convert.c (convert_to_real, [...]): Replace calls to build with calls to buildN.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconst3;
112 REAL_VALUE_TYPE dconst10;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116 REAL_VALUE_TYPE dconstthird;
117 REAL_VALUE_TYPE dconstpi;
118 REAL_VALUE_TYPE dconste;
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
176
177 static rtx make_jump_insn_raw (rtx);
178 static rtx make_call_insn_raw (rtx);
179 static rtx find_line_note (rtx);
180 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector_0 (enum machine_mode);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199 static void copy_rtx_if_shared_1 (rtx *orig);
200
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
204 \f
205 /* Returns a hash code for X (which is a really a CONST_INT). */
206
207 static hashval_t
208 const_int_htab_hash (const void *x)
209 {
210 return (hashval_t) INTVAL ((rtx) x);
211 }
212
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217 static int
218 const_int_htab_eq (const void *x, const void *y)
219 {
220 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
224 static hashval_t
225 const_double_htab_hash (const void *x)
226 {
227 rtx value = (rtx) x;
228 hashval_t h;
229
230 if (GET_MODE (value) == VOIDmode)
231 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
232 else
233 {
234 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h ^= GET_MODE (value);
237 }
238 return h;
239 }
240
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
243 static int
244 const_double_htab_eq (const void *x, const void *y)
245 {
246 rtx a = (rtx)x, b = (rtx)y;
247
248 if (GET_MODE (a) != GET_MODE (b))
249 return 0;
250 if (GET_MODE (a) == VOIDmode)
251 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
252 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
253 else
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
255 CONST_DOUBLE_REAL_VALUE (b));
256 }
257
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
259
260 static hashval_t
261 mem_attrs_htab_hash (const void *x)
262 {
263 mem_attrs *p = (mem_attrs *) x;
264
265 return (p->alias ^ (p->align * 1000)
266 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
267 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
268 ^ (size_t) p->expr);
269 }
270
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
273 mem_attrs *). */
274
275 static int
276 mem_attrs_htab_eq (const void *x, const void *y)
277 {
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
280
281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
282 && p->size == q->size && p->align == q->align);
283 }
284
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
287 MEM of mode MODE. */
288
289 static mem_attrs *
290 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
291 unsigned int align, enum machine_mode mode)
292 {
293 mem_attrs attrs;
294 void **slot;
295
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (STRICT_ALIGNMENT && mode != BLKmode
303 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
304 return 0;
305
306 attrs.alias = alias;
307 attrs.expr = expr;
308 attrs.offset = offset;
309 attrs.size = size;
310 attrs.align = align;
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
315 *slot = ggc_alloc (sizeof (mem_attrs));
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
319 return *slot;
320 }
321
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
323
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330 }
331
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
338 {
339 reg_attrs *p = (reg_attrs *) x;
340 reg_attrs *q = (reg_attrs *) y;
341
342 return (p->decl == q->decl && p->offset == q->offset);
343 }
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
350 {
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
364 *slot = ggc_alloc (sizeof (reg_attrs));
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
368 return *slot;
369 }
370
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
374
375 rtx
376 gen_raw_REG (enum machine_mode mode, int regno)
377 {
378 rtx x = gen_rtx_raw_REG (mode, regno);
379 ORIGINAL_REGNO (x) = regno;
380 return x;
381 }
382
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
386
387 rtx
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
389 {
390 void **slot;
391
392 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
393 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
394
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx && arg == STORE_FLAG_VALUE)
397 return const_true_rtx;
398 #endif
399
400 /* Look up the CONST_INT in the hash table. */
401 slot = htab_find_slot_with_hash (const_int_htab, &arg,
402 (hashval_t) arg, INSERT);
403 if (*slot == 0)
404 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
405
406 return (rtx) *slot;
407 }
408
409 rtx
410 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
411 {
412 return GEN_INT (trunc_int_for_mode (c, mode));
413 }
414
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
418
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
422 static rtx
423 lookup_const_double (rtx real)
424 {
425 void **slot = htab_find_slot (const_double_htab, real, INSERT);
426 if (*slot == 0)
427 *slot = real;
428
429 return (rtx) *slot;
430 }
431
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
434 rtx
435 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
436 {
437 rtx real = rtx_alloc (CONST_DOUBLE);
438 PUT_MODE (real, mode);
439
440 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
441
442 return lookup_const_double (real);
443 }
444
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
449
450 rtx
451 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
452 {
453 rtx value;
454 unsigned int i;
455
456 if (mode != VOIDmode)
457 {
458 int width;
459 if (GET_MODE_CLASS (mode) != MODE_INT
460 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
463 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
464 abort ();
465
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width = GET_MODE_BITSIZE (mode);
470 if (width < HOST_BITS_PER_WIDE_INT
471 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
472 != ((HOST_WIDE_INT) (-1) << (width - 1))))
473 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
474 else if (width == HOST_BITS_PER_WIDE_INT
475 && ! (i1 == ~0 && i0 < 0))
476 i1 = 0;
477 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
478 /* We cannot represent this value as a constant. */
479 abort ();
480
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
484
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
489
490 if (width < HOST_BITS_PER_WIDE_INT
491 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
492 i0 |= ((HOST_WIDE_INT) (-1) << width);
493
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
495 CONST_INT.
496
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
501 negative number.
502
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
508
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
511
512 if (width <= HOST_BITS_PER_WIDE_INT)
513 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
514 }
515
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
518 return GEN_INT (i0);
519
520 /* We use VOIDmode for integers. */
521 value = rtx_alloc (CONST_DOUBLE);
522 PUT_MODE (value, VOIDmode);
523
524 CONST_DOUBLE_LOW (value) = i0;
525 CONST_DOUBLE_HIGH (value) = i1;
526
527 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
528 XWINT (value, i) = 0;
529
530 return lookup_const_double (value);
531 }
532
533 rtx
534 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
535 {
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
540 assigned to them.
541
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
546
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
549
550 if (mode == Pmode && !reload_in_progress)
551 {
552 if (regno == FRAME_POINTER_REGNUM
553 && (!reload_completed || frame_pointer_needed))
554 return frame_pointer_rtx;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno == HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return hard_frame_pointer_rtx;
559 #endif
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno == ARG_POINTER_REGNUM)
562 return arg_pointer_rtx;
563 #endif
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
566 return return_address_pointer_rtx;
567 #endif
568 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
570 return pic_offset_table_rtx;
571 if (regno == STACK_POINTER_REGNUM)
572 return stack_pointer_rtx;
573 }
574
575 #if 0
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
578
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
583
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
586
587 if (cfun
588 && cfun->emit
589 && regno_reg_rtx
590 && regno < FIRST_PSEUDO_REGISTER
591 && reg_raw_mode[regno] == mode)
592 return regno_reg_rtx[regno];
593 #endif
594
595 return gen_raw_REG (mode, regno);
596 }
597
598 rtx
599 gen_rtx_MEM (enum machine_mode mode, rtx addr)
600 {
601 rtx rt = gen_rtx_raw_MEM (mode, addr);
602
603 /* This field is not cleared by the mere allocation of the rtx, so
604 we clear it here. */
605 MEM_ATTRS (rt) = 0;
606
607 return rt;
608 }
609
610 rtx
611 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
612 {
613 /* This is the most common failure type.
614 Catch it early so we can see who does it. */
615 if ((offset % GET_MODE_SIZE (mode)) != 0)
616 abort ();
617
618 /* This check isn't usable right now because combine will
619 throw arbitrary crap like a CALL into a SUBREG in
620 gen_lowpart_for_combine so we must just eat it. */
621 #if 0
622 /* Check for this too. */
623 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
624 abort ();
625 #endif
626 return gen_rtx_raw_SUBREG (mode, reg, offset);
627 }
628
629 /* Generate a SUBREG representing the least-significant part of REG if MODE
630 is smaller than mode of REG, otherwise paradoxical SUBREG. */
631
632 rtx
633 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
634 {
635 enum machine_mode inmode;
636
637 inmode = GET_MODE (reg);
638 if (inmode == VOIDmode)
639 inmode = mode;
640 return gen_rtx_SUBREG (mode, reg,
641 subreg_lowpart_offset (mode, inmode));
642 }
643 \f
644 /* gen_rtvec (n, [rt1, ..., rtn])
645 **
646 ** This routine creates an rtvec and stores within it the
647 ** pointers to rtx's which are its arguments.
648 */
649
650 /*VARARGS1*/
651 rtvec
652 gen_rtvec (int n, ...)
653 {
654 int i, save_n;
655 rtx *vector;
656 va_list p;
657
658 va_start (p, n);
659
660 if (n == 0)
661 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
662
663 vector = alloca (n * sizeof (rtx));
664
665 for (i = 0; i < n; i++)
666 vector[i] = va_arg (p, rtx);
667
668 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
669 save_n = n;
670 va_end (p);
671
672 return gen_rtvec_v (save_n, vector);
673 }
674
675 rtvec
676 gen_rtvec_v (int n, rtx *argp)
677 {
678 int i;
679 rtvec rt_val;
680
681 if (n == 0)
682 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
683
684 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
685
686 for (i = 0; i < n; i++)
687 rt_val->elem[i] = *argp++;
688
689 return rt_val;
690 }
691 \f
692 /* Generate a REG rtx for a new pseudo register of mode MODE.
693 This pseudo is assigned the next sequential register number. */
694
695 rtx
696 gen_reg_rtx (enum machine_mode mode)
697 {
698 struct function *f = cfun;
699 rtx val;
700
701 /* Don't let anything called after initial flow analysis create new
702 registers. */
703 if (no_new_pseudos)
704 abort ();
705
706 if (generating_concat_p
707 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
708 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
709 {
710 /* For complex modes, don't make a single pseudo.
711 Instead, make a CONCAT of two pseudos.
712 This allows noncontiguous allocation of the real and imaginary parts,
713 which makes much better code. Besides, allocating DCmode
714 pseudos overstrains reload on some machines like the 386. */
715 rtx realpart, imagpart;
716 enum machine_mode partmode = GET_MODE_INNER (mode);
717
718 realpart = gen_reg_rtx (partmode);
719 imagpart = gen_reg_rtx (partmode);
720 return gen_rtx_CONCAT (mode, realpart, imagpart);
721 }
722
723 /* Make sure regno_pointer_align, and regno_reg_rtx are large
724 enough to have an element for this pseudo reg number. */
725
726 if (reg_rtx_no == f->emit->regno_pointer_align_length)
727 {
728 int old_size = f->emit->regno_pointer_align_length;
729 char *new;
730 rtx *new1;
731
732 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
733 memset (new + old_size, 0, old_size);
734 f->emit->regno_pointer_align = (unsigned char *) new;
735
736 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
737 old_size * 2 * sizeof (rtx));
738 memset (new1 + old_size, 0, old_size * sizeof (rtx));
739 regno_reg_rtx = new1;
740
741 f->emit->regno_pointer_align_length = old_size * 2;
742 }
743
744 val = gen_raw_REG (mode, reg_rtx_no);
745 regno_reg_rtx[reg_rtx_no++] = val;
746 return val;
747 }
748
749 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
750 Do the big endian correction if needed. */
751
752 rtx
753 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
754 {
755 rtx new = gen_rtx_REG (mode, regno);
756 tree decl;
757 HOST_WIDE_INT var_size;
758
759 /* PR middle-end/14084
760 The problem appears when a variable is stored in a larger register
761 and later it is used in the original mode or some mode in between
762 or some part of variable is accessed.
763
764 On little endian machines there is no problem because
765 the REG_OFFSET of the start of the variable is the same when
766 accessed in any mode (it is 0).
767
768 However, this is not true on big endian machines.
769 The offset of the start of the variable is different when accessed
770 in different modes.
771 When we are taking a part of the REG we have to change the OFFSET
772 from offset WRT size of mode of REG to offset WRT size of variable.
773
774 If we would not do the big endian correction the resulting REG_OFFSET
775 would be larger than the size of the DECL.
776
777 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
778
779 REG.mode MODE DECL size old offset new offset description
780 DI SI 4 4 0 int32 in SImode
781 DI SI 1 4 0 char in SImode
782 DI QI 1 7 0 char in QImode
783 DI QI 4 5 1 1st element in QImode
784 of char[4]
785 DI HI 4 6 2 1st element in HImode
786 of int16[2]
787
788 If the size of DECL is equal or greater than the size of REG
789 we can't do this correction because the register holds the
790 whole variable or a part of the variable and thus the REG_OFFSET
791 is already correct. */
792
793 decl = REG_EXPR (reg);
794 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
795 && decl != NULL
796 && offset > 0
797 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
798 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
799 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
800 {
801 int offset_le;
802
803 /* Convert machine endian to little endian WRT size of mode of REG. */
804 if (WORDS_BIG_ENDIAN)
805 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
806 / UNITS_PER_WORD) * UNITS_PER_WORD;
807 else
808 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
809
810 if (BYTES_BIG_ENDIAN)
811 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
812 % UNITS_PER_WORD);
813 else
814 offset_le += offset % UNITS_PER_WORD;
815
816 if (offset_le >= var_size)
817 {
818 /* MODE is wider than the variable so the new reg will cover
819 the whole variable so the resulting OFFSET should be 0. */
820 offset = 0;
821 }
822 else
823 {
824 /* Convert little endian to machine endian WRT size of variable. */
825 if (WORDS_BIG_ENDIAN)
826 offset = ((var_size - 1 - offset_le)
827 / UNITS_PER_WORD) * UNITS_PER_WORD;
828 else
829 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
830
831 if (BYTES_BIG_ENDIAN)
832 offset += ((var_size - 1 - offset_le)
833 % UNITS_PER_WORD);
834 else
835 offset += offset_le % UNITS_PER_WORD;
836 }
837 }
838
839 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
840 REG_OFFSET (reg) + offset);
841 return new;
842 }
843
844 /* Set the decl for MEM to DECL. */
845
846 void
847 set_reg_attrs_from_mem (rtx reg, rtx mem)
848 {
849 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
850 REG_ATTRS (reg)
851 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
852 }
853
854 /* Set the register attributes for registers contained in PARM_RTX.
855 Use needed values from memory attributes of MEM. */
856
857 void
858 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
859 {
860 if (REG_P (parm_rtx))
861 set_reg_attrs_from_mem (parm_rtx, mem);
862 else if (GET_CODE (parm_rtx) == PARALLEL)
863 {
864 /* Check for a NULL entry in the first slot, used to indicate that the
865 parameter goes both on the stack and in registers. */
866 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
867 for (; i < XVECLEN (parm_rtx, 0); i++)
868 {
869 rtx x = XVECEXP (parm_rtx, 0, i);
870 if (REG_P (XEXP (x, 0)))
871 REG_ATTRS (XEXP (x, 0))
872 = get_reg_attrs (MEM_EXPR (mem),
873 INTVAL (XEXP (x, 1)));
874 }
875 }
876 }
877
878 /* Assign the RTX X to declaration T. */
879 void
880 set_decl_rtl (tree t, rtx x)
881 {
882 DECL_CHECK (t)->decl.rtl = x;
883
884 if (!x)
885 return;
886 /* For register, we maintain the reverse information too. */
887 if (REG_P (x))
888 REG_ATTRS (x) = get_reg_attrs (t, 0);
889 else if (GET_CODE (x) == SUBREG)
890 REG_ATTRS (SUBREG_REG (x))
891 = get_reg_attrs (t, -SUBREG_BYTE (x));
892 if (GET_CODE (x) == CONCAT)
893 {
894 if (REG_P (XEXP (x, 0)))
895 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
896 if (REG_P (XEXP (x, 1)))
897 REG_ATTRS (XEXP (x, 1))
898 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
899 }
900 if (GET_CODE (x) == PARALLEL)
901 {
902 int i;
903 for (i = 0; i < XVECLEN (x, 0); i++)
904 {
905 rtx y = XVECEXP (x, 0, i);
906 if (REG_P (XEXP (y, 0)))
907 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
908 }
909 }
910 }
911
912 /* Assign the RTX X to parameter declaration T. */
913 void
914 set_decl_incoming_rtl (tree t, rtx x)
915 {
916 DECL_INCOMING_RTL (t) = x;
917
918 if (!x)
919 return;
920 /* For register, we maintain the reverse information too. */
921 if (REG_P (x))
922 REG_ATTRS (x) = get_reg_attrs (t, 0);
923 else if (GET_CODE (x) == SUBREG)
924 REG_ATTRS (SUBREG_REG (x))
925 = get_reg_attrs (t, -SUBREG_BYTE (x));
926 if (GET_CODE (x) == CONCAT)
927 {
928 if (REG_P (XEXP (x, 0)))
929 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
930 if (REG_P (XEXP (x, 1)))
931 REG_ATTRS (XEXP (x, 1))
932 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
933 }
934 if (GET_CODE (x) == PARALLEL)
935 {
936 int i, start;
937
938 /* Check for a NULL entry, used to indicate that the parameter goes
939 both on the stack and in registers. */
940 if (XEXP (XVECEXP (x, 0, 0), 0))
941 start = 0;
942 else
943 start = 1;
944
945 for (i = start; i < XVECLEN (x, 0); i++)
946 {
947 rtx y = XVECEXP (x, 0, i);
948 if (REG_P (XEXP (y, 0)))
949 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
950 }
951 }
952 }
953
954 /* Identify REG (which may be a CONCAT) as a user register. */
955
956 void
957 mark_user_reg (rtx reg)
958 {
959 if (GET_CODE (reg) == CONCAT)
960 {
961 REG_USERVAR_P (XEXP (reg, 0)) = 1;
962 REG_USERVAR_P (XEXP (reg, 1)) = 1;
963 }
964 else if (REG_P (reg))
965 REG_USERVAR_P (reg) = 1;
966 else
967 abort ();
968 }
969
970 /* Identify REG as a probable pointer register and show its alignment
971 as ALIGN, if nonzero. */
972
973 void
974 mark_reg_pointer (rtx reg, int align)
975 {
976 if (! REG_POINTER (reg))
977 {
978 REG_POINTER (reg) = 1;
979
980 if (align)
981 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
982 }
983 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
984 /* We can no-longer be sure just how aligned this pointer is. */
985 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
986 }
987
988 /* Return 1 plus largest pseudo reg number used in the current function. */
989
990 int
991 max_reg_num (void)
992 {
993 return reg_rtx_no;
994 }
995
996 /* Return 1 + the largest label number used so far in the current function. */
997
998 int
999 max_label_num (void)
1000 {
1001 if (last_label_num && label_num == base_label_num)
1002 return last_label_num;
1003 return label_num;
1004 }
1005
1006 /* Return first label number used in this function (if any were used). */
1007
1008 int
1009 get_first_label_num (void)
1010 {
1011 return first_label_num;
1012 }
1013
1014 /* If the rtx for label was created during the expansion of a nested
1015 function, then first_label_num won't include this label number.
1016 Fix this now so that array indicies work later. */
1017
1018 void
1019 maybe_set_first_label_num (rtx x)
1020 {
1021 if (CODE_LABEL_NUMBER (x) < first_label_num)
1022 first_label_num = CODE_LABEL_NUMBER (x);
1023 }
1024 \f
1025 /* Return the final regno of X, which is a SUBREG of a hard
1026 register. */
1027 int
1028 subreg_hard_regno (rtx x, int check_mode)
1029 {
1030 enum machine_mode mode = GET_MODE (x);
1031 unsigned int byte_offset, base_regno, final_regno;
1032 rtx reg = SUBREG_REG (x);
1033
1034 /* This is where we attempt to catch illegal subregs
1035 created by the compiler. */
1036 if (GET_CODE (x) != SUBREG
1037 || !REG_P (reg))
1038 abort ();
1039 base_regno = REGNO (reg);
1040 if (base_regno >= FIRST_PSEUDO_REGISTER)
1041 abort ();
1042 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1043 abort ();
1044 #ifdef ENABLE_CHECKING
1045 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1046 SUBREG_BYTE (x), mode))
1047 abort ();
1048 #endif
1049 /* Catch non-congruent offsets too. */
1050 byte_offset = SUBREG_BYTE (x);
1051 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1052 abort ();
1053
1054 final_regno = subreg_regno (x);
1055
1056 return final_regno;
1057 }
1058
1059 /* Return a value representing some low-order bits of X, where the number
1060 of low-order bits is given by MODE. Note that no conversion is done
1061 between floating-point and fixed-point values, rather, the bit
1062 representation is returned.
1063
1064 This function handles the cases in common between gen_lowpart, below,
1065 and two variants in cse.c and combine.c. These are the cases that can
1066 be safely handled at all points in the compilation.
1067
1068 If this is not a case we can handle, return 0. */
1069
1070 rtx
1071 gen_lowpart_common (enum machine_mode mode, rtx x)
1072 {
1073 int msize = GET_MODE_SIZE (mode);
1074 int xsize;
1075 int offset = 0;
1076 enum machine_mode innermode;
1077
1078 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1079 so we have to make one up. Yuk. */
1080 innermode = GET_MODE (x);
1081 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1082 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1083 else if (innermode == VOIDmode)
1084 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1085
1086 xsize = GET_MODE_SIZE (innermode);
1087
1088 if (innermode == VOIDmode || innermode == BLKmode)
1089 abort ();
1090
1091 if (innermode == mode)
1092 return x;
1093
1094 /* MODE must occupy no more words than the mode of X. */
1095 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1096 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1097 return 0;
1098
1099 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1100 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1101 return 0;
1102
1103 offset = subreg_lowpart_offset (mode, innermode);
1104
1105 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1106 && (GET_MODE_CLASS (mode) == MODE_INT
1107 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1108 {
1109 /* If we are getting the low-order part of something that has been
1110 sign- or zero-extended, we can either just use the object being
1111 extended or make a narrower extension. If we want an even smaller
1112 piece than the size of the object being extended, call ourselves
1113 recursively.
1114
1115 This case is used mostly by combine and cse. */
1116
1117 if (GET_MODE (XEXP (x, 0)) == mode)
1118 return XEXP (x, 0);
1119 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1120 return gen_lowpart_common (mode, XEXP (x, 0));
1121 else if (msize < xsize)
1122 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1123 }
1124 else if (GET_CODE (x) == SUBREG || REG_P (x)
1125 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1126 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1127 return simplify_gen_subreg (mode, x, innermode, offset);
1128
1129 /* Otherwise, we can't do this. */
1130 return 0;
1131 }
1132 \f
1133 /* Return the constant real or imaginary part (which has mode MODE)
1134 of a complex value X. The IMAGPART_P argument determines whether
1135 the real or complex component should be returned. This function
1136 returns NULL_RTX if the component isn't a constant. */
1137
1138 static rtx
1139 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1140 {
1141 tree decl, part;
1142
1143 if (MEM_P (x)
1144 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1145 {
1146 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1147 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1148 {
1149 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1150 if (TREE_CODE (part) == REAL_CST
1151 || TREE_CODE (part) == INTEGER_CST)
1152 return expand_expr (part, NULL_RTX, mode, 0);
1153 }
1154 }
1155 return NULL_RTX;
1156 }
1157
1158 /* Return the real part (which has mode MODE) of a complex value X.
1159 This always comes at the low address in memory. */
1160
1161 rtx
1162 gen_realpart (enum machine_mode mode, rtx x)
1163 {
1164 rtx part;
1165
1166 /* Handle complex constants. */
1167 part = gen_complex_constant_part (mode, x, 0);
1168 if (part != NULL_RTX)
1169 return part;
1170
1171 if (WORDS_BIG_ENDIAN
1172 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1173 && REG_P (x)
1174 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1175 internal_error
1176 ("can't access real part of complex value in hard register");
1177 else if (WORDS_BIG_ENDIAN)
1178 return gen_highpart (mode, x);
1179 else
1180 return gen_lowpart (mode, x);
1181 }
1182
1183 /* Return the imaginary part (which has mode MODE) of a complex value X.
1184 This always comes at the high address in memory. */
1185
1186 rtx
1187 gen_imagpart (enum machine_mode mode, rtx x)
1188 {
1189 rtx part;
1190
1191 /* Handle complex constants. */
1192 part = gen_complex_constant_part (mode, x, 1);
1193 if (part != NULL_RTX)
1194 return part;
1195
1196 if (WORDS_BIG_ENDIAN)
1197 return gen_lowpart (mode, x);
1198 else if (! WORDS_BIG_ENDIAN
1199 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1200 && REG_P (x)
1201 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1202 internal_error
1203 ("can't access imaginary part of complex value in hard register");
1204 else
1205 return gen_highpart (mode, x);
1206 }
1207 \f
1208 rtx
1209 gen_highpart (enum machine_mode mode, rtx x)
1210 {
1211 unsigned int msize = GET_MODE_SIZE (mode);
1212 rtx result;
1213
1214 /* This case loses if X is a subreg. To catch bugs early,
1215 complain if an invalid MODE is used even in other cases. */
1216 if (msize > UNITS_PER_WORD
1217 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1218 abort ();
1219
1220 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1221 subreg_highpart_offset (mode, GET_MODE (x)));
1222
1223 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1224 the target if we have a MEM. gen_highpart must return a valid operand,
1225 emitting code if necessary to do so. */
1226 if (result != NULL_RTX && MEM_P (result))
1227 result = validize_mem (result);
1228
1229 if (!result)
1230 abort ();
1231 return result;
1232 }
1233
1234 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1235 be VOIDmode constant. */
1236 rtx
1237 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1238 {
1239 if (GET_MODE (exp) != VOIDmode)
1240 {
1241 if (GET_MODE (exp) != innermode)
1242 abort ();
1243 return gen_highpart (outermode, exp);
1244 }
1245 return simplify_gen_subreg (outermode, exp, innermode,
1246 subreg_highpart_offset (outermode, innermode));
1247 }
1248
1249 /* Return offset in bytes to get OUTERMODE low part
1250 of the value in mode INNERMODE stored in memory in target format. */
1251
1252 unsigned int
1253 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1254 {
1255 unsigned int offset = 0;
1256 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1257
1258 if (difference > 0)
1259 {
1260 if (WORDS_BIG_ENDIAN)
1261 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1262 if (BYTES_BIG_ENDIAN)
1263 offset += difference % UNITS_PER_WORD;
1264 }
1265
1266 return offset;
1267 }
1268
1269 /* Return offset in bytes to get OUTERMODE high part
1270 of the value in mode INNERMODE stored in memory in target format. */
1271 unsigned int
1272 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1273 {
1274 unsigned int offset = 0;
1275 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1276
1277 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1278 abort ();
1279
1280 if (difference > 0)
1281 {
1282 if (! WORDS_BIG_ENDIAN)
1283 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1284 if (! BYTES_BIG_ENDIAN)
1285 offset += difference % UNITS_PER_WORD;
1286 }
1287
1288 return offset;
1289 }
1290
1291 /* Return 1 iff X, assumed to be a SUBREG,
1292 refers to the least significant part of its containing reg.
1293 If X is not a SUBREG, always return 1 (it is its own low part!). */
1294
1295 int
1296 subreg_lowpart_p (rtx x)
1297 {
1298 if (GET_CODE (x) != SUBREG)
1299 return 1;
1300 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1301 return 0;
1302
1303 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1304 == SUBREG_BYTE (x));
1305 }
1306 \f
1307 /* Return subword OFFSET of operand OP.
1308 The word number, OFFSET, is interpreted as the word number starting
1309 at the low-order address. OFFSET 0 is the low-order word if not
1310 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1311
1312 If we cannot extract the required word, we return zero. Otherwise,
1313 an rtx corresponding to the requested word will be returned.
1314
1315 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1316 reload has completed, a valid address will always be returned. After
1317 reload, if a valid address cannot be returned, we return zero.
1318
1319 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1320 it is the responsibility of the caller.
1321
1322 MODE is the mode of OP in case it is a CONST_INT.
1323
1324 ??? This is still rather broken for some cases. The problem for the
1325 moment is that all callers of this thing provide no 'goal mode' to
1326 tell us to work with. This exists because all callers were written
1327 in a word based SUBREG world.
1328 Now use of this function can be deprecated by simplify_subreg in most
1329 cases.
1330 */
1331
1332 rtx
1333 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1334 {
1335 if (mode == VOIDmode)
1336 mode = GET_MODE (op);
1337
1338 if (mode == VOIDmode)
1339 abort ();
1340
1341 /* If OP is narrower than a word, fail. */
1342 if (mode != BLKmode
1343 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1344 return 0;
1345
1346 /* If we want a word outside OP, return zero. */
1347 if (mode != BLKmode
1348 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1349 return const0_rtx;
1350
1351 /* Form a new MEM at the requested address. */
1352 if (MEM_P (op))
1353 {
1354 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1355
1356 if (! validate_address)
1357 return new;
1358
1359 else if (reload_completed)
1360 {
1361 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1362 return 0;
1363 }
1364 else
1365 return replace_equiv_address (new, XEXP (new, 0));
1366 }
1367
1368 /* Rest can be handled by simplify_subreg. */
1369 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1370 }
1371
1372 /* Similar to `operand_subword', but never return 0. If we can't extract
1373 the required subword, put OP into a register and try again. If that fails,
1374 abort. We always validate the address in this case.
1375
1376 MODE is the mode of OP, in case it is CONST_INT. */
1377
1378 rtx
1379 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1380 {
1381 rtx result = operand_subword (op, offset, 1, mode);
1382
1383 if (result)
1384 return result;
1385
1386 if (mode != BLKmode && mode != VOIDmode)
1387 {
1388 /* If this is a register which can not be accessed by words, copy it
1389 to a pseudo register. */
1390 if (REG_P (op))
1391 op = copy_to_reg (op);
1392 else
1393 op = force_reg (mode, op);
1394 }
1395
1396 result = operand_subword (op, offset, 1, mode);
1397 if (result == 0)
1398 abort ();
1399
1400 return result;
1401 }
1402 \f
1403 /* Given a compare instruction, swap the operands.
1404 A test instruction is changed into a compare of 0 against the operand. */
1405
1406 void
1407 reverse_comparison (rtx insn)
1408 {
1409 rtx body = PATTERN (insn);
1410 rtx comp;
1411
1412 if (GET_CODE (body) == SET)
1413 comp = SET_SRC (body);
1414 else
1415 comp = SET_SRC (XVECEXP (body, 0, 0));
1416
1417 if (GET_CODE (comp) == COMPARE)
1418 {
1419 rtx op0 = XEXP (comp, 0);
1420 rtx op1 = XEXP (comp, 1);
1421 XEXP (comp, 0) = op1;
1422 XEXP (comp, 1) = op0;
1423 }
1424 else
1425 {
1426 rtx new = gen_rtx_COMPARE (VOIDmode,
1427 CONST0_RTX (GET_MODE (comp)), comp);
1428 if (GET_CODE (body) == SET)
1429 SET_SRC (body) = new;
1430 else
1431 SET_SRC (XVECEXP (body, 0, 0)) = new;
1432 }
1433 }
1434 \f
1435 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1436 or (2) a component ref of something variable. Represent the later with
1437 a NULL expression. */
1438
1439 static tree
1440 component_ref_for_mem_expr (tree ref)
1441 {
1442 tree inner = TREE_OPERAND (ref, 0);
1443
1444 if (TREE_CODE (inner) == COMPONENT_REF)
1445 inner = component_ref_for_mem_expr (inner);
1446 else
1447 {
1448 /* Now remove any conversions: they don't change what the underlying
1449 object is. Likewise for SAVE_EXPR. */
1450 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1451 || TREE_CODE (inner) == NON_LVALUE_EXPR
1452 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1453 || TREE_CODE (inner) == SAVE_EXPR)
1454 inner = TREE_OPERAND (inner, 0);
1455
1456 if (! DECL_P (inner))
1457 inner = NULL_TREE;
1458 }
1459
1460 if (inner == TREE_OPERAND (ref, 0))
1461 return ref;
1462 else
1463 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1464 TREE_OPERAND (ref, 1), NULL_TREE);
1465 }
1466
1467 /* Returns 1 if both MEM_EXPR can be considered equal
1468 and 0 otherwise. */
1469
1470 int
1471 mem_expr_equal_p (tree expr1, tree expr2)
1472 {
1473 if (expr1 == expr2)
1474 return 1;
1475
1476 if (! expr1 || ! expr2)
1477 return 0;
1478
1479 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1480 return 0;
1481
1482 if (TREE_CODE (expr1) == COMPONENT_REF)
1483 return
1484 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1485 TREE_OPERAND (expr2, 0))
1486 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1487 TREE_OPERAND (expr2, 1));
1488
1489 if (TREE_CODE (expr1) == INDIRECT_REF)
1490 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1491 TREE_OPERAND (expr2, 0));
1492
1493 /* Decls with different pointers can't be equal. */
1494 if (DECL_P (expr1))
1495 return 0;
1496
1497 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1498 have been resolved here. */
1499 }
1500
1501 /* Given REF, a MEM, and T, either the type of X or the expression
1502 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1503 if we are making a new object of this type. BITPOS is nonzero if
1504 there is an offset outstanding on T that will be applied later. */
1505
1506 void
1507 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1508 HOST_WIDE_INT bitpos)
1509 {
1510 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1511 tree expr = MEM_EXPR (ref);
1512 rtx offset = MEM_OFFSET (ref);
1513 rtx size = MEM_SIZE (ref);
1514 unsigned int align = MEM_ALIGN (ref);
1515 HOST_WIDE_INT apply_bitpos = 0;
1516 tree type;
1517
1518 /* It can happen that type_for_mode was given a mode for which there
1519 is no language-level type. In which case it returns NULL, which
1520 we can see here. */
1521 if (t == NULL_TREE)
1522 return;
1523
1524 type = TYPE_P (t) ? t : TREE_TYPE (t);
1525 if (type == error_mark_node)
1526 return;
1527
1528 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1529 wrong answer, as it assumes that DECL_RTL already has the right alias
1530 info. Callers should not set DECL_RTL until after the call to
1531 set_mem_attributes. */
1532 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1533 abort ();
1534
1535 /* Get the alias set from the expression or type (perhaps using a
1536 front-end routine) and use it. */
1537 alias = get_alias_set (t);
1538
1539 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1540 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1541 RTX_UNCHANGING_P (ref)
1542 |= ((lang_hooks.honor_readonly
1543 && (TYPE_READONLY (type) || (t != type && TREE_READONLY (t))))
1544 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1545 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1546 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1547
1548 /* If we are making an object of this type, or if this is a DECL, we know
1549 that it is a scalar if the type is not an aggregate. */
1550 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1551 MEM_SCALAR_P (ref) = 1;
1552
1553 /* We can set the alignment from the type if we are making an object,
1554 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1555 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1556 align = MAX (align, TYPE_ALIGN (type));
1557
1558 /* If the size is known, we can set that. */
1559 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1560 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1561
1562 /* If T is not a type, we may be able to deduce some more information about
1563 the expression. */
1564 if (! TYPE_P (t))
1565 {
1566 maybe_set_unchanging (ref, t);
1567 if (TREE_THIS_VOLATILE (t))
1568 MEM_VOLATILE_P (ref) = 1;
1569
1570 /* Now remove any conversions: they don't change what the underlying
1571 object is. Likewise for SAVE_EXPR. */
1572 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1573 || TREE_CODE (t) == NON_LVALUE_EXPR
1574 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1575 || TREE_CODE (t) == SAVE_EXPR)
1576 t = TREE_OPERAND (t, 0);
1577
1578 /* If this expression can't be addressed (e.g., it contains a reference
1579 to a non-addressable field), show we don't change its alias set. */
1580 if (! can_address_p (t))
1581 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1582
1583 /* If this is a decl, set the attributes of the MEM from it. */
1584 if (DECL_P (t))
1585 {
1586 expr = t;
1587 offset = const0_rtx;
1588 apply_bitpos = bitpos;
1589 size = (DECL_SIZE_UNIT (t)
1590 && host_integerp (DECL_SIZE_UNIT (t), 1)
1591 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1592 align = DECL_ALIGN (t);
1593 }
1594
1595 /* If this is a constant, we know the alignment. */
1596 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1597 {
1598 align = TYPE_ALIGN (type);
1599 #ifdef CONSTANT_ALIGNMENT
1600 align = CONSTANT_ALIGNMENT (t, align);
1601 #endif
1602 }
1603
1604 /* If this is a field reference and not a bit-field, record it. */
1605 /* ??? There is some information that can be gleened from bit-fields,
1606 such as the word offset in the structure that might be modified.
1607 But skip it for now. */
1608 else if (TREE_CODE (t) == COMPONENT_REF
1609 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1610 {
1611 expr = component_ref_for_mem_expr (t);
1612 offset = const0_rtx;
1613 apply_bitpos = bitpos;
1614 /* ??? Any reason the field size would be different than
1615 the size we got from the type? */
1616 }
1617
1618 /* If this is an array reference, look for an outer field reference. */
1619 else if (TREE_CODE (t) == ARRAY_REF)
1620 {
1621 tree off_tree = size_zero_node;
1622 /* We can't modify t, because we use it at the end of the
1623 function. */
1624 tree t2 = t;
1625
1626 do
1627 {
1628 tree index = TREE_OPERAND (t2, 1);
1629 tree low_bound = array_ref_low_bound (t2);
1630 tree unit_size = array_ref_element_size (t2);
1631
1632 /* We assume all arrays have sizes that are a multiple of a byte.
1633 First subtract the lower bound, if any, in the type of the
1634 index, then convert to sizetype and multiply by the size of
1635 the array element. */
1636 if (! integer_zerop (low_bound))
1637 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1638 index, low_bound));
1639
1640 off_tree = size_binop (PLUS_EXPR,
1641 size_binop (MULT_EXPR, convert (sizetype,
1642 index),
1643 unit_size),
1644 off_tree);
1645 t2 = TREE_OPERAND (t2, 0);
1646 }
1647 while (TREE_CODE (t2) == ARRAY_REF);
1648
1649 if (DECL_P (t2))
1650 {
1651 expr = t2;
1652 offset = NULL;
1653 if (host_integerp (off_tree, 1))
1654 {
1655 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1656 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1657 align = DECL_ALIGN (t2);
1658 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1659 align = aoff;
1660 offset = GEN_INT (ioff);
1661 apply_bitpos = bitpos;
1662 }
1663 }
1664 else if (TREE_CODE (t2) == COMPONENT_REF)
1665 {
1666 expr = component_ref_for_mem_expr (t2);
1667 if (host_integerp (off_tree, 1))
1668 {
1669 offset = GEN_INT (tree_low_cst (off_tree, 1));
1670 apply_bitpos = bitpos;
1671 }
1672 /* ??? Any reason the field size would be different than
1673 the size we got from the type? */
1674 }
1675 else if (flag_argument_noalias > 1
1676 && TREE_CODE (t2) == INDIRECT_REF
1677 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1678 {
1679 expr = t2;
1680 offset = NULL;
1681 }
1682 }
1683
1684 /* If this is a Fortran indirect argument reference, record the
1685 parameter decl. */
1686 else if (flag_argument_noalias > 1
1687 && TREE_CODE (t) == INDIRECT_REF
1688 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1689 {
1690 expr = t;
1691 offset = NULL;
1692 }
1693 }
1694
1695 /* If we modified OFFSET based on T, then subtract the outstanding
1696 bit position offset. Similarly, increase the size of the accessed
1697 object to contain the negative offset. */
1698 if (apply_bitpos)
1699 {
1700 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1701 if (size)
1702 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1703 }
1704
1705 /* Now set the attributes we computed above. */
1706 MEM_ATTRS (ref)
1707 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1708
1709 /* If this is already known to be a scalar or aggregate, we are done. */
1710 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1711 return;
1712
1713 /* If it is a reference into an aggregate, this is part of an aggregate.
1714 Otherwise we don't know. */
1715 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1716 || TREE_CODE (t) == ARRAY_RANGE_REF
1717 || TREE_CODE (t) == BIT_FIELD_REF)
1718 MEM_IN_STRUCT_P (ref) = 1;
1719 }
1720
1721 void
1722 set_mem_attributes (rtx ref, tree t, int objectp)
1723 {
1724 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1725 }
1726
1727 /* Set the decl for MEM to DECL. */
1728
1729 void
1730 set_mem_attrs_from_reg (rtx mem, rtx reg)
1731 {
1732 MEM_ATTRS (mem)
1733 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1734 GEN_INT (REG_OFFSET (reg)),
1735 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1736 }
1737
1738 /* Set the alias set of MEM to SET. */
1739
1740 void
1741 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1742 {
1743 #ifdef ENABLE_CHECKING
1744 /* If the new and old alias sets don't conflict, something is wrong. */
1745 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1746 abort ();
1747 #endif
1748
1749 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1750 MEM_SIZE (mem), MEM_ALIGN (mem),
1751 GET_MODE (mem));
1752 }
1753
1754 /* Set the alignment of MEM to ALIGN bits. */
1755
1756 void
1757 set_mem_align (rtx mem, unsigned int align)
1758 {
1759 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1760 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1761 GET_MODE (mem));
1762 }
1763
1764 /* Set the expr for MEM to EXPR. */
1765
1766 void
1767 set_mem_expr (rtx mem, tree expr)
1768 {
1769 MEM_ATTRS (mem)
1770 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1771 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1772 }
1773
1774 /* Set the offset of MEM to OFFSET. */
1775
1776 void
1777 set_mem_offset (rtx mem, rtx offset)
1778 {
1779 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1780 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1781 GET_MODE (mem));
1782 }
1783
1784 /* Set the size of MEM to SIZE. */
1785
1786 void
1787 set_mem_size (rtx mem, rtx size)
1788 {
1789 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1790 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1791 GET_MODE (mem));
1792 }
1793 \f
1794 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1795 and its address changed to ADDR. (VOIDmode means don't change the mode.
1796 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1797 returned memory location is required to be valid. The memory
1798 attributes are not changed. */
1799
1800 static rtx
1801 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1802 {
1803 rtx new;
1804
1805 if (!MEM_P (memref))
1806 abort ();
1807 if (mode == VOIDmode)
1808 mode = GET_MODE (memref);
1809 if (addr == 0)
1810 addr = XEXP (memref, 0);
1811 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1812 && (!validate || memory_address_p (mode, addr)))
1813 return memref;
1814
1815 if (validate)
1816 {
1817 if (reload_in_progress || reload_completed)
1818 {
1819 if (! memory_address_p (mode, addr))
1820 abort ();
1821 }
1822 else
1823 addr = memory_address (mode, addr);
1824 }
1825
1826 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1827 return memref;
1828
1829 new = gen_rtx_MEM (mode, addr);
1830 MEM_COPY_ATTRIBUTES (new, memref);
1831 return new;
1832 }
1833
1834 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1835 way we are changing MEMREF, so we only preserve the alias set. */
1836
1837 rtx
1838 change_address (rtx memref, enum machine_mode mode, rtx addr)
1839 {
1840 rtx new = change_address_1 (memref, mode, addr, 1), size;
1841 enum machine_mode mmode = GET_MODE (new);
1842 unsigned int align;
1843
1844 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1845 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1846
1847 /* If there are no changes, just return the original memory reference. */
1848 if (new == memref)
1849 {
1850 if (MEM_ATTRS (memref) == 0
1851 || (MEM_EXPR (memref) == NULL
1852 && MEM_OFFSET (memref) == NULL
1853 && MEM_SIZE (memref) == size
1854 && MEM_ALIGN (memref) == align))
1855 return new;
1856
1857 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1858 MEM_COPY_ATTRIBUTES (new, memref);
1859 }
1860
1861 MEM_ATTRS (new)
1862 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1863
1864 return new;
1865 }
1866
1867 /* Return a memory reference like MEMREF, but with its mode changed
1868 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1869 nonzero, the memory address is forced to be valid.
1870 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1871 and caller is responsible for adjusting MEMREF base register. */
1872
1873 rtx
1874 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1875 int validate, int adjust)
1876 {
1877 rtx addr = XEXP (memref, 0);
1878 rtx new;
1879 rtx memoffset = MEM_OFFSET (memref);
1880 rtx size = 0;
1881 unsigned int memalign = MEM_ALIGN (memref);
1882
1883 /* If there are no changes, just return the original memory reference. */
1884 if (mode == GET_MODE (memref) && !offset
1885 && (!validate || memory_address_p (mode, addr)))
1886 return memref;
1887
1888 /* ??? Prefer to create garbage instead of creating shared rtl.
1889 This may happen even if offset is nonzero -- consider
1890 (plus (plus reg reg) const_int) -- so do this always. */
1891 addr = copy_rtx (addr);
1892
1893 if (adjust)
1894 {
1895 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1896 object, we can merge it into the LO_SUM. */
1897 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1898 && offset >= 0
1899 && (unsigned HOST_WIDE_INT) offset
1900 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1901 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1902 plus_constant (XEXP (addr, 1), offset));
1903 else
1904 addr = plus_constant (addr, offset);
1905 }
1906
1907 new = change_address_1 (memref, mode, addr, validate);
1908
1909 /* Compute the new values of the memory attributes due to this adjustment.
1910 We add the offsets and update the alignment. */
1911 if (memoffset)
1912 memoffset = GEN_INT (offset + INTVAL (memoffset));
1913
1914 /* Compute the new alignment by taking the MIN of the alignment and the
1915 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1916 if zero. */
1917 if (offset != 0)
1918 memalign
1919 = MIN (memalign,
1920 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1921
1922 /* We can compute the size in a number of ways. */
1923 if (GET_MODE (new) != BLKmode)
1924 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1925 else if (MEM_SIZE (memref))
1926 size = plus_constant (MEM_SIZE (memref), -offset);
1927
1928 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1929 memoffset, size, memalign, GET_MODE (new));
1930
1931 /* At some point, we should validate that this offset is within the object,
1932 if all the appropriate values are known. */
1933 return new;
1934 }
1935
1936 /* Return a memory reference like MEMREF, but with its mode changed
1937 to MODE and its address changed to ADDR, which is assumed to be
1938 MEMREF offseted by OFFSET bytes. If VALIDATE is
1939 nonzero, the memory address is forced to be valid. */
1940
1941 rtx
1942 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1943 HOST_WIDE_INT offset, int validate)
1944 {
1945 memref = change_address_1 (memref, VOIDmode, addr, validate);
1946 return adjust_address_1 (memref, mode, offset, validate, 0);
1947 }
1948
1949 /* Return a memory reference like MEMREF, but whose address is changed by
1950 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1951 known to be in OFFSET (possibly 1). */
1952
1953 rtx
1954 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1955 {
1956 rtx new, addr = XEXP (memref, 0);
1957
1958 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1959
1960 /* At this point we don't know _why_ the address is invalid. It
1961 could have secondary memory references, multiplies or anything.
1962
1963 However, if we did go and rearrange things, we can wind up not
1964 being able to recognize the magic around pic_offset_table_rtx.
1965 This stuff is fragile, and is yet another example of why it is
1966 bad to expose PIC machinery too early. */
1967 if (! memory_address_p (GET_MODE (memref), new)
1968 && GET_CODE (addr) == PLUS
1969 && XEXP (addr, 0) == pic_offset_table_rtx)
1970 {
1971 addr = force_reg (GET_MODE (addr), addr);
1972 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1973 }
1974
1975 update_temp_slot_address (XEXP (memref, 0), new);
1976 new = change_address_1 (memref, VOIDmode, new, 1);
1977
1978 /* If there are no changes, just return the original memory reference. */
1979 if (new == memref)
1980 return new;
1981
1982 /* Update the alignment to reflect the offset. Reset the offset, which
1983 we don't know. */
1984 MEM_ATTRS (new)
1985 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1986 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1987 GET_MODE (new));
1988 return new;
1989 }
1990
1991 /* Return a memory reference like MEMREF, but with its address changed to
1992 ADDR. The caller is asserting that the actual piece of memory pointed
1993 to is the same, just the form of the address is being changed, such as
1994 by putting something into a register. */
1995
1996 rtx
1997 replace_equiv_address (rtx memref, rtx addr)
1998 {
1999 /* change_address_1 copies the memory attribute structure without change
2000 and that's exactly what we want here. */
2001 update_temp_slot_address (XEXP (memref, 0), addr);
2002 return change_address_1 (memref, VOIDmode, addr, 1);
2003 }
2004
2005 /* Likewise, but the reference is not required to be valid. */
2006
2007 rtx
2008 replace_equiv_address_nv (rtx memref, rtx addr)
2009 {
2010 return change_address_1 (memref, VOIDmode, addr, 0);
2011 }
2012
2013 /* Return a memory reference like MEMREF, but with its mode widened to
2014 MODE and offset by OFFSET. This would be used by targets that e.g.
2015 cannot issue QImode memory operations and have to use SImode memory
2016 operations plus masking logic. */
2017
2018 rtx
2019 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2020 {
2021 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2022 tree expr = MEM_EXPR (new);
2023 rtx memoffset = MEM_OFFSET (new);
2024 unsigned int size = GET_MODE_SIZE (mode);
2025
2026 /* If there are no changes, just return the original memory reference. */
2027 if (new == memref)
2028 return new;
2029
2030 /* If we don't know what offset we were at within the expression, then
2031 we can't know if we've overstepped the bounds. */
2032 if (! memoffset)
2033 expr = NULL_TREE;
2034
2035 while (expr)
2036 {
2037 if (TREE_CODE (expr) == COMPONENT_REF)
2038 {
2039 tree field = TREE_OPERAND (expr, 1);
2040 tree offset = component_ref_field_offset (expr);
2041
2042 if (! DECL_SIZE_UNIT (field))
2043 {
2044 expr = NULL_TREE;
2045 break;
2046 }
2047
2048 /* Is the field at least as large as the access? If so, ok,
2049 otherwise strip back to the containing structure. */
2050 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2051 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2052 && INTVAL (memoffset) >= 0)
2053 break;
2054
2055 if (! host_integerp (offset, 1))
2056 {
2057 expr = NULL_TREE;
2058 break;
2059 }
2060
2061 expr = TREE_OPERAND (expr, 0);
2062 memoffset
2063 = (GEN_INT (INTVAL (memoffset)
2064 + tree_low_cst (offset, 1)
2065 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2066 / BITS_PER_UNIT)));
2067 }
2068 /* Similarly for the decl. */
2069 else if (DECL_P (expr)
2070 && DECL_SIZE_UNIT (expr)
2071 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2072 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2073 && (! memoffset || INTVAL (memoffset) >= 0))
2074 break;
2075 else
2076 {
2077 /* The widened memory access overflows the expression, which means
2078 that it could alias another expression. Zap it. */
2079 expr = NULL_TREE;
2080 break;
2081 }
2082 }
2083
2084 if (! expr)
2085 memoffset = NULL_RTX;
2086
2087 /* The widened memory may alias other stuff, so zap the alias set. */
2088 /* ??? Maybe use get_alias_set on any remaining expression. */
2089
2090 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2091 MEM_ALIGN (new), mode);
2092
2093 return new;
2094 }
2095 \f
2096 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2097
2098 rtx
2099 gen_label_rtx (void)
2100 {
2101 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2102 NULL, label_num++, NULL);
2103 }
2104 \f
2105 /* For procedure integration. */
2106
2107 /* Install new pointers to the first and last insns in the chain.
2108 Also, set cur_insn_uid to one higher than the last in use.
2109 Used for an inline-procedure after copying the insn chain. */
2110
2111 void
2112 set_new_first_and_last_insn (rtx first, rtx last)
2113 {
2114 rtx insn;
2115
2116 first_insn = first;
2117 last_insn = last;
2118 cur_insn_uid = 0;
2119
2120 for (insn = first; insn; insn = NEXT_INSN (insn))
2121 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2122
2123 cur_insn_uid++;
2124 }
2125
2126 /* Set the last label number found in the current function.
2127 This is used when belatedly compiling an inline function. */
2128
2129 void
2130 set_new_last_label_num (int last)
2131 {
2132 base_label_num = label_num;
2133 last_label_num = last;
2134 }
2135 \f
2136 /* Restore all variables describing the current status from the structure *P.
2137 This is used after a nested function. */
2138
2139 void
2140 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2141 {
2142 last_label_num = 0;
2143 }
2144 \f
2145 /* Go through all the RTL insn bodies and copy any invalid shared
2146 structure. This routine should only be called once. */
2147
2148 static void
2149 unshare_all_rtl_1 (tree fndecl, rtx insn)
2150 {
2151 tree decl;
2152
2153 /* Make sure that virtual parameters are not shared. */
2154 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2155 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2156
2157 /* Make sure that virtual stack slots are not shared. */
2158 unshare_all_decls (DECL_INITIAL (fndecl));
2159
2160 /* Unshare just about everything else. */
2161 unshare_all_rtl_in_chain (insn);
2162
2163 /* Make sure the addresses of stack slots found outside the insn chain
2164 (such as, in DECL_RTL of a variable) are not shared
2165 with the insn chain.
2166
2167 This special care is necessary when the stack slot MEM does not
2168 actually appear in the insn chain. If it does appear, its address
2169 is unshared from all else at that point. */
2170 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2171 }
2172
2173 /* Go through all the RTL insn bodies and copy any invalid shared
2174 structure, again. This is a fairly expensive thing to do so it
2175 should be done sparingly. */
2176
2177 void
2178 unshare_all_rtl_again (rtx insn)
2179 {
2180 rtx p;
2181 tree decl;
2182
2183 for (p = insn; p; p = NEXT_INSN (p))
2184 if (INSN_P (p))
2185 {
2186 reset_used_flags (PATTERN (p));
2187 reset_used_flags (REG_NOTES (p));
2188 reset_used_flags (LOG_LINKS (p));
2189 }
2190
2191 /* Make sure that virtual stack slots are not shared. */
2192 reset_used_decls (DECL_INITIAL (cfun->decl));
2193
2194 /* Make sure that virtual parameters are not shared. */
2195 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2196 reset_used_flags (DECL_RTL (decl));
2197
2198 reset_used_flags (stack_slot_list);
2199
2200 unshare_all_rtl_1 (cfun->decl, insn);
2201 }
2202
2203 void
2204 unshare_all_rtl (void)
2205 {
2206 unshare_all_rtl_1 (current_function_decl, get_insns ());
2207 }
2208
2209 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2210 Recursively does the same for subexpressions. */
2211
2212 static void
2213 verify_rtx_sharing (rtx orig, rtx insn)
2214 {
2215 rtx x = orig;
2216 int i;
2217 enum rtx_code code;
2218 const char *format_ptr;
2219
2220 if (x == 0)
2221 return;
2222
2223 code = GET_CODE (x);
2224
2225 /* These types may be freely shared. */
2226
2227 switch (code)
2228 {
2229 case REG:
2230 case CONST_INT:
2231 case CONST_DOUBLE:
2232 case CONST_VECTOR:
2233 case SYMBOL_REF:
2234 case LABEL_REF:
2235 case CODE_LABEL:
2236 case PC:
2237 case CC0:
2238 case SCRATCH:
2239 return;
2240 /* SCRATCH must be shared because they represent distinct values. */
2241 case CLOBBER:
2242 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2243 return;
2244 break;
2245
2246 case CONST:
2247 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2248 a LABEL_REF, it isn't sharable. */
2249 if (GET_CODE (XEXP (x, 0)) == PLUS
2250 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2251 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2252 return;
2253 break;
2254
2255 case MEM:
2256 /* A MEM is allowed to be shared if its address is constant. */
2257 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2258 || reload_completed || reload_in_progress)
2259 return;
2260
2261 break;
2262
2263 default:
2264 break;
2265 }
2266
2267 /* This rtx may not be shared. If it has already been seen,
2268 replace it with a copy of itself. */
2269
2270 if (RTX_FLAG (x, used))
2271 {
2272 error ("Invalid rtl sharing found in the insn");
2273 debug_rtx (insn);
2274 error ("Shared rtx");
2275 debug_rtx (x);
2276 abort ();
2277 }
2278 RTX_FLAG (x, used) = 1;
2279
2280 /* Now scan the subexpressions recursively. */
2281
2282 format_ptr = GET_RTX_FORMAT (code);
2283
2284 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2285 {
2286 switch (*format_ptr++)
2287 {
2288 case 'e':
2289 verify_rtx_sharing (XEXP (x, i), insn);
2290 break;
2291
2292 case 'E':
2293 if (XVEC (x, i) != NULL)
2294 {
2295 int j;
2296 int len = XVECLEN (x, i);
2297
2298 for (j = 0; j < len; j++)
2299 {
2300 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2301 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2302 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2303 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2304 else
2305 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2306 }
2307 }
2308 break;
2309 }
2310 }
2311 return;
2312 }
2313
2314 /* Go through all the RTL insn bodies and check that there is no unexpected
2315 sharing in between the subexpressions. */
2316
2317 void
2318 verify_rtl_sharing (void)
2319 {
2320 rtx p;
2321
2322 for (p = get_insns (); p; p = NEXT_INSN (p))
2323 if (INSN_P (p))
2324 {
2325 reset_used_flags (PATTERN (p));
2326 reset_used_flags (REG_NOTES (p));
2327 reset_used_flags (LOG_LINKS (p));
2328 }
2329
2330 for (p = get_insns (); p; p = NEXT_INSN (p))
2331 if (INSN_P (p))
2332 {
2333 verify_rtx_sharing (PATTERN (p), p);
2334 verify_rtx_sharing (REG_NOTES (p), p);
2335 verify_rtx_sharing (LOG_LINKS (p), p);
2336 }
2337 }
2338
2339 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2340 Assumes the mark bits are cleared at entry. */
2341
2342 void
2343 unshare_all_rtl_in_chain (rtx insn)
2344 {
2345 for (; insn; insn = NEXT_INSN (insn))
2346 if (INSN_P (insn))
2347 {
2348 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2349 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2350 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2351 }
2352 }
2353
2354 /* Go through all virtual stack slots of a function and copy any
2355 shared structure. */
2356 static void
2357 unshare_all_decls (tree blk)
2358 {
2359 tree t;
2360
2361 /* Copy shared decls. */
2362 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2363 if (DECL_RTL_SET_P (t))
2364 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2365
2366 /* Now process sub-blocks. */
2367 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2368 unshare_all_decls (t);
2369 }
2370
2371 /* Go through all virtual stack slots of a function and mark them as
2372 not shared. */
2373 static void
2374 reset_used_decls (tree blk)
2375 {
2376 tree t;
2377
2378 /* Mark decls. */
2379 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2380 if (DECL_RTL_SET_P (t))
2381 reset_used_flags (DECL_RTL (t));
2382
2383 /* Now process sub-blocks. */
2384 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2385 reset_used_decls (t);
2386 }
2387
2388 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2389 placed in the result directly, rather than being copied. MAY_SHARE is
2390 either a MEM of an EXPR_LIST of MEMs. */
2391
2392 rtx
2393 copy_most_rtx (rtx orig, rtx may_share)
2394 {
2395 rtx copy;
2396 int i, j;
2397 RTX_CODE code;
2398 const char *format_ptr;
2399
2400 if (orig == may_share
2401 || (GET_CODE (may_share) == EXPR_LIST
2402 && in_expr_list_p (may_share, orig)))
2403 return orig;
2404
2405 code = GET_CODE (orig);
2406
2407 switch (code)
2408 {
2409 case REG:
2410 case CONST_INT:
2411 case CONST_DOUBLE:
2412 case CONST_VECTOR:
2413 case SYMBOL_REF:
2414 case CODE_LABEL:
2415 case PC:
2416 case CC0:
2417 return orig;
2418 default:
2419 break;
2420 }
2421
2422 copy = rtx_alloc (code);
2423 PUT_MODE (copy, GET_MODE (orig));
2424 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2425 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2426 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2427 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2428 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2429
2430 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2431
2432 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2433 {
2434 switch (*format_ptr++)
2435 {
2436 case 'e':
2437 XEXP (copy, i) = XEXP (orig, i);
2438 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2439 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2440 break;
2441
2442 case 'u':
2443 XEXP (copy, i) = XEXP (orig, i);
2444 break;
2445
2446 case 'E':
2447 case 'V':
2448 XVEC (copy, i) = XVEC (orig, i);
2449 if (XVEC (orig, i) != NULL)
2450 {
2451 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2452 for (j = 0; j < XVECLEN (copy, i); j++)
2453 XVECEXP (copy, i, j)
2454 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2455 }
2456 break;
2457
2458 case 'w':
2459 XWINT (copy, i) = XWINT (orig, i);
2460 break;
2461
2462 case 'n':
2463 case 'i':
2464 XINT (copy, i) = XINT (orig, i);
2465 break;
2466
2467 case 't':
2468 XTREE (copy, i) = XTREE (orig, i);
2469 break;
2470
2471 case 's':
2472 case 'S':
2473 XSTR (copy, i) = XSTR (orig, i);
2474 break;
2475
2476 case '0':
2477 X0ANY (copy, i) = X0ANY (orig, i);
2478 break;
2479
2480 default:
2481 abort ();
2482 }
2483 }
2484 return copy;
2485 }
2486
2487 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2488 Recursively does the same for subexpressions. Uses
2489 copy_rtx_if_shared_1 to reduce stack space. */
2490
2491 rtx
2492 copy_rtx_if_shared (rtx orig)
2493 {
2494 copy_rtx_if_shared_1 (&orig);
2495 return orig;
2496 }
2497
2498 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2499 use. Recursively does the same for subexpressions. */
2500
2501 static void
2502 copy_rtx_if_shared_1 (rtx *orig1)
2503 {
2504 rtx x;
2505 int i;
2506 enum rtx_code code;
2507 rtx *last_ptr;
2508 const char *format_ptr;
2509 int copied = 0;
2510 int length;
2511
2512 /* Repeat is used to turn tail-recursion into iteration. */
2513 repeat:
2514 x = *orig1;
2515
2516 if (x == 0)
2517 return;
2518
2519 code = GET_CODE (x);
2520
2521 /* These types may be freely shared. */
2522
2523 switch (code)
2524 {
2525 case REG:
2526 case CONST_INT:
2527 case CONST_DOUBLE:
2528 case CONST_VECTOR:
2529 case SYMBOL_REF:
2530 case LABEL_REF:
2531 case CODE_LABEL:
2532 case PC:
2533 case CC0:
2534 case SCRATCH:
2535 /* SCRATCH must be shared because they represent distinct values. */
2536 return;
2537 case CLOBBER:
2538 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2539 return;
2540 break;
2541
2542 case CONST:
2543 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2544 a LABEL_REF, it isn't sharable. */
2545 if (GET_CODE (XEXP (x, 0)) == PLUS
2546 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2547 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2548 return;
2549 break;
2550
2551 case INSN:
2552 case JUMP_INSN:
2553 case CALL_INSN:
2554 case NOTE:
2555 case BARRIER:
2556 /* The chain of insns is not being copied. */
2557 return;
2558
2559 default:
2560 break;
2561 }
2562
2563 /* This rtx may not be shared. If it has already been seen,
2564 replace it with a copy of itself. */
2565
2566 if (RTX_FLAG (x, used))
2567 {
2568 rtx copy;
2569
2570 copy = rtx_alloc (code);
2571 memcpy (copy, x, RTX_SIZE (code));
2572 x = copy;
2573 copied = 1;
2574 }
2575 RTX_FLAG (x, used) = 1;
2576
2577 /* Now scan the subexpressions recursively.
2578 We can store any replaced subexpressions directly into X
2579 since we know X is not shared! Any vectors in X
2580 must be copied if X was copied. */
2581
2582 format_ptr = GET_RTX_FORMAT (code);
2583 length = GET_RTX_LENGTH (code);
2584 last_ptr = NULL;
2585
2586 for (i = 0; i < length; i++)
2587 {
2588 switch (*format_ptr++)
2589 {
2590 case 'e':
2591 if (last_ptr)
2592 copy_rtx_if_shared_1 (last_ptr);
2593 last_ptr = &XEXP (x, i);
2594 break;
2595
2596 case 'E':
2597 if (XVEC (x, i) != NULL)
2598 {
2599 int j;
2600 int len = XVECLEN (x, i);
2601
2602 /* Copy the vector iff I copied the rtx and the length
2603 is nonzero. */
2604 if (copied && len > 0)
2605 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2606
2607 /* Call recursively on all inside the vector. */
2608 for (j = 0; j < len; j++)
2609 {
2610 if (last_ptr)
2611 copy_rtx_if_shared_1 (last_ptr);
2612 last_ptr = &XVECEXP (x, i, j);
2613 }
2614 }
2615 break;
2616 }
2617 }
2618 *orig1 = x;
2619 if (last_ptr)
2620 {
2621 orig1 = last_ptr;
2622 goto repeat;
2623 }
2624 return;
2625 }
2626
2627 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2628 to look for shared sub-parts. */
2629
2630 void
2631 reset_used_flags (rtx x)
2632 {
2633 int i, j;
2634 enum rtx_code code;
2635 const char *format_ptr;
2636 int length;
2637
2638 /* Repeat is used to turn tail-recursion into iteration. */
2639 repeat:
2640 if (x == 0)
2641 return;
2642
2643 code = GET_CODE (x);
2644
2645 /* These types may be freely shared so we needn't do any resetting
2646 for them. */
2647
2648 switch (code)
2649 {
2650 case REG:
2651 case CONST_INT:
2652 case CONST_DOUBLE:
2653 case CONST_VECTOR:
2654 case SYMBOL_REF:
2655 case CODE_LABEL:
2656 case PC:
2657 case CC0:
2658 return;
2659
2660 case INSN:
2661 case JUMP_INSN:
2662 case CALL_INSN:
2663 case NOTE:
2664 case LABEL_REF:
2665 case BARRIER:
2666 /* The chain of insns is not being copied. */
2667 return;
2668
2669 default:
2670 break;
2671 }
2672
2673 RTX_FLAG (x, used) = 0;
2674
2675 format_ptr = GET_RTX_FORMAT (code);
2676 length = GET_RTX_LENGTH (code);
2677
2678 for (i = 0; i < length; i++)
2679 {
2680 switch (*format_ptr++)
2681 {
2682 case 'e':
2683 if (i == length-1)
2684 {
2685 x = XEXP (x, i);
2686 goto repeat;
2687 }
2688 reset_used_flags (XEXP (x, i));
2689 break;
2690
2691 case 'E':
2692 for (j = 0; j < XVECLEN (x, i); j++)
2693 reset_used_flags (XVECEXP (x, i, j));
2694 break;
2695 }
2696 }
2697 }
2698
2699 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2700 to look for shared sub-parts. */
2701
2702 void
2703 set_used_flags (rtx x)
2704 {
2705 int i, j;
2706 enum rtx_code code;
2707 const char *format_ptr;
2708
2709 if (x == 0)
2710 return;
2711
2712 code = GET_CODE (x);
2713
2714 /* These types may be freely shared so we needn't do any resetting
2715 for them. */
2716
2717 switch (code)
2718 {
2719 case REG:
2720 case CONST_INT:
2721 case CONST_DOUBLE:
2722 case CONST_VECTOR:
2723 case SYMBOL_REF:
2724 case CODE_LABEL:
2725 case PC:
2726 case CC0:
2727 return;
2728
2729 case INSN:
2730 case JUMP_INSN:
2731 case CALL_INSN:
2732 case NOTE:
2733 case LABEL_REF:
2734 case BARRIER:
2735 /* The chain of insns is not being copied. */
2736 return;
2737
2738 default:
2739 break;
2740 }
2741
2742 RTX_FLAG (x, used) = 1;
2743
2744 format_ptr = GET_RTX_FORMAT (code);
2745 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2746 {
2747 switch (*format_ptr++)
2748 {
2749 case 'e':
2750 set_used_flags (XEXP (x, i));
2751 break;
2752
2753 case 'E':
2754 for (j = 0; j < XVECLEN (x, i); j++)
2755 set_used_flags (XVECEXP (x, i, j));
2756 break;
2757 }
2758 }
2759 }
2760 \f
2761 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2762 Return X or the rtx for the pseudo reg the value of X was copied into.
2763 OTHER must be valid as a SET_DEST. */
2764
2765 rtx
2766 make_safe_from (rtx x, rtx other)
2767 {
2768 while (1)
2769 switch (GET_CODE (other))
2770 {
2771 case SUBREG:
2772 other = SUBREG_REG (other);
2773 break;
2774 case STRICT_LOW_PART:
2775 case SIGN_EXTEND:
2776 case ZERO_EXTEND:
2777 other = XEXP (other, 0);
2778 break;
2779 default:
2780 goto done;
2781 }
2782 done:
2783 if ((MEM_P (other)
2784 && ! CONSTANT_P (x)
2785 && !REG_P (x)
2786 && GET_CODE (x) != SUBREG)
2787 || (REG_P (other)
2788 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2789 || reg_mentioned_p (other, x))))
2790 {
2791 rtx temp = gen_reg_rtx (GET_MODE (x));
2792 emit_move_insn (temp, x);
2793 return temp;
2794 }
2795 return x;
2796 }
2797 \f
2798 /* Emission of insns (adding them to the doubly-linked list). */
2799
2800 /* Return the first insn of the current sequence or current function. */
2801
2802 rtx
2803 get_insns (void)
2804 {
2805 return first_insn;
2806 }
2807
2808 /* Specify a new insn as the first in the chain. */
2809
2810 void
2811 set_first_insn (rtx insn)
2812 {
2813 if (PREV_INSN (insn) != 0)
2814 abort ();
2815 first_insn = insn;
2816 }
2817
2818 /* Return the last insn emitted in current sequence or current function. */
2819
2820 rtx
2821 get_last_insn (void)
2822 {
2823 return last_insn;
2824 }
2825
2826 /* Specify a new insn as the last in the chain. */
2827
2828 void
2829 set_last_insn (rtx insn)
2830 {
2831 if (NEXT_INSN (insn) != 0)
2832 abort ();
2833 last_insn = insn;
2834 }
2835
2836 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2837
2838 rtx
2839 get_last_insn_anywhere (void)
2840 {
2841 struct sequence_stack *stack;
2842 if (last_insn)
2843 return last_insn;
2844 for (stack = seq_stack; stack; stack = stack->next)
2845 if (stack->last != 0)
2846 return stack->last;
2847 return 0;
2848 }
2849
2850 /* Return the first nonnote insn emitted in current sequence or current
2851 function. This routine looks inside SEQUENCEs. */
2852
2853 rtx
2854 get_first_nonnote_insn (void)
2855 {
2856 rtx insn = first_insn;
2857
2858 while (insn)
2859 {
2860 insn = next_insn (insn);
2861 if (insn == 0 || !NOTE_P (insn))
2862 break;
2863 }
2864
2865 return insn;
2866 }
2867
2868 /* Return the last nonnote insn emitted in current sequence or current
2869 function. This routine looks inside SEQUENCEs. */
2870
2871 rtx
2872 get_last_nonnote_insn (void)
2873 {
2874 rtx insn = last_insn;
2875
2876 while (insn)
2877 {
2878 insn = previous_insn (insn);
2879 if (insn == 0 || !NOTE_P (insn))
2880 break;
2881 }
2882
2883 return insn;
2884 }
2885
2886 /* Return a number larger than any instruction's uid in this function. */
2887
2888 int
2889 get_max_uid (void)
2890 {
2891 return cur_insn_uid;
2892 }
2893
2894 /* Renumber instructions so that no instruction UIDs are wasted. */
2895
2896 void
2897 renumber_insns (FILE *stream)
2898 {
2899 rtx insn;
2900
2901 /* If we're not supposed to renumber instructions, don't. */
2902 if (!flag_renumber_insns)
2903 return;
2904
2905 /* If there aren't that many instructions, then it's not really
2906 worth renumbering them. */
2907 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2908 return;
2909
2910 cur_insn_uid = 1;
2911
2912 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2913 {
2914 if (stream)
2915 fprintf (stream, "Renumbering insn %d to %d\n",
2916 INSN_UID (insn), cur_insn_uid);
2917 INSN_UID (insn) = cur_insn_uid++;
2918 }
2919 }
2920 \f
2921 /* Return the next insn. If it is a SEQUENCE, return the first insn
2922 of the sequence. */
2923
2924 rtx
2925 next_insn (rtx insn)
2926 {
2927 if (insn)
2928 {
2929 insn = NEXT_INSN (insn);
2930 if (insn && NONJUMP_INSN_P (insn)
2931 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2932 insn = XVECEXP (PATTERN (insn), 0, 0);
2933 }
2934
2935 return insn;
2936 }
2937
2938 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2939 of the sequence. */
2940
2941 rtx
2942 previous_insn (rtx insn)
2943 {
2944 if (insn)
2945 {
2946 insn = PREV_INSN (insn);
2947 if (insn && NONJUMP_INSN_P (insn)
2948 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2949 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2950 }
2951
2952 return insn;
2953 }
2954
2955 /* Return the next insn after INSN that is not a NOTE. This routine does not
2956 look inside SEQUENCEs. */
2957
2958 rtx
2959 next_nonnote_insn (rtx insn)
2960 {
2961 while (insn)
2962 {
2963 insn = NEXT_INSN (insn);
2964 if (insn == 0 || !NOTE_P (insn))
2965 break;
2966 }
2967
2968 return insn;
2969 }
2970
2971 /* Return the previous insn before INSN that is not a NOTE. This routine does
2972 not look inside SEQUENCEs. */
2973
2974 rtx
2975 prev_nonnote_insn (rtx insn)
2976 {
2977 while (insn)
2978 {
2979 insn = PREV_INSN (insn);
2980 if (insn == 0 || !NOTE_P (insn))
2981 break;
2982 }
2983
2984 return insn;
2985 }
2986
2987 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2988 or 0, if there is none. This routine does not look inside
2989 SEQUENCEs. */
2990
2991 rtx
2992 next_real_insn (rtx insn)
2993 {
2994 while (insn)
2995 {
2996 insn = NEXT_INSN (insn);
2997 if (insn == 0 || INSN_P (insn))
2998 break;
2999 }
3000
3001 return insn;
3002 }
3003
3004 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3005 or 0, if there is none. This routine does not look inside
3006 SEQUENCEs. */
3007
3008 rtx
3009 prev_real_insn (rtx insn)
3010 {
3011 while (insn)
3012 {
3013 insn = PREV_INSN (insn);
3014 if (insn == 0 || INSN_P (insn))
3015 break;
3016 }
3017
3018 return insn;
3019 }
3020
3021 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3022 This routine does not look inside SEQUENCEs. */
3023
3024 rtx
3025 last_call_insn (void)
3026 {
3027 rtx insn;
3028
3029 for (insn = get_last_insn ();
3030 insn && !CALL_P (insn);
3031 insn = PREV_INSN (insn))
3032 ;
3033
3034 return insn;
3035 }
3036
3037 /* Find the next insn after INSN that really does something. This routine
3038 does not look inside SEQUENCEs. Until reload has completed, this is the
3039 same as next_real_insn. */
3040
3041 int
3042 active_insn_p (rtx insn)
3043 {
3044 return (CALL_P (insn) || JUMP_P (insn)
3045 || (NONJUMP_INSN_P (insn)
3046 && (! reload_completed
3047 || (GET_CODE (PATTERN (insn)) != USE
3048 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3049 }
3050
3051 rtx
3052 next_active_insn (rtx insn)
3053 {
3054 while (insn)
3055 {
3056 insn = NEXT_INSN (insn);
3057 if (insn == 0 || active_insn_p (insn))
3058 break;
3059 }
3060
3061 return insn;
3062 }
3063
3064 /* Find the last insn before INSN that really does something. This routine
3065 does not look inside SEQUENCEs. Until reload has completed, this is the
3066 same as prev_real_insn. */
3067
3068 rtx
3069 prev_active_insn (rtx insn)
3070 {
3071 while (insn)
3072 {
3073 insn = PREV_INSN (insn);
3074 if (insn == 0 || active_insn_p (insn))
3075 break;
3076 }
3077
3078 return insn;
3079 }
3080
3081 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3082
3083 rtx
3084 next_label (rtx insn)
3085 {
3086 while (insn)
3087 {
3088 insn = NEXT_INSN (insn);
3089 if (insn == 0 || LABEL_P (insn))
3090 break;
3091 }
3092
3093 return insn;
3094 }
3095
3096 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3097
3098 rtx
3099 prev_label (rtx insn)
3100 {
3101 while (insn)
3102 {
3103 insn = PREV_INSN (insn);
3104 if (insn == 0 || LABEL_P (insn))
3105 break;
3106 }
3107
3108 return insn;
3109 }
3110
3111 /* Return the last label to mark the same position as LABEL. Return null
3112 if LABEL itself is null. */
3113
3114 rtx
3115 skip_consecutive_labels (rtx label)
3116 {
3117 rtx insn;
3118
3119 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3120 if (LABEL_P (insn))
3121 label = insn;
3122
3123 return label;
3124 }
3125 \f
3126 #ifdef HAVE_cc0
3127 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3128 and REG_CC_USER notes so we can find it. */
3129
3130 void
3131 link_cc0_insns (rtx insn)
3132 {
3133 rtx user = next_nonnote_insn (insn);
3134
3135 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3136 user = XVECEXP (PATTERN (user), 0, 0);
3137
3138 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3139 REG_NOTES (user));
3140 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3141 }
3142
3143 /* Return the next insn that uses CC0 after INSN, which is assumed to
3144 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3145 applied to the result of this function should yield INSN).
3146
3147 Normally, this is simply the next insn. However, if a REG_CC_USER note
3148 is present, it contains the insn that uses CC0.
3149
3150 Return 0 if we can't find the insn. */
3151
3152 rtx
3153 next_cc0_user (rtx insn)
3154 {
3155 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3156
3157 if (note)
3158 return XEXP (note, 0);
3159
3160 insn = next_nonnote_insn (insn);
3161 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3162 insn = XVECEXP (PATTERN (insn), 0, 0);
3163
3164 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3165 return insn;
3166
3167 return 0;
3168 }
3169
3170 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3171 note, it is the previous insn. */
3172
3173 rtx
3174 prev_cc0_setter (rtx insn)
3175 {
3176 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3177
3178 if (note)
3179 return XEXP (note, 0);
3180
3181 insn = prev_nonnote_insn (insn);
3182 if (! sets_cc0_p (PATTERN (insn)))
3183 abort ();
3184
3185 return insn;
3186 }
3187 #endif
3188
3189 /* Increment the label uses for all labels present in rtx. */
3190
3191 static void
3192 mark_label_nuses (rtx x)
3193 {
3194 enum rtx_code code;
3195 int i, j;
3196 const char *fmt;
3197
3198 code = GET_CODE (x);
3199 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3200 LABEL_NUSES (XEXP (x, 0))++;
3201
3202 fmt = GET_RTX_FORMAT (code);
3203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3204 {
3205 if (fmt[i] == 'e')
3206 mark_label_nuses (XEXP (x, i));
3207 else if (fmt[i] == 'E')
3208 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3209 mark_label_nuses (XVECEXP (x, i, j));
3210 }
3211 }
3212
3213 \f
3214 /* Try splitting insns that can be split for better scheduling.
3215 PAT is the pattern which might split.
3216 TRIAL is the insn providing PAT.
3217 LAST is nonzero if we should return the last insn of the sequence produced.
3218
3219 If this routine succeeds in splitting, it returns the first or last
3220 replacement insn depending on the value of LAST. Otherwise, it
3221 returns TRIAL. If the insn to be returned can be split, it will be. */
3222
3223 rtx
3224 try_split (rtx pat, rtx trial, int last)
3225 {
3226 rtx before = PREV_INSN (trial);
3227 rtx after = NEXT_INSN (trial);
3228 int has_barrier = 0;
3229 rtx tem;
3230 rtx note, seq;
3231 int probability;
3232 rtx insn_last, insn;
3233 int njumps = 0;
3234
3235 if (any_condjump_p (trial)
3236 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3237 split_branch_probability = INTVAL (XEXP (note, 0));
3238 probability = split_branch_probability;
3239
3240 seq = split_insns (pat, trial);
3241
3242 split_branch_probability = -1;
3243
3244 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3245 We may need to handle this specially. */
3246 if (after && BARRIER_P (after))
3247 {
3248 has_barrier = 1;
3249 after = NEXT_INSN (after);
3250 }
3251
3252 if (!seq)
3253 return trial;
3254
3255 /* Avoid infinite loop if any insn of the result matches
3256 the original pattern. */
3257 insn_last = seq;
3258 while (1)
3259 {
3260 if (INSN_P (insn_last)
3261 && rtx_equal_p (PATTERN (insn_last), pat))
3262 return trial;
3263 if (!NEXT_INSN (insn_last))
3264 break;
3265 insn_last = NEXT_INSN (insn_last);
3266 }
3267
3268 /* Mark labels. */
3269 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3270 {
3271 if (JUMP_P (insn))
3272 {
3273 mark_jump_label (PATTERN (insn), insn, 0);
3274 njumps++;
3275 if (probability != -1
3276 && any_condjump_p (insn)
3277 && !find_reg_note (insn, REG_BR_PROB, 0))
3278 {
3279 /* We can preserve the REG_BR_PROB notes only if exactly
3280 one jump is created, otherwise the machine description
3281 is responsible for this step using
3282 split_branch_probability variable. */
3283 if (njumps != 1)
3284 abort ();
3285 REG_NOTES (insn)
3286 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3287 GEN_INT (probability),
3288 REG_NOTES (insn));
3289 }
3290 }
3291 }
3292
3293 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3294 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3295 if (CALL_P (trial))
3296 {
3297 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3298 if (CALL_P (insn))
3299 {
3300 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3301 while (*p)
3302 p = &XEXP (*p, 1);
3303 *p = CALL_INSN_FUNCTION_USAGE (trial);
3304 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3305 }
3306 }
3307
3308 /* Copy notes, particularly those related to the CFG. */
3309 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3310 {
3311 switch (REG_NOTE_KIND (note))
3312 {
3313 case REG_EH_REGION:
3314 insn = insn_last;
3315 while (insn != NULL_RTX)
3316 {
3317 if (CALL_P (insn)
3318 || (flag_non_call_exceptions
3319 && may_trap_p (PATTERN (insn))))
3320 REG_NOTES (insn)
3321 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3322 XEXP (note, 0),
3323 REG_NOTES (insn));
3324 insn = PREV_INSN (insn);
3325 }
3326 break;
3327
3328 case REG_NORETURN:
3329 case REG_SETJMP:
3330 case REG_ALWAYS_RETURN:
3331 insn = insn_last;
3332 while (insn != NULL_RTX)
3333 {
3334 if (CALL_P (insn))
3335 REG_NOTES (insn)
3336 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3337 XEXP (note, 0),
3338 REG_NOTES (insn));
3339 insn = PREV_INSN (insn);
3340 }
3341 break;
3342
3343 case REG_NON_LOCAL_GOTO:
3344 insn = insn_last;
3345 while (insn != NULL_RTX)
3346 {
3347 if (JUMP_P (insn))
3348 REG_NOTES (insn)
3349 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3350 XEXP (note, 0),
3351 REG_NOTES (insn));
3352 insn = PREV_INSN (insn);
3353 }
3354 break;
3355
3356 default:
3357 break;
3358 }
3359 }
3360
3361 /* If there are LABELS inside the split insns increment the
3362 usage count so we don't delete the label. */
3363 if (NONJUMP_INSN_P (trial))
3364 {
3365 insn = insn_last;
3366 while (insn != NULL_RTX)
3367 {
3368 if (NONJUMP_INSN_P (insn))
3369 mark_label_nuses (PATTERN (insn));
3370
3371 insn = PREV_INSN (insn);
3372 }
3373 }
3374
3375 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3376
3377 delete_insn (trial);
3378 if (has_barrier)
3379 emit_barrier_after (tem);
3380
3381 /* Recursively call try_split for each new insn created; by the
3382 time control returns here that insn will be fully split, so
3383 set LAST and continue from the insn after the one returned.
3384 We can't use next_active_insn here since AFTER may be a note.
3385 Ignore deleted insns, which can be occur if not optimizing. */
3386 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3387 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3388 tem = try_split (PATTERN (tem), tem, 1);
3389
3390 /* Return either the first or the last insn, depending on which was
3391 requested. */
3392 return last
3393 ? (after ? PREV_INSN (after) : last_insn)
3394 : NEXT_INSN (before);
3395 }
3396 \f
3397 /* Make and return an INSN rtx, initializing all its slots.
3398 Store PATTERN in the pattern slots. */
3399
3400 rtx
3401 make_insn_raw (rtx pattern)
3402 {
3403 rtx insn;
3404
3405 insn = rtx_alloc (INSN);
3406
3407 INSN_UID (insn) = cur_insn_uid++;
3408 PATTERN (insn) = pattern;
3409 INSN_CODE (insn) = -1;
3410 LOG_LINKS (insn) = NULL;
3411 REG_NOTES (insn) = NULL;
3412 INSN_LOCATOR (insn) = 0;
3413 BLOCK_FOR_INSN (insn) = NULL;
3414
3415 #ifdef ENABLE_RTL_CHECKING
3416 if (insn
3417 && INSN_P (insn)
3418 && (returnjump_p (insn)
3419 || (GET_CODE (insn) == SET
3420 && SET_DEST (insn) == pc_rtx)))
3421 {
3422 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3423 debug_rtx (insn);
3424 }
3425 #endif
3426
3427 return insn;
3428 }
3429
3430 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3431
3432 static rtx
3433 make_jump_insn_raw (rtx pattern)
3434 {
3435 rtx insn;
3436
3437 insn = rtx_alloc (JUMP_INSN);
3438 INSN_UID (insn) = cur_insn_uid++;
3439
3440 PATTERN (insn) = pattern;
3441 INSN_CODE (insn) = -1;
3442 LOG_LINKS (insn) = NULL;
3443 REG_NOTES (insn) = NULL;
3444 JUMP_LABEL (insn) = NULL;
3445 INSN_LOCATOR (insn) = 0;
3446 BLOCK_FOR_INSN (insn) = NULL;
3447
3448 return insn;
3449 }
3450
3451 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3452
3453 static rtx
3454 make_call_insn_raw (rtx pattern)
3455 {
3456 rtx insn;
3457
3458 insn = rtx_alloc (CALL_INSN);
3459 INSN_UID (insn) = cur_insn_uid++;
3460
3461 PATTERN (insn) = pattern;
3462 INSN_CODE (insn) = -1;
3463 LOG_LINKS (insn) = NULL;
3464 REG_NOTES (insn) = NULL;
3465 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3466 INSN_LOCATOR (insn) = 0;
3467 BLOCK_FOR_INSN (insn) = NULL;
3468
3469 return insn;
3470 }
3471 \f
3472 /* Add INSN to the end of the doubly-linked list.
3473 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3474
3475 void
3476 add_insn (rtx insn)
3477 {
3478 PREV_INSN (insn) = last_insn;
3479 NEXT_INSN (insn) = 0;
3480
3481 if (NULL != last_insn)
3482 NEXT_INSN (last_insn) = insn;
3483
3484 if (NULL == first_insn)
3485 first_insn = insn;
3486
3487 last_insn = insn;
3488 }
3489
3490 /* Add INSN into the doubly-linked list after insn AFTER. This and
3491 the next should be the only functions called to insert an insn once
3492 delay slots have been filled since only they know how to update a
3493 SEQUENCE. */
3494
3495 void
3496 add_insn_after (rtx insn, rtx after)
3497 {
3498 rtx next = NEXT_INSN (after);
3499 basic_block bb;
3500
3501 if (optimize && INSN_DELETED_P (after))
3502 abort ();
3503
3504 NEXT_INSN (insn) = next;
3505 PREV_INSN (insn) = after;
3506
3507 if (next)
3508 {
3509 PREV_INSN (next) = insn;
3510 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3511 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3512 }
3513 else if (last_insn == after)
3514 last_insn = insn;
3515 else
3516 {
3517 struct sequence_stack *stack = seq_stack;
3518 /* Scan all pending sequences too. */
3519 for (; stack; stack = stack->next)
3520 if (after == stack->last)
3521 {
3522 stack->last = insn;
3523 break;
3524 }
3525
3526 if (stack == 0)
3527 abort ();
3528 }
3529
3530 if (!BARRIER_P (after)
3531 && !BARRIER_P (insn)
3532 && (bb = BLOCK_FOR_INSN (after)))
3533 {
3534 set_block_for_insn (insn, bb);
3535 if (INSN_P (insn))
3536 bb->flags |= BB_DIRTY;
3537 /* Should not happen as first in the BB is always
3538 either NOTE or LABEL. */
3539 if (BB_END (bb) == after
3540 /* Avoid clobbering of structure when creating new BB. */
3541 && !BARRIER_P (insn)
3542 && (!NOTE_P (insn)
3543 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3544 BB_END (bb) = insn;
3545 }
3546
3547 NEXT_INSN (after) = insn;
3548 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3549 {
3550 rtx sequence = PATTERN (after);
3551 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3552 }
3553 }
3554
3555 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3556 the previous should be the only functions called to insert an insn once
3557 delay slots have been filled since only they know how to update a
3558 SEQUENCE. */
3559
3560 void
3561 add_insn_before (rtx insn, rtx before)
3562 {
3563 rtx prev = PREV_INSN (before);
3564 basic_block bb;
3565
3566 if (optimize && INSN_DELETED_P (before))
3567 abort ();
3568
3569 PREV_INSN (insn) = prev;
3570 NEXT_INSN (insn) = before;
3571
3572 if (prev)
3573 {
3574 NEXT_INSN (prev) = insn;
3575 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3576 {
3577 rtx sequence = PATTERN (prev);
3578 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3579 }
3580 }
3581 else if (first_insn == before)
3582 first_insn = insn;
3583 else
3584 {
3585 struct sequence_stack *stack = seq_stack;
3586 /* Scan all pending sequences too. */
3587 for (; stack; stack = stack->next)
3588 if (before == stack->first)
3589 {
3590 stack->first = insn;
3591 break;
3592 }
3593
3594 if (stack == 0)
3595 abort ();
3596 }
3597
3598 if (!BARRIER_P (before)
3599 && !BARRIER_P (insn)
3600 && (bb = BLOCK_FOR_INSN (before)))
3601 {
3602 set_block_for_insn (insn, bb);
3603 if (INSN_P (insn))
3604 bb->flags |= BB_DIRTY;
3605 /* Should not happen as first in the BB is always
3606 either NOTE or LABEl. */
3607 if (BB_HEAD (bb) == insn
3608 /* Avoid clobbering of structure when creating new BB. */
3609 && !BARRIER_P (insn)
3610 && (!NOTE_P (insn)
3611 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3612 abort ();
3613 }
3614
3615 PREV_INSN (before) = insn;
3616 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3617 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3618 }
3619
3620 /* Remove an insn from its doubly-linked list. This function knows how
3621 to handle sequences. */
3622 void
3623 remove_insn (rtx insn)
3624 {
3625 rtx next = NEXT_INSN (insn);
3626 rtx prev = PREV_INSN (insn);
3627 basic_block bb;
3628
3629 if (prev)
3630 {
3631 NEXT_INSN (prev) = next;
3632 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3633 {
3634 rtx sequence = PATTERN (prev);
3635 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3636 }
3637 }
3638 else if (first_insn == insn)
3639 first_insn = next;
3640 else
3641 {
3642 struct sequence_stack *stack = seq_stack;
3643 /* Scan all pending sequences too. */
3644 for (; stack; stack = stack->next)
3645 if (insn == stack->first)
3646 {
3647 stack->first = next;
3648 break;
3649 }
3650
3651 if (stack == 0)
3652 abort ();
3653 }
3654
3655 if (next)
3656 {
3657 PREV_INSN (next) = prev;
3658 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3659 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3660 }
3661 else if (last_insn == insn)
3662 last_insn = prev;
3663 else
3664 {
3665 struct sequence_stack *stack = seq_stack;
3666 /* Scan all pending sequences too. */
3667 for (; stack; stack = stack->next)
3668 if (insn == stack->last)
3669 {
3670 stack->last = prev;
3671 break;
3672 }
3673
3674 if (stack == 0)
3675 abort ();
3676 }
3677 if (!BARRIER_P (insn)
3678 && (bb = BLOCK_FOR_INSN (insn)))
3679 {
3680 if (INSN_P (insn))
3681 bb->flags |= BB_DIRTY;
3682 if (BB_HEAD (bb) == insn)
3683 {
3684 /* Never ever delete the basic block note without deleting whole
3685 basic block. */
3686 if (NOTE_P (insn))
3687 abort ();
3688 BB_HEAD (bb) = next;
3689 }
3690 if (BB_END (bb) == insn)
3691 BB_END (bb) = prev;
3692 }
3693 }
3694
3695 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3696
3697 void
3698 add_function_usage_to (rtx call_insn, rtx call_fusage)
3699 {
3700 if (! call_insn || !CALL_P (call_insn))
3701 abort ();
3702
3703 /* Put the register usage information on the CALL. If there is already
3704 some usage information, put ours at the end. */
3705 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3706 {
3707 rtx link;
3708
3709 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3710 link = XEXP (link, 1))
3711 ;
3712
3713 XEXP (link, 1) = call_fusage;
3714 }
3715 else
3716 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3717 }
3718
3719 /* Delete all insns made since FROM.
3720 FROM becomes the new last instruction. */
3721
3722 void
3723 delete_insns_since (rtx from)
3724 {
3725 if (from == 0)
3726 first_insn = 0;
3727 else
3728 NEXT_INSN (from) = 0;
3729 last_insn = from;
3730 }
3731
3732 /* This function is deprecated, please use sequences instead.
3733
3734 Move a consecutive bunch of insns to a different place in the chain.
3735 The insns to be moved are those between FROM and TO.
3736 They are moved to a new position after the insn AFTER.
3737 AFTER must not be FROM or TO or any insn in between.
3738
3739 This function does not know about SEQUENCEs and hence should not be
3740 called after delay-slot filling has been done. */
3741
3742 void
3743 reorder_insns_nobb (rtx from, rtx to, rtx after)
3744 {
3745 /* Splice this bunch out of where it is now. */
3746 if (PREV_INSN (from))
3747 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3748 if (NEXT_INSN (to))
3749 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3750 if (last_insn == to)
3751 last_insn = PREV_INSN (from);
3752 if (first_insn == from)
3753 first_insn = NEXT_INSN (to);
3754
3755 /* Make the new neighbors point to it and it to them. */
3756 if (NEXT_INSN (after))
3757 PREV_INSN (NEXT_INSN (after)) = to;
3758
3759 NEXT_INSN (to) = NEXT_INSN (after);
3760 PREV_INSN (from) = after;
3761 NEXT_INSN (after) = from;
3762 if (after == last_insn)
3763 last_insn = to;
3764 }
3765
3766 /* Same as function above, but take care to update BB boundaries. */
3767 void
3768 reorder_insns (rtx from, rtx to, rtx after)
3769 {
3770 rtx prev = PREV_INSN (from);
3771 basic_block bb, bb2;
3772
3773 reorder_insns_nobb (from, to, after);
3774
3775 if (!BARRIER_P (after)
3776 && (bb = BLOCK_FOR_INSN (after)))
3777 {
3778 rtx x;
3779 bb->flags |= BB_DIRTY;
3780
3781 if (!BARRIER_P (from)
3782 && (bb2 = BLOCK_FOR_INSN (from)))
3783 {
3784 if (BB_END (bb2) == to)
3785 BB_END (bb2) = prev;
3786 bb2->flags |= BB_DIRTY;
3787 }
3788
3789 if (BB_END (bb) == after)
3790 BB_END (bb) = to;
3791
3792 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3793 if (!BARRIER_P (x))
3794 set_block_for_insn (x, bb);
3795 }
3796 }
3797
3798 /* Return the line note insn preceding INSN. */
3799
3800 static rtx
3801 find_line_note (rtx insn)
3802 {
3803 if (no_line_numbers)
3804 return 0;
3805
3806 for (; insn; insn = PREV_INSN (insn))
3807 if (NOTE_P (insn)
3808 && NOTE_LINE_NUMBER (insn) >= 0)
3809 break;
3810
3811 return insn;
3812 }
3813
3814 /* Remove unnecessary notes from the instruction stream. */
3815
3816 void
3817 remove_unnecessary_notes (void)
3818 {
3819 rtx block_stack = NULL_RTX;
3820 rtx eh_stack = NULL_RTX;
3821 rtx insn;
3822 rtx next;
3823 rtx tmp;
3824
3825 /* We must not remove the first instruction in the function because
3826 the compiler depends on the first instruction being a note. */
3827 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3828 {
3829 /* Remember what's next. */
3830 next = NEXT_INSN (insn);
3831
3832 /* We're only interested in notes. */
3833 if (!NOTE_P (insn))
3834 continue;
3835
3836 switch (NOTE_LINE_NUMBER (insn))
3837 {
3838 case NOTE_INSN_DELETED:
3839 case NOTE_INSN_LOOP_END_TOP_COND:
3840 remove_insn (insn);
3841 break;
3842
3843 case NOTE_INSN_EH_REGION_BEG:
3844 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3845 break;
3846
3847 case NOTE_INSN_EH_REGION_END:
3848 /* Too many end notes. */
3849 if (eh_stack == NULL_RTX)
3850 abort ();
3851 /* Mismatched nesting. */
3852 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3853 abort ();
3854 tmp = eh_stack;
3855 eh_stack = XEXP (eh_stack, 1);
3856 free_INSN_LIST_node (tmp);
3857 break;
3858
3859 case NOTE_INSN_BLOCK_BEG:
3860 /* By now, all notes indicating lexical blocks should have
3861 NOTE_BLOCK filled in. */
3862 if (NOTE_BLOCK (insn) == NULL_TREE)
3863 abort ();
3864 block_stack = alloc_INSN_LIST (insn, block_stack);
3865 break;
3866
3867 case NOTE_INSN_BLOCK_END:
3868 /* Too many end notes. */
3869 if (block_stack == NULL_RTX)
3870 abort ();
3871 /* Mismatched nesting. */
3872 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3873 abort ();
3874 tmp = block_stack;
3875 block_stack = XEXP (block_stack, 1);
3876 free_INSN_LIST_node (tmp);
3877
3878 /* Scan back to see if there are any non-note instructions
3879 between INSN and the beginning of this block. If not,
3880 then there is no PC range in the generated code that will
3881 actually be in this block, so there's no point in
3882 remembering the existence of the block. */
3883 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3884 {
3885 /* This block contains a real instruction. Note that we
3886 don't include labels; if the only thing in the block
3887 is a label, then there are still no PC values that
3888 lie within the block. */
3889 if (INSN_P (tmp))
3890 break;
3891
3892 /* We're only interested in NOTEs. */
3893 if (!NOTE_P (tmp))
3894 continue;
3895
3896 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3897 {
3898 /* We just verified that this BLOCK matches us with
3899 the block_stack check above. Never delete the
3900 BLOCK for the outermost scope of the function; we
3901 can refer to names from that scope even if the
3902 block notes are messed up. */
3903 if (! is_body_block (NOTE_BLOCK (insn))
3904 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3905 {
3906 remove_insn (tmp);
3907 remove_insn (insn);
3908 }
3909 break;
3910 }
3911 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3912 /* There's a nested block. We need to leave the
3913 current block in place since otherwise the debugger
3914 wouldn't be able to show symbols from our block in
3915 the nested block. */
3916 break;
3917 }
3918 }
3919 }
3920
3921 /* Too many begin notes. */
3922 if (block_stack || eh_stack)
3923 abort ();
3924 }
3925
3926 \f
3927 /* Emit insn(s) of given code and pattern
3928 at a specified place within the doubly-linked list.
3929
3930 All of the emit_foo global entry points accept an object
3931 X which is either an insn list or a PATTERN of a single
3932 instruction.
3933
3934 There are thus a few canonical ways to generate code and
3935 emit it at a specific place in the instruction stream. For
3936 example, consider the instruction named SPOT and the fact that
3937 we would like to emit some instructions before SPOT. We might
3938 do it like this:
3939
3940 start_sequence ();
3941 ... emit the new instructions ...
3942 insns_head = get_insns ();
3943 end_sequence ();
3944
3945 emit_insn_before (insns_head, SPOT);
3946
3947 It used to be common to generate SEQUENCE rtl instead, but that
3948 is a relic of the past which no longer occurs. The reason is that
3949 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3950 generated would almost certainly die right after it was created. */
3951
3952 /* Make X be output before the instruction BEFORE. */
3953
3954 rtx
3955 emit_insn_before (rtx x, rtx before)
3956 {
3957 rtx last = before;
3958 rtx insn;
3959
3960 #ifdef ENABLE_RTL_CHECKING
3961 if (before == NULL_RTX)
3962 abort ();
3963 #endif
3964
3965 if (x == NULL_RTX)
3966 return last;
3967
3968 switch (GET_CODE (x))
3969 {
3970 case INSN:
3971 case JUMP_INSN:
3972 case CALL_INSN:
3973 case CODE_LABEL:
3974 case BARRIER:
3975 case NOTE:
3976 insn = x;
3977 while (insn)
3978 {
3979 rtx next = NEXT_INSN (insn);
3980 add_insn_before (insn, before);
3981 last = insn;
3982 insn = next;
3983 }
3984 break;
3985
3986 #ifdef ENABLE_RTL_CHECKING
3987 case SEQUENCE:
3988 abort ();
3989 break;
3990 #endif
3991
3992 default:
3993 last = make_insn_raw (x);
3994 add_insn_before (last, before);
3995 break;
3996 }
3997
3998 return last;
3999 }
4000
4001 /* Make an instruction with body X and code JUMP_INSN
4002 and output it before the instruction BEFORE. */
4003
4004 rtx
4005 emit_jump_insn_before (rtx x, rtx before)
4006 {
4007 rtx insn, last = NULL_RTX;
4008
4009 #ifdef ENABLE_RTL_CHECKING
4010 if (before == NULL_RTX)
4011 abort ();
4012 #endif
4013
4014 switch (GET_CODE (x))
4015 {
4016 case INSN:
4017 case JUMP_INSN:
4018 case CALL_INSN:
4019 case CODE_LABEL:
4020 case BARRIER:
4021 case NOTE:
4022 insn = x;
4023 while (insn)
4024 {
4025 rtx next = NEXT_INSN (insn);
4026 add_insn_before (insn, before);
4027 last = insn;
4028 insn = next;
4029 }
4030 break;
4031
4032 #ifdef ENABLE_RTL_CHECKING
4033 case SEQUENCE:
4034 abort ();
4035 break;
4036 #endif
4037
4038 default:
4039 last = make_jump_insn_raw (x);
4040 add_insn_before (last, before);
4041 break;
4042 }
4043
4044 return last;
4045 }
4046
4047 /* Make an instruction with body X and code CALL_INSN
4048 and output it before the instruction BEFORE. */
4049
4050 rtx
4051 emit_call_insn_before (rtx x, rtx before)
4052 {
4053 rtx last = NULL_RTX, insn;
4054
4055 #ifdef ENABLE_RTL_CHECKING
4056 if (before == NULL_RTX)
4057 abort ();
4058 #endif
4059
4060 switch (GET_CODE (x))
4061 {
4062 case INSN:
4063 case JUMP_INSN:
4064 case CALL_INSN:
4065 case CODE_LABEL:
4066 case BARRIER:
4067 case NOTE:
4068 insn = x;
4069 while (insn)
4070 {
4071 rtx next = NEXT_INSN (insn);
4072 add_insn_before (insn, before);
4073 last = insn;
4074 insn = next;
4075 }
4076 break;
4077
4078 #ifdef ENABLE_RTL_CHECKING
4079 case SEQUENCE:
4080 abort ();
4081 break;
4082 #endif
4083
4084 default:
4085 last = make_call_insn_raw (x);
4086 add_insn_before (last, before);
4087 break;
4088 }
4089
4090 return last;
4091 }
4092
4093 /* Make an insn of code BARRIER
4094 and output it before the insn BEFORE. */
4095
4096 rtx
4097 emit_barrier_before (rtx before)
4098 {
4099 rtx insn = rtx_alloc (BARRIER);
4100
4101 INSN_UID (insn) = cur_insn_uid++;
4102
4103 add_insn_before (insn, before);
4104 return insn;
4105 }
4106
4107 /* Emit the label LABEL before the insn BEFORE. */
4108
4109 rtx
4110 emit_label_before (rtx label, rtx before)
4111 {
4112 /* This can be called twice for the same label as a result of the
4113 confusion that follows a syntax error! So make it harmless. */
4114 if (INSN_UID (label) == 0)
4115 {
4116 INSN_UID (label) = cur_insn_uid++;
4117 add_insn_before (label, before);
4118 }
4119
4120 return label;
4121 }
4122
4123 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4124
4125 rtx
4126 emit_note_before (int subtype, rtx before)
4127 {
4128 rtx note = rtx_alloc (NOTE);
4129 INSN_UID (note) = cur_insn_uid++;
4130 #ifndef USE_MAPPED_LOCATION
4131 NOTE_SOURCE_FILE (note) = 0;
4132 #endif
4133 NOTE_LINE_NUMBER (note) = subtype;
4134 BLOCK_FOR_INSN (note) = NULL;
4135
4136 add_insn_before (note, before);
4137 return note;
4138 }
4139 \f
4140 /* Helper for emit_insn_after, handles lists of instructions
4141 efficiently. */
4142
4143 static rtx emit_insn_after_1 (rtx, rtx);
4144
4145 static rtx
4146 emit_insn_after_1 (rtx first, rtx after)
4147 {
4148 rtx last;
4149 rtx after_after;
4150 basic_block bb;
4151
4152 if (!BARRIER_P (after)
4153 && (bb = BLOCK_FOR_INSN (after)))
4154 {
4155 bb->flags |= BB_DIRTY;
4156 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4157 if (!BARRIER_P (last))
4158 set_block_for_insn (last, bb);
4159 if (!BARRIER_P (last))
4160 set_block_for_insn (last, bb);
4161 if (BB_END (bb) == after)
4162 BB_END (bb) = last;
4163 }
4164 else
4165 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4166 continue;
4167
4168 after_after = NEXT_INSN (after);
4169
4170 NEXT_INSN (after) = first;
4171 PREV_INSN (first) = after;
4172 NEXT_INSN (last) = after_after;
4173 if (after_after)
4174 PREV_INSN (after_after) = last;
4175
4176 if (after == last_insn)
4177 last_insn = last;
4178 return last;
4179 }
4180
4181 /* Make X be output after the insn AFTER. */
4182
4183 rtx
4184 emit_insn_after (rtx x, rtx after)
4185 {
4186 rtx last = after;
4187
4188 #ifdef ENABLE_RTL_CHECKING
4189 if (after == NULL_RTX)
4190 abort ();
4191 #endif
4192
4193 if (x == NULL_RTX)
4194 return last;
4195
4196 switch (GET_CODE (x))
4197 {
4198 case INSN:
4199 case JUMP_INSN:
4200 case CALL_INSN:
4201 case CODE_LABEL:
4202 case BARRIER:
4203 case NOTE:
4204 last = emit_insn_after_1 (x, after);
4205 break;
4206
4207 #ifdef ENABLE_RTL_CHECKING
4208 case SEQUENCE:
4209 abort ();
4210 break;
4211 #endif
4212
4213 default:
4214 last = make_insn_raw (x);
4215 add_insn_after (last, after);
4216 break;
4217 }
4218
4219 return last;
4220 }
4221
4222 /* Similar to emit_insn_after, except that line notes are to be inserted so
4223 as to act as if this insn were at FROM. */
4224
4225 void
4226 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4227 {
4228 rtx from_line = find_line_note (from);
4229 rtx after_line = find_line_note (after);
4230 rtx insn = emit_insn_after (x, after);
4231
4232 if (from_line)
4233 emit_note_copy_after (from_line, after);
4234
4235 if (after_line)
4236 emit_note_copy_after (after_line, insn);
4237 }
4238
4239 /* Make an insn of code JUMP_INSN with body X
4240 and output it after the insn AFTER. */
4241
4242 rtx
4243 emit_jump_insn_after (rtx x, rtx after)
4244 {
4245 rtx last;
4246
4247 #ifdef ENABLE_RTL_CHECKING
4248 if (after == NULL_RTX)
4249 abort ();
4250 #endif
4251
4252 switch (GET_CODE (x))
4253 {
4254 case INSN:
4255 case JUMP_INSN:
4256 case CALL_INSN:
4257 case CODE_LABEL:
4258 case BARRIER:
4259 case NOTE:
4260 last = emit_insn_after_1 (x, after);
4261 break;
4262
4263 #ifdef ENABLE_RTL_CHECKING
4264 case SEQUENCE:
4265 abort ();
4266 break;
4267 #endif
4268
4269 default:
4270 last = make_jump_insn_raw (x);
4271 add_insn_after (last, after);
4272 break;
4273 }
4274
4275 return last;
4276 }
4277
4278 /* Make an instruction with body X and code CALL_INSN
4279 and output it after the instruction AFTER. */
4280
4281 rtx
4282 emit_call_insn_after (rtx x, rtx after)
4283 {
4284 rtx last;
4285
4286 #ifdef ENABLE_RTL_CHECKING
4287 if (after == NULL_RTX)
4288 abort ();
4289 #endif
4290
4291 switch (GET_CODE (x))
4292 {
4293 case INSN:
4294 case JUMP_INSN:
4295 case CALL_INSN:
4296 case CODE_LABEL:
4297 case BARRIER:
4298 case NOTE:
4299 last = emit_insn_after_1 (x, after);
4300 break;
4301
4302 #ifdef ENABLE_RTL_CHECKING
4303 case SEQUENCE:
4304 abort ();
4305 break;
4306 #endif
4307
4308 default:
4309 last = make_call_insn_raw (x);
4310 add_insn_after (last, after);
4311 break;
4312 }
4313
4314 return last;
4315 }
4316
4317 /* Make an insn of code BARRIER
4318 and output it after the insn AFTER. */
4319
4320 rtx
4321 emit_barrier_after (rtx after)
4322 {
4323 rtx insn = rtx_alloc (BARRIER);
4324
4325 INSN_UID (insn) = cur_insn_uid++;
4326
4327 add_insn_after (insn, after);
4328 return insn;
4329 }
4330
4331 /* Emit the label LABEL after the insn AFTER. */
4332
4333 rtx
4334 emit_label_after (rtx label, rtx after)
4335 {
4336 /* This can be called twice for the same label
4337 as a result of the confusion that follows a syntax error!
4338 So make it harmless. */
4339 if (INSN_UID (label) == 0)
4340 {
4341 INSN_UID (label) = cur_insn_uid++;
4342 add_insn_after (label, after);
4343 }
4344
4345 return label;
4346 }
4347
4348 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4349
4350 rtx
4351 emit_note_after (int subtype, rtx after)
4352 {
4353 rtx note = rtx_alloc (NOTE);
4354 INSN_UID (note) = cur_insn_uid++;
4355 #ifndef USE_MAPPED_LOCATION
4356 NOTE_SOURCE_FILE (note) = 0;
4357 #endif
4358 NOTE_LINE_NUMBER (note) = subtype;
4359 BLOCK_FOR_INSN (note) = NULL;
4360 add_insn_after (note, after);
4361 return note;
4362 }
4363
4364 /* Emit a copy of note ORIG after the insn AFTER. */
4365
4366 rtx
4367 emit_note_copy_after (rtx orig, rtx after)
4368 {
4369 rtx note;
4370
4371 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4372 {
4373 cur_insn_uid++;
4374 return 0;
4375 }
4376
4377 note = rtx_alloc (NOTE);
4378 INSN_UID (note) = cur_insn_uid++;
4379 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4380 NOTE_DATA (note) = NOTE_DATA (orig);
4381 BLOCK_FOR_INSN (note) = NULL;
4382 add_insn_after (note, after);
4383 return note;
4384 }
4385 \f
4386 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4387 rtx
4388 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4389 {
4390 rtx last = emit_insn_after (pattern, after);
4391
4392 if (pattern == NULL_RTX)
4393 return last;
4394
4395 after = NEXT_INSN (after);
4396 while (1)
4397 {
4398 if (active_insn_p (after))
4399 INSN_LOCATOR (after) = loc;
4400 if (after == last)
4401 break;
4402 after = NEXT_INSN (after);
4403 }
4404 return last;
4405 }
4406
4407 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4408 rtx
4409 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4410 {
4411 rtx last = emit_jump_insn_after (pattern, after);
4412
4413 if (pattern == NULL_RTX)
4414 return last;
4415
4416 after = NEXT_INSN (after);
4417 while (1)
4418 {
4419 if (active_insn_p (after))
4420 INSN_LOCATOR (after) = loc;
4421 if (after == last)
4422 break;
4423 after = NEXT_INSN (after);
4424 }
4425 return last;
4426 }
4427
4428 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4429 rtx
4430 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4431 {
4432 rtx last = emit_call_insn_after (pattern, after);
4433
4434 if (pattern == NULL_RTX)
4435 return last;
4436
4437 after = NEXT_INSN (after);
4438 while (1)
4439 {
4440 if (active_insn_p (after))
4441 INSN_LOCATOR (after) = loc;
4442 if (after == last)
4443 break;
4444 after = NEXT_INSN (after);
4445 }
4446 return last;
4447 }
4448
4449 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4450 rtx
4451 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4452 {
4453 rtx first = PREV_INSN (before);
4454 rtx last = emit_insn_before (pattern, before);
4455
4456 if (pattern == NULL_RTX)
4457 return last;
4458
4459 first = NEXT_INSN (first);
4460 while (1)
4461 {
4462 if (active_insn_p (first))
4463 INSN_LOCATOR (first) = loc;
4464 if (first == last)
4465 break;
4466 first = NEXT_INSN (first);
4467 }
4468 return last;
4469 }
4470 \f
4471 /* Take X and emit it at the end of the doubly-linked
4472 INSN list.
4473
4474 Returns the last insn emitted. */
4475
4476 rtx
4477 emit_insn (rtx x)
4478 {
4479 rtx last = last_insn;
4480 rtx insn;
4481
4482 if (x == NULL_RTX)
4483 return last;
4484
4485 switch (GET_CODE (x))
4486 {
4487 case INSN:
4488 case JUMP_INSN:
4489 case CALL_INSN:
4490 case CODE_LABEL:
4491 case BARRIER:
4492 case NOTE:
4493 insn = x;
4494 while (insn)
4495 {
4496 rtx next = NEXT_INSN (insn);
4497 add_insn (insn);
4498 last = insn;
4499 insn = next;
4500 }
4501 break;
4502
4503 #ifdef ENABLE_RTL_CHECKING
4504 case SEQUENCE:
4505 abort ();
4506 break;
4507 #endif
4508
4509 default:
4510 last = make_insn_raw (x);
4511 add_insn (last);
4512 break;
4513 }
4514
4515 return last;
4516 }
4517
4518 /* Make an insn of code JUMP_INSN with pattern X
4519 and add it to the end of the doubly-linked list. */
4520
4521 rtx
4522 emit_jump_insn (rtx x)
4523 {
4524 rtx last = NULL_RTX, insn;
4525
4526 switch (GET_CODE (x))
4527 {
4528 case INSN:
4529 case JUMP_INSN:
4530 case CALL_INSN:
4531 case CODE_LABEL:
4532 case BARRIER:
4533 case NOTE:
4534 insn = x;
4535 while (insn)
4536 {
4537 rtx next = NEXT_INSN (insn);
4538 add_insn (insn);
4539 last = insn;
4540 insn = next;
4541 }
4542 break;
4543
4544 #ifdef ENABLE_RTL_CHECKING
4545 case SEQUENCE:
4546 abort ();
4547 break;
4548 #endif
4549
4550 default:
4551 last = make_jump_insn_raw (x);
4552 add_insn (last);
4553 break;
4554 }
4555
4556 return last;
4557 }
4558
4559 /* Make an insn of code CALL_INSN with pattern X
4560 and add it to the end of the doubly-linked list. */
4561
4562 rtx
4563 emit_call_insn (rtx x)
4564 {
4565 rtx insn;
4566
4567 switch (GET_CODE (x))
4568 {
4569 case INSN:
4570 case JUMP_INSN:
4571 case CALL_INSN:
4572 case CODE_LABEL:
4573 case BARRIER:
4574 case NOTE:
4575 insn = emit_insn (x);
4576 break;
4577
4578 #ifdef ENABLE_RTL_CHECKING
4579 case SEQUENCE:
4580 abort ();
4581 break;
4582 #endif
4583
4584 default:
4585 insn = make_call_insn_raw (x);
4586 add_insn (insn);
4587 break;
4588 }
4589
4590 return insn;
4591 }
4592
4593 /* Add the label LABEL to the end of the doubly-linked list. */
4594
4595 rtx
4596 emit_label (rtx label)
4597 {
4598 /* This can be called twice for the same label
4599 as a result of the confusion that follows a syntax error!
4600 So make it harmless. */
4601 if (INSN_UID (label) == 0)
4602 {
4603 INSN_UID (label) = cur_insn_uid++;
4604 add_insn (label);
4605 }
4606 return label;
4607 }
4608
4609 /* Make an insn of code BARRIER
4610 and add it to the end of the doubly-linked list. */
4611
4612 rtx
4613 emit_barrier (void)
4614 {
4615 rtx barrier = rtx_alloc (BARRIER);
4616 INSN_UID (barrier) = cur_insn_uid++;
4617 add_insn (barrier);
4618 return barrier;
4619 }
4620
4621 /* Make line numbering NOTE insn for LOCATION add it to the end
4622 of the doubly-linked list, but only if line-numbers are desired for
4623 debugging info and it doesn't match the previous one. */
4624
4625 rtx
4626 emit_line_note (location_t location)
4627 {
4628 rtx note;
4629
4630 set_file_and_line_for_stmt (location);
4631
4632 #ifdef USE_MAPPED_LOCATION
4633 if (location == last_location)
4634 return NULL_RTX;
4635 #else
4636 if (location.file && last_location.file
4637 && !strcmp (location.file, last_location.file)
4638 && location.line == last_location.line)
4639 return NULL_RTX;
4640 #endif
4641 last_location = location;
4642
4643 if (no_line_numbers)
4644 {
4645 cur_insn_uid++;
4646 return NULL_RTX;
4647 }
4648
4649 #ifdef USE_MAPPED_LOCATION
4650 note = emit_note ((int) location);
4651 #else
4652 note = emit_note (location.line);
4653 NOTE_SOURCE_FILE (note) = location.file;
4654 #endif
4655
4656 return note;
4657 }
4658
4659 /* Emit a copy of note ORIG. */
4660
4661 rtx
4662 emit_note_copy (rtx orig)
4663 {
4664 rtx note;
4665
4666 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4667 {
4668 cur_insn_uid++;
4669 return NULL_RTX;
4670 }
4671
4672 note = rtx_alloc (NOTE);
4673
4674 INSN_UID (note) = cur_insn_uid++;
4675 NOTE_DATA (note) = NOTE_DATA (orig);
4676 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4677 BLOCK_FOR_INSN (note) = NULL;
4678 add_insn (note);
4679
4680 return note;
4681 }
4682
4683 /* Make an insn of code NOTE or type NOTE_NO
4684 and add it to the end of the doubly-linked list. */
4685
4686 rtx
4687 emit_note (int note_no)
4688 {
4689 rtx note;
4690
4691 note = rtx_alloc (NOTE);
4692 INSN_UID (note) = cur_insn_uid++;
4693 NOTE_LINE_NUMBER (note) = note_no;
4694 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4695 BLOCK_FOR_INSN (note) = NULL;
4696 add_insn (note);
4697 return note;
4698 }
4699
4700 /* Cause next statement to emit a line note even if the line number
4701 has not changed. */
4702
4703 void
4704 force_next_line_note (void)
4705 {
4706 #ifdef USE_MAPPED_LOCATION
4707 last_location = -1;
4708 #else
4709 last_location.line = -1;
4710 #endif
4711 }
4712
4713 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4714 note of this type already exists, remove it first. */
4715
4716 rtx
4717 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4718 {
4719 rtx note = find_reg_note (insn, kind, NULL_RTX);
4720
4721 switch (kind)
4722 {
4723 case REG_EQUAL:
4724 case REG_EQUIV:
4725 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4726 has multiple sets (some callers assume single_set
4727 means the insn only has one set, when in fact it
4728 means the insn only has one * useful * set). */
4729 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4730 {
4731 if (note)
4732 abort ();
4733 return NULL_RTX;
4734 }
4735
4736 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4737 It serves no useful purpose and breaks eliminate_regs. */
4738 if (GET_CODE (datum) == ASM_OPERANDS)
4739 return NULL_RTX;
4740 break;
4741
4742 default:
4743 break;
4744 }
4745
4746 if (note)
4747 {
4748 XEXP (note, 0) = datum;
4749 return note;
4750 }
4751
4752 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4753 return REG_NOTES (insn);
4754 }
4755 \f
4756 /* Return an indication of which type of insn should have X as a body.
4757 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4758
4759 enum rtx_code
4760 classify_insn (rtx x)
4761 {
4762 if (LABEL_P (x))
4763 return CODE_LABEL;
4764 if (GET_CODE (x) == CALL)
4765 return CALL_INSN;
4766 if (GET_CODE (x) == RETURN)
4767 return JUMP_INSN;
4768 if (GET_CODE (x) == SET)
4769 {
4770 if (SET_DEST (x) == pc_rtx)
4771 return JUMP_INSN;
4772 else if (GET_CODE (SET_SRC (x)) == CALL)
4773 return CALL_INSN;
4774 else
4775 return INSN;
4776 }
4777 if (GET_CODE (x) == PARALLEL)
4778 {
4779 int j;
4780 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4781 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4782 return CALL_INSN;
4783 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4784 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4785 return JUMP_INSN;
4786 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4787 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4788 return CALL_INSN;
4789 }
4790 return INSN;
4791 }
4792
4793 /* Emit the rtl pattern X as an appropriate kind of insn.
4794 If X is a label, it is simply added into the insn chain. */
4795
4796 rtx
4797 emit (rtx x)
4798 {
4799 enum rtx_code code = classify_insn (x);
4800
4801 if (code == CODE_LABEL)
4802 return emit_label (x);
4803 else if (code == INSN)
4804 return emit_insn (x);
4805 else if (code == JUMP_INSN)
4806 {
4807 rtx insn = emit_jump_insn (x);
4808 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4809 return emit_barrier ();
4810 return insn;
4811 }
4812 else if (code == CALL_INSN)
4813 return emit_call_insn (x);
4814 else
4815 abort ();
4816 }
4817 \f
4818 /* Space for free sequence stack entries. */
4819 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4820
4821 /* Begin emitting insns to a sequence. If this sequence will contain
4822 something that might cause the compiler to pop arguments to function
4823 calls (because those pops have previously been deferred; see
4824 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4825 before calling this function. That will ensure that the deferred
4826 pops are not accidentally emitted in the middle of this sequence. */
4827
4828 void
4829 start_sequence (void)
4830 {
4831 struct sequence_stack *tem;
4832
4833 if (free_sequence_stack != NULL)
4834 {
4835 tem = free_sequence_stack;
4836 free_sequence_stack = tem->next;
4837 }
4838 else
4839 tem = ggc_alloc (sizeof (struct sequence_stack));
4840
4841 tem->next = seq_stack;
4842 tem->first = first_insn;
4843 tem->last = last_insn;
4844
4845 seq_stack = tem;
4846
4847 first_insn = 0;
4848 last_insn = 0;
4849 }
4850
4851 /* Set up the insn chain starting with FIRST as the current sequence,
4852 saving the previously current one. See the documentation for
4853 start_sequence for more information about how to use this function. */
4854
4855 void
4856 push_to_sequence (rtx first)
4857 {
4858 rtx last;
4859
4860 start_sequence ();
4861
4862 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4863
4864 first_insn = first;
4865 last_insn = last;
4866 }
4867
4868 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4869
4870 void
4871 push_to_full_sequence (rtx first, rtx last)
4872 {
4873 start_sequence ();
4874 first_insn = first;
4875 last_insn = last;
4876 /* We really should have the end of the insn chain here. */
4877 if (last && NEXT_INSN (last))
4878 abort ();
4879 }
4880
4881 /* Set up the outer-level insn chain
4882 as the current sequence, saving the previously current one. */
4883
4884 void
4885 push_topmost_sequence (void)
4886 {
4887 struct sequence_stack *stack, *top = NULL;
4888
4889 start_sequence ();
4890
4891 for (stack = seq_stack; stack; stack = stack->next)
4892 top = stack;
4893
4894 first_insn = top->first;
4895 last_insn = top->last;
4896 }
4897
4898 /* After emitting to the outer-level insn chain, update the outer-level
4899 insn chain, and restore the previous saved state. */
4900
4901 void
4902 pop_topmost_sequence (void)
4903 {
4904 struct sequence_stack *stack, *top = NULL;
4905
4906 for (stack = seq_stack; stack; stack = stack->next)
4907 top = stack;
4908
4909 top->first = first_insn;
4910 top->last = last_insn;
4911
4912 end_sequence ();
4913 }
4914
4915 /* After emitting to a sequence, restore previous saved state.
4916
4917 To get the contents of the sequence just made, you must call
4918 `get_insns' *before* calling here.
4919
4920 If the compiler might have deferred popping arguments while
4921 generating this sequence, and this sequence will not be immediately
4922 inserted into the instruction stream, use do_pending_stack_adjust
4923 before calling get_insns. That will ensure that the deferred
4924 pops are inserted into this sequence, and not into some random
4925 location in the instruction stream. See INHIBIT_DEFER_POP for more
4926 information about deferred popping of arguments. */
4927
4928 void
4929 end_sequence (void)
4930 {
4931 struct sequence_stack *tem = seq_stack;
4932
4933 first_insn = tem->first;
4934 last_insn = tem->last;
4935 seq_stack = tem->next;
4936
4937 memset (tem, 0, sizeof (*tem));
4938 tem->next = free_sequence_stack;
4939 free_sequence_stack = tem;
4940 }
4941
4942 /* Return 1 if currently emitting into a sequence. */
4943
4944 int
4945 in_sequence_p (void)
4946 {
4947 return seq_stack != 0;
4948 }
4949 \f
4950 /* Put the various virtual registers into REGNO_REG_RTX. */
4951
4952 void
4953 init_virtual_regs (struct emit_status *es)
4954 {
4955 rtx *ptr = es->x_regno_reg_rtx;
4956 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4957 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4958 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4959 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4960 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4961 }
4962
4963 \f
4964 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4965 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4966 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4967 static int copy_insn_n_scratches;
4968
4969 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4970 copied an ASM_OPERANDS.
4971 In that case, it is the original input-operand vector. */
4972 static rtvec orig_asm_operands_vector;
4973
4974 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4975 copied an ASM_OPERANDS.
4976 In that case, it is the copied input-operand vector. */
4977 static rtvec copy_asm_operands_vector;
4978
4979 /* Likewise for the constraints vector. */
4980 static rtvec orig_asm_constraints_vector;
4981 static rtvec copy_asm_constraints_vector;
4982
4983 /* Recursively create a new copy of an rtx for copy_insn.
4984 This function differs from copy_rtx in that it handles SCRATCHes and
4985 ASM_OPERANDs properly.
4986 Normally, this function is not used directly; use copy_insn as front end.
4987 However, you could first copy an insn pattern with copy_insn and then use
4988 this function afterwards to properly copy any REG_NOTEs containing
4989 SCRATCHes. */
4990
4991 rtx
4992 copy_insn_1 (rtx orig)
4993 {
4994 rtx copy;
4995 int i, j;
4996 RTX_CODE code;
4997 const char *format_ptr;
4998
4999 code = GET_CODE (orig);
5000
5001 switch (code)
5002 {
5003 case REG:
5004 case CONST_INT:
5005 case CONST_DOUBLE:
5006 case CONST_VECTOR:
5007 case SYMBOL_REF:
5008 case CODE_LABEL:
5009 case PC:
5010 case CC0:
5011 return orig;
5012 case CLOBBER:
5013 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5014 return orig;
5015 break;
5016
5017 case SCRATCH:
5018 for (i = 0; i < copy_insn_n_scratches; i++)
5019 if (copy_insn_scratch_in[i] == orig)
5020 return copy_insn_scratch_out[i];
5021 break;
5022
5023 case CONST:
5024 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5025 a LABEL_REF, it isn't sharable. */
5026 if (GET_CODE (XEXP (orig, 0)) == PLUS
5027 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5028 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5029 return orig;
5030 break;
5031
5032 /* A MEM with a constant address is not sharable. The problem is that
5033 the constant address may need to be reloaded. If the mem is shared,
5034 then reloading one copy of this mem will cause all copies to appear
5035 to have been reloaded. */
5036
5037 default:
5038 break;
5039 }
5040
5041 copy = rtx_alloc (code);
5042
5043 /* Copy the various flags, and other information. We assume that
5044 all fields need copying, and then clear the fields that should
5045 not be copied. That is the sensible default behavior, and forces
5046 us to explicitly document why we are *not* copying a flag. */
5047 memcpy (copy, orig, RTX_HDR_SIZE);
5048
5049 /* We do not copy the USED flag, which is used as a mark bit during
5050 walks over the RTL. */
5051 RTX_FLAG (copy, used) = 0;
5052
5053 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5054 if (INSN_P (orig))
5055 {
5056 RTX_FLAG (copy, jump) = 0;
5057 RTX_FLAG (copy, call) = 0;
5058 RTX_FLAG (copy, frame_related) = 0;
5059 }
5060
5061 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5062
5063 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5064 {
5065 copy->u.fld[i] = orig->u.fld[i];
5066 switch (*format_ptr++)
5067 {
5068 case 'e':
5069 if (XEXP (orig, i) != NULL)
5070 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5071 break;
5072
5073 case 'E':
5074 case 'V':
5075 if (XVEC (orig, i) == orig_asm_constraints_vector)
5076 XVEC (copy, i) = copy_asm_constraints_vector;
5077 else if (XVEC (orig, i) == orig_asm_operands_vector)
5078 XVEC (copy, i) = copy_asm_operands_vector;
5079 else if (XVEC (orig, i) != NULL)
5080 {
5081 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5082 for (j = 0; j < XVECLEN (copy, i); j++)
5083 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5084 }
5085 break;
5086
5087 case 't':
5088 case 'w':
5089 case 'i':
5090 case 's':
5091 case 'S':
5092 case 'u':
5093 case '0':
5094 /* These are left unchanged. */
5095 break;
5096
5097 default:
5098 abort ();
5099 }
5100 }
5101
5102 if (code == SCRATCH)
5103 {
5104 i = copy_insn_n_scratches++;
5105 if (i >= MAX_RECOG_OPERANDS)
5106 abort ();
5107 copy_insn_scratch_in[i] = orig;
5108 copy_insn_scratch_out[i] = copy;
5109 }
5110 else if (code == ASM_OPERANDS)
5111 {
5112 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5113 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5114 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5115 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5116 }
5117
5118 return copy;
5119 }
5120
5121 /* Create a new copy of an rtx.
5122 This function differs from copy_rtx in that it handles SCRATCHes and
5123 ASM_OPERANDs properly.
5124 INSN doesn't really have to be a full INSN; it could be just the
5125 pattern. */
5126 rtx
5127 copy_insn (rtx insn)
5128 {
5129 copy_insn_n_scratches = 0;
5130 orig_asm_operands_vector = 0;
5131 orig_asm_constraints_vector = 0;
5132 copy_asm_operands_vector = 0;
5133 copy_asm_constraints_vector = 0;
5134 return copy_insn_1 (insn);
5135 }
5136
5137 /* Initialize data structures and variables in this file
5138 before generating rtl for each function. */
5139
5140 void
5141 init_emit (void)
5142 {
5143 struct function *f = cfun;
5144
5145 f->emit = ggc_alloc (sizeof (struct emit_status));
5146 first_insn = NULL;
5147 last_insn = NULL;
5148 cur_insn_uid = 1;
5149 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5150 last_location = UNKNOWN_LOCATION;
5151 first_label_num = label_num;
5152 last_label_num = 0;
5153 seq_stack = NULL;
5154
5155 /* Init the tables that describe all the pseudo regs. */
5156
5157 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5158
5159 f->emit->regno_pointer_align
5160 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5161 * sizeof (unsigned char));
5162
5163 regno_reg_rtx
5164 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5165
5166 /* Put copies of all the hard registers into regno_reg_rtx. */
5167 memcpy (regno_reg_rtx,
5168 static_regno_reg_rtx,
5169 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5170
5171 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5172 init_virtual_regs (f->emit);
5173
5174 /* Indicate that the virtual registers and stack locations are
5175 all pointers. */
5176 REG_POINTER (stack_pointer_rtx) = 1;
5177 REG_POINTER (frame_pointer_rtx) = 1;
5178 REG_POINTER (hard_frame_pointer_rtx) = 1;
5179 REG_POINTER (arg_pointer_rtx) = 1;
5180
5181 REG_POINTER (virtual_incoming_args_rtx) = 1;
5182 REG_POINTER (virtual_stack_vars_rtx) = 1;
5183 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5184 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5185 REG_POINTER (virtual_cfa_rtx) = 1;
5186
5187 #ifdef STACK_BOUNDARY
5188 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5189 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5190 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5191 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5192
5193 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5194 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5195 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5196 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5197 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5198 #endif
5199
5200 #ifdef INIT_EXPANDERS
5201 INIT_EXPANDERS;
5202 #endif
5203 }
5204
5205 /* Generate the constant 0. */
5206
5207 static rtx
5208 gen_const_vector_0 (enum machine_mode mode)
5209 {
5210 rtx tem;
5211 rtvec v;
5212 int units, i;
5213 enum machine_mode inner;
5214
5215 units = GET_MODE_NUNITS (mode);
5216 inner = GET_MODE_INNER (mode);
5217
5218 v = rtvec_alloc (units);
5219
5220 /* We need to call this function after we to set CONST0_RTX first. */
5221 if (!CONST0_RTX (inner))
5222 abort ();
5223
5224 for (i = 0; i < units; ++i)
5225 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5226
5227 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5228 return tem;
5229 }
5230
5231 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5232 all elements are zero. */
5233 rtx
5234 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5235 {
5236 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5237 int i;
5238
5239 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5240 if (RTVEC_ELT (v, i) != inner_zero)
5241 return gen_rtx_raw_CONST_VECTOR (mode, v);
5242 return CONST0_RTX (mode);
5243 }
5244
5245 /* Create some permanent unique rtl objects shared between all functions.
5246 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5247
5248 void
5249 init_emit_once (int line_numbers)
5250 {
5251 int i;
5252 enum machine_mode mode;
5253 enum machine_mode double_mode;
5254
5255 /* We need reg_raw_mode, so initialize the modes now. */
5256 init_reg_modes_once ();
5257
5258 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5259 tables. */
5260 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5261 const_int_htab_eq, NULL);
5262
5263 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5264 const_double_htab_eq, NULL);
5265
5266 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5267 mem_attrs_htab_eq, NULL);
5268 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5269 reg_attrs_htab_eq, NULL);
5270
5271 no_line_numbers = ! line_numbers;
5272
5273 /* Compute the word and byte modes. */
5274
5275 byte_mode = VOIDmode;
5276 word_mode = VOIDmode;
5277 double_mode = VOIDmode;
5278
5279 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5280 mode = GET_MODE_WIDER_MODE (mode))
5281 {
5282 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5283 && byte_mode == VOIDmode)
5284 byte_mode = mode;
5285
5286 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5287 && word_mode == VOIDmode)
5288 word_mode = mode;
5289 }
5290
5291 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5292 mode = GET_MODE_WIDER_MODE (mode))
5293 {
5294 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5295 && double_mode == VOIDmode)
5296 double_mode = mode;
5297 }
5298
5299 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5300
5301 /* Assign register numbers to the globally defined register rtx.
5302 This must be done at runtime because the register number field
5303 is in a union and some compilers can't initialize unions. */
5304
5305 pc_rtx = gen_rtx_PC (VOIDmode);
5306 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5307 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5308 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5309 if (hard_frame_pointer_rtx == 0)
5310 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5311 HARD_FRAME_POINTER_REGNUM);
5312 if (arg_pointer_rtx == 0)
5313 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5314 virtual_incoming_args_rtx =
5315 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5316 virtual_stack_vars_rtx =
5317 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5318 virtual_stack_dynamic_rtx =
5319 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5320 virtual_outgoing_args_rtx =
5321 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5322 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5323
5324 /* Initialize RTL for commonly used hard registers. These are
5325 copied into regno_reg_rtx as we begin to compile each function. */
5326 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5327 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5328
5329 #ifdef INIT_EXPANDERS
5330 /* This is to initialize {init|mark|free}_machine_status before the first
5331 call to push_function_context_to. This is needed by the Chill front
5332 end which calls push_function_context_to before the first call to
5333 init_function_start. */
5334 INIT_EXPANDERS;
5335 #endif
5336
5337 /* Create the unique rtx's for certain rtx codes and operand values. */
5338
5339 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5340 tries to use these variables. */
5341 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5342 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5343 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5344
5345 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5346 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5347 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5348 else
5349 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5350
5351 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5352 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5353 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5354 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5355 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5356 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5357 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5358
5359 dconsthalf = dconst1;
5360 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5361
5362 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5363
5364 /* Initialize mathematical constants for constant folding builtins.
5365 These constants need to be given to at least 160 bits precision. */
5366 real_from_string (&dconstpi,
5367 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5368 real_from_string (&dconste,
5369 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5370
5371 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5372 {
5373 REAL_VALUE_TYPE *r =
5374 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5375
5376 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5377 mode = GET_MODE_WIDER_MODE (mode))
5378 const_tiny_rtx[i][(int) mode] =
5379 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5380
5381 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5382
5383 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5384 mode = GET_MODE_WIDER_MODE (mode))
5385 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5386
5387 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5388 mode != VOIDmode;
5389 mode = GET_MODE_WIDER_MODE (mode))
5390 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5391 }
5392
5393 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5394 mode != VOIDmode;
5395 mode = GET_MODE_WIDER_MODE (mode))
5396 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5397
5398 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5399 mode != VOIDmode;
5400 mode = GET_MODE_WIDER_MODE (mode))
5401 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5402
5403 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5404 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5405 const_tiny_rtx[0][i] = const0_rtx;
5406
5407 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5408 if (STORE_FLAG_VALUE == 1)
5409 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5410
5411 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5412 return_address_pointer_rtx
5413 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5414 #endif
5415
5416 #ifdef STATIC_CHAIN_REGNUM
5417 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5418
5419 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5420 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5421 static_chain_incoming_rtx
5422 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5423 else
5424 #endif
5425 static_chain_incoming_rtx = static_chain_rtx;
5426 #endif
5427
5428 #ifdef STATIC_CHAIN
5429 static_chain_rtx = STATIC_CHAIN;
5430
5431 #ifdef STATIC_CHAIN_INCOMING
5432 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5433 #else
5434 static_chain_incoming_rtx = static_chain_rtx;
5435 #endif
5436 #endif
5437
5438 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5439 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5440 }
5441 \f
5442 /* Produce exact duplicate of insn INSN after AFTER.
5443 Care updating of libcall regions if present. */
5444
5445 rtx
5446 emit_copy_of_insn_after (rtx insn, rtx after)
5447 {
5448 rtx new;
5449 rtx note1, note2, link;
5450
5451 switch (GET_CODE (insn))
5452 {
5453 case INSN:
5454 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5455 break;
5456
5457 case JUMP_INSN:
5458 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5459 break;
5460
5461 case CALL_INSN:
5462 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5463 if (CALL_INSN_FUNCTION_USAGE (insn))
5464 CALL_INSN_FUNCTION_USAGE (new)
5465 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5466 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5467 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5468 break;
5469
5470 default:
5471 abort ();
5472 }
5473
5474 /* Update LABEL_NUSES. */
5475 mark_jump_label (PATTERN (new), new, 0);
5476
5477 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5478
5479 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5480 make them. */
5481 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5482 if (REG_NOTE_KIND (link) != REG_LABEL)
5483 {
5484 if (GET_CODE (link) == EXPR_LIST)
5485 REG_NOTES (new)
5486 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5487 XEXP (link, 0),
5488 REG_NOTES (new)));
5489 else
5490 REG_NOTES (new)
5491 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5492 XEXP (link, 0),
5493 REG_NOTES (new)));
5494 }
5495
5496 /* Fix the libcall sequences. */
5497 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5498 {
5499 rtx p = new;
5500 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5501 p = PREV_INSN (p);
5502 XEXP (note1, 0) = p;
5503 XEXP (note2, 0) = new;
5504 }
5505 INSN_CODE (new) = INSN_CODE (insn);
5506 return new;
5507 }
5508
5509 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5510 rtx
5511 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5512 {
5513 if (hard_reg_clobbers[mode][regno])
5514 return hard_reg_clobbers[mode][regno];
5515 else
5516 return (hard_reg_clobbers[mode][regno] =
5517 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5518 }
5519
5520 #include "gt-emit-rtl.h"