rtl_data.x_stack_slot_list becomes an rtx_expr_list
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "varasm.h"
42 #include "basic-block.h"
43 #include "tree-eh.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "stringpool.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "debug.h"
56 #include "langhooks.h"
57 #include "df.h"
58 #include "params.h"
59 #include "target.h"
60 #include "builtins.h"
61
62 struct target_rtl default_target_rtl;
63 #if SWITCHABLE_TARGET
64 struct target_rtl *this_target_rtl = &default_target_rtl;
65 #endif
66
67 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
68
69 /* Commonly used modes. */
70
71 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
72 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
73 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
74 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
75
76 /* Datastructures maintained for currently processed function in RTL form. */
77
78 struct rtl_data x_rtl;
79
80 /* Indexed by pseudo register number, gives the rtx for that pseudo.
81 Allocated in parallel with regno_pointer_align.
82 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
83 with length attribute nested in top level structures. */
84
85 rtx * regno_reg_rtx;
86
87 /* This is *not* reset after each function. It gives each CODE_LABEL
88 in the entire compilation a unique label number. */
89
90 static GTY(()) int label_num = 1;
91
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
95 is set only for MODE_INT and MODE_VECTOR_INT modes. */
96
97 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
98
99 rtx const_true_rtx;
100
101 REAL_VALUE_TYPE dconst0;
102 REAL_VALUE_TYPE dconst1;
103 REAL_VALUE_TYPE dconst2;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconsthalf;
106
107 /* Record fixed-point constant 0 and 1. */
108 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
109 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
110
111 /* We make one copy of (const_int C) where C is in
112 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
113 to save space during the compilation and simplify comparisons of
114 integers. */
115
116 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
117
118 /* Standard pieces of rtx, to be substituted directly into things. */
119 rtx pc_rtx;
120 rtx ret_rtx;
121 rtx simple_return_rtx;
122 rtx cc0_rtx;
123
124 /* A hash table storing CONST_INTs whose absolute value is greater
125 than MAX_SAVED_CONST_INT. */
126
127 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t const_int_htab;
129
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t const_wide_int_htab;
132
133 /* A hash table storing register attribute structures. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
135 htab_t reg_attrs_htab;
136
137 /* A hash table storing all CONST_DOUBLEs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_double_htab;
140
141 /* A hash table storing all CONST_FIXEDs. */
142 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
143 htab_t const_fixed_htab;
144
145 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
146 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
147 #define first_label_num (crtl->emit.x_first_label_num)
148
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 #if TARGET_SUPPORTS_WIDE_INT
154 static hashval_t const_wide_int_htab_hash (const void *);
155 static int const_wide_int_htab_eq (const void *, const void *);
156 static rtx lookup_const_wide_int (rtx);
157 #endif
158 static hashval_t const_double_htab_hash (const void *);
159 static int const_double_htab_eq (const void *, const void *);
160 static rtx lookup_const_double (rtx);
161 static hashval_t const_fixed_htab_hash (const void *);
162 static int const_fixed_htab_eq (const void *, const void *);
163 static rtx lookup_const_fixed (rtx);
164 static hashval_t reg_attrs_htab_hash (const void *);
165 static int reg_attrs_htab_eq (const void *, const void *);
166 static reg_attrs *get_reg_attrs (tree, int);
167 static rtx gen_const_vector (enum machine_mode, int);
168 static void copy_rtx_if_shared_1 (rtx *orig);
169
170 /* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172 int split_branch_probability = -1;
173 \f
174 /* Returns a hash code for X (which is a really a CONST_INT). */
175
176 static hashval_t
177 const_int_htab_hash (const void *x)
178 {
179 return (hashval_t) INTVAL ((const_rtx) x);
180 }
181
182 /* Returns nonzero if the value represented by X (which is really a
183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
185
186 static int
187 const_int_htab_eq (const void *x, const void *y)
188 {
189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
190 }
191
192 #if TARGET_SUPPORTS_WIDE_INT
193 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
194
195 static hashval_t
196 const_wide_int_htab_hash (const void *x)
197 {
198 int i;
199 HOST_WIDE_INT hash = 0;
200 const_rtx xr = (const_rtx) x;
201
202 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
203 hash += CONST_WIDE_INT_ELT (xr, i);
204
205 return (hashval_t) hash;
206 }
207
208 /* Returns nonzero if the value represented by X (which is really a
209 CONST_WIDE_INT) is the same as that given by Y (which is really a
210 CONST_WIDE_INT). */
211
212 static int
213 const_wide_int_htab_eq (const void *x, const void *y)
214 {
215 int i;
216 const_rtx xr = (const_rtx) x;
217 const_rtx yr = (const_rtx) y;
218 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
219 return 0;
220
221 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
222 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
223 return 0;
224
225 return 1;
226 }
227 #endif
228
229 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
230 static hashval_t
231 const_double_htab_hash (const void *x)
232 {
233 const_rtx const value = (const_rtx) x;
234 hashval_t h;
235
236 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
237 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
238 else
239 {
240 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
241 /* MODE is used in the comparison, so it should be in the hash. */
242 h ^= GET_MODE (value);
243 }
244 return h;
245 }
246
247 /* Returns nonzero if the value represented by X (really a ...)
248 is the same as that represented by Y (really a ...) */
249 static int
250 const_double_htab_eq (const void *x, const void *y)
251 {
252 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
253
254 if (GET_MODE (a) != GET_MODE (b))
255 return 0;
256 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
257 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
258 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
259 else
260 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
261 CONST_DOUBLE_REAL_VALUE (b));
262 }
263
264 /* Returns a hash code for X (which is really a CONST_FIXED). */
265
266 static hashval_t
267 const_fixed_htab_hash (const void *x)
268 {
269 const_rtx const value = (const_rtx) x;
270 hashval_t h;
271
272 h = fixed_hash (CONST_FIXED_VALUE (value));
273 /* MODE is used in the comparison, so it should be in the hash. */
274 h ^= GET_MODE (value);
275 return h;
276 }
277
278 /* Returns nonzero if the value represented by X (really a ...)
279 is the same as that represented by Y (really a ...). */
280
281 static int
282 const_fixed_htab_eq (const void *x, const void *y)
283 {
284 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
285
286 if (GET_MODE (a) != GET_MODE (b))
287 return 0;
288 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
289 }
290
291 /* Return true if the given memory attributes are equal. */
292
293 bool
294 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
295 {
296 if (p == q)
297 return true;
298 if (!p || !q)
299 return false;
300 return (p->alias == q->alias
301 && p->offset_known_p == q->offset_known_p
302 && (!p->offset_known_p || p->offset == q->offset)
303 && p->size_known_p == q->size_known_p
304 && (!p->size_known_p || p->size == q->size)
305 && p->align == q->align
306 && p->addrspace == q->addrspace
307 && (p->expr == q->expr
308 || (p->expr != NULL_TREE && q->expr != NULL_TREE
309 && operand_equal_p (p->expr, q->expr, 0))));
310 }
311
312 /* Set MEM's memory attributes so that they are the same as ATTRS. */
313
314 static void
315 set_mem_attrs (rtx mem, mem_attrs *attrs)
316 {
317 /* If everything is the default, we can just clear the attributes. */
318 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
319 {
320 MEM_ATTRS (mem) = 0;
321 return;
322 }
323
324 if (!MEM_ATTRS (mem)
325 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
326 {
327 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
328 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
329 }
330 }
331
332 /* Returns a hash code for X (which is a really a reg_attrs *). */
333
334 static hashval_t
335 reg_attrs_htab_hash (const void *x)
336 {
337 const reg_attrs *const p = (const reg_attrs *) x;
338
339 return ((p->offset * 1000) ^ (intptr_t) p->decl);
340 }
341
342 /* Returns nonzero if the value represented by X (which is really a
343 reg_attrs *) is the same as that given by Y (which is also really a
344 reg_attrs *). */
345
346 static int
347 reg_attrs_htab_eq (const void *x, const void *y)
348 {
349 const reg_attrs *const p = (const reg_attrs *) x;
350 const reg_attrs *const q = (const reg_attrs *) y;
351
352 return (p->decl == q->decl && p->offset == q->offset);
353 }
354 /* Allocate a new reg_attrs structure and insert it into the hash table if
355 one identical to it is not already in the table. We are doing this for
356 MEM of mode MODE. */
357
358 static reg_attrs *
359 get_reg_attrs (tree decl, int offset)
360 {
361 reg_attrs attrs;
362 void **slot;
363
364 /* If everything is the default, we can just return zero. */
365 if (decl == 0 && offset == 0)
366 return 0;
367
368 attrs.decl = decl;
369 attrs.offset = offset;
370
371 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
372 if (*slot == 0)
373 {
374 *slot = ggc_alloc<reg_attrs> ();
375 memcpy (*slot, &attrs, sizeof (reg_attrs));
376 }
377
378 return (reg_attrs *) *slot;
379 }
380
381
382 #if !HAVE_blockage
383 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
384 and to block register equivalences to be seen across this insn. */
385
386 rtx
387 gen_blockage (void)
388 {
389 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
390 MEM_VOLATILE_P (x) = true;
391 return x;
392 }
393 #endif
394
395
396 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
397 don't attempt to share with the various global pieces of rtl (such as
398 frame_pointer_rtx). */
399
400 rtx
401 gen_raw_REG (enum machine_mode mode, int regno)
402 {
403 rtx x = gen_rtx_raw_REG (mode, regno);
404 ORIGINAL_REGNO (x) = regno;
405 return x;
406 }
407
408 /* There are some RTL codes that require special attention; the generation
409 functions do the raw handling. If you add to this list, modify
410 special_rtx in gengenrtl.c as well. */
411
412 rtx_expr_list *
413 gen_rtx_EXPR_LIST (enum machine_mode mode, rtx expr, rtx expr_list)
414 {
415 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
416 expr_list));
417 }
418
419 rtx_insn_list *
420 gen_rtx_INSN_LIST (enum machine_mode mode, rtx insn, rtx insn_list)
421 {
422 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
423 insn_list));
424 }
425
426 rtx
427 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
428 {
429 void **slot;
430
431 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
432 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
433
434 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
435 if (const_true_rtx && arg == STORE_FLAG_VALUE)
436 return const_true_rtx;
437 #endif
438
439 /* Look up the CONST_INT in the hash table. */
440 slot = htab_find_slot_with_hash (const_int_htab, &arg,
441 (hashval_t) arg, INSERT);
442 if (*slot == 0)
443 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
444
445 return (rtx) *slot;
446 }
447
448 rtx
449 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
450 {
451 return GEN_INT (trunc_int_for_mode (c, mode));
452 }
453
454 /* CONST_DOUBLEs might be created from pairs of integers, or from
455 REAL_VALUE_TYPEs. Also, their length is known only at run time,
456 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
457
458 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
459 hash table. If so, return its counterpart; otherwise add it
460 to the hash table and return it. */
461 static rtx
462 lookup_const_double (rtx real)
463 {
464 void **slot = htab_find_slot (const_double_htab, real, INSERT);
465 if (*slot == 0)
466 *slot = real;
467
468 return (rtx) *slot;
469 }
470
471 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
472 VALUE in mode MODE. */
473 rtx
474 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
475 {
476 rtx real = rtx_alloc (CONST_DOUBLE);
477 PUT_MODE (real, mode);
478
479 real->u.rv = value;
480
481 return lookup_const_double (real);
482 }
483
484 /* Determine whether FIXED, a CONST_FIXED, already exists in the
485 hash table. If so, return its counterpart; otherwise add it
486 to the hash table and return it. */
487
488 static rtx
489 lookup_const_fixed (rtx fixed)
490 {
491 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
492 if (*slot == 0)
493 *slot = fixed;
494
495 return (rtx) *slot;
496 }
497
498 /* Return a CONST_FIXED rtx for a fixed-point value specified by
499 VALUE in mode MODE. */
500
501 rtx
502 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
503 {
504 rtx fixed = rtx_alloc (CONST_FIXED);
505 PUT_MODE (fixed, mode);
506
507 fixed->u.fv = value;
508
509 return lookup_const_fixed (fixed);
510 }
511
512 #if TARGET_SUPPORTS_WIDE_INT == 0
513 /* Constructs double_int from rtx CST. */
514
515 double_int
516 rtx_to_double_int (const_rtx cst)
517 {
518 double_int r;
519
520 if (CONST_INT_P (cst))
521 r = double_int::from_shwi (INTVAL (cst));
522 else if (CONST_DOUBLE_AS_INT_P (cst))
523 {
524 r.low = CONST_DOUBLE_LOW (cst);
525 r.high = CONST_DOUBLE_HIGH (cst);
526 }
527 else
528 gcc_unreachable ();
529
530 return r;
531 }
532 #endif
533
534 #if TARGET_SUPPORTS_WIDE_INT
535 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
536 If so, return its counterpart; otherwise add it to the hash table and
537 return it. */
538
539 static rtx
540 lookup_const_wide_int (rtx wint)
541 {
542 void **slot = htab_find_slot (const_wide_int_htab, wint, INSERT);
543 if (*slot == 0)
544 *slot = wint;
545
546 return (rtx) *slot;
547 }
548 #endif
549
550 /* Return an rtx constant for V, given that the constant has mode MODE.
551 The returned rtx will be a CONST_INT if V fits, otherwise it will be
552 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
553 (if TARGET_SUPPORTS_WIDE_INT). */
554
555 rtx
556 immed_wide_int_const (const wide_int_ref &v, enum machine_mode mode)
557 {
558 unsigned int len = v.get_len ();
559 unsigned int prec = GET_MODE_PRECISION (mode);
560
561 /* Allow truncation but not extension since we do not know if the
562 number is signed or unsigned. */
563 gcc_assert (prec <= v.get_precision ());
564
565 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
566 return gen_int_mode (v.elt (0), mode);
567
568 #if TARGET_SUPPORTS_WIDE_INT
569 {
570 unsigned int i;
571 rtx value;
572 unsigned int blocks_needed
573 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
574
575 if (len > blocks_needed)
576 len = blocks_needed;
577
578 value = const_wide_int_alloc (len);
579
580 /* It is so tempting to just put the mode in here. Must control
581 myself ... */
582 PUT_MODE (value, VOIDmode);
583 CWI_PUT_NUM_ELEM (value, len);
584
585 for (i = 0; i < len; i++)
586 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
587
588 return lookup_const_wide_int (value);
589 }
590 #else
591 return immed_double_const (v.elt (0), v.elt (1), mode);
592 #endif
593 }
594
595 #if TARGET_SUPPORTS_WIDE_INT == 0
596 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
597 of ints: I0 is the low-order word and I1 is the high-order word.
598 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
599 implied upper bits are copies of the high bit of i1. The value
600 itself is neither signed nor unsigned. Do not use this routine for
601 non-integer modes; convert to REAL_VALUE_TYPE and use
602 CONST_DOUBLE_FROM_REAL_VALUE. */
603
604 rtx
605 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
606 {
607 rtx value;
608 unsigned int i;
609
610 /* There are the following cases (note that there are no modes with
611 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
612
613 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
614 gen_int_mode.
615 2) If the value of the integer fits into HOST_WIDE_INT anyway
616 (i.e., i1 consists only from copies of the sign bit, and sign
617 of i0 and i1 are the same), then we return a CONST_INT for i0.
618 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
619 if (mode != VOIDmode)
620 {
621 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
622 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
623 /* We can get a 0 for an error mark. */
624 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
625 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
626
627 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
628 return gen_int_mode (i0, mode);
629 }
630
631 /* If this integer fits in one word, return a CONST_INT. */
632 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
633 return GEN_INT (i0);
634
635 /* We use VOIDmode for integers. */
636 value = rtx_alloc (CONST_DOUBLE);
637 PUT_MODE (value, VOIDmode);
638
639 CONST_DOUBLE_LOW (value) = i0;
640 CONST_DOUBLE_HIGH (value) = i1;
641
642 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
643 XWINT (value, i) = 0;
644
645 return lookup_const_double (value);
646 }
647 #endif
648
649 rtx
650 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
651 {
652 /* In case the MD file explicitly references the frame pointer, have
653 all such references point to the same frame pointer. This is
654 used during frame pointer elimination to distinguish the explicit
655 references to these registers from pseudos that happened to be
656 assigned to them.
657
658 If we have eliminated the frame pointer or arg pointer, we will
659 be using it as a normal register, for example as a spill
660 register. In such cases, we might be accessing it in a mode that
661 is not Pmode and therefore cannot use the pre-allocated rtx.
662
663 Also don't do this when we are making new REGs in reload, since
664 we don't want to get confused with the real pointers. */
665
666 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
667 {
668 if (regno == FRAME_POINTER_REGNUM
669 && (!reload_completed || frame_pointer_needed))
670 return frame_pointer_rtx;
671 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
672 if (regno == HARD_FRAME_POINTER_REGNUM
673 && (!reload_completed || frame_pointer_needed))
674 return hard_frame_pointer_rtx;
675 #endif
676 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
677 if (regno == ARG_POINTER_REGNUM)
678 return arg_pointer_rtx;
679 #endif
680 #ifdef RETURN_ADDRESS_POINTER_REGNUM
681 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
682 return return_address_pointer_rtx;
683 #endif
684 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
685 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
686 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
687 return pic_offset_table_rtx;
688 if (regno == STACK_POINTER_REGNUM)
689 return stack_pointer_rtx;
690 }
691
692 #if 0
693 /* If the per-function register table has been set up, try to re-use
694 an existing entry in that table to avoid useless generation of RTL.
695
696 This code is disabled for now until we can fix the various backends
697 which depend on having non-shared hard registers in some cases. Long
698 term we want to re-enable this code as it can significantly cut down
699 on the amount of useless RTL that gets generated.
700
701 We'll also need to fix some code that runs after reload that wants to
702 set ORIGINAL_REGNO. */
703
704 if (cfun
705 && cfun->emit
706 && regno_reg_rtx
707 && regno < FIRST_PSEUDO_REGISTER
708 && reg_raw_mode[regno] == mode)
709 return regno_reg_rtx[regno];
710 #endif
711
712 return gen_raw_REG (mode, regno);
713 }
714
715 rtx
716 gen_rtx_MEM (enum machine_mode mode, rtx addr)
717 {
718 rtx rt = gen_rtx_raw_MEM (mode, addr);
719
720 /* This field is not cleared by the mere allocation of the rtx, so
721 we clear it here. */
722 MEM_ATTRS (rt) = 0;
723
724 return rt;
725 }
726
727 /* Generate a memory referring to non-trapping constant memory. */
728
729 rtx
730 gen_const_mem (enum machine_mode mode, rtx addr)
731 {
732 rtx mem = gen_rtx_MEM (mode, addr);
733 MEM_READONLY_P (mem) = 1;
734 MEM_NOTRAP_P (mem) = 1;
735 return mem;
736 }
737
738 /* Generate a MEM referring to fixed portions of the frame, e.g., register
739 save areas. */
740
741 rtx
742 gen_frame_mem (enum machine_mode mode, rtx addr)
743 {
744 rtx mem = gen_rtx_MEM (mode, addr);
745 MEM_NOTRAP_P (mem) = 1;
746 set_mem_alias_set (mem, get_frame_alias_set ());
747 return mem;
748 }
749
750 /* Generate a MEM referring to a temporary use of the stack, not part
751 of the fixed stack frame. For example, something which is pushed
752 by a target splitter. */
753 rtx
754 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
755 {
756 rtx mem = gen_rtx_MEM (mode, addr);
757 MEM_NOTRAP_P (mem) = 1;
758 if (!cfun->calls_alloca)
759 set_mem_alias_set (mem, get_frame_alias_set ());
760 return mem;
761 }
762
763 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
764 this construct would be valid, and false otherwise. */
765
766 bool
767 validate_subreg (enum machine_mode omode, enum machine_mode imode,
768 const_rtx reg, unsigned int offset)
769 {
770 unsigned int isize = GET_MODE_SIZE (imode);
771 unsigned int osize = GET_MODE_SIZE (omode);
772
773 /* All subregs must be aligned. */
774 if (offset % osize != 0)
775 return false;
776
777 /* The subreg offset cannot be outside the inner object. */
778 if (offset >= isize)
779 return false;
780
781 /* ??? This should not be here. Temporarily continue to allow word_mode
782 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
783 Generally, backends are doing something sketchy but it'll take time to
784 fix them all. */
785 if (omode == word_mode)
786 ;
787 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
788 is the culprit here, and not the backends. */
789 else if (osize >= UNITS_PER_WORD && isize >= osize)
790 ;
791 /* Allow component subregs of complex and vector. Though given the below
792 extraction rules, it's not always clear what that means. */
793 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
794 && GET_MODE_INNER (imode) == omode)
795 ;
796 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
797 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
798 represent this. It's questionable if this ought to be represented at
799 all -- why can't this all be hidden in post-reload splitters that make
800 arbitrarily mode changes to the registers themselves. */
801 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
802 ;
803 /* Subregs involving floating point modes are not allowed to
804 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
805 (subreg:SI (reg:DF) 0) isn't. */
806 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
807 {
808 if (! (isize == osize
809 /* LRA can use subreg to store a floating point value in
810 an integer mode. Although the floating point and the
811 integer modes need the same number of hard registers,
812 the size of floating point mode can be less than the
813 integer mode. LRA also uses subregs for a register
814 should be used in different mode in on insn. */
815 || lra_in_progress))
816 return false;
817 }
818
819 /* Paradoxical subregs must have offset zero. */
820 if (osize > isize)
821 return offset == 0;
822
823 /* This is a normal subreg. Verify that the offset is representable. */
824
825 /* For hard registers, we already have most of these rules collected in
826 subreg_offset_representable_p. */
827 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
828 {
829 unsigned int regno = REGNO (reg);
830
831 #ifdef CANNOT_CHANGE_MODE_CLASS
832 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
833 && GET_MODE_INNER (imode) == omode)
834 ;
835 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
836 return false;
837 #endif
838
839 return subreg_offset_representable_p (regno, imode, offset, omode);
840 }
841
842 /* For pseudo registers, we want most of the same checks. Namely:
843 If the register no larger than a word, the subreg must be lowpart.
844 If the register is larger than a word, the subreg must be the lowpart
845 of a subword. A subreg does *not* perform arbitrary bit extraction.
846 Given that we've already checked mode/offset alignment, we only have
847 to check subword subregs here. */
848 if (osize < UNITS_PER_WORD
849 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
850 {
851 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
852 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
853 if (offset % UNITS_PER_WORD != low_off)
854 return false;
855 }
856 return true;
857 }
858
859 rtx
860 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
861 {
862 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
863 return gen_rtx_raw_SUBREG (mode, reg, offset);
864 }
865
866 /* Generate a SUBREG representing the least-significant part of REG if MODE
867 is smaller than mode of REG, otherwise paradoxical SUBREG. */
868
869 rtx
870 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
871 {
872 enum machine_mode inmode;
873
874 inmode = GET_MODE (reg);
875 if (inmode == VOIDmode)
876 inmode = mode;
877 return gen_rtx_SUBREG (mode, reg,
878 subreg_lowpart_offset (mode, inmode));
879 }
880
881 rtx
882 gen_rtx_VAR_LOCATION (enum machine_mode mode, tree decl, rtx loc,
883 enum var_init_status status)
884 {
885 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
886 PAT_VAR_LOCATION_STATUS (x) = status;
887 return x;
888 }
889 \f
890
891 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
892
893 rtvec
894 gen_rtvec (int n, ...)
895 {
896 int i;
897 rtvec rt_val;
898 va_list p;
899
900 va_start (p, n);
901
902 /* Don't allocate an empty rtvec... */
903 if (n == 0)
904 {
905 va_end (p);
906 return NULL_RTVEC;
907 }
908
909 rt_val = rtvec_alloc (n);
910
911 for (i = 0; i < n; i++)
912 rt_val->elem[i] = va_arg (p, rtx);
913
914 va_end (p);
915 return rt_val;
916 }
917
918 rtvec
919 gen_rtvec_v (int n, rtx *argp)
920 {
921 int i;
922 rtvec rt_val;
923
924 /* Don't allocate an empty rtvec... */
925 if (n == 0)
926 return NULL_RTVEC;
927
928 rt_val = rtvec_alloc (n);
929
930 for (i = 0; i < n; i++)
931 rt_val->elem[i] = *argp++;
932
933 return rt_val;
934 }
935 \f
936 /* Return the number of bytes between the start of an OUTER_MODE
937 in-memory value and the start of an INNER_MODE in-memory value,
938 given that the former is a lowpart of the latter. It may be a
939 paradoxical lowpart, in which case the offset will be negative
940 on big-endian targets. */
941
942 int
943 byte_lowpart_offset (enum machine_mode outer_mode,
944 enum machine_mode inner_mode)
945 {
946 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
947 return subreg_lowpart_offset (outer_mode, inner_mode);
948 else
949 return -subreg_lowpart_offset (inner_mode, outer_mode);
950 }
951 \f
952 /* Generate a REG rtx for a new pseudo register of mode MODE.
953 This pseudo is assigned the next sequential register number. */
954
955 rtx
956 gen_reg_rtx (enum machine_mode mode)
957 {
958 rtx val;
959 unsigned int align = GET_MODE_ALIGNMENT (mode);
960
961 gcc_assert (can_create_pseudo_p ());
962
963 /* If a virtual register with bigger mode alignment is generated,
964 increase stack alignment estimation because it might be spilled
965 to stack later. */
966 if (SUPPORTS_STACK_ALIGNMENT
967 && crtl->stack_alignment_estimated < align
968 && !crtl->stack_realign_processed)
969 {
970 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
971 if (crtl->stack_alignment_estimated < min_align)
972 crtl->stack_alignment_estimated = min_align;
973 }
974
975 if (generating_concat_p
976 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
977 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
978 {
979 /* For complex modes, don't make a single pseudo.
980 Instead, make a CONCAT of two pseudos.
981 This allows noncontiguous allocation of the real and imaginary parts,
982 which makes much better code. Besides, allocating DCmode
983 pseudos overstrains reload on some machines like the 386. */
984 rtx realpart, imagpart;
985 enum machine_mode partmode = GET_MODE_INNER (mode);
986
987 realpart = gen_reg_rtx (partmode);
988 imagpart = gen_reg_rtx (partmode);
989 return gen_rtx_CONCAT (mode, realpart, imagpart);
990 }
991
992 /* Do not call gen_reg_rtx with uninitialized crtl. */
993 gcc_assert (crtl->emit.regno_pointer_align_length);
994
995 /* Make sure regno_pointer_align, and regno_reg_rtx are large
996 enough to have an element for this pseudo reg number. */
997
998 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
999 {
1000 int old_size = crtl->emit.regno_pointer_align_length;
1001 char *tmp;
1002 rtx *new1;
1003
1004 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1005 memset (tmp + old_size, 0, old_size);
1006 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1007
1008 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1009 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1010 regno_reg_rtx = new1;
1011
1012 crtl->emit.regno_pointer_align_length = old_size * 2;
1013 }
1014
1015 val = gen_raw_REG (mode, reg_rtx_no);
1016 regno_reg_rtx[reg_rtx_no++] = val;
1017 return val;
1018 }
1019
1020 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1021
1022 bool
1023 reg_is_parm_p (rtx reg)
1024 {
1025 tree decl;
1026
1027 gcc_assert (REG_P (reg));
1028 decl = REG_EXPR (reg);
1029 return (decl && TREE_CODE (decl) == PARM_DECL);
1030 }
1031
1032 /* Update NEW with the same attributes as REG, but with OFFSET added
1033 to the REG_OFFSET. */
1034
1035 static void
1036 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1037 {
1038 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1039 REG_OFFSET (reg) + offset);
1040 }
1041
1042 /* Generate a register with same attributes as REG, but with OFFSET
1043 added to the REG_OFFSET. */
1044
1045 rtx
1046 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
1047 int offset)
1048 {
1049 rtx new_rtx = gen_rtx_REG (mode, regno);
1050
1051 update_reg_offset (new_rtx, reg, offset);
1052 return new_rtx;
1053 }
1054
1055 /* Generate a new pseudo-register with the same attributes as REG, but
1056 with OFFSET added to the REG_OFFSET. */
1057
1058 rtx
1059 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1060 {
1061 rtx new_rtx = gen_reg_rtx (mode);
1062
1063 update_reg_offset (new_rtx, reg, offset);
1064 return new_rtx;
1065 }
1066
1067 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1068 new register is a (possibly paradoxical) lowpart of the old one. */
1069
1070 void
1071 adjust_reg_mode (rtx reg, enum machine_mode mode)
1072 {
1073 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1074 PUT_MODE (reg, mode);
1075 }
1076
1077 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1078 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1079
1080 void
1081 set_reg_attrs_from_value (rtx reg, rtx x)
1082 {
1083 int offset;
1084 bool can_be_reg_pointer = true;
1085
1086 /* Don't call mark_reg_pointer for incompatible pointer sign
1087 extension. */
1088 while (GET_CODE (x) == SIGN_EXTEND
1089 || GET_CODE (x) == ZERO_EXTEND
1090 || GET_CODE (x) == TRUNCATE
1091 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1092 {
1093 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1094 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1095 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1096 can_be_reg_pointer = false;
1097 #endif
1098 x = XEXP (x, 0);
1099 }
1100
1101 /* Hard registers can be reused for multiple purposes within the same
1102 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1103 on them is wrong. */
1104 if (HARD_REGISTER_P (reg))
1105 return;
1106
1107 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1108 if (MEM_P (x))
1109 {
1110 if (MEM_OFFSET_KNOWN_P (x))
1111 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1112 MEM_OFFSET (x) + offset);
1113 if (can_be_reg_pointer && MEM_POINTER (x))
1114 mark_reg_pointer (reg, 0);
1115 }
1116 else if (REG_P (x))
1117 {
1118 if (REG_ATTRS (x))
1119 update_reg_offset (reg, x, offset);
1120 if (can_be_reg_pointer && REG_POINTER (x))
1121 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1122 }
1123 }
1124
1125 /* Generate a REG rtx for a new pseudo register, copying the mode
1126 and attributes from X. */
1127
1128 rtx
1129 gen_reg_rtx_and_attrs (rtx x)
1130 {
1131 rtx reg = gen_reg_rtx (GET_MODE (x));
1132 set_reg_attrs_from_value (reg, x);
1133 return reg;
1134 }
1135
1136 /* Set the register attributes for registers contained in PARM_RTX.
1137 Use needed values from memory attributes of MEM. */
1138
1139 void
1140 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1141 {
1142 if (REG_P (parm_rtx))
1143 set_reg_attrs_from_value (parm_rtx, mem);
1144 else if (GET_CODE (parm_rtx) == PARALLEL)
1145 {
1146 /* Check for a NULL entry in the first slot, used to indicate that the
1147 parameter goes both on the stack and in registers. */
1148 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1149 for (; i < XVECLEN (parm_rtx, 0); i++)
1150 {
1151 rtx x = XVECEXP (parm_rtx, 0, i);
1152 if (REG_P (XEXP (x, 0)))
1153 REG_ATTRS (XEXP (x, 0))
1154 = get_reg_attrs (MEM_EXPR (mem),
1155 INTVAL (XEXP (x, 1)));
1156 }
1157 }
1158 }
1159
1160 /* Set the REG_ATTRS for registers in value X, given that X represents
1161 decl T. */
1162
1163 void
1164 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1165 {
1166 if (GET_CODE (x) == SUBREG)
1167 {
1168 gcc_assert (subreg_lowpart_p (x));
1169 x = SUBREG_REG (x);
1170 }
1171 if (REG_P (x))
1172 REG_ATTRS (x)
1173 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1174 DECL_MODE (t)));
1175 if (GET_CODE (x) == CONCAT)
1176 {
1177 if (REG_P (XEXP (x, 0)))
1178 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1179 if (REG_P (XEXP (x, 1)))
1180 REG_ATTRS (XEXP (x, 1))
1181 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1182 }
1183 if (GET_CODE (x) == PARALLEL)
1184 {
1185 int i, start;
1186
1187 /* Check for a NULL entry, used to indicate that the parameter goes
1188 both on the stack and in registers. */
1189 if (XEXP (XVECEXP (x, 0, 0), 0))
1190 start = 0;
1191 else
1192 start = 1;
1193
1194 for (i = start; i < XVECLEN (x, 0); i++)
1195 {
1196 rtx y = XVECEXP (x, 0, i);
1197 if (REG_P (XEXP (y, 0)))
1198 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1199 }
1200 }
1201 }
1202
1203 /* Assign the RTX X to declaration T. */
1204
1205 void
1206 set_decl_rtl (tree t, rtx x)
1207 {
1208 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1209 if (x)
1210 set_reg_attrs_for_decl_rtl (t, x);
1211 }
1212
1213 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1214 if the ABI requires the parameter to be passed by reference. */
1215
1216 void
1217 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1218 {
1219 DECL_INCOMING_RTL (t) = x;
1220 if (x && !by_reference_p)
1221 set_reg_attrs_for_decl_rtl (t, x);
1222 }
1223
1224 /* Identify REG (which may be a CONCAT) as a user register. */
1225
1226 void
1227 mark_user_reg (rtx reg)
1228 {
1229 if (GET_CODE (reg) == CONCAT)
1230 {
1231 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1232 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1233 }
1234 else
1235 {
1236 gcc_assert (REG_P (reg));
1237 REG_USERVAR_P (reg) = 1;
1238 }
1239 }
1240
1241 /* Identify REG as a probable pointer register and show its alignment
1242 as ALIGN, if nonzero. */
1243
1244 void
1245 mark_reg_pointer (rtx reg, int align)
1246 {
1247 if (! REG_POINTER (reg))
1248 {
1249 REG_POINTER (reg) = 1;
1250
1251 if (align)
1252 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1253 }
1254 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1255 /* We can no-longer be sure just how aligned this pointer is. */
1256 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1257 }
1258
1259 /* Return 1 plus largest pseudo reg number used in the current function. */
1260
1261 int
1262 max_reg_num (void)
1263 {
1264 return reg_rtx_no;
1265 }
1266
1267 /* Return 1 + the largest label number used so far in the current function. */
1268
1269 int
1270 max_label_num (void)
1271 {
1272 return label_num;
1273 }
1274
1275 /* Return first label number used in this function (if any were used). */
1276
1277 int
1278 get_first_label_num (void)
1279 {
1280 return first_label_num;
1281 }
1282
1283 /* If the rtx for label was created during the expansion of a nested
1284 function, then first_label_num won't include this label number.
1285 Fix this now so that array indices work later. */
1286
1287 void
1288 maybe_set_first_label_num (rtx x)
1289 {
1290 if (CODE_LABEL_NUMBER (x) < first_label_num)
1291 first_label_num = CODE_LABEL_NUMBER (x);
1292 }
1293 \f
1294 /* Return a value representing some low-order bits of X, where the number
1295 of low-order bits is given by MODE. Note that no conversion is done
1296 between floating-point and fixed-point values, rather, the bit
1297 representation is returned.
1298
1299 This function handles the cases in common between gen_lowpart, below,
1300 and two variants in cse.c and combine.c. These are the cases that can
1301 be safely handled at all points in the compilation.
1302
1303 If this is not a case we can handle, return 0. */
1304
1305 rtx
1306 gen_lowpart_common (enum machine_mode mode, rtx x)
1307 {
1308 int msize = GET_MODE_SIZE (mode);
1309 int xsize;
1310 int offset = 0;
1311 enum machine_mode innermode;
1312
1313 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1314 so we have to make one up. Yuk. */
1315 innermode = GET_MODE (x);
1316 if (CONST_INT_P (x)
1317 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1318 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1319 else if (innermode == VOIDmode)
1320 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1321
1322 xsize = GET_MODE_SIZE (innermode);
1323
1324 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1325
1326 if (innermode == mode)
1327 return x;
1328
1329 /* MODE must occupy no more words than the mode of X. */
1330 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1331 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1332 return 0;
1333
1334 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1335 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1336 return 0;
1337
1338 offset = subreg_lowpart_offset (mode, innermode);
1339
1340 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1341 && (GET_MODE_CLASS (mode) == MODE_INT
1342 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1343 {
1344 /* If we are getting the low-order part of something that has been
1345 sign- or zero-extended, we can either just use the object being
1346 extended or make a narrower extension. If we want an even smaller
1347 piece than the size of the object being extended, call ourselves
1348 recursively.
1349
1350 This case is used mostly by combine and cse. */
1351
1352 if (GET_MODE (XEXP (x, 0)) == mode)
1353 return XEXP (x, 0);
1354 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1355 return gen_lowpart_common (mode, XEXP (x, 0));
1356 else if (msize < xsize)
1357 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1358 }
1359 else if (GET_CODE (x) == SUBREG || REG_P (x)
1360 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1361 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1362 return simplify_gen_subreg (mode, x, innermode, offset);
1363
1364 /* Otherwise, we can't do this. */
1365 return 0;
1366 }
1367 \f
1368 rtx
1369 gen_highpart (enum machine_mode mode, rtx x)
1370 {
1371 unsigned int msize = GET_MODE_SIZE (mode);
1372 rtx result;
1373
1374 /* This case loses if X is a subreg. To catch bugs early,
1375 complain if an invalid MODE is used even in other cases. */
1376 gcc_assert (msize <= UNITS_PER_WORD
1377 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1378
1379 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1380 subreg_highpart_offset (mode, GET_MODE (x)));
1381 gcc_assert (result);
1382
1383 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1384 the target if we have a MEM. gen_highpart must return a valid operand,
1385 emitting code if necessary to do so. */
1386 if (MEM_P (result))
1387 {
1388 result = validize_mem (result);
1389 gcc_assert (result);
1390 }
1391
1392 return result;
1393 }
1394
1395 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1396 be VOIDmode constant. */
1397 rtx
1398 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1399 {
1400 if (GET_MODE (exp) != VOIDmode)
1401 {
1402 gcc_assert (GET_MODE (exp) == innermode);
1403 return gen_highpart (outermode, exp);
1404 }
1405 return simplify_gen_subreg (outermode, exp, innermode,
1406 subreg_highpart_offset (outermode, innermode));
1407 }
1408
1409 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1410
1411 unsigned int
1412 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1413 {
1414 unsigned int offset = 0;
1415 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1416
1417 if (difference > 0)
1418 {
1419 if (WORDS_BIG_ENDIAN)
1420 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1421 if (BYTES_BIG_ENDIAN)
1422 offset += difference % UNITS_PER_WORD;
1423 }
1424
1425 return offset;
1426 }
1427
1428 /* Return offset in bytes to get OUTERMODE high part
1429 of the value in mode INNERMODE stored in memory in target format. */
1430 unsigned int
1431 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1432 {
1433 unsigned int offset = 0;
1434 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1435
1436 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1437
1438 if (difference > 0)
1439 {
1440 if (! WORDS_BIG_ENDIAN)
1441 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1442 if (! BYTES_BIG_ENDIAN)
1443 offset += difference % UNITS_PER_WORD;
1444 }
1445
1446 return offset;
1447 }
1448
1449 /* Return 1 iff X, assumed to be a SUBREG,
1450 refers to the least significant part of its containing reg.
1451 If X is not a SUBREG, always return 1 (it is its own low part!). */
1452
1453 int
1454 subreg_lowpart_p (const_rtx x)
1455 {
1456 if (GET_CODE (x) != SUBREG)
1457 return 1;
1458 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1459 return 0;
1460
1461 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1462 == SUBREG_BYTE (x));
1463 }
1464
1465 /* Return true if X is a paradoxical subreg, false otherwise. */
1466 bool
1467 paradoxical_subreg_p (const_rtx x)
1468 {
1469 if (GET_CODE (x) != SUBREG)
1470 return false;
1471 return (GET_MODE_PRECISION (GET_MODE (x))
1472 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1473 }
1474 \f
1475 /* Return subword OFFSET of operand OP.
1476 The word number, OFFSET, is interpreted as the word number starting
1477 at the low-order address. OFFSET 0 is the low-order word if not
1478 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1479
1480 If we cannot extract the required word, we return zero. Otherwise,
1481 an rtx corresponding to the requested word will be returned.
1482
1483 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1484 reload has completed, a valid address will always be returned. After
1485 reload, if a valid address cannot be returned, we return zero.
1486
1487 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1488 it is the responsibility of the caller.
1489
1490 MODE is the mode of OP in case it is a CONST_INT.
1491
1492 ??? This is still rather broken for some cases. The problem for the
1493 moment is that all callers of this thing provide no 'goal mode' to
1494 tell us to work with. This exists because all callers were written
1495 in a word based SUBREG world.
1496 Now use of this function can be deprecated by simplify_subreg in most
1497 cases.
1498 */
1499
1500 rtx
1501 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1502 {
1503 if (mode == VOIDmode)
1504 mode = GET_MODE (op);
1505
1506 gcc_assert (mode != VOIDmode);
1507
1508 /* If OP is narrower than a word, fail. */
1509 if (mode != BLKmode
1510 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1511 return 0;
1512
1513 /* If we want a word outside OP, return zero. */
1514 if (mode != BLKmode
1515 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1516 return const0_rtx;
1517
1518 /* Form a new MEM at the requested address. */
1519 if (MEM_P (op))
1520 {
1521 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1522
1523 if (! validate_address)
1524 return new_rtx;
1525
1526 else if (reload_completed)
1527 {
1528 if (! strict_memory_address_addr_space_p (word_mode,
1529 XEXP (new_rtx, 0),
1530 MEM_ADDR_SPACE (op)))
1531 return 0;
1532 }
1533 else
1534 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1535 }
1536
1537 /* Rest can be handled by simplify_subreg. */
1538 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1539 }
1540
1541 /* Similar to `operand_subword', but never return 0. If we can't
1542 extract the required subword, put OP into a register and try again.
1543 The second attempt must succeed. We always validate the address in
1544 this case.
1545
1546 MODE is the mode of OP, in case it is CONST_INT. */
1547
1548 rtx
1549 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1550 {
1551 rtx result = operand_subword (op, offset, 1, mode);
1552
1553 if (result)
1554 return result;
1555
1556 if (mode != BLKmode && mode != VOIDmode)
1557 {
1558 /* If this is a register which can not be accessed by words, copy it
1559 to a pseudo register. */
1560 if (REG_P (op))
1561 op = copy_to_reg (op);
1562 else
1563 op = force_reg (mode, op);
1564 }
1565
1566 result = operand_subword (op, offset, 1, mode);
1567 gcc_assert (result);
1568
1569 return result;
1570 }
1571 \f
1572 /* Returns 1 if both MEM_EXPR can be considered equal
1573 and 0 otherwise. */
1574
1575 int
1576 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1577 {
1578 if (expr1 == expr2)
1579 return 1;
1580
1581 if (! expr1 || ! expr2)
1582 return 0;
1583
1584 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1585 return 0;
1586
1587 return operand_equal_p (expr1, expr2, 0);
1588 }
1589
1590 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1591 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1592 -1 if not known. */
1593
1594 int
1595 get_mem_align_offset (rtx mem, unsigned int align)
1596 {
1597 tree expr;
1598 unsigned HOST_WIDE_INT offset;
1599
1600 /* This function can't use
1601 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1602 || (MAX (MEM_ALIGN (mem),
1603 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1604 < align))
1605 return -1;
1606 else
1607 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1608 for two reasons:
1609 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1610 for <variable>. get_inner_reference doesn't handle it and
1611 even if it did, the alignment in that case needs to be determined
1612 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1613 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1614 isn't sufficiently aligned, the object it is in might be. */
1615 gcc_assert (MEM_P (mem));
1616 expr = MEM_EXPR (mem);
1617 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1618 return -1;
1619
1620 offset = MEM_OFFSET (mem);
1621 if (DECL_P (expr))
1622 {
1623 if (DECL_ALIGN (expr) < align)
1624 return -1;
1625 }
1626 else if (INDIRECT_REF_P (expr))
1627 {
1628 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1629 return -1;
1630 }
1631 else if (TREE_CODE (expr) == COMPONENT_REF)
1632 {
1633 while (1)
1634 {
1635 tree inner = TREE_OPERAND (expr, 0);
1636 tree field = TREE_OPERAND (expr, 1);
1637 tree byte_offset = component_ref_field_offset (expr);
1638 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1639
1640 if (!byte_offset
1641 || !tree_fits_uhwi_p (byte_offset)
1642 || !tree_fits_uhwi_p (bit_offset))
1643 return -1;
1644
1645 offset += tree_to_uhwi (byte_offset);
1646 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1647
1648 if (inner == NULL_TREE)
1649 {
1650 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1651 < (unsigned int) align)
1652 return -1;
1653 break;
1654 }
1655 else if (DECL_P (inner))
1656 {
1657 if (DECL_ALIGN (inner) < align)
1658 return -1;
1659 break;
1660 }
1661 else if (TREE_CODE (inner) != COMPONENT_REF)
1662 return -1;
1663 expr = inner;
1664 }
1665 }
1666 else
1667 return -1;
1668
1669 return offset & ((align / BITS_PER_UNIT) - 1);
1670 }
1671
1672 /* Given REF (a MEM) and T, either the type of X or the expression
1673 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1674 if we are making a new object of this type. BITPOS is nonzero if
1675 there is an offset outstanding on T that will be applied later. */
1676
1677 void
1678 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1679 HOST_WIDE_INT bitpos)
1680 {
1681 HOST_WIDE_INT apply_bitpos = 0;
1682 tree type;
1683 struct mem_attrs attrs, *defattrs, *refattrs;
1684 addr_space_t as;
1685
1686 /* It can happen that type_for_mode was given a mode for which there
1687 is no language-level type. In which case it returns NULL, which
1688 we can see here. */
1689 if (t == NULL_TREE)
1690 return;
1691
1692 type = TYPE_P (t) ? t : TREE_TYPE (t);
1693 if (type == error_mark_node)
1694 return;
1695
1696 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1697 wrong answer, as it assumes that DECL_RTL already has the right alias
1698 info. Callers should not set DECL_RTL until after the call to
1699 set_mem_attributes. */
1700 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1701
1702 memset (&attrs, 0, sizeof (attrs));
1703
1704 /* Get the alias set from the expression or type (perhaps using a
1705 front-end routine) and use it. */
1706 attrs.alias = get_alias_set (t);
1707
1708 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1709 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1710
1711 /* Default values from pre-existing memory attributes if present. */
1712 refattrs = MEM_ATTRS (ref);
1713 if (refattrs)
1714 {
1715 /* ??? Can this ever happen? Calling this routine on a MEM that
1716 already carries memory attributes should probably be invalid. */
1717 attrs.expr = refattrs->expr;
1718 attrs.offset_known_p = refattrs->offset_known_p;
1719 attrs.offset = refattrs->offset;
1720 attrs.size_known_p = refattrs->size_known_p;
1721 attrs.size = refattrs->size;
1722 attrs.align = refattrs->align;
1723 }
1724
1725 /* Otherwise, default values from the mode of the MEM reference. */
1726 else
1727 {
1728 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1729 gcc_assert (!defattrs->expr);
1730 gcc_assert (!defattrs->offset_known_p);
1731
1732 /* Respect mode size. */
1733 attrs.size_known_p = defattrs->size_known_p;
1734 attrs.size = defattrs->size;
1735 /* ??? Is this really necessary? We probably should always get
1736 the size from the type below. */
1737
1738 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1739 if T is an object, always compute the object alignment below. */
1740 if (TYPE_P (t))
1741 attrs.align = defattrs->align;
1742 else
1743 attrs.align = BITS_PER_UNIT;
1744 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1745 e.g. if the type carries an alignment attribute. Should we be
1746 able to simply always use TYPE_ALIGN? */
1747 }
1748
1749 /* We can set the alignment from the type if we are making an object,
1750 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1751 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1752 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1753
1754 /* If the size is known, we can set that. */
1755 tree new_size = TYPE_SIZE_UNIT (type);
1756
1757 /* The address-space is that of the type. */
1758 as = TYPE_ADDR_SPACE (type);
1759
1760 /* If T is not a type, we may be able to deduce some more information about
1761 the expression. */
1762 if (! TYPE_P (t))
1763 {
1764 tree base;
1765
1766 if (TREE_THIS_VOLATILE (t))
1767 MEM_VOLATILE_P (ref) = 1;
1768
1769 /* Now remove any conversions: they don't change what the underlying
1770 object is. Likewise for SAVE_EXPR. */
1771 while (CONVERT_EXPR_P (t)
1772 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1773 || TREE_CODE (t) == SAVE_EXPR)
1774 t = TREE_OPERAND (t, 0);
1775
1776 /* Note whether this expression can trap. */
1777 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1778
1779 base = get_base_address (t);
1780 if (base)
1781 {
1782 if (DECL_P (base)
1783 && TREE_READONLY (base)
1784 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1785 && !TREE_THIS_VOLATILE (base))
1786 MEM_READONLY_P (ref) = 1;
1787
1788 /* Mark static const strings readonly as well. */
1789 if (TREE_CODE (base) == STRING_CST
1790 && TREE_READONLY (base)
1791 && TREE_STATIC (base))
1792 MEM_READONLY_P (ref) = 1;
1793
1794 /* Address-space information is on the base object. */
1795 if (TREE_CODE (base) == MEM_REF
1796 || TREE_CODE (base) == TARGET_MEM_REF)
1797 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1798 0))));
1799 else
1800 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1801 }
1802
1803 /* If this expression uses it's parent's alias set, mark it such
1804 that we won't change it. */
1805 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1806 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1807
1808 /* If this is a decl, set the attributes of the MEM from it. */
1809 if (DECL_P (t))
1810 {
1811 attrs.expr = t;
1812 attrs.offset_known_p = true;
1813 attrs.offset = 0;
1814 apply_bitpos = bitpos;
1815 new_size = DECL_SIZE_UNIT (t);
1816 }
1817
1818 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1819 else if (CONSTANT_CLASS_P (t))
1820 ;
1821
1822 /* If this is a field reference, record it. */
1823 else if (TREE_CODE (t) == COMPONENT_REF)
1824 {
1825 attrs.expr = t;
1826 attrs.offset_known_p = true;
1827 attrs.offset = 0;
1828 apply_bitpos = bitpos;
1829 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1830 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1831 }
1832
1833 /* If this is an array reference, look for an outer field reference. */
1834 else if (TREE_CODE (t) == ARRAY_REF)
1835 {
1836 tree off_tree = size_zero_node;
1837 /* We can't modify t, because we use it at the end of the
1838 function. */
1839 tree t2 = t;
1840
1841 do
1842 {
1843 tree index = TREE_OPERAND (t2, 1);
1844 tree low_bound = array_ref_low_bound (t2);
1845 tree unit_size = array_ref_element_size (t2);
1846
1847 /* We assume all arrays have sizes that are a multiple of a byte.
1848 First subtract the lower bound, if any, in the type of the
1849 index, then convert to sizetype and multiply by the size of
1850 the array element. */
1851 if (! integer_zerop (low_bound))
1852 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1853 index, low_bound);
1854
1855 off_tree = size_binop (PLUS_EXPR,
1856 size_binop (MULT_EXPR,
1857 fold_convert (sizetype,
1858 index),
1859 unit_size),
1860 off_tree);
1861 t2 = TREE_OPERAND (t2, 0);
1862 }
1863 while (TREE_CODE (t2) == ARRAY_REF);
1864
1865 if (DECL_P (t2)
1866 || TREE_CODE (t2) == COMPONENT_REF)
1867 {
1868 attrs.expr = t2;
1869 attrs.offset_known_p = false;
1870 if (tree_fits_uhwi_p (off_tree))
1871 {
1872 attrs.offset_known_p = true;
1873 attrs.offset = tree_to_uhwi (off_tree);
1874 apply_bitpos = bitpos;
1875 }
1876 }
1877 /* Else do not record a MEM_EXPR. */
1878 }
1879
1880 /* If this is an indirect reference, record it. */
1881 else if (TREE_CODE (t) == MEM_REF
1882 || TREE_CODE (t) == TARGET_MEM_REF)
1883 {
1884 attrs.expr = t;
1885 attrs.offset_known_p = true;
1886 attrs.offset = 0;
1887 apply_bitpos = bitpos;
1888 }
1889
1890 /* Compute the alignment. */
1891 unsigned int obj_align;
1892 unsigned HOST_WIDE_INT obj_bitpos;
1893 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1894 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1895 if (obj_bitpos != 0)
1896 obj_align = (obj_bitpos & -obj_bitpos);
1897 attrs.align = MAX (attrs.align, obj_align);
1898 }
1899
1900 if (tree_fits_uhwi_p (new_size))
1901 {
1902 attrs.size_known_p = true;
1903 attrs.size = tree_to_uhwi (new_size);
1904 }
1905
1906 /* If we modified OFFSET based on T, then subtract the outstanding
1907 bit position offset. Similarly, increase the size of the accessed
1908 object to contain the negative offset. */
1909 if (apply_bitpos)
1910 {
1911 gcc_assert (attrs.offset_known_p);
1912 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1913 if (attrs.size_known_p)
1914 attrs.size += apply_bitpos / BITS_PER_UNIT;
1915 }
1916
1917 /* Now set the attributes we computed above. */
1918 attrs.addrspace = as;
1919 set_mem_attrs (ref, &attrs);
1920 }
1921
1922 void
1923 set_mem_attributes (rtx ref, tree t, int objectp)
1924 {
1925 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1926 }
1927
1928 /* Set the alias set of MEM to SET. */
1929
1930 void
1931 set_mem_alias_set (rtx mem, alias_set_type set)
1932 {
1933 struct mem_attrs attrs;
1934
1935 /* If the new and old alias sets don't conflict, something is wrong. */
1936 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1937 attrs = *get_mem_attrs (mem);
1938 attrs.alias = set;
1939 set_mem_attrs (mem, &attrs);
1940 }
1941
1942 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1943
1944 void
1945 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1946 {
1947 struct mem_attrs attrs;
1948
1949 attrs = *get_mem_attrs (mem);
1950 attrs.addrspace = addrspace;
1951 set_mem_attrs (mem, &attrs);
1952 }
1953
1954 /* Set the alignment of MEM to ALIGN bits. */
1955
1956 void
1957 set_mem_align (rtx mem, unsigned int align)
1958 {
1959 struct mem_attrs attrs;
1960
1961 attrs = *get_mem_attrs (mem);
1962 attrs.align = align;
1963 set_mem_attrs (mem, &attrs);
1964 }
1965
1966 /* Set the expr for MEM to EXPR. */
1967
1968 void
1969 set_mem_expr (rtx mem, tree expr)
1970 {
1971 struct mem_attrs attrs;
1972
1973 attrs = *get_mem_attrs (mem);
1974 attrs.expr = expr;
1975 set_mem_attrs (mem, &attrs);
1976 }
1977
1978 /* Set the offset of MEM to OFFSET. */
1979
1980 void
1981 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1982 {
1983 struct mem_attrs attrs;
1984
1985 attrs = *get_mem_attrs (mem);
1986 attrs.offset_known_p = true;
1987 attrs.offset = offset;
1988 set_mem_attrs (mem, &attrs);
1989 }
1990
1991 /* Clear the offset of MEM. */
1992
1993 void
1994 clear_mem_offset (rtx mem)
1995 {
1996 struct mem_attrs attrs;
1997
1998 attrs = *get_mem_attrs (mem);
1999 attrs.offset_known_p = false;
2000 set_mem_attrs (mem, &attrs);
2001 }
2002
2003 /* Set the size of MEM to SIZE. */
2004
2005 void
2006 set_mem_size (rtx mem, HOST_WIDE_INT size)
2007 {
2008 struct mem_attrs attrs;
2009
2010 attrs = *get_mem_attrs (mem);
2011 attrs.size_known_p = true;
2012 attrs.size = size;
2013 set_mem_attrs (mem, &attrs);
2014 }
2015
2016 /* Clear the size of MEM. */
2017
2018 void
2019 clear_mem_size (rtx mem)
2020 {
2021 struct mem_attrs attrs;
2022
2023 attrs = *get_mem_attrs (mem);
2024 attrs.size_known_p = false;
2025 set_mem_attrs (mem, &attrs);
2026 }
2027 \f
2028 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2029 and its address changed to ADDR. (VOIDmode means don't change the mode.
2030 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2031 returned memory location is required to be valid. INPLACE is true if any
2032 changes can be made directly to MEMREF or false if MEMREF must be treated
2033 as immutable.
2034
2035 The memory attributes are not changed. */
2036
2037 static rtx
2038 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate,
2039 bool inplace)
2040 {
2041 addr_space_t as;
2042 rtx new_rtx;
2043
2044 gcc_assert (MEM_P (memref));
2045 as = MEM_ADDR_SPACE (memref);
2046 if (mode == VOIDmode)
2047 mode = GET_MODE (memref);
2048 if (addr == 0)
2049 addr = XEXP (memref, 0);
2050 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2051 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2052 return memref;
2053
2054 /* Don't validate address for LRA. LRA can make the address valid
2055 by itself in most efficient way. */
2056 if (validate && !lra_in_progress)
2057 {
2058 if (reload_in_progress || reload_completed)
2059 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2060 else
2061 addr = memory_address_addr_space (mode, addr, as);
2062 }
2063
2064 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2065 return memref;
2066
2067 if (inplace)
2068 {
2069 XEXP (memref, 0) = addr;
2070 return memref;
2071 }
2072
2073 new_rtx = gen_rtx_MEM (mode, addr);
2074 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2075 return new_rtx;
2076 }
2077
2078 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2079 way we are changing MEMREF, so we only preserve the alias set. */
2080
2081 rtx
2082 change_address (rtx memref, enum machine_mode mode, rtx addr)
2083 {
2084 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2085 enum machine_mode mmode = GET_MODE (new_rtx);
2086 struct mem_attrs attrs, *defattrs;
2087
2088 attrs = *get_mem_attrs (memref);
2089 defattrs = mode_mem_attrs[(int) mmode];
2090 attrs.expr = NULL_TREE;
2091 attrs.offset_known_p = false;
2092 attrs.size_known_p = defattrs->size_known_p;
2093 attrs.size = defattrs->size;
2094 attrs.align = defattrs->align;
2095
2096 /* If there are no changes, just return the original memory reference. */
2097 if (new_rtx == memref)
2098 {
2099 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2100 return new_rtx;
2101
2102 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2103 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2104 }
2105
2106 set_mem_attrs (new_rtx, &attrs);
2107 return new_rtx;
2108 }
2109
2110 /* Return a memory reference like MEMREF, but with its mode changed
2111 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2112 nonzero, the memory address is forced to be valid.
2113 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2114 and the caller is responsible for adjusting MEMREF base register.
2115 If ADJUST_OBJECT is zero, the underlying object associated with the
2116 memory reference is left unchanged and the caller is responsible for
2117 dealing with it. Otherwise, if the new memory reference is outside
2118 the underlying object, even partially, then the object is dropped.
2119 SIZE, if nonzero, is the size of an access in cases where MODE
2120 has no inherent size. */
2121
2122 rtx
2123 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2124 int validate, int adjust_address, int adjust_object,
2125 HOST_WIDE_INT size)
2126 {
2127 rtx addr = XEXP (memref, 0);
2128 rtx new_rtx;
2129 enum machine_mode address_mode;
2130 int pbits;
2131 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2132 unsigned HOST_WIDE_INT max_align;
2133 #ifdef POINTERS_EXTEND_UNSIGNED
2134 enum machine_mode pointer_mode
2135 = targetm.addr_space.pointer_mode (attrs.addrspace);
2136 #endif
2137
2138 /* VOIDmode means no mode change for change_address_1. */
2139 if (mode == VOIDmode)
2140 mode = GET_MODE (memref);
2141
2142 /* Take the size of non-BLKmode accesses from the mode. */
2143 defattrs = mode_mem_attrs[(int) mode];
2144 if (defattrs->size_known_p)
2145 size = defattrs->size;
2146
2147 /* If there are no changes, just return the original memory reference. */
2148 if (mode == GET_MODE (memref) && !offset
2149 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2150 && (!validate || memory_address_addr_space_p (mode, addr,
2151 attrs.addrspace)))
2152 return memref;
2153
2154 /* ??? Prefer to create garbage instead of creating shared rtl.
2155 This may happen even if offset is nonzero -- consider
2156 (plus (plus reg reg) const_int) -- so do this always. */
2157 addr = copy_rtx (addr);
2158
2159 /* Convert a possibly large offset to a signed value within the
2160 range of the target address space. */
2161 address_mode = get_address_mode (memref);
2162 pbits = GET_MODE_BITSIZE (address_mode);
2163 if (HOST_BITS_PER_WIDE_INT > pbits)
2164 {
2165 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2166 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2167 >> shift);
2168 }
2169
2170 if (adjust_address)
2171 {
2172 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2173 object, we can merge it into the LO_SUM. */
2174 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2175 && offset >= 0
2176 && (unsigned HOST_WIDE_INT) offset
2177 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2178 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2179 plus_constant (address_mode,
2180 XEXP (addr, 1), offset));
2181 #ifdef POINTERS_EXTEND_UNSIGNED
2182 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2183 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2184 the fact that pointers are not allowed to overflow. */
2185 else if (POINTERS_EXTEND_UNSIGNED > 0
2186 && GET_CODE (addr) == ZERO_EXTEND
2187 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2188 && trunc_int_for_mode (offset, pointer_mode) == offset)
2189 addr = gen_rtx_ZERO_EXTEND (address_mode,
2190 plus_constant (pointer_mode,
2191 XEXP (addr, 0), offset));
2192 #endif
2193 else
2194 addr = plus_constant (address_mode, addr, offset);
2195 }
2196
2197 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2198
2199 /* If the address is a REG, change_address_1 rightfully returns memref,
2200 but this would destroy memref's MEM_ATTRS. */
2201 if (new_rtx == memref && offset != 0)
2202 new_rtx = copy_rtx (new_rtx);
2203
2204 /* Conservatively drop the object if we don't know where we start from. */
2205 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2206 {
2207 attrs.expr = NULL_TREE;
2208 attrs.alias = 0;
2209 }
2210
2211 /* Compute the new values of the memory attributes due to this adjustment.
2212 We add the offsets and update the alignment. */
2213 if (attrs.offset_known_p)
2214 {
2215 attrs.offset += offset;
2216
2217 /* Drop the object if the new left end is not within its bounds. */
2218 if (adjust_object && attrs.offset < 0)
2219 {
2220 attrs.expr = NULL_TREE;
2221 attrs.alias = 0;
2222 }
2223 }
2224
2225 /* Compute the new alignment by taking the MIN of the alignment and the
2226 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2227 if zero. */
2228 if (offset != 0)
2229 {
2230 max_align = (offset & -offset) * BITS_PER_UNIT;
2231 attrs.align = MIN (attrs.align, max_align);
2232 }
2233
2234 if (size)
2235 {
2236 /* Drop the object if the new right end is not within its bounds. */
2237 if (adjust_object && (offset + size) > attrs.size)
2238 {
2239 attrs.expr = NULL_TREE;
2240 attrs.alias = 0;
2241 }
2242 attrs.size_known_p = true;
2243 attrs.size = size;
2244 }
2245 else if (attrs.size_known_p)
2246 {
2247 gcc_assert (!adjust_object);
2248 attrs.size -= offset;
2249 /* ??? The store_by_pieces machinery generates negative sizes,
2250 so don't assert for that here. */
2251 }
2252
2253 set_mem_attrs (new_rtx, &attrs);
2254
2255 return new_rtx;
2256 }
2257
2258 /* Return a memory reference like MEMREF, but with its mode changed
2259 to MODE and its address changed to ADDR, which is assumed to be
2260 MEMREF offset by OFFSET bytes. If VALIDATE is
2261 nonzero, the memory address is forced to be valid. */
2262
2263 rtx
2264 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2265 HOST_WIDE_INT offset, int validate)
2266 {
2267 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2268 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2269 }
2270
2271 /* Return a memory reference like MEMREF, but whose address is changed by
2272 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2273 known to be in OFFSET (possibly 1). */
2274
2275 rtx
2276 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2277 {
2278 rtx new_rtx, addr = XEXP (memref, 0);
2279 enum machine_mode address_mode;
2280 struct mem_attrs attrs, *defattrs;
2281
2282 attrs = *get_mem_attrs (memref);
2283 address_mode = get_address_mode (memref);
2284 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2285
2286 /* At this point we don't know _why_ the address is invalid. It
2287 could have secondary memory references, multiplies or anything.
2288
2289 However, if we did go and rearrange things, we can wind up not
2290 being able to recognize the magic around pic_offset_table_rtx.
2291 This stuff is fragile, and is yet another example of why it is
2292 bad to expose PIC machinery too early. */
2293 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2294 attrs.addrspace)
2295 && GET_CODE (addr) == PLUS
2296 && XEXP (addr, 0) == pic_offset_table_rtx)
2297 {
2298 addr = force_reg (GET_MODE (addr), addr);
2299 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2300 }
2301
2302 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2303 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2304
2305 /* If there are no changes, just return the original memory reference. */
2306 if (new_rtx == memref)
2307 return new_rtx;
2308
2309 /* Update the alignment to reflect the offset. Reset the offset, which
2310 we don't know. */
2311 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2312 attrs.offset_known_p = false;
2313 attrs.size_known_p = defattrs->size_known_p;
2314 attrs.size = defattrs->size;
2315 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2316 set_mem_attrs (new_rtx, &attrs);
2317 return new_rtx;
2318 }
2319
2320 /* Return a memory reference like MEMREF, but with its address changed to
2321 ADDR. The caller is asserting that the actual piece of memory pointed
2322 to is the same, just the form of the address is being changed, such as
2323 by putting something into a register. INPLACE is true if any changes
2324 can be made directly to MEMREF or false if MEMREF must be treated as
2325 immutable. */
2326
2327 rtx
2328 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2329 {
2330 /* change_address_1 copies the memory attribute structure without change
2331 and that's exactly what we want here. */
2332 update_temp_slot_address (XEXP (memref, 0), addr);
2333 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2334 }
2335
2336 /* Likewise, but the reference is not required to be valid. */
2337
2338 rtx
2339 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2340 {
2341 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2342 }
2343
2344 /* Return a memory reference like MEMREF, but with its mode widened to
2345 MODE and offset by OFFSET. This would be used by targets that e.g.
2346 cannot issue QImode memory operations and have to use SImode memory
2347 operations plus masking logic. */
2348
2349 rtx
2350 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2351 {
2352 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2353 struct mem_attrs attrs;
2354 unsigned int size = GET_MODE_SIZE (mode);
2355
2356 /* If there are no changes, just return the original memory reference. */
2357 if (new_rtx == memref)
2358 return new_rtx;
2359
2360 attrs = *get_mem_attrs (new_rtx);
2361
2362 /* If we don't know what offset we were at within the expression, then
2363 we can't know if we've overstepped the bounds. */
2364 if (! attrs.offset_known_p)
2365 attrs.expr = NULL_TREE;
2366
2367 while (attrs.expr)
2368 {
2369 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2370 {
2371 tree field = TREE_OPERAND (attrs.expr, 1);
2372 tree offset = component_ref_field_offset (attrs.expr);
2373
2374 if (! DECL_SIZE_UNIT (field))
2375 {
2376 attrs.expr = NULL_TREE;
2377 break;
2378 }
2379
2380 /* Is the field at least as large as the access? If so, ok,
2381 otherwise strip back to the containing structure. */
2382 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2383 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2384 && attrs.offset >= 0)
2385 break;
2386
2387 if (! tree_fits_uhwi_p (offset))
2388 {
2389 attrs.expr = NULL_TREE;
2390 break;
2391 }
2392
2393 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2394 attrs.offset += tree_to_uhwi (offset);
2395 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2396 / BITS_PER_UNIT);
2397 }
2398 /* Similarly for the decl. */
2399 else if (DECL_P (attrs.expr)
2400 && DECL_SIZE_UNIT (attrs.expr)
2401 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2402 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2403 && (! attrs.offset_known_p || attrs.offset >= 0))
2404 break;
2405 else
2406 {
2407 /* The widened memory access overflows the expression, which means
2408 that it could alias another expression. Zap it. */
2409 attrs.expr = NULL_TREE;
2410 break;
2411 }
2412 }
2413
2414 if (! attrs.expr)
2415 attrs.offset_known_p = false;
2416
2417 /* The widened memory may alias other stuff, so zap the alias set. */
2418 /* ??? Maybe use get_alias_set on any remaining expression. */
2419 attrs.alias = 0;
2420 attrs.size_known_p = true;
2421 attrs.size = size;
2422 set_mem_attrs (new_rtx, &attrs);
2423 return new_rtx;
2424 }
2425 \f
2426 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2427 static GTY(()) tree spill_slot_decl;
2428
2429 tree
2430 get_spill_slot_decl (bool force_build_p)
2431 {
2432 tree d = spill_slot_decl;
2433 rtx rd;
2434 struct mem_attrs attrs;
2435
2436 if (d || !force_build_p)
2437 return d;
2438
2439 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2440 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2441 DECL_ARTIFICIAL (d) = 1;
2442 DECL_IGNORED_P (d) = 1;
2443 TREE_USED (d) = 1;
2444 spill_slot_decl = d;
2445
2446 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2447 MEM_NOTRAP_P (rd) = 1;
2448 attrs = *mode_mem_attrs[(int) BLKmode];
2449 attrs.alias = new_alias_set ();
2450 attrs.expr = d;
2451 set_mem_attrs (rd, &attrs);
2452 SET_DECL_RTL (d, rd);
2453
2454 return d;
2455 }
2456
2457 /* Given MEM, a result from assign_stack_local, fill in the memory
2458 attributes as appropriate for a register allocator spill slot.
2459 These slots are not aliasable by other memory. We arrange for
2460 them all to use a single MEM_EXPR, so that the aliasing code can
2461 work properly in the case of shared spill slots. */
2462
2463 void
2464 set_mem_attrs_for_spill (rtx mem)
2465 {
2466 struct mem_attrs attrs;
2467 rtx addr;
2468
2469 attrs = *get_mem_attrs (mem);
2470 attrs.expr = get_spill_slot_decl (true);
2471 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2472 attrs.addrspace = ADDR_SPACE_GENERIC;
2473
2474 /* We expect the incoming memory to be of the form:
2475 (mem:MODE (plus (reg sfp) (const_int offset)))
2476 with perhaps the plus missing for offset = 0. */
2477 addr = XEXP (mem, 0);
2478 attrs.offset_known_p = true;
2479 attrs.offset = 0;
2480 if (GET_CODE (addr) == PLUS
2481 && CONST_INT_P (XEXP (addr, 1)))
2482 attrs.offset = INTVAL (XEXP (addr, 1));
2483
2484 set_mem_attrs (mem, &attrs);
2485 MEM_NOTRAP_P (mem) = 1;
2486 }
2487 \f
2488 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2489
2490 rtx_code_label *
2491 gen_label_rtx (void)
2492 {
2493 return as_a <rtx_code_label *> (
2494 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2495 NULL, label_num++, NULL));
2496 }
2497 \f
2498 /* For procedure integration. */
2499
2500 /* Install new pointers to the first and last insns in the chain.
2501 Also, set cur_insn_uid to one higher than the last in use.
2502 Used for an inline-procedure after copying the insn chain. */
2503
2504 void
2505 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2506 {
2507 rtx_insn *insn;
2508
2509 set_first_insn (first);
2510 set_last_insn (last);
2511 cur_insn_uid = 0;
2512
2513 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2514 {
2515 int debug_count = 0;
2516
2517 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2518 cur_debug_insn_uid = 0;
2519
2520 for (insn = first; insn; insn = NEXT_INSN (insn))
2521 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2522 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2523 else
2524 {
2525 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2526 if (DEBUG_INSN_P (insn))
2527 debug_count++;
2528 }
2529
2530 if (debug_count)
2531 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2532 else
2533 cur_debug_insn_uid++;
2534 }
2535 else
2536 for (insn = first; insn; insn = NEXT_INSN (insn))
2537 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2538
2539 cur_insn_uid++;
2540 }
2541 \f
2542 /* Go through all the RTL insn bodies and copy any invalid shared
2543 structure. This routine should only be called once. */
2544
2545 static void
2546 unshare_all_rtl_1 (rtx_insn *insn)
2547 {
2548 /* Unshare just about everything else. */
2549 unshare_all_rtl_in_chain (insn);
2550
2551 /* Make sure the addresses of stack slots found outside the insn chain
2552 (such as, in DECL_RTL of a variable) are not shared
2553 with the insn chain.
2554
2555 This special care is necessary when the stack slot MEM does not
2556 actually appear in the insn chain. If it does appear, its address
2557 is unshared from all else at that point. */
2558 stack_slot_list = safe_as_a <rtx_expr_list *> (
2559 copy_rtx_if_shared (stack_slot_list));
2560 }
2561
2562 /* Go through all the RTL insn bodies and copy any invalid shared
2563 structure, again. This is a fairly expensive thing to do so it
2564 should be done sparingly. */
2565
2566 void
2567 unshare_all_rtl_again (rtx_insn *insn)
2568 {
2569 rtx_insn *p;
2570 tree decl;
2571
2572 for (p = insn; p; p = NEXT_INSN (p))
2573 if (INSN_P (p))
2574 {
2575 reset_used_flags (PATTERN (p));
2576 reset_used_flags (REG_NOTES (p));
2577 if (CALL_P (p))
2578 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2579 }
2580
2581 /* Make sure that virtual stack slots are not shared. */
2582 set_used_decls (DECL_INITIAL (cfun->decl));
2583
2584 /* Make sure that virtual parameters are not shared. */
2585 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2586 set_used_flags (DECL_RTL (decl));
2587
2588 reset_used_flags (stack_slot_list);
2589
2590 unshare_all_rtl_1 (insn);
2591 }
2592
2593 unsigned int
2594 unshare_all_rtl (void)
2595 {
2596 unshare_all_rtl_1 (get_insns ());
2597 return 0;
2598 }
2599
2600
2601 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2602 Recursively does the same for subexpressions. */
2603
2604 static void
2605 verify_rtx_sharing (rtx orig, rtx insn)
2606 {
2607 rtx x = orig;
2608 int i;
2609 enum rtx_code code;
2610 const char *format_ptr;
2611
2612 if (x == 0)
2613 return;
2614
2615 code = GET_CODE (x);
2616
2617 /* These types may be freely shared. */
2618
2619 switch (code)
2620 {
2621 case REG:
2622 case DEBUG_EXPR:
2623 case VALUE:
2624 CASE_CONST_ANY:
2625 case SYMBOL_REF:
2626 case LABEL_REF:
2627 case CODE_LABEL:
2628 case PC:
2629 case CC0:
2630 case RETURN:
2631 case SIMPLE_RETURN:
2632 case SCRATCH:
2633 /* SCRATCH must be shared because they represent distinct values. */
2634 return;
2635 case CLOBBER:
2636 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2637 clobbers or clobbers of hard registers that originated as pseudos.
2638 This is needed to allow safe register renaming. */
2639 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2640 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2641 return;
2642 break;
2643
2644 case CONST:
2645 if (shared_const_p (orig))
2646 return;
2647 break;
2648
2649 case MEM:
2650 /* A MEM is allowed to be shared if its address is constant. */
2651 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2652 || reload_completed || reload_in_progress)
2653 return;
2654
2655 break;
2656
2657 default:
2658 break;
2659 }
2660
2661 /* This rtx may not be shared. If it has already been seen,
2662 replace it with a copy of itself. */
2663 #ifdef ENABLE_CHECKING
2664 if (RTX_FLAG (x, used))
2665 {
2666 error ("invalid rtl sharing found in the insn");
2667 debug_rtx (insn);
2668 error ("shared rtx");
2669 debug_rtx (x);
2670 internal_error ("internal consistency failure");
2671 }
2672 #endif
2673 gcc_assert (!RTX_FLAG (x, used));
2674
2675 RTX_FLAG (x, used) = 1;
2676
2677 /* Now scan the subexpressions recursively. */
2678
2679 format_ptr = GET_RTX_FORMAT (code);
2680
2681 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2682 {
2683 switch (*format_ptr++)
2684 {
2685 case 'e':
2686 verify_rtx_sharing (XEXP (x, i), insn);
2687 break;
2688
2689 case 'E':
2690 if (XVEC (x, i) != NULL)
2691 {
2692 int j;
2693 int len = XVECLEN (x, i);
2694
2695 for (j = 0; j < len; j++)
2696 {
2697 /* We allow sharing of ASM_OPERANDS inside single
2698 instruction. */
2699 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2700 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2701 == ASM_OPERANDS))
2702 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2703 else
2704 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2705 }
2706 }
2707 break;
2708 }
2709 }
2710 return;
2711 }
2712
2713 /* Reset used-flags for INSN. */
2714
2715 static void
2716 reset_insn_used_flags (rtx insn)
2717 {
2718 gcc_assert (INSN_P (insn));
2719 reset_used_flags (PATTERN (insn));
2720 reset_used_flags (REG_NOTES (insn));
2721 if (CALL_P (insn))
2722 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2723 }
2724
2725 /* Go through all the RTL insn bodies and clear all the USED bits. */
2726
2727 static void
2728 reset_all_used_flags (void)
2729 {
2730 rtx p;
2731
2732 for (p = get_insns (); p; p = NEXT_INSN (p))
2733 if (INSN_P (p))
2734 {
2735 rtx pat = PATTERN (p);
2736 if (GET_CODE (pat) != SEQUENCE)
2737 reset_insn_used_flags (p);
2738 else
2739 {
2740 gcc_assert (REG_NOTES (p) == NULL);
2741 for (int i = 0; i < XVECLEN (pat, 0); i++)
2742 {
2743 rtx insn = XVECEXP (pat, 0, i);
2744 if (INSN_P (insn))
2745 reset_insn_used_flags (insn);
2746 }
2747 }
2748 }
2749 }
2750
2751 /* Verify sharing in INSN. */
2752
2753 static void
2754 verify_insn_sharing (rtx insn)
2755 {
2756 gcc_assert (INSN_P (insn));
2757 reset_used_flags (PATTERN (insn));
2758 reset_used_flags (REG_NOTES (insn));
2759 if (CALL_P (insn))
2760 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2761 }
2762
2763 /* Go through all the RTL insn bodies and check that there is no unexpected
2764 sharing in between the subexpressions. */
2765
2766 DEBUG_FUNCTION void
2767 verify_rtl_sharing (void)
2768 {
2769 rtx p;
2770
2771 timevar_push (TV_VERIFY_RTL_SHARING);
2772
2773 reset_all_used_flags ();
2774
2775 for (p = get_insns (); p; p = NEXT_INSN (p))
2776 if (INSN_P (p))
2777 {
2778 rtx pat = PATTERN (p);
2779 if (GET_CODE (pat) != SEQUENCE)
2780 verify_insn_sharing (p);
2781 else
2782 for (int i = 0; i < XVECLEN (pat, 0); i++)
2783 {
2784 rtx insn = XVECEXP (pat, 0, i);
2785 if (INSN_P (insn))
2786 verify_insn_sharing (insn);
2787 }
2788 }
2789
2790 reset_all_used_flags ();
2791
2792 timevar_pop (TV_VERIFY_RTL_SHARING);
2793 }
2794
2795 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2796 Assumes the mark bits are cleared at entry. */
2797
2798 void
2799 unshare_all_rtl_in_chain (rtx insn)
2800 {
2801 for (; insn; insn = NEXT_INSN (insn))
2802 if (INSN_P (insn))
2803 {
2804 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2805 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2806 if (CALL_P (insn))
2807 CALL_INSN_FUNCTION_USAGE (insn)
2808 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2809 }
2810 }
2811
2812 /* Go through all virtual stack slots of a function and mark them as
2813 shared. We never replace the DECL_RTLs themselves with a copy,
2814 but expressions mentioned into a DECL_RTL cannot be shared with
2815 expressions in the instruction stream.
2816
2817 Note that reload may convert pseudo registers into memories in-place.
2818 Pseudo registers are always shared, but MEMs never are. Thus if we
2819 reset the used flags on MEMs in the instruction stream, we must set
2820 them again on MEMs that appear in DECL_RTLs. */
2821
2822 static void
2823 set_used_decls (tree blk)
2824 {
2825 tree t;
2826
2827 /* Mark decls. */
2828 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2829 if (DECL_RTL_SET_P (t))
2830 set_used_flags (DECL_RTL (t));
2831
2832 /* Now process sub-blocks. */
2833 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2834 set_used_decls (t);
2835 }
2836
2837 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2838 Recursively does the same for subexpressions. Uses
2839 copy_rtx_if_shared_1 to reduce stack space. */
2840
2841 rtx
2842 copy_rtx_if_shared (rtx orig)
2843 {
2844 copy_rtx_if_shared_1 (&orig);
2845 return orig;
2846 }
2847
2848 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2849 use. Recursively does the same for subexpressions. */
2850
2851 static void
2852 copy_rtx_if_shared_1 (rtx *orig1)
2853 {
2854 rtx x;
2855 int i;
2856 enum rtx_code code;
2857 rtx *last_ptr;
2858 const char *format_ptr;
2859 int copied = 0;
2860 int length;
2861
2862 /* Repeat is used to turn tail-recursion into iteration. */
2863 repeat:
2864 x = *orig1;
2865
2866 if (x == 0)
2867 return;
2868
2869 code = GET_CODE (x);
2870
2871 /* These types may be freely shared. */
2872
2873 switch (code)
2874 {
2875 case REG:
2876 case DEBUG_EXPR:
2877 case VALUE:
2878 CASE_CONST_ANY:
2879 case SYMBOL_REF:
2880 case LABEL_REF:
2881 case CODE_LABEL:
2882 case PC:
2883 case CC0:
2884 case RETURN:
2885 case SIMPLE_RETURN:
2886 case SCRATCH:
2887 /* SCRATCH must be shared because they represent distinct values. */
2888 return;
2889 case CLOBBER:
2890 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2891 clobbers or clobbers of hard registers that originated as pseudos.
2892 This is needed to allow safe register renaming. */
2893 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2894 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2895 return;
2896 break;
2897
2898 case CONST:
2899 if (shared_const_p (x))
2900 return;
2901 break;
2902
2903 case DEBUG_INSN:
2904 case INSN:
2905 case JUMP_INSN:
2906 case CALL_INSN:
2907 case NOTE:
2908 case BARRIER:
2909 /* The chain of insns is not being copied. */
2910 return;
2911
2912 default:
2913 break;
2914 }
2915
2916 /* This rtx may not be shared. If it has already been seen,
2917 replace it with a copy of itself. */
2918
2919 if (RTX_FLAG (x, used))
2920 {
2921 x = shallow_copy_rtx (x);
2922 copied = 1;
2923 }
2924 RTX_FLAG (x, used) = 1;
2925
2926 /* Now scan the subexpressions recursively.
2927 We can store any replaced subexpressions directly into X
2928 since we know X is not shared! Any vectors in X
2929 must be copied if X was copied. */
2930
2931 format_ptr = GET_RTX_FORMAT (code);
2932 length = GET_RTX_LENGTH (code);
2933 last_ptr = NULL;
2934
2935 for (i = 0; i < length; i++)
2936 {
2937 switch (*format_ptr++)
2938 {
2939 case 'e':
2940 if (last_ptr)
2941 copy_rtx_if_shared_1 (last_ptr);
2942 last_ptr = &XEXP (x, i);
2943 break;
2944
2945 case 'E':
2946 if (XVEC (x, i) != NULL)
2947 {
2948 int j;
2949 int len = XVECLEN (x, i);
2950
2951 /* Copy the vector iff I copied the rtx and the length
2952 is nonzero. */
2953 if (copied && len > 0)
2954 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2955
2956 /* Call recursively on all inside the vector. */
2957 for (j = 0; j < len; j++)
2958 {
2959 if (last_ptr)
2960 copy_rtx_if_shared_1 (last_ptr);
2961 last_ptr = &XVECEXP (x, i, j);
2962 }
2963 }
2964 break;
2965 }
2966 }
2967 *orig1 = x;
2968 if (last_ptr)
2969 {
2970 orig1 = last_ptr;
2971 goto repeat;
2972 }
2973 return;
2974 }
2975
2976 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2977
2978 static void
2979 mark_used_flags (rtx x, int flag)
2980 {
2981 int i, j;
2982 enum rtx_code code;
2983 const char *format_ptr;
2984 int length;
2985
2986 /* Repeat is used to turn tail-recursion into iteration. */
2987 repeat:
2988 if (x == 0)
2989 return;
2990
2991 code = GET_CODE (x);
2992
2993 /* These types may be freely shared so we needn't do any resetting
2994 for them. */
2995
2996 switch (code)
2997 {
2998 case REG:
2999 case DEBUG_EXPR:
3000 case VALUE:
3001 CASE_CONST_ANY:
3002 case SYMBOL_REF:
3003 case CODE_LABEL:
3004 case PC:
3005 case CC0:
3006 case RETURN:
3007 case SIMPLE_RETURN:
3008 return;
3009
3010 case DEBUG_INSN:
3011 case INSN:
3012 case JUMP_INSN:
3013 case CALL_INSN:
3014 case NOTE:
3015 case LABEL_REF:
3016 case BARRIER:
3017 /* The chain of insns is not being copied. */
3018 return;
3019
3020 default:
3021 break;
3022 }
3023
3024 RTX_FLAG (x, used) = flag;
3025
3026 format_ptr = GET_RTX_FORMAT (code);
3027 length = GET_RTX_LENGTH (code);
3028
3029 for (i = 0; i < length; i++)
3030 {
3031 switch (*format_ptr++)
3032 {
3033 case 'e':
3034 if (i == length-1)
3035 {
3036 x = XEXP (x, i);
3037 goto repeat;
3038 }
3039 mark_used_flags (XEXP (x, i), flag);
3040 break;
3041
3042 case 'E':
3043 for (j = 0; j < XVECLEN (x, i); j++)
3044 mark_used_flags (XVECEXP (x, i, j), flag);
3045 break;
3046 }
3047 }
3048 }
3049
3050 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3051 to look for shared sub-parts. */
3052
3053 void
3054 reset_used_flags (rtx x)
3055 {
3056 mark_used_flags (x, 0);
3057 }
3058
3059 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3060 to look for shared sub-parts. */
3061
3062 void
3063 set_used_flags (rtx x)
3064 {
3065 mark_used_flags (x, 1);
3066 }
3067 \f
3068 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3069 Return X or the rtx for the pseudo reg the value of X was copied into.
3070 OTHER must be valid as a SET_DEST. */
3071
3072 rtx
3073 make_safe_from (rtx x, rtx other)
3074 {
3075 while (1)
3076 switch (GET_CODE (other))
3077 {
3078 case SUBREG:
3079 other = SUBREG_REG (other);
3080 break;
3081 case STRICT_LOW_PART:
3082 case SIGN_EXTEND:
3083 case ZERO_EXTEND:
3084 other = XEXP (other, 0);
3085 break;
3086 default:
3087 goto done;
3088 }
3089 done:
3090 if ((MEM_P (other)
3091 && ! CONSTANT_P (x)
3092 && !REG_P (x)
3093 && GET_CODE (x) != SUBREG)
3094 || (REG_P (other)
3095 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3096 || reg_mentioned_p (other, x))))
3097 {
3098 rtx temp = gen_reg_rtx (GET_MODE (x));
3099 emit_move_insn (temp, x);
3100 return temp;
3101 }
3102 return x;
3103 }
3104 \f
3105 /* Emission of insns (adding them to the doubly-linked list). */
3106
3107 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3108
3109 rtx_insn *
3110 get_last_insn_anywhere (void)
3111 {
3112 struct sequence_stack *stack;
3113 if (get_last_insn ())
3114 return get_last_insn ();
3115 for (stack = seq_stack; stack; stack = stack->next)
3116 if (stack->last != 0)
3117 return stack->last;
3118 return 0;
3119 }
3120
3121 /* Return the first nonnote insn emitted in current sequence or current
3122 function. This routine looks inside SEQUENCEs. */
3123
3124 rtx
3125 get_first_nonnote_insn (void)
3126 {
3127 rtx insn = get_insns ();
3128
3129 if (insn)
3130 {
3131 if (NOTE_P (insn))
3132 for (insn = next_insn (insn);
3133 insn && NOTE_P (insn);
3134 insn = next_insn (insn))
3135 continue;
3136 else
3137 {
3138 if (NONJUMP_INSN_P (insn)
3139 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3140 insn = XVECEXP (PATTERN (insn), 0, 0);
3141 }
3142 }
3143
3144 return insn;
3145 }
3146
3147 /* Return the last nonnote insn emitted in current sequence or current
3148 function. This routine looks inside SEQUENCEs. */
3149
3150 rtx
3151 get_last_nonnote_insn (void)
3152 {
3153 rtx insn = get_last_insn ();
3154
3155 if (insn)
3156 {
3157 if (NOTE_P (insn))
3158 for (insn = previous_insn (insn);
3159 insn && NOTE_P (insn);
3160 insn = previous_insn (insn))
3161 continue;
3162 else
3163 {
3164 if (NONJUMP_INSN_P (insn)
3165 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3166 insn = XVECEXP (PATTERN (insn), 0,
3167 XVECLEN (PATTERN (insn), 0) - 1);
3168 }
3169 }
3170
3171 return insn;
3172 }
3173
3174 /* Return the number of actual (non-debug) insns emitted in this
3175 function. */
3176
3177 int
3178 get_max_insn_count (void)
3179 {
3180 int n = cur_insn_uid;
3181
3182 /* The table size must be stable across -g, to avoid codegen
3183 differences due to debug insns, and not be affected by
3184 -fmin-insn-uid, to avoid excessive table size and to simplify
3185 debugging of -fcompare-debug failures. */
3186 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3187 n -= cur_debug_insn_uid;
3188 else
3189 n -= MIN_NONDEBUG_INSN_UID;
3190
3191 return n;
3192 }
3193
3194 \f
3195 /* Return the next insn. If it is a SEQUENCE, return the first insn
3196 of the sequence. */
3197
3198 rtx_insn *
3199 next_insn (rtx insn)
3200 {
3201 if (insn)
3202 {
3203 insn = NEXT_INSN (insn);
3204 if (insn && NONJUMP_INSN_P (insn)
3205 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3206 insn = XVECEXP (PATTERN (insn), 0, 0);
3207 }
3208
3209 return safe_as_a <rtx_insn *> (insn);
3210 }
3211
3212 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3213 of the sequence. */
3214
3215 rtx_insn *
3216 previous_insn (rtx insn)
3217 {
3218 if (insn)
3219 {
3220 insn = PREV_INSN (insn);
3221 if (insn && NONJUMP_INSN_P (insn)
3222 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3223 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3224 }
3225
3226 return safe_as_a <rtx_insn *> (insn);
3227 }
3228
3229 /* Return the next insn after INSN that is not a NOTE. This routine does not
3230 look inside SEQUENCEs. */
3231
3232 rtx_insn *
3233 next_nonnote_insn (rtx insn)
3234 {
3235 while (insn)
3236 {
3237 insn = NEXT_INSN (insn);
3238 if (insn == 0 || !NOTE_P (insn))
3239 break;
3240 }
3241
3242 return safe_as_a <rtx_insn *> (insn);
3243 }
3244
3245 /* Return the next insn after INSN that is not a NOTE, but stop the
3246 search before we enter another basic block. This routine does not
3247 look inside SEQUENCEs. */
3248
3249 rtx_insn *
3250 next_nonnote_insn_bb (rtx insn)
3251 {
3252 while (insn)
3253 {
3254 insn = NEXT_INSN (insn);
3255 if (insn == 0 || !NOTE_P (insn))
3256 break;
3257 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3258 return NULL;
3259 }
3260
3261 return safe_as_a <rtx_insn *> (insn);
3262 }
3263
3264 /* Return the previous insn before INSN that is not a NOTE. This routine does
3265 not look inside SEQUENCEs. */
3266
3267 rtx_insn *
3268 prev_nonnote_insn (rtx insn)
3269 {
3270 while (insn)
3271 {
3272 insn = PREV_INSN (insn);
3273 if (insn == 0 || !NOTE_P (insn))
3274 break;
3275 }
3276
3277 return safe_as_a <rtx_insn *> (insn);
3278 }
3279
3280 /* Return the previous insn before INSN that is not a NOTE, but stop
3281 the search before we enter another basic block. This routine does
3282 not look inside SEQUENCEs. */
3283
3284 rtx_insn *
3285 prev_nonnote_insn_bb (rtx insn)
3286 {
3287 while (insn)
3288 {
3289 insn = PREV_INSN (insn);
3290 if (insn == 0 || !NOTE_P (insn))
3291 break;
3292 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3293 return NULL;
3294 }
3295
3296 return safe_as_a <rtx_insn *> (insn);
3297 }
3298
3299 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3300 routine does not look inside SEQUENCEs. */
3301
3302 rtx_insn *
3303 next_nondebug_insn (rtx insn)
3304 {
3305 while (insn)
3306 {
3307 insn = NEXT_INSN (insn);
3308 if (insn == 0 || !DEBUG_INSN_P (insn))
3309 break;
3310 }
3311
3312 return safe_as_a <rtx_insn *> (insn);
3313 }
3314
3315 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3316 This routine does not look inside SEQUENCEs. */
3317
3318 rtx_insn *
3319 prev_nondebug_insn (rtx insn)
3320 {
3321 while (insn)
3322 {
3323 insn = PREV_INSN (insn);
3324 if (insn == 0 || !DEBUG_INSN_P (insn))
3325 break;
3326 }
3327
3328 return safe_as_a <rtx_insn *> (insn);
3329 }
3330
3331 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3332 This routine does not look inside SEQUENCEs. */
3333
3334 rtx_insn *
3335 next_nonnote_nondebug_insn (rtx insn)
3336 {
3337 while (insn)
3338 {
3339 insn = NEXT_INSN (insn);
3340 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3341 break;
3342 }
3343
3344 return safe_as_a <rtx_insn *> (insn);
3345 }
3346
3347 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3348 This routine does not look inside SEQUENCEs. */
3349
3350 rtx_insn *
3351 prev_nonnote_nondebug_insn (rtx insn)
3352 {
3353 while (insn)
3354 {
3355 insn = PREV_INSN (insn);
3356 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3357 break;
3358 }
3359
3360 return safe_as_a <rtx_insn *> (insn);
3361 }
3362
3363 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3364 or 0, if there is none. This routine does not look inside
3365 SEQUENCEs. */
3366
3367 rtx_insn *
3368 next_real_insn (rtx insn)
3369 {
3370 while (insn)
3371 {
3372 insn = NEXT_INSN (insn);
3373 if (insn == 0 || INSN_P (insn))
3374 break;
3375 }
3376
3377 return safe_as_a <rtx_insn *> (insn);
3378 }
3379
3380 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3381 or 0, if there is none. This routine does not look inside
3382 SEQUENCEs. */
3383
3384 rtx_insn *
3385 prev_real_insn (rtx insn)
3386 {
3387 while (insn)
3388 {
3389 insn = PREV_INSN (insn);
3390 if (insn == 0 || INSN_P (insn))
3391 break;
3392 }
3393
3394 return safe_as_a <rtx_insn *> (insn);
3395 }
3396
3397 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3398 This routine does not look inside SEQUENCEs. */
3399
3400 rtx_call_insn *
3401 last_call_insn (void)
3402 {
3403 rtx_insn *insn;
3404
3405 for (insn = get_last_insn ();
3406 insn && !CALL_P (insn);
3407 insn = PREV_INSN (insn))
3408 ;
3409
3410 return safe_as_a <rtx_call_insn *> (insn);
3411 }
3412
3413 /* Find the next insn after INSN that really does something. This routine
3414 does not look inside SEQUENCEs. After reload this also skips over
3415 standalone USE and CLOBBER insn. */
3416
3417 int
3418 active_insn_p (const_rtx insn)
3419 {
3420 return (CALL_P (insn) || JUMP_P (insn)
3421 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3422 || (NONJUMP_INSN_P (insn)
3423 && (! reload_completed
3424 || (GET_CODE (PATTERN (insn)) != USE
3425 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3426 }
3427
3428 rtx_insn *
3429 next_active_insn (rtx insn)
3430 {
3431 while (insn)
3432 {
3433 insn = NEXT_INSN (insn);
3434 if (insn == 0 || active_insn_p (insn))
3435 break;
3436 }
3437
3438 return safe_as_a <rtx_insn *> (insn);
3439 }
3440
3441 /* Find the last insn before INSN that really does something. This routine
3442 does not look inside SEQUENCEs. After reload this also skips over
3443 standalone USE and CLOBBER insn. */
3444
3445 rtx_insn *
3446 prev_active_insn (rtx insn)
3447 {
3448 while (insn)
3449 {
3450 insn = PREV_INSN (insn);
3451 if (insn == 0 || active_insn_p (insn))
3452 break;
3453 }
3454
3455 return safe_as_a <rtx_insn *> (insn);
3456 }
3457 \f
3458 #ifdef HAVE_cc0
3459 /* Return the next insn that uses CC0 after INSN, which is assumed to
3460 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3461 applied to the result of this function should yield INSN).
3462
3463 Normally, this is simply the next insn. However, if a REG_CC_USER note
3464 is present, it contains the insn that uses CC0.
3465
3466 Return 0 if we can't find the insn. */
3467
3468 rtx_insn *
3469 next_cc0_user (rtx insn)
3470 {
3471 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3472
3473 if (note)
3474 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3475
3476 insn = next_nonnote_insn (insn);
3477 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3478 insn = XVECEXP (PATTERN (insn), 0, 0);
3479
3480 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3481 return safe_as_a <rtx_insn *> (insn);
3482
3483 return 0;
3484 }
3485
3486 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3487 note, it is the previous insn. */
3488
3489 rtx_insn *
3490 prev_cc0_setter (rtx insn)
3491 {
3492 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3493
3494 if (note)
3495 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3496
3497 insn = prev_nonnote_insn (insn);
3498 gcc_assert (sets_cc0_p (PATTERN (insn)));
3499
3500 return safe_as_a <rtx_insn *> (insn);
3501 }
3502 #endif
3503
3504 #ifdef AUTO_INC_DEC
3505 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3506
3507 static int
3508 find_auto_inc (rtx *xp, void *data)
3509 {
3510 rtx x = *xp;
3511 rtx reg = (rtx) data;
3512
3513 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3514 return 0;
3515
3516 switch (GET_CODE (x))
3517 {
3518 case PRE_DEC:
3519 case PRE_INC:
3520 case POST_DEC:
3521 case POST_INC:
3522 case PRE_MODIFY:
3523 case POST_MODIFY:
3524 if (rtx_equal_p (reg, XEXP (x, 0)))
3525 return 1;
3526 break;
3527
3528 default:
3529 gcc_unreachable ();
3530 }
3531 return -1;
3532 }
3533 #endif
3534
3535 /* Increment the label uses for all labels present in rtx. */
3536
3537 static void
3538 mark_label_nuses (rtx x)
3539 {
3540 enum rtx_code code;
3541 int i, j;
3542 const char *fmt;
3543
3544 code = GET_CODE (x);
3545 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3546 LABEL_NUSES (XEXP (x, 0))++;
3547
3548 fmt = GET_RTX_FORMAT (code);
3549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3550 {
3551 if (fmt[i] == 'e')
3552 mark_label_nuses (XEXP (x, i));
3553 else if (fmt[i] == 'E')
3554 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3555 mark_label_nuses (XVECEXP (x, i, j));
3556 }
3557 }
3558
3559 \f
3560 /* Try splitting insns that can be split for better scheduling.
3561 PAT is the pattern which might split.
3562 TRIAL is the insn providing PAT.
3563 LAST is nonzero if we should return the last insn of the sequence produced.
3564
3565 If this routine succeeds in splitting, it returns the first or last
3566 replacement insn depending on the value of LAST. Otherwise, it
3567 returns TRIAL. If the insn to be returned can be split, it will be. */
3568
3569 rtx_insn *
3570 try_split (rtx pat, rtx trial, int last)
3571 {
3572 rtx_insn *before = PREV_INSN (trial);
3573 rtx_insn *after = NEXT_INSN (trial);
3574 int has_barrier = 0;
3575 rtx note, seq, tem;
3576 int probability;
3577 rtx insn_last, insn;
3578 int njumps = 0;
3579 rtx call_insn = NULL_RTX;
3580
3581 /* We're not good at redistributing frame information. */
3582 if (RTX_FRAME_RELATED_P (trial))
3583 return as_a <rtx_insn *> (trial);
3584
3585 if (any_condjump_p (trial)
3586 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3587 split_branch_probability = XINT (note, 0);
3588 probability = split_branch_probability;
3589
3590 seq = split_insns (pat, trial);
3591
3592 split_branch_probability = -1;
3593
3594 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3595 We may need to handle this specially. */
3596 if (after && BARRIER_P (after))
3597 {
3598 has_barrier = 1;
3599 after = NEXT_INSN (after);
3600 }
3601
3602 if (!seq)
3603 return as_a <rtx_insn *> (trial);
3604
3605 /* Avoid infinite loop if any insn of the result matches
3606 the original pattern. */
3607 insn_last = seq;
3608 while (1)
3609 {
3610 if (INSN_P (insn_last)
3611 && rtx_equal_p (PATTERN (insn_last), pat))
3612 return as_a <rtx_insn *> (trial);
3613 if (!NEXT_INSN (insn_last))
3614 break;
3615 insn_last = NEXT_INSN (insn_last);
3616 }
3617
3618 /* We will be adding the new sequence to the function. The splitters
3619 may have introduced invalid RTL sharing, so unshare the sequence now. */
3620 unshare_all_rtl_in_chain (seq);
3621
3622 /* Mark labels and copy flags. */
3623 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3624 {
3625 if (JUMP_P (insn))
3626 {
3627 if (JUMP_P (trial))
3628 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3629 mark_jump_label (PATTERN (insn), insn, 0);
3630 njumps++;
3631 if (probability != -1
3632 && any_condjump_p (insn)
3633 && !find_reg_note (insn, REG_BR_PROB, 0))
3634 {
3635 /* We can preserve the REG_BR_PROB notes only if exactly
3636 one jump is created, otherwise the machine description
3637 is responsible for this step using
3638 split_branch_probability variable. */
3639 gcc_assert (njumps == 1);
3640 add_int_reg_note (insn, REG_BR_PROB, probability);
3641 }
3642 }
3643 }
3644
3645 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3646 in SEQ and copy any additional information across. */
3647 if (CALL_P (trial))
3648 {
3649 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3650 if (CALL_P (insn))
3651 {
3652 rtx next, *p;
3653
3654 gcc_assert (call_insn == NULL_RTX);
3655 call_insn = insn;
3656
3657 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3658 target may have explicitly specified. */
3659 p = &CALL_INSN_FUNCTION_USAGE (insn);
3660 while (*p)
3661 p = &XEXP (*p, 1);
3662 *p = CALL_INSN_FUNCTION_USAGE (trial);
3663
3664 /* If the old call was a sibling call, the new one must
3665 be too. */
3666 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3667
3668 /* If the new call is the last instruction in the sequence,
3669 it will effectively replace the old call in-situ. Otherwise
3670 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3671 so that it comes immediately after the new call. */
3672 if (NEXT_INSN (insn))
3673 for (next = NEXT_INSN (trial);
3674 next && NOTE_P (next);
3675 next = NEXT_INSN (next))
3676 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3677 {
3678 remove_insn (next);
3679 add_insn_after (next, insn, NULL);
3680 break;
3681 }
3682 }
3683 }
3684
3685 /* Copy notes, particularly those related to the CFG. */
3686 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3687 {
3688 switch (REG_NOTE_KIND (note))
3689 {
3690 case REG_EH_REGION:
3691 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3692 break;
3693
3694 case REG_NORETURN:
3695 case REG_SETJMP:
3696 case REG_TM:
3697 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3698 {
3699 if (CALL_P (insn))
3700 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3701 }
3702 break;
3703
3704 case REG_NON_LOCAL_GOTO:
3705 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3706 {
3707 if (JUMP_P (insn))
3708 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3709 }
3710 break;
3711
3712 #ifdef AUTO_INC_DEC
3713 case REG_INC:
3714 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3715 {
3716 rtx reg = XEXP (note, 0);
3717 if (!FIND_REG_INC_NOTE (insn, reg)
3718 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3719 add_reg_note (insn, REG_INC, reg);
3720 }
3721 break;
3722 #endif
3723
3724 case REG_ARGS_SIZE:
3725 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3726 break;
3727
3728 case REG_CALL_DECL:
3729 gcc_assert (call_insn != NULL_RTX);
3730 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3731 break;
3732
3733 default:
3734 break;
3735 }
3736 }
3737
3738 /* If there are LABELS inside the split insns increment the
3739 usage count so we don't delete the label. */
3740 if (INSN_P (trial))
3741 {
3742 insn = insn_last;
3743 while (insn != NULL_RTX)
3744 {
3745 /* JUMP_P insns have already been "marked" above. */
3746 if (NONJUMP_INSN_P (insn))
3747 mark_label_nuses (PATTERN (insn));
3748
3749 insn = PREV_INSN (insn);
3750 }
3751 }
3752
3753 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3754
3755 delete_insn (trial);
3756 if (has_barrier)
3757 emit_barrier_after (tem);
3758
3759 /* Recursively call try_split for each new insn created; by the
3760 time control returns here that insn will be fully split, so
3761 set LAST and continue from the insn after the one returned.
3762 We can't use next_active_insn here since AFTER may be a note.
3763 Ignore deleted insns, which can be occur if not optimizing. */
3764 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3765 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3766 tem = try_split (PATTERN (tem), tem, 1);
3767
3768 /* Return either the first or the last insn, depending on which was
3769 requested. */
3770 return last
3771 ? (after ? PREV_INSN (after) : get_last_insn ())
3772 : NEXT_INSN (before);
3773 }
3774 \f
3775 /* Make and return an INSN rtx, initializing all its slots.
3776 Store PATTERN in the pattern slots. */
3777
3778 rtx_insn *
3779 make_insn_raw (rtx pattern)
3780 {
3781 rtx_insn *insn;
3782
3783 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3784
3785 INSN_UID (insn) = cur_insn_uid++;
3786 PATTERN (insn) = pattern;
3787 INSN_CODE (insn) = -1;
3788 REG_NOTES (insn) = NULL;
3789 INSN_LOCATION (insn) = curr_insn_location ();
3790 BLOCK_FOR_INSN (insn) = NULL;
3791
3792 #ifdef ENABLE_RTL_CHECKING
3793 if (insn
3794 && INSN_P (insn)
3795 && (returnjump_p (insn)
3796 || (GET_CODE (insn) == SET
3797 && SET_DEST (insn) == pc_rtx)))
3798 {
3799 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3800 debug_rtx (insn);
3801 }
3802 #endif
3803
3804 return insn;
3805 }
3806
3807 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3808
3809 static rtx_insn *
3810 make_debug_insn_raw (rtx pattern)
3811 {
3812 rtx_debug_insn *insn;
3813
3814 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3815 INSN_UID (insn) = cur_debug_insn_uid++;
3816 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3817 INSN_UID (insn) = cur_insn_uid++;
3818
3819 PATTERN (insn) = pattern;
3820 INSN_CODE (insn) = -1;
3821 REG_NOTES (insn) = NULL;
3822 INSN_LOCATION (insn) = curr_insn_location ();
3823 BLOCK_FOR_INSN (insn) = NULL;
3824
3825 return insn;
3826 }
3827
3828 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3829
3830 static rtx_insn *
3831 make_jump_insn_raw (rtx pattern)
3832 {
3833 rtx_jump_insn *insn;
3834
3835 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3836 INSN_UID (insn) = cur_insn_uid++;
3837
3838 PATTERN (insn) = pattern;
3839 INSN_CODE (insn) = -1;
3840 REG_NOTES (insn) = NULL;
3841 JUMP_LABEL (insn) = NULL;
3842 INSN_LOCATION (insn) = curr_insn_location ();
3843 BLOCK_FOR_INSN (insn) = NULL;
3844
3845 return insn;
3846 }
3847
3848 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3849
3850 static rtx_insn *
3851 make_call_insn_raw (rtx pattern)
3852 {
3853 rtx_call_insn *insn;
3854
3855 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3856 INSN_UID (insn) = cur_insn_uid++;
3857
3858 PATTERN (insn) = pattern;
3859 INSN_CODE (insn) = -1;
3860 REG_NOTES (insn) = NULL;
3861 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3862 INSN_LOCATION (insn) = curr_insn_location ();
3863 BLOCK_FOR_INSN (insn) = NULL;
3864
3865 return insn;
3866 }
3867
3868 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3869
3870 static rtx_note *
3871 make_note_raw (enum insn_note subtype)
3872 {
3873 /* Some notes are never created this way at all. These notes are
3874 only created by patching out insns. */
3875 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3876 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3877
3878 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3879 INSN_UID (note) = cur_insn_uid++;
3880 NOTE_KIND (note) = subtype;
3881 BLOCK_FOR_INSN (note) = NULL;
3882 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3883 return note;
3884 }
3885 \f
3886 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3887 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3888 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3889
3890 static inline void
3891 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3892 {
3893 SET_PREV_INSN (insn) = prev;
3894 SET_NEXT_INSN (insn) = next;
3895 if (prev != NULL)
3896 {
3897 SET_NEXT_INSN (prev) = insn;
3898 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3899 {
3900 rtx sequence = PATTERN (prev);
3901 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3902 }
3903 }
3904 if (next != NULL)
3905 {
3906 SET_PREV_INSN (next) = insn;
3907 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3908 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3909 }
3910
3911 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3912 {
3913 rtx sequence = PATTERN (insn);
3914 SET_PREV_INSN (XVECEXP (sequence, 0, 0)) = prev;
3915 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3916 }
3917 }
3918
3919 /* Add INSN to the end of the doubly-linked list.
3920 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3921
3922 void
3923 add_insn (rtx_insn *insn)
3924 {
3925 rtx_insn *prev = get_last_insn ();
3926 link_insn_into_chain (insn, prev, NULL);
3927 if (NULL == get_insns ())
3928 set_first_insn (insn);
3929 set_last_insn (insn);
3930 }
3931
3932 /* Add INSN into the doubly-linked list after insn AFTER. */
3933
3934 static void
3935 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
3936 {
3937 rtx_insn *next = NEXT_INSN (after);
3938
3939 gcc_assert (!optimize || !INSN_DELETED_P (after));
3940
3941 link_insn_into_chain (insn, after, next);
3942
3943 if (next == NULL)
3944 {
3945 if (get_last_insn () == after)
3946 set_last_insn (insn);
3947 else
3948 {
3949 struct sequence_stack *stack = seq_stack;
3950 /* Scan all pending sequences too. */
3951 for (; stack; stack = stack->next)
3952 if (after == stack->last)
3953 {
3954 stack->last = insn;
3955 break;
3956 }
3957 }
3958 }
3959 }
3960
3961 /* Add INSN into the doubly-linked list before insn BEFORE. */
3962
3963 static void
3964 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
3965 {
3966 rtx_insn *prev = PREV_INSN (before);
3967
3968 gcc_assert (!optimize || !INSN_DELETED_P (before));
3969
3970 link_insn_into_chain (insn, prev, before);
3971
3972 if (prev == NULL)
3973 {
3974 if (get_insns () == before)
3975 set_first_insn (insn);
3976 else
3977 {
3978 struct sequence_stack *stack = seq_stack;
3979 /* Scan all pending sequences too. */
3980 for (; stack; stack = stack->next)
3981 if (before == stack->first)
3982 {
3983 stack->first = insn;
3984 break;
3985 }
3986
3987 gcc_assert (stack);
3988 }
3989 }
3990 }
3991
3992 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3993 If BB is NULL, an attempt is made to infer the bb from before.
3994
3995 This and the next function should be the only functions called
3996 to insert an insn once delay slots have been filled since only
3997 they know how to update a SEQUENCE. */
3998
3999 void
4000 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4001 {
4002 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4003 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4004 add_insn_after_nobb (insn, after);
4005 if (!BARRIER_P (after)
4006 && !BARRIER_P (insn)
4007 && (bb = BLOCK_FOR_INSN (after)))
4008 {
4009 set_block_for_insn (insn, bb);
4010 if (INSN_P (insn))
4011 df_insn_rescan (insn);
4012 /* Should not happen as first in the BB is always
4013 either NOTE or LABEL. */
4014 if (BB_END (bb) == after
4015 /* Avoid clobbering of structure when creating new BB. */
4016 && !BARRIER_P (insn)
4017 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4018 BB_END (bb) = insn;
4019 }
4020 }
4021
4022 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4023 If BB is NULL, an attempt is made to infer the bb from before.
4024
4025 This and the previous function should be the only functions called
4026 to insert an insn once delay slots have been filled since only
4027 they know how to update a SEQUENCE. */
4028
4029 void
4030 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4031 {
4032 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4033 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4034 add_insn_before_nobb (insn, before);
4035
4036 if (!bb
4037 && !BARRIER_P (before)
4038 && !BARRIER_P (insn))
4039 bb = BLOCK_FOR_INSN (before);
4040
4041 if (bb)
4042 {
4043 set_block_for_insn (insn, bb);
4044 if (INSN_P (insn))
4045 df_insn_rescan (insn);
4046 /* Should not happen as first in the BB is always either NOTE or
4047 LABEL. */
4048 gcc_assert (BB_HEAD (bb) != insn
4049 /* Avoid clobbering of structure when creating new BB. */
4050 || BARRIER_P (insn)
4051 || NOTE_INSN_BASIC_BLOCK_P (insn));
4052 }
4053 }
4054
4055 /* Replace insn with an deleted instruction note. */
4056
4057 void
4058 set_insn_deleted (rtx insn)
4059 {
4060 if (INSN_P (insn))
4061 df_insn_delete (as_a <rtx_insn *> (insn));
4062 PUT_CODE (insn, NOTE);
4063 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4064 }
4065
4066
4067 /* Unlink INSN from the insn chain.
4068
4069 This function knows how to handle sequences.
4070
4071 This function does not invalidate data flow information associated with
4072 INSN (i.e. does not call df_insn_delete). That makes this function
4073 usable for only disconnecting an insn from the chain, and re-emit it
4074 elsewhere later.
4075
4076 To later insert INSN elsewhere in the insn chain via add_insn and
4077 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4078 the caller. Nullifying them here breaks many insn chain walks.
4079
4080 To really delete an insn and related DF information, use delete_insn. */
4081
4082 void
4083 remove_insn (rtx insn)
4084 {
4085 rtx_insn *next = NEXT_INSN (insn);
4086 rtx_insn *prev = PREV_INSN (insn);
4087 basic_block bb;
4088
4089 if (prev)
4090 {
4091 SET_NEXT_INSN (prev) = next;
4092 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4093 {
4094 rtx sequence = PATTERN (prev);
4095 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
4096 }
4097 }
4098 else if (get_insns () == insn)
4099 {
4100 if (next)
4101 SET_PREV_INSN (next) = NULL;
4102 set_first_insn (next);
4103 }
4104 else
4105 {
4106 struct sequence_stack *stack = seq_stack;
4107 /* Scan all pending sequences too. */
4108 for (; stack; stack = stack->next)
4109 if (insn == stack->first)
4110 {
4111 stack->first = next;
4112 break;
4113 }
4114
4115 gcc_assert (stack);
4116 }
4117
4118 if (next)
4119 {
4120 SET_PREV_INSN (next) = prev;
4121 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4122 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
4123 }
4124 else if (get_last_insn () == insn)
4125 set_last_insn (prev);
4126 else
4127 {
4128 struct sequence_stack *stack = seq_stack;
4129 /* Scan all pending sequences too. */
4130 for (; stack; stack = stack->next)
4131 if (insn == stack->last)
4132 {
4133 stack->last = prev;
4134 break;
4135 }
4136
4137 gcc_assert (stack);
4138 }
4139
4140 /* Fix up basic block boundaries, if necessary. */
4141 if (!BARRIER_P (insn)
4142 && (bb = BLOCK_FOR_INSN (insn)))
4143 {
4144 if (BB_HEAD (bb) == insn)
4145 {
4146 /* Never ever delete the basic block note without deleting whole
4147 basic block. */
4148 gcc_assert (!NOTE_P (insn));
4149 BB_HEAD (bb) = next;
4150 }
4151 if (BB_END (bb) == insn)
4152 BB_END (bb) = prev;
4153 }
4154 }
4155
4156 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4157
4158 void
4159 add_function_usage_to (rtx call_insn, rtx call_fusage)
4160 {
4161 gcc_assert (call_insn && CALL_P (call_insn));
4162
4163 /* Put the register usage information on the CALL. If there is already
4164 some usage information, put ours at the end. */
4165 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4166 {
4167 rtx link;
4168
4169 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4170 link = XEXP (link, 1))
4171 ;
4172
4173 XEXP (link, 1) = call_fusage;
4174 }
4175 else
4176 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4177 }
4178
4179 /* Delete all insns made since FROM.
4180 FROM becomes the new last instruction. */
4181
4182 void
4183 delete_insns_since (rtx_insn *from)
4184 {
4185 if (from == 0)
4186 set_first_insn (0);
4187 else
4188 SET_NEXT_INSN (from) = 0;
4189 set_last_insn (from);
4190 }
4191
4192 /* This function is deprecated, please use sequences instead.
4193
4194 Move a consecutive bunch of insns to a different place in the chain.
4195 The insns to be moved are those between FROM and TO.
4196 They are moved to a new position after the insn AFTER.
4197 AFTER must not be FROM or TO or any insn in between.
4198
4199 This function does not know about SEQUENCEs and hence should not be
4200 called after delay-slot filling has been done. */
4201
4202 void
4203 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4204 {
4205 #ifdef ENABLE_CHECKING
4206 rtx_insn *x;
4207 for (x = from; x != to; x = NEXT_INSN (x))
4208 gcc_assert (after != x);
4209 gcc_assert (after != to);
4210 #endif
4211
4212 /* Splice this bunch out of where it is now. */
4213 if (PREV_INSN (from))
4214 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4215 if (NEXT_INSN (to))
4216 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4217 if (get_last_insn () == to)
4218 set_last_insn (PREV_INSN (from));
4219 if (get_insns () == from)
4220 set_first_insn (NEXT_INSN (to));
4221
4222 /* Make the new neighbors point to it and it to them. */
4223 if (NEXT_INSN (after))
4224 SET_PREV_INSN (NEXT_INSN (after)) = to;
4225
4226 SET_NEXT_INSN (to) = NEXT_INSN (after);
4227 SET_PREV_INSN (from) = after;
4228 SET_NEXT_INSN (after) = from;
4229 if (after == get_last_insn ())
4230 set_last_insn (to);
4231 }
4232
4233 /* Same as function above, but take care to update BB boundaries. */
4234 void
4235 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4236 {
4237 rtx_insn *prev = PREV_INSN (from);
4238 basic_block bb, bb2;
4239
4240 reorder_insns_nobb (from, to, after);
4241
4242 if (!BARRIER_P (after)
4243 && (bb = BLOCK_FOR_INSN (after)))
4244 {
4245 rtx_insn *x;
4246 df_set_bb_dirty (bb);
4247
4248 if (!BARRIER_P (from)
4249 && (bb2 = BLOCK_FOR_INSN (from)))
4250 {
4251 if (BB_END (bb2) == to)
4252 BB_END (bb2) = prev;
4253 df_set_bb_dirty (bb2);
4254 }
4255
4256 if (BB_END (bb) == after)
4257 BB_END (bb) = to;
4258
4259 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4260 if (!BARRIER_P (x))
4261 df_insn_change_bb (x, bb);
4262 }
4263 }
4264
4265 \f
4266 /* Emit insn(s) of given code and pattern
4267 at a specified place within the doubly-linked list.
4268
4269 All of the emit_foo global entry points accept an object
4270 X which is either an insn list or a PATTERN of a single
4271 instruction.
4272
4273 There are thus a few canonical ways to generate code and
4274 emit it at a specific place in the instruction stream. For
4275 example, consider the instruction named SPOT and the fact that
4276 we would like to emit some instructions before SPOT. We might
4277 do it like this:
4278
4279 start_sequence ();
4280 ... emit the new instructions ...
4281 insns_head = get_insns ();
4282 end_sequence ();
4283
4284 emit_insn_before (insns_head, SPOT);
4285
4286 It used to be common to generate SEQUENCE rtl instead, but that
4287 is a relic of the past which no longer occurs. The reason is that
4288 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4289 generated would almost certainly die right after it was created. */
4290
4291 static rtx_insn *
4292 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4293 rtx_insn *(*make_raw) (rtx))
4294 {
4295 rtx_insn *insn;
4296
4297 gcc_assert (before);
4298
4299 if (x == NULL_RTX)
4300 return safe_as_a <rtx_insn *> (last);
4301
4302 switch (GET_CODE (x))
4303 {
4304 case DEBUG_INSN:
4305 case INSN:
4306 case JUMP_INSN:
4307 case CALL_INSN:
4308 case CODE_LABEL:
4309 case BARRIER:
4310 case NOTE:
4311 insn = as_a <rtx_insn *> (x);
4312 while (insn)
4313 {
4314 rtx_insn *next = NEXT_INSN (insn);
4315 add_insn_before (insn, before, bb);
4316 last = insn;
4317 insn = next;
4318 }
4319 break;
4320
4321 #ifdef ENABLE_RTL_CHECKING
4322 case SEQUENCE:
4323 gcc_unreachable ();
4324 break;
4325 #endif
4326
4327 default:
4328 last = (*make_raw) (x);
4329 add_insn_before (last, before, bb);
4330 break;
4331 }
4332
4333 return safe_as_a <rtx_insn *> (last);
4334 }
4335
4336 /* Make X be output before the instruction BEFORE. */
4337
4338 rtx_insn *
4339 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4340 {
4341 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4342 }
4343
4344 /* Make an instruction with body X and code JUMP_INSN
4345 and output it before the instruction BEFORE. */
4346
4347 rtx_insn *
4348 emit_jump_insn_before_noloc (rtx x, rtx before)
4349 {
4350 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4351 make_jump_insn_raw);
4352 }
4353
4354 /* Make an instruction with body X and code CALL_INSN
4355 and output it before the instruction BEFORE. */
4356
4357 rtx_insn *
4358 emit_call_insn_before_noloc (rtx x, rtx before)
4359 {
4360 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4361 make_call_insn_raw);
4362 }
4363
4364 /* Make an instruction with body X and code DEBUG_INSN
4365 and output it before the instruction BEFORE. */
4366
4367 rtx_insn *
4368 emit_debug_insn_before_noloc (rtx x, rtx before)
4369 {
4370 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4371 make_debug_insn_raw);
4372 }
4373
4374 /* Make an insn of code BARRIER
4375 and output it before the insn BEFORE. */
4376
4377 rtx_barrier *
4378 emit_barrier_before (rtx before)
4379 {
4380 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4381
4382 INSN_UID (insn) = cur_insn_uid++;
4383
4384 add_insn_before (insn, before, NULL);
4385 return insn;
4386 }
4387
4388 /* Emit the label LABEL before the insn BEFORE. */
4389
4390 rtx_insn *
4391 emit_label_before (rtx label, rtx before)
4392 {
4393 gcc_checking_assert (INSN_UID (label) == 0);
4394 INSN_UID (label) = cur_insn_uid++;
4395 add_insn_before (label, before, NULL);
4396 return as_a <rtx_insn *> (label);
4397 }
4398 \f
4399 /* Helper for emit_insn_after, handles lists of instructions
4400 efficiently. */
4401
4402 static rtx
4403 emit_insn_after_1 (rtx_insn *first, rtx after, basic_block bb)
4404 {
4405 rtx_insn *last;
4406 rtx_insn *after_after;
4407 if (!bb && !BARRIER_P (after))
4408 bb = BLOCK_FOR_INSN (after);
4409
4410 if (bb)
4411 {
4412 df_set_bb_dirty (bb);
4413 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4414 if (!BARRIER_P (last))
4415 {
4416 set_block_for_insn (last, bb);
4417 df_insn_rescan (last);
4418 }
4419 if (!BARRIER_P (last))
4420 {
4421 set_block_for_insn (last, bb);
4422 df_insn_rescan (last);
4423 }
4424 if (BB_END (bb) == after)
4425 BB_END (bb) = last;
4426 }
4427 else
4428 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4429 continue;
4430
4431 after_after = NEXT_INSN (after);
4432
4433 SET_NEXT_INSN (after) = first;
4434 SET_PREV_INSN (first) = after;
4435 SET_NEXT_INSN (last) = after_after;
4436 if (after_after)
4437 SET_PREV_INSN (after_after) = last;
4438
4439 if (after == get_last_insn ())
4440 set_last_insn (last);
4441
4442 return last;
4443 }
4444
4445 static rtx_insn *
4446 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4447 rtx_insn *(*make_raw)(rtx))
4448 {
4449 rtx last = after;
4450
4451 gcc_assert (after);
4452
4453 if (x == NULL_RTX)
4454 return safe_as_a <rtx_insn *> (last);
4455
4456 switch (GET_CODE (x))
4457 {
4458 case DEBUG_INSN:
4459 case INSN:
4460 case JUMP_INSN:
4461 case CALL_INSN:
4462 case CODE_LABEL:
4463 case BARRIER:
4464 case NOTE:
4465 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4466 break;
4467
4468 #ifdef ENABLE_RTL_CHECKING
4469 case SEQUENCE:
4470 gcc_unreachable ();
4471 break;
4472 #endif
4473
4474 default:
4475 last = (*make_raw) (x);
4476 add_insn_after (last, after, bb);
4477 break;
4478 }
4479
4480 return safe_as_a <rtx_insn *> (last);
4481 }
4482
4483 /* Make X be output after the insn AFTER and set the BB of insn. If
4484 BB is NULL, an attempt is made to infer the BB from AFTER. */
4485
4486 rtx_insn *
4487 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4488 {
4489 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4490 }
4491
4492
4493 /* Make an insn of code JUMP_INSN with body X
4494 and output it after the insn AFTER. */
4495
4496 rtx_insn *
4497 emit_jump_insn_after_noloc (rtx x, rtx after)
4498 {
4499 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4500 }
4501
4502 /* Make an instruction with body X and code CALL_INSN
4503 and output it after the instruction AFTER. */
4504
4505 rtx_insn *
4506 emit_call_insn_after_noloc (rtx x, rtx after)
4507 {
4508 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4509 }
4510
4511 /* Make an instruction with body X and code CALL_INSN
4512 and output it after the instruction AFTER. */
4513
4514 rtx_insn *
4515 emit_debug_insn_after_noloc (rtx x, rtx after)
4516 {
4517 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4518 }
4519
4520 /* Make an insn of code BARRIER
4521 and output it after the insn AFTER. */
4522
4523 rtx_barrier *
4524 emit_barrier_after (rtx after)
4525 {
4526 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4527
4528 INSN_UID (insn) = cur_insn_uid++;
4529
4530 add_insn_after (insn, after, NULL);
4531 return insn;
4532 }
4533
4534 /* Emit the label LABEL after the insn AFTER. */
4535
4536 rtx_insn *
4537 emit_label_after (rtx label, rtx after)
4538 {
4539 gcc_checking_assert (INSN_UID (label) == 0);
4540 INSN_UID (label) = cur_insn_uid++;
4541 add_insn_after (label, after, NULL);
4542 return as_a <rtx_insn *> (label);
4543 }
4544 \f
4545 /* Notes require a bit of special handling: Some notes need to have their
4546 BLOCK_FOR_INSN set, others should never have it set, and some should
4547 have it set or clear depending on the context. */
4548
4549 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4550 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4551 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4552
4553 static bool
4554 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4555 {
4556 switch (subtype)
4557 {
4558 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4559 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4560 return true;
4561
4562 /* Notes for var tracking and EH region markers can appear between or
4563 inside basic blocks. If the caller is emitting on the basic block
4564 boundary, do not set BLOCK_FOR_INSN on the new note. */
4565 case NOTE_INSN_VAR_LOCATION:
4566 case NOTE_INSN_CALL_ARG_LOCATION:
4567 case NOTE_INSN_EH_REGION_BEG:
4568 case NOTE_INSN_EH_REGION_END:
4569 return on_bb_boundary_p;
4570
4571 /* Otherwise, BLOCK_FOR_INSN must be set. */
4572 default:
4573 return false;
4574 }
4575 }
4576
4577 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4578
4579 rtx_note *
4580 emit_note_after (enum insn_note subtype, rtx uncast_after)
4581 {
4582 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4583 rtx_note *note = make_note_raw (subtype);
4584 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4585 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4586
4587 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4588 add_insn_after_nobb (note, after);
4589 else
4590 add_insn_after (note, after, bb);
4591 return note;
4592 }
4593
4594 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4595
4596 rtx_note *
4597 emit_note_before (enum insn_note subtype, rtx uncast_before)
4598 {
4599 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4600 rtx_note *note = make_note_raw (subtype);
4601 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4602 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4603
4604 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4605 add_insn_before_nobb (note, before);
4606 else
4607 add_insn_before (note, before, bb);
4608 return note;
4609 }
4610 \f
4611 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4612 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4613
4614 static rtx_insn *
4615 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4616 rtx_insn *(*make_raw) (rtx))
4617 {
4618 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4619
4620 if (pattern == NULL_RTX || !loc)
4621 return safe_as_a <rtx_insn *> (last);
4622
4623 after = NEXT_INSN (after);
4624 while (1)
4625 {
4626 if (active_insn_p (after) && !INSN_LOCATION (after))
4627 INSN_LOCATION (after) = loc;
4628 if (after == last)
4629 break;
4630 after = NEXT_INSN (after);
4631 }
4632 return safe_as_a <rtx_insn *> (last);
4633 }
4634
4635 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4636 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4637 any DEBUG_INSNs. */
4638
4639 static rtx_insn *
4640 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4641 rtx_insn *(*make_raw) (rtx))
4642 {
4643 rtx prev = after;
4644
4645 if (skip_debug_insns)
4646 while (DEBUG_INSN_P (prev))
4647 prev = PREV_INSN (prev);
4648
4649 if (INSN_P (prev))
4650 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4651 make_raw);
4652 else
4653 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4654 }
4655
4656 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4657 rtx_insn *
4658 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4659 {
4660 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4661 }
4662
4663 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4664 rtx_insn *
4665 emit_insn_after (rtx pattern, rtx after)
4666 {
4667 return emit_pattern_after (pattern, after, true, make_insn_raw);
4668 }
4669
4670 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4671 rtx_insn *
4672 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4673 {
4674 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4675 }
4676
4677 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4678 rtx_insn *
4679 emit_jump_insn_after (rtx pattern, rtx after)
4680 {
4681 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4682 }
4683
4684 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4685 rtx_insn *
4686 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4687 {
4688 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4689 }
4690
4691 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4692 rtx_insn *
4693 emit_call_insn_after (rtx pattern, rtx after)
4694 {
4695 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4696 }
4697
4698 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4699 rtx_insn *
4700 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4701 {
4702 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4703 }
4704
4705 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4706 rtx_insn *
4707 emit_debug_insn_after (rtx pattern, rtx after)
4708 {
4709 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4710 }
4711
4712 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4713 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4714 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4715 CALL_INSN, etc. */
4716
4717 static rtx_insn *
4718 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4719 rtx_insn *(*make_raw) (rtx))
4720 {
4721 rtx first = PREV_INSN (before);
4722 rtx last = emit_pattern_before_noloc (pattern, before,
4723 insnp ? before : NULL_RTX,
4724 NULL, make_raw);
4725
4726 if (pattern == NULL_RTX || !loc)
4727 return safe_as_a <rtx_insn *> (last);
4728
4729 if (!first)
4730 first = get_insns ();
4731 else
4732 first = NEXT_INSN (first);
4733 while (1)
4734 {
4735 if (active_insn_p (first) && !INSN_LOCATION (first))
4736 INSN_LOCATION (first) = loc;
4737 if (first == last)
4738 break;
4739 first = NEXT_INSN (first);
4740 }
4741 return safe_as_a <rtx_insn *> (last);
4742 }
4743
4744 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4745 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4746 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4747 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4748
4749 static rtx_insn *
4750 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4751 bool insnp, rtx_insn *(*make_raw) (rtx))
4752 {
4753 rtx next = before;
4754
4755 if (skip_debug_insns)
4756 while (DEBUG_INSN_P (next))
4757 next = PREV_INSN (next);
4758
4759 if (INSN_P (next))
4760 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4761 insnp, make_raw);
4762 else
4763 return emit_pattern_before_noloc (pattern, before,
4764 insnp ? before : NULL_RTX,
4765 NULL, make_raw);
4766 }
4767
4768 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4769 rtx_insn *
4770 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4771 {
4772 return emit_pattern_before_setloc (pattern, before, loc, true,
4773 make_insn_raw);
4774 }
4775
4776 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4777 rtx_insn *
4778 emit_insn_before (rtx pattern, rtx before)
4779 {
4780 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4781 }
4782
4783 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4784 rtx_insn *
4785 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4786 {
4787 return emit_pattern_before_setloc (pattern, before, loc, false,
4788 make_jump_insn_raw);
4789 }
4790
4791 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4792 rtx_insn *
4793 emit_jump_insn_before (rtx pattern, rtx before)
4794 {
4795 return emit_pattern_before (pattern, before, true, false,
4796 make_jump_insn_raw);
4797 }
4798
4799 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4800 rtx_insn *
4801 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4802 {
4803 return emit_pattern_before_setloc (pattern, before, loc, false,
4804 make_call_insn_raw);
4805 }
4806
4807 /* Like emit_call_insn_before_noloc,
4808 but set insn_location according to BEFORE. */
4809 rtx_insn *
4810 emit_call_insn_before (rtx pattern, rtx before)
4811 {
4812 return emit_pattern_before (pattern, before, true, false,
4813 make_call_insn_raw);
4814 }
4815
4816 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4817 rtx_insn *
4818 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4819 {
4820 return emit_pattern_before_setloc (pattern, before, loc, false,
4821 make_debug_insn_raw);
4822 }
4823
4824 /* Like emit_debug_insn_before_noloc,
4825 but set insn_location according to BEFORE. */
4826 rtx_insn *
4827 emit_debug_insn_before (rtx pattern, rtx before)
4828 {
4829 return emit_pattern_before (pattern, before, false, false,
4830 make_debug_insn_raw);
4831 }
4832 \f
4833 /* Take X and emit it at the end of the doubly-linked
4834 INSN list.
4835
4836 Returns the last insn emitted. */
4837
4838 rtx_insn *
4839 emit_insn (rtx x)
4840 {
4841 rtx_insn *last = get_last_insn ();
4842 rtx_insn *insn;
4843
4844 if (x == NULL_RTX)
4845 return last;
4846
4847 switch (GET_CODE (x))
4848 {
4849 case DEBUG_INSN:
4850 case INSN:
4851 case JUMP_INSN:
4852 case CALL_INSN:
4853 case CODE_LABEL:
4854 case BARRIER:
4855 case NOTE:
4856 insn = as_a <rtx_insn *> (x);
4857 while (insn)
4858 {
4859 rtx_insn *next = NEXT_INSN (insn);
4860 add_insn (insn);
4861 last = insn;
4862 insn = next;
4863 }
4864 break;
4865
4866 #ifdef ENABLE_RTL_CHECKING
4867 case JUMP_TABLE_DATA:
4868 case SEQUENCE:
4869 gcc_unreachable ();
4870 break;
4871 #endif
4872
4873 default:
4874 last = make_insn_raw (x);
4875 add_insn (last);
4876 break;
4877 }
4878
4879 return last;
4880 }
4881
4882 /* Make an insn of code DEBUG_INSN with pattern X
4883 and add it to the end of the doubly-linked list. */
4884
4885 rtx_insn *
4886 emit_debug_insn (rtx x)
4887 {
4888 rtx_insn *last = get_last_insn ();
4889 rtx_insn *insn;
4890
4891 if (x == NULL_RTX)
4892 return last;
4893
4894 switch (GET_CODE (x))
4895 {
4896 case DEBUG_INSN:
4897 case INSN:
4898 case JUMP_INSN:
4899 case CALL_INSN:
4900 case CODE_LABEL:
4901 case BARRIER:
4902 case NOTE:
4903 insn = as_a <rtx_insn *> (x);
4904 while (insn)
4905 {
4906 rtx_insn *next = NEXT_INSN (insn);
4907 add_insn (insn);
4908 last = insn;
4909 insn = next;
4910 }
4911 break;
4912
4913 #ifdef ENABLE_RTL_CHECKING
4914 case JUMP_TABLE_DATA:
4915 case SEQUENCE:
4916 gcc_unreachable ();
4917 break;
4918 #endif
4919
4920 default:
4921 last = make_debug_insn_raw (x);
4922 add_insn (last);
4923 break;
4924 }
4925
4926 return last;
4927 }
4928
4929 /* Make an insn of code JUMP_INSN with pattern X
4930 and add it to the end of the doubly-linked list. */
4931
4932 rtx_insn *
4933 emit_jump_insn (rtx x)
4934 {
4935 rtx_insn *last = NULL;
4936 rtx_insn *insn;
4937
4938 switch (GET_CODE (x))
4939 {
4940 case DEBUG_INSN:
4941 case INSN:
4942 case JUMP_INSN:
4943 case CALL_INSN:
4944 case CODE_LABEL:
4945 case BARRIER:
4946 case NOTE:
4947 insn = as_a <rtx_insn *> (x);
4948 while (insn)
4949 {
4950 rtx_insn *next = NEXT_INSN (insn);
4951 add_insn (insn);
4952 last = insn;
4953 insn = next;
4954 }
4955 break;
4956
4957 #ifdef ENABLE_RTL_CHECKING
4958 case JUMP_TABLE_DATA:
4959 case SEQUENCE:
4960 gcc_unreachable ();
4961 break;
4962 #endif
4963
4964 default:
4965 last = make_jump_insn_raw (x);
4966 add_insn (last);
4967 break;
4968 }
4969
4970 return last;
4971 }
4972
4973 /* Make an insn of code CALL_INSN with pattern X
4974 and add it to the end of the doubly-linked list. */
4975
4976 rtx_insn *
4977 emit_call_insn (rtx x)
4978 {
4979 rtx_insn *insn;
4980
4981 switch (GET_CODE (x))
4982 {
4983 case DEBUG_INSN:
4984 case INSN:
4985 case JUMP_INSN:
4986 case CALL_INSN:
4987 case CODE_LABEL:
4988 case BARRIER:
4989 case NOTE:
4990 insn = emit_insn (x);
4991 break;
4992
4993 #ifdef ENABLE_RTL_CHECKING
4994 case SEQUENCE:
4995 case JUMP_TABLE_DATA:
4996 gcc_unreachable ();
4997 break;
4998 #endif
4999
5000 default:
5001 insn = make_call_insn_raw (x);
5002 add_insn (insn);
5003 break;
5004 }
5005
5006 return insn;
5007 }
5008
5009 /* Add the label LABEL to the end of the doubly-linked list. */
5010
5011 rtx_insn *
5012 emit_label (rtx label)
5013 {
5014 gcc_checking_assert (INSN_UID (label) == 0);
5015 INSN_UID (label) = cur_insn_uid++;
5016 add_insn (as_a <rtx_insn *> (label));
5017 return as_a <rtx_insn *> (label);
5018 }
5019
5020 /* Make an insn of code JUMP_TABLE_DATA
5021 and add it to the end of the doubly-linked list. */
5022
5023 rtx_jump_table_data *
5024 emit_jump_table_data (rtx table)
5025 {
5026 rtx_jump_table_data *jump_table_data =
5027 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5028 INSN_UID (jump_table_data) = cur_insn_uid++;
5029 PATTERN (jump_table_data) = table;
5030 BLOCK_FOR_INSN (jump_table_data) = NULL;
5031 add_insn (jump_table_data);
5032 return jump_table_data;
5033 }
5034
5035 /* Make an insn of code BARRIER
5036 and add it to the end of the doubly-linked list. */
5037
5038 rtx_barrier *
5039 emit_barrier (void)
5040 {
5041 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5042 INSN_UID (barrier) = cur_insn_uid++;
5043 add_insn (barrier);
5044 return barrier;
5045 }
5046
5047 /* Emit a copy of note ORIG. */
5048
5049 rtx_note *
5050 emit_note_copy (rtx_note *orig)
5051 {
5052 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5053 rtx_note *note = make_note_raw (kind);
5054 NOTE_DATA (note) = NOTE_DATA (orig);
5055 add_insn (note);
5056 return note;
5057 }
5058
5059 /* Make an insn of code NOTE or type NOTE_NO
5060 and add it to the end of the doubly-linked list. */
5061
5062 rtx_note *
5063 emit_note (enum insn_note kind)
5064 {
5065 rtx_note *note = make_note_raw (kind);
5066 add_insn (note);
5067 return note;
5068 }
5069
5070 /* Emit a clobber of lvalue X. */
5071
5072 rtx_insn *
5073 emit_clobber (rtx x)
5074 {
5075 /* CONCATs should not appear in the insn stream. */
5076 if (GET_CODE (x) == CONCAT)
5077 {
5078 emit_clobber (XEXP (x, 0));
5079 return emit_clobber (XEXP (x, 1));
5080 }
5081 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5082 }
5083
5084 /* Return a sequence of insns to clobber lvalue X. */
5085
5086 rtx_insn *
5087 gen_clobber (rtx x)
5088 {
5089 rtx_insn *seq;
5090
5091 start_sequence ();
5092 emit_clobber (x);
5093 seq = get_insns ();
5094 end_sequence ();
5095 return seq;
5096 }
5097
5098 /* Emit a use of rvalue X. */
5099
5100 rtx_insn *
5101 emit_use (rtx x)
5102 {
5103 /* CONCATs should not appear in the insn stream. */
5104 if (GET_CODE (x) == CONCAT)
5105 {
5106 emit_use (XEXP (x, 0));
5107 return emit_use (XEXP (x, 1));
5108 }
5109 return emit_insn (gen_rtx_USE (VOIDmode, x));
5110 }
5111
5112 /* Return a sequence of insns to use rvalue X. */
5113
5114 rtx_insn *
5115 gen_use (rtx x)
5116 {
5117 rtx_insn *seq;
5118
5119 start_sequence ();
5120 emit_use (x);
5121 seq = get_insns ();
5122 end_sequence ();
5123 return seq;
5124 }
5125
5126 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5127 Return the set in INSN that such notes describe, or NULL if the notes
5128 have no meaning for INSN. */
5129
5130 rtx
5131 set_for_reg_notes (rtx insn)
5132 {
5133 rtx pat, reg;
5134
5135 if (!INSN_P (insn))
5136 return NULL_RTX;
5137
5138 pat = PATTERN (insn);
5139 if (GET_CODE (pat) == PARALLEL)
5140 {
5141 /* We do not use single_set because that ignores SETs of unused
5142 registers. REG_EQUAL and REG_EQUIV notes really do require the
5143 PARALLEL to have a single SET. */
5144 if (multiple_sets (insn))
5145 return NULL_RTX;
5146 pat = XVECEXP (pat, 0, 0);
5147 }
5148
5149 if (GET_CODE (pat) != SET)
5150 return NULL_RTX;
5151
5152 reg = SET_DEST (pat);
5153
5154 /* Notes apply to the contents of a STRICT_LOW_PART. */
5155 if (GET_CODE (reg) == STRICT_LOW_PART)
5156 reg = XEXP (reg, 0);
5157
5158 /* Check that we have a register. */
5159 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5160 return NULL_RTX;
5161
5162 return pat;
5163 }
5164
5165 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5166 note of this type already exists, remove it first. */
5167
5168 rtx
5169 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5170 {
5171 rtx note = find_reg_note (insn, kind, NULL_RTX);
5172
5173 switch (kind)
5174 {
5175 case REG_EQUAL:
5176 case REG_EQUIV:
5177 if (!set_for_reg_notes (insn))
5178 return NULL_RTX;
5179
5180 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5181 It serves no useful purpose and breaks eliminate_regs. */
5182 if (GET_CODE (datum) == ASM_OPERANDS)
5183 return NULL_RTX;
5184 break;
5185
5186 default:
5187 break;
5188 }
5189
5190 if (note)
5191 XEXP (note, 0) = datum;
5192 else
5193 {
5194 add_reg_note (insn, kind, datum);
5195 note = REG_NOTES (insn);
5196 }
5197
5198 switch (kind)
5199 {
5200 case REG_EQUAL:
5201 case REG_EQUIV:
5202 df_notes_rescan (as_a <rtx_insn *> (insn));
5203 break;
5204 default:
5205 break;
5206 }
5207
5208 return note;
5209 }
5210
5211 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5212 rtx
5213 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5214 {
5215 rtx set = set_for_reg_notes (insn);
5216
5217 if (set && SET_DEST (set) == dst)
5218 return set_unique_reg_note (insn, kind, datum);
5219 return NULL_RTX;
5220 }
5221 \f
5222 /* Return an indication of which type of insn should have X as a body.
5223 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5224
5225 static enum rtx_code
5226 classify_insn (rtx x)
5227 {
5228 if (LABEL_P (x))
5229 return CODE_LABEL;
5230 if (GET_CODE (x) == CALL)
5231 return CALL_INSN;
5232 if (ANY_RETURN_P (x))
5233 return JUMP_INSN;
5234 if (GET_CODE (x) == SET)
5235 {
5236 if (SET_DEST (x) == pc_rtx)
5237 return JUMP_INSN;
5238 else if (GET_CODE (SET_SRC (x)) == CALL)
5239 return CALL_INSN;
5240 else
5241 return INSN;
5242 }
5243 if (GET_CODE (x) == PARALLEL)
5244 {
5245 int j;
5246 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5247 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5248 return CALL_INSN;
5249 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5250 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5251 return JUMP_INSN;
5252 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5253 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5254 return CALL_INSN;
5255 }
5256 return INSN;
5257 }
5258
5259 /* Emit the rtl pattern X as an appropriate kind of insn.
5260 If X is a label, it is simply added into the insn chain. */
5261
5262 rtx_insn *
5263 emit (rtx x)
5264 {
5265 enum rtx_code code = classify_insn (x);
5266
5267 switch (code)
5268 {
5269 case CODE_LABEL:
5270 return emit_label (x);
5271 case INSN:
5272 return emit_insn (x);
5273 case JUMP_INSN:
5274 {
5275 rtx_insn *insn = emit_jump_insn (x);
5276 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5277 return emit_barrier ();
5278 return insn;
5279 }
5280 case CALL_INSN:
5281 return emit_call_insn (x);
5282 case DEBUG_INSN:
5283 return emit_debug_insn (x);
5284 default:
5285 gcc_unreachable ();
5286 }
5287 }
5288 \f
5289 /* Space for free sequence stack entries. */
5290 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5291
5292 /* Begin emitting insns to a sequence. If this sequence will contain
5293 something that might cause the compiler to pop arguments to function
5294 calls (because those pops have previously been deferred; see
5295 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5296 before calling this function. That will ensure that the deferred
5297 pops are not accidentally emitted in the middle of this sequence. */
5298
5299 void
5300 start_sequence (void)
5301 {
5302 struct sequence_stack *tem;
5303
5304 if (free_sequence_stack != NULL)
5305 {
5306 tem = free_sequence_stack;
5307 free_sequence_stack = tem->next;
5308 }
5309 else
5310 tem = ggc_alloc<sequence_stack> ();
5311
5312 tem->next = seq_stack;
5313 tem->first = get_insns ();
5314 tem->last = get_last_insn ();
5315
5316 seq_stack = tem;
5317
5318 set_first_insn (0);
5319 set_last_insn (0);
5320 }
5321
5322 /* Set up the insn chain starting with FIRST as the current sequence,
5323 saving the previously current one. See the documentation for
5324 start_sequence for more information about how to use this function. */
5325
5326 void
5327 push_to_sequence (rtx_insn *first)
5328 {
5329 rtx_insn *last;
5330
5331 start_sequence ();
5332
5333 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5334 ;
5335
5336 set_first_insn (first);
5337 set_last_insn (last);
5338 }
5339
5340 /* Like push_to_sequence, but take the last insn as an argument to avoid
5341 looping through the list. */
5342
5343 void
5344 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5345 {
5346 start_sequence ();
5347
5348 set_first_insn (first);
5349 set_last_insn (last);
5350 }
5351
5352 /* Set up the outer-level insn chain
5353 as the current sequence, saving the previously current one. */
5354
5355 void
5356 push_topmost_sequence (void)
5357 {
5358 struct sequence_stack *stack, *top = NULL;
5359
5360 start_sequence ();
5361
5362 for (stack = seq_stack; stack; stack = stack->next)
5363 top = stack;
5364
5365 set_first_insn (top->first);
5366 set_last_insn (top->last);
5367 }
5368
5369 /* After emitting to the outer-level insn chain, update the outer-level
5370 insn chain, and restore the previous saved state. */
5371
5372 void
5373 pop_topmost_sequence (void)
5374 {
5375 struct sequence_stack *stack, *top = NULL;
5376
5377 for (stack = seq_stack; stack; stack = stack->next)
5378 top = stack;
5379
5380 top->first = get_insns ();
5381 top->last = get_last_insn ();
5382
5383 end_sequence ();
5384 }
5385
5386 /* After emitting to a sequence, restore previous saved state.
5387
5388 To get the contents of the sequence just made, you must call
5389 `get_insns' *before* calling here.
5390
5391 If the compiler might have deferred popping arguments while
5392 generating this sequence, and this sequence will not be immediately
5393 inserted into the instruction stream, use do_pending_stack_adjust
5394 before calling get_insns. That will ensure that the deferred
5395 pops are inserted into this sequence, and not into some random
5396 location in the instruction stream. See INHIBIT_DEFER_POP for more
5397 information about deferred popping of arguments. */
5398
5399 void
5400 end_sequence (void)
5401 {
5402 struct sequence_stack *tem = seq_stack;
5403
5404 set_first_insn (tem->first);
5405 set_last_insn (tem->last);
5406 seq_stack = tem->next;
5407
5408 memset (tem, 0, sizeof (*tem));
5409 tem->next = free_sequence_stack;
5410 free_sequence_stack = tem;
5411 }
5412
5413 /* Return 1 if currently emitting into a sequence. */
5414
5415 int
5416 in_sequence_p (void)
5417 {
5418 return seq_stack != 0;
5419 }
5420 \f
5421 /* Put the various virtual registers into REGNO_REG_RTX. */
5422
5423 static void
5424 init_virtual_regs (void)
5425 {
5426 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5427 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5428 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5429 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5430 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5431 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5432 = virtual_preferred_stack_boundary_rtx;
5433 }
5434
5435 \f
5436 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5437 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5438 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5439 static int copy_insn_n_scratches;
5440
5441 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5442 copied an ASM_OPERANDS.
5443 In that case, it is the original input-operand vector. */
5444 static rtvec orig_asm_operands_vector;
5445
5446 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5447 copied an ASM_OPERANDS.
5448 In that case, it is the copied input-operand vector. */
5449 static rtvec copy_asm_operands_vector;
5450
5451 /* Likewise for the constraints vector. */
5452 static rtvec orig_asm_constraints_vector;
5453 static rtvec copy_asm_constraints_vector;
5454
5455 /* Recursively create a new copy of an rtx for copy_insn.
5456 This function differs from copy_rtx in that it handles SCRATCHes and
5457 ASM_OPERANDs properly.
5458 Normally, this function is not used directly; use copy_insn as front end.
5459 However, you could first copy an insn pattern with copy_insn and then use
5460 this function afterwards to properly copy any REG_NOTEs containing
5461 SCRATCHes. */
5462
5463 rtx
5464 copy_insn_1 (rtx orig)
5465 {
5466 rtx copy;
5467 int i, j;
5468 RTX_CODE code;
5469 const char *format_ptr;
5470
5471 if (orig == NULL)
5472 return NULL;
5473
5474 code = GET_CODE (orig);
5475
5476 switch (code)
5477 {
5478 case REG:
5479 case DEBUG_EXPR:
5480 CASE_CONST_ANY:
5481 case SYMBOL_REF:
5482 case CODE_LABEL:
5483 case PC:
5484 case CC0:
5485 case RETURN:
5486 case SIMPLE_RETURN:
5487 return orig;
5488 case CLOBBER:
5489 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5490 clobbers or clobbers of hard registers that originated as pseudos.
5491 This is needed to allow safe register renaming. */
5492 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5493 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5494 return orig;
5495 break;
5496
5497 case SCRATCH:
5498 for (i = 0; i < copy_insn_n_scratches; i++)
5499 if (copy_insn_scratch_in[i] == orig)
5500 return copy_insn_scratch_out[i];
5501 break;
5502
5503 case CONST:
5504 if (shared_const_p (orig))
5505 return orig;
5506 break;
5507
5508 /* A MEM with a constant address is not sharable. The problem is that
5509 the constant address may need to be reloaded. If the mem is shared,
5510 then reloading one copy of this mem will cause all copies to appear
5511 to have been reloaded. */
5512
5513 default:
5514 break;
5515 }
5516
5517 /* Copy the various flags, fields, and other information. We assume
5518 that all fields need copying, and then clear the fields that should
5519 not be copied. That is the sensible default behavior, and forces
5520 us to explicitly document why we are *not* copying a flag. */
5521 copy = shallow_copy_rtx (orig);
5522
5523 /* We do not copy the USED flag, which is used as a mark bit during
5524 walks over the RTL. */
5525 RTX_FLAG (copy, used) = 0;
5526
5527 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5528 if (INSN_P (orig))
5529 {
5530 RTX_FLAG (copy, jump) = 0;
5531 RTX_FLAG (copy, call) = 0;
5532 RTX_FLAG (copy, frame_related) = 0;
5533 }
5534
5535 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5536
5537 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5538 switch (*format_ptr++)
5539 {
5540 case 'e':
5541 if (XEXP (orig, i) != NULL)
5542 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5543 break;
5544
5545 case 'E':
5546 case 'V':
5547 if (XVEC (orig, i) == orig_asm_constraints_vector)
5548 XVEC (copy, i) = copy_asm_constraints_vector;
5549 else if (XVEC (orig, i) == orig_asm_operands_vector)
5550 XVEC (copy, i) = copy_asm_operands_vector;
5551 else if (XVEC (orig, i) != NULL)
5552 {
5553 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5554 for (j = 0; j < XVECLEN (copy, i); j++)
5555 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5556 }
5557 break;
5558
5559 case 't':
5560 case 'w':
5561 case 'i':
5562 case 's':
5563 case 'S':
5564 case 'u':
5565 case '0':
5566 /* These are left unchanged. */
5567 break;
5568
5569 default:
5570 gcc_unreachable ();
5571 }
5572
5573 if (code == SCRATCH)
5574 {
5575 i = copy_insn_n_scratches++;
5576 gcc_assert (i < MAX_RECOG_OPERANDS);
5577 copy_insn_scratch_in[i] = orig;
5578 copy_insn_scratch_out[i] = copy;
5579 }
5580 else if (code == ASM_OPERANDS)
5581 {
5582 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5583 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5584 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5585 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5586 }
5587
5588 return copy;
5589 }
5590
5591 /* Create a new copy of an rtx.
5592 This function differs from copy_rtx in that it handles SCRATCHes and
5593 ASM_OPERANDs properly.
5594 INSN doesn't really have to be a full INSN; it could be just the
5595 pattern. */
5596 rtx
5597 copy_insn (rtx insn)
5598 {
5599 copy_insn_n_scratches = 0;
5600 orig_asm_operands_vector = 0;
5601 orig_asm_constraints_vector = 0;
5602 copy_asm_operands_vector = 0;
5603 copy_asm_constraints_vector = 0;
5604 return copy_insn_1 (insn);
5605 }
5606
5607 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5608 on that assumption that INSN itself remains in its original place. */
5609
5610 rtx
5611 copy_delay_slot_insn (rtx insn)
5612 {
5613 /* Copy INSN with its rtx_code, all its notes, location etc. */
5614 insn = copy_rtx (insn);
5615 INSN_UID (insn) = cur_insn_uid++;
5616 return insn;
5617 }
5618
5619 /* Initialize data structures and variables in this file
5620 before generating rtl for each function. */
5621
5622 void
5623 init_emit (void)
5624 {
5625 set_first_insn (NULL);
5626 set_last_insn (NULL);
5627 if (MIN_NONDEBUG_INSN_UID)
5628 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5629 else
5630 cur_insn_uid = 1;
5631 cur_debug_insn_uid = 1;
5632 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5633 first_label_num = label_num;
5634 seq_stack = NULL;
5635
5636 /* Init the tables that describe all the pseudo regs. */
5637
5638 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5639
5640 crtl->emit.regno_pointer_align
5641 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5642
5643 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5644
5645 /* Put copies of all the hard registers into regno_reg_rtx. */
5646 memcpy (regno_reg_rtx,
5647 initial_regno_reg_rtx,
5648 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5649
5650 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5651 init_virtual_regs ();
5652
5653 /* Indicate that the virtual registers and stack locations are
5654 all pointers. */
5655 REG_POINTER (stack_pointer_rtx) = 1;
5656 REG_POINTER (frame_pointer_rtx) = 1;
5657 REG_POINTER (hard_frame_pointer_rtx) = 1;
5658 REG_POINTER (arg_pointer_rtx) = 1;
5659
5660 REG_POINTER (virtual_incoming_args_rtx) = 1;
5661 REG_POINTER (virtual_stack_vars_rtx) = 1;
5662 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5663 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5664 REG_POINTER (virtual_cfa_rtx) = 1;
5665
5666 #ifdef STACK_BOUNDARY
5667 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5668 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5669 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5670 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5671
5672 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5673 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5674 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5675 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5676 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5677 #endif
5678
5679 #ifdef INIT_EXPANDERS
5680 INIT_EXPANDERS;
5681 #endif
5682 }
5683
5684 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5685
5686 static rtx
5687 gen_const_vector (enum machine_mode mode, int constant)
5688 {
5689 rtx tem;
5690 rtvec v;
5691 int units, i;
5692 enum machine_mode inner;
5693
5694 units = GET_MODE_NUNITS (mode);
5695 inner = GET_MODE_INNER (mode);
5696
5697 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5698
5699 v = rtvec_alloc (units);
5700
5701 /* We need to call this function after we set the scalar const_tiny_rtx
5702 entries. */
5703 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5704
5705 for (i = 0; i < units; ++i)
5706 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5707
5708 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5709 return tem;
5710 }
5711
5712 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5713 all elements are zero, and the one vector when all elements are one. */
5714 rtx
5715 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5716 {
5717 enum machine_mode inner = GET_MODE_INNER (mode);
5718 int nunits = GET_MODE_NUNITS (mode);
5719 rtx x;
5720 int i;
5721
5722 /* Check to see if all of the elements have the same value. */
5723 x = RTVEC_ELT (v, nunits - 1);
5724 for (i = nunits - 2; i >= 0; i--)
5725 if (RTVEC_ELT (v, i) != x)
5726 break;
5727
5728 /* If the values are all the same, check to see if we can use one of the
5729 standard constant vectors. */
5730 if (i == -1)
5731 {
5732 if (x == CONST0_RTX (inner))
5733 return CONST0_RTX (mode);
5734 else if (x == CONST1_RTX (inner))
5735 return CONST1_RTX (mode);
5736 else if (x == CONSTM1_RTX (inner))
5737 return CONSTM1_RTX (mode);
5738 }
5739
5740 return gen_rtx_raw_CONST_VECTOR (mode, v);
5741 }
5742
5743 /* Initialise global register information required by all functions. */
5744
5745 void
5746 init_emit_regs (void)
5747 {
5748 int i;
5749 enum machine_mode mode;
5750 mem_attrs *attrs;
5751
5752 /* Reset register attributes */
5753 htab_empty (reg_attrs_htab);
5754
5755 /* We need reg_raw_mode, so initialize the modes now. */
5756 init_reg_modes_target ();
5757
5758 /* Assign register numbers to the globally defined register rtx. */
5759 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5760 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5761 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5762 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5763 virtual_incoming_args_rtx =
5764 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5765 virtual_stack_vars_rtx =
5766 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5767 virtual_stack_dynamic_rtx =
5768 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5769 virtual_outgoing_args_rtx =
5770 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5771 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5772 virtual_preferred_stack_boundary_rtx =
5773 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5774
5775 /* Initialize RTL for commonly used hard registers. These are
5776 copied into regno_reg_rtx as we begin to compile each function. */
5777 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5778 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5779
5780 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5781 return_address_pointer_rtx
5782 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5783 #endif
5784
5785 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5786 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5787 else
5788 pic_offset_table_rtx = NULL_RTX;
5789
5790 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5791 {
5792 mode = (enum machine_mode) i;
5793 attrs = ggc_cleared_alloc<mem_attrs> ();
5794 attrs->align = BITS_PER_UNIT;
5795 attrs->addrspace = ADDR_SPACE_GENERIC;
5796 if (mode != BLKmode)
5797 {
5798 attrs->size_known_p = true;
5799 attrs->size = GET_MODE_SIZE (mode);
5800 if (STRICT_ALIGNMENT)
5801 attrs->align = GET_MODE_ALIGNMENT (mode);
5802 }
5803 mode_mem_attrs[i] = attrs;
5804 }
5805 }
5806
5807 /* Initialize global machine_mode variables. */
5808
5809 void
5810 init_derived_machine_modes (void)
5811 {
5812 byte_mode = VOIDmode;
5813 word_mode = VOIDmode;
5814
5815 for (enum machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5816 mode != VOIDmode;
5817 mode = GET_MODE_WIDER_MODE (mode))
5818 {
5819 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5820 && byte_mode == VOIDmode)
5821 byte_mode = mode;
5822
5823 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5824 && word_mode == VOIDmode)
5825 word_mode = mode;
5826 }
5827
5828 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5829 }
5830
5831 /* Create some permanent unique rtl objects shared between all functions. */
5832
5833 void
5834 init_emit_once (void)
5835 {
5836 int i;
5837 enum machine_mode mode;
5838 enum machine_mode double_mode;
5839
5840 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5841 CONST_FIXED, and memory attribute hash tables. */
5842 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5843 const_int_htab_eq, NULL);
5844
5845 #if TARGET_SUPPORTS_WIDE_INT
5846 const_wide_int_htab = htab_create_ggc (37, const_wide_int_htab_hash,
5847 const_wide_int_htab_eq, NULL);
5848 #endif
5849 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5850 const_double_htab_eq, NULL);
5851
5852 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5853 const_fixed_htab_eq, NULL);
5854
5855 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5856 reg_attrs_htab_eq, NULL);
5857
5858 #ifdef INIT_EXPANDERS
5859 /* This is to initialize {init|mark|free}_machine_status before the first
5860 call to push_function_context_to. This is needed by the Chill front
5861 end which calls push_function_context_to before the first call to
5862 init_function_start. */
5863 INIT_EXPANDERS;
5864 #endif
5865
5866 /* Create the unique rtx's for certain rtx codes and operand values. */
5867
5868 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5869 tries to use these variables. */
5870 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5871 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5872 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5873
5874 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5875 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5876 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5877 else
5878 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5879
5880 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5881
5882 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5883 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5884 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5885
5886 dconstm1 = dconst1;
5887 dconstm1.sign = 1;
5888
5889 dconsthalf = dconst1;
5890 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5891
5892 for (i = 0; i < 3; i++)
5893 {
5894 const REAL_VALUE_TYPE *const r =
5895 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5896
5897 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5898 mode != VOIDmode;
5899 mode = GET_MODE_WIDER_MODE (mode))
5900 const_tiny_rtx[i][(int) mode] =
5901 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5902
5903 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5904 mode != VOIDmode;
5905 mode = GET_MODE_WIDER_MODE (mode))
5906 const_tiny_rtx[i][(int) mode] =
5907 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5908
5909 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5910
5911 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5912 mode != VOIDmode;
5913 mode = GET_MODE_WIDER_MODE (mode))
5914 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5915
5916 for (mode = MIN_MODE_PARTIAL_INT;
5917 mode <= MAX_MODE_PARTIAL_INT;
5918 mode = (enum machine_mode)((int)(mode) + 1))
5919 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5920 }
5921
5922 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5923
5924 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5925 mode != VOIDmode;
5926 mode = GET_MODE_WIDER_MODE (mode))
5927 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5928
5929 for (mode = MIN_MODE_PARTIAL_INT;
5930 mode <= MAX_MODE_PARTIAL_INT;
5931 mode = (enum machine_mode)((int)(mode) + 1))
5932 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5933
5934 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5935 mode != VOIDmode;
5936 mode = GET_MODE_WIDER_MODE (mode))
5937 {
5938 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5939 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5940 }
5941
5942 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5943 mode != VOIDmode;
5944 mode = GET_MODE_WIDER_MODE (mode))
5945 {
5946 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5947 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5948 }
5949
5950 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5951 mode != VOIDmode;
5952 mode = GET_MODE_WIDER_MODE (mode))
5953 {
5954 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5955 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5956 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5957 }
5958
5959 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5960 mode != VOIDmode;
5961 mode = GET_MODE_WIDER_MODE (mode))
5962 {
5963 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5964 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5965 }
5966
5967 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5968 mode != VOIDmode;
5969 mode = GET_MODE_WIDER_MODE (mode))
5970 {
5971 FCONST0 (mode).data.high = 0;
5972 FCONST0 (mode).data.low = 0;
5973 FCONST0 (mode).mode = mode;
5974 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5975 FCONST0 (mode), mode);
5976 }
5977
5978 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5979 mode != VOIDmode;
5980 mode = GET_MODE_WIDER_MODE (mode))
5981 {
5982 FCONST0 (mode).data.high = 0;
5983 FCONST0 (mode).data.low = 0;
5984 FCONST0 (mode).mode = mode;
5985 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5986 FCONST0 (mode), mode);
5987 }
5988
5989 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5990 mode != VOIDmode;
5991 mode = GET_MODE_WIDER_MODE (mode))
5992 {
5993 FCONST0 (mode).data.high = 0;
5994 FCONST0 (mode).data.low = 0;
5995 FCONST0 (mode).mode = mode;
5996 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5997 FCONST0 (mode), mode);
5998
5999 /* We store the value 1. */
6000 FCONST1 (mode).data.high = 0;
6001 FCONST1 (mode).data.low = 0;
6002 FCONST1 (mode).mode = mode;
6003 FCONST1 (mode).data
6004 = double_int_one.lshift (GET_MODE_FBIT (mode),
6005 HOST_BITS_PER_DOUBLE_INT,
6006 SIGNED_FIXED_POINT_MODE_P (mode));
6007 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6008 FCONST1 (mode), mode);
6009 }
6010
6011 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6012 mode != VOIDmode;
6013 mode = GET_MODE_WIDER_MODE (mode))
6014 {
6015 FCONST0 (mode).data.high = 0;
6016 FCONST0 (mode).data.low = 0;
6017 FCONST0 (mode).mode = mode;
6018 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6019 FCONST0 (mode), mode);
6020
6021 /* We store the value 1. */
6022 FCONST1 (mode).data.high = 0;
6023 FCONST1 (mode).data.low = 0;
6024 FCONST1 (mode).mode = mode;
6025 FCONST1 (mode).data
6026 = double_int_one.lshift (GET_MODE_FBIT (mode),
6027 HOST_BITS_PER_DOUBLE_INT,
6028 SIGNED_FIXED_POINT_MODE_P (mode));
6029 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6030 FCONST1 (mode), mode);
6031 }
6032
6033 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6034 mode != VOIDmode;
6035 mode = GET_MODE_WIDER_MODE (mode))
6036 {
6037 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6038 }
6039
6040 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6041 mode != VOIDmode;
6042 mode = GET_MODE_WIDER_MODE (mode))
6043 {
6044 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6045 }
6046
6047 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6048 mode != VOIDmode;
6049 mode = GET_MODE_WIDER_MODE (mode))
6050 {
6051 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6052 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6053 }
6054
6055 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6056 mode != VOIDmode;
6057 mode = GET_MODE_WIDER_MODE (mode))
6058 {
6059 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6060 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6061 }
6062
6063 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6064 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
6065 const_tiny_rtx[0][i] = const0_rtx;
6066
6067 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6068 if (STORE_FLAG_VALUE == 1)
6069 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6070
6071 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6072 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6073 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6074 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6075 }
6076 \f
6077 /* Produce exact duplicate of insn INSN after AFTER.
6078 Care updating of libcall regions if present. */
6079
6080 rtx_insn *
6081 emit_copy_of_insn_after (rtx insn, rtx after)
6082 {
6083 rtx_insn *new_rtx;
6084 rtx link;
6085
6086 switch (GET_CODE (insn))
6087 {
6088 case INSN:
6089 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6090 break;
6091
6092 case JUMP_INSN:
6093 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6094 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6095 break;
6096
6097 case DEBUG_INSN:
6098 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6099 break;
6100
6101 case CALL_INSN:
6102 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6103 if (CALL_INSN_FUNCTION_USAGE (insn))
6104 CALL_INSN_FUNCTION_USAGE (new_rtx)
6105 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6106 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6107 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6108 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6109 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6110 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6111 break;
6112
6113 default:
6114 gcc_unreachable ();
6115 }
6116
6117 /* Update LABEL_NUSES. */
6118 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6119
6120 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6121
6122 /* If the old insn is frame related, then so is the new one. This is
6123 primarily needed for IA-64 unwind info which marks epilogue insns,
6124 which may be duplicated by the basic block reordering code. */
6125 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6126
6127 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6128 will make them. REG_LABEL_TARGETs are created there too, but are
6129 supposed to be sticky, so we copy them. */
6130 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6131 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6132 {
6133 if (GET_CODE (link) == EXPR_LIST)
6134 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6135 copy_insn_1 (XEXP (link, 0)));
6136 else
6137 add_shallow_copy_of_reg_note (new_rtx, link);
6138 }
6139
6140 INSN_CODE (new_rtx) = INSN_CODE (insn);
6141 return new_rtx;
6142 }
6143
6144 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6145 rtx
6146 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6147 {
6148 if (hard_reg_clobbers[mode][regno])
6149 return hard_reg_clobbers[mode][regno];
6150 else
6151 return (hard_reg_clobbers[mode][regno] =
6152 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6153 }
6154
6155 location_t prologue_location;
6156 location_t epilogue_location;
6157
6158 /* Hold current location information and last location information, so the
6159 datastructures are built lazily only when some instructions in given
6160 place are needed. */
6161 static location_t curr_location;
6162
6163 /* Allocate insn location datastructure. */
6164 void
6165 insn_locations_init (void)
6166 {
6167 prologue_location = epilogue_location = 0;
6168 curr_location = UNKNOWN_LOCATION;
6169 }
6170
6171 /* At the end of emit stage, clear current location. */
6172 void
6173 insn_locations_finalize (void)
6174 {
6175 epilogue_location = curr_location;
6176 curr_location = UNKNOWN_LOCATION;
6177 }
6178
6179 /* Set current location. */
6180 void
6181 set_curr_insn_location (location_t location)
6182 {
6183 curr_location = location;
6184 }
6185
6186 /* Get current location. */
6187 location_t
6188 curr_insn_location (void)
6189 {
6190 return curr_location;
6191 }
6192
6193 /* Return lexical scope block insn belongs to. */
6194 tree
6195 insn_scope (const_rtx insn)
6196 {
6197 return LOCATION_BLOCK (INSN_LOCATION (insn));
6198 }
6199
6200 /* Return line number of the statement that produced this insn. */
6201 int
6202 insn_line (const_rtx insn)
6203 {
6204 return LOCATION_LINE (INSN_LOCATION (insn));
6205 }
6206
6207 /* Return source file of the statement that produced this insn. */
6208 const char *
6209 insn_file (const_rtx insn)
6210 {
6211 return LOCATION_FILE (INSN_LOCATION (insn));
6212 }
6213
6214 /* Return expanded location of the statement that produced this insn. */
6215 expanded_location
6216 insn_location (const_rtx insn)
6217 {
6218 return expand_location (INSN_LOCATION (insn));
6219 }
6220
6221 /* Return true if memory model MODEL requires a pre-operation (release-style)
6222 barrier or a post-operation (acquire-style) barrier. While not universal,
6223 this function matches behavior of several targets. */
6224
6225 bool
6226 need_atomic_barrier_p (enum memmodel model, bool pre)
6227 {
6228 switch (model & MEMMODEL_MASK)
6229 {
6230 case MEMMODEL_RELAXED:
6231 case MEMMODEL_CONSUME:
6232 return false;
6233 case MEMMODEL_RELEASE:
6234 return pre;
6235 case MEMMODEL_ACQUIRE:
6236 return !pre;
6237 case MEMMODEL_ACQ_REL:
6238 case MEMMODEL_SEQ_CST:
6239 return true;
6240 default:
6241 gcc_unreachable ();
6242 }
6243 }
6244 \f
6245 #include "gt-emit-rtl.h"