rtl.h (MEM_READONLY_P): Replace RTX_UNCHANGING_P.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconst3;
112 REAL_VALUE_TYPE dconst10;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116 REAL_VALUE_TYPE dconstthird;
117 REAL_VALUE_TYPE dconstpi;
118 REAL_VALUE_TYPE dconste;
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
176
177 static rtx make_jump_insn_raw (rtx);
178 static rtx make_call_insn_raw (rtx);
179 static rtx find_line_note (rtx);
180 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector_0 (enum machine_mode);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199 static void copy_rtx_if_shared_1 (rtx *orig);
200
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
204 \f
205 /* Returns a hash code for X (which is a really a CONST_INT). */
206
207 static hashval_t
208 const_int_htab_hash (const void *x)
209 {
210 return (hashval_t) INTVAL ((rtx) x);
211 }
212
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217 static int
218 const_int_htab_eq (const void *x, const void *y)
219 {
220 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
224 static hashval_t
225 const_double_htab_hash (const void *x)
226 {
227 rtx value = (rtx) x;
228 hashval_t h;
229
230 if (GET_MODE (value) == VOIDmode)
231 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
232 else
233 {
234 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h ^= GET_MODE (value);
237 }
238 return h;
239 }
240
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
243 static int
244 const_double_htab_eq (const void *x, const void *y)
245 {
246 rtx a = (rtx)x, b = (rtx)y;
247
248 if (GET_MODE (a) != GET_MODE (b))
249 return 0;
250 if (GET_MODE (a) == VOIDmode)
251 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
252 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
253 else
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
255 CONST_DOUBLE_REAL_VALUE (b));
256 }
257
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
259
260 static hashval_t
261 mem_attrs_htab_hash (const void *x)
262 {
263 mem_attrs *p = (mem_attrs *) x;
264
265 return (p->alias ^ (p->align * 1000)
266 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
267 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
268 ^ (size_t) p->expr);
269 }
270
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
273 mem_attrs *). */
274
275 static int
276 mem_attrs_htab_eq (const void *x, const void *y)
277 {
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
280
281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
282 && p->size == q->size && p->align == q->align);
283 }
284
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
287 MEM of mode MODE. */
288
289 static mem_attrs *
290 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
291 unsigned int align, enum machine_mode mode)
292 {
293 mem_attrs attrs;
294 void **slot;
295
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (STRICT_ALIGNMENT && mode != BLKmode
303 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
304 return 0;
305
306 attrs.alias = alias;
307 attrs.expr = expr;
308 attrs.offset = offset;
309 attrs.size = size;
310 attrs.align = align;
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
315 *slot = ggc_alloc (sizeof (mem_attrs));
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
319 return *slot;
320 }
321
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
323
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330 }
331
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
338 {
339 reg_attrs *p = (reg_attrs *) x;
340 reg_attrs *q = (reg_attrs *) y;
341
342 return (p->decl == q->decl && p->offset == q->offset);
343 }
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
350 {
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
364 *slot = ggc_alloc (sizeof (reg_attrs));
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
368 return *slot;
369 }
370
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
374
375 rtx
376 gen_raw_REG (enum machine_mode mode, int regno)
377 {
378 rtx x = gen_rtx_raw_REG (mode, regno);
379 ORIGINAL_REGNO (x) = regno;
380 return x;
381 }
382
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
386
387 rtx
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
389 {
390 void **slot;
391
392 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
393 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
394
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx && arg == STORE_FLAG_VALUE)
397 return const_true_rtx;
398 #endif
399
400 /* Look up the CONST_INT in the hash table. */
401 slot = htab_find_slot_with_hash (const_int_htab, &arg,
402 (hashval_t) arg, INSERT);
403 if (*slot == 0)
404 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
405
406 return (rtx) *slot;
407 }
408
409 rtx
410 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
411 {
412 return GEN_INT (trunc_int_for_mode (c, mode));
413 }
414
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
418
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
422 static rtx
423 lookup_const_double (rtx real)
424 {
425 void **slot = htab_find_slot (const_double_htab, real, INSERT);
426 if (*slot == 0)
427 *slot = real;
428
429 return (rtx) *slot;
430 }
431
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
434 rtx
435 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
436 {
437 rtx real = rtx_alloc (CONST_DOUBLE);
438 PUT_MODE (real, mode);
439
440 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
441
442 return lookup_const_double (real);
443 }
444
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
449
450 rtx
451 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
452 {
453 rtx value;
454 unsigned int i;
455
456 if (mode != VOIDmode)
457 {
458 int width;
459 if (GET_MODE_CLASS (mode) != MODE_INT
460 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
463 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
464 abort ();
465
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width = GET_MODE_BITSIZE (mode);
470 if (width < HOST_BITS_PER_WIDE_INT
471 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
472 != ((HOST_WIDE_INT) (-1) << (width - 1))))
473 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
474 else if (width == HOST_BITS_PER_WIDE_INT
475 && ! (i1 == ~0 && i0 < 0))
476 i1 = 0;
477 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
478 /* We cannot represent this value as a constant. */
479 abort ();
480
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
484
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
489
490 if (width < HOST_BITS_PER_WIDE_INT
491 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
492 i0 |= ((HOST_WIDE_INT) (-1) << width);
493
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
495 CONST_INT.
496
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
501 negative number.
502
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
508
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
511
512 if (width <= HOST_BITS_PER_WIDE_INT)
513 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
514 }
515
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
518 return GEN_INT (i0);
519
520 /* We use VOIDmode for integers. */
521 value = rtx_alloc (CONST_DOUBLE);
522 PUT_MODE (value, VOIDmode);
523
524 CONST_DOUBLE_LOW (value) = i0;
525 CONST_DOUBLE_HIGH (value) = i1;
526
527 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
528 XWINT (value, i) = 0;
529
530 return lookup_const_double (value);
531 }
532
533 rtx
534 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
535 {
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
540 assigned to them.
541
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
546
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
549
550 if (mode == Pmode && !reload_in_progress)
551 {
552 if (regno == FRAME_POINTER_REGNUM
553 && (!reload_completed || frame_pointer_needed))
554 return frame_pointer_rtx;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno == HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return hard_frame_pointer_rtx;
559 #endif
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno == ARG_POINTER_REGNUM)
562 return arg_pointer_rtx;
563 #endif
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
566 return return_address_pointer_rtx;
567 #endif
568 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
570 return pic_offset_table_rtx;
571 if (regno == STACK_POINTER_REGNUM)
572 return stack_pointer_rtx;
573 }
574
575 #if 0
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
578
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
583
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
586
587 if (cfun
588 && cfun->emit
589 && regno_reg_rtx
590 && regno < FIRST_PSEUDO_REGISTER
591 && reg_raw_mode[regno] == mode)
592 return regno_reg_rtx[regno];
593 #endif
594
595 return gen_raw_REG (mode, regno);
596 }
597
598 rtx
599 gen_rtx_MEM (enum machine_mode mode, rtx addr)
600 {
601 rtx rt = gen_rtx_raw_MEM (mode, addr);
602
603 /* This field is not cleared by the mere allocation of the rtx, so
604 we clear it here. */
605 MEM_ATTRS (rt) = 0;
606
607 return rt;
608 }
609
610 rtx
611 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
612 {
613 /* This is the most common failure type.
614 Catch it early so we can see who does it. */
615 if ((offset % GET_MODE_SIZE (mode)) != 0)
616 abort ();
617
618 /* This check isn't usable right now because combine will
619 throw arbitrary crap like a CALL into a SUBREG in
620 gen_lowpart_for_combine so we must just eat it. */
621 #if 0
622 /* Check for this too. */
623 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
624 abort ();
625 #endif
626 return gen_rtx_raw_SUBREG (mode, reg, offset);
627 }
628
629 /* Generate a SUBREG representing the least-significant part of REG if MODE
630 is smaller than mode of REG, otherwise paradoxical SUBREG. */
631
632 rtx
633 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
634 {
635 enum machine_mode inmode;
636
637 inmode = GET_MODE (reg);
638 if (inmode == VOIDmode)
639 inmode = mode;
640 return gen_rtx_SUBREG (mode, reg,
641 subreg_lowpart_offset (mode, inmode));
642 }
643 \f
644 /* gen_rtvec (n, [rt1, ..., rtn])
645 **
646 ** This routine creates an rtvec and stores within it the
647 ** pointers to rtx's which are its arguments.
648 */
649
650 /*VARARGS1*/
651 rtvec
652 gen_rtvec (int n, ...)
653 {
654 int i, save_n;
655 rtx *vector;
656 va_list p;
657
658 va_start (p, n);
659
660 if (n == 0)
661 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
662
663 vector = alloca (n * sizeof (rtx));
664
665 for (i = 0; i < n; i++)
666 vector[i] = va_arg (p, rtx);
667
668 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
669 save_n = n;
670 va_end (p);
671
672 return gen_rtvec_v (save_n, vector);
673 }
674
675 rtvec
676 gen_rtvec_v (int n, rtx *argp)
677 {
678 int i;
679 rtvec rt_val;
680
681 if (n == 0)
682 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
683
684 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
685
686 for (i = 0; i < n; i++)
687 rt_val->elem[i] = *argp++;
688
689 return rt_val;
690 }
691 \f
692 /* Generate a REG rtx for a new pseudo register of mode MODE.
693 This pseudo is assigned the next sequential register number. */
694
695 rtx
696 gen_reg_rtx (enum machine_mode mode)
697 {
698 struct function *f = cfun;
699 rtx val;
700
701 /* Don't let anything called after initial flow analysis create new
702 registers. */
703 if (no_new_pseudos)
704 abort ();
705
706 if (generating_concat_p
707 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
708 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
709 {
710 /* For complex modes, don't make a single pseudo.
711 Instead, make a CONCAT of two pseudos.
712 This allows noncontiguous allocation of the real and imaginary parts,
713 which makes much better code. Besides, allocating DCmode
714 pseudos overstrains reload on some machines like the 386. */
715 rtx realpart, imagpart;
716 enum machine_mode partmode = GET_MODE_INNER (mode);
717
718 realpart = gen_reg_rtx (partmode);
719 imagpart = gen_reg_rtx (partmode);
720 return gen_rtx_CONCAT (mode, realpart, imagpart);
721 }
722
723 /* Make sure regno_pointer_align, and regno_reg_rtx are large
724 enough to have an element for this pseudo reg number. */
725
726 if (reg_rtx_no == f->emit->regno_pointer_align_length)
727 {
728 int old_size = f->emit->regno_pointer_align_length;
729 char *new;
730 rtx *new1;
731
732 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
733 memset (new + old_size, 0, old_size);
734 f->emit->regno_pointer_align = (unsigned char *) new;
735
736 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
737 old_size * 2 * sizeof (rtx));
738 memset (new1 + old_size, 0, old_size * sizeof (rtx));
739 regno_reg_rtx = new1;
740
741 f->emit->regno_pointer_align_length = old_size * 2;
742 }
743
744 val = gen_raw_REG (mode, reg_rtx_no);
745 regno_reg_rtx[reg_rtx_no++] = val;
746 return val;
747 }
748
749 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
750 Do the big endian correction if needed. */
751
752 rtx
753 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
754 {
755 rtx new = gen_rtx_REG (mode, regno);
756 tree decl;
757 HOST_WIDE_INT var_size;
758
759 /* PR middle-end/14084
760 The problem appears when a variable is stored in a larger register
761 and later it is used in the original mode or some mode in between
762 or some part of variable is accessed.
763
764 On little endian machines there is no problem because
765 the REG_OFFSET of the start of the variable is the same when
766 accessed in any mode (it is 0).
767
768 However, this is not true on big endian machines.
769 The offset of the start of the variable is different when accessed
770 in different modes.
771 When we are taking a part of the REG we have to change the OFFSET
772 from offset WRT size of mode of REG to offset WRT size of variable.
773
774 If we would not do the big endian correction the resulting REG_OFFSET
775 would be larger than the size of the DECL.
776
777 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
778
779 REG.mode MODE DECL size old offset new offset description
780 DI SI 4 4 0 int32 in SImode
781 DI SI 1 4 0 char in SImode
782 DI QI 1 7 0 char in QImode
783 DI QI 4 5 1 1st element in QImode
784 of char[4]
785 DI HI 4 6 2 1st element in HImode
786 of int16[2]
787
788 If the size of DECL is equal or greater than the size of REG
789 we can't do this correction because the register holds the
790 whole variable or a part of the variable and thus the REG_OFFSET
791 is already correct. */
792
793 decl = REG_EXPR (reg);
794 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
795 && decl != NULL
796 && offset > 0
797 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
798 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
799 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
800 {
801 int offset_le;
802
803 /* Convert machine endian to little endian WRT size of mode of REG. */
804 if (WORDS_BIG_ENDIAN)
805 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
806 / UNITS_PER_WORD) * UNITS_PER_WORD;
807 else
808 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
809
810 if (BYTES_BIG_ENDIAN)
811 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
812 % UNITS_PER_WORD);
813 else
814 offset_le += offset % UNITS_PER_WORD;
815
816 if (offset_le >= var_size)
817 {
818 /* MODE is wider than the variable so the new reg will cover
819 the whole variable so the resulting OFFSET should be 0. */
820 offset = 0;
821 }
822 else
823 {
824 /* Convert little endian to machine endian WRT size of variable. */
825 if (WORDS_BIG_ENDIAN)
826 offset = ((var_size - 1 - offset_le)
827 / UNITS_PER_WORD) * UNITS_PER_WORD;
828 else
829 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
830
831 if (BYTES_BIG_ENDIAN)
832 offset += ((var_size - 1 - offset_le)
833 % UNITS_PER_WORD);
834 else
835 offset += offset_le % UNITS_PER_WORD;
836 }
837 }
838
839 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
840 REG_OFFSET (reg) + offset);
841 return new;
842 }
843
844 /* Set the decl for MEM to DECL. */
845
846 void
847 set_reg_attrs_from_mem (rtx reg, rtx mem)
848 {
849 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
850 REG_ATTRS (reg)
851 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
852 }
853
854 /* Set the register attributes for registers contained in PARM_RTX.
855 Use needed values from memory attributes of MEM. */
856
857 void
858 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
859 {
860 if (REG_P (parm_rtx))
861 set_reg_attrs_from_mem (parm_rtx, mem);
862 else if (GET_CODE (parm_rtx) == PARALLEL)
863 {
864 /* Check for a NULL entry in the first slot, used to indicate that the
865 parameter goes both on the stack and in registers. */
866 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
867 for (; i < XVECLEN (parm_rtx, 0); i++)
868 {
869 rtx x = XVECEXP (parm_rtx, 0, i);
870 if (REG_P (XEXP (x, 0)))
871 REG_ATTRS (XEXP (x, 0))
872 = get_reg_attrs (MEM_EXPR (mem),
873 INTVAL (XEXP (x, 1)));
874 }
875 }
876 }
877
878 /* Assign the RTX X to declaration T. */
879 void
880 set_decl_rtl (tree t, rtx x)
881 {
882 DECL_CHECK (t)->decl.rtl = x;
883
884 if (!x)
885 return;
886 /* For register, we maintain the reverse information too. */
887 if (REG_P (x))
888 REG_ATTRS (x) = get_reg_attrs (t, 0);
889 else if (GET_CODE (x) == SUBREG)
890 REG_ATTRS (SUBREG_REG (x))
891 = get_reg_attrs (t, -SUBREG_BYTE (x));
892 if (GET_CODE (x) == CONCAT)
893 {
894 if (REG_P (XEXP (x, 0)))
895 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
896 if (REG_P (XEXP (x, 1)))
897 REG_ATTRS (XEXP (x, 1))
898 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
899 }
900 if (GET_CODE (x) == PARALLEL)
901 {
902 int i;
903 for (i = 0; i < XVECLEN (x, 0); i++)
904 {
905 rtx y = XVECEXP (x, 0, i);
906 if (REG_P (XEXP (y, 0)))
907 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
908 }
909 }
910 }
911
912 /* Assign the RTX X to parameter declaration T. */
913 void
914 set_decl_incoming_rtl (tree t, rtx x)
915 {
916 DECL_INCOMING_RTL (t) = x;
917
918 if (!x)
919 return;
920 /* For register, we maintain the reverse information too. */
921 if (REG_P (x))
922 REG_ATTRS (x) = get_reg_attrs (t, 0);
923 else if (GET_CODE (x) == SUBREG)
924 REG_ATTRS (SUBREG_REG (x))
925 = get_reg_attrs (t, -SUBREG_BYTE (x));
926 if (GET_CODE (x) == CONCAT)
927 {
928 if (REG_P (XEXP (x, 0)))
929 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
930 if (REG_P (XEXP (x, 1)))
931 REG_ATTRS (XEXP (x, 1))
932 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
933 }
934 if (GET_CODE (x) == PARALLEL)
935 {
936 int i, start;
937
938 /* Check for a NULL entry, used to indicate that the parameter goes
939 both on the stack and in registers. */
940 if (XEXP (XVECEXP (x, 0, 0), 0))
941 start = 0;
942 else
943 start = 1;
944
945 for (i = start; i < XVECLEN (x, 0); i++)
946 {
947 rtx y = XVECEXP (x, 0, i);
948 if (REG_P (XEXP (y, 0)))
949 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
950 }
951 }
952 }
953
954 /* Identify REG (which may be a CONCAT) as a user register. */
955
956 void
957 mark_user_reg (rtx reg)
958 {
959 if (GET_CODE (reg) == CONCAT)
960 {
961 REG_USERVAR_P (XEXP (reg, 0)) = 1;
962 REG_USERVAR_P (XEXP (reg, 1)) = 1;
963 }
964 else if (REG_P (reg))
965 REG_USERVAR_P (reg) = 1;
966 else
967 abort ();
968 }
969
970 /* Identify REG as a probable pointer register and show its alignment
971 as ALIGN, if nonzero. */
972
973 void
974 mark_reg_pointer (rtx reg, int align)
975 {
976 if (! REG_POINTER (reg))
977 {
978 REG_POINTER (reg) = 1;
979
980 if (align)
981 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
982 }
983 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
984 /* We can no-longer be sure just how aligned this pointer is. */
985 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
986 }
987
988 /* Return 1 plus largest pseudo reg number used in the current function. */
989
990 int
991 max_reg_num (void)
992 {
993 return reg_rtx_no;
994 }
995
996 /* Return 1 + the largest label number used so far in the current function. */
997
998 int
999 max_label_num (void)
1000 {
1001 if (last_label_num && label_num == base_label_num)
1002 return last_label_num;
1003 return label_num;
1004 }
1005
1006 /* Return first label number used in this function (if any were used). */
1007
1008 int
1009 get_first_label_num (void)
1010 {
1011 return first_label_num;
1012 }
1013
1014 /* If the rtx for label was created during the expansion of a nested
1015 function, then first_label_num won't include this label number.
1016 Fix this now so that array indicies work later. */
1017
1018 void
1019 maybe_set_first_label_num (rtx x)
1020 {
1021 if (CODE_LABEL_NUMBER (x) < first_label_num)
1022 first_label_num = CODE_LABEL_NUMBER (x);
1023 }
1024 \f
1025 /* Return the final regno of X, which is a SUBREG of a hard
1026 register. */
1027 int
1028 subreg_hard_regno (rtx x, int check_mode)
1029 {
1030 enum machine_mode mode = GET_MODE (x);
1031 unsigned int byte_offset, base_regno, final_regno;
1032 rtx reg = SUBREG_REG (x);
1033
1034 /* This is where we attempt to catch illegal subregs
1035 created by the compiler. */
1036 if (GET_CODE (x) != SUBREG
1037 || !REG_P (reg))
1038 abort ();
1039 base_regno = REGNO (reg);
1040 if (base_regno >= FIRST_PSEUDO_REGISTER)
1041 abort ();
1042 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1043 abort ();
1044 #ifdef ENABLE_CHECKING
1045 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1046 SUBREG_BYTE (x), mode))
1047 abort ();
1048 #endif
1049 /* Catch non-congruent offsets too. */
1050 byte_offset = SUBREG_BYTE (x);
1051 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1052 abort ();
1053
1054 final_regno = subreg_regno (x);
1055
1056 return final_regno;
1057 }
1058
1059 /* Return a value representing some low-order bits of X, where the number
1060 of low-order bits is given by MODE. Note that no conversion is done
1061 between floating-point and fixed-point values, rather, the bit
1062 representation is returned.
1063
1064 This function handles the cases in common between gen_lowpart, below,
1065 and two variants in cse.c and combine.c. These are the cases that can
1066 be safely handled at all points in the compilation.
1067
1068 If this is not a case we can handle, return 0. */
1069
1070 rtx
1071 gen_lowpart_common (enum machine_mode mode, rtx x)
1072 {
1073 int msize = GET_MODE_SIZE (mode);
1074 int xsize;
1075 int offset = 0;
1076 enum machine_mode innermode;
1077
1078 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1079 so we have to make one up. Yuk. */
1080 innermode = GET_MODE (x);
1081 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1082 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1083 else if (innermode == VOIDmode)
1084 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1085
1086 xsize = GET_MODE_SIZE (innermode);
1087
1088 if (innermode == VOIDmode || innermode == BLKmode)
1089 abort ();
1090
1091 if (innermode == mode)
1092 return x;
1093
1094 /* MODE must occupy no more words than the mode of X. */
1095 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1096 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1097 return 0;
1098
1099 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1100 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1101 return 0;
1102
1103 offset = subreg_lowpart_offset (mode, innermode);
1104
1105 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1106 && (GET_MODE_CLASS (mode) == MODE_INT
1107 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1108 {
1109 /* If we are getting the low-order part of something that has been
1110 sign- or zero-extended, we can either just use the object being
1111 extended or make a narrower extension. If we want an even smaller
1112 piece than the size of the object being extended, call ourselves
1113 recursively.
1114
1115 This case is used mostly by combine and cse. */
1116
1117 if (GET_MODE (XEXP (x, 0)) == mode)
1118 return XEXP (x, 0);
1119 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1120 return gen_lowpart_common (mode, XEXP (x, 0));
1121 else if (msize < xsize)
1122 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1123 }
1124 else if (GET_CODE (x) == SUBREG || REG_P (x)
1125 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1126 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1127 return simplify_gen_subreg (mode, x, innermode, offset);
1128
1129 /* Otherwise, we can't do this. */
1130 return 0;
1131 }
1132 \f
1133 /* Return the constant real or imaginary part (which has mode MODE)
1134 of a complex value X. The IMAGPART_P argument determines whether
1135 the real or complex component should be returned. This function
1136 returns NULL_RTX if the component isn't a constant. */
1137
1138 static rtx
1139 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1140 {
1141 tree decl, part;
1142
1143 if (MEM_P (x)
1144 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1145 {
1146 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1147 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1148 {
1149 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1150 if (TREE_CODE (part) == REAL_CST
1151 || TREE_CODE (part) == INTEGER_CST)
1152 return expand_expr (part, NULL_RTX, mode, 0);
1153 }
1154 }
1155 return NULL_RTX;
1156 }
1157
1158 /* Return the real part (which has mode MODE) of a complex value X.
1159 This always comes at the low address in memory. */
1160
1161 rtx
1162 gen_realpart (enum machine_mode mode, rtx x)
1163 {
1164 rtx part;
1165
1166 /* Handle complex constants. */
1167 part = gen_complex_constant_part (mode, x, 0);
1168 if (part != NULL_RTX)
1169 return part;
1170
1171 if (WORDS_BIG_ENDIAN
1172 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1173 && REG_P (x)
1174 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1175 internal_error
1176 ("can't access real part of complex value in hard register");
1177 else if (WORDS_BIG_ENDIAN)
1178 return gen_highpart (mode, x);
1179 else
1180 return gen_lowpart (mode, x);
1181 }
1182
1183 /* Return the imaginary part (which has mode MODE) of a complex value X.
1184 This always comes at the high address in memory. */
1185
1186 rtx
1187 gen_imagpart (enum machine_mode mode, rtx x)
1188 {
1189 rtx part;
1190
1191 /* Handle complex constants. */
1192 part = gen_complex_constant_part (mode, x, 1);
1193 if (part != NULL_RTX)
1194 return part;
1195
1196 if (WORDS_BIG_ENDIAN)
1197 return gen_lowpart (mode, x);
1198 else if (! WORDS_BIG_ENDIAN
1199 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1200 && REG_P (x)
1201 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1202 internal_error
1203 ("can't access imaginary part of complex value in hard register");
1204 else
1205 return gen_highpart (mode, x);
1206 }
1207 \f
1208 rtx
1209 gen_highpart (enum machine_mode mode, rtx x)
1210 {
1211 unsigned int msize = GET_MODE_SIZE (mode);
1212 rtx result;
1213
1214 /* This case loses if X is a subreg. To catch bugs early,
1215 complain if an invalid MODE is used even in other cases. */
1216 if (msize > UNITS_PER_WORD
1217 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1218 abort ();
1219
1220 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1221 subreg_highpart_offset (mode, GET_MODE (x)));
1222
1223 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1224 the target if we have a MEM. gen_highpart must return a valid operand,
1225 emitting code if necessary to do so. */
1226 if (result != NULL_RTX && MEM_P (result))
1227 result = validize_mem (result);
1228
1229 if (!result)
1230 abort ();
1231 return result;
1232 }
1233
1234 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1235 be VOIDmode constant. */
1236 rtx
1237 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1238 {
1239 if (GET_MODE (exp) != VOIDmode)
1240 {
1241 if (GET_MODE (exp) != innermode)
1242 abort ();
1243 return gen_highpart (outermode, exp);
1244 }
1245 return simplify_gen_subreg (outermode, exp, innermode,
1246 subreg_highpart_offset (outermode, innermode));
1247 }
1248
1249 /* Return offset in bytes to get OUTERMODE low part
1250 of the value in mode INNERMODE stored in memory in target format. */
1251
1252 unsigned int
1253 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1254 {
1255 unsigned int offset = 0;
1256 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1257
1258 if (difference > 0)
1259 {
1260 if (WORDS_BIG_ENDIAN)
1261 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1262 if (BYTES_BIG_ENDIAN)
1263 offset += difference % UNITS_PER_WORD;
1264 }
1265
1266 return offset;
1267 }
1268
1269 /* Return offset in bytes to get OUTERMODE high part
1270 of the value in mode INNERMODE stored in memory in target format. */
1271 unsigned int
1272 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1273 {
1274 unsigned int offset = 0;
1275 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1276
1277 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1278 abort ();
1279
1280 if (difference > 0)
1281 {
1282 if (! WORDS_BIG_ENDIAN)
1283 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1284 if (! BYTES_BIG_ENDIAN)
1285 offset += difference % UNITS_PER_WORD;
1286 }
1287
1288 return offset;
1289 }
1290
1291 /* Return 1 iff X, assumed to be a SUBREG,
1292 refers to the least significant part of its containing reg.
1293 If X is not a SUBREG, always return 1 (it is its own low part!). */
1294
1295 int
1296 subreg_lowpart_p (rtx x)
1297 {
1298 if (GET_CODE (x) != SUBREG)
1299 return 1;
1300 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1301 return 0;
1302
1303 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1304 == SUBREG_BYTE (x));
1305 }
1306 \f
1307 /* Return subword OFFSET of operand OP.
1308 The word number, OFFSET, is interpreted as the word number starting
1309 at the low-order address. OFFSET 0 is the low-order word if not
1310 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1311
1312 If we cannot extract the required word, we return zero. Otherwise,
1313 an rtx corresponding to the requested word will be returned.
1314
1315 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1316 reload has completed, a valid address will always be returned. After
1317 reload, if a valid address cannot be returned, we return zero.
1318
1319 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1320 it is the responsibility of the caller.
1321
1322 MODE is the mode of OP in case it is a CONST_INT.
1323
1324 ??? This is still rather broken for some cases. The problem for the
1325 moment is that all callers of this thing provide no 'goal mode' to
1326 tell us to work with. This exists because all callers were written
1327 in a word based SUBREG world.
1328 Now use of this function can be deprecated by simplify_subreg in most
1329 cases.
1330 */
1331
1332 rtx
1333 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1334 {
1335 if (mode == VOIDmode)
1336 mode = GET_MODE (op);
1337
1338 if (mode == VOIDmode)
1339 abort ();
1340
1341 /* If OP is narrower than a word, fail. */
1342 if (mode != BLKmode
1343 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1344 return 0;
1345
1346 /* If we want a word outside OP, return zero. */
1347 if (mode != BLKmode
1348 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1349 return const0_rtx;
1350
1351 /* Form a new MEM at the requested address. */
1352 if (MEM_P (op))
1353 {
1354 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1355
1356 if (! validate_address)
1357 return new;
1358
1359 else if (reload_completed)
1360 {
1361 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1362 return 0;
1363 }
1364 else
1365 return replace_equiv_address (new, XEXP (new, 0));
1366 }
1367
1368 /* Rest can be handled by simplify_subreg. */
1369 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1370 }
1371
1372 /* Similar to `operand_subword', but never return 0. If we can't extract
1373 the required subword, put OP into a register and try again. If that fails,
1374 abort. We always validate the address in this case.
1375
1376 MODE is the mode of OP, in case it is CONST_INT. */
1377
1378 rtx
1379 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1380 {
1381 rtx result = operand_subword (op, offset, 1, mode);
1382
1383 if (result)
1384 return result;
1385
1386 if (mode != BLKmode && mode != VOIDmode)
1387 {
1388 /* If this is a register which can not be accessed by words, copy it
1389 to a pseudo register. */
1390 if (REG_P (op))
1391 op = copy_to_reg (op);
1392 else
1393 op = force_reg (mode, op);
1394 }
1395
1396 result = operand_subword (op, offset, 1, mode);
1397 if (result == 0)
1398 abort ();
1399
1400 return result;
1401 }
1402 \f
1403 /* Given a compare instruction, swap the operands.
1404 A test instruction is changed into a compare of 0 against the operand. */
1405
1406 void
1407 reverse_comparison (rtx insn)
1408 {
1409 rtx body = PATTERN (insn);
1410 rtx comp;
1411
1412 if (GET_CODE (body) == SET)
1413 comp = SET_SRC (body);
1414 else
1415 comp = SET_SRC (XVECEXP (body, 0, 0));
1416
1417 if (GET_CODE (comp) == COMPARE)
1418 {
1419 rtx op0 = XEXP (comp, 0);
1420 rtx op1 = XEXP (comp, 1);
1421 XEXP (comp, 0) = op1;
1422 XEXP (comp, 1) = op0;
1423 }
1424 else
1425 {
1426 rtx new = gen_rtx_COMPARE (VOIDmode,
1427 CONST0_RTX (GET_MODE (comp)), comp);
1428 if (GET_CODE (body) == SET)
1429 SET_SRC (body) = new;
1430 else
1431 SET_SRC (XVECEXP (body, 0, 0)) = new;
1432 }
1433 }
1434 \f
1435 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1436 or (2) a component ref of something variable. Represent the later with
1437 a NULL expression. */
1438
1439 static tree
1440 component_ref_for_mem_expr (tree ref)
1441 {
1442 tree inner = TREE_OPERAND (ref, 0);
1443
1444 if (TREE_CODE (inner) == COMPONENT_REF)
1445 inner = component_ref_for_mem_expr (inner);
1446 else
1447 {
1448 /* Now remove any conversions: they don't change what the underlying
1449 object is. Likewise for SAVE_EXPR. */
1450 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1451 || TREE_CODE (inner) == NON_LVALUE_EXPR
1452 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1453 || TREE_CODE (inner) == SAVE_EXPR)
1454 inner = TREE_OPERAND (inner, 0);
1455
1456 if (! DECL_P (inner))
1457 inner = NULL_TREE;
1458 }
1459
1460 if (inner == TREE_OPERAND (ref, 0))
1461 return ref;
1462 else
1463 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1464 TREE_OPERAND (ref, 1), NULL_TREE);
1465 }
1466
1467 /* Returns 1 if both MEM_EXPR can be considered equal
1468 and 0 otherwise. */
1469
1470 int
1471 mem_expr_equal_p (tree expr1, tree expr2)
1472 {
1473 if (expr1 == expr2)
1474 return 1;
1475
1476 if (! expr1 || ! expr2)
1477 return 0;
1478
1479 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1480 return 0;
1481
1482 if (TREE_CODE (expr1) == COMPONENT_REF)
1483 return
1484 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1485 TREE_OPERAND (expr2, 0))
1486 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1487 TREE_OPERAND (expr2, 1));
1488
1489 if (TREE_CODE (expr1) == INDIRECT_REF)
1490 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1491 TREE_OPERAND (expr2, 0));
1492
1493 /* Decls with different pointers can't be equal. */
1494 if (DECL_P (expr1))
1495 return 0;
1496
1497 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1498 have been resolved here. */
1499 }
1500
1501 /* Given REF, a MEM, and T, either the type of X or the expression
1502 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1503 if we are making a new object of this type. BITPOS is nonzero if
1504 there is an offset outstanding on T that will be applied later. */
1505
1506 void
1507 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1508 HOST_WIDE_INT bitpos)
1509 {
1510 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1511 tree expr = MEM_EXPR (ref);
1512 rtx offset = MEM_OFFSET (ref);
1513 rtx size = MEM_SIZE (ref);
1514 unsigned int align = MEM_ALIGN (ref);
1515 HOST_WIDE_INT apply_bitpos = 0;
1516 tree type;
1517
1518 /* It can happen that type_for_mode was given a mode for which there
1519 is no language-level type. In which case it returns NULL, which
1520 we can see here. */
1521 if (t == NULL_TREE)
1522 return;
1523
1524 type = TYPE_P (t) ? t : TREE_TYPE (t);
1525 if (type == error_mark_node)
1526 return;
1527
1528 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1529 wrong answer, as it assumes that DECL_RTL already has the right alias
1530 info. Callers should not set DECL_RTL until after the call to
1531 set_mem_attributes. */
1532 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1533 abort ();
1534
1535 /* Get the alias set from the expression or type (perhaps using a
1536 front-end routine) and use it. */
1537 alias = get_alias_set (t);
1538
1539 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1540 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1541 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1542 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1543
1544 /* If we are making an object of this type, or if this is a DECL, we know
1545 that it is a scalar if the type is not an aggregate. */
1546 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1547 MEM_SCALAR_P (ref) = 1;
1548
1549 /* We can set the alignment from the type if we are making an object,
1550 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1551 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1552 align = MAX (align, TYPE_ALIGN (type));
1553
1554 /* If the size is known, we can set that. */
1555 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1556 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1557
1558 /* If T is not a type, we may be able to deduce some more information about
1559 the expression. */
1560 if (! TYPE_P (t))
1561 {
1562 tree base = get_base_address (t);
1563 if (base && DECL_P (base)
1564 && TREE_READONLY (base)
1565 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1566 MEM_READONLY_P (ref) = 1;
1567
1568 if (TREE_THIS_VOLATILE (t))
1569 MEM_VOLATILE_P (ref) = 1;
1570
1571 /* Now remove any conversions: they don't change what the underlying
1572 object is. Likewise for SAVE_EXPR. */
1573 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1574 || TREE_CODE (t) == NON_LVALUE_EXPR
1575 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1576 || TREE_CODE (t) == SAVE_EXPR)
1577 t = TREE_OPERAND (t, 0);
1578
1579 /* If this expression can't be addressed (e.g., it contains a reference
1580 to a non-addressable field), show we don't change its alias set. */
1581 if (! can_address_p (t))
1582 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1583
1584 /* If this is a decl, set the attributes of the MEM from it. */
1585 if (DECL_P (t))
1586 {
1587 expr = t;
1588 offset = const0_rtx;
1589 apply_bitpos = bitpos;
1590 size = (DECL_SIZE_UNIT (t)
1591 && host_integerp (DECL_SIZE_UNIT (t), 1)
1592 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1593 align = DECL_ALIGN (t);
1594 }
1595
1596 /* If this is a constant, we know the alignment. */
1597 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1598 {
1599 align = TYPE_ALIGN (type);
1600 #ifdef CONSTANT_ALIGNMENT
1601 align = CONSTANT_ALIGNMENT (t, align);
1602 #endif
1603 }
1604
1605 /* If this is a field reference and not a bit-field, record it. */
1606 /* ??? There is some information that can be gleened from bit-fields,
1607 such as the word offset in the structure that might be modified.
1608 But skip it for now. */
1609 else if (TREE_CODE (t) == COMPONENT_REF
1610 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1611 {
1612 expr = component_ref_for_mem_expr (t);
1613 offset = const0_rtx;
1614 apply_bitpos = bitpos;
1615 /* ??? Any reason the field size would be different than
1616 the size we got from the type? */
1617 }
1618
1619 /* If this is an array reference, look for an outer field reference. */
1620 else if (TREE_CODE (t) == ARRAY_REF)
1621 {
1622 tree off_tree = size_zero_node;
1623 /* We can't modify t, because we use it at the end of the
1624 function. */
1625 tree t2 = t;
1626
1627 do
1628 {
1629 tree index = TREE_OPERAND (t2, 1);
1630 tree low_bound = array_ref_low_bound (t2);
1631 tree unit_size = array_ref_element_size (t2);
1632
1633 /* We assume all arrays have sizes that are a multiple of a byte.
1634 First subtract the lower bound, if any, in the type of the
1635 index, then convert to sizetype and multiply by the size of
1636 the array element. */
1637 if (! integer_zerop (low_bound))
1638 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1639 index, low_bound));
1640
1641 off_tree = size_binop (PLUS_EXPR,
1642 size_binop (MULT_EXPR, convert (sizetype,
1643 index),
1644 unit_size),
1645 off_tree);
1646 t2 = TREE_OPERAND (t2, 0);
1647 }
1648 while (TREE_CODE (t2) == ARRAY_REF);
1649
1650 if (DECL_P (t2))
1651 {
1652 expr = t2;
1653 offset = NULL;
1654 if (host_integerp (off_tree, 1))
1655 {
1656 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1657 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1658 align = DECL_ALIGN (t2);
1659 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1660 align = aoff;
1661 offset = GEN_INT (ioff);
1662 apply_bitpos = bitpos;
1663 }
1664 }
1665 else if (TREE_CODE (t2) == COMPONENT_REF)
1666 {
1667 expr = component_ref_for_mem_expr (t2);
1668 if (host_integerp (off_tree, 1))
1669 {
1670 offset = GEN_INT (tree_low_cst (off_tree, 1));
1671 apply_bitpos = bitpos;
1672 }
1673 /* ??? Any reason the field size would be different than
1674 the size we got from the type? */
1675 }
1676 else if (flag_argument_noalias > 1
1677 && TREE_CODE (t2) == INDIRECT_REF
1678 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1679 {
1680 expr = t2;
1681 offset = NULL;
1682 }
1683 }
1684
1685 /* If this is a Fortran indirect argument reference, record the
1686 parameter decl. */
1687 else if (flag_argument_noalias > 1
1688 && TREE_CODE (t) == INDIRECT_REF
1689 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1690 {
1691 expr = t;
1692 offset = NULL;
1693 }
1694 }
1695
1696 /* If we modified OFFSET based on T, then subtract the outstanding
1697 bit position offset. Similarly, increase the size of the accessed
1698 object to contain the negative offset. */
1699 if (apply_bitpos)
1700 {
1701 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1702 if (size)
1703 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1704 }
1705
1706 /* Now set the attributes we computed above. */
1707 MEM_ATTRS (ref)
1708 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1709
1710 /* If this is already known to be a scalar or aggregate, we are done. */
1711 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1712 return;
1713
1714 /* If it is a reference into an aggregate, this is part of an aggregate.
1715 Otherwise we don't know. */
1716 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1717 || TREE_CODE (t) == ARRAY_RANGE_REF
1718 || TREE_CODE (t) == BIT_FIELD_REF)
1719 MEM_IN_STRUCT_P (ref) = 1;
1720 }
1721
1722 void
1723 set_mem_attributes (rtx ref, tree t, int objectp)
1724 {
1725 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1726 }
1727
1728 /* Set the decl for MEM to DECL. */
1729
1730 void
1731 set_mem_attrs_from_reg (rtx mem, rtx reg)
1732 {
1733 MEM_ATTRS (mem)
1734 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1735 GEN_INT (REG_OFFSET (reg)),
1736 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1737 }
1738
1739 /* Set the alias set of MEM to SET. */
1740
1741 void
1742 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1743 {
1744 #ifdef ENABLE_CHECKING
1745 /* If the new and old alias sets don't conflict, something is wrong. */
1746 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1747 abort ();
1748 #endif
1749
1750 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1751 MEM_SIZE (mem), MEM_ALIGN (mem),
1752 GET_MODE (mem));
1753 }
1754
1755 /* Set the alignment of MEM to ALIGN bits. */
1756
1757 void
1758 set_mem_align (rtx mem, unsigned int align)
1759 {
1760 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1761 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1762 GET_MODE (mem));
1763 }
1764
1765 /* Set the expr for MEM to EXPR. */
1766
1767 void
1768 set_mem_expr (rtx mem, tree expr)
1769 {
1770 MEM_ATTRS (mem)
1771 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1772 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1773 }
1774
1775 /* Set the offset of MEM to OFFSET. */
1776
1777 void
1778 set_mem_offset (rtx mem, rtx offset)
1779 {
1780 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1781 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1782 GET_MODE (mem));
1783 }
1784
1785 /* Set the size of MEM to SIZE. */
1786
1787 void
1788 set_mem_size (rtx mem, rtx size)
1789 {
1790 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1791 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1792 GET_MODE (mem));
1793 }
1794 \f
1795 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1796 and its address changed to ADDR. (VOIDmode means don't change the mode.
1797 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1798 returned memory location is required to be valid. The memory
1799 attributes are not changed. */
1800
1801 static rtx
1802 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1803 {
1804 rtx new;
1805
1806 if (!MEM_P (memref))
1807 abort ();
1808 if (mode == VOIDmode)
1809 mode = GET_MODE (memref);
1810 if (addr == 0)
1811 addr = XEXP (memref, 0);
1812 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1813 && (!validate || memory_address_p (mode, addr)))
1814 return memref;
1815
1816 if (validate)
1817 {
1818 if (reload_in_progress || reload_completed)
1819 {
1820 if (! memory_address_p (mode, addr))
1821 abort ();
1822 }
1823 else
1824 addr = memory_address (mode, addr);
1825 }
1826
1827 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1828 return memref;
1829
1830 new = gen_rtx_MEM (mode, addr);
1831 MEM_COPY_ATTRIBUTES (new, memref);
1832 return new;
1833 }
1834
1835 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1836 way we are changing MEMREF, so we only preserve the alias set. */
1837
1838 rtx
1839 change_address (rtx memref, enum machine_mode mode, rtx addr)
1840 {
1841 rtx new = change_address_1 (memref, mode, addr, 1), size;
1842 enum machine_mode mmode = GET_MODE (new);
1843 unsigned int align;
1844
1845 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1846 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1847
1848 /* If there are no changes, just return the original memory reference. */
1849 if (new == memref)
1850 {
1851 if (MEM_ATTRS (memref) == 0
1852 || (MEM_EXPR (memref) == NULL
1853 && MEM_OFFSET (memref) == NULL
1854 && MEM_SIZE (memref) == size
1855 && MEM_ALIGN (memref) == align))
1856 return new;
1857
1858 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1859 MEM_COPY_ATTRIBUTES (new, memref);
1860 }
1861
1862 MEM_ATTRS (new)
1863 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1864
1865 return new;
1866 }
1867
1868 /* Return a memory reference like MEMREF, but with its mode changed
1869 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1870 nonzero, the memory address is forced to be valid.
1871 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1872 and caller is responsible for adjusting MEMREF base register. */
1873
1874 rtx
1875 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1876 int validate, int adjust)
1877 {
1878 rtx addr = XEXP (memref, 0);
1879 rtx new;
1880 rtx memoffset = MEM_OFFSET (memref);
1881 rtx size = 0;
1882 unsigned int memalign = MEM_ALIGN (memref);
1883
1884 /* If there are no changes, just return the original memory reference. */
1885 if (mode == GET_MODE (memref) && !offset
1886 && (!validate || memory_address_p (mode, addr)))
1887 return memref;
1888
1889 /* ??? Prefer to create garbage instead of creating shared rtl.
1890 This may happen even if offset is nonzero -- consider
1891 (plus (plus reg reg) const_int) -- so do this always. */
1892 addr = copy_rtx (addr);
1893
1894 if (adjust)
1895 {
1896 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1897 object, we can merge it into the LO_SUM. */
1898 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1899 && offset >= 0
1900 && (unsigned HOST_WIDE_INT) offset
1901 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1902 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1903 plus_constant (XEXP (addr, 1), offset));
1904 else
1905 addr = plus_constant (addr, offset);
1906 }
1907
1908 new = change_address_1 (memref, mode, addr, validate);
1909
1910 /* Compute the new values of the memory attributes due to this adjustment.
1911 We add the offsets and update the alignment. */
1912 if (memoffset)
1913 memoffset = GEN_INT (offset + INTVAL (memoffset));
1914
1915 /* Compute the new alignment by taking the MIN of the alignment and the
1916 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1917 if zero. */
1918 if (offset != 0)
1919 memalign
1920 = MIN (memalign,
1921 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1922
1923 /* We can compute the size in a number of ways. */
1924 if (GET_MODE (new) != BLKmode)
1925 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1926 else if (MEM_SIZE (memref))
1927 size = plus_constant (MEM_SIZE (memref), -offset);
1928
1929 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1930 memoffset, size, memalign, GET_MODE (new));
1931
1932 /* At some point, we should validate that this offset is within the object,
1933 if all the appropriate values are known. */
1934 return new;
1935 }
1936
1937 /* Return a memory reference like MEMREF, but with its mode changed
1938 to MODE and its address changed to ADDR, which is assumed to be
1939 MEMREF offseted by OFFSET bytes. If VALIDATE is
1940 nonzero, the memory address is forced to be valid. */
1941
1942 rtx
1943 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1944 HOST_WIDE_INT offset, int validate)
1945 {
1946 memref = change_address_1 (memref, VOIDmode, addr, validate);
1947 return adjust_address_1 (memref, mode, offset, validate, 0);
1948 }
1949
1950 /* Return a memory reference like MEMREF, but whose address is changed by
1951 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1952 known to be in OFFSET (possibly 1). */
1953
1954 rtx
1955 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1956 {
1957 rtx new, addr = XEXP (memref, 0);
1958
1959 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1960
1961 /* At this point we don't know _why_ the address is invalid. It
1962 could have secondary memory references, multiplies or anything.
1963
1964 However, if we did go and rearrange things, we can wind up not
1965 being able to recognize the magic around pic_offset_table_rtx.
1966 This stuff is fragile, and is yet another example of why it is
1967 bad to expose PIC machinery too early. */
1968 if (! memory_address_p (GET_MODE (memref), new)
1969 && GET_CODE (addr) == PLUS
1970 && XEXP (addr, 0) == pic_offset_table_rtx)
1971 {
1972 addr = force_reg (GET_MODE (addr), addr);
1973 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1974 }
1975
1976 update_temp_slot_address (XEXP (memref, 0), new);
1977 new = change_address_1 (memref, VOIDmode, new, 1);
1978
1979 /* If there are no changes, just return the original memory reference. */
1980 if (new == memref)
1981 return new;
1982
1983 /* Update the alignment to reflect the offset. Reset the offset, which
1984 we don't know. */
1985 MEM_ATTRS (new)
1986 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1987 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1988 GET_MODE (new));
1989 return new;
1990 }
1991
1992 /* Return a memory reference like MEMREF, but with its address changed to
1993 ADDR. The caller is asserting that the actual piece of memory pointed
1994 to is the same, just the form of the address is being changed, such as
1995 by putting something into a register. */
1996
1997 rtx
1998 replace_equiv_address (rtx memref, rtx addr)
1999 {
2000 /* change_address_1 copies the memory attribute structure without change
2001 and that's exactly what we want here. */
2002 update_temp_slot_address (XEXP (memref, 0), addr);
2003 return change_address_1 (memref, VOIDmode, addr, 1);
2004 }
2005
2006 /* Likewise, but the reference is not required to be valid. */
2007
2008 rtx
2009 replace_equiv_address_nv (rtx memref, rtx addr)
2010 {
2011 return change_address_1 (memref, VOIDmode, addr, 0);
2012 }
2013
2014 /* Return a memory reference like MEMREF, but with its mode widened to
2015 MODE and offset by OFFSET. This would be used by targets that e.g.
2016 cannot issue QImode memory operations and have to use SImode memory
2017 operations plus masking logic. */
2018
2019 rtx
2020 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2021 {
2022 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2023 tree expr = MEM_EXPR (new);
2024 rtx memoffset = MEM_OFFSET (new);
2025 unsigned int size = GET_MODE_SIZE (mode);
2026
2027 /* If there are no changes, just return the original memory reference. */
2028 if (new == memref)
2029 return new;
2030
2031 /* If we don't know what offset we were at within the expression, then
2032 we can't know if we've overstepped the bounds. */
2033 if (! memoffset)
2034 expr = NULL_TREE;
2035
2036 while (expr)
2037 {
2038 if (TREE_CODE (expr) == COMPONENT_REF)
2039 {
2040 tree field = TREE_OPERAND (expr, 1);
2041 tree offset = component_ref_field_offset (expr);
2042
2043 if (! DECL_SIZE_UNIT (field))
2044 {
2045 expr = NULL_TREE;
2046 break;
2047 }
2048
2049 /* Is the field at least as large as the access? If so, ok,
2050 otherwise strip back to the containing structure. */
2051 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2052 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2053 && INTVAL (memoffset) >= 0)
2054 break;
2055
2056 if (! host_integerp (offset, 1))
2057 {
2058 expr = NULL_TREE;
2059 break;
2060 }
2061
2062 expr = TREE_OPERAND (expr, 0);
2063 memoffset
2064 = (GEN_INT (INTVAL (memoffset)
2065 + tree_low_cst (offset, 1)
2066 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2067 / BITS_PER_UNIT)));
2068 }
2069 /* Similarly for the decl. */
2070 else if (DECL_P (expr)
2071 && DECL_SIZE_UNIT (expr)
2072 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2073 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2074 && (! memoffset || INTVAL (memoffset) >= 0))
2075 break;
2076 else
2077 {
2078 /* The widened memory access overflows the expression, which means
2079 that it could alias another expression. Zap it. */
2080 expr = NULL_TREE;
2081 break;
2082 }
2083 }
2084
2085 if (! expr)
2086 memoffset = NULL_RTX;
2087
2088 /* The widened memory may alias other stuff, so zap the alias set. */
2089 /* ??? Maybe use get_alias_set on any remaining expression. */
2090
2091 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2092 MEM_ALIGN (new), mode);
2093
2094 return new;
2095 }
2096 \f
2097 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2098
2099 rtx
2100 gen_label_rtx (void)
2101 {
2102 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2103 NULL, label_num++, NULL);
2104 }
2105 \f
2106 /* For procedure integration. */
2107
2108 /* Install new pointers to the first and last insns in the chain.
2109 Also, set cur_insn_uid to one higher than the last in use.
2110 Used for an inline-procedure after copying the insn chain. */
2111
2112 void
2113 set_new_first_and_last_insn (rtx first, rtx last)
2114 {
2115 rtx insn;
2116
2117 first_insn = first;
2118 last_insn = last;
2119 cur_insn_uid = 0;
2120
2121 for (insn = first; insn; insn = NEXT_INSN (insn))
2122 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2123
2124 cur_insn_uid++;
2125 }
2126
2127 /* Set the last label number found in the current function.
2128 This is used when belatedly compiling an inline function. */
2129
2130 void
2131 set_new_last_label_num (int last)
2132 {
2133 base_label_num = label_num;
2134 last_label_num = last;
2135 }
2136 \f
2137 /* Restore all variables describing the current status from the structure *P.
2138 This is used after a nested function. */
2139
2140 void
2141 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2142 {
2143 last_label_num = 0;
2144 }
2145 \f
2146 /* Go through all the RTL insn bodies and copy any invalid shared
2147 structure. This routine should only be called once. */
2148
2149 static void
2150 unshare_all_rtl_1 (tree fndecl, rtx insn)
2151 {
2152 tree decl;
2153
2154 /* Make sure that virtual parameters are not shared. */
2155 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2156 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2157
2158 /* Make sure that virtual stack slots are not shared. */
2159 unshare_all_decls (DECL_INITIAL (fndecl));
2160
2161 /* Unshare just about everything else. */
2162 unshare_all_rtl_in_chain (insn);
2163
2164 /* Make sure the addresses of stack slots found outside the insn chain
2165 (such as, in DECL_RTL of a variable) are not shared
2166 with the insn chain.
2167
2168 This special care is necessary when the stack slot MEM does not
2169 actually appear in the insn chain. If it does appear, its address
2170 is unshared from all else at that point. */
2171 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2172 }
2173
2174 /* Go through all the RTL insn bodies and copy any invalid shared
2175 structure, again. This is a fairly expensive thing to do so it
2176 should be done sparingly. */
2177
2178 void
2179 unshare_all_rtl_again (rtx insn)
2180 {
2181 rtx p;
2182 tree decl;
2183
2184 for (p = insn; p; p = NEXT_INSN (p))
2185 if (INSN_P (p))
2186 {
2187 reset_used_flags (PATTERN (p));
2188 reset_used_flags (REG_NOTES (p));
2189 reset_used_flags (LOG_LINKS (p));
2190 }
2191
2192 /* Make sure that virtual stack slots are not shared. */
2193 reset_used_decls (DECL_INITIAL (cfun->decl));
2194
2195 /* Make sure that virtual parameters are not shared. */
2196 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2197 reset_used_flags (DECL_RTL (decl));
2198
2199 reset_used_flags (stack_slot_list);
2200
2201 unshare_all_rtl_1 (cfun->decl, insn);
2202 }
2203
2204 void
2205 unshare_all_rtl (void)
2206 {
2207 unshare_all_rtl_1 (current_function_decl, get_insns ());
2208 }
2209
2210 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2211 Recursively does the same for subexpressions. */
2212
2213 static void
2214 verify_rtx_sharing (rtx orig, rtx insn)
2215 {
2216 rtx x = orig;
2217 int i;
2218 enum rtx_code code;
2219 const char *format_ptr;
2220
2221 if (x == 0)
2222 return;
2223
2224 code = GET_CODE (x);
2225
2226 /* These types may be freely shared. */
2227
2228 switch (code)
2229 {
2230 case REG:
2231 case CONST_INT:
2232 case CONST_DOUBLE:
2233 case CONST_VECTOR:
2234 case SYMBOL_REF:
2235 case LABEL_REF:
2236 case CODE_LABEL:
2237 case PC:
2238 case CC0:
2239 case SCRATCH:
2240 return;
2241 /* SCRATCH must be shared because they represent distinct values. */
2242 case CLOBBER:
2243 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2244 return;
2245 break;
2246
2247 case CONST:
2248 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2249 a LABEL_REF, it isn't sharable. */
2250 if (GET_CODE (XEXP (x, 0)) == PLUS
2251 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2252 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2253 return;
2254 break;
2255
2256 case MEM:
2257 /* A MEM is allowed to be shared if its address is constant. */
2258 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2259 || reload_completed || reload_in_progress)
2260 return;
2261
2262 break;
2263
2264 default:
2265 break;
2266 }
2267
2268 /* This rtx may not be shared. If it has already been seen,
2269 replace it with a copy of itself. */
2270
2271 if (RTX_FLAG (x, used))
2272 {
2273 error ("Invalid rtl sharing found in the insn");
2274 debug_rtx (insn);
2275 error ("Shared rtx");
2276 debug_rtx (x);
2277 abort ();
2278 }
2279 RTX_FLAG (x, used) = 1;
2280
2281 /* Now scan the subexpressions recursively. */
2282
2283 format_ptr = GET_RTX_FORMAT (code);
2284
2285 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2286 {
2287 switch (*format_ptr++)
2288 {
2289 case 'e':
2290 verify_rtx_sharing (XEXP (x, i), insn);
2291 break;
2292
2293 case 'E':
2294 if (XVEC (x, i) != NULL)
2295 {
2296 int j;
2297 int len = XVECLEN (x, i);
2298
2299 for (j = 0; j < len; j++)
2300 {
2301 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2302 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2303 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2304 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2305 else
2306 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2307 }
2308 }
2309 break;
2310 }
2311 }
2312 return;
2313 }
2314
2315 /* Go through all the RTL insn bodies and check that there is no unexpected
2316 sharing in between the subexpressions. */
2317
2318 void
2319 verify_rtl_sharing (void)
2320 {
2321 rtx p;
2322
2323 for (p = get_insns (); p; p = NEXT_INSN (p))
2324 if (INSN_P (p))
2325 {
2326 reset_used_flags (PATTERN (p));
2327 reset_used_flags (REG_NOTES (p));
2328 reset_used_flags (LOG_LINKS (p));
2329 }
2330
2331 for (p = get_insns (); p; p = NEXT_INSN (p))
2332 if (INSN_P (p))
2333 {
2334 verify_rtx_sharing (PATTERN (p), p);
2335 verify_rtx_sharing (REG_NOTES (p), p);
2336 verify_rtx_sharing (LOG_LINKS (p), p);
2337 }
2338 }
2339
2340 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2341 Assumes the mark bits are cleared at entry. */
2342
2343 void
2344 unshare_all_rtl_in_chain (rtx insn)
2345 {
2346 for (; insn; insn = NEXT_INSN (insn))
2347 if (INSN_P (insn))
2348 {
2349 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2350 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2351 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2352 }
2353 }
2354
2355 /* Go through all virtual stack slots of a function and copy any
2356 shared structure. */
2357 static void
2358 unshare_all_decls (tree blk)
2359 {
2360 tree t;
2361
2362 /* Copy shared decls. */
2363 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2364 if (DECL_RTL_SET_P (t))
2365 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2366
2367 /* Now process sub-blocks. */
2368 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2369 unshare_all_decls (t);
2370 }
2371
2372 /* Go through all virtual stack slots of a function and mark them as
2373 not shared. */
2374 static void
2375 reset_used_decls (tree blk)
2376 {
2377 tree t;
2378
2379 /* Mark decls. */
2380 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2381 if (DECL_RTL_SET_P (t))
2382 reset_used_flags (DECL_RTL (t));
2383
2384 /* Now process sub-blocks. */
2385 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2386 reset_used_decls (t);
2387 }
2388
2389 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2390 placed in the result directly, rather than being copied. MAY_SHARE is
2391 either a MEM of an EXPR_LIST of MEMs. */
2392
2393 rtx
2394 copy_most_rtx (rtx orig, rtx may_share)
2395 {
2396 rtx copy;
2397 int i, j;
2398 RTX_CODE code;
2399 const char *format_ptr;
2400
2401 if (orig == may_share
2402 || (GET_CODE (may_share) == EXPR_LIST
2403 && in_expr_list_p (may_share, orig)))
2404 return orig;
2405
2406 code = GET_CODE (orig);
2407
2408 switch (code)
2409 {
2410 case REG:
2411 case CONST_INT:
2412 case CONST_DOUBLE:
2413 case CONST_VECTOR:
2414 case SYMBOL_REF:
2415 case CODE_LABEL:
2416 case PC:
2417 case CC0:
2418 return orig;
2419 default:
2420 break;
2421 }
2422
2423 copy = rtx_alloc (code);
2424 PUT_MODE (copy, GET_MODE (orig));
2425 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2426 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2427 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2428 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2429 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2430
2431 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2432
2433 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2434 {
2435 switch (*format_ptr++)
2436 {
2437 case 'e':
2438 XEXP (copy, i) = XEXP (orig, i);
2439 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2440 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2441 break;
2442
2443 case 'u':
2444 XEXP (copy, i) = XEXP (orig, i);
2445 break;
2446
2447 case 'E':
2448 case 'V':
2449 XVEC (copy, i) = XVEC (orig, i);
2450 if (XVEC (orig, i) != NULL)
2451 {
2452 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2453 for (j = 0; j < XVECLEN (copy, i); j++)
2454 XVECEXP (copy, i, j)
2455 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2456 }
2457 break;
2458
2459 case 'w':
2460 XWINT (copy, i) = XWINT (orig, i);
2461 break;
2462
2463 case 'n':
2464 case 'i':
2465 XINT (copy, i) = XINT (orig, i);
2466 break;
2467
2468 case 't':
2469 XTREE (copy, i) = XTREE (orig, i);
2470 break;
2471
2472 case 's':
2473 case 'S':
2474 XSTR (copy, i) = XSTR (orig, i);
2475 break;
2476
2477 case '0':
2478 X0ANY (copy, i) = X0ANY (orig, i);
2479 break;
2480
2481 default:
2482 abort ();
2483 }
2484 }
2485 return copy;
2486 }
2487
2488 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2489 Recursively does the same for subexpressions. Uses
2490 copy_rtx_if_shared_1 to reduce stack space. */
2491
2492 rtx
2493 copy_rtx_if_shared (rtx orig)
2494 {
2495 copy_rtx_if_shared_1 (&orig);
2496 return orig;
2497 }
2498
2499 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2500 use. Recursively does the same for subexpressions. */
2501
2502 static void
2503 copy_rtx_if_shared_1 (rtx *orig1)
2504 {
2505 rtx x;
2506 int i;
2507 enum rtx_code code;
2508 rtx *last_ptr;
2509 const char *format_ptr;
2510 int copied = 0;
2511 int length;
2512
2513 /* Repeat is used to turn tail-recursion into iteration. */
2514 repeat:
2515 x = *orig1;
2516
2517 if (x == 0)
2518 return;
2519
2520 code = GET_CODE (x);
2521
2522 /* These types may be freely shared. */
2523
2524 switch (code)
2525 {
2526 case REG:
2527 case CONST_INT:
2528 case CONST_DOUBLE:
2529 case CONST_VECTOR:
2530 case SYMBOL_REF:
2531 case LABEL_REF:
2532 case CODE_LABEL:
2533 case PC:
2534 case CC0:
2535 case SCRATCH:
2536 /* SCRATCH must be shared because they represent distinct values. */
2537 return;
2538 case CLOBBER:
2539 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2540 return;
2541 break;
2542
2543 case CONST:
2544 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2545 a LABEL_REF, it isn't sharable. */
2546 if (GET_CODE (XEXP (x, 0)) == PLUS
2547 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2548 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2549 return;
2550 break;
2551
2552 case INSN:
2553 case JUMP_INSN:
2554 case CALL_INSN:
2555 case NOTE:
2556 case BARRIER:
2557 /* The chain of insns is not being copied. */
2558 return;
2559
2560 default:
2561 break;
2562 }
2563
2564 /* This rtx may not be shared. If it has already been seen,
2565 replace it with a copy of itself. */
2566
2567 if (RTX_FLAG (x, used))
2568 {
2569 rtx copy;
2570
2571 copy = rtx_alloc (code);
2572 memcpy (copy, x, RTX_SIZE (code));
2573 x = copy;
2574 copied = 1;
2575 }
2576 RTX_FLAG (x, used) = 1;
2577
2578 /* Now scan the subexpressions recursively.
2579 We can store any replaced subexpressions directly into X
2580 since we know X is not shared! Any vectors in X
2581 must be copied if X was copied. */
2582
2583 format_ptr = GET_RTX_FORMAT (code);
2584 length = GET_RTX_LENGTH (code);
2585 last_ptr = NULL;
2586
2587 for (i = 0; i < length; i++)
2588 {
2589 switch (*format_ptr++)
2590 {
2591 case 'e':
2592 if (last_ptr)
2593 copy_rtx_if_shared_1 (last_ptr);
2594 last_ptr = &XEXP (x, i);
2595 break;
2596
2597 case 'E':
2598 if (XVEC (x, i) != NULL)
2599 {
2600 int j;
2601 int len = XVECLEN (x, i);
2602
2603 /* Copy the vector iff I copied the rtx and the length
2604 is nonzero. */
2605 if (copied && len > 0)
2606 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2607
2608 /* Call recursively on all inside the vector. */
2609 for (j = 0; j < len; j++)
2610 {
2611 if (last_ptr)
2612 copy_rtx_if_shared_1 (last_ptr);
2613 last_ptr = &XVECEXP (x, i, j);
2614 }
2615 }
2616 break;
2617 }
2618 }
2619 *orig1 = x;
2620 if (last_ptr)
2621 {
2622 orig1 = last_ptr;
2623 goto repeat;
2624 }
2625 return;
2626 }
2627
2628 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2629 to look for shared sub-parts. */
2630
2631 void
2632 reset_used_flags (rtx x)
2633 {
2634 int i, j;
2635 enum rtx_code code;
2636 const char *format_ptr;
2637 int length;
2638
2639 /* Repeat is used to turn tail-recursion into iteration. */
2640 repeat:
2641 if (x == 0)
2642 return;
2643
2644 code = GET_CODE (x);
2645
2646 /* These types may be freely shared so we needn't do any resetting
2647 for them. */
2648
2649 switch (code)
2650 {
2651 case REG:
2652 case CONST_INT:
2653 case CONST_DOUBLE:
2654 case CONST_VECTOR:
2655 case SYMBOL_REF:
2656 case CODE_LABEL:
2657 case PC:
2658 case CC0:
2659 return;
2660
2661 case INSN:
2662 case JUMP_INSN:
2663 case CALL_INSN:
2664 case NOTE:
2665 case LABEL_REF:
2666 case BARRIER:
2667 /* The chain of insns is not being copied. */
2668 return;
2669
2670 default:
2671 break;
2672 }
2673
2674 RTX_FLAG (x, used) = 0;
2675
2676 format_ptr = GET_RTX_FORMAT (code);
2677 length = GET_RTX_LENGTH (code);
2678
2679 for (i = 0; i < length; i++)
2680 {
2681 switch (*format_ptr++)
2682 {
2683 case 'e':
2684 if (i == length-1)
2685 {
2686 x = XEXP (x, i);
2687 goto repeat;
2688 }
2689 reset_used_flags (XEXP (x, i));
2690 break;
2691
2692 case 'E':
2693 for (j = 0; j < XVECLEN (x, i); j++)
2694 reset_used_flags (XVECEXP (x, i, j));
2695 break;
2696 }
2697 }
2698 }
2699
2700 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2701 to look for shared sub-parts. */
2702
2703 void
2704 set_used_flags (rtx x)
2705 {
2706 int i, j;
2707 enum rtx_code code;
2708 const char *format_ptr;
2709
2710 if (x == 0)
2711 return;
2712
2713 code = GET_CODE (x);
2714
2715 /* These types may be freely shared so we needn't do any resetting
2716 for them. */
2717
2718 switch (code)
2719 {
2720 case REG:
2721 case CONST_INT:
2722 case CONST_DOUBLE:
2723 case CONST_VECTOR:
2724 case SYMBOL_REF:
2725 case CODE_LABEL:
2726 case PC:
2727 case CC0:
2728 return;
2729
2730 case INSN:
2731 case JUMP_INSN:
2732 case CALL_INSN:
2733 case NOTE:
2734 case LABEL_REF:
2735 case BARRIER:
2736 /* The chain of insns is not being copied. */
2737 return;
2738
2739 default:
2740 break;
2741 }
2742
2743 RTX_FLAG (x, used) = 1;
2744
2745 format_ptr = GET_RTX_FORMAT (code);
2746 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2747 {
2748 switch (*format_ptr++)
2749 {
2750 case 'e':
2751 set_used_flags (XEXP (x, i));
2752 break;
2753
2754 case 'E':
2755 for (j = 0; j < XVECLEN (x, i); j++)
2756 set_used_flags (XVECEXP (x, i, j));
2757 break;
2758 }
2759 }
2760 }
2761 \f
2762 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2763 Return X or the rtx for the pseudo reg the value of X was copied into.
2764 OTHER must be valid as a SET_DEST. */
2765
2766 rtx
2767 make_safe_from (rtx x, rtx other)
2768 {
2769 while (1)
2770 switch (GET_CODE (other))
2771 {
2772 case SUBREG:
2773 other = SUBREG_REG (other);
2774 break;
2775 case STRICT_LOW_PART:
2776 case SIGN_EXTEND:
2777 case ZERO_EXTEND:
2778 other = XEXP (other, 0);
2779 break;
2780 default:
2781 goto done;
2782 }
2783 done:
2784 if ((MEM_P (other)
2785 && ! CONSTANT_P (x)
2786 && !REG_P (x)
2787 && GET_CODE (x) != SUBREG)
2788 || (REG_P (other)
2789 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2790 || reg_mentioned_p (other, x))))
2791 {
2792 rtx temp = gen_reg_rtx (GET_MODE (x));
2793 emit_move_insn (temp, x);
2794 return temp;
2795 }
2796 return x;
2797 }
2798 \f
2799 /* Emission of insns (adding them to the doubly-linked list). */
2800
2801 /* Return the first insn of the current sequence or current function. */
2802
2803 rtx
2804 get_insns (void)
2805 {
2806 return first_insn;
2807 }
2808
2809 /* Specify a new insn as the first in the chain. */
2810
2811 void
2812 set_first_insn (rtx insn)
2813 {
2814 if (PREV_INSN (insn) != 0)
2815 abort ();
2816 first_insn = insn;
2817 }
2818
2819 /* Return the last insn emitted in current sequence or current function. */
2820
2821 rtx
2822 get_last_insn (void)
2823 {
2824 return last_insn;
2825 }
2826
2827 /* Specify a new insn as the last in the chain. */
2828
2829 void
2830 set_last_insn (rtx insn)
2831 {
2832 if (NEXT_INSN (insn) != 0)
2833 abort ();
2834 last_insn = insn;
2835 }
2836
2837 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2838
2839 rtx
2840 get_last_insn_anywhere (void)
2841 {
2842 struct sequence_stack *stack;
2843 if (last_insn)
2844 return last_insn;
2845 for (stack = seq_stack; stack; stack = stack->next)
2846 if (stack->last != 0)
2847 return stack->last;
2848 return 0;
2849 }
2850
2851 /* Return the first nonnote insn emitted in current sequence or current
2852 function. This routine looks inside SEQUENCEs. */
2853
2854 rtx
2855 get_first_nonnote_insn (void)
2856 {
2857 rtx insn = first_insn;
2858
2859 while (insn)
2860 {
2861 insn = next_insn (insn);
2862 if (insn == 0 || !NOTE_P (insn))
2863 break;
2864 }
2865
2866 return insn;
2867 }
2868
2869 /* Return the last nonnote insn emitted in current sequence or current
2870 function. This routine looks inside SEQUENCEs. */
2871
2872 rtx
2873 get_last_nonnote_insn (void)
2874 {
2875 rtx insn = last_insn;
2876
2877 while (insn)
2878 {
2879 insn = previous_insn (insn);
2880 if (insn == 0 || !NOTE_P (insn))
2881 break;
2882 }
2883
2884 return insn;
2885 }
2886
2887 /* Return a number larger than any instruction's uid in this function. */
2888
2889 int
2890 get_max_uid (void)
2891 {
2892 return cur_insn_uid;
2893 }
2894
2895 /* Renumber instructions so that no instruction UIDs are wasted. */
2896
2897 void
2898 renumber_insns (FILE *stream)
2899 {
2900 rtx insn;
2901
2902 /* If we're not supposed to renumber instructions, don't. */
2903 if (!flag_renumber_insns)
2904 return;
2905
2906 /* If there aren't that many instructions, then it's not really
2907 worth renumbering them. */
2908 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2909 return;
2910
2911 cur_insn_uid = 1;
2912
2913 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2914 {
2915 if (stream)
2916 fprintf (stream, "Renumbering insn %d to %d\n",
2917 INSN_UID (insn), cur_insn_uid);
2918 INSN_UID (insn) = cur_insn_uid++;
2919 }
2920 }
2921 \f
2922 /* Return the next insn. If it is a SEQUENCE, return the first insn
2923 of the sequence. */
2924
2925 rtx
2926 next_insn (rtx insn)
2927 {
2928 if (insn)
2929 {
2930 insn = NEXT_INSN (insn);
2931 if (insn && NONJUMP_INSN_P (insn)
2932 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2933 insn = XVECEXP (PATTERN (insn), 0, 0);
2934 }
2935
2936 return insn;
2937 }
2938
2939 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2940 of the sequence. */
2941
2942 rtx
2943 previous_insn (rtx insn)
2944 {
2945 if (insn)
2946 {
2947 insn = PREV_INSN (insn);
2948 if (insn && NONJUMP_INSN_P (insn)
2949 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2950 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2951 }
2952
2953 return insn;
2954 }
2955
2956 /* Return the next insn after INSN that is not a NOTE. This routine does not
2957 look inside SEQUENCEs. */
2958
2959 rtx
2960 next_nonnote_insn (rtx insn)
2961 {
2962 while (insn)
2963 {
2964 insn = NEXT_INSN (insn);
2965 if (insn == 0 || !NOTE_P (insn))
2966 break;
2967 }
2968
2969 return insn;
2970 }
2971
2972 /* Return the previous insn before INSN that is not a NOTE. This routine does
2973 not look inside SEQUENCEs. */
2974
2975 rtx
2976 prev_nonnote_insn (rtx insn)
2977 {
2978 while (insn)
2979 {
2980 insn = PREV_INSN (insn);
2981 if (insn == 0 || !NOTE_P (insn))
2982 break;
2983 }
2984
2985 return insn;
2986 }
2987
2988 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2989 or 0, if there is none. This routine does not look inside
2990 SEQUENCEs. */
2991
2992 rtx
2993 next_real_insn (rtx insn)
2994 {
2995 while (insn)
2996 {
2997 insn = NEXT_INSN (insn);
2998 if (insn == 0 || INSN_P (insn))
2999 break;
3000 }
3001
3002 return insn;
3003 }
3004
3005 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3006 or 0, if there is none. This routine does not look inside
3007 SEQUENCEs. */
3008
3009 rtx
3010 prev_real_insn (rtx insn)
3011 {
3012 while (insn)
3013 {
3014 insn = PREV_INSN (insn);
3015 if (insn == 0 || INSN_P (insn))
3016 break;
3017 }
3018
3019 return insn;
3020 }
3021
3022 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3023 This routine does not look inside SEQUENCEs. */
3024
3025 rtx
3026 last_call_insn (void)
3027 {
3028 rtx insn;
3029
3030 for (insn = get_last_insn ();
3031 insn && !CALL_P (insn);
3032 insn = PREV_INSN (insn))
3033 ;
3034
3035 return insn;
3036 }
3037
3038 /* Find the next insn after INSN that really does something. This routine
3039 does not look inside SEQUENCEs. Until reload has completed, this is the
3040 same as next_real_insn. */
3041
3042 int
3043 active_insn_p (rtx insn)
3044 {
3045 return (CALL_P (insn) || JUMP_P (insn)
3046 || (NONJUMP_INSN_P (insn)
3047 && (! reload_completed
3048 || (GET_CODE (PATTERN (insn)) != USE
3049 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3050 }
3051
3052 rtx
3053 next_active_insn (rtx insn)
3054 {
3055 while (insn)
3056 {
3057 insn = NEXT_INSN (insn);
3058 if (insn == 0 || active_insn_p (insn))
3059 break;
3060 }
3061
3062 return insn;
3063 }
3064
3065 /* Find the last insn before INSN that really does something. This routine
3066 does not look inside SEQUENCEs. Until reload has completed, this is the
3067 same as prev_real_insn. */
3068
3069 rtx
3070 prev_active_insn (rtx insn)
3071 {
3072 while (insn)
3073 {
3074 insn = PREV_INSN (insn);
3075 if (insn == 0 || active_insn_p (insn))
3076 break;
3077 }
3078
3079 return insn;
3080 }
3081
3082 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3083
3084 rtx
3085 next_label (rtx insn)
3086 {
3087 while (insn)
3088 {
3089 insn = NEXT_INSN (insn);
3090 if (insn == 0 || LABEL_P (insn))
3091 break;
3092 }
3093
3094 return insn;
3095 }
3096
3097 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3098
3099 rtx
3100 prev_label (rtx insn)
3101 {
3102 while (insn)
3103 {
3104 insn = PREV_INSN (insn);
3105 if (insn == 0 || LABEL_P (insn))
3106 break;
3107 }
3108
3109 return insn;
3110 }
3111
3112 /* Return the last label to mark the same position as LABEL. Return null
3113 if LABEL itself is null. */
3114
3115 rtx
3116 skip_consecutive_labels (rtx label)
3117 {
3118 rtx insn;
3119
3120 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3121 if (LABEL_P (insn))
3122 label = insn;
3123
3124 return label;
3125 }
3126 \f
3127 #ifdef HAVE_cc0
3128 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3129 and REG_CC_USER notes so we can find it. */
3130
3131 void
3132 link_cc0_insns (rtx insn)
3133 {
3134 rtx user = next_nonnote_insn (insn);
3135
3136 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3137 user = XVECEXP (PATTERN (user), 0, 0);
3138
3139 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3140 REG_NOTES (user));
3141 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3142 }
3143
3144 /* Return the next insn that uses CC0 after INSN, which is assumed to
3145 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3146 applied to the result of this function should yield INSN).
3147
3148 Normally, this is simply the next insn. However, if a REG_CC_USER note
3149 is present, it contains the insn that uses CC0.
3150
3151 Return 0 if we can't find the insn. */
3152
3153 rtx
3154 next_cc0_user (rtx insn)
3155 {
3156 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3157
3158 if (note)
3159 return XEXP (note, 0);
3160
3161 insn = next_nonnote_insn (insn);
3162 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3163 insn = XVECEXP (PATTERN (insn), 0, 0);
3164
3165 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3166 return insn;
3167
3168 return 0;
3169 }
3170
3171 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3172 note, it is the previous insn. */
3173
3174 rtx
3175 prev_cc0_setter (rtx insn)
3176 {
3177 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3178
3179 if (note)
3180 return XEXP (note, 0);
3181
3182 insn = prev_nonnote_insn (insn);
3183 if (! sets_cc0_p (PATTERN (insn)))
3184 abort ();
3185
3186 return insn;
3187 }
3188 #endif
3189
3190 /* Increment the label uses for all labels present in rtx. */
3191
3192 static void
3193 mark_label_nuses (rtx x)
3194 {
3195 enum rtx_code code;
3196 int i, j;
3197 const char *fmt;
3198
3199 code = GET_CODE (x);
3200 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3201 LABEL_NUSES (XEXP (x, 0))++;
3202
3203 fmt = GET_RTX_FORMAT (code);
3204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3205 {
3206 if (fmt[i] == 'e')
3207 mark_label_nuses (XEXP (x, i));
3208 else if (fmt[i] == 'E')
3209 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3210 mark_label_nuses (XVECEXP (x, i, j));
3211 }
3212 }
3213
3214 \f
3215 /* Try splitting insns that can be split for better scheduling.
3216 PAT is the pattern which might split.
3217 TRIAL is the insn providing PAT.
3218 LAST is nonzero if we should return the last insn of the sequence produced.
3219
3220 If this routine succeeds in splitting, it returns the first or last
3221 replacement insn depending on the value of LAST. Otherwise, it
3222 returns TRIAL. If the insn to be returned can be split, it will be. */
3223
3224 rtx
3225 try_split (rtx pat, rtx trial, int last)
3226 {
3227 rtx before = PREV_INSN (trial);
3228 rtx after = NEXT_INSN (trial);
3229 int has_barrier = 0;
3230 rtx tem;
3231 rtx note, seq;
3232 int probability;
3233 rtx insn_last, insn;
3234 int njumps = 0;
3235
3236 if (any_condjump_p (trial)
3237 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3238 split_branch_probability = INTVAL (XEXP (note, 0));
3239 probability = split_branch_probability;
3240
3241 seq = split_insns (pat, trial);
3242
3243 split_branch_probability = -1;
3244
3245 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3246 We may need to handle this specially. */
3247 if (after && BARRIER_P (after))
3248 {
3249 has_barrier = 1;
3250 after = NEXT_INSN (after);
3251 }
3252
3253 if (!seq)
3254 return trial;
3255
3256 /* Avoid infinite loop if any insn of the result matches
3257 the original pattern. */
3258 insn_last = seq;
3259 while (1)
3260 {
3261 if (INSN_P (insn_last)
3262 && rtx_equal_p (PATTERN (insn_last), pat))
3263 return trial;
3264 if (!NEXT_INSN (insn_last))
3265 break;
3266 insn_last = NEXT_INSN (insn_last);
3267 }
3268
3269 /* Mark labels. */
3270 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3271 {
3272 if (JUMP_P (insn))
3273 {
3274 mark_jump_label (PATTERN (insn), insn, 0);
3275 njumps++;
3276 if (probability != -1
3277 && any_condjump_p (insn)
3278 && !find_reg_note (insn, REG_BR_PROB, 0))
3279 {
3280 /* We can preserve the REG_BR_PROB notes only if exactly
3281 one jump is created, otherwise the machine description
3282 is responsible for this step using
3283 split_branch_probability variable. */
3284 if (njumps != 1)
3285 abort ();
3286 REG_NOTES (insn)
3287 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3288 GEN_INT (probability),
3289 REG_NOTES (insn));
3290 }
3291 }
3292 }
3293
3294 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3295 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3296 if (CALL_P (trial))
3297 {
3298 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3299 if (CALL_P (insn))
3300 {
3301 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3302 while (*p)
3303 p = &XEXP (*p, 1);
3304 *p = CALL_INSN_FUNCTION_USAGE (trial);
3305 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3306 }
3307 }
3308
3309 /* Copy notes, particularly those related to the CFG. */
3310 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3311 {
3312 switch (REG_NOTE_KIND (note))
3313 {
3314 case REG_EH_REGION:
3315 insn = insn_last;
3316 while (insn != NULL_RTX)
3317 {
3318 if (CALL_P (insn)
3319 || (flag_non_call_exceptions
3320 && may_trap_p (PATTERN (insn))))
3321 REG_NOTES (insn)
3322 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3323 XEXP (note, 0),
3324 REG_NOTES (insn));
3325 insn = PREV_INSN (insn);
3326 }
3327 break;
3328
3329 case REG_NORETURN:
3330 case REG_SETJMP:
3331 case REG_ALWAYS_RETURN:
3332 insn = insn_last;
3333 while (insn != NULL_RTX)
3334 {
3335 if (CALL_P (insn))
3336 REG_NOTES (insn)
3337 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3338 XEXP (note, 0),
3339 REG_NOTES (insn));
3340 insn = PREV_INSN (insn);
3341 }
3342 break;
3343
3344 case REG_NON_LOCAL_GOTO:
3345 insn = insn_last;
3346 while (insn != NULL_RTX)
3347 {
3348 if (JUMP_P (insn))
3349 REG_NOTES (insn)
3350 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3351 XEXP (note, 0),
3352 REG_NOTES (insn));
3353 insn = PREV_INSN (insn);
3354 }
3355 break;
3356
3357 default:
3358 break;
3359 }
3360 }
3361
3362 /* If there are LABELS inside the split insns increment the
3363 usage count so we don't delete the label. */
3364 if (NONJUMP_INSN_P (trial))
3365 {
3366 insn = insn_last;
3367 while (insn != NULL_RTX)
3368 {
3369 if (NONJUMP_INSN_P (insn))
3370 mark_label_nuses (PATTERN (insn));
3371
3372 insn = PREV_INSN (insn);
3373 }
3374 }
3375
3376 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3377
3378 delete_insn (trial);
3379 if (has_barrier)
3380 emit_barrier_after (tem);
3381
3382 /* Recursively call try_split for each new insn created; by the
3383 time control returns here that insn will be fully split, so
3384 set LAST and continue from the insn after the one returned.
3385 We can't use next_active_insn here since AFTER may be a note.
3386 Ignore deleted insns, which can be occur if not optimizing. */
3387 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3388 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3389 tem = try_split (PATTERN (tem), tem, 1);
3390
3391 /* Return either the first or the last insn, depending on which was
3392 requested. */
3393 return last
3394 ? (after ? PREV_INSN (after) : last_insn)
3395 : NEXT_INSN (before);
3396 }
3397 \f
3398 /* Make and return an INSN rtx, initializing all its slots.
3399 Store PATTERN in the pattern slots. */
3400
3401 rtx
3402 make_insn_raw (rtx pattern)
3403 {
3404 rtx insn;
3405
3406 insn = rtx_alloc (INSN);
3407
3408 INSN_UID (insn) = cur_insn_uid++;
3409 PATTERN (insn) = pattern;
3410 INSN_CODE (insn) = -1;
3411 LOG_LINKS (insn) = NULL;
3412 REG_NOTES (insn) = NULL;
3413 INSN_LOCATOR (insn) = 0;
3414 BLOCK_FOR_INSN (insn) = NULL;
3415
3416 #ifdef ENABLE_RTL_CHECKING
3417 if (insn
3418 && INSN_P (insn)
3419 && (returnjump_p (insn)
3420 || (GET_CODE (insn) == SET
3421 && SET_DEST (insn) == pc_rtx)))
3422 {
3423 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3424 debug_rtx (insn);
3425 }
3426 #endif
3427
3428 return insn;
3429 }
3430
3431 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3432
3433 static rtx
3434 make_jump_insn_raw (rtx pattern)
3435 {
3436 rtx insn;
3437
3438 insn = rtx_alloc (JUMP_INSN);
3439 INSN_UID (insn) = cur_insn_uid++;
3440
3441 PATTERN (insn) = pattern;
3442 INSN_CODE (insn) = -1;
3443 LOG_LINKS (insn) = NULL;
3444 REG_NOTES (insn) = NULL;
3445 JUMP_LABEL (insn) = NULL;
3446 INSN_LOCATOR (insn) = 0;
3447 BLOCK_FOR_INSN (insn) = NULL;
3448
3449 return insn;
3450 }
3451
3452 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3453
3454 static rtx
3455 make_call_insn_raw (rtx pattern)
3456 {
3457 rtx insn;
3458
3459 insn = rtx_alloc (CALL_INSN);
3460 INSN_UID (insn) = cur_insn_uid++;
3461
3462 PATTERN (insn) = pattern;
3463 INSN_CODE (insn) = -1;
3464 LOG_LINKS (insn) = NULL;
3465 REG_NOTES (insn) = NULL;
3466 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3467 INSN_LOCATOR (insn) = 0;
3468 BLOCK_FOR_INSN (insn) = NULL;
3469
3470 return insn;
3471 }
3472 \f
3473 /* Add INSN to the end of the doubly-linked list.
3474 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3475
3476 void
3477 add_insn (rtx insn)
3478 {
3479 PREV_INSN (insn) = last_insn;
3480 NEXT_INSN (insn) = 0;
3481
3482 if (NULL != last_insn)
3483 NEXT_INSN (last_insn) = insn;
3484
3485 if (NULL == first_insn)
3486 first_insn = insn;
3487
3488 last_insn = insn;
3489 }
3490
3491 /* Add INSN into the doubly-linked list after insn AFTER. This and
3492 the next should be the only functions called to insert an insn once
3493 delay slots have been filled since only they know how to update a
3494 SEQUENCE. */
3495
3496 void
3497 add_insn_after (rtx insn, rtx after)
3498 {
3499 rtx next = NEXT_INSN (after);
3500 basic_block bb;
3501
3502 if (optimize && INSN_DELETED_P (after))
3503 abort ();
3504
3505 NEXT_INSN (insn) = next;
3506 PREV_INSN (insn) = after;
3507
3508 if (next)
3509 {
3510 PREV_INSN (next) = insn;
3511 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3512 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3513 }
3514 else if (last_insn == after)
3515 last_insn = insn;
3516 else
3517 {
3518 struct sequence_stack *stack = seq_stack;
3519 /* Scan all pending sequences too. */
3520 for (; stack; stack = stack->next)
3521 if (after == stack->last)
3522 {
3523 stack->last = insn;
3524 break;
3525 }
3526
3527 if (stack == 0)
3528 abort ();
3529 }
3530
3531 if (!BARRIER_P (after)
3532 && !BARRIER_P (insn)
3533 && (bb = BLOCK_FOR_INSN (after)))
3534 {
3535 set_block_for_insn (insn, bb);
3536 if (INSN_P (insn))
3537 bb->flags |= BB_DIRTY;
3538 /* Should not happen as first in the BB is always
3539 either NOTE or LABEL. */
3540 if (BB_END (bb) == after
3541 /* Avoid clobbering of structure when creating new BB. */
3542 && !BARRIER_P (insn)
3543 && (!NOTE_P (insn)
3544 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3545 BB_END (bb) = insn;
3546 }
3547
3548 NEXT_INSN (after) = insn;
3549 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3550 {
3551 rtx sequence = PATTERN (after);
3552 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3553 }
3554 }
3555
3556 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3557 the previous should be the only functions called to insert an insn once
3558 delay slots have been filled since only they know how to update a
3559 SEQUENCE. */
3560
3561 void
3562 add_insn_before (rtx insn, rtx before)
3563 {
3564 rtx prev = PREV_INSN (before);
3565 basic_block bb;
3566
3567 if (optimize && INSN_DELETED_P (before))
3568 abort ();
3569
3570 PREV_INSN (insn) = prev;
3571 NEXT_INSN (insn) = before;
3572
3573 if (prev)
3574 {
3575 NEXT_INSN (prev) = insn;
3576 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3577 {
3578 rtx sequence = PATTERN (prev);
3579 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3580 }
3581 }
3582 else if (first_insn == before)
3583 first_insn = insn;
3584 else
3585 {
3586 struct sequence_stack *stack = seq_stack;
3587 /* Scan all pending sequences too. */
3588 for (; stack; stack = stack->next)
3589 if (before == stack->first)
3590 {
3591 stack->first = insn;
3592 break;
3593 }
3594
3595 if (stack == 0)
3596 abort ();
3597 }
3598
3599 if (!BARRIER_P (before)
3600 && !BARRIER_P (insn)
3601 && (bb = BLOCK_FOR_INSN (before)))
3602 {
3603 set_block_for_insn (insn, bb);
3604 if (INSN_P (insn))
3605 bb->flags |= BB_DIRTY;
3606 /* Should not happen as first in the BB is always
3607 either NOTE or LABEl. */
3608 if (BB_HEAD (bb) == insn
3609 /* Avoid clobbering of structure when creating new BB. */
3610 && !BARRIER_P (insn)
3611 && (!NOTE_P (insn)
3612 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3613 abort ();
3614 }
3615
3616 PREV_INSN (before) = insn;
3617 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3618 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3619 }
3620
3621 /* Remove an insn from its doubly-linked list. This function knows how
3622 to handle sequences. */
3623 void
3624 remove_insn (rtx insn)
3625 {
3626 rtx next = NEXT_INSN (insn);
3627 rtx prev = PREV_INSN (insn);
3628 basic_block bb;
3629
3630 if (prev)
3631 {
3632 NEXT_INSN (prev) = next;
3633 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3634 {
3635 rtx sequence = PATTERN (prev);
3636 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3637 }
3638 }
3639 else if (first_insn == insn)
3640 first_insn = next;
3641 else
3642 {
3643 struct sequence_stack *stack = seq_stack;
3644 /* Scan all pending sequences too. */
3645 for (; stack; stack = stack->next)
3646 if (insn == stack->first)
3647 {
3648 stack->first = next;
3649 break;
3650 }
3651
3652 if (stack == 0)
3653 abort ();
3654 }
3655
3656 if (next)
3657 {
3658 PREV_INSN (next) = prev;
3659 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3660 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3661 }
3662 else if (last_insn == insn)
3663 last_insn = prev;
3664 else
3665 {
3666 struct sequence_stack *stack = seq_stack;
3667 /* Scan all pending sequences too. */
3668 for (; stack; stack = stack->next)
3669 if (insn == stack->last)
3670 {
3671 stack->last = prev;
3672 break;
3673 }
3674
3675 if (stack == 0)
3676 abort ();
3677 }
3678 if (!BARRIER_P (insn)
3679 && (bb = BLOCK_FOR_INSN (insn)))
3680 {
3681 if (INSN_P (insn))
3682 bb->flags |= BB_DIRTY;
3683 if (BB_HEAD (bb) == insn)
3684 {
3685 /* Never ever delete the basic block note without deleting whole
3686 basic block. */
3687 if (NOTE_P (insn))
3688 abort ();
3689 BB_HEAD (bb) = next;
3690 }
3691 if (BB_END (bb) == insn)
3692 BB_END (bb) = prev;
3693 }
3694 }
3695
3696 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3697
3698 void
3699 add_function_usage_to (rtx call_insn, rtx call_fusage)
3700 {
3701 if (! call_insn || !CALL_P (call_insn))
3702 abort ();
3703
3704 /* Put the register usage information on the CALL. If there is already
3705 some usage information, put ours at the end. */
3706 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3707 {
3708 rtx link;
3709
3710 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3711 link = XEXP (link, 1))
3712 ;
3713
3714 XEXP (link, 1) = call_fusage;
3715 }
3716 else
3717 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3718 }
3719
3720 /* Delete all insns made since FROM.
3721 FROM becomes the new last instruction. */
3722
3723 void
3724 delete_insns_since (rtx from)
3725 {
3726 if (from == 0)
3727 first_insn = 0;
3728 else
3729 NEXT_INSN (from) = 0;
3730 last_insn = from;
3731 }
3732
3733 /* This function is deprecated, please use sequences instead.
3734
3735 Move a consecutive bunch of insns to a different place in the chain.
3736 The insns to be moved are those between FROM and TO.
3737 They are moved to a new position after the insn AFTER.
3738 AFTER must not be FROM or TO or any insn in between.
3739
3740 This function does not know about SEQUENCEs and hence should not be
3741 called after delay-slot filling has been done. */
3742
3743 void
3744 reorder_insns_nobb (rtx from, rtx to, rtx after)
3745 {
3746 /* Splice this bunch out of where it is now. */
3747 if (PREV_INSN (from))
3748 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3749 if (NEXT_INSN (to))
3750 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3751 if (last_insn == to)
3752 last_insn = PREV_INSN (from);
3753 if (first_insn == from)
3754 first_insn = NEXT_INSN (to);
3755
3756 /* Make the new neighbors point to it and it to them. */
3757 if (NEXT_INSN (after))
3758 PREV_INSN (NEXT_INSN (after)) = to;
3759
3760 NEXT_INSN (to) = NEXT_INSN (after);
3761 PREV_INSN (from) = after;
3762 NEXT_INSN (after) = from;
3763 if (after == last_insn)
3764 last_insn = to;
3765 }
3766
3767 /* Same as function above, but take care to update BB boundaries. */
3768 void
3769 reorder_insns (rtx from, rtx to, rtx after)
3770 {
3771 rtx prev = PREV_INSN (from);
3772 basic_block bb, bb2;
3773
3774 reorder_insns_nobb (from, to, after);
3775
3776 if (!BARRIER_P (after)
3777 && (bb = BLOCK_FOR_INSN (after)))
3778 {
3779 rtx x;
3780 bb->flags |= BB_DIRTY;
3781
3782 if (!BARRIER_P (from)
3783 && (bb2 = BLOCK_FOR_INSN (from)))
3784 {
3785 if (BB_END (bb2) == to)
3786 BB_END (bb2) = prev;
3787 bb2->flags |= BB_DIRTY;
3788 }
3789
3790 if (BB_END (bb) == after)
3791 BB_END (bb) = to;
3792
3793 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3794 if (!BARRIER_P (x))
3795 set_block_for_insn (x, bb);
3796 }
3797 }
3798
3799 /* Return the line note insn preceding INSN. */
3800
3801 static rtx
3802 find_line_note (rtx insn)
3803 {
3804 if (no_line_numbers)
3805 return 0;
3806
3807 for (; insn; insn = PREV_INSN (insn))
3808 if (NOTE_P (insn)
3809 && NOTE_LINE_NUMBER (insn) >= 0)
3810 break;
3811
3812 return insn;
3813 }
3814
3815 /* Remove unnecessary notes from the instruction stream. */
3816
3817 void
3818 remove_unnecessary_notes (void)
3819 {
3820 rtx block_stack = NULL_RTX;
3821 rtx eh_stack = NULL_RTX;
3822 rtx insn;
3823 rtx next;
3824 rtx tmp;
3825
3826 /* We must not remove the first instruction in the function because
3827 the compiler depends on the first instruction being a note. */
3828 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3829 {
3830 /* Remember what's next. */
3831 next = NEXT_INSN (insn);
3832
3833 /* We're only interested in notes. */
3834 if (!NOTE_P (insn))
3835 continue;
3836
3837 switch (NOTE_LINE_NUMBER (insn))
3838 {
3839 case NOTE_INSN_DELETED:
3840 remove_insn (insn);
3841 break;
3842
3843 case NOTE_INSN_EH_REGION_BEG:
3844 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3845 break;
3846
3847 case NOTE_INSN_EH_REGION_END:
3848 /* Too many end notes. */
3849 if (eh_stack == NULL_RTX)
3850 abort ();
3851 /* Mismatched nesting. */
3852 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3853 abort ();
3854 tmp = eh_stack;
3855 eh_stack = XEXP (eh_stack, 1);
3856 free_INSN_LIST_node (tmp);
3857 break;
3858
3859 case NOTE_INSN_BLOCK_BEG:
3860 /* By now, all notes indicating lexical blocks should have
3861 NOTE_BLOCK filled in. */
3862 if (NOTE_BLOCK (insn) == NULL_TREE)
3863 abort ();
3864 block_stack = alloc_INSN_LIST (insn, block_stack);
3865 break;
3866
3867 case NOTE_INSN_BLOCK_END:
3868 /* Too many end notes. */
3869 if (block_stack == NULL_RTX)
3870 abort ();
3871 /* Mismatched nesting. */
3872 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3873 abort ();
3874 tmp = block_stack;
3875 block_stack = XEXP (block_stack, 1);
3876 free_INSN_LIST_node (tmp);
3877
3878 /* Scan back to see if there are any non-note instructions
3879 between INSN and the beginning of this block. If not,
3880 then there is no PC range in the generated code that will
3881 actually be in this block, so there's no point in
3882 remembering the existence of the block. */
3883 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3884 {
3885 /* This block contains a real instruction. Note that we
3886 don't include labels; if the only thing in the block
3887 is a label, then there are still no PC values that
3888 lie within the block. */
3889 if (INSN_P (tmp))
3890 break;
3891
3892 /* We're only interested in NOTEs. */
3893 if (!NOTE_P (tmp))
3894 continue;
3895
3896 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3897 {
3898 /* We just verified that this BLOCK matches us with
3899 the block_stack check above. Never delete the
3900 BLOCK for the outermost scope of the function; we
3901 can refer to names from that scope even if the
3902 block notes are messed up. */
3903 if (! is_body_block (NOTE_BLOCK (insn))
3904 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3905 {
3906 remove_insn (tmp);
3907 remove_insn (insn);
3908 }
3909 break;
3910 }
3911 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3912 /* There's a nested block. We need to leave the
3913 current block in place since otherwise the debugger
3914 wouldn't be able to show symbols from our block in
3915 the nested block. */
3916 break;
3917 }
3918 }
3919 }
3920
3921 /* Too many begin notes. */
3922 if (block_stack || eh_stack)
3923 abort ();
3924 }
3925
3926 \f
3927 /* Emit insn(s) of given code and pattern
3928 at a specified place within the doubly-linked list.
3929
3930 All of the emit_foo global entry points accept an object
3931 X which is either an insn list or a PATTERN of a single
3932 instruction.
3933
3934 There are thus a few canonical ways to generate code and
3935 emit it at a specific place in the instruction stream. For
3936 example, consider the instruction named SPOT and the fact that
3937 we would like to emit some instructions before SPOT. We might
3938 do it like this:
3939
3940 start_sequence ();
3941 ... emit the new instructions ...
3942 insns_head = get_insns ();
3943 end_sequence ();
3944
3945 emit_insn_before (insns_head, SPOT);
3946
3947 It used to be common to generate SEQUENCE rtl instead, but that
3948 is a relic of the past which no longer occurs. The reason is that
3949 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3950 generated would almost certainly die right after it was created. */
3951
3952 /* Make X be output before the instruction BEFORE. */
3953
3954 rtx
3955 emit_insn_before (rtx x, rtx before)
3956 {
3957 rtx last = before;
3958 rtx insn;
3959
3960 #ifdef ENABLE_RTL_CHECKING
3961 if (before == NULL_RTX)
3962 abort ();
3963 #endif
3964
3965 if (x == NULL_RTX)
3966 return last;
3967
3968 switch (GET_CODE (x))
3969 {
3970 case INSN:
3971 case JUMP_INSN:
3972 case CALL_INSN:
3973 case CODE_LABEL:
3974 case BARRIER:
3975 case NOTE:
3976 insn = x;
3977 while (insn)
3978 {
3979 rtx next = NEXT_INSN (insn);
3980 add_insn_before (insn, before);
3981 last = insn;
3982 insn = next;
3983 }
3984 break;
3985
3986 #ifdef ENABLE_RTL_CHECKING
3987 case SEQUENCE:
3988 abort ();
3989 break;
3990 #endif
3991
3992 default:
3993 last = make_insn_raw (x);
3994 add_insn_before (last, before);
3995 break;
3996 }
3997
3998 return last;
3999 }
4000
4001 /* Make an instruction with body X and code JUMP_INSN
4002 and output it before the instruction BEFORE. */
4003
4004 rtx
4005 emit_jump_insn_before (rtx x, rtx before)
4006 {
4007 rtx insn, last = NULL_RTX;
4008
4009 #ifdef ENABLE_RTL_CHECKING
4010 if (before == NULL_RTX)
4011 abort ();
4012 #endif
4013
4014 switch (GET_CODE (x))
4015 {
4016 case INSN:
4017 case JUMP_INSN:
4018 case CALL_INSN:
4019 case CODE_LABEL:
4020 case BARRIER:
4021 case NOTE:
4022 insn = x;
4023 while (insn)
4024 {
4025 rtx next = NEXT_INSN (insn);
4026 add_insn_before (insn, before);
4027 last = insn;
4028 insn = next;
4029 }
4030 break;
4031
4032 #ifdef ENABLE_RTL_CHECKING
4033 case SEQUENCE:
4034 abort ();
4035 break;
4036 #endif
4037
4038 default:
4039 last = make_jump_insn_raw (x);
4040 add_insn_before (last, before);
4041 break;
4042 }
4043
4044 return last;
4045 }
4046
4047 /* Make an instruction with body X and code CALL_INSN
4048 and output it before the instruction BEFORE. */
4049
4050 rtx
4051 emit_call_insn_before (rtx x, rtx before)
4052 {
4053 rtx last = NULL_RTX, insn;
4054
4055 #ifdef ENABLE_RTL_CHECKING
4056 if (before == NULL_RTX)
4057 abort ();
4058 #endif
4059
4060 switch (GET_CODE (x))
4061 {
4062 case INSN:
4063 case JUMP_INSN:
4064 case CALL_INSN:
4065 case CODE_LABEL:
4066 case BARRIER:
4067 case NOTE:
4068 insn = x;
4069 while (insn)
4070 {
4071 rtx next = NEXT_INSN (insn);
4072 add_insn_before (insn, before);
4073 last = insn;
4074 insn = next;
4075 }
4076 break;
4077
4078 #ifdef ENABLE_RTL_CHECKING
4079 case SEQUENCE:
4080 abort ();
4081 break;
4082 #endif
4083
4084 default:
4085 last = make_call_insn_raw (x);
4086 add_insn_before (last, before);
4087 break;
4088 }
4089
4090 return last;
4091 }
4092
4093 /* Make an insn of code BARRIER
4094 and output it before the insn BEFORE. */
4095
4096 rtx
4097 emit_barrier_before (rtx before)
4098 {
4099 rtx insn = rtx_alloc (BARRIER);
4100
4101 INSN_UID (insn) = cur_insn_uid++;
4102
4103 add_insn_before (insn, before);
4104 return insn;
4105 }
4106
4107 /* Emit the label LABEL before the insn BEFORE. */
4108
4109 rtx
4110 emit_label_before (rtx label, rtx before)
4111 {
4112 /* This can be called twice for the same label as a result of the
4113 confusion that follows a syntax error! So make it harmless. */
4114 if (INSN_UID (label) == 0)
4115 {
4116 INSN_UID (label) = cur_insn_uid++;
4117 add_insn_before (label, before);
4118 }
4119
4120 return label;
4121 }
4122
4123 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4124
4125 rtx
4126 emit_note_before (int subtype, rtx before)
4127 {
4128 rtx note = rtx_alloc (NOTE);
4129 INSN_UID (note) = cur_insn_uid++;
4130 #ifndef USE_MAPPED_LOCATION
4131 NOTE_SOURCE_FILE (note) = 0;
4132 #endif
4133 NOTE_LINE_NUMBER (note) = subtype;
4134 BLOCK_FOR_INSN (note) = NULL;
4135
4136 add_insn_before (note, before);
4137 return note;
4138 }
4139 \f
4140 /* Helper for emit_insn_after, handles lists of instructions
4141 efficiently. */
4142
4143 static rtx emit_insn_after_1 (rtx, rtx);
4144
4145 static rtx
4146 emit_insn_after_1 (rtx first, rtx after)
4147 {
4148 rtx last;
4149 rtx after_after;
4150 basic_block bb;
4151
4152 if (!BARRIER_P (after)
4153 && (bb = BLOCK_FOR_INSN (after)))
4154 {
4155 bb->flags |= BB_DIRTY;
4156 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4157 if (!BARRIER_P (last))
4158 set_block_for_insn (last, bb);
4159 if (!BARRIER_P (last))
4160 set_block_for_insn (last, bb);
4161 if (BB_END (bb) == after)
4162 BB_END (bb) = last;
4163 }
4164 else
4165 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4166 continue;
4167
4168 after_after = NEXT_INSN (after);
4169
4170 NEXT_INSN (after) = first;
4171 PREV_INSN (first) = after;
4172 NEXT_INSN (last) = after_after;
4173 if (after_after)
4174 PREV_INSN (after_after) = last;
4175
4176 if (after == last_insn)
4177 last_insn = last;
4178 return last;
4179 }
4180
4181 /* Make X be output after the insn AFTER. */
4182
4183 rtx
4184 emit_insn_after (rtx x, rtx after)
4185 {
4186 rtx last = after;
4187
4188 #ifdef ENABLE_RTL_CHECKING
4189 if (after == NULL_RTX)
4190 abort ();
4191 #endif
4192
4193 if (x == NULL_RTX)
4194 return last;
4195
4196 switch (GET_CODE (x))
4197 {
4198 case INSN:
4199 case JUMP_INSN:
4200 case CALL_INSN:
4201 case CODE_LABEL:
4202 case BARRIER:
4203 case NOTE:
4204 last = emit_insn_after_1 (x, after);
4205 break;
4206
4207 #ifdef ENABLE_RTL_CHECKING
4208 case SEQUENCE:
4209 abort ();
4210 break;
4211 #endif
4212
4213 default:
4214 last = make_insn_raw (x);
4215 add_insn_after (last, after);
4216 break;
4217 }
4218
4219 return last;
4220 }
4221
4222 /* Similar to emit_insn_after, except that line notes are to be inserted so
4223 as to act as if this insn were at FROM. */
4224
4225 void
4226 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4227 {
4228 rtx from_line = find_line_note (from);
4229 rtx after_line = find_line_note (after);
4230 rtx insn = emit_insn_after (x, after);
4231
4232 if (from_line)
4233 emit_note_copy_after (from_line, after);
4234
4235 if (after_line)
4236 emit_note_copy_after (after_line, insn);
4237 }
4238
4239 /* Make an insn of code JUMP_INSN with body X
4240 and output it after the insn AFTER. */
4241
4242 rtx
4243 emit_jump_insn_after (rtx x, rtx after)
4244 {
4245 rtx last;
4246
4247 #ifdef ENABLE_RTL_CHECKING
4248 if (after == NULL_RTX)
4249 abort ();
4250 #endif
4251
4252 switch (GET_CODE (x))
4253 {
4254 case INSN:
4255 case JUMP_INSN:
4256 case CALL_INSN:
4257 case CODE_LABEL:
4258 case BARRIER:
4259 case NOTE:
4260 last = emit_insn_after_1 (x, after);
4261 break;
4262
4263 #ifdef ENABLE_RTL_CHECKING
4264 case SEQUENCE:
4265 abort ();
4266 break;
4267 #endif
4268
4269 default:
4270 last = make_jump_insn_raw (x);
4271 add_insn_after (last, after);
4272 break;
4273 }
4274
4275 return last;
4276 }
4277
4278 /* Make an instruction with body X and code CALL_INSN
4279 and output it after the instruction AFTER. */
4280
4281 rtx
4282 emit_call_insn_after (rtx x, rtx after)
4283 {
4284 rtx last;
4285
4286 #ifdef ENABLE_RTL_CHECKING
4287 if (after == NULL_RTX)
4288 abort ();
4289 #endif
4290
4291 switch (GET_CODE (x))
4292 {
4293 case INSN:
4294 case JUMP_INSN:
4295 case CALL_INSN:
4296 case CODE_LABEL:
4297 case BARRIER:
4298 case NOTE:
4299 last = emit_insn_after_1 (x, after);
4300 break;
4301
4302 #ifdef ENABLE_RTL_CHECKING
4303 case SEQUENCE:
4304 abort ();
4305 break;
4306 #endif
4307
4308 default:
4309 last = make_call_insn_raw (x);
4310 add_insn_after (last, after);
4311 break;
4312 }
4313
4314 return last;
4315 }
4316
4317 /* Make an insn of code BARRIER
4318 and output it after the insn AFTER. */
4319
4320 rtx
4321 emit_barrier_after (rtx after)
4322 {
4323 rtx insn = rtx_alloc (BARRIER);
4324
4325 INSN_UID (insn) = cur_insn_uid++;
4326
4327 add_insn_after (insn, after);
4328 return insn;
4329 }
4330
4331 /* Emit the label LABEL after the insn AFTER. */
4332
4333 rtx
4334 emit_label_after (rtx label, rtx after)
4335 {
4336 /* This can be called twice for the same label
4337 as a result of the confusion that follows a syntax error!
4338 So make it harmless. */
4339 if (INSN_UID (label) == 0)
4340 {
4341 INSN_UID (label) = cur_insn_uid++;
4342 add_insn_after (label, after);
4343 }
4344
4345 return label;
4346 }
4347
4348 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4349
4350 rtx
4351 emit_note_after (int subtype, rtx after)
4352 {
4353 rtx note = rtx_alloc (NOTE);
4354 INSN_UID (note) = cur_insn_uid++;
4355 #ifndef USE_MAPPED_LOCATION
4356 NOTE_SOURCE_FILE (note) = 0;
4357 #endif
4358 NOTE_LINE_NUMBER (note) = subtype;
4359 BLOCK_FOR_INSN (note) = NULL;
4360 add_insn_after (note, after);
4361 return note;
4362 }
4363
4364 /* Emit a copy of note ORIG after the insn AFTER. */
4365
4366 rtx
4367 emit_note_copy_after (rtx orig, rtx after)
4368 {
4369 rtx note;
4370
4371 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4372 {
4373 cur_insn_uid++;
4374 return 0;
4375 }
4376
4377 note = rtx_alloc (NOTE);
4378 INSN_UID (note) = cur_insn_uid++;
4379 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4380 NOTE_DATA (note) = NOTE_DATA (orig);
4381 BLOCK_FOR_INSN (note) = NULL;
4382 add_insn_after (note, after);
4383 return note;
4384 }
4385 \f
4386 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4387 rtx
4388 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4389 {
4390 rtx last = emit_insn_after (pattern, after);
4391
4392 if (pattern == NULL_RTX)
4393 return last;
4394
4395 after = NEXT_INSN (after);
4396 while (1)
4397 {
4398 if (active_insn_p (after))
4399 INSN_LOCATOR (after) = loc;
4400 if (after == last)
4401 break;
4402 after = NEXT_INSN (after);
4403 }
4404 return last;
4405 }
4406
4407 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4408 rtx
4409 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4410 {
4411 rtx last = emit_jump_insn_after (pattern, after);
4412
4413 if (pattern == NULL_RTX)
4414 return last;
4415
4416 after = NEXT_INSN (after);
4417 while (1)
4418 {
4419 if (active_insn_p (after))
4420 INSN_LOCATOR (after) = loc;
4421 if (after == last)
4422 break;
4423 after = NEXT_INSN (after);
4424 }
4425 return last;
4426 }
4427
4428 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4429 rtx
4430 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4431 {
4432 rtx last = emit_call_insn_after (pattern, after);
4433
4434 if (pattern == NULL_RTX)
4435 return last;
4436
4437 after = NEXT_INSN (after);
4438 while (1)
4439 {
4440 if (active_insn_p (after))
4441 INSN_LOCATOR (after) = loc;
4442 if (after == last)
4443 break;
4444 after = NEXT_INSN (after);
4445 }
4446 return last;
4447 }
4448
4449 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4450 rtx
4451 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4452 {
4453 rtx first = PREV_INSN (before);
4454 rtx last = emit_insn_before (pattern, before);
4455
4456 if (pattern == NULL_RTX)
4457 return last;
4458
4459 first = NEXT_INSN (first);
4460 while (1)
4461 {
4462 if (active_insn_p (first))
4463 INSN_LOCATOR (first) = loc;
4464 if (first == last)
4465 break;
4466 first = NEXT_INSN (first);
4467 }
4468 return last;
4469 }
4470 \f
4471 /* Take X and emit it at the end of the doubly-linked
4472 INSN list.
4473
4474 Returns the last insn emitted. */
4475
4476 rtx
4477 emit_insn (rtx x)
4478 {
4479 rtx last = last_insn;
4480 rtx insn;
4481
4482 if (x == NULL_RTX)
4483 return last;
4484
4485 switch (GET_CODE (x))
4486 {
4487 case INSN:
4488 case JUMP_INSN:
4489 case CALL_INSN:
4490 case CODE_LABEL:
4491 case BARRIER:
4492 case NOTE:
4493 insn = x;
4494 while (insn)
4495 {
4496 rtx next = NEXT_INSN (insn);
4497 add_insn (insn);
4498 last = insn;
4499 insn = next;
4500 }
4501 break;
4502
4503 #ifdef ENABLE_RTL_CHECKING
4504 case SEQUENCE:
4505 abort ();
4506 break;
4507 #endif
4508
4509 default:
4510 last = make_insn_raw (x);
4511 add_insn (last);
4512 break;
4513 }
4514
4515 return last;
4516 }
4517
4518 /* Make an insn of code JUMP_INSN with pattern X
4519 and add it to the end of the doubly-linked list. */
4520
4521 rtx
4522 emit_jump_insn (rtx x)
4523 {
4524 rtx last = NULL_RTX, insn;
4525
4526 switch (GET_CODE (x))
4527 {
4528 case INSN:
4529 case JUMP_INSN:
4530 case CALL_INSN:
4531 case CODE_LABEL:
4532 case BARRIER:
4533 case NOTE:
4534 insn = x;
4535 while (insn)
4536 {
4537 rtx next = NEXT_INSN (insn);
4538 add_insn (insn);
4539 last = insn;
4540 insn = next;
4541 }
4542 break;
4543
4544 #ifdef ENABLE_RTL_CHECKING
4545 case SEQUENCE:
4546 abort ();
4547 break;
4548 #endif
4549
4550 default:
4551 last = make_jump_insn_raw (x);
4552 add_insn (last);
4553 break;
4554 }
4555
4556 return last;
4557 }
4558
4559 /* Make an insn of code CALL_INSN with pattern X
4560 and add it to the end of the doubly-linked list. */
4561
4562 rtx
4563 emit_call_insn (rtx x)
4564 {
4565 rtx insn;
4566
4567 switch (GET_CODE (x))
4568 {
4569 case INSN:
4570 case JUMP_INSN:
4571 case CALL_INSN:
4572 case CODE_LABEL:
4573 case BARRIER:
4574 case NOTE:
4575 insn = emit_insn (x);
4576 break;
4577
4578 #ifdef ENABLE_RTL_CHECKING
4579 case SEQUENCE:
4580 abort ();
4581 break;
4582 #endif
4583
4584 default:
4585 insn = make_call_insn_raw (x);
4586 add_insn (insn);
4587 break;
4588 }
4589
4590 return insn;
4591 }
4592
4593 /* Add the label LABEL to the end of the doubly-linked list. */
4594
4595 rtx
4596 emit_label (rtx label)
4597 {
4598 /* This can be called twice for the same label
4599 as a result of the confusion that follows a syntax error!
4600 So make it harmless. */
4601 if (INSN_UID (label) == 0)
4602 {
4603 INSN_UID (label) = cur_insn_uid++;
4604 add_insn (label);
4605 }
4606 return label;
4607 }
4608
4609 /* Make an insn of code BARRIER
4610 and add it to the end of the doubly-linked list. */
4611
4612 rtx
4613 emit_barrier (void)
4614 {
4615 rtx barrier = rtx_alloc (BARRIER);
4616 INSN_UID (barrier) = cur_insn_uid++;
4617 add_insn (barrier);
4618 return barrier;
4619 }
4620
4621 /* Make line numbering NOTE insn for LOCATION add it to the end
4622 of the doubly-linked list, but only if line-numbers are desired for
4623 debugging info and it doesn't match the previous one. */
4624
4625 rtx
4626 emit_line_note (location_t location)
4627 {
4628 rtx note;
4629
4630 #ifdef USE_MAPPED_LOCATION
4631 if (location == last_location)
4632 return NULL_RTX;
4633 #else
4634 if (location.file && last_location.file
4635 && !strcmp (location.file, last_location.file)
4636 && location.line == last_location.line)
4637 return NULL_RTX;
4638 #endif
4639 last_location = location;
4640
4641 if (no_line_numbers)
4642 {
4643 cur_insn_uid++;
4644 return NULL_RTX;
4645 }
4646
4647 #ifdef USE_MAPPED_LOCATION
4648 note = emit_note ((int) location);
4649 #else
4650 note = emit_note (location.line);
4651 NOTE_SOURCE_FILE (note) = location.file;
4652 #endif
4653
4654 return note;
4655 }
4656
4657 /* Emit a copy of note ORIG. */
4658
4659 rtx
4660 emit_note_copy (rtx orig)
4661 {
4662 rtx note;
4663
4664 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4665 {
4666 cur_insn_uid++;
4667 return NULL_RTX;
4668 }
4669
4670 note = rtx_alloc (NOTE);
4671
4672 INSN_UID (note) = cur_insn_uid++;
4673 NOTE_DATA (note) = NOTE_DATA (orig);
4674 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4675 BLOCK_FOR_INSN (note) = NULL;
4676 add_insn (note);
4677
4678 return note;
4679 }
4680
4681 /* Make an insn of code NOTE or type NOTE_NO
4682 and add it to the end of the doubly-linked list. */
4683
4684 rtx
4685 emit_note (int note_no)
4686 {
4687 rtx note;
4688
4689 note = rtx_alloc (NOTE);
4690 INSN_UID (note) = cur_insn_uid++;
4691 NOTE_LINE_NUMBER (note) = note_no;
4692 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4693 BLOCK_FOR_INSN (note) = NULL;
4694 add_insn (note);
4695 return note;
4696 }
4697
4698 /* Cause next statement to emit a line note even if the line number
4699 has not changed. */
4700
4701 void
4702 force_next_line_note (void)
4703 {
4704 #ifdef USE_MAPPED_LOCATION
4705 last_location = -1;
4706 #else
4707 last_location.line = -1;
4708 #endif
4709 }
4710
4711 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4712 note of this type already exists, remove it first. */
4713
4714 rtx
4715 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4716 {
4717 rtx note = find_reg_note (insn, kind, NULL_RTX);
4718
4719 switch (kind)
4720 {
4721 case REG_EQUAL:
4722 case REG_EQUIV:
4723 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4724 has multiple sets (some callers assume single_set
4725 means the insn only has one set, when in fact it
4726 means the insn only has one * useful * set). */
4727 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4728 {
4729 if (note)
4730 abort ();
4731 return NULL_RTX;
4732 }
4733
4734 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4735 It serves no useful purpose and breaks eliminate_regs. */
4736 if (GET_CODE (datum) == ASM_OPERANDS)
4737 return NULL_RTX;
4738 break;
4739
4740 default:
4741 break;
4742 }
4743
4744 if (note)
4745 {
4746 XEXP (note, 0) = datum;
4747 return note;
4748 }
4749
4750 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4751 return REG_NOTES (insn);
4752 }
4753 \f
4754 /* Return an indication of which type of insn should have X as a body.
4755 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4756
4757 enum rtx_code
4758 classify_insn (rtx x)
4759 {
4760 if (LABEL_P (x))
4761 return CODE_LABEL;
4762 if (GET_CODE (x) == CALL)
4763 return CALL_INSN;
4764 if (GET_CODE (x) == RETURN)
4765 return JUMP_INSN;
4766 if (GET_CODE (x) == SET)
4767 {
4768 if (SET_DEST (x) == pc_rtx)
4769 return JUMP_INSN;
4770 else if (GET_CODE (SET_SRC (x)) == CALL)
4771 return CALL_INSN;
4772 else
4773 return INSN;
4774 }
4775 if (GET_CODE (x) == PARALLEL)
4776 {
4777 int j;
4778 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4779 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4780 return CALL_INSN;
4781 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4782 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4783 return JUMP_INSN;
4784 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4785 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4786 return CALL_INSN;
4787 }
4788 return INSN;
4789 }
4790
4791 /* Emit the rtl pattern X as an appropriate kind of insn.
4792 If X is a label, it is simply added into the insn chain. */
4793
4794 rtx
4795 emit (rtx x)
4796 {
4797 enum rtx_code code = classify_insn (x);
4798
4799 if (code == CODE_LABEL)
4800 return emit_label (x);
4801 else if (code == INSN)
4802 return emit_insn (x);
4803 else if (code == JUMP_INSN)
4804 {
4805 rtx insn = emit_jump_insn (x);
4806 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4807 return emit_barrier ();
4808 return insn;
4809 }
4810 else if (code == CALL_INSN)
4811 return emit_call_insn (x);
4812 else
4813 abort ();
4814 }
4815 \f
4816 /* Space for free sequence stack entries. */
4817 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4818
4819 /* Begin emitting insns to a sequence. If this sequence will contain
4820 something that might cause the compiler to pop arguments to function
4821 calls (because those pops have previously been deferred; see
4822 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4823 before calling this function. That will ensure that the deferred
4824 pops are not accidentally emitted in the middle of this sequence. */
4825
4826 void
4827 start_sequence (void)
4828 {
4829 struct sequence_stack *tem;
4830
4831 if (free_sequence_stack != NULL)
4832 {
4833 tem = free_sequence_stack;
4834 free_sequence_stack = tem->next;
4835 }
4836 else
4837 tem = ggc_alloc (sizeof (struct sequence_stack));
4838
4839 tem->next = seq_stack;
4840 tem->first = first_insn;
4841 tem->last = last_insn;
4842
4843 seq_stack = tem;
4844
4845 first_insn = 0;
4846 last_insn = 0;
4847 }
4848
4849 /* Set up the insn chain starting with FIRST as the current sequence,
4850 saving the previously current one. See the documentation for
4851 start_sequence for more information about how to use this function. */
4852
4853 void
4854 push_to_sequence (rtx first)
4855 {
4856 rtx last;
4857
4858 start_sequence ();
4859
4860 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4861
4862 first_insn = first;
4863 last_insn = last;
4864 }
4865
4866 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4867
4868 void
4869 push_to_full_sequence (rtx first, rtx last)
4870 {
4871 start_sequence ();
4872 first_insn = first;
4873 last_insn = last;
4874 /* We really should have the end of the insn chain here. */
4875 if (last && NEXT_INSN (last))
4876 abort ();
4877 }
4878
4879 /* Set up the outer-level insn chain
4880 as the current sequence, saving the previously current one. */
4881
4882 void
4883 push_topmost_sequence (void)
4884 {
4885 struct sequence_stack *stack, *top = NULL;
4886
4887 start_sequence ();
4888
4889 for (stack = seq_stack; stack; stack = stack->next)
4890 top = stack;
4891
4892 first_insn = top->first;
4893 last_insn = top->last;
4894 }
4895
4896 /* After emitting to the outer-level insn chain, update the outer-level
4897 insn chain, and restore the previous saved state. */
4898
4899 void
4900 pop_topmost_sequence (void)
4901 {
4902 struct sequence_stack *stack, *top = NULL;
4903
4904 for (stack = seq_stack; stack; stack = stack->next)
4905 top = stack;
4906
4907 top->first = first_insn;
4908 top->last = last_insn;
4909
4910 end_sequence ();
4911 }
4912
4913 /* After emitting to a sequence, restore previous saved state.
4914
4915 To get the contents of the sequence just made, you must call
4916 `get_insns' *before* calling here.
4917
4918 If the compiler might have deferred popping arguments while
4919 generating this sequence, and this sequence will not be immediately
4920 inserted into the instruction stream, use do_pending_stack_adjust
4921 before calling get_insns. That will ensure that the deferred
4922 pops are inserted into this sequence, and not into some random
4923 location in the instruction stream. See INHIBIT_DEFER_POP for more
4924 information about deferred popping of arguments. */
4925
4926 void
4927 end_sequence (void)
4928 {
4929 struct sequence_stack *tem = seq_stack;
4930
4931 first_insn = tem->first;
4932 last_insn = tem->last;
4933 seq_stack = tem->next;
4934
4935 memset (tem, 0, sizeof (*tem));
4936 tem->next = free_sequence_stack;
4937 free_sequence_stack = tem;
4938 }
4939
4940 /* Return 1 if currently emitting into a sequence. */
4941
4942 int
4943 in_sequence_p (void)
4944 {
4945 return seq_stack != 0;
4946 }
4947 \f
4948 /* Put the various virtual registers into REGNO_REG_RTX. */
4949
4950 void
4951 init_virtual_regs (struct emit_status *es)
4952 {
4953 rtx *ptr = es->x_regno_reg_rtx;
4954 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4955 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4956 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4957 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4958 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4959 }
4960
4961 \f
4962 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4963 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4964 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4965 static int copy_insn_n_scratches;
4966
4967 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4968 copied an ASM_OPERANDS.
4969 In that case, it is the original input-operand vector. */
4970 static rtvec orig_asm_operands_vector;
4971
4972 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4973 copied an ASM_OPERANDS.
4974 In that case, it is the copied input-operand vector. */
4975 static rtvec copy_asm_operands_vector;
4976
4977 /* Likewise for the constraints vector. */
4978 static rtvec orig_asm_constraints_vector;
4979 static rtvec copy_asm_constraints_vector;
4980
4981 /* Recursively create a new copy of an rtx for copy_insn.
4982 This function differs from copy_rtx in that it handles SCRATCHes and
4983 ASM_OPERANDs properly.
4984 Normally, this function is not used directly; use copy_insn as front end.
4985 However, you could first copy an insn pattern with copy_insn and then use
4986 this function afterwards to properly copy any REG_NOTEs containing
4987 SCRATCHes. */
4988
4989 rtx
4990 copy_insn_1 (rtx orig)
4991 {
4992 rtx copy;
4993 int i, j;
4994 RTX_CODE code;
4995 const char *format_ptr;
4996
4997 code = GET_CODE (orig);
4998
4999 switch (code)
5000 {
5001 case REG:
5002 case CONST_INT:
5003 case CONST_DOUBLE:
5004 case CONST_VECTOR:
5005 case SYMBOL_REF:
5006 case CODE_LABEL:
5007 case PC:
5008 case CC0:
5009 return orig;
5010 case CLOBBER:
5011 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5012 return orig;
5013 break;
5014
5015 case SCRATCH:
5016 for (i = 0; i < copy_insn_n_scratches; i++)
5017 if (copy_insn_scratch_in[i] == orig)
5018 return copy_insn_scratch_out[i];
5019 break;
5020
5021 case CONST:
5022 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5023 a LABEL_REF, it isn't sharable. */
5024 if (GET_CODE (XEXP (orig, 0)) == PLUS
5025 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5026 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5027 return orig;
5028 break;
5029
5030 /* A MEM with a constant address is not sharable. The problem is that
5031 the constant address may need to be reloaded. If the mem is shared,
5032 then reloading one copy of this mem will cause all copies to appear
5033 to have been reloaded. */
5034
5035 default:
5036 break;
5037 }
5038
5039 copy = rtx_alloc (code);
5040
5041 /* Copy the various flags, and other information. We assume that
5042 all fields need copying, and then clear the fields that should
5043 not be copied. That is the sensible default behavior, and forces
5044 us to explicitly document why we are *not* copying a flag. */
5045 memcpy (copy, orig, RTX_HDR_SIZE);
5046
5047 /* We do not copy the USED flag, which is used as a mark bit during
5048 walks over the RTL. */
5049 RTX_FLAG (copy, used) = 0;
5050
5051 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5052 if (INSN_P (orig))
5053 {
5054 RTX_FLAG (copy, jump) = 0;
5055 RTX_FLAG (copy, call) = 0;
5056 RTX_FLAG (copy, frame_related) = 0;
5057 }
5058
5059 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5060
5061 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5062 {
5063 copy->u.fld[i] = orig->u.fld[i];
5064 switch (*format_ptr++)
5065 {
5066 case 'e':
5067 if (XEXP (orig, i) != NULL)
5068 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5069 break;
5070
5071 case 'E':
5072 case 'V':
5073 if (XVEC (orig, i) == orig_asm_constraints_vector)
5074 XVEC (copy, i) = copy_asm_constraints_vector;
5075 else if (XVEC (orig, i) == orig_asm_operands_vector)
5076 XVEC (copy, i) = copy_asm_operands_vector;
5077 else if (XVEC (orig, i) != NULL)
5078 {
5079 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5080 for (j = 0; j < XVECLEN (copy, i); j++)
5081 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5082 }
5083 break;
5084
5085 case 't':
5086 case 'w':
5087 case 'i':
5088 case 's':
5089 case 'S':
5090 case 'u':
5091 case '0':
5092 /* These are left unchanged. */
5093 break;
5094
5095 default:
5096 abort ();
5097 }
5098 }
5099
5100 if (code == SCRATCH)
5101 {
5102 i = copy_insn_n_scratches++;
5103 if (i >= MAX_RECOG_OPERANDS)
5104 abort ();
5105 copy_insn_scratch_in[i] = orig;
5106 copy_insn_scratch_out[i] = copy;
5107 }
5108 else if (code == ASM_OPERANDS)
5109 {
5110 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5111 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5112 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5113 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5114 }
5115
5116 return copy;
5117 }
5118
5119 /* Create a new copy of an rtx.
5120 This function differs from copy_rtx in that it handles SCRATCHes and
5121 ASM_OPERANDs properly.
5122 INSN doesn't really have to be a full INSN; it could be just the
5123 pattern. */
5124 rtx
5125 copy_insn (rtx insn)
5126 {
5127 copy_insn_n_scratches = 0;
5128 orig_asm_operands_vector = 0;
5129 orig_asm_constraints_vector = 0;
5130 copy_asm_operands_vector = 0;
5131 copy_asm_constraints_vector = 0;
5132 return copy_insn_1 (insn);
5133 }
5134
5135 /* Initialize data structures and variables in this file
5136 before generating rtl for each function. */
5137
5138 void
5139 init_emit (void)
5140 {
5141 struct function *f = cfun;
5142
5143 f->emit = ggc_alloc (sizeof (struct emit_status));
5144 first_insn = NULL;
5145 last_insn = NULL;
5146 cur_insn_uid = 1;
5147 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5148 last_location = UNKNOWN_LOCATION;
5149 first_label_num = label_num;
5150 last_label_num = 0;
5151 seq_stack = NULL;
5152
5153 /* Init the tables that describe all the pseudo regs. */
5154
5155 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5156
5157 f->emit->regno_pointer_align
5158 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5159 * sizeof (unsigned char));
5160
5161 regno_reg_rtx
5162 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5163
5164 /* Put copies of all the hard registers into regno_reg_rtx. */
5165 memcpy (regno_reg_rtx,
5166 static_regno_reg_rtx,
5167 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5168
5169 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5170 init_virtual_regs (f->emit);
5171
5172 /* Indicate that the virtual registers and stack locations are
5173 all pointers. */
5174 REG_POINTER (stack_pointer_rtx) = 1;
5175 REG_POINTER (frame_pointer_rtx) = 1;
5176 REG_POINTER (hard_frame_pointer_rtx) = 1;
5177 REG_POINTER (arg_pointer_rtx) = 1;
5178
5179 REG_POINTER (virtual_incoming_args_rtx) = 1;
5180 REG_POINTER (virtual_stack_vars_rtx) = 1;
5181 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5182 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5183 REG_POINTER (virtual_cfa_rtx) = 1;
5184
5185 #ifdef STACK_BOUNDARY
5186 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5187 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5188 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5189 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5190
5191 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5192 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5193 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5194 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5195 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5196 #endif
5197
5198 #ifdef INIT_EXPANDERS
5199 INIT_EXPANDERS;
5200 #endif
5201 }
5202
5203 /* Generate the constant 0. */
5204
5205 static rtx
5206 gen_const_vector_0 (enum machine_mode mode)
5207 {
5208 rtx tem;
5209 rtvec v;
5210 int units, i;
5211 enum machine_mode inner;
5212
5213 units = GET_MODE_NUNITS (mode);
5214 inner = GET_MODE_INNER (mode);
5215
5216 v = rtvec_alloc (units);
5217
5218 /* We need to call this function after we to set CONST0_RTX first. */
5219 if (!CONST0_RTX (inner))
5220 abort ();
5221
5222 for (i = 0; i < units; ++i)
5223 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5224
5225 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5226 return tem;
5227 }
5228
5229 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5230 all elements are zero. */
5231 rtx
5232 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5233 {
5234 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5235 int i;
5236
5237 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5238 if (RTVEC_ELT (v, i) != inner_zero)
5239 return gen_rtx_raw_CONST_VECTOR (mode, v);
5240 return CONST0_RTX (mode);
5241 }
5242
5243 /* Create some permanent unique rtl objects shared between all functions.
5244 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5245
5246 void
5247 init_emit_once (int line_numbers)
5248 {
5249 int i;
5250 enum machine_mode mode;
5251 enum machine_mode double_mode;
5252
5253 /* We need reg_raw_mode, so initialize the modes now. */
5254 init_reg_modes_once ();
5255
5256 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5257 tables. */
5258 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5259 const_int_htab_eq, NULL);
5260
5261 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5262 const_double_htab_eq, NULL);
5263
5264 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5265 mem_attrs_htab_eq, NULL);
5266 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5267 reg_attrs_htab_eq, NULL);
5268
5269 no_line_numbers = ! line_numbers;
5270
5271 /* Compute the word and byte modes. */
5272
5273 byte_mode = VOIDmode;
5274 word_mode = VOIDmode;
5275 double_mode = VOIDmode;
5276
5277 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5278 mode = GET_MODE_WIDER_MODE (mode))
5279 {
5280 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5281 && byte_mode == VOIDmode)
5282 byte_mode = mode;
5283
5284 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5285 && word_mode == VOIDmode)
5286 word_mode = mode;
5287 }
5288
5289 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5290 mode = GET_MODE_WIDER_MODE (mode))
5291 {
5292 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5293 && double_mode == VOIDmode)
5294 double_mode = mode;
5295 }
5296
5297 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5298
5299 /* Assign register numbers to the globally defined register rtx.
5300 This must be done at runtime because the register number field
5301 is in a union and some compilers can't initialize unions. */
5302
5303 pc_rtx = gen_rtx_PC (VOIDmode);
5304 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5305 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5306 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5307 if (hard_frame_pointer_rtx == 0)
5308 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5309 HARD_FRAME_POINTER_REGNUM);
5310 if (arg_pointer_rtx == 0)
5311 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5312 virtual_incoming_args_rtx =
5313 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5314 virtual_stack_vars_rtx =
5315 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5316 virtual_stack_dynamic_rtx =
5317 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5318 virtual_outgoing_args_rtx =
5319 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5320 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5321
5322 /* Initialize RTL for commonly used hard registers. These are
5323 copied into regno_reg_rtx as we begin to compile each function. */
5324 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5325 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5326
5327 #ifdef INIT_EXPANDERS
5328 /* This is to initialize {init|mark|free}_machine_status before the first
5329 call to push_function_context_to. This is needed by the Chill front
5330 end which calls push_function_context_to before the first call to
5331 init_function_start. */
5332 INIT_EXPANDERS;
5333 #endif
5334
5335 /* Create the unique rtx's for certain rtx codes and operand values. */
5336
5337 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5338 tries to use these variables. */
5339 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5340 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5341 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5342
5343 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5344 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5345 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5346 else
5347 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5348
5349 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5350 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5351 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5352 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5353 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5354 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5355 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5356
5357 dconsthalf = dconst1;
5358 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5359
5360 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5361
5362 /* Initialize mathematical constants for constant folding builtins.
5363 These constants need to be given to at least 160 bits precision. */
5364 real_from_string (&dconstpi,
5365 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5366 real_from_string (&dconste,
5367 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5368
5369 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5370 {
5371 REAL_VALUE_TYPE *r =
5372 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5373
5374 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5375 mode = GET_MODE_WIDER_MODE (mode))
5376 const_tiny_rtx[i][(int) mode] =
5377 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5378
5379 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5380
5381 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5382 mode = GET_MODE_WIDER_MODE (mode))
5383 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5384
5385 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5386 mode != VOIDmode;
5387 mode = GET_MODE_WIDER_MODE (mode))
5388 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5389 }
5390
5391 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5392 mode != VOIDmode;
5393 mode = GET_MODE_WIDER_MODE (mode))
5394 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5395
5396 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5397 mode != VOIDmode;
5398 mode = GET_MODE_WIDER_MODE (mode))
5399 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5400
5401 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5402 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5403 const_tiny_rtx[0][i] = const0_rtx;
5404
5405 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5406 if (STORE_FLAG_VALUE == 1)
5407 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5408
5409 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5410 return_address_pointer_rtx
5411 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5412 #endif
5413
5414 #ifdef STATIC_CHAIN_REGNUM
5415 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5416
5417 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5418 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5419 static_chain_incoming_rtx
5420 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5421 else
5422 #endif
5423 static_chain_incoming_rtx = static_chain_rtx;
5424 #endif
5425
5426 #ifdef STATIC_CHAIN
5427 static_chain_rtx = STATIC_CHAIN;
5428
5429 #ifdef STATIC_CHAIN_INCOMING
5430 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5431 #else
5432 static_chain_incoming_rtx = static_chain_rtx;
5433 #endif
5434 #endif
5435
5436 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5437 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5438 }
5439 \f
5440 /* Produce exact duplicate of insn INSN after AFTER.
5441 Care updating of libcall regions if present. */
5442
5443 rtx
5444 emit_copy_of_insn_after (rtx insn, rtx after)
5445 {
5446 rtx new;
5447 rtx note1, note2, link;
5448
5449 switch (GET_CODE (insn))
5450 {
5451 case INSN:
5452 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5453 break;
5454
5455 case JUMP_INSN:
5456 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5457 break;
5458
5459 case CALL_INSN:
5460 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5461 if (CALL_INSN_FUNCTION_USAGE (insn))
5462 CALL_INSN_FUNCTION_USAGE (new)
5463 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5464 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5465 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5466 break;
5467
5468 default:
5469 abort ();
5470 }
5471
5472 /* Update LABEL_NUSES. */
5473 mark_jump_label (PATTERN (new), new, 0);
5474
5475 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5476
5477 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5478 make them. */
5479 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5480 if (REG_NOTE_KIND (link) != REG_LABEL)
5481 {
5482 if (GET_CODE (link) == EXPR_LIST)
5483 REG_NOTES (new)
5484 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5485 XEXP (link, 0),
5486 REG_NOTES (new)));
5487 else
5488 REG_NOTES (new)
5489 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5490 XEXP (link, 0),
5491 REG_NOTES (new)));
5492 }
5493
5494 /* Fix the libcall sequences. */
5495 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5496 {
5497 rtx p = new;
5498 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5499 p = PREV_INSN (p);
5500 XEXP (note1, 0) = p;
5501 XEXP (note2, 0) = new;
5502 }
5503 INSN_CODE (new) = INSN_CODE (insn);
5504 return new;
5505 }
5506
5507 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5508 rtx
5509 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5510 {
5511 if (hard_reg_clobbers[mode][regno])
5512 return hard_reg_clobbers[mode][regno];
5513 else
5514 return (hard_reg_clobbers[mode][regno] =
5515 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5516 }
5517
5518 #include "gt-emit-rtl.h"