rtl.h (mem_expr_equal_p): Function prototype added.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 rtx (*gen_lowpart) (enum machine_mode mode, rtx x) = gen_lowpart_general;
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
125
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
130
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
137
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
152
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
157
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
160
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
164
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
168
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
172
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 rtx value = (rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 rtx a = (rtx)x, b = (rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
261
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
264 {
265 mem_attrs *p = (mem_attrs *) x;
266
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
271 }
272
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
276
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
282
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
285 }
286
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
290
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
325
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
328 {
329 reg_attrs *p = (reg_attrs *) x;
330
331 return ((p->offset * 1000) ^ (long) p->decl);
332 }
333
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
337
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
343
344 return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
349
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
352 {
353 reg_attrs attrs;
354 void **slot;
355
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
359
360 attrs.decl = decl;
361 attrs.offset = offset;
362
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
365 {
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 }
369
370 return *slot;
371 }
372
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
376
377 rtx
378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
383 }
384
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
388
389 rtx
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392 void **slot;
393
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
401
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407
408 return (rtx) *slot;
409 }
410
411 rtx
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414 return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
426 {
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
430
431 return (rtx) *slot;
432 }
433
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
436 rtx
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
441
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443
444 return lookup_const_double (real);
445 }
446
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451
452 rtx
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455 rtx value;
456 unsigned int i;
457
458 if (mode != VOIDmode)
459 {
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
467
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
482
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
486
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
491
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
495
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
498
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
504
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
510
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
513
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 }
517
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
521
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
525
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
528
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
531
532 return lookup_const_double (value);
533 }
534
535 rtx
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
543
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
548
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
551
552 if (mode == Pmode && !reload_in_progress)
553 {
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
575 }
576
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
580
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
585
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
588
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
596
597 return gen_raw_REG (mode, regno);
598 }
599
600 rtx
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
604
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
608
609 return rt;
610 }
611
612 rtx
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
619
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
633
634 rtx
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637 enum machine_mode inmode;
638
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
644 }
645 \f
646 /* gen_rtvec (n, [rt1, ..., rtn])
647 **
648 ** This routine creates an rtvec and stores within it the
649 ** pointers to rtx's which are its arguments.
650 */
651
652 /*VARARGS1*/
653 rtvec
654 gen_rtvec (int n, ...)
655 {
656 int i, save_n;
657 rtx *vector;
658 va_list p;
659
660 va_start (p, n);
661
662 if (n == 0)
663 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
664
665 vector = alloca (n * sizeof (rtx));
666
667 for (i = 0; i < n; i++)
668 vector[i] = va_arg (p, rtx);
669
670 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
671 save_n = n;
672 va_end (p);
673
674 return gen_rtvec_v (save_n, vector);
675 }
676
677 rtvec
678 gen_rtvec_v (int n, rtx *argp)
679 {
680 int i;
681 rtvec rt_val;
682
683 if (n == 0)
684 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
685
686 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
687
688 for (i = 0; i < n; i++)
689 rt_val->elem[i] = *argp++;
690
691 return rt_val;
692 }
693 \f
694 /* Generate a REG rtx for a new pseudo register of mode MODE.
695 This pseudo is assigned the next sequential register number. */
696
697 rtx
698 gen_reg_rtx (enum machine_mode mode)
699 {
700 struct function *f = cfun;
701 rtx val;
702
703 /* Don't let anything called after initial flow analysis create new
704 registers. */
705 if (no_new_pseudos)
706 abort ();
707
708 if (generating_concat_p
709 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
710 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
711 {
712 /* For complex modes, don't make a single pseudo.
713 Instead, make a CONCAT of two pseudos.
714 This allows noncontiguous allocation of the real and imaginary parts,
715 which makes much better code. Besides, allocating DCmode
716 pseudos overstrains reload on some machines like the 386. */
717 rtx realpart, imagpart;
718 enum machine_mode partmode = GET_MODE_INNER (mode);
719
720 realpart = gen_reg_rtx (partmode);
721 imagpart = gen_reg_rtx (partmode);
722 return gen_rtx_CONCAT (mode, realpart, imagpart);
723 }
724
725 /* Make sure regno_pointer_align, and regno_reg_rtx are large
726 enough to have an element for this pseudo reg number. */
727
728 if (reg_rtx_no == f->emit->regno_pointer_align_length)
729 {
730 int old_size = f->emit->regno_pointer_align_length;
731 char *new;
732 rtx *new1;
733
734 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
735 memset (new + old_size, 0, old_size);
736 f->emit->regno_pointer_align = (unsigned char *) new;
737
738 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
739 old_size * 2 * sizeof (rtx));
740 memset (new1 + old_size, 0, old_size * sizeof (rtx));
741 regno_reg_rtx = new1;
742
743 f->emit->regno_pointer_align_length = old_size * 2;
744 }
745
746 val = gen_raw_REG (mode, reg_rtx_no);
747 regno_reg_rtx[reg_rtx_no++] = val;
748 return val;
749 }
750
751 /* Generate a register with same attributes as REG,
752 but offsetted by OFFSET. */
753
754 rtx
755 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
756 {
757 rtx new = gen_rtx_REG (mode, regno);
758 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
759 REG_OFFSET (reg) + offset);
760 return new;
761 }
762
763 /* Set the decl for MEM to DECL. */
764
765 void
766 set_reg_attrs_from_mem (rtx reg, rtx mem)
767 {
768 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
769 REG_ATTRS (reg)
770 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
771 }
772
773 /* Set the register attributes for registers contained in PARM_RTX.
774 Use needed values from memory attributes of MEM. */
775
776 void
777 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
778 {
779 if (GET_CODE (parm_rtx) == REG)
780 set_reg_attrs_from_mem (parm_rtx, mem);
781 else if (GET_CODE (parm_rtx) == PARALLEL)
782 {
783 /* Check for a NULL entry in the first slot, used to indicate that the
784 parameter goes both on the stack and in registers. */
785 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
786 for (; i < XVECLEN (parm_rtx, 0); i++)
787 {
788 rtx x = XVECEXP (parm_rtx, 0, i);
789 if (GET_CODE (XEXP (x, 0)) == REG)
790 REG_ATTRS (XEXP (x, 0))
791 = get_reg_attrs (MEM_EXPR (mem),
792 INTVAL (XEXP (x, 1)));
793 }
794 }
795 }
796
797 /* Assign the RTX X to declaration T. */
798 void
799 set_decl_rtl (tree t, rtx x)
800 {
801 DECL_CHECK (t)->decl.rtl = x;
802
803 if (!x)
804 return;
805 /* For register, we maintain the reverse information too. */
806 if (GET_CODE (x) == REG)
807 REG_ATTRS (x) = get_reg_attrs (t, 0);
808 else if (GET_CODE (x) == SUBREG)
809 REG_ATTRS (SUBREG_REG (x))
810 = get_reg_attrs (t, -SUBREG_BYTE (x));
811 if (GET_CODE (x) == CONCAT)
812 {
813 if (REG_P (XEXP (x, 0)))
814 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
815 if (REG_P (XEXP (x, 1)))
816 REG_ATTRS (XEXP (x, 1))
817 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
818 }
819 if (GET_CODE (x) == PARALLEL)
820 {
821 int i;
822 for (i = 0; i < XVECLEN (x, 0); i++)
823 {
824 rtx y = XVECEXP (x, 0, i);
825 if (REG_P (XEXP (y, 0)))
826 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
827 }
828 }
829 }
830
831 /* Assign the RTX X to parameter declaration T. */
832 void
833 set_decl_incoming_rtl (tree t, rtx x)
834 {
835 DECL_INCOMING_RTL (t) = x;
836
837 if (!x)
838 return;
839 /* For register, we maintain the reverse information too. */
840 if (GET_CODE (x) == REG)
841 REG_ATTRS (x) = get_reg_attrs (t, 0);
842 else if (GET_CODE (x) == SUBREG)
843 REG_ATTRS (SUBREG_REG (x))
844 = get_reg_attrs (t, -SUBREG_BYTE (x));
845 if (GET_CODE (x) == CONCAT)
846 {
847 if (REG_P (XEXP (x, 0)))
848 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
849 if (REG_P (XEXP (x, 1)))
850 REG_ATTRS (XEXP (x, 1))
851 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
852 }
853 if (GET_CODE (x) == PARALLEL)
854 {
855 int i, start;
856
857 /* Check for a NULL entry, used to indicate that the parameter goes
858 both on the stack and in registers. */
859 if (XEXP (XVECEXP (x, 0, 0), 0))
860 start = 0;
861 else
862 start = 1;
863
864 for (i = start; i < XVECLEN (x, 0); i++)
865 {
866 rtx y = XVECEXP (x, 0, i);
867 if (REG_P (XEXP (y, 0)))
868 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
869 }
870 }
871 }
872
873 /* Identify REG (which may be a CONCAT) as a user register. */
874
875 void
876 mark_user_reg (rtx reg)
877 {
878 if (GET_CODE (reg) == CONCAT)
879 {
880 REG_USERVAR_P (XEXP (reg, 0)) = 1;
881 REG_USERVAR_P (XEXP (reg, 1)) = 1;
882 }
883 else if (GET_CODE (reg) == REG)
884 REG_USERVAR_P (reg) = 1;
885 else
886 abort ();
887 }
888
889 /* Identify REG as a probable pointer register and show its alignment
890 as ALIGN, if nonzero. */
891
892 void
893 mark_reg_pointer (rtx reg, int align)
894 {
895 if (! REG_POINTER (reg))
896 {
897 REG_POINTER (reg) = 1;
898
899 if (align)
900 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
901 }
902 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
903 /* We can no-longer be sure just how aligned this pointer is. */
904 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
905 }
906
907 /* Return 1 plus largest pseudo reg number used in the current function. */
908
909 int
910 max_reg_num (void)
911 {
912 return reg_rtx_no;
913 }
914
915 /* Return 1 + the largest label number used so far in the current function. */
916
917 int
918 max_label_num (void)
919 {
920 if (last_label_num && label_num == base_label_num)
921 return last_label_num;
922 return label_num;
923 }
924
925 /* Return first label number used in this function (if any were used). */
926
927 int
928 get_first_label_num (void)
929 {
930 return first_label_num;
931 }
932 \f
933 /* Return the final regno of X, which is a SUBREG of a hard
934 register. */
935 int
936 subreg_hard_regno (rtx x, int check_mode)
937 {
938 enum machine_mode mode = GET_MODE (x);
939 unsigned int byte_offset, base_regno, final_regno;
940 rtx reg = SUBREG_REG (x);
941
942 /* This is where we attempt to catch illegal subregs
943 created by the compiler. */
944 if (GET_CODE (x) != SUBREG
945 || GET_CODE (reg) != REG)
946 abort ();
947 base_regno = REGNO (reg);
948 if (base_regno >= FIRST_PSEUDO_REGISTER)
949 abort ();
950 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
951 abort ();
952 #ifdef ENABLE_CHECKING
953 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
954 SUBREG_BYTE (x), mode))
955 abort ();
956 #endif
957 /* Catch non-congruent offsets too. */
958 byte_offset = SUBREG_BYTE (x);
959 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
960 abort ();
961
962 final_regno = subreg_regno (x);
963
964 return final_regno;
965 }
966
967 /* Return a value representing some low-order bits of X, where the number
968 of low-order bits is given by MODE. Note that no conversion is done
969 between floating-point and fixed-point values, rather, the bit
970 representation is returned.
971
972 This function handles the cases in common between gen_lowpart, below,
973 and two variants in cse.c and combine.c. These are the cases that can
974 be safely handled at all points in the compilation.
975
976 If this is not a case we can handle, return 0. */
977
978 rtx
979 gen_lowpart_common (enum machine_mode mode, rtx x)
980 {
981 int msize = GET_MODE_SIZE (mode);
982 int xsize;
983 int offset = 0;
984 enum machine_mode innermode;
985
986 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
987 so we have to make one up. Yuk. */
988 innermode = GET_MODE (x);
989 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
990 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
991 else if (innermode == VOIDmode)
992 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
993
994 xsize = GET_MODE_SIZE (innermode);
995
996 if (innermode == VOIDmode || innermode == BLKmode)
997 abort ();
998
999 if (innermode == mode)
1000 return x;
1001
1002 /* MODE must occupy no more words than the mode of X. */
1003 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1004 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1005 return 0;
1006
1007 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1008 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1009 return 0;
1010
1011 offset = subreg_lowpart_offset (mode, innermode);
1012
1013 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1014 && (GET_MODE_CLASS (mode) == MODE_INT
1015 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1016 {
1017 /* If we are getting the low-order part of something that has been
1018 sign- or zero-extended, we can either just use the object being
1019 extended or make a narrower extension. If we want an even smaller
1020 piece than the size of the object being extended, call ourselves
1021 recursively.
1022
1023 This case is used mostly by combine and cse. */
1024
1025 if (GET_MODE (XEXP (x, 0)) == mode)
1026 return XEXP (x, 0);
1027 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1028 return gen_lowpart_common (mode, XEXP (x, 0));
1029 else if (msize < xsize)
1030 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1031 }
1032 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1033 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1034 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1035 return simplify_gen_subreg (mode, x, innermode, offset);
1036
1037 /* Otherwise, we can't do this. */
1038 return 0;
1039 }
1040 \f
1041 /* Return the constant real or imaginary part (which has mode MODE)
1042 of a complex value X. The IMAGPART_P argument determines whether
1043 the real or complex component should be returned. This function
1044 returns NULL_RTX if the component isn't a constant. */
1045
1046 static rtx
1047 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1048 {
1049 tree decl, part;
1050
1051 if (GET_CODE (x) == MEM
1052 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1053 {
1054 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1055 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1056 {
1057 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1058 if (TREE_CODE (part) == REAL_CST
1059 || TREE_CODE (part) == INTEGER_CST)
1060 return expand_expr (part, NULL_RTX, mode, 0);
1061 }
1062 }
1063 return NULL_RTX;
1064 }
1065
1066 /* Return the real part (which has mode MODE) of a complex value X.
1067 This always comes at the low address in memory. */
1068
1069 rtx
1070 gen_realpart (enum machine_mode mode, rtx x)
1071 {
1072 rtx part;
1073
1074 /* Handle complex constants. */
1075 part = gen_complex_constant_part (mode, x, 0);
1076 if (part != NULL_RTX)
1077 return part;
1078
1079 if (WORDS_BIG_ENDIAN
1080 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1081 && REG_P (x)
1082 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1083 internal_error
1084 ("can't access real part of complex value in hard register");
1085 else if (WORDS_BIG_ENDIAN)
1086 return gen_highpart (mode, x);
1087 else
1088 return gen_lowpart (mode, x);
1089 }
1090
1091 /* Return the imaginary part (which has mode MODE) of a complex value X.
1092 This always comes at the high address in memory. */
1093
1094 rtx
1095 gen_imagpart (enum machine_mode mode, rtx x)
1096 {
1097 rtx part;
1098
1099 /* Handle complex constants. */
1100 part = gen_complex_constant_part (mode, x, 1);
1101 if (part != NULL_RTX)
1102 return part;
1103
1104 if (WORDS_BIG_ENDIAN)
1105 return gen_lowpart (mode, x);
1106 else if (! WORDS_BIG_ENDIAN
1107 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1108 && REG_P (x)
1109 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1110 internal_error
1111 ("can't access imaginary part of complex value in hard register");
1112 else
1113 return gen_highpart (mode, x);
1114 }
1115 \f
1116 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1117 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1118 least-significant part of X.
1119 MODE specifies how big a part of X to return;
1120 it usually should not be larger than a word.
1121 If X is a MEM whose address is a QUEUED, the value may be so also. */
1122
1123 rtx
1124 gen_lowpart_general (enum machine_mode mode, rtx x)
1125 {
1126 rtx result = gen_lowpart_common (mode, x);
1127
1128 if (result)
1129 return result;
1130 else if (GET_CODE (x) == REG)
1131 {
1132 /* Must be a hard reg that's not valid in MODE. */
1133 result = gen_lowpart_common (mode, copy_to_reg (x));
1134 if (result == 0)
1135 abort ();
1136 return result;
1137 }
1138 else if (GET_CODE (x) == MEM)
1139 {
1140 /* The only additional case we can do is MEM. */
1141 int offset = 0;
1142
1143 /* The following exposes the use of "x" to CSE. */
1144 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1145 && SCALAR_INT_MODE_P (GET_MODE (x))
1146 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1147 GET_MODE_BITSIZE (GET_MODE (x)))
1148 && ! no_new_pseudos)
1149 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1150
1151 if (WORDS_BIG_ENDIAN)
1152 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1153 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1154
1155 if (BYTES_BIG_ENDIAN)
1156 /* Adjust the address so that the address-after-the-data
1157 is unchanged. */
1158 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1159 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1160
1161 return adjust_address (x, mode, offset);
1162 }
1163 else if (GET_CODE (x) == ADDRESSOF)
1164 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1165 else
1166 abort ();
1167 }
1168
1169 /* Like `gen_lowpart', but refer to the most significant part.
1170 This is used to access the imaginary part of a complex number. */
1171
1172 rtx
1173 gen_highpart (enum machine_mode mode, rtx x)
1174 {
1175 unsigned int msize = GET_MODE_SIZE (mode);
1176 rtx result;
1177
1178 /* This case loses if X is a subreg. To catch bugs early,
1179 complain if an invalid MODE is used even in other cases. */
1180 if (msize > UNITS_PER_WORD
1181 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1182 abort ();
1183
1184 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1185 subreg_highpart_offset (mode, GET_MODE (x)));
1186
1187 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1188 the target if we have a MEM. gen_highpart must return a valid operand,
1189 emitting code if necessary to do so. */
1190 if (result != NULL_RTX && GET_CODE (result) == MEM)
1191 result = validize_mem (result);
1192
1193 if (!result)
1194 abort ();
1195 return result;
1196 }
1197
1198 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1199 be VOIDmode constant. */
1200 rtx
1201 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1202 {
1203 if (GET_MODE (exp) != VOIDmode)
1204 {
1205 if (GET_MODE (exp) != innermode)
1206 abort ();
1207 return gen_highpart (outermode, exp);
1208 }
1209 return simplify_gen_subreg (outermode, exp, innermode,
1210 subreg_highpart_offset (outermode, innermode));
1211 }
1212
1213 /* Return offset in bytes to get OUTERMODE low part
1214 of the value in mode INNERMODE stored in memory in target format. */
1215
1216 unsigned int
1217 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1218 {
1219 unsigned int offset = 0;
1220 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1221
1222 if (difference > 0)
1223 {
1224 if (WORDS_BIG_ENDIAN)
1225 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1226 if (BYTES_BIG_ENDIAN)
1227 offset += difference % UNITS_PER_WORD;
1228 }
1229
1230 return offset;
1231 }
1232
1233 /* Return offset in bytes to get OUTERMODE high part
1234 of the value in mode INNERMODE stored in memory in target format. */
1235 unsigned int
1236 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1237 {
1238 unsigned int offset = 0;
1239 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1240
1241 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1242 abort ();
1243
1244 if (difference > 0)
1245 {
1246 if (! WORDS_BIG_ENDIAN)
1247 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1248 if (! BYTES_BIG_ENDIAN)
1249 offset += difference % UNITS_PER_WORD;
1250 }
1251
1252 return offset;
1253 }
1254
1255 /* Return 1 iff X, assumed to be a SUBREG,
1256 refers to the least significant part of its containing reg.
1257 If X is not a SUBREG, always return 1 (it is its own low part!). */
1258
1259 int
1260 subreg_lowpart_p (rtx x)
1261 {
1262 if (GET_CODE (x) != SUBREG)
1263 return 1;
1264 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1265 return 0;
1266
1267 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1268 == SUBREG_BYTE (x));
1269 }
1270 \f
1271 /* Return subword OFFSET of operand OP.
1272 The word number, OFFSET, is interpreted as the word number starting
1273 at the low-order address. OFFSET 0 is the low-order word if not
1274 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1275
1276 If we cannot extract the required word, we return zero. Otherwise,
1277 an rtx corresponding to the requested word will be returned.
1278
1279 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1280 reload has completed, a valid address will always be returned. After
1281 reload, if a valid address cannot be returned, we return zero.
1282
1283 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1284 it is the responsibility of the caller.
1285
1286 MODE is the mode of OP in case it is a CONST_INT.
1287
1288 ??? This is still rather broken for some cases. The problem for the
1289 moment is that all callers of this thing provide no 'goal mode' to
1290 tell us to work with. This exists because all callers were written
1291 in a word based SUBREG world.
1292 Now use of this function can be deprecated by simplify_subreg in most
1293 cases.
1294 */
1295
1296 rtx
1297 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1298 {
1299 if (mode == VOIDmode)
1300 mode = GET_MODE (op);
1301
1302 if (mode == VOIDmode)
1303 abort ();
1304
1305 /* If OP is narrower than a word, fail. */
1306 if (mode != BLKmode
1307 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1308 return 0;
1309
1310 /* If we want a word outside OP, return zero. */
1311 if (mode != BLKmode
1312 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1313 return const0_rtx;
1314
1315 /* Form a new MEM at the requested address. */
1316 if (GET_CODE (op) == MEM)
1317 {
1318 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1319
1320 if (! validate_address)
1321 return new;
1322
1323 else if (reload_completed)
1324 {
1325 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1326 return 0;
1327 }
1328 else
1329 return replace_equiv_address (new, XEXP (new, 0));
1330 }
1331
1332 /* Rest can be handled by simplify_subreg. */
1333 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1334 }
1335
1336 /* Similar to `operand_subword', but never return 0. If we can't extract
1337 the required subword, put OP into a register and try again. If that fails,
1338 abort. We always validate the address in this case.
1339
1340 MODE is the mode of OP, in case it is CONST_INT. */
1341
1342 rtx
1343 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1344 {
1345 rtx result = operand_subword (op, offset, 1, mode);
1346
1347 if (result)
1348 return result;
1349
1350 if (mode != BLKmode && mode != VOIDmode)
1351 {
1352 /* If this is a register which can not be accessed by words, copy it
1353 to a pseudo register. */
1354 if (GET_CODE (op) == REG)
1355 op = copy_to_reg (op);
1356 else
1357 op = force_reg (mode, op);
1358 }
1359
1360 result = operand_subword (op, offset, 1, mode);
1361 if (result == 0)
1362 abort ();
1363
1364 return result;
1365 }
1366 \f
1367 /* Given a compare instruction, swap the operands.
1368 A test instruction is changed into a compare of 0 against the operand. */
1369
1370 void
1371 reverse_comparison (rtx insn)
1372 {
1373 rtx body = PATTERN (insn);
1374 rtx comp;
1375
1376 if (GET_CODE (body) == SET)
1377 comp = SET_SRC (body);
1378 else
1379 comp = SET_SRC (XVECEXP (body, 0, 0));
1380
1381 if (GET_CODE (comp) == COMPARE)
1382 {
1383 rtx op0 = XEXP (comp, 0);
1384 rtx op1 = XEXP (comp, 1);
1385 XEXP (comp, 0) = op1;
1386 XEXP (comp, 1) = op0;
1387 }
1388 else
1389 {
1390 rtx new = gen_rtx_COMPARE (VOIDmode,
1391 CONST0_RTX (GET_MODE (comp)), comp);
1392 if (GET_CODE (body) == SET)
1393 SET_SRC (body) = new;
1394 else
1395 SET_SRC (XVECEXP (body, 0, 0)) = new;
1396 }
1397 }
1398 \f
1399 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1400 or (2) a component ref of something variable. Represent the later with
1401 a NULL expression. */
1402
1403 static tree
1404 component_ref_for_mem_expr (tree ref)
1405 {
1406 tree inner = TREE_OPERAND (ref, 0);
1407
1408 if (TREE_CODE (inner) == COMPONENT_REF)
1409 inner = component_ref_for_mem_expr (inner);
1410 else
1411 {
1412 tree placeholder_ptr = 0;
1413
1414 /* Now remove any conversions: they don't change what the underlying
1415 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1416 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1417 || TREE_CODE (inner) == NON_LVALUE_EXPR
1418 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1419 || TREE_CODE (inner) == SAVE_EXPR
1420 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1421 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1422 inner = find_placeholder (inner, &placeholder_ptr);
1423 else
1424 inner = TREE_OPERAND (inner, 0);
1425
1426 if (! DECL_P (inner))
1427 inner = NULL_TREE;
1428 }
1429
1430 if (inner == TREE_OPERAND (ref, 0))
1431 return ref;
1432 else
1433 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1434 TREE_OPERAND (ref, 1));
1435 }
1436
1437 /* Returns 1 if both MEM_EXPR can be considered equal
1438 and 0 otherwise. */
1439
1440 int
1441 mem_expr_equal_p (tree expr1, tree expr2)
1442 {
1443 if (expr1 == expr2)
1444 return 1;
1445
1446 if (! expr1 || ! expr2)
1447 return 0;
1448
1449 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1450 return 0;
1451
1452 if (TREE_CODE (expr1) == COMPONENT_REF)
1453 return
1454 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1455 TREE_OPERAND (expr2, 0))
1456 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1457 TREE_OPERAND (expr2, 1));
1458
1459 if (TREE_CODE (expr1) == INDIRECT_REF)
1460 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1461 TREE_OPERAND (expr2, 0));
1462
1463 /* Decls with different pointers can't be equal. */
1464 if (DECL_P (expr1))
1465 return 0;
1466
1467 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1468 have been resolved here. */
1469 }
1470
1471 /* Given REF, a MEM, and T, either the type of X or the expression
1472 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1473 if we are making a new object of this type. BITPOS is nonzero if
1474 there is an offset outstanding on T that will be applied later. */
1475
1476 void
1477 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1478 HOST_WIDE_INT bitpos)
1479 {
1480 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1481 tree expr = MEM_EXPR (ref);
1482 rtx offset = MEM_OFFSET (ref);
1483 rtx size = MEM_SIZE (ref);
1484 unsigned int align = MEM_ALIGN (ref);
1485 HOST_WIDE_INT apply_bitpos = 0;
1486 tree type;
1487
1488 /* It can happen that type_for_mode was given a mode for which there
1489 is no language-level type. In which case it returns NULL, which
1490 we can see here. */
1491 if (t == NULL_TREE)
1492 return;
1493
1494 type = TYPE_P (t) ? t : TREE_TYPE (t);
1495 if (type == error_mark_node)
1496 return;
1497
1498 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1499 wrong answer, as it assumes that DECL_RTL already has the right alias
1500 info. Callers should not set DECL_RTL until after the call to
1501 set_mem_attributes. */
1502 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1503 abort ();
1504
1505 /* Get the alias set from the expression or type (perhaps using a
1506 front-end routine) and use it. */
1507 alias = get_alias_set (t);
1508
1509 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1510 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1511 RTX_UNCHANGING_P (ref)
1512 |= ((lang_hooks.honor_readonly
1513 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1514 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1515
1516 /* If we are making an object of this type, or if this is a DECL, we know
1517 that it is a scalar if the type is not an aggregate. */
1518 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1519 MEM_SCALAR_P (ref) = 1;
1520
1521 /* We can set the alignment from the type if we are making an object,
1522 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1523 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1524 align = MAX (align, TYPE_ALIGN (type));
1525
1526 /* If the size is known, we can set that. */
1527 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1528 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1529
1530 /* If T is not a type, we may be able to deduce some more information about
1531 the expression. */
1532 if (! TYPE_P (t))
1533 {
1534 maybe_set_unchanging (ref, t);
1535 if (TREE_THIS_VOLATILE (t))
1536 MEM_VOLATILE_P (ref) = 1;
1537
1538 /* Now remove any conversions: they don't change what the underlying
1539 object is. Likewise for SAVE_EXPR. */
1540 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1541 || TREE_CODE (t) == NON_LVALUE_EXPR
1542 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1543 || TREE_CODE (t) == SAVE_EXPR)
1544 t = TREE_OPERAND (t, 0);
1545
1546 /* If this expression can't be addressed (e.g., it contains a reference
1547 to a non-addressable field), show we don't change its alias set. */
1548 if (! can_address_p (t))
1549 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1550
1551 /* If this is a decl, set the attributes of the MEM from it. */
1552 if (DECL_P (t))
1553 {
1554 expr = t;
1555 offset = const0_rtx;
1556 apply_bitpos = bitpos;
1557 size = (DECL_SIZE_UNIT (t)
1558 && host_integerp (DECL_SIZE_UNIT (t), 1)
1559 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1560 align = DECL_ALIGN (t);
1561 }
1562
1563 /* If this is a constant, we know the alignment. */
1564 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1565 {
1566 align = TYPE_ALIGN (type);
1567 #ifdef CONSTANT_ALIGNMENT
1568 align = CONSTANT_ALIGNMENT (t, align);
1569 #endif
1570 }
1571
1572 /* If this is a field reference and not a bit-field, record it. */
1573 /* ??? There is some information that can be gleened from bit-fields,
1574 such as the word offset in the structure that might be modified.
1575 But skip it for now. */
1576 else if (TREE_CODE (t) == COMPONENT_REF
1577 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1578 {
1579 expr = component_ref_for_mem_expr (t);
1580 offset = const0_rtx;
1581 apply_bitpos = bitpos;
1582 /* ??? Any reason the field size would be different than
1583 the size we got from the type? */
1584 }
1585
1586 /* If this is an array reference, look for an outer field reference. */
1587 else if (TREE_CODE (t) == ARRAY_REF)
1588 {
1589 tree off_tree = size_zero_node;
1590 /* We can't modify t, because we use it at the end of the
1591 function. */
1592 tree t2 = t;
1593
1594 do
1595 {
1596 tree index = TREE_OPERAND (t2, 1);
1597 tree array = TREE_OPERAND (t2, 0);
1598 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1599 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1600 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1601
1602 /* We assume all arrays have sizes that are a multiple of a byte.
1603 First subtract the lower bound, if any, in the type of the
1604 index, then convert to sizetype and multiply by the size of the
1605 array element. */
1606 if (low_bound != 0 && ! integer_zerop (low_bound))
1607 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1608 index, low_bound));
1609
1610 /* If the index has a self-referential type, pass it to a
1611 WITH_RECORD_EXPR; if the component size is, pass our
1612 component to one. */
1613 if (CONTAINS_PLACEHOLDER_P (index))
1614 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1615 if (CONTAINS_PLACEHOLDER_P (unit_size))
1616 unit_size = build (WITH_RECORD_EXPR, sizetype,
1617 unit_size, array);
1618
1619 off_tree
1620 = fold (build (PLUS_EXPR, sizetype,
1621 fold (build (MULT_EXPR, sizetype,
1622 index,
1623 unit_size)),
1624 off_tree));
1625 t2 = TREE_OPERAND (t2, 0);
1626 }
1627 while (TREE_CODE (t2) == ARRAY_REF);
1628
1629 if (DECL_P (t2))
1630 {
1631 expr = t2;
1632 offset = NULL;
1633 if (host_integerp (off_tree, 1))
1634 {
1635 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1636 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1637 align = DECL_ALIGN (t2);
1638 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1639 align = aoff;
1640 offset = GEN_INT (ioff);
1641 apply_bitpos = bitpos;
1642 }
1643 }
1644 else if (TREE_CODE (t2) == COMPONENT_REF)
1645 {
1646 expr = component_ref_for_mem_expr (t2);
1647 if (host_integerp (off_tree, 1))
1648 {
1649 offset = GEN_INT (tree_low_cst (off_tree, 1));
1650 apply_bitpos = bitpos;
1651 }
1652 /* ??? Any reason the field size would be different than
1653 the size we got from the type? */
1654 }
1655 else if (flag_argument_noalias > 1
1656 && TREE_CODE (t2) == INDIRECT_REF
1657 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1658 {
1659 expr = t2;
1660 offset = NULL;
1661 }
1662 }
1663
1664 /* If this is a Fortran indirect argument reference, record the
1665 parameter decl. */
1666 else if (flag_argument_noalias > 1
1667 && TREE_CODE (t) == INDIRECT_REF
1668 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1669 {
1670 expr = t;
1671 offset = NULL;
1672 }
1673 }
1674
1675 /* If we modified OFFSET based on T, then subtract the outstanding
1676 bit position offset. Similarly, increase the size of the accessed
1677 object to contain the negative offset. */
1678 if (apply_bitpos)
1679 {
1680 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1681 if (size)
1682 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1683 }
1684
1685 /* Now set the attributes we computed above. */
1686 MEM_ATTRS (ref)
1687 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1688
1689 /* If this is already known to be a scalar or aggregate, we are done. */
1690 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1691 return;
1692
1693 /* If it is a reference into an aggregate, this is part of an aggregate.
1694 Otherwise we don't know. */
1695 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1696 || TREE_CODE (t) == ARRAY_RANGE_REF
1697 || TREE_CODE (t) == BIT_FIELD_REF)
1698 MEM_IN_STRUCT_P (ref) = 1;
1699 }
1700
1701 void
1702 set_mem_attributes (rtx ref, tree t, int objectp)
1703 {
1704 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1705 }
1706
1707 /* Set the decl for MEM to DECL. */
1708
1709 void
1710 set_mem_attrs_from_reg (rtx mem, rtx reg)
1711 {
1712 MEM_ATTRS (mem)
1713 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1714 GEN_INT (REG_OFFSET (reg)),
1715 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1716 }
1717
1718 /* Set the alias set of MEM to SET. */
1719
1720 void
1721 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1722 {
1723 #ifdef ENABLE_CHECKING
1724 /* If the new and old alias sets don't conflict, something is wrong. */
1725 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1726 abort ();
1727 #endif
1728
1729 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1730 MEM_SIZE (mem), MEM_ALIGN (mem),
1731 GET_MODE (mem));
1732 }
1733
1734 /* Set the alignment of MEM to ALIGN bits. */
1735
1736 void
1737 set_mem_align (rtx mem, unsigned int align)
1738 {
1739 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1740 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1741 GET_MODE (mem));
1742 }
1743
1744 /* Set the expr for MEM to EXPR. */
1745
1746 void
1747 set_mem_expr (rtx mem, tree expr)
1748 {
1749 MEM_ATTRS (mem)
1750 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1751 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1752 }
1753
1754 /* Set the offset of MEM to OFFSET. */
1755
1756 void
1757 set_mem_offset (rtx mem, rtx offset)
1758 {
1759 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1760 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1761 GET_MODE (mem));
1762 }
1763
1764 /* Set the size of MEM to SIZE. */
1765
1766 void
1767 set_mem_size (rtx mem, rtx size)
1768 {
1769 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1770 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1771 GET_MODE (mem));
1772 }
1773 \f
1774 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1775 and its address changed to ADDR. (VOIDmode means don't change the mode.
1776 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1777 returned memory location is required to be valid. The memory
1778 attributes are not changed. */
1779
1780 static rtx
1781 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1782 {
1783 rtx new;
1784
1785 if (GET_CODE (memref) != MEM)
1786 abort ();
1787 if (mode == VOIDmode)
1788 mode = GET_MODE (memref);
1789 if (addr == 0)
1790 addr = XEXP (memref, 0);
1791 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1792 && (!validate || memory_address_p (mode, addr)))
1793 return memref;
1794
1795 if (validate)
1796 {
1797 if (reload_in_progress || reload_completed)
1798 {
1799 if (! memory_address_p (mode, addr))
1800 abort ();
1801 }
1802 else
1803 addr = memory_address (mode, addr);
1804 }
1805
1806 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1807 return memref;
1808
1809 new = gen_rtx_MEM (mode, addr);
1810 MEM_COPY_ATTRIBUTES (new, memref);
1811 return new;
1812 }
1813
1814 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1815 way we are changing MEMREF, so we only preserve the alias set. */
1816
1817 rtx
1818 change_address (rtx memref, enum machine_mode mode, rtx addr)
1819 {
1820 rtx new = change_address_1 (memref, mode, addr, 1), size;
1821 enum machine_mode mmode = GET_MODE (new);
1822 unsigned int align;
1823
1824 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1825 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1826
1827 /* If there are no changes, just return the original memory reference. */
1828 if (new == memref)
1829 {
1830 if (MEM_ATTRS (memref) == 0
1831 || (MEM_EXPR (memref) == NULL
1832 && MEM_OFFSET (memref) == NULL
1833 && MEM_SIZE (memref) == size
1834 && MEM_ALIGN (memref) == align))
1835 return new;
1836
1837 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1838 MEM_COPY_ATTRIBUTES (new, memref);
1839 }
1840
1841 MEM_ATTRS (new)
1842 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1843
1844 return new;
1845 }
1846
1847 /* Return a memory reference like MEMREF, but with its mode changed
1848 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1849 nonzero, the memory address is forced to be valid.
1850 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1851 and caller is responsible for adjusting MEMREF base register. */
1852
1853 rtx
1854 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1855 int validate, int adjust)
1856 {
1857 rtx addr = XEXP (memref, 0);
1858 rtx new;
1859 rtx memoffset = MEM_OFFSET (memref);
1860 rtx size = 0;
1861 unsigned int memalign = MEM_ALIGN (memref);
1862
1863 /* If there are no changes, just return the original memory reference. */
1864 if (mode == GET_MODE (memref) && !offset
1865 && (!validate || memory_address_p (mode, addr)))
1866 return memref;
1867
1868 /* ??? Prefer to create garbage instead of creating shared rtl.
1869 This may happen even if offset is nonzero -- consider
1870 (plus (plus reg reg) const_int) -- so do this always. */
1871 addr = copy_rtx (addr);
1872
1873 if (adjust)
1874 {
1875 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1876 object, we can merge it into the LO_SUM. */
1877 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1878 && offset >= 0
1879 && (unsigned HOST_WIDE_INT) offset
1880 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1881 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1882 plus_constant (XEXP (addr, 1), offset));
1883 else
1884 addr = plus_constant (addr, offset);
1885 }
1886
1887 new = change_address_1 (memref, mode, addr, validate);
1888
1889 /* Compute the new values of the memory attributes due to this adjustment.
1890 We add the offsets and update the alignment. */
1891 if (memoffset)
1892 memoffset = GEN_INT (offset + INTVAL (memoffset));
1893
1894 /* Compute the new alignment by taking the MIN of the alignment and the
1895 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1896 if zero. */
1897 if (offset != 0)
1898 memalign
1899 = MIN (memalign,
1900 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1901
1902 /* We can compute the size in a number of ways. */
1903 if (GET_MODE (new) != BLKmode)
1904 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1905 else if (MEM_SIZE (memref))
1906 size = plus_constant (MEM_SIZE (memref), -offset);
1907
1908 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1909 memoffset, size, memalign, GET_MODE (new));
1910
1911 /* At some point, we should validate that this offset is within the object,
1912 if all the appropriate values are known. */
1913 return new;
1914 }
1915
1916 /* Return a memory reference like MEMREF, but with its mode changed
1917 to MODE and its address changed to ADDR, which is assumed to be
1918 MEMREF offseted by OFFSET bytes. If VALIDATE is
1919 nonzero, the memory address is forced to be valid. */
1920
1921 rtx
1922 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1923 HOST_WIDE_INT offset, int validate)
1924 {
1925 memref = change_address_1 (memref, VOIDmode, addr, validate);
1926 return adjust_address_1 (memref, mode, offset, validate, 0);
1927 }
1928
1929 /* Return a memory reference like MEMREF, but whose address is changed by
1930 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1931 known to be in OFFSET (possibly 1). */
1932
1933 rtx
1934 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1935 {
1936 rtx new, addr = XEXP (memref, 0);
1937
1938 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1939
1940 /* At this point we don't know _why_ the address is invalid. It
1941 could have secondary memory references, multiplies or anything.
1942
1943 However, if we did go and rearrange things, we can wind up not
1944 being able to recognize the magic around pic_offset_table_rtx.
1945 This stuff is fragile, and is yet another example of why it is
1946 bad to expose PIC machinery too early. */
1947 if (! memory_address_p (GET_MODE (memref), new)
1948 && GET_CODE (addr) == PLUS
1949 && XEXP (addr, 0) == pic_offset_table_rtx)
1950 {
1951 addr = force_reg (GET_MODE (addr), addr);
1952 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1953 }
1954
1955 update_temp_slot_address (XEXP (memref, 0), new);
1956 new = change_address_1 (memref, VOIDmode, new, 1);
1957
1958 /* If there are no changes, just return the original memory reference. */
1959 if (new == memref)
1960 return new;
1961
1962 /* Update the alignment to reflect the offset. Reset the offset, which
1963 we don't know. */
1964 MEM_ATTRS (new)
1965 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1966 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1967 GET_MODE (new));
1968 return new;
1969 }
1970
1971 /* Return a memory reference like MEMREF, but with its address changed to
1972 ADDR. The caller is asserting that the actual piece of memory pointed
1973 to is the same, just the form of the address is being changed, such as
1974 by putting something into a register. */
1975
1976 rtx
1977 replace_equiv_address (rtx memref, rtx addr)
1978 {
1979 /* change_address_1 copies the memory attribute structure without change
1980 and that's exactly what we want here. */
1981 update_temp_slot_address (XEXP (memref, 0), addr);
1982 return change_address_1 (memref, VOIDmode, addr, 1);
1983 }
1984
1985 /* Likewise, but the reference is not required to be valid. */
1986
1987 rtx
1988 replace_equiv_address_nv (rtx memref, rtx addr)
1989 {
1990 return change_address_1 (memref, VOIDmode, addr, 0);
1991 }
1992
1993 /* Return a memory reference like MEMREF, but with its mode widened to
1994 MODE and offset by OFFSET. This would be used by targets that e.g.
1995 cannot issue QImode memory operations and have to use SImode memory
1996 operations plus masking logic. */
1997
1998 rtx
1999 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2000 {
2001 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2002 tree expr = MEM_EXPR (new);
2003 rtx memoffset = MEM_OFFSET (new);
2004 unsigned int size = GET_MODE_SIZE (mode);
2005
2006 /* If there are no changes, just return the original memory reference. */
2007 if (new == memref)
2008 return new;
2009
2010 /* If we don't know what offset we were at within the expression, then
2011 we can't know if we've overstepped the bounds. */
2012 if (! memoffset)
2013 expr = NULL_TREE;
2014
2015 while (expr)
2016 {
2017 if (TREE_CODE (expr) == COMPONENT_REF)
2018 {
2019 tree field = TREE_OPERAND (expr, 1);
2020
2021 if (! DECL_SIZE_UNIT (field))
2022 {
2023 expr = NULL_TREE;
2024 break;
2025 }
2026
2027 /* Is the field at least as large as the access? If so, ok,
2028 otherwise strip back to the containing structure. */
2029 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2030 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2031 && INTVAL (memoffset) >= 0)
2032 break;
2033
2034 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2035 {
2036 expr = NULL_TREE;
2037 break;
2038 }
2039
2040 expr = TREE_OPERAND (expr, 0);
2041 memoffset = (GEN_INT (INTVAL (memoffset)
2042 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2043 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2044 / BITS_PER_UNIT)));
2045 }
2046 /* Similarly for the decl. */
2047 else if (DECL_P (expr)
2048 && DECL_SIZE_UNIT (expr)
2049 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2050 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2051 && (! memoffset || INTVAL (memoffset) >= 0))
2052 break;
2053 else
2054 {
2055 /* The widened memory access overflows the expression, which means
2056 that it could alias another expression. Zap it. */
2057 expr = NULL_TREE;
2058 break;
2059 }
2060 }
2061
2062 if (! expr)
2063 memoffset = NULL_RTX;
2064
2065 /* The widened memory may alias other stuff, so zap the alias set. */
2066 /* ??? Maybe use get_alias_set on any remaining expression. */
2067
2068 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2069 MEM_ALIGN (new), mode);
2070
2071 return new;
2072 }
2073 \f
2074 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2075
2076 rtx
2077 gen_label_rtx (void)
2078 {
2079 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2080 NULL, label_num++, NULL);
2081 }
2082 \f
2083 /* For procedure integration. */
2084
2085 /* Install new pointers to the first and last insns in the chain.
2086 Also, set cur_insn_uid to one higher than the last in use.
2087 Used for an inline-procedure after copying the insn chain. */
2088
2089 void
2090 set_new_first_and_last_insn (rtx first, rtx last)
2091 {
2092 rtx insn;
2093
2094 first_insn = first;
2095 last_insn = last;
2096 cur_insn_uid = 0;
2097
2098 for (insn = first; insn; insn = NEXT_INSN (insn))
2099 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2100
2101 cur_insn_uid++;
2102 }
2103
2104 /* Set the last label number found in the current function.
2105 This is used when belatedly compiling an inline function. */
2106
2107 void
2108 set_new_last_label_num (int last)
2109 {
2110 base_label_num = label_num;
2111 last_label_num = last;
2112 }
2113 \f
2114 /* Restore all variables describing the current status from the structure *P.
2115 This is used after a nested function. */
2116
2117 void
2118 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2119 {
2120 last_label_num = 0;
2121 }
2122 \f
2123 /* Go through all the RTL insn bodies and copy any invalid shared
2124 structure. This routine should only be called once. */
2125
2126 void
2127 unshare_all_rtl (tree fndecl, rtx insn)
2128 {
2129 tree decl;
2130
2131 /* Make sure that virtual parameters are not shared. */
2132 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2133 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2134
2135 /* Make sure that virtual stack slots are not shared. */
2136 unshare_all_decls (DECL_INITIAL (fndecl));
2137
2138 /* Unshare just about everything else. */
2139 unshare_all_rtl_in_chain (insn);
2140
2141 /* Make sure the addresses of stack slots found outside the insn chain
2142 (such as, in DECL_RTL of a variable) are not shared
2143 with the insn chain.
2144
2145 This special care is necessary when the stack slot MEM does not
2146 actually appear in the insn chain. If it does appear, its address
2147 is unshared from all else at that point. */
2148 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2149 }
2150
2151 /* Go through all the RTL insn bodies and copy any invalid shared
2152 structure, again. This is a fairly expensive thing to do so it
2153 should be done sparingly. */
2154
2155 void
2156 unshare_all_rtl_again (rtx insn)
2157 {
2158 rtx p;
2159 tree decl;
2160
2161 for (p = insn; p; p = NEXT_INSN (p))
2162 if (INSN_P (p))
2163 {
2164 reset_used_flags (PATTERN (p));
2165 reset_used_flags (REG_NOTES (p));
2166 reset_used_flags (LOG_LINKS (p));
2167 }
2168
2169 /* Make sure that virtual stack slots are not shared. */
2170 reset_used_decls (DECL_INITIAL (cfun->decl));
2171
2172 /* Make sure that virtual parameters are not shared. */
2173 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2174 reset_used_flags (DECL_RTL (decl));
2175
2176 reset_used_flags (stack_slot_list);
2177
2178 unshare_all_rtl (cfun->decl, insn);
2179 }
2180
2181 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2182 Recursively does the same for subexpressions. */
2183
2184 static void
2185 verify_rtx_sharing (rtx orig, rtx insn)
2186 {
2187 rtx x = orig;
2188 int i;
2189 enum rtx_code code;
2190 const char *format_ptr;
2191
2192 if (x == 0)
2193 return;
2194
2195 code = GET_CODE (x);
2196
2197 /* These types may be freely shared. */
2198
2199 switch (code)
2200 {
2201 case REG:
2202 case QUEUED:
2203 case CONST_INT:
2204 case CONST_DOUBLE:
2205 case CONST_VECTOR:
2206 case SYMBOL_REF:
2207 case LABEL_REF:
2208 case CODE_LABEL:
2209 case PC:
2210 case CC0:
2211 case SCRATCH:
2212 return;
2213 /* SCRATCH must be shared because they represent distinct values. */
2214 case CLOBBER:
2215 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2216 return;
2217 break;
2218
2219 case CONST:
2220 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2221 a LABEL_REF, it isn't sharable. */
2222 if (GET_CODE (XEXP (x, 0)) == PLUS
2223 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2224 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2225 return;
2226 break;
2227
2228 case MEM:
2229 /* A MEM is allowed to be shared if its address is constant. */
2230 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2231 || reload_completed || reload_in_progress)
2232 return;
2233
2234 break;
2235
2236 default:
2237 break;
2238 }
2239
2240 /* This rtx may not be shared. If it has already been seen,
2241 replace it with a copy of itself. */
2242
2243 if (RTX_FLAG (x, used))
2244 {
2245 error ("Invalid rtl sharing found in the insn");
2246 debug_rtx (insn);
2247 error ("Shared rtx");
2248 debug_rtx (x);
2249 abort ();
2250 }
2251 RTX_FLAG (x, used) = 1;
2252
2253 /* Now scan the subexpressions recursively. */
2254
2255 format_ptr = GET_RTX_FORMAT (code);
2256
2257 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2258 {
2259 switch (*format_ptr++)
2260 {
2261 case 'e':
2262 verify_rtx_sharing (XEXP (x, i), insn);
2263 break;
2264
2265 case 'E':
2266 if (XVEC (x, i) != NULL)
2267 {
2268 int j;
2269 int len = XVECLEN (x, i);
2270
2271 for (j = 0; j < len; j++)
2272 {
2273 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2274 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2275 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2276 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2277 else
2278 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2279 }
2280 }
2281 break;
2282 }
2283 }
2284 return;
2285 }
2286
2287 /* Go through all the RTL insn bodies and check that there is no unexpected
2288 sharing in between the subexpressions. */
2289
2290 void
2291 verify_rtl_sharing (void)
2292 {
2293 rtx p;
2294
2295 for (p = get_insns (); p; p = NEXT_INSN (p))
2296 if (INSN_P (p))
2297 {
2298 reset_used_flags (PATTERN (p));
2299 reset_used_flags (REG_NOTES (p));
2300 reset_used_flags (LOG_LINKS (p));
2301 }
2302
2303 for (p = get_insns (); p; p = NEXT_INSN (p))
2304 if (INSN_P (p))
2305 {
2306 verify_rtx_sharing (PATTERN (p), p);
2307 verify_rtx_sharing (REG_NOTES (p), p);
2308 verify_rtx_sharing (LOG_LINKS (p), p);
2309 }
2310 }
2311
2312 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2313 Assumes the mark bits are cleared at entry. */
2314
2315 void
2316 unshare_all_rtl_in_chain (rtx insn)
2317 {
2318 for (; insn; insn = NEXT_INSN (insn))
2319 if (INSN_P (insn))
2320 {
2321 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2322 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2323 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2324 }
2325 }
2326
2327 /* Go through all virtual stack slots of a function and copy any
2328 shared structure. */
2329 static void
2330 unshare_all_decls (tree blk)
2331 {
2332 tree t;
2333
2334 /* Copy shared decls. */
2335 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2336 if (DECL_RTL_SET_P (t))
2337 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2338
2339 /* Now process sub-blocks. */
2340 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2341 unshare_all_decls (t);
2342 }
2343
2344 /* Go through all virtual stack slots of a function and mark them as
2345 not shared. */
2346 static void
2347 reset_used_decls (tree blk)
2348 {
2349 tree t;
2350
2351 /* Mark decls. */
2352 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2353 if (DECL_RTL_SET_P (t))
2354 reset_used_flags (DECL_RTL (t));
2355
2356 /* Now process sub-blocks. */
2357 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2358 reset_used_decls (t);
2359 }
2360
2361 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2362 placed in the result directly, rather than being copied. MAY_SHARE is
2363 either a MEM of an EXPR_LIST of MEMs. */
2364
2365 rtx
2366 copy_most_rtx (rtx orig, rtx may_share)
2367 {
2368 rtx copy;
2369 int i, j;
2370 RTX_CODE code;
2371 const char *format_ptr;
2372
2373 if (orig == may_share
2374 || (GET_CODE (may_share) == EXPR_LIST
2375 && in_expr_list_p (may_share, orig)))
2376 return orig;
2377
2378 code = GET_CODE (orig);
2379
2380 switch (code)
2381 {
2382 case REG:
2383 case QUEUED:
2384 case CONST_INT:
2385 case CONST_DOUBLE:
2386 case CONST_VECTOR:
2387 case SYMBOL_REF:
2388 case CODE_LABEL:
2389 case PC:
2390 case CC0:
2391 return orig;
2392 default:
2393 break;
2394 }
2395
2396 copy = rtx_alloc (code);
2397 PUT_MODE (copy, GET_MODE (orig));
2398 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2399 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2400 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2401 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2402 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2403
2404 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2405
2406 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2407 {
2408 switch (*format_ptr++)
2409 {
2410 case 'e':
2411 XEXP (copy, i) = XEXP (orig, i);
2412 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2413 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2414 break;
2415
2416 case 'u':
2417 XEXP (copy, i) = XEXP (orig, i);
2418 break;
2419
2420 case 'E':
2421 case 'V':
2422 XVEC (copy, i) = XVEC (orig, i);
2423 if (XVEC (orig, i) != NULL)
2424 {
2425 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2426 for (j = 0; j < XVECLEN (copy, i); j++)
2427 XVECEXP (copy, i, j)
2428 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2429 }
2430 break;
2431
2432 case 'w':
2433 XWINT (copy, i) = XWINT (orig, i);
2434 break;
2435
2436 case 'n':
2437 case 'i':
2438 XINT (copy, i) = XINT (orig, i);
2439 break;
2440
2441 case 't':
2442 XTREE (copy, i) = XTREE (orig, i);
2443 break;
2444
2445 case 's':
2446 case 'S':
2447 XSTR (copy, i) = XSTR (orig, i);
2448 break;
2449
2450 case '0':
2451 X0ANY (copy, i) = X0ANY (orig, i);
2452 break;
2453
2454 default:
2455 abort ();
2456 }
2457 }
2458 return copy;
2459 }
2460
2461 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2462 Recursively does the same for subexpressions. Uses
2463 copy_rtx_if_shared_1 to reduce stack space. */
2464
2465 rtx
2466 copy_rtx_if_shared (rtx orig)
2467 {
2468 copy_rtx_if_shared_1 (&orig);
2469 return orig;
2470 }
2471
2472 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2473 use. Recursively does the same for subexpressions. */
2474
2475 static void
2476 copy_rtx_if_shared_1 (rtx *orig1)
2477 {
2478 rtx x;
2479 int i;
2480 enum rtx_code code;
2481 rtx *last_ptr;
2482 const char *format_ptr;
2483 int copied = 0;
2484 int length;
2485
2486 /* Repeat is used to turn tail-recursion into iteration. */
2487 repeat:
2488 x = *orig1;
2489
2490 if (x == 0)
2491 return;
2492
2493 code = GET_CODE (x);
2494
2495 /* These types may be freely shared. */
2496
2497 switch (code)
2498 {
2499 case REG:
2500 case QUEUED:
2501 case CONST_INT:
2502 case CONST_DOUBLE:
2503 case CONST_VECTOR:
2504 case SYMBOL_REF:
2505 case LABEL_REF:
2506 case CODE_LABEL:
2507 case PC:
2508 case CC0:
2509 case SCRATCH:
2510 /* SCRATCH must be shared because they represent distinct values. */
2511 return;
2512 case CLOBBER:
2513 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2514 return;
2515 break;
2516
2517 case CONST:
2518 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2519 a LABEL_REF, it isn't sharable. */
2520 if (GET_CODE (XEXP (x, 0)) == PLUS
2521 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2522 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2523 return;
2524 break;
2525
2526 case INSN:
2527 case JUMP_INSN:
2528 case CALL_INSN:
2529 case NOTE:
2530 case BARRIER:
2531 /* The chain of insns is not being copied. */
2532 return;
2533
2534 default:
2535 break;
2536 }
2537
2538 /* This rtx may not be shared. If it has already been seen,
2539 replace it with a copy of itself. */
2540
2541 if (RTX_FLAG (x, used))
2542 {
2543 rtx copy;
2544
2545 copy = rtx_alloc (code);
2546 memcpy (copy, x, RTX_SIZE (code));
2547 x = copy;
2548 copied = 1;
2549 }
2550 RTX_FLAG (x, used) = 1;
2551
2552 /* Now scan the subexpressions recursively.
2553 We can store any replaced subexpressions directly into X
2554 since we know X is not shared! Any vectors in X
2555 must be copied if X was copied. */
2556
2557 format_ptr = GET_RTX_FORMAT (code);
2558 length = GET_RTX_LENGTH (code);
2559 last_ptr = NULL;
2560
2561 for (i = 0; i < length; i++)
2562 {
2563 switch (*format_ptr++)
2564 {
2565 case 'e':
2566 if (last_ptr)
2567 copy_rtx_if_shared_1 (last_ptr);
2568 last_ptr = &XEXP (x, i);
2569 break;
2570
2571 case 'E':
2572 if (XVEC (x, i) != NULL)
2573 {
2574 int j;
2575 int len = XVECLEN (x, i);
2576
2577 /* Copy the vector iff I copied the rtx and the length
2578 is nonzero. */
2579 if (copied && len > 0)
2580 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2581
2582 /* Call recursively on all inside the vector. */
2583 for (j = 0; j < len; j++)
2584 {
2585 if (last_ptr)
2586 copy_rtx_if_shared_1 (last_ptr);
2587 last_ptr = &XVECEXP (x, i, j);
2588 }
2589 }
2590 break;
2591 }
2592 }
2593 *orig1 = x;
2594 if (last_ptr)
2595 {
2596 orig1 = last_ptr;
2597 goto repeat;
2598 }
2599 return;
2600 }
2601
2602 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2603 to look for shared sub-parts. */
2604
2605 void
2606 reset_used_flags (rtx x)
2607 {
2608 int i, j;
2609 enum rtx_code code;
2610 const char *format_ptr;
2611 int length;
2612
2613 /* Repeat is used to turn tail-recursion into iteration. */
2614 repeat:
2615 if (x == 0)
2616 return;
2617
2618 code = GET_CODE (x);
2619
2620 /* These types may be freely shared so we needn't do any resetting
2621 for them. */
2622
2623 switch (code)
2624 {
2625 case REG:
2626 case QUEUED:
2627 case CONST_INT:
2628 case CONST_DOUBLE:
2629 case CONST_VECTOR:
2630 case SYMBOL_REF:
2631 case CODE_LABEL:
2632 case PC:
2633 case CC0:
2634 return;
2635
2636 case INSN:
2637 case JUMP_INSN:
2638 case CALL_INSN:
2639 case NOTE:
2640 case LABEL_REF:
2641 case BARRIER:
2642 /* The chain of insns is not being copied. */
2643 return;
2644
2645 default:
2646 break;
2647 }
2648
2649 RTX_FLAG (x, used) = 0;
2650
2651 format_ptr = GET_RTX_FORMAT (code);
2652 length = GET_RTX_LENGTH (code);
2653
2654 for (i = 0; i < length; i++)
2655 {
2656 switch (*format_ptr++)
2657 {
2658 case 'e':
2659 if (i == length-1)
2660 {
2661 x = XEXP (x, i);
2662 goto repeat;
2663 }
2664 reset_used_flags (XEXP (x, i));
2665 break;
2666
2667 case 'E':
2668 for (j = 0; j < XVECLEN (x, i); j++)
2669 reset_used_flags (XVECEXP (x, i, j));
2670 break;
2671 }
2672 }
2673 }
2674
2675 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2676 to look for shared sub-parts. */
2677
2678 void
2679 set_used_flags (rtx x)
2680 {
2681 int i, j;
2682 enum rtx_code code;
2683 const char *format_ptr;
2684
2685 if (x == 0)
2686 return;
2687
2688 code = GET_CODE (x);
2689
2690 /* These types may be freely shared so we needn't do any resetting
2691 for them. */
2692
2693 switch (code)
2694 {
2695 case REG:
2696 case QUEUED:
2697 case CONST_INT:
2698 case CONST_DOUBLE:
2699 case CONST_VECTOR:
2700 case SYMBOL_REF:
2701 case CODE_LABEL:
2702 case PC:
2703 case CC0:
2704 return;
2705
2706 case INSN:
2707 case JUMP_INSN:
2708 case CALL_INSN:
2709 case NOTE:
2710 case LABEL_REF:
2711 case BARRIER:
2712 /* The chain of insns is not being copied. */
2713 return;
2714
2715 default:
2716 break;
2717 }
2718
2719 RTX_FLAG (x, used) = 1;
2720
2721 format_ptr = GET_RTX_FORMAT (code);
2722 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2723 {
2724 switch (*format_ptr++)
2725 {
2726 case 'e':
2727 set_used_flags (XEXP (x, i));
2728 break;
2729
2730 case 'E':
2731 for (j = 0; j < XVECLEN (x, i); j++)
2732 set_used_flags (XVECEXP (x, i, j));
2733 break;
2734 }
2735 }
2736 }
2737 \f
2738 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2739 Return X or the rtx for the pseudo reg the value of X was copied into.
2740 OTHER must be valid as a SET_DEST. */
2741
2742 rtx
2743 make_safe_from (rtx x, rtx other)
2744 {
2745 while (1)
2746 switch (GET_CODE (other))
2747 {
2748 case SUBREG:
2749 other = SUBREG_REG (other);
2750 break;
2751 case STRICT_LOW_PART:
2752 case SIGN_EXTEND:
2753 case ZERO_EXTEND:
2754 other = XEXP (other, 0);
2755 break;
2756 default:
2757 goto done;
2758 }
2759 done:
2760 if ((GET_CODE (other) == MEM
2761 && ! CONSTANT_P (x)
2762 && GET_CODE (x) != REG
2763 && GET_CODE (x) != SUBREG)
2764 || (GET_CODE (other) == REG
2765 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2766 || reg_mentioned_p (other, x))))
2767 {
2768 rtx temp = gen_reg_rtx (GET_MODE (x));
2769 emit_move_insn (temp, x);
2770 return temp;
2771 }
2772 return x;
2773 }
2774 \f
2775 /* Emission of insns (adding them to the doubly-linked list). */
2776
2777 /* Return the first insn of the current sequence or current function. */
2778
2779 rtx
2780 get_insns (void)
2781 {
2782 return first_insn;
2783 }
2784
2785 /* Specify a new insn as the first in the chain. */
2786
2787 void
2788 set_first_insn (rtx insn)
2789 {
2790 if (PREV_INSN (insn) != 0)
2791 abort ();
2792 first_insn = insn;
2793 }
2794
2795 /* Return the last insn emitted in current sequence or current function. */
2796
2797 rtx
2798 get_last_insn (void)
2799 {
2800 return last_insn;
2801 }
2802
2803 /* Specify a new insn as the last in the chain. */
2804
2805 void
2806 set_last_insn (rtx insn)
2807 {
2808 if (NEXT_INSN (insn) != 0)
2809 abort ();
2810 last_insn = insn;
2811 }
2812
2813 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2814
2815 rtx
2816 get_last_insn_anywhere (void)
2817 {
2818 struct sequence_stack *stack;
2819 if (last_insn)
2820 return last_insn;
2821 for (stack = seq_stack; stack; stack = stack->next)
2822 if (stack->last != 0)
2823 return stack->last;
2824 return 0;
2825 }
2826
2827 /* Return the first nonnote insn emitted in current sequence or current
2828 function. This routine looks inside SEQUENCEs. */
2829
2830 rtx
2831 get_first_nonnote_insn (void)
2832 {
2833 rtx insn = first_insn;
2834
2835 while (insn)
2836 {
2837 insn = next_insn (insn);
2838 if (insn == 0 || GET_CODE (insn) != NOTE)
2839 break;
2840 }
2841
2842 return insn;
2843 }
2844
2845 /* Return the last nonnote insn emitted in current sequence or current
2846 function. This routine looks inside SEQUENCEs. */
2847
2848 rtx
2849 get_last_nonnote_insn (void)
2850 {
2851 rtx insn = last_insn;
2852
2853 while (insn)
2854 {
2855 insn = previous_insn (insn);
2856 if (insn == 0 || GET_CODE (insn) != NOTE)
2857 break;
2858 }
2859
2860 return insn;
2861 }
2862
2863 /* Return a number larger than any instruction's uid in this function. */
2864
2865 int
2866 get_max_uid (void)
2867 {
2868 return cur_insn_uid;
2869 }
2870
2871 /* Renumber instructions so that no instruction UIDs are wasted. */
2872
2873 void
2874 renumber_insns (FILE *stream)
2875 {
2876 rtx insn;
2877
2878 /* If we're not supposed to renumber instructions, don't. */
2879 if (!flag_renumber_insns)
2880 return;
2881
2882 /* If there aren't that many instructions, then it's not really
2883 worth renumbering them. */
2884 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2885 return;
2886
2887 cur_insn_uid = 1;
2888
2889 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2890 {
2891 if (stream)
2892 fprintf (stream, "Renumbering insn %d to %d\n",
2893 INSN_UID (insn), cur_insn_uid);
2894 INSN_UID (insn) = cur_insn_uid++;
2895 }
2896 }
2897 \f
2898 /* Return the next insn. If it is a SEQUENCE, return the first insn
2899 of the sequence. */
2900
2901 rtx
2902 next_insn (rtx insn)
2903 {
2904 if (insn)
2905 {
2906 insn = NEXT_INSN (insn);
2907 if (insn && GET_CODE (insn) == INSN
2908 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2909 insn = XVECEXP (PATTERN (insn), 0, 0);
2910 }
2911
2912 return insn;
2913 }
2914
2915 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2916 of the sequence. */
2917
2918 rtx
2919 previous_insn (rtx insn)
2920 {
2921 if (insn)
2922 {
2923 insn = PREV_INSN (insn);
2924 if (insn && GET_CODE (insn) == INSN
2925 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2926 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2927 }
2928
2929 return insn;
2930 }
2931
2932 /* Return the next insn after INSN that is not a NOTE. This routine does not
2933 look inside SEQUENCEs. */
2934
2935 rtx
2936 next_nonnote_insn (rtx insn)
2937 {
2938 while (insn)
2939 {
2940 insn = NEXT_INSN (insn);
2941 if (insn == 0 || GET_CODE (insn) != NOTE)
2942 break;
2943 }
2944
2945 return insn;
2946 }
2947
2948 /* Return the previous insn before INSN that is not a NOTE. This routine does
2949 not look inside SEQUENCEs. */
2950
2951 rtx
2952 prev_nonnote_insn (rtx insn)
2953 {
2954 while (insn)
2955 {
2956 insn = PREV_INSN (insn);
2957 if (insn == 0 || GET_CODE (insn) != NOTE)
2958 break;
2959 }
2960
2961 return insn;
2962 }
2963
2964 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2965 or 0, if there is none. This routine does not look inside
2966 SEQUENCEs. */
2967
2968 rtx
2969 next_real_insn (rtx insn)
2970 {
2971 while (insn)
2972 {
2973 insn = NEXT_INSN (insn);
2974 if (insn == 0 || GET_CODE (insn) == INSN
2975 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2976 break;
2977 }
2978
2979 return insn;
2980 }
2981
2982 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2983 or 0, if there is none. This routine does not look inside
2984 SEQUENCEs. */
2985
2986 rtx
2987 prev_real_insn (rtx insn)
2988 {
2989 while (insn)
2990 {
2991 insn = PREV_INSN (insn);
2992 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2993 || GET_CODE (insn) == JUMP_INSN)
2994 break;
2995 }
2996
2997 return insn;
2998 }
2999
3000 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3001 This routine does not look inside SEQUENCEs. */
3002
3003 rtx
3004 last_call_insn (void)
3005 {
3006 rtx insn;
3007
3008 for (insn = get_last_insn ();
3009 insn && GET_CODE (insn) != CALL_INSN;
3010 insn = PREV_INSN (insn))
3011 ;
3012
3013 return insn;
3014 }
3015
3016 /* Find the next insn after INSN that really does something. This routine
3017 does not look inside SEQUENCEs. Until reload has completed, this is the
3018 same as next_real_insn. */
3019
3020 int
3021 active_insn_p (rtx insn)
3022 {
3023 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3024 || (GET_CODE (insn) == INSN
3025 && (! reload_completed
3026 || (GET_CODE (PATTERN (insn)) != USE
3027 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3028 }
3029
3030 rtx
3031 next_active_insn (rtx insn)
3032 {
3033 while (insn)
3034 {
3035 insn = NEXT_INSN (insn);
3036 if (insn == 0 || active_insn_p (insn))
3037 break;
3038 }
3039
3040 return insn;
3041 }
3042
3043 /* Find the last insn before INSN that really does something. This routine
3044 does not look inside SEQUENCEs. Until reload has completed, this is the
3045 same as prev_real_insn. */
3046
3047 rtx
3048 prev_active_insn (rtx insn)
3049 {
3050 while (insn)
3051 {
3052 insn = PREV_INSN (insn);
3053 if (insn == 0 || active_insn_p (insn))
3054 break;
3055 }
3056
3057 return insn;
3058 }
3059
3060 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3061
3062 rtx
3063 next_label (rtx insn)
3064 {
3065 while (insn)
3066 {
3067 insn = NEXT_INSN (insn);
3068 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3069 break;
3070 }
3071
3072 return insn;
3073 }
3074
3075 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3076
3077 rtx
3078 prev_label (rtx insn)
3079 {
3080 while (insn)
3081 {
3082 insn = PREV_INSN (insn);
3083 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3084 break;
3085 }
3086
3087 return insn;
3088 }
3089 \f
3090 #ifdef HAVE_cc0
3091 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3092 and REG_CC_USER notes so we can find it. */
3093
3094 void
3095 link_cc0_insns (rtx insn)
3096 {
3097 rtx user = next_nonnote_insn (insn);
3098
3099 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3100 user = XVECEXP (PATTERN (user), 0, 0);
3101
3102 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3103 REG_NOTES (user));
3104 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3105 }
3106
3107 /* Return the next insn that uses CC0 after INSN, which is assumed to
3108 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3109 applied to the result of this function should yield INSN).
3110
3111 Normally, this is simply the next insn. However, if a REG_CC_USER note
3112 is present, it contains the insn that uses CC0.
3113
3114 Return 0 if we can't find the insn. */
3115
3116 rtx
3117 next_cc0_user (rtx insn)
3118 {
3119 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3120
3121 if (note)
3122 return XEXP (note, 0);
3123
3124 insn = next_nonnote_insn (insn);
3125 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3126 insn = XVECEXP (PATTERN (insn), 0, 0);
3127
3128 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3129 return insn;
3130
3131 return 0;
3132 }
3133
3134 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3135 note, it is the previous insn. */
3136
3137 rtx
3138 prev_cc0_setter (rtx insn)
3139 {
3140 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3141
3142 if (note)
3143 return XEXP (note, 0);
3144
3145 insn = prev_nonnote_insn (insn);
3146 if (! sets_cc0_p (PATTERN (insn)))
3147 abort ();
3148
3149 return insn;
3150 }
3151 #endif
3152
3153 /* Increment the label uses for all labels present in rtx. */
3154
3155 static void
3156 mark_label_nuses (rtx x)
3157 {
3158 enum rtx_code code;
3159 int i, j;
3160 const char *fmt;
3161
3162 code = GET_CODE (x);
3163 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3164 LABEL_NUSES (XEXP (x, 0))++;
3165
3166 fmt = GET_RTX_FORMAT (code);
3167 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3168 {
3169 if (fmt[i] == 'e')
3170 mark_label_nuses (XEXP (x, i));
3171 else if (fmt[i] == 'E')
3172 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3173 mark_label_nuses (XVECEXP (x, i, j));
3174 }
3175 }
3176
3177 \f
3178 /* Try splitting insns that can be split for better scheduling.
3179 PAT is the pattern which might split.
3180 TRIAL is the insn providing PAT.
3181 LAST is nonzero if we should return the last insn of the sequence produced.
3182
3183 If this routine succeeds in splitting, it returns the first or last
3184 replacement insn depending on the value of LAST. Otherwise, it
3185 returns TRIAL. If the insn to be returned can be split, it will be. */
3186
3187 rtx
3188 try_split (rtx pat, rtx trial, int last)
3189 {
3190 rtx before = PREV_INSN (trial);
3191 rtx after = NEXT_INSN (trial);
3192 int has_barrier = 0;
3193 rtx tem;
3194 rtx note, seq;
3195 int probability;
3196 rtx insn_last, insn;
3197 int njumps = 0;
3198
3199 if (any_condjump_p (trial)
3200 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3201 split_branch_probability = INTVAL (XEXP (note, 0));
3202 probability = split_branch_probability;
3203
3204 seq = split_insns (pat, trial);
3205
3206 split_branch_probability = -1;
3207
3208 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3209 We may need to handle this specially. */
3210 if (after && GET_CODE (after) == BARRIER)
3211 {
3212 has_barrier = 1;
3213 after = NEXT_INSN (after);
3214 }
3215
3216 if (!seq)
3217 return trial;
3218
3219 /* Avoid infinite loop if any insn of the result matches
3220 the original pattern. */
3221 insn_last = seq;
3222 while (1)
3223 {
3224 if (INSN_P (insn_last)
3225 && rtx_equal_p (PATTERN (insn_last), pat))
3226 return trial;
3227 if (!NEXT_INSN (insn_last))
3228 break;
3229 insn_last = NEXT_INSN (insn_last);
3230 }
3231
3232 /* Mark labels. */
3233 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3234 {
3235 if (GET_CODE (insn) == JUMP_INSN)
3236 {
3237 mark_jump_label (PATTERN (insn), insn, 0);
3238 njumps++;
3239 if (probability != -1
3240 && any_condjump_p (insn)
3241 && !find_reg_note (insn, REG_BR_PROB, 0))
3242 {
3243 /* We can preserve the REG_BR_PROB notes only if exactly
3244 one jump is created, otherwise the machine description
3245 is responsible for this step using
3246 split_branch_probability variable. */
3247 if (njumps != 1)
3248 abort ();
3249 REG_NOTES (insn)
3250 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3251 GEN_INT (probability),
3252 REG_NOTES (insn));
3253 }
3254 }
3255 }
3256
3257 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3258 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3259 if (GET_CODE (trial) == CALL_INSN)
3260 {
3261 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3262 if (GET_CODE (insn) == CALL_INSN)
3263 {
3264 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3265 while (*p)
3266 p = &XEXP (*p, 1);
3267 *p = CALL_INSN_FUNCTION_USAGE (trial);
3268 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3269 }
3270 }
3271
3272 /* Copy notes, particularly those related to the CFG. */
3273 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3274 {
3275 switch (REG_NOTE_KIND (note))
3276 {
3277 case REG_EH_REGION:
3278 insn = insn_last;
3279 while (insn != NULL_RTX)
3280 {
3281 if (GET_CODE (insn) == CALL_INSN
3282 || (flag_non_call_exceptions
3283 && may_trap_p (PATTERN (insn))))
3284 REG_NOTES (insn)
3285 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3286 XEXP (note, 0),
3287 REG_NOTES (insn));
3288 insn = PREV_INSN (insn);
3289 }
3290 break;
3291
3292 case REG_NORETURN:
3293 case REG_SETJMP:
3294 case REG_ALWAYS_RETURN:
3295 insn = insn_last;
3296 while (insn != NULL_RTX)
3297 {
3298 if (GET_CODE (insn) == CALL_INSN)
3299 REG_NOTES (insn)
3300 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3301 XEXP (note, 0),
3302 REG_NOTES (insn));
3303 insn = PREV_INSN (insn);
3304 }
3305 break;
3306
3307 case REG_NON_LOCAL_GOTO:
3308 insn = insn_last;
3309 while (insn != NULL_RTX)
3310 {
3311 if (GET_CODE (insn) == JUMP_INSN)
3312 REG_NOTES (insn)
3313 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3314 XEXP (note, 0),
3315 REG_NOTES (insn));
3316 insn = PREV_INSN (insn);
3317 }
3318 break;
3319
3320 default:
3321 break;
3322 }
3323 }
3324
3325 /* If there are LABELS inside the split insns increment the
3326 usage count so we don't delete the label. */
3327 if (GET_CODE (trial) == INSN)
3328 {
3329 insn = insn_last;
3330 while (insn != NULL_RTX)
3331 {
3332 if (GET_CODE (insn) == INSN)
3333 mark_label_nuses (PATTERN (insn));
3334
3335 insn = PREV_INSN (insn);
3336 }
3337 }
3338
3339 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3340
3341 delete_insn (trial);
3342 if (has_barrier)
3343 emit_barrier_after (tem);
3344
3345 /* Recursively call try_split for each new insn created; by the
3346 time control returns here that insn will be fully split, so
3347 set LAST and continue from the insn after the one returned.
3348 We can't use next_active_insn here since AFTER may be a note.
3349 Ignore deleted insns, which can be occur if not optimizing. */
3350 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3351 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3352 tem = try_split (PATTERN (tem), tem, 1);
3353
3354 /* Return either the first or the last insn, depending on which was
3355 requested. */
3356 return last
3357 ? (after ? PREV_INSN (after) : last_insn)
3358 : NEXT_INSN (before);
3359 }
3360 \f
3361 /* Make and return an INSN rtx, initializing all its slots.
3362 Store PATTERN in the pattern slots. */
3363
3364 rtx
3365 make_insn_raw (rtx pattern)
3366 {
3367 rtx insn;
3368
3369 insn = rtx_alloc (INSN);
3370
3371 INSN_UID (insn) = cur_insn_uid++;
3372 PATTERN (insn) = pattern;
3373 INSN_CODE (insn) = -1;
3374 LOG_LINKS (insn) = NULL;
3375 REG_NOTES (insn) = NULL;
3376 INSN_LOCATOR (insn) = 0;
3377 BLOCK_FOR_INSN (insn) = NULL;
3378
3379 #ifdef ENABLE_RTL_CHECKING
3380 if (insn
3381 && INSN_P (insn)
3382 && (returnjump_p (insn)
3383 || (GET_CODE (insn) == SET
3384 && SET_DEST (insn) == pc_rtx)))
3385 {
3386 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3387 debug_rtx (insn);
3388 }
3389 #endif
3390
3391 return insn;
3392 }
3393
3394 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3395
3396 static rtx
3397 make_jump_insn_raw (rtx pattern)
3398 {
3399 rtx insn;
3400
3401 insn = rtx_alloc (JUMP_INSN);
3402 INSN_UID (insn) = cur_insn_uid++;
3403
3404 PATTERN (insn) = pattern;
3405 INSN_CODE (insn) = -1;
3406 LOG_LINKS (insn) = NULL;
3407 REG_NOTES (insn) = NULL;
3408 JUMP_LABEL (insn) = NULL;
3409 INSN_LOCATOR (insn) = 0;
3410 BLOCK_FOR_INSN (insn) = NULL;
3411
3412 return insn;
3413 }
3414
3415 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3416
3417 static rtx
3418 make_call_insn_raw (rtx pattern)
3419 {
3420 rtx insn;
3421
3422 insn = rtx_alloc (CALL_INSN);
3423 INSN_UID (insn) = cur_insn_uid++;
3424
3425 PATTERN (insn) = pattern;
3426 INSN_CODE (insn) = -1;
3427 LOG_LINKS (insn) = NULL;
3428 REG_NOTES (insn) = NULL;
3429 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3430 INSN_LOCATOR (insn) = 0;
3431 BLOCK_FOR_INSN (insn) = NULL;
3432
3433 return insn;
3434 }
3435 \f
3436 /* Add INSN to the end of the doubly-linked list.
3437 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3438
3439 void
3440 add_insn (rtx insn)
3441 {
3442 PREV_INSN (insn) = last_insn;
3443 NEXT_INSN (insn) = 0;
3444
3445 if (NULL != last_insn)
3446 NEXT_INSN (last_insn) = insn;
3447
3448 if (NULL == first_insn)
3449 first_insn = insn;
3450
3451 last_insn = insn;
3452 }
3453
3454 /* Add INSN into the doubly-linked list after insn AFTER. This and
3455 the next should be the only functions called to insert an insn once
3456 delay slots have been filled since only they know how to update a
3457 SEQUENCE. */
3458
3459 void
3460 add_insn_after (rtx insn, rtx after)
3461 {
3462 rtx next = NEXT_INSN (after);
3463 basic_block bb;
3464
3465 if (optimize && INSN_DELETED_P (after))
3466 abort ();
3467
3468 NEXT_INSN (insn) = next;
3469 PREV_INSN (insn) = after;
3470
3471 if (next)
3472 {
3473 PREV_INSN (next) = insn;
3474 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3475 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3476 }
3477 else if (last_insn == after)
3478 last_insn = insn;
3479 else
3480 {
3481 struct sequence_stack *stack = seq_stack;
3482 /* Scan all pending sequences too. */
3483 for (; stack; stack = stack->next)
3484 if (after == stack->last)
3485 {
3486 stack->last = insn;
3487 break;
3488 }
3489
3490 if (stack == 0)
3491 abort ();
3492 }
3493
3494 if (GET_CODE (after) != BARRIER
3495 && GET_CODE (insn) != BARRIER
3496 && (bb = BLOCK_FOR_INSN (after)))
3497 {
3498 set_block_for_insn (insn, bb);
3499 if (INSN_P (insn))
3500 bb->flags |= BB_DIRTY;
3501 /* Should not happen as first in the BB is always
3502 either NOTE or LABEL. */
3503 if (BB_END (bb) == after
3504 /* Avoid clobbering of structure when creating new BB. */
3505 && GET_CODE (insn) != BARRIER
3506 && (GET_CODE (insn) != NOTE
3507 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3508 BB_END (bb) = insn;
3509 }
3510
3511 NEXT_INSN (after) = insn;
3512 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3513 {
3514 rtx sequence = PATTERN (after);
3515 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3516 }
3517 }
3518
3519 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3520 the previous should be the only functions called to insert an insn once
3521 delay slots have been filled since only they know how to update a
3522 SEQUENCE. */
3523
3524 void
3525 add_insn_before (rtx insn, rtx before)
3526 {
3527 rtx prev = PREV_INSN (before);
3528 basic_block bb;
3529
3530 if (optimize && INSN_DELETED_P (before))
3531 abort ();
3532
3533 PREV_INSN (insn) = prev;
3534 NEXT_INSN (insn) = before;
3535
3536 if (prev)
3537 {
3538 NEXT_INSN (prev) = insn;
3539 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3540 {
3541 rtx sequence = PATTERN (prev);
3542 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3543 }
3544 }
3545 else if (first_insn == before)
3546 first_insn = insn;
3547 else
3548 {
3549 struct sequence_stack *stack = seq_stack;
3550 /* Scan all pending sequences too. */
3551 for (; stack; stack = stack->next)
3552 if (before == stack->first)
3553 {
3554 stack->first = insn;
3555 break;
3556 }
3557
3558 if (stack == 0)
3559 abort ();
3560 }
3561
3562 if (GET_CODE (before) != BARRIER
3563 && GET_CODE (insn) != BARRIER
3564 && (bb = BLOCK_FOR_INSN (before)))
3565 {
3566 set_block_for_insn (insn, bb);
3567 if (INSN_P (insn))
3568 bb->flags |= BB_DIRTY;
3569 /* Should not happen as first in the BB is always
3570 either NOTE or LABEl. */
3571 if (BB_HEAD (bb) == insn
3572 /* Avoid clobbering of structure when creating new BB. */
3573 && GET_CODE (insn) != BARRIER
3574 && (GET_CODE (insn) != NOTE
3575 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3576 abort ();
3577 }
3578
3579 PREV_INSN (before) = insn;
3580 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3581 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3582 }
3583
3584 /* Remove an insn from its doubly-linked list. This function knows how
3585 to handle sequences. */
3586 void
3587 remove_insn (rtx insn)
3588 {
3589 rtx next = NEXT_INSN (insn);
3590 rtx prev = PREV_INSN (insn);
3591 basic_block bb;
3592
3593 if (prev)
3594 {
3595 NEXT_INSN (prev) = next;
3596 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3597 {
3598 rtx sequence = PATTERN (prev);
3599 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3600 }
3601 }
3602 else if (first_insn == insn)
3603 first_insn = next;
3604 else
3605 {
3606 struct sequence_stack *stack = seq_stack;
3607 /* Scan all pending sequences too. */
3608 for (; stack; stack = stack->next)
3609 if (insn == stack->first)
3610 {
3611 stack->first = next;
3612 break;
3613 }
3614
3615 if (stack == 0)
3616 abort ();
3617 }
3618
3619 if (next)
3620 {
3621 PREV_INSN (next) = prev;
3622 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3623 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3624 }
3625 else if (last_insn == insn)
3626 last_insn = prev;
3627 else
3628 {
3629 struct sequence_stack *stack = seq_stack;
3630 /* Scan all pending sequences too. */
3631 for (; stack; stack = stack->next)
3632 if (insn == stack->last)
3633 {
3634 stack->last = prev;
3635 break;
3636 }
3637
3638 if (stack == 0)
3639 abort ();
3640 }
3641 if (GET_CODE (insn) != BARRIER
3642 && (bb = BLOCK_FOR_INSN (insn)))
3643 {
3644 if (INSN_P (insn))
3645 bb->flags |= BB_DIRTY;
3646 if (BB_HEAD (bb) == insn)
3647 {
3648 /* Never ever delete the basic block note without deleting whole
3649 basic block. */
3650 if (GET_CODE (insn) == NOTE)
3651 abort ();
3652 BB_HEAD (bb) = next;
3653 }
3654 if (BB_END (bb) == insn)
3655 BB_END (bb) = prev;
3656 }
3657 }
3658
3659 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3660
3661 void
3662 add_function_usage_to (rtx call_insn, rtx call_fusage)
3663 {
3664 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3665 abort ();
3666
3667 /* Put the register usage information on the CALL. If there is already
3668 some usage information, put ours at the end. */
3669 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3670 {
3671 rtx link;
3672
3673 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3674 link = XEXP (link, 1))
3675 ;
3676
3677 XEXP (link, 1) = call_fusage;
3678 }
3679 else
3680 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3681 }
3682
3683 /* Delete all insns made since FROM.
3684 FROM becomes the new last instruction. */
3685
3686 void
3687 delete_insns_since (rtx from)
3688 {
3689 if (from == 0)
3690 first_insn = 0;
3691 else
3692 NEXT_INSN (from) = 0;
3693 last_insn = from;
3694 }
3695
3696 /* This function is deprecated, please use sequences instead.
3697
3698 Move a consecutive bunch of insns to a different place in the chain.
3699 The insns to be moved are those between FROM and TO.
3700 They are moved to a new position after the insn AFTER.
3701 AFTER must not be FROM or TO or any insn in between.
3702
3703 This function does not know about SEQUENCEs and hence should not be
3704 called after delay-slot filling has been done. */
3705
3706 void
3707 reorder_insns_nobb (rtx from, rtx to, rtx after)
3708 {
3709 /* Splice this bunch out of where it is now. */
3710 if (PREV_INSN (from))
3711 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3712 if (NEXT_INSN (to))
3713 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3714 if (last_insn == to)
3715 last_insn = PREV_INSN (from);
3716 if (first_insn == from)
3717 first_insn = NEXT_INSN (to);
3718
3719 /* Make the new neighbors point to it and it to them. */
3720 if (NEXT_INSN (after))
3721 PREV_INSN (NEXT_INSN (after)) = to;
3722
3723 NEXT_INSN (to) = NEXT_INSN (after);
3724 PREV_INSN (from) = after;
3725 NEXT_INSN (after) = from;
3726 if (after == last_insn)
3727 last_insn = to;
3728 }
3729
3730 /* Same as function above, but take care to update BB boundaries. */
3731 void
3732 reorder_insns (rtx from, rtx to, rtx after)
3733 {
3734 rtx prev = PREV_INSN (from);
3735 basic_block bb, bb2;
3736
3737 reorder_insns_nobb (from, to, after);
3738
3739 if (GET_CODE (after) != BARRIER
3740 && (bb = BLOCK_FOR_INSN (after)))
3741 {
3742 rtx x;
3743 bb->flags |= BB_DIRTY;
3744
3745 if (GET_CODE (from) != BARRIER
3746 && (bb2 = BLOCK_FOR_INSN (from)))
3747 {
3748 if (BB_END (bb2) == to)
3749 BB_END (bb2) = prev;
3750 bb2->flags |= BB_DIRTY;
3751 }
3752
3753 if (BB_END (bb) == after)
3754 BB_END (bb) = to;
3755
3756 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3757 set_block_for_insn (x, bb);
3758 }
3759 }
3760
3761 /* Return the line note insn preceding INSN. */
3762
3763 static rtx
3764 find_line_note (rtx insn)
3765 {
3766 if (no_line_numbers)
3767 return 0;
3768
3769 for (; insn; insn = PREV_INSN (insn))
3770 if (GET_CODE (insn) == NOTE
3771 && NOTE_LINE_NUMBER (insn) >= 0)
3772 break;
3773
3774 return insn;
3775 }
3776
3777 /* Remove unnecessary notes from the instruction stream. */
3778
3779 void
3780 remove_unnecessary_notes (void)
3781 {
3782 rtx block_stack = NULL_RTX;
3783 rtx eh_stack = NULL_RTX;
3784 rtx insn;
3785 rtx next;
3786 rtx tmp;
3787
3788 /* We must not remove the first instruction in the function because
3789 the compiler depends on the first instruction being a note. */
3790 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3791 {
3792 /* Remember what's next. */
3793 next = NEXT_INSN (insn);
3794
3795 /* We're only interested in notes. */
3796 if (GET_CODE (insn) != NOTE)
3797 continue;
3798
3799 switch (NOTE_LINE_NUMBER (insn))
3800 {
3801 case NOTE_INSN_DELETED:
3802 case NOTE_INSN_LOOP_END_TOP_COND:
3803 remove_insn (insn);
3804 break;
3805
3806 case NOTE_INSN_EH_REGION_BEG:
3807 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3808 break;
3809
3810 case NOTE_INSN_EH_REGION_END:
3811 /* Too many end notes. */
3812 if (eh_stack == NULL_RTX)
3813 abort ();
3814 /* Mismatched nesting. */
3815 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3816 abort ();
3817 tmp = eh_stack;
3818 eh_stack = XEXP (eh_stack, 1);
3819 free_INSN_LIST_node (tmp);
3820 break;
3821
3822 case NOTE_INSN_BLOCK_BEG:
3823 /* By now, all notes indicating lexical blocks should have
3824 NOTE_BLOCK filled in. */
3825 if (NOTE_BLOCK (insn) == NULL_TREE)
3826 abort ();
3827 block_stack = alloc_INSN_LIST (insn, block_stack);
3828 break;
3829
3830 case NOTE_INSN_BLOCK_END:
3831 /* Too many end notes. */
3832 if (block_stack == NULL_RTX)
3833 abort ();
3834 /* Mismatched nesting. */
3835 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3836 abort ();
3837 tmp = block_stack;
3838 block_stack = XEXP (block_stack, 1);
3839 free_INSN_LIST_node (tmp);
3840
3841 /* Scan back to see if there are any non-note instructions
3842 between INSN and the beginning of this block. If not,
3843 then there is no PC range in the generated code that will
3844 actually be in this block, so there's no point in
3845 remembering the existence of the block. */
3846 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3847 {
3848 /* This block contains a real instruction. Note that we
3849 don't include labels; if the only thing in the block
3850 is a label, then there are still no PC values that
3851 lie within the block. */
3852 if (INSN_P (tmp))
3853 break;
3854
3855 /* We're only interested in NOTEs. */
3856 if (GET_CODE (tmp) != NOTE)
3857 continue;
3858
3859 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3860 {
3861 /* We just verified that this BLOCK matches us with
3862 the block_stack check above. Never delete the
3863 BLOCK for the outermost scope of the function; we
3864 can refer to names from that scope even if the
3865 block notes are messed up. */
3866 if (! is_body_block (NOTE_BLOCK (insn))
3867 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3868 {
3869 remove_insn (tmp);
3870 remove_insn (insn);
3871 }
3872 break;
3873 }
3874 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3875 /* There's a nested block. We need to leave the
3876 current block in place since otherwise the debugger
3877 wouldn't be able to show symbols from our block in
3878 the nested block. */
3879 break;
3880 }
3881 }
3882 }
3883
3884 /* Too many begin notes. */
3885 if (block_stack || eh_stack)
3886 abort ();
3887 }
3888
3889 \f
3890 /* Emit insn(s) of given code and pattern
3891 at a specified place within the doubly-linked list.
3892
3893 All of the emit_foo global entry points accept an object
3894 X which is either an insn list or a PATTERN of a single
3895 instruction.
3896
3897 There are thus a few canonical ways to generate code and
3898 emit it at a specific place in the instruction stream. For
3899 example, consider the instruction named SPOT and the fact that
3900 we would like to emit some instructions before SPOT. We might
3901 do it like this:
3902
3903 start_sequence ();
3904 ... emit the new instructions ...
3905 insns_head = get_insns ();
3906 end_sequence ();
3907
3908 emit_insn_before (insns_head, SPOT);
3909
3910 It used to be common to generate SEQUENCE rtl instead, but that
3911 is a relic of the past which no longer occurs. The reason is that
3912 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3913 generated would almost certainly die right after it was created. */
3914
3915 /* Make X be output before the instruction BEFORE. */
3916
3917 rtx
3918 emit_insn_before (rtx x, rtx before)
3919 {
3920 rtx last = before;
3921 rtx insn;
3922
3923 #ifdef ENABLE_RTL_CHECKING
3924 if (before == NULL_RTX)
3925 abort ();
3926 #endif
3927
3928 if (x == NULL_RTX)
3929 return last;
3930
3931 switch (GET_CODE (x))
3932 {
3933 case INSN:
3934 case JUMP_INSN:
3935 case CALL_INSN:
3936 case CODE_LABEL:
3937 case BARRIER:
3938 case NOTE:
3939 insn = x;
3940 while (insn)
3941 {
3942 rtx next = NEXT_INSN (insn);
3943 add_insn_before (insn, before);
3944 last = insn;
3945 insn = next;
3946 }
3947 break;
3948
3949 #ifdef ENABLE_RTL_CHECKING
3950 case SEQUENCE:
3951 abort ();
3952 break;
3953 #endif
3954
3955 default:
3956 last = make_insn_raw (x);
3957 add_insn_before (last, before);
3958 break;
3959 }
3960
3961 return last;
3962 }
3963
3964 /* Make an instruction with body X and code JUMP_INSN
3965 and output it before the instruction BEFORE. */
3966
3967 rtx
3968 emit_jump_insn_before (rtx x, rtx before)
3969 {
3970 rtx insn, last = NULL_RTX;
3971
3972 #ifdef ENABLE_RTL_CHECKING
3973 if (before == NULL_RTX)
3974 abort ();
3975 #endif
3976
3977 switch (GET_CODE (x))
3978 {
3979 case INSN:
3980 case JUMP_INSN:
3981 case CALL_INSN:
3982 case CODE_LABEL:
3983 case BARRIER:
3984 case NOTE:
3985 insn = x;
3986 while (insn)
3987 {
3988 rtx next = NEXT_INSN (insn);
3989 add_insn_before (insn, before);
3990 last = insn;
3991 insn = next;
3992 }
3993 break;
3994
3995 #ifdef ENABLE_RTL_CHECKING
3996 case SEQUENCE:
3997 abort ();
3998 break;
3999 #endif
4000
4001 default:
4002 last = make_jump_insn_raw (x);
4003 add_insn_before (last, before);
4004 break;
4005 }
4006
4007 return last;
4008 }
4009
4010 /* Make an instruction with body X and code CALL_INSN
4011 and output it before the instruction BEFORE. */
4012
4013 rtx
4014 emit_call_insn_before (rtx x, rtx before)
4015 {
4016 rtx last = NULL_RTX, insn;
4017
4018 #ifdef ENABLE_RTL_CHECKING
4019 if (before == NULL_RTX)
4020 abort ();
4021 #endif
4022
4023 switch (GET_CODE (x))
4024 {
4025 case INSN:
4026 case JUMP_INSN:
4027 case CALL_INSN:
4028 case CODE_LABEL:
4029 case BARRIER:
4030 case NOTE:
4031 insn = x;
4032 while (insn)
4033 {
4034 rtx next = NEXT_INSN (insn);
4035 add_insn_before (insn, before);
4036 last = insn;
4037 insn = next;
4038 }
4039 break;
4040
4041 #ifdef ENABLE_RTL_CHECKING
4042 case SEQUENCE:
4043 abort ();
4044 break;
4045 #endif
4046
4047 default:
4048 last = make_call_insn_raw (x);
4049 add_insn_before (last, before);
4050 break;
4051 }
4052
4053 return last;
4054 }
4055
4056 /* Make an insn of code BARRIER
4057 and output it before the insn BEFORE. */
4058
4059 rtx
4060 emit_barrier_before (rtx before)
4061 {
4062 rtx insn = rtx_alloc (BARRIER);
4063
4064 INSN_UID (insn) = cur_insn_uid++;
4065
4066 add_insn_before (insn, before);
4067 return insn;
4068 }
4069
4070 /* Emit the label LABEL before the insn BEFORE. */
4071
4072 rtx
4073 emit_label_before (rtx label, rtx before)
4074 {
4075 /* This can be called twice for the same label as a result of the
4076 confusion that follows a syntax error! So make it harmless. */
4077 if (INSN_UID (label) == 0)
4078 {
4079 INSN_UID (label) = cur_insn_uid++;
4080 add_insn_before (label, before);
4081 }
4082
4083 return label;
4084 }
4085
4086 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4087
4088 rtx
4089 emit_note_before (int subtype, rtx before)
4090 {
4091 rtx note = rtx_alloc (NOTE);
4092 INSN_UID (note) = cur_insn_uid++;
4093 NOTE_SOURCE_FILE (note) = 0;
4094 NOTE_LINE_NUMBER (note) = subtype;
4095 BLOCK_FOR_INSN (note) = NULL;
4096
4097 add_insn_before (note, before);
4098 return note;
4099 }
4100 \f
4101 /* Helper for emit_insn_after, handles lists of instructions
4102 efficiently. */
4103
4104 static rtx emit_insn_after_1 (rtx, rtx);
4105
4106 static rtx
4107 emit_insn_after_1 (rtx first, rtx after)
4108 {
4109 rtx last;
4110 rtx after_after;
4111 basic_block bb;
4112
4113 if (GET_CODE (after) != BARRIER
4114 && (bb = BLOCK_FOR_INSN (after)))
4115 {
4116 bb->flags |= BB_DIRTY;
4117 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4118 if (GET_CODE (last) != BARRIER)
4119 set_block_for_insn (last, bb);
4120 if (GET_CODE (last) != BARRIER)
4121 set_block_for_insn (last, bb);
4122 if (BB_END (bb) == after)
4123 BB_END (bb) = last;
4124 }
4125 else
4126 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4127 continue;
4128
4129 after_after = NEXT_INSN (after);
4130
4131 NEXT_INSN (after) = first;
4132 PREV_INSN (first) = after;
4133 NEXT_INSN (last) = after_after;
4134 if (after_after)
4135 PREV_INSN (after_after) = last;
4136
4137 if (after == last_insn)
4138 last_insn = last;
4139 return last;
4140 }
4141
4142 /* Make X be output after the insn AFTER. */
4143
4144 rtx
4145 emit_insn_after (rtx x, rtx after)
4146 {
4147 rtx last = after;
4148
4149 #ifdef ENABLE_RTL_CHECKING
4150 if (after == NULL_RTX)
4151 abort ();
4152 #endif
4153
4154 if (x == NULL_RTX)
4155 return last;
4156
4157 switch (GET_CODE (x))
4158 {
4159 case INSN:
4160 case JUMP_INSN:
4161 case CALL_INSN:
4162 case CODE_LABEL:
4163 case BARRIER:
4164 case NOTE:
4165 last = emit_insn_after_1 (x, after);
4166 break;
4167
4168 #ifdef ENABLE_RTL_CHECKING
4169 case SEQUENCE:
4170 abort ();
4171 break;
4172 #endif
4173
4174 default:
4175 last = make_insn_raw (x);
4176 add_insn_after (last, after);
4177 break;
4178 }
4179
4180 return last;
4181 }
4182
4183 /* Similar to emit_insn_after, except that line notes are to be inserted so
4184 as to act as if this insn were at FROM. */
4185
4186 void
4187 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4188 {
4189 rtx from_line = find_line_note (from);
4190 rtx after_line = find_line_note (after);
4191 rtx insn = emit_insn_after (x, after);
4192
4193 if (from_line)
4194 emit_note_copy_after (from_line, after);
4195
4196 if (after_line)
4197 emit_note_copy_after (after_line, insn);
4198 }
4199
4200 /* Make an insn of code JUMP_INSN with body X
4201 and output it after the insn AFTER. */
4202
4203 rtx
4204 emit_jump_insn_after (rtx x, rtx after)
4205 {
4206 rtx last;
4207
4208 #ifdef ENABLE_RTL_CHECKING
4209 if (after == NULL_RTX)
4210 abort ();
4211 #endif
4212
4213 switch (GET_CODE (x))
4214 {
4215 case INSN:
4216 case JUMP_INSN:
4217 case CALL_INSN:
4218 case CODE_LABEL:
4219 case BARRIER:
4220 case NOTE:
4221 last = emit_insn_after_1 (x, after);
4222 break;
4223
4224 #ifdef ENABLE_RTL_CHECKING
4225 case SEQUENCE:
4226 abort ();
4227 break;
4228 #endif
4229
4230 default:
4231 last = make_jump_insn_raw (x);
4232 add_insn_after (last, after);
4233 break;
4234 }
4235
4236 return last;
4237 }
4238
4239 /* Make an instruction with body X and code CALL_INSN
4240 and output it after the instruction AFTER. */
4241
4242 rtx
4243 emit_call_insn_after (rtx x, rtx after)
4244 {
4245 rtx last;
4246
4247 #ifdef ENABLE_RTL_CHECKING
4248 if (after == NULL_RTX)
4249 abort ();
4250 #endif
4251
4252 switch (GET_CODE (x))
4253 {
4254 case INSN:
4255 case JUMP_INSN:
4256 case CALL_INSN:
4257 case CODE_LABEL:
4258 case BARRIER:
4259 case NOTE:
4260 last = emit_insn_after_1 (x, after);
4261 break;
4262
4263 #ifdef ENABLE_RTL_CHECKING
4264 case SEQUENCE:
4265 abort ();
4266 break;
4267 #endif
4268
4269 default:
4270 last = make_call_insn_raw (x);
4271 add_insn_after (last, after);
4272 break;
4273 }
4274
4275 return last;
4276 }
4277
4278 /* Make an insn of code BARRIER
4279 and output it after the insn AFTER. */
4280
4281 rtx
4282 emit_barrier_after (rtx after)
4283 {
4284 rtx insn = rtx_alloc (BARRIER);
4285
4286 INSN_UID (insn) = cur_insn_uid++;
4287
4288 add_insn_after (insn, after);
4289 return insn;
4290 }
4291
4292 /* Emit the label LABEL after the insn AFTER. */
4293
4294 rtx
4295 emit_label_after (rtx label, rtx after)
4296 {
4297 /* This can be called twice for the same label
4298 as a result of the confusion that follows a syntax error!
4299 So make it harmless. */
4300 if (INSN_UID (label) == 0)
4301 {
4302 INSN_UID (label) = cur_insn_uid++;
4303 add_insn_after (label, after);
4304 }
4305
4306 return label;
4307 }
4308
4309 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4310
4311 rtx
4312 emit_note_after (int subtype, rtx after)
4313 {
4314 rtx note = rtx_alloc (NOTE);
4315 INSN_UID (note) = cur_insn_uid++;
4316 NOTE_SOURCE_FILE (note) = 0;
4317 NOTE_LINE_NUMBER (note) = subtype;
4318 BLOCK_FOR_INSN (note) = NULL;
4319 add_insn_after (note, after);
4320 return note;
4321 }
4322
4323 /* Emit a copy of note ORIG after the insn AFTER. */
4324
4325 rtx
4326 emit_note_copy_after (rtx orig, rtx after)
4327 {
4328 rtx note;
4329
4330 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4331 {
4332 cur_insn_uid++;
4333 return 0;
4334 }
4335
4336 note = rtx_alloc (NOTE);
4337 INSN_UID (note) = cur_insn_uid++;
4338 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4339 NOTE_DATA (note) = NOTE_DATA (orig);
4340 BLOCK_FOR_INSN (note) = NULL;
4341 add_insn_after (note, after);
4342 return note;
4343 }
4344 \f
4345 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4346 rtx
4347 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4348 {
4349 rtx last = emit_insn_after (pattern, after);
4350
4351 if (pattern == NULL_RTX)
4352 return last;
4353
4354 after = NEXT_INSN (after);
4355 while (1)
4356 {
4357 if (active_insn_p (after))
4358 INSN_LOCATOR (after) = loc;
4359 if (after == last)
4360 break;
4361 after = NEXT_INSN (after);
4362 }
4363 return last;
4364 }
4365
4366 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4367 rtx
4368 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4369 {
4370 rtx last = emit_jump_insn_after (pattern, after);
4371
4372 if (pattern == NULL_RTX)
4373 return last;
4374
4375 after = NEXT_INSN (after);
4376 while (1)
4377 {
4378 if (active_insn_p (after))
4379 INSN_LOCATOR (after) = loc;
4380 if (after == last)
4381 break;
4382 after = NEXT_INSN (after);
4383 }
4384 return last;
4385 }
4386
4387 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4388 rtx
4389 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4390 {
4391 rtx last = emit_call_insn_after (pattern, after);
4392
4393 if (pattern == NULL_RTX)
4394 return last;
4395
4396 after = NEXT_INSN (after);
4397 while (1)
4398 {
4399 if (active_insn_p (after))
4400 INSN_LOCATOR (after) = loc;
4401 if (after == last)
4402 break;
4403 after = NEXT_INSN (after);
4404 }
4405 return last;
4406 }
4407
4408 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4409 rtx
4410 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4411 {
4412 rtx first = PREV_INSN (before);
4413 rtx last = emit_insn_before (pattern, before);
4414
4415 if (pattern == NULL_RTX)
4416 return last;
4417
4418 first = NEXT_INSN (first);
4419 while (1)
4420 {
4421 if (active_insn_p (first))
4422 INSN_LOCATOR (first) = loc;
4423 if (first == last)
4424 break;
4425 first = NEXT_INSN (first);
4426 }
4427 return last;
4428 }
4429 \f
4430 /* Take X and emit it at the end of the doubly-linked
4431 INSN list.
4432
4433 Returns the last insn emitted. */
4434
4435 rtx
4436 emit_insn (rtx x)
4437 {
4438 rtx last = last_insn;
4439 rtx insn;
4440
4441 if (x == NULL_RTX)
4442 return last;
4443
4444 switch (GET_CODE (x))
4445 {
4446 case INSN:
4447 case JUMP_INSN:
4448 case CALL_INSN:
4449 case CODE_LABEL:
4450 case BARRIER:
4451 case NOTE:
4452 insn = x;
4453 while (insn)
4454 {
4455 rtx next = NEXT_INSN (insn);
4456 add_insn (insn);
4457 last = insn;
4458 insn = next;
4459 }
4460 break;
4461
4462 #ifdef ENABLE_RTL_CHECKING
4463 case SEQUENCE:
4464 abort ();
4465 break;
4466 #endif
4467
4468 default:
4469 last = make_insn_raw (x);
4470 add_insn (last);
4471 break;
4472 }
4473
4474 return last;
4475 }
4476
4477 /* Make an insn of code JUMP_INSN with pattern X
4478 and add it to the end of the doubly-linked list. */
4479
4480 rtx
4481 emit_jump_insn (rtx x)
4482 {
4483 rtx last = NULL_RTX, insn;
4484
4485 switch (GET_CODE (x))
4486 {
4487 case INSN:
4488 case JUMP_INSN:
4489 case CALL_INSN:
4490 case CODE_LABEL:
4491 case BARRIER:
4492 case NOTE:
4493 insn = x;
4494 while (insn)
4495 {
4496 rtx next = NEXT_INSN (insn);
4497 add_insn (insn);
4498 last = insn;
4499 insn = next;
4500 }
4501 break;
4502
4503 #ifdef ENABLE_RTL_CHECKING
4504 case SEQUENCE:
4505 abort ();
4506 break;
4507 #endif
4508
4509 default:
4510 last = make_jump_insn_raw (x);
4511 add_insn (last);
4512 break;
4513 }
4514
4515 return last;
4516 }
4517
4518 /* Make an insn of code CALL_INSN with pattern X
4519 and add it to the end of the doubly-linked list. */
4520
4521 rtx
4522 emit_call_insn (rtx x)
4523 {
4524 rtx insn;
4525
4526 switch (GET_CODE (x))
4527 {
4528 case INSN:
4529 case JUMP_INSN:
4530 case CALL_INSN:
4531 case CODE_LABEL:
4532 case BARRIER:
4533 case NOTE:
4534 insn = emit_insn (x);
4535 break;
4536
4537 #ifdef ENABLE_RTL_CHECKING
4538 case SEQUENCE:
4539 abort ();
4540 break;
4541 #endif
4542
4543 default:
4544 insn = make_call_insn_raw (x);
4545 add_insn (insn);
4546 break;
4547 }
4548
4549 return insn;
4550 }
4551
4552 /* Add the label LABEL to the end of the doubly-linked list. */
4553
4554 rtx
4555 emit_label (rtx label)
4556 {
4557 /* This can be called twice for the same label
4558 as a result of the confusion that follows a syntax error!
4559 So make it harmless. */
4560 if (INSN_UID (label) == 0)
4561 {
4562 INSN_UID (label) = cur_insn_uid++;
4563 add_insn (label);
4564 }
4565 return label;
4566 }
4567
4568 /* Make an insn of code BARRIER
4569 and add it to the end of the doubly-linked list. */
4570
4571 rtx
4572 emit_barrier (void)
4573 {
4574 rtx barrier = rtx_alloc (BARRIER);
4575 INSN_UID (barrier) = cur_insn_uid++;
4576 add_insn (barrier);
4577 return barrier;
4578 }
4579
4580 /* Make line numbering NOTE insn for LOCATION add it to the end
4581 of the doubly-linked list, but only if line-numbers are desired for
4582 debugging info and it doesn't match the previous one. */
4583
4584 rtx
4585 emit_line_note (location_t location)
4586 {
4587 rtx note;
4588
4589 set_file_and_line_for_stmt (location);
4590
4591 if (location.file && last_location.file
4592 && !strcmp (location.file, last_location.file)
4593 && location.line == last_location.line)
4594 return NULL_RTX;
4595 last_location = location;
4596
4597 if (no_line_numbers)
4598 {
4599 cur_insn_uid++;
4600 return NULL_RTX;
4601 }
4602
4603 note = emit_note (location.line);
4604 NOTE_SOURCE_FILE (note) = location.file;
4605
4606 return note;
4607 }
4608
4609 /* Emit a copy of note ORIG. */
4610
4611 rtx
4612 emit_note_copy (rtx orig)
4613 {
4614 rtx note;
4615
4616 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4617 {
4618 cur_insn_uid++;
4619 return NULL_RTX;
4620 }
4621
4622 note = rtx_alloc (NOTE);
4623
4624 INSN_UID (note) = cur_insn_uid++;
4625 NOTE_DATA (note) = NOTE_DATA (orig);
4626 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4627 BLOCK_FOR_INSN (note) = NULL;
4628 add_insn (note);
4629
4630 return note;
4631 }
4632
4633 /* Make an insn of code NOTE or type NOTE_NO
4634 and add it to the end of the doubly-linked list. */
4635
4636 rtx
4637 emit_note (int note_no)
4638 {
4639 rtx note;
4640
4641 note = rtx_alloc (NOTE);
4642 INSN_UID (note) = cur_insn_uid++;
4643 NOTE_LINE_NUMBER (note) = note_no;
4644 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4645 BLOCK_FOR_INSN (note) = NULL;
4646 add_insn (note);
4647 return note;
4648 }
4649
4650 /* Cause next statement to emit a line note even if the line number
4651 has not changed. */
4652
4653 void
4654 force_next_line_note (void)
4655 {
4656 last_location.line = -1;
4657 }
4658
4659 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4660 note of this type already exists, remove it first. */
4661
4662 rtx
4663 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4664 {
4665 rtx note = find_reg_note (insn, kind, NULL_RTX);
4666
4667 switch (kind)
4668 {
4669 case REG_EQUAL:
4670 case REG_EQUIV:
4671 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4672 has multiple sets (some callers assume single_set
4673 means the insn only has one set, when in fact it
4674 means the insn only has one * useful * set). */
4675 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4676 {
4677 if (note)
4678 abort ();
4679 return NULL_RTX;
4680 }
4681
4682 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4683 It serves no useful purpose and breaks eliminate_regs. */
4684 if (GET_CODE (datum) == ASM_OPERANDS)
4685 return NULL_RTX;
4686 break;
4687
4688 default:
4689 break;
4690 }
4691
4692 if (note)
4693 {
4694 XEXP (note, 0) = datum;
4695 return note;
4696 }
4697
4698 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4699 return REG_NOTES (insn);
4700 }
4701 \f
4702 /* Return an indication of which type of insn should have X as a body.
4703 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4704
4705 enum rtx_code
4706 classify_insn (rtx x)
4707 {
4708 if (GET_CODE (x) == CODE_LABEL)
4709 return CODE_LABEL;
4710 if (GET_CODE (x) == CALL)
4711 return CALL_INSN;
4712 if (GET_CODE (x) == RETURN)
4713 return JUMP_INSN;
4714 if (GET_CODE (x) == SET)
4715 {
4716 if (SET_DEST (x) == pc_rtx)
4717 return JUMP_INSN;
4718 else if (GET_CODE (SET_SRC (x)) == CALL)
4719 return CALL_INSN;
4720 else
4721 return INSN;
4722 }
4723 if (GET_CODE (x) == PARALLEL)
4724 {
4725 int j;
4726 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4727 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4728 return CALL_INSN;
4729 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4730 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4731 return JUMP_INSN;
4732 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4733 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4734 return CALL_INSN;
4735 }
4736 return INSN;
4737 }
4738
4739 /* Emit the rtl pattern X as an appropriate kind of insn.
4740 If X is a label, it is simply added into the insn chain. */
4741
4742 rtx
4743 emit (rtx x)
4744 {
4745 enum rtx_code code = classify_insn (x);
4746
4747 if (code == CODE_LABEL)
4748 return emit_label (x);
4749 else if (code == INSN)
4750 return emit_insn (x);
4751 else if (code == JUMP_INSN)
4752 {
4753 rtx insn = emit_jump_insn (x);
4754 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4755 return emit_barrier ();
4756 return insn;
4757 }
4758 else if (code == CALL_INSN)
4759 return emit_call_insn (x);
4760 else
4761 abort ();
4762 }
4763 \f
4764 /* Space for free sequence stack entries. */
4765 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4766
4767 /* Begin emitting insns to a sequence which can be packaged in an
4768 RTL_EXPR. If this sequence will contain something that might cause
4769 the compiler to pop arguments to function calls (because those
4770 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4771 details), use do_pending_stack_adjust before calling this function.
4772 That will ensure that the deferred pops are not accidentally
4773 emitted in the middle of this sequence. */
4774
4775 void
4776 start_sequence (void)
4777 {
4778 struct sequence_stack *tem;
4779
4780 if (free_sequence_stack != NULL)
4781 {
4782 tem = free_sequence_stack;
4783 free_sequence_stack = tem->next;
4784 }
4785 else
4786 tem = ggc_alloc (sizeof (struct sequence_stack));
4787
4788 tem->next = seq_stack;
4789 tem->first = first_insn;
4790 tem->last = last_insn;
4791 tem->sequence_rtl_expr = seq_rtl_expr;
4792
4793 seq_stack = tem;
4794
4795 first_insn = 0;
4796 last_insn = 0;
4797 }
4798
4799 /* Similarly, but indicate that this sequence will be placed in T, an
4800 RTL_EXPR. See the documentation for start_sequence for more
4801 information about how to use this function. */
4802
4803 void
4804 start_sequence_for_rtl_expr (tree t)
4805 {
4806 start_sequence ();
4807
4808 seq_rtl_expr = t;
4809 }
4810
4811 /* Set up the insn chain starting with FIRST as the current sequence,
4812 saving the previously current one. See the documentation for
4813 start_sequence for more information about how to use this function. */
4814
4815 void
4816 push_to_sequence (rtx first)
4817 {
4818 rtx last;
4819
4820 start_sequence ();
4821
4822 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4823
4824 first_insn = first;
4825 last_insn = last;
4826 }
4827
4828 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4829
4830 void
4831 push_to_full_sequence (rtx first, rtx last)
4832 {
4833 start_sequence ();
4834 first_insn = first;
4835 last_insn = last;
4836 /* We really should have the end of the insn chain here. */
4837 if (last && NEXT_INSN (last))
4838 abort ();
4839 }
4840
4841 /* Set up the outer-level insn chain
4842 as the current sequence, saving the previously current one. */
4843
4844 void
4845 push_topmost_sequence (void)
4846 {
4847 struct sequence_stack *stack, *top = NULL;
4848
4849 start_sequence ();
4850
4851 for (stack = seq_stack; stack; stack = stack->next)
4852 top = stack;
4853
4854 first_insn = top->first;
4855 last_insn = top->last;
4856 seq_rtl_expr = top->sequence_rtl_expr;
4857 }
4858
4859 /* After emitting to the outer-level insn chain, update the outer-level
4860 insn chain, and restore the previous saved state. */
4861
4862 void
4863 pop_topmost_sequence (void)
4864 {
4865 struct sequence_stack *stack, *top = NULL;
4866
4867 for (stack = seq_stack; stack; stack = stack->next)
4868 top = stack;
4869
4870 top->first = first_insn;
4871 top->last = last_insn;
4872 /* ??? Why don't we save seq_rtl_expr here? */
4873
4874 end_sequence ();
4875 }
4876
4877 /* After emitting to a sequence, restore previous saved state.
4878
4879 To get the contents of the sequence just made, you must call
4880 `get_insns' *before* calling here.
4881
4882 If the compiler might have deferred popping arguments while
4883 generating this sequence, and this sequence will not be immediately
4884 inserted into the instruction stream, use do_pending_stack_adjust
4885 before calling get_insns. That will ensure that the deferred
4886 pops are inserted into this sequence, and not into some random
4887 location in the instruction stream. See INHIBIT_DEFER_POP for more
4888 information about deferred popping of arguments. */
4889
4890 void
4891 end_sequence (void)
4892 {
4893 struct sequence_stack *tem = seq_stack;
4894
4895 first_insn = tem->first;
4896 last_insn = tem->last;
4897 seq_rtl_expr = tem->sequence_rtl_expr;
4898 seq_stack = tem->next;
4899
4900 memset (tem, 0, sizeof (*tem));
4901 tem->next = free_sequence_stack;
4902 free_sequence_stack = tem;
4903 }
4904
4905 /* Return 1 if currently emitting into a sequence. */
4906
4907 int
4908 in_sequence_p (void)
4909 {
4910 return seq_stack != 0;
4911 }
4912 \f
4913 /* Put the various virtual registers into REGNO_REG_RTX. */
4914
4915 void
4916 init_virtual_regs (struct emit_status *es)
4917 {
4918 rtx *ptr = es->x_regno_reg_rtx;
4919 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4920 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4921 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4922 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4923 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4924 }
4925
4926 \f
4927 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4928 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4929 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4930 static int copy_insn_n_scratches;
4931
4932 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4933 copied an ASM_OPERANDS.
4934 In that case, it is the original input-operand vector. */
4935 static rtvec orig_asm_operands_vector;
4936
4937 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4938 copied an ASM_OPERANDS.
4939 In that case, it is the copied input-operand vector. */
4940 static rtvec copy_asm_operands_vector;
4941
4942 /* Likewise for the constraints vector. */
4943 static rtvec orig_asm_constraints_vector;
4944 static rtvec copy_asm_constraints_vector;
4945
4946 /* Recursively create a new copy of an rtx for copy_insn.
4947 This function differs from copy_rtx in that it handles SCRATCHes and
4948 ASM_OPERANDs properly.
4949 Normally, this function is not used directly; use copy_insn as front end.
4950 However, you could first copy an insn pattern with copy_insn and then use
4951 this function afterwards to properly copy any REG_NOTEs containing
4952 SCRATCHes. */
4953
4954 rtx
4955 copy_insn_1 (rtx orig)
4956 {
4957 rtx copy;
4958 int i, j;
4959 RTX_CODE code;
4960 const char *format_ptr;
4961
4962 code = GET_CODE (orig);
4963
4964 switch (code)
4965 {
4966 case REG:
4967 case QUEUED:
4968 case CONST_INT:
4969 case CONST_DOUBLE:
4970 case CONST_VECTOR:
4971 case SYMBOL_REF:
4972 case CODE_LABEL:
4973 case PC:
4974 case CC0:
4975 case ADDRESSOF:
4976 return orig;
4977 case CLOBBER:
4978 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4979 return orig;
4980 break;
4981
4982 case SCRATCH:
4983 for (i = 0; i < copy_insn_n_scratches; i++)
4984 if (copy_insn_scratch_in[i] == orig)
4985 return copy_insn_scratch_out[i];
4986 break;
4987
4988 case CONST:
4989 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4990 a LABEL_REF, it isn't sharable. */
4991 if (GET_CODE (XEXP (orig, 0)) == PLUS
4992 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4993 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4994 return orig;
4995 break;
4996
4997 /* A MEM with a constant address is not sharable. The problem is that
4998 the constant address may need to be reloaded. If the mem is shared,
4999 then reloading one copy of this mem will cause all copies to appear
5000 to have been reloaded. */
5001
5002 default:
5003 break;
5004 }
5005
5006 copy = rtx_alloc (code);
5007
5008 /* Copy the various flags, and other information. We assume that
5009 all fields need copying, and then clear the fields that should
5010 not be copied. That is the sensible default behavior, and forces
5011 us to explicitly document why we are *not* copying a flag. */
5012 memcpy (copy, orig, RTX_HDR_SIZE);
5013
5014 /* We do not copy the USED flag, which is used as a mark bit during
5015 walks over the RTL. */
5016 RTX_FLAG (copy, used) = 0;
5017
5018 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5019 if (INSN_P (orig))
5020 {
5021 RTX_FLAG (copy, jump) = 0;
5022 RTX_FLAG (copy, call) = 0;
5023 RTX_FLAG (copy, frame_related) = 0;
5024 }
5025
5026 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5027
5028 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5029 {
5030 copy->u.fld[i] = orig->u.fld[i];
5031 switch (*format_ptr++)
5032 {
5033 case 'e':
5034 if (XEXP (orig, i) != NULL)
5035 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5036 break;
5037
5038 case 'E':
5039 case 'V':
5040 if (XVEC (orig, i) == orig_asm_constraints_vector)
5041 XVEC (copy, i) = copy_asm_constraints_vector;
5042 else if (XVEC (orig, i) == orig_asm_operands_vector)
5043 XVEC (copy, i) = copy_asm_operands_vector;
5044 else if (XVEC (orig, i) != NULL)
5045 {
5046 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5047 for (j = 0; j < XVECLEN (copy, i); j++)
5048 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5049 }
5050 break;
5051
5052 case 't':
5053 case 'w':
5054 case 'i':
5055 case 's':
5056 case 'S':
5057 case 'u':
5058 case '0':
5059 /* These are left unchanged. */
5060 break;
5061
5062 default:
5063 abort ();
5064 }
5065 }
5066
5067 if (code == SCRATCH)
5068 {
5069 i = copy_insn_n_scratches++;
5070 if (i >= MAX_RECOG_OPERANDS)
5071 abort ();
5072 copy_insn_scratch_in[i] = orig;
5073 copy_insn_scratch_out[i] = copy;
5074 }
5075 else if (code == ASM_OPERANDS)
5076 {
5077 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5078 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5079 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5080 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5081 }
5082
5083 return copy;
5084 }
5085
5086 /* Create a new copy of an rtx.
5087 This function differs from copy_rtx in that it handles SCRATCHes and
5088 ASM_OPERANDs properly.
5089 INSN doesn't really have to be a full INSN; it could be just the
5090 pattern. */
5091 rtx
5092 copy_insn (rtx insn)
5093 {
5094 copy_insn_n_scratches = 0;
5095 orig_asm_operands_vector = 0;
5096 orig_asm_constraints_vector = 0;
5097 copy_asm_operands_vector = 0;
5098 copy_asm_constraints_vector = 0;
5099 return copy_insn_1 (insn);
5100 }
5101
5102 /* Initialize data structures and variables in this file
5103 before generating rtl for each function. */
5104
5105 void
5106 init_emit (void)
5107 {
5108 struct function *f = cfun;
5109
5110 f->emit = ggc_alloc (sizeof (struct emit_status));
5111 first_insn = NULL;
5112 last_insn = NULL;
5113 seq_rtl_expr = NULL;
5114 cur_insn_uid = 1;
5115 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5116 last_location.line = 0;
5117 last_location.file = 0;
5118 first_label_num = label_num;
5119 last_label_num = 0;
5120 seq_stack = NULL;
5121
5122 /* Init the tables that describe all the pseudo regs. */
5123
5124 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5125
5126 f->emit->regno_pointer_align
5127 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5128 * sizeof (unsigned char));
5129
5130 regno_reg_rtx
5131 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5132
5133 /* Put copies of all the hard registers into regno_reg_rtx. */
5134 memcpy (regno_reg_rtx,
5135 static_regno_reg_rtx,
5136 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5137
5138 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5139 init_virtual_regs (f->emit);
5140
5141 /* Indicate that the virtual registers and stack locations are
5142 all pointers. */
5143 REG_POINTER (stack_pointer_rtx) = 1;
5144 REG_POINTER (frame_pointer_rtx) = 1;
5145 REG_POINTER (hard_frame_pointer_rtx) = 1;
5146 REG_POINTER (arg_pointer_rtx) = 1;
5147
5148 REG_POINTER (virtual_incoming_args_rtx) = 1;
5149 REG_POINTER (virtual_stack_vars_rtx) = 1;
5150 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5151 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5152 REG_POINTER (virtual_cfa_rtx) = 1;
5153
5154 #ifdef STACK_BOUNDARY
5155 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5156 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5157 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5158 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5159
5160 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5161 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5162 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5163 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5164 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5165 #endif
5166
5167 #ifdef INIT_EXPANDERS
5168 INIT_EXPANDERS;
5169 #endif
5170 }
5171
5172 /* Generate the constant 0. */
5173
5174 static rtx
5175 gen_const_vector_0 (enum machine_mode mode)
5176 {
5177 rtx tem;
5178 rtvec v;
5179 int units, i;
5180 enum machine_mode inner;
5181
5182 units = GET_MODE_NUNITS (mode);
5183 inner = GET_MODE_INNER (mode);
5184
5185 v = rtvec_alloc (units);
5186
5187 /* We need to call this function after we to set CONST0_RTX first. */
5188 if (!CONST0_RTX (inner))
5189 abort ();
5190
5191 for (i = 0; i < units; ++i)
5192 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5193
5194 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5195 return tem;
5196 }
5197
5198 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5199 all elements are zero. */
5200 rtx
5201 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5202 {
5203 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5204 int i;
5205
5206 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5207 if (RTVEC_ELT (v, i) != inner_zero)
5208 return gen_rtx_raw_CONST_VECTOR (mode, v);
5209 return CONST0_RTX (mode);
5210 }
5211
5212 /* Create some permanent unique rtl objects shared between all functions.
5213 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5214
5215 void
5216 init_emit_once (int line_numbers)
5217 {
5218 int i;
5219 enum machine_mode mode;
5220 enum machine_mode double_mode;
5221
5222 /* We need reg_raw_mode, so initialize the modes now. */
5223 init_reg_modes_once ();
5224
5225 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5226 tables. */
5227 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5228 const_int_htab_eq, NULL);
5229
5230 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5231 const_double_htab_eq, NULL);
5232
5233 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5234 mem_attrs_htab_eq, NULL);
5235 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5236 reg_attrs_htab_eq, NULL);
5237
5238 no_line_numbers = ! line_numbers;
5239
5240 /* Compute the word and byte modes. */
5241
5242 byte_mode = VOIDmode;
5243 word_mode = VOIDmode;
5244 double_mode = VOIDmode;
5245
5246 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5247 mode = GET_MODE_WIDER_MODE (mode))
5248 {
5249 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5250 && byte_mode == VOIDmode)
5251 byte_mode = mode;
5252
5253 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5254 && word_mode == VOIDmode)
5255 word_mode = mode;
5256 }
5257
5258 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5259 mode = GET_MODE_WIDER_MODE (mode))
5260 {
5261 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5262 && double_mode == VOIDmode)
5263 double_mode = mode;
5264 }
5265
5266 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5267
5268 /* Assign register numbers to the globally defined register rtx.
5269 This must be done at runtime because the register number field
5270 is in a union and some compilers can't initialize unions. */
5271
5272 pc_rtx = gen_rtx_PC (VOIDmode);
5273 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5274 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5275 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5276 if (hard_frame_pointer_rtx == 0)
5277 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5278 HARD_FRAME_POINTER_REGNUM);
5279 if (arg_pointer_rtx == 0)
5280 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5281 virtual_incoming_args_rtx =
5282 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5283 virtual_stack_vars_rtx =
5284 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5285 virtual_stack_dynamic_rtx =
5286 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5287 virtual_outgoing_args_rtx =
5288 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5289 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5290
5291 /* Initialize RTL for commonly used hard registers. These are
5292 copied into regno_reg_rtx as we begin to compile each function. */
5293 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5294 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5295
5296 #ifdef INIT_EXPANDERS
5297 /* This is to initialize {init|mark|free}_machine_status before the first
5298 call to push_function_context_to. This is needed by the Chill front
5299 end which calls push_function_context_to before the first call to
5300 init_function_start. */
5301 INIT_EXPANDERS;
5302 #endif
5303
5304 /* Create the unique rtx's for certain rtx codes and operand values. */
5305
5306 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5307 tries to use these variables. */
5308 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5309 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5310 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5311
5312 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5313 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5314 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5315 else
5316 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5317
5318 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5319 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5320 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5321 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5322 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5323 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5324 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5325
5326 dconsthalf = dconst1;
5327 dconsthalf.exp--;
5328
5329 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5330
5331 /* Initialize mathematical constants for constant folding builtins.
5332 These constants need to be given to at least 160 bits precision. */
5333 real_from_string (&dconstpi,
5334 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5335 real_from_string (&dconste,
5336 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5337
5338 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5339 {
5340 REAL_VALUE_TYPE *r =
5341 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5342
5343 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5344 mode = GET_MODE_WIDER_MODE (mode))
5345 const_tiny_rtx[i][(int) mode] =
5346 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5347
5348 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5349
5350 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5351 mode = GET_MODE_WIDER_MODE (mode))
5352 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5353
5354 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5355 mode != VOIDmode;
5356 mode = GET_MODE_WIDER_MODE (mode))
5357 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5358 }
5359
5360 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5361 mode != VOIDmode;
5362 mode = GET_MODE_WIDER_MODE (mode))
5363 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5364
5365 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5366 mode != VOIDmode;
5367 mode = GET_MODE_WIDER_MODE (mode))
5368 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5369
5370 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5371 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5372 const_tiny_rtx[0][i] = const0_rtx;
5373
5374 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5375 if (STORE_FLAG_VALUE == 1)
5376 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5377
5378 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5379 return_address_pointer_rtx
5380 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5381 #endif
5382
5383 #ifdef STATIC_CHAIN_REGNUM
5384 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5385
5386 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5387 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5388 static_chain_incoming_rtx
5389 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5390 else
5391 #endif
5392 static_chain_incoming_rtx = static_chain_rtx;
5393 #endif
5394
5395 #ifdef STATIC_CHAIN
5396 static_chain_rtx = STATIC_CHAIN;
5397
5398 #ifdef STATIC_CHAIN_INCOMING
5399 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5400 #else
5401 static_chain_incoming_rtx = static_chain_rtx;
5402 #endif
5403 #endif
5404
5405 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5406 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5407 }
5408 \f
5409 /* Query and clear/ restore no_line_numbers. This is used by the
5410 switch / case handling in stmt.c to give proper line numbers in
5411 warnings about unreachable code. */
5412
5413 int
5414 force_line_numbers (void)
5415 {
5416 int old = no_line_numbers;
5417
5418 no_line_numbers = 0;
5419 if (old)
5420 force_next_line_note ();
5421 return old;
5422 }
5423
5424 void
5425 restore_line_number_status (int old_value)
5426 {
5427 no_line_numbers = old_value;
5428 }
5429
5430 /* Produce exact duplicate of insn INSN after AFTER.
5431 Care updating of libcall regions if present. */
5432
5433 rtx
5434 emit_copy_of_insn_after (rtx insn, rtx after)
5435 {
5436 rtx new;
5437 rtx note1, note2, link;
5438
5439 switch (GET_CODE (insn))
5440 {
5441 case INSN:
5442 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5443 break;
5444
5445 case JUMP_INSN:
5446 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5447 break;
5448
5449 case CALL_INSN:
5450 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5451 if (CALL_INSN_FUNCTION_USAGE (insn))
5452 CALL_INSN_FUNCTION_USAGE (new)
5453 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5454 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5455 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5456 break;
5457
5458 default:
5459 abort ();
5460 }
5461
5462 /* Update LABEL_NUSES. */
5463 mark_jump_label (PATTERN (new), new, 0);
5464
5465 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5466
5467 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5468 make them. */
5469 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5470 if (REG_NOTE_KIND (link) != REG_LABEL)
5471 {
5472 if (GET_CODE (link) == EXPR_LIST)
5473 REG_NOTES (new)
5474 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5475 XEXP (link, 0),
5476 REG_NOTES (new)));
5477 else
5478 REG_NOTES (new)
5479 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5480 XEXP (link, 0),
5481 REG_NOTES (new)));
5482 }
5483
5484 /* Fix the libcall sequences. */
5485 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5486 {
5487 rtx p = new;
5488 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5489 p = PREV_INSN (p);
5490 XEXP (note1, 0) = p;
5491 XEXP (note2, 0) = new;
5492 }
5493 INSN_CODE (new) = INSN_CODE (insn);
5494 return new;
5495 }
5496
5497 static GTY((deletable(""))) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5498 rtx
5499 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5500 {
5501 if (hard_reg_clobbers[mode][regno])
5502 return hard_reg_clobbers[mode][regno];
5503 else
5504 return (hard_reg_clobbers[mode][regno] =
5505 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5506 }
5507
5508 #include "gt-emit-rtl.h"