flags (PATTERN (insn));
2817 reset_used_flags (REG_NOTES (insn));
2818 if (CALL_P (insn))
2819 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2820 }
2821
2822 /* Go through all the RTL insn bodies and clear all the USED bits. */
2823
2824 static void
2825 reset_all_used_flags (void)
2826 {
2827 rtx_insn *p;
2828
2829 for (p = get_insns (); p; p = NEXT_INSN (p))
2830 if (INSN_P (p))
2831 {
2832 rtx pat = PATTERN (p);
2833 if (GET_CODE (pat) != SEQUENCE)
2834 reset_insn_used_flags (p);
2835 else
2836 {
2837 gcc_assert (REG_NOTES (p) == NULL);
2838 for (int i = 0; i < XVECLEN (pat, 0); i++)
2839 {
2840 rtx insn = XVECEXP (pat, 0, i);
2841 if (INSN_P (insn))
2842 reset_insn_used_flags (insn);
2843 }
2844 }
2845 }
2846 }
2847
2848 /* Verify sharing in INSN. */
2849
2850 static void
2851 verify_insn_sharing (rtx insn)
2852 {
2853 gcc_assert (INSN_P (insn));
2854 verify_rtx_sharing (PATTERN (insn), insn);
2855 verify_rtx_sharing (REG_NOTES (insn), insn);
2856 if (CALL_P (insn))
2857 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2858 }
2859
2860 /* Go through all the RTL insn bodies and check that there is no unexpected
2861 sharing in between the subexpressions. */
2862
2863 DEBUG_FUNCTION void
2864 verify_rtl_sharing (void)
2865 {
2866 rtx_insn *p;
2867
2868 timevar_push (TV_VERIFY_RTL_SHARING);
2869
2870 reset_all_used_flags ();
2871
2872 for (p = get_insns (); p; p = NEXT_INSN (p))
2873 if (INSN_P (p))
2874 {
2875 rtx pat = PATTERN (p);
2876 if (GET_CODE (pat) != SEQUENCE)
2877 verify_insn_sharing (p);
2878 else
2879 for (int i = 0; i < XVECLEN (pat, 0); i++)
2880 {
2881 rtx insn = XVECEXP (pat, 0, i);
2882 if (INSN_P (insn))
2883 verify_insn_sharing (insn);
2884 }
2885 }
2886
2887 reset_all_used_flags ();
2888
2889 timevar_pop (TV_VERIFY_RTL_SHARING);
2890 }
2891
2892 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2893 Assumes the mark bits are cleared at entry. */
2894
2895 void
2896 unshare_all_rtl_in_chain (rtx_insn *insn)
2897 {
2898 for (; insn; insn = NEXT_INSN (insn))
2899 if (INSN_P (insn))
2900 {
2901 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2902 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2903 if (CALL_P (insn))
2904 CALL_INSN_FUNCTION_USAGE (insn)
2905 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2906 }
2907 }
2908
2909 /* Go through all virtual stack slots of a function and mark them as
2910 shared. We never replace the DECL_RTLs themselves with a copy,
2911 but expressions mentioned into a DECL_RTL cannot be shared with
2912 expressions in the instruction stream.
2913
2914 Note that reload may convert pseudo registers into memories in-place.
2915 Pseudo registers are always shared, but MEMs never are. Thus if we
2916 reset the used flags on MEMs in the instruction stream, we must set
2917 them again on MEMs that appear in DECL_RTLs. */
2918
2919 static void
2920 set_used_decls (tree blk)
2921 {
2922 tree t;
2923
2924 /* Mark decls. */
2925 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2926 if (DECL_RTL_SET_P (t))
2927 set_used_flags (DECL_RTL (t));
2928
2929 /* Now process sub-blocks. */
2930 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2931 set_used_decls (t);
2932 }
2933
2934 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2935 Recursively does the same for subexpressions. Uses
2936 copy_rtx_if_shared_1 to reduce stack space. */
2937
2938 rtx
2939 copy_rtx_if_shared (rtx orig)
2940 {
2941 copy_rtx_if_shared_1 (&orig);
2942 return orig;
2943 }
2944
2945 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2946 use. Recursively does the same for subexpressions. */
2947
2948 static void
2949 copy_rtx_if_shared_1 (rtx *orig1)
2950 {
2951 rtx x;
2952 int i;
2953 enum rtx_code code;
2954 rtx *last_ptr;
2955 const char *format_ptr;
2956 int copied = 0;
2957 int length;
2958
2959 /* Repeat is used to turn tail-recursion into iteration. */
2960 repeat:
2961 x = *orig1;
2962
2963 if (x == 0)
2964 return;
2965
2966 code = GET_CODE (x);
2967
2968 /* These types may be freely shared. */
2969
2970 switch (code)
2971 {
2972 case REG:
2973 case DEBUG_EXPR:
2974 case VALUE:
2975 CASE_CONST_ANY:
2976 case SYMBOL_REF:
2977 case LABEL_REF:
2978 case CODE_LABEL:
2979 case PC:
2980 case CC0:
2981 case RETURN:
2982 case SIMPLE_RETURN:
2983 case SCRATCH:
2984 /* SCRATCH must be shared because they represent distinct values. */
2985 return;
2986 case CLOBBER:
2987 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2988 clobbers or clobbers of hard registers that originated as pseudos.
2989 This is needed to allow safe register renaming. */
2990 if (REG_P (XEXP (x, 0))
2991 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2992 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2993 return;
2994 break;
2995
2996 case CONST:
2997 if (shared_const_p (x))
2998 return;
2999 break;
3000
3001 case DEBUG_INSN:
3002 case INSN:
3003 case JUMP_INSN:
3004 case CALL_INSN:
3005 case NOTE:
3006 case BARRIER:
3007 /* The chain of insns is not being copied. */
3008 return;
3009
3010 default:
3011 break;
3012 }
3013
3014 /* This rtx may not be shared. If it has already been seen,
3015 replace it with a copy of itself. */
3016
3017 if (RTX_FLAG (x, used))
3018 {
3019 x = shallow_copy_rtx (x);
3020 copied = 1;
3021 }
3022 RTX_FLAG (x, used) = 1;
3023
3024 /* Now scan the subexpressions recursively.
3025 We can store any replaced subexpressions directly into X
3026 since we know X is not shared! Any vectors in X
3027 must be copied if X was copied. */
3028
3029 format_ptr = GET_RTX_FORMAT (code);
3030 length = GET_RTX_LENGTH (code);
3031 last_ptr = NULL;
3032
3033 for (i = 0; i < length; i++)
3034 {
3035 switch (*format_ptr++)
3036 {
3037 case 'e':
3038 if (last_ptr)
3039 copy_rtx_if_shared_1 (last_ptr);
3040 last_ptr = &XEXP (x, i);
3041 break;
3042
3043 case 'E':
3044 if (XVEC (x, i) != NULL)
3045 {
3046 int j;
3047 int len = XVECLEN (x, i);
3048
3049 /* Copy the vector iff I copied the rtx and the length
3050 is nonzero. */
3051 if (copied && len > 0)
3052 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3053
3054 /* Call recursively on all inside the vector. */
3055 for (j = 0; j < len; j++)
3056 {
3057 if (last_ptr)
3058 copy_rtx_if_shared_1 (last_ptr);
3059 last_ptr = &XVECEXP (x, i, j);
3060 }
3061 }
3062 break;
3063 }
3064 }
3065 *orig1 = x;
3066 if (last_ptr)
3067 {
3068 orig1 = last_ptr;
3069 goto repeat;
3070 }
3071 return;
3072 }
3073
3074 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3075
3076 static void
3077 mark_used_flags (rtx x, int flag)
3078 {
3079 int i, j;
3080 enum rtx_code code;
3081 const char *format_ptr;
3082 int length;
3083
3084 /* Repeat is used to turn tail-recursion into iteration. */
3085 repeat:
3086 if (x == 0)
3087 return;
3088
3089 code = GET_CODE (x);
3090
3091 /* These types may be freely shared so we needn't do any resetting
3092 for them. */
3093
3094 switch (code)
3095 {
3096 case REG:
3097 case DEBUG_EXPR:
3098 case VALUE:
3099 CASE_CONST_ANY:
3100 case SYMBOL_REF:
3101 case CODE_LABEL:
3102 case PC:
3103 case CC0:
3104 case RETURN:
3105 case SIMPLE_RETURN:
3106 return;
3107
3108 case DEBUG_INSN:
3109 case INSN:
3110 case JUMP_INSN:
3111 case CALL_INSN:
3112 case NOTE:
3113 case LABEL_REF:
3114 case BARRIER:
3115 /* The chain of insns is not being copied. */
3116 return;
3117
3118 default:
3119 break;
3120 }
3121
3122 RTX_FLAG (x, used) = flag;
3123
3124 format_ptr = GET_RTX_FORMAT (code);
3125 length = GET_RTX_LENGTH (code);
3126
3127 for (i = 0; i < length; i++)
3128 {
3129 switch (*format_ptr++)
3130 {
3131 case 'e':
3132 if (i == length-1)
3133 {
3134 x = XEXP (x, i);
3135 goto repeat;
3136 }
3137 mark_used_flags (XEXP (x, i), flag);
3138 break;
3139
3140 case 'E':
3141 for (j = 0; j < XVECLEN (x, i); j++)
3142 mark_used_flags (XVECEXP (x, i, j), flag);
3143 break;
3144 }
3145 }
3146 }
3147
3148 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3149 to look for shared sub-parts. */
3150
3151 void
3152 reset_used_flags (rtx x)
3153 {
3154 mark_used_flags (x, 0);
3155 }
3156
3157 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3158 to look for shared sub-parts. */
3159
3160 void
3161 set_used_flags (rtx x)
3162 {
3163 mark_used_flags (x, 1);
3164 }
3165 \f
3166 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3167 Return X or the rtx for the pseudo reg the value of X was copied into.
3168 OTHER must be valid as a SET_DEST. */
3169
3170 rtx
3171 make_safe_from (rtx x, rtx other)
3172 {
3173 while (1)
3174 switch (GET_CODE (other))
3175 {
3176 case SUBREG:
3177 other = SUBREG_REG (other);
3178 break;
3179 case STRICT_LOW_PART:
3180 case SIGN_EXTEND:
3181 case ZERO_EXTEND:
3182 other = XEXP (other, 0);
3183 break;
3184 default:
3185 goto done;
3186 }
3187 done:
3188 if ((MEM_P (other)
3189 && ! CONSTANT_P (x)
3190 && !REG_P (x)
3191 && GET_CODE (x) != SUBREG)
3192 || (REG_P (other)
3193 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3194 || reg_mentioned_p (other, x))))
3195 {
3196 rtx temp = gen_reg_rtx (GET_MODE (x));
3197 emit_move_insn (temp, x);
3198 return temp;
3199 }
3200 return x;
3201 }
3202 \f
3203 /* Emission of insns (adding them to the doubly-linked list). */
3204
3205 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3206
3207 rtx_insn *
3208 get_last_insn_anywhere (void)
3209 {
3210 struct sequence_stack *seq;
3211 for (seq = get_current_sequence (); seq; seq = seq->next)
3212 if (seq->last != 0)
3213 return seq->last;
3214 return 0;
3215 }
3216
3217 /* Return the first nonnote insn emitted in current sequence or current
3218 function. This routine looks inside SEQUENCEs. */
3219
3220 rtx_insn *
3221 get_first_nonnote_insn (void)
3222 {
3223 rtx_insn *insn = get_insns ();
3224
3225 if (insn)
3226 {
3227 if (NOTE_P (insn))
3228 for (insn = next_insn (insn);
3229 insn && NOTE_P (insn);
3230 insn = next_insn (insn))
3231 continue;
3232 else
3233 {
3234 if (NONJUMP_INSN_P (insn)
3235 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3236 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3237 }
3238 }
3239
3240 return insn;
3241 }
3242
3243 /* Return the last nonnote insn emitted in current sequence or current
3244 function. This routine looks inside SEQUENCEs. */
3245
3246 rtx_insn *
3247 get_last_nonnote_insn (void)
3248 {
3249 rtx_insn *insn = get_last_insn ();
3250
3251 if (insn)
3252 {
3253 if (NOTE_P (insn))
3254 for (insn = previous_insn (insn);
3255 insn && NOTE_P (insn);
3256 insn = previous_insn (insn))
3257 continue;
3258 else
3259 {
3260 if (NONJUMP_INSN_P (insn))
3261 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3262 insn = seq->insn (seq->len () - 1);
3263 }
3264 }
3265
3266 return insn;
3267 }
3268
3269 /* Return the number of actual (non-debug) insns emitted in this
3270 function. */
3271
3272 int
3273 get_max_insn_count (void)
3274 {
3275 int n = cur_insn_uid;
3276
3277 /* The table size must be stable across -g, to avoid codegen
3278 differences due to debug insns, and not be affected by
3279 -fmin-insn-uid, to avoid excessive table size and to simplify
3280 debugging of -fcompare-debug failures. */
3281 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3282 n -= cur_debug_insn_uid;
3283 else
3284 n -= MIN_NONDEBUG_INSN_UID;
3285
3286 return n;
3287 }
3288
3289 \f
3290 /* Return the next insn. If it is a SEQUENCE, return the first insn
3291 of the sequence. */
3292
3293 rtx_insn *
3294 next_insn (rtx_insn *insn)
3295 {
3296 if (insn)
3297 {
3298 insn = NEXT_INSN (insn);
3299 if (insn && NONJUMP_INSN_P (insn)
3300 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3301 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3302 }
3303
3304 return insn;
3305 }
3306
3307 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3308 of the sequence. */
3309
3310 rtx_insn *
3311 previous_insn (rtx_insn *insn)
3312 {
3313 if (insn)
3314 {
3315 insn = PREV_INSN (insn);
3316 if (insn && NONJUMP_INSN_P (insn))
3317 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3318 insn = seq->insn (seq->len () - 1);
3319 }
3320
3321 return insn;
3322 }
3323
3324 /* Return the next insn after INSN that is not a NOTE. This routine does not
3325 look inside SEQUENCEs. */
3326
3327 rtx_insn *
3328 next_nonnote_insn (rtx_insn *insn)
3329 {
3330 while (insn)
3331 {
3332 insn = NEXT_INSN (insn);
3333 if (insn == 0 || !NOTE_P (insn))
3334 break;
3335 }
3336
3337 return insn;
3338 }
3339
3340 /* Return the next insn after INSN that is not a NOTE, but stop the
3341 search before we enter another basic block. This routine does not
3342 look inside SEQUENCEs. */
3343
3344 rtx_insn *
3345 next_nonnote_insn_bb (rtx_insn *insn)
3346 {
3347 while (insn)
3348 {
3349 insn = NEXT_INSN (insn);
3350 if (insn == 0 || !NOTE_P (insn))
3351 break;
3352 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3353 return NULL;
3354 }
3355
3356 return insn;
3357 }
3358
3359 /* Return the previous insn before INSN that is not a NOTE. This routine does
3360 not look inside SEQUENCEs. */
3361
3362 rtx_insn *
3363 prev_nonnote_insn (rtx_insn *insn)
3364 {
3365 while (insn)
3366 {
3367 insn = PREV_INSN (insn);
3368 if (insn == 0 || !NOTE_P (insn))
3369 break;
3370 }
3371
3372 return insn;
3373 }
3374
3375 /* Return the previous insn before INSN that is not a NOTE, but stop
3376 the search before we enter another basic block. This routine does
3377 not look inside SEQUENCEs. */
3378
3379 rtx_insn *
3380 prev_nonnote_insn_bb (rtx_insn *insn)
3381 {
3382
3383 while (insn)
3384 {
3385 insn = PREV_INSN (insn);
3386 if (insn == 0 || !NOTE_P (insn))
3387 break;
3388 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3389 return NULL;
3390 }
3391
3392 return insn;
3393 }
3394
3395 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3396 routine does not look inside SEQUENCEs. */
3397
3398 rtx_insn *
3399 next_nondebug_insn (rtx_insn *insn)
3400 {
3401 while (insn)
3402 {
3403 insn = NEXT_INSN (insn);
3404 if (insn == 0 || !DEBUG_INSN_P (insn))
3405 break;
3406 }
3407
3408 return insn;
3409 }
3410
3411 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3412 This routine does not look inside SEQUENCEs. */
3413
3414 rtx_insn *
3415 prev_nondebug_insn (rtx_insn *insn)
3416 {
3417 while (insn)
3418 {
3419 insn = PREV_INSN (insn);
3420 if (insn == 0 || !DEBUG_INSN_P (insn))
3421 break;
3422 }
3423
3424 return insn;
3425 }
3426
3427 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3428 This routine does not look inside SEQUENCEs. */
3429
3430 rtx_insn *
3431 next_nonnote_nondebug_insn (rtx_insn *insn)
3432 {
3433 while (insn)
3434 {
3435 insn = NEXT_INSN (insn);
3436 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3437 break;
3438 }
3439
3440 return insn;
3441 }
3442
3443 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3444 This routine does not look inside SEQUENCEs. */
3445
3446 rtx_insn *
3447 prev_nonnote_nondebug_insn (rtx_insn *insn)
3448 {
3449 while (insn)
3450 {
3451 insn = PREV_INSN (insn);
3452 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3453 break;
3454 }
3455
3456 return insn;
3457 }
3458
3459 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3460 or 0, if there is none. This routine does not look inside
3461 SEQUENCEs. */
3462
3463 rtx_insn *
3464 next_real_insn (rtx uncast_insn)
3465 {
3466 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3467
3468 while (insn)
3469 {
3470 insn = NEXT_INSN (insn);
3471 if (insn == 0 || INSN_P (insn))
3472 break;
3473 }
3474
3475 return insn;
3476 }
3477
3478 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3479 or 0, if there is none. This routine does not look inside
3480 SEQUENCEs. */
3481
3482 rtx_insn *
3483 prev_real_insn (rtx_insn *insn)
3484 {
3485 while (insn)
3486 {
3487 insn = PREV_INSN (insn);
3488 if (insn == 0 || INSN_P (insn))
3489 break;
3490 }
3491
3492 return insn;
3493 }
3494
3495 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3496 This routine does not look inside SEQUENCEs. */
3497
3498 rtx_call_insn *
3499 last_call_insn (void)
3500 {
3501 rtx_insn *insn;
3502
3503 for (insn = get_last_insn ();
3504 insn && !CALL_P (insn);
3505 insn = PREV_INSN (insn))
3506 ;
3507
3508 return safe_as_a <rtx_call_insn *> (insn);
3509 }
3510
3511 /* Find the next insn after INSN that really does something. This routine
3512 does not look inside SEQUENCEs. After reload this also skips over
3513 standalone USE and CLOBBER insn. */
3514
3515 int
3516 active_insn_p (const rtx_insn *insn)
3517 {
3518 return (CALL_P (insn) || JUMP_P (insn)
3519 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3520 || (NONJUMP_INSN_P (insn)
3521 && (! reload_completed
3522 || (GET_CODE (PATTERN (insn)) != USE
3523 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3524 }
3525
3526 rtx_insn *
3527 next_active_insn (rtx_insn *insn)
3528 {
3529 while (insn)
3530 {
3531 insn = NEXT_INSN (insn);
3532 if (insn == 0 || active_insn_p (insn))
3533 break;
3534 }
3535
3536 return insn;
3537 }
3538
3539 /* Find the last insn before INSN that really does something. This routine
3540 does not look inside SEQUENCEs. After reload this also skips over
3541 standalone USE and CLOBBER insn. */
3542
3543 rtx_insn *
3544 prev_active_insn (rtx_insn *insn)
3545 {
3546 while (insn)
3547 {
3548 insn = PREV_INSN (insn);
3549 if (insn == 0 || active_insn_p (insn))
3550 break;
3551 }
3552
3553 return insn;
3554 }
3555 \f
3556 /* Return the next insn that uses CC0 after INSN, which is assumed to
3557 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3558 applied to the result of this function should yield INSN).
3559
3560 Normally, this is simply the next insn. However, if a REG_CC_USER note
3561 is present, it contains the insn that uses CC0.
3562
3563 Return 0 if we can't find the insn. */
3564
3565 rtx_insn *
3566 next_cc0_user (rtx_insn *insn)
3567 {
3568 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3569
3570 if (note)
3571 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3572
3573 insn = next_nonnote_insn (insn);
3574 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3575 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3576
3577 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3578 return insn;
3579
3580 return 0;
3581 }
3582
3583 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3584 note, it is the previous insn. */
3585
3586 rtx_insn *
3587 prev_cc0_setter (rtx_insn *insn)
3588 {
3589 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3590
3591 if (note)
3592 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3593
3594 insn = prev_nonnote_insn (insn);
3595 gcc_assert (sets_cc0_p (PATTERN (insn)));
3596
3597 return insn;
3598 }
3599
3600 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3601
3602 static int
3603 find_auto_inc (const_rtx x, const_rtx reg)
3604 {
3605 subrtx_iterator::array_type array;
3606 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3607 {
3608 const_rtx x = *iter;
3609 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3610 && rtx_equal_p (reg, XEXP (x, 0)))
3611 return true;
3612 }
3613 return false;
3614 }
3615
3616 /* Increment the label uses for all labels present in rtx. */
3617
3618 static void
3619 mark_label_nuses (rtx x)
3620 {
3621 enum rtx_code code;
3622 int i, j;
3623 const char *fmt;
3624
3625 code = GET_CODE (x);
3626 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3627 LABEL_NUSES (label_ref_label (x))++;
3628
3629 fmt = GET_RTX_FORMAT (code);
3630 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3631 {
3632 if (fmt[i] == 'e')
3633 mark_label_nuses (XEXP (x, i));
3634 else if (fmt[i] == 'E')
3635 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3636 mark_label_nuses (XVECEXP (x, i, j));
3637 }
3638 }
3639
3640 \f
3641 /* Try splitting insns that can be split for better scheduling.
3642 PAT is the pattern which might split.
3643 TRIAL is the insn providing PAT.
3644 LAST is nonzero if we should return the last insn of the sequence produced.
3645
3646 If this routine succeeds in splitting, it returns the first or last
3647 replacement insn depending on the value of LAST. Otherwise, it
3648 returns TRIAL. If the insn to be returned can be split, it will be. */
3649
3650 rtx_insn *
3651 try_split (rtx pat, rtx_insn *trial, int last)
3652 {
3653 rtx_insn *before, *after;
3654 rtx note;
3655 rtx_insn *seq, *tem;
3656 profile_probability probability;
3657 rtx_insn *insn_last, *insn;
3658 int njumps = 0;
3659 rtx_insn *call_insn = NULL;
3660
3661 /* We're not good at redistributing frame information. */
3662 if (RTX_FRAME_RELATED_P (trial))
3663 return trial;
3664
3665 if (any_condjump_p (trial)
3666 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3667 split_branch_probability
3668 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3669 else
3670 split_branch_probability = profile_probability::uninitialized ();
3671
3672 probability = split_branch_probability;
3673
3674 seq = split_insns (pat, trial);
3675
3676 split_branch_probability = profile_probability::uninitialized ();
3677
3678 if (!seq)
3679 return trial;
3680
3681 /* Avoid infinite loop if any insn of the result matches
3682 the original pattern. */
3683 insn_last = seq;
3684 while (1)
3685 {
3686 if (INSN_P (insn_last)
3687 && rtx_equal_p (PATTERN (insn_last), pat))
3688 return trial;
3689 if (!NEXT_INSN (insn_last))
3690 break;
3691 insn_last = NEXT_INSN (insn_last);
3692 }
3693
3694 /* We will be adding the new sequence to the function. The splitters
3695 may have introduced invalid RTL sharing, so unshare the sequence now. */
3696 unshare_all_rtl_in_chain (seq);
3697
3698 /* Mark labels and copy flags. */
3699 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3700 {
3701 if (JUMP_P (insn))
3702 {
3703 if (JUMP_P (trial))
3704 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3705 mark_jump_label (PATTERN (insn), insn, 0);
3706 njumps++;
3707 if (probability.initialized_p ()
3708 && any_condjump_p (insn)
3709 && !find_reg_note (insn, REG_BR_PROB, 0))
3710 {
3711 /* We can preserve the REG_BR_PROB notes only if exactly
3712 one jump is created, otherwise the machine description
3713 is responsible for this step using
3714 split_branch_probability variable. */
3715 gcc_assert (njumps == 1);
3716 add_reg_br_prob_note (insn, probability);
3717 }
3718 }
3719 }
3720
3721 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3722 in SEQ and copy any additional information across. */
3723 if (CALL_P (trial))
3724 {
3725 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3726 if (CALL_P (insn))
3727 {
3728 rtx_insn *next;
3729 rtx *p;
3730
3731 gcc_assert (call_insn == NULL_RTX);
3732 call_insn = insn;
3733
3734 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3735 target may have explicitly specified. */
3736 p = &CALL_INSN_FUNCTION_USAGE (insn);
3737 while (*p)
3738 p = &XEXP (*p, 1);
3739 *p = CALL_INSN_FUNCTION_USAGE (trial);
3740
3741 /* If the old call was a sibling call, the new one must
3742 be too. */
3743 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3744
3745 /* If the new call is the last instruction in the sequence,
3746 it will effectively replace the old call in-situ. Otherwise
3747 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3748 so that it comes immediately after the new call. */
3749 if (NEXT_INSN (insn))
3750 for (next = NEXT_INSN (trial);
3751 next && NOTE_P (next);
3752 next = NEXT_INSN (next))
3753 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3754 {
3755 remove_insn (next);
3756 add_insn_after (next, insn, NULL);
3757 break;
3758 }
3759 }
3760 }
3761
3762 /* Copy notes, particularly those related to the CFG. */
3763 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3764 {
3765 switch (REG_NOTE_KIND (note))
3766 {
3767 case REG_EH_REGION:
3768 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3769 break;
3770
3771 case REG_NORETURN:
3772 case REG_SETJMP:
3773 case REG_TM:
3774 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3775 {
3776 if (CALL_P (insn))
3777 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3778 }
3779 break;
3780
3781 case REG_NON_LOCAL_GOTO:
3782 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3783 {
3784 if (JUMP_P (insn))
3785 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3786 }
3787 break;
3788
3789 case REG_INC:
3790 if (!AUTO_INC_DEC)
3791 break;
3792
3793 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3794 {
3795 rtx reg = XEXP (note, 0);
3796 if (!FIND_REG_INC_NOTE (insn, reg)
3797 && find_auto_inc (PATTERN (insn), reg))
3798 add_reg_note (insn, REG_INC, reg);
3799 }
3800 break;
3801
3802 case REG_ARGS_SIZE:
3803 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3804 break;
3805
3806 case REG_CALL_DECL:
3807 gcc_assert (call_insn != NULL_RTX);
3808 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3809 break;
3810
3811 default:
3812 break;
3813 }
3814 }
3815
3816 /* If there are LABELS inside the split insns increment the
3817 usage count so we don't delete the label. */
3818 if (INSN_P (trial))
3819 {
3820 insn = insn_last;
3821 while (insn != NULL_RTX)
3822 {
3823 /* JUMP_P insns have already been "marked" above. */
3824 if (NONJUMP_INSN_P (insn))
3825 mark_label_nuses (PATTERN (insn));
3826
3827 insn = PREV_INSN (insn);
3828 }
3829 }
3830
3831 before = PREV_INSN (trial);
3832 after = NEXT_INSN (trial);
3833
3834 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3835
3836 delete_insn (trial);
3837
3838 /* Recursively call try_split for each new insn created; by the
3839 time control returns here that insn will be fully split, so
3840 set LAST and continue from the insn after the one returned.
3841 We can't use next_active_insn here since AFTER may be a note.
3842 Ignore deleted insns, which can be occur if not optimizing. */
3843 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3844 if (! tem->deleted () && INSN_P (tem))
3845 tem = try_split (PATTERN (tem), tem, 1);
3846
3847 /* Return either the first or the last insn, depending on which was
3848 requested. */
3849 return last
3850 ? (after ? PREV_INSN (after) : get_last_insn ())
3851 : NEXT_INSN (before);
3852 }
3853 \f
3854 /* Make and return an INSN rtx, initializing all its slots.
3855 Store PATTERN in the pattern slots. */
3856
3857 rtx_insn *
3858 make_insn_raw (rtx pattern)
3859 {
3860 rtx_insn *insn;
3861
3862 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3863
3864 INSN_UID (insn) = cur_insn_uid++;
3865 PATTERN (insn) = pattern;
3866 INSN_CODE (insn) = -1;
3867 REG_NOTES (insn) = NULL;
3868 INSN_LOCATION (insn) = curr_insn_location ();
3869 BLOCK_FOR_INSN (insn) = NULL;
3870
3871 #ifdef ENABLE_RTL_CHECKING
3872 if (insn
3873 && INSN_P (insn)
3874 && (returnjump_p (insn)
3875 || (GET_CODE (insn) == SET
3876 && SET_DEST (insn) == pc_rtx)))
3877 {
3878 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3879 debug_rtx (insn);
3880 }
3881 #endif
3882
3883 return insn;
3884 }
3885
3886 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3887
3888 static rtx_insn *
3889 make_debug_insn_raw (rtx pattern)
3890 {
3891 rtx_debug_insn *insn;
3892
3893 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3894 INSN_UID (insn) = cur_debug_insn_uid++;
3895 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3896 INSN_UID (insn) = cur_insn_uid++;
3897
3898 PATTERN (insn) = pattern;
3899 INSN_CODE (insn) = -1;
3900 REG_NOTES (insn) = NULL;
3901 INSN_LOCATION (insn) = curr_insn_location ();
3902 BLOCK_FOR_INSN (insn) = NULL;
3903
3904 return insn;
3905 }
3906
3907 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3908
3909 static rtx_insn *
3910 make_jump_insn_raw (rtx pattern)
3911 {
3912 rtx_jump_insn *insn;
3913
3914 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3915 INSN_UID (insn) = cur_insn_uid++;
3916
3917 PATTERN (insn) = pattern;
3918 INSN_CODE (insn) = -1;
3919 REG_NOTES (insn) = NULL;
3920 JUMP_LABEL (insn) = NULL;
3921 INSN_LOCATION (insn) = curr_insn_location ();
3922 BLOCK_FOR_INSN (insn) = NULL;
3923
3924 return insn;
3925 }
3926
3927 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3928
3929 static rtx_insn *
3930 make_call_insn_raw (rtx pattern)
3931 {
3932 rtx_call_insn *insn;
3933
3934 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3935 INSN_UID (insn) = cur_insn_uid++;
3936
3937 PATTERN (insn) = pattern;
3938 INSN_CODE (insn) = -1;
3939 REG_NOTES (insn) = NULL;
3940 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3941 INSN_LOCATION (insn) = curr_insn_location ();
3942 BLOCK_FOR_INSN (insn) = NULL;
3943
3944 return insn;
3945 }
3946
3947 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3948
3949 static rtx_note *
3950 make_note_raw (enum insn_note subtype)
3951 {
3952 /* Some notes are never created this way at all. These notes are
3953 only created by patching out insns. */
3954 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3955 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3956
3957 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3958 INSN_UID (note) = cur_insn_uid++;
3959 NOTE_KIND (note) = subtype;
3960 BLOCK_FOR_INSN (note) = NULL;
3961 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3962 return note;
3963 }
3964 \f
3965 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3966 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3967 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3968
3969 static inline void
3970 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3971 {
3972 SET_PREV_INSN (insn) = prev;
3973 SET_NEXT_INSN (insn) = next;
3974 if (prev != NULL)
3975 {
3976 SET_NEXT_INSN (prev) = insn;
3977 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3978 {
3979 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3980 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3981 }
3982 }
3983 if (next != NULL)
3984 {
3985 SET_PREV_INSN (next) = insn;
3986 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3987 {
3988 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3989 SET_PREV_INSN (sequence->insn (0)) = insn;
3990 }
3991 }
3992
3993 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3994 {
3995 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3996 SET_PREV_INSN (sequence->insn (0)) = prev;
3997 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3998 }
3999 }
4000
4001 /* Add INSN to the end of the doubly-linked list.
4002 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4003
4004 void
4005 add_insn (rtx_insn *insn)
4006 {
4007 rtx_insn *prev = get_last_insn ();
4008 link_insn_into_chain (insn, prev, NULL);
4009 if (NULL == get_insns ())
4010 set_first_insn (insn);
4011 set_last_insn (insn);
4012 }
4013
4014 /* Add INSN into the doubly-linked list after insn AFTER. */
4015
4016 static void
4017 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4018 {
4019 rtx_insn *next = NEXT_INSN (after);
4020
4021 gcc_assert (!optimize || !after->deleted ());
4022
4023 link_insn_into_chain (insn, after, next);
4024
4025 if (next == NULL)
4026 {
4027 struct sequence_stack *seq;
4028
4029 for (seq = get_current_sequence (); seq; seq = seq->next)
4030 if (after == seq->last)
4031 {
4032 seq->last = insn;
4033 break;
4034 }
4035 }
4036 }
4037
4038 /* Add INSN into the doubly-linked list before insn BEFORE. */
4039
4040 static void
4041 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4042 {
4043 rtx_insn *prev = PREV_INSN (before);
4044
4045 gcc_assert (!optimize || !before->deleted ());
4046
4047 link_insn_into_chain (insn, prev, before);
4048
4049 if (prev == NULL)
4050 {
4051 struct sequence_stack *seq;
4052
4053 for (seq = get_current_sequence (); seq; seq = seq->next)
4054 if (before == seq->first)
4055 {
4056 seq->first = insn;
4057 break;
4058 }
4059
4060 gcc_assert (seq);
4061 }
4062 }
4063
4064 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4065 If BB is NULL, an attempt is made to infer the bb from before.
4066
4067 This and the next function should be the only functions called
4068 to insert an insn once delay slots have been filled since only
4069 they know how to update a SEQUENCE. */
4070
4071 void
4072 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4073 {
4074 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4075 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4076 add_insn_after_nobb (insn, after);
4077 if (!BARRIER_P (after)
4078 && !BARRIER_P (insn)
4079 && (bb = BLOCK_FOR_INSN (after)))
4080 {
4081 set_block_for_insn (insn, bb);
4082 if (INSN_P (insn))
4083 df_insn_rescan (insn);
4084 /* Should not happen as first in the BB is always
4085 either NOTE or LABEL. */
4086 if (BB_END (bb) == after
4087 /* Avoid clobbering of structure when creating new BB. */
4088 && !BARRIER_P (insn)
4089 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4090 BB_END (bb) = insn;
4091 }
4092 }
4093
4094 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4095 If BB is NULL, an attempt is made to infer the bb from before.
4096
4097 This and the previous function should be the only functions called
4098 to insert an insn once delay slots have been filled since only
4099 they know how to update a SEQUENCE. */
4100
4101 void
4102 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4103 {
4104 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4105 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4106 add_insn_before_nobb (insn, before);
4107
4108 if (!bb
4109 && !BARRIER_P (before)
4110 && !BARRIER_P (insn))
4111 bb = BLOCK_FOR_INSN (before);
4112
4113 if (bb)
4114 {
4115 set_block_for_insn (insn, bb);
4116 if (INSN_P (insn))
4117 df_insn_rescan (insn);
4118 /* Should not happen as first in the BB is always either NOTE or
4119 LABEL. */
4120 gcc_assert (BB_HEAD (bb) != insn
4121 /* Avoid clobbering of structure when creating new BB. */
4122 || BARRIER_P (insn)
4123 || NOTE_INSN_BASIC_BLOCK_P (insn));
4124 }
4125 }
4126
4127 /* Replace insn with an deleted instruction note. */
4128
4129 void
4130 set_insn_deleted (rtx insn)
4131 {
4132 if (INSN_P (insn))
4133 df_insn_delete (as_a <rtx_insn *> (insn));
4134 PUT_CODE (insn, NOTE);
4135 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4136 }
4137
4138
4139 /* Unlink INSN from the insn chain.
4140
4141 This function knows how to handle sequences.
4142
4143 This function does not invalidate data flow information associated with
4144 INSN (i.e. does not call df_insn_delete). That makes this function
4145 usable for only disconnecting an insn from the chain, and re-emit it
4146 elsewhere later.
4147
4148 To later insert INSN elsewhere in the insn chain via add_insn and
4149 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4150 the caller. Nullifying them here breaks many insn chain walks.
4151
4152 To really delete an insn and related DF information, use delete_insn. */
4153
4154 void
4155 remove_insn (rtx uncast_insn)
4156 {
4157 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4158 rtx_insn *next = NEXT_INSN (insn);
4159 rtx_insn *prev = PREV_INSN (insn);
4160 basic_block bb;
4161
4162 if (prev)
4163 {
4164 SET_NEXT_INSN (prev) = next;
4165 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4166 {
4167 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4168 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4169 }
4170 }
4171 else
4172 {
4173 struct sequence_stack *seq;
4174
4175 for (seq = get_current_sequence (); seq; seq = seq->next)
4176 if (insn == seq->first)
4177 {
4178 seq->first = next;
4179 break;
4180 }
4181
4182 gcc_assert (seq);
4183 }
4184
4185 if (next)
4186 {
4187 SET_PREV_INSN (next) = prev;
4188 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4189 {
4190 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4191 SET_PREV_INSN (sequence->insn (0)) = prev;
4192 }
4193 }
4194 else
4195 {
4196 struct sequence_stack *seq;
4197
4198 for (seq = get_current_sequence (); seq; seq = seq->next)
4199 if (insn == seq->last)
4200 {
4201 seq->last = prev;
4202 break;
4203 }
4204
4205 gcc_assert (seq);
4206 }
4207
4208 /* Fix up basic block boundaries, if necessary. */
4209 if (!BARRIER_P (insn)
4210 && (bb = BLOCK_FOR_INSN (insn)))
4211 {
4212 if (BB_HEAD (bb) == insn)
4213 {
4214 /* Never ever delete the basic block note without deleting whole
4215 basic block. */
4216 gcc_assert (!NOTE_P (insn));
4217 BB_HEAD (bb) = next;
4218 }
4219 if (BB_END (bb) == insn)
4220 BB_END (bb) = prev;
4221 }
4222 }
4223
4224 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4225
4226 void
4227 add_function_usage_to (rtx call_insn, rtx call_fusage)
4228 {
4229 gcc_assert (call_insn && CALL_P (call_insn));
4230
4231 /* Put the register usage information on the CALL. If there is already
4232 some usage information, put ours at the end. */
4233 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4234 {
4235 rtx link;
4236
4237 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4238 link = XEXP (link, 1))
4239 ;
4240
4241 XEXP (link, 1) = call_fusage;
4242 }
4243 else
4244 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4245 }
4246
4247 /* Delete all insns made since FROM.
4248 FROM becomes the new last instruction. */
4249
4250 void
4251 delete_insns_since (rtx_insn *from)
4252 {
4253 if (from == 0)
4254 set_first_insn (0);
4255 else
4256 SET_NEXT_INSN (from) = 0;
4257 set_last_insn (from);
4258 }
4259
4260 /* This function is deprecated, please use sequences instead.
4261
4262 Move a consecutive bunch of insns to a different place in the chain.
4263 The insns to be moved are those between FROM and TO.
4264 They are moved to a new position after the insn AFTER.
4265 AFTER must not be FROM or TO or any insn in between.
4266
4267 This function does not know about SEQUENCEs and hence should not be
4268 called after delay-slot filling has been done. */
4269
4270 void
4271 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4272 {
4273 if (flag_checking)
4274 {
4275 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4276 gcc_assert (after != x);
4277 gcc_assert (after != to);
4278 }
4279
4280 /* Splice this bunch out of where it is now. */
4281 if (PREV_INSN (from))
4282 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4283 if (NEXT_INSN (to))
4284 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4285 if (get_last_insn () == to)
4286 set_last_insn (PREV_INSN (from));
4287 if (get_insns () == from)
4288 set_first_insn (NEXT_INSN (to));
4289
4290 /* Make the new neighbors point to it and it to them. */
4291 if (NEXT_INSN (after))
4292 SET_PREV_INSN (NEXT_INSN (after)) = to;
4293
4294 SET_NEXT_INSN (to) = NEXT_INSN (after);
4295 SET_PREV_INSN (from) = after;
4296 SET_NEXT_INSN (after) = from;
4297 if (after == get_last_insn ())
4298 set_last_insn (to);
4299 }
4300
4301 /* Same as function above, but take care to update BB boundaries. */
4302 void
4303 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4304 {
4305 rtx_insn *prev = PREV_INSN (from);
4306 basic_block bb, bb2;
4307
4308 reorder_insns_nobb (from, to, after);
4309
4310 if (!BARRIER_P (after)
4311 && (bb = BLOCK_FOR_INSN (after)))
4312 {
4313 rtx_insn *x;
4314 df_set_bb_dirty (bb);
4315
4316 if (!BARRIER_P (from)
4317 && (bb2 = BLOCK_FOR_INSN (from)))
4318 {
4319 if (BB_END (bb2) == to)
4320 BB_END (bb2) = prev;
4321 df_set_bb_dirty (bb2);
4322 }
4323
4324 if (BB_END (bb) == after)
4325 BB_END (bb) = to;
4326
4327 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4328 if (!BARRIER_P (x))
4329 df_insn_change_bb (x, bb);
4330 }
4331 }
4332
4333 \f
4334 /* Emit insn(s) of given code and pattern
4335 at a specified place within the doubly-linked list.
4336
4337 All of the emit_foo global entry points accept an object
4338 X which is either an insn list or a PATTERN of a single
4339 instruction.
4340
4341 There are thus a few canonical ways to generate code and
4342 emit it at a specific place in the instruction stream. For
4343 example, consider the instruction named SPOT and the fact that
4344 we would like to emit some instructions before SPOT. We might
4345 do it like this:
4346
4347 start_sequence ();
4348 ... emit the new instructions ...
4349 insns_head = get_insns ();
4350 end_sequence ();
4351
4352 emit_insn_before (insns_head, SPOT);
4353
4354 It used to be common to generate SEQUENCE rtl instead, but that
4355 is a relic of the past which no longer occurs. The reason is that
4356 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4357 generated would almost certainly die right after it was created. */
4358
4359 static rtx_insn *
4360 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4361 rtx_insn *(*make_raw) (rtx))
4362 {
4363 rtx_insn *insn;
4364
4365 gcc_assert (before);
4366
4367 if (x == NULL_RTX)
4368 return safe_as_a <rtx_insn *> (last);
4369
4370 switch (GET_CODE (x))
4371 {
4372 case DEBUG_INSN:
4373 case INSN:
4374 case JUMP_INSN:
4375 case CALL_INSN:
4376 case CODE_LABEL:
4377 case BARRIER:
4378 case NOTE:
4379 insn = as_a <rtx_insn *> (x);
4380 while (insn)
4381 {
4382 rtx_insn *next = NEXT_INSN (insn);
4383 add_insn_before (insn, before, bb);
4384 last = insn;
4385 insn = next;
4386 }
4387 break;
4388
4389 #ifdef ENABLE_RTL_CHECKING
4390 case SEQUENCE:
4391 gcc_unreachable ();
4392 break;
4393 #endif
4394
4395 default:
4396 last = (*make_raw) (x);
4397 add_insn_before (last, before, bb);
4398 break;
4399 }
4400
4401 return safe_as_a <rtx_insn *> (last);
4402 }
4403
4404 /* Make X be output before the instruction BEFORE. */
4405
4406 rtx_insn *
4407 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4408 {
4409 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4410 }
4411
4412 /* Make an instruction with body X and code JUMP_INSN
4413 and output it before the instruction BEFORE. */
4414
4415 rtx_jump_insn *
4416 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4417 {
4418 return as_a <rtx_jump_insn *> (
4419 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4420 make_jump_insn_raw));
4421 }
4422
4423 /* Make an instruction with body X and code CALL_INSN
4424 and output it before the instruction BEFORE. */
4425
4426 rtx_insn *
4427 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4428 {
4429 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4430 make_call_insn_raw);
4431 }
4432
4433 /* Make an instruction with body X and code DEBUG_INSN
4434 and output it before the instruction BEFORE. */
4435
4436 rtx_insn *
4437 emit_debug_insn_before_noloc (rtx x, rtx before)
4438 {
4439 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4440 make_debug_insn_raw);
4441 }
4442
4443 /* Make an insn of code BARRIER
4444 and output it before the insn BEFORE. */
4445
4446 rtx_barrier *
4447 emit_barrier_before (rtx before)
4448 {
4449 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4450
4451 INSN_UID (insn) = cur_insn_uid++;
4452
4453 add_insn_before (insn, before, NULL);
4454 return insn;
4455 }
4456
4457 /* Emit the label LABEL before the insn BEFORE. */
4458
4459 rtx_code_label *
4460 emit_label_before (rtx label, rtx_insn *before)
4461 {
4462 gcc_checking_assert (INSN_UID (label) == 0);
4463 INSN_UID (label) = cur_insn_uid++;
4464 add_insn_before (label, before, NULL);
4465 return as_a <rtx_code_label *> (label);
4466 }
4467 \f
4468 /* Helper for emit_insn_after, handles lists of instructions
4469 efficiently. */
4470
4471 static rtx_insn *
4472 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4473 {
4474 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4475 rtx_insn *last;
4476 rtx_insn *after_after;
4477 if (!bb && !BARRIER_P (after))
4478 bb = BLOCK_FOR_INSN (after);
4479
4480 if (bb)
4481 {
4482 df_set_bb_dirty (bb);
4483 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4484 if (!BARRIER_P (last))
4485 {
4486 set_block_for_insn (last, bb);
4487 df_insn_rescan (last);
4488 }
4489 if (!BARRIER_P (last))
4490 {
4491 set_block_for_insn (last, bb);
4492 df_insn_rescan (last);
4493 }
4494 if (BB_END (bb) == after)
4495 BB_END (bb) = last;
4496 }
4497 else
4498 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4499 continue;
4500
4501 after_after = NEXT_INSN (after);
4502
4503 SET_NEXT_INSN (after) = first;
4504 SET_PREV_INSN (first) = after;
4505 SET_NEXT_INSN (last) = after_after;
4506 if (after_after)
4507 SET_PREV_INSN (after_after) = last;
4508
4509 if (after == get_last_insn ())
4510 set_last_insn (last);
4511
4512 return last;
4513 }
4514
4515 static rtx_insn *
4516 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4517 rtx_insn *(*make_raw)(rtx))
4518 {
4519 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4520 rtx_insn *last = after;
4521
4522 gcc_assert (after);
4523
4524 if (x == NULL_RTX)
4525 return last;
4526
4527 switch (GET_CODE (x))
4528 {
4529 case DEBUG_INSN:
4530 case INSN:
4531 case JUMP_INSN:
4532 case CALL_INSN:
4533 case CODE_LABEL:
4534 case BARRIER:
4535 case NOTE:
4536 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4537 break;
4538
4539 #ifdef ENABLE_RTL_CHECKING
4540 case SEQUENCE:
4541 gcc_unreachable ();
4542 break;
4543 #endif
4544
4545 default:
4546 last = (*make_raw) (x);
4547 add_insn_after (last, after, bb);
4548 break;
4549 }
4550
4551 return last;
4552 }
4553
4554 /* Make X be output after the insn AFTER and set the BB of insn. If
4555 BB is NULL, an attempt is made to infer the BB from AFTER. */
4556
4557 rtx_insn *
4558 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4559 {
4560 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4561 }
4562
4563
4564 /* Make an insn of code JUMP_INSN with body X
4565 and output it after the insn AFTER. */
4566
4567 rtx_jump_insn *
4568 emit_jump_insn_after_noloc (rtx x, rtx after)
4569 {
4570 return as_a <rtx_jump_insn *> (
4571 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4572 }
4573
4574 /* Make an instruction with body X and code CALL_INSN
4575 and output it after the instruction AFTER. */
4576
4577 rtx_insn *
4578 emit_call_insn_after_noloc (rtx x, rtx after)
4579 {
4580 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4581 }
4582
4583 /* Make an instruction with body X and code CALL_INSN
4584 and output it after the instruction AFTER. */
4585
4586 rtx_insn *
4587 emit_debug_insn_after_noloc (rtx x, rtx after)
4588 {
4589 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4590 }
4591
4592 /* Make an insn of code BARRIER
4593 and output it after the insn AFTER. */
4594
4595 rtx_barrier *
4596 emit_barrier_after (rtx after)
4597 {
4598 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4599
4600 INSN_UID (insn) = cur_insn_uid++;
4601
4602 add_insn_after (insn, after, NULL);
4603 return insn;
4604 }
4605
4606 /* Emit the label LABEL after the insn AFTER. */
4607
4608 rtx_insn *
4609 emit_label_after (rtx label, rtx_insn *after)
4610 {
4611 gcc_checking_assert (INSN_UID (label) == 0);
4612 INSN_UID (label) = cur_insn_uid++;
4613 add_insn_after (label, after, NULL);
4614 return as_a <rtx_insn *> (label);
4615 }
4616 \f
4617 /* Notes require a bit of special handling: Some notes need to have their
4618 BLOCK_FOR_INSN set, others should never have it set, and some should
4619 have it set or clear depending on the context. */
4620
4621 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4622 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4623 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4624
4625 static bool
4626 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4627 {
4628 switch (subtype)
4629 {
4630 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4631 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4632 return true;
4633
4634 /* Notes for var tracking and EH region markers can appear between or
4635 inside basic blocks. If the caller is emitting on the basic block
4636 boundary, do not set BLOCK_FOR_INSN on the new note. */
4637 case NOTE_INSN_VAR_LOCATION:
4638 case NOTE_INSN_CALL_ARG_LOCATION:
4639 case NOTE_INSN_EH_REGION_BEG:
4640 case NOTE_INSN_EH_REGION_END:
4641 return on_bb_boundary_p;
4642
4643 /* Otherwise, BLOCK_FOR_INSN must be set. */
4644 default:
4645 return false;
4646 }
4647 }
4648
4649 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4650
4651 rtx_note *
4652 emit_note_after (enum insn_note subtype, rtx_insn *after)
4653 {
4654 rtx_note *note = make_note_raw (subtype);
4655 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4656 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4657
4658 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4659 add_insn_after_nobb (note, after);
4660 else
4661 add_insn_after (note, after, bb);
4662 return note;
4663 }
4664
4665 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4666
4667 rtx_note *
4668 emit_note_before (enum insn_note subtype, rtx_insn *before)
4669 {
4670 rtx_note *note = make_note_raw (subtype);
4671 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4672 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4673
4674 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4675 add_insn_before_nobb (note, before);
4676 else
4677 add_insn_before (note, before, bb);
4678 return note;
4679 }
4680 \f
4681 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4682 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4683
4684 static rtx_insn *
4685 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4686 rtx_insn *(*make_raw) (rtx))
4687 {
4688 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4689 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4690
4691 if (pattern == NULL_RTX || !loc)
4692 return last;
4693
4694 after = NEXT_INSN (after);
4695 while (1)
4696 {
4697 if (active_insn_p (after)
4698 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4699 && !INSN_LOCATION (after))
4700 INSN_LOCATION (after) = loc;
4701 if (after == last)
4702 break;
4703 after = NEXT_INSN (after);
4704 }
4705 return last;
4706 }
4707
4708 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4709 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4710 any DEBUG_INSNs. */
4711
4712 static rtx_insn *
4713 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4714 rtx_insn *(*make_raw) (rtx))
4715 {
4716 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4717 rtx_insn *prev = after;
4718
4719 if (skip_debug_insns)
4720 while (DEBUG_INSN_P (prev))
4721 prev = PREV_INSN (prev);
4722
4723 if (INSN_P (prev))
4724 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4725 make_raw);
4726 else
4727 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4728 }
4729
4730 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4731 rtx_insn *
4732 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4733 {
4734 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4735 }
4736
4737 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4738 rtx_insn *
4739 emit_insn_after (rtx pattern, rtx after)
4740 {
4741 return emit_pattern_after (pattern, after, true, make_insn_raw);
4742 }
4743
4744 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4745 rtx_jump_insn *
4746 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4747 {
4748 return as_a <rtx_jump_insn *> (
4749 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4750 }
4751
4752 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4753 rtx_jump_insn *
4754 emit_jump_insn_after (rtx pattern, rtx after)
4755 {
4756 return as_a <rtx_jump_insn *> (
4757 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4758 }
4759
4760 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4761 rtx_insn *
4762 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4763 {
4764 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4765 }
4766
4767 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4768 rtx_insn *
4769 emit_call_insn_after (rtx pattern, rtx after)
4770 {
4771 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4772 }
4773
4774 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4775 rtx_insn *
4776 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4777 {
4778 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4779 }
4780
4781 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4782 rtx_insn *
4783 emit_debug_insn_after (rtx pattern, rtx after)
4784 {
4785 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4786 }
4787
4788 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4789 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4790 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4791 CALL_INSN, etc. */
4792
4793 static rtx_insn *
4794 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4795 rtx_insn *(*make_raw) (rtx))
4796 {
4797 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4798 rtx_insn *first = PREV_INSN (before);
4799 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4800 insnp ? before : NULL_RTX,
4801 NULL, make_raw);
4802
4803 if (pattern == NULL_RTX || !loc)
4804 return last;
4805
4806 if (!first)
4807 first = get_insns ();
4808 else
4809 first = NEXT_INSN (first);
4810 while (1)
4811 {
4812 if (active_insn_p (first)
4813 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4814 && !INSN_LOCATION (first))
4815 INSN_LOCATION (first) = loc;
4816 if (first == last)
4817 break;
4818 first = NEXT_INSN (first);
4819 }
4820 return last;
4821 }
4822
4823 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4824 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4825 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4826 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4827
4828 static rtx_insn *
4829 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4830 bool insnp, rtx_insn *(*make_raw) (rtx))
4831 {
4832 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4833 rtx_insn *next = before;
4834
4835 if (skip_debug_insns)
4836 while (DEBUG_INSN_P (next))
4837 next = PREV_INSN (next);
4838
4839 if (INSN_P (next))
4840 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4841 insnp, make_raw);
4842 else
4843 return emit_pattern_before_noloc (pattern, before,
4844 insnp ? before : NULL_RTX,
4845 NULL, make_raw);
4846 }
4847
4848 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4849 rtx_insn *
4850 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4851 {
4852 return emit_pattern_before_setloc (pattern, before, loc, true,
4853 make_insn_raw);
4854 }
4855
4856 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4857 rtx_insn *
4858 emit_insn_before (rtx pattern, rtx before)
4859 {
4860 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4861 }
4862
4863 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4864 rtx_jump_insn *
4865 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4866 {
4867 return as_a <rtx_jump_insn *> (
4868 emit_pattern_before_setloc (pattern, before, loc, false,
4869 make_jump_insn_raw));
4870 }
4871
4872 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4873 rtx_jump_insn *
4874 emit_jump_insn_before (rtx pattern, rtx before)
4875 {
4876 return as_a <rtx_jump_insn *> (
4877 emit_pattern_before (pattern, before, true, false,
4878 make_jump_insn_raw));
4879 }
4880
4881 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4882 rtx_insn *
4883 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4884 {
4885 return emit_pattern_before_setloc (pattern, before, loc, false,
4886 make_call_insn_raw);
4887 }
4888
4889 /* Like emit_call_insn_before_noloc,
4890 but set insn_location according to BEFORE. */
4891 rtx_insn *
4892 emit_call_insn_before (rtx pattern, rtx_insn *before)
4893 {
4894 return emit_pattern_before (pattern, before, true, false,
4895 make_call_insn_raw);
4896 }
4897
4898 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4899 rtx_insn *
4900 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4901 {
4902 return emit_pattern_before_setloc (pattern, before, loc, false,
4903 make_debug_insn_raw);
4904 }
4905
4906 /* Like emit_debug_insn_before_noloc,
4907 but set insn_location according to BEFORE. */
4908 rtx_insn *
4909 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4910 {
4911 return emit_pattern_before (pattern, before, false, false,
4912 make_debug_insn_raw);
4913 }
4914 \f
4915 /* Take X and emit it at the end of the doubly-linked
4916 INSN list.
4917
4918 Returns the last insn emitted. */
4919
4920 rtx_insn *
4921 emit_insn (rtx x)
4922 {
4923 rtx_insn *last = get_last_insn ();
4924 rtx_insn *insn;
4925
4926 if (x == NULL_RTX)
4927 return last;
4928
4929 switch (GET_CODE (x))
4930 {
4931 case DEBUG_INSN:
4932 case INSN:
4933 case JUMP_INSN:
4934 case CALL_INSN:
4935 case CODE_LABEL:
4936 case BARRIER:
4937 case NOTE:
4938 insn = as_a <rtx_insn *> (x);
4939 while (insn)
4940 {
4941 rtx_insn *next = NEXT_INSN (insn);
4942 add_insn (insn);
4943 last = insn;
4944 insn = next;
4945 }
4946 break;
4947
4948 #ifdef ENABLE_RTL_CHECKING
4949 case JUMP_TABLE_DATA:
4950 case SEQUENCE:
4951 gcc_unreachable ();
4952 break;
4953 #endif
4954
4955 default:
4956 last = make_insn_raw (x);
4957 add_insn (last);
4958 break;
4959 }
4960
4961 return last;
4962 }
4963
4964 /* Make an insn of code DEBUG_INSN with pattern X
4965 and add it to the end of the doubly-linked list. */
4966
4967 rtx_insn *
4968 emit_debug_insn (rtx x)
4969 {
4970 rtx_insn *last = get_last_insn ();
4971 rtx_insn *insn;
4972
4973 if (x == NULL_RTX)
4974 return last;
4975
4976 switch (GET_CODE (x))
4977 {
4978 case DEBUG_INSN:
4979 case INSN:
4980 case JUMP_INSN:
4981 case CALL_INSN:
4982 case CODE_LABEL:
4983 case BARRIER:
4984 case NOTE:
4985 insn = as_a <rtx_insn *> (x);
4986 while (insn)
4987 {
4988 rtx_insn *next = NEXT_INSN (insn);
4989 add_insn (insn);
4990 last = insn;
4991 insn = next;
4992 }
4993 break;
4994
4995 #ifdef ENABLE_RTL_CHECKING
4996 case JUMP_TABLE_DATA:
4997 case SEQUENCE:
4998 gcc_unreachable ();
4999 break;
5000 #endif
5001
5002 default:
5003 last = make_debug_insn_raw (x);
5004 add_insn (last);
5005 break;
5006 }
5007
5008 return last;
5009 }
5010
5011 /* Make an insn of code JUMP_INSN with pattern X
5012 and add it to the end of the doubly-linked list. */
5013
5014 rtx_insn *
5015 emit_jump_insn (rtx x)
5016 {
5017 rtx_insn *last = NULL;
5018 rtx_insn *insn;
5019
5020 switch (GET_CODE (x))
5021 {
5022 case DEBUG_INSN:
5023 case INSN:
5024 case JUMP_INSN:
5025 case CALL_INSN:
5026 case CODE_LABEL:
5027 case BARRIER:
5028 case NOTE:
5029 insn = as_a <rtx_insn *> (x);
5030 while (insn)
5031 {
5032 rtx_insn *next = NEXT_INSN (insn);
5033 add_insn (insn);
5034 last = insn;
5035 insn = next;
5036 }
5037 break;
5038
5039 #ifdef ENABLE_RTL_CHECKING
5040 case JUMP_TABLE_DATA:
5041 case SEQUENCE:
5042 gcc_unreachable ();
5043 break;
5044 #endif
5045
5046 default:
5047 last = make_jump_insn_raw (x);
5048 add_insn (last);
5049 break;
5050 }
5051
5052 return last;
5053 }
5054
5055 /* Make an insn of code CALL_INSN with pattern X
5056 and add it to the end of the doubly-linked list. */
5057
5058 rtx_insn *
5059 emit_call_insn (rtx x)
5060 {
5061 rtx_insn *insn;
5062
5063 switch (GET_CODE (x))
5064 {
5065 case DEBUG_INSN:
5066 case INSN:
5067 case JUMP_INSN:
5068 case CALL_INSN:
5069 case CODE_LABEL:
5070 case BARRIER:
5071 case NOTE:
5072 insn = emit_insn (x);
5073 break;
5074
5075 #ifdef ENABLE_RTL_CHECKING
5076 case SEQUENCE:
5077 case JUMP_TABLE_DATA:
5078 gcc_unreachable ();
5079 break;
5080 #endif
5081
5082 default:
5083 insn = make_call_insn_raw (x);
5084 add_insn (insn);
5085 break;
5086 }
5087
5088 return insn;
5089 }
5090
5091 /* Add the label LABEL to the end of the doubly-linked list. */
5092
5093 rtx_code_label *
5094 emit_label (rtx uncast_label)
5095 {
5096 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5097
5098 gcc_checking_assert (INSN_UID (label) == 0);
5099 INSN_UID (label) = cur_insn_uid++;
5100 add_insn (label);
5101 return label;
5102 }
5103
5104 /* Make an insn of code JUMP_TABLE_DATA
5105 and add it to the end of the doubly-linked list. */
5106
5107 rtx_jump_table_data *
5108 emit_jump_table_data (rtx table)
5109 {
5110 rtx_jump_table_data *jump_table_data =
5111 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5112 INSN_UID (jump_table_data) = cur_insn_uid++;
5113 PATTERN (jump_table_data) = table;
5114 BLOCK_FOR_INSN (jump_table_data) = NULL;
5115 add_insn (jump_table_data);
5116 return jump_table_data;
5117 }
5118
5119 /* Make an insn of code BARRIER
5120 and add it to the end of the doubly-linked list. */
5121
5122 rtx_barrier *
5123 emit_barrier (void)
5124 {
5125 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5126 INSN_UID (barrier) = cur_insn_uid++;
5127 add_insn (barrier);
5128 return barrier;
5129 }
5130
5131 /* Emit a copy of note ORIG. */
5132
5133 rtx_note *
5134 emit_note_copy (rtx_note *orig)
5135 {
5136 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5137 rtx_note *note = make_note_raw (kind);
5138 NOTE_DATA (note) = NOTE_DATA (orig);
5139 add_insn (note);
5140 return note;
5141 }
5142
5143 /* Make an insn of code NOTE or type NOTE_NO
5144 and add it to the end of the doubly-linked list. */
5145
5146 rtx_note *
5147 emit_note (enum insn_note kind)
5148 {
5149 rtx_note *note = make_note_raw (kind);
5150 add_insn (note);
5151 return note;
5152 }
5153
5154 /* Emit a clobber of lvalue X. */
5155
5156 rtx_insn *
5157 emit_clobber (rtx x)
5158 {
5159 /* CONCATs should not appear in the insn stream. */
5160 if (GET_CODE (x) == CONCAT)
5161 {
5162 emit_clobber (XEXP (x, 0));
5163 return emit_clobber (XEXP (x, 1));
5164 }
5165 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5166 }
5167
5168 /* Return a sequence of insns to clobber lvalue X. */
5169
5170 rtx_insn *
5171 gen_clobber (rtx x)
5172 {
5173 rtx_insn *seq;
5174
5175 start_sequence ();
5176 emit_clobber (x);
5177 seq = get_insns ();
5178 end_sequence ();
5179 return seq;
5180 }
5181
5182 /* Emit a use of rvalue X. */
5183
5184 rtx_insn *
5185 emit_use (rtx x)
5186 {
5187 /* CONCATs should not appear in the insn stream. */
5188 if (GET_CODE (x) == CONCAT)
5189 {
5190 emit_use (XEXP (x, 0));
5191 return emit_use (XEXP (x, 1));
5192 }
5193 return emit_insn (gen_rtx_USE (VOIDmode, x));
5194 }
5195
5196 /* Return a sequence of insns to use rvalue X. */
5197
5198 rtx_insn *
5199 gen_use (rtx x)
5200 {
5201 rtx_insn *seq;
5202
5203 start_sequence ();
5204 emit_use (x);
5205 seq = get_insns ();
5206 end_sequence ();
5207 return seq;
5208 }
5209
5210 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5211 Return the set in INSN that such notes describe, or NULL if the notes
5212 have no meaning for INSN. */
5213
5214 rtx
5215 set_for_reg_notes (rtx insn)
5216 {
5217 rtx pat, reg;
5218
5219 if (!INSN_P (insn))
5220 return NULL_RTX;
5221
5222 pat = PATTERN (insn);
5223 if (GET_CODE (pat) == PARALLEL)
5224 {
5225 /* We do not use single_set because that ignores SETs of unused
5226 registers. REG_EQUAL and REG_EQUIV notes really do require the
5227 PARALLEL to have a single SET. */
5228 if (multiple_sets (insn))
5229 return NULL_RTX;
5230 pat = XVECEXP (pat, 0, 0);
5231 }
5232
5233 if (GET_CODE (pat) != SET)
5234 return NULL_RTX;
5235
5236 reg = SET_DEST (pat);
5237
5238 /* Notes apply to the contents of a STRICT_LOW_PART. */
5239 if (GET_CODE (reg) == STRICT_LOW_PART
5240 || GET_CODE (reg) == ZERO_EXTRACT)
5241 reg = XEXP (reg, 0);
5242
5243 /* Check that we have a register. */
5244 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5245 return NULL_RTX;
5246
5247 return pat;
5248 }
5249
5250 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5251 note of this type already exists, remove it first. */
5252
5253 rtx
5254 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5255 {
5256 rtx note = find_reg_note (insn, kind, NULL_RTX);
5257
5258 switch (kind)
5259 {
5260 case REG_EQUAL:
5261 case REG_EQUIV:
5262 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5263 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5264 return NULL_RTX;
5265
5266 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5267 It serves no useful purpose and breaks eliminate_regs. */
5268 if (GET_CODE (datum) == ASM_OPERANDS)
5269 return NULL_RTX;
5270
5271 /* Notes with side effects are dangerous. Even if the side-effect
5272 initially mirrors one in PATTERN (INSN), later optimizations
5273 might alter the way that the final register value is calculated
5274 and so move or alter the side-effect in some way. The note would
5275 then no longer be a valid substitution for SET_SRC. */
5276 if (side_effects_p (datum))
5277 return NULL_RTX;
5278 break;
5279
5280 default:
5281 break;
5282 }
5283
5284 if (note)
5285 XEXP (note, 0) = datum;
5286 else
5287 {
5288 add_reg_note (insn, kind, datum);
5289 note = REG_NOTES (insn);
5290 }
5291
5292 switch (kind)
5293 {
5294 case REG_EQUAL:
5295 case REG_EQUIV:
5296 df_notes_rescan (as_a <rtx_insn *> (insn));
5297 break;
5298 default:
5299 break;
5300 }
5301
5302 return note;
5303 }
5304
5305 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5306 rtx
5307 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5308 {
5309 rtx set = set_for_reg_notes (insn);
5310
5311 if (set && SET_DEST (set) == dst)
5312 return set_unique_reg_note (insn, kind, datum);
5313 return NULL_RTX;
5314 }
5315 \f
5316 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5317 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5318 is true.
5319
5320 If X is a label, it is simply added into the insn chain. */
5321
5322 rtx_insn *
5323 emit (rtx x, bool allow_barrier_p)
5324 {
5325 enum rtx_code code = classify_insn (x);
5326
5327 switch (code)
5328 {
5329 case CODE_LABEL:
5330 return emit_label (x);
5331 case INSN:
5332 return emit_insn (x);
5333 case JUMP_INSN:
5334 {
5335 rtx_insn *insn = emit_jump_insn (x);
5336 if (allow_barrier_p
5337 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5338 return emit_barrier ();
5339 return insn;
5340 }
5341 case CALL_INSN:
5342 return emit_call_insn (x);
5343 case DEBUG_INSN:
5344 return emit_debug_insn (x);
5345 default:
5346 gcc_unreachable ();
5347 }
5348 }
5349 \f
5350 /* Space for free sequence stack entries. */
5351 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5352
5353 /* Begin emitting insns to a sequence. If this sequence will contain
5354 something that might cause the compiler to pop arguments to function
5355 calls (because those pops have previously been deferred; see
5356 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5357 before calling this function. That will ensure that the deferred
5358 pops are not accidentally emitted in the middle of this sequence. */
5359
5360 void
5361 start_sequence (void)
5362 {
5363 struct sequence_stack *tem;
5364
5365 if (free_sequence_stack != NULL)
5366 {
5367 tem = free_sequence_stack;
5368 free_sequence_stack = tem->next;
5369 }
5370 else
5371 tem = ggc_alloc<sequence_stack> ();
5372
5373 tem->next = get_current_sequence ()->next;
5374 tem->first = get_insns ();
5375 tem->last = get_last_insn ();
5376 get_current_sequence ()->next = tem;
5377
5378 set_first_insn (0);
5379 set_last_insn (0);
5380 }
5381
5382 /* Set up the insn chain starting with FIRST as the current sequence,
5383 saving the previously current one. See the documentation for
5384 start_sequence for more information about how to use this function. */
5385
5386 void
5387 push_to_sequence (rtx_insn *first)
5388 {
5389 rtx_insn *last;
5390
5391 start_sequence ();
5392
5393 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5394 ;
5395
5396 set_first_insn (first);
5397 set_last_insn (last);
5398 }
5399
5400 /* Like push_to_sequence, but take the last insn as an argument to avoid
5401 looping through the list. */
5402
5403 void
5404 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5405 {
5406 start_sequence ();
5407
5408 set_first_insn (first);
5409 set_last_insn (last);
5410 }
5411
5412 /* Set up the outer-level insn chain
5413 as the current sequence, saving the previously current one. */
5414
5415 void
5416 push_topmost_sequence (void)
5417 {
5418 struct sequence_stack *top;
5419
5420 start_sequence ();
5421
5422 top = get_topmost_sequence ();
5423 set_first_insn (top->first);
5424 set_last_insn (top->last);
5425 }
5426
5427 /* After emitting to the outer-level insn chain, update the outer-level
5428 insn chain, and restore the previous saved state. */
5429
5430 void
5431 pop_topmost_sequence (void)
5432 {
5433 struct sequence_stack *top;
5434
5435 top = get_topmost_sequence ();
5436 top->first = get_insns ();
5437 top->last = get_last_insn ();
5438
5439 end_sequence ();
5440 }
5441
5442 /* After emitting to a sequence, restore previous saved state.
5443
5444 To get the contents of the sequence just made, you must call
5445 `get_insns' *before* calling here.
5446
5447 If the compiler might have deferred popping arguments while
5448 generating this sequence, and this sequence will not be immediately
5449 inserted into the instruction stream, use do_pending_stack_adjust
5450 before calling get_insns. That will ensure that the deferred
5451 pops are inserted into this sequence, and not into some random
5452 location in the instruction stream. See INHIBIT_DEFER_POP for more
5453 information about deferred popping of arguments. */
5454
5455 void
5456 end_sequence (void)
5457 {
5458 struct sequence_stack *tem = get_current_sequence ()->next;
5459
5460 set_first_insn (tem->first);
5461 set_last_insn (tem->last);
5462 get_current_sequence ()->next = tem->next;
5463
5464 memset (tem, 0, sizeof (*tem));
5465 tem->next = free_sequence_stack;
5466 free_sequence_stack = tem;
5467 }
5468
5469 /* Return 1 if currently emitting into a sequence. */
5470
5471 int
5472 in_sequence_p (void)
5473 {
5474 return get_current_sequence ()->next != 0;
5475 }
5476 \f
5477 /* Put the various virtual registers into REGNO_REG_RTX. */
5478
5479 static void
5480 init_virtual_regs (void)
5481 {
5482 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5483 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5484 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5485 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5486 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5487 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5488 = virtual_preferred_stack_boundary_rtx;
5489 }
5490
5491 \f
5492 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5493 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5494 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5495 static int copy_insn_n_scratches;
5496
5497 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5498 copied an ASM_OPERANDS.
5499 In that case, it is the original input-operand vector. */
5500 static rtvec orig_asm_operands_vector;
5501
5502 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5503 copied an ASM_OPERANDS.
5504 In that case, it is the copied input-operand vector. */
5505 static rtvec copy_asm_operands_vector;
5506
5507 /* Likewise for the constraints vector. */
5508 static rtvec orig_asm_constraints_vector;
5509 static rtvec copy_asm_constraints_vector;
5510
5511 /* Recursively create a new copy of an rtx for copy_insn.
5512 This function differs from copy_rtx in that it handles SCRATCHes and
5513 ASM_OPERANDs properly.
5514 Normally, this function is not used directly; use copy_insn as front end.
5515 However, you could first copy an insn pattern with copy_insn and then use
5516 this function afterwards to properly copy any REG_NOTEs containing
5517 SCRATCHes. */
5518
5519 rtx
5520 copy_insn_1 (rtx orig)
5521 {
5522 rtx copy;
5523 int i, j;
5524 RTX_CODE code;
5525 const char *format_ptr;
5526
5527 if (orig == NULL)
5528 return NULL;
5529
5530 code = GET_CODE (orig);
5531
5532 switch (code)
5533 {
5534 case REG:
5535 case DEBUG_EXPR:
5536 CASE_CONST_ANY:
5537 case SYMBOL_REF:
5538 case CODE_LABEL:
5539 case PC:
5540 case CC0:
5541 case RETURN:
5542 case SIMPLE_RETURN:
5543 return orig;
5544 case CLOBBER:
5545 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5546 clobbers or clobbers of hard registers that originated as pseudos.
5547 This is needed to allow safe register renaming. */
5548 if (REG_P (XEXP (orig, 0))
5549 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5550 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5551 return orig;
5552 break;
5553
5554 case SCRATCH:
5555 for (i = 0; i < copy_insn_n_scratches; i++)
5556 if (copy_insn_scratch_in[i] == orig)
5557 return copy_insn_scratch_out[i];
5558 break;
5559
5560 case CONST:
5561 if (shared_const_p (orig))
5562 return orig;
5563 break;
5564
5565 /* A MEM with a constant address is not sharable. The problem is that
5566 the constant address may need to be reloaded. If the mem is shared,
5567 then reloading one copy of this mem will cause all copies to appear
5568 to have been reloaded. */
5569
5570 default:
5571 break;
5572 }
5573
5574 /* Copy the various flags, fields, and other information. We assume
5575 that all fields need copying, and then clear the fields that should
5576 not be copied. That is the sensible default behavior, and forces
5577 us to explicitly document why we are *not* copying a flag. */
5578 copy = shallow_copy_rtx (orig);
5579
5580 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5581 if (INSN_P (orig))
5582 {
5583 RTX_FLAG (copy, jump) = 0;
5584 RTX_FLAG (copy, call) = 0;
5585 RTX_FLAG (copy, frame_related) = 0;
5586 }
5587
5588 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5589
5590 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5591 switch (*format_ptr++)
5592 {
5593 case 'e':
5594 if (XEXP (orig, i) != NULL)
5595 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5596 break;
5597
5598 case 'E':
5599 case 'V':
5600 if (XVEC (orig, i) == orig_asm_constraints_vector)
5601 XVEC (copy, i) = copy_asm_constraints_vector;
5602 else if (XVEC (orig, i) == orig_asm_operands_vector)
5603 XVEC (copy, i) = copy_asm_operands_vector;
5604 else if (XVEC (orig, i) != NULL)
5605 {
5606 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5607 for (j = 0; j < XVECLEN (copy, i); j++)
5608 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5609 }
5610 break;
5611
5612 case 't':
5613 case 'w':
5614 case 'i':
5615 case 's':
5616 case 'S':
5617 case 'u':
5618 case '0':
5619 /* These are left unchanged. */
5620 break;
5621
5622 default:
5623 gcc_unreachable ();
5624 }
5625
5626 if (code == SCRATCH)
5627 {
5628 i = copy_insn_n_scratches++;
5629 gcc_assert (i < MAX_RECOG_OPERANDS);
5630 copy_insn_scratch_in[i] = orig;
5631 copy_insn_scratch_out[i] = copy;
5632 }
5633 else if (code == ASM_OPERANDS)
5634 {
5635 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5636 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5637 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5638 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5639 }
5640
5641 return copy;
5642 }
5643
5644 /* Create a new copy of an rtx.
5645 This function differs from copy_rtx in that it handles SCRATCHes and
5646 ASM_OPERANDs properly.
5647 INSN doesn't really have to be a full INSN; it could be just the
5648 pattern. */
5649 rtx
5650 copy_insn (rtx insn)
5651 {
5652 copy_insn_n_scratches = 0;
5653 orig_asm_operands_vector = 0;
5654 orig_asm_constraints_vector = 0;
5655 copy_asm_operands_vector = 0;
5656 copy_asm_constraints_vector = 0;
5657 return copy_insn_1 (insn);
5658 }
5659
5660 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5661 on that assumption that INSN itself remains in its original place. */
5662
5663 rtx_insn *
5664 copy_delay_slot_insn (rtx_insn *insn)
5665 {
5666 /* Copy INSN with its rtx_code, all its notes, location etc. */
5667 insn = as_a <rtx_insn *> (copy_rtx (insn));
5668 INSN_UID (insn) = cur_insn_uid++;
5669 return insn;
5670 }
5671
5672 /* Initialize data structures and variables in this file
5673 before generating rtl for each function. */
5674
5675 void
5676 init_emit (void)
5677 {
5678 set_first_insn (NULL);
5679 set_last_insn (NULL);
5680 if (MIN_NONDEBUG_INSN_UID)
5681 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5682 else
5683 cur_insn_uid = 1;
5684 cur_debug_insn_uid = 1;
5685 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5686 first_label_num = label_num;
5687 get_current_sequence ()->next = NULL;
5688
5689 /* Init the tables that describe all the pseudo regs. */
5690
5691 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5692
5693 crtl->emit.regno_pointer_align
5694 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5695
5696 regno_reg_rtx
5697 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5698
5699 /* Put copies of all the hard registers into regno_reg_rtx. */
5700 memcpy (regno_reg_rtx,
5701 initial_regno_reg_rtx,
5702 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5703
5704 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5705 init_virtual_regs ();
5706
5707 /* Indicate that the virtual registers and stack locations are
5708 all pointers. */
5709 REG_POINTER (stack_pointer_rtx) = 1;
5710 REG_POINTER (frame_pointer_rtx) = 1;
5711 REG_POINTER (hard_frame_pointer_rtx) = 1;
5712 REG_POINTER (arg_pointer_rtx) = 1;
5713
5714 REG_POINTER (virtual_incoming_args_rtx) = 1;
5715 REG_POINTER (virtual_stack_vars_rtx) = 1;
5716 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5717 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5718 REG_POINTER (virtual_cfa_rtx) = 1;
5719
5720 #ifdef STACK_BOUNDARY
5721 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5722 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5723 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5724 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5725
5726 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5727 32-bit SPARC and cannot be all fixed because of the ABI). */
5728 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5729 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5730 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5731 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5732
5733 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5734 #endif
5735
5736 #ifdef INIT_EXPANDERS
5737 INIT_EXPANDERS;
5738 #endif
5739 }
5740
5741 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5742
5743 static rtx
5744 gen_const_vector (machine_mode mode, int constant)
5745 {
5746 rtx tem;
5747 rtvec v;
5748 int units, i;
5749 machine_mode inner;
5750
5751 units = GET_MODE_NUNITS (mode);
5752 inner = GET_MODE_INNER (mode);
5753
5754 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5755
5756 v = rtvec_alloc (units);
5757
5758 /* We need to call this function after we set the scalar const_tiny_rtx
5759 entries. */
5760 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5761
5762 for (i = 0; i < units; ++i)
5763 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5764
5765 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5766 return tem;
5767 }
5768
5769 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5770 all elements are zero, and the one vector when all elements are one. */
5771 rtx
5772 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5773 {
5774 machine_mode inner = GET_MODE_INNER (mode);
5775 int nunits = GET_MODE_NUNITS (mode);
5776 rtx x;
5777 int i;
5778
5779 /* Check to see if all of the elements have the same value. */
5780 x = RTVEC_ELT (v, nunits - 1);
5781 for (i = nunits - 2; i >= 0; i--)
5782 if (RTVEC_ELT (v, i) != x)
5783 break;
5784
5785 /* If the values are all the same, check to see if we can use one of the
5786 standard constant vectors. */
5787 if (i == -1)
5788 {
5789 if (x == CONST0_RTX (inner))
5790 return CONST0_RTX (mode);
5791 else if (x == CONST1_RTX (inner))
5792 return CONST1_RTX (mode);
5793 else if (x == CONSTM1_RTX (inner))
5794 return CONSTM1_RTX (mode);
5795 }
5796
5797 return gen_rtx_raw_CONST_VECTOR (mode, v);
5798 }
5799
5800 /* Initialise global register information required by all functions. */
5801
5802 void
5803 init_emit_regs (void)
5804 {
5805 int i;
5806 machine_mode mode;
5807 mem_attrs *attrs;
5808
5809 /* Reset register attributes */
5810 reg_attrs_htab->empty ();
5811
5812 /* We need reg_raw_mode, so initialize the modes now. */
5813 init_reg_modes_target ();
5814
5815 /* Assign register numbers to the globally defined register rtx. */
5816 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5817 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5818 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5819 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5820 virtual_incoming_args_rtx =
5821 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5822 virtual_stack_vars_rtx =
5823 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5824 virtual_stack_dynamic_rtx =
5825 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5826 virtual_outgoing_args_rtx =
5827 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5828 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5829 virtual_preferred_stack_boundary_rtx =
5830 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5831
5832 /* Initialize RTL for commonly used hard registers. These are
5833 copied into regno_reg_rtx as we begin to compile each function. */
5834 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5835 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5836
5837 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5838 return_address_pointer_rtx
5839 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5840 #endif
5841
5842 pic_offset_table_rtx = NULL_RTX;
5843 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5844 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5845
5846 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5847 {
5848 mode = (machine_mode) i;
5849 attrs = ggc_cleared_alloc<mem_attrs> ();
5850 attrs->align = BITS_PER_UNIT;
5851 attrs->addrspace = ADDR_SPACE_GENERIC;
5852 if (mode != BLKmode)
5853 {
5854 attrs->size_known_p = true;
5855 attrs->size = GET_MODE_SIZE (mode);
5856 if (STRICT_ALIGNMENT)
5857 attrs->align = GET_MODE_ALIGNMENT (mode);
5858 }
5859 mode_mem_attrs[i] = attrs;
5860 }
5861 }
5862
5863 /* Initialize global machine_mode variables. */
5864
5865 void
5866 init_derived_machine_modes (void)
5867 {
5868 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
5869 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
5870 {
5871 scalar_int_mode mode = mode_iter.require ();
5872
5873 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5874 && !opt_byte_mode.exists ())
5875 opt_byte_mode = mode;
5876
5877 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5878 && !opt_word_mode.exists ())
5879 opt_word_mode = mode;
5880 }
5881
5882 byte_mode = opt_byte_mode.require ();
5883 word_mode = opt_word_mode.require ();
5884 ptr_mode = int_mode_for_size (POINTER_SIZE, 0).require ();
5885 }
5886
5887 /* Create some permanent unique rtl objects shared between all functions. */
5888
5889 void
5890 init_emit_once (void)
5891 {
5892 int i;
5893 machine_mode mode;
5894 scalar_float_mode double_mode;
5895
5896 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5897 CONST_FIXED, and memory attribute hash tables. */
5898 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5899
5900 #if TARGET_SUPPORTS_WIDE_INT
5901 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5902 #endif
5903 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5904
5905 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5906
5907 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5908
5909 #ifdef INIT_EXPANDERS
5910 /* This is to initialize {init|mark|free}_machine_status before the first
5911 call to push_function_context_to. This is needed by the Chill front
5912 end which calls push_function_context_to before the first call to
5913 init_function_start. */
5914 INIT_EXPANDERS;
5915 #endif
5916
5917 /* Create the unique rtx's for certain rtx codes and operand values. */
5918
5919 /* Process stack-limiting command-line options. */
5920 if (opt_fstack_limit_symbol_arg != NULL)
5921 stack_limit_rtx
5922 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
5923 if (opt_fstack_limit_register_no >= 0)
5924 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
5925
5926 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5927 tries to use these variables. */
5928 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5929 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5930 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5931
5932 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5933 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5934 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5935 else
5936 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5937
5938 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
5939
5940 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5941 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5942 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5943
5944 dconstm1 = dconst1;
5945 dconstm1.sign = 1;
5946
5947 dconsthalf = dconst1;
5948 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5949
5950 for (i = 0; i < 3; i++)
5951 {
5952 const REAL_VALUE_TYPE *const r =
5953 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5954
5955 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
5956 const_tiny_rtx[i][(int) mode] =
5957 const_double_from_real_value (*r, mode);
5958
5959 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
5960 const_tiny_rtx[i][(int) mode] =
5961 const_double_from_real_value (*r, mode);
5962
5963 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5964
5965 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
5966 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5967
5968 for (mode = MIN_MODE_PARTIAL_INT;
5969 mode <= MAX_MODE_PARTIAL_INT;
5970 mode = (machine_mode)((int)(mode) + 1))
5971 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5972 }
5973
5974 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5975
5976 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
5977 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5978
5979 for (mode = MIN_MODE_PARTIAL_INT;
5980 mode <= MAX_MODE_PARTIAL_INT;
5981 mode = (machine_mode)((int)(mode) + 1))
5982 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5983
5984 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
5985 {
5986 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5987 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5988 }
5989
5990 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
5991 {
5992 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5993 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5994 }
5995
5996 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
5997 {
5998 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5999 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6000 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6001 }
6002
6003 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6004 {
6005 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6006 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6007 }
6008
6009 FOR_EACH_MODE_IN_CLASS (mode, MODE_FRACT)
6010 {
6011 FCONST0 (mode).data.high = 0;
6012 FCONST0 (mode).data.low = 0;
6013 FCONST0 (mode).mode = mode;
6014 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6015 FCONST0 (mode), mode);
6016 }
6017
6018 FOR_EACH_MODE_IN_CLASS (mode, MODE_UFRACT)
6019 {
6020 FCONST0 (mode).data.high = 0;
6021 FCONST0 (mode).data.low = 0;
6022 FCONST0 (mode).mode = mode;
6023 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6024 FCONST0 (mode), mode);
6025 }
6026
6027 FOR_EACH_MODE_IN_CLASS (mode, MODE_ACCUM)
6028 {
6029 FCONST0 (mode).data.high = 0;
6030 FCONST0 (mode).data.low = 0;
6031 FCONST0 (mode).mode = mode;
6032 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6033 FCONST0 (mode), mode);
6034
6035 /* We store the value 1. */
6036 FCONST1 (mode).data.high = 0;
6037 FCONST1 (mode).data.low = 0;
6038 FCONST1 (mode).mode = mode;
6039 FCONST1 (mode).data
6040 = double_int_one.lshift (GET_MODE_FBIT (mode),
6041 HOST_BITS_PER_DOUBLE_INT,
6042 SIGNED_FIXED_POINT_MODE_P (mode));
6043 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6044 FCONST1 (mode), mode);
6045 }
6046
6047 FOR_EACH_MODE_IN_CLASS (mode, MODE_UACCUM)
6048 {
6049 FCONST0 (mode).data.high = 0;
6050 FCONST0 (mode).data.low = 0;
6051 FCONST0 (mode).mode = mode;
6052 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6053 FCONST0 (mode), mode);
6054
6055 /* We store the value 1. */
6056 FCONST1 (mode).data.high = 0;
6057 FCONST1 (mode).data.low = 0;
6058 FCONST1 (mode).mode = mode;
6059 FCONST1 (mode).data
6060 = double_int_one.lshift (GET_MODE_FBIT (mode),
6061 HOST_BITS_PER_DOUBLE_INT,
6062 SIGNED_FIXED_POINT_MODE_P (mode));
6063 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6064 FCONST1 (mode), mode);
6065 }
6066
6067 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6068 {
6069 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6070 }
6071
6072 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6073 {
6074 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6075 }
6076
6077 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6078 {
6079 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6080 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6081 }
6082
6083 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6084 {
6085 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6086 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6087 }
6088
6089 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6090 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6091 const_tiny_rtx[0][i] = const0_rtx;
6092
6093 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6094 if (STORE_FLAG_VALUE == 1)
6095 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6096
6097 FOR_EACH_MODE_IN_CLASS (mode, MODE_POINTER_BOUNDS)
6098 {
6099 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6100 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6101 }
6102
6103 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6104 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6105 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6106 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6107 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6108 /*prev_insn=*/NULL,
6109 /*next_insn=*/NULL,
6110 /*bb=*/NULL,
6111 /*pattern=*/NULL_RTX,
6112 /*location=*/-1,
6113 CODE_FOR_nothing,
6114 /*reg_notes=*/NULL_RTX);
6115 }
6116 \f
6117 /* Produce exact duplicate of insn INSN after AFTER.
6118 Care updating of libcall regions if present. */
6119
6120 rtx_insn *
6121 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6122 {
6123 rtx_insn *new_rtx;
6124 rtx link;
6125
6126 switch (GET_CODE (insn))
6127 {
6128 case INSN:
6129 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6130 break;
6131
6132 case JUMP_INSN:
6133 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6134 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6135 break;
6136
6137 case DEBUG_INSN:
6138 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6139 break;
6140
6141 case CALL_INSN:
6142 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6143 if (CALL_INSN_FUNCTION_USAGE (insn))
6144 CALL_INSN_FUNCTION_USAGE (new_rtx)
6145 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6146 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6147 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6148 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6149 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6150 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6151 break;
6152
6153 default:
6154 gcc_unreachable ();
6155 }
6156
6157 /* Update LABEL_NUSES. */
6158 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6159
6160 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6161
6162 /* If the old insn is frame related, then so is the new one. This is
6163 primarily needed for IA-64 unwind info which marks epilogue insns,
6164 which may be duplicated by the basic block reordering code. */
6165 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6166
6167 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6168 rtx *ptail = &REG_NOTES (new_rtx);
6169 while (*ptail != NULL_RTX)
6170 ptail = &XEXP (*ptail, 1);
6171
6172 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6173 will make them. REG_LABEL_TARGETs are created there too, but are
6174 supposed to be sticky, so we copy them. */
6175 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6176 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6177 {
6178 *ptail = duplicate_reg_note (link);
6179 ptail = &XEXP (*ptail, 1);
6180 }
6181
6182 INSN_CODE (new_rtx) = INSN_CODE (insn);
6183 return new_rtx;
6184 }
6185
6186 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6187 rtx
6188 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6189 {
6190 if (hard_reg_clobbers[mode][regno])
6191 return hard_reg_clobbers[mode][regno];
6192 else
6193 return (hard_reg_clobbers[mode][regno] =
6194 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6195 }
6196
6197 location_t prologue_location;
6198 location_t epilogue_location;
6199
6200 /* Hold current location information and last location information, so the
6201 datastructures are built lazily only when some instructions in given
6202 place are needed. */
6203 static location_t curr_location;
6204
6205 /* Allocate insn location datastructure. */
6206 void
6207 insn_locations_init (void)
6208 {
6209 prologue_location = epilogue_location = 0;
6210 curr_location = UNKNOWN_LOCATION;
6211 }
6212
6213 /* At the end of emit stage, clear current location. */
6214 void
6215 insn_locations_finalize (void)
6216 {
6217 epilogue_location = curr_location;
6218 curr_location = UNKNOWN_LOCATION;
6219 }
6220
6221 /* Set current location. */
6222 void
6223 set_curr_insn_location (location_t location)
6224 {
6225 curr_location = location;
6226 }
6227
6228 /* Get current location. */
6229 location_t
6230 curr_insn_location (void)
6231 {
6232 return curr_location;
6233 }
6234
6235 /* Return lexical scope block insn belongs to. */
6236 tree
6237 insn_scope (const rtx_insn *insn)
6238 {
6239 return LOCATION_BLOCK (INSN_LOCATION (insn));
6240 }
6241
6242 /* Return line number of the statement that produced this insn. */
6243 int
6244 insn_line (const rtx_insn *insn)
6245 {
6246 return LOCATION_LINE (INSN_LOCATION (insn));
6247 }
6248
6249 /* Return source file of the statement that produced this insn. */
6250 const char *
6251 insn_file (const rtx_insn *insn)
6252 {
6253 return LOCATION_FILE (INSN_LOCATION (insn));
6254 }
6255
6256 /* Return expanded location of the statement that produced this insn. */
6257 expanded_location
6258 insn_location (const rtx_insn *insn)
6259 {
6260 return expand_location (INSN_LOCATION (insn));
6261 }
6262
6263 /* Return true if memory model MODEL requires a pre-operation (release-style)
6264 barrier or a post-operation (acquire-style) barrier. While not universal,
6265 this function matches behavior of several targets. */
6266
6267 bool
6268 need_atomic_barrier_p (enum memmodel model, bool pre)
6269 {
6270 switch (model & MEMMODEL_BASE_MASK)
6271 {
6272 case MEMMODEL_RELAXED:
6273 case MEMMODEL_CONSUME:
6274 return false;
6275 case MEMMODEL_RELEASE:
6276 return pre;
6277 case MEMMODEL_ACQUIRE:
6278 return !pre;
6279 case MEMMODEL_ACQ_REL:
6280 case MEMMODEL_SEQ_CST:
6281 return true;
6282 default:
6283 gcc_unreachable ();
6284 }
6285 }
6286
6287 /* Initialize fields of rtl_data related to stack alignment. */
6288
6289 void
6290 rtl_data::init_stack_alignment ()
6291 {
6292 stack_alignment_needed = STACK_BOUNDARY;
6293 max_used_stack_slot_alignment = STACK_BOUNDARY;
6294 stack_alignment_estimated = 0;
6295 preferred_stack_boundary = STACK_BOUNDARY;
6296 }
6297
6298 \f
6299 #include "gt-emit-rtl.h"