Remove BB_HEAD, BB_END, BB_HEADER scaffolding
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "varasm.h"
42 #include "basic-block.h"
43 #include "tree-eh.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "stringpool.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "debug.h"
56 #include "langhooks.h"
57 #include "df.h"
58 #include "params.h"
59 #include "target.h"
60 #include "builtins.h"
61
62 struct target_rtl default_target_rtl;
63 #if SWITCHABLE_TARGET
64 struct target_rtl *this_target_rtl = &default_target_rtl;
65 #endif
66
67 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
68
69 /* Commonly used modes. */
70
71 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
72 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
73 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
74 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
75
76 /* Datastructures maintained for currently processed function in RTL form. */
77
78 struct rtl_data x_rtl;
79
80 /* Indexed by pseudo register number, gives the rtx for that pseudo.
81 Allocated in parallel with regno_pointer_align.
82 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
83 with length attribute nested in top level structures. */
84
85 rtx * regno_reg_rtx;
86
87 /* This is *not* reset after each function. It gives each CODE_LABEL
88 in the entire compilation a unique label number. */
89
90 static GTY(()) int label_num = 1;
91
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
95 is set only for MODE_INT and MODE_VECTOR_INT modes. */
96
97 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
98
99 rtx const_true_rtx;
100
101 REAL_VALUE_TYPE dconst0;
102 REAL_VALUE_TYPE dconst1;
103 REAL_VALUE_TYPE dconst2;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconsthalf;
106
107 /* Record fixed-point constant 0 and 1. */
108 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
109 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
110
111 /* We make one copy of (const_int C) where C is in
112 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
113 to save space during the compilation and simplify comparisons of
114 integers. */
115
116 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
117
118 /* Standard pieces of rtx, to be substituted directly into things. */
119 rtx pc_rtx;
120 rtx ret_rtx;
121 rtx simple_return_rtx;
122 rtx cc0_rtx;
123
124 /* A hash table storing CONST_INTs whose absolute value is greater
125 than MAX_SAVED_CONST_INT. */
126
127 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t const_int_htab;
129
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t const_wide_int_htab;
132
133 /* A hash table storing register attribute structures. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
135 htab_t reg_attrs_htab;
136
137 /* A hash table storing all CONST_DOUBLEs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_double_htab;
140
141 /* A hash table storing all CONST_FIXEDs. */
142 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
143 htab_t const_fixed_htab;
144
145 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
146 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
147 #define first_label_num (crtl->emit.x_first_label_num)
148
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 #if TARGET_SUPPORTS_WIDE_INT
154 static hashval_t const_wide_int_htab_hash (const void *);
155 static int const_wide_int_htab_eq (const void *, const void *);
156 static rtx lookup_const_wide_int (rtx);
157 #endif
158 static hashval_t const_double_htab_hash (const void *);
159 static int const_double_htab_eq (const void *, const void *);
160 static rtx lookup_const_double (rtx);
161 static hashval_t const_fixed_htab_hash (const void *);
162 static int const_fixed_htab_eq (const void *, const void *);
163 static rtx lookup_const_fixed (rtx);
164 static hashval_t reg_attrs_htab_hash (const void *);
165 static int reg_attrs_htab_eq (const void *, const void *);
166 static reg_attrs *get_reg_attrs (tree, int);
167 static rtx gen_const_vector (enum machine_mode, int);
168 static void copy_rtx_if_shared_1 (rtx *orig);
169
170 /* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172 int split_branch_probability = -1;
173 \f
174 /* Returns a hash code for X (which is a really a CONST_INT). */
175
176 static hashval_t
177 const_int_htab_hash (const void *x)
178 {
179 return (hashval_t) INTVAL ((const_rtx) x);
180 }
181
182 /* Returns nonzero if the value represented by X (which is really a
183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
185
186 static int
187 const_int_htab_eq (const void *x, const void *y)
188 {
189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
190 }
191
192 #if TARGET_SUPPORTS_WIDE_INT
193 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
194
195 static hashval_t
196 const_wide_int_htab_hash (const void *x)
197 {
198 int i;
199 HOST_WIDE_INT hash = 0;
200 const_rtx xr = (const_rtx) x;
201
202 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
203 hash += CONST_WIDE_INT_ELT (xr, i);
204
205 return (hashval_t) hash;
206 }
207
208 /* Returns nonzero if the value represented by X (which is really a
209 CONST_WIDE_INT) is the same as that given by Y (which is really a
210 CONST_WIDE_INT). */
211
212 static int
213 const_wide_int_htab_eq (const void *x, const void *y)
214 {
215 int i;
216 const_rtx xr = (const_rtx) x;
217 const_rtx yr = (const_rtx) y;
218 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
219 return 0;
220
221 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
222 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
223 return 0;
224
225 return 1;
226 }
227 #endif
228
229 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
230 static hashval_t
231 const_double_htab_hash (const void *x)
232 {
233 const_rtx const value = (const_rtx) x;
234 hashval_t h;
235
236 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
237 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
238 else
239 {
240 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
241 /* MODE is used in the comparison, so it should be in the hash. */
242 h ^= GET_MODE (value);
243 }
244 return h;
245 }
246
247 /* Returns nonzero if the value represented by X (really a ...)
248 is the same as that represented by Y (really a ...) */
249 static int
250 const_double_htab_eq (const void *x, const void *y)
251 {
252 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
253
254 if (GET_MODE (a) != GET_MODE (b))
255 return 0;
256 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
257 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
258 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
259 else
260 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
261 CONST_DOUBLE_REAL_VALUE (b));
262 }
263
264 /* Returns a hash code for X (which is really a CONST_FIXED). */
265
266 static hashval_t
267 const_fixed_htab_hash (const void *x)
268 {
269 const_rtx const value = (const_rtx) x;
270 hashval_t h;
271
272 h = fixed_hash (CONST_FIXED_VALUE (value));
273 /* MODE is used in the comparison, so it should be in the hash. */
274 h ^= GET_MODE (value);
275 return h;
276 }
277
278 /* Returns nonzero if the value represented by X (really a ...)
279 is the same as that represented by Y (really a ...). */
280
281 static int
282 const_fixed_htab_eq (const void *x, const void *y)
283 {
284 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
285
286 if (GET_MODE (a) != GET_MODE (b))
287 return 0;
288 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
289 }
290
291 /* Return true if the given memory attributes are equal. */
292
293 bool
294 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
295 {
296 if (p == q)
297 return true;
298 if (!p || !q)
299 return false;
300 return (p->alias == q->alias
301 && p->offset_known_p == q->offset_known_p
302 && (!p->offset_known_p || p->offset == q->offset)
303 && p->size_known_p == q->size_known_p
304 && (!p->size_known_p || p->size == q->size)
305 && p->align == q->align
306 && p->addrspace == q->addrspace
307 && (p->expr == q->expr
308 || (p->expr != NULL_TREE && q->expr != NULL_TREE
309 && operand_equal_p (p->expr, q->expr, 0))));
310 }
311
312 /* Set MEM's memory attributes so that they are the same as ATTRS. */
313
314 static void
315 set_mem_attrs (rtx mem, mem_attrs *attrs)
316 {
317 /* If everything is the default, we can just clear the attributes. */
318 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
319 {
320 MEM_ATTRS (mem) = 0;
321 return;
322 }
323
324 if (!MEM_ATTRS (mem)
325 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
326 {
327 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
328 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
329 }
330 }
331
332 /* Returns a hash code for X (which is a really a reg_attrs *). */
333
334 static hashval_t
335 reg_attrs_htab_hash (const void *x)
336 {
337 const reg_attrs *const p = (const reg_attrs *) x;
338
339 return ((p->offset * 1000) ^ (intptr_t) p->decl);
340 }
341
342 /* Returns nonzero if the value represented by X (which is really a
343 reg_attrs *) is the same as that given by Y (which is also really a
344 reg_attrs *). */
345
346 static int
347 reg_attrs_htab_eq (const void *x, const void *y)
348 {
349 const reg_attrs *const p = (const reg_attrs *) x;
350 const reg_attrs *const q = (const reg_attrs *) y;
351
352 return (p->decl == q->decl && p->offset == q->offset);
353 }
354 /* Allocate a new reg_attrs structure and insert it into the hash table if
355 one identical to it is not already in the table. We are doing this for
356 MEM of mode MODE. */
357
358 static reg_attrs *
359 get_reg_attrs (tree decl, int offset)
360 {
361 reg_attrs attrs;
362 void **slot;
363
364 /* If everything is the default, we can just return zero. */
365 if (decl == 0 && offset == 0)
366 return 0;
367
368 attrs.decl = decl;
369 attrs.offset = offset;
370
371 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
372 if (*slot == 0)
373 {
374 *slot = ggc_alloc<reg_attrs> ();
375 memcpy (*slot, &attrs, sizeof (reg_attrs));
376 }
377
378 return (reg_attrs *) *slot;
379 }
380
381
382 #if !HAVE_blockage
383 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
384 and to block register equivalences to be seen across this insn. */
385
386 rtx
387 gen_blockage (void)
388 {
389 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
390 MEM_VOLATILE_P (x) = true;
391 return x;
392 }
393 #endif
394
395
396 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
397 don't attempt to share with the various global pieces of rtl (such as
398 frame_pointer_rtx). */
399
400 rtx
401 gen_raw_REG (enum machine_mode mode, int regno)
402 {
403 rtx x = gen_rtx_raw_REG (mode, regno);
404 ORIGINAL_REGNO (x) = regno;
405 return x;
406 }
407
408 /* There are some RTL codes that require special attention; the generation
409 functions do the raw handling. If you add to this list, modify
410 special_rtx in gengenrtl.c as well. */
411
412 rtx
413 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
414 {
415 void **slot;
416
417 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
418 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
419
420 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
421 if (const_true_rtx && arg == STORE_FLAG_VALUE)
422 return const_true_rtx;
423 #endif
424
425 /* Look up the CONST_INT in the hash table. */
426 slot = htab_find_slot_with_hash (const_int_htab, &arg,
427 (hashval_t) arg, INSERT);
428 if (*slot == 0)
429 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
430
431 return (rtx) *slot;
432 }
433
434 rtx
435 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
436 {
437 return GEN_INT (trunc_int_for_mode (c, mode));
438 }
439
440 /* CONST_DOUBLEs might be created from pairs of integers, or from
441 REAL_VALUE_TYPEs. Also, their length is known only at run time,
442 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
443
444 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
445 hash table. If so, return its counterpart; otherwise add it
446 to the hash table and return it. */
447 static rtx
448 lookup_const_double (rtx real)
449 {
450 void **slot = htab_find_slot (const_double_htab, real, INSERT);
451 if (*slot == 0)
452 *slot = real;
453
454 return (rtx) *slot;
455 }
456
457 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
458 VALUE in mode MODE. */
459 rtx
460 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
461 {
462 rtx real = rtx_alloc (CONST_DOUBLE);
463 PUT_MODE (real, mode);
464
465 real->u.rv = value;
466
467 return lookup_const_double (real);
468 }
469
470 /* Determine whether FIXED, a CONST_FIXED, already exists in the
471 hash table. If so, return its counterpart; otherwise add it
472 to the hash table and return it. */
473
474 static rtx
475 lookup_const_fixed (rtx fixed)
476 {
477 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
478 if (*slot == 0)
479 *slot = fixed;
480
481 return (rtx) *slot;
482 }
483
484 /* Return a CONST_FIXED rtx for a fixed-point value specified by
485 VALUE in mode MODE. */
486
487 rtx
488 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
489 {
490 rtx fixed = rtx_alloc (CONST_FIXED);
491 PUT_MODE (fixed, mode);
492
493 fixed->u.fv = value;
494
495 return lookup_const_fixed (fixed);
496 }
497
498 #if TARGET_SUPPORTS_WIDE_INT == 0
499 /* Constructs double_int from rtx CST. */
500
501 double_int
502 rtx_to_double_int (const_rtx cst)
503 {
504 double_int r;
505
506 if (CONST_INT_P (cst))
507 r = double_int::from_shwi (INTVAL (cst));
508 else if (CONST_DOUBLE_AS_INT_P (cst))
509 {
510 r.low = CONST_DOUBLE_LOW (cst);
511 r.high = CONST_DOUBLE_HIGH (cst);
512 }
513 else
514 gcc_unreachable ();
515
516 return r;
517 }
518 #endif
519
520 #if TARGET_SUPPORTS_WIDE_INT
521 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
522 If so, return its counterpart; otherwise add it to the hash table and
523 return it. */
524
525 static rtx
526 lookup_const_wide_int (rtx wint)
527 {
528 void **slot = htab_find_slot (const_wide_int_htab, wint, INSERT);
529 if (*slot == 0)
530 *slot = wint;
531
532 return (rtx) *slot;
533 }
534 #endif
535
536 /* Return an rtx constant for V, given that the constant has mode MODE.
537 The returned rtx will be a CONST_INT if V fits, otherwise it will be
538 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
539 (if TARGET_SUPPORTS_WIDE_INT). */
540
541 rtx
542 immed_wide_int_const (const wide_int_ref &v, enum machine_mode mode)
543 {
544 unsigned int len = v.get_len ();
545 unsigned int prec = GET_MODE_PRECISION (mode);
546
547 /* Allow truncation but not extension since we do not know if the
548 number is signed or unsigned. */
549 gcc_assert (prec <= v.get_precision ());
550
551 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
552 return gen_int_mode (v.elt (0), mode);
553
554 #if TARGET_SUPPORTS_WIDE_INT
555 {
556 unsigned int i;
557 rtx value;
558 unsigned int blocks_needed
559 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
560
561 if (len > blocks_needed)
562 len = blocks_needed;
563
564 value = const_wide_int_alloc (len);
565
566 /* It is so tempting to just put the mode in here. Must control
567 myself ... */
568 PUT_MODE (value, VOIDmode);
569 CWI_PUT_NUM_ELEM (value, len);
570
571 for (i = 0; i < len; i++)
572 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
573
574 return lookup_const_wide_int (value);
575 }
576 #else
577 return immed_double_const (v.elt (0), v.elt (1), mode);
578 #endif
579 }
580
581 #if TARGET_SUPPORTS_WIDE_INT == 0
582 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
583 of ints: I0 is the low-order word and I1 is the high-order word.
584 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
585 implied upper bits are copies of the high bit of i1. The value
586 itself is neither signed nor unsigned. Do not use this routine for
587 non-integer modes; convert to REAL_VALUE_TYPE and use
588 CONST_DOUBLE_FROM_REAL_VALUE. */
589
590 rtx
591 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
592 {
593 rtx value;
594 unsigned int i;
595
596 /* There are the following cases (note that there are no modes with
597 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
598
599 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
600 gen_int_mode.
601 2) If the value of the integer fits into HOST_WIDE_INT anyway
602 (i.e., i1 consists only from copies of the sign bit, and sign
603 of i0 and i1 are the same), then we return a CONST_INT for i0.
604 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
605 if (mode != VOIDmode)
606 {
607 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
608 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
609 /* We can get a 0 for an error mark. */
610 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
611 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
612
613 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
614 return gen_int_mode (i0, mode);
615 }
616
617 /* If this integer fits in one word, return a CONST_INT. */
618 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
619 return GEN_INT (i0);
620
621 /* We use VOIDmode for integers. */
622 value = rtx_alloc (CONST_DOUBLE);
623 PUT_MODE (value, VOIDmode);
624
625 CONST_DOUBLE_LOW (value) = i0;
626 CONST_DOUBLE_HIGH (value) = i1;
627
628 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
629 XWINT (value, i) = 0;
630
631 return lookup_const_double (value);
632 }
633 #endif
634
635 rtx
636 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
637 {
638 /* In case the MD file explicitly references the frame pointer, have
639 all such references point to the same frame pointer. This is
640 used during frame pointer elimination to distinguish the explicit
641 references to these registers from pseudos that happened to be
642 assigned to them.
643
644 If we have eliminated the frame pointer or arg pointer, we will
645 be using it as a normal register, for example as a spill
646 register. In such cases, we might be accessing it in a mode that
647 is not Pmode and therefore cannot use the pre-allocated rtx.
648
649 Also don't do this when we are making new REGs in reload, since
650 we don't want to get confused with the real pointers. */
651
652 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
653 {
654 if (regno == FRAME_POINTER_REGNUM
655 && (!reload_completed || frame_pointer_needed))
656 return frame_pointer_rtx;
657 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
658 if (regno == HARD_FRAME_POINTER_REGNUM
659 && (!reload_completed || frame_pointer_needed))
660 return hard_frame_pointer_rtx;
661 #endif
662 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
663 if (regno == ARG_POINTER_REGNUM)
664 return arg_pointer_rtx;
665 #endif
666 #ifdef RETURN_ADDRESS_POINTER_REGNUM
667 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
668 return return_address_pointer_rtx;
669 #endif
670 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
671 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
672 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
673 return pic_offset_table_rtx;
674 if (regno == STACK_POINTER_REGNUM)
675 return stack_pointer_rtx;
676 }
677
678 #if 0
679 /* If the per-function register table has been set up, try to re-use
680 an existing entry in that table to avoid useless generation of RTL.
681
682 This code is disabled for now until we can fix the various backends
683 which depend on having non-shared hard registers in some cases. Long
684 term we want to re-enable this code as it can significantly cut down
685 on the amount of useless RTL that gets generated.
686
687 We'll also need to fix some code that runs after reload that wants to
688 set ORIGINAL_REGNO. */
689
690 if (cfun
691 && cfun->emit
692 && regno_reg_rtx
693 && regno < FIRST_PSEUDO_REGISTER
694 && reg_raw_mode[regno] == mode)
695 return regno_reg_rtx[regno];
696 #endif
697
698 return gen_raw_REG (mode, regno);
699 }
700
701 rtx
702 gen_rtx_MEM (enum machine_mode mode, rtx addr)
703 {
704 rtx rt = gen_rtx_raw_MEM (mode, addr);
705
706 /* This field is not cleared by the mere allocation of the rtx, so
707 we clear it here. */
708 MEM_ATTRS (rt) = 0;
709
710 return rt;
711 }
712
713 /* Generate a memory referring to non-trapping constant memory. */
714
715 rtx
716 gen_const_mem (enum machine_mode mode, rtx addr)
717 {
718 rtx mem = gen_rtx_MEM (mode, addr);
719 MEM_READONLY_P (mem) = 1;
720 MEM_NOTRAP_P (mem) = 1;
721 return mem;
722 }
723
724 /* Generate a MEM referring to fixed portions of the frame, e.g., register
725 save areas. */
726
727 rtx
728 gen_frame_mem (enum machine_mode mode, rtx addr)
729 {
730 rtx mem = gen_rtx_MEM (mode, addr);
731 MEM_NOTRAP_P (mem) = 1;
732 set_mem_alias_set (mem, get_frame_alias_set ());
733 return mem;
734 }
735
736 /* Generate a MEM referring to a temporary use of the stack, not part
737 of the fixed stack frame. For example, something which is pushed
738 by a target splitter. */
739 rtx
740 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
741 {
742 rtx mem = gen_rtx_MEM (mode, addr);
743 MEM_NOTRAP_P (mem) = 1;
744 if (!cfun->calls_alloca)
745 set_mem_alias_set (mem, get_frame_alias_set ());
746 return mem;
747 }
748
749 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
750 this construct would be valid, and false otherwise. */
751
752 bool
753 validate_subreg (enum machine_mode omode, enum machine_mode imode,
754 const_rtx reg, unsigned int offset)
755 {
756 unsigned int isize = GET_MODE_SIZE (imode);
757 unsigned int osize = GET_MODE_SIZE (omode);
758
759 /* All subregs must be aligned. */
760 if (offset % osize != 0)
761 return false;
762
763 /* The subreg offset cannot be outside the inner object. */
764 if (offset >= isize)
765 return false;
766
767 /* ??? This should not be here. Temporarily continue to allow word_mode
768 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
769 Generally, backends are doing something sketchy but it'll take time to
770 fix them all. */
771 if (omode == word_mode)
772 ;
773 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
774 is the culprit here, and not the backends. */
775 else if (osize >= UNITS_PER_WORD && isize >= osize)
776 ;
777 /* Allow component subregs of complex and vector. Though given the below
778 extraction rules, it's not always clear what that means. */
779 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
780 && GET_MODE_INNER (imode) == omode)
781 ;
782 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
783 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
784 represent this. It's questionable if this ought to be represented at
785 all -- why can't this all be hidden in post-reload splitters that make
786 arbitrarily mode changes to the registers themselves. */
787 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
788 ;
789 /* Subregs involving floating point modes are not allowed to
790 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
791 (subreg:SI (reg:DF) 0) isn't. */
792 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
793 {
794 if (! (isize == osize
795 /* LRA can use subreg to store a floating point value in
796 an integer mode. Although the floating point and the
797 integer modes need the same number of hard registers,
798 the size of floating point mode can be less than the
799 integer mode. LRA also uses subregs for a register
800 should be used in different mode in on insn. */
801 || lra_in_progress))
802 return false;
803 }
804
805 /* Paradoxical subregs must have offset zero. */
806 if (osize > isize)
807 return offset == 0;
808
809 /* This is a normal subreg. Verify that the offset is representable. */
810
811 /* For hard registers, we already have most of these rules collected in
812 subreg_offset_representable_p. */
813 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
814 {
815 unsigned int regno = REGNO (reg);
816
817 #ifdef CANNOT_CHANGE_MODE_CLASS
818 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
819 && GET_MODE_INNER (imode) == omode)
820 ;
821 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
822 return false;
823 #endif
824
825 return subreg_offset_representable_p (regno, imode, offset, omode);
826 }
827
828 /* For pseudo registers, we want most of the same checks. Namely:
829 If the register no larger than a word, the subreg must be lowpart.
830 If the register is larger than a word, the subreg must be the lowpart
831 of a subword. A subreg does *not* perform arbitrary bit extraction.
832 Given that we've already checked mode/offset alignment, we only have
833 to check subword subregs here. */
834 if (osize < UNITS_PER_WORD
835 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
836 {
837 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
838 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
839 if (offset % UNITS_PER_WORD != low_off)
840 return false;
841 }
842 return true;
843 }
844
845 rtx
846 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
847 {
848 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
849 return gen_rtx_raw_SUBREG (mode, reg, offset);
850 }
851
852 /* Generate a SUBREG representing the least-significant part of REG if MODE
853 is smaller than mode of REG, otherwise paradoxical SUBREG. */
854
855 rtx
856 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
857 {
858 enum machine_mode inmode;
859
860 inmode = GET_MODE (reg);
861 if (inmode == VOIDmode)
862 inmode = mode;
863 return gen_rtx_SUBREG (mode, reg,
864 subreg_lowpart_offset (mode, inmode));
865 }
866
867 rtx
868 gen_rtx_VAR_LOCATION (enum machine_mode mode, tree decl, rtx loc,
869 enum var_init_status status)
870 {
871 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
872 PAT_VAR_LOCATION_STATUS (x) = status;
873 return x;
874 }
875 \f
876
877 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
878
879 rtvec
880 gen_rtvec (int n, ...)
881 {
882 int i;
883 rtvec rt_val;
884 va_list p;
885
886 va_start (p, n);
887
888 /* Don't allocate an empty rtvec... */
889 if (n == 0)
890 {
891 va_end (p);
892 return NULL_RTVEC;
893 }
894
895 rt_val = rtvec_alloc (n);
896
897 for (i = 0; i < n; i++)
898 rt_val->elem[i] = va_arg (p, rtx);
899
900 va_end (p);
901 return rt_val;
902 }
903
904 rtvec
905 gen_rtvec_v (int n, rtx *argp)
906 {
907 int i;
908 rtvec rt_val;
909
910 /* Don't allocate an empty rtvec... */
911 if (n == 0)
912 return NULL_RTVEC;
913
914 rt_val = rtvec_alloc (n);
915
916 for (i = 0; i < n; i++)
917 rt_val->elem[i] = *argp++;
918
919 return rt_val;
920 }
921 \f
922 /* Return the number of bytes between the start of an OUTER_MODE
923 in-memory value and the start of an INNER_MODE in-memory value,
924 given that the former is a lowpart of the latter. It may be a
925 paradoxical lowpart, in which case the offset will be negative
926 on big-endian targets. */
927
928 int
929 byte_lowpart_offset (enum machine_mode outer_mode,
930 enum machine_mode inner_mode)
931 {
932 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
933 return subreg_lowpart_offset (outer_mode, inner_mode);
934 else
935 return -subreg_lowpart_offset (inner_mode, outer_mode);
936 }
937 \f
938 /* Generate a REG rtx for a new pseudo register of mode MODE.
939 This pseudo is assigned the next sequential register number. */
940
941 rtx
942 gen_reg_rtx (enum machine_mode mode)
943 {
944 rtx val;
945 unsigned int align = GET_MODE_ALIGNMENT (mode);
946
947 gcc_assert (can_create_pseudo_p ());
948
949 /* If a virtual register with bigger mode alignment is generated,
950 increase stack alignment estimation because it might be spilled
951 to stack later. */
952 if (SUPPORTS_STACK_ALIGNMENT
953 && crtl->stack_alignment_estimated < align
954 && !crtl->stack_realign_processed)
955 {
956 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
957 if (crtl->stack_alignment_estimated < min_align)
958 crtl->stack_alignment_estimated = min_align;
959 }
960
961 if (generating_concat_p
962 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
963 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
964 {
965 /* For complex modes, don't make a single pseudo.
966 Instead, make a CONCAT of two pseudos.
967 This allows noncontiguous allocation of the real and imaginary parts,
968 which makes much better code. Besides, allocating DCmode
969 pseudos overstrains reload on some machines like the 386. */
970 rtx realpart, imagpart;
971 enum machine_mode partmode = GET_MODE_INNER (mode);
972
973 realpart = gen_reg_rtx (partmode);
974 imagpart = gen_reg_rtx (partmode);
975 return gen_rtx_CONCAT (mode, realpart, imagpart);
976 }
977
978 /* Do not call gen_reg_rtx with uninitialized crtl. */
979 gcc_assert (crtl->emit.regno_pointer_align_length);
980
981 /* Make sure regno_pointer_align, and regno_reg_rtx are large
982 enough to have an element for this pseudo reg number. */
983
984 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
985 {
986 int old_size = crtl->emit.regno_pointer_align_length;
987 char *tmp;
988 rtx *new1;
989
990 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
991 memset (tmp + old_size, 0, old_size);
992 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
993
994 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
995 memset (new1 + old_size, 0, old_size * sizeof (rtx));
996 regno_reg_rtx = new1;
997
998 crtl->emit.regno_pointer_align_length = old_size * 2;
999 }
1000
1001 val = gen_raw_REG (mode, reg_rtx_no);
1002 regno_reg_rtx[reg_rtx_no++] = val;
1003 return val;
1004 }
1005
1006 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1007
1008 bool
1009 reg_is_parm_p (rtx reg)
1010 {
1011 tree decl;
1012
1013 gcc_assert (REG_P (reg));
1014 decl = REG_EXPR (reg);
1015 return (decl && TREE_CODE (decl) == PARM_DECL);
1016 }
1017
1018 /* Update NEW with the same attributes as REG, but with OFFSET added
1019 to the REG_OFFSET. */
1020
1021 static void
1022 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1023 {
1024 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1025 REG_OFFSET (reg) + offset);
1026 }
1027
1028 /* Generate a register with same attributes as REG, but with OFFSET
1029 added to the REG_OFFSET. */
1030
1031 rtx
1032 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
1033 int offset)
1034 {
1035 rtx new_rtx = gen_rtx_REG (mode, regno);
1036
1037 update_reg_offset (new_rtx, reg, offset);
1038 return new_rtx;
1039 }
1040
1041 /* Generate a new pseudo-register with the same attributes as REG, but
1042 with OFFSET added to the REG_OFFSET. */
1043
1044 rtx
1045 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1046 {
1047 rtx new_rtx = gen_reg_rtx (mode);
1048
1049 update_reg_offset (new_rtx, reg, offset);
1050 return new_rtx;
1051 }
1052
1053 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1054 new register is a (possibly paradoxical) lowpart of the old one. */
1055
1056 void
1057 adjust_reg_mode (rtx reg, enum machine_mode mode)
1058 {
1059 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1060 PUT_MODE (reg, mode);
1061 }
1062
1063 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1064 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1065
1066 void
1067 set_reg_attrs_from_value (rtx reg, rtx x)
1068 {
1069 int offset;
1070 bool can_be_reg_pointer = true;
1071
1072 /* Don't call mark_reg_pointer for incompatible pointer sign
1073 extension. */
1074 while (GET_CODE (x) == SIGN_EXTEND
1075 || GET_CODE (x) == ZERO_EXTEND
1076 || GET_CODE (x) == TRUNCATE
1077 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1078 {
1079 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1080 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1081 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1082 can_be_reg_pointer = false;
1083 #endif
1084 x = XEXP (x, 0);
1085 }
1086
1087 /* Hard registers can be reused for multiple purposes within the same
1088 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1089 on them is wrong. */
1090 if (HARD_REGISTER_P (reg))
1091 return;
1092
1093 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1094 if (MEM_P (x))
1095 {
1096 if (MEM_OFFSET_KNOWN_P (x))
1097 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1098 MEM_OFFSET (x) + offset);
1099 if (can_be_reg_pointer && MEM_POINTER (x))
1100 mark_reg_pointer (reg, 0);
1101 }
1102 else if (REG_P (x))
1103 {
1104 if (REG_ATTRS (x))
1105 update_reg_offset (reg, x, offset);
1106 if (can_be_reg_pointer && REG_POINTER (x))
1107 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1108 }
1109 }
1110
1111 /* Generate a REG rtx for a new pseudo register, copying the mode
1112 and attributes from X. */
1113
1114 rtx
1115 gen_reg_rtx_and_attrs (rtx x)
1116 {
1117 rtx reg = gen_reg_rtx (GET_MODE (x));
1118 set_reg_attrs_from_value (reg, x);
1119 return reg;
1120 }
1121
1122 /* Set the register attributes for registers contained in PARM_RTX.
1123 Use needed values from memory attributes of MEM. */
1124
1125 void
1126 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1127 {
1128 if (REG_P (parm_rtx))
1129 set_reg_attrs_from_value (parm_rtx, mem);
1130 else if (GET_CODE (parm_rtx) == PARALLEL)
1131 {
1132 /* Check for a NULL entry in the first slot, used to indicate that the
1133 parameter goes both on the stack and in registers. */
1134 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1135 for (; i < XVECLEN (parm_rtx, 0); i++)
1136 {
1137 rtx x = XVECEXP (parm_rtx, 0, i);
1138 if (REG_P (XEXP (x, 0)))
1139 REG_ATTRS (XEXP (x, 0))
1140 = get_reg_attrs (MEM_EXPR (mem),
1141 INTVAL (XEXP (x, 1)));
1142 }
1143 }
1144 }
1145
1146 /* Set the REG_ATTRS for registers in value X, given that X represents
1147 decl T. */
1148
1149 void
1150 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1151 {
1152 if (GET_CODE (x) == SUBREG)
1153 {
1154 gcc_assert (subreg_lowpart_p (x));
1155 x = SUBREG_REG (x);
1156 }
1157 if (REG_P (x))
1158 REG_ATTRS (x)
1159 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1160 DECL_MODE (t)));
1161 if (GET_CODE (x) == CONCAT)
1162 {
1163 if (REG_P (XEXP (x, 0)))
1164 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1165 if (REG_P (XEXP (x, 1)))
1166 REG_ATTRS (XEXP (x, 1))
1167 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1168 }
1169 if (GET_CODE (x) == PARALLEL)
1170 {
1171 int i, start;
1172
1173 /* Check for a NULL entry, used to indicate that the parameter goes
1174 both on the stack and in registers. */
1175 if (XEXP (XVECEXP (x, 0, 0), 0))
1176 start = 0;
1177 else
1178 start = 1;
1179
1180 for (i = start; i < XVECLEN (x, 0); i++)
1181 {
1182 rtx y = XVECEXP (x, 0, i);
1183 if (REG_P (XEXP (y, 0)))
1184 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1185 }
1186 }
1187 }
1188
1189 /* Assign the RTX X to declaration T. */
1190
1191 void
1192 set_decl_rtl (tree t, rtx x)
1193 {
1194 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1195 if (x)
1196 set_reg_attrs_for_decl_rtl (t, x);
1197 }
1198
1199 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1200 if the ABI requires the parameter to be passed by reference. */
1201
1202 void
1203 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1204 {
1205 DECL_INCOMING_RTL (t) = x;
1206 if (x && !by_reference_p)
1207 set_reg_attrs_for_decl_rtl (t, x);
1208 }
1209
1210 /* Identify REG (which may be a CONCAT) as a user register. */
1211
1212 void
1213 mark_user_reg (rtx reg)
1214 {
1215 if (GET_CODE (reg) == CONCAT)
1216 {
1217 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1218 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1219 }
1220 else
1221 {
1222 gcc_assert (REG_P (reg));
1223 REG_USERVAR_P (reg) = 1;
1224 }
1225 }
1226
1227 /* Identify REG as a probable pointer register and show its alignment
1228 as ALIGN, if nonzero. */
1229
1230 void
1231 mark_reg_pointer (rtx reg, int align)
1232 {
1233 if (! REG_POINTER (reg))
1234 {
1235 REG_POINTER (reg) = 1;
1236
1237 if (align)
1238 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1239 }
1240 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1241 /* We can no-longer be sure just how aligned this pointer is. */
1242 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1243 }
1244
1245 /* Return 1 plus largest pseudo reg number used in the current function. */
1246
1247 int
1248 max_reg_num (void)
1249 {
1250 return reg_rtx_no;
1251 }
1252
1253 /* Return 1 + the largest label number used so far in the current function. */
1254
1255 int
1256 max_label_num (void)
1257 {
1258 return label_num;
1259 }
1260
1261 /* Return first label number used in this function (if any were used). */
1262
1263 int
1264 get_first_label_num (void)
1265 {
1266 return first_label_num;
1267 }
1268
1269 /* If the rtx for label was created during the expansion of a nested
1270 function, then first_label_num won't include this label number.
1271 Fix this now so that array indices work later. */
1272
1273 void
1274 maybe_set_first_label_num (rtx x)
1275 {
1276 if (CODE_LABEL_NUMBER (x) < first_label_num)
1277 first_label_num = CODE_LABEL_NUMBER (x);
1278 }
1279 \f
1280 /* Return a value representing some low-order bits of X, where the number
1281 of low-order bits is given by MODE. Note that no conversion is done
1282 between floating-point and fixed-point values, rather, the bit
1283 representation is returned.
1284
1285 This function handles the cases in common between gen_lowpart, below,
1286 and two variants in cse.c and combine.c. These are the cases that can
1287 be safely handled at all points in the compilation.
1288
1289 If this is not a case we can handle, return 0. */
1290
1291 rtx
1292 gen_lowpart_common (enum machine_mode mode, rtx x)
1293 {
1294 int msize = GET_MODE_SIZE (mode);
1295 int xsize;
1296 int offset = 0;
1297 enum machine_mode innermode;
1298
1299 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1300 so we have to make one up. Yuk. */
1301 innermode = GET_MODE (x);
1302 if (CONST_INT_P (x)
1303 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1304 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1305 else if (innermode == VOIDmode)
1306 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1307
1308 xsize = GET_MODE_SIZE (innermode);
1309
1310 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1311
1312 if (innermode == mode)
1313 return x;
1314
1315 /* MODE must occupy no more words than the mode of X. */
1316 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1317 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1318 return 0;
1319
1320 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1321 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1322 return 0;
1323
1324 offset = subreg_lowpart_offset (mode, innermode);
1325
1326 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1327 && (GET_MODE_CLASS (mode) == MODE_INT
1328 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1329 {
1330 /* If we are getting the low-order part of something that has been
1331 sign- or zero-extended, we can either just use the object being
1332 extended or make a narrower extension. If we want an even smaller
1333 piece than the size of the object being extended, call ourselves
1334 recursively.
1335
1336 This case is used mostly by combine and cse. */
1337
1338 if (GET_MODE (XEXP (x, 0)) == mode)
1339 return XEXP (x, 0);
1340 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1341 return gen_lowpart_common (mode, XEXP (x, 0));
1342 else if (msize < xsize)
1343 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1344 }
1345 else if (GET_CODE (x) == SUBREG || REG_P (x)
1346 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1347 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1348 return simplify_gen_subreg (mode, x, innermode, offset);
1349
1350 /* Otherwise, we can't do this. */
1351 return 0;
1352 }
1353 \f
1354 rtx
1355 gen_highpart (enum machine_mode mode, rtx x)
1356 {
1357 unsigned int msize = GET_MODE_SIZE (mode);
1358 rtx result;
1359
1360 /* This case loses if X is a subreg. To catch bugs early,
1361 complain if an invalid MODE is used even in other cases. */
1362 gcc_assert (msize <= UNITS_PER_WORD
1363 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1364
1365 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1366 subreg_highpart_offset (mode, GET_MODE (x)));
1367 gcc_assert (result);
1368
1369 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1370 the target if we have a MEM. gen_highpart must return a valid operand,
1371 emitting code if necessary to do so. */
1372 if (MEM_P (result))
1373 {
1374 result = validize_mem (result);
1375 gcc_assert (result);
1376 }
1377
1378 return result;
1379 }
1380
1381 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1382 be VOIDmode constant. */
1383 rtx
1384 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1385 {
1386 if (GET_MODE (exp) != VOIDmode)
1387 {
1388 gcc_assert (GET_MODE (exp) == innermode);
1389 return gen_highpart (outermode, exp);
1390 }
1391 return simplify_gen_subreg (outermode, exp, innermode,
1392 subreg_highpart_offset (outermode, innermode));
1393 }
1394
1395 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1396
1397 unsigned int
1398 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1399 {
1400 unsigned int offset = 0;
1401 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1402
1403 if (difference > 0)
1404 {
1405 if (WORDS_BIG_ENDIAN)
1406 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1407 if (BYTES_BIG_ENDIAN)
1408 offset += difference % UNITS_PER_WORD;
1409 }
1410
1411 return offset;
1412 }
1413
1414 /* Return offset in bytes to get OUTERMODE high part
1415 of the value in mode INNERMODE stored in memory in target format. */
1416 unsigned int
1417 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1418 {
1419 unsigned int offset = 0;
1420 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1421
1422 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1423
1424 if (difference > 0)
1425 {
1426 if (! WORDS_BIG_ENDIAN)
1427 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1428 if (! BYTES_BIG_ENDIAN)
1429 offset += difference % UNITS_PER_WORD;
1430 }
1431
1432 return offset;
1433 }
1434
1435 /* Return 1 iff X, assumed to be a SUBREG,
1436 refers to the least significant part of its containing reg.
1437 If X is not a SUBREG, always return 1 (it is its own low part!). */
1438
1439 int
1440 subreg_lowpart_p (const_rtx x)
1441 {
1442 if (GET_CODE (x) != SUBREG)
1443 return 1;
1444 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1445 return 0;
1446
1447 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1448 == SUBREG_BYTE (x));
1449 }
1450
1451 /* Return true if X is a paradoxical subreg, false otherwise. */
1452 bool
1453 paradoxical_subreg_p (const_rtx x)
1454 {
1455 if (GET_CODE (x) != SUBREG)
1456 return false;
1457 return (GET_MODE_PRECISION (GET_MODE (x))
1458 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1459 }
1460 \f
1461 /* Return subword OFFSET of operand OP.
1462 The word number, OFFSET, is interpreted as the word number starting
1463 at the low-order address. OFFSET 0 is the low-order word if not
1464 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1465
1466 If we cannot extract the required word, we return zero. Otherwise,
1467 an rtx corresponding to the requested word will be returned.
1468
1469 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1470 reload has completed, a valid address will always be returned. After
1471 reload, if a valid address cannot be returned, we return zero.
1472
1473 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1474 it is the responsibility of the caller.
1475
1476 MODE is the mode of OP in case it is a CONST_INT.
1477
1478 ??? This is still rather broken for some cases. The problem for the
1479 moment is that all callers of this thing provide no 'goal mode' to
1480 tell us to work with. This exists because all callers were written
1481 in a word based SUBREG world.
1482 Now use of this function can be deprecated by simplify_subreg in most
1483 cases.
1484 */
1485
1486 rtx
1487 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1488 {
1489 if (mode == VOIDmode)
1490 mode = GET_MODE (op);
1491
1492 gcc_assert (mode != VOIDmode);
1493
1494 /* If OP is narrower than a word, fail. */
1495 if (mode != BLKmode
1496 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1497 return 0;
1498
1499 /* If we want a word outside OP, return zero. */
1500 if (mode != BLKmode
1501 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1502 return const0_rtx;
1503
1504 /* Form a new MEM at the requested address. */
1505 if (MEM_P (op))
1506 {
1507 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1508
1509 if (! validate_address)
1510 return new_rtx;
1511
1512 else if (reload_completed)
1513 {
1514 if (! strict_memory_address_addr_space_p (word_mode,
1515 XEXP (new_rtx, 0),
1516 MEM_ADDR_SPACE (op)))
1517 return 0;
1518 }
1519 else
1520 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1521 }
1522
1523 /* Rest can be handled by simplify_subreg. */
1524 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1525 }
1526
1527 /* Similar to `operand_subword', but never return 0. If we can't
1528 extract the required subword, put OP into a register and try again.
1529 The second attempt must succeed. We always validate the address in
1530 this case.
1531
1532 MODE is the mode of OP, in case it is CONST_INT. */
1533
1534 rtx
1535 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1536 {
1537 rtx result = operand_subword (op, offset, 1, mode);
1538
1539 if (result)
1540 return result;
1541
1542 if (mode != BLKmode && mode != VOIDmode)
1543 {
1544 /* If this is a register which can not be accessed by words, copy it
1545 to a pseudo register. */
1546 if (REG_P (op))
1547 op = copy_to_reg (op);
1548 else
1549 op = force_reg (mode, op);
1550 }
1551
1552 result = operand_subword (op, offset, 1, mode);
1553 gcc_assert (result);
1554
1555 return result;
1556 }
1557 \f
1558 /* Returns 1 if both MEM_EXPR can be considered equal
1559 and 0 otherwise. */
1560
1561 int
1562 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1563 {
1564 if (expr1 == expr2)
1565 return 1;
1566
1567 if (! expr1 || ! expr2)
1568 return 0;
1569
1570 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1571 return 0;
1572
1573 return operand_equal_p (expr1, expr2, 0);
1574 }
1575
1576 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1577 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1578 -1 if not known. */
1579
1580 int
1581 get_mem_align_offset (rtx mem, unsigned int align)
1582 {
1583 tree expr;
1584 unsigned HOST_WIDE_INT offset;
1585
1586 /* This function can't use
1587 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1588 || (MAX (MEM_ALIGN (mem),
1589 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1590 < align))
1591 return -1;
1592 else
1593 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1594 for two reasons:
1595 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1596 for <variable>. get_inner_reference doesn't handle it and
1597 even if it did, the alignment in that case needs to be determined
1598 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1599 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1600 isn't sufficiently aligned, the object it is in might be. */
1601 gcc_assert (MEM_P (mem));
1602 expr = MEM_EXPR (mem);
1603 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1604 return -1;
1605
1606 offset = MEM_OFFSET (mem);
1607 if (DECL_P (expr))
1608 {
1609 if (DECL_ALIGN (expr) < align)
1610 return -1;
1611 }
1612 else if (INDIRECT_REF_P (expr))
1613 {
1614 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1615 return -1;
1616 }
1617 else if (TREE_CODE (expr) == COMPONENT_REF)
1618 {
1619 while (1)
1620 {
1621 tree inner = TREE_OPERAND (expr, 0);
1622 tree field = TREE_OPERAND (expr, 1);
1623 tree byte_offset = component_ref_field_offset (expr);
1624 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1625
1626 if (!byte_offset
1627 || !tree_fits_uhwi_p (byte_offset)
1628 || !tree_fits_uhwi_p (bit_offset))
1629 return -1;
1630
1631 offset += tree_to_uhwi (byte_offset);
1632 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1633
1634 if (inner == NULL_TREE)
1635 {
1636 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1637 < (unsigned int) align)
1638 return -1;
1639 break;
1640 }
1641 else if (DECL_P (inner))
1642 {
1643 if (DECL_ALIGN (inner) < align)
1644 return -1;
1645 break;
1646 }
1647 else if (TREE_CODE (inner) != COMPONENT_REF)
1648 return -1;
1649 expr = inner;
1650 }
1651 }
1652 else
1653 return -1;
1654
1655 return offset & ((align / BITS_PER_UNIT) - 1);
1656 }
1657
1658 /* Given REF (a MEM) and T, either the type of X or the expression
1659 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1660 if we are making a new object of this type. BITPOS is nonzero if
1661 there is an offset outstanding on T that will be applied later. */
1662
1663 void
1664 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1665 HOST_WIDE_INT bitpos)
1666 {
1667 HOST_WIDE_INT apply_bitpos = 0;
1668 tree type;
1669 struct mem_attrs attrs, *defattrs, *refattrs;
1670 addr_space_t as;
1671
1672 /* It can happen that type_for_mode was given a mode for which there
1673 is no language-level type. In which case it returns NULL, which
1674 we can see here. */
1675 if (t == NULL_TREE)
1676 return;
1677
1678 type = TYPE_P (t) ? t : TREE_TYPE (t);
1679 if (type == error_mark_node)
1680 return;
1681
1682 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1683 wrong answer, as it assumes that DECL_RTL already has the right alias
1684 info. Callers should not set DECL_RTL until after the call to
1685 set_mem_attributes. */
1686 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1687
1688 memset (&attrs, 0, sizeof (attrs));
1689
1690 /* Get the alias set from the expression or type (perhaps using a
1691 front-end routine) and use it. */
1692 attrs.alias = get_alias_set (t);
1693
1694 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1695 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1696
1697 /* Default values from pre-existing memory attributes if present. */
1698 refattrs = MEM_ATTRS (ref);
1699 if (refattrs)
1700 {
1701 /* ??? Can this ever happen? Calling this routine on a MEM that
1702 already carries memory attributes should probably be invalid. */
1703 attrs.expr = refattrs->expr;
1704 attrs.offset_known_p = refattrs->offset_known_p;
1705 attrs.offset = refattrs->offset;
1706 attrs.size_known_p = refattrs->size_known_p;
1707 attrs.size = refattrs->size;
1708 attrs.align = refattrs->align;
1709 }
1710
1711 /* Otherwise, default values from the mode of the MEM reference. */
1712 else
1713 {
1714 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1715 gcc_assert (!defattrs->expr);
1716 gcc_assert (!defattrs->offset_known_p);
1717
1718 /* Respect mode size. */
1719 attrs.size_known_p = defattrs->size_known_p;
1720 attrs.size = defattrs->size;
1721 /* ??? Is this really necessary? We probably should always get
1722 the size from the type below. */
1723
1724 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1725 if T is an object, always compute the object alignment below. */
1726 if (TYPE_P (t))
1727 attrs.align = defattrs->align;
1728 else
1729 attrs.align = BITS_PER_UNIT;
1730 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1731 e.g. if the type carries an alignment attribute. Should we be
1732 able to simply always use TYPE_ALIGN? */
1733 }
1734
1735 /* We can set the alignment from the type if we are making an object,
1736 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1737 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1738 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1739
1740 /* If the size is known, we can set that. */
1741 tree new_size = TYPE_SIZE_UNIT (type);
1742
1743 /* The address-space is that of the type. */
1744 as = TYPE_ADDR_SPACE (type);
1745
1746 /* If T is not a type, we may be able to deduce some more information about
1747 the expression. */
1748 if (! TYPE_P (t))
1749 {
1750 tree base;
1751
1752 if (TREE_THIS_VOLATILE (t))
1753 MEM_VOLATILE_P (ref) = 1;
1754
1755 /* Now remove any conversions: they don't change what the underlying
1756 object is. Likewise for SAVE_EXPR. */
1757 while (CONVERT_EXPR_P (t)
1758 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1759 || TREE_CODE (t) == SAVE_EXPR)
1760 t = TREE_OPERAND (t, 0);
1761
1762 /* Note whether this expression can trap. */
1763 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1764
1765 base = get_base_address (t);
1766 if (base)
1767 {
1768 if (DECL_P (base)
1769 && TREE_READONLY (base)
1770 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1771 && !TREE_THIS_VOLATILE (base))
1772 MEM_READONLY_P (ref) = 1;
1773
1774 /* Mark static const strings readonly as well. */
1775 if (TREE_CODE (base) == STRING_CST
1776 && TREE_READONLY (base)
1777 && TREE_STATIC (base))
1778 MEM_READONLY_P (ref) = 1;
1779
1780 /* Address-space information is on the base object. */
1781 if (TREE_CODE (base) == MEM_REF
1782 || TREE_CODE (base) == TARGET_MEM_REF)
1783 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1784 0))));
1785 else
1786 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1787 }
1788
1789 /* If this expression uses it's parent's alias set, mark it such
1790 that we won't change it. */
1791 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1792 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1793
1794 /* If this is a decl, set the attributes of the MEM from it. */
1795 if (DECL_P (t))
1796 {
1797 attrs.expr = t;
1798 attrs.offset_known_p = true;
1799 attrs.offset = 0;
1800 apply_bitpos = bitpos;
1801 new_size = DECL_SIZE_UNIT (t);
1802 }
1803
1804 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1805 else if (CONSTANT_CLASS_P (t))
1806 ;
1807
1808 /* If this is a field reference, record it. */
1809 else if (TREE_CODE (t) == COMPONENT_REF)
1810 {
1811 attrs.expr = t;
1812 attrs.offset_known_p = true;
1813 attrs.offset = 0;
1814 apply_bitpos = bitpos;
1815 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1816 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1817 }
1818
1819 /* If this is an array reference, look for an outer field reference. */
1820 else if (TREE_CODE (t) == ARRAY_REF)
1821 {
1822 tree off_tree = size_zero_node;
1823 /* We can't modify t, because we use it at the end of the
1824 function. */
1825 tree t2 = t;
1826
1827 do
1828 {
1829 tree index = TREE_OPERAND (t2, 1);
1830 tree low_bound = array_ref_low_bound (t2);
1831 tree unit_size = array_ref_element_size (t2);
1832
1833 /* We assume all arrays have sizes that are a multiple of a byte.
1834 First subtract the lower bound, if any, in the type of the
1835 index, then convert to sizetype and multiply by the size of
1836 the array element. */
1837 if (! integer_zerop (low_bound))
1838 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1839 index, low_bound);
1840
1841 off_tree = size_binop (PLUS_EXPR,
1842 size_binop (MULT_EXPR,
1843 fold_convert (sizetype,
1844 index),
1845 unit_size),
1846 off_tree);
1847 t2 = TREE_OPERAND (t2, 0);
1848 }
1849 while (TREE_CODE (t2) == ARRAY_REF);
1850
1851 if (DECL_P (t2)
1852 || TREE_CODE (t2) == COMPONENT_REF)
1853 {
1854 attrs.expr = t2;
1855 attrs.offset_known_p = false;
1856 if (tree_fits_uhwi_p (off_tree))
1857 {
1858 attrs.offset_known_p = true;
1859 attrs.offset = tree_to_uhwi (off_tree);
1860 apply_bitpos = bitpos;
1861 }
1862 }
1863 /* Else do not record a MEM_EXPR. */
1864 }
1865
1866 /* If this is an indirect reference, record it. */
1867 else if (TREE_CODE (t) == MEM_REF
1868 || TREE_CODE (t) == TARGET_MEM_REF)
1869 {
1870 attrs.expr = t;
1871 attrs.offset_known_p = true;
1872 attrs.offset = 0;
1873 apply_bitpos = bitpos;
1874 }
1875
1876 /* Compute the alignment. */
1877 unsigned int obj_align;
1878 unsigned HOST_WIDE_INT obj_bitpos;
1879 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1880 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1881 if (obj_bitpos != 0)
1882 obj_align = (obj_bitpos & -obj_bitpos);
1883 attrs.align = MAX (attrs.align, obj_align);
1884 }
1885
1886 if (tree_fits_uhwi_p (new_size))
1887 {
1888 attrs.size_known_p = true;
1889 attrs.size = tree_to_uhwi (new_size);
1890 }
1891
1892 /* If we modified OFFSET based on T, then subtract the outstanding
1893 bit position offset. Similarly, increase the size of the accessed
1894 object to contain the negative offset. */
1895 if (apply_bitpos)
1896 {
1897 gcc_assert (attrs.offset_known_p);
1898 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1899 if (attrs.size_known_p)
1900 attrs.size += apply_bitpos / BITS_PER_UNIT;
1901 }
1902
1903 /* Now set the attributes we computed above. */
1904 attrs.addrspace = as;
1905 set_mem_attrs (ref, &attrs);
1906 }
1907
1908 void
1909 set_mem_attributes (rtx ref, tree t, int objectp)
1910 {
1911 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1912 }
1913
1914 /* Set the alias set of MEM to SET. */
1915
1916 void
1917 set_mem_alias_set (rtx mem, alias_set_type set)
1918 {
1919 struct mem_attrs attrs;
1920
1921 /* If the new and old alias sets don't conflict, something is wrong. */
1922 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1923 attrs = *get_mem_attrs (mem);
1924 attrs.alias = set;
1925 set_mem_attrs (mem, &attrs);
1926 }
1927
1928 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1929
1930 void
1931 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1932 {
1933 struct mem_attrs attrs;
1934
1935 attrs = *get_mem_attrs (mem);
1936 attrs.addrspace = addrspace;
1937 set_mem_attrs (mem, &attrs);
1938 }
1939
1940 /* Set the alignment of MEM to ALIGN bits. */
1941
1942 void
1943 set_mem_align (rtx mem, unsigned int align)
1944 {
1945 struct mem_attrs attrs;
1946
1947 attrs = *get_mem_attrs (mem);
1948 attrs.align = align;
1949 set_mem_attrs (mem, &attrs);
1950 }
1951
1952 /* Set the expr for MEM to EXPR. */
1953
1954 void
1955 set_mem_expr (rtx mem, tree expr)
1956 {
1957 struct mem_attrs attrs;
1958
1959 attrs = *get_mem_attrs (mem);
1960 attrs.expr = expr;
1961 set_mem_attrs (mem, &attrs);
1962 }
1963
1964 /* Set the offset of MEM to OFFSET. */
1965
1966 void
1967 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1968 {
1969 struct mem_attrs attrs;
1970
1971 attrs = *get_mem_attrs (mem);
1972 attrs.offset_known_p = true;
1973 attrs.offset = offset;
1974 set_mem_attrs (mem, &attrs);
1975 }
1976
1977 /* Clear the offset of MEM. */
1978
1979 void
1980 clear_mem_offset (rtx mem)
1981 {
1982 struct mem_attrs attrs;
1983
1984 attrs = *get_mem_attrs (mem);
1985 attrs.offset_known_p = false;
1986 set_mem_attrs (mem, &attrs);
1987 }
1988
1989 /* Set the size of MEM to SIZE. */
1990
1991 void
1992 set_mem_size (rtx mem, HOST_WIDE_INT size)
1993 {
1994 struct mem_attrs attrs;
1995
1996 attrs = *get_mem_attrs (mem);
1997 attrs.size_known_p = true;
1998 attrs.size = size;
1999 set_mem_attrs (mem, &attrs);
2000 }
2001
2002 /* Clear the size of MEM. */
2003
2004 void
2005 clear_mem_size (rtx mem)
2006 {
2007 struct mem_attrs attrs;
2008
2009 attrs = *get_mem_attrs (mem);
2010 attrs.size_known_p = false;
2011 set_mem_attrs (mem, &attrs);
2012 }
2013 \f
2014 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2015 and its address changed to ADDR. (VOIDmode means don't change the mode.
2016 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2017 returned memory location is required to be valid. INPLACE is true if any
2018 changes can be made directly to MEMREF or false if MEMREF must be treated
2019 as immutable.
2020
2021 The memory attributes are not changed. */
2022
2023 static rtx
2024 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate,
2025 bool inplace)
2026 {
2027 addr_space_t as;
2028 rtx new_rtx;
2029
2030 gcc_assert (MEM_P (memref));
2031 as = MEM_ADDR_SPACE (memref);
2032 if (mode == VOIDmode)
2033 mode = GET_MODE (memref);
2034 if (addr == 0)
2035 addr = XEXP (memref, 0);
2036 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2037 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2038 return memref;
2039
2040 /* Don't validate address for LRA. LRA can make the address valid
2041 by itself in most efficient way. */
2042 if (validate && !lra_in_progress)
2043 {
2044 if (reload_in_progress || reload_completed)
2045 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2046 else
2047 addr = memory_address_addr_space (mode, addr, as);
2048 }
2049
2050 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2051 return memref;
2052
2053 if (inplace)
2054 {
2055 XEXP (memref, 0) = addr;
2056 return memref;
2057 }
2058
2059 new_rtx = gen_rtx_MEM (mode, addr);
2060 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2061 return new_rtx;
2062 }
2063
2064 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2065 way we are changing MEMREF, so we only preserve the alias set. */
2066
2067 rtx
2068 change_address (rtx memref, enum machine_mode mode, rtx addr)
2069 {
2070 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2071 enum machine_mode mmode = GET_MODE (new_rtx);
2072 struct mem_attrs attrs, *defattrs;
2073
2074 attrs = *get_mem_attrs (memref);
2075 defattrs = mode_mem_attrs[(int) mmode];
2076 attrs.expr = NULL_TREE;
2077 attrs.offset_known_p = false;
2078 attrs.size_known_p = defattrs->size_known_p;
2079 attrs.size = defattrs->size;
2080 attrs.align = defattrs->align;
2081
2082 /* If there are no changes, just return the original memory reference. */
2083 if (new_rtx == memref)
2084 {
2085 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2086 return new_rtx;
2087
2088 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2089 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2090 }
2091
2092 set_mem_attrs (new_rtx, &attrs);
2093 return new_rtx;
2094 }
2095
2096 /* Return a memory reference like MEMREF, but with its mode changed
2097 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2098 nonzero, the memory address is forced to be valid.
2099 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2100 and the caller is responsible for adjusting MEMREF base register.
2101 If ADJUST_OBJECT is zero, the underlying object associated with the
2102 memory reference is left unchanged and the caller is responsible for
2103 dealing with it. Otherwise, if the new memory reference is outside
2104 the underlying object, even partially, then the object is dropped.
2105 SIZE, if nonzero, is the size of an access in cases where MODE
2106 has no inherent size. */
2107
2108 rtx
2109 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2110 int validate, int adjust_address, int adjust_object,
2111 HOST_WIDE_INT size)
2112 {
2113 rtx addr = XEXP (memref, 0);
2114 rtx new_rtx;
2115 enum machine_mode address_mode;
2116 int pbits;
2117 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2118 unsigned HOST_WIDE_INT max_align;
2119 #ifdef POINTERS_EXTEND_UNSIGNED
2120 enum machine_mode pointer_mode
2121 = targetm.addr_space.pointer_mode (attrs.addrspace);
2122 #endif
2123
2124 /* VOIDmode means no mode change for change_address_1. */
2125 if (mode == VOIDmode)
2126 mode = GET_MODE (memref);
2127
2128 /* Take the size of non-BLKmode accesses from the mode. */
2129 defattrs = mode_mem_attrs[(int) mode];
2130 if (defattrs->size_known_p)
2131 size = defattrs->size;
2132
2133 /* If there are no changes, just return the original memory reference. */
2134 if (mode == GET_MODE (memref) && !offset
2135 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2136 && (!validate || memory_address_addr_space_p (mode, addr,
2137 attrs.addrspace)))
2138 return memref;
2139
2140 /* ??? Prefer to create garbage instead of creating shared rtl.
2141 This may happen even if offset is nonzero -- consider
2142 (plus (plus reg reg) const_int) -- so do this always. */
2143 addr = copy_rtx (addr);
2144
2145 /* Convert a possibly large offset to a signed value within the
2146 range of the target address space. */
2147 address_mode = get_address_mode (memref);
2148 pbits = GET_MODE_BITSIZE (address_mode);
2149 if (HOST_BITS_PER_WIDE_INT > pbits)
2150 {
2151 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2152 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2153 >> shift);
2154 }
2155
2156 if (adjust_address)
2157 {
2158 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2159 object, we can merge it into the LO_SUM. */
2160 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2161 && offset >= 0
2162 && (unsigned HOST_WIDE_INT) offset
2163 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2164 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2165 plus_constant (address_mode,
2166 XEXP (addr, 1), offset));
2167 #ifdef POINTERS_EXTEND_UNSIGNED
2168 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2169 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2170 the fact that pointers are not allowed to overflow. */
2171 else if (POINTERS_EXTEND_UNSIGNED > 0
2172 && GET_CODE (addr) == ZERO_EXTEND
2173 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2174 && trunc_int_for_mode (offset, pointer_mode) == offset)
2175 addr = gen_rtx_ZERO_EXTEND (address_mode,
2176 plus_constant (pointer_mode,
2177 XEXP (addr, 0), offset));
2178 #endif
2179 else
2180 addr = plus_constant (address_mode, addr, offset);
2181 }
2182
2183 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2184
2185 /* If the address is a REG, change_address_1 rightfully returns memref,
2186 but this would destroy memref's MEM_ATTRS. */
2187 if (new_rtx == memref && offset != 0)
2188 new_rtx = copy_rtx (new_rtx);
2189
2190 /* Conservatively drop the object if we don't know where we start from. */
2191 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2192 {
2193 attrs.expr = NULL_TREE;
2194 attrs.alias = 0;
2195 }
2196
2197 /* Compute the new values of the memory attributes due to this adjustment.
2198 We add the offsets and update the alignment. */
2199 if (attrs.offset_known_p)
2200 {
2201 attrs.offset += offset;
2202
2203 /* Drop the object if the new left end is not within its bounds. */
2204 if (adjust_object && attrs.offset < 0)
2205 {
2206 attrs.expr = NULL_TREE;
2207 attrs.alias = 0;
2208 }
2209 }
2210
2211 /* Compute the new alignment by taking the MIN of the alignment and the
2212 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2213 if zero. */
2214 if (offset != 0)
2215 {
2216 max_align = (offset & -offset) * BITS_PER_UNIT;
2217 attrs.align = MIN (attrs.align, max_align);
2218 }
2219
2220 if (size)
2221 {
2222 /* Drop the object if the new right end is not within its bounds. */
2223 if (adjust_object && (offset + size) > attrs.size)
2224 {
2225 attrs.expr = NULL_TREE;
2226 attrs.alias = 0;
2227 }
2228 attrs.size_known_p = true;
2229 attrs.size = size;
2230 }
2231 else if (attrs.size_known_p)
2232 {
2233 gcc_assert (!adjust_object);
2234 attrs.size -= offset;
2235 /* ??? The store_by_pieces machinery generates negative sizes,
2236 so don't assert for that here. */
2237 }
2238
2239 set_mem_attrs (new_rtx, &attrs);
2240
2241 return new_rtx;
2242 }
2243
2244 /* Return a memory reference like MEMREF, but with its mode changed
2245 to MODE and its address changed to ADDR, which is assumed to be
2246 MEMREF offset by OFFSET bytes. If VALIDATE is
2247 nonzero, the memory address is forced to be valid. */
2248
2249 rtx
2250 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2251 HOST_WIDE_INT offset, int validate)
2252 {
2253 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2254 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2255 }
2256
2257 /* Return a memory reference like MEMREF, but whose address is changed by
2258 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2259 known to be in OFFSET (possibly 1). */
2260
2261 rtx
2262 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2263 {
2264 rtx new_rtx, addr = XEXP (memref, 0);
2265 enum machine_mode address_mode;
2266 struct mem_attrs attrs, *defattrs;
2267
2268 attrs = *get_mem_attrs (memref);
2269 address_mode = get_address_mode (memref);
2270 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2271
2272 /* At this point we don't know _why_ the address is invalid. It
2273 could have secondary memory references, multiplies or anything.
2274
2275 However, if we did go and rearrange things, we can wind up not
2276 being able to recognize the magic around pic_offset_table_rtx.
2277 This stuff is fragile, and is yet another example of why it is
2278 bad to expose PIC machinery too early. */
2279 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2280 attrs.addrspace)
2281 && GET_CODE (addr) == PLUS
2282 && XEXP (addr, 0) == pic_offset_table_rtx)
2283 {
2284 addr = force_reg (GET_MODE (addr), addr);
2285 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2286 }
2287
2288 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2289 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2290
2291 /* If there are no changes, just return the original memory reference. */
2292 if (new_rtx == memref)
2293 return new_rtx;
2294
2295 /* Update the alignment to reflect the offset. Reset the offset, which
2296 we don't know. */
2297 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2298 attrs.offset_known_p = false;
2299 attrs.size_known_p = defattrs->size_known_p;
2300 attrs.size = defattrs->size;
2301 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2302 set_mem_attrs (new_rtx, &attrs);
2303 return new_rtx;
2304 }
2305
2306 /* Return a memory reference like MEMREF, but with its address changed to
2307 ADDR. The caller is asserting that the actual piece of memory pointed
2308 to is the same, just the form of the address is being changed, such as
2309 by putting something into a register. INPLACE is true if any changes
2310 can be made directly to MEMREF or false if MEMREF must be treated as
2311 immutable. */
2312
2313 rtx
2314 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2315 {
2316 /* change_address_1 copies the memory attribute structure without change
2317 and that's exactly what we want here. */
2318 update_temp_slot_address (XEXP (memref, 0), addr);
2319 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2320 }
2321
2322 /* Likewise, but the reference is not required to be valid. */
2323
2324 rtx
2325 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2326 {
2327 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2328 }
2329
2330 /* Return a memory reference like MEMREF, but with its mode widened to
2331 MODE and offset by OFFSET. This would be used by targets that e.g.
2332 cannot issue QImode memory operations and have to use SImode memory
2333 operations plus masking logic. */
2334
2335 rtx
2336 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2337 {
2338 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2339 struct mem_attrs attrs;
2340 unsigned int size = GET_MODE_SIZE (mode);
2341
2342 /* If there are no changes, just return the original memory reference. */
2343 if (new_rtx == memref)
2344 return new_rtx;
2345
2346 attrs = *get_mem_attrs (new_rtx);
2347
2348 /* If we don't know what offset we were at within the expression, then
2349 we can't know if we've overstepped the bounds. */
2350 if (! attrs.offset_known_p)
2351 attrs.expr = NULL_TREE;
2352
2353 while (attrs.expr)
2354 {
2355 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2356 {
2357 tree field = TREE_OPERAND (attrs.expr, 1);
2358 tree offset = component_ref_field_offset (attrs.expr);
2359
2360 if (! DECL_SIZE_UNIT (field))
2361 {
2362 attrs.expr = NULL_TREE;
2363 break;
2364 }
2365
2366 /* Is the field at least as large as the access? If so, ok,
2367 otherwise strip back to the containing structure. */
2368 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2369 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2370 && attrs.offset >= 0)
2371 break;
2372
2373 if (! tree_fits_uhwi_p (offset))
2374 {
2375 attrs.expr = NULL_TREE;
2376 break;
2377 }
2378
2379 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2380 attrs.offset += tree_to_uhwi (offset);
2381 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2382 / BITS_PER_UNIT);
2383 }
2384 /* Similarly for the decl. */
2385 else if (DECL_P (attrs.expr)
2386 && DECL_SIZE_UNIT (attrs.expr)
2387 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2388 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2389 && (! attrs.offset_known_p || attrs.offset >= 0))
2390 break;
2391 else
2392 {
2393 /* The widened memory access overflows the expression, which means
2394 that it could alias another expression. Zap it. */
2395 attrs.expr = NULL_TREE;
2396 break;
2397 }
2398 }
2399
2400 if (! attrs.expr)
2401 attrs.offset_known_p = false;
2402
2403 /* The widened memory may alias other stuff, so zap the alias set. */
2404 /* ??? Maybe use get_alias_set on any remaining expression. */
2405 attrs.alias = 0;
2406 attrs.size_known_p = true;
2407 attrs.size = size;
2408 set_mem_attrs (new_rtx, &attrs);
2409 return new_rtx;
2410 }
2411 \f
2412 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2413 static GTY(()) tree spill_slot_decl;
2414
2415 tree
2416 get_spill_slot_decl (bool force_build_p)
2417 {
2418 tree d = spill_slot_decl;
2419 rtx rd;
2420 struct mem_attrs attrs;
2421
2422 if (d || !force_build_p)
2423 return d;
2424
2425 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2426 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2427 DECL_ARTIFICIAL (d) = 1;
2428 DECL_IGNORED_P (d) = 1;
2429 TREE_USED (d) = 1;
2430 spill_slot_decl = d;
2431
2432 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2433 MEM_NOTRAP_P (rd) = 1;
2434 attrs = *mode_mem_attrs[(int) BLKmode];
2435 attrs.alias = new_alias_set ();
2436 attrs.expr = d;
2437 set_mem_attrs (rd, &attrs);
2438 SET_DECL_RTL (d, rd);
2439
2440 return d;
2441 }
2442
2443 /* Given MEM, a result from assign_stack_local, fill in the memory
2444 attributes as appropriate for a register allocator spill slot.
2445 These slots are not aliasable by other memory. We arrange for
2446 them all to use a single MEM_EXPR, so that the aliasing code can
2447 work properly in the case of shared spill slots. */
2448
2449 void
2450 set_mem_attrs_for_spill (rtx mem)
2451 {
2452 struct mem_attrs attrs;
2453 rtx addr;
2454
2455 attrs = *get_mem_attrs (mem);
2456 attrs.expr = get_spill_slot_decl (true);
2457 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2458 attrs.addrspace = ADDR_SPACE_GENERIC;
2459
2460 /* We expect the incoming memory to be of the form:
2461 (mem:MODE (plus (reg sfp) (const_int offset)))
2462 with perhaps the plus missing for offset = 0. */
2463 addr = XEXP (mem, 0);
2464 attrs.offset_known_p = true;
2465 attrs.offset = 0;
2466 if (GET_CODE (addr) == PLUS
2467 && CONST_INT_P (XEXP (addr, 1)))
2468 attrs.offset = INTVAL (XEXP (addr, 1));
2469
2470 set_mem_attrs (mem, &attrs);
2471 MEM_NOTRAP_P (mem) = 1;
2472 }
2473 \f
2474 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2475
2476 rtx_code_label *
2477 gen_label_rtx (void)
2478 {
2479 return as_a <rtx_code_label *> (
2480 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2481 NULL, label_num++, NULL));
2482 }
2483 \f
2484 /* For procedure integration. */
2485
2486 /* Install new pointers to the first and last insns in the chain.
2487 Also, set cur_insn_uid to one higher than the last in use.
2488 Used for an inline-procedure after copying the insn chain. */
2489
2490 void
2491 set_new_first_and_last_insn (rtx first, rtx last)
2492 {
2493 rtx insn;
2494
2495 set_first_insn (first);
2496 set_last_insn (last);
2497 cur_insn_uid = 0;
2498
2499 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2500 {
2501 int debug_count = 0;
2502
2503 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2504 cur_debug_insn_uid = 0;
2505
2506 for (insn = first; insn; insn = NEXT_INSN (insn))
2507 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2508 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2509 else
2510 {
2511 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2512 if (DEBUG_INSN_P (insn))
2513 debug_count++;
2514 }
2515
2516 if (debug_count)
2517 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2518 else
2519 cur_debug_insn_uid++;
2520 }
2521 else
2522 for (insn = first; insn; insn = NEXT_INSN (insn))
2523 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2524
2525 cur_insn_uid++;
2526 }
2527 \f
2528 /* Go through all the RTL insn bodies and copy any invalid shared
2529 structure. This routine should only be called once. */
2530
2531 static void
2532 unshare_all_rtl_1 (rtx_insn *insn)
2533 {
2534 /* Unshare just about everything else. */
2535 unshare_all_rtl_in_chain (insn);
2536
2537 /* Make sure the addresses of stack slots found outside the insn chain
2538 (such as, in DECL_RTL of a variable) are not shared
2539 with the insn chain.
2540
2541 This special care is necessary when the stack slot MEM does not
2542 actually appear in the insn chain. If it does appear, its address
2543 is unshared from all else at that point. */
2544 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2545 }
2546
2547 /* Go through all the RTL insn bodies and copy any invalid shared
2548 structure, again. This is a fairly expensive thing to do so it
2549 should be done sparingly. */
2550
2551 void
2552 unshare_all_rtl_again (rtx_insn *insn)
2553 {
2554 rtx_insn *p;
2555 tree decl;
2556
2557 for (p = insn; p; p = NEXT_INSN (p))
2558 if (INSN_P (p))
2559 {
2560 reset_used_flags (PATTERN (p));
2561 reset_used_flags (REG_NOTES (p));
2562 if (CALL_P (p))
2563 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2564 }
2565
2566 /* Make sure that virtual stack slots are not shared. */
2567 set_used_decls (DECL_INITIAL (cfun->decl));
2568
2569 /* Make sure that virtual parameters are not shared. */
2570 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2571 set_used_flags (DECL_RTL (decl));
2572
2573 reset_used_flags (stack_slot_list);
2574
2575 unshare_all_rtl_1 (insn);
2576 }
2577
2578 unsigned int
2579 unshare_all_rtl (void)
2580 {
2581 unshare_all_rtl_1 (get_insns ());
2582 return 0;
2583 }
2584
2585
2586 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2587 Recursively does the same for subexpressions. */
2588
2589 static void
2590 verify_rtx_sharing (rtx orig, rtx insn)
2591 {
2592 rtx x = orig;
2593 int i;
2594 enum rtx_code code;
2595 const char *format_ptr;
2596
2597 if (x == 0)
2598 return;
2599
2600 code = GET_CODE (x);
2601
2602 /* These types may be freely shared. */
2603
2604 switch (code)
2605 {
2606 case REG:
2607 case DEBUG_EXPR:
2608 case VALUE:
2609 CASE_CONST_ANY:
2610 case SYMBOL_REF:
2611 case LABEL_REF:
2612 case CODE_LABEL:
2613 case PC:
2614 case CC0:
2615 case RETURN:
2616 case SIMPLE_RETURN:
2617 case SCRATCH:
2618 /* SCRATCH must be shared because they represent distinct values. */
2619 return;
2620 case CLOBBER:
2621 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2622 clobbers or clobbers of hard registers that originated as pseudos.
2623 This is needed to allow safe register renaming. */
2624 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2625 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2626 return;
2627 break;
2628
2629 case CONST:
2630 if (shared_const_p (orig))
2631 return;
2632 break;
2633
2634 case MEM:
2635 /* A MEM is allowed to be shared if its address is constant. */
2636 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2637 || reload_completed || reload_in_progress)
2638 return;
2639
2640 break;
2641
2642 default:
2643 break;
2644 }
2645
2646 /* This rtx may not be shared. If it has already been seen,
2647 replace it with a copy of itself. */
2648 #ifdef ENABLE_CHECKING
2649 if (RTX_FLAG (x, used))
2650 {
2651 error ("invalid rtl sharing found in the insn");
2652 debug_rtx (insn);
2653 error ("shared rtx");
2654 debug_rtx (x);
2655 internal_error ("internal consistency failure");
2656 }
2657 #endif
2658 gcc_assert (!RTX_FLAG (x, used));
2659
2660 RTX_FLAG (x, used) = 1;
2661
2662 /* Now scan the subexpressions recursively. */
2663
2664 format_ptr = GET_RTX_FORMAT (code);
2665
2666 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2667 {
2668 switch (*format_ptr++)
2669 {
2670 case 'e':
2671 verify_rtx_sharing (XEXP (x, i), insn);
2672 break;
2673
2674 case 'E':
2675 if (XVEC (x, i) != NULL)
2676 {
2677 int j;
2678 int len = XVECLEN (x, i);
2679
2680 for (j = 0; j < len; j++)
2681 {
2682 /* We allow sharing of ASM_OPERANDS inside single
2683 instruction. */
2684 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2685 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2686 == ASM_OPERANDS))
2687 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2688 else
2689 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2690 }
2691 }
2692 break;
2693 }
2694 }
2695 return;
2696 }
2697
2698 /* Reset used-flags for INSN. */
2699
2700 static void
2701 reset_insn_used_flags (rtx insn)
2702 {
2703 gcc_assert (INSN_P (insn));
2704 reset_used_flags (PATTERN (insn));
2705 reset_used_flags (REG_NOTES (insn));
2706 if (CALL_P (insn))
2707 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2708 }
2709
2710 /* Go through all the RTL insn bodies and clear all the USED bits. */
2711
2712 static void
2713 reset_all_used_flags (void)
2714 {
2715 rtx p;
2716
2717 for (p = get_insns (); p; p = NEXT_INSN (p))
2718 if (INSN_P (p))
2719 {
2720 rtx pat = PATTERN (p);
2721 if (GET_CODE (pat) != SEQUENCE)
2722 reset_insn_used_flags (p);
2723 else
2724 {
2725 gcc_assert (REG_NOTES (p) == NULL);
2726 for (int i = 0; i < XVECLEN (pat, 0); i++)
2727 {
2728 rtx insn = XVECEXP (pat, 0, i);
2729 if (INSN_P (insn))
2730 reset_insn_used_flags (insn);
2731 }
2732 }
2733 }
2734 }
2735
2736 /* Verify sharing in INSN. */
2737
2738 static void
2739 verify_insn_sharing (rtx insn)
2740 {
2741 gcc_assert (INSN_P (insn));
2742 reset_used_flags (PATTERN (insn));
2743 reset_used_flags (REG_NOTES (insn));
2744 if (CALL_P (insn))
2745 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2746 }
2747
2748 /* Go through all the RTL insn bodies and check that there is no unexpected
2749 sharing in between the subexpressions. */
2750
2751 DEBUG_FUNCTION void
2752 verify_rtl_sharing (void)
2753 {
2754 rtx p;
2755
2756 timevar_push (TV_VERIFY_RTL_SHARING);
2757
2758 reset_all_used_flags ();
2759
2760 for (p = get_insns (); p; p = NEXT_INSN (p))
2761 if (INSN_P (p))
2762 {
2763 rtx pat = PATTERN (p);
2764 if (GET_CODE (pat) != SEQUENCE)
2765 verify_insn_sharing (p);
2766 else
2767 for (int i = 0; i < XVECLEN (pat, 0); i++)
2768 {
2769 rtx insn = XVECEXP (pat, 0, i);
2770 if (INSN_P (insn))
2771 verify_insn_sharing (insn);
2772 }
2773 }
2774
2775 reset_all_used_flags ();
2776
2777 timevar_pop (TV_VERIFY_RTL_SHARING);
2778 }
2779
2780 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2781 Assumes the mark bits are cleared at entry. */
2782
2783 void
2784 unshare_all_rtl_in_chain (rtx insn)
2785 {
2786 for (; insn; insn = NEXT_INSN (insn))
2787 if (INSN_P (insn))
2788 {
2789 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2790 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2791 if (CALL_P (insn))
2792 CALL_INSN_FUNCTION_USAGE (insn)
2793 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2794 }
2795 }
2796
2797 /* Go through all virtual stack slots of a function and mark them as
2798 shared. We never replace the DECL_RTLs themselves with a copy,
2799 but expressions mentioned into a DECL_RTL cannot be shared with
2800 expressions in the instruction stream.
2801
2802 Note that reload may convert pseudo registers into memories in-place.
2803 Pseudo registers are always shared, but MEMs never are. Thus if we
2804 reset the used flags on MEMs in the instruction stream, we must set
2805 them again on MEMs that appear in DECL_RTLs. */
2806
2807 static void
2808 set_used_decls (tree blk)
2809 {
2810 tree t;
2811
2812 /* Mark decls. */
2813 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2814 if (DECL_RTL_SET_P (t))
2815 set_used_flags (DECL_RTL (t));
2816
2817 /* Now process sub-blocks. */
2818 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2819 set_used_decls (t);
2820 }
2821
2822 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2823 Recursively does the same for subexpressions. Uses
2824 copy_rtx_if_shared_1 to reduce stack space. */
2825
2826 rtx
2827 copy_rtx_if_shared (rtx orig)
2828 {
2829 copy_rtx_if_shared_1 (&orig);
2830 return orig;
2831 }
2832
2833 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2834 use. Recursively does the same for subexpressions. */
2835
2836 static void
2837 copy_rtx_if_shared_1 (rtx *orig1)
2838 {
2839 rtx x;
2840 int i;
2841 enum rtx_code code;
2842 rtx *last_ptr;
2843 const char *format_ptr;
2844 int copied = 0;
2845 int length;
2846
2847 /* Repeat is used to turn tail-recursion into iteration. */
2848 repeat:
2849 x = *orig1;
2850
2851 if (x == 0)
2852 return;
2853
2854 code = GET_CODE (x);
2855
2856 /* These types may be freely shared. */
2857
2858 switch (code)
2859 {
2860 case REG:
2861 case DEBUG_EXPR:
2862 case VALUE:
2863 CASE_CONST_ANY:
2864 case SYMBOL_REF:
2865 case LABEL_REF:
2866 case CODE_LABEL:
2867 case PC:
2868 case CC0:
2869 case RETURN:
2870 case SIMPLE_RETURN:
2871 case SCRATCH:
2872 /* SCRATCH must be shared because they represent distinct values. */
2873 return;
2874 case CLOBBER:
2875 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2876 clobbers or clobbers of hard registers that originated as pseudos.
2877 This is needed to allow safe register renaming. */
2878 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2879 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2880 return;
2881 break;
2882
2883 case CONST:
2884 if (shared_const_p (x))
2885 return;
2886 break;
2887
2888 case DEBUG_INSN:
2889 case INSN:
2890 case JUMP_INSN:
2891 case CALL_INSN:
2892 case NOTE:
2893 case BARRIER:
2894 /* The chain of insns is not being copied. */
2895 return;
2896
2897 default:
2898 break;
2899 }
2900
2901 /* This rtx may not be shared. If it has already been seen,
2902 replace it with a copy of itself. */
2903
2904 if (RTX_FLAG (x, used))
2905 {
2906 x = shallow_copy_rtx (x);
2907 copied = 1;
2908 }
2909 RTX_FLAG (x, used) = 1;
2910
2911 /* Now scan the subexpressions recursively.
2912 We can store any replaced subexpressions directly into X
2913 since we know X is not shared! Any vectors in X
2914 must be copied if X was copied. */
2915
2916 format_ptr = GET_RTX_FORMAT (code);
2917 length = GET_RTX_LENGTH (code);
2918 last_ptr = NULL;
2919
2920 for (i = 0; i < length; i++)
2921 {
2922 switch (*format_ptr++)
2923 {
2924 case 'e':
2925 if (last_ptr)
2926 copy_rtx_if_shared_1 (last_ptr);
2927 last_ptr = &XEXP (x, i);
2928 break;
2929
2930 case 'E':
2931 if (XVEC (x, i) != NULL)
2932 {
2933 int j;
2934 int len = XVECLEN (x, i);
2935
2936 /* Copy the vector iff I copied the rtx and the length
2937 is nonzero. */
2938 if (copied && len > 0)
2939 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2940
2941 /* Call recursively on all inside the vector. */
2942 for (j = 0; j < len; j++)
2943 {
2944 if (last_ptr)
2945 copy_rtx_if_shared_1 (last_ptr);
2946 last_ptr = &XVECEXP (x, i, j);
2947 }
2948 }
2949 break;
2950 }
2951 }
2952 *orig1 = x;
2953 if (last_ptr)
2954 {
2955 orig1 = last_ptr;
2956 goto repeat;
2957 }
2958 return;
2959 }
2960
2961 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2962
2963 static void
2964 mark_used_flags (rtx x, int flag)
2965 {
2966 int i, j;
2967 enum rtx_code code;
2968 const char *format_ptr;
2969 int length;
2970
2971 /* Repeat is used to turn tail-recursion into iteration. */
2972 repeat:
2973 if (x == 0)
2974 return;
2975
2976 code = GET_CODE (x);
2977
2978 /* These types may be freely shared so we needn't do any resetting
2979 for them. */
2980
2981 switch (code)
2982 {
2983 case REG:
2984 case DEBUG_EXPR:
2985 case VALUE:
2986 CASE_CONST_ANY:
2987 case SYMBOL_REF:
2988 case CODE_LABEL:
2989 case PC:
2990 case CC0:
2991 case RETURN:
2992 case SIMPLE_RETURN:
2993 return;
2994
2995 case DEBUG_INSN:
2996 case INSN:
2997 case JUMP_INSN:
2998 case CALL_INSN:
2999 case NOTE:
3000 case LABEL_REF:
3001 case BARRIER:
3002 /* The chain of insns is not being copied. */
3003 return;
3004
3005 default:
3006 break;
3007 }
3008
3009 RTX_FLAG (x, used) = flag;
3010
3011 format_ptr = GET_RTX_FORMAT (code);
3012 length = GET_RTX_LENGTH (code);
3013
3014 for (i = 0; i < length; i++)
3015 {
3016 switch (*format_ptr++)
3017 {
3018 case 'e':
3019 if (i == length-1)
3020 {
3021 x = XEXP (x, i);
3022 goto repeat;
3023 }
3024 mark_used_flags (XEXP (x, i), flag);
3025 break;
3026
3027 case 'E':
3028 for (j = 0; j < XVECLEN (x, i); j++)
3029 mark_used_flags (XVECEXP (x, i, j), flag);
3030 break;
3031 }
3032 }
3033 }
3034
3035 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3036 to look for shared sub-parts. */
3037
3038 void
3039 reset_used_flags (rtx x)
3040 {
3041 mark_used_flags (x, 0);
3042 }
3043
3044 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3045 to look for shared sub-parts. */
3046
3047 void
3048 set_used_flags (rtx x)
3049 {
3050 mark_used_flags (x, 1);
3051 }
3052 \f
3053 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3054 Return X or the rtx for the pseudo reg the value of X was copied into.
3055 OTHER must be valid as a SET_DEST. */
3056
3057 rtx
3058 make_safe_from (rtx x, rtx other)
3059 {
3060 while (1)
3061 switch (GET_CODE (other))
3062 {
3063 case SUBREG:
3064 other = SUBREG_REG (other);
3065 break;
3066 case STRICT_LOW_PART:
3067 case SIGN_EXTEND:
3068 case ZERO_EXTEND:
3069 other = XEXP (other, 0);
3070 break;
3071 default:
3072 goto done;
3073 }
3074 done:
3075 if ((MEM_P (other)
3076 && ! CONSTANT_P (x)
3077 && !REG_P (x)
3078 && GET_CODE (x) != SUBREG)
3079 || (REG_P (other)
3080 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3081 || reg_mentioned_p (other, x))))
3082 {
3083 rtx temp = gen_reg_rtx (GET_MODE (x));
3084 emit_move_insn (temp, x);
3085 return temp;
3086 }
3087 return x;
3088 }
3089 \f
3090 /* Emission of insns (adding them to the doubly-linked list). */
3091
3092 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3093
3094 rtx
3095 get_last_insn_anywhere (void)
3096 {
3097 struct sequence_stack *stack;
3098 if (get_last_insn ())
3099 return get_last_insn ();
3100 for (stack = seq_stack; stack; stack = stack->next)
3101 if (stack->last != 0)
3102 return stack->last;
3103 return 0;
3104 }
3105
3106 /* Return the first nonnote insn emitted in current sequence or current
3107 function. This routine looks inside SEQUENCEs. */
3108
3109 rtx
3110 get_first_nonnote_insn (void)
3111 {
3112 rtx insn = get_insns ();
3113
3114 if (insn)
3115 {
3116 if (NOTE_P (insn))
3117 for (insn = next_insn (insn);
3118 insn && NOTE_P (insn);
3119 insn = next_insn (insn))
3120 continue;
3121 else
3122 {
3123 if (NONJUMP_INSN_P (insn)
3124 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3125 insn = XVECEXP (PATTERN (insn), 0, 0);
3126 }
3127 }
3128
3129 return insn;
3130 }
3131
3132 /* Return the last nonnote insn emitted in current sequence or current
3133 function. This routine looks inside SEQUENCEs. */
3134
3135 rtx
3136 get_last_nonnote_insn (void)
3137 {
3138 rtx insn = get_last_insn ();
3139
3140 if (insn)
3141 {
3142 if (NOTE_P (insn))
3143 for (insn = previous_insn (insn);
3144 insn && NOTE_P (insn);
3145 insn = previous_insn (insn))
3146 continue;
3147 else
3148 {
3149 if (NONJUMP_INSN_P (insn)
3150 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3151 insn = XVECEXP (PATTERN (insn), 0,
3152 XVECLEN (PATTERN (insn), 0) - 1);
3153 }
3154 }
3155
3156 return insn;
3157 }
3158
3159 /* Return the number of actual (non-debug) insns emitted in this
3160 function. */
3161
3162 int
3163 get_max_insn_count (void)
3164 {
3165 int n = cur_insn_uid;
3166
3167 /* The table size must be stable across -g, to avoid codegen
3168 differences due to debug insns, and not be affected by
3169 -fmin-insn-uid, to avoid excessive table size and to simplify
3170 debugging of -fcompare-debug failures. */
3171 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3172 n -= cur_debug_insn_uid;
3173 else
3174 n -= MIN_NONDEBUG_INSN_UID;
3175
3176 return n;
3177 }
3178
3179 \f
3180 /* Return the next insn. If it is a SEQUENCE, return the first insn
3181 of the sequence. */
3182
3183 rtx_insn *
3184 next_insn (rtx insn)
3185 {
3186 if (insn)
3187 {
3188 insn = NEXT_INSN (insn);
3189 if (insn && NONJUMP_INSN_P (insn)
3190 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3191 insn = XVECEXP (PATTERN (insn), 0, 0);
3192 }
3193
3194 return safe_as_a <rtx_insn *> (insn);
3195 }
3196
3197 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3198 of the sequence. */
3199
3200 rtx_insn *
3201 previous_insn (rtx insn)
3202 {
3203 if (insn)
3204 {
3205 insn = PREV_INSN (insn);
3206 if (insn && NONJUMP_INSN_P (insn)
3207 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3208 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3209 }
3210
3211 return safe_as_a <rtx_insn *> (insn);
3212 }
3213
3214 /* Return the next insn after INSN that is not a NOTE. This routine does not
3215 look inside SEQUENCEs. */
3216
3217 rtx_insn *
3218 next_nonnote_insn (rtx insn)
3219 {
3220 while (insn)
3221 {
3222 insn = NEXT_INSN (insn);
3223 if (insn == 0 || !NOTE_P (insn))
3224 break;
3225 }
3226
3227 return safe_as_a <rtx_insn *> (insn);
3228 }
3229
3230 /* Return the next insn after INSN that is not a NOTE, but stop the
3231 search before we enter another basic block. This routine does not
3232 look inside SEQUENCEs. */
3233
3234 rtx_insn *
3235 next_nonnote_insn_bb (rtx insn)
3236 {
3237 while (insn)
3238 {
3239 insn = NEXT_INSN (insn);
3240 if (insn == 0 || !NOTE_P (insn))
3241 break;
3242 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3243 return NULL;
3244 }
3245
3246 return safe_as_a <rtx_insn *> (insn);
3247 }
3248
3249 /* Return the previous insn before INSN that is not a NOTE. This routine does
3250 not look inside SEQUENCEs. */
3251
3252 rtx_insn *
3253 prev_nonnote_insn (rtx insn)
3254 {
3255 while (insn)
3256 {
3257 insn = PREV_INSN (insn);
3258 if (insn == 0 || !NOTE_P (insn))
3259 break;
3260 }
3261
3262 return safe_as_a <rtx_insn *> (insn);
3263 }
3264
3265 /* Return the previous insn before INSN that is not a NOTE, but stop
3266 the search before we enter another basic block. This routine does
3267 not look inside SEQUENCEs. */
3268
3269 rtx_insn *
3270 prev_nonnote_insn_bb (rtx insn)
3271 {
3272 while (insn)
3273 {
3274 insn = PREV_INSN (insn);
3275 if (insn == 0 || !NOTE_P (insn))
3276 break;
3277 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3278 return NULL;
3279 }
3280
3281 return safe_as_a <rtx_insn *> (insn);
3282 }
3283
3284 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3285 routine does not look inside SEQUENCEs. */
3286
3287 rtx_insn *
3288 next_nondebug_insn (rtx insn)
3289 {
3290 while (insn)
3291 {
3292 insn = NEXT_INSN (insn);
3293 if (insn == 0 || !DEBUG_INSN_P (insn))
3294 break;
3295 }
3296
3297 return safe_as_a <rtx_insn *> (insn);
3298 }
3299
3300 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3301 This routine does not look inside SEQUENCEs. */
3302
3303 rtx_insn *
3304 prev_nondebug_insn (rtx insn)
3305 {
3306 while (insn)
3307 {
3308 insn = PREV_INSN (insn);
3309 if (insn == 0 || !DEBUG_INSN_P (insn))
3310 break;
3311 }
3312
3313 return safe_as_a <rtx_insn *> (insn);
3314 }
3315
3316 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3317 This routine does not look inside SEQUENCEs. */
3318
3319 rtx_insn *
3320 next_nonnote_nondebug_insn (rtx insn)
3321 {
3322 while (insn)
3323 {
3324 insn = NEXT_INSN (insn);
3325 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3326 break;
3327 }
3328
3329 return safe_as_a <rtx_insn *> (insn);
3330 }
3331
3332 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3333 This routine does not look inside SEQUENCEs. */
3334
3335 rtx_insn *
3336 prev_nonnote_nondebug_insn (rtx insn)
3337 {
3338 while (insn)
3339 {
3340 insn = PREV_INSN (insn);
3341 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3342 break;
3343 }
3344
3345 return safe_as_a <rtx_insn *> (insn);
3346 }
3347
3348 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3349 or 0, if there is none. This routine does not look inside
3350 SEQUENCEs. */
3351
3352 rtx_insn *
3353 next_real_insn (rtx insn)
3354 {
3355 while (insn)
3356 {
3357 insn = NEXT_INSN (insn);
3358 if (insn == 0 || INSN_P (insn))
3359 break;
3360 }
3361
3362 return safe_as_a <rtx_insn *> (insn);
3363 }
3364
3365 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3366 or 0, if there is none. This routine does not look inside
3367 SEQUENCEs. */
3368
3369 rtx_insn *
3370 prev_real_insn (rtx insn)
3371 {
3372 while (insn)
3373 {
3374 insn = PREV_INSN (insn);
3375 if (insn == 0 || INSN_P (insn))
3376 break;
3377 }
3378
3379 return safe_as_a <rtx_insn *> (insn);
3380 }
3381
3382 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3383 This routine does not look inside SEQUENCEs. */
3384
3385 rtx_call_insn *
3386 last_call_insn (void)
3387 {
3388 rtx_insn *insn;
3389
3390 for (insn = get_last_insn ();
3391 insn && !CALL_P (insn);
3392 insn = PREV_INSN (insn))
3393 ;
3394
3395 return safe_as_a <rtx_call_insn *> (insn);
3396 }
3397
3398 /* Find the next insn after INSN that really does something. This routine
3399 does not look inside SEQUENCEs. After reload this also skips over
3400 standalone USE and CLOBBER insn. */
3401
3402 int
3403 active_insn_p (const_rtx insn)
3404 {
3405 return (CALL_P (insn) || JUMP_P (insn)
3406 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3407 || (NONJUMP_INSN_P (insn)
3408 && (! reload_completed
3409 || (GET_CODE (PATTERN (insn)) != USE
3410 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3411 }
3412
3413 rtx_insn *
3414 next_active_insn (rtx insn)
3415 {
3416 while (insn)
3417 {
3418 insn = NEXT_INSN (insn);
3419 if (insn == 0 || active_insn_p (insn))
3420 break;
3421 }
3422
3423 return safe_as_a <rtx_insn *> (insn);
3424 }
3425
3426 /* Find the last insn before INSN that really does something. This routine
3427 does not look inside SEQUENCEs. After reload this also skips over
3428 standalone USE and CLOBBER insn. */
3429
3430 rtx_insn *
3431 prev_active_insn (rtx insn)
3432 {
3433 while (insn)
3434 {
3435 insn = PREV_INSN (insn);
3436 if (insn == 0 || active_insn_p (insn))
3437 break;
3438 }
3439
3440 return safe_as_a <rtx_insn *> (insn);
3441 }
3442 \f
3443 #ifdef HAVE_cc0
3444 /* Return the next insn that uses CC0 after INSN, which is assumed to
3445 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3446 applied to the result of this function should yield INSN).
3447
3448 Normally, this is simply the next insn. However, if a REG_CC_USER note
3449 is present, it contains the insn that uses CC0.
3450
3451 Return 0 if we can't find the insn. */
3452
3453 rtx_insn *
3454 next_cc0_user (rtx insn)
3455 {
3456 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3457
3458 if (note)
3459 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3460
3461 insn = next_nonnote_insn (insn);
3462 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3463 insn = XVECEXP (PATTERN (insn), 0, 0);
3464
3465 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3466 return safe_as_a <rtx_insn *> (insn);
3467
3468 return 0;
3469 }
3470
3471 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3472 note, it is the previous insn. */
3473
3474 rtx_insn *
3475 prev_cc0_setter (rtx insn)
3476 {
3477 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3478
3479 if (note)
3480 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3481
3482 insn = prev_nonnote_insn (insn);
3483 gcc_assert (sets_cc0_p (PATTERN (insn)));
3484
3485 return safe_as_a <rtx_insn *> (insn);
3486 }
3487 #endif
3488
3489 #ifdef AUTO_INC_DEC
3490 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3491
3492 static int
3493 find_auto_inc (rtx *xp, void *data)
3494 {
3495 rtx x = *xp;
3496 rtx reg = (rtx) data;
3497
3498 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3499 return 0;
3500
3501 switch (GET_CODE (x))
3502 {
3503 case PRE_DEC:
3504 case PRE_INC:
3505 case POST_DEC:
3506 case POST_INC:
3507 case PRE_MODIFY:
3508 case POST_MODIFY:
3509 if (rtx_equal_p (reg, XEXP (x, 0)))
3510 return 1;
3511 break;
3512
3513 default:
3514 gcc_unreachable ();
3515 }
3516 return -1;
3517 }
3518 #endif
3519
3520 /* Increment the label uses for all labels present in rtx. */
3521
3522 static void
3523 mark_label_nuses (rtx x)
3524 {
3525 enum rtx_code code;
3526 int i, j;
3527 const char *fmt;
3528
3529 code = GET_CODE (x);
3530 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3531 LABEL_NUSES (XEXP (x, 0))++;
3532
3533 fmt = GET_RTX_FORMAT (code);
3534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3535 {
3536 if (fmt[i] == 'e')
3537 mark_label_nuses (XEXP (x, i));
3538 else if (fmt[i] == 'E')
3539 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3540 mark_label_nuses (XVECEXP (x, i, j));
3541 }
3542 }
3543
3544 \f
3545 /* Try splitting insns that can be split for better scheduling.
3546 PAT is the pattern which might split.
3547 TRIAL is the insn providing PAT.
3548 LAST is nonzero if we should return the last insn of the sequence produced.
3549
3550 If this routine succeeds in splitting, it returns the first or last
3551 replacement insn depending on the value of LAST. Otherwise, it
3552 returns TRIAL. If the insn to be returned can be split, it will be. */
3553
3554 rtx_insn *
3555 try_split (rtx pat, rtx trial, int last)
3556 {
3557 rtx_insn *before = PREV_INSN (trial);
3558 rtx_insn *after = NEXT_INSN (trial);
3559 int has_barrier = 0;
3560 rtx note, seq, tem;
3561 int probability;
3562 rtx insn_last, insn;
3563 int njumps = 0;
3564 rtx call_insn = NULL_RTX;
3565
3566 /* We're not good at redistributing frame information. */
3567 if (RTX_FRAME_RELATED_P (trial))
3568 return as_a <rtx_insn *> (trial);
3569
3570 if (any_condjump_p (trial)
3571 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3572 split_branch_probability = XINT (note, 0);
3573 probability = split_branch_probability;
3574
3575 seq = split_insns (pat, trial);
3576
3577 split_branch_probability = -1;
3578
3579 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3580 We may need to handle this specially. */
3581 if (after && BARRIER_P (after))
3582 {
3583 has_barrier = 1;
3584 after = NEXT_INSN (after);
3585 }
3586
3587 if (!seq)
3588 return as_a <rtx_insn *> (trial);
3589
3590 /* Avoid infinite loop if any insn of the result matches
3591 the original pattern. */
3592 insn_last = seq;
3593 while (1)
3594 {
3595 if (INSN_P (insn_last)
3596 && rtx_equal_p (PATTERN (insn_last), pat))
3597 return as_a <rtx_insn *> (trial);
3598 if (!NEXT_INSN (insn_last))
3599 break;
3600 insn_last = NEXT_INSN (insn_last);
3601 }
3602
3603 /* We will be adding the new sequence to the function. The splitters
3604 may have introduced invalid RTL sharing, so unshare the sequence now. */
3605 unshare_all_rtl_in_chain (seq);
3606
3607 /* Mark labels and copy flags. */
3608 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3609 {
3610 if (JUMP_P (insn))
3611 {
3612 if (JUMP_P (trial))
3613 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3614 mark_jump_label (PATTERN (insn), insn, 0);
3615 njumps++;
3616 if (probability != -1
3617 && any_condjump_p (insn)
3618 && !find_reg_note (insn, REG_BR_PROB, 0))
3619 {
3620 /* We can preserve the REG_BR_PROB notes only if exactly
3621 one jump is created, otherwise the machine description
3622 is responsible for this step using
3623 split_branch_probability variable. */
3624 gcc_assert (njumps == 1);
3625 add_int_reg_note (insn, REG_BR_PROB, probability);
3626 }
3627 }
3628 }
3629
3630 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3631 in SEQ and copy any additional information across. */
3632 if (CALL_P (trial))
3633 {
3634 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3635 if (CALL_P (insn))
3636 {
3637 rtx next, *p;
3638
3639 gcc_assert (call_insn == NULL_RTX);
3640 call_insn = insn;
3641
3642 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3643 target may have explicitly specified. */
3644 p = &CALL_INSN_FUNCTION_USAGE (insn);
3645 while (*p)
3646 p = &XEXP (*p, 1);
3647 *p = CALL_INSN_FUNCTION_USAGE (trial);
3648
3649 /* If the old call was a sibling call, the new one must
3650 be too. */
3651 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3652
3653 /* If the new call is the last instruction in the sequence,
3654 it will effectively replace the old call in-situ. Otherwise
3655 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3656 so that it comes immediately after the new call. */
3657 if (NEXT_INSN (insn))
3658 for (next = NEXT_INSN (trial);
3659 next && NOTE_P (next);
3660 next = NEXT_INSN (next))
3661 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3662 {
3663 remove_insn (next);
3664 add_insn_after (next, insn, NULL);
3665 break;
3666 }
3667 }
3668 }
3669
3670 /* Copy notes, particularly those related to the CFG. */
3671 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3672 {
3673 switch (REG_NOTE_KIND (note))
3674 {
3675 case REG_EH_REGION:
3676 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3677 break;
3678
3679 case REG_NORETURN:
3680 case REG_SETJMP:
3681 case REG_TM:
3682 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3683 {
3684 if (CALL_P (insn))
3685 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3686 }
3687 break;
3688
3689 case REG_NON_LOCAL_GOTO:
3690 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3691 {
3692 if (JUMP_P (insn))
3693 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3694 }
3695 break;
3696
3697 #ifdef AUTO_INC_DEC
3698 case REG_INC:
3699 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3700 {
3701 rtx reg = XEXP (note, 0);
3702 if (!FIND_REG_INC_NOTE (insn, reg)
3703 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3704 add_reg_note (insn, REG_INC, reg);
3705 }
3706 break;
3707 #endif
3708
3709 case REG_ARGS_SIZE:
3710 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3711 break;
3712
3713 case REG_CALL_DECL:
3714 gcc_assert (call_insn != NULL_RTX);
3715 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3716 break;
3717
3718 default:
3719 break;
3720 }
3721 }
3722
3723 /* If there are LABELS inside the split insns increment the
3724 usage count so we don't delete the label. */
3725 if (INSN_P (trial))
3726 {
3727 insn = insn_last;
3728 while (insn != NULL_RTX)
3729 {
3730 /* JUMP_P insns have already been "marked" above. */
3731 if (NONJUMP_INSN_P (insn))
3732 mark_label_nuses (PATTERN (insn));
3733
3734 insn = PREV_INSN (insn);
3735 }
3736 }
3737
3738 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3739
3740 delete_insn (trial);
3741 if (has_barrier)
3742 emit_barrier_after (tem);
3743
3744 /* Recursively call try_split for each new insn created; by the
3745 time control returns here that insn will be fully split, so
3746 set LAST and continue from the insn after the one returned.
3747 We can't use next_active_insn here since AFTER may be a note.
3748 Ignore deleted insns, which can be occur if not optimizing. */
3749 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3750 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3751 tem = try_split (PATTERN (tem), tem, 1);
3752
3753 /* Return either the first or the last insn, depending on which was
3754 requested. */
3755 return last
3756 ? (after ? PREV_INSN (after) : get_last_insn ())
3757 : NEXT_INSN (before);
3758 }
3759 \f
3760 /* Make and return an INSN rtx, initializing all its slots.
3761 Store PATTERN in the pattern slots. */
3762
3763 rtx_insn *
3764 make_insn_raw (rtx pattern)
3765 {
3766 rtx_insn *insn;
3767
3768 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3769
3770 INSN_UID (insn) = cur_insn_uid++;
3771 PATTERN (insn) = pattern;
3772 INSN_CODE (insn) = -1;
3773 REG_NOTES (insn) = NULL;
3774 INSN_LOCATION (insn) = curr_insn_location ();
3775 BLOCK_FOR_INSN (insn) = NULL;
3776
3777 #ifdef ENABLE_RTL_CHECKING
3778 if (insn
3779 && INSN_P (insn)
3780 && (returnjump_p (insn)
3781 || (GET_CODE (insn) == SET
3782 && SET_DEST (insn) == pc_rtx)))
3783 {
3784 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3785 debug_rtx (insn);
3786 }
3787 #endif
3788
3789 return insn;
3790 }
3791
3792 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3793
3794 static rtx_insn *
3795 make_debug_insn_raw (rtx pattern)
3796 {
3797 rtx_debug_insn *insn;
3798
3799 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3800 INSN_UID (insn) = cur_debug_insn_uid++;
3801 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3802 INSN_UID (insn) = cur_insn_uid++;
3803
3804 PATTERN (insn) = pattern;
3805 INSN_CODE (insn) = -1;
3806 REG_NOTES (insn) = NULL;
3807 INSN_LOCATION (insn) = curr_insn_location ();
3808 BLOCK_FOR_INSN (insn) = NULL;
3809
3810 return insn;
3811 }
3812
3813 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3814
3815 static rtx_insn *
3816 make_jump_insn_raw (rtx pattern)
3817 {
3818 rtx_jump_insn *insn;
3819
3820 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3821 INSN_UID (insn) = cur_insn_uid++;
3822
3823 PATTERN (insn) = pattern;
3824 INSN_CODE (insn) = -1;
3825 REG_NOTES (insn) = NULL;
3826 JUMP_LABEL (insn) = NULL;
3827 INSN_LOCATION (insn) = curr_insn_location ();
3828 BLOCK_FOR_INSN (insn) = NULL;
3829
3830 return insn;
3831 }
3832
3833 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3834
3835 static rtx_insn *
3836 make_call_insn_raw (rtx pattern)
3837 {
3838 rtx_call_insn *insn;
3839
3840 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3841 INSN_UID (insn) = cur_insn_uid++;
3842
3843 PATTERN (insn) = pattern;
3844 INSN_CODE (insn) = -1;
3845 REG_NOTES (insn) = NULL;
3846 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3847 INSN_LOCATION (insn) = curr_insn_location ();
3848 BLOCK_FOR_INSN (insn) = NULL;
3849
3850 return insn;
3851 }
3852
3853 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3854
3855 static rtx_note *
3856 make_note_raw (enum insn_note subtype)
3857 {
3858 /* Some notes are never created this way at all. These notes are
3859 only created by patching out insns. */
3860 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3861 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3862
3863 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3864 INSN_UID (note) = cur_insn_uid++;
3865 NOTE_KIND (note) = subtype;
3866 BLOCK_FOR_INSN (note) = NULL;
3867 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3868 return note;
3869 }
3870 \f
3871 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3872 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3873 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3874
3875 static inline void
3876 link_insn_into_chain (rtx insn, rtx prev, rtx next)
3877 {
3878 SET_PREV_INSN (insn) = prev;
3879 SET_NEXT_INSN (insn) = next;
3880 if (prev != NULL)
3881 {
3882 SET_NEXT_INSN (prev) = insn;
3883 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3884 {
3885 rtx sequence = PATTERN (prev);
3886 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3887 }
3888 }
3889 if (next != NULL)
3890 {
3891 SET_PREV_INSN (next) = insn;
3892 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3893 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3894 }
3895
3896 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3897 {
3898 rtx sequence = PATTERN (insn);
3899 SET_PREV_INSN (XVECEXP (sequence, 0, 0)) = prev;
3900 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3901 }
3902 }
3903
3904 /* Add INSN to the end of the doubly-linked list.
3905 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3906
3907 void
3908 add_insn (rtx insn)
3909 {
3910 rtx prev = get_last_insn ();
3911 link_insn_into_chain (insn, prev, NULL);
3912 if (NULL == get_insns ())
3913 set_first_insn (insn);
3914 set_last_insn (insn);
3915 }
3916
3917 /* Add INSN into the doubly-linked list after insn AFTER. */
3918
3919 static void
3920 add_insn_after_nobb (rtx insn, rtx after)
3921 {
3922 rtx next = NEXT_INSN (after);
3923
3924 gcc_assert (!optimize || !INSN_DELETED_P (after));
3925
3926 link_insn_into_chain (insn, after, next);
3927
3928 if (next == NULL)
3929 {
3930 if (get_last_insn () == after)
3931 set_last_insn (insn);
3932 else
3933 {
3934 struct sequence_stack *stack = seq_stack;
3935 /* Scan all pending sequences too. */
3936 for (; stack; stack = stack->next)
3937 if (after == stack->last)
3938 {
3939 stack->last = insn;
3940 break;
3941 }
3942 }
3943 }
3944 }
3945
3946 /* Add INSN into the doubly-linked list before insn BEFORE. */
3947
3948 static void
3949 add_insn_before_nobb (rtx insn, rtx before)
3950 {
3951 rtx prev = PREV_INSN (before);
3952
3953 gcc_assert (!optimize || !INSN_DELETED_P (before));
3954
3955 link_insn_into_chain (insn, prev, before);
3956
3957 if (prev == NULL)
3958 {
3959 if (get_insns () == before)
3960 set_first_insn (insn);
3961 else
3962 {
3963 struct sequence_stack *stack = seq_stack;
3964 /* Scan all pending sequences too. */
3965 for (; stack; stack = stack->next)
3966 if (before == stack->first)
3967 {
3968 stack->first = insn;
3969 break;
3970 }
3971
3972 gcc_assert (stack);
3973 }
3974 }
3975 }
3976
3977 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3978 If BB is NULL, an attempt is made to infer the bb from before.
3979
3980 This and the next function should be the only functions called
3981 to insert an insn once delay slots have been filled since only
3982 they know how to update a SEQUENCE. */
3983
3984 void
3985 add_insn_after (rtx uncast_insn, rtx after, basic_block bb)
3986 {
3987 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
3988 add_insn_after_nobb (insn, after);
3989 if (!BARRIER_P (after)
3990 && !BARRIER_P (insn)
3991 && (bb = BLOCK_FOR_INSN (after)))
3992 {
3993 set_block_for_insn (insn, bb);
3994 if (INSN_P (insn))
3995 df_insn_rescan (insn);
3996 /* Should not happen as first in the BB is always
3997 either NOTE or LABEL. */
3998 if (BB_END (bb) == after
3999 /* Avoid clobbering of structure when creating new BB. */
4000 && !BARRIER_P (insn)
4001 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4002 BB_END (bb) = insn;
4003 }
4004 }
4005
4006 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4007 If BB is NULL, an attempt is made to infer the bb from before.
4008
4009 This and the previous function should be the only functions called
4010 to insert an insn once delay slots have been filled since only
4011 they know how to update a SEQUENCE. */
4012
4013 void
4014 add_insn_before (rtx insn, rtx before, basic_block bb)
4015 {
4016 add_insn_before_nobb (insn, before);
4017
4018 if (!bb
4019 && !BARRIER_P (before)
4020 && !BARRIER_P (insn))
4021 bb = BLOCK_FOR_INSN (before);
4022
4023 if (bb)
4024 {
4025 set_block_for_insn (insn, bb);
4026 if (INSN_P (insn))
4027 df_insn_rescan (insn);
4028 /* Should not happen as first in the BB is always either NOTE or
4029 LABEL. */
4030 gcc_assert (BB_HEAD (bb) != insn
4031 /* Avoid clobbering of structure when creating new BB. */
4032 || BARRIER_P (insn)
4033 || NOTE_INSN_BASIC_BLOCK_P (insn));
4034 }
4035 }
4036
4037 /* Replace insn with an deleted instruction note. */
4038
4039 void
4040 set_insn_deleted (rtx insn)
4041 {
4042 if (INSN_P (insn))
4043 df_insn_delete (insn);
4044 PUT_CODE (insn, NOTE);
4045 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4046 }
4047
4048
4049 /* Unlink INSN from the insn chain.
4050
4051 This function knows how to handle sequences.
4052
4053 This function does not invalidate data flow information associated with
4054 INSN (i.e. does not call df_insn_delete). That makes this function
4055 usable for only disconnecting an insn from the chain, and re-emit it
4056 elsewhere later.
4057
4058 To later insert INSN elsewhere in the insn chain via add_insn and
4059 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4060 the caller. Nullifying them here breaks many insn chain walks.
4061
4062 To really delete an insn and related DF information, use delete_insn. */
4063
4064 void
4065 remove_insn (rtx insn)
4066 {
4067 rtx_insn *next = NEXT_INSN (insn);
4068 rtx_insn *prev = PREV_INSN (insn);
4069 basic_block bb;
4070
4071 if (prev)
4072 {
4073 SET_NEXT_INSN (prev) = next;
4074 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4075 {
4076 rtx sequence = PATTERN (prev);
4077 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
4078 }
4079 }
4080 else if (get_insns () == insn)
4081 {
4082 if (next)
4083 SET_PREV_INSN (next) = NULL;
4084 set_first_insn (next);
4085 }
4086 else
4087 {
4088 struct sequence_stack *stack = seq_stack;
4089 /* Scan all pending sequences too. */
4090 for (; stack; stack = stack->next)
4091 if (insn == stack->first)
4092 {
4093 stack->first = next;
4094 break;
4095 }
4096
4097 gcc_assert (stack);
4098 }
4099
4100 if (next)
4101 {
4102 SET_PREV_INSN (next) = prev;
4103 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4104 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
4105 }
4106 else if (get_last_insn () == insn)
4107 set_last_insn (prev);
4108 else
4109 {
4110 struct sequence_stack *stack = seq_stack;
4111 /* Scan all pending sequences too. */
4112 for (; stack; stack = stack->next)
4113 if (insn == stack->last)
4114 {
4115 stack->last = prev;
4116 break;
4117 }
4118
4119 gcc_assert (stack);
4120 }
4121
4122 /* Fix up basic block boundaries, if necessary. */
4123 if (!BARRIER_P (insn)
4124 && (bb = BLOCK_FOR_INSN (insn)))
4125 {
4126 if (BB_HEAD (bb) == insn)
4127 {
4128 /* Never ever delete the basic block note without deleting whole
4129 basic block. */
4130 gcc_assert (!NOTE_P (insn));
4131 BB_HEAD (bb) = next;
4132 }
4133 if (BB_END (bb) == insn)
4134 BB_END (bb) = prev;
4135 }
4136 }
4137
4138 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4139
4140 void
4141 add_function_usage_to (rtx call_insn, rtx call_fusage)
4142 {
4143 gcc_assert (call_insn && CALL_P (call_insn));
4144
4145 /* Put the register usage information on the CALL. If there is already
4146 some usage information, put ours at the end. */
4147 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4148 {
4149 rtx link;
4150
4151 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4152 link = XEXP (link, 1))
4153 ;
4154
4155 XEXP (link, 1) = call_fusage;
4156 }
4157 else
4158 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4159 }
4160
4161 /* Delete all insns made since FROM.
4162 FROM becomes the new last instruction. */
4163
4164 void
4165 delete_insns_since (rtx from)
4166 {
4167 if (from == 0)
4168 set_first_insn (0);
4169 else
4170 SET_NEXT_INSN (from) = 0;
4171 set_last_insn (from);
4172 }
4173
4174 /* This function is deprecated, please use sequences instead.
4175
4176 Move a consecutive bunch of insns to a different place in the chain.
4177 The insns to be moved are those between FROM and TO.
4178 They are moved to a new position after the insn AFTER.
4179 AFTER must not be FROM or TO or any insn in between.
4180
4181 This function does not know about SEQUENCEs and hence should not be
4182 called after delay-slot filling has been done. */
4183
4184 void
4185 reorder_insns_nobb (rtx from, rtx to, rtx after)
4186 {
4187 #ifdef ENABLE_CHECKING
4188 rtx x;
4189 for (x = from; x != to; x = NEXT_INSN (x))
4190 gcc_assert (after != x);
4191 gcc_assert (after != to);
4192 #endif
4193
4194 /* Splice this bunch out of where it is now. */
4195 if (PREV_INSN (from))
4196 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4197 if (NEXT_INSN (to))
4198 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4199 if (get_last_insn () == to)
4200 set_last_insn (PREV_INSN (from));
4201 if (get_insns () == from)
4202 set_first_insn (NEXT_INSN (to));
4203
4204 /* Make the new neighbors point to it and it to them. */
4205 if (NEXT_INSN (after))
4206 SET_PREV_INSN (NEXT_INSN (after)) = to;
4207
4208 SET_NEXT_INSN (to) = NEXT_INSN (after);
4209 SET_PREV_INSN (from) = after;
4210 SET_NEXT_INSN (after) = from;
4211 if (after == get_last_insn ())
4212 set_last_insn (to);
4213 }
4214
4215 /* Same as function above, but take care to update BB boundaries. */
4216 void
4217 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4218 {
4219 rtx_insn *prev = PREV_INSN (from);
4220 basic_block bb, bb2;
4221
4222 reorder_insns_nobb (from, to, after);
4223
4224 if (!BARRIER_P (after)
4225 && (bb = BLOCK_FOR_INSN (after)))
4226 {
4227 rtx x;
4228 df_set_bb_dirty (bb);
4229
4230 if (!BARRIER_P (from)
4231 && (bb2 = BLOCK_FOR_INSN (from)))
4232 {
4233 if (BB_END (bb2) == to)
4234 BB_END (bb2) = prev;
4235 df_set_bb_dirty (bb2);
4236 }
4237
4238 if (BB_END (bb) == after)
4239 BB_END (bb) = to;
4240
4241 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4242 if (!BARRIER_P (x))
4243 df_insn_change_bb (x, bb);
4244 }
4245 }
4246
4247 \f
4248 /* Emit insn(s) of given code and pattern
4249 at a specified place within the doubly-linked list.
4250
4251 All of the emit_foo global entry points accept an object
4252 X which is either an insn list or a PATTERN of a single
4253 instruction.
4254
4255 There are thus a few canonical ways to generate code and
4256 emit it at a specific place in the instruction stream. For
4257 example, consider the instruction named SPOT and the fact that
4258 we would like to emit some instructions before SPOT. We might
4259 do it like this:
4260
4261 start_sequence ();
4262 ... emit the new instructions ...
4263 insns_head = get_insns ();
4264 end_sequence ();
4265
4266 emit_insn_before (insns_head, SPOT);
4267
4268 It used to be common to generate SEQUENCE rtl instead, but that
4269 is a relic of the past which no longer occurs. The reason is that
4270 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4271 generated would almost certainly die right after it was created. */
4272
4273 static rtx_insn *
4274 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4275 rtx_insn *(*make_raw) (rtx))
4276 {
4277 rtx_insn *insn;
4278
4279 gcc_assert (before);
4280
4281 if (x == NULL_RTX)
4282 return safe_as_a <rtx_insn *> (last);
4283
4284 switch (GET_CODE (x))
4285 {
4286 case DEBUG_INSN:
4287 case INSN:
4288 case JUMP_INSN:
4289 case CALL_INSN:
4290 case CODE_LABEL:
4291 case BARRIER:
4292 case NOTE:
4293 insn = as_a <rtx_insn *> (x);
4294 while (insn)
4295 {
4296 rtx_insn *next = NEXT_INSN (insn);
4297 add_insn_before (insn, before, bb);
4298 last = insn;
4299 insn = next;
4300 }
4301 break;
4302
4303 #ifdef ENABLE_RTL_CHECKING
4304 case SEQUENCE:
4305 gcc_unreachable ();
4306 break;
4307 #endif
4308
4309 default:
4310 last = (*make_raw) (x);
4311 add_insn_before (last, before, bb);
4312 break;
4313 }
4314
4315 return safe_as_a <rtx_insn *> (last);
4316 }
4317
4318 /* Make X be output before the instruction BEFORE. */
4319
4320 rtx_insn *
4321 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4322 {
4323 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4324 }
4325
4326 /* Make an instruction with body X and code JUMP_INSN
4327 and output it before the instruction BEFORE. */
4328
4329 rtx_insn *
4330 emit_jump_insn_before_noloc (rtx x, rtx before)
4331 {
4332 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4333 make_jump_insn_raw);
4334 }
4335
4336 /* Make an instruction with body X and code CALL_INSN
4337 and output it before the instruction BEFORE. */
4338
4339 rtx_insn *
4340 emit_call_insn_before_noloc (rtx x, rtx before)
4341 {
4342 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4343 make_call_insn_raw);
4344 }
4345
4346 /* Make an instruction with body X and code DEBUG_INSN
4347 and output it before the instruction BEFORE. */
4348
4349 rtx_insn *
4350 emit_debug_insn_before_noloc (rtx x, rtx before)
4351 {
4352 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4353 make_debug_insn_raw);
4354 }
4355
4356 /* Make an insn of code BARRIER
4357 and output it before the insn BEFORE. */
4358
4359 rtx_barrier *
4360 emit_barrier_before (rtx before)
4361 {
4362 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4363
4364 INSN_UID (insn) = cur_insn_uid++;
4365
4366 add_insn_before (insn, before, NULL);
4367 return insn;
4368 }
4369
4370 /* Emit the label LABEL before the insn BEFORE. */
4371
4372 rtx_insn *
4373 emit_label_before (rtx label, rtx before)
4374 {
4375 gcc_checking_assert (INSN_UID (label) == 0);
4376 INSN_UID (label) = cur_insn_uid++;
4377 add_insn_before (label, before, NULL);
4378 return as_a <rtx_insn *> (label);
4379 }
4380 \f
4381 /* Helper for emit_insn_after, handles lists of instructions
4382 efficiently. */
4383
4384 static rtx
4385 emit_insn_after_1 (rtx_insn *first, rtx after, basic_block bb)
4386 {
4387 rtx_insn *last;
4388 rtx_insn *after_after;
4389 if (!bb && !BARRIER_P (after))
4390 bb = BLOCK_FOR_INSN (after);
4391
4392 if (bb)
4393 {
4394 df_set_bb_dirty (bb);
4395 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4396 if (!BARRIER_P (last))
4397 {
4398 set_block_for_insn (last, bb);
4399 df_insn_rescan (last);
4400 }
4401 if (!BARRIER_P (last))
4402 {
4403 set_block_for_insn (last, bb);
4404 df_insn_rescan (last);
4405 }
4406 if (BB_END (bb) == after)
4407 BB_END (bb) = last;
4408 }
4409 else
4410 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4411 continue;
4412
4413 after_after = NEXT_INSN (after);
4414
4415 SET_NEXT_INSN (after) = first;
4416 SET_PREV_INSN (first) = after;
4417 SET_NEXT_INSN (last) = after_after;
4418 if (after_after)
4419 SET_PREV_INSN (after_after) = last;
4420
4421 if (after == get_last_insn ())
4422 set_last_insn (last);
4423
4424 return last;
4425 }
4426
4427 static rtx_insn *
4428 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4429 rtx_insn *(*make_raw)(rtx))
4430 {
4431 rtx last = after;
4432
4433 gcc_assert (after);
4434
4435 if (x == NULL_RTX)
4436 return safe_as_a <rtx_insn *> (last);
4437
4438 switch (GET_CODE (x))
4439 {
4440 case DEBUG_INSN:
4441 case INSN:
4442 case JUMP_INSN:
4443 case CALL_INSN:
4444 case CODE_LABEL:
4445 case BARRIER:
4446 case NOTE:
4447 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4448 break;
4449
4450 #ifdef ENABLE_RTL_CHECKING
4451 case SEQUENCE:
4452 gcc_unreachable ();
4453 break;
4454 #endif
4455
4456 default:
4457 last = (*make_raw) (x);
4458 add_insn_after (last, after, bb);
4459 break;
4460 }
4461
4462 return safe_as_a <rtx_insn *> (last);
4463 }
4464
4465 /* Make X be output after the insn AFTER and set the BB of insn. If
4466 BB is NULL, an attempt is made to infer the BB from AFTER. */
4467
4468 rtx_insn *
4469 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4470 {
4471 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4472 }
4473
4474
4475 /* Make an insn of code JUMP_INSN with body X
4476 and output it after the insn AFTER. */
4477
4478 rtx_insn *
4479 emit_jump_insn_after_noloc (rtx x, rtx after)
4480 {
4481 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4482 }
4483
4484 /* Make an instruction with body X and code CALL_INSN
4485 and output it after the instruction AFTER. */
4486
4487 rtx_insn *
4488 emit_call_insn_after_noloc (rtx x, rtx after)
4489 {
4490 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4491 }
4492
4493 /* Make an instruction with body X and code CALL_INSN
4494 and output it after the instruction AFTER. */
4495
4496 rtx_insn *
4497 emit_debug_insn_after_noloc (rtx x, rtx after)
4498 {
4499 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4500 }
4501
4502 /* Make an insn of code BARRIER
4503 and output it after the insn AFTER. */
4504
4505 rtx_barrier *
4506 emit_barrier_after (rtx after)
4507 {
4508 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4509
4510 INSN_UID (insn) = cur_insn_uid++;
4511
4512 add_insn_after (insn, after, NULL);
4513 return insn;
4514 }
4515
4516 /* Emit the label LABEL after the insn AFTER. */
4517
4518 rtx_insn *
4519 emit_label_after (rtx label, rtx after)
4520 {
4521 gcc_checking_assert (INSN_UID (label) == 0);
4522 INSN_UID (label) = cur_insn_uid++;
4523 add_insn_after (label, after, NULL);
4524 return as_a <rtx_insn *> (label);
4525 }
4526 \f
4527 /* Notes require a bit of special handling: Some notes need to have their
4528 BLOCK_FOR_INSN set, others should never have it set, and some should
4529 have it set or clear depending on the context. */
4530
4531 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4532 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4533 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4534
4535 static bool
4536 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4537 {
4538 switch (subtype)
4539 {
4540 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4541 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4542 return true;
4543
4544 /* Notes for var tracking and EH region markers can appear between or
4545 inside basic blocks. If the caller is emitting on the basic block
4546 boundary, do not set BLOCK_FOR_INSN on the new note. */
4547 case NOTE_INSN_VAR_LOCATION:
4548 case NOTE_INSN_CALL_ARG_LOCATION:
4549 case NOTE_INSN_EH_REGION_BEG:
4550 case NOTE_INSN_EH_REGION_END:
4551 return on_bb_boundary_p;
4552
4553 /* Otherwise, BLOCK_FOR_INSN must be set. */
4554 default:
4555 return false;
4556 }
4557 }
4558
4559 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4560
4561 rtx_note *
4562 emit_note_after (enum insn_note subtype, rtx after)
4563 {
4564 rtx_note *note = make_note_raw (subtype);
4565 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4566 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4567
4568 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4569 add_insn_after_nobb (note, after);
4570 else
4571 add_insn_after (note, after, bb);
4572 return note;
4573 }
4574
4575 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4576
4577 rtx_note *
4578 emit_note_before (enum insn_note subtype, rtx before)
4579 {
4580 rtx_note *note = make_note_raw (subtype);
4581 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4582 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4583
4584 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4585 add_insn_before_nobb (note, before);
4586 else
4587 add_insn_before (note, before, bb);
4588 return note;
4589 }
4590 \f
4591 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4592 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4593
4594 static rtx_insn *
4595 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4596 rtx_insn *(*make_raw) (rtx))
4597 {
4598 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4599
4600 if (pattern == NULL_RTX || !loc)
4601 return safe_as_a <rtx_insn *> (last);
4602
4603 after = NEXT_INSN (after);
4604 while (1)
4605 {
4606 if (active_insn_p (after) && !INSN_LOCATION (after))
4607 INSN_LOCATION (after) = loc;
4608 if (after == last)
4609 break;
4610 after = NEXT_INSN (after);
4611 }
4612 return safe_as_a <rtx_insn *> (last);
4613 }
4614
4615 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4616 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4617 any DEBUG_INSNs. */
4618
4619 static rtx_insn *
4620 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4621 rtx_insn *(*make_raw) (rtx))
4622 {
4623 rtx prev = after;
4624
4625 if (skip_debug_insns)
4626 while (DEBUG_INSN_P (prev))
4627 prev = PREV_INSN (prev);
4628
4629 if (INSN_P (prev))
4630 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4631 make_raw);
4632 else
4633 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4634 }
4635
4636 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4637 rtx_insn *
4638 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4639 {
4640 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4641 }
4642
4643 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4644 rtx_insn *
4645 emit_insn_after (rtx pattern, rtx after)
4646 {
4647 return emit_pattern_after (pattern, after, true, make_insn_raw);
4648 }
4649
4650 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4651 rtx_insn *
4652 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4653 {
4654 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4655 }
4656
4657 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4658 rtx_insn *
4659 emit_jump_insn_after (rtx pattern, rtx after)
4660 {
4661 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4662 }
4663
4664 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4665 rtx_insn *
4666 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4667 {
4668 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4669 }
4670
4671 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4672 rtx_insn *
4673 emit_call_insn_after (rtx pattern, rtx after)
4674 {
4675 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4676 }
4677
4678 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4679 rtx_insn *
4680 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4681 {
4682 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4683 }
4684
4685 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4686 rtx_insn *
4687 emit_debug_insn_after (rtx pattern, rtx after)
4688 {
4689 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4690 }
4691
4692 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4693 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4694 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4695 CALL_INSN, etc. */
4696
4697 static rtx_insn *
4698 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4699 rtx_insn *(*make_raw) (rtx))
4700 {
4701 rtx first = PREV_INSN (before);
4702 rtx last = emit_pattern_before_noloc (pattern, before,
4703 insnp ? before : NULL_RTX,
4704 NULL, make_raw);
4705
4706 if (pattern == NULL_RTX || !loc)
4707 return safe_as_a <rtx_insn *> (last);
4708
4709 if (!first)
4710 first = get_insns ();
4711 else
4712 first = NEXT_INSN (first);
4713 while (1)
4714 {
4715 if (active_insn_p (first) && !INSN_LOCATION (first))
4716 INSN_LOCATION (first) = loc;
4717 if (first == last)
4718 break;
4719 first = NEXT_INSN (first);
4720 }
4721 return safe_as_a <rtx_insn *> (last);
4722 }
4723
4724 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4725 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4726 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4727 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4728
4729 static rtx_insn *
4730 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4731 bool insnp, rtx_insn *(*make_raw) (rtx))
4732 {
4733 rtx next = before;
4734
4735 if (skip_debug_insns)
4736 while (DEBUG_INSN_P (next))
4737 next = PREV_INSN (next);
4738
4739 if (INSN_P (next))
4740 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4741 insnp, make_raw);
4742 else
4743 return emit_pattern_before_noloc (pattern, before,
4744 insnp ? before : NULL_RTX,
4745 NULL, make_raw);
4746 }
4747
4748 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4749 rtx_insn *
4750 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4751 {
4752 return emit_pattern_before_setloc (pattern, before, loc, true,
4753 make_insn_raw);
4754 }
4755
4756 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4757 rtx_insn *
4758 emit_insn_before (rtx pattern, rtx before)
4759 {
4760 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4761 }
4762
4763 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4764 rtx_insn *
4765 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4766 {
4767 return emit_pattern_before_setloc (pattern, before, loc, false,
4768 make_jump_insn_raw);
4769 }
4770
4771 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4772 rtx_insn *
4773 emit_jump_insn_before (rtx pattern, rtx before)
4774 {
4775 return emit_pattern_before (pattern, before, true, false,
4776 make_jump_insn_raw);
4777 }
4778
4779 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4780 rtx_insn *
4781 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4782 {
4783 return emit_pattern_before_setloc (pattern, before, loc, false,
4784 make_call_insn_raw);
4785 }
4786
4787 /* Like emit_call_insn_before_noloc,
4788 but set insn_location according to BEFORE. */
4789 rtx_insn *
4790 emit_call_insn_before (rtx pattern, rtx before)
4791 {
4792 return emit_pattern_before (pattern, before, true, false,
4793 make_call_insn_raw);
4794 }
4795
4796 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4797 rtx_insn *
4798 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4799 {
4800 return emit_pattern_before_setloc (pattern, before, loc, false,
4801 make_debug_insn_raw);
4802 }
4803
4804 /* Like emit_debug_insn_before_noloc,
4805 but set insn_location according to BEFORE. */
4806 rtx_insn *
4807 emit_debug_insn_before (rtx pattern, rtx before)
4808 {
4809 return emit_pattern_before (pattern, before, false, false,
4810 make_debug_insn_raw);
4811 }
4812 \f
4813 /* Take X and emit it at the end of the doubly-linked
4814 INSN list.
4815
4816 Returns the last insn emitted. */
4817
4818 rtx_insn *
4819 emit_insn (rtx x)
4820 {
4821 rtx_insn *last = get_last_insn ();
4822 rtx_insn *insn;
4823
4824 if (x == NULL_RTX)
4825 return last;
4826
4827 switch (GET_CODE (x))
4828 {
4829 case DEBUG_INSN:
4830 case INSN:
4831 case JUMP_INSN:
4832 case CALL_INSN:
4833 case CODE_LABEL:
4834 case BARRIER:
4835 case NOTE:
4836 insn = as_a <rtx_insn *> (x);
4837 while (insn)
4838 {
4839 rtx_insn *next = NEXT_INSN (insn);
4840 add_insn (insn);
4841 last = insn;
4842 insn = next;
4843 }
4844 break;
4845
4846 #ifdef ENABLE_RTL_CHECKING
4847 case JUMP_TABLE_DATA:
4848 case SEQUENCE:
4849 gcc_unreachable ();
4850 break;
4851 #endif
4852
4853 default:
4854 last = make_insn_raw (x);
4855 add_insn (last);
4856 break;
4857 }
4858
4859 return last;
4860 }
4861
4862 /* Make an insn of code DEBUG_INSN with pattern X
4863 and add it to the end of the doubly-linked list. */
4864
4865 rtx_insn *
4866 emit_debug_insn (rtx x)
4867 {
4868 rtx_insn *last = get_last_insn ();
4869 rtx_insn *insn;
4870
4871 if (x == NULL_RTX)
4872 return last;
4873
4874 switch (GET_CODE (x))
4875 {
4876 case DEBUG_INSN:
4877 case INSN:
4878 case JUMP_INSN:
4879 case CALL_INSN:
4880 case CODE_LABEL:
4881 case BARRIER:
4882 case NOTE:
4883 insn = as_a <rtx_insn *> (x);
4884 while (insn)
4885 {
4886 rtx_insn *next = NEXT_INSN (insn);
4887 add_insn (insn);
4888 last = insn;
4889 insn = next;
4890 }
4891 break;
4892
4893 #ifdef ENABLE_RTL_CHECKING
4894 case JUMP_TABLE_DATA:
4895 case SEQUENCE:
4896 gcc_unreachable ();
4897 break;
4898 #endif
4899
4900 default:
4901 last = make_debug_insn_raw (x);
4902 add_insn (last);
4903 break;
4904 }
4905
4906 return last;
4907 }
4908
4909 /* Make an insn of code JUMP_INSN with pattern X
4910 and add it to the end of the doubly-linked list. */
4911
4912 rtx_insn *
4913 emit_jump_insn (rtx x)
4914 {
4915 rtx_insn *last = NULL;
4916 rtx_insn *insn;
4917
4918 switch (GET_CODE (x))
4919 {
4920 case DEBUG_INSN:
4921 case INSN:
4922 case JUMP_INSN:
4923 case CALL_INSN:
4924 case CODE_LABEL:
4925 case BARRIER:
4926 case NOTE:
4927 insn = as_a <rtx_insn *> (x);
4928 while (insn)
4929 {
4930 rtx_insn *next = NEXT_INSN (insn);
4931 add_insn (insn);
4932 last = insn;
4933 insn = next;
4934 }
4935 break;
4936
4937 #ifdef ENABLE_RTL_CHECKING
4938 case JUMP_TABLE_DATA:
4939 case SEQUENCE:
4940 gcc_unreachable ();
4941 break;
4942 #endif
4943
4944 default:
4945 last = make_jump_insn_raw (x);
4946 add_insn (last);
4947 break;
4948 }
4949
4950 return last;
4951 }
4952
4953 /* Make an insn of code CALL_INSN with pattern X
4954 and add it to the end of the doubly-linked list. */
4955
4956 rtx_insn *
4957 emit_call_insn (rtx x)
4958 {
4959 rtx_insn *insn;
4960
4961 switch (GET_CODE (x))
4962 {
4963 case DEBUG_INSN:
4964 case INSN:
4965 case JUMP_INSN:
4966 case CALL_INSN:
4967 case CODE_LABEL:
4968 case BARRIER:
4969 case NOTE:
4970 insn = emit_insn (x);
4971 break;
4972
4973 #ifdef ENABLE_RTL_CHECKING
4974 case SEQUENCE:
4975 case JUMP_TABLE_DATA:
4976 gcc_unreachable ();
4977 break;
4978 #endif
4979
4980 default:
4981 insn = make_call_insn_raw (x);
4982 add_insn (insn);
4983 break;
4984 }
4985
4986 return insn;
4987 }
4988
4989 /* Add the label LABEL to the end of the doubly-linked list. */
4990
4991 rtx_insn *
4992 emit_label (rtx label)
4993 {
4994 gcc_checking_assert (INSN_UID (label) == 0);
4995 INSN_UID (label) = cur_insn_uid++;
4996 add_insn (label);
4997 return as_a <rtx_insn *> (label);
4998 }
4999
5000 /* Make an insn of code JUMP_TABLE_DATA
5001 and add it to the end of the doubly-linked list. */
5002
5003 rtx_jump_table_data *
5004 emit_jump_table_data (rtx table)
5005 {
5006 rtx_jump_table_data *jump_table_data =
5007 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5008 INSN_UID (jump_table_data) = cur_insn_uid++;
5009 PATTERN (jump_table_data) = table;
5010 BLOCK_FOR_INSN (jump_table_data) = NULL;
5011 add_insn (jump_table_data);
5012 return jump_table_data;
5013 }
5014
5015 /* Make an insn of code BARRIER
5016 and add it to the end of the doubly-linked list. */
5017
5018 rtx_barrier *
5019 emit_barrier (void)
5020 {
5021 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5022 INSN_UID (barrier) = cur_insn_uid++;
5023 add_insn (barrier);
5024 return barrier;
5025 }
5026
5027 /* Emit a copy of note ORIG. */
5028
5029 rtx_note *
5030 emit_note_copy (rtx_note *orig)
5031 {
5032 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5033 rtx_note *note = make_note_raw (kind);
5034 NOTE_DATA (note) = NOTE_DATA (orig);
5035 add_insn (note);
5036 return note;
5037 }
5038
5039 /* Make an insn of code NOTE or type NOTE_NO
5040 and add it to the end of the doubly-linked list. */
5041
5042 rtx_note *
5043 emit_note (enum insn_note kind)
5044 {
5045 rtx_note *note = make_note_raw (kind);
5046 add_insn (note);
5047 return note;
5048 }
5049
5050 /* Emit a clobber of lvalue X. */
5051
5052 rtx_insn *
5053 emit_clobber (rtx x)
5054 {
5055 /* CONCATs should not appear in the insn stream. */
5056 if (GET_CODE (x) == CONCAT)
5057 {
5058 emit_clobber (XEXP (x, 0));
5059 return emit_clobber (XEXP (x, 1));
5060 }
5061 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5062 }
5063
5064 /* Return a sequence of insns to clobber lvalue X. */
5065
5066 rtx_insn *
5067 gen_clobber (rtx x)
5068 {
5069 rtx_insn *seq;
5070
5071 start_sequence ();
5072 emit_clobber (x);
5073 seq = get_insns ();
5074 end_sequence ();
5075 return seq;
5076 }
5077
5078 /* Emit a use of rvalue X. */
5079
5080 rtx_insn *
5081 emit_use (rtx x)
5082 {
5083 /* CONCATs should not appear in the insn stream. */
5084 if (GET_CODE (x) == CONCAT)
5085 {
5086 emit_use (XEXP (x, 0));
5087 return emit_use (XEXP (x, 1));
5088 }
5089 return emit_insn (gen_rtx_USE (VOIDmode, x));
5090 }
5091
5092 /* Return a sequence of insns to use rvalue X. */
5093
5094 rtx_insn *
5095 gen_use (rtx x)
5096 {
5097 rtx_insn *seq;
5098
5099 start_sequence ();
5100 emit_use (x);
5101 seq = get_insns ();
5102 end_sequence ();
5103 return seq;
5104 }
5105
5106 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5107 Return the set in INSN that such notes describe, or NULL if the notes
5108 have no meaning for INSN. */
5109
5110 rtx
5111 set_for_reg_notes (rtx insn)
5112 {
5113 rtx pat, reg;
5114
5115 if (!INSN_P (insn))
5116 return NULL_RTX;
5117
5118 pat = PATTERN (insn);
5119 if (GET_CODE (pat) == PARALLEL)
5120 {
5121 /* We do not use single_set because that ignores SETs of unused
5122 registers. REG_EQUAL and REG_EQUIV notes really do require the
5123 PARALLEL to have a single SET. */
5124 if (multiple_sets (insn))
5125 return NULL_RTX;
5126 pat = XVECEXP (pat, 0, 0);
5127 }
5128
5129 if (GET_CODE (pat) != SET)
5130 return NULL_RTX;
5131
5132 reg = SET_DEST (pat);
5133
5134 /* Notes apply to the contents of a STRICT_LOW_PART. */
5135 if (GET_CODE (reg) == STRICT_LOW_PART)
5136 reg = XEXP (reg, 0);
5137
5138 /* Check that we have a register. */
5139 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5140 return NULL_RTX;
5141
5142 return pat;
5143 }
5144
5145 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5146 note of this type already exists, remove it first. */
5147
5148 rtx
5149 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5150 {
5151 rtx note = find_reg_note (insn, kind, NULL_RTX);
5152
5153 switch (kind)
5154 {
5155 case REG_EQUAL:
5156 case REG_EQUIV:
5157 if (!set_for_reg_notes (insn))
5158 return NULL_RTX;
5159
5160 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5161 It serves no useful purpose and breaks eliminate_regs. */
5162 if (GET_CODE (datum) == ASM_OPERANDS)
5163 return NULL_RTX;
5164 break;
5165
5166 default:
5167 break;
5168 }
5169
5170 if (note)
5171 XEXP (note, 0) = datum;
5172 else
5173 {
5174 add_reg_note (insn, kind, datum);
5175 note = REG_NOTES (insn);
5176 }
5177
5178 switch (kind)
5179 {
5180 case REG_EQUAL:
5181 case REG_EQUIV:
5182 df_notes_rescan (insn);
5183 break;
5184 default:
5185 break;
5186 }
5187
5188 return note;
5189 }
5190
5191 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5192 rtx
5193 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5194 {
5195 rtx set = set_for_reg_notes (insn);
5196
5197 if (set && SET_DEST (set) == dst)
5198 return set_unique_reg_note (insn, kind, datum);
5199 return NULL_RTX;
5200 }
5201 \f
5202 /* Return an indication of which type of insn should have X as a body.
5203 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5204
5205 static enum rtx_code
5206 classify_insn (rtx x)
5207 {
5208 if (LABEL_P (x))
5209 return CODE_LABEL;
5210 if (GET_CODE (x) == CALL)
5211 return CALL_INSN;
5212 if (ANY_RETURN_P (x))
5213 return JUMP_INSN;
5214 if (GET_CODE (x) == SET)
5215 {
5216 if (SET_DEST (x) == pc_rtx)
5217 return JUMP_INSN;
5218 else if (GET_CODE (SET_SRC (x)) == CALL)
5219 return CALL_INSN;
5220 else
5221 return INSN;
5222 }
5223 if (GET_CODE (x) == PARALLEL)
5224 {
5225 int j;
5226 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5227 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5228 return CALL_INSN;
5229 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5230 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5231 return JUMP_INSN;
5232 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5233 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5234 return CALL_INSN;
5235 }
5236 return INSN;
5237 }
5238
5239 /* Emit the rtl pattern X as an appropriate kind of insn.
5240 If X is a label, it is simply added into the insn chain. */
5241
5242 rtx_insn *
5243 emit (rtx x)
5244 {
5245 enum rtx_code code = classify_insn (x);
5246
5247 switch (code)
5248 {
5249 case CODE_LABEL:
5250 return emit_label (x);
5251 case INSN:
5252 return emit_insn (x);
5253 case JUMP_INSN:
5254 {
5255 rtx_insn *insn = emit_jump_insn (x);
5256 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5257 return emit_barrier ();
5258 return insn;
5259 }
5260 case CALL_INSN:
5261 return emit_call_insn (x);
5262 case DEBUG_INSN:
5263 return emit_debug_insn (x);
5264 default:
5265 gcc_unreachable ();
5266 }
5267 }
5268 \f
5269 /* Space for free sequence stack entries. */
5270 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5271
5272 /* Begin emitting insns to a sequence. If this sequence will contain
5273 something that might cause the compiler to pop arguments to function
5274 calls (because those pops have previously been deferred; see
5275 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5276 before calling this function. That will ensure that the deferred
5277 pops are not accidentally emitted in the middle of this sequence. */
5278
5279 void
5280 start_sequence (void)
5281 {
5282 struct sequence_stack *tem;
5283
5284 if (free_sequence_stack != NULL)
5285 {
5286 tem = free_sequence_stack;
5287 free_sequence_stack = tem->next;
5288 }
5289 else
5290 tem = ggc_alloc<sequence_stack> ();
5291
5292 tem->next = seq_stack;
5293 tem->first = get_insns ();
5294 tem->last = get_last_insn ();
5295
5296 seq_stack = tem;
5297
5298 set_first_insn (0);
5299 set_last_insn (0);
5300 }
5301
5302 /* Set up the insn chain starting with FIRST as the current sequence,
5303 saving the previously current one. See the documentation for
5304 start_sequence for more information about how to use this function. */
5305
5306 void
5307 push_to_sequence (rtx first)
5308 {
5309 rtx last;
5310
5311 start_sequence ();
5312
5313 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5314 ;
5315
5316 set_first_insn (first);
5317 set_last_insn (last);
5318 }
5319
5320 /* Like push_to_sequence, but take the last insn as an argument to avoid
5321 looping through the list. */
5322
5323 void
5324 push_to_sequence2 (rtx first, rtx last)
5325 {
5326 start_sequence ();
5327
5328 set_first_insn (first);
5329 set_last_insn (last);
5330 }
5331
5332 /* Set up the outer-level insn chain
5333 as the current sequence, saving the previously current one. */
5334
5335 void
5336 push_topmost_sequence (void)
5337 {
5338 struct sequence_stack *stack, *top = NULL;
5339
5340 start_sequence ();
5341
5342 for (stack = seq_stack; stack; stack = stack->next)
5343 top = stack;
5344
5345 set_first_insn (top->first);
5346 set_last_insn (top->last);
5347 }
5348
5349 /* After emitting to the outer-level insn chain, update the outer-level
5350 insn chain, and restore the previous saved state. */
5351
5352 void
5353 pop_topmost_sequence (void)
5354 {
5355 struct sequence_stack *stack, *top = NULL;
5356
5357 for (stack = seq_stack; stack; stack = stack->next)
5358 top = stack;
5359
5360 top->first = get_insns ();
5361 top->last = get_last_insn ();
5362
5363 end_sequence ();
5364 }
5365
5366 /* After emitting to a sequence, restore previous saved state.
5367
5368 To get the contents of the sequence just made, you must call
5369 `get_insns' *before* calling here.
5370
5371 If the compiler might have deferred popping arguments while
5372 generating this sequence, and this sequence will not be immediately
5373 inserted into the instruction stream, use do_pending_stack_adjust
5374 before calling get_insns. That will ensure that the deferred
5375 pops are inserted into this sequence, and not into some random
5376 location in the instruction stream. See INHIBIT_DEFER_POP for more
5377 information about deferred popping of arguments. */
5378
5379 void
5380 end_sequence (void)
5381 {
5382 struct sequence_stack *tem = seq_stack;
5383
5384 set_first_insn (tem->first);
5385 set_last_insn (tem->last);
5386 seq_stack = tem->next;
5387
5388 memset (tem, 0, sizeof (*tem));
5389 tem->next = free_sequence_stack;
5390 free_sequence_stack = tem;
5391 }
5392
5393 /* Return 1 if currently emitting into a sequence. */
5394
5395 int
5396 in_sequence_p (void)
5397 {
5398 return seq_stack != 0;
5399 }
5400 \f
5401 /* Put the various virtual registers into REGNO_REG_RTX. */
5402
5403 static void
5404 init_virtual_regs (void)
5405 {
5406 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5407 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5408 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5409 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5410 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5411 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5412 = virtual_preferred_stack_boundary_rtx;
5413 }
5414
5415 \f
5416 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5417 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5418 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5419 static int copy_insn_n_scratches;
5420
5421 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5422 copied an ASM_OPERANDS.
5423 In that case, it is the original input-operand vector. */
5424 static rtvec orig_asm_operands_vector;
5425
5426 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5427 copied an ASM_OPERANDS.
5428 In that case, it is the copied input-operand vector. */
5429 static rtvec copy_asm_operands_vector;
5430
5431 /* Likewise for the constraints vector. */
5432 static rtvec orig_asm_constraints_vector;
5433 static rtvec copy_asm_constraints_vector;
5434
5435 /* Recursively create a new copy of an rtx for copy_insn.
5436 This function differs from copy_rtx in that it handles SCRATCHes and
5437 ASM_OPERANDs properly.
5438 Normally, this function is not used directly; use copy_insn as front end.
5439 However, you could first copy an insn pattern with copy_insn and then use
5440 this function afterwards to properly copy any REG_NOTEs containing
5441 SCRATCHes. */
5442
5443 rtx
5444 copy_insn_1 (rtx orig)
5445 {
5446 rtx copy;
5447 int i, j;
5448 RTX_CODE code;
5449 const char *format_ptr;
5450
5451 if (orig == NULL)
5452 return NULL;
5453
5454 code = GET_CODE (orig);
5455
5456 switch (code)
5457 {
5458 case REG:
5459 case DEBUG_EXPR:
5460 CASE_CONST_ANY:
5461 case SYMBOL_REF:
5462 case CODE_LABEL:
5463 case PC:
5464 case CC0:
5465 case RETURN:
5466 case SIMPLE_RETURN:
5467 return orig;
5468 case CLOBBER:
5469 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5470 clobbers or clobbers of hard registers that originated as pseudos.
5471 This is needed to allow safe register renaming. */
5472 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5473 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5474 return orig;
5475 break;
5476
5477 case SCRATCH:
5478 for (i = 0; i < copy_insn_n_scratches; i++)
5479 if (copy_insn_scratch_in[i] == orig)
5480 return copy_insn_scratch_out[i];
5481 break;
5482
5483 case CONST:
5484 if (shared_const_p (orig))
5485 return orig;
5486 break;
5487
5488 /* A MEM with a constant address is not sharable. The problem is that
5489 the constant address may need to be reloaded. If the mem is shared,
5490 then reloading one copy of this mem will cause all copies to appear
5491 to have been reloaded. */
5492
5493 default:
5494 break;
5495 }
5496
5497 /* Copy the various flags, fields, and other information. We assume
5498 that all fields need copying, and then clear the fields that should
5499 not be copied. That is the sensible default behavior, and forces
5500 us to explicitly document why we are *not* copying a flag. */
5501 copy = shallow_copy_rtx (orig);
5502
5503 /* We do not copy the USED flag, which is used as a mark bit during
5504 walks over the RTL. */
5505 RTX_FLAG (copy, used) = 0;
5506
5507 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5508 if (INSN_P (orig))
5509 {
5510 RTX_FLAG (copy, jump) = 0;
5511 RTX_FLAG (copy, call) = 0;
5512 RTX_FLAG (copy, frame_related) = 0;
5513 }
5514
5515 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5516
5517 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5518 switch (*format_ptr++)
5519 {
5520 case 'e':
5521 if (XEXP (orig, i) != NULL)
5522 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5523 break;
5524
5525 case 'E':
5526 case 'V':
5527 if (XVEC (orig, i) == orig_asm_constraints_vector)
5528 XVEC (copy, i) = copy_asm_constraints_vector;
5529 else if (XVEC (orig, i) == orig_asm_operands_vector)
5530 XVEC (copy, i) = copy_asm_operands_vector;
5531 else if (XVEC (orig, i) != NULL)
5532 {
5533 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5534 for (j = 0; j < XVECLEN (copy, i); j++)
5535 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5536 }
5537 break;
5538
5539 case 't':
5540 case 'w':
5541 case 'i':
5542 case 's':
5543 case 'S':
5544 case 'u':
5545 case '0':
5546 /* These are left unchanged. */
5547 break;
5548
5549 default:
5550 gcc_unreachable ();
5551 }
5552
5553 if (code == SCRATCH)
5554 {
5555 i = copy_insn_n_scratches++;
5556 gcc_assert (i < MAX_RECOG_OPERANDS);
5557 copy_insn_scratch_in[i] = orig;
5558 copy_insn_scratch_out[i] = copy;
5559 }
5560 else if (code == ASM_OPERANDS)
5561 {
5562 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5563 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5564 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5565 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5566 }
5567
5568 return copy;
5569 }
5570
5571 /* Create a new copy of an rtx.
5572 This function differs from copy_rtx in that it handles SCRATCHes and
5573 ASM_OPERANDs properly.
5574 INSN doesn't really have to be a full INSN; it could be just the
5575 pattern. */
5576 rtx
5577 copy_insn (rtx insn)
5578 {
5579 copy_insn_n_scratches = 0;
5580 orig_asm_operands_vector = 0;
5581 orig_asm_constraints_vector = 0;
5582 copy_asm_operands_vector = 0;
5583 copy_asm_constraints_vector = 0;
5584 return copy_insn_1 (insn);
5585 }
5586
5587 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5588 on that assumption that INSN itself remains in its original place. */
5589
5590 rtx
5591 copy_delay_slot_insn (rtx insn)
5592 {
5593 /* Copy INSN with its rtx_code, all its notes, location etc. */
5594 insn = copy_rtx (insn);
5595 INSN_UID (insn) = cur_insn_uid++;
5596 return insn;
5597 }
5598
5599 /* Initialize data structures and variables in this file
5600 before generating rtl for each function. */
5601
5602 void
5603 init_emit (void)
5604 {
5605 set_first_insn (NULL);
5606 set_last_insn (NULL);
5607 if (MIN_NONDEBUG_INSN_UID)
5608 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5609 else
5610 cur_insn_uid = 1;
5611 cur_debug_insn_uid = 1;
5612 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5613 first_label_num = label_num;
5614 seq_stack = NULL;
5615
5616 /* Init the tables that describe all the pseudo regs. */
5617
5618 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5619
5620 crtl->emit.regno_pointer_align
5621 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5622
5623 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5624
5625 /* Put copies of all the hard registers into regno_reg_rtx. */
5626 memcpy (regno_reg_rtx,
5627 initial_regno_reg_rtx,
5628 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5629
5630 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5631 init_virtual_regs ();
5632
5633 /* Indicate that the virtual registers and stack locations are
5634 all pointers. */
5635 REG_POINTER (stack_pointer_rtx) = 1;
5636 REG_POINTER (frame_pointer_rtx) = 1;
5637 REG_POINTER (hard_frame_pointer_rtx) = 1;
5638 REG_POINTER (arg_pointer_rtx) = 1;
5639
5640 REG_POINTER (virtual_incoming_args_rtx) = 1;
5641 REG_POINTER (virtual_stack_vars_rtx) = 1;
5642 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5643 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5644 REG_POINTER (virtual_cfa_rtx) = 1;
5645
5646 #ifdef STACK_BOUNDARY
5647 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5648 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5649 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5650 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5651
5652 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5653 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5654 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5655 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5656 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5657 #endif
5658
5659 #ifdef INIT_EXPANDERS
5660 INIT_EXPANDERS;
5661 #endif
5662 }
5663
5664 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5665
5666 static rtx
5667 gen_const_vector (enum machine_mode mode, int constant)
5668 {
5669 rtx tem;
5670 rtvec v;
5671 int units, i;
5672 enum machine_mode inner;
5673
5674 units = GET_MODE_NUNITS (mode);
5675 inner = GET_MODE_INNER (mode);
5676
5677 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5678
5679 v = rtvec_alloc (units);
5680
5681 /* We need to call this function after we set the scalar const_tiny_rtx
5682 entries. */
5683 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5684
5685 for (i = 0; i < units; ++i)
5686 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5687
5688 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5689 return tem;
5690 }
5691
5692 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5693 all elements are zero, and the one vector when all elements are one. */
5694 rtx
5695 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5696 {
5697 enum machine_mode inner = GET_MODE_INNER (mode);
5698 int nunits = GET_MODE_NUNITS (mode);
5699 rtx x;
5700 int i;
5701
5702 /* Check to see if all of the elements have the same value. */
5703 x = RTVEC_ELT (v, nunits - 1);
5704 for (i = nunits - 2; i >= 0; i--)
5705 if (RTVEC_ELT (v, i) != x)
5706 break;
5707
5708 /* If the values are all the same, check to see if we can use one of the
5709 standard constant vectors. */
5710 if (i == -1)
5711 {
5712 if (x == CONST0_RTX (inner))
5713 return CONST0_RTX (mode);
5714 else if (x == CONST1_RTX (inner))
5715 return CONST1_RTX (mode);
5716 else if (x == CONSTM1_RTX (inner))
5717 return CONSTM1_RTX (mode);
5718 }
5719
5720 return gen_rtx_raw_CONST_VECTOR (mode, v);
5721 }
5722
5723 /* Initialise global register information required by all functions. */
5724
5725 void
5726 init_emit_regs (void)
5727 {
5728 int i;
5729 enum machine_mode mode;
5730 mem_attrs *attrs;
5731
5732 /* Reset register attributes */
5733 htab_empty (reg_attrs_htab);
5734
5735 /* We need reg_raw_mode, so initialize the modes now. */
5736 init_reg_modes_target ();
5737
5738 /* Assign register numbers to the globally defined register rtx. */
5739 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5740 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5741 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5742 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5743 virtual_incoming_args_rtx =
5744 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5745 virtual_stack_vars_rtx =
5746 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5747 virtual_stack_dynamic_rtx =
5748 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5749 virtual_outgoing_args_rtx =
5750 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5751 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5752 virtual_preferred_stack_boundary_rtx =
5753 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5754
5755 /* Initialize RTL for commonly used hard registers. These are
5756 copied into regno_reg_rtx as we begin to compile each function. */
5757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5758 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5759
5760 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5761 return_address_pointer_rtx
5762 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5763 #endif
5764
5765 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5766 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5767 else
5768 pic_offset_table_rtx = NULL_RTX;
5769
5770 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5771 {
5772 mode = (enum machine_mode) i;
5773 attrs = ggc_cleared_alloc<mem_attrs> ();
5774 attrs->align = BITS_PER_UNIT;
5775 attrs->addrspace = ADDR_SPACE_GENERIC;
5776 if (mode != BLKmode)
5777 {
5778 attrs->size_known_p = true;
5779 attrs->size = GET_MODE_SIZE (mode);
5780 if (STRICT_ALIGNMENT)
5781 attrs->align = GET_MODE_ALIGNMENT (mode);
5782 }
5783 mode_mem_attrs[i] = attrs;
5784 }
5785 }
5786
5787 /* Initialize global machine_mode variables. */
5788
5789 void
5790 init_derived_machine_modes (void)
5791 {
5792 byte_mode = VOIDmode;
5793 word_mode = VOIDmode;
5794
5795 for (enum machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5796 mode != VOIDmode;
5797 mode = GET_MODE_WIDER_MODE (mode))
5798 {
5799 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5800 && byte_mode == VOIDmode)
5801 byte_mode = mode;
5802
5803 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5804 && word_mode == VOIDmode)
5805 word_mode = mode;
5806 }
5807
5808 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5809 }
5810
5811 /* Create some permanent unique rtl objects shared between all functions. */
5812
5813 void
5814 init_emit_once (void)
5815 {
5816 int i;
5817 enum machine_mode mode;
5818 enum machine_mode double_mode;
5819
5820 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5821 CONST_FIXED, and memory attribute hash tables. */
5822 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5823 const_int_htab_eq, NULL);
5824
5825 #if TARGET_SUPPORTS_WIDE_INT
5826 const_wide_int_htab = htab_create_ggc (37, const_wide_int_htab_hash,
5827 const_wide_int_htab_eq, NULL);
5828 #endif
5829 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5830 const_double_htab_eq, NULL);
5831
5832 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5833 const_fixed_htab_eq, NULL);
5834
5835 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5836 reg_attrs_htab_eq, NULL);
5837
5838 #ifdef INIT_EXPANDERS
5839 /* This is to initialize {init|mark|free}_machine_status before the first
5840 call to push_function_context_to. This is needed by the Chill front
5841 end which calls push_function_context_to before the first call to
5842 init_function_start. */
5843 INIT_EXPANDERS;
5844 #endif
5845
5846 /* Create the unique rtx's for certain rtx codes and operand values. */
5847
5848 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5849 tries to use these variables. */
5850 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5851 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5852 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5853
5854 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5855 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5856 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5857 else
5858 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5859
5860 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5861
5862 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5863 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5864 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5865
5866 dconstm1 = dconst1;
5867 dconstm1.sign = 1;
5868
5869 dconsthalf = dconst1;
5870 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5871
5872 for (i = 0; i < 3; i++)
5873 {
5874 const REAL_VALUE_TYPE *const r =
5875 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5876
5877 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5878 mode != VOIDmode;
5879 mode = GET_MODE_WIDER_MODE (mode))
5880 const_tiny_rtx[i][(int) mode] =
5881 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5882
5883 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5884 mode != VOIDmode;
5885 mode = GET_MODE_WIDER_MODE (mode))
5886 const_tiny_rtx[i][(int) mode] =
5887 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5888
5889 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5890
5891 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5892 mode != VOIDmode;
5893 mode = GET_MODE_WIDER_MODE (mode))
5894 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5895
5896 for (mode = MIN_MODE_PARTIAL_INT;
5897 mode <= MAX_MODE_PARTIAL_INT;
5898 mode = (enum machine_mode)((int)(mode) + 1))
5899 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5900 }
5901
5902 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5903
5904 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5905 mode != VOIDmode;
5906 mode = GET_MODE_WIDER_MODE (mode))
5907 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5908
5909 for (mode = MIN_MODE_PARTIAL_INT;
5910 mode <= MAX_MODE_PARTIAL_INT;
5911 mode = (enum machine_mode)((int)(mode) + 1))
5912 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5913
5914 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5915 mode != VOIDmode;
5916 mode = GET_MODE_WIDER_MODE (mode))
5917 {
5918 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5919 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5920 }
5921
5922 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5923 mode != VOIDmode;
5924 mode = GET_MODE_WIDER_MODE (mode))
5925 {
5926 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5927 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5928 }
5929
5930 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5931 mode != VOIDmode;
5932 mode = GET_MODE_WIDER_MODE (mode))
5933 {
5934 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5935 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5936 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5937 }
5938
5939 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5940 mode != VOIDmode;
5941 mode = GET_MODE_WIDER_MODE (mode))
5942 {
5943 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5944 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5945 }
5946
5947 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5948 mode != VOIDmode;
5949 mode = GET_MODE_WIDER_MODE (mode))
5950 {
5951 FCONST0 (mode).data.high = 0;
5952 FCONST0 (mode).data.low = 0;
5953 FCONST0 (mode).mode = mode;
5954 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5955 FCONST0 (mode), mode);
5956 }
5957
5958 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5959 mode != VOIDmode;
5960 mode = GET_MODE_WIDER_MODE (mode))
5961 {
5962 FCONST0 (mode).data.high = 0;
5963 FCONST0 (mode).data.low = 0;
5964 FCONST0 (mode).mode = mode;
5965 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5966 FCONST0 (mode), mode);
5967 }
5968
5969 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5970 mode != VOIDmode;
5971 mode = GET_MODE_WIDER_MODE (mode))
5972 {
5973 FCONST0 (mode).data.high = 0;
5974 FCONST0 (mode).data.low = 0;
5975 FCONST0 (mode).mode = mode;
5976 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5977 FCONST0 (mode), mode);
5978
5979 /* We store the value 1. */
5980 FCONST1 (mode).data.high = 0;
5981 FCONST1 (mode).data.low = 0;
5982 FCONST1 (mode).mode = mode;
5983 FCONST1 (mode).data
5984 = double_int_one.lshift (GET_MODE_FBIT (mode),
5985 HOST_BITS_PER_DOUBLE_INT,
5986 SIGNED_FIXED_POINT_MODE_P (mode));
5987 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5988 FCONST1 (mode), mode);
5989 }
5990
5991 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5992 mode != VOIDmode;
5993 mode = GET_MODE_WIDER_MODE (mode))
5994 {
5995 FCONST0 (mode).data.high = 0;
5996 FCONST0 (mode).data.low = 0;
5997 FCONST0 (mode).mode = mode;
5998 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5999 FCONST0 (mode), mode);
6000
6001 /* We store the value 1. */
6002 FCONST1 (mode).data.high = 0;
6003 FCONST1 (mode).data.low = 0;
6004 FCONST1 (mode).mode = mode;
6005 FCONST1 (mode).data
6006 = double_int_one.lshift (GET_MODE_FBIT (mode),
6007 HOST_BITS_PER_DOUBLE_INT,
6008 SIGNED_FIXED_POINT_MODE_P (mode));
6009 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6010 FCONST1 (mode), mode);
6011 }
6012
6013 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6014 mode != VOIDmode;
6015 mode = GET_MODE_WIDER_MODE (mode))
6016 {
6017 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6018 }
6019
6020 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6021 mode != VOIDmode;
6022 mode = GET_MODE_WIDER_MODE (mode))
6023 {
6024 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6025 }
6026
6027 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6028 mode != VOIDmode;
6029 mode = GET_MODE_WIDER_MODE (mode))
6030 {
6031 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6032 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6033 }
6034
6035 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6036 mode != VOIDmode;
6037 mode = GET_MODE_WIDER_MODE (mode))
6038 {
6039 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6040 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6041 }
6042
6043 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6044 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
6045 const_tiny_rtx[0][i] = const0_rtx;
6046
6047 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6048 if (STORE_FLAG_VALUE == 1)
6049 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6050
6051 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6052 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6053 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6054 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6055 }
6056 \f
6057 /* Produce exact duplicate of insn INSN after AFTER.
6058 Care updating of libcall regions if present. */
6059
6060 rtx_insn *
6061 emit_copy_of_insn_after (rtx insn, rtx after)
6062 {
6063 rtx_insn *new_rtx;
6064 rtx link;
6065
6066 switch (GET_CODE (insn))
6067 {
6068 case INSN:
6069 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6070 break;
6071
6072 case JUMP_INSN:
6073 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6074 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6075 break;
6076
6077 case DEBUG_INSN:
6078 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6079 break;
6080
6081 case CALL_INSN:
6082 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6083 if (CALL_INSN_FUNCTION_USAGE (insn))
6084 CALL_INSN_FUNCTION_USAGE (new_rtx)
6085 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6086 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6087 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6088 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6089 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6090 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6091 break;
6092
6093 default:
6094 gcc_unreachable ();
6095 }
6096
6097 /* Update LABEL_NUSES. */
6098 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6099
6100 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6101
6102 /* If the old insn is frame related, then so is the new one. This is
6103 primarily needed for IA-64 unwind info which marks epilogue insns,
6104 which may be duplicated by the basic block reordering code. */
6105 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6106
6107 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6108 will make them. REG_LABEL_TARGETs are created there too, but are
6109 supposed to be sticky, so we copy them. */
6110 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6111 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6112 {
6113 if (GET_CODE (link) == EXPR_LIST)
6114 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6115 copy_insn_1 (XEXP (link, 0)));
6116 else
6117 add_shallow_copy_of_reg_note (new_rtx, link);
6118 }
6119
6120 INSN_CODE (new_rtx) = INSN_CODE (insn);
6121 return new_rtx;
6122 }
6123
6124 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6125 rtx
6126 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6127 {
6128 if (hard_reg_clobbers[mode][regno])
6129 return hard_reg_clobbers[mode][regno];
6130 else
6131 return (hard_reg_clobbers[mode][regno] =
6132 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6133 }
6134
6135 location_t prologue_location;
6136 location_t epilogue_location;
6137
6138 /* Hold current location information and last location information, so the
6139 datastructures are built lazily only when some instructions in given
6140 place are needed. */
6141 static location_t curr_location;
6142
6143 /* Allocate insn location datastructure. */
6144 void
6145 insn_locations_init (void)
6146 {
6147 prologue_location = epilogue_location = 0;
6148 curr_location = UNKNOWN_LOCATION;
6149 }
6150
6151 /* At the end of emit stage, clear current location. */
6152 void
6153 insn_locations_finalize (void)
6154 {
6155 epilogue_location = curr_location;
6156 curr_location = UNKNOWN_LOCATION;
6157 }
6158
6159 /* Set current location. */
6160 void
6161 set_curr_insn_location (location_t location)
6162 {
6163 curr_location = location;
6164 }
6165
6166 /* Get current location. */
6167 location_t
6168 curr_insn_location (void)
6169 {
6170 return curr_location;
6171 }
6172
6173 /* Return lexical scope block insn belongs to. */
6174 tree
6175 insn_scope (const_rtx insn)
6176 {
6177 return LOCATION_BLOCK (INSN_LOCATION (insn));
6178 }
6179
6180 /* Return line number of the statement that produced this insn. */
6181 int
6182 insn_line (const_rtx insn)
6183 {
6184 return LOCATION_LINE (INSN_LOCATION (insn));
6185 }
6186
6187 /* Return source file of the statement that produced this insn. */
6188 const char *
6189 insn_file (const_rtx insn)
6190 {
6191 return LOCATION_FILE (INSN_LOCATION (insn));
6192 }
6193
6194 /* Return expanded location of the statement that produced this insn. */
6195 expanded_location
6196 insn_location (const_rtx insn)
6197 {
6198 return expand_location (INSN_LOCATION (insn));
6199 }
6200
6201 /* Return true if memory model MODEL requires a pre-operation (release-style)
6202 barrier or a post-operation (acquire-style) barrier. While not universal,
6203 this function matches behavior of several targets. */
6204
6205 bool
6206 need_atomic_barrier_p (enum memmodel model, bool pre)
6207 {
6208 switch (model & MEMMODEL_MASK)
6209 {
6210 case MEMMODEL_RELAXED:
6211 case MEMMODEL_CONSUME:
6212 return false;
6213 case MEMMODEL_RELEASE:
6214 return pre;
6215 case MEMMODEL_ACQUIRE:
6216 return !pre;
6217 case MEMMODEL_ACQ_REL:
6218 case MEMMODEL_SEQ_CST:
6219 return true;
6220 default:
6221 gcc_unreachable ();
6222 }
6223 }
6224 \f
6225 #include "gt-emit-rtl.h"