Delete SEQUENCE rtl usage outside of reorg and ssa passes.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59
60 /* Commonly used modes. */
61
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66
67
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71 static int label_num = 1;
72
73 /* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
76
77 static int last_label_num;
78
79 /* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
81
82 static int base_label_num;
83
84 /* Nonzero means do not generate NOTEs for source line numbers. */
85
86 static int no_line_numbers;
87
88 /* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these are unique; no other rtx-object will be equal to any
91 of these. */
92
93 rtx global_rtl[GR_MAX];
94
95 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
96 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
97 record a copy of const[012]_rtx. */
98
99 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100
101 rtx const_true_rtx;
102
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
107
108 /* All references to the following fixed hard registers go through
109 these unique rtl objects. On machines where the frame-pointer and
110 arg-pointer are the same register, they use the same unique object.
111
112 After register allocation, other rtl objects which used to be pseudo-regs
113 may be clobbered to refer to the frame-pointer register.
114 But references that were originally to the frame-pointer can be
115 distinguished from the others because they contain frame_pointer_rtx.
116
117 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
118 tricky: until register elimination has taken place hard_frame_pointer_rtx
119 should be used if it is being set, and frame_pointer_rtx otherwise. After
120 register elimination hard_frame_pointer_rtx should always be used.
121 On machines where the two registers are same (most) then these are the
122 same.
123
124 In an inline procedure, the stack and frame pointer rtxs may not be
125 used for anything else. */
126 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
127 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
140
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
145
146 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
147 htab_t const_int_htab;
148
149 /* A hash table storing memory attribute structures. */
150 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
151 htab_t mem_attrs_htab;
152
153 /* A hash table storing all CONST_DOUBLEs. */
154 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
155 htab_t const_double_htab;
156
157 #define first_insn (cfun->emit->x_first_insn)
158 #define last_insn (cfun->emit->x_last_insn)
159 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
160 #define last_linenum (cfun->emit->x_last_linenum)
161 #define last_filename (cfun->emit->x_last_filename)
162 #define first_label_num (cfun->emit->x_first_label_num)
163
164 static rtx make_jump_insn_raw PARAMS ((rtx));
165 static rtx make_call_insn_raw PARAMS ((rtx));
166 static rtx find_line_note PARAMS ((rtx));
167 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
168 int));
169 static void unshare_all_rtl_1 PARAMS ((rtx));
170 static void unshare_all_decls PARAMS ((tree));
171 static void reset_used_decls PARAMS ((tree));
172 static void mark_label_nuses PARAMS ((rtx));
173 static hashval_t const_int_htab_hash PARAMS ((const void *));
174 static int const_int_htab_eq PARAMS ((const void *,
175 const void *));
176 static hashval_t const_double_htab_hash PARAMS ((const void *));
177 static int const_double_htab_eq PARAMS ((const void *,
178 const void *));
179 static rtx lookup_const_double PARAMS ((rtx));
180 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
181 static int mem_attrs_htab_eq PARAMS ((const void *,
182 const void *));
183 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
184 rtx, unsigned int,
185 enum machine_mode));
186 static tree component_ref_for_mem_expr PARAMS ((tree));
187 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
188
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (x)
197 const void *x;
198 {
199 return (hashval_t) INTVAL ((struct rtx_def *) x);
200 }
201
202 /* Returns non-zero if the value represented by X (which is really a
203 CONST_INT) is the same as that given by Y (which is really a
204 HOST_WIDE_INT *). */
205
206 static int
207 const_int_htab_eq (x, y)
208 const void *x;
209 const void *y;
210 {
211 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
212 }
213
214 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
215 static hashval_t
216 const_double_htab_hash (x)
217 const void *x;
218 {
219 hashval_t h = 0;
220 size_t i;
221 rtx value = (rtx) x;
222
223 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
224 h ^= XWINT (value, i);
225 return h;
226 }
227
228 /* Returns non-zero if the value represented by X (really a ...)
229 is the same as that represented by Y (really a ...) */
230 static int
231 const_double_htab_eq (x, y)
232 const void *x;
233 const void *y;
234 {
235 rtx a = (rtx)x, b = (rtx)y;
236 size_t i;
237
238 if (GET_MODE (a) != GET_MODE (b))
239 return 0;
240 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
241 if (XWINT (a, i) != XWINT (b, i))
242 return 0;
243
244 return 1;
245 }
246
247 /* Returns a hash code for X (which is a really a mem_attrs *). */
248
249 static hashval_t
250 mem_attrs_htab_hash (x)
251 const void *x;
252 {
253 mem_attrs *p = (mem_attrs *) x;
254
255 return (p->alias ^ (p->align * 1000)
256 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
257 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
258 ^ (size_t) p->expr);
259 }
260
261 /* Returns non-zero if the value represented by X (which is really a
262 mem_attrs *) is the same as that given by Y (which is also really a
263 mem_attrs *). */
264
265 static int
266 mem_attrs_htab_eq (x, y)
267 const void *x;
268 const void *y;
269 {
270 mem_attrs *p = (mem_attrs *) x;
271 mem_attrs *q = (mem_attrs *) y;
272
273 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
274 && p->size == q->size && p->align == q->align);
275 }
276
277 /* Allocate a new mem_attrs structure and insert it into the hash table if
278 one identical to it is not already in the table. We are doing this for
279 MEM of mode MODE. */
280
281 static mem_attrs *
282 get_mem_attrs (alias, expr, offset, size, align, mode)
283 HOST_WIDE_INT alias;
284 tree expr;
285 rtx offset;
286 rtx size;
287 unsigned int align;
288 enum machine_mode mode;
289 {
290 mem_attrs attrs;
291 void **slot;
292
293 /* If everything is the default, we can just return zero. */
294 if (alias == 0 && expr == 0 && offset == 0
295 && (size == 0
296 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
297 && (align == BITS_PER_UNIT
298 || (STRICT_ALIGNMENT
299 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
300 return 0;
301
302 attrs.alias = alias;
303 attrs.expr = expr;
304 attrs.offset = offset;
305 attrs.size = size;
306 attrs.align = align;
307
308 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
309 if (*slot == 0)
310 {
311 *slot = ggc_alloc (sizeof (mem_attrs));
312 memcpy (*slot, &attrs, sizeof (mem_attrs));
313 }
314
315 return *slot;
316 }
317
318 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
319 don't attempt to share with the various global pieces of rtl (such as
320 frame_pointer_rtx). */
321
322 rtx
323 gen_raw_REG (mode, regno)
324 enum machine_mode mode;
325 int regno;
326 {
327 rtx x = gen_rtx_raw_REG (mode, regno);
328 ORIGINAL_REGNO (x) = regno;
329 return x;
330 }
331
332 /* There are some RTL codes that require special attention; the generation
333 functions do the raw handling. If you add to this list, modify
334 special_rtx in gengenrtl.c as well. */
335
336 rtx
337 gen_rtx_CONST_INT (mode, arg)
338 enum machine_mode mode ATTRIBUTE_UNUSED;
339 HOST_WIDE_INT arg;
340 {
341 void **slot;
342
343 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
344 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
345
346 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
347 if (const_true_rtx && arg == STORE_FLAG_VALUE)
348 return const_true_rtx;
349 #endif
350
351 /* Look up the CONST_INT in the hash table. */
352 slot = htab_find_slot_with_hash (const_int_htab, &arg,
353 (hashval_t) arg, INSERT);
354 if (*slot == 0)
355 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
356
357 return (rtx) *slot;
358 }
359
360 rtx
361 gen_int_mode (c, mode)
362 HOST_WIDE_INT c;
363 enum machine_mode mode;
364 {
365 return GEN_INT (trunc_int_for_mode (c, mode));
366 }
367
368 /* CONST_DOUBLEs might be created from pairs of integers, or from
369 REAL_VALUE_TYPEs. Also, their length is known only at run time,
370 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
371
372 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
373 hash table. If so, return its counterpart; otherwise add it
374 to the hash table and return it. */
375 static rtx
376 lookup_const_double (real)
377 rtx real;
378 {
379 void **slot = htab_find_slot (const_double_htab, real, INSERT);
380 if (*slot == 0)
381 *slot = real;
382
383 return (rtx) *slot;
384 }
385
386 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
387 VALUE in mode MODE. */
388 rtx
389 const_double_from_real_value (value, mode)
390 REAL_VALUE_TYPE value;
391 enum machine_mode mode;
392 {
393 rtx real = rtx_alloc (CONST_DOUBLE);
394 PUT_MODE (real, mode);
395
396 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
397
398 return lookup_const_double (real);
399 }
400
401 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
402 of ints: I0 is the low-order word and I1 is the high-order word.
403 Do not use this routine for non-integer modes; convert to
404 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
405
406 rtx
407 immed_double_const (i0, i1, mode)
408 HOST_WIDE_INT i0, i1;
409 enum machine_mode mode;
410 {
411 rtx value;
412 unsigned int i;
413
414 if (mode != VOIDmode)
415 {
416 int width;
417 if (GET_MODE_CLASS (mode) != MODE_INT
418 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
419 abort ();
420
421 /* We clear out all bits that don't belong in MODE, unless they and
422 our sign bit are all one. So we get either a reasonable negative
423 value or a reasonable unsigned value for this mode. */
424 width = GET_MODE_BITSIZE (mode);
425 if (width < HOST_BITS_PER_WIDE_INT
426 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
427 != ((HOST_WIDE_INT) (-1) << (width - 1))))
428 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
429 else if (width == HOST_BITS_PER_WIDE_INT
430 && ! (i1 == ~0 && i0 < 0))
431 i1 = 0;
432 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
433 /* We cannot represent this value as a constant. */
434 abort ();
435
436 /* If this would be an entire word for the target, but is not for
437 the host, then sign-extend on the host so that the number will
438 look the same way on the host that it would on the target.
439
440 For example, when building a 64 bit alpha hosted 32 bit sparc
441 targeted compiler, then we want the 32 bit unsigned value -1 to be
442 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
443 The latter confuses the sparc backend. */
444
445 if (width < HOST_BITS_PER_WIDE_INT
446 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
447 i0 |= ((HOST_WIDE_INT) (-1) << width);
448
449 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
450 CONST_INT.
451
452 ??? Strictly speaking, this is wrong if we create a CONST_INT for
453 a large unsigned constant with the size of MODE being
454 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
455 in a wider mode. In that case we will mis-interpret it as a
456 negative number.
457
458 Unfortunately, the only alternative is to make a CONST_DOUBLE for
459 any constant in any mode if it is an unsigned constant larger
460 than the maximum signed integer in an int on the host. However,
461 doing this will break everyone that always expects to see a
462 CONST_INT for SImode and smaller.
463
464 We have always been making CONST_INTs in this case, so nothing
465 new is being broken. */
466
467 if (width <= HOST_BITS_PER_WIDE_INT)
468 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
469 }
470
471 /* If this integer fits in one word, return a CONST_INT. */
472 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
473 return GEN_INT (i0);
474
475 /* We use VOIDmode for integers. */
476 value = rtx_alloc (CONST_DOUBLE);
477 PUT_MODE (value, VOIDmode);
478
479 CONST_DOUBLE_LOW (value) = i0;
480 CONST_DOUBLE_HIGH (value) = i1;
481
482 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
483 XWINT (value, i) = 0;
484
485 return lookup_const_double (value);
486 }
487
488 rtx
489 gen_rtx_REG (mode, regno)
490 enum machine_mode mode;
491 unsigned int regno;
492 {
493 /* In case the MD file explicitly references the frame pointer, have
494 all such references point to the same frame pointer. This is
495 used during frame pointer elimination to distinguish the explicit
496 references to these registers from pseudos that happened to be
497 assigned to them.
498
499 If we have eliminated the frame pointer or arg pointer, we will
500 be using it as a normal register, for example as a spill
501 register. In such cases, we might be accessing it in a mode that
502 is not Pmode and therefore cannot use the pre-allocated rtx.
503
504 Also don't do this when we are making new REGs in reload, since
505 we don't want to get confused with the real pointers. */
506
507 if (mode == Pmode && !reload_in_progress)
508 {
509 if (regno == FRAME_POINTER_REGNUM)
510 return frame_pointer_rtx;
511 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
512 if (regno == HARD_FRAME_POINTER_REGNUM)
513 return hard_frame_pointer_rtx;
514 #endif
515 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
516 if (regno == ARG_POINTER_REGNUM)
517 return arg_pointer_rtx;
518 #endif
519 #ifdef RETURN_ADDRESS_POINTER_REGNUM
520 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
521 return return_address_pointer_rtx;
522 #endif
523 if (regno == PIC_OFFSET_TABLE_REGNUM
524 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
525 return pic_offset_table_rtx;
526 if (regno == STACK_POINTER_REGNUM)
527 return stack_pointer_rtx;
528 }
529
530 return gen_raw_REG (mode, regno);
531 }
532
533 rtx
534 gen_rtx_MEM (mode, addr)
535 enum machine_mode mode;
536 rtx addr;
537 {
538 rtx rt = gen_rtx_raw_MEM (mode, addr);
539
540 /* This field is not cleared by the mere allocation of the rtx, so
541 we clear it here. */
542 MEM_ATTRS (rt) = 0;
543
544 return rt;
545 }
546
547 rtx
548 gen_rtx_SUBREG (mode, reg, offset)
549 enum machine_mode mode;
550 rtx reg;
551 int offset;
552 {
553 /* This is the most common failure type.
554 Catch it early so we can see who does it. */
555 if ((offset % GET_MODE_SIZE (mode)) != 0)
556 abort ();
557
558 /* This check isn't usable right now because combine will
559 throw arbitrary crap like a CALL into a SUBREG in
560 gen_lowpart_for_combine so we must just eat it. */
561 #if 0
562 /* Check for this too. */
563 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
564 abort ();
565 #endif
566 return gen_rtx_raw_SUBREG (mode, reg, offset);
567 }
568
569 /* Generate a SUBREG representing the least-significant part of REG if MODE
570 is smaller than mode of REG, otherwise paradoxical SUBREG. */
571
572 rtx
573 gen_lowpart_SUBREG (mode, reg)
574 enum machine_mode mode;
575 rtx reg;
576 {
577 enum machine_mode inmode;
578
579 inmode = GET_MODE (reg);
580 if (inmode == VOIDmode)
581 inmode = mode;
582 return gen_rtx_SUBREG (mode, reg,
583 subreg_lowpart_offset (mode, inmode));
584 }
585 \f
586 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
587 **
588 ** This routine generates an RTX of the size specified by
589 ** <code>, which is an RTX code. The RTX structure is initialized
590 ** from the arguments <element1> through <elementn>, which are
591 ** interpreted according to the specific RTX type's format. The
592 ** special machine mode associated with the rtx (if any) is specified
593 ** in <mode>.
594 **
595 ** gen_rtx can be invoked in a way which resembles the lisp-like
596 ** rtx it will generate. For example, the following rtx structure:
597 **
598 ** (plus:QI (mem:QI (reg:SI 1))
599 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
600 **
601 ** ...would be generated by the following C code:
602 **
603 ** gen_rtx (PLUS, QImode,
604 ** gen_rtx (MEM, QImode,
605 ** gen_rtx (REG, SImode, 1)),
606 ** gen_rtx (MEM, QImode,
607 ** gen_rtx (PLUS, SImode,
608 ** gen_rtx (REG, SImode, 2),
609 ** gen_rtx (REG, SImode, 3)))),
610 */
611
612 /*VARARGS2*/
613 rtx
614 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
615 {
616 int i; /* Array indices... */
617 const char *fmt; /* Current rtx's format... */
618 rtx rt_val; /* RTX to return to caller... */
619
620 VA_OPEN (p, mode);
621 VA_FIXEDARG (p, enum rtx_code, code);
622 VA_FIXEDARG (p, enum machine_mode, mode);
623
624 switch (code)
625 {
626 case CONST_INT:
627 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
628 break;
629
630 case CONST_DOUBLE:
631 {
632 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
633 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
634
635 rt_val = immed_double_const (arg0, arg1, mode);
636 }
637 break;
638
639 case REG:
640 rt_val = gen_rtx_REG (mode, va_arg (p, int));
641 break;
642
643 case MEM:
644 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
645 break;
646
647 default:
648 rt_val = rtx_alloc (code); /* Allocate the storage space. */
649 rt_val->mode = mode; /* Store the machine mode... */
650
651 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
652 for (i = 0; i < GET_RTX_LENGTH (code); i++)
653 {
654 switch (*fmt++)
655 {
656 case '0': /* Unused field. */
657 break;
658
659 case 'i': /* An integer? */
660 XINT (rt_val, i) = va_arg (p, int);
661 break;
662
663 case 'w': /* A wide integer? */
664 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
665 break;
666
667 case 's': /* A string? */
668 XSTR (rt_val, i) = va_arg (p, char *);
669 break;
670
671 case 'e': /* An expression? */
672 case 'u': /* An insn? Same except when printing. */
673 XEXP (rt_val, i) = va_arg (p, rtx);
674 break;
675
676 case 'E': /* An RTX vector? */
677 XVEC (rt_val, i) = va_arg (p, rtvec);
678 break;
679
680 case 'b': /* A bitmap? */
681 XBITMAP (rt_val, i) = va_arg (p, bitmap);
682 break;
683
684 case 't': /* A tree? */
685 XTREE (rt_val, i) = va_arg (p, tree);
686 break;
687
688 default:
689 abort ();
690 }
691 }
692 break;
693 }
694
695 VA_CLOSE (p);
696 return rt_val;
697 }
698
699 /* gen_rtvec (n, [rt1, ..., rtn])
700 **
701 ** This routine creates an rtvec and stores within it the
702 ** pointers to rtx's which are its arguments.
703 */
704
705 /*VARARGS1*/
706 rtvec
707 gen_rtvec VPARAMS ((int n, ...))
708 {
709 int i, save_n;
710 rtx *vector;
711
712 VA_OPEN (p, n);
713 VA_FIXEDARG (p, int, n);
714
715 if (n == 0)
716 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
717
718 vector = (rtx *) alloca (n * sizeof (rtx));
719
720 for (i = 0; i < n; i++)
721 vector[i] = va_arg (p, rtx);
722
723 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
724 save_n = n;
725 VA_CLOSE (p);
726
727 return gen_rtvec_v (save_n, vector);
728 }
729
730 rtvec
731 gen_rtvec_v (n, argp)
732 int n;
733 rtx *argp;
734 {
735 int i;
736 rtvec rt_val;
737
738 if (n == 0)
739 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
740
741 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
742
743 for (i = 0; i < n; i++)
744 rt_val->elem[i] = *argp++;
745
746 return rt_val;
747 }
748 \f
749 /* Generate a REG rtx for a new pseudo register of mode MODE.
750 This pseudo is assigned the next sequential register number. */
751
752 rtx
753 gen_reg_rtx (mode)
754 enum machine_mode mode;
755 {
756 struct function *f = cfun;
757 rtx val;
758
759 /* Don't let anything called after initial flow analysis create new
760 registers. */
761 if (no_new_pseudos)
762 abort ();
763
764 if (generating_concat_p
765 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
766 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
767 {
768 /* For complex modes, don't make a single pseudo.
769 Instead, make a CONCAT of two pseudos.
770 This allows noncontiguous allocation of the real and imaginary parts,
771 which makes much better code. Besides, allocating DCmode
772 pseudos overstrains reload on some machines like the 386. */
773 rtx realpart, imagpart;
774 int size = GET_MODE_UNIT_SIZE (mode);
775 enum machine_mode partmode
776 = mode_for_size (size * BITS_PER_UNIT,
777 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
778 ? MODE_FLOAT : MODE_INT),
779 0);
780
781 realpart = gen_reg_rtx (partmode);
782 imagpart = gen_reg_rtx (partmode);
783 return gen_rtx_CONCAT (mode, realpart, imagpart);
784 }
785
786 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
787 enough to have an element for this pseudo reg number. */
788
789 if (reg_rtx_no == f->emit->regno_pointer_align_length)
790 {
791 int old_size = f->emit->regno_pointer_align_length;
792 char *new;
793 rtx *new1;
794 tree *new2;
795
796 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
797 memset (new + old_size, 0, old_size);
798 f->emit->regno_pointer_align = (unsigned char *) new;
799
800 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
801 old_size * 2 * sizeof (rtx));
802 memset (new1 + old_size, 0, old_size * sizeof (rtx));
803 regno_reg_rtx = new1;
804
805 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
806 old_size * 2 * sizeof (tree));
807 memset (new2 + old_size, 0, old_size * sizeof (tree));
808 f->emit->regno_decl = new2;
809
810 f->emit->regno_pointer_align_length = old_size * 2;
811 }
812
813 val = gen_raw_REG (mode, reg_rtx_no);
814 regno_reg_rtx[reg_rtx_no++] = val;
815 return val;
816 }
817
818 /* Identify REG (which may be a CONCAT) as a user register. */
819
820 void
821 mark_user_reg (reg)
822 rtx reg;
823 {
824 if (GET_CODE (reg) == CONCAT)
825 {
826 REG_USERVAR_P (XEXP (reg, 0)) = 1;
827 REG_USERVAR_P (XEXP (reg, 1)) = 1;
828 }
829 else if (GET_CODE (reg) == REG)
830 REG_USERVAR_P (reg) = 1;
831 else
832 abort ();
833 }
834
835 /* Identify REG as a probable pointer register and show its alignment
836 as ALIGN, if nonzero. */
837
838 void
839 mark_reg_pointer (reg, align)
840 rtx reg;
841 int align;
842 {
843 if (! REG_POINTER (reg))
844 {
845 REG_POINTER (reg) = 1;
846
847 if (align)
848 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
849 }
850 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
851 /* We can no-longer be sure just how aligned this pointer is */
852 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
853 }
854
855 /* Return 1 plus largest pseudo reg number used in the current function. */
856
857 int
858 max_reg_num ()
859 {
860 return reg_rtx_no;
861 }
862
863 /* Return 1 + the largest label number used so far in the current function. */
864
865 int
866 max_label_num ()
867 {
868 if (last_label_num && label_num == base_label_num)
869 return last_label_num;
870 return label_num;
871 }
872
873 /* Return first label number used in this function (if any were used). */
874
875 int
876 get_first_label_num ()
877 {
878 return first_label_num;
879 }
880 \f
881 /* Return the final regno of X, which is a SUBREG of a hard
882 register. */
883 int
884 subreg_hard_regno (x, check_mode)
885 rtx x;
886 int check_mode;
887 {
888 enum machine_mode mode = GET_MODE (x);
889 unsigned int byte_offset, base_regno, final_regno;
890 rtx reg = SUBREG_REG (x);
891
892 /* This is where we attempt to catch illegal subregs
893 created by the compiler. */
894 if (GET_CODE (x) != SUBREG
895 || GET_CODE (reg) != REG)
896 abort ();
897 base_regno = REGNO (reg);
898 if (base_regno >= FIRST_PSEUDO_REGISTER)
899 abort ();
900 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
901 abort ();
902
903 /* Catch non-congruent offsets too. */
904 byte_offset = SUBREG_BYTE (x);
905 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
906 abort ();
907
908 final_regno = subreg_regno (x);
909
910 return final_regno;
911 }
912
913 /* Return a value representing some low-order bits of X, where the number
914 of low-order bits is given by MODE. Note that no conversion is done
915 between floating-point and fixed-point values, rather, the bit
916 representation is returned.
917
918 This function handles the cases in common between gen_lowpart, below,
919 and two variants in cse.c and combine.c. These are the cases that can
920 be safely handled at all points in the compilation.
921
922 If this is not a case we can handle, return 0. */
923
924 rtx
925 gen_lowpart_common (mode, x)
926 enum machine_mode mode;
927 rtx x;
928 {
929 int msize = GET_MODE_SIZE (mode);
930 int xsize = GET_MODE_SIZE (GET_MODE (x));
931 int offset = 0;
932
933 if (GET_MODE (x) == mode)
934 return x;
935
936 /* MODE must occupy no more words than the mode of X. */
937 if (GET_MODE (x) != VOIDmode
938 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
939 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
940 return 0;
941
942 offset = subreg_lowpart_offset (mode, GET_MODE (x));
943
944 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
945 && (GET_MODE_CLASS (mode) == MODE_INT
946 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
947 {
948 /* If we are getting the low-order part of something that has been
949 sign- or zero-extended, we can either just use the object being
950 extended or make a narrower extension. If we want an even smaller
951 piece than the size of the object being extended, call ourselves
952 recursively.
953
954 This case is used mostly by combine and cse. */
955
956 if (GET_MODE (XEXP (x, 0)) == mode)
957 return XEXP (x, 0);
958 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
959 return gen_lowpart_common (mode, XEXP (x, 0));
960 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
961 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
962 }
963 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
964 || GET_CODE (x) == CONCAT)
965 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
966 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
967 from the low-order part of the constant. */
968 else if ((GET_MODE_CLASS (mode) == MODE_INT
969 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
970 && GET_MODE (x) == VOIDmode
971 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
972 {
973 /* If MODE is twice the host word size, X is already the desired
974 representation. Otherwise, if MODE is wider than a word, we can't
975 do this. If MODE is exactly a word, return just one CONST_INT. */
976
977 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
978 return x;
979 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
980 return 0;
981 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
982 return (GET_CODE (x) == CONST_INT ? x
983 : GEN_INT (CONST_DOUBLE_LOW (x)));
984 else
985 {
986 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
987 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
988 : CONST_DOUBLE_LOW (x));
989
990 /* Sign extend to HOST_WIDE_INT. */
991 val = trunc_int_for_mode (val, mode);
992
993 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
994 : GEN_INT (val));
995 }
996 }
997
998 /* The floating-point emulator can handle all conversions between
999 FP and integer operands. This simplifies reload because it
1000 doesn't have to deal with constructs like (subreg:DI
1001 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1002 /* Single-precision floats are always 32-bits and double-precision
1003 floats are always 64-bits. */
1004
1005 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1006 && GET_MODE_BITSIZE (mode) == 32
1007 && GET_CODE (x) == CONST_INT)
1008 {
1009 REAL_VALUE_TYPE r;
1010 HOST_WIDE_INT i;
1011
1012 i = INTVAL (x);
1013 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
1014 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1015 }
1016 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1017 && GET_MODE_BITSIZE (mode) == 64
1018 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1019 && GET_MODE (x) == VOIDmode)
1020 {
1021 REAL_VALUE_TYPE r;
1022 HOST_WIDE_INT i[2];
1023 HOST_WIDE_INT low, high;
1024
1025 if (GET_CODE (x) == CONST_INT)
1026 {
1027 low = INTVAL (x);
1028 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1029 }
1030 else
1031 {
1032 low = CONST_DOUBLE_LOW (x);
1033 high = CONST_DOUBLE_HIGH (x);
1034 }
1035
1036 #if HOST_BITS_PER_WIDE_INT == 32
1037 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1038 target machine. */
1039 if (WORDS_BIG_ENDIAN)
1040 i[0] = high, i[1] = low;
1041 else
1042 i[0] = low, i[1] = high;
1043 #else
1044 i[0] = low;
1045 #endif
1046
1047 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1048 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1049 }
1050 else if ((GET_MODE_CLASS (mode) == MODE_INT
1051 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1052 && GET_CODE (x) == CONST_DOUBLE
1053 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1054 {
1055 REAL_VALUE_TYPE r;
1056 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1057 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1058
1059 /* Convert 'r' into an array of four 32-bit words in target word
1060 order. */
1061 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1062 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1063 {
1064 case 32:
1065 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1066 i[1] = 0;
1067 i[2] = 0;
1068 i[3 - 3 * endian] = 0;
1069 break;
1070 case 64:
1071 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1072 i[2 - 2 * endian] = 0;
1073 i[3 - 2 * endian] = 0;
1074 break;
1075 case 96:
1076 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1077 i[3 - 3 * endian] = 0;
1078 break;
1079 case 128:
1080 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1081 break;
1082 default:
1083 abort ();
1084 }
1085 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1086 and return it. */
1087 #if HOST_BITS_PER_WIDE_INT == 32
1088 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1089 #else
1090 if (HOST_BITS_PER_WIDE_INT != 64)
1091 abort ();
1092
1093 return immed_double_const ((((unsigned long) i[3 * endian])
1094 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1095 (((unsigned long) i[2 - endian])
1096 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1097 mode);
1098 #endif
1099 }
1100
1101 /* Otherwise, we can't do this. */
1102 return 0;
1103 }
1104 \f
1105 /* Return the real part (which has mode MODE) of a complex value X.
1106 This always comes at the low address in memory. */
1107
1108 rtx
1109 gen_realpart (mode, x)
1110 enum machine_mode mode;
1111 rtx x;
1112 {
1113 if (WORDS_BIG_ENDIAN
1114 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1115 && REG_P (x)
1116 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1117 internal_error
1118 ("can't access real part of complex value in hard register");
1119 else if (WORDS_BIG_ENDIAN)
1120 return gen_highpart (mode, x);
1121 else
1122 return gen_lowpart (mode, x);
1123 }
1124
1125 /* Return the imaginary part (which has mode MODE) of a complex value X.
1126 This always comes at the high address in memory. */
1127
1128 rtx
1129 gen_imagpart (mode, x)
1130 enum machine_mode mode;
1131 rtx x;
1132 {
1133 if (WORDS_BIG_ENDIAN)
1134 return gen_lowpart (mode, x);
1135 else if (! WORDS_BIG_ENDIAN
1136 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1137 && REG_P (x)
1138 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1139 internal_error
1140 ("can't access imaginary part of complex value in hard register");
1141 else
1142 return gen_highpart (mode, x);
1143 }
1144
1145 /* Return 1 iff X, assumed to be a SUBREG,
1146 refers to the real part of the complex value in its containing reg.
1147 Complex values are always stored with the real part in the first word,
1148 regardless of WORDS_BIG_ENDIAN. */
1149
1150 int
1151 subreg_realpart_p (x)
1152 rtx x;
1153 {
1154 if (GET_CODE (x) != SUBREG)
1155 abort ();
1156
1157 return ((unsigned int) SUBREG_BYTE (x)
1158 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1159 }
1160 \f
1161 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1162 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1163 least-significant part of X.
1164 MODE specifies how big a part of X to return;
1165 it usually should not be larger than a word.
1166 If X is a MEM whose address is a QUEUED, the value may be so also. */
1167
1168 rtx
1169 gen_lowpart (mode, x)
1170 enum machine_mode mode;
1171 rtx x;
1172 {
1173 rtx result = gen_lowpart_common (mode, x);
1174
1175 if (result)
1176 return result;
1177 else if (GET_CODE (x) == REG)
1178 {
1179 /* Must be a hard reg that's not valid in MODE. */
1180 result = gen_lowpart_common (mode, copy_to_reg (x));
1181 if (result == 0)
1182 abort ();
1183 return result;
1184 }
1185 else if (GET_CODE (x) == MEM)
1186 {
1187 /* The only additional case we can do is MEM. */
1188 int offset = 0;
1189 if (WORDS_BIG_ENDIAN)
1190 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1191 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1192
1193 if (BYTES_BIG_ENDIAN)
1194 /* Adjust the address so that the address-after-the-data
1195 is unchanged. */
1196 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1197 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1198
1199 return adjust_address (x, mode, offset);
1200 }
1201 else if (GET_CODE (x) == ADDRESSOF)
1202 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1203 else
1204 abort ();
1205 }
1206
1207 /* Like `gen_lowpart', but refer to the most significant part.
1208 This is used to access the imaginary part of a complex number. */
1209
1210 rtx
1211 gen_highpart (mode, x)
1212 enum machine_mode mode;
1213 rtx x;
1214 {
1215 unsigned int msize = GET_MODE_SIZE (mode);
1216 rtx result;
1217
1218 /* This case loses if X is a subreg. To catch bugs early,
1219 complain if an invalid MODE is used even in other cases. */
1220 if (msize > UNITS_PER_WORD
1221 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1222 abort ();
1223
1224 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1225 subreg_highpart_offset (mode, GET_MODE (x)));
1226
1227 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1228 the target if we have a MEM. gen_highpart must return a valid operand,
1229 emitting code if necessary to do so. */
1230 if (result != NULL_RTX && GET_CODE (result) == MEM)
1231 result = validize_mem (result);
1232
1233 if (!result)
1234 abort ();
1235 return result;
1236 }
1237
1238 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1239 be VOIDmode constant. */
1240 rtx
1241 gen_highpart_mode (outermode, innermode, exp)
1242 enum machine_mode outermode, innermode;
1243 rtx exp;
1244 {
1245 if (GET_MODE (exp) != VOIDmode)
1246 {
1247 if (GET_MODE (exp) != innermode)
1248 abort ();
1249 return gen_highpart (outermode, exp);
1250 }
1251 return simplify_gen_subreg (outermode, exp, innermode,
1252 subreg_highpart_offset (outermode, innermode));
1253 }
1254
1255 /* Return offset in bytes to get OUTERMODE low part
1256 of the value in mode INNERMODE stored in memory in target format. */
1257
1258 unsigned int
1259 subreg_lowpart_offset (outermode, innermode)
1260 enum machine_mode outermode, innermode;
1261 {
1262 unsigned int offset = 0;
1263 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1264
1265 if (difference > 0)
1266 {
1267 if (WORDS_BIG_ENDIAN)
1268 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1269 if (BYTES_BIG_ENDIAN)
1270 offset += difference % UNITS_PER_WORD;
1271 }
1272
1273 return offset;
1274 }
1275
1276 /* Return offset in bytes to get OUTERMODE high part
1277 of the value in mode INNERMODE stored in memory in target format. */
1278 unsigned int
1279 subreg_highpart_offset (outermode, innermode)
1280 enum machine_mode outermode, innermode;
1281 {
1282 unsigned int offset = 0;
1283 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1284
1285 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1286 abort ();
1287
1288 if (difference > 0)
1289 {
1290 if (! WORDS_BIG_ENDIAN)
1291 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1292 if (! BYTES_BIG_ENDIAN)
1293 offset += difference % UNITS_PER_WORD;
1294 }
1295
1296 return offset;
1297 }
1298
1299 /* Return 1 iff X, assumed to be a SUBREG,
1300 refers to the least significant part of its containing reg.
1301 If X is not a SUBREG, always return 1 (it is its own low part!). */
1302
1303 int
1304 subreg_lowpart_p (x)
1305 rtx x;
1306 {
1307 if (GET_CODE (x) != SUBREG)
1308 return 1;
1309 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1310 return 0;
1311
1312 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1313 == SUBREG_BYTE (x));
1314 }
1315 \f
1316
1317 /* Helper routine for all the constant cases of operand_subword.
1318 Some places invoke this directly. */
1319
1320 rtx
1321 constant_subword (op, offset, mode)
1322 rtx op;
1323 int offset;
1324 enum machine_mode mode;
1325 {
1326 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1327 HOST_WIDE_INT val;
1328
1329 /* If OP is already an integer word, return it. */
1330 if (GET_MODE_CLASS (mode) == MODE_INT
1331 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1332 return op;
1333
1334 /* The output is some bits, the width of the target machine's word.
1335 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1336 host can't. */
1337 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1338 && GET_MODE_CLASS (mode) == MODE_FLOAT
1339 && GET_MODE_BITSIZE (mode) == 64
1340 && GET_CODE (op) == CONST_DOUBLE)
1341 {
1342 long k[2];
1343 REAL_VALUE_TYPE rv;
1344
1345 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1346 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1347
1348 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1349 which the words are written depends on the word endianness.
1350 ??? This is a potential portability problem and should
1351 be fixed at some point.
1352
1353 We must exercise caution with the sign bit. By definition there
1354 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1355 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1356 So we explicitly mask and sign-extend as necessary. */
1357 if (BITS_PER_WORD == 32)
1358 {
1359 val = k[offset];
1360 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1361 return GEN_INT (val);
1362 }
1363 #if HOST_BITS_PER_WIDE_INT >= 64
1364 else if (BITS_PER_WORD >= 64 && offset == 0)
1365 {
1366 val = k[! WORDS_BIG_ENDIAN];
1367 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1368 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1369 return GEN_INT (val);
1370 }
1371 #endif
1372 else if (BITS_PER_WORD == 16)
1373 {
1374 val = k[offset >> 1];
1375 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1376 val >>= 16;
1377 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1378 return GEN_INT (val);
1379 }
1380 else
1381 abort ();
1382 }
1383 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1384 && GET_MODE_CLASS (mode) == MODE_FLOAT
1385 && GET_MODE_BITSIZE (mode) > 64
1386 && GET_CODE (op) == CONST_DOUBLE)
1387 {
1388 long k[4];
1389 REAL_VALUE_TYPE rv;
1390
1391 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1392 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1393
1394 if (BITS_PER_WORD == 32)
1395 {
1396 val = k[offset];
1397 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1398 return GEN_INT (val);
1399 }
1400 #if HOST_BITS_PER_WIDE_INT >= 64
1401 else if (BITS_PER_WORD >= 64 && offset <= 1)
1402 {
1403 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1404 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1405 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1406 return GEN_INT (val);
1407 }
1408 #endif
1409 else
1410 abort ();
1411 }
1412
1413 /* Single word float is a little harder, since single- and double-word
1414 values often do not have the same high-order bits. We have already
1415 verified that we want the only defined word of the single-word value. */
1416 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1417 && GET_MODE_BITSIZE (mode) == 32
1418 && GET_CODE (op) == CONST_DOUBLE)
1419 {
1420 long l;
1421 REAL_VALUE_TYPE rv;
1422
1423 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1424 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1425
1426 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1427 val = l;
1428 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1429
1430 if (BITS_PER_WORD == 16)
1431 {
1432 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1433 val >>= 16;
1434 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1435 }
1436
1437 return GEN_INT (val);
1438 }
1439
1440 /* The only remaining cases that we can handle are integers.
1441 Convert to proper endianness now since these cases need it.
1442 At this point, offset == 0 means the low-order word.
1443
1444 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1445 in general. However, if OP is (const_int 0), we can just return
1446 it for any word. */
1447
1448 if (op == const0_rtx)
1449 return op;
1450
1451 if (GET_MODE_CLASS (mode) != MODE_INT
1452 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1453 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1454 return 0;
1455
1456 if (WORDS_BIG_ENDIAN)
1457 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1458
1459 /* Find out which word on the host machine this value is in and get
1460 it from the constant. */
1461 val = (offset / size_ratio == 0
1462 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1463 : (GET_CODE (op) == CONST_INT
1464 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1465
1466 /* Get the value we want into the low bits of val. */
1467 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1468 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1469
1470 val = trunc_int_for_mode (val, word_mode);
1471
1472 return GEN_INT (val);
1473 }
1474
1475 /* Return subword OFFSET of operand OP.
1476 The word number, OFFSET, is interpreted as the word number starting
1477 at the low-order address. OFFSET 0 is the low-order word if not
1478 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1479
1480 If we cannot extract the required word, we return zero. Otherwise,
1481 an rtx corresponding to the requested word will be returned.
1482
1483 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1484 reload has completed, a valid address will always be returned. After
1485 reload, if a valid address cannot be returned, we return zero.
1486
1487 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1488 it is the responsibility of the caller.
1489
1490 MODE is the mode of OP in case it is a CONST_INT.
1491
1492 ??? This is still rather broken for some cases. The problem for the
1493 moment is that all callers of this thing provide no 'goal mode' to
1494 tell us to work with. This exists because all callers were written
1495 in a word based SUBREG world.
1496 Now use of this function can be deprecated by simplify_subreg in most
1497 cases.
1498 */
1499
1500 rtx
1501 operand_subword (op, offset, validate_address, mode)
1502 rtx op;
1503 unsigned int offset;
1504 int validate_address;
1505 enum machine_mode mode;
1506 {
1507 if (mode == VOIDmode)
1508 mode = GET_MODE (op);
1509
1510 if (mode == VOIDmode)
1511 abort ();
1512
1513 /* If OP is narrower than a word, fail. */
1514 if (mode != BLKmode
1515 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1516 return 0;
1517
1518 /* If we want a word outside OP, return zero. */
1519 if (mode != BLKmode
1520 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1521 return const0_rtx;
1522
1523 /* Form a new MEM at the requested address. */
1524 if (GET_CODE (op) == MEM)
1525 {
1526 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1527
1528 if (! validate_address)
1529 return new;
1530
1531 else if (reload_completed)
1532 {
1533 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1534 return 0;
1535 }
1536 else
1537 return replace_equiv_address (new, XEXP (new, 0));
1538 }
1539
1540 /* Rest can be handled by simplify_subreg. */
1541 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1542 }
1543
1544 /* Similar to `operand_subword', but never return 0. If we can't extract
1545 the required subword, put OP into a register and try again. If that fails,
1546 abort. We always validate the address in this case.
1547
1548 MODE is the mode of OP, in case it is CONST_INT. */
1549
1550 rtx
1551 operand_subword_force (op, offset, mode)
1552 rtx op;
1553 unsigned int offset;
1554 enum machine_mode mode;
1555 {
1556 rtx result = operand_subword (op, offset, 1, mode);
1557
1558 if (result)
1559 return result;
1560
1561 if (mode != BLKmode && mode != VOIDmode)
1562 {
1563 /* If this is a register which can not be accessed by words, copy it
1564 to a pseudo register. */
1565 if (GET_CODE (op) == REG)
1566 op = copy_to_reg (op);
1567 else
1568 op = force_reg (mode, op);
1569 }
1570
1571 result = operand_subword (op, offset, 1, mode);
1572 if (result == 0)
1573 abort ();
1574
1575 return result;
1576 }
1577 \f
1578 /* Given a compare instruction, swap the operands.
1579 A test instruction is changed into a compare of 0 against the operand. */
1580
1581 void
1582 reverse_comparison (insn)
1583 rtx insn;
1584 {
1585 rtx body = PATTERN (insn);
1586 rtx comp;
1587
1588 if (GET_CODE (body) == SET)
1589 comp = SET_SRC (body);
1590 else
1591 comp = SET_SRC (XVECEXP (body, 0, 0));
1592
1593 if (GET_CODE (comp) == COMPARE)
1594 {
1595 rtx op0 = XEXP (comp, 0);
1596 rtx op1 = XEXP (comp, 1);
1597 XEXP (comp, 0) = op1;
1598 XEXP (comp, 1) = op0;
1599 }
1600 else
1601 {
1602 rtx new = gen_rtx_COMPARE (VOIDmode,
1603 CONST0_RTX (GET_MODE (comp)), comp);
1604 if (GET_CODE (body) == SET)
1605 SET_SRC (body) = new;
1606 else
1607 SET_SRC (XVECEXP (body, 0, 0)) = new;
1608 }
1609 }
1610 \f
1611 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1612 or (2) a component ref of something variable. Represent the later with
1613 a NULL expression. */
1614
1615 static tree
1616 component_ref_for_mem_expr (ref)
1617 tree ref;
1618 {
1619 tree inner = TREE_OPERAND (ref, 0);
1620
1621 if (TREE_CODE (inner) == COMPONENT_REF)
1622 inner = component_ref_for_mem_expr (inner);
1623 else
1624 {
1625 tree placeholder_ptr = 0;
1626
1627 /* Now remove any conversions: they don't change what the underlying
1628 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1629 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1630 || TREE_CODE (inner) == NON_LVALUE_EXPR
1631 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1632 || TREE_CODE (inner) == SAVE_EXPR
1633 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1634 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1635 inner = find_placeholder (inner, &placeholder_ptr);
1636 else
1637 inner = TREE_OPERAND (inner, 0);
1638
1639 if (! DECL_P (inner))
1640 inner = NULL_TREE;
1641 }
1642
1643 if (inner == TREE_OPERAND (ref, 0))
1644 return ref;
1645 else
1646 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1647 TREE_OPERAND (ref, 1));
1648 }
1649
1650 /* Given REF, a MEM, and T, either the type of X or the expression
1651 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1652 if we are making a new object of this type. */
1653
1654 void
1655 set_mem_attributes (ref, t, objectp)
1656 rtx ref;
1657 tree t;
1658 int objectp;
1659 {
1660 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1661 tree expr = MEM_EXPR (ref);
1662 rtx offset = MEM_OFFSET (ref);
1663 rtx size = MEM_SIZE (ref);
1664 unsigned int align = MEM_ALIGN (ref);
1665 tree type;
1666
1667 /* It can happen that type_for_mode was given a mode for which there
1668 is no language-level type. In which case it returns NULL, which
1669 we can see here. */
1670 if (t == NULL_TREE)
1671 return;
1672
1673 type = TYPE_P (t) ? t : TREE_TYPE (t);
1674
1675 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1676 wrong answer, as it assumes that DECL_RTL already has the right alias
1677 info. Callers should not set DECL_RTL until after the call to
1678 set_mem_attributes. */
1679 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1680 abort ();
1681
1682 /* Get the alias set from the expression or type (perhaps using a
1683 front-end routine) and use it. */
1684 alias = get_alias_set (t);
1685
1686 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1687 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1688 RTX_UNCHANGING_P (ref)
1689 |= ((lang_hooks.honor_readonly
1690 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1691 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1692
1693 /* If we are making an object of this type, or if this is a DECL, we know
1694 that it is a scalar if the type is not an aggregate. */
1695 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1696 MEM_SCALAR_P (ref) = 1;
1697
1698 /* We can set the alignment from the type if we are making an object,
1699 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1700 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1701 align = MAX (align, TYPE_ALIGN (type));
1702
1703 /* If the size is known, we can set that. */
1704 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1705 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1706
1707 /* If T is not a type, we may be able to deduce some more information about
1708 the expression. */
1709 if (! TYPE_P (t))
1710 {
1711 maybe_set_unchanging (ref, t);
1712 if (TREE_THIS_VOLATILE (t))
1713 MEM_VOLATILE_P (ref) = 1;
1714
1715 /* Now remove any conversions: they don't change what the underlying
1716 object is. Likewise for SAVE_EXPR. */
1717 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1718 || TREE_CODE (t) == NON_LVALUE_EXPR
1719 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1720 || TREE_CODE (t) == SAVE_EXPR)
1721 t = TREE_OPERAND (t, 0);
1722
1723 /* If this expression can't be addressed (e.g., it contains a reference
1724 to a non-addressable field), show we don't change its alias set. */
1725 if (! can_address_p (t))
1726 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1727
1728 /* If this is a decl, set the attributes of the MEM from it. */
1729 if (DECL_P (t))
1730 {
1731 expr = t;
1732 offset = const0_rtx;
1733 size = (DECL_SIZE_UNIT (t)
1734 && host_integerp (DECL_SIZE_UNIT (t), 1)
1735 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1736 align = DECL_ALIGN (t);
1737 }
1738
1739 /* If this is a constant, we know the alignment. */
1740 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1741 {
1742 align = TYPE_ALIGN (type);
1743 #ifdef CONSTANT_ALIGNMENT
1744 align = CONSTANT_ALIGNMENT (t, align);
1745 #endif
1746 }
1747
1748 /* If this is a field reference and not a bit-field, record it. */
1749 /* ??? There is some information that can be gleened from bit-fields,
1750 such as the word offset in the structure that might be modified.
1751 But skip it for now. */
1752 else if (TREE_CODE (t) == COMPONENT_REF
1753 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1754 {
1755 expr = component_ref_for_mem_expr (t);
1756 offset = const0_rtx;
1757 /* ??? Any reason the field size would be different than
1758 the size we got from the type? */
1759 }
1760
1761 /* If this is an array reference, look for an outer field reference. */
1762 else if (TREE_CODE (t) == ARRAY_REF)
1763 {
1764 tree off_tree = size_zero_node;
1765
1766 do
1767 {
1768 off_tree
1769 = fold (build (PLUS_EXPR, sizetype,
1770 fold (build (MULT_EXPR, sizetype,
1771 TREE_OPERAND (t, 1),
1772 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1773 off_tree));
1774 t = TREE_OPERAND (t, 0);
1775 }
1776 while (TREE_CODE (t) == ARRAY_REF);
1777
1778 if (TREE_CODE (t) == COMPONENT_REF)
1779 {
1780 expr = component_ref_for_mem_expr (t);
1781 if (host_integerp (off_tree, 1))
1782 offset = GEN_INT (tree_low_cst (off_tree, 1));
1783 /* ??? Any reason the field size would be different than
1784 the size we got from the type? */
1785 }
1786 }
1787 }
1788
1789 /* Now set the attributes we computed above. */
1790 MEM_ATTRS (ref)
1791 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1792
1793 /* If this is already known to be a scalar or aggregate, we are done. */
1794 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1795 return;
1796
1797 /* If it is a reference into an aggregate, this is part of an aggregate.
1798 Otherwise we don't know. */
1799 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1800 || TREE_CODE (t) == ARRAY_RANGE_REF
1801 || TREE_CODE (t) == BIT_FIELD_REF)
1802 MEM_IN_STRUCT_P (ref) = 1;
1803 }
1804
1805 /* Set the alias set of MEM to SET. */
1806
1807 void
1808 set_mem_alias_set (mem, set)
1809 rtx mem;
1810 HOST_WIDE_INT set;
1811 {
1812 #ifdef ENABLE_CHECKING
1813 /* If the new and old alias sets don't conflict, something is wrong. */
1814 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1815 abort ();
1816 #endif
1817
1818 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1819 MEM_SIZE (mem), MEM_ALIGN (mem),
1820 GET_MODE (mem));
1821 }
1822
1823 /* Set the alignment of MEM to ALIGN bits. */
1824
1825 void
1826 set_mem_align (mem, align)
1827 rtx mem;
1828 unsigned int align;
1829 {
1830 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1831 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1832 GET_MODE (mem));
1833 }
1834
1835 /* Set the expr for MEM to EXPR. */
1836
1837 void
1838 set_mem_expr (mem, expr)
1839 rtx mem;
1840 tree expr;
1841 {
1842 MEM_ATTRS (mem)
1843 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1844 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1845 }
1846
1847 /* Set the offset of MEM to OFFSET. */
1848
1849 void
1850 set_mem_offset (mem, offset)
1851 rtx mem, offset;
1852 {
1853 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1854 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1855 GET_MODE (mem));
1856 }
1857 \f
1858 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1859 and its address changed to ADDR. (VOIDmode means don't change the mode.
1860 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1861 returned memory location is required to be valid. The memory
1862 attributes are not changed. */
1863
1864 static rtx
1865 change_address_1 (memref, mode, addr, validate)
1866 rtx memref;
1867 enum machine_mode mode;
1868 rtx addr;
1869 int validate;
1870 {
1871 rtx new;
1872
1873 if (GET_CODE (memref) != MEM)
1874 abort ();
1875 if (mode == VOIDmode)
1876 mode = GET_MODE (memref);
1877 if (addr == 0)
1878 addr = XEXP (memref, 0);
1879
1880 if (validate)
1881 {
1882 if (reload_in_progress || reload_completed)
1883 {
1884 if (! memory_address_p (mode, addr))
1885 abort ();
1886 }
1887 else
1888 addr = memory_address (mode, addr);
1889 }
1890
1891 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1892 return memref;
1893
1894 new = gen_rtx_MEM (mode, addr);
1895 MEM_COPY_ATTRIBUTES (new, memref);
1896 return new;
1897 }
1898
1899 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1900 way we are changing MEMREF, so we only preserve the alias set. */
1901
1902 rtx
1903 change_address (memref, mode, addr)
1904 rtx memref;
1905 enum machine_mode mode;
1906 rtx addr;
1907 {
1908 rtx new = change_address_1 (memref, mode, addr, 1);
1909 enum machine_mode mmode = GET_MODE (new);
1910
1911 MEM_ATTRS (new)
1912 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1913 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1914 (mmode == BLKmode ? BITS_PER_UNIT
1915 : GET_MODE_ALIGNMENT (mmode)),
1916 mmode);
1917
1918 return new;
1919 }
1920
1921 /* Return a memory reference like MEMREF, but with its mode changed
1922 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1923 nonzero, the memory address is forced to be valid.
1924 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1925 and caller is responsible for adjusting MEMREF base register. */
1926
1927 rtx
1928 adjust_address_1 (memref, mode, offset, validate, adjust)
1929 rtx memref;
1930 enum machine_mode mode;
1931 HOST_WIDE_INT offset;
1932 int validate, adjust;
1933 {
1934 rtx addr = XEXP (memref, 0);
1935 rtx new;
1936 rtx memoffset = MEM_OFFSET (memref);
1937 rtx size = 0;
1938 unsigned int memalign = MEM_ALIGN (memref);
1939
1940 /* ??? Prefer to create garbage instead of creating shared rtl.
1941 This may happen even if offset is non-zero -- consider
1942 (plus (plus reg reg) const_int) -- so do this always. */
1943 addr = copy_rtx (addr);
1944
1945 if (adjust)
1946 {
1947 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1948 object, we can merge it into the LO_SUM. */
1949 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1950 && offset >= 0
1951 && (unsigned HOST_WIDE_INT) offset
1952 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1953 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1954 plus_constant (XEXP (addr, 1), offset));
1955 else
1956 addr = plus_constant (addr, offset);
1957 }
1958
1959 new = change_address_1 (memref, mode, addr, validate);
1960
1961 /* Compute the new values of the memory attributes due to this adjustment.
1962 We add the offsets and update the alignment. */
1963 if (memoffset)
1964 memoffset = GEN_INT (offset + INTVAL (memoffset));
1965
1966 /* Compute the new alignment by taking the MIN of the alignment and the
1967 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1968 if zero. */
1969 if (offset != 0)
1970 memalign
1971 = MIN (memalign,
1972 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1973
1974 /* We can compute the size in a number of ways. */
1975 if (GET_MODE (new) != BLKmode)
1976 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1977 else if (MEM_SIZE (memref))
1978 size = plus_constant (MEM_SIZE (memref), -offset);
1979
1980 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1981 memoffset, size, memalign, GET_MODE (new));
1982
1983 /* At some point, we should validate that this offset is within the object,
1984 if all the appropriate values are known. */
1985 return new;
1986 }
1987
1988 /* Return a memory reference like MEMREF, but with its mode changed
1989 to MODE and its address changed to ADDR, which is assumed to be
1990 MEMREF offseted by OFFSET bytes. If VALIDATE is
1991 nonzero, the memory address is forced to be valid. */
1992
1993 rtx
1994 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
1995 rtx memref;
1996 enum machine_mode mode;
1997 rtx addr;
1998 HOST_WIDE_INT offset;
1999 int validate;
2000 {
2001 memref = change_address_1 (memref, VOIDmode, addr, validate);
2002 return adjust_address_1 (memref, mode, offset, validate, 0);
2003 }
2004
2005 /* Return a memory reference like MEMREF, but whose address is changed by
2006 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2007 known to be in OFFSET (possibly 1). */
2008
2009 rtx
2010 offset_address (memref, offset, pow2)
2011 rtx memref;
2012 rtx offset;
2013 HOST_WIDE_INT pow2;
2014 {
2015 rtx new, addr = XEXP (memref, 0);
2016
2017 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2018
2019 /* At this point we don't know _why_ the address is invalid. It
2020 could have secondary memory refereces, multiplies or anything.
2021
2022 However, if we did go and rearrange things, we can wind up not
2023 being able to recognize the magic around pic_offset_table_rtx.
2024 This stuff is fragile, and is yet another example of why it is
2025 bad to expose PIC machinery too early. */
2026 if (! memory_address_p (GET_MODE (memref), new)
2027 && GET_CODE (addr) == PLUS
2028 && XEXP (addr, 0) == pic_offset_table_rtx)
2029 {
2030 addr = force_reg (GET_MODE (addr), addr);
2031 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2032 }
2033
2034 update_temp_slot_address (XEXP (memref, 0), new);
2035 new = change_address_1 (memref, VOIDmode, new, 1);
2036
2037 /* Update the alignment to reflect the offset. Reset the offset, which
2038 we don't know. */
2039 MEM_ATTRS (new)
2040 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2041 MIN (MEM_ALIGN (memref),
2042 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2043 GET_MODE (new));
2044 return new;
2045 }
2046
2047 /* Return a memory reference like MEMREF, but with its address changed to
2048 ADDR. The caller is asserting that the actual piece of memory pointed
2049 to is the same, just the form of the address is being changed, such as
2050 by putting something into a register. */
2051
2052 rtx
2053 replace_equiv_address (memref, addr)
2054 rtx memref;
2055 rtx addr;
2056 {
2057 /* change_address_1 copies the memory attribute structure without change
2058 and that's exactly what we want here. */
2059 update_temp_slot_address (XEXP (memref, 0), addr);
2060 return change_address_1 (memref, VOIDmode, addr, 1);
2061 }
2062
2063 /* Likewise, but the reference is not required to be valid. */
2064
2065 rtx
2066 replace_equiv_address_nv (memref, addr)
2067 rtx memref;
2068 rtx addr;
2069 {
2070 return change_address_1 (memref, VOIDmode, addr, 0);
2071 }
2072
2073 /* Return a memory reference like MEMREF, but with its mode widened to
2074 MODE and offset by OFFSET. This would be used by targets that e.g.
2075 cannot issue QImode memory operations and have to use SImode memory
2076 operations plus masking logic. */
2077
2078 rtx
2079 widen_memory_access (memref, mode, offset)
2080 rtx memref;
2081 enum machine_mode mode;
2082 HOST_WIDE_INT offset;
2083 {
2084 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2085 tree expr = MEM_EXPR (new);
2086 rtx memoffset = MEM_OFFSET (new);
2087 unsigned int size = GET_MODE_SIZE (mode);
2088
2089 /* If we don't know what offset we were at within the expression, then
2090 we can't know if we've overstepped the bounds. */
2091 if (! memoffset)
2092 expr = NULL_TREE;
2093
2094 while (expr)
2095 {
2096 if (TREE_CODE (expr) == COMPONENT_REF)
2097 {
2098 tree field = TREE_OPERAND (expr, 1);
2099
2100 if (! DECL_SIZE_UNIT (field))
2101 {
2102 expr = NULL_TREE;
2103 break;
2104 }
2105
2106 /* Is the field at least as large as the access? If so, ok,
2107 otherwise strip back to the containing structure. */
2108 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2109 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2110 && INTVAL (memoffset) >= 0)
2111 break;
2112
2113 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2114 {
2115 expr = NULL_TREE;
2116 break;
2117 }
2118
2119 expr = TREE_OPERAND (expr, 0);
2120 memoffset = (GEN_INT (INTVAL (memoffset)
2121 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2122 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2123 / BITS_PER_UNIT)));
2124 }
2125 /* Similarly for the decl. */
2126 else if (DECL_P (expr)
2127 && DECL_SIZE_UNIT (expr)
2128 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2129 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2130 && (! memoffset || INTVAL (memoffset) >= 0))
2131 break;
2132 else
2133 {
2134 /* The widened memory access overflows the expression, which means
2135 that it could alias another expression. Zap it. */
2136 expr = NULL_TREE;
2137 break;
2138 }
2139 }
2140
2141 if (! expr)
2142 memoffset = NULL_RTX;
2143
2144 /* The widened memory may alias other stuff, so zap the alias set. */
2145 /* ??? Maybe use get_alias_set on any remaining expression. */
2146
2147 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2148 MEM_ALIGN (new), mode);
2149
2150 return new;
2151 }
2152 \f
2153 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2154
2155 rtx
2156 gen_label_rtx ()
2157 {
2158 rtx label;
2159
2160 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2161 NULL, label_num++, NULL, NULL);
2162
2163 LABEL_NUSES (label) = 0;
2164 LABEL_ALTERNATE_NAME (label) = NULL;
2165 return label;
2166 }
2167 \f
2168 /* For procedure integration. */
2169
2170 /* Install new pointers to the first and last insns in the chain.
2171 Also, set cur_insn_uid to one higher than the last in use.
2172 Used for an inline-procedure after copying the insn chain. */
2173
2174 void
2175 set_new_first_and_last_insn (first, last)
2176 rtx first, last;
2177 {
2178 rtx insn;
2179
2180 first_insn = first;
2181 last_insn = last;
2182 cur_insn_uid = 0;
2183
2184 for (insn = first; insn; insn = NEXT_INSN (insn))
2185 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2186
2187 cur_insn_uid++;
2188 }
2189
2190 /* Set the range of label numbers found in the current function.
2191 This is used when belatedly compiling an inline function. */
2192
2193 void
2194 set_new_first_and_last_label_num (first, last)
2195 int first, last;
2196 {
2197 base_label_num = label_num;
2198 first_label_num = first;
2199 last_label_num = last;
2200 }
2201
2202 /* Set the last label number found in the current function.
2203 This is used when belatedly compiling an inline function. */
2204
2205 void
2206 set_new_last_label_num (last)
2207 int last;
2208 {
2209 base_label_num = label_num;
2210 last_label_num = last;
2211 }
2212 \f
2213 /* Restore all variables describing the current status from the structure *P.
2214 This is used after a nested function. */
2215
2216 void
2217 restore_emit_status (p)
2218 struct function *p ATTRIBUTE_UNUSED;
2219 {
2220 last_label_num = 0;
2221 }
2222 \f
2223 /* Go through all the RTL insn bodies and copy any invalid shared
2224 structure. This routine should only be called once. */
2225
2226 void
2227 unshare_all_rtl (fndecl, insn)
2228 tree fndecl;
2229 rtx insn;
2230 {
2231 tree decl;
2232
2233 /* Make sure that virtual parameters are not shared. */
2234 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2235 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2236
2237 /* Make sure that virtual stack slots are not shared. */
2238 unshare_all_decls (DECL_INITIAL (fndecl));
2239
2240 /* Unshare just about everything else. */
2241 unshare_all_rtl_1 (insn);
2242
2243 /* Make sure the addresses of stack slots found outside the insn chain
2244 (such as, in DECL_RTL of a variable) are not shared
2245 with the insn chain.
2246
2247 This special care is necessary when the stack slot MEM does not
2248 actually appear in the insn chain. If it does appear, its address
2249 is unshared from all else at that point. */
2250 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2251 }
2252
2253 /* Go through all the RTL insn bodies and copy any invalid shared
2254 structure, again. This is a fairly expensive thing to do so it
2255 should be done sparingly. */
2256
2257 void
2258 unshare_all_rtl_again (insn)
2259 rtx insn;
2260 {
2261 rtx p;
2262 tree decl;
2263
2264 for (p = insn; p; p = NEXT_INSN (p))
2265 if (INSN_P (p))
2266 {
2267 reset_used_flags (PATTERN (p));
2268 reset_used_flags (REG_NOTES (p));
2269 reset_used_flags (LOG_LINKS (p));
2270 }
2271
2272 /* Make sure that virtual stack slots are not shared. */
2273 reset_used_decls (DECL_INITIAL (cfun->decl));
2274
2275 /* Make sure that virtual parameters are not shared. */
2276 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2277 reset_used_flags (DECL_RTL (decl));
2278
2279 reset_used_flags (stack_slot_list);
2280
2281 unshare_all_rtl (cfun->decl, insn);
2282 }
2283
2284 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2285 Assumes the mark bits are cleared at entry. */
2286
2287 static void
2288 unshare_all_rtl_1 (insn)
2289 rtx insn;
2290 {
2291 for (; insn; insn = NEXT_INSN (insn))
2292 if (INSN_P (insn))
2293 {
2294 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2295 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2296 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2297 }
2298 }
2299
2300 /* Go through all virtual stack slots of a function and copy any
2301 shared structure. */
2302 static void
2303 unshare_all_decls (blk)
2304 tree blk;
2305 {
2306 tree t;
2307
2308 /* Copy shared decls. */
2309 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2310 if (DECL_RTL_SET_P (t))
2311 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2312
2313 /* Now process sub-blocks. */
2314 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2315 unshare_all_decls (t);
2316 }
2317
2318 /* Go through all virtual stack slots of a function and mark them as
2319 not shared. */
2320 static void
2321 reset_used_decls (blk)
2322 tree blk;
2323 {
2324 tree t;
2325
2326 /* Mark decls. */
2327 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2328 if (DECL_RTL_SET_P (t))
2329 reset_used_flags (DECL_RTL (t));
2330
2331 /* Now process sub-blocks. */
2332 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2333 reset_used_decls (t);
2334 }
2335
2336 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2337 placed in the result directly, rather than being copied. MAY_SHARE is
2338 either a MEM of an EXPR_LIST of MEMs. */
2339
2340 rtx
2341 copy_most_rtx (orig, may_share)
2342 rtx orig;
2343 rtx may_share;
2344 {
2345 rtx copy;
2346 int i, j;
2347 RTX_CODE code;
2348 const char *format_ptr;
2349
2350 if (orig == may_share
2351 || (GET_CODE (may_share) == EXPR_LIST
2352 && in_expr_list_p (may_share, orig)))
2353 return orig;
2354
2355 code = GET_CODE (orig);
2356
2357 switch (code)
2358 {
2359 case REG:
2360 case QUEUED:
2361 case CONST_INT:
2362 case CONST_DOUBLE:
2363 case CONST_VECTOR:
2364 case SYMBOL_REF:
2365 case CODE_LABEL:
2366 case PC:
2367 case CC0:
2368 return orig;
2369 default:
2370 break;
2371 }
2372
2373 copy = rtx_alloc (code);
2374 PUT_MODE (copy, GET_MODE (orig));
2375 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2376 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2377 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2378 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2379 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2380
2381 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2382
2383 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2384 {
2385 switch (*format_ptr++)
2386 {
2387 case 'e':
2388 XEXP (copy, i) = XEXP (orig, i);
2389 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2390 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2391 break;
2392
2393 case 'u':
2394 XEXP (copy, i) = XEXP (orig, i);
2395 break;
2396
2397 case 'E':
2398 case 'V':
2399 XVEC (copy, i) = XVEC (orig, i);
2400 if (XVEC (orig, i) != NULL)
2401 {
2402 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2403 for (j = 0; j < XVECLEN (copy, i); j++)
2404 XVECEXP (copy, i, j)
2405 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2406 }
2407 break;
2408
2409 case 'w':
2410 XWINT (copy, i) = XWINT (orig, i);
2411 break;
2412
2413 case 'n':
2414 case 'i':
2415 XINT (copy, i) = XINT (orig, i);
2416 break;
2417
2418 case 't':
2419 XTREE (copy, i) = XTREE (orig, i);
2420 break;
2421
2422 case 's':
2423 case 'S':
2424 XSTR (copy, i) = XSTR (orig, i);
2425 break;
2426
2427 case '0':
2428 /* Copy this through the wide int field; that's safest. */
2429 X0WINT (copy, i) = X0WINT (orig, i);
2430 break;
2431
2432 default:
2433 abort ();
2434 }
2435 }
2436 return copy;
2437 }
2438
2439 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2440 Recursively does the same for subexpressions. */
2441
2442 rtx
2443 copy_rtx_if_shared (orig)
2444 rtx orig;
2445 {
2446 rtx x = orig;
2447 int i;
2448 enum rtx_code code;
2449 const char *format_ptr;
2450 int copied = 0;
2451
2452 if (x == 0)
2453 return 0;
2454
2455 code = GET_CODE (x);
2456
2457 /* These types may be freely shared. */
2458
2459 switch (code)
2460 {
2461 case REG:
2462 case QUEUED:
2463 case CONST_INT:
2464 case CONST_DOUBLE:
2465 case CONST_VECTOR:
2466 case SYMBOL_REF:
2467 case CODE_LABEL:
2468 case PC:
2469 case CC0:
2470 case SCRATCH:
2471 /* SCRATCH must be shared because they represent distinct values. */
2472 return x;
2473
2474 case CONST:
2475 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2476 a LABEL_REF, it isn't sharable. */
2477 if (GET_CODE (XEXP (x, 0)) == PLUS
2478 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2479 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2480 return x;
2481 break;
2482
2483 case INSN:
2484 case JUMP_INSN:
2485 case CALL_INSN:
2486 case NOTE:
2487 case BARRIER:
2488 /* The chain of insns is not being copied. */
2489 return x;
2490
2491 case MEM:
2492 /* A MEM is allowed to be shared if its address is constant.
2493
2494 We used to allow sharing of MEMs which referenced
2495 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2496 that can lose. instantiate_virtual_regs will not unshare
2497 the MEMs, and combine may change the structure of the address
2498 because it looks safe and profitable in one context, but
2499 in some other context it creates unrecognizable RTL. */
2500 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2501 return x;
2502
2503 break;
2504
2505 default:
2506 break;
2507 }
2508
2509 /* This rtx may not be shared. If it has already been seen,
2510 replace it with a copy of itself. */
2511
2512 if (RTX_FLAG (x, used))
2513 {
2514 rtx copy;
2515
2516 copy = rtx_alloc (code);
2517 memcpy (copy, x,
2518 (sizeof (*copy) - sizeof (copy->fld)
2519 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2520 x = copy;
2521 copied = 1;
2522 }
2523 RTX_FLAG (x, used) = 1;
2524
2525 /* Now scan the subexpressions recursively.
2526 We can store any replaced subexpressions directly into X
2527 since we know X is not shared! Any vectors in X
2528 must be copied if X was copied. */
2529
2530 format_ptr = GET_RTX_FORMAT (code);
2531
2532 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2533 {
2534 switch (*format_ptr++)
2535 {
2536 case 'e':
2537 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2538 break;
2539
2540 case 'E':
2541 if (XVEC (x, i) != NULL)
2542 {
2543 int j;
2544 int len = XVECLEN (x, i);
2545
2546 if (copied && len > 0)
2547 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2548 for (j = 0; j < len; j++)
2549 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2550 }
2551 break;
2552 }
2553 }
2554 return x;
2555 }
2556
2557 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2558 to look for shared sub-parts. */
2559
2560 void
2561 reset_used_flags (x)
2562 rtx x;
2563 {
2564 int i, j;
2565 enum rtx_code code;
2566 const char *format_ptr;
2567
2568 if (x == 0)
2569 return;
2570
2571 code = GET_CODE (x);
2572
2573 /* These types may be freely shared so we needn't do any resetting
2574 for them. */
2575
2576 switch (code)
2577 {
2578 case REG:
2579 case QUEUED:
2580 case CONST_INT:
2581 case CONST_DOUBLE:
2582 case CONST_VECTOR:
2583 case SYMBOL_REF:
2584 case CODE_LABEL:
2585 case PC:
2586 case CC0:
2587 return;
2588
2589 case INSN:
2590 case JUMP_INSN:
2591 case CALL_INSN:
2592 case NOTE:
2593 case LABEL_REF:
2594 case BARRIER:
2595 /* The chain of insns is not being copied. */
2596 return;
2597
2598 default:
2599 break;
2600 }
2601
2602 RTX_FLAG (x, used) = 0;
2603
2604 format_ptr = GET_RTX_FORMAT (code);
2605 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2606 {
2607 switch (*format_ptr++)
2608 {
2609 case 'e':
2610 reset_used_flags (XEXP (x, i));
2611 break;
2612
2613 case 'E':
2614 for (j = 0; j < XVECLEN (x, i); j++)
2615 reset_used_flags (XVECEXP (x, i, j));
2616 break;
2617 }
2618 }
2619 }
2620 \f
2621 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2622 Return X or the rtx for the pseudo reg the value of X was copied into.
2623 OTHER must be valid as a SET_DEST. */
2624
2625 rtx
2626 make_safe_from (x, other)
2627 rtx x, other;
2628 {
2629 while (1)
2630 switch (GET_CODE (other))
2631 {
2632 case SUBREG:
2633 other = SUBREG_REG (other);
2634 break;
2635 case STRICT_LOW_PART:
2636 case SIGN_EXTEND:
2637 case ZERO_EXTEND:
2638 other = XEXP (other, 0);
2639 break;
2640 default:
2641 goto done;
2642 }
2643 done:
2644 if ((GET_CODE (other) == MEM
2645 && ! CONSTANT_P (x)
2646 && GET_CODE (x) != REG
2647 && GET_CODE (x) != SUBREG)
2648 || (GET_CODE (other) == REG
2649 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2650 || reg_mentioned_p (other, x))))
2651 {
2652 rtx temp = gen_reg_rtx (GET_MODE (x));
2653 emit_move_insn (temp, x);
2654 return temp;
2655 }
2656 return x;
2657 }
2658 \f
2659 /* Emission of insns (adding them to the doubly-linked list). */
2660
2661 /* Return the first insn of the current sequence or current function. */
2662
2663 rtx
2664 get_insns ()
2665 {
2666 return first_insn;
2667 }
2668
2669 /* Specify a new insn as the first in the chain. */
2670
2671 void
2672 set_first_insn (insn)
2673 rtx insn;
2674 {
2675 if (PREV_INSN (insn) != 0)
2676 abort ();
2677 first_insn = insn;
2678 }
2679
2680 /* Return the last insn emitted in current sequence or current function. */
2681
2682 rtx
2683 get_last_insn ()
2684 {
2685 return last_insn;
2686 }
2687
2688 /* Specify a new insn as the last in the chain. */
2689
2690 void
2691 set_last_insn (insn)
2692 rtx insn;
2693 {
2694 if (NEXT_INSN (insn) != 0)
2695 abort ();
2696 last_insn = insn;
2697 }
2698
2699 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2700
2701 rtx
2702 get_last_insn_anywhere ()
2703 {
2704 struct sequence_stack *stack;
2705 if (last_insn)
2706 return last_insn;
2707 for (stack = seq_stack; stack; stack = stack->next)
2708 if (stack->last != 0)
2709 return stack->last;
2710 return 0;
2711 }
2712
2713 /* Return the first nonnote insn emitted in current sequence or current
2714 function. This routine looks inside SEQUENCEs. */
2715
2716 rtx
2717 get_first_nonnote_insn ()
2718 {
2719 rtx insn = first_insn;
2720
2721 while (insn)
2722 {
2723 insn = next_insn (insn);
2724 if (insn == 0 || GET_CODE (insn) != NOTE)
2725 break;
2726 }
2727
2728 return insn;
2729 }
2730
2731 /* Return the last nonnote insn emitted in current sequence or current
2732 function. This routine looks inside SEQUENCEs. */
2733
2734 rtx
2735 get_last_nonnote_insn ()
2736 {
2737 rtx insn = last_insn;
2738
2739 while (insn)
2740 {
2741 insn = previous_insn (insn);
2742 if (insn == 0 || GET_CODE (insn) != NOTE)
2743 break;
2744 }
2745
2746 return insn;
2747 }
2748
2749 /* Return a number larger than any instruction's uid in this function. */
2750
2751 int
2752 get_max_uid ()
2753 {
2754 return cur_insn_uid;
2755 }
2756
2757 /* Renumber instructions so that no instruction UIDs are wasted. */
2758
2759 void
2760 renumber_insns (stream)
2761 FILE *stream;
2762 {
2763 rtx insn;
2764
2765 /* If we're not supposed to renumber instructions, don't. */
2766 if (!flag_renumber_insns)
2767 return;
2768
2769 /* If there aren't that many instructions, then it's not really
2770 worth renumbering them. */
2771 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2772 return;
2773
2774 cur_insn_uid = 1;
2775
2776 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2777 {
2778 if (stream)
2779 fprintf (stream, "Renumbering insn %d to %d\n",
2780 INSN_UID (insn), cur_insn_uid);
2781 INSN_UID (insn) = cur_insn_uid++;
2782 }
2783 }
2784 \f
2785 /* Return the next insn. If it is a SEQUENCE, return the first insn
2786 of the sequence. */
2787
2788 rtx
2789 next_insn (insn)
2790 rtx insn;
2791 {
2792 if (insn)
2793 {
2794 insn = NEXT_INSN (insn);
2795 if (insn && GET_CODE (insn) == INSN
2796 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2797 insn = XVECEXP (PATTERN (insn), 0, 0);
2798 }
2799
2800 return insn;
2801 }
2802
2803 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2804 of the sequence. */
2805
2806 rtx
2807 previous_insn (insn)
2808 rtx insn;
2809 {
2810 if (insn)
2811 {
2812 insn = PREV_INSN (insn);
2813 if (insn && GET_CODE (insn) == INSN
2814 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2815 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2816 }
2817
2818 return insn;
2819 }
2820
2821 /* Return the next insn after INSN that is not a NOTE. This routine does not
2822 look inside SEQUENCEs. */
2823
2824 rtx
2825 next_nonnote_insn (insn)
2826 rtx insn;
2827 {
2828 while (insn)
2829 {
2830 insn = NEXT_INSN (insn);
2831 if (insn == 0 || GET_CODE (insn) != NOTE)
2832 break;
2833 }
2834
2835 return insn;
2836 }
2837
2838 /* Return the previous insn before INSN that is not a NOTE. This routine does
2839 not look inside SEQUENCEs. */
2840
2841 rtx
2842 prev_nonnote_insn (insn)
2843 rtx insn;
2844 {
2845 while (insn)
2846 {
2847 insn = PREV_INSN (insn);
2848 if (insn == 0 || GET_CODE (insn) != NOTE)
2849 break;
2850 }
2851
2852 return insn;
2853 }
2854
2855 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2856 or 0, if there is none. This routine does not look inside
2857 SEQUENCEs. */
2858
2859 rtx
2860 next_real_insn (insn)
2861 rtx insn;
2862 {
2863 while (insn)
2864 {
2865 insn = NEXT_INSN (insn);
2866 if (insn == 0 || GET_CODE (insn) == INSN
2867 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2868 break;
2869 }
2870
2871 return insn;
2872 }
2873
2874 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2875 or 0, if there is none. This routine does not look inside
2876 SEQUENCEs. */
2877
2878 rtx
2879 prev_real_insn (insn)
2880 rtx insn;
2881 {
2882 while (insn)
2883 {
2884 insn = PREV_INSN (insn);
2885 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2886 || GET_CODE (insn) == JUMP_INSN)
2887 break;
2888 }
2889
2890 return insn;
2891 }
2892
2893 /* Find the next insn after INSN that really does something. This routine
2894 does not look inside SEQUENCEs. Until reload has completed, this is the
2895 same as next_real_insn. */
2896
2897 int
2898 active_insn_p (insn)
2899 rtx insn;
2900 {
2901 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2902 || (GET_CODE (insn) == INSN
2903 && (! reload_completed
2904 || (GET_CODE (PATTERN (insn)) != USE
2905 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2906 }
2907
2908 rtx
2909 next_active_insn (insn)
2910 rtx insn;
2911 {
2912 while (insn)
2913 {
2914 insn = NEXT_INSN (insn);
2915 if (insn == 0 || active_insn_p (insn))
2916 break;
2917 }
2918
2919 return insn;
2920 }
2921
2922 /* Find the last insn before INSN that really does something. This routine
2923 does not look inside SEQUENCEs. Until reload has completed, this is the
2924 same as prev_real_insn. */
2925
2926 rtx
2927 prev_active_insn (insn)
2928 rtx insn;
2929 {
2930 while (insn)
2931 {
2932 insn = PREV_INSN (insn);
2933 if (insn == 0 || active_insn_p (insn))
2934 break;
2935 }
2936
2937 return insn;
2938 }
2939
2940 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2941
2942 rtx
2943 next_label (insn)
2944 rtx insn;
2945 {
2946 while (insn)
2947 {
2948 insn = NEXT_INSN (insn);
2949 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2950 break;
2951 }
2952
2953 return insn;
2954 }
2955
2956 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2957
2958 rtx
2959 prev_label (insn)
2960 rtx insn;
2961 {
2962 while (insn)
2963 {
2964 insn = PREV_INSN (insn);
2965 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2966 break;
2967 }
2968
2969 return insn;
2970 }
2971 \f
2972 #ifdef HAVE_cc0
2973 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2974 and REG_CC_USER notes so we can find it. */
2975
2976 void
2977 link_cc0_insns (insn)
2978 rtx insn;
2979 {
2980 rtx user = next_nonnote_insn (insn);
2981
2982 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2983 user = XVECEXP (PATTERN (user), 0, 0);
2984
2985 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2986 REG_NOTES (user));
2987 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2988 }
2989
2990 /* Return the next insn that uses CC0 after INSN, which is assumed to
2991 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2992 applied to the result of this function should yield INSN).
2993
2994 Normally, this is simply the next insn. However, if a REG_CC_USER note
2995 is present, it contains the insn that uses CC0.
2996
2997 Return 0 if we can't find the insn. */
2998
2999 rtx
3000 next_cc0_user (insn)
3001 rtx insn;
3002 {
3003 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3004
3005 if (note)
3006 return XEXP (note, 0);
3007
3008 insn = next_nonnote_insn (insn);
3009 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3010 insn = XVECEXP (PATTERN (insn), 0, 0);
3011
3012 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3013 return insn;
3014
3015 return 0;
3016 }
3017
3018 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3019 note, it is the previous insn. */
3020
3021 rtx
3022 prev_cc0_setter (insn)
3023 rtx insn;
3024 {
3025 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3026
3027 if (note)
3028 return XEXP (note, 0);
3029
3030 insn = prev_nonnote_insn (insn);
3031 if (! sets_cc0_p (PATTERN (insn)))
3032 abort ();
3033
3034 return insn;
3035 }
3036 #endif
3037
3038 /* Increment the label uses for all labels present in rtx. */
3039
3040 static void
3041 mark_label_nuses (x)
3042 rtx x;
3043 {
3044 enum rtx_code code;
3045 int i, j;
3046 const char *fmt;
3047
3048 code = GET_CODE (x);
3049 if (code == LABEL_REF)
3050 LABEL_NUSES (XEXP (x, 0))++;
3051
3052 fmt = GET_RTX_FORMAT (code);
3053 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3054 {
3055 if (fmt[i] == 'e')
3056 mark_label_nuses (XEXP (x, i));
3057 else if (fmt[i] == 'E')
3058 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3059 mark_label_nuses (XVECEXP (x, i, j));
3060 }
3061 }
3062
3063 \f
3064 /* Try splitting insns that can be split for better scheduling.
3065 PAT is the pattern which might split.
3066 TRIAL is the insn providing PAT.
3067 LAST is non-zero if we should return the last insn of the sequence produced.
3068
3069 If this routine succeeds in splitting, it returns the first or last
3070 replacement insn depending on the value of LAST. Otherwise, it
3071 returns TRIAL. If the insn to be returned can be split, it will be. */
3072
3073 rtx
3074 try_split (pat, trial, last)
3075 rtx pat, trial;
3076 int last;
3077 {
3078 rtx before = PREV_INSN (trial);
3079 rtx after = NEXT_INSN (trial);
3080 int has_barrier = 0;
3081 rtx tem;
3082 rtx note, seq;
3083 int probability;
3084
3085 if (any_condjump_p (trial)
3086 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3087 split_branch_probability = INTVAL (XEXP (note, 0));
3088 probability = split_branch_probability;
3089
3090 seq = split_insns (pat, trial);
3091
3092 split_branch_probability = -1;
3093
3094 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3095 We may need to handle this specially. */
3096 if (after && GET_CODE (after) == BARRIER)
3097 {
3098 has_barrier = 1;
3099 after = NEXT_INSN (after);
3100 }
3101
3102 if (seq)
3103 {
3104 /* SEQ can only be a list of insns. */
3105 if (! INSN_P (seq))
3106 abort ();
3107
3108 /* Sometimes there will be only one insn in that list, this case will
3109 normally arise only when we want it in turn to be split (SFmode on
3110 the 29k is an example). */
3111 if (NEXT_INSN (seq) != NULL_RTX)
3112 {
3113 rtx insn_last, insn;
3114 int njumps = 0;
3115
3116 /* Avoid infinite loop if any insn of the result matches
3117 the original pattern. */
3118 insn_last = seq;
3119 while (1)
3120 {
3121 if (rtx_equal_p (PATTERN (insn_last), pat))
3122 return trial;
3123 if (NEXT_INSN (insn_last) == NULL_RTX)
3124 break;
3125 insn_last = NEXT_INSN (insn_last);
3126 }
3127
3128 /* Mark labels. */
3129 insn = insn_last;
3130 while (insn != NULL_RTX)
3131 {
3132 if (GET_CODE (insn) == JUMP_INSN)
3133 {
3134 mark_jump_label (PATTERN (insn), insn, 0);
3135 njumps++;
3136 if (probability != -1
3137 && any_condjump_p (insn)
3138 && !find_reg_note (insn, REG_BR_PROB, 0))
3139 {
3140 /* We can preserve the REG_BR_PROB notes only if exactly
3141 one jump is created, otherwise the machine description
3142 is responsible for this step using
3143 split_branch_probability variable. */
3144 if (njumps != 1)
3145 abort ();
3146 REG_NOTES (insn)
3147 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3148 GEN_INT (probability),
3149 REG_NOTES (insn));
3150 }
3151 }
3152
3153 insn = PREV_INSN (insn);
3154 }
3155
3156 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3157 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3158 if (GET_CODE (trial) == CALL_INSN)
3159 {
3160 insn = insn_last;
3161 while (insn != NULL_RTX)
3162 {
3163 if (GET_CODE (insn) == CALL_INSN)
3164 CALL_INSN_FUNCTION_USAGE (insn)
3165 = CALL_INSN_FUNCTION_USAGE (trial);
3166
3167 insn = PREV_INSN (insn);
3168 }
3169 }
3170
3171 /* Copy notes, particularly those related to the CFG. */
3172 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3173 {
3174 switch (REG_NOTE_KIND (note))
3175 {
3176 case REG_EH_REGION:
3177 insn = insn_last;
3178 while (insn != NULL_RTX)
3179 {
3180 if (GET_CODE (insn) == CALL_INSN
3181 || (flag_non_call_exceptions
3182 && may_trap_p (PATTERN (insn))))
3183 REG_NOTES (insn)
3184 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3185 XEXP (note, 0),
3186 REG_NOTES (insn));
3187 insn = PREV_INSN (insn);
3188 }
3189 break;
3190
3191 case REG_NORETURN:
3192 case REG_SETJMP:
3193 case REG_ALWAYS_RETURN:
3194 insn = insn_last;
3195 while (insn != NULL_RTX)
3196 {
3197 if (GET_CODE (insn) == CALL_INSN)
3198 REG_NOTES (insn)
3199 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3200 XEXP (note, 0),
3201 REG_NOTES (insn));
3202 insn = PREV_INSN (insn);
3203 }
3204 break;
3205
3206 case REG_NON_LOCAL_GOTO:
3207 insn = insn_last;
3208 while (insn != NULL_RTX)
3209 {
3210 if (GET_CODE (insn) == JUMP_INSN)
3211 REG_NOTES (insn)
3212 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3213 XEXP (note, 0),
3214 REG_NOTES (insn));
3215 insn = PREV_INSN (insn);
3216 }
3217 break;
3218
3219 default:
3220 break;
3221 }
3222 }
3223
3224 /* If there are LABELS inside the split insns increment the
3225 usage count so we don't delete the label. */
3226 if (GET_CODE (trial) == INSN)
3227 {
3228 insn = last_insn;
3229 while (insn != NULL_RTX)
3230 {
3231 if (GET_CODE (insn) == INSN)
3232 mark_label_nuses (PATTERN (insn));
3233
3234 insn = PREV_INSN (insn);
3235 }
3236 }
3237
3238 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
3239
3240 delete_insn (trial);
3241 if (has_barrier)
3242 emit_barrier_after (tem);
3243
3244 /* Recursively call try_split for each new insn created; by the
3245 time control returns here that insn will be fully split, so
3246 set LAST and continue from the insn after the one returned.
3247 We can't use next_active_insn here since AFTER may be a note.
3248 Ignore deleted insns, which can be occur if not optimizing. */
3249 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3250 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3251 tem = try_split (PATTERN (tem), tem, 1);
3252 }
3253 /* Avoid infinite loop if the result matches the original pattern. */
3254 else if (rtx_equal_p (PATTERN (seq), pat))
3255 return trial;
3256 else
3257 {
3258 PATTERN (trial) = PATTERN (seq);
3259 INSN_CODE (trial) = -1;
3260 try_split (PATTERN (trial), trial, last);
3261 }
3262
3263 /* Return either the first or the last insn, depending on which was
3264 requested. */
3265 return last
3266 ? (after ? PREV_INSN (after) : last_insn)
3267 : NEXT_INSN (before);
3268 }
3269
3270 return trial;
3271 }
3272 \f
3273 /* Make and return an INSN rtx, initializing all its slots.
3274 Store PATTERN in the pattern slots. */
3275
3276 rtx
3277 make_insn_raw (pattern)
3278 rtx pattern;
3279 {
3280 rtx insn;
3281
3282 insn = rtx_alloc (INSN);
3283
3284 INSN_UID (insn) = cur_insn_uid++;
3285 PATTERN (insn) = pattern;
3286 INSN_CODE (insn) = -1;
3287 LOG_LINKS (insn) = NULL;
3288 REG_NOTES (insn) = NULL;
3289 INSN_SCOPE (insn) = NULL;
3290 BLOCK_FOR_INSN (insn) = NULL;
3291
3292 #ifdef ENABLE_RTL_CHECKING
3293 if (insn
3294 && INSN_P (insn)
3295 && (returnjump_p (insn)
3296 || (GET_CODE (insn) == SET
3297 && SET_DEST (insn) == pc_rtx)))
3298 {
3299 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3300 debug_rtx (insn);
3301 }
3302 #endif
3303
3304 return insn;
3305 }
3306
3307 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3308
3309 static rtx
3310 make_jump_insn_raw (pattern)
3311 rtx pattern;
3312 {
3313 rtx insn;
3314
3315 insn = rtx_alloc (JUMP_INSN);
3316 INSN_UID (insn) = cur_insn_uid++;
3317
3318 PATTERN (insn) = pattern;
3319 INSN_CODE (insn) = -1;
3320 LOG_LINKS (insn) = NULL;
3321 REG_NOTES (insn) = NULL;
3322 JUMP_LABEL (insn) = NULL;
3323 INSN_SCOPE (insn) = NULL;
3324 BLOCK_FOR_INSN (insn) = NULL;
3325
3326 return insn;
3327 }
3328
3329 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3330
3331 static rtx
3332 make_call_insn_raw (pattern)
3333 rtx pattern;
3334 {
3335 rtx insn;
3336
3337 insn = rtx_alloc (CALL_INSN);
3338 INSN_UID (insn) = cur_insn_uid++;
3339
3340 PATTERN (insn) = pattern;
3341 INSN_CODE (insn) = -1;
3342 LOG_LINKS (insn) = NULL;
3343 REG_NOTES (insn) = NULL;
3344 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3345 INSN_SCOPE (insn) = NULL;
3346 BLOCK_FOR_INSN (insn) = NULL;
3347
3348 return insn;
3349 }
3350 \f
3351 /* Add INSN to the end of the doubly-linked list.
3352 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3353
3354 void
3355 add_insn (insn)
3356 rtx insn;
3357 {
3358 PREV_INSN (insn) = last_insn;
3359 NEXT_INSN (insn) = 0;
3360
3361 if (NULL != last_insn)
3362 NEXT_INSN (last_insn) = insn;
3363
3364 if (NULL == first_insn)
3365 first_insn = insn;
3366
3367 last_insn = insn;
3368 }
3369
3370 /* Add INSN into the doubly-linked list after insn AFTER. This and
3371 the next should be the only functions called to insert an insn once
3372 delay slots have been filled since only they know how to update a
3373 SEQUENCE. */
3374
3375 void
3376 add_insn_after (insn, after)
3377 rtx insn, after;
3378 {
3379 rtx next = NEXT_INSN (after);
3380 basic_block bb;
3381
3382 if (optimize && INSN_DELETED_P (after))
3383 abort ();
3384
3385 NEXT_INSN (insn) = next;
3386 PREV_INSN (insn) = after;
3387
3388 if (next)
3389 {
3390 PREV_INSN (next) = insn;
3391 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3392 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3393 }
3394 else if (last_insn == after)
3395 last_insn = insn;
3396 else
3397 {
3398 struct sequence_stack *stack = seq_stack;
3399 /* Scan all pending sequences too. */
3400 for (; stack; stack = stack->next)
3401 if (after == stack->last)
3402 {
3403 stack->last = insn;
3404 break;
3405 }
3406
3407 if (stack == 0)
3408 abort ();
3409 }
3410
3411 if (GET_CODE (after) != BARRIER
3412 && GET_CODE (insn) != BARRIER
3413 && (bb = BLOCK_FOR_INSN (after)))
3414 {
3415 set_block_for_insn (insn, bb);
3416 if (INSN_P (insn))
3417 bb->flags |= BB_DIRTY;
3418 /* Should not happen as first in the BB is always
3419 either NOTE or LABEL. */
3420 if (bb->end == after
3421 /* Avoid clobbering of structure when creating new BB. */
3422 && GET_CODE (insn) != BARRIER
3423 && (GET_CODE (insn) != NOTE
3424 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3425 bb->end = insn;
3426 }
3427
3428 NEXT_INSN (after) = insn;
3429 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3430 {
3431 rtx sequence = PATTERN (after);
3432 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3433 }
3434 }
3435
3436 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3437 the previous should be the only functions called to insert an insn once
3438 delay slots have been filled since only they know how to update a
3439 SEQUENCE. */
3440
3441 void
3442 add_insn_before (insn, before)
3443 rtx insn, before;
3444 {
3445 rtx prev = PREV_INSN (before);
3446 basic_block bb;
3447
3448 if (optimize && INSN_DELETED_P (before))
3449 abort ();
3450
3451 PREV_INSN (insn) = prev;
3452 NEXT_INSN (insn) = before;
3453
3454 if (prev)
3455 {
3456 NEXT_INSN (prev) = insn;
3457 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3458 {
3459 rtx sequence = PATTERN (prev);
3460 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3461 }
3462 }
3463 else if (first_insn == before)
3464 first_insn = insn;
3465 else
3466 {
3467 struct sequence_stack *stack = seq_stack;
3468 /* Scan all pending sequences too. */
3469 for (; stack; stack = stack->next)
3470 if (before == stack->first)
3471 {
3472 stack->first = insn;
3473 break;
3474 }
3475
3476 if (stack == 0)
3477 abort ();
3478 }
3479
3480 if (GET_CODE (before) != BARRIER
3481 && GET_CODE (insn) != BARRIER
3482 && (bb = BLOCK_FOR_INSN (before)))
3483 {
3484 set_block_for_insn (insn, bb);
3485 if (INSN_P (insn))
3486 bb->flags |= BB_DIRTY;
3487 /* Should not happen as first in the BB is always
3488 either NOTE or LABEl. */
3489 if (bb->head == insn
3490 /* Avoid clobbering of structure when creating new BB. */
3491 && GET_CODE (insn) != BARRIER
3492 && (GET_CODE (insn) != NOTE
3493 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3494 abort ();
3495 }
3496
3497 PREV_INSN (before) = insn;
3498 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3499 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3500 }
3501
3502 /* Remove an insn from its doubly-linked list. This function knows how
3503 to handle sequences. */
3504 void
3505 remove_insn (insn)
3506 rtx insn;
3507 {
3508 rtx next = NEXT_INSN (insn);
3509 rtx prev = PREV_INSN (insn);
3510 basic_block bb;
3511
3512 if (prev)
3513 {
3514 NEXT_INSN (prev) = next;
3515 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3516 {
3517 rtx sequence = PATTERN (prev);
3518 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3519 }
3520 }
3521 else if (first_insn == insn)
3522 first_insn = next;
3523 else
3524 {
3525 struct sequence_stack *stack = seq_stack;
3526 /* Scan all pending sequences too. */
3527 for (; stack; stack = stack->next)
3528 if (insn == stack->first)
3529 {
3530 stack->first = next;
3531 break;
3532 }
3533
3534 if (stack == 0)
3535 abort ();
3536 }
3537
3538 if (next)
3539 {
3540 PREV_INSN (next) = prev;
3541 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3542 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3543 }
3544 else if (last_insn == insn)
3545 last_insn = prev;
3546 else
3547 {
3548 struct sequence_stack *stack = seq_stack;
3549 /* Scan all pending sequences too. */
3550 for (; stack; stack = stack->next)
3551 if (insn == stack->last)
3552 {
3553 stack->last = prev;
3554 break;
3555 }
3556
3557 if (stack == 0)
3558 abort ();
3559 }
3560 if (GET_CODE (insn) != BARRIER
3561 && (bb = BLOCK_FOR_INSN (insn)))
3562 {
3563 if (INSN_P (insn))
3564 bb->flags |= BB_DIRTY;
3565 if (bb->head == insn)
3566 {
3567 /* Never ever delete the basic block note without deleting whole
3568 basic block. */
3569 if (GET_CODE (insn) == NOTE)
3570 abort ();
3571 bb->head = next;
3572 }
3573 if (bb->end == insn)
3574 bb->end = prev;
3575 }
3576 }
3577
3578 /* Delete all insns made since FROM.
3579 FROM becomes the new last instruction. */
3580
3581 void
3582 delete_insns_since (from)
3583 rtx from;
3584 {
3585 if (from == 0)
3586 first_insn = 0;
3587 else
3588 NEXT_INSN (from) = 0;
3589 last_insn = from;
3590 }
3591
3592 /* This function is deprecated, please use sequences instead.
3593
3594 Move a consecutive bunch of insns to a different place in the chain.
3595 The insns to be moved are those between FROM and TO.
3596 They are moved to a new position after the insn AFTER.
3597 AFTER must not be FROM or TO or any insn in between.
3598
3599 This function does not know about SEQUENCEs and hence should not be
3600 called after delay-slot filling has been done. */
3601
3602 void
3603 reorder_insns_nobb (from, to, after)
3604 rtx from, to, after;
3605 {
3606 /* Splice this bunch out of where it is now. */
3607 if (PREV_INSN (from))
3608 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3609 if (NEXT_INSN (to))
3610 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3611 if (last_insn == to)
3612 last_insn = PREV_INSN (from);
3613 if (first_insn == from)
3614 first_insn = NEXT_INSN (to);
3615
3616 /* Make the new neighbors point to it and it to them. */
3617 if (NEXT_INSN (after))
3618 PREV_INSN (NEXT_INSN (after)) = to;
3619
3620 NEXT_INSN (to) = NEXT_INSN (after);
3621 PREV_INSN (from) = after;
3622 NEXT_INSN (after) = from;
3623 if (after == last_insn)
3624 last_insn = to;
3625 }
3626
3627 /* Same as function above, but take care to update BB boundaries. */
3628 void
3629 reorder_insns (from, to, after)
3630 rtx from, to, after;
3631 {
3632 rtx prev = PREV_INSN (from);
3633 basic_block bb, bb2;
3634
3635 reorder_insns_nobb (from, to, after);
3636
3637 if (GET_CODE (after) != BARRIER
3638 && (bb = BLOCK_FOR_INSN (after)))
3639 {
3640 rtx x;
3641 bb->flags |= BB_DIRTY;
3642
3643 if (GET_CODE (from) != BARRIER
3644 && (bb2 = BLOCK_FOR_INSN (from)))
3645 {
3646 if (bb2->end == to)
3647 bb2->end = prev;
3648 bb2->flags |= BB_DIRTY;
3649 }
3650
3651 if (bb->end == after)
3652 bb->end = to;
3653
3654 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3655 set_block_for_insn (x, bb);
3656 }
3657 }
3658
3659 /* Return the line note insn preceding INSN. */
3660
3661 static rtx
3662 find_line_note (insn)
3663 rtx insn;
3664 {
3665 if (no_line_numbers)
3666 return 0;
3667
3668 for (; insn; insn = PREV_INSN (insn))
3669 if (GET_CODE (insn) == NOTE
3670 && NOTE_LINE_NUMBER (insn) >= 0)
3671 break;
3672
3673 return insn;
3674 }
3675
3676 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3677 of the moved insns when debugging. This may insert a note between AFTER
3678 and FROM, and another one after TO. */
3679
3680 void
3681 reorder_insns_with_line_notes (from, to, after)
3682 rtx from, to, after;
3683 {
3684 rtx from_line = find_line_note (from);
3685 rtx after_line = find_line_note (after);
3686
3687 reorder_insns (from, to, after);
3688
3689 if (from_line == after_line)
3690 return;
3691
3692 if (from_line)
3693 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3694 NOTE_LINE_NUMBER (from_line),
3695 after);
3696 if (after_line)
3697 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3698 NOTE_LINE_NUMBER (after_line),
3699 to);
3700 }
3701
3702 /* Remove unnecessary notes from the instruction stream. */
3703
3704 void
3705 remove_unnecessary_notes ()
3706 {
3707 rtx block_stack = NULL_RTX;
3708 rtx eh_stack = NULL_RTX;
3709 rtx insn;
3710 rtx next;
3711 rtx tmp;
3712
3713 /* We must not remove the first instruction in the function because
3714 the compiler depends on the first instruction being a note. */
3715 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3716 {
3717 /* Remember what's next. */
3718 next = NEXT_INSN (insn);
3719
3720 /* We're only interested in notes. */
3721 if (GET_CODE (insn) != NOTE)
3722 continue;
3723
3724 switch (NOTE_LINE_NUMBER (insn))
3725 {
3726 case NOTE_INSN_DELETED:
3727 case NOTE_INSN_LOOP_END_TOP_COND:
3728 remove_insn (insn);
3729 break;
3730
3731 case NOTE_INSN_EH_REGION_BEG:
3732 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3733 break;
3734
3735 case NOTE_INSN_EH_REGION_END:
3736 /* Too many end notes. */
3737 if (eh_stack == NULL_RTX)
3738 abort ();
3739 /* Mismatched nesting. */
3740 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3741 abort ();
3742 tmp = eh_stack;
3743 eh_stack = XEXP (eh_stack, 1);
3744 free_INSN_LIST_node (tmp);
3745 break;
3746
3747 case NOTE_INSN_BLOCK_BEG:
3748 /* By now, all notes indicating lexical blocks should have
3749 NOTE_BLOCK filled in. */
3750 if (NOTE_BLOCK (insn) == NULL_TREE)
3751 abort ();
3752 block_stack = alloc_INSN_LIST (insn, block_stack);
3753 break;
3754
3755 case NOTE_INSN_BLOCK_END:
3756 /* Too many end notes. */
3757 if (block_stack == NULL_RTX)
3758 abort ();
3759 /* Mismatched nesting. */
3760 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3761 abort ();
3762 tmp = block_stack;
3763 block_stack = XEXP (block_stack, 1);
3764 free_INSN_LIST_node (tmp);
3765
3766 /* Scan back to see if there are any non-note instructions
3767 between INSN and the beginning of this block. If not,
3768 then there is no PC range in the generated code that will
3769 actually be in this block, so there's no point in
3770 remembering the existence of the block. */
3771 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3772 {
3773 /* This block contains a real instruction. Note that we
3774 don't include labels; if the only thing in the block
3775 is a label, then there are still no PC values that
3776 lie within the block. */
3777 if (INSN_P (tmp))
3778 break;
3779
3780 /* We're only interested in NOTEs. */
3781 if (GET_CODE (tmp) != NOTE)
3782 continue;
3783
3784 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3785 {
3786 /* We just verified that this BLOCK matches us with
3787 the block_stack check above. Never delete the
3788 BLOCK for the outermost scope of the function; we
3789 can refer to names from that scope even if the
3790 block notes are messed up. */
3791 if (! is_body_block (NOTE_BLOCK (insn))
3792 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3793 {
3794 remove_insn (tmp);
3795 remove_insn (insn);
3796 }
3797 break;
3798 }
3799 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3800 /* There's a nested block. We need to leave the
3801 current block in place since otherwise the debugger
3802 wouldn't be able to show symbols from our block in
3803 the nested block. */
3804 break;
3805 }
3806 }
3807 }
3808
3809 /* Too many begin notes. */
3810 if (block_stack || eh_stack)
3811 abort ();
3812 }
3813
3814 \f
3815 /* Emit insn(s) of given code and pattern
3816 at a specified place within the doubly-linked list.
3817
3818 All of the emit_foo global entry points accept an object
3819 X which is either an insn list or a PATTERN of a single
3820 instruction.
3821
3822 There are thus a few canonical ways to generate code and
3823 emit it at a specific place in the instruction stream. For
3824 example, consider the instruction named SPOT and the fact that
3825 we would like to emit some instructions before SPOT. We might
3826 do it like this:
3827
3828 start_sequence ();
3829 ... emit the new instructions ...
3830 insns_head = get_insns ();
3831 end_sequence ();
3832
3833 emit_insn_before (insns_head, SPOT);
3834
3835 It used to be common to generate SEQUENCE rtl instead, but that
3836 is a relic of the past which no longer occurs. The reason is that
3837 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3838 generated would almost certainly die right after it was created. */
3839
3840 /* Make X be output before the instruction BEFORE. */
3841
3842 rtx
3843 emit_insn_before (x, before)
3844 rtx x, before;
3845 {
3846 rtx last = before;
3847 rtx insn;
3848
3849 #ifdef ENABLE_RTL_CHECKING
3850 if (before == NULL_RTX)
3851 abort ();
3852 #endif
3853
3854 if (x == NULL_RTX)
3855 return last;
3856
3857 switch (GET_CODE (x))
3858 {
3859 case INSN:
3860 case JUMP_INSN:
3861 case CALL_INSN:
3862 case CODE_LABEL:
3863 case BARRIER:
3864 case NOTE:
3865 insn = x;
3866 while (insn)
3867 {
3868 rtx next = NEXT_INSN (insn);
3869 add_insn_before (insn, before);
3870 last = insn;
3871 insn = next;
3872 }
3873 break;
3874
3875 #ifdef ENABLE_RTL_CHECKING
3876 case SEQUENCE:
3877 abort ();
3878 break;
3879 #endif
3880
3881 default:
3882 last = make_insn_raw (x);
3883 add_insn_before (last, before);
3884 break;
3885 }
3886
3887 return last;
3888 }
3889
3890 /* Make an instruction with body X and code JUMP_INSN
3891 and output it before the instruction BEFORE. */
3892
3893 rtx
3894 emit_jump_insn_before (x, before)
3895 rtx x, before;
3896 {
3897 rtx insn, last;
3898
3899 #ifdef ENABLE_RTL_CHECKING
3900 if (before == NULL_RTX)
3901 abort ();
3902 #endif
3903
3904 switch (GET_CODE (x))
3905 {
3906 case INSN:
3907 case JUMP_INSN:
3908 case CALL_INSN:
3909 case CODE_LABEL:
3910 case BARRIER:
3911 case NOTE:
3912 insn = x;
3913 while (insn)
3914 {
3915 rtx next = NEXT_INSN (insn);
3916 add_insn_before (insn, before);
3917 last = insn;
3918 insn = next;
3919 }
3920 break;
3921
3922 #ifdef ENABLE_RTL_CHECKING
3923 case SEQUENCE:
3924 abort ();
3925 break;
3926 #endif
3927
3928 default:
3929 last = make_jump_insn_raw (x);
3930 add_insn_before (last, before);
3931 break;
3932 }
3933
3934 return last;
3935 }
3936
3937 /* Make an instruction with body X and code CALL_INSN
3938 and output it before the instruction BEFORE. */
3939
3940 rtx
3941 emit_call_insn_before (x, before)
3942 rtx x, before;
3943 {
3944 rtx last, insn;
3945
3946 #ifdef ENABLE_RTL_CHECKING
3947 if (before == NULL_RTX)
3948 abort ();
3949 #endif
3950
3951 switch (GET_CODE (x))
3952 {
3953 case INSN:
3954 case JUMP_INSN:
3955 case CALL_INSN:
3956 case CODE_LABEL:
3957 case BARRIER:
3958 case NOTE:
3959 insn = x;
3960 while (insn)
3961 {
3962 rtx next = NEXT_INSN (insn);
3963 add_insn_before (insn, before);
3964 last = insn;
3965 insn = next;
3966 }
3967 break;
3968
3969 #ifdef ENABLE_RTL_CHECKING
3970 case SEQUENCE:
3971 abort ();
3972 break;
3973 #endif
3974
3975 default:
3976 last = make_call_insn_raw (x);
3977 add_insn_before (last, before);
3978 break;
3979 }
3980
3981 return last;
3982 }
3983
3984 /* Make an insn of code BARRIER
3985 and output it before the insn BEFORE. */
3986
3987 rtx
3988 emit_barrier_before (before)
3989 rtx before;
3990 {
3991 rtx insn = rtx_alloc (BARRIER);
3992
3993 INSN_UID (insn) = cur_insn_uid++;
3994
3995 add_insn_before (insn, before);
3996 return insn;
3997 }
3998
3999 /* Emit the label LABEL before the insn BEFORE. */
4000
4001 rtx
4002 emit_label_before (label, before)
4003 rtx label, before;
4004 {
4005 /* This can be called twice for the same label as a result of the
4006 confusion that follows a syntax error! So make it harmless. */
4007 if (INSN_UID (label) == 0)
4008 {
4009 INSN_UID (label) = cur_insn_uid++;
4010 add_insn_before (label, before);
4011 }
4012
4013 return label;
4014 }
4015
4016 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4017
4018 rtx
4019 emit_note_before (subtype, before)
4020 int subtype;
4021 rtx before;
4022 {
4023 rtx note = rtx_alloc (NOTE);
4024 INSN_UID (note) = cur_insn_uid++;
4025 NOTE_SOURCE_FILE (note) = 0;
4026 NOTE_LINE_NUMBER (note) = subtype;
4027 BLOCK_FOR_INSN (note) = NULL;
4028
4029 add_insn_before (note, before);
4030 return note;
4031 }
4032 \f
4033 /* Helper for emit_insn_after, handles lists of instructions
4034 efficiently. */
4035
4036 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4037
4038 static rtx
4039 emit_insn_after_1 (first, after)
4040 rtx first, after;
4041 {
4042 rtx last;
4043 rtx after_after;
4044 basic_block bb;
4045
4046 if (GET_CODE (after) != BARRIER
4047 && (bb = BLOCK_FOR_INSN (after)))
4048 {
4049 bb->flags |= BB_DIRTY;
4050 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4051 if (GET_CODE (last) != BARRIER)
4052 set_block_for_insn (last, bb);
4053 if (GET_CODE (last) != BARRIER)
4054 set_block_for_insn (last, bb);
4055 if (bb->end == after)
4056 bb->end = last;
4057 }
4058 else
4059 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4060 continue;
4061
4062 after_after = NEXT_INSN (after);
4063
4064 NEXT_INSN (after) = first;
4065 PREV_INSN (first) = after;
4066 NEXT_INSN (last) = after_after;
4067 if (after_after)
4068 PREV_INSN (after_after) = last;
4069
4070 if (after == last_insn)
4071 last_insn = last;
4072 return last;
4073 }
4074
4075 /* Make X be output after the insn AFTER. */
4076
4077 rtx
4078 emit_insn_after (x, after)
4079 rtx x, after;
4080 {
4081 rtx last = after;
4082
4083 #ifdef ENABLE_RTL_CHECKING
4084 if (after == NULL_RTX)
4085 abort ();
4086 #endif
4087
4088 if (x == NULL_RTX)
4089 return last;
4090
4091 switch (GET_CODE (x))
4092 {
4093 case INSN:
4094 case JUMP_INSN:
4095 case CALL_INSN:
4096 case CODE_LABEL:
4097 case BARRIER:
4098 case NOTE:
4099 last = emit_insn_after_1 (x, after);
4100 break;
4101
4102 #ifdef ENABLE_RTL_CHECKING
4103 case SEQUENCE:
4104 abort ();
4105 break;
4106 #endif
4107
4108 default:
4109 last = make_insn_raw (x);
4110 add_insn_after (last, after);
4111 break;
4112 }
4113
4114 return last;
4115 }
4116
4117 /* Similar to emit_insn_after, except that line notes are to be inserted so
4118 as to act as if this insn were at FROM. */
4119
4120 void
4121 emit_insn_after_with_line_notes (x, after, from)
4122 rtx x, after, from;
4123 {
4124 rtx from_line = find_line_note (from);
4125 rtx after_line = find_line_note (after);
4126 rtx insn = emit_insn_after (x, after);
4127
4128 if (from_line)
4129 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4130 NOTE_LINE_NUMBER (from_line),
4131 after);
4132
4133 if (after_line)
4134 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4135 NOTE_LINE_NUMBER (after_line),
4136 insn);
4137 }
4138
4139 /* Make an insn of code JUMP_INSN with body X
4140 and output it after the insn AFTER. */
4141
4142 rtx
4143 emit_jump_insn_after (x, after)
4144 rtx x, after;
4145 {
4146 rtx last;
4147
4148 #ifdef ENABLE_RTL_CHECKING
4149 if (after == NULL_RTX)
4150 abort ();
4151 #endif
4152
4153 switch (GET_CODE (x))
4154 {
4155 case INSN:
4156 case JUMP_INSN:
4157 case CALL_INSN:
4158 case CODE_LABEL:
4159 case BARRIER:
4160 case NOTE:
4161 last = emit_insn_after_1 (x, after);
4162 break;
4163
4164 #ifdef ENABLE_RTL_CHECKING
4165 case SEQUENCE:
4166 abort ();
4167 break;
4168 #endif
4169
4170 default:
4171 last = make_jump_insn_raw (x);
4172 add_insn_after (last, after);
4173 break;
4174 }
4175
4176 return last;
4177 }
4178
4179 /* Make an instruction with body X and code CALL_INSN
4180 and output it after the instruction AFTER. */
4181
4182 rtx
4183 emit_call_insn_after (x, after)
4184 rtx x, after;
4185 {
4186 rtx last;
4187
4188 #ifdef ENABLE_RTL_CHECKING
4189 if (after == NULL_RTX)
4190 abort ();
4191 #endif
4192
4193 switch (GET_CODE (x))
4194 {
4195 case INSN:
4196 case JUMP_INSN:
4197 case CALL_INSN:
4198 case CODE_LABEL:
4199 case BARRIER:
4200 case NOTE:
4201 last = emit_insn_after_1 (x, after);
4202 break;
4203
4204 #ifdef ENABLE_RTL_CHECKING
4205 case SEQUENCE:
4206 abort ();
4207 break;
4208 #endif
4209
4210 default:
4211 last = make_call_insn_raw (x);
4212 add_insn_after (last, after);
4213 break;
4214 }
4215
4216 return last;
4217 }
4218
4219 /* Make an insn of code BARRIER
4220 and output it after the insn AFTER. */
4221
4222 rtx
4223 emit_barrier_after (after)
4224 rtx after;
4225 {
4226 rtx insn = rtx_alloc (BARRIER);
4227
4228 INSN_UID (insn) = cur_insn_uid++;
4229
4230 add_insn_after (insn, after);
4231 return insn;
4232 }
4233
4234 /* Emit the label LABEL after the insn AFTER. */
4235
4236 rtx
4237 emit_label_after (label, after)
4238 rtx label, after;
4239 {
4240 /* This can be called twice for the same label
4241 as a result of the confusion that follows a syntax error!
4242 So make it harmless. */
4243 if (INSN_UID (label) == 0)
4244 {
4245 INSN_UID (label) = cur_insn_uid++;
4246 add_insn_after (label, after);
4247 }
4248
4249 return label;
4250 }
4251
4252 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4253
4254 rtx
4255 emit_note_after (subtype, after)
4256 int subtype;
4257 rtx after;
4258 {
4259 rtx note = rtx_alloc (NOTE);
4260 INSN_UID (note) = cur_insn_uid++;
4261 NOTE_SOURCE_FILE (note) = 0;
4262 NOTE_LINE_NUMBER (note) = subtype;
4263 BLOCK_FOR_INSN (note) = NULL;
4264 add_insn_after (note, after);
4265 return note;
4266 }
4267
4268 /* Emit a line note for FILE and LINE after the insn AFTER. */
4269
4270 rtx
4271 emit_line_note_after (file, line, after)
4272 const char *file;
4273 int line;
4274 rtx after;
4275 {
4276 rtx note;
4277
4278 if (no_line_numbers && line > 0)
4279 {
4280 cur_insn_uid++;
4281 return 0;
4282 }
4283
4284 note = rtx_alloc (NOTE);
4285 INSN_UID (note) = cur_insn_uid++;
4286 NOTE_SOURCE_FILE (note) = file;
4287 NOTE_LINE_NUMBER (note) = line;
4288 BLOCK_FOR_INSN (note) = NULL;
4289 add_insn_after (note, after);
4290 return note;
4291 }
4292 \f
4293 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4294 rtx
4295 emit_insn_after_scope (pattern, after, scope)
4296 rtx pattern, after;
4297 tree scope;
4298 {
4299 rtx last = emit_insn_after (pattern, after);
4300
4301 after = NEXT_INSN (after);
4302 while (1)
4303 {
4304 INSN_SCOPE (after) = scope;
4305 if (after == last)
4306 break;
4307 after = NEXT_INSN (after);
4308 }
4309 return last;
4310 }
4311
4312 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4313 rtx
4314 emit_jump_insn_after_scope (pattern, after, scope)
4315 rtx pattern, after;
4316 tree scope;
4317 {
4318 rtx last = emit_jump_insn_after (pattern, after);
4319
4320 after = NEXT_INSN (after);
4321 while (1)
4322 {
4323 INSN_SCOPE (after) = scope;
4324 if (after == last)
4325 break;
4326 after = NEXT_INSN (after);
4327 }
4328 return last;
4329 }
4330
4331 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4332 rtx
4333 emit_call_insn_after_scope (pattern, after, scope)
4334 rtx pattern, after;
4335 tree scope;
4336 {
4337 rtx last = emit_call_insn_after (pattern, after);
4338
4339 after = NEXT_INSN (after);
4340 while (1)
4341 {
4342 INSN_SCOPE (after) = scope;
4343 if (after == last)
4344 break;
4345 after = NEXT_INSN (after);
4346 }
4347 return last;
4348 }
4349
4350 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4351 rtx
4352 emit_insn_before_scope (pattern, before, scope)
4353 rtx pattern, before;
4354 tree scope;
4355 {
4356 rtx first = PREV_INSN (before);
4357 rtx last = emit_insn_before (pattern, before);
4358
4359 first = NEXT_INSN (first);
4360 while (1)
4361 {
4362 INSN_SCOPE (first) = scope;
4363 if (first == last)
4364 break;
4365 first = NEXT_INSN (first);
4366 }
4367 return last;
4368 }
4369 \f
4370 /* Take X and emit it at the end of the doubly-linked
4371 INSN list.
4372
4373 Returns the last insn emitted. */
4374
4375 rtx
4376 emit_insn (x)
4377 rtx x;
4378 {
4379 rtx last = last_insn;
4380 rtx insn;
4381
4382 if (x == NULL_RTX)
4383 return last;
4384
4385 switch (GET_CODE (x))
4386 {
4387 case INSN:
4388 case JUMP_INSN:
4389 case CALL_INSN:
4390 case CODE_LABEL:
4391 case BARRIER:
4392 case NOTE:
4393 insn = x;
4394 while (insn)
4395 {
4396 rtx next = NEXT_INSN (insn);
4397 add_insn (insn);
4398 last = insn;
4399 insn = next;
4400 }
4401 break;
4402
4403 #ifdef ENABLE_RTL_CHECKING
4404 case SEQUENCE:
4405 abort ();
4406 break;
4407 #endif
4408
4409 default:
4410 last = make_insn_raw (x);
4411 add_insn (last);
4412 break;
4413 }
4414
4415 return last;
4416 }
4417
4418 /* Make an insn of code JUMP_INSN with pattern X
4419 and add it to the end of the doubly-linked list. */
4420
4421 rtx
4422 emit_jump_insn (x)
4423 rtx x;
4424 {
4425 rtx last, insn;
4426
4427 switch (GET_CODE (x))
4428 {
4429 case INSN:
4430 case JUMP_INSN:
4431 case CALL_INSN:
4432 case CODE_LABEL:
4433 case BARRIER:
4434 case NOTE:
4435 insn = x;
4436 while (insn)
4437 {
4438 rtx next = NEXT_INSN (insn);
4439 add_insn (insn);
4440 last = insn;
4441 insn = next;
4442 }
4443 break;
4444
4445 #ifdef ENABLE_RTL_CHECKING
4446 case SEQUENCE:
4447 abort ();
4448 break;
4449 #endif
4450
4451 default:
4452 last = make_jump_insn_raw (x);
4453 add_insn (last);
4454 break;
4455 }
4456
4457 return last;
4458 }
4459
4460 /* Make an insn of code CALL_INSN with pattern X
4461 and add it to the end of the doubly-linked list. */
4462
4463 rtx
4464 emit_call_insn (x)
4465 rtx x;
4466 {
4467 rtx insn;
4468
4469 switch (GET_CODE (x))
4470 {
4471 case INSN:
4472 case JUMP_INSN:
4473 case CALL_INSN:
4474 case CODE_LABEL:
4475 case BARRIER:
4476 case NOTE:
4477 insn = emit_insn (x);
4478 break;
4479
4480 #ifdef ENABLE_RTL_CHECKING
4481 case SEQUENCE:
4482 abort ();
4483 break;
4484 #endif
4485
4486 default:
4487 insn = make_call_insn_raw (x);
4488 add_insn (insn);
4489 break;
4490 }
4491
4492 return insn;
4493 }
4494
4495 /* Add the label LABEL to the end of the doubly-linked list. */
4496
4497 rtx
4498 emit_label (label)
4499 rtx label;
4500 {
4501 /* This can be called twice for the same label
4502 as a result of the confusion that follows a syntax error!
4503 So make it harmless. */
4504 if (INSN_UID (label) == 0)
4505 {
4506 INSN_UID (label) = cur_insn_uid++;
4507 add_insn (label);
4508 }
4509 return label;
4510 }
4511
4512 /* Make an insn of code BARRIER
4513 and add it to the end of the doubly-linked list. */
4514
4515 rtx
4516 emit_barrier ()
4517 {
4518 rtx barrier = rtx_alloc (BARRIER);
4519 INSN_UID (barrier) = cur_insn_uid++;
4520 add_insn (barrier);
4521 return barrier;
4522 }
4523
4524 /* Make an insn of code NOTE
4525 with data-fields specified by FILE and LINE
4526 and add it to the end of the doubly-linked list,
4527 but only if line-numbers are desired for debugging info. */
4528
4529 rtx
4530 emit_line_note (file, line)
4531 const char *file;
4532 int line;
4533 {
4534 set_file_and_line_for_stmt (file, line);
4535
4536 #if 0
4537 if (no_line_numbers)
4538 return 0;
4539 #endif
4540
4541 return emit_note (file, line);
4542 }
4543
4544 /* Make an insn of code NOTE
4545 with data-fields specified by FILE and LINE
4546 and add it to the end of the doubly-linked list.
4547 If it is a line-number NOTE, omit it if it matches the previous one. */
4548
4549 rtx
4550 emit_note (file, line)
4551 const char *file;
4552 int line;
4553 {
4554 rtx note;
4555
4556 if (line > 0)
4557 {
4558 if (file && last_filename && !strcmp (file, last_filename)
4559 && line == last_linenum)
4560 return 0;
4561 last_filename = file;
4562 last_linenum = line;
4563 }
4564
4565 if (no_line_numbers && line > 0)
4566 {
4567 cur_insn_uid++;
4568 return 0;
4569 }
4570
4571 note = rtx_alloc (NOTE);
4572 INSN_UID (note) = cur_insn_uid++;
4573 NOTE_SOURCE_FILE (note) = file;
4574 NOTE_LINE_NUMBER (note) = line;
4575 BLOCK_FOR_INSN (note) = NULL;
4576 add_insn (note);
4577 return note;
4578 }
4579
4580 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4581
4582 rtx
4583 emit_line_note_force (file, line)
4584 const char *file;
4585 int line;
4586 {
4587 last_linenum = -1;
4588 return emit_line_note (file, line);
4589 }
4590
4591 /* Cause next statement to emit a line note even if the line number
4592 has not changed. This is used at the beginning of a function. */
4593
4594 void
4595 force_next_line_note ()
4596 {
4597 last_linenum = -1;
4598 }
4599
4600 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4601 note of this type already exists, remove it first. */
4602
4603 rtx
4604 set_unique_reg_note (insn, kind, datum)
4605 rtx insn;
4606 enum reg_note kind;
4607 rtx datum;
4608 {
4609 rtx note = find_reg_note (insn, kind, NULL_RTX);
4610
4611 switch (kind)
4612 {
4613 case REG_EQUAL:
4614 case REG_EQUIV:
4615 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4616 has multiple sets (some callers assume single_set
4617 means the insn only has one set, when in fact it
4618 means the insn only has one * useful * set). */
4619 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4620 {
4621 if (note)
4622 abort ();
4623 return NULL_RTX;
4624 }
4625
4626 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4627 It serves no useful purpose and breaks eliminate_regs. */
4628 if (GET_CODE (datum) == ASM_OPERANDS)
4629 return NULL_RTX;
4630 break;
4631
4632 default:
4633 break;
4634 }
4635
4636 if (note)
4637 {
4638 XEXP (note, 0) = datum;
4639 return note;
4640 }
4641
4642 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4643 return REG_NOTES (insn);
4644 }
4645 \f
4646 /* Return an indication of which type of insn should have X as a body.
4647 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4648
4649 enum rtx_code
4650 classify_insn (x)
4651 rtx x;
4652 {
4653 if (GET_CODE (x) == CODE_LABEL)
4654 return CODE_LABEL;
4655 if (GET_CODE (x) == CALL)
4656 return CALL_INSN;
4657 if (GET_CODE (x) == RETURN)
4658 return JUMP_INSN;
4659 if (GET_CODE (x) == SET)
4660 {
4661 if (SET_DEST (x) == pc_rtx)
4662 return JUMP_INSN;
4663 else if (GET_CODE (SET_SRC (x)) == CALL)
4664 return CALL_INSN;
4665 else
4666 return INSN;
4667 }
4668 if (GET_CODE (x) == PARALLEL)
4669 {
4670 int j;
4671 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4672 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4673 return CALL_INSN;
4674 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4675 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4676 return JUMP_INSN;
4677 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4678 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4679 return CALL_INSN;
4680 }
4681 return INSN;
4682 }
4683
4684 /* Emit the rtl pattern X as an appropriate kind of insn.
4685 If X is a label, it is simply added into the insn chain. */
4686
4687 rtx
4688 emit (x)
4689 rtx x;
4690 {
4691 enum rtx_code code = classify_insn (x);
4692
4693 if (code == CODE_LABEL)
4694 return emit_label (x);
4695 else if (code == INSN)
4696 return emit_insn (x);
4697 else if (code == JUMP_INSN)
4698 {
4699 rtx insn = emit_jump_insn (x);
4700 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4701 return emit_barrier ();
4702 return insn;
4703 }
4704 else if (code == CALL_INSN)
4705 return emit_call_insn (x);
4706 else
4707 abort ();
4708 }
4709 \f
4710 /* Space for free sequence stack entries. */
4711 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4712
4713 /* Begin emitting insns to a sequence which can be packaged in an
4714 RTL_EXPR. If this sequence will contain something that might cause
4715 the compiler to pop arguments to function calls (because those
4716 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4717 details), use do_pending_stack_adjust before calling this function.
4718 That will ensure that the deferred pops are not accidentally
4719 emitted in the middle of this sequence. */
4720
4721 void
4722 start_sequence ()
4723 {
4724 struct sequence_stack *tem;
4725
4726 if (free_sequence_stack != NULL)
4727 {
4728 tem = free_sequence_stack;
4729 free_sequence_stack = tem->next;
4730 }
4731 else
4732 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4733
4734 tem->next = seq_stack;
4735 tem->first = first_insn;
4736 tem->last = last_insn;
4737 tem->sequence_rtl_expr = seq_rtl_expr;
4738
4739 seq_stack = tem;
4740
4741 first_insn = 0;
4742 last_insn = 0;
4743 }
4744
4745 /* Similarly, but indicate that this sequence will be placed in T, an
4746 RTL_EXPR. See the documentation for start_sequence for more
4747 information about how to use this function. */
4748
4749 void
4750 start_sequence_for_rtl_expr (t)
4751 tree t;
4752 {
4753 start_sequence ();
4754
4755 seq_rtl_expr = t;
4756 }
4757
4758 /* Set up the insn chain starting with FIRST as the current sequence,
4759 saving the previously current one. See the documentation for
4760 start_sequence for more information about how to use this function. */
4761
4762 void
4763 push_to_sequence (first)
4764 rtx first;
4765 {
4766 rtx last;
4767
4768 start_sequence ();
4769
4770 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4771
4772 first_insn = first;
4773 last_insn = last;
4774 }
4775
4776 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4777
4778 void
4779 push_to_full_sequence (first, last)
4780 rtx first, last;
4781 {
4782 start_sequence ();
4783 first_insn = first;
4784 last_insn = last;
4785 /* We really should have the end of the insn chain here. */
4786 if (last && NEXT_INSN (last))
4787 abort ();
4788 }
4789
4790 /* Set up the outer-level insn chain
4791 as the current sequence, saving the previously current one. */
4792
4793 void
4794 push_topmost_sequence ()
4795 {
4796 struct sequence_stack *stack, *top = NULL;
4797
4798 start_sequence ();
4799
4800 for (stack = seq_stack; stack; stack = stack->next)
4801 top = stack;
4802
4803 first_insn = top->first;
4804 last_insn = top->last;
4805 seq_rtl_expr = top->sequence_rtl_expr;
4806 }
4807
4808 /* After emitting to the outer-level insn chain, update the outer-level
4809 insn chain, and restore the previous saved state. */
4810
4811 void
4812 pop_topmost_sequence ()
4813 {
4814 struct sequence_stack *stack, *top = NULL;
4815
4816 for (stack = seq_stack; stack; stack = stack->next)
4817 top = stack;
4818
4819 top->first = first_insn;
4820 top->last = last_insn;
4821 /* ??? Why don't we save seq_rtl_expr here? */
4822
4823 end_sequence ();
4824 }
4825
4826 /* After emitting to a sequence, restore previous saved state.
4827
4828 To get the contents of the sequence just made, you must call
4829 `get_insns' *before* calling here.
4830
4831 If the compiler might have deferred popping arguments while
4832 generating this sequence, and this sequence will not be immediately
4833 inserted into the instruction stream, use do_pending_stack_adjust
4834 before calling get_insns. That will ensure that the deferred
4835 pops are inserted into this sequence, and not into some random
4836 location in the instruction stream. See INHIBIT_DEFER_POP for more
4837 information about deferred popping of arguments. */
4838
4839 void
4840 end_sequence ()
4841 {
4842 struct sequence_stack *tem = seq_stack;
4843
4844 first_insn = tem->first;
4845 last_insn = tem->last;
4846 seq_rtl_expr = tem->sequence_rtl_expr;
4847 seq_stack = tem->next;
4848
4849 memset (tem, 0, sizeof (*tem));
4850 tem->next = free_sequence_stack;
4851 free_sequence_stack = tem;
4852 }
4853
4854 /* This works like end_sequence, but records the old sequence in FIRST
4855 and LAST. */
4856
4857 void
4858 end_full_sequence (first, last)
4859 rtx *first, *last;
4860 {
4861 *first = first_insn;
4862 *last = last_insn;
4863 end_sequence ();
4864 }
4865
4866 /* Return 1 if currently emitting into a sequence. */
4867
4868 int
4869 in_sequence_p ()
4870 {
4871 return seq_stack != 0;
4872 }
4873 \f
4874 /* Put the various virtual registers into REGNO_REG_RTX. */
4875
4876 void
4877 init_virtual_regs (es)
4878 struct emit_status *es;
4879 {
4880 rtx *ptr = es->x_regno_reg_rtx;
4881 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4882 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4883 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4884 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4885 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4886 }
4887
4888 \f
4889 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4890 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4891 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4892 static int copy_insn_n_scratches;
4893
4894 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4895 copied an ASM_OPERANDS.
4896 In that case, it is the original input-operand vector. */
4897 static rtvec orig_asm_operands_vector;
4898
4899 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4900 copied an ASM_OPERANDS.
4901 In that case, it is the copied input-operand vector. */
4902 static rtvec copy_asm_operands_vector;
4903
4904 /* Likewise for the constraints vector. */
4905 static rtvec orig_asm_constraints_vector;
4906 static rtvec copy_asm_constraints_vector;
4907
4908 /* Recursively create a new copy of an rtx for copy_insn.
4909 This function differs from copy_rtx in that it handles SCRATCHes and
4910 ASM_OPERANDs properly.
4911 Normally, this function is not used directly; use copy_insn as front end.
4912 However, you could first copy an insn pattern with copy_insn and then use
4913 this function afterwards to properly copy any REG_NOTEs containing
4914 SCRATCHes. */
4915
4916 rtx
4917 copy_insn_1 (orig)
4918 rtx orig;
4919 {
4920 rtx copy;
4921 int i, j;
4922 RTX_CODE code;
4923 const char *format_ptr;
4924
4925 code = GET_CODE (orig);
4926
4927 switch (code)
4928 {
4929 case REG:
4930 case QUEUED:
4931 case CONST_INT:
4932 case CONST_DOUBLE:
4933 case CONST_VECTOR:
4934 case SYMBOL_REF:
4935 case CODE_LABEL:
4936 case PC:
4937 case CC0:
4938 case ADDRESSOF:
4939 return orig;
4940
4941 case SCRATCH:
4942 for (i = 0; i < copy_insn_n_scratches; i++)
4943 if (copy_insn_scratch_in[i] == orig)
4944 return copy_insn_scratch_out[i];
4945 break;
4946
4947 case CONST:
4948 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4949 a LABEL_REF, it isn't sharable. */
4950 if (GET_CODE (XEXP (orig, 0)) == PLUS
4951 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4952 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4953 return orig;
4954 break;
4955
4956 /* A MEM with a constant address is not sharable. The problem is that
4957 the constant address may need to be reloaded. If the mem is shared,
4958 then reloading one copy of this mem will cause all copies to appear
4959 to have been reloaded. */
4960
4961 default:
4962 break;
4963 }
4964
4965 copy = rtx_alloc (code);
4966
4967 /* Copy the various flags, and other information. We assume that
4968 all fields need copying, and then clear the fields that should
4969 not be copied. That is the sensible default behavior, and forces
4970 us to explicitly document why we are *not* copying a flag. */
4971 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4972
4973 /* We do not copy the USED flag, which is used as a mark bit during
4974 walks over the RTL. */
4975 RTX_FLAG (copy, used) = 0;
4976
4977 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4978 if (GET_RTX_CLASS (code) == 'i')
4979 {
4980 RTX_FLAG (copy, jump) = 0;
4981 RTX_FLAG (copy, call) = 0;
4982 RTX_FLAG (copy, frame_related) = 0;
4983 }
4984
4985 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4986
4987 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4988 {
4989 copy->fld[i] = orig->fld[i];
4990 switch (*format_ptr++)
4991 {
4992 case 'e':
4993 if (XEXP (orig, i) != NULL)
4994 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4995 break;
4996
4997 case 'E':
4998 case 'V':
4999 if (XVEC (orig, i) == orig_asm_constraints_vector)
5000 XVEC (copy, i) = copy_asm_constraints_vector;
5001 else if (XVEC (orig, i) == orig_asm_operands_vector)
5002 XVEC (copy, i) = copy_asm_operands_vector;
5003 else if (XVEC (orig, i) != NULL)
5004 {
5005 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5006 for (j = 0; j < XVECLEN (copy, i); j++)
5007 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5008 }
5009 break;
5010
5011 case 't':
5012 case 'w':
5013 case 'i':
5014 case 's':
5015 case 'S':
5016 case 'u':
5017 case '0':
5018 /* These are left unchanged. */
5019 break;
5020
5021 default:
5022 abort ();
5023 }
5024 }
5025
5026 if (code == SCRATCH)
5027 {
5028 i = copy_insn_n_scratches++;
5029 if (i >= MAX_RECOG_OPERANDS)
5030 abort ();
5031 copy_insn_scratch_in[i] = orig;
5032 copy_insn_scratch_out[i] = copy;
5033 }
5034 else if (code == ASM_OPERANDS)
5035 {
5036 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5037 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5038 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5039 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5040 }
5041
5042 return copy;
5043 }
5044
5045 /* Create a new copy of an rtx.
5046 This function differs from copy_rtx in that it handles SCRATCHes and
5047 ASM_OPERANDs properly.
5048 INSN doesn't really have to be a full INSN; it could be just the
5049 pattern. */
5050 rtx
5051 copy_insn (insn)
5052 rtx insn;
5053 {
5054 copy_insn_n_scratches = 0;
5055 orig_asm_operands_vector = 0;
5056 orig_asm_constraints_vector = 0;
5057 copy_asm_operands_vector = 0;
5058 copy_asm_constraints_vector = 0;
5059 return copy_insn_1 (insn);
5060 }
5061
5062 /* Initialize data structures and variables in this file
5063 before generating rtl for each function. */
5064
5065 void
5066 init_emit ()
5067 {
5068 struct function *f = cfun;
5069 int i;
5070
5071 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5072 first_insn = NULL;
5073 last_insn = NULL;
5074 seq_rtl_expr = NULL;
5075 cur_insn_uid = 1;
5076 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5077 last_linenum = 0;
5078 last_filename = 0;
5079 first_label_num = label_num;
5080 last_label_num = 0;
5081 seq_stack = NULL;
5082
5083 /* Init the tables that describe all the pseudo regs. */
5084
5085 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5086
5087 f->emit->regno_pointer_align
5088 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5089 * sizeof (unsigned char));
5090
5091 regno_reg_rtx
5092 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5093 * sizeof (rtx));
5094
5095 f->emit->regno_decl
5096 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5097 * sizeof (tree));
5098
5099 /* Put copies of all the hard registers into regno_reg_rtx. */
5100 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5101 regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5102
5103 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5104 init_virtual_regs (f->emit);
5105
5106
5107 /* Indicate that the virtual registers and stack locations are
5108 all pointers. */
5109 REG_POINTER (stack_pointer_rtx) = 1;
5110 REG_POINTER (frame_pointer_rtx) = 1;
5111 REG_POINTER (hard_frame_pointer_rtx) = 1;
5112 REG_POINTER (arg_pointer_rtx) = 1;
5113
5114 REG_POINTER (virtual_incoming_args_rtx) = 1;
5115 REG_POINTER (virtual_stack_vars_rtx) = 1;
5116 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5117 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5118 REG_POINTER (virtual_cfa_rtx) = 1;
5119
5120 #ifdef STACK_BOUNDARY
5121 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5122 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5123 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5124 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5125
5126 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5127 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5128 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5129 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5130 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5131 #endif
5132
5133 #ifdef INIT_EXPANDERS
5134 INIT_EXPANDERS;
5135 #endif
5136 }
5137
5138 /* Generate the constant 0. */
5139
5140 static rtx
5141 gen_const_vector_0 (mode)
5142 enum machine_mode mode;
5143 {
5144 rtx tem;
5145 rtvec v;
5146 int units, i;
5147 enum machine_mode inner;
5148
5149 units = GET_MODE_NUNITS (mode);
5150 inner = GET_MODE_INNER (mode);
5151
5152 v = rtvec_alloc (units);
5153
5154 /* We need to call this function after we to set CONST0_RTX first. */
5155 if (!CONST0_RTX (inner))
5156 abort ();
5157
5158 for (i = 0; i < units; ++i)
5159 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5160
5161 tem = gen_rtx_CONST_VECTOR (mode, v);
5162 return tem;
5163 }
5164
5165 /* Create some permanent unique rtl objects shared between all functions.
5166 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5167
5168 void
5169 init_emit_once (line_numbers)
5170 int line_numbers;
5171 {
5172 int i;
5173 enum machine_mode mode;
5174 enum machine_mode double_mode;
5175
5176 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5177 tables. */
5178 const_int_htab = htab_create (37, const_int_htab_hash,
5179 const_int_htab_eq, NULL);
5180
5181 const_double_htab = htab_create (37, const_double_htab_hash,
5182 const_double_htab_eq, NULL);
5183
5184 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
5185 mem_attrs_htab_eq, NULL);
5186
5187 no_line_numbers = ! line_numbers;
5188
5189 /* Compute the word and byte modes. */
5190
5191 byte_mode = VOIDmode;
5192 word_mode = VOIDmode;
5193 double_mode = VOIDmode;
5194
5195 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5196 mode = GET_MODE_WIDER_MODE (mode))
5197 {
5198 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5199 && byte_mode == VOIDmode)
5200 byte_mode = mode;
5201
5202 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5203 && word_mode == VOIDmode)
5204 word_mode = mode;
5205 }
5206
5207 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5208 mode = GET_MODE_WIDER_MODE (mode))
5209 {
5210 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5211 && double_mode == VOIDmode)
5212 double_mode = mode;
5213 }
5214
5215 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5216
5217 /* Assign register numbers to the globally defined register rtx.
5218 This must be done at runtime because the register number field
5219 is in a union and some compilers can't initialize unions. */
5220
5221 pc_rtx = gen_rtx (PC, VOIDmode);
5222 cc0_rtx = gen_rtx (CC0, VOIDmode);
5223 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5224 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5225 if (hard_frame_pointer_rtx == 0)
5226 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5227 HARD_FRAME_POINTER_REGNUM);
5228 if (arg_pointer_rtx == 0)
5229 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5230 virtual_incoming_args_rtx =
5231 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5232 virtual_stack_vars_rtx =
5233 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5234 virtual_stack_dynamic_rtx =
5235 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5236 virtual_outgoing_args_rtx =
5237 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5238 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5239
5240 #ifdef INIT_EXPANDERS
5241 /* This is to initialize {init|mark|free}_machine_status before the first
5242 call to push_function_context_to. This is needed by the Chill front
5243 end which calls push_function_context_to before the first call to
5244 init_function_start. */
5245 INIT_EXPANDERS;
5246 #endif
5247
5248 /* Create the unique rtx's for certain rtx codes and operand values. */
5249
5250 /* Don't use gen_rtx here since gen_rtx in this case
5251 tries to use these variables. */
5252 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5253 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5254 gen_rtx_raw_CONST_INT (VOIDmode, i);
5255
5256 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5257 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5258 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5259 else
5260 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5261
5262 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5263 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5264 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5265 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5266
5267 for (i = 0; i <= 2; i++)
5268 {
5269 REAL_VALUE_TYPE *r =
5270 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5271
5272 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5273 mode = GET_MODE_WIDER_MODE (mode))
5274 const_tiny_rtx[i][(int) mode] =
5275 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5276
5277 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5278
5279 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5280 mode = GET_MODE_WIDER_MODE (mode))
5281 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5282
5283 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5284 mode != VOIDmode;
5285 mode = GET_MODE_WIDER_MODE (mode))
5286 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5287 }
5288
5289 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5290 mode != VOIDmode;
5291 mode = GET_MODE_WIDER_MODE (mode))
5292 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5293
5294 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5295 mode != VOIDmode;
5296 mode = GET_MODE_WIDER_MODE (mode))
5297 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5298
5299 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5300 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5301 const_tiny_rtx[0][i] = const0_rtx;
5302
5303 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5304 if (STORE_FLAG_VALUE == 1)
5305 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5306
5307 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5308 return_address_pointer_rtx
5309 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5310 #endif
5311
5312 #ifdef STRUCT_VALUE
5313 struct_value_rtx = STRUCT_VALUE;
5314 #else
5315 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5316 #endif
5317
5318 #ifdef STRUCT_VALUE_INCOMING
5319 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5320 #else
5321 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5322 struct_value_incoming_rtx
5323 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5324 #else
5325 struct_value_incoming_rtx = struct_value_rtx;
5326 #endif
5327 #endif
5328
5329 #ifdef STATIC_CHAIN_REGNUM
5330 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5331
5332 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5333 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5334 static_chain_incoming_rtx
5335 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5336 else
5337 #endif
5338 static_chain_incoming_rtx = static_chain_rtx;
5339 #endif
5340
5341 #ifdef STATIC_CHAIN
5342 static_chain_rtx = STATIC_CHAIN;
5343
5344 #ifdef STATIC_CHAIN_INCOMING
5345 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5346 #else
5347 static_chain_incoming_rtx = static_chain_rtx;
5348 #endif
5349 #endif
5350
5351 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5352 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5353 }
5354 \f
5355 /* Query and clear/ restore no_line_numbers. This is used by the
5356 switch / case handling in stmt.c to give proper line numbers in
5357 warnings about unreachable code. */
5358
5359 int
5360 force_line_numbers ()
5361 {
5362 int old = no_line_numbers;
5363
5364 no_line_numbers = 0;
5365 if (old)
5366 force_next_line_note ();
5367 return old;
5368 }
5369
5370 void
5371 restore_line_number_status (old_value)
5372 int old_value;
5373 {
5374 no_line_numbers = old_value;
5375 }
5376
5377 /* Produce exact duplicate of insn INSN after AFTER.
5378 Care updating of libcall regions if present. */
5379
5380 rtx
5381 emit_copy_of_insn_after (insn, after)
5382 rtx insn, after;
5383 {
5384 rtx new;
5385 rtx note1, note2, link;
5386
5387 switch (GET_CODE (insn))
5388 {
5389 case INSN:
5390 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5391 break;
5392
5393 case JUMP_INSN:
5394 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5395 break;
5396
5397 case CALL_INSN:
5398 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5399 if (CALL_INSN_FUNCTION_USAGE (insn))
5400 CALL_INSN_FUNCTION_USAGE (new)
5401 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5402 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5403 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5404 break;
5405
5406 default:
5407 abort ();
5408 }
5409
5410 /* Update LABEL_NUSES. */
5411 mark_jump_label (PATTERN (new), new, 0);
5412
5413 INSN_SCOPE (new) = INSN_SCOPE (insn);
5414
5415 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5416 make them. */
5417 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5418 if (REG_NOTE_KIND (link) != REG_LABEL)
5419 {
5420 if (GET_CODE (link) == EXPR_LIST)
5421 REG_NOTES (new)
5422 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5423 XEXP (link, 0),
5424 REG_NOTES (new)));
5425 else
5426 REG_NOTES (new)
5427 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5428 XEXP (link, 0),
5429 REG_NOTES (new)));
5430 }
5431
5432 /* Fix the libcall sequences. */
5433 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5434 {
5435 rtx p = new;
5436 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5437 p = PREV_INSN (p);
5438 XEXP (note1, 0) = p;
5439 XEXP (note2, 0) = new;
5440 }
5441 return new;
5442 }
5443
5444 #include "gt-emit-rtl.h"