cfgrtl.c (rtl_verify_flow_info_1): When checking insns in a bb...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Nonzero means do not generate NOTEs for source line numbers. */
73
74 static int no_line_numbers;
75
76 /* Commonly used rtx's, so that we only need space for one copy.
77 These are initialized once for the entire compilation.
78 All of these are unique; no other rtx-object will be equal to any
79 of these. */
80
81 rtx global_rtl[GR_MAX];
82
83 /* Commonly used RTL for hard registers. These objects are not necessarily
84 unique, so we allocate them separately from global_rtl. They are
85 initialized once per compilation unit, then copied into regno_reg_rtx
86 at the beginning of each function. */
87 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx. */
92
93 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
94
95 rtx const_true_rtx;
96
97 REAL_VALUE_TYPE dconst0;
98 REAL_VALUE_TYPE dconst1;
99 REAL_VALUE_TYPE dconst2;
100 REAL_VALUE_TYPE dconst3;
101 REAL_VALUE_TYPE dconst10;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconstm2;
104 REAL_VALUE_TYPE dconsthalf;
105 REAL_VALUE_TYPE dconstthird;
106 REAL_VALUE_TYPE dconstpi;
107 REAL_VALUE_TYPE dconste;
108
109 /* All references to the following fixed hard registers go through
110 these unique rtl objects. On machines where the frame-pointer and
111 arg-pointer are the same register, they use the same unique object.
112
113 After register allocation, other rtl objects which used to be pseudo-regs
114 may be clobbered to refer to the frame-pointer register.
115 But references that were originally to the frame-pointer can be
116 distinguished from the others because they contain frame_pointer_rtx.
117
118 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
119 tricky: until register elimination has taken place hard_frame_pointer_rtx
120 should be used if it is being set, and frame_pointer_rtx otherwise. After
121 register elimination hard_frame_pointer_rtx should always be used.
122 On machines where the two registers are same (most) then these are the
123 same.
124
125 In an inline procedure, the stack and frame pointer rtxs may not be
126 used for anything else. */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
146 htab_t const_int_htab;
147
148 /* A hash table storing memory attribute structures. */
149 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
150 htab_t mem_attrs_htab;
151
152 /* A hash table storing register attribute structures. */
153 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
154 htab_t reg_attrs_htab;
155
156 /* A hash table storing all CONST_DOUBLEs. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
158 htab_t const_double_htab;
159
160 #define first_insn (cfun->emit->x_first_insn)
161 #define last_insn (cfun->emit->x_last_insn)
162 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
163 #define last_location (cfun->emit->x_last_location)
164 #define first_label_num (cfun->emit->x_first_label_num)
165
166 static rtx make_jump_insn_raw (rtx);
167 static rtx make_call_insn_raw (rtx);
168 static rtx find_line_note (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
188 static void copy_rtx_if_shared_1 (rtx *orig);
189
190 /* Probability of the conditional branch currently proceeded by try_split.
191 Set to -1 otherwise. */
192 int split_branch_probability = -1;
193 \f
194 /* Returns a hash code for X (which is a really a CONST_INT). */
195
196 static hashval_t
197 const_int_htab_hash (const void *x)
198 {
199 return (hashval_t) INTVAL ((rtx) x);
200 }
201
202 /* Returns nonzero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
204 HOST_WIDE_INT *). */
205
206 static int
207 const_int_htab_eq (const void *x, const void *y)
208 {
209 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
210 }
211
212 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
213 static hashval_t
214 const_double_htab_hash (const void *x)
215 {
216 rtx value = (rtx) x;
217 hashval_t h;
218
219 if (GET_MODE (value) == VOIDmode)
220 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
221 else
222 {
223 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
224 /* MODE is used in the comparison, so it should be in the hash. */
225 h ^= GET_MODE (value);
226 }
227 return h;
228 }
229
230 /* Returns nonzero if the value represented by X (really a ...)
231 is the same as that represented by Y (really a ...) */
232 static int
233 const_double_htab_eq (const void *x, const void *y)
234 {
235 rtx a = (rtx)x, b = (rtx)y;
236
237 if (GET_MODE (a) != GET_MODE (b))
238 return 0;
239 if (GET_MODE (a) == VOIDmode)
240 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
241 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
242 else
243 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
244 CONST_DOUBLE_REAL_VALUE (b));
245 }
246
247 /* Returns a hash code for X (which is a really a mem_attrs *). */
248
249 static hashval_t
250 mem_attrs_htab_hash (const void *x)
251 {
252 mem_attrs *p = (mem_attrs *) x;
253
254 return (p->alias ^ (p->align * 1000)
255 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
256 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
257 ^ (size_t) p->expr);
258 }
259
260 /* Returns nonzero if the value represented by X (which is really a
261 mem_attrs *) is the same as that given by Y (which is also really a
262 mem_attrs *). */
263
264 static int
265 mem_attrs_htab_eq (const void *x, const void *y)
266 {
267 mem_attrs *p = (mem_attrs *) x;
268 mem_attrs *q = (mem_attrs *) y;
269
270 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
271 && p->size == q->size && p->align == q->align);
272 }
273
274 /* Allocate a new mem_attrs structure and insert it into the hash table if
275 one identical to it is not already in the table. We are doing this for
276 MEM of mode MODE. */
277
278 static mem_attrs *
279 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
280 unsigned int align, enum machine_mode mode)
281 {
282 mem_attrs attrs;
283 void **slot;
284
285 /* If everything is the default, we can just return zero.
286 This must match what the corresponding MEM_* macros return when the
287 field is not present. */
288 if (alias == 0 && expr == 0 && offset == 0
289 && (size == 0
290 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
291 && (STRICT_ALIGNMENT && mode != BLKmode
292 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
293 return 0;
294
295 attrs.alias = alias;
296 attrs.expr = expr;
297 attrs.offset = offset;
298 attrs.size = size;
299 attrs.align = align;
300
301 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
302 if (*slot == 0)
303 {
304 *slot = ggc_alloc (sizeof (mem_attrs));
305 memcpy (*slot, &attrs, sizeof (mem_attrs));
306 }
307
308 return *slot;
309 }
310
311 /* Returns a hash code for X (which is a really a reg_attrs *). */
312
313 static hashval_t
314 reg_attrs_htab_hash (const void *x)
315 {
316 reg_attrs *p = (reg_attrs *) x;
317
318 return ((p->offset * 1000) ^ (long) p->decl);
319 }
320
321 /* Returns nonzero if the value represented by X (which is really a
322 reg_attrs *) is the same as that given by Y (which is also really a
323 reg_attrs *). */
324
325 static int
326 reg_attrs_htab_eq (const void *x, const void *y)
327 {
328 reg_attrs *p = (reg_attrs *) x;
329 reg_attrs *q = (reg_attrs *) y;
330
331 return (p->decl == q->decl && p->offset == q->offset);
332 }
333 /* Allocate a new reg_attrs structure and insert it into the hash table if
334 one identical to it is not already in the table. We are doing this for
335 MEM of mode MODE. */
336
337 static reg_attrs *
338 get_reg_attrs (tree decl, int offset)
339 {
340 reg_attrs attrs;
341 void **slot;
342
343 /* If everything is the default, we can just return zero. */
344 if (decl == 0 && offset == 0)
345 return 0;
346
347 attrs.decl = decl;
348 attrs.offset = offset;
349
350 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
351 if (*slot == 0)
352 {
353 *slot = ggc_alloc (sizeof (reg_attrs));
354 memcpy (*slot, &attrs, sizeof (reg_attrs));
355 }
356
357 return *slot;
358 }
359
360 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
361 don't attempt to share with the various global pieces of rtl (such as
362 frame_pointer_rtx). */
363
364 rtx
365 gen_raw_REG (enum machine_mode mode, int regno)
366 {
367 rtx x = gen_rtx_raw_REG (mode, regno);
368 ORIGINAL_REGNO (x) = regno;
369 return x;
370 }
371
372 /* There are some RTL codes that require special attention; the generation
373 functions do the raw handling. If you add to this list, modify
374 special_rtx in gengenrtl.c as well. */
375
376 rtx
377 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
378 {
379 void **slot;
380
381 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
382 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
383
384 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
385 if (const_true_rtx && arg == STORE_FLAG_VALUE)
386 return const_true_rtx;
387 #endif
388
389 /* Look up the CONST_INT in the hash table. */
390 slot = htab_find_slot_with_hash (const_int_htab, &arg,
391 (hashval_t) arg, INSERT);
392 if (*slot == 0)
393 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
394
395 return (rtx) *slot;
396 }
397
398 rtx
399 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
400 {
401 return GEN_INT (trunc_int_for_mode (c, mode));
402 }
403
404 /* CONST_DOUBLEs might be created from pairs of integers, or from
405 REAL_VALUE_TYPEs. Also, their length is known only at run time,
406 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
407
408 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
409 hash table. If so, return its counterpart; otherwise add it
410 to the hash table and return it. */
411 static rtx
412 lookup_const_double (rtx real)
413 {
414 void **slot = htab_find_slot (const_double_htab, real, INSERT);
415 if (*slot == 0)
416 *slot = real;
417
418 return (rtx) *slot;
419 }
420
421 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
422 VALUE in mode MODE. */
423 rtx
424 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
425 {
426 rtx real = rtx_alloc (CONST_DOUBLE);
427 PUT_MODE (real, mode);
428
429 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
430
431 return lookup_const_double (real);
432 }
433
434 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
435 of ints: I0 is the low-order word and I1 is the high-order word.
436 Do not use this routine for non-integer modes; convert to
437 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
438
439 rtx
440 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
441 {
442 rtx value;
443 unsigned int i;
444
445 if (mode != VOIDmode)
446 {
447 int width;
448
449 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
450 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
451 /* We can get a 0 for an error mark. */
452 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
453 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
454
455 /* We clear out all bits that don't belong in MODE, unless they and
456 our sign bit are all one. So we get either a reasonable negative
457 value or a reasonable unsigned value for this mode. */
458 width = GET_MODE_BITSIZE (mode);
459 if (width < HOST_BITS_PER_WIDE_INT
460 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
461 != ((HOST_WIDE_INT) (-1) << (width - 1))))
462 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
463 else if (width == HOST_BITS_PER_WIDE_INT
464 && ! (i1 == ~0 && i0 < 0))
465 i1 = 0;
466 else
467 /* We should be able to represent this value as a constant. */
468 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
469
470 /* If this would be an entire word for the target, but is not for
471 the host, then sign-extend on the host so that the number will
472 look the same way on the host that it would on the target.
473
474 For example, when building a 64 bit alpha hosted 32 bit sparc
475 targeted compiler, then we want the 32 bit unsigned value -1 to be
476 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
477 The latter confuses the sparc backend. */
478
479 if (width < HOST_BITS_PER_WIDE_INT
480 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
481 i0 |= ((HOST_WIDE_INT) (-1) << width);
482
483 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
484 CONST_INT.
485
486 ??? Strictly speaking, this is wrong if we create a CONST_INT for
487 a large unsigned constant with the size of MODE being
488 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
489 in a wider mode. In that case we will mis-interpret it as a
490 negative number.
491
492 Unfortunately, the only alternative is to make a CONST_DOUBLE for
493 any constant in any mode if it is an unsigned constant larger
494 than the maximum signed integer in an int on the host. However,
495 doing this will break everyone that always expects to see a
496 CONST_INT for SImode and smaller.
497
498 We have always been making CONST_INTs in this case, so nothing
499 new is being broken. */
500
501 if (width <= HOST_BITS_PER_WIDE_INT)
502 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
503 }
504
505 /* If this integer fits in one word, return a CONST_INT. */
506 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
507 return GEN_INT (i0);
508
509 /* We use VOIDmode for integers. */
510 value = rtx_alloc (CONST_DOUBLE);
511 PUT_MODE (value, VOIDmode);
512
513 CONST_DOUBLE_LOW (value) = i0;
514 CONST_DOUBLE_HIGH (value) = i1;
515
516 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
517 XWINT (value, i) = 0;
518
519 return lookup_const_double (value);
520 }
521
522 rtx
523 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
524 {
525 /* In case the MD file explicitly references the frame pointer, have
526 all such references point to the same frame pointer. This is
527 used during frame pointer elimination to distinguish the explicit
528 references to these registers from pseudos that happened to be
529 assigned to them.
530
531 If we have eliminated the frame pointer or arg pointer, we will
532 be using it as a normal register, for example as a spill
533 register. In such cases, we might be accessing it in a mode that
534 is not Pmode and therefore cannot use the pre-allocated rtx.
535
536 Also don't do this when we are making new REGs in reload, since
537 we don't want to get confused with the real pointers. */
538
539 if (mode == Pmode && !reload_in_progress)
540 {
541 if (regno == FRAME_POINTER_REGNUM
542 && (!reload_completed || frame_pointer_needed))
543 return frame_pointer_rtx;
544 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
545 if (regno == HARD_FRAME_POINTER_REGNUM
546 && (!reload_completed || frame_pointer_needed))
547 return hard_frame_pointer_rtx;
548 #endif
549 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
550 if (regno == ARG_POINTER_REGNUM)
551 return arg_pointer_rtx;
552 #endif
553 #ifdef RETURN_ADDRESS_POINTER_REGNUM
554 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
555 return return_address_pointer_rtx;
556 #endif
557 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
558 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
559 return pic_offset_table_rtx;
560 if (regno == STACK_POINTER_REGNUM)
561 return stack_pointer_rtx;
562 }
563
564 #if 0
565 /* If the per-function register table has been set up, try to re-use
566 an existing entry in that table to avoid useless generation of RTL.
567
568 This code is disabled for now until we can fix the various backends
569 which depend on having non-shared hard registers in some cases. Long
570 term we want to re-enable this code as it can significantly cut down
571 on the amount of useless RTL that gets generated.
572
573 We'll also need to fix some code that runs after reload that wants to
574 set ORIGINAL_REGNO. */
575
576 if (cfun
577 && cfun->emit
578 && regno_reg_rtx
579 && regno < FIRST_PSEUDO_REGISTER
580 && reg_raw_mode[regno] == mode)
581 return regno_reg_rtx[regno];
582 #endif
583
584 return gen_raw_REG (mode, regno);
585 }
586
587 rtx
588 gen_rtx_MEM (enum machine_mode mode, rtx addr)
589 {
590 rtx rt = gen_rtx_raw_MEM (mode, addr);
591
592 /* This field is not cleared by the mere allocation of the rtx, so
593 we clear it here. */
594 MEM_ATTRS (rt) = 0;
595
596 return rt;
597 }
598
599 /* Generate a memory referring to non-trapping constant memory. */
600
601 rtx
602 gen_const_mem (enum machine_mode mode, rtx addr)
603 {
604 rtx mem = gen_rtx_MEM (mode, addr);
605 MEM_READONLY_P (mem) = 1;
606 MEM_NOTRAP_P (mem) = 1;
607 return mem;
608 }
609
610 rtx
611 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
612 {
613 /* This is the most common failure type.
614 Catch it early so we can see who does it. */
615 gcc_assert (!(offset % GET_MODE_SIZE (mode)));
616
617 /* This check isn't usable right now because combine will
618 throw arbitrary crap like a CALL into a SUBREG in
619 gen_lowpart_for_combine so we must just eat it. */
620 #if 0
621 /* Check for this too. */
622 gcc_assert (offset < GET_MODE_SIZE (GET_MODE (reg)));
623 #endif
624 return gen_rtx_raw_SUBREG (mode, reg, offset);
625 }
626
627 /* Generate a SUBREG representing the least-significant part of REG if MODE
628 is smaller than mode of REG, otherwise paradoxical SUBREG. */
629
630 rtx
631 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
632 {
633 enum machine_mode inmode;
634
635 inmode = GET_MODE (reg);
636 if (inmode == VOIDmode)
637 inmode = mode;
638 return gen_rtx_SUBREG (mode, reg,
639 subreg_lowpart_offset (mode, inmode));
640 }
641 \f
642 /* gen_rtvec (n, [rt1, ..., rtn])
643 **
644 ** This routine creates an rtvec and stores within it the
645 ** pointers to rtx's which are its arguments.
646 */
647
648 /*VARARGS1*/
649 rtvec
650 gen_rtvec (int n, ...)
651 {
652 int i, save_n;
653 rtx *vector;
654 va_list p;
655
656 va_start (p, n);
657
658 if (n == 0)
659 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
660
661 vector = alloca (n * sizeof (rtx));
662
663 for (i = 0; i < n; i++)
664 vector[i] = va_arg (p, rtx);
665
666 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
667 save_n = n;
668 va_end (p);
669
670 return gen_rtvec_v (save_n, vector);
671 }
672
673 rtvec
674 gen_rtvec_v (int n, rtx *argp)
675 {
676 int i;
677 rtvec rt_val;
678
679 if (n == 0)
680 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
681
682 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
683
684 for (i = 0; i < n; i++)
685 rt_val->elem[i] = *argp++;
686
687 return rt_val;
688 }
689 \f
690 /* Generate a REG rtx for a new pseudo register of mode MODE.
691 This pseudo is assigned the next sequential register number. */
692
693 rtx
694 gen_reg_rtx (enum machine_mode mode)
695 {
696 struct function *f = cfun;
697 rtx val;
698
699 /* Don't let anything called after initial flow analysis create new
700 registers. */
701 gcc_assert (!no_new_pseudos);
702
703 if (generating_concat_p
704 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
705 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
706 {
707 /* For complex modes, don't make a single pseudo.
708 Instead, make a CONCAT of two pseudos.
709 This allows noncontiguous allocation of the real and imaginary parts,
710 which makes much better code. Besides, allocating DCmode
711 pseudos overstrains reload on some machines like the 386. */
712 rtx realpart, imagpart;
713 enum machine_mode partmode = GET_MODE_INNER (mode);
714
715 realpart = gen_reg_rtx (partmode);
716 imagpart = gen_reg_rtx (partmode);
717 return gen_rtx_CONCAT (mode, realpart, imagpart);
718 }
719
720 /* Make sure regno_pointer_align, and regno_reg_rtx are large
721 enough to have an element for this pseudo reg number. */
722
723 if (reg_rtx_no == f->emit->regno_pointer_align_length)
724 {
725 int old_size = f->emit->regno_pointer_align_length;
726 char *new;
727 rtx *new1;
728
729 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
730 memset (new + old_size, 0, old_size);
731 f->emit->regno_pointer_align = (unsigned char *) new;
732
733 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
734 old_size * 2 * sizeof (rtx));
735 memset (new1 + old_size, 0, old_size * sizeof (rtx));
736 regno_reg_rtx = new1;
737
738 f->emit->regno_pointer_align_length = old_size * 2;
739 }
740
741 val = gen_raw_REG (mode, reg_rtx_no);
742 regno_reg_rtx[reg_rtx_no++] = val;
743 return val;
744 }
745
746 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
747 Do the big endian correction if needed. */
748
749 rtx
750 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
751 {
752 rtx new = gen_rtx_REG (mode, regno);
753 tree decl;
754 HOST_WIDE_INT var_size;
755
756 /* PR middle-end/14084
757 The problem appears when a variable is stored in a larger register
758 and later it is used in the original mode or some mode in between
759 or some part of variable is accessed.
760
761 On little endian machines there is no problem because
762 the REG_OFFSET of the start of the variable is the same when
763 accessed in any mode (it is 0).
764
765 However, this is not true on big endian machines.
766 The offset of the start of the variable is different when accessed
767 in different modes.
768 When we are taking a part of the REG we have to change the OFFSET
769 from offset WRT size of mode of REG to offset WRT size of variable.
770
771 If we would not do the big endian correction the resulting REG_OFFSET
772 would be larger than the size of the DECL.
773
774 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
775
776 REG.mode MODE DECL size old offset new offset description
777 DI SI 4 4 0 int32 in SImode
778 DI SI 1 4 0 char in SImode
779 DI QI 1 7 0 char in QImode
780 DI QI 4 5 1 1st element in QImode
781 of char[4]
782 DI HI 4 6 2 1st element in HImode
783 of int16[2]
784
785 If the size of DECL is equal or greater than the size of REG
786 we can't do this correction because the register holds the
787 whole variable or a part of the variable and thus the REG_OFFSET
788 is already correct. */
789
790 decl = REG_EXPR (reg);
791 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
792 && decl != NULL
793 && offset > 0
794 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
795 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
796 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
797 {
798 int offset_le;
799
800 /* Convert machine endian to little endian WRT size of mode of REG. */
801 if (WORDS_BIG_ENDIAN)
802 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
803 / UNITS_PER_WORD) * UNITS_PER_WORD;
804 else
805 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
806
807 if (BYTES_BIG_ENDIAN)
808 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
809 % UNITS_PER_WORD);
810 else
811 offset_le += offset % UNITS_PER_WORD;
812
813 if (offset_le >= var_size)
814 {
815 /* MODE is wider than the variable so the new reg will cover
816 the whole variable so the resulting OFFSET should be 0. */
817 offset = 0;
818 }
819 else
820 {
821 /* Convert little endian to machine endian WRT size of variable. */
822 if (WORDS_BIG_ENDIAN)
823 offset = ((var_size - 1 - offset_le)
824 / UNITS_PER_WORD) * UNITS_PER_WORD;
825 else
826 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
827
828 if (BYTES_BIG_ENDIAN)
829 offset += ((var_size - 1 - offset_le)
830 % UNITS_PER_WORD);
831 else
832 offset += offset_le % UNITS_PER_WORD;
833 }
834 }
835
836 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
837 REG_OFFSET (reg) + offset);
838 return new;
839 }
840
841 /* Set the decl for MEM to DECL. */
842
843 void
844 set_reg_attrs_from_mem (rtx reg, rtx mem)
845 {
846 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
847 REG_ATTRS (reg)
848 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
849 }
850
851 /* Set the register attributes for registers contained in PARM_RTX.
852 Use needed values from memory attributes of MEM. */
853
854 void
855 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
856 {
857 if (REG_P (parm_rtx))
858 set_reg_attrs_from_mem (parm_rtx, mem);
859 else if (GET_CODE (parm_rtx) == PARALLEL)
860 {
861 /* Check for a NULL entry in the first slot, used to indicate that the
862 parameter goes both on the stack and in registers. */
863 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
864 for (; i < XVECLEN (parm_rtx, 0); i++)
865 {
866 rtx x = XVECEXP (parm_rtx, 0, i);
867 if (REG_P (XEXP (x, 0)))
868 REG_ATTRS (XEXP (x, 0))
869 = get_reg_attrs (MEM_EXPR (mem),
870 INTVAL (XEXP (x, 1)));
871 }
872 }
873 }
874
875 /* Assign the RTX X to declaration T. */
876 void
877 set_decl_rtl (tree t, rtx x)
878 {
879 DECL_CHECK (t)->decl.rtl = x;
880
881 if (!x)
882 return;
883 /* For register, we maintain the reverse information too. */
884 if (REG_P (x))
885 REG_ATTRS (x) = get_reg_attrs (t, 0);
886 else if (GET_CODE (x) == SUBREG)
887 REG_ATTRS (SUBREG_REG (x))
888 = get_reg_attrs (t, -SUBREG_BYTE (x));
889 if (GET_CODE (x) == CONCAT)
890 {
891 if (REG_P (XEXP (x, 0)))
892 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
893 if (REG_P (XEXP (x, 1)))
894 REG_ATTRS (XEXP (x, 1))
895 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
896 }
897 if (GET_CODE (x) == PARALLEL)
898 {
899 int i;
900 for (i = 0; i < XVECLEN (x, 0); i++)
901 {
902 rtx y = XVECEXP (x, 0, i);
903 if (REG_P (XEXP (y, 0)))
904 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
905 }
906 }
907 }
908
909 /* Assign the RTX X to parameter declaration T. */
910 void
911 set_decl_incoming_rtl (tree t, rtx x)
912 {
913 DECL_INCOMING_RTL (t) = x;
914
915 if (!x)
916 return;
917 /* For register, we maintain the reverse information too. */
918 if (REG_P (x))
919 REG_ATTRS (x) = get_reg_attrs (t, 0);
920 else if (GET_CODE (x) == SUBREG)
921 REG_ATTRS (SUBREG_REG (x))
922 = get_reg_attrs (t, -SUBREG_BYTE (x));
923 if (GET_CODE (x) == CONCAT)
924 {
925 if (REG_P (XEXP (x, 0)))
926 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
927 if (REG_P (XEXP (x, 1)))
928 REG_ATTRS (XEXP (x, 1))
929 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
930 }
931 if (GET_CODE (x) == PARALLEL)
932 {
933 int i, start;
934
935 /* Check for a NULL entry, used to indicate that the parameter goes
936 both on the stack and in registers. */
937 if (XEXP (XVECEXP (x, 0, 0), 0))
938 start = 0;
939 else
940 start = 1;
941
942 for (i = start; i < XVECLEN (x, 0); i++)
943 {
944 rtx y = XVECEXP (x, 0, i);
945 if (REG_P (XEXP (y, 0)))
946 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
947 }
948 }
949 }
950
951 /* Identify REG (which may be a CONCAT) as a user register. */
952
953 void
954 mark_user_reg (rtx reg)
955 {
956 if (GET_CODE (reg) == CONCAT)
957 {
958 REG_USERVAR_P (XEXP (reg, 0)) = 1;
959 REG_USERVAR_P (XEXP (reg, 1)) = 1;
960 }
961 else
962 {
963 gcc_assert (REG_P (reg));
964 REG_USERVAR_P (reg) = 1;
965 }
966 }
967
968 /* Identify REG as a probable pointer register and show its alignment
969 as ALIGN, if nonzero. */
970
971 void
972 mark_reg_pointer (rtx reg, int align)
973 {
974 if (! REG_POINTER (reg))
975 {
976 REG_POINTER (reg) = 1;
977
978 if (align)
979 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
980 }
981 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
982 /* We can no-longer be sure just how aligned this pointer is. */
983 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
984 }
985
986 /* Return 1 plus largest pseudo reg number used in the current function. */
987
988 int
989 max_reg_num (void)
990 {
991 return reg_rtx_no;
992 }
993
994 /* Return 1 + the largest label number used so far in the current function. */
995
996 int
997 max_label_num (void)
998 {
999 return label_num;
1000 }
1001
1002 /* Return first label number used in this function (if any were used). */
1003
1004 int
1005 get_first_label_num (void)
1006 {
1007 return first_label_num;
1008 }
1009
1010 /* If the rtx for label was created during the expansion of a nested
1011 function, then first_label_num won't include this label number.
1012 Fix this now so that array indicies work later. */
1013
1014 void
1015 maybe_set_first_label_num (rtx x)
1016 {
1017 if (CODE_LABEL_NUMBER (x) < first_label_num)
1018 first_label_num = CODE_LABEL_NUMBER (x);
1019 }
1020 \f
1021 /* Return the final regno of X, which is a SUBREG of a hard
1022 register. */
1023 int
1024 subreg_hard_regno (rtx x, int check_mode)
1025 {
1026 enum machine_mode mode = GET_MODE (x);
1027 unsigned int byte_offset, base_regno, final_regno;
1028 rtx reg = SUBREG_REG (x);
1029
1030 /* This is where we attempt to catch illegal subregs
1031 created by the compiler. */
1032 gcc_assert (GET_CODE (x) == SUBREG && REG_P (reg));
1033 base_regno = REGNO (reg);
1034 gcc_assert (base_regno < FIRST_PSEUDO_REGISTER);
1035 gcc_assert (!check_mode || HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)));
1036 #ifdef ENABLE_CHECKING
1037 gcc_assert (subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1038 SUBREG_BYTE (x), mode));
1039 #endif
1040 /* Catch non-congruent offsets too. */
1041 byte_offset = SUBREG_BYTE (x);
1042 gcc_assert (!(byte_offset % GET_MODE_SIZE (mode)));
1043
1044 final_regno = subreg_regno (x);
1045
1046 return final_regno;
1047 }
1048
1049 /* Return a value representing some low-order bits of X, where the number
1050 of low-order bits is given by MODE. Note that no conversion is done
1051 between floating-point and fixed-point values, rather, the bit
1052 representation is returned.
1053
1054 This function handles the cases in common between gen_lowpart, below,
1055 and two variants in cse.c and combine.c. These are the cases that can
1056 be safely handled at all points in the compilation.
1057
1058 If this is not a case we can handle, return 0. */
1059
1060 rtx
1061 gen_lowpart_common (enum machine_mode mode, rtx x)
1062 {
1063 int msize = GET_MODE_SIZE (mode);
1064 int xsize;
1065 int offset = 0;
1066 enum machine_mode innermode;
1067
1068 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1069 so we have to make one up. Yuk. */
1070 innermode = GET_MODE (x);
1071 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1072 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1073 else if (innermode == VOIDmode)
1074 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1075
1076 xsize = GET_MODE_SIZE (innermode);
1077
1078 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1079
1080 if (innermode == mode)
1081 return x;
1082
1083 /* MODE must occupy no more words than the mode of X. */
1084 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1085 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1086 return 0;
1087
1088 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1089 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1090 return 0;
1091
1092 offset = subreg_lowpart_offset (mode, innermode);
1093
1094 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1095 && (GET_MODE_CLASS (mode) == MODE_INT
1096 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1097 {
1098 /* If we are getting the low-order part of something that has been
1099 sign- or zero-extended, we can either just use the object being
1100 extended or make a narrower extension. If we want an even smaller
1101 piece than the size of the object being extended, call ourselves
1102 recursively.
1103
1104 This case is used mostly by combine and cse. */
1105
1106 if (GET_MODE (XEXP (x, 0)) == mode)
1107 return XEXP (x, 0);
1108 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1109 return gen_lowpart_common (mode, XEXP (x, 0));
1110 else if (msize < xsize)
1111 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1112 }
1113 else if (GET_CODE (x) == SUBREG || REG_P (x)
1114 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1115 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1116 return simplify_gen_subreg (mode, x, innermode, offset);
1117
1118 /* Otherwise, we can't do this. */
1119 return 0;
1120 }
1121 \f
1122 /* Return the constant real or imaginary part (which has mode MODE)
1123 of a complex value X. The IMAGPART_P argument determines whether
1124 the real or complex component should be returned. This function
1125 returns NULL_RTX if the component isn't a constant. */
1126
1127 static rtx
1128 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1129 {
1130 tree decl, part;
1131
1132 if (MEM_P (x)
1133 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1134 {
1135 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1136 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1137 {
1138 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1139 if (TREE_CODE (part) == REAL_CST
1140 || TREE_CODE (part) == INTEGER_CST)
1141 return expand_expr (part, NULL_RTX, mode, 0);
1142 }
1143 }
1144 return NULL_RTX;
1145 }
1146
1147 /* Return the real part (which has mode MODE) of a complex value X.
1148 This always comes at the low address in memory. */
1149
1150 rtx
1151 gen_realpart (enum machine_mode mode, rtx x)
1152 {
1153 rtx part;
1154
1155 /* Handle complex constants. */
1156 part = gen_complex_constant_part (mode, x, 0);
1157 if (part != NULL_RTX)
1158 return part;
1159
1160 if (WORDS_BIG_ENDIAN
1161 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1162 && REG_P (x)
1163 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1164 internal_error
1165 ("can't access real part of complex value in hard register");
1166 else if (WORDS_BIG_ENDIAN)
1167 return gen_highpart (mode, x);
1168 else
1169 return gen_lowpart (mode, x);
1170 }
1171
1172 /* Return the imaginary part (which has mode MODE) of a complex value X.
1173 This always comes at the high address in memory. */
1174
1175 rtx
1176 gen_imagpart (enum machine_mode mode, rtx x)
1177 {
1178 rtx part;
1179
1180 /* Handle complex constants. */
1181 part = gen_complex_constant_part (mode, x, 1);
1182 if (part != NULL_RTX)
1183 return part;
1184
1185 if (WORDS_BIG_ENDIAN)
1186 return gen_lowpart (mode, x);
1187 else if (! WORDS_BIG_ENDIAN
1188 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1189 && REG_P (x)
1190 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1191 internal_error
1192 ("can't access imaginary part of complex value in hard register");
1193 else
1194 return gen_highpart (mode, x);
1195 }
1196 \f
1197 rtx
1198 gen_highpart (enum machine_mode mode, rtx x)
1199 {
1200 unsigned int msize = GET_MODE_SIZE (mode);
1201 rtx result;
1202
1203 /* This case loses if X is a subreg. To catch bugs early,
1204 complain if an invalid MODE is used even in other cases. */
1205 gcc_assert (msize <= UNITS_PER_WORD
1206 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1207
1208 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1209 subreg_highpart_offset (mode, GET_MODE (x)));
1210 gcc_assert (result);
1211
1212 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1213 the target if we have a MEM. gen_highpart must return a valid operand,
1214 emitting code if necessary to do so. */
1215 if (MEM_P (result))
1216 {
1217 result = validize_mem (result);
1218 gcc_assert (result);
1219 }
1220
1221 return result;
1222 }
1223
1224 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1225 be VOIDmode constant. */
1226 rtx
1227 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1228 {
1229 if (GET_MODE (exp) != VOIDmode)
1230 {
1231 gcc_assert (GET_MODE (exp) == innermode);
1232 return gen_highpart (outermode, exp);
1233 }
1234 return simplify_gen_subreg (outermode, exp, innermode,
1235 subreg_highpart_offset (outermode, innermode));
1236 }
1237
1238 /* Return offset in bytes to get OUTERMODE low part
1239 of the value in mode INNERMODE stored in memory in target format. */
1240
1241 unsigned int
1242 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1243 {
1244 unsigned int offset = 0;
1245 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1246
1247 if (difference > 0)
1248 {
1249 if (WORDS_BIG_ENDIAN)
1250 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1251 if (BYTES_BIG_ENDIAN)
1252 offset += difference % UNITS_PER_WORD;
1253 }
1254
1255 return offset;
1256 }
1257
1258 /* Return offset in bytes to get OUTERMODE high part
1259 of the value in mode INNERMODE stored in memory in target format. */
1260 unsigned int
1261 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1262 {
1263 unsigned int offset = 0;
1264 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1265
1266 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1267
1268 if (difference > 0)
1269 {
1270 if (! WORDS_BIG_ENDIAN)
1271 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1272 if (! BYTES_BIG_ENDIAN)
1273 offset += difference % UNITS_PER_WORD;
1274 }
1275
1276 return offset;
1277 }
1278
1279 /* Return 1 iff X, assumed to be a SUBREG,
1280 refers to the least significant part of its containing reg.
1281 If X is not a SUBREG, always return 1 (it is its own low part!). */
1282
1283 int
1284 subreg_lowpart_p (rtx x)
1285 {
1286 if (GET_CODE (x) != SUBREG)
1287 return 1;
1288 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1289 return 0;
1290
1291 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1292 == SUBREG_BYTE (x));
1293 }
1294 \f
1295 /* Return subword OFFSET of operand OP.
1296 The word number, OFFSET, is interpreted as the word number starting
1297 at the low-order address. OFFSET 0 is the low-order word if not
1298 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1299
1300 If we cannot extract the required word, we return zero. Otherwise,
1301 an rtx corresponding to the requested word will be returned.
1302
1303 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1304 reload has completed, a valid address will always be returned. After
1305 reload, if a valid address cannot be returned, we return zero.
1306
1307 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1308 it is the responsibility of the caller.
1309
1310 MODE is the mode of OP in case it is a CONST_INT.
1311
1312 ??? This is still rather broken for some cases. The problem for the
1313 moment is that all callers of this thing provide no 'goal mode' to
1314 tell us to work with. This exists because all callers were written
1315 in a word based SUBREG world.
1316 Now use of this function can be deprecated by simplify_subreg in most
1317 cases.
1318 */
1319
1320 rtx
1321 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1322 {
1323 if (mode == VOIDmode)
1324 mode = GET_MODE (op);
1325
1326 gcc_assert (mode != VOIDmode);
1327
1328 /* If OP is narrower than a word, fail. */
1329 if (mode != BLKmode
1330 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1331 return 0;
1332
1333 /* If we want a word outside OP, return zero. */
1334 if (mode != BLKmode
1335 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1336 return const0_rtx;
1337
1338 /* Form a new MEM at the requested address. */
1339 if (MEM_P (op))
1340 {
1341 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1342
1343 if (! validate_address)
1344 return new;
1345
1346 else if (reload_completed)
1347 {
1348 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1349 return 0;
1350 }
1351 else
1352 return replace_equiv_address (new, XEXP (new, 0));
1353 }
1354
1355 /* Rest can be handled by simplify_subreg. */
1356 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1357 }
1358
1359 /* Similar to `operand_subword', but never return 0. If we can't extract
1360 the required subword, put OP into a register and try again. If that fails,
1361 abort. We always validate the address in this case.
1362
1363 MODE is the mode of OP, in case it is CONST_INT. */
1364
1365 rtx
1366 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1367 {
1368 rtx result = operand_subword (op, offset, 1, mode);
1369
1370 if (result)
1371 return result;
1372
1373 if (mode != BLKmode && mode != VOIDmode)
1374 {
1375 /* If this is a register which can not be accessed by words, copy it
1376 to a pseudo register. */
1377 if (REG_P (op))
1378 op = copy_to_reg (op);
1379 else
1380 op = force_reg (mode, op);
1381 }
1382
1383 result = operand_subword (op, offset, 1, mode);
1384 gcc_assert (result);
1385
1386 return result;
1387 }
1388 \f
1389 /* Given a compare instruction, swap the operands.
1390 A test instruction is changed into a compare of 0 against the operand. */
1391
1392 void
1393 reverse_comparison (rtx insn)
1394 {
1395 rtx body = PATTERN (insn);
1396 rtx comp;
1397
1398 if (GET_CODE (body) == SET)
1399 comp = SET_SRC (body);
1400 else
1401 comp = SET_SRC (XVECEXP (body, 0, 0));
1402
1403 if (GET_CODE (comp) == COMPARE)
1404 {
1405 rtx op0 = XEXP (comp, 0);
1406 rtx op1 = XEXP (comp, 1);
1407 XEXP (comp, 0) = op1;
1408 XEXP (comp, 1) = op0;
1409 }
1410 else
1411 {
1412 rtx new = gen_rtx_COMPARE (VOIDmode,
1413 CONST0_RTX (GET_MODE (comp)), comp);
1414 if (GET_CODE (body) == SET)
1415 SET_SRC (body) = new;
1416 else
1417 SET_SRC (XVECEXP (body, 0, 0)) = new;
1418 }
1419 }
1420 \f
1421 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1422 or (2) a component ref of something variable. Represent the later with
1423 a NULL expression. */
1424
1425 static tree
1426 component_ref_for_mem_expr (tree ref)
1427 {
1428 tree inner = TREE_OPERAND (ref, 0);
1429
1430 if (TREE_CODE (inner) == COMPONENT_REF)
1431 inner = component_ref_for_mem_expr (inner);
1432 else
1433 {
1434 /* Now remove any conversions: they don't change what the underlying
1435 object is. Likewise for SAVE_EXPR. */
1436 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1437 || TREE_CODE (inner) == NON_LVALUE_EXPR
1438 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1439 || TREE_CODE (inner) == SAVE_EXPR)
1440 inner = TREE_OPERAND (inner, 0);
1441
1442 if (! DECL_P (inner))
1443 inner = NULL_TREE;
1444 }
1445
1446 if (inner == TREE_OPERAND (ref, 0))
1447 return ref;
1448 else
1449 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1450 TREE_OPERAND (ref, 1), NULL_TREE);
1451 }
1452
1453 /* Returns 1 if both MEM_EXPR can be considered equal
1454 and 0 otherwise. */
1455
1456 int
1457 mem_expr_equal_p (tree expr1, tree expr2)
1458 {
1459 if (expr1 == expr2)
1460 return 1;
1461
1462 if (! expr1 || ! expr2)
1463 return 0;
1464
1465 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1466 return 0;
1467
1468 if (TREE_CODE (expr1) == COMPONENT_REF)
1469 return
1470 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1471 TREE_OPERAND (expr2, 0))
1472 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1473 TREE_OPERAND (expr2, 1));
1474
1475 if (INDIRECT_REF_P (expr1))
1476 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1477 TREE_OPERAND (expr2, 0));
1478
1479 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1480 have been resolved here. */
1481 gcc_assert (DECL_P (expr1));
1482
1483 /* Decls with different pointers can't be equal. */
1484 return 0;
1485 }
1486
1487 /* Given REF, a MEM, and T, either the type of X or the expression
1488 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1489 if we are making a new object of this type. BITPOS is nonzero if
1490 there is an offset outstanding on T that will be applied later. */
1491
1492 void
1493 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1494 HOST_WIDE_INT bitpos)
1495 {
1496 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1497 tree expr = MEM_EXPR (ref);
1498 rtx offset = MEM_OFFSET (ref);
1499 rtx size = MEM_SIZE (ref);
1500 unsigned int align = MEM_ALIGN (ref);
1501 HOST_WIDE_INT apply_bitpos = 0;
1502 tree type;
1503
1504 /* It can happen that type_for_mode was given a mode for which there
1505 is no language-level type. In which case it returns NULL, which
1506 we can see here. */
1507 if (t == NULL_TREE)
1508 return;
1509
1510 type = TYPE_P (t) ? t : TREE_TYPE (t);
1511 if (type == error_mark_node)
1512 return;
1513
1514 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1515 wrong answer, as it assumes that DECL_RTL already has the right alias
1516 info. Callers should not set DECL_RTL until after the call to
1517 set_mem_attributes. */
1518 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1519
1520 /* Get the alias set from the expression or type (perhaps using a
1521 front-end routine) and use it. */
1522 alias = get_alias_set (t);
1523
1524 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1525 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1526 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1527 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1528
1529 /* If we are making an object of this type, or if this is a DECL, we know
1530 that it is a scalar if the type is not an aggregate. */
1531 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1532 MEM_SCALAR_P (ref) = 1;
1533
1534 /* We can set the alignment from the type if we are making an object,
1535 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1536 if (objectp || TREE_CODE (t) == INDIRECT_REF
1537 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1538 || TYPE_ALIGN_OK (type))
1539 align = MAX (align, TYPE_ALIGN (type));
1540 else
1541 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1542 {
1543 if (integer_zerop (TREE_OPERAND (t, 1)))
1544 /* We don't know anything about the alignment. */
1545 align = BITS_PER_UNIT;
1546 else
1547 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1548 }
1549
1550 /* If the size is known, we can set that. */
1551 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1552 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1553
1554 /* If T is not a type, we may be able to deduce some more information about
1555 the expression. */
1556 if (! TYPE_P (t))
1557 {
1558 tree base = get_base_address (t);
1559 if (base && DECL_P (base)
1560 && TREE_READONLY (base)
1561 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1562 MEM_READONLY_P (ref) = 1;
1563
1564 if (TREE_THIS_VOLATILE (t))
1565 MEM_VOLATILE_P (ref) = 1;
1566
1567 /* Now remove any conversions: they don't change what the underlying
1568 object is. Likewise for SAVE_EXPR. */
1569 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1570 || TREE_CODE (t) == NON_LVALUE_EXPR
1571 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1572 || TREE_CODE (t) == SAVE_EXPR)
1573 t = TREE_OPERAND (t, 0);
1574
1575 /* If this expression can't be addressed (e.g., it contains a reference
1576 to a non-addressable field), show we don't change its alias set. */
1577 if (! can_address_p (t))
1578 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1579
1580 /* If this is a decl, set the attributes of the MEM from it. */
1581 if (DECL_P (t))
1582 {
1583 expr = t;
1584 offset = const0_rtx;
1585 apply_bitpos = bitpos;
1586 size = (DECL_SIZE_UNIT (t)
1587 && host_integerp (DECL_SIZE_UNIT (t), 1)
1588 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1589 align = DECL_ALIGN (t);
1590 }
1591
1592 /* If this is a constant, we know the alignment. */
1593 else if (CONSTANT_CLASS_P (t))
1594 {
1595 align = TYPE_ALIGN (type);
1596 #ifdef CONSTANT_ALIGNMENT
1597 align = CONSTANT_ALIGNMENT (t, align);
1598 #endif
1599 }
1600
1601 /* If this is a field reference and not a bit-field, record it. */
1602 /* ??? There is some information that can be gleened from bit-fields,
1603 such as the word offset in the structure that might be modified.
1604 But skip it for now. */
1605 else if (TREE_CODE (t) == COMPONENT_REF
1606 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1607 {
1608 expr = component_ref_for_mem_expr (t);
1609 offset = const0_rtx;
1610 apply_bitpos = bitpos;
1611 /* ??? Any reason the field size would be different than
1612 the size we got from the type? */
1613 }
1614
1615 /* If this is an array reference, look for an outer field reference. */
1616 else if (TREE_CODE (t) == ARRAY_REF)
1617 {
1618 tree off_tree = size_zero_node;
1619 /* We can't modify t, because we use it at the end of the
1620 function. */
1621 tree t2 = t;
1622
1623 do
1624 {
1625 tree index = TREE_OPERAND (t2, 1);
1626 tree low_bound = array_ref_low_bound (t2);
1627 tree unit_size = array_ref_element_size (t2);
1628
1629 /* We assume all arrays have sizes that are a multiple of a byte.
1630 First subtract the lower bound, if any, in the type of the
1631 index, then convert to sizetype and multiply by the size of
1632 the array element. */
1633 if (! integer_zerop (low_bound))
1634 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1635 index, low_bound));
1636
1637 off_tree = size_binop (PLUS_EXPR,
1638 size_binop (MULT_EXPR, convert (sizetype,
1639 index),
1640 unit_size),
1641 off_tree);
1642 t2 = TREE_OPERAND (t2, 0);
1643 }
1644 while (TREE_CODE (t2) == ARRAY_REF);
1645
1646 if (DECL_P (t2))
1647 {
1648 expr = t2;
1649 offset = NULL;
1650 if (host_integerp (off_tree, 1))
1651 {
1652 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1653 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1654 align = DECL_ALIGN (t2);
1655 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1656 align = aoff;
1657 offset = GEN_INT (ioff);
1658 apply_bitpos = bitpos;
1659 }
1660 }
1661 else if (TREE_CODE (t2) == COMPONENT_REF)
1662 {
1663 expr = component_ref_for_mem_expr (t2);
1664 if (host_integerp (off_tree, 1))
1665 {
1666 offset = GEN_INT (tree_low_cst (off_tree, 1));
1667 apply_bitpos = bitpos;
1668 }
1669 /* ??? Any reason the field size would be different than
1670 the size we got from the type? */
1671 }
1672 else if (flag_argument_noalias > 1
1673 && (INDIRECT_REF_P (t2))
1674 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1675 {
1676 expr = t2;
1677 offset = NULL;
1678 }
1679 }
1680
1681 /* If this is a Fortran indirect argument reference, record the
1682 parameter decl. */
1683 else if (flag_argument_noalias > 1
1684 && (INDIRECT_REF_P (t))
1685 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1686 {
1687 expr = t;
1688 offset = NULL;
1689 }
1690 }
1691
1692 /* If we modified OFFSET based on T, then subtract the outstanding
1693 bit position offset. Similarly, increase the size of the accessed
1694 object to contain the negative offset. */
1695 if (apply_bitpos)
1696 {
1697 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1698 if (size)
1699 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1700 }
1701
1702 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1703 {
1704 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1705 we're overlapping. */
1706 offset = NULL;
1707 expr = NULL;
1708 }
1709
1710 /* Now set the attributes we computed above. */
1711 MEM_ATTRS (ref)
1712 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1713
1714 /* If this is already known to be a scalar or aggregate, we are done. */
1715 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1716 return;
1717
1718 /* If it is a reference into an aggregate, this is part of an aggregate.
1719 Otherwise we don't know. */
1720 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1721 || TREE_CODE (t) == ARRAY_RANGE_REF
1722 || TREE_CODE (t) == BIT_FIELD_REF)
1723 MEM_IN_STRUCT_P (ref) = 1;
1724 }
1725
1726 void
1727 set_mem_attributes (rtx ref, tree t, int objectp)
1728 {
1729 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1730 }
1731
1732 /* Set the decl for MEM to DECL. */
1733
1734 void
1735 set_mem_attrs_from_reg (rtx mem, rtx reg)
1736 {
1737 MEM_ATTRS (mem)
1738 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1739 GEN_INT (REG_OFFSET (reg)),
1740 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1741 }
1742
1743 /* Set the alias set of MEM to SET. */
1744
1745 void
1746 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1747 {
1748 #ifdef ENABLE_CHECKING
1749 /* If the new and old alias sets don't conflict, something is wrong. */
1750 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1751 #endif
1752
1753 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1754 MEM_SIZE (mem), MEM_ALIGN (mem),
1755 GET_MODE (mem));
1756 }
1757
1758 /* Set the alignment of MEM to ALIGN bits. */
1759
1760 void
1761 set_mem_align (rtx mem, unsigned int align)
1762 {
1763 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1764 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1765 GET_MODE (mem));
1766 }
1767
1768 /* Set the expr for MEM to EXPR. */
1769
1770 void
1771 set_mem_expr (rtx mem, tree expr)
1772 {
1773 MEM_ATTRS (mem)
1774 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1775 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1776 }
1777
1778 /* Set the offset of MEM to OFFSET. */
1779
1780 void
1781 set_mem_offset (rtx mem, rtx offset)
1782 {
1783 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1784 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1785 GET_MODE (mem));
1786 }
1787
1788 /* Set the size of MEM to SIZE. */
1789
1790 void
1791 set_mem_size (rtx mem, rtx size)
1792 {
1793 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1794 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1795 GET_MODE (mem));
1796 }
1797 \f
1798 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1799 and its address changed to ADDR. (VOIDmode means don't change the mode.
1800 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1801 returned memory location is required to be valid. The memory
1802 attributes are not changed. */
1803
1804 static rtx
1805 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1806 {
1807 rtx new;
1808
1809 gcc_assert (MEM_P (memref));
1810 if (mode == VOIDmode)
1811 mode = GET_MODE (memref);
1812 if (addr == 0)
1813 addr = XEXP (memref, 0);
1814 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1815 && (!validate || memory_address_p (mode, addr)))
1816 return memref;
1817
1818 if (validate)
1819 {
1820 if (reload_in_progress || reload_completed)
1821 gcc_assert (memory_address_p (mode, addr));
1822 else
1823 addr = memory_address (mode, addr);
1824 }
1825
1826 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1827 return memref;
1828
1829 new = gen_rtx_MEM (mode, addr);
1830 MEM_COPY_ATTRIBUTES (new, memref);
1831 return new;
1832 }
1833
1834 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1835 way we are changing MEMREF, so we only preserve the alias set. */
1836
1837 rtx
1838 change_address (rtx memref, enum machine_mode mode, rtx addr)
1839 {
1840 rtx new = change_address_1 (memref, mode, addr, 1), size;
1841 enum machine_mode mmode = GET_MODE (new);
1842 unsigned int align;
1843
1844 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1845 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1846
1847 /* If there are no changes, just return the original memory reference. */
1848 if (new == memref)
1849 {
1850 if (MEM_ATTRS (memref) == 0
1851 || (MEM_EXPR (memref) == NULL
1852 && MEM_OFFSET (memref) == NULL
1853 && MEM_SIZE (memref) == size
1854 && MEM_ALIGN (memref) == align))
1855 return new;
1856
1857 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1858 MEM_COPY_ATTRIBUTES (new, memref);
1859 }
1860
1861 MEM_ATTRS (new)
1862 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1863
1864 return new;
1865 }
1866
1867 /* Return a memory reference like MEMREF, but with its mode changed
1868 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1869 nonzero, the memory address is forced to be valid.
1870 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1871 and caller is responsible for adjusting MEMREF base register. */
1872
1873 rtx
1874 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1875 int validate, int adjust)
1876 {
1877 rtx addr = XEXP (memref, 0);
1878 rtx new;
1879 rtx memoffset = MEM_OFFSET (memref);
1880 rtx size = 0;
1881 unsigned int memalign = MEM_ALIGN (memref);
1882
1883 /* If there are no changes, just return the original memory reference. */
1884 if (mode == GET_MODE (memref) && !offset
1885 && (!validate || memory_address_p (mode, addr)))
1886 return memref;
1887
1888 /* ??? Prefer to create garbage instead of creating shared rtl.
1889 This may happen even if offset is nonzero -- consider
1890 (plus (plus reg reg) const_int) -- so do this always. */
1891 addr = copy_rtx (addr);
1892
1893 if (adjust)
1894 {
1895 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1896 object, we can merge it into the LO_SUM. */
1897 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1898 && offset >= 0
1899 && (unsigned HOST_WIDE_INT) offset
1900 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1901 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1902 plus_constant (XEXP (addr, 1), offset));
1903 else
1904 addr = plus_constant (addr, offset);
1905 }
1906
1907 new = change_address_1 (memref, mode, addr, validate);
1908
1909 /* Compute the new values of the memory attributes due to this adjustment.
1910 We add the offsets and update the alignment. */
1911 if (memoffset)
1912 memoffset = GEN_INT (offset + INTVAL (memoffset));
1913
1914 /* Compute the new alignment by taking the MIN of the alignment and the
1915 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1916 if zero. */
1917 if (offset != 0)
1918 memalign
1919 = MIN (memalign,
1920 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1921
1922 /* We can compute the size in a number of ways. */
1923 if (GET_MODE (new) != BLKmode)
1924 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1925 else if (MEM_SIZE (memref))
1926 size = plus_constant (MEM_SIZE (memref), -offset);
1927
1928 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1929 memoffset, size, memalign, GET_MODE (new));
1930
1931 /* At some point, we should validate that this offset is within the object,
1932 if all the appropriate values are known. */
1933 return new;
1934 }
1935
1936 /* Return a memory reference like MEMREF, but with its mode changed
1937 to MODE and its address changed to ADDR, which is assumed to be
1938 MEMREF offseted by OFFSET bytes. If VALIDATE is
1939 nonzero, the memory address is forced to be valid. */
1940
1941 rtx
1942 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1943 HOST_WIDE_INT offset, int validate)
1944 {
1945 memref = change_address_1 (memref, VOIDmode, addr, validate);
1946 return adjust_address_1 (memref, mode, offset, validate, 0);
1947 }
1948
1949 /* Return a memory reference like MEMREF, but whose address is changed by
1950 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1951 known to be in OFFSET (possibly 1). */
1952
1953 rtx
1954 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1955 {
1956 rtx new, addr = XEXP (memref, 0);
1957
1958 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1959
1960 /* At this point we don't know _why_ the address is invalid. It
1961 could have secondary memory references, multiplies or anything.
1962
1963 However, if we did go and rearrange things, we can wind up not
1964 being able to recognize the magic around pic_offset_table_rtx.
1965 This stuff is fragile, and is yet another example of why it is
1966 bad to expose PIC machinery too early. */
1967 if (! memory_address_p (GET_MODE (memref), new)
1968 && GET_CODE (addr) == PLUS
1969 && XEXP (addr, 0) == pic_offset_table_rtx)
1970 {
1971 addr = force_reg (GET_MODE (addr), addr);
1972 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1973 }
1974
1975 update_temp_slot_address (XEXP (memref, 0), new);
1976 new = change_address_1 (memref, VOIDmode, new, 1);
1977
1978 /* If there are no changes, just return the original memory reference. */
1979 if (new == memref)
1980 return new;
1981
1982 /* Update the alignment to reflect the offset. Reset the offset, which
1983 we don't know. */
1984 MEM_ATTRS (new)
1985 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1986 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1987 GET_MODE (new));
1988 return new;
1989 }
1990
1991 /* Return a memory reference like MEMREF, but with its address changed to
1992 ADDR. The caller is asserting that the actual piece of memory pointed
1993 to is the same, just the form of the address is being changed, such as
1994 by putting something into a register. */
1995
1996 rtx
1997 replace_equiv_address (rtx memref, rtx addr)
1998 {
1999 /* change_address_1 copies the memory attribute structure without change
2000 and that's exactly what we want here. */
2001 update_temp_slot_address (XEXP (memref, 0), addr);
2002 return change_address_1 (memref, VOIDmode, addr, 1);
2003 }
2004
2005 /* Likewise, but the reference is not required to be valid. */
2006
2007 rtx
2008 replace_equiv_address_nv (rtx memref, rtx addr)
2009 {
2010 return change_address_1 (memref, VOIDmode, addr, 0);
2011 }
2012
2013 /* Return a memory reference like MEMREF, but with its mode widened to
2014 MODE and offset by OFFSET. This would be used by targets that e.g.
2015 cannot issue QImode memory operations and have to use SImode memory
2016 operations plus masking logic. */
2017
2018 rtx
2019 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2020 {
2021 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2022 tree expr = MEM_EXPR (new);
2023 rtx memoffset = MEM_OFFSET (new);
2024 unsigned int size = GET_MODE_SIZE (mode);
2025
2026 /* If there are no changes, just return the original memory reference. */
2027 if (new == memref)
2028 return new;
2029
2030 /* If we don't know what offset we were at within the expression, then
2031 we can't know if we've overstepped the bounds. */
2032 if (! memoffset)
2033 expr = NULL_TREE;
2034
2035 while (expr)
2036 {
2037 if (TREE_CODE (expr) == COMPONENT_REF)
2038 {
2039 tree field = TREE_OPERAND (expr, 1);
2040 tree offset = component_ref_field_offset (expr);
2041
2042 if (! DECL_SIZE_UNIT (field))
2043 {
2044 expr = NULL_TREE;
2045 break;
2046 }
2047
2048 /* Is the field at least as large as the access? If so, ok,
2049 otherwise strip back to the containing structure. */
2050 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2051 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2052 && INTVAL (memoffset) >= 0)
2053 break;
2054
2055 if (! host_integerp (offset, 1))
2056 {
2057 expr = NULL_TREE;
2058 break;
2059 }
2060
2061 expr = TREE_OPERAND (expr, 0);
2062 memoffset
2063 = (GEN_INT (INTVAL (memoffset)
2064 + tree_low_cst (offset, 1)
2065 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2066 / BITS_PER_UNIT)));
2067 }
2068 /* Similarly for the decl. */
2069 else if (DECL_P (expr)
2070 && DECL_SIZE_UNIT (expr)
2071 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2072 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2073 && (! memoffset || INTVAL (memoffset) >= 0))
2074 break;
2075 else
2076 {
2077 /* The widened memory access overflows the expression, which means
2078 that it could alias another expression. Zap it. */
2079 expr = NULL_TREE;
2080 break;
2081 }
2082 }
2083
2084 if (! expr)
2085 memoffset = NULL_RTX;
2086
2087 /* The widened memory may alias other stuff, so zap the alias set. */
2088 /* ??? Maybe use get_alias_set on any remaining expression. */
2089
2090 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2091 MEM_ALIGN (new), mode);
2092
2093 return new;
2094 }
2095 \f
2096 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2097
2098 rtx
2099 gen_label_rtx (void)
2100 {
2101 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2102 NULL, label_num++, NULL);
2103 }
2104 \f
2105 /* For procedure integration. */
2106
2107 /* Install new pointers to the first and last insns in the chain.
2108 Also, set cur_insn_uid to one higher than the last in use.
2109 Used for an inline-procedure after copying the insn chain. */
2110
2111 void
2112 set_new_first_and_last_insn (rtx first, rtx last)
2113 {
2114 rtx insn;
2115
2116 first_insn = first;
2117 last_insn = last;
2118 cur_insn_uid = 0;
2119
2120 for (insn = first; insn; insn = NEXT_INSN (insn))
2121 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2122
2123 cur_insn_uid++;
2124 }
2125 \f
2126 /* Go through all the RTL insn bodies and copy any invalid shared
2127 structure. This routine should only be called once. */
2128
2129 static void
2130 unshare_all_rtl_1 (tree fndecl, rtx insn)
2131 {
2132 tree decl;
2133
2134 /* Make sure that virtual parameters are not shared. */
2135 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2136 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2137
2138 /* Make sure that virtual stack slots are not shared. */
2139 unshare_all_decls (DECL_INITIAL (fndecl));
2140
2141 /* Unshare just about everything else. */
2142 unshare_all_rtl_in_chain (insn);
2143
2144 /* Make sure the addresses of stack slots found outside the insn chain
2145 (such as, in DECL_RTL of a variable) are not shared
2146 with the insn chain.
2147
2148 This special care is necessary when the stack slot MEM does not
2149 actually appear in the insn chain. If it does appear, its address
2150 is unshared from all else at that point. */
2151 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2152 }
2153
2154 /* Go through all the RTL insn bodies and copy any invalid shared
2155 structure, again. This is a fairly expensive thing to do so it
2156 should be done sparingly. */
2157
2158 void
2159 unshare_all_rtl_again (rtx insn)
2160 {
2161 rtx p;
2162 tree decl;
2163
2164 for (p = insn; p; p = NEXT_INSN (p))
2165 if (INSN_P (p))
2166 {
2167 reset_used_flags (PATTERN (p));
2168 reset_used_flags (REG_NOTES (p));
2169 reset_used_flags (LOG_LINKS (p));
2170 }
2171
2172 /* Make sure that virtual stack slots are not shared. */
2173 reset_used_decls (DECL_INITIAL (cfun->decl));
2174
2175 /* Make sure that virtual parameters are not shared. */
2176 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2177 reset_used_flags (DECL_RTL (decl));
2178
2179 reset_used_flags (stack_slot_list);
2180
2181 unshare_all_rtl_1 (cfun->decl, insn);
2182 }
2183
2184 void
2185 unshare_all_rtl (void)
2186 {
2187 unshare_all_rtl_1 (current_function_decl, get_insns ());
2188 }
2189
2190 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2191 Recursively does the same for subexpressions. */
2192
2193 static void
2194 verify_rtx_sharing (rtx orig, rtx insn)
2195 {
2196 rtx x = orig;
2197 int i;
2198 enum rtx_code code;
2199 const char *format_ptr;
2200
2201 if (x == 0)
2202 return;
2203
2204 code = GET_CODE (x);
2205
2206 /* These types may be freely shared. */
2207
2208 switch (code)
2209 {
2210 case REG:
2211 case CONST_INT:
2212 case CONST_DOUBLE:
2213 case CONST_VECTOR:
2214 case SYMBOL_REF:
2215 case LABEL_REF:
2216 case CODE_LABEL:
2217 case PC:
2218 case CC0:
2219 case SCRATCH:
2220 return;
2221 /* SCRATCH must be shared because they represent distinct values. */
2222 case CLOBBER:
2223 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2224 return;
2225 break;
2226
2227 case CONST:
2228 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2229 a LABEL_REF, it isn't sharable. */
2230 if (GET_CODE (XEXP (x, 0)) == PLUS
2231 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2232 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2233 return;
2234 break;
2235
2236 case MEM:
2237 /* A MEM is allowed to be shared if its address is constant. */
2238 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2239 || reload_completed || reload_in_progress)
2240 return;
2241
2242 break;
2243
2244 default:
2245 break;
2246 }
2247
2248 /* This rtx may not be shared. If it has already been seen,
2249 replace it with a copy of itself. */
2250 #ifdef ENABLE_CHECKING
2251 if (RTX_FLAG (x, used))
2252 {
2253 error ("Invalid rtl sharing found in the insn");
2254 debug_rtx (insn);
2255 error ("Shared rtx");
2256 debug_rtx (x);
2257 internal_error ("Internal consistency failure");
2258 }
2259 #endif
2260 gcc_assert (!RTX_FLAG (x, used));
2261
2262 RTX_FLAG (x, used) = 1;
2263
2264 /* Now scan the subexpressions recursively. */
2265
2266 format_ptr = GET_RTX_FORMAT (code);
2267
2268 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2269 {
2270 switch (*format_ptr++)
2271 {
2272 case 'e':
2273 verify_rtx_sharing (XEXP (x, i), insn);
2274 break;
2275
2276 case 'E':
2277 if (XVEC (x, i) != NULL)
2278 {
2279 int j;
2280 int len = XVECLEN (x, i);
2281
2282 for (j = 0; j < len; j++)
2283 {
2284 /* We allow sharing of ASM_OPERANDS inside single
2285 instruction. */
2286 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2287 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2288 == ASM_OPERANDS))
2289 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2290 else
2291 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2292 }
2293 }
2294 break;
2295 }
2296 }
2297 return;
2298 }
2299
2300 /* Go through all the RTL insn bodies and check that there is no unexpected
2301 sharing in between the subexpressions. */
2302
2303 void
2304 verify_rtl_sharing (void)
2305 {
2306 rtx p;
2307
2308 for (p = get_insns (); p; p = NEXT_INSN (p))
2309 if (INSN_P (p))
2310 {
2311 reset_used_flags (PATTERN (p));
2312 reset_used_flags (REG_NOTES (p));
2313 reset_used_flags (LOG_LINKS (p));
2314 }
2315
2316 for (p = get_insns (); p; p = NEXT_INSN (p))
2317 if (INSN_P (p))
2318 {
2319 verify_rtx_sharing (PATTERN (p), p);
2320 verify_rtx_sharing (REG_NOTES (p), p);
2321 verify_rtx_sharing (LOG_LINKS (p), p);
2322 }
2323 }
2324
2325 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2326 Assumes the mark bits are cleared at entry. */
2327
2328 void
2329 unshare_all_rtl_in_chain (rtx insn)
2330 {
2331 for (; insn; insn = NEXT_INSN (insn))
2332 if (INSN_P (insn))
2333 {
2334 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2335 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2336 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2337 }
2338 }
2339
2340 /* Go through all virtual stack slots of a function and copy any
2341 shared structure. */
2342 static void
2343 unshare_all_decls (tree blk)
2344 {
2345 tree t;
2346
2347 /* Copy shared decls. */
2348 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2349 if (DECL_RTL_SET_P (t))
2350 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2351
2352 /* Now process sub-blocks. */
2353 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2354 unshare_all_decls (t);
2355 }
2356
2357 /* Go through all virtual stack slots of a function and mark them as
2358 not shared. */
2359 static void
2360 reset_used_decls (tree blk)
2361 {
2362 tree t;
2363
2364 /* Mark decls. */
2365 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2366 if (DECL_RTL_SET_P (t))
2367 reset_used_flags (DECL_RTL (t));
2368
2369 /* Now process sub-blocks. */
2370 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2371 reset_used_decls (t);
2372 }
2373
2374 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2375 placed in the result directly, rather than being copied. MAY_SHARE is
2376 either a MEM of an EXPR_LIST of MEMs. */
2377
2378 rtx
2379 copy_most_rtx (rtx orig, rtx may_share)
2380 {
2381 rtx copy;
2382 int i, j;
2383 RTX_CODE code;
2384 const char *format_ptr;
2385
2386 if (orig == may_share
2387 || (GET_CODE (may_share) == EXPR_LIST
2388 && in_expr_list_p (may_share, orig)))
2389 return orig;
2390
2391 code = GET_CODE (orig);
2392
2393 switch (code)
2394 {
2395 case REG:
2396 case CONST_INT:
2397 case CONST_DOUBLE:
2398 case CONST_VECTOR:
2399 case SYMBOL_REF:
2400 case CODE_LABEL:
2401 case PC:
2402 case CC0:
2403 return orig;
2404 default:
2405 break;
2406 }
2407
2408 copy = rtx_alloc (code);
2409 PUT_MODE (copy, GET_MODE (orig));
2410 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2411 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2412 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2413 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2414 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2415
2416 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2417
2418 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2419 {
2420 switch (*format_ptr++)
2421 {
2422 case 'e':
2423 XEXP (copy, i) = XEXP (orig, i);
2424 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2425 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2426 break;
2427
2428 case 'u':
2429 XEXP (copy, i) = XEXP (orig, i);
2430 break;
2431
2432 case 'E':
2433 case 'V':
2434 XVEC (copy, i) = XVEC (orig, i);
2435 if (XVEC (orig, i) != NULL)
2436 {
2437 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2438 for (j = 0; j < XVECLEN (copy, i); j++)
2439 XVECEXP (copy, i, j)
2440 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2441 }
2442 break;
2443
2444 case 'w':
2445 XWINT (copy, i) = XWINT (orig, i);
2446 break;
2447
2448 case 'n':
2449 case 'i':
2450 XINT (copy, i) = XINT (orig, i);
2451 break;
2452
2453 case 't':
2454 XTREE (copy, i) = XTREE (orig, i);
2455 break;
2456
2457 case 's':
2458 case 'S':
2459 XSTR (copy, i) = XSTR (orig, i);
2460 break;
2461
2462 case '0':
2463 X0ANY (copy, i) = X0ANY (orig, i);
2464 break;
2465
2466 default:
2467 gcc_unreachable ();
2468 }
2469 }
2470 return copy;
2471 }
2472
2473 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2474 Recursively does the same for subexpressions. Uses
2475 copy_rtx_if_shared_1 to reduce stack space. */
2476
2477 rtx
2478 copy_rtx_if_shared (rtx orig)
2479 {
2480 copy_rtx_if_shared_1 (&orig);
2481 return orig;
2482 }
2483
2484 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2485 use. Recursively does the same for subexpressions. */
2486
2487 static void
2488 copy_rtx_if_shared_1 (rtx *orig1)
2489 {
2490 rtx x;
2491 int i;
2492 enum rtx_code code;
2493 rtx *last_ptr;
2494 const char *format_ptr;
2495 int copied = 0;
2496 int length;
2497
2498 /* Repeat is used to turn tail-recursion into iteration. */
2499 repeat:
2500 x = *orig1;
2501
2502 if (x == 0)
2503 return;
2504
2505 code = GET_CODE (x);
2506
2507 /* These types may be freely shared. */
2508
2509 switch (code)
2510 {
2511 case REG:
2512 case CONST_INT:
2513 case CONST_DOUBLE:
2514 case CONST_VECTOR:
2515 case SYMBOL_REF:
2516 case LABEL_REF:
2517 case CODE_LABEL:
2518 case PC:
2519 case CC0:
2520 case SCRATCH:
2521 /* SCRATCH must be shared because they represent distinct values. */
2522 return;
2523 case CLOBBER:
2524 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2525 return;
2526 break;
2527
2528 case CONST:
2529 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2530 a LABEL_REF, it isn't sharable. */
2531 if (GET_CODE (XEXP (x, 0)) == PLUS
2532 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2533 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2534 return;
2535 break;
2536
2537 case INSN:
2538 case JUMP_INSN:
2539 case CALL_INSN:
2540 case NOTE:
2541 case BARRIER:
2542 /* The chain of insns is not being copied. */
2543 return;
2544
2545 default:
2546 break;
2547 }
2548
2549 /* This rtx may not be shared. If it has already been seen,
2550 replace it with a copy of itself. */
2551
2552 if (RTX_FLAG (x, used))
2553 {
2554 rtx copy;
2555
2556 copy = rtx_alloc (code);
2557 memcpy (copy, x, RTX_SIZE (code));
2558 x = copy;
2559 copied = 1;
2560 }
2561 RTX_FLAG (x, used) = 1;
2562
2563 /* Now scan the subexpressions recursively.
2564 We can store any replaced subexpressions directly into X
2565 since we know X is not shared! Any vectors in X
2566 must be copied if X was copied. */
2567
2568 format_ptr = GET_RTX_FORMAT (code);
2569 length = GET_RTX_LENGTH (code);
2570 last_ptr = NULL;
2571
2572 for (i = 0; i < length; i++)
2573 {
2574 switch (*format_ptr++)
2575 {
2576 case 'e':
2577 if (last_ptr)
2578 copy_rtx_if_shared_1 (last_ptr);
2579 last_ptr = &XEXP (x, i);
2580 break;
2581
2582 case 'E':
2583 if (XVEC (x, i) != NULL)
2584 {
2585 int j;
2586 int len = XVECLEN (x, i);
2587
2588 /* Copy the vector iff I copied the rtx and the length
2589 is nonzero. */
2590 if (copied && len > 0)
2591 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2592
2593 /* Call recursively on all inside the vector. */
2594 for (j = 0; j < len; j++)
2595 {
2596 if (last_ptr)
2597 copy_rtx_if_shared_1 (last_ptr);
2598 last_ptr = &XVECEXP (x, i, j);
2599 }
2600 }
2601 break;
2602 }
2603 }
2604 *orig1 = x;
2605 if (last_ptr)
2606 {
2607 orig1 = last_ptr;
2608 goto repeat;
2609 }
2610 return;
2611 }
2612
2613 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2614 to look for shared sub-parts. */
2615
2616 void
2617 reset_used_flags (rtx x)
2618 {
2619 int i, j;
2620 enum rtx_code code;
2621 const char *format_ptr;
2622 int length;
2623
2624 /* Repeat is used to turn tail-recursion into iteration. */
2625 repeat:
2626 if (x == 0)
2627 return;
2628
2629 code = GET_CODE (x);
2630
2631 /* These types may be freely shared so we needn't do any resetting
2632 for them. */
2633
2634 switch (code)
2635 {
2636 case REG:
2637 case CONST_INT:
2638 case CONST_DOUBLE:
2639 case CONST_VECTOR:
2640 case SYMBOL_REF:
2641 case CODE_LABEL:
2642 case PC:
2643 case CC0:
2644 return;
2645
2646 case INSN:
2647 case JUMP_INSN:
2648 case CALL_INSN:
2649 case NOTE:
2650 case LABEL_REF:
2651 case BARRIER:
2652 /* The chain of insns is not being copied. */
2653 return;
2654
2655 default:
2656 break;
2657 }
2658
2659 RTX_FLAG (x, used) = 0;
2660
2661 format_ptr = GET_RTX_FORMAT (code);
2662 length = GET_RTX_LENGTH (code);
2663
2664 for (i = 0; i < length; i++)
2665 {
2666 switch (*format_ptr++)
2667 {
2668 case 'e':
2669 if (i == length-1)
2670 {
2671 x = XEXP (x, i);
2672 goto repeat;
2673 }
2674 reset_used_flags (XEXP (x, i));
2675 break;
2676
2677 case 'E':
2678 for (j = 0; j < XVECLEN (x, i); j++)
2679 reset_used_flags (XVECEXP (x, i, j));
2680 break;
2681 }
2682 }
2683 }
2684
2685 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2686 to look for shared sub-parts. */
2687
2688 void
2689 set_used_flags (rtx x)
2690 {
2691 int i, j;
2692 enum rtx_code code;
2693 const char *format_ptr;
2694
2695 if (x == 0)
2696 return;
2697
2698 code = GET_CODE (x);
2699
2700 /* These types may be freely shared so we needn't do any resetting
2701 for them. */
2702
2703 switch (code)
2704 {
2705 case REG:
2706 case CONST_INT:
2707 case CONST_DOUBLE:
2708 case CONST_VECTOR:
2709 case SYMBOL_REF:
2710 case CODE_LABEL:
2711 case PC:
2712 case CC0:
2713 return;
2714
2715 case INSN:
2716 case JUMP_INSN:
2717 case CALL_INSN:
2718 case NOTE:
2719 case LABEL_REF:
2720 case BARRIER:
2721 /* The chain of insns is not being copied. */
2722 return;
2723
2724 default:
2725 break;
2726 }
2727
2728 RTX_FLAG (x, used) = 1;
2729
2730 format_ptr = GET_RTX_FORMAT (code);
2731 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2732 {
2733 switch (*format_ptr++)
2734 {
2735 case 'e':
2736 set_used_flags (XEXP (x, i));
2737 break;
2738
2739 case 'E':
2740 for (j = 0; j < XVECLEN (x, i); j++)
2741 set_used_flags (XVECEXP (x, i, j));
2742 break;
2743 }
2744 }
2745 }
2746 \f
2747 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2748 Return X or the rtx for the pseudo reg the value of X was copied into.
2749 OTHER must be valid as a SET_DEST. */
2750
2751 rtx
2752 make_safe_from (rtx x, rtx other)
2753 {
2754 while (1)
2755 switch (GET_CODE (other))
2756 {
2757 case SUBREG:
2758 other = SUBREG_REG (other);
2759 break;
2760 case STRICT_LOW_PART:
2761 case SIGN_EXTEND:
2762 case ZERO_EXTEND:
2763 other = XEXP (other, 0);
2764 break;
2765 default:
2766 goto done;
2767 }
2768 done:
2769 if ((MEM_P (other)
2770 && ! CONSTANT_P (x)
2771 && !REG_P (x)
2772 && GET_CODE (x) != SUBREG)
2773 || (REG_P (other)
2774 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2775 || reg_mentioned_p (other, x))))
2776 {
2777 rtx temp = gen_reg_rtx (GET_MODE (x));
2778 emit_move_insn (temp, x);
2779 return temp;
2780 }
2781 return x;
2782 }
2783 \f
2784 /* Emission of insns (adding them to the doubly-linked list). */
2785
2786 /* Return the first insn of the current sequence or current function. */
2787
2788 rtx
2789 get_insns (void)
2790 {
2791 return first_insn;
2792 }
2793
2794 /* Specify a new insn as the first in the chain. */
2795
2796 void
2797 set_first_insn (rtx insn)
2798 {
2799 gcc_assert (!PREV_INSN (insn));
2800 first_insn = insn;
2801 }
2802
2803 /* Return the last insn emitted in current sequence or current function. */
2804
2805 rtx
2806 get_last_insn (void)
2807 {
2808 return last_insn;
2809 }
2810
2811 /* Specify a new insn as the last in the chain. */
2812
2813 void
2814 set_last_insn (rtx insn)
2815 {
2816 gcc_assert (!NEXT_INSN (insn));
2817 last_insn = insn;
2818 }
2819
2820 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2821
2822 rtx
2823 get_last_insn_anywhere (void)
2824 {
2825 struct sequence_stack *stack;
2826 if (last_insn)
2827 return last_insn;
2828 for (stack = seq_stack; stack; stack = stack->next)
2829 if (stack->last != 0)
2830 return stack->last;
2831 return 0;
2832 }
2833
2834 /* Return the first nonnote insn emitted in current sequence or current
2835 function. This routine looks inside SEQUENCEs. */
2836
2837 rtx
2838 get_first_nonnote_insn (void)
2839 {
2840 rtx insn = first_insn;
2841
2842 while (insn)
2843 {
2844 insn = next_insn (insn);
2845 if (insn == 0 || !NOTE_P (insn))
2846 break;
2847 }
2848
2849 return insn;
2850 }
2851
2852 /* Return the last nonnote insn emitted in current sequence or current
2853 function. This routine looks inside SEQUENCEs. */
2854
2855 rtx
2856 get_last_nonnote_insn (void)
2857 {
2858 rtx insn = last_insn;
2859
2860 while (insn)
2861 {
2862 insn = previous_insn (insn);
2863 if (insn == 0 || !NOTE_P (insn))
2864 break;
2865 }
2866
2867 return insn;
2868 }
2869
2870 /* Return a number larger than any instruction's uid in this function. */
2871
2872 int
2873 get_max_uid (void)
2874 {
2875 return cur_insn_uid;
2876 }
2877
2878 /* Renumber instructions so that no instruction UIDs are wasted. */
2879
2880 void
2881 renumber_insns (FILE *stream)
2882 {
2883 rtx insn;
2884
2885 /* If we're not supposed to renumber instructions, don't. */
2886 if (!flag_renumber_insns)
2887 return;
2888
2889 /* If there aren't that many instructions, then it's not really
2890 worth renumbering them. */
2891 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2892 return;
2893
2894 cur_insn_uid = 1;
2895
2896 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2897 {
2898 if (stream)
2899 fprintf (stream, "Renumbering insn %d to %d\n",
2900 INSN_UID (insn), cur_insn_uid);
2901 INSN_UID (insn) = cur_insn_uid++;
2902 }
2903 }
2904 \f
2905 /* Return the next insn. If it is a SEQUENCE, return the first insn
2906 of the sequence. */
2907
2908 rtx
2909 next_insn (rtx insn)
2910 {
2911 if (insn)
2912 {
2913 insn = NEXT_INSN (insn);
2914 if (insn && NONJUMP_INSN_P (insn)
2915 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2916 insn = XVECEXP (PATTERN (insn), 0, 0);
2917 }
2918
2919 return insn;
2920 }
2921
2922 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2923 of the sequence. */
2924
2925 rtx
2926 previous_insn (rtx insn)
2927 {
2928 if (insn)
2929 {
2930 insn = PREV_INSN (insn);
2931 if (insn && NONJUMP_INSN_P (insn)
2932 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2933 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2934 }
2935
2936 return insn;
2937 }
2938
2939 /* Return the next insn after INSN that is not a NOTE. This routine does not
2940 look inside SEQUENCEs. */
2941
2942 rtx
2943 next_nonnote_insn (rtx insn)
2944 {
2945 while (insn)
2946 {
2947 insn = NEXT_INSN (insn);
2948 if (insn == 0 || !NOTE_P (insn))
2949 break;
2950 }
2951
2952 return insn;
2953 }
2954
2955 /* Return the previous insn before INSN that is not a NOTE. This routine does
2956 not look inside SEQUENCEs. */
2957
2958 rtx
2959 prev_nonnote_insn (rtx insn)
2960 {
2961 while (insn)
2962 {
2963 insn = PREV_INSN (insn);
2964 if (insn == 0 || !NOTE_P (insn))
2965 break;
2966 }
2967
2968 return insn;
2969 }
2970
2971 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2972 or 0, if there is none. This routine does not look inside
2973 SEQUENCEs. */
2974
2975 rtx
2976 next_real_insn (rtx insn)
2977 {
2978 while (insn)
2979 {
2980 insn = NEXT_INSN (insn);
2981 if (insn == 0 || INSN_P (insn))
2982 break;
2983 }
2984
2985 return insn;
2986 }
2987
2988 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2989 or 0, if there is none. This routine does not look inside
2990 SEQUENCEs. */
2991
2992 rtx
2993 prev_real_insn (rtx insn)
2994 {
2995 while (insn)
2996 {
2997 insn = PREV_INSN (insn);
2998 if (insn == 0 || INSN_P (insn))
2999 break;
3000 }
3001
3002 return insn;
3003 }
3004
3005 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3006 This routine does not look inside SEQUENCEs. */
3007
3008 rtx
3009 last_call_insn (void)
3010 {
3011 rtx insn;
3012
3013 for (insn = get_last_insn ();
3014 insn && !CALL_P (insn);
3015 insn = PREV_INSN (insn))
3016 ;
3017
3018 return insn;
3019 }
3020
3021 /* Find the next insn after INSN that really does something. This routine
3022 does not look inside SEQUENCEs. Until reload has completed, this is the
3023 same as next_real_insn. */
3024
3025 int
3026 active_insn_p (rtx insn)
3027 {
3028 return (CALL_P (insn) || JUMP_P (insn)
3029 || (NONJUMP_INSN_P (insn)
3030 && (! reload_completed
3031 || (GET_CODE (PATTERN (insn)) != USE
3032 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3033 }
3034
3035 rtx
3036 next_active_insn (rtx insn)
3037 {
3038 while (insn)
3039 {
3040 insn = NEXT_INSN (insn);
3041 if (insn == 0 || active_insn_p (insn))
3042 break;
3043 }
3044
3045 return insn;
3046 }
3047
3048 /* Find the last insn before INSN that really does something. This routine
3049 does not look inside SEQUENCEs. Until reload has completed, this is the
3050 same as prev_real_insn. */
3051
3052 rtx
3053 prev_active_insn (rtx insn)
3054 {
3055 while (insn)
3056 {
3057 insn = PREV_INSN (insn);
3058 if (insn == 0 || active_insn_p (insn))
3059 break;
3060 }
3061
3062 return insn;
3063 }
3064
3065 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3066
3067 rtx
3068 next_label (rtx insn)
3069 {
3070 while (insn)
3071 {
3072 insn = NEXT_INSN (insn);
3073 if (insn == 0 || LABEL_P (insn))
3074 break;
3075 }
3076
3077 return insn;
3078 }
3079
3080 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3081
3082 rtx
3083 prev_label (rtx insn)
3084 {
3085 while (insn)
3086 {
3087 insn = PREV_INSN (insn);
3088 if (insn == 0 || LABEL_P (insn))
3089 break;
3090 }
3091
3092 return insn;
3093 }
3094
3095 /* Return the last label to mark the same position as LABEL. Return null
3096 if LABEL itself is null. */
3097
3098 rtx
3099 skip_consecutive_labels (rtx label)
3100 {
3101 rtx insn;
3102
3103 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3104 if (LABEL_P (insn))
3105 label = insn;
3106
3107 return label;
3108 }
3109 \f
3110 #ifdef HAVE_cc0
3111 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3112 and REG_CC_USER notes so we can find it. */
3113
3114 void
3115 link_cc0_insns (rtx insn)
3116 {
3117 rtx user = next_nonnote_insn (insn);
3118
3119 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3120 user = XVECEXP (PATTERN (user), 0, 0);
3121
3122 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3123 REG_NOTES (user));
3124 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3125 }
3126
3127 /* Return the next insn that uses CC0 after INSN, which is assumed to
3128 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3129 applied to the result of this function should yield INSN).
3130
3131 Normally, this is simply the next insn. However, if a REG_CC_USER note
3132 is present, it contains the insn that uses CC0.
3133
3134 Return 0 if we can't find the insn. */
3135
3136 rtx
3137 next_cc0_user (rtx insn)
3138 {
3139 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3140
3141 if (note)
3142 return XEXP (note, 0);
3143
3144 insn = next_nonnote_insn (insn);
3145 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3146 insn = XVECEXP (PATTERN (insn), 0, 0);
3147
3148 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3149 return insn;
3150
3151 return 0;
3152 }
3153
3154 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3155 note, it is the previous insn. */
3156
3157 rtx
3158 prev_cc0_setter (rtx insn)
3159 {
3160 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3161
3162 if (note)
3163 return XEXP (note, 0);
3164
3165 insn = prev_nonnote_insn (insn);
3166 gcc_assert (sets_cc0_p (PATTERN (insn)));
3167
3168 return insn;
3169 }
3170 #endif
3171
3172 /* Increment the label uses for all labels present in rtx. */
3173
3174 static void
3175 mark_label_nuses (rtx x)
3176 {
3177 enum rtx_code code;
3178 int i, j;
3179 const char *fmt;
3180
3181 code = GET_CODE (x);
3182 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3183 LABEL_NUSES (XEXP (x, 0))++;
3184
3185 fmt = GET_RTX_FORMAT (code);
3186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3187 {
3188 if (fmt[i] == 'e')
3189 mark_label_nuses (XEXP (x, i));
3190 else if (fmt[i] == 'E')
3191 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3192 mark_label_nuses (XVECEXP (x, i, j));
3193 }
3194 }
3195
3196 \f
3197 /* Try splitting insns that can be split for better scheduling.
3198 PAT is the pattern which might split.
3199 TRIAL is the insn providing PAT.
3200 LAST is nonzero if we should return the last insn of the sequence produced.
3201
3202 If this routine succeeds in splitting, it returns the first or last
3203 replacement insn depending on the value of LAST. Otherwise, it
3204 returns TRIAL. If the insn to be returned can be split, it will be. */
3205
3206 rtx
3207 try_split (rtx pat, rtx trial, int last)
3208 {
3209 rtx before = PREV_INSN (trial);
3210 rtx after = NEXT_INSN (trial);
3211 int has_barrier = 0;
3212 rtx tem;
3213 rtx note, seq;
3214 int probability;
3215 rtx insn_last, insn;
3216 int njumps = 0;
3217
3218 if (any_condjump_p (trial)
3219 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3220 split_branch_probability = INTVAL (XEXP (note, 0));
3221 probability = split_branch_probability;
3222
3223 seq = split_insns (pat, trial);
3224
3225 split_branch_probability = -1;
3226
3227 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3228 We may need to handle this specially. */
3229 if (after && BARRIER_P (after))
3230 {
3231 has_barrier = 1;
3232 after = NEXT_INSN (after);
3233 }
3234
3235 if (!seq)
3236 return trial;
3237
3238 /* Avoid infinite loop if any insn of the result matches
3239 the original pattern. */
3240 insn_last = seq;
3241 while (1)
3242 {
3243 if (INSN_P (insn_last)
3244 && rtx_equal_p (PATTERN (insn_last), pat))
3245 return trial;
3246 if (!NEXT_INSN (insn_last))
3247 break;
3248 insn_last = NEXT_INSN (insn_last);
3249 }
3250
3251 /* Mark labels. */
3252 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3253 {
3254 if (JUMP_P (insn))
3255 {
3256 mark_jump_label (PATTERN (insn), insn, 0);
3257 njumps++;
3258 if (probability != -1
3259 && any_condjump_p (insn)
3260 && !find_reg_note (insn, REG_BR_PROB, 0))
3261 {
3262 /* We can preserve the REG_BR_PROB notes only if exactly
3263 one jump is created, otherwise the machine description
3264 is responsible for this step using
3265 split_branch_probability variable. */
3266 gcc_assert (njumps == 1);
3267 REG_NOTES (insn)
3268 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3269 GEN_INT (probability),
3270 REG_NOTES (insn));
3271 }
3272 }
3273 }
3274
3275 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3276 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3277 if (CALL_P (trial))
3278 {
3279 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3280 if (CALL_P (insn))
3281 {
3282 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3283 while (*p)
3284 p = &XEXP (*p, 1);
3285 *p = CALL_INSN_FUNCTION_USAGE (trial);
3286 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3287 }
3288 }
3289
3290 /* Copy notes, particularly those related to the CFG. */
3291 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3292 {
3293 switch (REG_NOTE_KIND (note))
3294 {
3295 case REG_EH_REGION:
3296 insn = insn_last;
3297 while (insn != NULL_RTX)
3298 {
3299 if (CALL_P (insn)
3300 || (flag_non_call_exceptions && INSN_P (insn)
3301 && may_trap_p (PATTERN (insn))))
3302 REG_NOTES (insn)
3303 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3304 XEXP (note, 0),
3305 REG_NOTES (insn));
3306 insn = PREV_INSN (insn);
3307 }
3308 break;
3309
3310 case REG_NORETURN:
3311 case REG_SETJMP:
3312 case REG_ALWAYS_RETURN:
3313 insn = insn_last;
3314 while (insn != NULL_RTX)
3315 {
3316 if (CALL_P (insn))
3317 REG_NOTES (insn)
3318 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3319 XEXP (note, 0),
3320 REG_NOTES (insn));
3321 insn = PREV_INSN (insn);
3322 }
3323 break;
3324
3325 case REG_NON_LOCAL_GOTO:
3326 insn = insn_last;
3327 while (insn != NULL_RTX)
3328 {
3329 if (JUMP_P (insn))
3330 REG_NOTES (insn)
3331 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3332 XEXP (note, 0),
3333 REG_NOTES (insn));
3334 insn = PREV_INSN (insn);
3335 }
3336 break;
3337
3338 default:
3339 break;
3340 }
3341 }
3342
3343 /* If there are LABELS inside the split insns increment the
3344 usage count so we don't delete the label. */
3345 if (NONJUMP_INSN_P (trial))
3346 {
3347 insn = insn_last;
3348 while (insn != NULL_RTX)
3349 {
3350 if (NONJUMP_INSN_P (insn))
3351 mark_label_nuses (PATTERN (insn));
3352
3353 insn = PREV_INSN (insn);
3354 }
3355 }
3356
3357 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3358
3359 delete_insn (trial);
3360 if (has_barrier)
3361 emit_barrier_after (tem);
3362
3363 /* Recursively call try_split for each new insn created; by the
3364 time control returns here that insn will be fully split, so
3365 set LAST and continue from the insn after the one returned.
3366 We can't use next_active_insn here since AFTER may be a note.
3367 Ignore deleted insns, which can be occur if not optimizing. */
3368 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3369 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3370 tem = try_split (PATTERN (tem), tem, 1);
3371
3372 /* Return either the first or the last insn, depending on which was
3373 requested. */
3374 return last
3375 ? (after ? PREV_INSN (after) : last_insn)
3376 : NEXT_INSN (before);
3377 }
3378 \f
3379 /* Make and return an INSN rtx, initializing all its slots.
3380 Store PATTERN in the pattern slots. */
3381
3382 rtx
3383 make_insn_raw (rtx pattern)
3384 {
3385 rtx insn;
3386
3387 insn = rtx_alloc (INSN);
3388
3389 INSN_UID (insn) = cur_insn_uid++;
3390 PATTERN (insn) = pattern;
3391 INSN_CODE (insn) = -1;
3392 LOG_LINKS (insn) = NULL;
3393 REG_NOTES (insn) = NULL;
3394 INSN_LOCATOR (insn) = 0;
3395 BLOCK_FOR_INSN (insn) = NULL;
3396
3397 #ifdef ENABLE_RTL_CHECKING
3398 if (insn
3399 && INSN_P (insn)
3400 && (returnjump_p (insn)
3401 || (GET_CODE (insn) == SET
3402 && SET_DEST (insn) == pc_rtx)))
3403 {
3404 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3405 debug_rtx (insn);
3406 }
3407 #endif
3408
3409 return insn;
3410 }
3411
3412 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3413
3414 static rtx
3415 make_jump_insn_raw (rtx pattern)
3416 {
3417 rtx insn;
3418
3419 insn = rtx_alloc (JUMP_INSN);
3420 INSN_UID (insn) = cur_insn_uid++;
3421
3422 PATTERN (insn) = pattern;
3423 INSN_CODE (insn) = -1;
3424 LOG_LINKS (insn) = NULL;
3425 REG_NOTES (insn) = NULL;
3426 JUMP_LABEL (insn) = NULL;
3427 INSN_LOCATOR (insn) = 0;
3428 BLOCK_FOR_INSN (insn) = NULL;
3429
3430 return insn;
3431 }
3432
3433 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3434
3435 static rtx
3436 make_call_insn_raw (rtx pattern)
3437 {
3438 rtx insn;
3439
3440 insn = rtx_alloc (CALL_INSN);
3441 INSN_UID (insn) = cur_insn_uid++;
3442
3443 PATTERN (insn) = pattern;
3444 INSN_CODE (insn) = -1;
3445 LOG_LINKS (insn) = NULL;
3446 REG_NOTES (insn) = NULL;
3447 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3448 INSN_LOCATOR (insn) = 0;
3449 BLOCK_FOR_INSN (insn) = NULL;
3450
3451 return insn;
3452 }
3453 \f
3454 /* Add INSN to the end of the doubly-linked list.
3455 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3456
3457 void
3458 add_insn (rtx insn)
3459 {
3460 PREV_INSN (insn) = last_insn;
3461 NEXT_INSN (insn) = 0;
3462
3463 if (NULL != last_insn)
3464 NEXT_INSN (last_insn) = insn;
3465
3466 if (NULL == first_insn)
3467 first_insn = insn;
3468
3469 last_insn = insn;
3470 }
3471
3472 /* Add INSN into the doubly-linked list after insn AFTER. This and
3473 the next should be the only functions called to insert an insn once
3474 delay slots have been filled since only they know how to update a
3475 SEQUENCE. */
3476
3477 void
3478 add_insn_after (rtx insn, rtx after)
3479 {
3480 rtx next = NEXT_INSN (after);
3481 basic_block bb;
3482
3483 gcc_assert (!optimize || !INSN_DELETED_P (after));
3484
3485 NEXT_INSN (insn) = next;
3486 PREV_INSN (insn) = after;
3487
3488 if (next)
3489 {
3490 PREV_INSN (next) = insn;
3491 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3492 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3493 }
3494 else if (last_insn == after)
3495 last_insn = insn;
3496 else
3497 {
3498 struct sequence_stack *stack = seq_stack;
3499 /* Scan all pending sequences too. */
3500 for (; stack; stack = stack->next)
3501 if (after == stack->last)
3502 {
3503 stack->last = insn;
3504 break;
3505 }
3506
3507 gcc_assert (stack);
3508 }
3509
3510 if (!BARRIER_P (after)
3511 && !BARRIER_P (insn)
3512 && (bb = BLOCK_FOR_INSN (after)))
3513 {
3514 set_block_for_insn (insn, bb);
3515 if (INSN_P (insn))
3516 bb->flags |= BB_DIRTY;
3517 /* Should not happen as first in the BB is always
3518 either NOTE or LABEL. */
3519 if (BB_END (bb) == after
3520 /* Avoid clobbering of structure when creating new BB. */
3521 && !BARRIER_P (insn)
3522 && (!NOTE_P (insn)
3523 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3524 BB_END (bb) = insn;
3525 }
3526
3527 NEXT_INSN (after) = insn;
3528 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3529 {
3530 rtx sequence = PATTERN (after);
3531 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3532 }
3533 }
3534
3535 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3536 the previous should be the only functions called to insert an insn once
3537 delay slots have been filled since only they know how to update a
3538 SEQUENCE. */
3539
3540 void
3541 add_insn_before (rtx insn, rtx before)
3542 {
3543 rtx prev = PREV_INSN (before);
3544 basic_block bb;
3545
3546 gcc_assert (!optimize || !INSN_DELETED_P (before));
3547
3548 PREV_INSN (insn) = prev;
3549 NEXT_INSN (insn) = before;
3550
3551 if (prev)
3552 {
3553 NEXT_INSN (prev) = insn;
3554 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3555 {
3556 rtx sequence = PATTERN (prev);
3557 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3558 }
3559 }
3560 else if (first_insn == before)
3561 first_insn = insn;
3562 else
3563 {
3564 struct sequence_stack *stack = seq_stack;
3565 /* Scan all pending sequences too. */
3566 for (; stack; stack = stack->next)
3567 if (before == stack->first)
3568 {
3569 stack->first = insn;
3570 break;
3571 }
3572
3573 gcc_assert (stack);
3574 }
3575
3576 if (!BARRIER_P (before)
3577 && !BARRIER_P (insn)
3578 && (bb = BLOCK_FOR_INSN (before)))
3579 {
3580 set_block_for_insn (insn, bb);
3581 if (INSN_P (insn))
3582 bb->flags |= BB_DIRTY;
3583 /* Should not happen as first in the BB is always either NOTE or
3584 LABEl. */
3585 gcc_assert (BB_HEAD (bb) != insn
3586 /* Avoid clobbering of structure when creating new BB. */
3587 || BARRIER_P (insn)
3588 || (NOTE_P (insn)
3589 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3590 }
3591
3592 PREV_INSN (before) = insn;
3593 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3594 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3595 }
3596
3597 /* Remove an insn from its doubly-linked list. This function knows how
3598 to handle sequences. */
3599 void
3600 remove_insn (rtx insn)
3601 {
3602 rtx next = NEXT_INSN (insn);
3603 rtx prev = PREV_INSN (insn);
3604 basic_block bb;
3605
3606 if (prev)
3607 {
3608 NEXT_INSN (prev) = next;
3609 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3610 {
3611 rtx sequence = PATTERN (prev);
3612 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3613 }
3614 }
3615 else if (first_insn == insn)
3616 first_insn = next;
3617 else
3618 {
3619 struct sequence_stack *stack = seq_stack;
3620 /* Scan all pending sequences too. */
3621 for (; stack; stack = stack->next)
3622 if (insn == stack->first)
3623 {
3624 stack->first = next;
3625 break;
3626 }
3627
3628 gcc_assert (stack);
3629 }
3630
3631 if (next)
3632 {
3633 PREV_INSN (next) = prev;
3634 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3635 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3636 }
3637 else if (last_insn == insn)
3638 last_insn = prev;
3639 else
3640 {
3641 struct sequence_stack *stack = seq_stack;
3642 /* Scan all pending sequences too. */
3643 for (; stack; stack = stack->next)
3644 if (insn == stack->last)
3645 {
3646 stack->last = prev;
3647 break;
3648 }
3649
3650 gcc_assert (stack);
3651 }
3652 if (!BARRIER_P (insn)
3653 && (bb = BLOCK_FOR_INSN (insn)))
3654 {
3655 if (INSN_P (insn))
3656 bb->flags |= BB_DIRTY;
3657 if (BB_HEAD (bb) == insn)
3658 {
3659 /* Never ever delete the basic block note without deleting whole
3660 basic block. */
3661 gcc_assert (!NOTE_P (insn));
3662 BB_HEAD (bb) = next;
3663 }
3664 if (BB_END (bb) == insn)
3665 BB_END (bb) = prev;
3666 }
3667 }
3668
3669 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3670
3671 void
3672 add_function_usage_to (rtx call_insn, rtx call_fusage)
3673 {
3674 gcc_assert (call_insn && CALL_P (call_insn));
3675
3676 /* Put the register usage information on the CALL. If there is already
3677 some usage information, put ours at the end. */
3678 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3679 {
3680 rtx link;
3681
3682 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3683 link = XEXP (link, 1))
3684 ;
3685
3686 XEXP (link, 1) = call_fusage;
3687 }
3688 else
3689 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3690 }
3691
3692 /* Delete all insns made since FROM.
3693 FROM becomes the new last instruction. */
3694
3695 void
3696 delete_insns_since (rtx from)
3697 {
3698 if (from == 0)
3699 first_insn = 0;
3700 else
3701 NEXT_INSN (from) = 0;
3702 last_insn = from;
3703 }
3704
3705 /* This function is deprecated, please use sequences instead.
3706
3707 Move a consecutive bunch of insns to a different place in the chain.
3708 The insns to be moved are those between FROM and TO.
3709 They are moved to a new position after the insn AFTER.
3710 AFTER must not be FROM or TO or any insn in between.
3711
3712 This function does not know about SEQUENCEs and hence should not be
3713 called after delay-slot filling has been done. */
3714
3715 void
3716 reorder_insns_nobb (rtx from, rtx to, rtx after)
3717 {
3718 /* Splice this bunch out of where it is now. */
3719 if (PREV_INSN (from))
3720 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3721 if (NEXT_INSN (to))
3722 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3723 if (last_insn == to)
3724 last_insn = PREV_INSN (from);
3725 if (first_insn == from)
3726 first_insn = NEXT_INSN (to);
3727
3728 /* Make the new neighbors point to it and it to them. */
3729 if (NEXT_INSN (after))
3730 PREV_INSN (NEXT_INSN (after)) = to;
3731
3732 NEXT_INSN (to) = NEXT_INSN (after);
3733 PREV_INSN (from) = after;
3734 NEXT_INSN (after) = from;
3735 if (after == last_insn)
3736 last_insn = to;
3737 }
3738
3739 /* Same as function above, but take care to update BB boundaries. */
3740 void
3741 reorder_insns (rtx from, rtx to, rtx after)
3742 {
3743 rtx prev = PREV_INSN (from);
3744 basic_block bb, bb2;
3745
3746 reorder_insns_nobb (from, to, after);
3747
3748 if (!BARRIER_P (after)
3749 && (bb = BLOCK_FOR_INSN (after)))
3750 {
3751 rtx x;
3752 bb->flags |= BB_DIRTY;
3753
3754 if (!BARRIER_P (from)
3755 && (bb2 = BLOCK_FOR_INSN (from)))
3756 {
3757 if (BB_END (bb2) == to)
3758 BB_END (bb2) = prev;
3759 bb2->flags |= BB_DIRTY;
3760 }
3761
3762 if (BB_END (bb) == after)
3763 BB_END (bb) = to;
3764
3765 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3766 if (!BARRIER_P (x))
3767 set_block_for_insn (x, bb);
3768 }
3769 }
3770
3771 /* Return the line note insn preceding INSN. */
3772
3773 static rtx
3774 find_line_note (rtx insn)
3775 {
3776 if (no_line_numbers)
3777 return 0;
3778
3779 for (; insn; insn = PREV_INSN (insn))
3780 if (NOTE_P (insn)
3781 && NOTE_LINE_NUMBER (insn) >= 0)
3782 break;
3783
3784 return insn;
3785 }
3786
3787 /* Remove unnecessary notes from the instruction stream. */
3788
3789 void
3790 remove_unnecessary_notes (void)
3791 {
3792 rtx block_stack = NULL_RTX;
3793 rtx eh_stack = NULL_RTX;
3794 rtx insn;
3795 rtx next;
3796 rtx tmp;
3797
3798 /* We must not remove the first instruction in the function because
3799 the compiler depends on the first instruction being a note. */
3800 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3801 {
3802 /* Remember what's next. */
3803 next = NEXT_INSN (insn);
3804
3805 /* We're only interested in notes. */
3806 if (!NOTE_P (insn))
3807 continue;
3808
3809 switch (NOTE_LINE_NUMBER (insn))
3810 {
3811 case NOTE_INSN_DELETED:
3812 remove_insn (insn);
3813 break;
3814
3815 case NOTE_INSN_EH_REGION_BEG:
3816 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3817 break;
3818
3819 case NOTE_INSN_EH_REGION_END:
3820 /* Too many end notes. */
3821 gcc_assert (eh_stack);
3822 /* Mismatched nesting. */
3823 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3824 == NOTE_EH_HANDLER (insn));
3825 tmp = eh_stack;
3826 eh_stack = XEXP (eh_stack, 1);
3827 free_INSN_LIST_node (tmp);
3828 break;
3829
3830 case NOTE_INSN_BLOCK_BEG:
3831 /* By now, all notes indicating lexical blocks should have
3832 NOTE_BLOCK filled in. */
3833 gcc_assert (NOTE_BLOCK (insn));
3834 block_stack = alloc_INSN_LIST (insn, block_stack);
3835 break;
3836
3837 case NOTE_INSN_BLOCK_END:
3838 /* Too many end notes. */
3839 gcc_assert (block_stack);
3840 /* Mismatched nesting. */
3841 gcc_assert (NOTE_BLOCK (XEXP (block_stack, 0)) == NOTE_BLOCK (insn));
3842 tmp = block_stack;
3843 block_stack = XEXP (block_stack, 1);
3844 free_INSN_LIST_node (tmp);
3845
3846 /* Scan back to see if there are any non-note instructions
3847 between INSN and the beginning of this block. If not,
3848 then there is no PC range in the generated code that will
3849 actually be in this block, so there's no point in
3850 remembering the existence of the block. */
3851 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3852 {
3853 /* This block contains a real instruction. Note that we
3854 don't include labels; if the only thing in the block
3855 is a label, then there are still no PC values that
3856 lie within the block. */
3857 if (INSN_P (tmp))
3858 break;
3859
3860 /* We're only interested in NOTEs. */
3861 if (!NOTE_P (tmp))
3862 continue;
3863
3864 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3865 {
3866 /* We just verified that this BLOCK matches us with
3867 the block_stack check above. Never delete the
3868 BLOCK for the outermost scope of the function; we
3869 can refer to names from that scope even if the
3870 block notes are messed up. */
3871 if (! is_body_block (NOTE_BLOCK (insn))
3872 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3873 {
3874 remove_insn (tmp);
3875 remove_insn (insn);
3876 }
3877 break;
3878 }
3879 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3880 /* There's a nested block. We need to leave the
3881 current block in place since otherwise the debugger
3882 wouldn't be able to show symbols from our block in
3883 the nested block. */
3884 break;
3885 }
3886 }
3887 }
3888
3889 /* Too many begin notes. */
3890 gcc_assert (!block_stack && !eh_stack);
3891 }
3892
3893 \f
3894 /* Emit insn(s) of given code and pattern
3895 at a specified place within the doubly-linked list.
3896
3897 All of the emit_foo global entry points accept an object
3898 X which is either an insn list or a PATTERN of a single
3899 instruction.
3900
3901 There are thus a few canonical ways to generate code and
3902 emit it at a specific place in the instruction stream. For
3903 example, consider the instruction named SPOT and the fact that
3904 we would like to emit some instructions before SPOT. We might
3905 do it like this:
3906
3907 start_sequence ();
3908 ... emit the new instructions ...
3909 insns_head = get_insns ();
3910 end_sequence ();
3911
3912 emit_insn_before (insns_head, SPOT);
3913
3914 It used to be common to generate SEQUENCE rtl instead, but that
3915 is a relic of the past which no longer occurs. The reason is that
3916 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3917 generated would almost certainly die right after it was created. */
3918
3919 /* Make X be output before the instruction BEFORE. */
3920
3921 rtx
3922 emit_insn_before_noloc (rtx x, rtx before)
3923 {
3924 rtx last = before;
3925 rtx insn;
3926
3927 gcc_assert (before);
3928
3929 if (x == NULL_RTX)
3930 return last;
3931
3932 switch (GET_CODE (x))
3933 {
3934 case INSN:
3935 case JUMP_INSN:
3936 case CALL_INSN:
3937 case CODE_LABEL:
3938 case BARRIER:
3939 case NOTE:
3940 insn = x;
3941 while (insn)
3942 {
3943 rtx next = NEXT_INSN (insn);
3944 add_insn_before (insn, before);
3945 last = insn;
3946 insn = next;
3947 }
3948 break;
3949
3950 #ifdef ENABLE_RTL_CHECKING
3951 case SEQUENCE:
3952 gcc_unreachable ();
3953 break;
3954 #endif
3955
3956 default:
3957 last = make_insn_raw (x);
3958 add_insn_before (last, before);
3959 break;
3960 }
3961
3962 return last;
3963 }
3964
3965 /* Make an instruction with body X and code JUMP_INSN
3966 and output it before the instruction BEFORE. */
3967
3968 rtx
3969 emit_jump_insn_before_noloc (rtx x, rtx before)
3970 {
3971 rtx insn, last = NULL_RTX;
3972
3973 gcc_assert (before);
3974
3975 switch (GET_CODE (x))
3976 {
3977 case INSN:
3978 case JUMP_INSN:
3979 case CALL_INSN:
3980 case CODE_LABEL:
3981 case BARRIER:
3982 case NOTE:
3983 insn = x;
3984 while (insn)
3985 {
3986 rtx next = NEXT_INSN (insn);
3987 add_insn_before (insn, before);
3988 last = insn;
3989 insn = next;
3990 }
3991 break;
3992
3993 #ifdef ENABLE_RTL_CHECKING
3994 case SEQUENCE:
3995 gcc_unreachable ();
3996 break;
3997 #endif
3998
3999 default:
4000 last = make_jump_insn_raw (x);
4001 add_insn_before (last, before);
4002 break;
4003 }
4004
4005 return last;
4006 }
4007
4008 /* Make an instruction with body X and code CALL_INSN
4009 and output it before the instruction BEFORE. */
4010
4011 rtx
4012 emit_call_insn_before_noloc (rtx x, rtx before)
4013 {
4014 rtx last = NULL_RTX, insn;
4015
4016 gcc_assert (before);
4017
4018 switch (GET_CODE (x))
4019 {
4020 case INSN:
4021 case JUMP_INSN:
4022 case CALL_INSN:
4023 case CODE_LABEL:
4024 case BARRIER:
4025 case NOTE:
4026 insn = x;
4027 while (insn)
4028 {
4029 rtx next = NEXT_INSN (insn);
4030 add_insn_before (insn, before);
4031 last = insn;
4032 insn = next;
4033 }
4034 break;
4035
4036 #ifdef ENABLE_RTL_CHECKING
4037 case SEQUENCE:
4038 gcc_unreachable ();
4039 break;
4040 #endif
4041
4042 default:
4043 last = make_call_insn_raw (x);
4044 add_insn_before (last, before);
4045 break;
4046 }
4047
4048 return last;
4049 }
4050
4051 /* Make an insn of code BARRIER
4052 and output it before the insn BEFORE. */
4053
4054 rtx
4055 emit_barrier_before (rtx before)
4056 {
4057 rtx insn = rtx_alloc (BARRIER);
4058
4059 INSN_UID (insn) = cur_insn_uid++;
4060 BLOCK_FOR_INSN (insn) = NULL;
4061
4062 add_insn_before (insn, before);
4063 return insn;
4064 }
4065
4066 /* Emit the label LABEL before the insn BEFORE. */
4067
4068 rtx
4069 emit_label_before (rtx label, rtx before)
4070 {
4071 /* This can be called twice for the same label as a result of the
4072 confusion that follows a syntax error! So make it harmless. */
4073 if (INSN_UID (label) == 0)
4074 {
4075 INSN_UID (label) = cur_insn_uid++;
4076 add_insn_before (label, before);
4077 }
4078
4079 return label;
4080 }
4081
4082 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4083
4084 rtx
4085 emit_note_before (int subtype, rtx before)
4086 {
4087 rtx note = rtx_alloc (NOTE);
4088 INSN_UID (note) = cur_insn_uid++;
4089 #ifndef USE_MAPPED_LOCATION
4090 NOTE_SOURCE_FILE (note) = 0;
4091 #endif
4092 NOTE_LINE_NUMBER (note) = subtype;
4093 BLOCK_FOR_INSN (note) = NULL;
4094
4095 add_insn_before (note, before);
4096 return note;
4097 }
4098 \f
4099 /* Helper for emit_insn_after, handles lists of instructions
4100 efficiently. */
4101
4102 static rtx emit_insn_after_1 (rtx, rtx);
4103
4104 static rtx
4105 emit_insn_after_1 (rtx first, rtx after)
4106 {
4107 rtx last;
4108 rtx after_after;
4109 basic_block bb;
4110
4111 if (!BARRIER_P (after)
4112 && (bb = BLOCK_FOR_INSN (after)))
4113 {
4114 bb->flags |= BB_DIRTY;
4115 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4116 if (!BARRIER_P (last))
4117 set_block_for_insn (last, bb);
4118 if (!BARRIER_P (last))
4119 set_block_for_insn (last, bb);
4120 if (BB_END (bb) == after)
4121 BB_END (bb) = last;
4122 }
4123 else
4124 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4125 continue;
4126
4127 after_after = NEXT_INSN (after);
4128
4129 NEXT_INSN (after) = first;
4130 PREV_INSN (first) = after;
4131 NEXT_INSN (last) = after_after;
4132 if (after_after)
4133 PREV_INSN (after_after) = last;
4134
4135 if (after == last_insn)
4136 last_insn = last;
4137 return last;
4138 }
4139
4140 /* Make X be output after the insn AFTER. */
4141
4142 rtx
4143 emit_insn_after_noloc (rtx x, rtx after)
4144 {
4145 rtx last = after;
4146
4147 gcc_assert (after);
4148
4149 if (x == NULL_RTX)
4150 return last;
4151
4152 switch (GET_CODE (x))
4153 {
4154 case INSN:
4155 case JUMP_INSN:
4156 case CALL_INSN:
4157 case CODE_LABEL:
4158 case BARRIER:
4159 case NOTE:
4160 last = emit_insn_after_1 (x, after);
4161 break;
4162
4163 #ifdef ENABLE_RTL_CHECKING
4164 case SEQUENCE:
4165 gcc_unreachable ();
4166 break;
4167 #endif
4168
4169 default:
4170 last = make_insn_raw (x);
4171 add_insn_after (last, after);
4172 break;
4173 }
4174
4175 return last;
4176 }
4177
4178 /* Similar to emit_insn_after, except that line notes are to be inserted so
4179 as to act as if this insn were at FROM. */
4180
4181 void
4182 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4183 {
4184 rtx from_line = find_line_note (from);
4185 rtx after_line = find_line_note (after);
4186 rtx insn = emit_insn_after (x, after);
4187
4188 if (from_line)
4189 emit_note_copy_after (from_line, after);
4190
4191 if (after_line)
4192 emit_note_copy_after (after_line, insn);
4193 }
4194
4195 /* Make an insn of code JUMP_INSN with body X
4196 and output it after the insn AFTER. */
4197
4198 rtx
4199 emit_jump_insn_after_noloc (rtx x, rtx after)
4200 {
4201 rtx last;
4202
4203 gcc_assert (after);
4204
4205 switch (GET_CODE (x))
4206 {
4207 case INSN:
4208 case JUMP_INSN:
4209 case CALL_INSN:
4210 case CODE_LABEL:
4211 case BARRIER:
4212 case NOTE:
4213 last = emit_insn_after_1 (x, after);
4214 break;
4215
4216 #ifdef ENABLE_RTL_CHECKING
4217 case SEQUENCE:
4218 gcc_unreachable ();
4219 break;
4220 #endif
4221
4222 default:
4223 last = make_jump_insn_raw (x);
4224 add_insn_after (last, after);
4225 break;
4226 }
4227
4228 return last;
4229 }
4230
4231 /* Make an instruction with body X and code CALL_INSN
4232 and output it after the instruction AFTER. */
4233
4234 rtx
4235 emit_call_insn_after_noloc (rtx x, rtx after)
4236 {
4237 rtx last;
4238
4239 gcc_assert (after);
4240
4241 switch (GET_CODE (x))
4242 {
4243 case INSN:
4244 case JUMP_INSN:
4245 case CALL_INSN:
4246 case CODE_LABEL:
4247 case BARRIER:
4248 case NOTE:
4249 last = emit_insn_after_1 (x, after);
4250 break;
4251
4252 #ifdef ENABLE_RTL_CHECKING
4253 case SEQUENCE:
4254 gcc_unreachable ();
4255 break;
4256 #endif
4257
4258 default:
4259 last = make_call_insn_raw (x);
4260 add_insn_after (last, after);
4261 break;
4262 }
4263
4264 return last;
4265 }
4266
4267 /* Make an insn of code BARRIER
4268 and output it after the insn AFTER. */
4269
4270 rtx
4271 emit_barrier_after (rtx after)
4272 {
4273 rtx insn = rtx_alloc (BARRIER);
4274
4275 INSN_UID (insn) = cur_insn_uid++;
4276 BLOCK_FOR_INSN (insn) = NULL;
4277
4278 add_insn_after (insn, after);
4279 return insn;
4280 }
4281
4282 /* Emit the label LABEL after the insn AFTER. */
4283
4284 rtx
4285 emit_label_after (rtx label, rtx after)
4286 {
4287 /* This can be called twice for the same label
4288 as a result of the confusion that follows a syntax error!
4289 So make it harmless. */
4290 if (INSN_UID (label) == 0)
4291 {
4292 INSN_UID (label) = cur_insn_uid++;
4293 add_insn_after (label, after);
4294 }
4295
4296 return label;
4297 }
4298
4299 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4300
4301 rtx
4302 emit_note_after (int subtype, rtx after)
4303 {
4304 rtx note = rtx_alloc (NOTE);
4305 INSN_UID (note) = cur_insn_uid++;
4306 #ifndef USE_MAPPED_LOCATION
4307 NOTE_SOURCE_FILE (note) = 0;
4308 #endif
4309 NOTE_LINE_NUMBER (note) = subtype;
4310 BLOCK_FOR_INSN (note) = NULL;
4311 add_insn_after (note, after);
4312 return note;
4313 }
4314
4315 /* Emit a copy of note ORIG after the insn AFTER. */
4316
4317 rtx
4318 emit_note_copy_after (rtx orig, rtx after)
4319 {
4320 rtx note;
4321
4322 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4323 {
4324 cur_insn_uid++;
4325 return 0;
4326 }
4327
4328 note = rtx_alloc (NOTE);
4329 INSN_UID (note) = cur_insn_uid++;
4330 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4331 NOTE_DATA (note) = NOTE_DATA (orig);
4332 BLOCK_FOR_INSN (note) = NULL;
4333 add_insn_after (note, after);
4334 return note;
4335 }
4336 \f
4337 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4338 rtx
4339 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4340 {
4341 rtx last = emit_insn_after_noloc (pattern, after);
4342
4343 if (pattern == NULL_RTX || !loc)
4344 return last;
4345
4346 after = NEXT_INSN (after);
4347 while (1)
4348 {
4349 if (active_insn_p (after) && !INSN_LOCATOR (after))
4350 INSN_LOCATOR (after) = loc;
4351 if (after == last)
4352 break;
4353 after = NEXT_INSN (after);
4354 }
4355 return last;
4356 }
4357
4358 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4359 rtx
4360 emit_insn_after (rtx pattern, rtx after)
4361 {
4362 if (INSN_P (after))
4363 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4364 else
4365 return emit_insn_after_noloc (pattern, after);
4366 }
4367
4368 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4369 rtx
4370 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4371 {
4372 rtx last = emit_jump_insn_after_noloc (pattern, after);
4373
4374 if (pattern == NULL_RTX || !loc)
4375 return last;
4376
4377 after = NEXT_INSN (after);
4378 while (1)
4379 {
4380 if (active_insn_p (after) && !INSN_LOCATOR (after))
4381 INSN_LOCATOR (after) = loc;
4382 if (after == last)
4383 break;
4384 after = NEXT_INSN (after);
4385 }
4386 return last;
4387 }
4388
4389 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4390 rtx
4391 emit_jump_insn_after (rtx pattern, rtx after)
4392 {
4393 if (INSN_P (after))
4394 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4395 else
4396 return emit_jump_insn_after_noloc (pattern, after);
4397 }
4398
4399 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4400 rtx
4401 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4402 {
4403 rtx last = emit_call_insn_after_noloc (pattern, after);
4404
4405 if (pattern == NULL_RTX || !loc)
4406 return last;
4407
4408 after = NEXT_INSN (after);
4409 while (1)
4410 {
4411 if (active_insn_p (after) && !INSN_LOCATOR (after))
4412 INSN_LOCATOR (after) = loc;
4413 if (after == last)
4414 break;
4415 after = NEXT_INSN (after);
4416 }
4417 return last;
4418 }
4419
4420 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4421 rtx
4422 emit_call_insn_after (rtx pattern, rtx after)
4423 {
4424 if (INSN_P (after))
4425 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4426 else
4427 return emit_call_insn_after_noloc (pattern, after);
4428 }
4429
4430 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4431 rtx
4432 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4433 {
4434 rtx first = PREV_INSN (before);
4435 rtx last = emit_insn_before_noloc (pattern, before);
4436
4437 if (pattern == NULL_RTX || !loc)
4438 return last;
4439
4440 first = NEXT_INSN (first);
4441 while (1)
4442 {
4443 if (active_insn_p (first) && !INSN_LOCATOR (first))
4444 INSN_LOCATOR (first) = loc;
4445 if (first == last)
4446 break;
4447 first = NEXT_INSN (first);
4448 }
4449 return last;
4450 }
4451
4452 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4453 rtx
4454 emit_insn_before (rtx pattern, rtx before)
4455 {
4456 if (INSN_P (before))
4457 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4458 else
4459 return emit_insn_before_noloc (pattern, before);
4460 }
4461
4462 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4463 rtx
4464 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4465 {
4466 rtx first = PREV_INSN (before);
4467 rtx last = emit_jump_insn_before_noloc (pattern, before);
4468
4469 if (pattern == NULL_RTX)
4470 return last;
4471
4472 first = NEXT_INSN (first);
4473 while (1)
4474 {
4475 if (active_insn_p (first) && !INSN_LOCATOR (first))
4476 INSN_LOCATOR (first) = loc;
4477 if (first == last)
4478 break;
4479 first = NEXT_INSN (first);
4480 }
4481 return last;
4482 }
4483
4484 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4485 rtx
4486 emit_jump_insn_before (rtx pattern, rtx before)
4487 {
4488 if (INSN_P (before))
4489 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4490 else
4491 return emit_jump_insn_before_noloc (pattern, before);
4492 }
4493
4494 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4495 rtx
4496 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4497 {
4498 rtx first = PREV_INSN (before);
4499 rtx last = emit_call_insn_before_noloc (pattern, before);
4500
4501 if (pattern == NULL_RTX)
4502 return last;
4503
4504 first = NEXT_INSN (first);
4505 while (1)
4506 {
4507 if (active_insn_p (first) && !INSN_LOCATOR (first))
4508 INSN_LOCATOR (first) = loc;
4509 if (first == last)
4510 break;
4511 first = NEXT_INSN (first);
4512 }
4513 return last;
4514 }
4515
4516 /* like emit_call_insn_before_noloc,
4517 but set insn_locator according to before. */
4518 rtx
4519 emit_call_insn_before (rtx pattern, rtx before)
4520 {
4521 if (INSN_P (before))
4522 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4523 else
4524 return emit_call_insn_before_noloc (pattern, before);
4525 }
4526 \f
4527 /* Take X and emit it at the end of the doubly-linked
4528 INSN list.
4529
4530 Returns the last insn emitted. */
4531
4532 rtx
4533 emit_insn (rtx x)
4534 {
4535 rtx last = last_insn;
4536 rtx insn;
4537
4538 if (x == NULL_RTX)
4539 return last;
4540
4541 switch (GET_CODE (x))
4542 {
4543 case INSN:
4544 case JUMP_INSN:
4545 case CALL_INSN:
4546 case CODE_LABEL:
4547 case BARRIER:
4548 case NOTE:
4549 insn = x;
4550 while (insn)
4551 {
4552 rtx next = NEXT_INSN (insn);
4553 add_insn (insn);
4554 last = insn;
4555 insn = next;
4556 }
4557 break;
4558
4559 #ifdef ENABLE_RTL_CHECKING
4560 case SEQUENCE:
4561 gcc_unreachable ();
4562 break;
4563 #endif
4564
4565 default:
4566 last = make_insn_raw (x);
4567 add_insn (last);
4568 break;
4569 }
4570
4571 return last;
4572 }
4573
4574 /* Make an insn of code JUMP_INSN with pattern X
4575 and add it to the end of the doubly-linked list. */
4576
4577 rtx
4578 emit_jump_insn (rtx x)
4579 {
4580 rtx last = NULL_RTX, insn;
4581
4582 switch (GET_CODE (x))
4583 {
4584 case INSN:
4585 case JUMP_INSN:
4586 case CALL_INSN:
4587 case CODE_LABEL:
4588 case BARRIER:
4589 case NOTE:
4590 insn = x;
4591 while (insn)
4592 {
4593 rtx next = NEXT_INSN (insn);
4594 add_insn (insn);
4595 last = insn;
4596 insn = next;
4597 }
4598 break;
4599
4600 #ifdef ENABLE_RTL_CHECKING
4601 case SEQUENCE:
4602 gcc_unreachable ();
4603 break;
4604 #endif
4605
4606 default:
4607 last = make_jump_insn_raw (x);
4608 add_insn (last);
4609 break;
4610 }
4611
4612 return last;
4613 }
4614
4615 /* Make an insn of code CALL_INSN with pattern X
4616 and add it to the end of the doubly-linked list. */
4617
4618 rtx
4619 emit_call_insn (rtx x)
4620 {
4621 rtx insn;
4622
4623 switch (GET_CODE (x))
4624 {
4625 case INSN:
4626 case JUMP_INSN:
4627 case CALL_INSN:
4628 case CODE_LABEL:
4629 case BARRIER:
4630 case NOTE:
4631 insn = emit_insn (x);
4632 break;
4633
4634 #ifdef ENABLE_RTL_CHECKING
4635 case SEQUENCE:
4636 gcc_unreachable ();
4637 break;
4638 #endif
4639
4640 default:
4641 insn = make_call_insn_raw (x);
4642 add_insn (insn);
4643 break;
4644 }
4645
4646 return insn;
4647 }
4648
4649 /* Add the label LABEL to the end of the doubly-linked list. */
4650
4651 rtx
4652 emit_label (rtx label)
4653 {
4654 /* This can be called twice for the same label
4655 as a result of the confusion that follows a syntax error!
4656 So make it harmless. */
4657 if (INSN_UID (label) == 0)
4658 {
4659 INSN_UID (label) = cur_insn_uid++;
4660 add_insn (label);
4661 }
4662 return label;
4663 }
4664
4665 /* Make an insn of code BARRIER
4666 and add it to the end of the doubly-linked list. */
4667
4668 rtx
4669 emit_barrier (void)
4670 {
4671 rtx barrier = rtx_alloc (BARRIER);
4672 INSN_UID (barrier) = cur_insn_uid++;
4673 BLOCK_FOR_INSN (barrier) = NULL;
4674 add_insn (barrier);
4675 return barrier;
4676 }
4677
4678 /* Make line numbering NOTE insn for LOCATION add it to the end
4679 of the doubly-linked list, but only if line-numbers are desired for
4680 debugging info and it doesn't match the previous one. */
4681
4682 rtx
4683 emit_line_note (location_t location)
4684 {
4685 rtx note;
4686
4687 #ifdef USE_MAPPED_LOCATION
4688 if (location == last_location)
4689 return NULL_RTX;
4690 #else
4691 if (location.file && last_location.file
4692 && !strcmp (location.file, last_location.file)
4693 && location.line == last_location.line)
4694 return NULL_RTX;
4695 #endif
4696 last_location = location;
4697
4698 if (no_line_numbers)
4699 {
4700 cur_insn_uid++;
4701 return NULL_RTX;
4702 }
4703
4704 #ifdef USE_MAPPED_LOCATION
4705 note = emit_note ((int) location);
4706 #else
4707 note = emit_note (location.line);
4708 NOTE_SOURCE_FILE (note) = location.file;
4709 #endif
4710
4711 return note;
4712 }
4713
4714 /* Emit a copy of note ORIG. */
4715
4716 rtx
4717 emit_note_copy (rtx orig)
4718 {
4719 rtx note;
4720
4721 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4722 {
4723 cur_insn_uid++;
4724 return NULL_RTX;
4725 }
4726
4727 note = rtx_alloc (NOTE);
4728
4729 INSN_UID (note) = cur_insn_uid++;
4730 NOTE_DATA (note) = NOTE_DATA (orig);
4731 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4732 BLOCK_FOR_INSN (note) = NULL;
4733 add_insn (note);
4734
4735 return note;
4736 }
4737
4738 /* Make an insn of code NOTE or type NOTE_NO
4739 and add it to the end of the doubly-linked list. */
4740
4741 rtx
4742 emit_note (int note_no)
4743 {
4744 rtx note;
4745
4746 note = rtx_alloc (NOTE);
4747 INSN_UID (note) = cur_insn_uid++;
4748 NOTE_LINE_NUMBER (note) = note_no;
4749 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4750 BLOCK_FOR_INSN (note) = NULL;
4751 add_insn (note);
4752 return note;
4753 }
4754
4755 /* Cause next statement to emit a line note even if the line number
4756 has not changed. */
4757
4758 void
4759 force_next_line_note (void)
4760 {
4761 #ifdef USE_MAPPED_LOCATION
4762 last_location = -1;
4763 #else
4764 last_location.line = -1;
4765 #endif
4766 }
4767
4768 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4769 note of this type already exists, remove it first. */
4770
4771 rtx
4772 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4773 {
4774 rtx note = find_reg_note (insn, kind, NULL_RTX);
4775
4776 switch (kind)
4777 {
4778 case REG_EQUAL:
4779 case REG_EQUIV:
4780 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4781 has multiple sets (some callers assume single_set
4782 means the insn only has one set, when in fact it
4783 means the insn only has one * useful * set). */
4784 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4785 {
4786 gcc_assert (!note);
4787 return NULL_RTX;
4788 }
4789
4790 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4791 It serves no useful purpose and breaks eliminate_regs. */
4792 if (GET_CODE (datum) == ASM_OPERANDS)
4793 return NULL_RTX;
4794 break;
4795
4796 default:
4797 break;
4798 }
4799
4800 if (note)
4801 {
4802 XEXP (note, 0) = datum;
4803 return note;
4804 }
4805
4806 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4807 return REG_NOTES (insn);
4808 }
4809 \f
4810 /* Return an indication of which type of insn should have X as a body.
4811 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4812
4813 enum rtx_code
4814 classify_insn (rtx x)
4815 {
4816 if (LABEL_P (x))
4817 return CODE_LABEL;
4818 if (GET_CODE (x) == CALL)
4819 return CALL_INSN;
4820 if (GET_CODE (x) == RETURN)
4821 return JUMP_INSN;
4822 if (GET_CODE (x) == SET)
4823 {
4824 if (SET_DEST (x) == pc_rtx)
4825 return JUMP_INSN;
4826 else if (GET_CODE (SET_SRC (x)) == CALL)
4827 return CALL_INSN;
4828 else
4829 return INSN;
4830 }
4831 if (GET_CODE (x) == PARALLEL)
4832 {
4833 int j;
4834 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4835 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4836 return CALL_INSN;
4837 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4838 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4839 return JUMP_INSN;
4840 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4841 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4842 return CALL_INSN;
4843 }
4844 return INSN;
4845 }
4846
4847 /* Emit the rtl pattern X as an appropriate kind of insn.
4848 If X is a label, it is simply added into the insn chain. */
4849
4850 rtx
4851 emit (rtx x)
4852 {
4853 enum rtx_code code = classify_insn (x);
4854
4855 switch (code)
4856 {
4857 case CODE_LABEL:
4858 return emit_label (x);
4859 case INSN:
4860 return emit_insn (x);
4861 case JUMP_INSN:
4862 {
4863 rtx insn = emit_jump_insn (x);
4864 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4865 return emit_barrier ();
4866 return insn;
4867 }
4868 case CALL_INSN:
4869 return emit_call_insn (x);
4870 default:
4871 gcc_unreachable ();
4872 }
4873 }
4874 \f
4875 /* Space for free sequence stack entries. */
4876 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4877
4878 /* Begin emitting insns to a sequence. If this sequence will contain
4879 something that might cause the compiler to pop arguments to function
4880 calls (because those pops have previously been deferred; see
4881 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4882 before calling this function. That will ensure that the deferred
4883 pops are not accidentally emitted in the middle of this sequence. */
4884
4885 void
4886 start_sequence (void)
4887 {
4888 struct sequence_stack *tem;
4889
4890 if (free_sequence_stack != NULL)
4891 {
4892 tem = free_sequence_stack;
4893 free_sequence_stack = tem->next;
4894 }
4895 else
4896 tem = ggc_alloc (sizeof (struct sequence_stack));
4897
4898 tem->next = seq_stack;
4899 tem->first = first_insn;
4900 tem->last = last_insn;
4901
4902 seq_stack = tem;
4903
4904 first_insn = 0;
4905 last_insn = 0;
4906 }
4907
4908 /* Set up the insn chain starting with FIRST as the current sequence,
4909 saving the previously current one. See the documentation for
4910 start_sequence for more information about how to use this function. */
4911
4912 void
4913 push_to_sequence (rtx first)
4914 {
4915 rtx last;
4916
4917 start_sequence ();
4918
4919 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4920
4921 first_insn = first;
4922 last_insn = last;
4923 }
4924
4925 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4926
4927 void
4928 push_to_full_sequence (rtx first, rtx last)
4929 {
4930 start_sequence ();
4931 first_insn = first;
4932 last_insn = last;
4933 /* We really should have the end of the insn chain here. */
4934 gcc_assert (!last || !NEXT_INSN (last));
4935 }
4936
4937 /* Set up the outer-level insn chain
4938 as the current sequence, saving the previously current one. */
4939
4940 void
4941 push_topmost_sequence (void)
4942 {
4943 struct sequence_stack *stack, *top = NULL;
4944
4945 start_sequence ();
4946
4947 for (stack = seq_stack; stack; stack = stack->next)
4948 top = stack;
4949
4950 first_insn = top->first;
4951 last_insn = top->last;
4952 }
4953
4954 /* After emitting to the outer-level insn chain, update the outer-level
4955 insn chain, and restore the previous saved state. */
4956
4957 void
4958 pop_topmost_sequence (void)
4959 {
4960 struct sequence_stack *stack, *top = NULL;
4961
4962 for (stack = seq_stack; stack; stack = stack->next)
4963 top = stack;
4964
4965 top->first = first_insn;
4966 top->last = last_insn;
4967
4968 end_sequence ();
4969 }
4970
4971 /* After emitting to a sequence, restore previous saved state.
4972
4973 To get the contents of the sequence just made, you must call
4974 `get_insns' *before* calling here.
4975
4976 If the compiler might have deferred popping arguments while
4977 generating this sequence, and this sequence will not be immediately
4978 inserted into the instruction stream, use do_pending_stack_adjust
4979 before calling get_insns. That will ensure that the deferred
4980 pops are inserted into this sequence, and not into some random
4981 location in the instruction stream. See INHIBIT_DEFER_POP for more
4982 information about deferred popping of arguments. */
4983
4984 void
4985 end_sequence (void)
4986 {
4987 struct sequence_stack *tem = seq_stack;
4988
4989 first_insn = tem->first;
4990 last_insn = tem->last;
4991 seq_stack = tem->next;
4992
4993 memset (tem, 0, sizeof (*tem));
4994 tem->next = free_sequence_stack;
4995 free_sequence_stack = tem;
4996 }
4997
4998 /* Return 1 if currently emitting into a sequence. */
4999
5000 int
5001 in_sequence_p (void)
5002 {
5003 return seq_stack != 0;
5004 }
5005 \f
5006 /* Put the various virtual registers into REGNO_REG_RTX. */
5007
5008 void
5009 init_virtual_regs (struct emit_status *es)
5010 {
5011 rtx *ptr = es->x_regno_reg_rtx;
5012 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5013 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5014 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5015 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5016 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5017 }
5018
5019 \f
5020 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5021 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5022 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5023 static int copy_insn_n_scratches;
5024
5025 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5026 copied an ASM_OPERANDS.
5027 In that case, it is the original input-operand vector. */
5028 static rtvec orig_asm_operands_vector;
5029
5030 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5031 copied an ASM_OPERANDS.
5032 In that case, it is the copied input-operand vector. */
5033 static rtvec copy_asm_operands_vector;
5034
5035 /* Likewise for the constraints vector. */
5036 static rtvec orig_asm_constraints_vector;
5037 static rtvec copy_asm_constraints_vector;
5038
5039 /* Recursively create a new copy of an rtx for copy_insn.
5040 This function differs from copy_rtx in that it handles SCRATCHes and
5041 ASM_OPERANDs properly.
5042 Normally, this function is not used directly; use copy_insn as front end.
5043 However, you could first copy an insn pattern with copy_insn and then use
5044 this function afterwards to properly copy any REG_NOTEs containing
5045 SCRATCHes. */
5046
5047 rtx
5048 copy_insn_1 (rtx orig)
5049 {
5050 rtx copy;
5051 int i, j;
5052 RTX_CODE code;
5053 const char *format_ptr;
5054
5055 code = GET_CODE (orig);
5056
5057 switch (code)
5058 {
5059 case REG:
5060 case CONST_INT:
5061 case CONST_DOUBLE:
5062 case CONST_VECTOR:
5063 case SYMBOL_REF:
5064 case CODE_LABEL:
5065 case PC:
5066 case CC0:
5067 return orig;
5068 case CLOBBER:
5069 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5070 return orig;
5071 break;
5072
5073 case SCRATCH:
5074 for (i = 0; i < copy_insn_n_scratches; i++)
5075 if (copy_insn_scratch_in[i] == orig)
5076 return copy_insn_scratch_out[i];
5077 break;
5078
5079 case CONST:
5080 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5081 a LABEL_REF, it isn't sharable. */
5082 if (GET_CODE (XEXP (orig, 0)) == PLUS
5083 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5084 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5085 return orig;
5086 break;
5087
5088 /* A MEM with a constant address is not sharable. The problem is that
5089 the constant address may need to be reloaded. If the mem is shared,
5090 then reloading one copy of this mem will cause all copies to appear
5091 to have been reloaded. */
5092
5093 default:
5094 break;
5095 }
5096
5097 copy = rtx_alloc (code);
5098
5099 /* Copy the various flags, and other information. We assume that
5100 all fields need copying, and then clear the fields that should
5101 not be copied. That is the sensible default behavior, and forces
5102 us to explicitly document why we are *not* copying a flag. */
5103 memcpy (copy, orig, RTX_HDR_SIZE);
5104
5105 /* We do not copy the USED flag, which is used as a mark bit during
5106 walks over the RTL. */
5107 RTX_FLAG (copy, used) = 0;
5108
5109 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5110 if (INSN_P (orig))
5111 {
5112 RTX_FLAG (copy, jump) = 0;
5113 RTX_FLAG (copy, call) = 0;
5114 RTX_FLAG (copy, frame_related) = 0;
5115 }
5116
5117 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5118
5119 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5120 {
5121 copy->u.fld[i] = orig->u.fld[i];
5122 switch (*format_ptr++)
5123 {
5124 case 'e':
5125 if (XEXP (orig, i) != NULL)
5126 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5127 break;
5128
5129 case 'E':
5130 case 'V':
5131 if (XVEC (orig, i) == orig_asm_constraints_vector)
5132 XVEC (copy, i) = copy_asm_constraints_vector;
5133 else if (XVEC (orig, i) == orig_asm_operands_vector)
5134 XVEC (copy, i) = copy_asm_operands_vector;
5135 else if (XVEC (orig, i) != NULL)
5136 {
5137 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5138 for (j = 0; j < XVECLEN (copy, i); j++)
5139 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5140 }
5141 break;
5142
5143 case 't':
5144 case 'w':
5145 case 'i':
5146 case 's':
5147 case 'S':
5148 case 'u':
5149 case '0':
5150 /* These are left unchanged. */
5151 break;
5152
5153 default:
5154 gcc_unreachable ();
5155 }
5156 }
5157
5158 if (code == SCRATCH)
5159 {
5160 i = copy_insn_n_scratches++;
5161 gcc_assert (i < MAX_RECOG_OPERANDS);
5162 copy_insn_scratch_in[i] = orig;
5163 copy_insn_scratch_out[i] = copy;
5164 }
5165 else if (code == ASM_OPERANDS)
5166 {
5167 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5168 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5169 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5170 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5171 }
5172
5173 return copy;
5174 }
5175
5176 /* Create a new copy of an rtx.
5177 This function differs from copy_rtx in that it handles SCRATCHes and
5178 ASM_OPERANDs properly.
5179 INSN doesn't really have to be a full INSN; it could be just the
5180 pattern. */
5181 rtx
5182 copy_insn (rtx insn)
5183 {
5184 copy_insn_n_scratches = 0;
5185 orig_asm_operands_vector = 0;
5186 orig_asm_constraints_vector = 0;
5187 copy_asm_operands_vector = 0;
5188 copy_asm_constraints_vector = 0;
5189 return copy_insn_1 (insn);
5190 }
5191
5192 /* Initialize data structures and variables in this file
5193 before generating rtl for each function. */
5194
5195 void
5196 init_emit (void)
5197 {
5198 struct function *f = cfun;
5199
5200 f->emit = ggc_alloc (sizeof (struct emit_status));
5201 first_insn = NULL;
5202 last_insn = NULL;
5203 cur_insn_uid = 1;
5204 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5205 last_location = UNKNOWN_LOCATION;
5206 first_label_num = label_num;
5207 seq_stack = NULL;
5208
5209 /* Init the tables that describe all the pseudo regs. */
5210
5211 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5212
5213 f->emit->regno_pointer_align
5214 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5215 * sizeof (unsigned char));
5216
5217 regno_reg_rtx
5218 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5219
5220 /* Put copies of all the hard registers into regno_reg_rtx. */
5221 memcpy (regno_reg_rtx,
5222 static_regno_reg_rtx,
5223 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5224
5225 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5226 init_virtual_regs (f->emit);
5227
5228 /* Indicate that the virtual registers and stack locations are
5229 all pointers. */
5230 REG_POINTER (stack_pointer_rtx) = 1;
5231 REG_POINTER (frame_pointer_rtx) = 1;
5232 REG_POINTER (hard_frame_pointer_rtx) = 1;
5233 REG_POINTER (arg_pointer_rtx) = 1;
5234
5235 REG_POINTER (virtual_incoming_args_rtx) = 1;
5236 REG_POINTER (virtual_stack_vars_rtx) = 1;
5237 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5238 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5239 REG_POINTER (virtual_cfa_rtx) = 1;
5240
5241 #ifdef STACK_BOUNDARY
5242 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5243 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5244 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5245 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5246
5247 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5248 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5249 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5250 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5251 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5252 #endif
5253
5254 #ifdef INIT_EXPANDERS
5255 INIT_EXPANDERS;
5256 #endif
5257 }
5258
5259 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5260
5261 static rtx
5262 gen_const_vector (enum machine_mode mode, int constant)
5263 {
5264 rtx tem;
5265 rtvec v;
5266 int units, i;
5267 enum machine_mode inner;
5268
5269 units = GET_MODE_NUNITS (mode);
5270 inner = GET_MODE_INNER (mode);
5271
5272 v = rtvec_alloc (units);
5273
5274 /* We need to call this function after we set the scalar const_tiny_rtx
5275 entries. */
5276 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5277
5278 for (i = 0; i < units; ++i)
5279 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5280
5281 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5282 return tem;
5283 }
5284
5285 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5286 all elements are zero, and the one vector when all elements are one. */
5287 rtx
5288 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5289 {
5290 enum machine_mode inner = GET_MODE_INNER (mode);
5291 int nunits = GET_MODE_NUNITS (mode);
5292 rtx x;
5293 int i;
5294
5295 /* Check to see if all of the elements have the same value. */
5296 x = RTVEC_ELT (v, nunits - 1);
5297 for (i = nunits - 2; i >= 0; i--)
5298 if (RTVEC_ELT (v, i) != x)
5299 break;
5300
5301 /* If the values are all the same, check to see if we can use one of the
5302 standard constant vectors. */
5303 if (i == -1)
5304 {
5305 if (x == CONST0_RTX (inner))
5306 return CONST0_RTX (mode);
5307 else if (x == CONST1_RTX (inner))
5308 return CONST1_RTX (mode);
5309 }
5310
5311 return gen_rtx_raw_CONST_VECTOR (mode, v);
5312 }
5313
5314 /* Create some permanent unique rtl objects shared between all functions.
5315 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5316
5317 void
5318 init_emit_once (int line_numbers)
5319 {
5320 int i;
5321 enum machine_mode mode;
5322 enum machine_mode double_mode;
5323
5324 /* We need reg_raw_mode, so initialize the modes now. */
5325 init_reg_modes_once ();
5326
5327 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5328 tables. */
5329 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5330 const_int_htab_eq, NULL);
5331
5332 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5333 const_double_htab_eq, NULL);
5334
5335 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5336 mem_attrs_htab_eq, NULL);
5337 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5338 reg_attrs_htab_eq, NULL);
5339
5340 no_line_numbers = ! line_numbers;
5341
5342 /* Compute the word and byte modes. */
5343
5344 byte_mode = VOIDmode;
5345 word_mode = VOIDmode;
5346 double_mode = VOIDmode;
5347
5348 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5349 mode = GET_MODE_WIDER_MODE (mode))
5350 {
5351 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5352 && byte_mode == VOIDmode)
5353 byte_mode = mode;
5354
5355 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5356 && word_mode == VOIDmode)
5357 word_mode = mode;
5358 }
5359
5360 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5361 mode = GET_MODE_WIDER_MODE (mode))
5362 {
5363 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5364 && double_mode == VOIDmode)
5365 double_mode = mode;
5366 }
5367
5368 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5369
5370 /* Assign register numbers to the globally defined register rtx.
5371 This must be done at runtime because the register number field
5372 is in a union and some compilers can't initialize unions. */
5373
5374 pc_rtx = gen_rtx_PC (VOIDmode);
5375 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5376 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5377 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5378 if (hard_frame_pointer_rtx == 0)
5379 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5380 HARD_FRAME_POINTER_REGNUM);
5381 if (arg_pointer_rtx == 0)
5382 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5383 virtual_incoming_args_rtx =
5384 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5385 virtual_stack_vars_rtx =
5386 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5387 virtual_stack_dynamic_rtx =
5388 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5389 virtual_outgoing_args_rtx =
5390 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5391 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5392
5393 /* Initialize RTL for commonly used hard registers. These are
5394 copied into regno_reg_rtx as we begin to compile each function. */
5395 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5396 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5397
5398 #ifdef INIT_EXPANDERS
5399 /* This is to initialize {init|mark|free}_machine_status before the first
5400 call to push_function_context_to. This is needed by the Chill front
5401 end which calls push_function_context_to before the first call to
5402 init_function_start. */
5403 INIT_EXPANDERS;
5404 #endif
5405
5406 /* Create the unique rtx's for certain rtx codes and operand values. */
5407
5408 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5409 tries to use these variables. */
5410 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5411 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5412 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5413
5414 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5415 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5416 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5417 else
5418 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5419
5420 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5421 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5422 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5423 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5424 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5425 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5426 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5427
5428 dconsthalf = dconst1;
5429 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5430
5431 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5432
5433 /* Initialize mathematical constants for constant folding builtins.
5434 These constants need to be given to at least 160 bits precision. */
5435 real_from_string (&dconstpi,
5436 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5437 real_from_string (&dconste,
5438 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5439
5440 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5441 {
5442 REAL_VALUE_TYPE *r =
5443 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5444
5445 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5446 mode = GET_MODE_WIDER_MODE (mode))
5447 const_tiny_rtx[i][(int) mode] =
5448 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5449
5450 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5451
5452 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5453 mode = GET_MODE_WIDER_MODE (mode))
5454 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5455
5456 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5457 mode != VOIDmode;
5458 mode = GET_MODE_WIDER_MODE (mode))
5459 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5460 }
5461
5462 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5463 mode != VOIDmode;
5464 mode = GET_MODE_WIDER_MODE (mode))
5465 {
5466 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5467 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5468 }
5469
5470 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5471 mode != VOIDmode;
5472 mode = GET_MODE_WIDER_MODE (mode))
5473 {
5474 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5475 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5476 }
5477
5478 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5479 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5480 const_tiny_rtx[0][i] = const0_rtx;
5481
5482 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5483 if (STORE_FLAG_VALUE == 1)
5484 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5485
5486 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5487 return_address_pointer_rtx
5488 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5489 #endif
5490
5491 #ifdef STATIC_CHAIN_REGNUM
5492 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5493
5494 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5495 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5496 static_chain_incoming_rtx
5497 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5498 else
5499 #endif
5500 static_chain_incoming_rtx = static_chain_rtx;
5501 #endif
5502
5503 #ifdef STATIC_CHAIN
5504 static_chain_rtx = STATIC_CHAIN;
5505
5506 #ifdef STATIC_CHAIN_INCOMING
5507 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5508 #else
5509 static_chain_incoming_rtx = static_chain_rtx;
5510 #endif
5511 #endif
5512
5513 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5514 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5515 }
5516 \f
5517 /* Produce exact duplicate of insn INSN after AFTER.
5518 Care updating of libcall regions if present. */
5519
5520 rtx
5521 emit_copy_of_insn_after (rtx insn, rtx after)
5522 {
5523 rtx new;
5524 rtx note1, note2, link;
5525
5526 switch (GET_CODE (insn))
5527 {
5528 case INSN:
5529 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5530 break;
5531
5532 case JUMP_INSN:
5533 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5534 break;
5535
5536 case CALL_INSN:
5537 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5538 if (CALL_INSN_FUNCTION_USAGE (insn))
5539 CALL_INSN_FUNCTION_USAGE (new)
5540 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5541 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5542 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5543 break;
5544
5545 default:
5546 gcc_unreachable ();
5547 }
5548
5549 /* Update LABEL_NUSES. */
5550 mark_jump_label (PATTERN (new), new, 0);
5551
5552 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5553
5554 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5555 make them. */
5556 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5557 if (REG_NOTE_KIND (link) != REG_LABEL)
5558 {
5559 if (GET_CODE (link) == EXPR_LIST)
5560 REG_NOTES (new)
5561 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5562 XEXP (link, 0),
5563 REG_NOTES (new)));
5564 else
5565 REG_NOTES (new)
5566 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5567 XEXP (link, 0),
5568 REG_NOTES (new)));
5569 }
5570
5571 /* Fix the libcall sequences. */
5572 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5573 {
5574 rtx p = new;
5575 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5576 p = PREV_INSN (p);
5577 XEXP (note1, 0) = p;
5578 XEXP (note2, 0) = new;
5579 }
5580 INSN_CODE (new) = INSN_CODE (insn);
5581 return new;
5582 }
5583
5584 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5585 rtx
5586 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5587 {
5588 if (hard_reg_clobbers[mode][regno])
5589 return hard_reg_clobbers[mode][regno];
5590 else
5591 return (hard_reg_clobbers[mode][regno] =
5592 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5593 }
5594
5595 #include "gt-emit-rtl.h"