coretypes.h: Include hash-table.h and hash-set.h for host files.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "input.h"
41 #include "alias.h"
42 #include "symtab.h"
43 #include "tree.h"
44 #include "fold-const.h"
45 #include "varasm.h"
46 #include "predict.h"
47 #include "hard-reg-set.h"
48 #include "function.h"
49 #include "cfgrtl.h"
50 #include "basic-block.h"
51 #include "tree-eh.h"
52 #include "tm_p.h"
53 #include "flags.h"
54 #include "stringpool.h"
55 #include "insn-config.h"
56 #include "expmed.h"
57 #include "dojump.h"
58 #include "explow.h"
59 #include "calls.h"
60 #include "emit-rtl.h"
61 #include "stmt.h"
62 #include "expr.h"
63 #include "regs.h"
64 #include "recog.h"
65 #include "bitmap.h"
66 #include "debug.h"
67 #include "langhooks.h"
68 #include "df.h"
69 #include "params.h"
70 #include "target.h"
71 #include "builtins.h"
72 #include "rtl-iter.h"
73
74 struct target_rtl default_target_rtl;
75 #if SWITCHABLE_TARGET
76 struct target_rtl *this_target_rtl = &default_target_rtl;
77 #endif
78
79 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
80
81 /* Commonly used modes. */
82
83 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
84 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
85 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
86 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
87
88 /* Datastructures maintained for currently processed function in RTL form. */
89
90 struct rtl_data x_rtl;
91
92 /* Indexed by pseudo register number, gives the rtx for that pseudo.
93 Allocated in parallel with regno_pointer_align.
94 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
95 with length attribute nested in top level structures. */
96
97 rtx * regno_reg_rtx;
98
99 /* This is *not* reset after each function. It gives each CODE_LABEL
100 in the entire compilation a unique label number. */
101
102 static GTY(()) int label_num = 1;
103
104 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
105 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
106 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
107 is set only for MODE_INT and MODE_VECTOR_INT modes. */
108
109 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
110
111 rtx const_true_rtx;
112
113 REAL_VALUE_TYPE dconst0;
114 REAL_VALUE_TYPE dconst1;
115 REAL_VALUE_TYPE dconst2;
116 REAL_VALUE_TYPE dconstm1;
117 REAL_VALUE_TYPE dconsthalf;
118
119 /* Record fixed-point constant 0 and 1. */
120 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
121 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
122
123 /* We make one copy of (const_int C) where C is in
124 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
125 to save space during the compilation and simplify comparisons of
126 integers. */
127
128 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
129
130 /* Standard pieces of rtx, to be substituted directly into things. */
131 rtx pc_rtx;
132 rtx ret_rtx;
133 rtx simple_return_rtx;
134 rtx cc0_rtx;
135
136 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
137 this pointer should normally never be dereferenced), but is required to be
138 distinct from NULL_RTX. Currently used by peephole2 pass. */
139 rtx_insn *invalid_insn_rtx;
140
141 /* A hash table storing CONST_INTs whose absolute value is greater
142 than MAX_SAVED_CONST_INT. */
143
144 struct const_int_hasher : ggc_cache_hasher<rtx>
145 {
146 typedef HOST_WIDE_INT compare_type;
147
148 static hashval_t hash (rtx i);
149 static bool equal (rtx i, HOST_WIDE_INT h);
150 };
151
152 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
153
154 struct const_wide_int_hasher : ggc_cache_hasher<rtx>
155 {
156 static hashval_t hash (rtx x);
157 static bool equal (rtx x, rtx y);
158 };
159
160 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
161
162 /* A hash table storing register attribute structures. */
163 struct reg_attr_hasher : ggc_cache_hasher<reg_attrs *>
164 {
165 static hashval_t hash (reg_attrs *x);
166 static bool equal (reg_attrs *a, reg_attrs *b);
167 };
168
169 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
170
171 /* A hash table storing all CONST_DOUBLEs. */
172 struct const_double_hasher : ggc_cache_hasher<rtx>
173 {
174 static hashval_t hash (rtx x);
175 static bool equal (rtx x, rtx y);
176 };
177
178 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
179
180 /* A hash table storing all CONST_FIXEDs. */
181 struct const_fixed_hasher : ggc_cache_hasher<rtx>
182 {
183 static hashval_t hash (rtx x);
184 static bool equal (rtx x, rtx y);
185 };
186
187 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
188
189 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
190 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
191 #define first_label_num (crtl->emit.x_first_label_num)
192
193 static void set_used_decls (tree);
194 static void mark_label_nuses (rtx);
195 #if TARGET_SUPPORTS_WIDE_INT
196 static rtx lookup_const_wide_int (rtx);
197 #endif
198 static rtx lookup_const_double (rtx);
199 static rtx lookup_const_fixed (rtx);
200 static reg_attrs *get_reg_attrs (tree, int);
201 static rtx gen_const_vector (machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
203
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
207 \f
208 /* Returns a hash code for X (which is a really a CONST_INT). */
209
210 hashval_t
211 const_int_hasher::hash (rtx x)
212 {
213 return (hashval_t) INTVAL (x);
214 }
215
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
220 bool
221 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
222 {
223 return (INTVAL (x) == y);
224 }
225
226 #if TARGET_SUPPORTS_WIDE_INT
227 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
228
229 hashval_t
230 const_wide_int_hasher::hash (rtx x)
231 {
232 int i;
233 unsigned HOST_WIDE_INT hash = 0;
234 const_rtx xr = x;
235
236 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
237 hash += CONST_WIDE_INT_ELT (xr, i);
238
239 return (hashval_t) hash;
240 }
241
242 /* Returns nonzero if the value represented by X (which is really a
243 CONST_WIDE_INT) is the same as that given by Y (which is really a
244 CONST_WIDE_INT). */
245
246 bool
247 const_wide_int_hasher::equal (rtx x, rtx y)
248 {
249 int i;
250 const_rtx xr = x;
251 const_rtx yr = y;
252 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
253 return false;
254
255 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
256 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
257 return false;
258
259 return true;
260 }
261 #endif
262
263 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
264 hashval_t
265 const_double_hasher::hash (rtx x)
266 {
267 const_rtx const value = x;
268 hashval_t h;
269
270 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
271 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
272 else
273 {
274 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
275 /* MODE is used in the comparison, so it should be in the hash. */
276 h ^= GET_MODE (value);
277 }
278 return h;
279 }
280
281 /* Returns nonzero if the value represented by X (really a ...)
282 is the same as that represented by Y (really a ...) */
283 bool
284 const_double_hasher::equal (rtx x, rtx y)
285 {
286 const_rtx const a = x, b = y;
287
288 if (GET_MODE (a) != GET_MODE (b))
289 return 0;
290 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
291 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
292 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
293 else
294 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
295 CONST_DOUBLE_REAL_VALUE (b));
296 }
297
298 /* Returns a hash code for X (which is really a CONST_FIXED). */
299
300 hashval_t
301 const_fixed_hasher::hash (rtx x)
302 {
303 const_rtx const value = x;
304 hashval_t h;
305
306 h = fixed_hash (CONST_FIXED_VALUE (value));
307 /* MODE is used in the comparison, so it should be in the hash. */
308 h ^= GET_MODE (value);
309 return h;
310 }
311
312 /* Returns nonzero if the value represented by X is the same as that
313 represented by Y. */
314
315 bool
316 const_fixed_hasher::equal (rtx x, rtx y)
317 {
318 const_rtx const a = x, b = y;
319
320 if (GET_MODE (a) != GET_MODE (b))
321 return 0;
322 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
323 }
324
325 /* Return true if the given memory attributes are equal. */
326
327 bool
328 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
329 {
330 if (p == q)
331 return true;
332 if (!p || !q)
333 return false;
334 return (p->alias == q->alias
335 && p->offset_known_p == q->offset_known_p
336 && (!p->offset_known_p || p->offset == q->offset)
337 && p->size_known_p == q->size_known_p
338 && (!p->size_known_p || p->size == q->size)
339 && p->align == q->align
340 && p->addrspace == q->addrspace
341 && (p->expr == q->expr
342 || (p->expr != NULL_TREE && q->expr != NULL_TREE
343 && operand_equal_p (p->expr, q->expr, 0))));
344 }
345
346 /* Set MEM's memory attributes so that they are the same as ATTRS. */
347
348 static void
349 set_mem_attrs (rtx mem, mem_attrs *attrs)
350 {
351 /* If everything is the default, we can just clear the attributes. */
352 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
353 {
354 MEM_ATTRS (mem) = 0;
355 return;
356 }
357
358 if (!MEM_ATTRS (mem)
359 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
360 {
361 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
362 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
363 }
364 }
365
366 /* Returns a hash code for X (which is a really a reg_attrs *). */
367
368 hashval_t
369 reg_attr_hasher::hash (reg_attrs *x)
370 {
371 const reg_attrs *const p = x;
372
373 return ((p->offset * 1000) ^ (intptr_t) p->decl);
374 }
375
376 /* Returns nonzero if the value represented by X is the same as that given by
377 Y. */
378
379 bool
380 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
381 {
382 const reg_attrs *const p = x;
383 const reg_attrs *const q = y;
384
385 return (p->decl == q->decl && p->offset == q->offset);
386 }
387 /* Allocate a new reg_attrs structure and insert it into the hash table if
388 one identical to it is not already in the table. We are doing this for
389 MEM of mode MODE. */
390
391 static reg_attrs *
392 get_reg_attrs (tree decl, int offset)
393 {
394 reg_attrs attrs;
395
396 /* If everything is the default, we can just return zero. */
397 if (decl == 0 && offset == 0)
398 return 0;
399
400 attrs.decl = decl;
401 attrs.offset = offset;
402
403 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
404 if (*slot == 0)
405 {
406 *slot = ggc_alloc<reg_attrs> ();
407 memcpy (*slot, &attrs, sizeof (reg_attrs));
408 }
409
410 return *slot;
411 }
412
413
414 #if !HAVE_blockage
415 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
416 and to block register equivalences to be seen across this insn. */
417
418 rtx
419 gen_blockage (void)
420 {
421 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
422 MEM_VOLATILE_P (x) = true;
423 return x;
424 }
425 #endif
426
427
428 /* Set the mode and register number of X to MODE and REGNO. */
429
430 void
431 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
432 {
433 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
434 ? hard_regno_nregs[regno][mode]
435 : 1);
436 PUT_MODE_RAW (x, mode);
437 set_regno_raw (x, regno, nregs);
438 }
439
440 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
441 don't attempt to share with the various global pieces of rtl (such as
442 frame_pointer_rtx). */
443
444 rtx
445 gen_raw_REG (machine_mode mode, unsigned int regno)
446 {
447 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
448 set_mode_and_regno (x, mode, regno);
449 REG_ATTRS (x) = NULL;
450 ORIGINAL_REGNO (x) = regno;
451 return x;
452 }
453
454 /* There are some RTL codes that require special attention; the generation
455 functions do the raw handling. If you add to this list, modify
456 special_rtx in gengenrtl.c as well. */
457
458 rtx_expr_list *
459 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
460 {
461 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
462 expr_list));
463 }
464
465 rtx_insn_list *
466 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
467 {
468 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
469 insn_list));
470 }
471
472 rtx_insn *
473 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
474 basic_block bb, rtx pattern, int location, int code,
475 rtx reg_notes)
476 {
477 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
478 prev_insn, next_insn,
479 bb, pattern, location, code,
480 reg_notes));
481 }
482
483 rtx
484 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
485 {
486 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
487 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
488
489 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
490 if (const_true_rtx && arg == STORE_FLAG_VALUE)
491 return const_true_rtx;
492 #endif
493
494 /* Look up the CONST_INT in the hash table. */
495 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
496 INSERT);
497 if (*slot == 0)
498 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
499
500 return *slot;
501 }
502
503 rtx
504 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
505 {
506 return GEN_INT (trunc_int_for_mode (c, mode));
507 }
508
509 /* CONST_DOUBLEs might be created from pairs of integers, or from
510 REAL_VALUE_TYPEs. Also, their length is known only at run time,
511 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
512
513 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
514 hash table. If so, return its counterpart; otherwise add it
515 to the hash table and return it. */
516 static rtx
517 lookup_const_double (rtx real)
518 {
519 rtx *slot = const_double_htab->find_slot (real, INSERT);
520 if (*slot == 0)
521 *slot = real;
522
523 return *slot;
524 }
525
526 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
527 VALUE in mode MODE. */
528 rtx
529 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
530 {
531 rtx real = rtx_alloc (CONST_DOUBLE);
532 PUT_MODE (real, mode);
533
534 real->u.rv = value;
535
536 return lookup_const_double (real);
537 }
538
539 /* Determine whether FIXED, a CONST_FIXED, already exists in the
540 hash table. If so, return its counterpart; otherwise add it
541 to the hash table and return it. */
542
543 static rtx
544 lookup_const_fixed (rtx fixed)
545 {
546 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
547 if (*slot == 0)
548 *slot = fixed;
549
550 return *slot;
551 }
552
553 /* Return a CONST_FIXED rtx for a fixed-point value specified by
554 VALUE in mode MODE. */
555
556 rtx
557 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
558 {
559 rtx fixed = rtx_alloc (CONST_FIXED);
560 PUT_MODE (fixed, mode);
561
562 fixed->u.fv = value;
563
564 return lookup_const_fixed (fixed);
565 }
566
567 #if TARGET_SUPPORTS_WIDE_INT == 0
568 /* Constructs double_int from rtx CST. */
569
570 double_int
571 rtx_to_double_int (const_rtx cst)
572 {
573 double_int r;
574
575 if (CONST_INT_P (cst))
576 r = double_int::from_shwi (INTVAL (cst));
577 else if (CONST_DOUBLE_AS_INT_P (cst))
578 {
579 r.low = CONST_DOUBLE_LOW (cst);
580 r.high = CONST_DOUBLE_HIGH (cst);
581 }
582 else
583 gcc_unreachable ();
584
585 return r;
586 }
587 #endif
588
589 #if TARGET_SUPPORTS_WIDE_INT
590 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
591 If so, return its counterpart; otherwise add it to the hash table and
592 return it. */
593
594 static rtx
595 lookup_const_wide_int (rtx wint)
596 {
597 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
598 if (*slot == 0)
599 *slot = wint;
600
601 return *slot;
602 }
603 #endif
604
605 /* Return an rtx constant for V, given that the constant has mode MODE.
606 The returned rtx will be a CONST_INT if V fits, otherwise it will be
607 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
608 (if TARGET_SUPPORTS_WIDE_INT). */
609
610 rtx
611 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
612 {
613 unsigned int len = v.get_len ();
614 unsigned int prec = GET_MODE_PRECISION (mode);
615
616 /* Allow truncation but not extension since we do not know if the
617 number is signed or unsigned. */
618 gcc_assert (prec <= v.get_precision ());
619
620 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
621 return gen_int_mode (v.elt (0), mode);
622
623 #if TARGET_SUPPORTS_WIDE_INT
624 {
625 unsigned int i;
626 rtx value;
627 unsigned int blocks_needed
628 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
629
630 if (len > blocks_needed)
631 len = blocks_needed;
632
633 value = const_wide_int_alloc (len);
634
635 /* It is so tempting to just put the mode in here. Must control
636 myself ... */
637 PUT_MODE (value, VOIDmode);
638 CWI_PUT_NUM_ELEM (value, len);
639
640 for (i = 0; i < len; i++)
641 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
642
643 return lookup_const_wide_int (value);
644 }
645 #else
646 return immed_double_const (v.elt (0), v.elt (1), mode);
647 #endif
648 }
649
650 #if TARGET_SUPPORTS_WIDE_INT == 0
651 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
652 of ints: I0 is the low-order word and I1 is the high-order word.
653 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
654 implied upper bits are copies of the high bit of i1. The value
655 itself is neither signed nor unsigned. Do not use this routine for
656 non-integer modes; convert to REAL_VALUE_TYPE and use
657 CONST_DOUBLE_FROM_REAL_VALUE. */
658
659 rtx
660 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
661 {
662 rtx value;
663 unsigned int i;
664
665 /* There are the following cases (note that there are no modes with
666 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
667
668 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
669 gen_int_mode.
670 2) If the value of the integer fits into HOST_WIDE_INT anyway
671 (i.e., i1 consists only from copies of the sign bit, and sign
672 of i0 and i1 are the same), then we return a CONST_INT for i0.
673 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
674 if (mode != VOIDmode)
675 {
676 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
677 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
678 /* We can get a 0 for an error mark. */
679 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
680 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
681 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
682
683 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
684 return gen_int_mode (i0, mode);
685 }
686
687 /* If this integer fits in one word, return a CONST_INT. */
688 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
689 return GEN_INT (i0);
690
691 /* We use VOIDmode for integers. */
692 value = rtx_alloc (CONST_DOUBLE);
693 PUT_MODE (value, VOIDmode);
694
695 CONST_DOUBLE_LOW (value) = i0;
696 CONST_DOUBLE_HIGH (value) = i1;
697
698 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
699 XWINT (value, i) = 0;
700
701 return lookup_const_double (value);
702 }
703 #endif
704
705 rtx
706 gen_rtx_REG (machine_mode mode, unsigned int regno)
707 {
708 /* In case the MD file explicitly references the frame pointer, have
709 all such references point to the same frame pointer. This is
710 used during frame pointer elimination to distinguish the explicit
711 references to these registers from pseudos that happened to be
712 assigned to them.
713
714 If we have eliminated the frame pointer or arg pointer, we will
715 be using it as a normal register, for example as a spill
716 register. In such cases, we might be accessing it in a mode that
717 is not Pmode and therefore cannot use the pre-allocated rtx.
718
719 Also don't do this when we are making new REGs in reload, since
720 we don't want to get confused with the real pointers. */
721
722 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
723 {
724 if (regno == FRAME_POINTER_REGNUM
725 && (!reload_completed || frame_pointer_needed))
726 return frame_pointer_rtx;
727
728 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
729 && regno == HARD_FRAME_POINTER_REGNUM
730 && (!reload_completed || frame_pointer_needed))
731 return hard_frame_pointer_rtx;
732 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
733 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
734 && regno == ARG_POINTER_REGNUM)
735 return arg_pointer_rtx;
736 #endif
737 #ifdef RETURN_ADDRESS_POINTER_REGNUM
738 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
739 return return_address_pointer_rtx;
740 #endif
741 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
742 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
743 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
744 return pic_offset_table_rtx;
745 if (regno == STACK_POINTER_REGNUM)
746 return stack_pointer_rtx;
747 }
748
749 #if 0
750 /* If the per-function register table has been set up, try to re-use
751 an existing entry in that table to avoid useless generation of RTL.
752
753 This code is disabled for now until we can fix the various backends
754 which depend on having non-shared hard registers in some cases. Long
755 term we want to re-enable this code as it can significantly cut down
756 on the amount of useless RTL that gets generated.
757
758 We'll also need to fix some code that runs after reload that wants to
759 set ORIGINAL_REGNO. */
760
761 if (cfun
762 && cfun->emit
763 && regno_reg_rtx
764 && regno < FIRST_PSEUDO_REGISTER
765 && reg_raw_mode[regno] == mode)
766 return regno_reg_rtx[regno];
767 #endif
768
769 return gen_raw_REG (mode, regno);
770 }
771
772 rtx
773 gen_rtx_MEM (machine_mode mode, rtx addr)
774 {
775 rtx rt = gen_rtx_raw_MEM (mode, addr);
776
777 /* This field is not cleared by the mere allocation of the rtx, so
778 we clear it here. */
779 MEM_ATTRS (rt) = 0;
780
781 return rt;
782 }
783
784 /* Generate a memory referring to non-trapping constant memory. */
785
786 rtx
787 gen_const_mem (machine_mode mode, rtx addr)
788 {
789 rtx mem = gen_rtx_MEM (mode, addr);
790 MEM_READONLY_P (mem) = 1;
791 MEM_NOTRAP_P (mem) = 1;
792 return mem;
793 }
794
795 /* Generate a MEM referring to fixed portions of the frame, e.g., register
796 save areas. */
797
798 rtx
799 gen_frame_mem (machine_mode mode, rtx addr)
800 {
801 rtx mem = gen_rtx_MEM (mode, addr);
802 MEM_NOTRAP_P (mem) = 1;
803 set_mem_alias_set (mem, get_frame_alias_set ());
804 return mem;
805 }
806
807 /* Generate a MEM referring to a temporary use of the stack, not part
808 of the fixed stack frame. For example, something which is pushed
809 by a target splitter. */
810 rtx
811 gen_tmp_stack_mem (machine_mode mode, rtx addr)
812 {
813 rtx mem = gen_rtx_MEM (mode, addr);
814 MEM_NOTRAP_P (mem) = 1;
815 if (!cfun->calls_alloca)
816 set_mem_alias_set (mem, get_frame_alias_set ());
817 return mem;
818 }
819
820 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
821 this construct would be valid, and false otherwise. */
822
823 bool
824 validate_subreg (machine_mode omode, machine_mode imode,
825 const_rtx reg, unsigned int offset)
826 {
827 unsigned int isize = GET_MODE_SIZE (imode);
828 unsigned int osize = GET_MODE_SIZE (omode);
829
830 /* All subregs must be aligned. */
831 if (offset % osize != 0)
832 return false;
833
834 /* The subreg offset cannot be outside the inner object. */
835 if (offset >= isize)
836 return false;
837
838 /* ??? This should not be here. Temporarily continue to allow word_mode
839 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
840 Generally, backends are doing something sketchy but it'll take time to
841 fix them all. */
842 if (omode == word_mode)
843 ;
844 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
845 is the culprit here, and not the backends. */
846 else if (osize >= UNITS_PER_WORD && isize >= osize)
847 ;
848 /* Allow component subregs of complex and vector. Though given the below
849 extraction rules, it's not always clear what that means. */
850 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
851 && GET_MODE_INNER (imode) == omode)
852 ;
853 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
854 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
855 represent this. It's questionable if this ought to be represented at
856 all -- why can't this all be hidden in post-reload splitters that make
857 arbitrarily mode changes to the registers themselves. */
858 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
859 ;
860 /* Subregs involving floating point modes are not allowed to
861 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
862 (subreg:SI (reg:DF) 0) isn't. */
863 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
864 {
865 if (! (isize == osize
866 /* LRA can use subreg to store a floating point value in
867 an integer mode. Although the floating point and the
868 integer modes need the same number of hard registers,
869 the size of floating point mode can be less than the
870 integer mode. LRA also uses subregs for a register
871 should be used in different mode in on insn. */
872 || lra_in_progress))
873 return false;
874 }
875
876 /* Paradoxical subregs must have offset zero. */
877 if (osize > isize)
878 return offset == 0;
879
880 /* This is a normal subreg. Verify that the offset is representable. */
881
882 /* For hard registers, we already have most of these rules collected in
883 subreg_offset_representable_p. */
884 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
885 {
886 unsigned int regno = REGNO (reg);
887
888 #ifdef CANNOT_CHANGE_MODE_CLASS
889 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
890 && GET_MODE_INNER (imode) == omode)
891 ;
892 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
893 return false;
894 #endif
895
896 return subreg_offset_representable_p (regno, imode, offset, omode);
897 }
898
899 /* For pseudo registers, we want most of the same checks. Namely:
900 If the register no larger than a word, the subreg must be lowpart.
901 If the register is larger than a word, the subreg must be the lowpart
902 of a subword. A subreg does *not* perform arbitrary bit extraction.
903 Given that we've already checked mode/offset alignment, we only have
904 to check subword subregs here. */
905 if (osize < UNITS_PER_WORD
906 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
907 {
908 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
909 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
910 if (offset % UNITS_PER_WORD != low_off)
911 return false;
912 }
913 return true;
914 }
915
916 rtx
917 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
918 {
919 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
920 return gen_rtx_raw_SUBREG (mode, reg, offset);
921 }
922
923 /* Generate a SUBREG representing the least-significant part of REG if MODE
924 is smaller than mode of REG, otherwise paradoxical SUBREG. */
925
926 rtx
927 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
928 {
929 machine_mode inmode;
930
931 inmode = GET_MODE (reg);
932 if (inmode == VOIDmode)
933 inmode = mode;
934 return gen_rtx_SUBREG (mode, reg,
935 subreg_lowpart_offset (mode, inmode));
936 }
937
938 rtx
939 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
940 enum var_init_status status)
941 {
942 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
943 PAT_VAR_LOCATION_STATUS (x) = status;
944 return x;
945 }
946 \f
947
948 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
949
950 rtvec
951 gen_rtvec (int n, ...)
952 {
953 int i;
954 rtvec rt_val;
955 va_list p;
956
957 va_start (p, n);
958
959 /* Don't allocate an empty rtvec... */
960 if (n == 0)
961 {
962 va_end (p);
963 return NULL_RTVEC;
964 }
965
966 rt_val = rtvec_alloc (n);
967
968 for (i = 0; i < n; i++)
969 rt_val->elem[i] = va_arg (p, rtx);
970
971 va_end (p);
972 return rt_val;
973 }
974
975 rtvec
976 gen_rtvec_v (int n, rtx *argp)
977 {
978 int i;
979 rtvec rt_val;
980
981 /* Don't allocate an empty rtvec... */
982 if (n == 0)
983 return NULL_RTVEC;
984
985 rt_val = rtvec_alloc (n);
986
987 for (i = 0; i < n; i++)
988 rt_val->elem[i] = *argp++;
989
990 return rt_val;
991 }
992
993 rtvec
994 gen_rtvec_v (int n, rtx_insn **argp)
995 {
996 int i;
997 rtvec rt_val;
998
999 /* Don't allocate an empty rtvec... */
1000 if (n == 0)
1001 return NULL_RTVEC;
1002
1003 rt_val = rtvec_alloc (n);
1004
1005 for (i = 0; i < n; i++)
1006 rt_val->elem[i] = *argp++;
1007
1008 return rt_val;
1009 }
1010
1011 \f
1012 /* Return the number of bytes between the start of an OUTER_MODE
1013 in-memory value and the start of an INNER_MODE in-memory value,
1014 given that the former is a lowpart of the latter. It may be a
1015 paradoxical lowpart, in which case the offset will be negative
1016 on big-endian targets. */
1017
1018 int
1019 byte_lowpart_offset (machine_mode outer_mode,
1020 machine_mode inner_mode)
1021 {
1022 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1023 return subreg_lowpart_offset (outer_mode, inner_mode);
1024 else
1025 return -subreg_lowpart_offset (inner_mode, outer_mode);
1026 }
1027 \f
1028 /* Generate a REG rtx for a new pseudo register of mode MODE.
1029 This pseudo is assigned the next sequential register number. */
1030
1031 rtx
1032 gen_reg_rtx (machine_mode mode)
1033 {
1034 rtx val;
1035 unsigned int align = GET_MODE_ALIGNMENT (mode);
1036
1037 gcc_assert (can_create_pseudo_p ());
1038
1039 /* If a virtual register with bigger mode alignment is generated,
1040 increase stack alignment estimation because it might be spilled
1041 to stack later. */
1042 if (SUPPORTS_STACK_ALIGNMENT
1043 && crtl->stack_alignment_estimated < align
1044 && !crtl->stack_realign_processed)
1045 {
1046 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1047 if (crtl->stack_alignment_estimated < min_align)
1048 crtl->stack_alignment_estimated = min_align;
1049 }
1050
1051 if (generating_concat_p
1052 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1053 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1054 {
1055 /* For complex modes, don't make a single pseudo.
1056 Instead, make a CONCAT of two pseudos.
1057 This allows noncontiguous allocation of the real and imaginary parts,
1058 which makes much better code. Besides, allocating DCmode
1059 pseudos overstrains reload on some machines like the 386. */
1060 rtx realpart, imagpart;
1061 machine_mode partmode = GET_MODE_INNER (mode);
1062
1063 realpart = gen_reg_rtx (partmode);
1064 imagpart = gen_reg_rtx (partmode);
1065 return gen_rtx_CONCAT (mode, realpart, imagpart);
1066 }
1067
1068 /* Do not call gen_reg_rtx with uninitialized crtl. */
1069 gcc_assert (crtl->emit.regno_pointer_align_length);
1070
1071 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1072 enough to have an element for this pseudo reg number. */
1073
1074 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1075 {
1076 int old_size = crtl->emit.regno_pointer_align_length;
1077 char *tmp;
1078 rtx *new1;
1079
1080 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1081 memset (tmp + old_size, 0, old_size);
1082 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1083
1084 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1085 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1086 regno_reg_rtx = new1;
1087
1088 crtl->emit.regno_pointer_align_length = old_size * 2;
1089 }
1090
1091 val = gen_raw_REG (mode, reg_rtx_no);
1092 regno_reg_rtx[reg_rtx_no++] = val;
1093 return val;
1094 }
1095
1096 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1097
1098 bool
1099 reg_is_parm_p (rtx reg)
1100 {
1101 tree decl;
1102
1103 gcc_assert (REG_P (reg));
1104 decl = REG_EXPR (reg);
1105 return (decl && TREE_CODE (decl) == PARM_DECL);
1106 }
1107
1108 /* Update NEW with the same attributes as REG, but with OFFSET added
1109 to the REG_OFFSET. */
1110
1111 static void
1112 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1113 {
1114 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1115 REG_OFFSET (reg) + offset);
1116 }
1117
1118 /* Generate a register with same attributes as REG, but with OFFSET
1119 added to the REG_OFFSET. */
1120
1121 rtx
1122 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1123 int offset)
1124 {
1125 rtx new_rtx = gen_rtx_REG (mode, regno);
1126
1127 update_reg_offset (new_rtx, reg, offset);
1128 return new_rtx;
1129 }
1130
1131 /* Generate a new pseudo-register with the same attributes as REG, but
1132 with OFFSET added to the REG_OFFSET. */
1133
1134 rtx
1135 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1136 {
1137 rtx new_rtx = gen_reg_rtx (mode);
1138
1139 update_reg_offset (new_rtx, reg, offset);
1140 return new_rtx;
1141 }
1142
1143 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1144 new register is a (possibly paradoxical) lowpart of the old one. */
1145
1146 void
1147 adjust_reg_mode (rtx reg, machine_mode mode)
1148 {
1149 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1150 PUT_MODE (reg, mode);
1151 }
1152
1153 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1154 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1155
1156 void
1157 set_reg_attrs_from_value (rtx reg, rtx x)
1158 {
1159 int offset;
1160 bool can_be_reg_pointer = true;
1161
1162 /* Don't call mark_reg_pointer for incompatible pointer sign
1163 extension. */
1164 while (GET_CODE (x) == SIGN_EXTEND
1165 || GET_CODE (x) == ZERO_EXTEND
1166 || GET_CODE (x) == TRUNCATE
1167 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1168 {
1169 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1170 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1171 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1172 can_be_reg_pointer = false;
1173 #endif
1174 x = XEXP (x, 0);
1175 }
1176
1177 /* Hard registers can be reused for multiple purposes within the same
1178 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1179 on them is wrong. */
1180 if (HARD_REGISTER_P (reg))
1181 return;
1182
1183 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1184 if (MEM_P (x))
1185 {
1186 if (MEM_OFFSET_KNOWN_P (x))
1187 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1188 MEM_OFFSET (x) + offset);
1189 if (can_be_reg_pointer && MEM_POINTER (x))
1190 mark_reg_pointer (reg, 0);
1191 }
1192 else if (REG_P (x))
1193 {
1194 if (REG_ATTRS (x))
1195 update_reg_offset (reg, x, offset);
1196 if (can_be_reg_pointer && REG_POINTER (x))
1197 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1198 }
1199 }
1200
1201 /* Generate a REG rtx for a new pseudo register, copying the mode
1202 and attributes from X. */
1203
1204 rtx
1205 gen_reg_rtx_and_attrs (rtx x)
1206 {
1207 rtx reg = gen_reg_rtx (GET_MODE (x));
1208 set_reg_attrs_from_value (reg, x);
1209 return reg;
1210 }
1211
1212 /* Set the register attributes for registers contained in PARM_RTX.
1213 Use needed values from memory attributes of MEM. */
1214
1215 void
1216 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1217 {
1218 if (REG_P (parm_rtx))
1219 set_reg_attrs_from_value (parm_rtx, mem);
1220 else if (GET_CODE (parm_rtx) == PARALLEL)
1221 {
1222 /* Check for a NULL entry in the first slot, used to indicate that the
1223 parameter goes both on the stack and in registers. */
1224 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1225 for (; i < XVECLEN (parm_rtx, 0); i++)
1226 {
1227 rtx x = XVECEXP (parm_rtx, 0, i);
1228 if (REG_P (XEXP (x, 0)))
1229 REG_ATTRS (XEXP (x, 0))
1230 = get_reg_attrs (MEM_EXPR (mem),
1231 INTVAL (XEXP (x, 1)));
1232 }
1233 }
1234 }
1235
1236 /* Set the REG_ATTRS for registers in value X, given that X represents
1237 decl T. */
1238
1239 void
1240 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1241 {
1242 if (GET_CODE (x) == SUBREG)
1243 {
1244 gcc_assert (subreg_lowpart_p (x));
1245 x = SUBREG_REG (x);
1246 }
1247 if (REG_P (x))
1248 REG_ATTRS (x)
1249 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1250 DECL_MODE (t)));
1251 if (GET_CODE (x) == CONCAT)
1252 {
1253 if (REG_P (XEXP (x, 0)))
1254 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1255 if (REG_P (XEXP (x, 1)))
1256 REG_ATTRS (XEXP (x, 1))
1257 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1258 }
1259 if (GET_CODE (x) == PARALLEL)
1260 {
1261 int i, start;
1262
1263 /* Check for a NULL entry, used to indicate that the parameter goes
1264 both on the stack and in registers. */
1265 if (XEXP (XVECEXP (x, 0, 0), 0))
1266 start = 0;
1267 else
1268 start = 1;
1269
1270 for (i = start; i < XVECLEN (x, 0); i++)
1271 {
1272 rtx y = XVECEXP (x, 0, i);
1273 if (REG_P (XEXP (y, 0)))
1274 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1275 }
1276 }
1277 }
1278
1279 /* Assign the RTX X to declaration T. */
1280
1281 void
1282 set_decl_rtl (tree t, rtx x)
1283 {
1284 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1285 if (x)
1286 set_reg_attrs_for_decl_rtl (t, x);
1287 }
1288
1289 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1290 if the ABI requires the parameter to be passed by reference. */
1291
1292 void
1293 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1294 {
1295 DECL_INCOMING_RTL (t) = x;
1296 if (x && !by_reference_p)
1297 set_reg_attrs_for_decl_rtl (t, x);
1298 }
1299
1300 /* Identify REG (which may be a CONCAT) as a user register. */
1301
1302 void
1303 mark_user_reg (rtx reg)
1304 {
1305 if (GET_CODE (reg) == CONCAT)
1306 {
1307 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1308 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1309 }
1310 else
1311 {
1312 gcc_assert (REG_P (reg));
1313 REG_USERVAR_P (reg) = 1;
1314 }
1315 }
1316
1317 /* Identify REG as a probable pointer register and show its alignment
1318 as ALIGN, if nonzero. */
1319
1320 void
1321 mark_reg_pointer (rtx reg, int align)
1322 {
1323 if (! REG_POINTER (reg))
1324 {
1325 REG_POINTER (reg) = 1;
1326
1327 if (align)
1328 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1329 }
1330 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1331 /* We can no-longer be sure just how aligned this pointer is. */
1332 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1333 }
1334
1335 /* Return 1 plus largest pseudo reg number used in the current function. */
1336
1337 int
1338 max_reg_num (void)
1339 {
1340 return reg_rtx_no;
1341 }
1342
1343 /* Return 1 + the largest label number used so far in the current function. */
1344
1345 int
1346 max_label_num (void)
1347 {
1348 return label_num;
1349 }
1350
1351 /* Return first label number used in this function (if any were used). */
1352
1353 int
1354 get_first_label_num (void)
1355 {
1356 return first_label_num;
1357 }
1358
1359 /* If the rtx for label was created during the expansion of a nested
1360 function, then first_label_num won't include this label number.
1361 Fix this now so that array indices work later. */
1362
1363 void
1364 maybe_set_first_label_num (rtx x)
1365 {
1366 if (CODE_LABEL_NUMBER (x) < first_label_num)
1367 first_label_num = CODE_LABEL_NUMBER (x);
1368 }
1369 \f
1370 /* Return a value representing some low-order bits of X, where the number
1371 of low-order bits is given by MODE. Note that no conversion is done
1372 between floating-point and fixed-point values, rather, the bit
1373 representation is returned.
1374
1375 This function handles the cases in common between gen_lowpart, below,
1376 and two variants in cse.c and combine.c. These are the cases that can
1377 be safely handled at all points in the compilation.
1378
1379 If this is not a case we can handle, return 0. */
1380
1381 rtx
1382 gen_lowpart_common (machine_mode mode, rtx x)
1383 {
1384 int msize = GET_MODE_SIZE (mode);
1385 int xsize;
1386 int offset = 0;
1387 machine_mode innermode;
1388
1389 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1390 so we have to make one up. Yuk. */
1391 innermode = GET_MODE (x);
1392 if (CONST_INT_P (x)
1393 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1394 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1395 else if (innermode == VOIDmode)
1396 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1397
1398 xsize = GET_MODE_SIZE (innermode);
1399
1400 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1401
1402 if (innermode == mode)
1403 return x;
1404
1405 /* MODE must occupy no more words than the mode of X. */
1406 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1407 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1408 return 0;
1409
1410 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1411 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1412 return 0;
1413
1414 offset = subreg_lowpart_offset (mode, innermode);
1415
1416 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1417 && (GET_MODE_CLASS (mode) == MODE_INT
1418 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1419 {
1420 /* If we are getting the low-order part of something that has been
1421 sign- or zero-extended, we can either just use the object being
1422 extended or make a narrower extension. If we want an even smaller
1423 piece than the size of the object being extended, call ourselves
1424 recursively.
1425
1426 This case is used mostly by combine and cse. */
1427
1428 if (GET_MODE (XEXP (x, 0)) == mode)
1429 return XEXP (x, 0);
1430 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1431 return gen_lowpart_common (mode, XEXP (x, 0));
1432 else if (msize < xsize)
1433 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1434 }
1435 else if (GET_CODE (x) == SUBREG || REG_P (x)
1436 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1437 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1438 return simplify_gen_subreg (mode, x, innermode, offset);
1439
1440 /* Otherwise, we can't do this. */
1441 return 0;
1442 }
1443 \f
1444 rtx
1445 gen_highpart (machine_mode mode, rtx x)
1446 {
1447 unsigned int msize = GET_MODE_SIZE (mode);
1448 rtx result;
1449
1450 /* This case loses if X is a subreg. To catch bugs early,
1451 complain if an invalid MODE is used even in other cases. */
1452 gcc_assert (msize <= UNITS_PER_WORD
1453 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1454
1455 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1456 subreg_highpart_offset (mode, GET_MODE (x)));
1457 gcc_assert (result);
1458
1459 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1460 the target if we have a MEM. gen_highpart must return a valid operand,
1461 emitting code if necessary to do so. */
1462 if (MEM_P (result))
1463 {
1464 result = validize_mem (result);
1465 gcc_assert (result);
1466 }
1467
1468 return result;
1469 }
1470
1471 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1472 be VOIDmode constant. */
1473 rtx
1474 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1475 {
1476 if (GET_MODE (exp) != VOIDmode)
1477 {
1478 gcc_assert (GET_MODE (exp) == innermode);
1479 return gen_highpart (outermode, exp);
1480 }
1481 return simplify_gen_subreg (outermode, exp, innermode,
1482 subreg_highpart_offset (outermode, innermode));
1483 }
1484
1485 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1486
1487 unsigned int
1488 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1489 {
1490 unsigned int offset = 0;
1491 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1492
1493 if (difference > 0)
1494 {
1495 if (WORDS_BIG_ENDIAN)
1496 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1497 if (BYTES_BIG_ENDIAN)
1498 offset += difference % UNITS_PER_WORD;
1499 }
1500
1501 return offset;
1502 }
1503
1504 /* Return offset in bytes to get OUTERMODE high part
1505 of the value in mode INNERMODE stored in memory in target format. */
1506 unsigned int
1507 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1508 {
1509 unsigned int offset = 0;
1510 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1511
1512 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1513
1514 if (difference > 0)
1515 {
1516 if (! WORDS_BIG_ENDIAN)
1517 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1518 if (! BYTES_BIG_ENDIAN)
1519 offset += difference % UNITS_PER_WORD;
1520 }
1521
1522 return offset;
1523 }
1524
1525 /* Return 1 iff X, assumed to be a SUBREG,
1526 refers to the least significant part of its containing reg.
1527 If X is not a SUBREG, always return 1 (it is its own low part!). */
1528
1529 int
1530 subreg_lowpart_p (const_rtx x)
1531 {
1532 if (GET_CODE (x) != SUBREG)
1533 return 1;
1534 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1535 return 0;
1536
1537 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1538 == SUBREG_BYTE (x));
1539 }
1540
1541 /* Return true if X is a paradoxical subreg, false otherwise. */
1542 bool
1543 paradoxical_subreg_p (const_rtx x)
1544 {
1545 if (GET_CODE (x) != SUBREG)
1546 return false;
1547 return (GET_MODE_PRECISION (GET_MODE (x))
1548 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1549 }
1550 \f
1551 /* Return subword OFFSET of operand OP.
1552 The word number, OFFSET, is interpreted as the word number starting
1553 at the low-order address. OFFSET 0 is the low-order word if not
1554 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1555
1556 If we cannot extract the required word, we return zero. Otherwise,
1557 an rtx corresponding to the requested word will be returned.
1558
1559 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1560 reload has completed, a valid address will always be returned. After
1561 reload, if a valid address cannot be returned, we return zero.
1562
1563 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1564 it is the responsibility of the caller.
1565
1566 MODE is the mode of OP in case it is a CONST_INT.
1567
1568 ??? This is still rather broken for some cases. The problem for the
1569 moment is that all callers of this thing provide no 'goal mode' to
1570 tell us to work with. This exists because all callers were written
1571 in a word based SUBREG world.
1572 Now use of this function can be deprecated by simplify_subreg in most
1573 cases.
1574 */
1575
1576 rtx
1577 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1578 {
1579 if (mode == VOIDmode)
1580 mode = GET_MODE (op);
1581
1582 gcc_assert (mode != VOIDmode);
1583
1584 /* If OP is narrower than a word, fail. */
1585 if (mode != BLKmode
1586 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1587 return 0;
1588
1589 /* If we want a word outside OP, return zero. */
1590 if (mode != BLKmode
1591 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1592 return const0_rtx;
1593
1594 /* Form a new MEM at the requested address. */
1595 if (MEM_P (op))
1596 {
1597 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1598
1599 if (! validate_address)
1600 return new_rtx;
1601
1602 else if (reload_completed)
1603 {
1604 if (! strict_memory_address_addr_space_p (word_mode,
1605 XEXP (new_rtx, 0),
1606 MEM_ADDR_SPACE (op)))
1607 return 0;
1608 }
1609 else
1610 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1611 }
1612
1613 /* Rest can be handled by simplify_subreg. */
1614 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1615 }
1616
1617 /* Similar to `operand_subword', but never return 0. If we can't
1618 extract the required subword, put OP into a register and try again.
1619 The second attempt must succeed. We always validate the address in
1620 this case.
1621
1622 MODE is the mode of OP, in case it is CONST_INT. */
1623
1624 rtx
1625 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1626 {
1627 rtx result = operand_subword (op, offset, 1, mode);
1628
1629 if (result)
1630 return result;
1631
1632 if (mode != BLKmode && mode != VOIDmode)
1633 {
1634 /* If this is a register which can not be accessed by words, copy it
1635 to a pseudo register. */
1636 if (REG_P (op))
1637 op = copy_to_reg (op);
1638 else
1639 op = force_reg (mode, op);
1640 }
1641
1642 result = operand_subword (op, offset, 1, mode);
1643 gcc_assert (result);
1644
1645 return result;
1646 }
1647 \f
1648 /* Returns 1 if both MEM_EXPR can be considered equal
1649 and 0 otherwise. */
1650
1651 int
1652 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1653 {
1654 if (expr1 == expr2)
1655 return 1;
1656
1657 if (! expr1 || ! expr2)
1658 return 0;
1659
1660 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1661 return 0;
1662
1663 return operand_equal_p (expr1, expr2, 0);
1664 }
1665
1666 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1667 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1668 -1 if not known. */
1669
1670 int
1671 get_mem_align_offset (rtx mem, unsigned int align)
1672 {
1673 tree expr;
1674 unsigned HOST_WIDE_INT offset;
1675
1676 /* This function can't use
1677 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1678 || (MAX (MEM_ALIGN (mem),
1679 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1680 < align))
1681 return -1;
1682 else
1683 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1684 for two reasons:
1685 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1686 for <variable>. get_inner_reference doesn't handle it and
1687 even if it did, the alignment in that case needs to be determined
1688 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1689 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1690 isn't sufficiently aligned, the object it is in might be. */
1691 gcc_assert (MEM_P (mem));
1692 expr = MEM_EXPR (mem);
1693 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1694 return -1;
1695
1696 offset = MEM_OFFSET (mem);
1697 if (DECL_P (expr))
1698 {
1699 if (DECL_ALIGN (expr) < align)
1700 return -1;
1701 }
1702 else if (INDIRECT_REF_P (expr))
1703 {
1704 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1705 return -1;
1706 }
1707 else if (TREE_CODE (expr) == COMPONENT_REF)
1708 {
1709 while (1)
1710 {
1711 tree inner = TREE_OPERAND (expr, 0);
1712 tree field = TREE_OPERAND (expr, 1);
1713 tree byte_offset = component_ref_field_offset (expr);
1714 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1715
1716 if (!byte_offset
1717 || !tree_fits_uhwi_p (byte_offset)
1718 || !tree_fits_uhwi_p (bit_offset))
1719 return -1;
1720
1721 offset += tree_to_uhwi (byte_offset);
1722 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1723
1724 if (inner == NULL_TREE)
1725 {
1726 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1727 < (unsigned int) align)
1728 return -1;
1729 break;
1730 }
1731 else if (DECL_P (inner))
1732 {
1733 if (DECL_ALIGN (inner) < align)
1734 return -1;
1735 break;
1736 }
1737 else if (TREE_CODE (inner) != COMPONENT_REF)
1738 return -1;
1739 expr = inner;
1740 }
1741 }
1742 else
1743 return -1;
1744
1745 return offset & ((align / BITS_PER_UNIT) - 1);
1746 }
1747
1748 /* Given REF (a MEM) and T, either the type of X or the expression
1749 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1750 if we are making a new object of this type. BITPOS is nonzero if
1751 there is an offset outstanding on T that will be applied later. */
1752
1753 void
1754 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1755 HOST_WIDE_INT bitpos)
1756 {
1757 HOST_WIDE_INT apply_bitpos = 0;
1758 tree type;
1759 struct mem_attrs attrs, *defattrs, *refattrs;
1760 addr_space_t as;
1761
1762 /* It can happen that type_for_mode was given a mode for which there
1763 is no language-level type. In which case it returns NULL, which
1764 we can see here. */
1765 if (t == NULL_TREE)
1766 return;
1767
1768 type = TYPE_P (t) ? t : TREE_TYPE (t);
1769 if (type == error_mark_node)
1770 return;
1771
1772 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1773 wrong answer, as it assumes that DECL_RTL already has the right alias
1774 info. Callers should not set DECL_RTL until after the call to
1775 set_mem_attributes. */
1776 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1777
1778 memset (&attrs, 0, sizeof (attrs));
1779
1780 /* Get the alias set from the expression or type (perhaps using a
1781 front-end routine) and use it. */
1782 attrs.alias = get_alias_set (t);
1783
1784 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1785 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1786
1787 /* Default values from pre-existing memory attributes if present. */
1788 refattrs = MEM_ATTRS (ref);
1789 if (refattrs)
1790 {
1791 /* ??? Can this ever happen? Calling this routine on a MEM that
1792 already carries memory attributes should probably be invalid. */
1793 attrs.expr = refattrs->expr;
1794 attrs.offset_known_p = refattrs->offset_known_p;
1795 attrs.offset = refattrs->offset;
1796 attrs.size_known_p = refattrs->size_known_p;
1797 attrs.size = refattrs->size;
1798 attrs.align = refattrs->align;
1799 }
1800
1801 /* Otherwise, default values from the mode of the MEM reference. */
1802 else
1803 {
1804 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1805 gcc_assert (!defattrs->expr);
1806 gcc_assert (!defattrs->offset_known_p);
1807
1808 /* Respect mode size. */
1809 attrs.size_known_p = defattrs->size_known_p;
1810 attrs.size = defattrs->size;
1811 /* ??? Is this really necessary? We probably should always get
1812 the size from the type below. */
1813
1814 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1815 if T is an object, always compute the object alignment below. */
1816 if (TYPE_P (t))
1817 attrs.align = defattrs->align;
1818 else
1819 attrs.align = BITS_PER_UNIT;
1820 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1821 e.g. if the type carries an alignment attribute. Should we be
1822 able to simply always use TYPE_ALIGN? */
1823 }
1824
1825 /* We can set the alignment from the type if we are making an object,
1826 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1827 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1828 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1829
1830 /* If the size is known, we can set that. */
1831 tree new_size = TYPE_SIZE_UNIT (type);
1832
1833 /* The address-space is that of the type. */
1834 as = TYPE_ADDR_SPACE (type);
1835
1836 /* If T is not a type, we may be able to deduce some more information about
1837 the expression. */
1838 if (! TYPE_P (t))
1839 {
1840 tree base;
1841
1842 if (TREE_THIS_VOLATILE (t))
1843 MEM_VOLATILE_P (ref) = 1;
1844
1845 /* Now remove any conversions: they don't change what the underlying
1846 object is. Likewise for SAVE_EXPR. */
1847 while (CONVERT_EXPR_P (t)
1848 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1849 || TREE_CODE (t) == SAVE_EXPR)
1850 t = TREE_OPERAND (t, 0);
1851
1852 /* Note whether this expression can trap. */
1853 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1854
1855 base = get_base_address (t);
1856 if (base)
1857 {
1858 if (DECL_P (base)
1859 && TREE_READONLY (base)
1860 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1861 && !TREE_THIS_VOLATILE (base))
1862 MEM_READONLY_P (ref) = 1;
1863
1864 /* Mark static const strings readonly as well. */
1865 if (TREE_CODE (base) == STRING_CST
1866 && TREE_READONLY (base)
1867 && TREE_STATIC (base))
1868 MEM_READONLY_P (ref) = 1;
1869
1870 /* Address-space information is on the base object. */
1871 if (TREE_CODE (base) == MEM_REF
1872 || TREE_CODE (base) == TARGET_MEM_REF)
1873 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1874 0))));
1875 else
1876 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1877 }
1878
1879 /* If this expression uses it's parent's alias set, mark it such
1880 that we won't change it. */
1881 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1882 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1883
1884 /* If this is a decl, set the attributes of the MEM from it. */
1885 if (DECL_P (t))
1886 {
1887 attrs.expr = t;
1888 attrs.offset_known_p = true;
1889 attrs.offset = 0;
1890 apply_bitpos = bitpos;
1891 new_size = DECL_SIZE_UNIT (t);
1892 }
1893
1894 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1895 else if (CONSTANT_CLASS_P (t))
1896 ;
1897
1898 /* If this is a field reference, record it. */
1899 else if (TREE_CODE (t) == COMPONENT_REF)
1900 {
1901 attrs.expr = t;
1902 attrs.offset_known_p = true;
1903 attrs.offset = 0;
1904 apply_bitpos = bitpos;
1905 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1906 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1907 }
1908
1909 /* If this is an array reference, look for an outer field reference. */
1910 else if (TREE_CODE (t) == ARRAY_REF)
1911 {
1912 tree off_tree = size_zero_node;
1913 /* We can't modify t, because we use it at the end of the
1914 function. */
1915 tree t2 = t;
1916
1917 do
1918 {
1919 tree index = TREE_OPERAND (t2, 1);
1920 tree low_bound = array_ref_low_bound (t2);
1921 tree unit_size = array_ref_element_size (t2);
1922
1923 /* We assume all arrays have sizes that are a multiple of a byte.
1924 First subtract the lower bound, if any, in the type of the
1925 index, then convert to sizetype and multiply by the size of
1926 the array element. */
1927 if (! integer_zerop (low_bound))
1928 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1929 index, low_bound);
1930
1931 off_tree = size_binop (PLUS_EXPR,
1932 size_binop (MULT_EXPR,
1933 fold_convert (sizetype,
1934 index),
1935 unit_size),
1936 off_tree);
1937 t2 = TREE_OPERAND (t2, 0);
1938 }
1939 while (TREE_CODE (t2) == ARRAY_REF);
1940
1941 if (DECL_P (t2)
1942 || TREE_CODE (t2) == COMPONENT_REF)
1943 {
1944 attrs.expr = t2;
1945 attrs.offset_known_p = false;
1946 if (tree_fits_uhwi_p (off_tree))
1947 {
1948 attrs.offset_known_p = true;
1949 attrs.offset = tree_to_uhwi (off_tree);
1950 apply_bitpos = bitpos;
1951 }
1952 }
1953 /* Else do not record a MEM_EXPR. */
1954 }
1955
1956 /* If this is an indirect reference, record it. */
1957 else if (TREE_CODE (t) == MEM_REF
1958 || TREE_CODE (t) == TARGET_MEM_REF)
1959 {
1960 attrs.expr = t;
1961 attrs.offset_known_p = true;
1962 attrs.offset = 0;
1963 apply_bitpos = bitpos;
1964 }
1965
1966 /* Compute the alignment. */
1967 unsigned int obj_align;
1968 unsigned HOST_WIDE_INT obj_bitpos;
1969 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1970 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1971 if (obj_bitpos != 0)
1972 obj_align = (obj_bitpos & -obj_bitpos);
1973 attrs.align = MAX (attrs.align, obj_align);
1974 }
1975
1976 if (tree_fits_uhwi_p (new_size))
1977 {
1978 attrs.size_known_p = true;
1979 attrs.size = tree_to_uhwi (new_size);
1980 }
1981
1982 /* If we modified OFFSET based on T, then subtract the outstanding
1983 bit position offset. Similarly, increase the size of the accessed
1984 object to contain the negative offset. */
1985 if (apply_bitpos)
1986 {
1987 gcc_assert (attrs.offset_known_p);
1988 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1989 if (attrs.size_known_p)
1990 attrs.size += apply_bitpos / BITS_PER_UNIT;
1991 }
1992
1993 /* Now set the attributes we computed above. */
1994 attrs.addrspace = as;
1995 set_mem_attrs (ref, &attrs);
1996 }
1997
1998 void
1999 set_mem_attributes (rtx ref, tree t, int objectp)
2000 {
2001 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2002 }
2003
2004 /* Set the alias set of MEM to SET. */
2005
2006 void
2007 set_mem_alias_set (rtx mem, alias_set_type set)
2008 {
2009 struct mem_attrs attrs;
2010
2011 /* If the new and old alias sets don't conflict, something is wrong. */
2012 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2013 attrs = *get_mem_attrs (mem);
2014 attrs.alias = set;
2015 set_mem_attrs (mem, &attrs);
2016 }
2017
2018 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2019
2020 void
2021 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2022 {
2023 struct mem_attrs attrs;
2024
2025 attrs = *get_mem_attrs (mem);
2026 attrs.addrspace = addrspace;
2027 set_mem_attrs (mem, &attrs);
2028 }
2029
2030 /* Set the alignment of MEM to ALIGN bits. */
2031
2032 void
2033 set_mem_align (rtx mem, unsigned int align)
2034 {
2035 struct mem_attrs attrs;
2036
2037 attrs = *get_mem_attrs (mem);
2038 attrs.align = align;
2039 set_mem_attrs (mem, &attrs);
2040 }
2041
2042 /* Set the expr for MEM to EXPR. */
2043
2044 void
2045 set_mem_expr (rtx mem, tree expr)
2046 {
2047 struct mem_attrs attrs;
2048
2049 attrs = *get_mem_attrs (mem);
2050 attrs.expr = expr;
2051 set_mem_attrs (mem, &attrs);
2052 }
2053
2054 /* Set the offset of MEM to OFFSET. */
2055
2056 void
2057 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2058 {
2059 struct mem_attrs attrs;
2060
2061 attrs = *get_mem_attrs (mem);
2062 attrs.offset_known_p = true;
2063 attrs.offset = offset;
2064 set_mem_attrs (mem, &attrs);
2065 }
2066
2067 /* Clear the offset of MEM. */
2068
2069 void
2070 clear_mem_offset (rtx mem)
2071 {
2072 struct mem_attrs attrs;
2073
2074 attrs = *get_mem_attrs (mem);
2075 attrs.offset_known_p = false;
2076 set_mem_attrs (mem, &attrs);
2077 }
2078
2079 /* Set the size of MEM to SIZE. */
2080
2081 void
2082 set_mem_size (rtx mem, HOST_WIDE_INT size)
2083 {
2084 struct mem_attrs attrs;
2085
2086 attrs = *get_mem_attrs (mem);
2087 attrs.size_known_p = true;
2088 attrs.size = size;
2089 set_mem_attrs (mem, &attrs);
2090 }
2091
2092 /* Clear the size of MEM. */
2093
2094 void
2095 clear_mem_size (rtx mem)
2096 {
2097 struct mem_attrs attrs;
2098
2099 attrs = *get_mem_attrs (mem);
2100 attrs.size_known_p = false;
2101 set_mem_attrs (mem, &attrs);
2102 }
2103 \f
2104 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2105 and its address changed to ADDR. (VOIDmode means don't change the mode.
2106 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2107 returned memory location is required to be valid. INPLACE is true if any
2108 changes can be made directly to MEMREF or false if MEMREF must be treated
2109 as immutable.
2110
2111 The memory attributes are not changed. */
2112
2113 static rtx
2114 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2115 bool inplace)
2116 {
2117 addr_space_t as;
2118 rtx new_rtx;
2119
2120 gcc_assert (MEM_P (memref));
2121 as = MEM_ADDR_SPACE (memref);
2122 if (mode == VOIDmode)
2123 mode = GET_MODE (memref);
2124 if (addr == 0)
2125 addr = XEXP (memref, 0);
2126 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2127 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2128 return memref;
2129
2130 /* Don't validate address for LRA. LRA can make the address valid
2131 by itself in most efficient way. */
2132 if (validate && !lra_in_progress)
2133 {
2134 if (reload_in_progress || reload_completed)
2135 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2136 else
2137 addr = memory_address_addr_space (mode, addr, as);
2138 }
2139
2140 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2141 return memref;
2142
2143 if (inplace)
2144 {
2145 XEXP (memref, 0) = addr;
2146 return memref;
2147 }
2148
2149 new_rtx = gen_rtx_MEM (mode, addr);
2150 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2151 return new_rtx;
2152 }
2153
2154 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2155 way we are changing MEMREF, so we only preserve the alias set. */
2156
2157 rtx
2158 change_address (rtx memref, machine_mode mode, rtx addr)
2159 {
2160 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2161 machine_mode mmode = GET_MODE (new_rtx);
2162 struct mem_attrs attrs, *defattrs;
2163
2164 attrs = *get_mem_attrs (memref);
2165 defattrs = mode_mem_attrs[(int) mmode];
2166 attrs.expr = NULL_TREE;
2167 attrs.offset_known_p = false;
2168 attrs.size_known_p = defattrs->size_known_p;
2169 attrs.size = defattrs->size;
2170 attrs.align = defattrs->align;
2171
2172 /* If there are no changes, just return the original memory reference. */
2173 if (new_rtx == memref)
2174 {
2175 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2176 return new_rtx;
2177
2178 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2179 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2180 }
2181
2182 set_mem_attrs (new_rtx, &attrs);
2183 return new_rtx;
2184 }
2185
2186 /* Return a memory reference like MEMREF, but with its mode changed
2187 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2188 nonzero, the memory address is forced to be valid.
2189 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2190 and the caller is responsible for adjusting MEMREF base register.
2191 If ADJUST_OBJECT is zero, the underlying object associated with the
2192 memory reference is left unchanged and the caller is responsible for
2193 dealing with it. Otherwise, if the new memory reference is outside
2194 the underlying object, even partially, then the object is dropped.
2195 SIZE, if nonzero, is the size of an access in cases where MODE
2196 has no inherent size. */
2197
2198 rtx
2199 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2200 int validate, int adjust_address, int adjust_object,
2201 HOST_WIDE_INT size)
2202 {
2203 rtx addr = XEXP (memref, 0);
2204 rtx new_rtx;
2205 machine_mode address_mode;
2206 int pbits;
2207 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2208 unsigned HOST_WIDE_INT max_align;
2209 #ifdef POINTERS_EXTEND_UNSIGNED
2210 machine_mode pointer_mode
2211 = targetm.addr_space.pointer_mode (attrs.addrspace);
2212 #endif
2213
2214 /* VOIDmode means no mode change for change_address_1. */
2215 if (mode == VOIDmode)
2216 mode = GET_MODE (memref);
2217
2218 /* Take the size of non-BLKmode accesses from the mode. */
2219 defattrs = mode_mem_attrs[(int) mode];
2220 if (defattrs->size_known_p)
2221 size = defattrs->size;
2222
2223 /* If there are no changes, just return the original memory reference. */
2224 if (mode == GET_MODE (memref) && !offset
2225 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2226 && (!validate || memory_address_addr_space_p (mode, addr,
2227 attrs.addrspace)))
2228 return memref;
2229
2230 /* ??? Prefer to create garbage instead of creating shared rtl.
2231 This may happen even if offset is nonzero -- consider
2232 (plus (plus reg reg) const_int) -- so do this always. */
2233 addr = copy_rtx (addr);
2234
2235 /* Convert a possibly large offset to a signed value within the
2236 range of the target address space. */
2237 address_mode = get_address_mode (memref);
2238 pbits = GET_MODE_BITSIZE (address_mode);
2239 if (HOST_BITS_PER_WIDE_INT > pbits)
2240 {
2241 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2242 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2243 >> shift);
2244 }
2245
2246 if (adjust_address)
2247 {
2248 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2249 object, we can merge it into the LO_SUM. */
2250 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2251 && offset >= 0
2252 && (unsigned HOST_WIDE_INT) offset
2253 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2254 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2255 plus_constant (address_mode,
2256 XEXP (addr, 1), offset));
2257 #ifdef POINTERS_EXTEND_UNSIGNED
2258 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2259 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2260 the fact that pointers are not allowed to overflow. */
2261 else if (POINTERS_EXTEND_UNSIGNED > 0
2262 && GET_CODE (addr) == ZERO_EXTEND
2263 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2264 && trunc_int_for_mode (offset, pointer_mode) == offset)
2265 addr = gen_rtx_ZERO_EXTEND (address_mode,
2266 plus_constant (pointer_mode,
2267 XEXP (addr, 0), offset));
2268 #endif
2269 else
2270 addr = plus_constant (address_mode, addr, offset);
2271 }
2272
2273 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2274
2275 /* If the address is a REG, change_address_1 rightfully returns memref,
2276 but this would destroy memref's MEM_ATTRS. */
2277 if (new_rtx == memref && offset != 0)
2278 new_rtx = copy_rtx (new_rtx);
2279
2280 /* Conservatively drop the object if we don't know where we start from. */
2281 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2282 {
2283 attrs.expr = NULL_TREE;
2284 attrs.alias = 0;
2285 }
2286
2287 /* Compute the new values of the memory attributes due to this adjustment.
2288 We add the offsets and update the alignment. */
2289 if (attrs.offset_known_p)
2290 {
2291 attrs.offset += offset;
2292
2293 /* Drop the object if the new left end is not within its bounds. */
2294 if (adjust_object && attrs.offset < 0)
2295 {
2296 attrs.expr = NULL_TREE;
2297 attrs.alias = 0;
2298 }
2299 }
2300
2301 /* Compute the new alignment by taking the MIN of the alignment and the
2302 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2303 if zero. */
2304 if (offset != 0)
2305 {
2306 max_align = (offset & -offset) * BITS_PER_UNIT;
2307 attrs.align = MIN (attrs.align, max_align);
2308 }
2309
2310 if (size)
2311 {
2312 /* Drop the object if the new right end is not within its bounds. */
2313 if (adjust_object && (offset + size) > attrs.size)
2314 {
2315 attrs.expr = NULL_TREE;
2316 attrs.alias = 0;
2317 }
2318 attrs.size_known_p = true;
2319 attrs.size = size;
2320 }
2321 else if (attrs.size_known_p)
2322 {
2323 gcc_assert (!adjust_object);
2324 attrs.size -= offset;
2325 /* ??? The store_by_pieces machinery generates negative sizes,
2326 so don't assert for that here. */
2327 }
2328
2329 set_mem_attrs (new_rtx, &attrs);
2330
2331 return new_rtx;
2332 }
2333
2334 /* Return a memory reference like MEMREF, but with its mode changed
2335 to MODE and its address changed to ADDR, which is assumed to be
2336 MEMREF offset by OFFSET bytes. If VALIDATE is
2337 nonzero, the memory address is forced to be valid. */
2338
2339 rtx
2340 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2341 HOST_WIDE_INT offset, int validate)
2342 {
2343 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2344 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2345 }
2346
2347 /* Return a memory reference like MEMREF, but whose address is changed by
2348 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2349 known to be in OFFSET (possibly 1). */
2350
2351 rtx
2352 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2353 {
2354 rtx new_rtx, addr = XEXP (memref, 0);
2355 machine_mode address_mode;
2356 struct mem_attrs attrs, *defattrs;
2357
2358 attrs = *get_mem_attrs (memref);
2359 address_mode = get_address_mode (memref);
2360 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2361
2362 /* At this point we don't know _why_ the address is invalid. It
2363 could have secondary memory references, multiplies or anything.
2364
2365 However, if we did go and rearrange things, we can wind up not
2366 being able to recognize the magic around pic_offset_table_rtx.
2367 This stuff is fragile, and is yet another example of why it is
2368 bad to expose PIC machinery too early. */
2369 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2370 attrs.addrspace)
2371 && GET_CODE (addr) == PLUS
2372 && XEXP (addr, 0) == pic_offset_table_rtx)
2373 {
2374 addr = force_reg (GET_MODE (addr), addr);
2375 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2376 }
2377
2378 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2379 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2380
2381 /* If there are no changes, just return the original memory reference. */
2382 if (new_rtx == memref)
2383 return new_rtx;
2384
2385 /* Update the alignment to reflect the offset. Reset the offset, which
2386 we don't know. */
2387 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2388 attrs.offset_known_p = false;
2389 attrs.size_known_p = defattrs->size_known_p;
2390 attrs.size = defattrs->size;
2391 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2392 set_mem_attrs (new_rtx, &attrs);
2393 return new_rtx;
2394 }
2395
2396 /* Return a memory reference like MEMREF, but with its address changed to
2397 ADDR. The caller is asserting that the actual piece of memory pointed
2398 to is the same, just the form of the address is being changed, such as
2399 by putting something into a register. INPLACE is true if any changes
2400 can be made directly to MEMREF or false if MEMREF must be treated as
2401 immutable. */
2402
2403 rtx
2404 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2405 {
2406 /* change_address_1 copies the memory attribute structure without change
2407 and that's exactly what we want here. */
2408 update_temp_slot_address (XEXP (memref, 0), addr);
2409 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2410 }
2411
2412 /* Likewise, but the reference is not required to be valid. */
2413
2414 rtx
2415 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2416 {
2417 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2418 }
2419
2420 /* Return a memory reference like MEMREF, but with its mode widened to
2421 MODE and offset by OFFSET. This would be used by targets that e.g.
2422 cannot issue QImode memory operations and have to use SImode memory
2423 operations plus masking logic. */
2424
2425 rtx
2426 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2427 {
2428 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2429 struct mem_attrs attrs;
2430 unsigned int size = GET_MODE_SIZE (mode);
2431
2432 /* If there are no changes, just return the original memory reference. */
2433 if (new_rtx == memref)
2434 return new_rtx;
2435
2436 attrs = *get_mem_attrs (new_rtx);
2437
2438 /* If we don't know what offset we were at within the expression, then
2439 we can't know if we've overstepped the bounds. */
2440 if (! attrs.offset_known_p)
2441 attrs.expr = NULL_TREE;
2442
2443 while (attrs.expr)
2444 {
2445 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2446 {
2447 tree field = TREE_OPERAND (attrs.expr, 1);
2448 tree offset = component_ref_field_offset (attrs.expr);
2449
2450 if (! DECL_SIZE_UNIT (field))
2451 {
2452 attrs.expr = NULL_TREE;
2453 break;
2454 }
2455
2456 /* Is the field at least as large as the access? If so, ok,
2457 otherwise strip back to the containing structure. */
2458 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2459 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2460 && attrs.offset >= 0)
2461 break;
2462
2463 if (! tree_fits_uhwi_p (offset))
2464 {
2465 attrs.expr = NULL_TREE;
2466 break;
2467 }
2468
2469 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2470 attrs.offset += tree_to_uhwi (offset);
2471 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2472 / BITS_PER_UNIT);
2473 }
2474 /* Similarly for the decl. */
2475 else if (DECL_P (attrs.expr)
2476 && DECL_SIZE_UNIT (attrs.expr)
2477 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2478 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2479 && (! attrs.offset_known_p || attrs.offset >= 0))
2480 break;
2481 else
2482 {
2483 /* The widened memory access overflows the expression, which means
2484 that it could alias another expression. Zap it. */
2485 attrs.expr = NULL_TREE;
2486 break;
2487 }
2488 }
2489
2490 if (! attrs.expr)
2491 attrs.offset_known_p = false;
2492
2493 /* The widened memory may alias other stuff, so zap the alias set. */
2494 /* ??? Maybe use get_alias_set on any remaining expression. */
2495 attrs.alias = 0;
2496 attrs.size_known_p = true;
2497 attrs.size = size;
2498 set_mem_attrs (new_rtx, &attrs);
2499 return new_rtx;
2500 }
2501 \f
2502 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2503 static GTY(()) tree spill_slot_decl;
2504
2505 tree
2506 get_spill_slot_decl (bool force_build_p)
2507 {
2508 tree d = spill_slot_decl;
2509 rtx rd;
2510 struct mem_attrs attrs;
2511
2512 if (d || !force_build_p)
2513 return d;
2514
2515 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2516 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2517 DECL_ARTIFICIAL (d) = 1;
2518 DECL_IGNORED_P (d) = 1;
2519 TREE_USED (d) = 1;
2520 spill_slot_decl = d;
2521
2522 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2523 MEM_NOTRAP_P (rd) = 1;
2524 attrs = *mode_mem_attrs[(int) BLKmode];
2525 attrs.alias = new_alias_set ();
2526 attrs.expr = d;
2527 set_mem_attrs (rd, &attrs);
2528 SET_DECL_RTL (d, rd);
2529
2530 return d;
2531 }
2532
2533 /* Given MEM, a result from assign_stack_local, fill in the memory
2534 attributes as appropriate for a register allocator spill slot.
2535 These slots are not aliasable by other memory. We arrange for
2536 them all to use a single MEM_EXPR, so that the aliasing code can
2537 work properly in the case of shared spill slots. */
2538
2539 void
2540 set_mem_attrs_for_spill (rtx mem)
2541 {
2542 struct mem_attrs attrs;
2543 rtx addr;
2544
2545 attrs = *get_mem_attrs (mem);
2546 attrs.expr = get_spill_slot_decl (true);
2547 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2548 attrs.addrspace = ADDR_SPACE_GENERIC;
2549
2550 /* We expect the incoming memory to be of the form:
2551 (mem:MODE (plus (reg sfp) (const_int offset)))
2552 with perhaps the plus missing for offset = 0. */
2553 addr = XEXP (mem, 0);
2554 attrs.offset_known_p = true;
2555 attrs.offset = 0;
2556 if (GET_CODE (addr) == PLUS
2557 && CONST_INT_P (XEXP (addr, 1)))
2558 attrs.offset = INTVAL (XEXP (addr, 1));
2559
2560 set_mem_attrs (mem, &attrs);
2561 MEM_NOTRAP_P (mem) = 1;
2562 }
2563 \f
2564 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2565
2566 rtx_code_label *
2567 gen_label_rtx (void)
2568 {
2569 return as_a <rtx_code_label *> (
2570 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2571 NULL, label_num++, NULL));
2572 }
2573 \f
2574 /* For procedure integration. */
2575
2576 /* Install new pointers to the first and last insns in the chain.
2577 Also, set cur_insn_uid to one higher than the last in use.
2578 Used for an inline-procedure after copying the insn chain. */
2579
2580 void
2581 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2582 {
2583 rtx_insn *insn;
2584
2585 set_first_insn (first);
2586 set_last_insn (last);
2587 cur_insn_uid = 0;
2588
2589 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2590 {
2591 int debug_count = 0;
2592
2593 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2594 cur_debug_insn_uid = 0;
2595
2596 for (insn = first; insn; insn = NEXT_INSN (insn))
2597 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2598 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2599 else
2600 {
2601 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2602 if (DEBUG_INSN_P (insn))
2603 debug_count++;
2604 }
2605
2606 if (debug_count)
2607 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2608 else
2609 cur_debug_insn_uid++;
2610 }
2611 else
2612 for (insn = first; insn; insn = NEXT_INSN (insn))
2613 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2614
2615 cur_insn_uid++;
2616 }
2617 \f
2618 /* Go through all the RTL insn bodies and copy any invalid shared
2619 structure. This routine should only be called once. */
2620
2621 static void
2622 unshare_all_rtl_1 (rtx_insn *insn)
2623 {
2624 /* Unshare just about everything else. */
2625 unshare_all_rtl_in_chain (insn);
2626
2627 /* Make sure the addresses of stack slots found outside the insn chain
2628 (such as, in DECL_RTL of a variable) are not shared
2629 with the insn chain.
2630
2631 This special care is necessary when the stack slot MEM does not
2632 actually appear in the insn chain. If it does appear, its address
2633 is unshared from all else at that point. */
2634 stack_slot_list = safe_as_a <rtx_expr_list *> (
2635 copy_rtx_if_shared (stack_slot_list));
2636 }
2637
2638 /* Go through all the RTL insn bodies and copy any invalid shared
2639 structure, again. This is a fairly expensive thing to do so it
2640 should be done sparingly. */
2641
2642 void
2643 unshare_all_rtl_again (rtx_insn *insn)
2644 {
2645 rtx_insn *p;
2646 tree decl;
2647
2648 for (p = insn; p; p = NEXT_INSN (p))
2649 if (INSN_P (p))
2650 {
2651 reset_used_flags (PATTERN (p));
2652 reset_used_flags (REG_NOTES (p));
2653 if (CALL_P (p))
2654 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2655 }
2656
2657 /* Make sure that virtual stack slots are not shared. */
2658 set_used_decls (DECL_INITIAL (cfun->decl));
2659
2660 /* Make sure that virtual parameters are not shared. */
2661 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2662 set_used_flags (DECL_RTL (decl));
2663
2664 reset_used_flags (stack_slot_list);
2665
2666 unshare_all_rtl_1 (insn);
2667 }
2668
2669 unsigned int
2670 unshare_all_rtl (void)
2671 {
2672 unshare_all_rtl_1 (get_insns ());
2673 return 0;
2674 }
2675
2676
2677 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2678 Recursively does the same for subexpressions. */
2679
2680 static void
2681 verify_rtx_sharing (rtx orig, rtx insn)
2682 {
2683 rtx x = orig;
2684 int i;
2685 enum rtx_code code;
2686 const char *format_ptr;
2687
2688 if (x == 0)
2689 return;
2690
2691 code = GET_CODE (x);
2692
2693 /* These types may be freely shared. */
2694
2695 switch (code)
2696 {
2697 case REG:
2698 case DEBUG_EXPR:
2699 case VALUE:
2700 CASE_CONST_ANY:
2701 case SYMBOL_REF:
2702 case LABEL_REF:
2703 case CODE_LABEL:
2704 case PC:
2705 case CC0:
2706 case RETURN:
2707 case SIMPLE_RETURN:
2708 case SCRATCH:
2709 /* SCRATCH must be shared because they represent distinct values. */
2710 return;
2711 case CLOBBER:
2712 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2713 clobbers or clobbers of hard registers that originated as pseudos.
2714 This is needed to allow safe register renaming. */
2715 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2716 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2717 return;
2718 break;
2719
2720 case CONST:
2721 if (shared_const_p (orig))
2722 return;
2723 break;
2724
2725 case MEM:
2726 /* A MEM is allowed to be shared if its address is constant. */
2727 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2728 || reload_completed || reload_in_progress)
2729 return;
2730
2731 break;
2732
2733 default:
2734 break;
2735 }
2736
2737 /* This rtx may not be shared. If it has already been seen,
2738 replace it with a copy of itself. */
2739 #ifdef ENABLE_CHECKING
2740 if (RTX_FLAG (x, used))
2741 {
2742 error ("invalid rtl sharing found in the insn");
2743 debug_rtx (insn);
2744 error ("shared rtx");
2745 debug_rtx (x);
2746 internal_error ("internal consistency failure");
2747 }
2748 #endif
2749 gcc_assert (!RTX_FLAG (x, used));
2750
2751 RTX_FLAG (x, used) = 1;
2752
2753 /* Now scan the subexpressions recursively. */
2754
2755 format_ptr = GET_RTX_FORMAT (code);
2756
2757 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2758 {
2759 switch (*format_ptr++)
2760 {
2761 case 'e':
2762 verify_rtx_sharing (XEXP (x, i), insn);
2763 break;
2764
2765 case 'E':
2766 if (XVEC (x, i) != NULL)
2767 {
2768 int j;
2769 int len = XVECLEN (x, i);
2770
2771 for (j = 0; j < len; j++)
2772 {
2773 /* We allow sharing of ASM_OPERANDS inside single
2774 instruction. */
2775 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2776 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2777 == ASM_OPERANDS))
2778 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2779 else
2780 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2781 }
2782 }
2783 break;
2784 }
2785 }
2786 return;
2787 }
2788
2789 /* Reset used-flags for INSN. */
2790
2791 static void
2792 reset_insn_used_flags (rtx insn)
2793 {
2794 gcc_assert (INSN_P (insn));
2795 reset_used_flags (PATTERN (insn));
2796 reset_used_flags (REG_NOTES (insn));
2797 if (CALL_P (insn))
2798 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2799 }
2800
2801 /* Go through all the RTL insn bodies and clear all the USED bits. */
2802
2803 static void
2804 reset_all_used_flags (void)
2805 {
2806 rtx_insn *p;
2807
2808 for (p = get_insns (); p; p = NEXT_INSN (p))
2809 if (INSN_P (p))
2810 {
2811 rtx pat = PATTERN (p);
2812 if (GET_CODE (pat) != SEQUENCE)
2813 reset_insn_used_flags (p);
2814 else
2815 {
2816 gcc_assert (REG_NOTES (p) == NULL);
2817 for (int i = 0; i < XVECLEN (pat, 0); i++)
2818 {
2819 rtx insn = XVECEXP (pat, 0, i);
2820 if (INSN_P (insn))
2821 reset_insn_used_flags (insn);
2822 }
2823 }
2824 }
2825 }
2826
2827 /* Verify sharing in INSN. */
2828
2829 static void
2830 verify_insn_sharing (rtx insn)
2831 {
2832 gcc_assert (INSN_P (insn));
2833 reset_used_flags (PATTERN (insn));
2834 reset_used_flags (REG_NOTES (insn));
2835 if (CALL_P (insn))
2836 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2837 }
2838
2839 /* Go through all the RTL insn bodies and check that there is no unexpected
2840 sharing in between the subexpressions. */
2841
2842 DEBUG_FUNCTION void
2843 verify_rtl_sharing (void)
2844 {
2845 rtx_insn *p;
2846
2847 timevar_push (TV_VERIFY_RTL_SHARING);
2848
2849 reset_all_used_flags ();
2850
2851 for (p = get_insns (); p; p = NEXT_INSN (p))
2852 if (INSN_P (p))
2853 {
2854 rtx pat = PATTERN (p);
2855 if (GET_CODE (pat) != SEQUENCE)
2856 verify_insn_sharing (p);
2857 else
2858 for (int i = 0; i < XVECLEN (pat, 0); i++)
2859 {
2860 rtx insn = XVECEXP (pat, 0, i);
2861 if (INSN_P (insn))
2862 verify_insn_sharing (insn);
2863 }
2864 }
2865
2866 reset_all_used_flags ();
2867
2868 timevar_pop (TV_VERIFY_RTL_SHARING);
2869 }
2870
2871 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2872 Assumes the mark bits are cleared at entry. */
2873
2874 void
2875 unshare_all_rtl_in_chain (rtx_insn *insn)
2876 {
2877 for (; insn; insn = NEXT_INSN (insn))
2878 if (INSN_P (insn))
2879 {
2880 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2881 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2882 if (CALL_P (insn))
2883 CALL_INSN_FUNCTION_USAGE (insn)
2884 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2885 }
2886 }
2887
2888 /* Go through all virtual stack slots of a function and mark them as
2889 shared. We never replace the DECL_RTLs themselves with a copy,
2890 but expressions mentioned into a DECL_RTL cannot be shared with
2891 expressions in the instruction stream.
2892
2893 Note that reload may convert pseudo registers into memories in-place.
2894 Pseudo registers are always shared, but MEMs never are. Thus if we
2895 reset the used flags on MEMs in the instruction stream, we must set
2896 them again on MEMs that appear in DECL_RTLs. */
2897
2898 static void
2899 set_used_decls (tree blk)
2900 {
2901 tree t;
2902
2903 /* Mark decls. */
2904 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2905 if (DECL_RTL_SET_P (t))
2906 set_used_flags (DECL_RTL (t));
2907
2908 /* Now process sub-blocks. */
2909 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2910 set_used_decls (t);
2911 }
2912
2913 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2914 Recursively does the same for subexpressions. Uses
2915 copy_rtx_if_shared_1 to reduce stack space. */
2916
2917 rtx
2918 copy_rtx_if_shared (rtx orig)
2919 {
2920 copy_rtx_if_shared_1 (&orig);
2921 return orig;
2922 }
2923
2924 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2925 use. Recursively does the same for subexpressions. */
2926
2927 static void
2928 copy_rtx_if_shared_1 (rtx *orig1)
2929 {
2930 rtx x;
2931 int i;
2932 enum rtx_code code;
2933 rtx *last_ptr;
2934 const char *format_ptr;
2935 int copied = 0;
2936 int length;
2937
2938 /* Repeat is used to turn tail-recursion into iteration. */
2939 repeat:
2940 x = *orig1;
2941
2942 if (x == 0)
2943 return;
2944
2945 code = GET_CODE (x);
2946
2947 /* These types may be freely shared. */
2948
2949 switch (code)
2950 {
2951 case REG:
2952 case DEBUG_EXPR:
2953 case VALUE:
2954 CASE_CONST_ANY:
2955 case SYMBOL_REF:
2956 case LABEL_REF:
2957 case CODE_LABEL:
2958 case PC:
2959 case CC0:
2960 case RETURN:
2961 case SIMPLE_RETURN:
2962 case SCRATCH:
2963 /* SCRATCH must be shared because they represent distinct values. */
2964 return;
2965 case CLOBBER:
2966 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2967 clobbers or clobbers of hard registers that originated as pseudos.
2968 This is needed to allow safe register renaming. */
2969 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2970 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2971 return;
2972 break;
2973
2974 case CONST:
2975 if (shared_const_p (x))
2976 return;
2977 break;
2978
2979 case DEBUG_INSN:
2980 case INSN:
2981 case JUMP_INSN:
2982 case CALL_INSN:
2983 case NOTE:
2984 case BARRIER:
2985 /* The chain of insns is not being copied. */
2986 return;
2987
2988 default:
2989 break;
2990 }
2991
2992 /* This rtx may not be shared. If it has already been seen,
2993 replace it with a copy of itself. */
2994
2995 if (RTX_FLAG (x, used))
2996 {
2997 x = shallow_copy_rtx (x);
2998 copied = 1;
2999 }
3000 RTX_FLAG (x, used) = 1;
3001
3002 /* Now scan the subexpressions recursively.
3003 We can store any replaced subexpressions directly into X
3004 since we know X is not shared! Any vectors in X
3005 must be copied if X was copied. */
3006
3007 format_ptr = GET_RTX_FORMAT (code);
3008 length = GET_RTX_LENGTH (code);
3009 last_ptr = NULL;
3010
3011 for (i = 0; i < length; i++)
3012 {
3013 switch (*format_ptr++)
3014 {
3015 case 'e':
3016 if (last_ptr)
3017 copy_rtx_if_shared_1 (last_ptr);
3018 last_ptr = &XEXP (x, i);
3019 break;
3020
3021 case 'E':
3022 if (XVEC (x, i) != NULL)
3023 {
3024 int j;
3025 int len = XVECLEN (x, i);
3026
3027 /* Copy the vector iff I copied the rtx and the length
3028 is nonzero. */
3029 if (copied && len > 0)
3030 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3031
3032 /* Call recursively on all inside the vector. */
3033 for (j = 0; j < len; j++)
3034 {
3035 if (last_ptr)
3036 copy_rtx_if_shared_1 (last_ptr);
3037 last_ptr = &XVECEXP (x, i, j);
3038 }
3039 }
3040 break;
3041 }
3042 }
3043 *orig1 = x;
3044 if (last_ptr)
3045 {
3046 orig1 = last_ptr;
3047 goto repeat;
3048 }
3049 return;
3050 }
3051
3052 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3053
3054 static void
3055 mark_used_flags (rtx x, int flag)
3056 {
3057 int i, j;
3058 enum rtx_code code;
3059 const char *format_ptr;
3060 int length;
3061
3062 /* Repeat is used to turn tail-recursion into iteration. */
3063 repeat:
3064 if (x == 0)
3065 return;
3066
3067 code = GET_CODE (x);
3068
3069 /* These types may be freely shared so we needn't do any resetting
3070 for them. */
3071
3072 switch (code)
3073 {
3074 case REG:
3075 case DEBUG_EXPR:
3076 case VALUE:
3077 CASE_CONST_ANY:
3078 case SYMBOL_REF:
3079 case CODE_LABEL:
3080 case PC:
3081 case CC0:
3082 case RETURN:
3083 case SIMPLE_RETURN:
3084 return;
3085
3086 case DEBUG_INSN:
3087 case INSN:
3088 case JUMP_INSN:
3089 case CALL_INSN:
3090 case NOTE:
3091 case LABEL_REF:
3092 case BARRIER:
3093 /* The chain of insns is not being copied. */
3094 return;
3095
3096 default:
3097 break;
3098 }
3099
3100 RTX_FLAG (x, used) = flag;
3101
3102 format_ptr = GET_RTX_FORMAT (code);
3103 length = GET_RTX_LENGTH (code);
3104
3105 for (i = 0; i < length; i++)
3106 {
3107 switch (*format_ptr++)
3108 {
3109 case 'e':
3110 if (i == length-1)
3111 {
3112 x = XEXP (x, i);
3113 goto repeat;
3114 }
3115 mark_used_flags (XEXP (x, i), flag);
3116 break;
3117
3118 case 'E':
3119 for (j = 0; j < XVECLEN (x, i); j++)
3120 mark_used_flags (XVECEXP (x, i, j), flag);
3121 break;
3122 }
3123 }
3124 }
3125
3126 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3127 to look for shared sub-parts. */
3128
3129 void
3130 reset_used_flags (rtx x)
3131 {
3132 mark_used_flags (x, 0);
3133 }
3134
3135 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3136 to look for shared sub-parts. */
3137
3138 void
3139 set_used_flags (rtx x)
3140 {
3141 mark_used_flags (x, 1);
3142 }
3143 \f
3144 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3145 Return X or the rtx for the pseudo reg the value of X was copied into.
3146 OTHER must be valid as a SET_DEST. */
3147
3148 rtx
3149 make_safe_from (rtx x, rtx other)
3150 {
3151 while (1)
3152 switch (GET_CODE (other))
3153 {
3154 case SUBREG:
3155 other = SUBREG_REG (other);
3156 break;
3157 case STRICT_LOW_PART:
3158 case SIGN_EXTEND:
3159 case ZERO_EXTEND:
3160 other = XEXP (other, 0);
3161 break;
3162 default:
3163 goto done;
3164 }
3165 done:
3166 if ((MEM_P (other)
3167 && ! CONSTANT_P (x)
3168 && !REG_P (x)
3169 && GET_CODE (x) != SUBREG)
3170 || (REG_P (other)
3171 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3172 || reg_mentioned_p (other, x))))
3173 {
3174 rtx temp = gen_reg_rtx (GET_MODE (x));
3175 emit_move_insn (temp, x);
3176 return temp;
3177 }
3178 return x;
3179 }
3180 \f
3181 /* Emission of insns (adding them to the doubly-linked list). */
3182
3183 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3184
3185 rtx_insn *
3186 get_last_insn_anywhere (void)
3187 {
3188 struct sequence_stack *seq;
3189 for (seq = get_current_sequence (); seq; seq = seq->next)
3190 if (seq->last != 0)
3191 return seq->last;
3192 return 0;
3193 }
3194
3195 /* Return the first nonnote insn emitted in current sequence or current
3196 function. This routine looks inside SEQUENCEs. */
3197
3198 rtx_insn *
3199 get_first_nonnote_insn (void)
3200 {
3201 rtx_insn *insn = get_insns ();
3202
3203 if (insn)
3204 {
3205 if (NOTE_P (insn))
3206 for (insn = next_insn (insn);
3207 insn && NOTE_P (insn);
3208 insn = next_insn (insn))
3209 continue;
3210 else
3211 {
3212 if (NONJUMP_INSN_P (insn)
3213 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3214 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3215 }
3216 }
3217
3218 return insn;
3219 }
3220
3221 /* Return the last nonnote insn emitted in current sequence or current
3222 function. This routine looks inside SEQUENCEs. */
3223
3224 rtx_insn *
3225 get_last_nonnote_insn (void)
3226 {
3227 rtx_insn *insn = get_last_insn ();
3228
3229 if (insn)
3230 {
3231 if (NOTE_P (insn))
3232 for (insn = previous_insn (insn);
3233 insn && NOTE_P (insn);
3234 insn = previous_insn (insn))
3235 continue;
3236 else
3237 {
3238 if (NONJUMP_INSN_P (insn))
3239 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3240 insn = seq->insn (seq->len () - 1);
3241 }
3242 }
3243
3244 return insn;
3245 }
3246
3247 /* Return the number of actual (non-debug) insns emitted in this
3248 function. */
3249
3250 int
3251 get_max_insn_count (void)
3252 {
3253 int n = cur_insn_uid;
3254
3255 /* The table size must be stable across -g, to avoid codegen
3256 differences due to debug insns, and not be affected by
3257 -fmin-insn-uid, to avoid excessive table size and to simplify
3258 debugging of -fcompare-debug failures. */
3259 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3260 n -= cur_debug_insn_uid;
3261 else
3262 n -= MIN_NONDEBUG_INSN_UID;
3263
3264 return n;
3265 }
3266
3267 \f
3268 /* Return the next insn. If it is a SEQUENCE, return the first insn
3269 of the sequence. */
3270
3271 rtx_insn *
3272 next_insn (rtx_insn *insn)
3273 {
3274 if (insn)
3275 {
3276 insn = NEXT_INSN (insn);
3277 if (insn && NONJUMP_INSN_P (insn)
3278 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3279 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3280 }
3281
3282 return insn;
3283 }
3284
3285 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3286 of the sequence. */
3287
3288 rtx_insn *
3289 previous_insn (rtx_insn *insn)
3290 {
3291 if (insn)
3292 {
3293 insn = PREV_INSN (insn);
3294 if (insn && NONJUMP_INSN_P (insn))
3295 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3296 insn = seq->insn (seq->len () - 1);
3297 }
3298
3299 return insn;
3300 }
3301
3302 /* Return the next insn after INSN that is not a NOTE. This routine does not
3303 look inside SEQUENCEs. */
3304
3305 rtx_insn *
3306 next_nonnote_insn (rtx uncast_insn)
3307 {
3308 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3309 while (insn)
3310 {
3311 insn = NEXT_INSN (insn);
3312 if (insn == 0 || !NOTE_P (insn))
3313 break;
3314 }
3315
3316 return insn;
3317 }
3318
3319 /* Return the next insn after INSN that is not a NOTE, but stop the
3320 search before we enter another basic block. This routine does not
3321 look inside SEQUENCEs. */
3322
3323 rtx_insn *
3324 next_nonnote_insn_bb (rtx_insn *insn)
3325 {
3326 while (insn)
3327 {
3328 insn = NEXT_INSN (insn);
3329 if (insn == 0 || !NOTE_P (insn))
3330 break;
3331 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3332 return NULL;
3333 }
3334
3335 return insn;
3336 }
3337
3338 /* Return the previous insn before INSN that is not a NOTE. This routine does
3339 not look inside SEQUENCEs. */
3340
3341 rtx_insn *
3342 prev_nonnote_insn (rtx uncast_insn)
3343 {
3344 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3345
3346 while (insn)
3347 {
3348 insn = PREV_INSN (insn);
3349 if (insn == 0 || !NOTE_P (insn))
3350 break;
3351 }
3352
3353 return insn;
3354 }
3355
3356 /* Return the previous insn before INSN that is not a NOTE, but stop
3357 the search before we enter another basic block. This routine does
3358 not look inside SEQUENCEs. */
3359
3360 rtx_insn *
3361 prev_nonnote_insn_bb (rtx uncast_insn)
3362 {
3363 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3364
3365 while (insn)
3366 {
3367 insn = PREV_INSN (insn);
3368 if (insn == 0 || !NOTE_P (insn))
3369 break;
3370 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3371 return NULL;
3372 }
3373
3374 return insn;
3375 }
3376
3377 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3378 routine does not look inside SEQUENCEs. */
3379
3380 rtx_insn *
3381 next_nondebug_insn (rtx uncast_insn)
3382 {
3383 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3384
3385 while (insn)
3386 {
3387 insn = NEXT_INSN (insn);
3388 if (insn == 0 || !DEBUG_INSN_P (insn))
3389 break;
3390 }
3391
3392 return insn;
3393 }
3394
3395 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3396 This routine does not look inside SEQUENCEs. */
3397
3398 rtx_insn *
3399 prev_nondebug_insn (rtx uncast_insn)
3400 {
3401 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3402
3403 while (insn)
3404 {
3405 insn = PREV_INSN (insn);
3406 if (insn == 0 || !DEBUG_INSN_P (insn))
3407 break;
3408 }
3409
3410 return insn;
3411 }
3412
3413 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3414 This routine does not look inside SEQUENCEs. */
3415
3416 rtx_insn *
3417 next_nonnote_nondebug_insn (rtx uncast_insn)
3418 {
3419 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3420
3421 while (insn)
3422 {
3423 insn = NEXT_INSN (insn);
3424 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3425 break;
3426 }
3427
3428 return insn;
3429 }
3430
3431 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3432 This routine does not look inside SEQUENCEs. */
3433
3434 rtx_insn *
3435 prev_nonnote_nondebug_insn (rtx uncast_insn)
3436 {
3437 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3438
3439 while (insn)
3440 {
3441 insn = PREV_INSN (insn);
3442 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3443 break;
3444 }
3445
3446 return insn;
3447 }
3448
3449 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3450 or 0, if there is none. This routine does not look inside
3451 SEQUENCEs. */
3452
3453 rtx_insn *
3454 next_real_insn (rtx uncast_insn)
3455 {
3456 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3457
3458 while (insn)
3459 {
3460 insn = NEXT_INSN (insn);
3461 if (insn == 0 || INSN_P (insn))
3462 break;
3463 }
3464
3465 return insn;
3466 }
3467
3468 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3469 or 0, if there is none. This routine does not look inside
3470 SEQUENCEs. */
3471
3472 rtx_insn *
3473 prev_real_insn (rtx uncast_insn)
3474 {
3475 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3476
3477 while (insn)
3478 {
3479 insn = PREV_INSN (insn);
3480 if (insn == 0 || INSN_P (insn))
3481 break;
3482 }
3483
3484 return insn;
3485 }
3486
3487 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3488 This routine does not look inside SEQUENCEs. */
3489
3490 rtx_call_insn *
3491 last_call_insn (void)
3492 {
3493 rtx_insn *insn;
3494
3495 for (insn = get_last_insn ();
3496 insn && !CALL_P (insn);
3497 insn = PREV_INSN (insn))
3498 ;
3499
3500 return safe_as_a <rtx_call_insn *> (insn);
3501 }
3502
3503 /* Find the next insn after INSN that really does something. This routine
3504 does not look inside SEQUENCEs. After reload this also skips over
3505 standalone USE and CLOBBER insn. */
3506
3507 int
3508 active_insn_p (const_rtx insn)
3509 {
3510 return (CALL_P (insn) || JUMP_P (insn)
3511 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3512 || (NONJUMP_INSN_P (insn)
3513 && (! reload_completed
3514 || (GET_CODE (PATTERN (insn)) != USE
3515 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3516 }
3517
3518 rtx_insn *
3519 next_active_insn (rtx uncast_insn)
3520 {
3521 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3522
3523 while (insn)
3524 {
3525 insn = NEXT_INSN (insn);
3526 if (insn == 0 || active_insn_p (insn))
3527 break;
3528 }
3529
3530 return insn;
3531 }
3532
3533 /* Find the last insn before INSN that really does something. This routine
3534 does not look inside SEQUENCEs. After reload this also skips over
3535 standalone USE and CLOBBER insn. */
3536
3537 rtx_insn *
3538 prev_active_insn (rtx uncast_insn)
3539 {
3540 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3541
3542 while (insn)
3543 {
3544 insn = PREV_INSN (insn);
3545 if (insn == 0 || active_insn_p (insn))
3546 break;
3547 }
3548
3549 return insn;
3550 }
3551 \f
3552 /* Return the next insn that uses CC0 after INSN, which is assumed to
3553 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3554 applied to the result of this function should yield INSN).
3555
3556 Normally, this is simply the next insn. However, if a REG_CC_USER note
3557 is present, it contains the insn that uses CC0.
3558
3559 Return 0 if we can't find the insn. */
3560
3561 rtx_insn *
3562 next_cc0_user (rtx uncast_insn)
3563 {
3564 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3565
3566 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3567
3568 if (note)
3569 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3570
3571 insn = next_nonnote_insn (insn);
3572 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3573 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3574
3575 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3576 return insn;
3577
3578 return 0;
3579 }
3580
3581 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3582 note, it is the previous insn. */
3583
3584 rtx_insn *
3585 prev_cc0_setter (rtx_insn *insn)
3586 {
3587 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3588
3589 if (note)
3590 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3591
3592 insn = prev_nonnote_insn (insn);
3593 gcc_assert (sets_cc0_p (PATTERN (insn)));
3594
3595 return insn;
3596 }
3597
3598 #ifdef AUTO_INC_DEC
3599 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3600
3601 static int
3602 find_auto_inc (const_rtx x, const_rtx reg)
3603 {
3604 subrtx_iterator::array_type array;
3605 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3606 {
3607 const_rtx x = *iter;
3608 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3609 && rtx_equal_p (reg, XEXP (x, 0)))
3610 return true;
3611 }
3612 return false;
3613 }
3614 #endif
3615
3616 /* Increment the label uses for all labels present in rtx. */
3617
3618 static void
3619 mark_label_nuses (rtx x)
3620 {
3621 enum rtx_code code;
3622 int i, j;
3623 const char *fmt;
3624
3625 code = GET_CODE (x);
3626 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3627 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3628
3629 fmt = GET_RTX_FORMAT (code);
3630 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3631 {
3632 if (fmt[i] == 'e')
3633 mark_label_nuses (XEXP (x, i));
3634 else if (fmt[i] == 'E')
3635 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3636 mark_label_nuses (XVECEXP (x, i, j));
3637 }
3638 }
3639
3640 \f
3641 /* Try splitting insns that can be split for better scheduling.
3642 PAT is the pattern which might split.
3643 TRIAL is the insn providing PAT.
3644 LAST is nonzero if we should return the last insn of the sequence produced.
3645
3646 If this routine succeeds in splitting, it returns the first or last
3647 replacement insn depending on the value of LAST. Otherwise, it
3648 returns TRIAL. If the insn to be returned can be split, it will be. */
3649
3650 rtx_insn *
3651 try_split (rtx pat, rtx_insn *trial, int last)
3652 {
3653 rtx_insn *before = PREV_INSN (trial);
3654 rtx_insn *after = NEXT_INSN (trial);
3655 rtx note;
3656 rtx_insn *seq, *tem;
3657 int probability;
3658 rtx_insn *insn_last, *insn;
3659 int njumps = 0;
3660 rtx_insn *call_insn = NULL;
3661
3662 /* We're not good at redistributing frame information. */
3663 if (RTX_FRAME_RELATED_P (trial))
3664 return trial;
3665
3666 if (any_condjump_p (trial)
3667 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3668 split_branch_probability = XINT (note, 0);
3669 probability = split_branch_probability;
3670
3671 seq = split_insns (pat, trial);
3672
3673 split_branch_probability = -1;
3674
3675 if (!seq)
3676 return trial;
3677
3678 /* Avoid infinite loop if any insn of the result matches
3679 the original pattern. */
3680 insn_last = seq;
3681 while (1)
3682 {
3683 if (INSN_P (insn_last)
3684 && rtx_equal_p (PATTERN (insn_last), pat))
3685 return trial;
3686 if (!NEXT_INSN (insn_last))
3687 break;
3688 insn_last = NEXT_INSN (insn_last);
3689 }
3690
3691 /* We will be adding the new sequence to the function. The splitters
3692 may have introduced invalid RTL sharing, so unshare the sequence now. */
3693 unshare_all_rtl_in_chain (seq);
3694
3695 /* Mark labels and copy flags. */
3696 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3697 {
3698 if (JUMP_P (insn))
3699 {
3700 if (JUMP_P (trial))
3701 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3702 mark_jump_label (PATTERN (insn), insn, 0);
3703 njumps++;
3704 if (probability != -1
3705 && any_condjump_p (insn)
3706 && !find_reg_note (insn, REG_BR_PROB, 0))
3707 {
3708 /* We can preserve the REG_BR_PROB notes only if exactly
3709 one jump is created, otherwise the machine description
3710 is responsible for this step using
3711 split_branch_probability variable. */
3712 gcc_assert (njumps == 1);
3713 add_int_reg_note (insn, REG_BR_PROB, probability);
3714 }
3715 }
3716 }
3717
3718 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3719 in SEQ and copy any additional information across. */
3720 if (CALL_P (trial))
3721 {
3722 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3723 if (CALL_P (insn))
3724 {
3725 rtx_insn *next;
3726 rtx *p;
3727
3728 gcc_assert (call_insn == NULL_RTX);
3729 call_insn = insn;
3730
3731 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3732 target may have explicitly specified. */
3733 p = &CALL_INSN_FUNCTION_USAGE (insn);
3734 while (*p)
3735 p = &XEXP (*p, 1);
3736 *p = CALL_INSN_FUNCTION_USAGE (trial);
3737
3738 /* If the old call was a sibling call, the new one must
3739 be too. */
3740 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3741
3742 /* If the new call is the last instruction in the sequence,
3743 it will effectively replace the old call in-situ. Otherwise
3744 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3745 so that it comes immediately after the new call. */
3746 if (NEXT_INSN (insn))
3747 for (next = NEXT_INSN (trial);
3748 next && NOTE_P (next);
3749 next = NEXT_INSN (next))
3750 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3751 {
3752 remove_insn (next);
3753 add_insn_after (next, insn, NULL);
3754 break;
3755 }
3756 }
3757 }
3758
3759 /* Copy notes, particularly those related to the CFG. */
3760 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3761 {
3762 switch (REG_NOTE_KIND (note))
3763 {
3764 case REG_EH_REGION:
3765 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3766 break;
3767
3768 case REG_NORETURN:
3769 case REG_SETJMP:
3770 case REG_TM:
3771 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3772 {
3773 if (CALL_P (insn))
3774 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3775 }
3776 break;
3777
3778 case REG_NON_LOCAL_GOTO:
3779 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3780 {
3781 if (JUMP_P (insn))
3782 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3783 }
3784 break;
3785
3786 #ifdef AUTO_INC_DEC
3787 case REG_INC:
3788 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3789 {
3790 rtx reg = XEXP (note, 0);
3791 if (!FIND_REG_INC_NOTE (insn, reg)
3792 && find_auto_inc (PATTERN (insn), reg))
3793 add_reg_note (insn, REG_INC, reg);
3794 }
3795 break;
3796 #endif
3797
3798 case REG_ARGS_SIZE:
3799 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3800 break;
3801
3802 case REG_CALL_DECL:
3803 gcc_assert (call_insn != NULL_RTX);
3804 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3805 break;
3806
3807 default:
3808 break;
3809 }
3810 }
3811
3812 /* If there are LABELS inside the split insns increment the
3813 usage count so we don't delete the label. */
3814 if (INSN_P (trial))
3815 {
3816 insn = insn_last;
3817 while (insn != NULL_RTX)
3818 {
3819 /* JUMP_P insns have already been "marked" above. */
3820 if (NONJUMP_INSN_P (insn))
3821 mark_label_nuses (PATTERN (insn));
3822
3823 insn = PREV_INSN (insn);
3824 }
3825 }
3826
3827 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3828
3829 delete_insn (trial);
3830
3831 /* Recursively call try_split for each new insn created; by the
3832 time control returns here that insn will be fully split, so
3833 set LAST and continue from the insn after the one returned.
3834 We can't use next_active_insn here since AFTER may be a note.
3835 Ignore deleted insns, which can be occur if not optimizing. */
3836 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3837 if (! tem->deleted () && INSN_P (tem))
3838 tem = try_split (PATTERN (tem), tem, 1);
3839
3840 /* Return either the first or the last insn, depending on which was
3841 requested. */
3842 return last
3843 ? (after ? PREV_INSN (after) : get_last_insn ())
3844 : NEXT_INSN (before);
3845 }
3846 \f
3847 /* Make and return an INSN rtx, initializing all its slots.
3848 Store PATTERN in the pattern slots. */
3849
3850 rtx_insn *
3851 make_insn_raw (rtx pattern)
3852 {
3853 rtx_insn *insn;
3854
3855 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3856
3857 INSN_UID (insn) = cur_insn_uid++;
3858 PATTERN (insn) = pattern;
3859 INSN_CODE (insn) = -1;
3860 REG_NOTES (insn) = NULL;
3861 INSN_LOCATION (insn) = curr_insn_location ();
3862 BLOCK_FOR_INSN (insn) = NULL;
3863
3864 #ifdef ENABLE_RTL_CHECKING
3865 if (insn
3866 && INSN_P (insn)
3867 && (returnjump_p (insn)
3868 || (GET_CODE (insn) == SET
3869 && SET_DEST (insn) == pc_rtx)))
3870 {
3871 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3872 debug_rtx (insn);
3873 }
3874 #endif
3875
3876 return insn;
3877 }
3878
3879 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3880
3881 static rtx_insn *
3882 make_debug_insn_raw (rtx pattern)
3883 {
3884 rtx_debug_insn *insn;
3885
3886 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3887 INSN_UID (insn) = cur_debug_insn_uid++;
3888 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3889 INSN_UID (insn) = cur_insn_uid++;
3890
3891 PATTERN (insn) = pattern;
3892 INSN_CODE (insn) = -1;
3893 REG_NOTES (insn) = NULL;
3894 INSN_LOCATION (insn) = curr_insn_location ();
3895 BLOCK_FOR_INSN (insn) = NULL;
3896
3897 return insn;
3898 }
3899
3900 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3901
3902 static rtx_insn *
3903 make_jump_insn_raw (rtx pattern)
3904 {
3905 rtx_jump_insn *insn;
3906
3907 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3908 INSN_UID (insn) = cur_insn_uid++;
3909
3910 PATTERN (insn) = pattern;
3911 INSN_CODE (insn) = -1;
3912 REG_NOTES (insn) = NULL;
3913 JUMP_LABEL (insn) = NULL;
3914 INSN_LOCATION (insn) = curr_insn_location ();
3915 BLOCK_FOR_INSN (insn) = NULL;
3916
3917 return insn;
3918 }
3919
3920 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3921
3922 static rtx_insn *
3923 make_call_insn_raw (rtx pattern)
3924 {
3925 rtx_call_insn *insn;
3926
3927 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3928 INSN_UID (insn) = cur_insn_uid++;
3929
3930 PATTERN (insn) = pattern;
3931 INSN_CODE (insn) = -1;
3932 REG_NOTES (insn) = NULL;
3933 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3934 INSN_LOCATION (insn) = curr_insn_location ();
3935 BLOCK_FOR_INSN (insn) = NULL;
3936
3937 return insn;
3938 }
3939
3940 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3941
3942 static rtx_note *
3943 make_note_raw (enum insn_note subtype)
3944 {
3945 /* Some notes are never created this way at all. These notes are
3946 only created by patching out insns. */
3947 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3948 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3949
3950 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3951 INSN_UID (note) = cur_insn_uid++;
3952 NOTE_KIND (note) = subtype;
3953 BLOCK_FOR_INSN (note) = NULL;
3954 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3955 return note;
3956 }
3957 \f
3958 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3959 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3960 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3961
3962 static inline void
3963 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3964 {
3965 SET_PREV_INSN (insn) = prev;
3966 SET_NEXT_INSN (insn) = next;
3967 if (prev != NULL)
3968 {
3969 SET_NEXT_INSN (prev) = insn;
3970 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3971 {
3972 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3973 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3974 }
3975 }
3976 if (next != NULL)
3977 {
3978 SET_PREV_INSN (next) = insn;
3979 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3980 {
3981 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3982 SET_PREV_INSN (sequence->insn (0)) = insn;
3983 }
3984 }
3985
3986 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3987 {
3988 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3989 SET_PREV_INSN (sequence->insn (0)) = prev;
3990 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3991 }
3992 }
3993
3994 /* Add INSN to the end of the doubly-linked list.
3995 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3996
3997 void
3998 add_insn (rtx_insn *insn)
3999 {
4000 rtx_insn *prev = get_last_insn ();
4001 link_insn_into_chain (insn, prev, NULL);
4002 if (NULL == get_insns ())
4003 set_first_insn (insn);
4004 set_last_insn (insn);
4005 }
4006
4007 /* Add INSN into the doubly-linked list after insn AFTER. */
4008
4009 static void
4010 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4011 {
4012 rtx_insn *next = NEXT_INSN (after);
4013
4014 gcc_assert (!optimize || !after->deleted ());
4015
4016 link_insn_into_chain (insn, after, next);
4017
4018 if (next == NULL)
4019 {
4020 struct sequence_stack *seq;
4021
4022 for (seq = get_current_sequence (); seq; seq = seq->next)
4023 if (after == seq->last)
4024 {
4025 seq->last = insn;
4026 break;
4027 }
4028 }
4029 }
4030
4031 /* Add INSN into the doubly-linked list before insn BEFORE. */
4032
4033 static void
4034 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4035 {
4036 rtx_insn *prev = PREV_INSN (before);
4037
4038 gcc_assert (!optimize || !before->deleted ());
4039
4040 link_insn_into_chain (insn, prev, before);
4041
4042 if (prev == NULL)
4043 {
4044 struct sequence_stack *seq;
4045
4046 for (seq = get_current_sequence (); seq; seq = seq->next)
4047 if (before == seq->first)
4048 {
4049 seq->first = insn;
4050 break;
4051 }
4052
4053 gcc_assert (seq);
4054 }
4055 }
4056
4057 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4058 If BB is NULL, an attempt is made to infer the bb from before.
4059
4060 This and the next function should be the only functions called
4061 to insert an insn once delay slots have been filled since only
4062 they know how to update a SEQUENCE. */
4063
4064 void
4065 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4066 {
4067 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4068 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4069 add_insn_after_nobb (insn, after);
4070 if (!BARRIER_P (after)
4071 && !BARRIER_P (insn)
4072 && (bb = BLOCK_FOR_INSN (after)))
4073 {
4074 set_block_for_insn (insn, bb);
4075 if (INSN_P (insn))
4076 df_insn_rescan (insn);
4077 /* Should not happen as first in the BB is always
4078 either NOTE or LABEL. */
4079 if (BB_END (bb) == after
4080 /* Avoid clobbering of structure when creating new BB. */
4081 && !BARRIER_P (insn)
4082 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4083 BB_END (bb) = insn;
4084 }
4085 }
4086
4087 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4088 If BB is NULL, an attempt is made to infer the bb from before.
4089
4090 This and the previous function should be the only functions called
4091 to insert an insn once delay slots have been filled since only
4092 they know how to update a SEQUENCE. */
4093
4094 void
4095 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4096 {
4097 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4098 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4099 add_insn_before_nobb (insn, before);
4100
4101 if (!bb
4102 && !BARRIER_P (before)
4103 && !BARRIER_P (insn))
4104 bb = BLOCK_FOR_INSN (before);
4105
4106 if (bb)
4107 {
4108 set_block_for_insn (insn, bb);
4109 if (INSN_P (insn))
4110 df_insn_rescan (insn);
4111 /* Should not happen as first in the BB is always either NOTE or
4112 LABEL. */
4113 gcc_assert (BB_HEAD (bb) != insn
4114 /* Avoid clobbering of structure when creating new BB. */
4115 || BARRIER_P (insn)
4116 || NOTE_INSN_BASIC_BLOCK_P (insn));
4117 }
4118 }
4119
4120 /* Replace insn with an deleted instruction note. */
4121
4122 void
4123 set_insn_deleted (rtx insn)
4124 {
4125 if (INSN_P (insn))
4126 df_insn_delete (as_a <rtx_insn *> (insn));
4127 PUT_CODE (insn, NOTE);
4128 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4129 }
4130
4131
4132 /* Unlink INSN from the insn chain.
4133
4134 This function knows how to handle sequences.
4135
4136 This function does not invalidate data flow information associated with
4137 INSN (i.e. does not call df_insn_delete). That makes this function
4138 usable for only disconnecting an insn from the chain, and re-emit it
4139 elsewhere later.
4140
4141 To later insert INSN elsewhere in the insn chain via add_insn and
4142 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4143 the caller. Nullifying them here breaks many insn chain walks.
4144
4145 To really delete an insn and related DF information, use delete_insn. */
4146
4147 void
4148 remove_insn (rtx uncast_insn)
4149 {
4150 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4151 rtx_insn *next = NEXT_INSN (insn);
4152 rtx_insn *prev = PREV_INSN (insn);
4153 basic_block bb;
4154
4155 if (prev)
4156 {
4157 SET_NEXT_INSN (prev) = next;
4158 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4159 {
4160 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4161 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4162 }
4163 }
4164 else
4165 {
4166 struct sequence_stack *seq;
4167
4168 for (seq = get_current_sequence (); seq; seq = seq->next)
4169 if (insn == seq->first)
4170 {
4171 seq->first = next;
4172 break;
4173 }
4174
4175 gcc_assert (seq);
4176 }
4177
4178 if (next)
4179 {
4180 SET_PREV_INSN (next) = prev;
4181 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4182 {
4183 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4184 SET_PREV_INSN (sequence->insn (0)) = prev;
4185 }
4186 }
4187 else
4188 {
4189 struct sequence_stack *seq;
4190
4191 for (seq = get_current_sequence (); seq; seq = seq->next)
4192 if (insn == seq->last)
4193 {
4194 seq->last = prev;
4195 break;
4196 }
4197
4198 gcc_assert (seq);
4199 }
4200
4201 /* Fix up basic block boundaries, if necessary. */
4202 if (!BARRIER_P (insn)
4203 && (bb = BLOCK_FOR_INSN (insn)))
4204 {
4205 if (BB_HEAD (bb) == insn)
4206 {
4207 /* Never ever delete the basic block note without deleting whole
4208 basic block. */
4209 gcc_assert (!NOTE_P (insn));
4210 BB_HEAD (bb) = next;
4211 }
4212 if (BB_END (bb) == insn)
4213 BB_END (bb) = prev;
4214 }
4215 }
4216
4217 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4218
4219 void
4220 add_function_usage_to (rtx call_insn, rtx call_fusage)
4221 {
4222 gcc_assert (call_insn && CALL_P (call_insn));
4223
4224 /* Put the register usage information on the CALL. If there is already
4225 some usage information, put ours at the end. */
4226 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4227 {
4228 rtx link;
4229
4230 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4231 link = XEXP (link, 1))
4232 ;
4233
4234 XEXP (link, 1) = call_fusage;
4235 }
4236 else
4237 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4238 }
4239
4240 /* Delete all insns made since FROM.
4241 FROM becomes the new last instruction. */
4242
4243 void
4244 delete_insns_since (rtx_insn *from)
4245 {
4246 if (from == 0)
4247 set_first_insn (0);
4248 else
4249 SET_NEXT_INSN (from) = 0;
4250 set_last_insn (from);
4251 }
4252
4253 /* This function is deprecated, please use sequences instead.
4254
4255 Move a consecutive bunch of insns to a different place in the chain.
4256 The insns to be moved are those between FROM and TO.
4257 They are moved to a new position after the insn AFTER.
4258 AFTER must not be FROM or TO or any insn in between.
4259
4260 This function does not know about SEQUENCEs and hence should not be
4261 called after delay-slot filling has been done. */
4262
4263 void
4264 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4265 {
4266 #ifdef ENABLE_CHECKING
4267 rtx_insn *x;
4268 for (x = from; x != to; x = NEXT_INSN (x))
4269 gcc_assert (after != x);
4270 gcc_assert (after != to);
4271 #endif
4272
4273 /* Splice this bunch out of where it is now. */
4274 if (PREV_INSN (from))
4275 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4276 if (NEXT_INSN (to))
4277 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4278 if (get_last_insn () == to)
4279 set_last_insn (PREV_INSN (from));
4280 if (get_insns () == from)
4281 set_first_insn (NEXT_INSN (to));
4282
4283 /* Make the new neighbors point to it and it to them. */
4284 if (NEXT_INSN (after))
4285 SET_PREV_INSN (NEXT_INSN (after)) = to;
4286
4287 SET_NEXT_INSN (to) = NEXT_INSN (after);
4288 SET_PREV_INSN (from) = after;
4289 SET_NEXT_INSN (after) = from;
4290 if (after == get_last_insn ())
4291 set_last_insn (to);
4292 }
4293
4294 /* Same as function above, but take care to update BB boundaries. */
4295 void
4296 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4297 {
4298 rtx_insn *prev = PREV_INSN (from);
4299 basic_block bb, bb2;
4300
4301 reorder_insns_nobb (from, to, after);
4302
4303 if (!BARRIER_P (after)
4304 && (bb = BLOCK_FOR_INSN (after)))
4305 {
4306 rtx_insn *x;
4307 df_set_bb_dirty (bb);
4308
4309 if (!BARRIER_P (from)
4310 && (bb2 = BLOCK_FOR_INSN (from)))
4311 {
4312 if (BB_END (bb2) == to)
4313 BB_END (bb2) = prev;
4314 df_set_bb_dirty (bb2);
4315 }
4316
4317 if (BB_END (bb) == after)
4318 BB_END (bb) = to;
4319
4320 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4321 if (!BARRIER_P (x))
4322 df_insn_change_bb (x, bb);
4323 }
4324 }
4325
4326 \f
4327 /* Emit insn(s) of given code and pattern
4328 at a specified place within the doubly-linked list.
4329
4330 All of the emit_foo global entry points accept an object
4331 X which is either an insn list or a PATTERN of a single
4332 instruction.
4333
4334 There are thus a few canonical ways to generate code and
4335 emit it at a specific place in the instruction stream. For
4336 example, consider the instruction named SPOT and the fact that
4337 we would like to emit some instructions before SPOT. We might
4338 do it like this:
4339
4340 start_sequence ();
4341 ... emit the new instructions ...
4342 insns_head = get_insns ();
4343 end_sequence ();
4344
4345 emit_insn_before (insns_head, SPOT);
4346
4347 It used to be common to generate SEQUENCE rtl instead, but that
4348 is a relic of the past which no longer occurs. The reason is that
4349 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4350 generated would almost certainly die right after it was created. */
4351
4352 static rtx_insn *
4353 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4354 rtx_insn *(*make_raw) (rtx))
4355 {
4356 rtx_insn *insn;
4357
4358 gcc_assert (before);
4359
4360 if (x == NULL_RTX)
4361 return safe_as_a <rtx_insn *> (last);
4362
4363 switch (GET_CODE (x))
4364 {
4365 case DEBUG_INSN:
4366 case INSN:
4367 case JUMP_INSN:
4368 case CALL_INSN:
4369 case CODE_LABEL:
4370 case BARRIER:
4371 case NOTE:
4372 insn = as_a <rtx_insn *> (x);
4373 while (insn)
4374 {
4375 rtx_insn *next = NEXT_INSN (insn);
4376 add_insn_before (insn, before, bb);
4377 last = insn;
4378 insn = next;
4379 }
4380 break;
4381
4382 #ifdef ENABLE_RTL_CHECKING
4383 case SEQUENCE:
4384 gcc_unreachable ();
4385 break;
4386 #endif
4387
4388 default:
4389 last = (*make_raw) (x);
4390 add_insn_before (last, before, bb);
4391 break;
4392 }
4393
4394 return safe_as_a <rtx_insn *> (last);
4395 }
4396
4397 /* Make X be output before the instruction BEFORE. */
4398
4399 rtx_insn *
4400 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4401 {
4402 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4403 }
4404
4405 /* Make an instruction with body X and code JUMP_INSN
4406 and output it before the instruction BEFORE. */
4407
4408 rtx_jump_insn *
4409 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4410 {
4411 return as_a <rtx_jump_insn *> (
4412 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4413 make_jump_insn_raw));
4414 }
4415
4416 /* Make an instruction with body X and code CALL_INSN
4417 and output it before the instruction BEFORE. */
4418
4419 rtx_insn *
4420 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4421 {
4422 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4423 make_call_insn_raw);
4424 }
4425
4426 /* Make an instruction with body X and code DEBUG_INSN
4427 and output it before the instruction BEFORE. */
4428
4429 rtx_insn *
4430 emit_debug_insn_before_noloc (rtx x, rtx before)
4431 {
4432 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4433 make_debug_insn_raw);
4434 }
4435
4436 /* Make an insn of code BARRIER
4437 and output it before the insn BEFORE. */
4438
4439 rtx_barrier *
4440 emit_barrier_before (rtx before)
4441 {
4442 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4443
4444 INSN_UID (insn) = cur_insn_uid++;
4445
4446 add_insn_before (insn, before, NULL);
4447 return insn;
4448 }
4449
4450 /* Emit the label LABEL before the insn BEFORE. */
4451
4452 rtx_code_label *
4453 emit_label_before (rtx label, rtx_insn *before)
4454 {
4455 gcc_checking_assert (INSN_UID (label) == 0);
4456 INSN_UID (label) = cur_insn_uid++;
4457 add_insn_before (label, before, NULL);
4458 return as_a <rtx_code_label *> (label);
4459 }
4460 \f
4461 /* Helper for emit_insn_after, handles lists of instructions
4462 efficiently. */
4463
4464 static rtx_insn *
4465 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4466 {
4467 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4468 rtx_insn *last;
4469 rtx_insn *after_after;
4470 if (!bb && !BARRIER_P (after))
4471 bb = BLOCK_FOR_INSN (after);
4472
4473 if (bb)
4474 {
4475 df_set_bb_dirty (bb);
4476 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4477 if (!BARRIER_P (last))
4478 {
4479 set_block_for_insn (last, bb);
4480 df_insn_rescan (last);
4481 }
4482 if (!BARRIER_P (last))
4483 {
4484 set_block_for_insn (last, bb);
4485 df_insn_rescan (last);
4486 }
4487 if (BB_END (bb) == after)
4488 BB_END (bb) = last;
4489 }
4490 else
4491 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4492 continue;
4493
4494 after_after = NEXT_INSN (after);
4495
4496 SET_NEXT_INSN (after) = first;
4497 SET_PREV_INSN (first) = after;
4498 SET_NEXT_INSN (last) = after_after;
4499 if (after_after)
4500 SET_PREV_INSN (after_after) = last;
4501
4502 if (after == get_last_insn ())
4503 set_last_insn (last);
4504
4505 return last;
4506 }
4507
4508 static rtx_insn *
4509 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4510 rtx_insn *(*make_raw)(rtx))
4511 {
4512 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4513 rtx_insn *last = after;
4514
4515 gcc_assert (after);
4516
4517 if (x == NULL_RTX)
4518 return last;
4519
4520 switch (GET_CODE (x))
4521 {
4522 case DEBUG_INSN:
4523 case INSN:
4524 case JUMP_INSN:
4525 case CALL_INSN:
4526 case CODE_LABEL:
4527 case BARRIER:
4528 case NOTE:
4529 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4530 break;
4531
4532 #ifdef ENABLE_RTL_CHECKING
4533 case SEQUENCE:
4534 gcc_unreachable ();
4535 break;
4536 #endif
4537
4538 default:
4539 last = (*make_raw) (x);
4540 add_insn_after (last, after, bb);
4541 break;
4542 }
4543
4544 return last;
4545 }
4546
4547 /* Make X be output after the insn AFTER and set the BB of insn. If
4548 BB is NULL, an attempt is made to infer the BB from AFTER. */
4549
4550 rtx_insn *
4551 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4552 {
4553 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4554 }
4555
4556
4557 /* Make an insn of code JUMP_INSN with body X
4558 and output it after the insn AFTER. */
4559
4560 rtx_jump_insn *
4561 emit_jump_insn_after_noloc (rtx x, rtx after)
4562 {
4563 return as_a <rtx_jump_insn *> (
4564 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4565 }
4566
4567 /* Make an instruction with body X and code CALL_INSN
4568 and output it after the instruction AFTER. */
4569
4570 rtx_insn *
4571 emit_call_insn_after_noloc (rtx x, rtx after)
4572 {
4573 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4574 }
4575
4576 /* Make an instruction with body X and code CALL_INSN
4577 and output it after the instruction AFTER. */
4578
4579 rtx_insn *
4580 emit_debug_insn_after_noloc (rtx x, rtx after)
4581 {
4582 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4583 }
4584
4585 /* Make an insn of code BARRIER
4586 and output it after the insn AFTER. */
4587
4588 rtx_barrier *
4589 emit_barrier_after (rtx after)
4590 {
4591 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4592
4593 INSN_UID (insn) = cur_insn_uid++;
4594
4595 add_insn_after (insn, after, NULL);
4596 return insn;
4597 }
4598
4599 /* Emit the label LABEL after the insn AFTER. */
4600
4601 rtx_insn *
4602 emit_label_after (rtx label, rtx_insn *after)
4603 {
4604 gcc_checking_assert (INSN_UID (label) == 0);
4605 INSN_UID (label) = cur_insn_uid++;
4606 add_insn_after (label, after, NULL);
4607 return as_a <rtx_insn *> (label);
4608 }
4609 \f
4610 /* Notes require a bit of special handling: Some notes need to have their
4611 BLOCK_FOR_INSN set, others should never have it set, and some should
4612 have it set or clear depending on the context. */
4613
4614 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4615 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4616 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4617
4618 static bool
4619 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4620 {
4621 switch (subtype)
4622 {
4623 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4624 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4625 return true;
4626
4627 /* Notes for var tracking and EH region markers can appear between or
4628 inside basic blocks. If the caller is emitting on the basic block
4629 boundary, do not set BLOCK_FOR_INSN on the new note. */
4630 case NOTE_INSN_VAR_LOCATION:
4631 case NOTE_INSN_CALL_ARG_LOCATION:
4632 case NOTE_INSN_EH_REGION_BEG:
4633 case NOTE_INSN_EH_REGION_END:
4634 return on_bb_boundary_p;
4635
4636 /* Otherwise, BLOCK_FOR_INSN must be set. */
4637 default:
4638 return false;
4639 }
4640 }
4641
4642 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4643
4644 rtx_note *
4645 emit_note_after (enum insn_note subtype, rtx_insn *after)
4646 {
4647 rtx_note *note = make_note_raw (subtype);
4648 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4649 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4650
4651 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4652 add_insn_after_nobb (note, after);
4653 else
4654 add_insn_after (note, after, bb);
4655 return note;
4656 }
4657
4658 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4659
4660 rtx_note *
4661 emit_note_before (enum insn_note subtype, rtx_insn *before)
4662 {
4663 rtx_note *note = make_note_raw (subtype);
4664 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4665 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4666
4667 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4668 add_insn_before_nobb (note, before);
4669 else
4670 add_insn_before (note, before, bb);
4671 return note;
4672 }
4673 \f
4674 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4675 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4676
4677 static rtx_insn *
4678 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4679 rtx_insn *(*make_raw) (rtx))
4680 {
4681 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4682 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4683
4684 if (pattern == NULL_RTX || !loc)
4685 return last;
4686
4687 after = NEXT_INSN (after);
4688 while (1)
4689 {
4690 if (active_insn_p (after)
4691 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4692 && !INSN_LOCATION (after))
4693 INSN_LOCATION (after) = loc;
4694 if (after == last)
4695 break;
4696 after = NEXT_INSN (after);
4697 }
4698 return last;
4699 }
4700
4701 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4702 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4703 any DEBUG_INSNs. */
4704
4705 static rtx_insn *
4706 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4707 rtx_insn *(*make_raw) (rtx))
4708 {
4709 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4710 rtx_insn *prev = after;
4711
4712 if (skip_debug_insns)
4713 while (DEBUG_INSN_P (prev))
4714 prev = PREV_INSN (prev);
4715
4716 if (INSN_P (prev))
4717 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4718 make_raw);
4719 else
4720 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4721 }
4722
4723 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4724 rtx_insn *
4725 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4726 {
4727 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4728 }
4729
4730 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4731 rtx_insn *
4732 emit_insn_after (rtx pattern, rtx after)
4733 {
4734 return emit_pattern_after (pattern, after, true, make_insn_raw);
4735 }
4736
4737 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4738 rtx_jump_insn *
4739 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4740 {
4741 return as_a <rtx_jump_insn *> (
4742 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4743 }
4744
4745 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4746 rtx_jump_insn *
4747 emit_jump_insn_after (rtx pattern, rtx after)
4748 {
4749 return as_a <rtx_jump_insn *> (
4750 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4751 }
4752
4753 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4754 rtx_insn *
4755 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4756 {
4757 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4758 }
4759
4760 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4761 rtx_insn *
4762 emit_call_insn_after (rtx pattern, rtx after)
4763 {
4764 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4765 }
4766
4767 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4768 rtx_insn *
4769 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4770 {
4771 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4772 }
4773
4774 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4775 rtx_insn *
4776 emit_debug_insn_after (rtx pattern, rtx after)
4777 {
4778 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4779 }
4780
4781 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4782 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4783 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4784 CALL_INSN, etc. */
4785
4786 static rtx_insn *
4787 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4788 rtx_insn *(*make_raw) (rtx))
4789 {
4790 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4791 rtx_insn *first = PREV_INSN (before);
4792 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4793 insnp ? before : NULL_RTX,
4794 NULL, make_raw);
4795
4796 if (pattern == NULL_RTX || !loc)
4797 return last;
4798
4799 if (!first)
4800 first = get_insns ();
4801 else
4802 first = NEXT_INSN (first);
4803 while (1)
4804 {
4805 if (active_insn_p (first)
4806 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4807 && !INSN_LOCATION (first))
4808 INSN_LOCATION (first) = loc;
4809 if (first == last)
4810 break;
4811 first = NEXT_INSN (first);
4812 }
4813 return last;
4814 }
4815
4816 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4817 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4818 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4819 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4820
4821 static rtx_insn *
4822 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4823 bool insnp, rtx_insn *(*make_raw) (rtx))
4824 {
4825 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4826 rtx_insn *next = before;
4827
4828 if (skip_debug_insns)
4829 while (DEBUG_INSN_P (next))
4830 next = PREV_INSN (next);
4831
4832 if (INSN_P (next))
4833 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4834 insnp, make_raw);
4835 else
4836 return emit_pattern_before_noloc (pattern, before,
4837 insnp ? before : NULL_RTX,
4838 NULL, make_raw);
4839 }
4840
4841 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4842 rtx_insn *
4843 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4844 {
4845 return emit_pattern_before_setloc (pattern, before, loc, true,
4846 make_insn_raw);
4847 }
4848
4849 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4850 rtx_insn *
4851 emit_insn_before (rtx pattern, rtx before)
4852 {
4853 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4854 }
4855
4856 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4857 rtx_jump_insn *
4858 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4859 {
4860 return as_a <rtx_jump_insn *> (
4861 emit_pattern_before_setloc (pattern, before, loc, false,
4862 make_jump_insn_raw));
4863 }
4864
4865 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4866 rtx_jump_insn *
4867 emit_jump_insn_before (rtx pattern, rtx before)
4868 {
4869 return as_a <rtx_jump_insn *> (
4870 emit_pattern_before (pattern, before, true, false,
4871 make_jump_insn_raw));
4872 }
4873
4874 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4875 rtx_insn *
4876 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4877 {
4878 return emit_pattern_before_setloc (pattern, before, loc, false,
4879 make_call_insn_raw);
4880 }
4881
4882 /* Like emit_call_insn_before_noloc,
4883 but set insn_location according to BEFORE. */
4884 rtx_insn *
4885 emit_call_insn_before (rtx pattern, rtx_insn *before)
4886 {
4887 return emit_pattern_before (pattern, before, true, false,
4888 make_call_insn_raw);
4889 }
4890
4891 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4892 rtx_insn *
4893 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4894 {
4895 return emit_pattern_before_setloc (pattern, before, loc, false,
4896 make_debug_insn_raw);
4897 }
4898
4899 /* Like emit_debug_insn_before_noloc,
4900 but set insn_location according to BEFORE. */
4901 rtx_insn *
4902 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4903 {
4904 return emit_pattern_before (pattern, before, false, false,
4905 make_debug_insn_raw);
4906 }
4907 \f
4908 /* Take X and emit it at the end of the doubly-linked
4909 INSN list.
4910
4911 Returns the last insn emitted. */
4912
4913 rtx_insn *
4914 emit_insn (rtx x)
4915 {
4916 rtx_insn *last = get_last_insn ();
4917 rtx_insn *insn;
4918
4919 if (x == NULL_RTX)
4920 return last;
4921
4922 switch (GET_CODE (x))
4923 {
4924 case DEBUG_INSN:
4925 case INSN:
4926 case JUMP_INSN:
4927 case CALL_INSN:
4928 case CODE_LABEL:
4929 case BARRIER:
4930 case NOTE:
4931 insn = as_a <rtx_insn *> (x);
4932 while (insn)
4933 {
4934 rtx_insn *next = NEXT_INSN (insn);
4935 add_insn (insn);
4936 last = insn;
4937 insn = next;
4938 }
4939 break;
4940
4941 #ifdef ENABLE_RTL_CHECKING
4942 case JUMP_TABLE_DATA:
4943 case SEQUENCE:
4944 gcc_unreachable ();
4945 break;
4946 #endif
4947
4948 default:
4949 last = make_insn_raw (x);
4950 add_insn (last);
4951 break;
4952 }
4953
4954 return last;
4955 }
4956
4957 /* Make an insn of code DEBUG_INSN with pattern X
4958 and add it to the end of the doubly-linked list. */
4959
4960 rtx_insn *
4961 emit_debug_insn (rtx x)
4962 {
4963 rtx_insn *last = get_last_insn ();
4964 rtx_insn *insn;
4965
4966 if (x == NULL_RTX)
4967 return last;
4968
4969 switch (GET_CODE (x))
4970 {
4971 case DEBUG_INSN:
4972 case INSN:
4973 case JUMP_INSN:
4974 case CALL_INSN:
4975 case CODE_LABEL:
4976 case BARRIER:
4977 case NOTE:
4978 insn = as_a <rtx_insn *> (x);
4979 while (insn)
4980 {
4981 rtx_insn *next = NEXT_INSN (insn);
4982 add_insn (insn);
4983 last = insn;
4984 insn = next;
4985 }
4986 break;
4987
4988 #ifdef ENABLE_RTL_CHECKING
4989 case JUMP_TABLE_DATA:
4990 case SEQUENCE:
4991 gcc_unreachable ();
4992 break;
4993 #endif
4994
4995 default:
4996 last = make_debug_insn_raw (x);
4997 add_insn (last);
4998 break;
4999 }
5000
5001 return last;
5002 }
5003
5004 /* Make an insn of code JUMP_INSN with pattern X
5005 and add it to the end of the doubly-linked list. */
5006
5007 rtx_insn *
5008 emit_jump_insn (rtx x)
5009 {
5010 rtx_insn *last = NULL;
5011 rtx_insn *insn;
5012
5013 switch (GET_CODE (x))
5014 {
5015 case DEBUG_INSN:
5016 case INSN:
5017 case JUMP_INSN:
5018 case CALL_INSN:
5019 case CODE_LABEL:
5020 case BARRIER:
5021 case NOTE:
5022 insn = as_a <rtx_insn *> (x);
5023 while (insn)
5024 {
5025 rtx_insn *next = NEXT_INSN (insn);
5026 add_insn (insn);
5027 last = insn;
5028 insn = next;
5029 }
5030 break;
5031
5032 #ifdef ENABLE_RTL_CHECKING
5033 case JUMP_TABLE_DATA:
5034 case SEQUENCE:
5035 gcc_unreachable ();
5036 break;
5037 #endif
5038
5039 default:
5040 last = make_jump_insn_raw (x);
5041 add_insn (last);
5042 break;
5043 }
5044
5045 return last;
5046 }
5047
5048 /* Make an insn of code CALL_INSN with pattern X
5049 and add it to the end of the doubly-linked list. */
5050
5051 rtx_insn *
5052 emit_call_insn (rtx x)
5053 {
5054 rtx_insn *insn;
5055
5056 switch (GET_CODE (x))
5057 {
5058 case DEBUG_INSN:
5059 case INSN:
5060 case JUMP_INSN:
5061 case CALL_INSN:
5062 case CODE_LABEL:
5063 case BARRIER:
5064 case NOTE:
5065 insn = emit_insn (x);
5066 break;
5067
5068 #ifdef ENABLE_RTL_CHECKING
5069 case SEQUENCE:
5070 case JUMP_TABLE_DATA:
5071 gcc_unreachable ();
5072 break;
5073 #endif
5074
5075 default:
5076 insn = make_call_insn_raw (x);
5077 add_insn (insn);
5078 break;
5079 }
5080
5081 return insn;
5082 }
5083
5084 /* Add the label LABEL to the end of the doubly-linked list. */
5085
5086 rtx_code_label *
5087 emit_label (rtx uncast_label)
5088 {
5089 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5090
5091 gcc_checking_assert (INSN_UID (label) == 0);
5092 INSN_UID (label) = cur_insn_uid++;
5093 add_insn (label);
5094 return label;
5095 }
5096
5097 /* Make an insn of code JUMP_TABLE_DATA
5098 and add it to the end of the doubly-linked list. */
5099
5100 rtx_jump_table_data *
5101 emit_jump_table_data (rtx table)
5102 {
5103 rtx_jump_table_data *jump_table_data =
5104 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5105 INSN_UID (jump_table_data) = cur_insn_uid++;
5106 PATTERN (jump_table_data) = table;
5107 BLOCK_FOR_INSN (jump_table_data) = NULL;
5108 add_insn (jump_table_data);
5109 return jump_table_data;
5110 }
5111
5112 /* Make an insn of code BARRIER
5113 and add it to the end of the doubly-linked list. */
5114
5115 rtx_barrier *
5116 emit_barrier (void)
5117 {
5118 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5119 INSN_UID (barrier) = cur_insn_uid++;
5120 add_insn (barrier);
5121 return barrier;
5122 }
5123
5124 /* Emit a copy of note ORIG. */
5125
5126 rtx_note *
5127 emit_note_copy (rtx_note *orig)
5128 {
5129 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5130 rtx_note *note = make_note_raw (kind);
5131 NOTE_DATA (note) = NOTE_DATA (orig);
5132 add_insn (note);
5133 return note;
5134 }
5135
5136 /* Make an insn of code NOTE or type NOTE_NO
5137 and add it to the end of the doubly-linked list. */
5138
5139 rtx_note *
5140 emit_note (enum insn_note kind)
5141 {
5142 rtx_note *note = make_note_raw (kind);
5143 add_insn (note);
5144 return note;
5145 }
5146
5147 /* Emit a clobber of lvalue X. */
5148
5149 rtx_insn *
5150 emit_clobber (rtx x)
5151 {
5152 /* CONCATs should not appear in the insn stream. */
5153 if (GET_CODE (x) == CONCAT)
5154 {
5155 emit_clobber (XEXP (x, 0));
5156 return emit_clobber (XEXP (x, 1));
5157 }
5158 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5159 }
5160
5161 /* Return a sequence of insns to clobber lvalue X. */
5162
5163 rtx_insn *
5164 gen_clobber (rtx x)
5165 {
5166 rtx_insn *seq;
5167
5168 start_sequence ();
5169 emit_clobber (x);
5170 seq = get_insns ();
5171 end_sequence ();
5172 return seq;
5173 }
5174
5175 /* Emit a use of rvalue X. */
5176
5177 rtx_insn *
5178 emit_use (rtx x)
5179 {
5180 /* CONCATs should not appear in the insn stream. */
5181 if (GET_CODE (x) == CONCAT)
5182 {
5183 emit_use (XEXP (x, 0));
5184 return emit_use (XEXP (x, 1));
5185 }
5186 return emit_insn (gen_rtx_USE (VOIDmode, x));
5187 }
5188
5189 /* Return a sequence of insns to use rvalue X. */
5190
5191 rtx_insn *
5192 gen_use (rtx x)
5193 {
5194 rtx_insn *seq;
5195
5196 start_sequence ();
5197 emit_use (x);
5198 seq = get_insns ();
5199 end_sequence ();
5200 return seq;
5201 }
5202
5203 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5204 Return the set in INSN that such notes describe, or NULL if the notes
5205 have no meaning for INSN. */
5206
5207 rtx
5208 set_for_reg_notes (rtx insn)
5209 {
5210 rtx pat, reg;
5211
5212 if (!INSN_P (insn))
5213 return NULL_RTX;
5214
5215 pat = PATTERN (insn);
5216 if (GET_CODE (pat) == PARALLEL)
5217 {
5218 /* We do not use single_set because that ignores SETs of unused
5219 registers. REG_EQUAL and REG_EQUIV notes really do require the
5220 PARALLEL to have a single SET. */
5221 if (multiple_sets (insn))
5222 return NULL_RTX;
5223 pat = XVECEXP (pat, 0, 0);
5224 }
5225
5226 if (GET_CODE (pat) != SET)
5227 return NULL_RTX;
5228
5229 reg = SET_DEST (pat);
5230
5231 /* Notes apply to the contents of a STRICT_LOW_PART. */
5232 if (GET_CODE (reg) == STRICT_LOW_PART)
5233 reg = XEXP (reg, 0);
5234
5235 /* Check that we have a register. */
5236 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5237 return NULL_RTX;
5238
5239 return pat;
5240 }
5241
5242 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5243 note of this type already exists, remove it first. */
5244
5245 rtx
5246 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5247 {
5248 rtx note = find_reg_note (insn, kind, NULL_RTX);
5249
5250 switch (kind)
5251 {
5252 case REG_EQUAL:
5253 case REG_EQUIV:
5254 if (!set_for_reg_notes (insn))
5255 return NULL_RTX;
5256
5257 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5258 It serves no useful purpose and breaks eliminate_regs. */
5259 if (GET_CODE (datum) == ASM_OPERANDS)
5260 return NULL_RTX;
5261
5262 /* Notes with side effects are dangerous. Even if the side-effect
5263 initially mirrors one in PATTERN (INSN), later optimizations
5264 might alter the way that the final register value is calculated
5265 and so move or alter the side-effect in some way. The note would
5266 then no longer be a valid substitution for SET_SRC. */
5267 if (side_effects_p (datum))
5268 return NULL_RTX;
5269 break;
5270
5271 default:
5272 break;
5273 }
5274
5275 if (note)
5276 XEXP (note, 0) = datum;
5277 else
5278 {
5279 add_reg_note (insn, kind, datum);
5280 note = REG_NOTES (insn);
5281 }
5282
5283 switch (kind)
5284 {
5285 case REG_EQUAL:
5286 case REG_EQUIV:
5287 df_notes_rescan (as_a <rtx_insn *> (insn));
5288 break;
5289 default:
5290 break;
5291 }
5292
5293 return note;
5294 }
5295
5296 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5297 rtx
5298 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5299 {
5300 rtx set = set_for_reg_notes (insn);
5301
5302 if (set && SET_DEST (set) == dst)
5303 return set_unique_reg_note (insn, kind, datum);
5304 return NULL_RTX;
5305 }
5306 \f
5307 /* Return an indication of which type of insn should have X as a body.
5308 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5309
5310 static enum rtx_code
5311 classify_insn (rtx x)
5312 {
5313 if (LABEL_P (x))
5314 return CODE_LABEL;
5315 if (GET_CODE (x) == CALL)
5316 return CALL_INSN;
5317 if (ANY_RETURN_P (x))
5318 return JUMP_INSN;
5319 if (GET_CODE (x) == SET)
5320 {
5321 if (SET_DEST (x) == pc_rtx)
5322 return JUMP_INSN;
5323 else if (GET_CODE (SET_SRC (x)) == CALL)
5324 return CALL_INSN;
5325 else
5326 return INSN;
5327 }
5328 if (GET_CODE (x) == PARALLEL)
5329 {
5330 int j;
5331 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5332 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5333 return CALL_INSN;
5334 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5335 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5336 return JUMP_INSN;
5337 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5338 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5339 return CALL_INSN;
5340 }
5341 return INSN;
5342 }
5343
5344 /* Emit the rtl pattern X as an appropriate kind of insn.
5345 If X is a label, it is simply added into the insn chain. */
5346
5347 rtx_insn *
5348 emit (rtx x)
5349 {
5350 enum rtx_code code = classify_insn (x);
5351
5352 switch (code)
5353 {
5354 case CODE_LABEL:
5355 return emit_label (x);
5356 case INSN:
5357 return emit_insn (x);
5358 case JUMP_INSN:
5359 {
5360 rtx_insn *insn = emit_jump_insn (x);
5361 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5362 return emit_barrier ();
5363 return insn;
5364 }
5365 case CALL_INSN:
5366 return emit_call_insn (x);
5367 case DEBUG_INSN:
5368 return emit_debug_insn (x);
5369 default:
5370 gcc_unreachable ();
5371 }
5372 }
5373 \f
5374 /* Space for free sequence stack entries. */
5375 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5376
5377 /* Begin emitting insns to a sequence. If this sequence will contain
5378 something that might cause the compiler to pop arguments to function
5379 calls (because those pops have previously been deferred; see
5380 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5381 before calling this function. That will ensure that the deferred
5382 pops are not accidentally emitted in the middle of this sequence. */
5383
5384 void
5385 start_sequence (void)
5386 {
5387 struct sequence_stack *tem;
5388
5389 if (free_sequence_stack != NULL)
5390 {
5391 tem = free_sequence_stack;
5392 free_sequence_stack = tem->next;
5393 }
5394 else
5395 tem = ggc_alloc<sequence_stack> ();
5396
5397 tem->next = get_current_sequence ()->next;
5398 tem->first = get_insns ();
5399 tem->last = get_last_insn ();
5400 get_current_sequence ()->next = tem;
5401
5402 set_first_insn (0);
5403 set_last_insn (0);
5404 }
5405
5406 /* Set up the insn chain starting with FIRST as the current sequence,
5407 saving the previously current one. See the documentation for
5408 start_sequence for more information about how to use this function. */
5409
5410 void
5411 push_to_sequence (rtx_insn *first)
5412 {
5413 rtx_insn *last;
5414
5415 start_sequence ();
5416
5417 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5418 ;
5419
5420 set_first_insn (first);
5421 set_last_insn (last);
5422 }
5423
5424 /* Like push_to_sequence, but take the last insn as an argument to avoid
5425 looping through the list. */
5426
5427 void
5428 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5429 {
5430 start_sequence ();
5431
5432 set_first_insn (first);
5433 set_last_insn (last);
5434 }
5435
5436 /* Set up the outer-level insn chain
5437 as the current sequence, saving the previously current one. */
5438
5439 void
5440 push_topmost_sequence (void)
5441 {
5442 struct sequence_stack *top;
5443
5444 start_sequence ();
5445
5446 top = get_topmost_sequence ();
5447 set_first_insn (top->first);
5448 set_last_insn (top->last);
5449 }
5450
5451 /* After emitting to the outer-level insn chain, update the outer-level
5452 insn chain, and restore the previous saved state. */
5453
5454 void
5455 pop_topmost_sequence (void)
5456 {
5457 struct sequence_stack *top;
5458
5459 top = get_topmost_sequence ();
5460 top->first = get_insns ();
5461 top->last = get_last_insn ();
5462
5463 end_sequence ();
5464 }
5465
5466 /* After emitting to a sequence, restore previous saved state.
5467
5468 To get the contents of the sequence just made, you must call
5469 `get_insns' *before* calling here.
5470
5471 If the compiler might have deferred popping arguments while
5472 generating this sequence, and this sequence will not be immediately
5473 inserted into the instruction stream, use do_pending_stack_adjust
5474 before calling get_insns. That will ensure that the deferred
5475 pops are inserted into this sequence, and not into some random
5476 location in the instruction stream. See INHIBIT_DEFER_POP for more
5477 information about deferred popping of arguments. */
5478
5479 void
5480 end_sequence (void)
5481 {
5482 struct sequence_stack *tem = get_current_sequence ()->next;
5483
5484 set_first_insn (tem->first);
5485 set_last_insn (tem->last);
5486 get_current_sequence ()->next = tem->next;
5487
5488 memset (tem, 0, sizeof (*tem));
5489 tem->next = free_sequence_stack;
5490 free_sequence_stack = tem;
5491 }
5492
5493 /* Return 1 if currently emitting into a sequence. */
5494
5495 int
5496 in_sequence_p (void)
5497 {
5498 return get_current_sequence ()->next != 0;
5499 }
5500 \f
5501 /* Put the various virtual registers into REGNO_REG_RTX. */
5502
5503 static void
5504 init_virtual_regs (void)
5505 {
5506 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5507 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5508 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5509 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5510 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5511 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5512 = virtual_preferred_stack_boundary_rtx;
5513 }
5514
5515 \f
5516 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5517 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5518 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5519 static int copy_insn_n_scratches;
5520
5521 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5522 copied an ASM_OPERANDS.
5523 In that case, it is the original input-operand vector. */
5524 static rtvec orig_asm_operands_vector;
5525
5526 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5527 copied an ASM_OPERANDS.
5528 In that case, it is the copied input-operand vector. */
5529 static rtvec copy_asm_operands_vector;
5530
5531 /* Likewise for the constraints vector. */
5532 static rtvec orig_asm_constraints_vector;
5533 static rtvec copy_asm_constraints_vector;
5534
5535 /* Recursively create a new copy of an rtx for copy_insn.
5536 This function differs from copy_rtx in that it handles SCRATCHes and
5537 ASM_OPERANDs properly.
5538 Normally, this function is not used directly; use copy_insn as front end.
5539 However, you could first copy an insn pattern with copy_insn and then use
5540 this function afterwards to properly copy any REG_NOTEs containing
5541 SCRATCHes. */
5542
5543 rtx
5544 copy_insn_1 (rtx orig)
5545 {
5546 rtx copy;
5547 int i, j;
5548 RTX_CODE code;
5549 const char *format_ptr;
5550
5551 if (orig == NULL)
5552 return NULL;
5553
5554 code = GET_CODE (orig);
5555
5556 switch (code)
5557 {
5558 case REG:
5559 case DEBUG_EXPR:
5560 CASE_CONST_ANY:
5561 case SYMBOL_REF:
5562 case CODE_LABEL:
5563 case PC:
5564 case CC0:
5565 case RETURN:
5566 case SIMPLE_RETURN:
5567 return orig;
5568 case CLOBBER:
5569 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5570 clobbers or clobbers of hard registers that originated as pseudos.
5571 This is needed to allow safe register renaming. */
5572 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5573 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5574 return orig;
5575 break;
5576
5577 case SCRATCH:
5578 for (i = 0; i < copy_insn_n_scratches; i++)
5579 if (copy_insn_scratch_in[i] == orig)
5580 return copy_insn_scratch_out[i];
5581 break;
5582
5583 case CONST:
5584 if (shared_const_p (orig))
5585 return orig;
5586 break;
5587
5588 /* A MEM with a constant address is not sharable. The problem is that
5589 the constant address may need to be reloaded. If the mem is shared,
5590 then reloading one copy of this mem will cause all copies to appear
5591 to have been reloaded. */
5592
5593 default:
5594 break;
5595 }
5596
5597 /* Copy the various flags, fields, and other information. We assume
5598 that all fields need copying, and then clear the fields that should
5599 not be copied. That is the sensible default behavior, and forces
5600 us to explicitly document why we are *not* copying a flag. */
5601 copy = shallow_copy_rtx (orig);
5602
5603 /* We do not copy the USED flag, which is used as a mark bit during
5604 walks over the RTL. */
5605 RTX_FLAG (copy, used) = 0;
5606
5607 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5608 if (INSN_P (orig))
5609 {
5610 RTX_FLAG (copy, jump) = 0;
5611 RTX_FLAG (copy, call) = 0;
5612 RTX_FLAG (copy, frame_related) = 0;
5613 }
5614
5615 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5616
5617 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5618 switch (*format_ptr++)
5619 {
5620 case 'e':
5621 if (XEXP (orig, i) != NULL)
5622 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5623 break;
5624
5625 case 'E':
5626 case 'V':
5627 if (XVEC (orig, i) == orig_asm_constraints_vector)
5628 XVEC (copy, i) = copy_asm_constraints_vector;
5629 else if (XVEC (orig, i) == orig_asm_operands_vector)
5630 XVEC (copy, i) = copy_asm_operands_vector;
5631 else if (XVEC (orig, i) != NULL)
5632 {
5633 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5634 for (j = 0; j < XVECLEN (copy, i); j++)
5635 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5636 }
5637 break;
5638
5639 case 't':
5640 case 'w':
5641 case 'i':
5642 case 's':
5643 case 'S':
5644 case 'u':
5645 case '0':
5646 /* These are left unchanged. */
5647 break;
5648
5649 default:
5650 gcc_unreachable ();
5651 }
5652
5653 if (code == SCRATCH)
5654 {
5655 i = copy_insn_n_scratches++;
5656 gcc_assert (i < MAX_RECOG_OPERANDS);
5657 copy_insn_scratch_in[i] = orig;
5658 copy_insn_scratch_out[i] = copy;
5659 }
5660 else if (code == ASM_OPERANDS)
5661 {
5662 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5663 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5664 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5665 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5666 }
5667
5668 return copy;
5669 }
5670
5671 /* Create a new copy of an rtx.
5672 This function differs from copy_rtx in that it handles SCRATCHes and
5673 ASM_OPERANDs properly.
5674 INSN doesn't really have to be a full INSN; it could be just the
5675 pattern. */
5676 rtx
5677 copy_insn (rtx insn)
5678 {
5679 copy_insn_n_scratches = 0;
5680 orig_asm_operands_vector = 0;
5681 orig_asm_constraints_vector = 0;
5682 copy_asm_operands_vector = 0;
5683 copy_asm_constraints_vector = 0;
5684 return copy_insn_1 (insn);
5685 }
5686
5687 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5688 on that assumption that INSN itself remains in its original place. */
5689
5690 rtx_insn *
5691 copy_delay_slot_insn (rtx_insn *insn)
5692 {
5693 /* Copy INSN with its rtx_code, all its notes, location etc. */
5694 insn = as_a <rtx_insn *> (copy_rtx (insn));
5695 INSN_UID (insn) = cur_insn_uid++;
5696 return insn;
5697 }
5698
5699 /* Initialize data structures and variables in this file
5700 before generating rtl for each function. */
5701
5702 void
5703 init_emit (void)
5704 {
5705 set_first_insn (NULL);
5706 set_last_insn (NULL);
5707 if (MIN_NONDEBUG_INSN_UID)
5708 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5709 else
5710 cur_insn_uid = 1;
5711 cur_debug_insn_uid = 1;
5712 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5713 first_label_num = label_num;
5714 get_current_sequence ()->next = NULL;
5715
5716 /* Init the tables that describe all the pseudo regs. */
5717
5718 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5719
5720 crtl->emit.regno_pointer_align
5721 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5722
5723 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5724
5725 /* Put copies of all the hard registers into regno_reg_rtx. */
5726 memcpy (regno_reg_rtx,
5727 initial_regno_reg_rtx,
5728 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5729
5730 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5731 init_virtual_regs ();
5732
5733 /* Indicate that the virtual registers and stack locations are
5734 all pointers. */
5735 REG_POINTER (stack_pointer_rtx) = 1;
5736 REG_POINTER (frame_pointer_rtx) = 1;
5737 REG_POINTER (hard_frame_pointer_rtx) = 1;
5738 REG_POINTER (arg_pointer_rtx) = 1;
5739
5740 REG_POINTER (virtual_incoming_args_rtx) = 1;
5741 REG_POINTER (virtual_stack_vars_rtx) = 1;
5742 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5743 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5744 REG_POINTER (virtual_cfa_rtx) = 1;
5745
5746 #ifdef STACK_BOUNDARY
5747 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5748 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5749 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5750 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5751
5752 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5753 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5754 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5755 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5756 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5757 #endif
5758
5759 #ifdef INIT_EXPANDERS
5760 INIT_EXPANDERS;
5761 #endif
5762 }
5763
5764 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5765
5766 static rtx
5767 gen_const_vector (machine_mode mode, int constant)
5768 {
5769 rtx tem;
5770 rtvec v;
5771 int units, i;
5772 machine_mode inner;
5773
5774 units = GET_MODE_NUNITS (mode);
5775 inner = GET_MODE_INNER (mode);
5776
5777 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5778
5779 v = rtvec_alloc (units);
5780
5781 /* We need to call this function after we set the scalar const_tiny_rtx
5782 entries. */
5783 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5784
5785 for (i = 0; i < units; ++i)
5786 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5787
5788 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5789 return tem;
5790 }
5791
5792 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5793 all elements are zero, and the one vector when all elements are one. */
5794 rtx
5795 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5796 {
5797 machine_mode inner = GET_MODE_INNER (mode);
5798 int nunits = GET_MODE_NUNITS (mode);
5799 rtx x;
5800 int i;
5801
5802 /* Check to see if all of the elements have the same value. */
5803 x = RTVEC_ELT (v, nunits - 1);
5804 for (i = nunits - 2; i >= 0; i--)
5805 if (RTVEC_ELT (v, i) != x)
5806 break;
5807
5808 /* If the values are all the same, check to see if we can use one of the
5809 standard constant vectors. */
5810 if (i == -1)
5811 {
5812 if (x == CONST0_RTX (inner))
5813 return CONST0_RTX (mode);
5814 else if (x == CONST1_RTX (inner))
5815 return CONST1_RTX (mode);
5816 else if (x == CONSTM1_RTX (inner))
5817 return CONSTM1_RTX (mode);
5818 }
5819
5820 return gen_rtx_raw_CONST_VECTOR (mode, v);
5821 }
5822
5823 /* Initialise global register information required by all functions. */
5824
5825 void
5826 init_emit_regs (void)
5827 {
5828 int i;
5829 machine_mode mode;
5830 mem_attrs *attrs;
5831
5832 /* Reset register attributes */
5833 reg_attrs_htab->empty ();
5834
5835 /* We need reg_raw_mode, so initialize the modes now. */
5836 init_reg_modes_target ();
5837
5838 /* Assign register numbers to the globally defined register rtx. */
5839 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5840 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5841 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5842 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5843 virtual_incoming_args_rtx =
5844 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5845 virtual_stack_vars_rtx =
5846 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5847 virtual_stack_dynamic_rtx =
5848 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5849 virtual_outgoing_args_rtx =
5850 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5851 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5852 virtual_preferred_stack_boundary_rtx =
5853 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5854
5855 /* Initialize RTL for commonly used hard registers. These are
5856 copied into regno_reg_rtx as we begin to compile each function. */
5857 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5858 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5859
5860 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5861 return_address_pointer_rtx
5862 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5863 #endif
5864
5865 pic_offset_table_rtx = NULL_RTX;
5866 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5867 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5868
5869 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5870 {
5871 mode = (machine_mode) i;
5872 attrs = ggc_cleared_alloc<mem_attrs> ();
5873 attrs->align = BITS_PER_UNIT;
5874 attrs->addrspace = ADDR_SPACE_GENERIC;
5875 if (mode != BLKmode)
5876 {
5877 attrs->size_known_p = true;
5878 attrs->size = GET_MODE_SIZE (mode);
5879 if (STRICT_ALIGNMENT)
5880 attrs->align = GET_MODE_ALIGNMENT (mode);
5881 }
5882 mode_mem_attrs[i] = attrs;
5883 }
5884 }
5885
5886 /* Initialize global machine_mode variables. */
5887
5888 void
5889 init_derived_machine_modes (void)
5890 {
5891 byte_mode = VOIDmode;
5892 word_mode = VOIDmode;
5893
5894 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5895 mode != VOIDmode;
5896 mode = GET_MODE_WIDER_MODE (mode))
5897 {
5898 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5899 && byte_mode == VOIDmode)
5900 byte_mode = mode;
5901
5902 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5903 && word_mode == VOIDmode)
5904 word_mode = mode;
5905 }
5906
5907 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5908 }
5909
5910 /* Create some permanent unique rtl objects shared between all functions. */
5911
5912 void
5913 init_emit_once (void)
5914 {
5915 int i;
5916 machine_mode mode;
5917 machine_mode double_mode;
5918
5919 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5920 CONST_FIXED, and memory attribute hash tables. */
5921 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5922
5923 #if TARGET_SUPPORTS_WIDE_INT
5924 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5925 #endif
5926 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5927
5928 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5929
5930 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5931
5932 #ifdef INIT_EXPANDERS
5933 /* This is to initialize {init|mark|free}_machine_status before the first
5934 call to push_function_context_to. This is needed by the Chill front
5935 end which calls push_function_context_to before the first call to
5936 init_function_start. */
5937 INIT_EXPANDERS;
5938 #endif
5939
5940 /* Create the unique rtx's for certain rtx codes and operand values. */
5941
5942 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5943 tries to use these variables. */
5944 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5945 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5946 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5947
5948 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5949 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5950 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5951 else
5952 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5953
5954 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5955
5956 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5957 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5958 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5959
5960 dconstm1 = dconst1;
5961 dconstm1.sign = 1;
5962
5963 dconsthalf = dconst1;
5964 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5965
5966 for (i = 0; i < 3; i++)
5967 {
5968 const REAL_VALUE_TYPE *const r =
5969 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5970
5971 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5972 mode != VOIDmode;
5973 mode = GET_MODE_WIDER_MODE (mode))
5974 const_tiny_rtx[i][(int) mode] =
5975 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5976
5977 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5978 mode != VOIDmode;
5979 mode = GET_MODE_WIDER_MODE (mode))
5980 const_tiny_rtx[i][(int) mode] =
5981 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5982
5983 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5984
5985 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5986 mode != VOIDmode;
5987 mode = GET_MODE_WIDER_MODE (mode))
5988 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5989
5990 for (mode = MIN_MODE_PARTIAL_INT;
5991 mode <= MAX_MODE_PARTIAL_INT;
5992 mode = (machine_mode)((int)(mode) + 1))
5993 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5994 }
5995
5996 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5997
5998 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5999 mode != VOIDmode;
6000 mode = GET_MODE_WIDER_MODE (mode))
6001 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6002
6003 for (mode = MIN_MODE_PARTIAL_INT;
6004 mode <= MAX_MODE_PARTIAL_INT;
6005 mode = (machine_mode)((int)(mode) + 1))
6006 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6007
6008 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
6009 mode != VOIDmode;
6010 mode = GET_MODE_WIDER_MODE (mode))
6011 {
6012 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6013 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6014 }
6015
6016 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
6017 mode != VOIDmode;
6018 mode = GET_MODE_WIDER_MODE (mode))
6019 {
6020 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6021 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6022 }
6023
6024 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
6025 mode != VOIDmode;
6026 mode = GET_MODE_WIDER_MODE (mode))
6027 {
6028 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6029 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6030 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6031 }
6032
6033 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6034 mode != VOIDmode;
6035 mode = GET_MODE_WIDER_MODE (mode))
6036 {
6037 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6038 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6039 }
6040
6041 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6042 mode != VOIDmode;
6043 mode = GET_MODE_WIDER_MODE (mode))
6044 {
6045 FCONST0 (mode).data.high = 0;
6046 FCONST0 (mode).data.low = 0;
6047 FCONST0 (mode).mode = mode;
6048 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6049 FCONST0 (mode), mode);
6050 }
6051
6052 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6053 mode != VOIDmode;
6054 mode = GET_MODE_WIDER_MODE (mode))
6055 {
6056 FCONST0 (mode).data.high = 0;
6057 FCONST0 (mode).data.low = 0;
6058 FCONST0 (mode).mode = mode;
6059 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6060 FCONST0 (mode), mode);
6061 }
6062
6063 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6064 mode != VOIDmode;
6065 mode = GET_MODE_WIDER_MODE (mode))
6066 {
6067 FCONST0 (mode).data.high = 0;
6068 FCONST0 (mode).data.low = 0;
6069 FCONST0 (mode).mode = mode;
6070 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6071 FCONST0 (mode), mode);
6072
6073 /* We store the value 1. */
6074 FCONST1 (mode).data.high = 0;
6075 FCONST1 (mode).data.low = 0;
6076 FCONST1 (mode).mode = mode;
6077 FCONST1 (mode).data
6078 = double_int_one.lshift (GET_MODE_FBIT (mode),
6079 HOST_BITS_PER_DOUBLE_INT,
6080 SIGNED_FIXED_POINT_MODE_P (mode));
6081 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6082 FCONST1 (mode), mode);
6083 }
6084
6085 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6086 mode != VOIDmode;
6087 mode = GET_MODE_WIDER_MODE (mode))
6088 {
6089 FCONST0 (mode).data.high = 0;
6090 FCONST0 (mode).data.low = 0;
6091 FCONST0 (mode).mode = mode;
6092 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6093 FCONST0 (mode), mode);
6094
6095 /* We store the value 1. */
6096 FCONST1 (mode).data.high = 0;
6097 FCONST1 (mode).data.low = 0;
6098 FCONST1 (mode).mode = mode;
6099 FCONST1 (mode).data
6100 = double_int_one.lshift (GET_MODE_FBIT (mode),
6101 HOST_BITS_PER_DOUBLE_INT,
6102 SIGNED_FIXED_POINT_MODE_P (mode));
6103 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6104 FCONST1 (mode), mode);
6105 }
6106
6107 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6108 mode != VOIDmode;
6109 mode = GET_MODE_WIDER_MODE (mode))
6110 {
6111 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6112 }
6113
6114 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6115 mode != VOIDmode;
6116 mode = GET_MODE_WIDER_MODE (mode))
6117 {
6118 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6119 }
6120
6121 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6122 mode != VOIDmode;
6123 mode = GET_MODE_WIDER_MODE (mode))
6124 {
6125 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6126 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6127 }
6128
6129 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6130 mode != VOIDmode;
6131 mode = GET_MODE_WIDER_MODE (mode))
6132 {
6133 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6134 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6135 }
6136
6137 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6138 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6139 const_tiny_rtx[0][i] = const0_rtx;
6140
6141 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6142 if (STORE_FLAG_VALUE == 1)
6143 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6144
6145 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6146 mode != VOIDmode;
6147 mode = GET_MODE_WIDER_MODE (mode))
6148 {
6149 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6150 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6151 }
6152
6153 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6154 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6155 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6156 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6157 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6158 /*prev_insn=*/NULL,
6159 /*next_insn=*/NULL,
6160 /*bb=*/NULL,
6161 /*pattern=*/NULL_RTX,
6162 /*location=*/-1,
6163 CODE_FOR_nothing,
6164 /*reg_notes=*/NULL_RTX);
6165 }
6166 \f
6167 /* Produce exact duplicate of insn INSN after AFTER.
6168 Care updating of libcall regions if present. */
6169
6170 rtx_insn *
6171 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6172 {
6173 rtx_insn *new_rtx;
6174 rtx link;
6175
6176 switch (GET_CODE (insn))
6177 {
6178 case INSN:
6179 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6180 break;
6181
6182 case JUMP_INSN:
6183 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6184 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6185 break;
6186
6187 case DEBUG_INSN:
6188 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6189 break;
6190
6191 case CALL_INSN:
6192 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6193 if (CALL_INSN_FUNCTION_USAGE (insn))
6194 CALL_INSN_FUNCTION_USAGE (new_rtx)
6195 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6196 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6197 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6198 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6199 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6200 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6201 break;
6202
6203 default:
6204 gcc_unreachable ();
6205 }
6206
6207 /* Update LABEL_NUSES. */
6208 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6209
6210 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6211
6212 /* If the old insn is frame related, then so is the new one. This is
6213 primarily needed for IA-64 unwind info which marks epilogue insns,
6214 which may be duplicated by the basic block reordering code. */
6215 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6216
6217 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6218 will make them. REG_LABEL_TARGETs are created there too, but are
6219 supposed to be sticky, so we copy them. */
6220 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6221 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6222 {
6223 if (GET_CODE (link) == EXPR_LIST)
6224 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6225 copy_insn_1 (XEXP (link, 0)));
6226 else
6227 add_shallow_copy_of_reg_note (new_rtx, link);
6228 }
6229
6230 INSN_CODE (new_rtx) = INSN_CODE (insn);
6231 return new_rtx;
6232 }
6233
6234 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6235 rtx
6236 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6237 {
6238 if (hard_reg_clobbers[mode][regno])
6239 return hard_reg_clobbers[mode][regno];
6240 else
6241 return (hard_reg_clobbers[mode][regno] =
6242 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6243 }
6244
6245 location_t prologue_location;
6246 location_t epilogue_location;
6247
6248 /* Hold current location information and last location information, so the
6249 datastructures are built lazily only when some instructions in given
6250 place are needed. */
6251 static location_t curr_location;
6252
6253 /* Allocate insn location datastructure. */
6254 void
6255 insn_locations_init (void)
6256 {
6257 prologue_location = epilogue_location = 0;
6258 curr_location = UNKNOWN_LOCATION;
6259 }
6260
6261 /* At the end of emit stage, clear current location. */
6262 void
6263 insn_locations_finalize (void)
6264 {
6265 epilogue_location = curr_location;
6266 curr_location = UNKNOWN_LOCATION;
6267 }
6268
6269 /* Set current location. */
6270 void
6271 set_curr_insn_location (location_t location)
6272 {
6273 curr_location = location;
6274 }
6275
6276 /* Get current location. */
6277 location_t
6278 curr_insn_location (void)
6279 {
6280 return curr_location;
6281 }
6282
6283 /* Return lexical scope block insn belongs to. */
6284 tree
6285 insn_scope (const rtx_insn *insn)
6286 {
6287 return LOCATION_BLOCK (INSN_LOCATION (insn));
6288 }
6289
6290 /* Return line number of the statement that produced this insn. */
6291 int
6292 insn_line (const rtx_insn *insn)
6293 {
6294 return LOCATION_LINE (INSN_LOCATION (insn));
6295 }
6296
6297 /* Return source file of the statement that produced this insn. */
6298 const char *
6299 insn_file (const rtx_insn *insn)
6300 {
6301 return LOCATION_FILE (INSN_LOCATION (insn));
6302 }
6303
6304 /* Return expanded location of the statement that produced this insn. */
6305 expanded_location
6306 insn_location (const rtx_insn *insn)
6307 {
6308 return expand_location (INSN_LOCATION (insn));
6309 }
6310
6311 /* Return true if memory model MODEL requires a pre-operation (release-style)
6312 barrier or a post-operation (acquire-style) barrier. While not universal,
6313 this function matches behavior of several targets. */
6314
6315 bool
6316 need_atomic_barrier_p (enum memmodel model, bool pre)
6317 {
6318 switch (model & MEMMODEL_MASK)
6319 {
6320 case MEMMODEL_RELAXED:
6321 case MEMMODEL_CONSUME:
6322 return false;
6323 case MEMMODEL_RELEASE:
6324 case MEMMODEL_SYNC_RELEASE:
6325 return pre;
6326 case MEMMODEL_ACQUIRE:
6327 case MEMMODEL_SYNC_ACQUIRE:
6328 return !pre;
6329 case MEMMODEL_ACQ_REL:
6330 case MEMMODEL_SEQ_CST:
6331 case MEMMODEL_SYNC_SEQ_CST:
6332 return true;
6333 default:
6334 gcc_unreachable ();
6335 }
6336 }
6337 \f
6338 #include "gt-emit-rtl.h"