alias.c (adjust_offset_for_component_ref): Use component_ref_field_offset.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconst3;
112 REAL_VALUE_TYPE dconst10;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116 REAL_VALUE_TYPE dconstthird;
117 REAL_VALUE_TYPE dconstpi;
118 REAL_VALUE_TYPE dconste;
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
176
177 static rtx make_jump_insn_raw (rtx);
178 static rtx make_call_insn_raw (rtx);
179 static rtx find_line_note (rtx);
180 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector_0 (enum machine_mode);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199 static void copy_rtx_if_shared_1 (rtx *orig);
200
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
204 \f
205 /* Returns a hash code for X (which is a really a CONST_INT). */
206
207 static hashval_t
208 const_int_htab_hash (const void *x)
209 {
210 return (hashval_t) INTVAL ((rtx) x);
211 }
212
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217 static int
218 const_int_htab_eq (const void *x, const void *y)
219 {
220 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
224 static hashval_t
225 const_double_htab_hash (const void *x)
226 {
227 rtx value = (rtx) x;
228 hashval_t h;
229
230 if (GET_MODE (value) == VOIDmode)
231 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
232 else
233 {
234 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h ^= GET_MODE (value);
237 }
238 return h;
239 }
240
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
243 static int
244 const_double_htab_eq (const void *x, const void *y)
245 {
246 rtx a = (rtx)x, b = (rtx)y;
247
248 if (GET_MODE (a) != GET_MODE (b))
249 return 0;
250 if (GET_MODE (a) == VOIDmode)
251 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
252 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
253 else
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
255 CONST_DOUBLE_REAL_VALUE (b));
256 }
257
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
259
260 static hashval_t
261 mem_attrs_htab_hash (const void *x)
262 {
263 mem_attrs *p = (mem_attrs *) x;
264
265 return (p->alias ^ (p->align * 1000)
266 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
267 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
268 ^ (size_t) p->expr);
269 }
270
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
273 mem_attrs *). */
274
275 static int
276 mem_attrs_htab_eq (const void *x, const void *y)
277 {
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
280
281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
282 && p->size == q->size && p->align == q->align);
283 }
284
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
287 MEM of mode MODE. */
288
289 static mem_attrs *
290 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
291 unsigned int align, enum machine_mode mode)
292 {
293 mem_attrs attrs;
294 void **slot;
295
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (STRICT_ALIGNMENT && mode != BLKmode
303 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
304 return 0;
305
306 attrs.alias = alias;
307 attrs.expr = expr;
308 attrs.offset = offset;
309 attrs.size = size;
310 attrs.align = align;
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
315 *slot = ggc_alloc (sizeof (mem_attrs));
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
319 return *slot;
320 }
321
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
323
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330 }
331
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
338 {
339 reg_attrs *p = (reg_attrs *) x;
340 reg_attrs *q = (reg_attrs *) y;
341
342 return (p->decl == q->decl && p->offset == q->offset);
343 }
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
350 {
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
364 *slot = ggc_alloc (sizeof (reg_attrs));
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
368 return *slot;
369 }
370
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
374
375 rtx
376 gen_raw_REG (enum machine_mode mode, int regno)
377 {
378 rtx x = gen_rtx_raw_REG (mode, regno);
379 ORIGINAL_REGNO (x) = regno;
380 return x;
381 }
382
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
386
387 rtx
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
389 {
390 void **slot;
391
392 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
393 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
394
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx && arg == STORE_FLAG_VALUE)
397 return const_true_rtx;
398 #endif
399
400 /* Look up the CONST_INT in the hash table. */
401 slot = htab_find_slot_with_hash (const_int_htab, &arg,
402 (hashval_t) arg, INSERT);
403 if (*slot == 0)
404 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
405
406 return (rtx) *slot;
407 }
408
409 rtx
410 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
411 {
412 return GEN_INT (trunc_int_for_mode (c, mode));
413 }
414
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
418
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
422 static rtx
423 lookup_const_double (rtx real)
424 {
425 void **slot = htab_find_slot (const_double_htab, real, INSERT);
426 if (*slot == 0)
427 *slot = real;
428
429 return (rtx) *slot;
430 }
431
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
434 rtx
435 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
436 {
437 rtx real = rtx_alloc (CONST_DOUBLE);
438 PUT_MODE (real, mode);
439
440 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
441
442 return lookup_const_double (real);
443 }
444
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
449
450 rtx
451 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
452 {
453 rtx value;
454 unsigned int i;
455
456 if (mode != VOIDmode)
457 {
458 int width;
459 if (GET_MODE_CLASS (mode) != MODE_INT
460 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
463 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
464 abort ();
465
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width = GET_MODE_BITSIZE (mode);
470 if (width < HOST_BITS_PER_WIDE_INT
471 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
472 != ((HOST_WIDE_INT) (-1) << (width - 1))))
473 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
474 else if (width == HOST_BITS_PER_WIDE_INT
475 && ! (i1 == ~0 && i0 < 0))
476 i1 = 0;
477 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
478 /* We cannot represent this value as a constant. */
479 abort ();
480
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
484
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
489
490 if (width < HOST_BITS_PER_WIDE_INT
491 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
492 i0 |= ((HOST_WIDE_INT) (-1) << width);
493
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
495 CONST_INT.
496
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
501 negative number.
502
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
508
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
511
512 if (width <= HOST_BITS_PER_WIDE_INT)
513 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
514 }
515
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
518 return GEN_INT (i0);
519
520 /* We use VOIDmode for integers. */
521 value = rtx_alloc (CONST_DOUBLE);
522 PUT_MODE (value, VOIDmode);
523
524 CONST_DOUBLE_LOW (value) = i0;
525 CONST_DOUBLE_HIGH (value) = i1;
526
527 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
528 XWINT (value, i) = 0;
529
530 return lookup_const_double (value);
531 }
532
533 rtx
534 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
535 {
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
540 assigned to them.
541
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
546
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
549
550 if (mode == Pmode && !reload_in_progress)
551 {
552 if (regno == FRAME_POINTER_REGNUM
553 && (!reload_completed || frame_pointer_needed))
554 return frame_pointer_rtx;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno == HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return hard_frame_pointer_rtx;
559 #endif
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno == ARG_POINTER_REGNUM)
562 return arg_pointer_rtx;
563 #endif
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
566 return return_address_pointer_rtx;
567 #endif
568 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
570 return pic_offset_table_rtx;
571 if (regno == STACK_POINTER_REGNUM)
572 return stack_pointer_rtx;
573 }
574
575 #if 0
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
578
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
583
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
586
587 if (cfun
588 && cfun->emit
589 && regno_reg_rtx
590 && regno < FIRST_PSEUDO_REGISTER
591 && reg_raw_mode[regno] == mode)
592 return regno_reg_rtx[regno];
593 #endif
594
595 return gen_raw_REG (mode, regno);
596 }
597
598 rtx
599 gen_rtx_MEM (enum machine_mode mode, rtx addr)
600 {
601 rtx rt = gen_rtx_raw_MEM (mode, addr);
602
603 /* This field is not cleared by the mere allocation of the rtx, so
604 we clear it here. */
605 MEM_ATTRS (rt) = 0;
606
607 return rt;
608 }
609
610 rtx
611 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
612 {
613 /* This is the most common failure type.
614 Catch it early so we can see who does it. */
615 if ((offset % GET_MODE_SIZE (mode)) != 0)
616 abort ();
617
618 /* This check isn't usable right now because combine will
619 throw arbitrary crap like a CALL into a SUBREG in
620 gen_lowpart_for_combine so we must just eat it. */
621 #if 0
622 /* Check for this too. */
623 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
624 abort ();
625 #endif
626 return gen_rtx_raw_SUBREG (mode, reg, offset);
627 }
628
629 /* Generate a SUBREG representing the least-significant part of REG if MODE
630 is smaller than mode of REG, otherwise paradoxical SUBREG. */
631
632 rtx
633 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
634 {
635 enum machine_mode inmode;
636
637 inmode = GET_MODE (reg);
638 if (inmode == VOIDmode)
639 inmode = mode;
640 return gen_rtx_SUBREG (mode, reg,
641 subreg_lowpart_offset (mode, inmode));
642 }
643 \f
644 /* gen_rtvec (n, [rt1, ..., rtn])
645 **
646 ** This routine creates an rtvec and stores within it the
647 ** pointers to rtx's which are its arguments.
648 */
649
650 /*VARARGS1*/
651 rtvec
652 gen_rtvec (int n, ...)
653 {
654 int i, save_n;
655 rtx *vector;
656 va_list p;
657
658 va_start (p, n);
659
660 if (n == 0)
661 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
662
663 vector = alloca (n * sizeof (rtx));
664
665 for (i = 0; i < n; i++)
666 vector[i] = va_arg (p, rtx);
667
668 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
669 save_n = n;
670 va_end (p);
671
672 return gen_rtvec_v (save_n, vector);
673 }
674
675 rtvec
676 gen_rtvec_v (int n, rtx *argp)
677 {
678 int i;
679 rtvec rt_val;
680
681 if (n == 0)
682 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
683
684 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
685
686 for (i = 0; i < n; i++)
687 rt_val->elem[i] = *argp++;
688
689 return rt_val;
690 }
691 \f
692 /* Generate a REG rtx for a new pseudo register of mode MODE.
693 This pseudo is assigned the next sequential register number. */
694
695 rtx
696 gen_reg_rtx (enum machine_mode mode)
697 {
698 struct function *f = cfun;
699 rtx val;
700
701 /* Don't let anything called after initial flow analysis create new
702 registers. */
703 if (no_new_pseudos)
704 abort ();
705
706 if (generating_concat_p
707 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
708 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
709 {
710 /* For complex modes, don't make a single pseudo.
711 Instead, make a CONCAT of two pseudos.
712 This allows noncontiguous allocation of the real and imaginary parts,
713 which makes much better code. Besides, allocating DCmode
714 pseudos overstrains reload on some machines like the 386. */
715 rtx realpart, imagpart;
716 enum machine_mode partmode = GET_MODE_INNER (mode);
717
718 realpart = gen_reg_rtx (partmode);
719 imagpart = gen_reg_rtx (partmode);
720 return gen_rtx_CONCAT (mode, realpart, imagpart);
721 }
722
723 /* Make sure regno_pointer_align, and regno_reg_rtx are large
724 enough to have an element for this pseudo reg number. */
725
726 if (reg_rtx_no == f->emit->regno_pointer_align_length)
727 {
728 int old_size = f->emit->regno_pointer_align_length;
729 char *new;
730 rtx *new1;
731
732 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
733 memset (new + old_size, 0, old_size);
734 f->emit->regno_pointer_align = (unsigned char *) new;
735
736 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
737 old_size * 2 * sizeof (rtx));
738 memset (new1 + old_size, 0, old_size * sizeof (rtx));
739 regno_reg_rtx = new1;
740
741 f->emit->regno_pointer_align_length = old_size * 2;
742 }
743
744 val = gen_raw_REG (mode, reg_rtx_no);
745 regno_reg_rtx[reg_rtx_no++] = val;
746 return val;
747 }
748
749 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
750 Do the big endian correction if needed. */
751
752 rtx
753 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
754 {
755 rtx new = gen_rtx_REG (mode, regno);
756 tree decl;
757 HOST_WIDE_INT var_size;
758
759 /* PR middle-end/14084
760 The problem appears when a variable is stored in a larger register
761 and later it is used in the original mode or some mode in between
762 or some part of variable is accessed.
763
764 On little endian machines there is no problem because
765 the REG_OFFSET of the start of the variable is the same when
766 accessed in any mode (it is 0).
767
768 However, this is not true on big endian machines.
769 The offset of the start of the variable is different when accessed
770 in different modes.
771 When we are taking a part of the REG we have to change the OFFSET
772 from offset WRT size of mode of REG to offset WRT size of variable.
773
774 If we would not do the big endian correction the resulting REG_OFFSET
775 would be larger than the size of the DECL.
776
777 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
778
779 REG.mode MODE DECL size old offset new offset description
780 DI SI 4 4 0 int32 in SImode
781 DI SI 1 4 0 char in SImode
782 DI QI 1 7 0 char in QImode
783 DI QI 4 5 1 1st element in QImode
784 of char[4]
785 DI HI 4 6 2 1st element in HImode
786 of int16[2]
787
788 If the size of DECL is equal or greater than the size of REG
789 we can't do this correction because the register holds the
790 whole variable or a part of the variable and thus the REG_OFFSET
791 is already correct. */
792
793 decl = REG_EXPR (reg);
794 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
795 && decl != NULL
796 && offset > 0
797 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
798 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
799 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
800 {
801 int offset_le;
802
803 /* Convert machine endian to little endian WRT size of mode of REG. */
804 if (WORDS_BIG_ENDIAN)
805 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
806 / UNITS_PER_WORD) * UNITS_PER_WORD;
807 else
808 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
809
810 if (BYTES_BIG_ENDIAN)
811 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
812 % UNITS_PER_WORD);
813 else
814 offset_le += offset % UNITS_PER_WORD;
815
816 if (offset_le >= var_size)
817 {
818 /* MODE is wider than the variable so the new reg will cover
819 the whole variable so the resulting OFFSET should be 0. */
820 offset = 0;
821 }
822 else
823 {
824 /* Convert little endian to machine endian WRT size of variable. */
825 if (WORDS_BIG_ENDIAN)
826 offset = ((var_size - 1 - offset_le)
827 / UNITS_PER_WORD) * UNITS_PER_WORD;
828 else
829 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
830
831 if (BYTES_BIG_ENDIAN)
832 offset += ((var_size - 1 - offset_le)
833 % UNITS_PER_WORD);
834 else
835 offset += offset_le % UNITS_PER_WORD;
836 }
837 }
838
839 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
840 REG_OFFSET (reg) + offset);
841 return new;
842 }
843
844 /* Set the decl for MEM to DECL. */
845
846 void
847 set_reg_attrs_from_mem (rtx reg, rtx mem)
848 {
849 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
850 REG_ATTRS (reg)
851 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
852 }
853
854 /* Set the register attributes for registers contained in PARM_RTX.
855 Use needed values from memory attributes of MEM. */
856
857 void
858 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
859 {
860 if (REG_P (parm_rtx))
861 set_reg_attrs_from_mem (parm_rtx, mem);
862 else if (GET_CODE (parm_rtx) == PARALLEL)
863 {
864 /* Check for a NULL entry in the first slot, used to indicate that the
865 parameter goes both on the stack and in registers. */
866 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
867 for (; i < XVECLEN (parm_rtx, 0); i++)
868 {
869 rtx x = XVECEXP (parm_rtx, 0, i);
870 if (REG_P (XEXP (x, 0)))
871 REG_ATTRS (XEXP (x, 0))
872 = get_reg_attrs (MEM_EXPR (mem),
873 INTVAL (XEXP (x, 1)));
874 }
875 }
876 }
877
878 /* Assign the RTX X to declaration T. */
879 void
880 set_decl_rtl (tree t, rtx x)
881 {
882 DECL_CHECK (t)->decl.rtl = x;
883
884 if (!x)
885 return;
886 /* For register, we maintain the reverse information too. */
887 if (REG_P (x))
888 REG_ATTRS (x) = get_reg_attrs (t, 0);
889 else if (GET_CODE (x) == SUBREG)
890 REG_ATTRS (SUBREG_REG (x))
891 = get_reg_attrs (t, -SUBREG_BYTE (x));
892 if (GET_CODE (x) == CONCAT)
893 {
894 if (REG_P (XEXP (x, 0)))
895 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
896 if (REG_P (XEXP (x, 1)))
897 REG_ATTRS (XEXP (x, 1))
898 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
899 }
900 if (GET_CODE (x) == PARALLEL)
901 {
902 int i;
903 for (i = 0; i < XVECLEN (x, 0); i++)
904 {
905 rtx y = XVECEXP (x, 0, i);
906 if (REG_P (XEXP (y, 0)))
907 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
908 }
909 }
910 }
911
912 /* Assign the RTX X to parameter declaration T. */
913 void
914 set_decl_incoming_rtl (tree t, rtx x)
915 {
916 DECL_INCOMING_RTL (t) = x;
917
918 if (!x)
919 return;
920 /* For register, we maintain the reverse information too. */
921 if (REG_P (x))
922 REG_ATTRS (x) = get_reg_attrs (t, 0);
923 else if (GET_CODE (x) == SUBREG)
924 REG_ATTRS (SUBREG_REG (x))
925 = get_reg_attrs (t, -SUBREG_BYTE (x));
926 if (GET_CODE (x) == CONCAT)
927 {
928 if (REG_P (XEXP (x, 0)))
929 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
930 if (REG_P (XEXP (x, 1)))
931 REG_ATTRS (XEXP (x, 1))
932 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
933 }
934 if (GET_CODE (x) == PARALLEL)
935 {
936 int i, start;
937
938 /* Check for a NULL entry, used to indicate that the parameter goes
939 both on the stack and in registers. */
940 if (XEXP (XVECEXP (x, 0, 0), 0))
941 start = 0;
942 else
943 start = 1;
944
945 for (i = start; i < XVECLEN (x, 0); i++)
946 {
947 rtx y = XVECEXP (x, 0, i);
948 if (REG_P (XEXP (y, 0)))
949 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
950 }
951 }
952 }
953
954 /* Identify REG (which may be a CONCAT) as a user register. */
955
956 void
957 mark_user_reg (rtx reg)
958 {
959 if (GET_CODE (reg) == CONCAT)
960 {
961 REG_USERVAR_P (XEXP (reg, 0)) = 1;
962 REG_USERVAR_P (XEXP (reg, 1)) = 1;
963 }
964 else if (REG_P (reg))
965 REG_USERVAR_P (reg) = 1;
966 else
967 abort ();
968 }
969
970 /* Identify REG as a probable pointer register and show its alignment
971 as ALIGN, if nonzero. */
972
973 void
974 mark_reg_pointer (rtx reg, int align)
975 {
976 if (! REG_POINTER (reg))
977 {
978 REG_POINTER (reg) = 1;
979
980 if (align)
981 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
982 }
983 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
984 /* We can no-longer be sure just how aligned this pointer is. */
985 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
986 }
987
988 /* Return 1 plus largest pseudo reg number used in the current function. */
989
990 int
991 max_reg_num (void)
992 {
993 return reg_rtx_no;
994 }
995
996 /* Return 1 + the largest label number used so far in the current function. */
997
998 int
999 max_label_num (void)
1000 {
1001 if (last_label_num && label_num == base_label_num)
1002 return last_label_num;
1003 return label_num;
1004 }
1005
1006 /* Return first label number used in this function (if any were used). */
1007
1008 int
1009 get_first_label_num (void)
1010 {
1011 return first_label_num;
1012 }
1013
1014 /* If the rtx for label was created during the expansion of a nested
1015 function, then first_label_num won't include this label number.
1016 Fix this now so that array indicies work later. */
1017
1018 void
1019 maybe_set_first_label_num (rtx x)
1020 {
1021 if (CODE_LABEL_NUMBER (x) < first_label_num)
1022 first_label_num = CODE_LABEL_NUMBER (x);
1023 }
1024 \f
1025 /* Return the final regno of X, which is a SUBREG of a hard
1026 register. */
1027 int
1028 subreg_hard_regno (rtx x, int check_mode)
1029 {
1030 enum machine_mode mode = GET_MODE (x);
1031 unsigned int byte_offset, base_regno, final_regno;
1032 rtx reg = SUBREG_REG (x);
1033
1034 /* This is where we attempt to catch illegal subregs
1035 created by the compiler. */
1036 if (GET_CODE (x) != SUBREG
1037 || !REG_P (reg))
1038 abort ();
1039 base_regno = REGNO (reg);
1040 if (base_regno >= FIRST_PSEUDO_REGISTER)
1041 abort ();
1042 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1043 abort ();
1044 #ifdef ENABLE_CHECKING
1045 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1046 SUBREG_BYTE (x), mode))
1047 abort ();
1048 #endif
1049 /* Catch non-congruent offsets too. */
1050 byte_offset = SUBREG_BYTE (x);
1051 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1052 abort ();
1053
1054 final_regno = subreg_regno (x);
1055
1056 return final_regno;
1057 }
1058
1059 /* Return a value representing some low-order bits of X, where the number
1060 of low-order bits is given by MODE. Note that no conversion is done
1061 between floating-point and fixed-point values, rather, the bit
1062 representation is returned.
1063
1064 This function handles the cases in common between gen_lowpart, below,
1065 and two variants in cse.c and combine.c. These are the cases that can
1066 be safely handled at all points in the compilation.
1067
1068 If this is not a case we can handle, return 0. */
1069
1070 rtx
1071 gen_lowpart_common (enum machine_mode mode, rtx x)
1072 {
1073 int msize = GET_MODE_SIZE (mode);
1074 int xsize;
1075 int offset = 0;
1076 enum machine_mode innermode;
1077
1078 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1079 so we have to make one up. Yuk. */
1080 innermode = GET_MODE (x);
1081 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1082 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1083 else if (innermode == VOIDmode)
1084 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1085
1086 xsize = GET_MODE_SIZE (innermode);
1087
1088 if (innermode == VOIDmode || innermode == BLKmode)
1089 abort ();
1090
1091 if (innermode == mode)
1092 return x;
1093
1094 /* MODE must occupy no more words than the mode of X. */
1095 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1096 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1097 return 0;
1098
1099 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1100 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1101 return 0;
1102
1103 offset = subreg_lowpart_offset (mode, innermode);
1104
1105 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1106 && (GET_MODE_CLASS (mode) == MODE_INT
1107 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1108 {
1109 /* If we are getting the low-order part of something that has been
1110 sign- or zero-extended, we can either just use the object being
1111 extended or make a narrower extension. If we want an even smaller
1112 piece than the size of the object being extended, call ourselves
1113 recursively.
1114
1115 This case is used mostly by combine and cse. */
1116
1117 if (GET_MODE (XEXP (x, 0)) == mode)
1118 return XEXP (x, 0);
1119 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1120 return gen_lowpart_common (mode, XEXP (x, 0));
1121 else if (msize < xsize)
1122 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1123 }
1124 else if (GET_CODE (x) == SUBREG || REG_P (x)
1125 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1126 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1127 return simplify_gen_subreg (mode, x, innermode, offset);
1128
1129 /* Otherwise, we can't do this. */
1130 return 0;
1131 }
1132 \f
1133 /* Return the constant real or imaginary part (which has mode MODE)
1134 of a complex value X. The IMAGPART_P argument determines whether
1135 the real or complex component should be returned. This function
1136 returns NULL_RTX if the component isn't a constant. */
1137
1138 static rtx
1139 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1140 {
1141 tree decl, part;
1142
1143 if (GET_CODE (x) == MEM
1144 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1145 {
1146 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1147 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1148 {
1149 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1150 if (TREE_CODE (part) == REAL_CST
1151 || TREE_CODE (part) == INTEGER_CST)
1152 return expand_expr (part, NULL_RTX, mode, 0);
1153 }
1154 }
1155 return NULL_RTX;
1156 }
1157
1158 /* Return the real part (which has mode MODE) of a complex value X.
1159 This always comes at the low address in memory. */
1160
1161 rtx
1162 gen_realpart (enum machine_mode mode, rtx x)
1163 {
1164 rtx part;
1165
1166 /* Handle complex constants. */
1167 part = gen_complex_constant_part (mode, x, 0);
1168 if (part != NULL_RTX)
1169 return part;
1170
1171 if (WORDS_BIG_ENDIAN
1172 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1173 && REG_P (x)
1174 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1175 internal_error
1176 ("can't access real part of complex value in hard register");
1177 else if (WORDS_BIG_ENDIAN)
1178 return gen_highpart (mode, x);
1179 else
1180 return gen_lowpart (mode, x);
1181 }
1182
1183 /* Return the imaginary part (which has mode MODE) of a complex value X.
1184 This always comes at the high address in memory. */
1185
1186 rtx
1187 gen_imagpart (enum machine_mode mode, rtx x)
1188 {
1189 rtx part;
1190
1191 /* Handle complex constants. */
1192 part = gen_complex_constant_part (mode, x, 1);
1193 if (part != NULL_RTX)
1194 return part;
1195
1196 if (WORDS_BIG_ENDIAN)
1197 return gen_lowpart (mode, x);
1198 else if (! WORDS_BIG_ENDIAN
1199 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1200 && REG_P (x)
1201 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1202 internal_error
1203 ("can't access imaginary part of complex value in hard register");
1204 else
1205 return gen_highpart (mode, x);
1206 }
1207 \f
1208 rtx
1209 gen_highpart (enum machine_mode mode, rtx x)
1210 {
1211 unsigned int msize = GET_MODE_SIZE (mode);
1212 rtx result;
1213
1214 /* This case loses if X is a subreg. To catch bugs early,
1215 complain if an invalid MODE is used even in other cases. */
1216 if (msize > UNITS_PER_WORD
1217 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1218 abort ();
1219
1220 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1221 subreg_highpart_offset (mode, GET_MODE (x)));
1222
1223 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1224 the target if we have a MEM. gen_highpart must return a valid operand,
1225 emitting code if necessary to do so. */
1226 if (result != NULL_RTX && GET_CODE (result) == MEM)
1227 result = validize_mem (result);
1228
1229 if (!result)
1230 abort ();
1231 return result;
1232 }
1233
1234 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1235 be VOIDmode constant. */
1236 rtx
1237 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1238 {
1239 if (GET_MODE (exp) != VOIDmode)
1240 {
1241 if (GET_MODE (exp) != innermode)
1242 abort ();
1243 return gen_highpart (outermode, exp);
1244 }
1245 return simplify_gen_subreg (outermode, exp, innermode,
1246 subreg_highpart_offset (outermode, innermode));
1247 }
1248
1249 /* Return offset in bytes to get OUTERMODE low part
1250 of the value in mode INNERMODE stored in memory in target format. */
1251
1252 unsigned int
1253 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1254 {
1255 unsigned int offset = 0;
1256 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1257
1258 if (difference > 0)
1259 {
1260 if (WORDS_BIG_ENDIAN)
1261 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1262 if (BYTES_BIG_ENDIAN)
1263 offset += difference % UNITS_PER_WORD;
1264 }
1265
1266 return offset;
1267 }
1268
1269 /* Return offset in bytes to get OUTERMODE high part
1270 of the value in mode INNERMODE stored in memory in target format. */
1271 unsigned int
1272 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1273 {
1274 unsigned int offset = 0;
1275 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1276
1277 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1278 abort ();
1279
1280 if (difference > 0)
1281 {
1282 if (! WORDS_BIG_ENDIAN)
1283 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1284 if (! BYTES_BIG_ENDIAN)
1285 offset += difference % UNITS_PER_WORD;
1286 }
1287
1288 return offset;
1289 }
1290
1291 /* Return 1 iff X, assumed to be a SUBREG,
1292 refers to the least significant part of its containing reg.
1293 If X is not a SUBREG, always return 1 (it is its own low part!). */
1294
1295 int
1296 subreg_lowpart_p (rtx x)
1297 {
1298 if (GET_CODE (x) != SUBREG)
1299 return 1;
1300 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1301 return 0;
1302
1303 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1304 == SUBREG_BYTE (x));
1305 }
1306 \f
1307 /* Return subword OFFSET of operand OP.
1308 The word number, OFFSET, is interpreted as the word number starting
1309 at the low-order address. OFFSET 0 is the low-order word if not
1310 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1311
1312 If we cannot extract the required word, we return zero. Otherwise,
1313 an rtx corresponding to the requested word will be returned.
1314
1315 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1316 reload has completed, a valid address will always be returned. After
1317 reload, if a valid address cannot be returned, we return zero.
1318
1319 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1320 it is the responsibility of the caller.
1321
1322 MODE is the mode of OP in case it is a CONST_INT.
1323
1324 ??? This is still rather broken for some cases. The problem for the
1325 moment is that all callers of this thing provide no 'goal mode' to
1326 tell us to work with. This exists because all callers were written
1327 in a word based SUBREG world.
1328 Now use of this function can be deprecated by simplify_subreg in most
1329 cases.
1330 */
1331
1332 rtx
1333 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1334 {
1335 if (mode == VOIDmode)
1336 mode = GET_MODE (op);
1337
1338 if (mode == VOIDmode)
1339 abort ();
1340
1341 /* If OP is narrower than a word, fail. */
1342 if (mode != BLKmode
1343 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1344 return 0;
1345
1346 /* If we want a word outside OP, return zero. */
1347 if (mode != BLKmode
1348 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1349 return const0_rtx;
1350
1351 /* Form a new MEM at the requested address. */
1352 if (GET_CODE (op) == MEM)
1353 {
1354 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1355
1356 if (! validate_address)
1357 return new;
1358
1359 else if (reload_completed)
1360 {
1361 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1362 return 0;
1363 }
1364 else
1365 return replace_equiv_address (new, XEXP (new, 0));
1366 }
1367
1368 /* Rest can be handled by simplify_subreg. */
1369 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1370 }
1371
1372 /* Similar to `operand_subword', but never return 0. If we can't extract
1373 the required subword, put OP into a register and try again. If that fails,
1374 abort. We always validate the address in this case.
1375
1376 MODE is the mode of OP, in case it is CONST_INT. */
1377
1378 rtx
1379 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1380 {
1381 rtx result = operand_subword (op, offset, 1, mode);
1382
1383 if (result)
1384 return result;
1385
1386 if (mode != BLKmode && mode != VOIDmode)
1387 {
1388 /* If this is a register which can not be accessed by words, copy it
1389 to a pseudo register. */
1390 if (REG_P (op))
1391 op = copy_to_reg (op);
1392 else
1393 op = force_reg (mode, op);
1394 }
1395
1396 result = operand_subword (op, offset, 1, mode);
1397 if (result == 0)
1398 abort ();
1399
1400 return result;
1401 }
1402 \f
1403 /* Given a compare instruction, swap the operands.
1404 A test instruction is changed into a compare of 0 against the operand. */
1405
1406 void
1407 reverse_comparison (rtx insn)
1408 {
1409 rtx body = PATTERN (insn);
1410 rtx comp;
1411
1412 if (GET_CODE (body) == SET)
1413 comp = SET_SRC (body);
1414 else
1415 comp = SET_SRC (XVECEXP (body, 0, 0));
1416
1417 if (GET_CODE (comp) == COMPARE)
1418 {
1419 rtx op0 = XEXP (comp, 0);
1420 rtx op1 = XEXP (comp, 1);
1421 XEXP (comp, 0) = op1;
1422 XEXP (comp, 1) = op0;
1423 }
1424 else
1425 {
1426 rtx new = gen_rtx_COMPARE (VOIDmode,
1427 CONST0_RTX (GET_MODE (comp)), comp);
1428 if (GET_CODE (body) == SET)
1429 SET_SRC (body) = new;
1430 else
1431 SET_SRC (XVECEXP (body, 0, 0)) = new;
1432 }
1433 }
1434 \f
1435 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1436 or (2) a component ref of something variable. Represent the later with
1437 a NULL expression. */
1438
1439 static tree
1440 component_ref_for_mem_expr (tree ref)
1441 {
1442 tree inner = TREE_OPERAND (ref, 0);
1443
1444 if (TREE_CODE (inner) == COMPONENT_REF)
1445 inner = component_ref_for_mem_expr (inner);
1446 else
1447 {
1448 /* Now remove any conversions: they don't change what the underlying
1449 object is. Likewise for SAVE_EXPR. */
1450 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1451 || TREE_CODE (inner) == NON_LVALUE_EXPR
1452 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1453 || TREE_CODE (inner) == SAVE_EXPR)
1454 inner = TREE_OPERAND (inner, 0);
1455
1456 if (! DECL_P (inner))
1457 inner = NULL_TREE;
1458 }
1459
1460 if (inner == TREE_OPERAND (ref, 0))
1461 return ref;
1462 else
1463 return build (COMPONENT_REF, TREE_TYPE (ref), inner, TREE_OPERAND (ref, 1),
1464 NULL_TREE);
1465 }
1466
1467 /* Returns 1 if both MEM_EXPR can be considered equal
1468 and 0 otherwise. */
1469
1470 int
1471 mem_expr_equal_p (tree expr1, tree expr2)
1472 {
1473 if (expr1 == expr2)
1474 return 1;
1475
1476 if (! expr1 || ! expr2)
1477 return 0;
1478
1479 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1480 return 0;
1481
1482 if (TREE_CODE (expr1) == COMPONENT_REF)
1483 return
1484 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1485 TREE_OPERAND (expr2, 0))
1486 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1487 TREE_OPERAND (expr2, 1));
1488
1489 if (TREE_CODE (expr1) == INDIRECT_REF)
1490 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1491 TREE_OPERAND (expr2, 0));
1492
1493 /* Decls with different pointers can't be equal. */
1494 if (DECL_P (expr1))
1495 return 0;
1496
1497 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1498 have been resolved here. */
1499 }
1500
1501 /* Given REF, a MEM, and T, either the type of X or the expression
1502 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1503 if we are making a new object of this type. BITPOS is nonzero if
1504 there is an offset outstanding on T that will be applied later. */
1505
1506 void
1507 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1508 HOST_WIDE_INT bitpos)
1509 {
1510 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1511 tree expr = MEM_EXPR (ref);
1512 rtx offset = MEM_OFFSET (ref);
1513 rtx size = MEM_SIZE (ref);
1514 unsigned int align = MEM_ALIGN (ref);
1515 HOST_WIDE_INT apply_bitpos = 0;
1516 tree type;
1517
1518 /* It can happen that type_for_mode was given a mode for which there
1519 is no language-level type. In which case it returns NULL, which
1520 we can see here. */
1521 if (t == NULL_TREE)
1522 return;
1523
1524 type = TYPE_P (t) ? t : TREE_TYPE (t);
1525 if (type == error_mark_node)
1526 return;
1527
1528 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1529 wrong answer, as it assumes that DECL_RTL already has the right alias
1530 info. Callers should not set DECL_RTL until after the call to
1531 set_mem_attributes. */
1532 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1533 abort ();
1534
1535 /* Get the alias set from the expression or type (perhaps using a
1536 front-end routine) and use it. */
1537 alias = get_alias_set (t);
1538
1539 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1540 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1541 RTX_UNCHANGING_P (ref)
1542 |= ((lang_hooks.honor_readonly
1543 && (TYPE_READONLY (type) || (t != type && TREE_READONLY (t))))
1544 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1545 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1546
1547 /* If we are making an object of this type, or if this is a DECL, we know
1548 that it is a scalar if the type is not an aggregate. */
1549 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1550 MEM_SCALAR_P (ref) = 1;
1551
1552 /* We can set the alignment from the type if we are making an object,
1553 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1554 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1555 align = MAX (align, TYPE_ALIGN (type));
1556
1557 /* If the size is known, we can set that. */
1558 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1559 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1560
1561 /* If T is not a type, we may be able to deduce some more information about
1562 the expression. */
1563 if (! TYPE_P (t))
1564 {
1565 maybe_set_unchanging (ref, t);
1566 if (TREE_THIS_VOLATILE (t))
1567 MEM_VOLATILE_P (ref) = 1;
1568
1569 /* Now remove any conversions: they don't change what the underlying
1570 object is. Likewise for SAVE_EXPR. */
1571 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1572 || TREE_CODE (t) == NON_LVALUE_EXPR
1573 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1574 || TREE_CODE (t) == SAVE_EXPR)
1575 t = TREE_OPERAND (t, 0);
1576
1577 /* If this expression can't be addressed (e.g., it contains a reference
1578 to a non-addressable field), show we don't change its alias set. */
1579 if (! can_address_p (t))
1580 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1581
1582 /* If this is a decl, set the attributes of the MEM from it. */
1583 if (DECL_P (t))
1584 {
1585 expr = t;
1586 offset = const0_rtx;
1587 apply_bitpos = bitpos;
1588 size = (DECL_SIZE_UNIT (t)
1589 && host_integerp (DECL_SIZE_UNIT (t), 1)
1590 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1591 align = DECL_ALIGN (t);
1592 }
1593
1594 /* If this is a constant, we know the alignment. */
1595 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1596 {
1597 align = TYPE_ALIGN (type);
1598 #ifdef CONSTANT_ALIGNMENT
1599 align = CONSTANT_ALIGNMENT (t, align);
1600 #endif
1601 }
1602
1603 /* If this is a field reference and not a bit-field, record it. */
1604 /* ??? There is some information that can be gleened from bit-fields,
1605 such as the word offset in the structure that might be modified.
1606 But skip it for now. */
1607 else if (TREE_CODE (t) == COMPONENT_REF
1608 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1609 {
1610 expr = component_ref_for_mem_expr (t);
1611 offset = const0_rtx;
1612 apply_bitpos = bitpos;
1613 /* ??? Any reason the field size would be different than
1614 the size we got from the type? */
1615 }
1616
1617 /* If this is an array reference, look for an outer field reference. */
1618 else if (TREE_CODE (t) == ARRAY_REF)
1619 {
1620 tree off_tree = size_zero_node;
1621 /* We can't modify t, because we use it at the end of the
1622 function. */
1623 tree t2 = t;
1624
1625 do
1626 {
1627 tree index = TREE_OPERAND (t2, 1);
1628 tree low_bound = array_ref_low_bound (t2);
1629 tree unit_size = array_ref_element_size (t2);
1630
1631 /* We assume all arrays have sizes that are a multiple of a byte.
1632 First subtract the lower bound, if any, in the type of the
1633 index, then convert to sizetype and multiply by the size of
1634 the array element. */
1635 if (! integer_zerop (low_bound))
1636 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1637 index, low_bound));
1638
1639 off_tree = size_binop (PLUS_EXPR,
1640 size_binop (MULT_EXPR, convert (sizetype,
1641 index),
1642 unit_size),
1643 off_tree);
1644 t2 = TREE_OPERAND (t2, 0);
1645 }
1646 while (TREE_CODE (t2) == ARRAY_REF);
1647
1648 if (DECL_P (t2))
1649 {
1650 expr = t2;
1651 offset = NULL;
1652 if (host_integerp (off_tree, 1))
1653 {
1654 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1655 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1656 align = DECL_ALIGN (t2);
1657 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1658 align = aoff;
1659 offset = GEN_INT (ioff);
1660 apply_bitpos = bitpos;
1661 }
1662 }
1663 else if (TREE_CODE (t2) == COMPONENT_REF)
1664 {
1665 expr = component_ref_for_mem_expr (t2);
1666 if (host_integerp (off_tree, 1))
1667 {
1668 offset = GEN_INT (tree_low_cst (off_tree, 1));
1669 apply_bitpos = bitpos;
1670 }
1671 /* ??? Any reason the field size would be different than
1672 the size we got from the type? */
1673 }
1674 else if (flag_argument_noalias > 1
1675 && TREE_CODE (t2) == INDIRECT_REF
1676 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1677 {
1678 expr = t2;
1679 offset = NULL;
1680 }
1681 }
1682
1683 /* If this is a Fortran indirect argument reference, record the
1684 parameter decl. */
1685 else if (flag_argument_noalias > 1
1686 && TREE_CODE (t) == INDIRECT_REF
1687 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1688 {
1689 expr = t;
1690 offset = NULL;
1691 }
1692 }
1693
1694 /* If we modified OFFSET based on T, then subtract the outstanding
1695 bit position offset. Similarly, increase the size of the accessed
1696 object to contain the negative offset. */
1697 if (apply_bitpos)
1698 {
1699 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1700 if (size)
1701 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1702 }
1703
1704 /* Now set the attributes we computed above. */
1705 MEM_ATTRS (ref)
1706 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1707
1708 /* If this is already known to be a scalar or aggregate, we are done. */
1709 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1710 return;
1711
1712 /* If it is a reference into an aggregate, this is part of an aggregate.
1713 Otherwise we don't know. */
1714 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1715 || TREE_CODE (t) == ARRAY_RANGE_REF
1716 || TREE_CODE (t) == BIT_FIELD_REF)
1717 MEM_IN_STRUCT_P (ref) = 1;
1718 }
1719
1720 void
1721 set_mem_attributes (rtx ref, tree t, int objectp)
1722 {
1723 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1724 }
1725
1726 /* Set the decl for MEM to DECL. */
1727
1728 void
1729 set_mem_attrs_from_reg (rtx mem, rtx reg)
1730 {
1731 MEM_ATTRS (mem)
1732 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1733 GEN_INT (REG_OFFSET (reg)),
1734 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1735 }
1736
1737 /* Set the alias set of MEM to SET. */
1738
1739 void
1740 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1741 {
1742 #ifdef ENABLE_CHECKING
1743 /* If the new and old alias sets don't conflict, something is wrong. */
1744 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1745 abort ();
1746 #endif
1747
1748 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1749 MEM_SIZE (mem), MEM_ALIGN (mem),
1750 GET_MODE (mem));
1751 }
1752
1753 /* Set the alignment of MEM to ALIGN bits. */
1754
1755 void
1756 set_mem_align (rtx mem, unsigned int align)
1757 {
1758 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1759 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1760 GET_MODE (mem));
1761 }
1762
1763 /* Set the expr for MEM to EXPR. */
1764
1765 void
1766 set_mem_expr (rtx mem, tree expr)
1767 {
1768 MEM_ATTRS (mem)
1769 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1770 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1771 }
1772
1773 /* Set the offset of MEM to OFFSET. */
1774
1775 void
1776 set_mem_offset (rtx mem, rtx offset)
1777 {
1778 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1779 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1780 GET_MODE (mem));
1781 }
1782
1783 /* Set the size of MEM to SIZE. */
1784
1785 void
1786 set_mem_size (rtx mem, rtx size)
1787 {
1788 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1789 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1790 GET_MODE (mem));
1791 }
1792 \f
1793 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1794 and its address changed to ADDR. (VOIDmode means don't change the mode.
1795 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1796 returned memory location is required to be valid. The memory
1797 attributes are not changed. */
1798
1799 static rtx
1800 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1801 {
1802 rtx new;
1803
1804 if (GET_CODE (memref) != MEM)
1805 abort ();
1806 if (mode == VOIDmode)
1807 mode = GET_MODE (memref);
1808 if (addr == 0)
1809 addr = XEXP (memref, 0);
1810 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1811 && (!validate || memory_address_p (mode, addr)))
1812 return memref;
1813
1814 if (validate)
1815 {
1816 if (reload_in_progress || reload_completed)
1817 {
1818 if (! memory_address_p (mode, addr))
1819 abort ();
1820 }
1821 else
1822 addr = memory_address (mode, addr);
1823 }
1824
1825 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1826 return memref;
1827
1828 new = gen_rtx_MEM (mode, addr);
1829 MEM_COPY_ATTRIBUTES (new, memref);
1830 return new;
1831 }
1832
1833 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1834 way we are changing MEMREF, so we only preserve the alias set. */
1835
1836 rtx
1837 change_address (rtx memref, enum machine_mode mode, rtx addr)
1838 {
1839 rtx new = change_address_1 (memref, mode, addr, 1), size;
1840 enum machine_mode mmode = GET_MODE (new);
1841 unsigned int align;
1842
1843 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1844 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1845
1846 /* If there are no changes, just return the original memory reference. */
1847 if (new == memref)
1848 {
1849 if (MEM_ATTRS (memref) == 0
1850 || (MEM_EXPR (memref) == NULL
1851 && MEM_OFFSET (memref) == NULL
1852 && MEM_SIZE (memref) == size
1853 && MEM_ALIGN (memref) == align))
1854 return new;
1855
1856 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1857 MEM_COPY_ATTRIBUTES (new, memref);
1858 }
1859
1860 MEM_ATTRS (new)
1861 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1862
1863 return new;
1864 }
1865
1866 /* Return a memory reference like MEMREF, but with its mode changed
1867 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1868 nonzero, the memory address is forced to be valid.
1869 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1870 and caller is responsible for adjusting MEMREF base register. */
1871
1872 rtx
1873 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1874 int validate, int adjust)
1875 {
1876 rtx addr = XEXP (memref, 0);
1877 rtx new;
1878 rtx memoffset = MEM_OFFSET (memref);
1879 rtx size = 0;
1880 unsigned int memalign = MEM_ALIGN (memref);
1881
1882 /* If there are no changes, just return the original memory reference. */
1883 if (mode == GET_MODE (memref) && !offset
1884 && (!validate || memory_address_p (mode, addr)))
1885 return memref;
1886
1887 /* ??? Prefer to create garbage instead of creating shared rtl.
1888 This may happen even if offset is nonzero -- consider
1889 (plus (plus reg reg) const_int) -- so do this always. */
1890 addr = copy_rtx (addr);
1891
1892 if (adjust)
1893 {
1894 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1895 object, we can merge it into the LO_SUM. */
1896 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1897 && offset >= 0
1898 && (unsigned HOST_WIDE_INT) offset
1899 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1900 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1901 plus_constant (XEXP (addr, 1), offset));
1902 else
1903 addr = plus_constant (addr, offset);
1904 }
1905
1906 new = change_address_1 (memref, mode, addr, validate);
1907
1908 /* Compute the new values of the memory attributes due to this adjustment.
1909 We add the offsets and update the alignment. */
1910 if (memoffset)
1911 memoffset = GEN_INT (offset + INTVAL (memoffset));
1912
1913 /* Compute the new alignment by taking the MIN of the alignment and the
1914 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1915 if zero. */
1916 if (offset != 0)
1917 memalign
1918 = MIN (memalign,
1919 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1920
1921 /* We can compute the size in a number of ways. */
1922 if (GET_MODE (new) != BLKmode)
1923 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1924 else if (MEM_SIZE (memref))
1925 size = plus_constant (MEM_SIZE (memref), -offset);
1926
1927 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1928 memoffset, size, memalign, GET_MODE (new));
1929
1930 /* At some point, we should validate that this offset is within the object,
1931 if all the appropriate values are known. */
1932 return new;
1933 }
1934
1935 /* Return a memory reference like MEMREF, but with its mode changed
1936 to MODE and its address changed to ADDR, which is assumed to be
1937 MEMREF offseted by OFFSET bytes. If VALIDATE is
1938 nonzero, the memory address is forced to be valid. */
1939
1940 rtx
1941 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1942 HOST_WIDE_INT offset, int validate)
1943 {
1944 memref = change_address_1 (memref, VOIDmode, addr, validate);
1945 return adjust_address_1 (memref, mode, offset, validate, 0);
1946 }
1947
1948 /* Return a memory reference like MEMREF, but whose address is changed by
1949 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1950 known to be in OFFSET (possibly 1). */
1951
1952 rtx
1953 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1954 {
1955 rtx new, addr = XEXP (memref, 0);
1956
1957 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1958
1959 /* At this point we don't know _why_ the address is invalid. It
1960 could have secondary memory references, multiplies or anything.
1961
1962 However, if we did go and rearrange things, we can wind up not
1963 being able to recognize the magic around pic_offset_table_rtx.
1964 This stuff is fragile, and is yet another example of why it is
1965 bad to expose PIC machinery too early. */
1966 if (! memory_address_p (GET_MODE (memref), new)
1967 && GET_CODE (addr) == PLUS
1968 && XEXP (addr, 0) == pic_offset_table_rtx)
1969 {
1970 addr = force_reg (GET_MODE (addr), addr);
1971 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1972 }
1973
1974 update_temp_slot_address (XEXP (memref, 0), new);
1975 new = change_address_1 (memref, VOIDmode, new, 1);
1976
1977 /* If there are no changes, just return the original memory reference. */
1978 if (new == memref)
1979 return new;
1980
1981 /* Update the alignment to reflect the offset. Reset the offset, which
1982 we don't know. */
1983 MEM_ATTRS (new)
1984 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1985 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1986 GET_MODE (new));
1987 return new;
1988 }
1989
1990 /* Return a memory reference like MEMREF, but with its address changed to
1991 ADDR. The caller is asserting that the actual piece of memory pointed
1992 to is the same, just the form of the address is being changed, such as
1993 by putting something into a register. */
1994
1995 rtx
1996 replace_equiv_address (rtx memref, rtx addr)
1997 {
1998 /* change_address_1 copies the memory attribute structure without change
1999 and that's exactly what we want here. */
2000 update_temp_slot_address (XEXP (memref, 0), addr);
2001 return change_address_1 (memref, VOIDmode, addr, 1);
2002 }
2003
2004 /* Likewise, but the reference is not required to be valid. */
2005
2006 rtx
2007 replace_equiv_address_nv (rtx memref, rtx addr)
2008 {
2009 return change_address_1 (memref, VOIDmode, addr, 0);
2010 }
2011
2012 /* Return a memory reference like MEMREF, but with its mode widened to
2013 MODE and offset by OFFSET. This would be used by targets that e.g.
2014 cannot issue QImode memory operations and have to use SImode memory
2015 operations plus masking logic. */
2016
2017 rtx
2018 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2019 {
2020 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2021 tree expr = MEM_EXPR (new);
2022 rtx memoffset = MEM_OFFSET (new);
2023 unsigned int size = GET_MODE_SIZE (mode);
2024
2025 /* If there are no changes, just return the original memory reference. */
2026 if (new == memref)
2027 return new;
2028
2029 /* If we don't know what offset we were at within the expression, then
2030 we can't know if we've overstepped the bounds. */
2031 if (! memoffset)
2032 expr = NULL_TREE;
2033
2034 while (expr)
2035 {
2036 if (TREE_CODE (expr) == COMPONENT_REF)
2037 {
2038 tree field = TREE_OPERAND (expr, 1);
2039 tree offset = component_ref_field_offset (expr);
2040
2041 if (! DECL_SIZE_UNIT (field))
2042 {
2043 expr = NULL_TREE;
2044 break;
2045 }
2046
2047 /* Is the field at least as large as the access? If so, ok,
2048 otherwise strip back to the containing structure. */
2049 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2050 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2051 && INTVAL (memoffset) >= 0)
2052 break;
2053
2054 if (! host_integerp (offset, 1))
2055 {
2056 expr = NULL_TREE;
2057 break;
2058 }
2059
2060 expr = TREE_OPERAND (expr, 0);
2061 memoffset
2062 = (GEN_INT (INTVAL (memoffset)
2063 + tree_low_cst (offset, 1)
2064 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2065 / BITS_PER_UNIT)));
2066 }
2067 /* Similarly for the decl. */
2068 else if (DECL_P (expr)
2069 && DECL_SIZE_UNIT (expr)
2070 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2071 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2072 && (! memoffset || INTVAL (memoffset) >= 0))
2073 break;
2074 else
2075 {
2076 /* The widened memory access overflows the expression, which means
2077 that it could alias another expression. Zap it. */
2078 expr = NULL_TREE;
2079 break;
2080 }
2081 }
2082
2083 if (! expr)
2084 memoffset = NULL_RTX;
2085
2086 /* The widened memory may alias other stuff, so zap the alias set. */
2087 /* ??? Maybe use get_alias_set on any remaining expression. */
2088
2089 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2090 MEM_ALIGN (new), mode);
2091
2092 return new;
2093 }
2094 \f
2095 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2096
2097 rtx
2098 gen_label_rtx (void)
2099 {
2100 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2101 NULL, label_num++, NULL);
2102 }
2103 \f
2104 /* For procedure integration. */
2105
2106 /* Install new pointers to the first and last insns in the chain.
2107 Also, set cur_insn_uid to one higher than the last in use.
2108 Used for an inline-procedure after copying the insn chain. */
2109
2110 void
2111 set_new_first_and_last_insn (rtx first, rtx last)
2112 {
2113 rtx insn;
2114
2115 first_insn = first;
2116 last_insn = last;
2117 cur_insn_uid = 0;
2118
2119 for (insn = first; insn; insn = NEXT_INSN (insn))
2120 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2121
2122 cur_insn_uid++;
2123 }
2124
2125 /* Set the last label number found in the current function.
2126 This is used when belatedly compiling an inline function. */
2127
2128 void
2129 set_new_last_label_num (int last)
2130 {
2131 base_label_num = label_num;
2132 last_label_num = last;
2133 }
2134 \f
2135 /* Restore all variables describing the current status from the structure *P.
2136 This is used after a nested function. */
2137
2138 void
2139 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2140 {
2141 last_label_num = 0;
2142 }
2143 \f
2144 /* Go through all the RTL insn bodies and copy any invalid shared
2145 structure. This routine should only be called once. */
2146
2147 static void
2148 unshare_all_rtl_1 (tree fndecl, rtx insn)
2149 {
2150 tree decl;
2151
2152 /* Make sure that virtual parameters are not shared. */
2153 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2154 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2155
2156 /* Make sure that virtual stack slots are not shared. */
2157 unshare_all_decls (DECL_INITIAL (fndecl));
2158
2159 /* Unshare just about everything else. */
2160 unshare_all_rtl_in_chain (insn);
2161
2162 /* Make sure the addresses of stack slots found outside the insn chain
2163 (such as, in DECL_RTL of a variable) are not shared
2164 with the insn chain.
2165
2166 This special care is necessary when the stack slot MEM does not
2167 actually appear in the insn chain. If it does appear, its address
2168 is unshared from all else at that point. */
2169 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2170 }
2171
2172 /* Go through all the RTL insn bodies and copy any invalid shared
2173 structure, again. This is a fairly expensive thing to do so it
2174 should be done sparingly. */
2175
2176 void
2177 unshare_all_rtl_again (rtx insn)
2178 {
2179 rtx p;
2180 tree decl;
2181
2182 for (p = insn; p; p = NEXT_INSN (p))
2183 if (INSN_P (p))
2184 {
2185 reset_used_flags (PATTERN (p));
2186 reset_used_flags (REG_NOTES (p));
2187 reset_used_flags (LOG_LINKS (p));
2188 }
2189
2190 /* Make sure that virtual stack slots are not shared. */
2191 reset_used_decls (DECL_INITIAL (cfun->decl));
2192
2193 /* Make sure that virtual parameters are not shared. */
2194 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2195 reset_used_flags (DECL_RTL (decl));
2196
2197 reset_used_flags (stack_slot_list);
2198
2199 unshare_all_rtl_1 (cfun->decl, insn);
2200 }
2201
2202 void
2203 unshare_all_rtl (void)
2204 {
2205 unshare_all_rtl_1 (current_function_decl, get_insns ());
2206 }
2207
2208 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2209 Recursively does the same for subexpressions. */
2210
2211 static void
2212 verify_rtx_sharing (rtx orig, rtx insn)
2213 {
2214 rtx x = orig;
2215 int i;
2216 enum rtx_code code;
2217 const char *format_ptr;
2218
2219 if (x == 0)
2220 return;
2221
2222 code = GET_CODE (x);
2223
2224 /* These types may be freely shared. */
2225
2226 switch (code)
2227 {
2228 case REG:
2229 case QUEUED:
2230 case CONST_INT:
2231 case CONST_DOUBLE:
2232 case CONST_VECTOR:
2233 case SYMBOL_REF:
2234 case LABEL_REF:
2235 case CODE_LABEL:
2236 case PC:
2237 case CC0:
2238 case SCRATCH:
2239 return;
2240 /* SCRATCH must be shared because they represent distinct values. */
2241 case CLOBBER:
2242 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2243 return;
2244 break;
2245
2246 case CONST:
2247 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2248 a LABEL_REF, it isn't sharable. */
2249 if (GET_CODE (XEXP (x, 0)) == PLUS
2250 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2251 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2252 return;
2253 break;
2254
2255 case MEM:
2256 /* A MEM is allowed to be shared if its address is constant. */
2257 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2258 || reload_completed || reload_in_progress)
2259 return;
2260
2261 break;
2262
2263 default:
2264 break;
2265 }
2266
2267 /* This rtx may not be shared. If it has already been seen,
2268 replace it with a copy of itself. */
2269
2270 if (RTX_FLAG (x, used))
2271 {
2272 error ("Invalid rtl sharing found in the insn");
2273 debug_rtx (insn);
2274 error ("Shared rtx");
2275 debug_rtx (x);
2276 abort ();
2277 }
2278 RTX_FLAG (x, used) = 1;
2279
2280 /* Now scan the subexpressions recursively. */
2281
2282 format_ptr = GET_RTX_FORMAT (code);
2283
2284 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2285 {
2286 switch (*format_ptr++)
2287 {
2288 case 'e':
2289 verify_rtx_sharing (XEXP (x, i), insn);
2290 break;
2291
2292 case 'E':
2293 if (XVEC (x, i) != NULL)
2294 {
2295 int j;
2296 int len = XVECLEN (x, i);
2297
2298 for (j = 0; j < len; j++)
2299 {
2300 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2301 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2302 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2303 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2304 else
2305 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2306 }
2307 }
2308 break;
2309 }
2310 }
2311 return;
2312 }
2313
2314 /* Go through all the RTL insn bodies and check that there is no unexpected
2315 sharing in between the subexpressions. */
2316
2317 void
2318 verify_rtl_sharing (void)
2319 {
2320 rtx p;
2321
2322 for (p = get_insns (); p; p = NEXT_INSN (p))
2323 if (INSN_P (p))
2324 {
2325 reset_used_flags (PATTERN (p));
2326 reset_used_flags (REG_NOTES (p));
2327 reset_used_flags (LOG_LINKS (p));
2328 }
2329
2330 for (p = get_insns (); p; p = NEXT_INSN (p))
2331 if (INSN_P (p))
2332 {
2333 verify_rtx_sharing (PATTERN (p), p);
2334 verify_rtx_sharing (REG_NOTES (p), p);
2335 verify_rtx_sharing (LOG_LINKS (p), p);
2336 }
2337 }
2338
2339 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2340 Assumes the mark bits are cleared at entry. */
2341
2342 void
2343 unshare_all_rtl_in_chain (rtx insn)
2344 {
2345 for (; insn; insn = NEXT_INSN (insn))
2346 if (INSN_P (insn))
2347 {
2348 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2349 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2350 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2351 }
2352 }
2353
2354 /* Go through all virtual stack slots of a function and copy any
2355 shared structure. */
2356 static void
2357 unshare_all_decls (tree blk)
2358 {
2359 tree t;
2360
2361 /* Copy shared decls. */
2362 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2363 if (DECL_RTL_SET_P (t))
2364 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2365
2366 /* Now process sub-blocks. */
2367 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2368 unshare_all_decls (t);
2369 }
2370
2371 /* Go through all virtual stack slots of a function and mark them as
2372 not shared. */
2373 static void
2374 reset_used_decls (tree blk)
2375 {
2376 tree t;
2377
2378 /* Mark decls. */
2379 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2380 if (DECL_RTL_SET_P (t))
2381 reset_used_flags (DECL_RTL (t));
2382
2383 /* Now process sub-blocks. */
2384 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2385 reset_used_decls (t);
2386 }
2387
2388 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2389 placed in the result directly, rather than being copied. MAY_SHARE is
2390 either a MEM of an EXPR_LIST of MEMs. */
2391
2392 rtx
2393 copy_most_rtx (rtx orig, rtx may_share)
2394 {
2395 rtx copy;
2396 int i, j;
2397 RTX_CODE code;
2398 const char *format_ptr;
2399
2400 if (orig == may_share
2401 || (GET_CODE (may_share) == EXPR_LIST
2402 && in_expr_list_p (may_share, orig)))
2403 return orig;
2404
2405 code = GET_CODE (orig);
2406
2407 switch (code)
2408 {
2409 case REG:
2410 case QUEUED:
2411 case CONST_INT:
2412 case CONST_DOUBLE:
2413 case CONST_VECTOR:
2414 case SYMBOL_REF:
2415 case CODE_LABEL:
2416 case PC:
2417 case CC0:
2418 return orig;
2419 default:
2420 break;
2421 }
2422
2423 copy = rtx_alloc (code);
2424 PUT_MODE (copy, GET_MODE (orig));
2425 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2426 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2427 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2428 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2429 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2430
2431 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2432
2433 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2434 {
2435 switch (*format_ptr++)
2436 {
2437 case 'e':
2438 XEXP (copy, i) = XEXP (orig, i);
2439 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2440 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2441 break;
2442
2443 case 'u':
2444 XEXP (copy, i) = XEXP (orig, i);
2445 break;
2446
2447 case 'E':
2448 case 'V':
2449 XVEC (copy, i) = XVEC (orig, i);
2450 if (XVEC (orig, i) != NULL)
2451 {
2452 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2453 for (j = 0; j < XVECLEN (copy, i); j++)
2454 XVECEXP (copy, i, j)
2455 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2456 }
2457 break;
2458
2459 case 'w':
2460 XWINT (copy, i) = XWINT (orig, i);
2461 break;
2462
2463 case 'n':
2464 case 'i':
2465 XINT (copy, i) = XINT (orig, i);
2466 break;
2467
2468 case 't':
2469 XTREE (copy, i) = XTREE (orig, i);
2470 break;
2471
2472 case 's':
2473 case 'S':
2474 XSTR (copy, i) = XSTR (orig, i);
2475 break;
2476
2477 case '0':
2478 X0ANY (copy, i) = X0ANY (orig, i);
2479 break;
2480
2481 default:
2482 abort ();
2483 }
2484 }
2485 return copy;
2486 }
2487
2488 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2489 Recursively does the same for subexpressions. Uses
2490 copy_rtx_if_shared_1 to reduce stack space. */
2491
2492 rtx
2493 copy_rtx_if_shared (rtx orig)
2494 {
2495 copy_rtx_if_shared_1 (&orig);
2496 return orig;
2497 }
2498
2499 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2500 use. Recursively does the same for subexpressions. */
2501
2502 static void
2503 copy_rtx_if_shared_1 (rtx *orig1)
2504 {
2505 rtx x;
2506 int i;
2507 enum rtx_code code;
2508 rtx *last_ptr;
2509 const char *format_ptr;
2510 int copied = 0;
2511 int length;
2512
2513 /* Repeat is used to turn tail-recursion into iteration. */
2514 repeat:
2515 x = *orig1;
2516
2517 if (x == 0)
2518 return;
2519
2520 code = GET_CODE (x);
2521
2522 /* These types may be freely shared. */
2523
2524 switch (code)
2525 {
2526 case REG:
2527 case QUEUED:
2528 case CONST_INT:
2529 case CONST_DOUBLE:
2530 case CONST_VECTOR:
2531 case SYMBOL_REF:
2532 case LABEL_REF:
2533 case CODE_LABEL:
2534 case PC:
2535 case CC0:
2536 case SCRATCH:
2537 /* SCRATCH must be shared because they represent distinct values. */
2538 return;
2539 case CLOBBER:
2540 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2541 return;
2542 break;
2543
2544 case CONST:
2545 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2546 a LABEL_REF, it isn't sharable. */
2547 if (GET_CODE (XEXP (x, 0)) == PLUS
2548 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2549 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2550 return;
2551 break;
2552
2553 case INSN:
2554 case JUMP_INSN:
2555 case CALL_INSN:
2556 case NOTE:
2557 case BARRIER:
2558 /* The chain of insns is not being copied. */
2559 return;
2560
2561 default:
2562 break;
2563 }
2564
2565 /* This rtx may not be shared. If it has already been seen,
2566 replace it with a copy of itself. */
2567
2568 if (RTX_FLAG (x, used))
2569 {
2570 rtx copy;
2571
2572 copy = rtx_alloc (code);
2573 memcpy (copy, x, RTX_SIZE (code));
2574 x = copy;
2575 copied = 1;
2576 }
2577 RTX_FLAG (x, used) = 1;
2578
2579 /* Now scan the subexpressions recursively.
2580 We can store any replaced subexpressions directly into X
2581 since we know X is not shared! Any vectors in X
2582 must be copied if X was copied. */
2583
2584 format_ptr = GET_RTX_FORMAT (code);
2585 length = GET_RTX_LENGTH (code);
2586 last_ptr = NULL;
2587
2588 for (i = 0; i < length; i++)
2589 {
2590 switch (*format_ptr++)
2591 {
2592 case 'e':
2593 if (last_ptr)
2594 copy_rtx_if_shared_1 (last_ptr);
2595 last_ptr = &XEXP (x, i);
2596 break;
2597
2598 case 'E':
2599 if (XVEC (x, i) != NULL)
2600 {
2601 int j;
2602 int len = XVECLEN (x, i);
2603
2604 /* Copy the vector iff I copied the rtx and the length
2605 is nonzero. */
2606 if (copied && len > 0)
2607 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2608
2609 /* Call recursively on all inside the vector. */
2610 for (j = 0; j < len; j++)
2611 {
2612 if (last_ptr)
2613 copy_rtx_if_shared_1 (last_ptr);
2614 last_ptr = &XVECEXP (x, i, j);
2615 }
2616 }
2617 break;
2618 }
2619 }
2620 *orig1 = x;
2621 if (last_ptr)
2622 {
2623 orig1 = last_ptr;
2624 goto repeat;
2625 }
2626 return;
2627 }
2628
2629 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2630 to look for shared sub-parts. */
2631
2632 void
2633 reset_used_flags (rtx x)
2634 {
2635 int i, j;
2636 enum rtx_code code;
2637 const char *format_ptr;
2638 int length;
2639
2640 /* Repeat is used to turn tail-recursion into iteration. */
2641 repeat:
2642 if (x == 0)
2643 return;
2644
2645 code = GET_CODE (x);
2646
2647 /* These types may be freely shared so we needn't do any resetting
2648 for them. */
2649
2650 switch (code)
2651 {
2652 case REG:
2653 case QUEUED:
2654 case CONST_INT:
2655 case CONST_DOUBLE:
2656 case CONST_VECTOR:
2657 case SYMBOL_REF:
2658 case CODE_LABEL:
2659 case PC:
2660 case CC0:
2661 return;
2662
2663 case INSN:
2664 case JUMP_INSN:
2665 case CALL_INSN:
2666 case NOTE:
2667 case LABEL_REF:
2668 case BARRIER:
2669 /* The chain of insns is not being copied. */
2670 return;
2671
2672 default:
2673 break;
2674 }
2675
2676 RTX_FLAG (x, used) = 0;
2677
2678 format_ptr = GET_RTX_FORMAT (code);
2679 length = GET_RTX_LENGTH (code);
2680
2681 for (i = 0; i < length; i++)
2682 {
2683 switch (*format_ptr++)
2684 {
2685 case 'e':
2686 if (i == length-1)
2687 {
2688 x = XEXP (x, i);
2689 goto repeat;
2690 }
2691 reset_used_flags (XEXP (x, i));
2692 break;
2693
2694 case 'E':
2695 for (j = 0; j < XVECLEN (x, i); j++)
2696 reset_used_flags (XVECEXP (x, i, j));
2697 break;
2698 }
2699 }
2700 }
2701
2702 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2703 to look for shared sub-parts. */
2704
2705 void
2706 set_used_flags (rtx x)
2707 {
2708 int i, j;
2709 enum rtx_code code;
2710 const char *format_ptr;
2711
2712 if (x == 0)
2713 return;
2714
2715 code = GET_CODE (x);
2716
2717 /* These types may be freely shared so we needn't do any resetting
2718 for them. */
2719
2720 switch (code)
2721 {
2722 case REG:
2723 case QUEUED:
2724 case CONST_INT:
2725 case CONST_DOUBLE:
2726 case CONST_VECTOR:
2727 case SYMBOL_REF:
2728 case CODE_LABEL:
2729 case PC:
2730 case CC0:
2731 return;
2732
2733 case INSN:
2734 case JUMP_INSN:
2735 case CALL_INSN:
2736 case NOTE:
2737 case LABEL_REF:
2738 case BARRIER:
2739 /* The chain of insns is not being copied. */
2740 return;
2741
2742 default:
2743 break;
2744 }
2745
2746 RTX_FLAG (x, used) = 1;
2747
2748 format_ptr = GET_RTX_FORMAT (code);
2749 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2750 {
2751 switch (*format_ptr++)
2752 {
2753 case 'e':
2754 set_used_flags (XEXP (x, i));
2755 break;
2756
2757 case 'E':
2758 for (j = 0; j < XVECLEN (x, i); j++)
2759 set_used_flags (XVECEXP (x, i, j));
2760 break;
2761 }
2762 }
2763 }
2764 \f
2765 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2766 Return X or the rtx for the pseudo reg the value of X was copied into.
2767 OTHER must be valid as a SET_DEST. */
2768
2769 rtx
2770 make_safe_from (rtx x, rtx other)
2771 {
2772 while (1)
2773 switch (GET_CODE (other))
2774 {
2775 case SUBREG:
2776 other = SUBREG_REG (other);
2777 break;
2778 case STRICT_LOW_PART:
2779 case SIGN_EXTEND:
2780 case ZERO_EXTEND:
2781 other = XEXP (other, 0);
2782 break;
2783 default:
2784 goto done;
2785 }
2786 done:
2787 if ((GET_CODE (other) == MEM
2788 && ! CONSTANT_P (x)
2789 && !REG_P (x)
2790 && GET_CODE (x) != SUBREG)
2791 || (REG_P (other)
2792 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2793 || reg_mentioned_p (other, x))))
2794 {
2795 rtx temp = gen_reg_rtx (GET_MODE (x));
2796 emit_move_insn (temp, x);
2797 return temp;
2798 }
2799 return x;
2800 }
2801 \f
2802 /* Emission of insns (adding them to the doubly-linked list). */
2803
2804 /* Return the first insn of the current sequence or current function. */
2805
2806 rtx
2807 get_insns (void)
2808 {
2809 return first_insn;
2810 }
2811
2812 /* Specify a new insn as the first in the chain. */
2813
2814 void
2815 set_first_insn (rtx insn)
2816 {
2817 if (PREV_INSN (insn) != 0)
2818 abort ();
2819 first_insn = insn;
2820 }
2821
2822 /* Return the last insn emitted in current sequence or current function. */
2823
2824 rtx
2825 get_last_insn (void)
2826 {
2827 return last_insn;
2828 }
2829
2830 /* Specify a new insn as the last in the chain. */
2831
2832 void
2833 set_last_insn (rtx insn)
2834 {
2835 if (NEXT_INSN (insn) != 0)
2836 abort ();
2837 last_insn = insn;
2838 }
2839
2840 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2841
2842 rtx
2843 get_last_insn_anywhere (void)
2844 {
2845 struct sequence_stack *stack;
2846 if (last_insn)
2847 return last_insn;
2848 for (stack = seq_stack; stack; stack = stack->next)
2849 if (stack->last != 0)
2850 return stack->last;
2851 return 0;
2852 }
2853
2854 /* Return the first nonnote insn emitted in current sequence or current
2855 function. This routine looks inside SEQUENCEs. */
2856
2857 rtx
2858 get_first_nonnote_insn (void)
2859 {
2860 rtx insn = first_insn;
2861
2862 while (insn)
2863 {
2864 insn = next_insn (insn);
2865 if (insn == 0 || GET_CODE (insn) != NOTE)
2866 break;
2867 }
2868
2869 return insn;
2870 }
2871
2872 /* Return the last nonnote insn emitted in current sequence or current
2873 function. This routine looks inside SEQUENCEs. */
2874
2875 rtx
2876 get_last_nonnote_insn (void)
2877 {
2878 rtx insn = last_insn;
2879
2880 while (insn)
2881 {
2882 insn = previous_insn (insn);
2883 if (insn == 0 || GET_CODE (insn) != NOTE)
2884 break;
2885 }
2886
2887 return insn;
2888 }
2889
2890 /* Return a number larger than any instruction's uid in this function. */
2891
2892 int
2893 get_max_uid (void)
2894 {
2895 return cur_insn_uid;
2896 }
2897
2898 /* Renumber instructions so that no instruction UIDs are wasted. */
2899
2900 void
2901 renumber_insns (FILE *stream)
2902 {
2903 rtx insn;
2904
2905 /* If we're not supposed to renumber instructions, don't. */
2906 if (!flag_renumber_insns)
2907 return;
2908
2909 /* If there aren't that many instructions, then it's not really
2910 worth renumbering them. */
2911 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2912 return;
2913
2914 cur_insn_uid = 1;
2915
2916 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2917 {
2918 if (stream)
2919 fprintf (stream, "Renumbering insn %d to %d\n",
2920 INSN_UID (insn), cur_insn_uid);
2921 INSN_UID (insn) = cur_insn_uid++;
2922 }
2923 }
2924 \f
2925 /* Return the next insn. If it is a SEQUENCE, return the first insn
2926 of the sequence. */
2927
2928 rtx
2929 next_insn (rtx insn)
2930 {
2931 if (insn)
2932 {
2933 insn = NEXT_INSN (insn);
2934 if (insn && GET_CODE (insn) == INSN
2935 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2936 insn = XVECEXP (PATTERN (insn), 0, 0);
2937 }
2938
2939 return insn;
2940 }
2941
2942 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2943 of the sequence. */
2944
2945 rtx
2946 previous_insn (rtx insn)
2947 {
2948 if (insn)
2949 {
2950 insn = PREV_INSN (insn);
2951 if (insn && GET_CODE (insn) == INSN
2952 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2953 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2954 }
2955
2956 return insn;
2957 }
2958
2959 /* Return the next insn after INSN that is not a NOTE. This routine does not
2960 look inside SEQUENCEs. */
2961
2962 rtx
2963 next_nonnote_insn (rtx insn)
2964 {
2965 while (insn)
2966 {
2967 insn = NEXT_INSN (insn);
2968 if (insn == 0 || GET_CODE (insn) != NOTE)
2969 break;
2970 }
2971
2972 return insn;
2973 }
2974
2975 /* Return the previous insn before INSN that is not a NOTE. This routine does
2976 not look inside SEQUENCEs. */
2977
2978 rtx
2979 prev_nonnote_insn (rtx insn)
2980 {
2981 while (insn)
2982 {
2983 insn = PREV_INSN (insn);
2984 if (insn == 0 || GET_CODE (insn) != NOTE)
2985 break;
2986 }
2987
2988 return insn;
2989 }
2990
2991 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2992 or 0, if there is none. This routine does not look inside
2993 SEQUENCEs. */
2994
2995 rtx
2996 next_real_insn (rtx insn)
2997 {
2998 while (insn)
2999 {
3000 insn = NEXT_INSN (insn);
3001 if (insn == 0 || INSN_P (insn))
3002 break;
3003 }
3004
3005 return insn;
3006 }
3007
3008 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3009 or 0, if there is none. This routine does not look inside
3010 SEQUENCEs. */
3011
3012 rtx
3013 prev_real_insn (rtx insn)
3014 {
3015 while (insn)
3016 {
3017 insn = PREV_INSN (insn);
3018 if (insn == 0 || INSN_P (insn))
3019 break;
3020 }
3021
3022 return insn;
3023 }
3024
3025 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3026 This routine does not look inside SEQUENCEs. */
3027
3028 rtx
3029 last_call_insn (void)
3030 {
3031 rtx insn;
3032
3033 for (insn = get_last_insn ();
3034 insn && GET_CODE (insn) != CALL_INSN;
3035 insn = PREV_INSN (insn))
3036 ;
3037
3038 return insn;
3039 }
3040
3041 /* Find the next insn after INSN that really does something. This routine
3042 does not look inside SEQUENCEs. Until reload has completed, this is the
3043 same as next_real_insn. */
3044
3045 int
3046 active_insn_p (rtx insn)
3047 {
3048 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3049 || (GET_CODE (insn) == INSN
3050 && (! reload_completed
3051 || (GET_CODE (PATTERN (insn)) != USE
3052 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3053 }
3054
3055 rtx
3056 next_active_insn (rtx insn)
3057 {
3058 while (insn)
3059 {
3060 insn = NEXT_INSN (insn);
3061 if (insn == 0 || active_insn_p (insn))
3062 break;
3063 }
3064
3065 return insn;
3066 }
3067
3068 /* Find the last insn before INSN that really does something. This routine
3069 does not look inside SEQUENCEs. Until reload has completed, this is the
3070 same as prev_real_insn. */
3071
3072 rtx
3073 prev_active_insn (rtx insn)
3074 {
3075 while (insn)
3076 {
3077 insn = PREV_INSN (insn);
3078 if (insn == 0 || active_insn_p (insn))
3079 break;
3080 }
3081
3082 return insn;
3083 }
3084
3085 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3086
3087 rtx
3088 next_label (rtx insn)
3089 {
3090 while (insn)
3091 {
3092 insn = NEXT_INSN (insn);
3093 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3094 break;
3095 }
3096
3097 return insn;
3098 }
3099
3100 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3101
3102 rtx
3103 prev_label (rtx insn)
3104 {
3105 while (insn)
3106 {
3107 insn = PREV_INSN (insn);
3108 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3109 break;
3110 }
3111
3112 return insn;
3113 }
3114
3115 /* Return the last label to mark the same position as LABEL. Return null
3116 if LABEL itself is null. */
3117
3118 rtx
3119 skip_consecutive_labels (rtx label)
3120 {
3121 rtx insn;
3122
3123 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3124 if (LABEL_P (insn))
3125 label = insn;
3126
3127 return label;
3128 }
3129 \f
3130 #ifdef HAVE_cc0
3131 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3132 and REG_CC_USER notes so we can find it. */
3133
3134 void
3135 link_cc0_insns (rtx insn)
3136 {
3137 rtx user = next_nonnote_insn (insn);
3138
3139 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3140 user = XVECEXP (PATTERN (user), 0, 0);
3141
3142 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3143 REG_NOTES (user));
3144 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3145 }
3146
3147 /* Return the next insn that uses CC0 after INSN, which is assumed to
3148 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3149 applied to the result of this function should yield INSN).
3150
3151 Normally, this is simply the next insn. However, if a REG_CC_USER note
3152 is present, it contains the insn that uses CC0.
3153
3154 Return 0 if we can't find the insn. */
3155
3156 rtx
3157 next_cc0_user (rtx insn)
3158 {
3159 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3160
3161 if (note)
3162 return XEXP (note, 0);
3163
3164 insn = next_nonnote_insn (insn);
3165 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3166 insn = XVECEXP (PATTERN (insn), 0, 0);
3167
3168 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3169 return insn;
3170
3171 return 0;
3172 }
3173
3174 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3175 note, it is the previous insn. */
3176
3177 rtx
3178 prev_cc0_setter (rtx insn)
3179 {
3180 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3181
3182 if (note)
3183 return XEXP (note, 0);
3184
3185 insn = prev_nonnote_insn (insn);
3186 if (! sets_cc0_p (PATTERN (insn)))
3187 abort ();
3188
3189 return insn;
3190 }
3191 #endif
3192
3193 /* Increment the label uses for all labels present in rtx. */
3194
3195 static void
3196 mark_label_nuses (rtx x)
3197 {
3198 enum rtx_code code;
3199 int i, j;
3200 const char *fmt;
3201
3202 code = GET_CODE (x);
3203 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3204 LABEL_NUSES (XEXP (x, 0))++;
3205
3206 fmt = GET_RTX_FORMAT (code);
3207 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3208 {
3209 if (fmt[i] == 'e')
3210 mark_label_nuses (XEXP (x, i));
3211 else if (fmt[i] == 'E')
3212 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3213 mark_label_nuses (XVECEXP (x, i, j));
3214 }
3215 }
3216
3217 \f
3218 /* Try splitting insns that can be split for better scheduling.
3219 PAT is the pattern which might split.
3220 TRIAL is the insn providing PAT.
3221 LAST is nonzero if we should return the last insn of the sequence produced.
3222
3223 If this routine succeeds in splitting, it returns the first or last
3224 replacement insn depending on the value of LAST. Otherwise, it
3225 returns TRIAL. If the insn to be returned can be split, it will be. */
3226
3227 rtx
3228 try_split (rtx pat, rtx trial, int last)
3229 {
3230 rtx before = PREV_INSN (trial);
3231 rtx after = NEXT_INSN (trial);
3232 int has_barrier = 0;
3233 rtx tem;
3234 rtx note, seq;
3235 int probability;
3236 rtx insn_last, insn;
3237 int njumps = 0;
3238
3239 if (any_condjump_p (trial)
3240 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3241 split_branch_probability = INTVAL (XEXP (note, 0));
3242 probability = split_branch_probability;
3243
3244 seq = split_insns (pat, trial);
3245
3246 split_branch_probability = -1;
3247
3248 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3249 We may need to handle this specially. */
3250 if (after && GET_CODE (after) == BARRIER)
3251 {
3252 has_barrier = 1;
3253 after = NEXT_INSN (after);
3254 }
3255
3256 if (!seq)
3257 return trial;
3258
3259 /* Avoid infinite loop if any insn of the result matches
3260 the original pattern. */
3261 insn_last = seq;
3262 while (1)
3263 {
3264 if (INSN_P (insn_last)
3265 && rtx_equal_p (PATTERN (insn_last), pat))
3266 return trial;
3267 if (!NEXT_INSN (insn_last))
3268 break;
3269 insn_last = NEXT_INSN (insn_last);
3270 }
3271
3272 /* Mark labels. */
3273 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3274 {
3275 if (GET_CODE (insn) == JUMP_INSN)
3276 {
3277 mark_jump_label (PATTERN (insn), insn, 0);
3278 njumps++;
3279 if (probability != -1
3280 && any_condjump_p (insn)
3281 && !find_reg_note (insn, REG_BR_PROB, 0))
3282 {
3283 /* We can preserve the REG_BR_PROB notes only if exactly
3284 one jump is created, otherwise the machine description
3285 is responsible for this step using
3286 split_branch_probability variable. */
3287 if (njumps != 1)
3288 abort ();
3289 REG_NOTES (insn)
3290 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3291 GEN_INT (probability),
3292 REG_NOTES (insn));
3293 }
3294 }
3295 }
3296
3297 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3298 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3299 if (GET_CODE (trial) == CALL_INSN)
3300 {
3301 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3302 if (GET_CODE (insn) == CALL_INSN)
3303 {
3304 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3305 while (*p)
3306 p = &XEXP (*p, 1);
3307 *p = CALL_INSN_FUNCTION_USAGE (trial);
3308 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3309 }
3310 }
3311
3312 /* Copy notes, particularly those related to the CFG. */
3313 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3314 {
3315 switch (REG_NOTE_KIND (note))
3316 {
3317 case REG_EH_REGION:
3318 insn = insn_last;
3319 while (insn != NULL_RTX)
3320 {
3321 if (GET_CODE (insn) == CALL_INSN
3322 || (flag_non_call_exceptions
3323 && may_trap_p (PATTERN (insn))))
3324 REG_NOTES (insn)
3325 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3326 XEXP (note, 0),
3327 REG_NOTES (insn));
3328 insn = PREV_INSN (insn);
3329 }
3330 break;
3331
3332 case REG_NORETURN:
3333 case REG_SETJMP:
3334 case REG_ALWAYS_RETURN:
3335 insn = insn_last;
3336 while (insn != NULL_RTX)
3337 {
3338 if (GET_CODE (insn) == CALL_INSN)
3339 REG_NOTES (insn)
3340 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3341 XEXP (note, 0),
3342 REG_NOTES (insn));
3343 insn = PREV_INSN (insn);
3344 }
3345 break;
3346
3347 case REG_NON_LOCAL_GOTO:
3348 insn = insn_last;
3349 while (insn != NULL_RTX)
3350 {
3351 if (GET_CODE (insn) == JUMP_INSN)
3352 REG_NOTES (insn)
3353 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3354 XEXP (note, 0),
3355 REG_NOTES (insn));
3356 insn = PREV_INSN (insn);
3357 }
3358 break;
3359
3360 default:
3361 break;
3362 }
3363 }
3364
3365 /* If there are LABELS inside the split insns increment the
3366 usage count so we don't delete the label. */
3367 if (GET_CODE (trial) == INSN)
3368 {
3369 insn = insn_last;
3370 while (insn != NULL_RTX)
3371 {
3372 if (GET_CODE (insn) == INSN)
3373 mark_label_nuses (PATTERN (insn));
3374
3375 insn = PREV_INSN (insn);
3376 }
3377 }
3378
3379 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3380
3381 delete_insn (trial);
3382 if (has_barrier)
3383 emit_barrier_after (tem);
3384
3385 /* Recursively call try_split for each new insn created; by the
3386 time control returns here that insn will be fully split, so
3387 set LAST and continue from the insn after the one returned.
3388 We can't use next_active_insn here since AFTER may be a note.
3389 Ignore deleted insns, which can be occur if not optimizing. */
3390 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3391 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3392 tem = try_split (PATTERN (tem), tem, 1);
3393
3394 /* Return either the first or the last insn, depending on which was
3395 requested. */
3396 return last
3397 ? (after ? PREV_INSN (after) : last_insn)
3398 : NEXT_INSN (before);
3399 }
3400 \f
3401 /* Make and return an INSN rtx, initializing all its slots.
3402 Store PATTERN in the pattern slots. */
3403
3404 rtx
3405 make_insn_raw (rtx pattern)
3406 {
3407 rtx insn;
3408
3409 insn = rtx_alloc (INSN);
3410
3411 INSN_UID (insn) = cur_insn_uid++;
3412 PATTERN (insn) = pattern;
3413 INSN_CODE (insn) = -1;
3414 LOG_LINKS (insn) = NULL;
3415 REG_NOTES (insn) = NULL;
3416 INSN_LOCATOR (insn) = 0;
3417 BLOCK_FOR_INSN (insn) = NULL;
3418
3419 #ifdef ENABLE_RTL_CHECKING
3420 if (insn
3421 && INSN_P (insn)
3422 && (returnjump_p (insn)
3423 || (GET_CODE (insn) == SET
3424 && SET_DEST (insn) == pc_rtx)))
3425 {
3426 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3427 debug_rtx (insn);
3428 }
3429 #endif
3430
3431 return insn;
3432 }
3433
3434 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3435
3436 static rtx
3437 make_jump_insn_raw (rtx pattern)
3438 {
3439 rtx insn;
3440
3441 insn = rtx_alloc (JUMP_INSN);
3442 INSN_UID (insn) = cur_insn_uid++;
3443
3444 PATTERN (insn) = pattern;
3445 INSN_CODE (insn) = -1;
3446 LOG_LINKS (insn) = NULL;
3447 REG_NOTES (insn) = NULL;
3448 JUMP_LABEL (insn) = NULL;
3449 INSN_LOCATOR (insn) = 0;
3450 BLOCK_FOR_INSN (insn) = NULL;
3451
3452 return insn;
3453 }
3454
3455 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3456
3457 static rtx
3458 make_call_insn_raw (rtx pattern)
3459 {
3460 rtx insn;
3461
3462 insn = rtx_alloc (CALL_INSN);
3463 INSN_UID (insn) = cur_insn_uid++;
3464
3465 PATTERN (insn) = pattern;
3466 INSN_CODE (insn) = -1;
3467 LOG_LINKS (insn) = NULL;
3468 REG_NOTES (insn) = NULL;
3469 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3470 INSN_LOCATOR (insn) = 0;
3471 BLOCK_FOR_INSN (insn) = NULL;
3472
3473 return insn;
3474 }
3475 \f
3476 /* Add INSN to the end of the doubly-linked list.
3477 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3478
3479 void
3480 add_insn (rtx insn)
3481 {
3482 PREV_INSN (insn) = last_insn;
3483 NEXT_INSN (insn) = 0;
3484
3485 if (NULL != last_insn)
3486 NEXT_INSN (last_insn) = insn;
3487
3488 if (NULL == first_insn)
3489 first_insn = insn;
3490
3491 last_insn = insn;
3492 }
3493
3494 /* Add INSN into the doubly-linked list after insn AFTER. This and
3495 the next should be the only functions called to insert an insn once
3496 delay slots have been filled since only they know how to update a
3497 SEQUENCE. */
3498
3499 void
3500 add_insn_after (rtx insn, rtx after)
3501 {
3502 rtx next = NEXT_INSN (after);
3503 basic_block bb;
3504
3505 if (optimize && INSN_DELETED_P (after))
3506 abort ();
3507
3508 NEXT_INSN (insn) = next;
3509 PREV_INSN (insn) = after;
3510
3511 if (next)
3512 {
3513 PREV_INSN (next) = insn;
3514 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3515 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3516 }
3517 else if (last_insn == after)
3518 last_insn = insn;
3519 else
3520 {
3521 struct sequence_stack *stack = seq_stack;
3522 /* Scan all pending sequences too. */
3523 for (; stack; stack = stack->next)
3524 if (after == stack->last)
3525 {
3526 stack->last = insn;
3527 break;
3528 }
3529
3530 if (stack == 0)
3531 abort ();
3532 }
3533
3534 if (GET_CODE (after) != BARRIER
3535 && GET_CODE (insn) != BARRIER
3536 && (bb = BLOCK_FOR_INSN (after)))
3537 {
3538 set_block_for_insn (insn, bb);
3539 if (INSN_P (insn))
3540 bb->flags |= BB_DIRTY;
3541 /* Should not happen as first in the BB is always
3542 either NOTE or LABEL. */
3543 if (BB_END (bb) == after
3544 /* Avoid clobbering of structure when creating new BB. */
3545 && GET_CODE (insn) != BARRIER
3546 && (GET_CODE (insn) != NOTE
3547 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3548 BB_END (bb) = insn;
3549 }
3550
3551 NEXT_INSN (after) = insn;
3552 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3553 {
3554 rtx sequence = PATTERN (after);
3555 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3556 }
3557 }
3558
3559 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3560 the previous should be the only functions called to insert an insn once
3561 delay slots have been filled since only they know how to update a
3562 SEQUENCE. */
3563
3564 void
3565 add_insn_before (rtx insn, rtx before)
3566 {
3567 rtx prev = PREV_INSN (before);
3568 basic_block bb;
3569
3570 if (optimize && INSN_DELETED_P (before))
3571 abort ();
3572
3573 PREV_INSN (insn) = prev;
3574 NEXT_INSN (insn) = before;
3575
3576 if (prev)
3577 {
3578 NEXT_INSN (prev) = insn;
3579 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3580 {
3581 rtx sequence = PATTERN (prev);
3582 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3583 }
3584 }
3585 else if (first_insn == before)
3586 first_insn = insn;
3587 else
3588 {
3589 struct sequence_stack *stack = seq_stack;
3590 /* Scan all pending sequences too. */
3591 for (; stack; stack = stack->next)
3592 if (before == stack->first)
3593 {
3594 stack->first = insn;
3595 break;
3596 }
3597
3598 if (stack == 0)
3599 abort ();
3600 }
3601
3602 if (GET_CODE (before) != BARRIER
3603 && GET_CODE (insn) != BARRIER
3604 && (bb = BLOCK_FOR_INSN (before)))
3605 {
3606 set_block_for_insn (insn, bb);
3607 if (INSN_P (insn))
3608 bb->flags |= BB_DIRTY;
3609 /* Should not happen as first in the BB is always
3610 either NOTE or LABEl. */
3611 if (BB_HEAD (bb) == insn
3612 /* Avoid clobbering of structure when creating new BB. */
3613 && GET_CODE (insn) != BARRIER
3614 && (GET_CODE (insn) != NOTE
3615 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3616 abort ();
3617 }
3618
3619 PREV_INSN (before) = insn;
3620 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3621 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3622 }
3623
3624 /* Remove an insn from its doubly-linked list. This function knows how
3625 to handle sequences. */
3626 void
3627 remove_insn (rtx insn)
3628 {
3629 rtx next = NEXT_INSN (insn);
3630 rtx prev = PREV_INSN (insn);
3631 basic_block bb;
3632
3633 if (prev)
3634 {
3635 NEXT_INSN (prev) = next;
3636 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3637 {
3638 rtx sequence = PATTERN (prev);
3639 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3640 }
3641 }
3642 else if (first_insn == insn)
3643 first_insn = next;
3644 else
3645 {
3646 struct sequence_stack *stack = seq_stack;
3647 /* Scan all pending sequences too. */
3648 for (; stack; stack = stack->next)
3649 if (insn == stack->first)
3650 {
3651 stack->first = next;
3652 break;
3653 }
3654
3655 if (stack == 0)
3656 abort ();
3657 }
3658
3659 if (next)
3660 {
3661 PREV_INSN (next) = prev;
3662 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3663 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3664 }
3665 else if (last_insn == insn)
3666 last_insn = prev;
3667 else
3668 {
3669 struct sequence_stack *stack = seq_stack;
3670 /* Scan all pending sequences too. */
3671 for (; stack; stack = stack->next)
3672 if (insn == stack->last)
3673 {
3674 stack->last = prev;
3675 break;
3676 }
3677
3678 if (stack == 0)
3679 abort ();
3680 }
3681 if (GET_CODE (insn) != BARRIER
3682 && (bb = BLOCK_FOR_INSN (insn)))
3683 {
3684 if (INSN_P (insn))
3685 bb->flags |= BB_DIRTY;
3686 if (BB_HEAD (bb) == insn)
3687 {
3688 /* Never ever delete the basic block note without deleting whole
3689 basic block. */
3690 if (GET_CODE (insn) == NOTE)
3691 abort ();
3692 BB_HEAD (bb) = next;
3693 }
3694 if (BB_END (bb) == insn)
3695 BB_END (bb) = prev;
3696 }
3697 }
3698
3699 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3700
3701 void
3702 add_function_usage_to (rtx call_insn, rtx call_fusage)
3703 {
3704 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3705 abort ();
3706
3707 /* Put the register usage information on the CALL. If there is already
3708 some usage information, put ours at the end. */
3709 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3710 {
3711 rtx link;
3712
3713 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3714 link = XEXP (link, 1))
3715 ;
3716
3717 XEXP (link, 1) = call_fusage;
3718 }
3719 else
3720 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3721 }
3722
3723 /* Delete all insns made since FROM.
3724 FROM becomes the new last instruction. */
3725
3726 void
3727 delete_insns_since (rtx from)
3728 {
3729 if (from == 0)
3730 first_insn = 0;
3731 else
3732 NEXT_INSN (from) = 0;
3733 last_insn = from;
3734 }
3735
3736 /* This function is deprecated, please use sequences instead.
3737
3738 Move a consecutive bunch of insns to a different place in the chain.
3739 The insns to be moved are those between FROM and TO.
3740 They are moved to a new position after the insn AFTER.
3741 AFTER must not be FROM or TO or any insn in between.
3742
3743 This function does not know about SEQUENCEs and hence should not be
3744 called after delay-slot filling has been done. */
3745
3746 void
3747 reorder_insns_nobb (rtx from, rtx to, rtx after)
3748 {
3749 /* Splice this bunch out of where it is now. */
3750 if (PREV_INSN (from))
3751 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3752 if (NEXT_INSN (to))
3753 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3754 if (last_insn == to)
3755 last_insn = PREV_INSN (from);
3756 if (first_insn == from)
3757 first_insn = NEXT_INSN (to);
3758
3759 /* Make the new neighbors point to it and it to them. */
3760 if (NEXT_INSN (after))
3761 PREV_INSN (NEXT_INSN (after)) = to;
3762
3763 NEXT_INSN (to) = NEXT_INSN (after);
3764 PREV_INSN (from) = after;
3765 NEXT_INSN (after) = from;
3766 if (after == last_insn)
3767 last_insn = to;
3768 }
3769
3770 /* Same as function above, but take care to update BB boundaries. */
3771 void
3772 reorder_insns (rtx from, rtx to, rtx after)
3773 {
3774 rtx prev = PREV_INSN (from);
3775 basic_block bb, bb2;
3776
3777 reorder_insns_nobb (from, to, after);
3778
3779 if (GET_CODE (after) != BARRIER
3780 && (bb = BLOCK_FOR_INSN (after)))
3781 {
3782 rtx x;
3783 bb->flags |= BB_DIRTY;
3784
3785 if (GET_CODE (from) != BARRIER
3786 && (bb2 = BLOCK_FOR_INSN (from)))
3787 {
3788 if (BB_END (bb2) == to)
3789 BB_END (bb2) = prev;
3790 bb2->flags |= BB_DIRTY;
3791 }
3792
3793 if (BB_END (bb) == after)
3794 BB_END (bb) = to;
3795
3796 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3797 set_block_for_insn (x, bb);
3798 }
3799 }
3800
3801 /* Return the line note insn preceding INSN. */
3802
3803 static rtx
3804 find_line_note (rtx insn)
3805 {
3806 if (no_line_numbers)
3807 return 0;
3808
3809 for (; insn; insn = PREV_INSN (insn))
3810 if (GET_CODE (insn) == NOTE
3811 && NOTE_LINE_NUMBER (insn) >= 0)
3812 break;
3813
3814 return insn;
3815 }
3816
3817 /* Remove unnecessary notes from the instruction stream. */
3818
3819 void
3820 remove_unnecessary_notes (void)
3821 {
3822 rtx block_stack = NULL_RTX;
3823 rtx eh_stack = NULL_RTX;
3824 rtx insn;
3825 rtx next;
3826 rtx tmp;
3827
3828 /* We must not remove the first instruction in the function because
3829 the compiler depends on the first instruction being a note. */
3830 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3831 {
3832 /* Remember what's next. */
3833 next = NEXT_INSN (insn);
3834
3835 /* We're only interested in notes. */
3836 if (GET_CODE (insn) != NOTE)
3837 continue;
3838
3839 switch (NOTE_LINE_NUMBER (insn))
3840 {
3841 case NOTE_INSN_DELETED:
3842 case NOTE_INSN_LOOP_END_TOP_COND:
3843 remove_insn (insn);
3844 break;
3845
3846 case NOTE_INSN_EH_REGION_BEG:
3847 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3848 break;
3849
3850 case NOTE_INSN_EH_REGION_END:
3851 /* Too many end notes. */
3852 if (eh_stack == NULL_RTX)
3853 abort ();
3854 /* Mismatched nesting. */
3855 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3856 abort ();
3857 tmp = eh_stack;
3858 eh_stack = XEXP (eh_stack, 1);
3859 free_INSN_LIST_node (tmp);
3860 break;
3861
3862 case NOTE_INSN_BLOCK_BEG:
3863 /* By now, all notes indicating lexical blocks should have
3864 NOTE_BLOCK filled in. */
3865 if (NOTE_BLOCK (insn) == NULL_TREE)
3866 abort ();
3867 block_stack = alloc_INSN_LIST (insn, block_stack);
3868 break;
3869
3870 case NOTE_INSN_BLOCK_END:
3871 /* Too many end notes. */
3872 if (block_stack == NULL_RTX)
3873 abort ();
3874 /* Mismatched nesting. */
3875 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3876 abort ();
3877 tmp = block_stack;
3878 block_stack = XEXP (block_stack, 1);
3879 free_INSN_LIST_node (tmp);
3880
3881 /* Scan back to see if there are any non-note instructions
3882 between INSN and the beginning of this block. If not,
3883 then there is no PC range in the generated code that will
3884 actually be in this block, so there's no point in
3885 remembering the existence of the block. */
3886 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3887 {
3888 /* This block contains a real instruction. Note that we
3889 don't include labels; if the only thing in the block
3890 is a label, then there are still no PC values that
3891 lie within the block. */
3892 if (INSN_P (tmp))
3893 break;
3894
3895 /* We're only interested in NOTEs. */
3896 if (GET_CODE (tmp) != NOTE)
3897 continue;
3898
3899 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3900 {
3901 /* We just verified that this BLOCK matches us with
3902 the block_stack check above. Never delete the
3903 BLOCK for the outermost scope of the function; we
3904 can refer to names from that scope even if the
3905 block notes are messed up. */
3906 if (! is_body_block (NOTE_BLOCK (insn))
3907 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3908 {
3909 remove_insn (tmp);
3910 remove_insn (insn);
3911 }
3912 break;
3913 }
3914 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3915 /* There's a nested block. We need to leave the
3916 current block in place since otherwise the debugger
3917 wouldn't be able to show symbols from our block in
3918 the nested block. */
3919 break;
3920 }
3921 }
3922 }
3923
3924 /* Too many begin notes. */
3925 if (block_stack || eh_stack)
3926 abort ();
3927 }
3928
3929 \f
3930 /* Emit insn(s) of given code and pattern
3931 at a specified place within the doubly-linked list.
3932
3933 All of the emit_foo global entry points accept an object
3934 X which is either an insn list or a PATTERN of a single
3935 instruction.
3936
3937 There are thus a few canonical ways to generate code and
3938 emit it at a specific place in the instruction stream. For
3939 example, consider the instruction named SPOT and the fact that
3940 we would like to emit some instructions before SPOT. We might
3941 do it like this:
3942
3943 start_sequence ();
3944 ... emit the new instructions ...
3945 insns_head = get_insns ();
3946 end_sequence ();
3947
3948 emit_insn_before (insns_head, SPOT);
3949
3950 It used to be common to generate SEQUENCE rtl instead, but that
3951 is a relic of the past which no longer occurs. The reason is that
3952 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3953 generated would almost certainly die right after it was created. */
3954
3955 /* Make X be output before the instruction BEFORE. */
3956
3957 rtx
3958 emit_insn_before (rtx x, rtx before)
3959 {
3960 rtx last = before;
3961 rtx insn;
3962
3963 #ifdef ENABLE_RTL_CHECKING
3964 if (before == NULL_RTX)
3965 abort ();
3966 #endif
3967
3968 if (x == NULL_RTX)
3969 return last;
3970
3971 switch (GET_CODE (x))
3972 {
3973 case INSN:
3974 case JUMP_INSN:
3975 case CALL_INSN:
3976 case CODE_LABEL:
3977 case BARRIER:
3978 case NOTE:
3979 insn = x;
3980 while (insn)
3981 {
3982 rtx next = NEXT_INSN (insn);
3983 add_insn_before (insn, before);
3984 last = insn;
3985 insn = next;
3986 }
3987 break;
3988
3989 #ifdef ENABLE_RTL_CHECKING
3990 case SEQUENCE:
3991 abort ();
3992 break;
3993 #endif
3994
3995 default:
3996 last = make_insn_raw (x);
3997 add_insn_before (last, before);
3998 break;
3999 }
4000
4001 return last;
4002 }
4003
4004 /* Make an instruction with body X and code JUMP_INSN
4005 and output it before the instruction BEFORE. */
4006
4007 rtx
4008 emit_jump_insn_before (rtx x, rtx before)
4009 {
4010 rtx insn, last = NULL_RTX;
4011
4012 #ifdef ENABLE_RTL_CHECKING
4013 if (before == NULL_RTX)
4014 abort ();
4015 #endif
4016
4017 switch (GET_CODE (x))
4018 {
4019 case INSN:
4020 case JUMP_INSN:
4021 case CALL_INSN:
4022 case CODE_LABEL:
4023 case BARRIER:
4024 case NOTE:
4025 insn = x;
4026 while (insn)
4027 {
4028 rtx next = NEXT_INSN (insn);
4029 add_insn_before (insn, before);
4030 last = insn;
4031 insn = next;
4032 }
4033 break;
4034
4035 #ifdef ENABLE_RTL_CHECKING
4036 case SEQUENCE:
4037 abort ();
4038 break;
4039 #endif
4040
4041 default:
4042 last = make_jump_insn_raw (x);
4043 add_insn_before (last, before);
4044 break;
4045 }
4046
4047 return last;
4048 }
4049
4050 /* Make an instruction with body X and code CALL_INSN
4051 and output it before the instruction BEFORE. */
4052
4053 rtx
4054 emit_call_insn_before (rtx x, rtx before)
4055 {
4056 rtx last = NULL_RTX, insn;
4057
4058 #ifdef ENABLE_RTL_CHECKING
4059 if (before == NULL_RTX)
4060 abort ();
4061 #endif
4062
4063 switch (GET_CODE (x))
4064 {
4065 case INSN:
4066 case JUMP_INSN:
4067 case CALL_INSN:
4068 case CODE_LABEL:
4069 case BARRIER:
4070 case NOTE:
4071 insn = x;
4072 while (insn)
4073 {
4074 rtx next = NEXT_INSN (insn);
4075 add_insn_before (insn, before);
4076 last = insn;
4077 insn = next;
4078 }
4079 break;
4080
4081 #ifdef ENABLE_RTL_CHECKING
4082 case SEQUENCE:
4083 abort ();
4084 break;
4085 #endif
4086
4087 default:
4088 last = make_call_insn_raw (x);
4089 add_insn_before (last, before);
4090 break;
4091 }
4092
4093 return last;
4094 }
4095
4096 /* Make an insn of code BARRIER
4097 and output it before the insn BEFORE. */
4098
4099 rtx
4100 emit_barrier_before (rtx before)
4101 {
4102 rtx insn = rtx_alloc (BARRIER);
4103
4104 INSN_UID (insn) = cur_insn_uid++;
4105
4106 add_insn_before (insn, before);
4107 return insn;
4108 }
4109
4110 /* Emit the label LABEL before the insn BEFORE. */
4111
4112 rtx
4113 emit_label_before (rtx label, rtx before)
4114 {
4115 /* This can be called twice for the same label as a result of the
4116 confusion that follows a syntax error! So make it harmless. */
4117 if (INSN_UID (label) == 0)
4118 {
4119 INSN_UID (label) = cur_insn_uid++;
4120 add_insn_before (label, before);
4121 }
4122
4123 return label;
4124 }
4125
4126 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4127
4128 rtx
4129 emit_note_before (int subtype, rtx before)
4130 {
4131 rtx note = rtx_alloc (NOTE);
4132 INSN_UID (note) = cur_insn_uid++;
4133 NOTE_SOURCE_FILE (note) = 0;
4134 NOTE_LINE_NUMBER (note) = subtype;
4135 BLOCK_FOR_INSN (note) = NULL;
4136
4137 add_insn_before (note, before);
4138 return note;
4139 }
4140 \f
4141 /* Helper for emit_insn_after, handles lists of instructions
4142 efficiently. */
4143
4144 static rtx emit_insn_after_1 (rtx, rtx);
4145
4146 static rtx
4147 emit_insn_after_1 (rtx first, rtx after)
4148 {
4149 rtx last;
4150 rtx after_after;
4151 basic_block bb;
4152
4153 if (GET_CODE (after) != BARRIER
4154 && (bb = BLOCK_FOR_INSN (after)))
4155 {
4156 bb->flags |= BB_DIRTY;
4157 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4158 if (GET_CODE (last) != BARRIER)
4159 set_block_for_insn (last, bb);
4160 if (GET_CODE (last) != BARRIER)
4161 set_block_for_insn (last, bb);
4162 if (BB_END (bb) == after)
4163 BB_END (bb) = last;
4164 }
4165 else
4166 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4167 continue;
4168
4169 after_after = NEXT_INSN (after);
4170
4171 NEXT_INSN (after) = first;
4172 PREV_INSN (first) = after;
4173 NEXT_INSN (last) = after_after;
4174 if (after_after)
4175 PREV_INSN (after_after) = last;
4176
4177 if (after == last_insn)
4178 last_insn = last;
4179 return last;
4180 }
4181
4182 /* Make X be output after the insn AFTER. */
4183
4184 rtx
4185 emit_insn_after (rtx x, rtx after)
4186 {
4187 rtx last = after;
4188
4189 #ifdef ENABLE_RTL_CHECKING
4190 if (after == NULL_RTX)
4191 abort ();
4192 #endif
4193
4194 if (x == NULL_RTX)
4195 return last;
4196
4197 switch (GET_CODE (x))
4198 {
4199 case INSN:
4200 case JUMP_INSN:
4201 case CALL_INSN:
4202 case CODE_LABEL:
4203 case BARRIER:
4204 case NOTE:
4205 last = emit_insn_after_1 (x, after);
4206 break;
4207
4208 #ifdef ENABLE_RTL_CHECKING
4209 case SEQUENCE:
4210 abort ();
4211 break;
4212 #endif
4213
4214 default:
4215 last = make_insn_raw (x);
4216 add_insn_after (last, after);
4217 break;
4218 }
4219
4220 return last;
4221 }
4222
4223 /* Similar to emit_insn_after, except that line notes are to be inserted so
4224 as to act as if this insn were at FROM. */
4225
4226 void
4227 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4228 {
4229 rtx from_line = find_line_note (from);
4230 rtx after_line = find_line_note (after);
4231 rtx insn = emit_insn_after (x, after);
4232
4233 if (from_line)
4234 emit_note_copy_after (from_line, after);
4235
4236 if (after_line)
4237 emit_note_copy_after (after_line, insn);
4238 }
4239
4240 /* Make an insn of code JUMP_INSN with body X
4241 and output it after the insn AFTER. */
4242
4243 rtx
4244 emit_jump_insn_after (rtx x, rtx after)
4245 {
4246 rtx last;
4247
4248 #ifdef ENABLE_RTL_CHECKING
4249 if (after == NULL_RTX)
4250 abort ();
4251 #endif
4252
4253 switch (GET_CODE (x))
4254 {
4255 case INSN:
4256 case JUMP_INSN:
4257 case CALL_INSN:
4258 case CODE_LABEL:
4259 case BARRIER:
4260 case NOTE:
4261 last = emit_insn_after_1 (x, after);
4262 break;
4263
4264 #ifdef ENABLE_RTL_CHECKING
4265 case SEQUENCE:
4266 abort ();
4267 break;
4268 #endif
4269
4270 default:
4271 last = make_jump_insn_raw (x);
4272 add_insn_after (last, after);
4273 break;
4274 }
4275
4276 return last;
4277 }
4278
4279 /* Make an instruction with body X and code CALL_INSN
4280 and output it after the instruction AFTER. */
4281
4282 rtx
4283 emit_call_insn_after (rtx x, rtx after)
4284 {
4285 rtx last;
4286
4287 #ifdef ENABLE_RTL_CHECKING
4288 if (after == NULL_RTX)
4289 abort ();
4290 #endif
4291
4292 switch (GET_CODE (x))
4293 {
4294 case INSN:
4295 case JUMP_INSN:
4296 case CALL_INSN:
4297 case CODE_LABEL:
4298 case BARRIER:
4299 case NOTE:
4300 last = emit_insn_after_1 (x, after);
4301 break;
4302
4303 #ifdef ENABLE_RTL_CHECKING
4304 case SEQUENCE:
4305 abort ();
4306 break;
4307 #endif
4308
4309 default:
4310 last = make_call_insn_raw (x);
4311 add_insn_after (last, after);
4312 break;
4313 }
4314
4315 return last;
4316 }
4317
4318 /* Make an insn of code BARRIER
4319 and output it after the insn AFTER. */
4320
4321 rtx
4322 emit_barrier_after (rtx after)
4323 {
4324 rtx insn = rtx_alloc (BARRIER);
4325
4326 INSN_UID (insn) = cur_insn_uid++;
4327
4328 add_insn_after (insn, after);
4329 return insn;
4330 }
4331
4332 /* Emit the label LABEL after the insn AFTER. */
4333
4334 rtx
4335 emit_label_after (rtx label, rtx after)
4336 {
4337 /* This can be called twice for the same label
4338 as a result of the confusion that follows a syntax error!
4339 So make it harmless. */
4340 if (INSN_UID (label) == 0)
4341 {
4342 INSN_UID (label) = cur_insn_uid++;
4343 add_insn_after (label, after);
4344 }
4345
4346 return label;
4347 }
4348
4349 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4350
4351 rtx
4352 emit_note_after (int subtype, rtx after)
4353 {
4354 rtx note = rtx_alloc (NOTE);
4355 INSN_UID (note) = cur_insn_uid++;
4356 NOTE_SOURCE_FILE (note) = 0;
4357 NOTE_LINE_NUMBER (note) = subtype;
4358 BLOCK_FOR_INSN (note) = NULL;
4359 add_insn_after (note, after);
4360 return note;
4361 }
4362
4363 /* Emit a copy of note ORIG after the insn AFTER. */
4364
4365 rtx
4366 emit_note_copy_after (rtx orig, rtx after)
4367 {
4368 rtx note;
4369
4370 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4371 {
4372 cur_insn_uid++;
4373 return 0;
4374 }
4375
4376 note = rtx_alloc (NOTE);
4377 INSN_UID (note) = cur_insn_uid++;
4378 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4379 NOTE_DATA (note) = NOTE_DATA (orig);
4380 BLOCK_FOR_INSN (note) = NULL;
4381 add_insn_after (note, after);
4382 return note;
4383 }
4384 \f
4385 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4386 rtx
4387 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4388 {
4389 rtx last = emit_insn_after (pattern, after);
4390
4391 if (pattern == NULL_RTX)
4392 return last;
4393
4394 after = NEXT_INSN (after);
4395 while (1)
4396 {
4397 if (active_insn_p (after))
4398 INSN_LOCATOR (after) = loc;
4399 if (after == last)
4400 break;
4401 after = NEXT_INSN (after);
4402 }
4403 return last;
4404 }
4405
4406 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4407 rtx
4408 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4409 {
4410 rtx last = emit_jump_insn_after (pattern, after);
4411
4412 if (pattern == NULL_RTX)
4413 return last;
4414
4415 after = NEXT_INSN (after);
4416 while (1)
4417 {
4418 if (active_insn_p (after))
4419 INSN_LOCATOR (after) = loc;
4420 if (after == last)
4421 break;
4422 after = NEXT_INSN (after);
4423 }
4424 return last;
4425 }
4426
4427 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4428 rtx
4429 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4430 {
4431 rtx last = emit_call_insn_after (pattern, after);
4432
4433 if (pattern == NULL_RTX)
4434 return last;
4435
4436 after = NEXT_INSN (after);
4437 while (1)
4438 {
4439 if (active_insn_p (after))
4440 INSN_LOCATOR (after) = loc;
4441 if (after == last)
4442 break;
4443 after = NEXT_INSN (after);
4444 }
4445 return last;
4446 }
4447
4448 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4449 rtx
4450 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4451 {
4452 rtx first = PREV_INSN (before);
4453 rtx last = emit_insn_before (pattern, before);
4454
4455 if (pattern == NULL_RTX)
4456 return last;
4457
4458 first = NEXT_INSN (first);
4459 while (1)
4460 {
4461 if (active_insn_p (first))
4462 INSN_LOCATOR (first) = loc;
4463 if (first == last)
4464 break;
4465 first = NEXT_INSN (first);
4466 }
4467 return last;
4468 }
4469 \f
4470 /* Take X and emit it at the end of the doubly-linked
4471 INSN list.
4472
4473 Returns the last insn emitted. */
4474
4475 rtx
4476 emit_insn (rtx x)
4477 {
4478 rtx last = last_insn;
4479 rtx insn;
4480
4481 if (x == NULL_RTX)
4482 return last;
4483
4484 switch (GET_CODE (x))
4485 {
4486 case INSN:
4487 case JUMP_INSN:
4488 case CALL_INSN:
4489 case CODE_LABEL:
4490 case BARRIER:
4491 case NOTE:
4492 insn = x;
4493 while (insn)
4494 {
4495 rtx next = NEXT_INSN (insn);
4496 add_insn (insn);
4497 last = insn;
4498 insn = next;
4499 }
4500 break;
4501
4502 #ifdef ENABLE_RTL_CHECKING
4503 case SEQUENCE:
4504 abort ();
4505 break;
4506 #endif
4507
4508 default:
4509 last = make_insn_raw (x);
4510 add_insn (last);
4511 break;
4512 }
4513
4514 return last;
4515 }
4516
4517 /* Make an insn of code JUMP_INSN with pattern X
4518 and add it to the end of the doubly-linked list. */
4519
4520 rtx
4521 emit_jump_insn (rtx x)
4522 {
4523 rtx last = NULL_RTX, insn;
4524
4525 switch (GET_CODE (x))
4526 {
4527 case INSN:
4528 case JUMP_INSN:
4529 case CALL_INSN:
4530 case CODE_LABEL:
4531 case BARRIER:
4532 case NOTE:
4533 insn = x;
4534 while (insn)
4535 {
4536 rtx next = NEXT_INSN (insn);
4537 add_insn (insn);
4538 last = insn;
4539 insn = next;
4540 }
4541 break;
4542
4543 #ifdef ENABLE_RTL_CHECKING
4544 case SEQUENCE:
4545 abort ();
4546 break;
4547 #endif
4548
4549 default:
4550 last = make_jump_insn_raw (x);
4551 add_insn (last);
4552 break;
4553 }
4554
4555 return last;
4556 }
4557
4558 /* Make an insn of code CALL_INSN with pattern X
4559 and add it to the end of the doubly-linked list. */
4560
4561 rtx
4562 emit_call_insn (rtx x)
4563 {
4564 rtx insn;
4565
4566 switch (GET_CODE (x))
4567 {
4568 case INSN:
4569 case JUMP_INSN:
4570 case CALL_INSN:
4571 case CODE_LABEL:
4572 case BARRIER:
4573 case NOTE:
4574 insn = emit_insn (x);
4575 break;
4576
4577 #ifdef ENABLE_RTL_CHECKING
4578 case SEQUENCE:
4579 abort ();
4580 break;
4581 #endif
4582
4583 default:
4584 insn = make_call_insn_raw (x);
4585 add_insn (insn);
4586 break;
4587 }
4588
4589 return insn;
4590 }
4591
4592 /* Add the label LABEL to the end of the doubly-linked list. */
4593
4594 rtx
4595 emit_label (rtx label)
4596 {
4597 /* This can be called twice for the same label
4598 as a result of the confusion that follows a syntax error!
4599 So make it harmless. */
4600 if (INSN_UID (label) == 0)
4601 {
4602 INSN_UID (label) = cur_insn_uid++;
4603 add_insn (label);
4604 }
4605 return label;
4606 }
4607
4608 /* Make an insn of code BARRIER
4609 and add it to the end of the doubly-linked list. */
4610
4611 rtx
4612 emit_barrier (void)
4613 {
4614 rtx barrier = rtx_alloc (BARRIER);
4615 INSN_UID (barrier) = cur_insn_uid++;
4616 add_insn (barrier);
4617 return barrier;
4618 }
4619
4620 /* Make line numbering NOTE insn for LOCATION add it to the end
4621 of the doubly-linked list, but only if line-numbers are desired for
4622 debugging info and it doesn't match the previous one. */
4623
4624 rtx
4625 emit_line_note (location_t location)
4626 {
4627 rtx note;
4628
4629 set_file_and_line_for_stmt (location);
4630
4631 if (location.file && last_location.file
4632 && !strcmp (location.file, last_location.file)
4633 && location.line == last_location.line)
4634 return NULL_RTX;
4635 last_location = location;
4636
4637 if (no_line_numbers)
4638 {
4639 cur_insn_uid++;
4640 return NULL_RTX;
4641 }
4642
4643 note = emit_note (location.line);
4644 NOTE_SOURCE_FILE (note) = location.file;
4645
4646 return note;
4647 }
4648
4649 /* Emit a copy of note ORIG. */
4650
4651 rtx
4652 emit_note_copy (rtx orig)
4653 {
4654 rtx note;
4655
4656 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4657 {
4658 cur_insn_uid++;
4659 return NULL_RTX;
4660 }
4661
4662 note = rtx_alloc (NOTE);
4663
4664 INSN_UID (note) = cur_insn_uid++;
4665 NOTE_DATA (note) = NOTE_DATA (orig);
4666 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4667 BLOCK_FOR_INSN (note) = NULL;
4668 add_insn (note);
4669
4670 return note;
4671 }
4672
4673 /* Make an insn of code NOTE or type NOTE_NO
4674 and add it to the end of the doubly-linked list. */
4675
4676 rtx
4677 emit_note (int note_no)
4678 {
4679 rtx note;
4680
4681 note = rtx_alloc (NOTE);
4682 INSN_UID (note) = cur_insn_uid++;
4683 NOTE_LINE_NUMBER (note) = note_no;
4684 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4685 BLOCK_FOR_INSN (note) = NULL;
4686 add_insn (note);
4687 return note;
4688 }
4689
4690 /* Cause next statement to emit a line note even if the line number
4691 has not changed. */
4692
4693 void
4694 force_next_line_note (void)
4695 {
4696 last_location.line = -1;
4697 }
4698
4699 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4700 note of this type already exists, remove it first. */
4701
4702 rtx
4703 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4704 {
4705 rtx note = find_reg_note (insn, kind, NULL_RTX);
4706
4707 switch (kind)
4708 {
4709 case REG_EQUAL:
4710 case REG_EQUIV:
4711 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4712 has multiple sets (some callers assume single_set
4713 means the insn only has one set, when in fact it
4714 means the insn only has one * useful * set). */
4715 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4716 {
4717 if (note)
4718 abort ();
4719 return NULL_RTX;
4720 }
4721
4722 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4723 It serves no useful purpose and breaks eliminate_regs. */
4724 if (GET_CODE (datum) == ASM_OPERANDS)
4725 return NULL_RTX;
4726 break;
4727
4728 default:
4729 break;
4730 }
4731
4732 if (note)
4733 {
4734 XEXP (note, 0) = datum;
4735 return note;
4736 }
4737
4738 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4739 return REG_NOTES (insn);
4740 }
4741 \f
4742 /* Return an indication of which type of insn should have X as a body.
4743 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4744
4745 enum rtx_code
4746 classify_insn (rtx x)
4747 {
4748 if (GET_CODE (x) == CODE_LABEL)
4749 return CODE_LABEL;
4750 if (GET_CODE (x) == CALL)
4751 return CALL_INSN;
4752 if (GET_CODE (x) == RETURN)
4753 return JUMP_INSN;
4754 if (GET_CODE (x) == SET)
4755 {
4756 if (SET_DEST (x) == pc_rtx)
4757 return JUMP_INSN;
4758 else if (GET_CODE (SET_SRC (x)) == CALL)
4759 return CALL_INSN;
4760 else
4761 return INSN;
4762 }
4763 if (GET_CODE (x) == PARALLEL)
4764 {
4765 int j;
4766 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4767 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4768 return CALL_INSN;
4769 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4770 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4771 return JUMP_INSN;
4772 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4773 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4774 return CALL_INSN;
4775 }
4776 return INSN;
4777 }
4778
4779 /* Emit the rtl pattern X as an appropriate kind of insn.
4780 If X is a label, it is simply added into the insn chain. */
4781
4782 rtx
4783 emit (rtx x)
4784 {
4785 enum rtx_code code = classify_insn (x);
4786
4787 if (code == CODE_LABEL)
4788 return emit_label (x);
4789 else if (code == INSN)
4790 return emit_insn (x);
4791 else if (code == JUMP_INSN)
4792 {
4793 rtx insn = emit_jump_insn (x);
4794 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4795 return emit_barrier ();
4796 return insn;
4797 }
4798 else if (code == CALL_INSN)
4799 return emit_call_insn (x);
4800 else
4801 abort ();
4802 }
4803 \f
4804 /* Space for free sequence stack entries. */
4805 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4806
4807 /* Begin emitting insns to a sequence which can be packaged in an
4808 RTL_EXPR. If this sequence will contain something that might cause
4809 the compiler to pop arguments to function calls (because those
4810 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4811 details), use do_pending_stack_adjust before calling this function.
4812 That will ensure that the deferred pops are not accidentally
4813 emitted in the middle of this sequence. */
4814
4815 void
4816 start_sequence (void)
4817 {
4818 struct sequence_stack *tem;
4819
4820 if (free_sequence_stack != NULL)
4821 {
4822 tem = free_sequence_stack;
4823 free_sequence_stack = tem->next;
4824 }
4825 else
4826 tem = ggc_alloc (sizeof (struct sequence_stack));
4827
4828 tem->next = seq_stack;
4829 tem->first = first_insn;
4830 tem->last = last_insn;
4831 tem->sequence_rtl_expr = seq_rtl_expr;
4832
4833 seq_stack = tem;
4834
4835 first_insn = 0;
4836 last_insn = 0;
4837 }
4838
4839 /* Similarly, but indicate that this sequence will be placed in T, an
4840 RTL_EXPR. See the documentation for start_sequence for more
4841 information about how to use this function. */
4842
4843 void
4844 start_sequence_for_rtl_expr (tree t)
4845 {
4846 start_sequence ();
4847
4848 seq_rtl_expr = t;
4849 }
4850
4851 /* Set up the insn chain starting with FIRST as the current sequence,
4852 saving the previously current one. See the documentation for
4853 start_sequence for more information about how to use this function. */
4854
4855 void
4856 push_to_sequence (rtx first)
4857 {
4858 rtx last;
4859
4860 start_sequence ();
4861
4862 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4863
4864 first_insn = first;
4865 last_insn = last;
4866 }
4867
4868 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4869
4870 void
4871 push_to_full_sequence (rtx first, rtx last)
4872 {
4873 start_sequence ();
4874 first_insn = first;
4875 last_insn = last;
4876 /* We really should have the end of the insn chain here. */
4877 if (last && NEXT_INSN (last))
4878 abort ();
4879 }
4880
4881 /* Set up the outer-level insn chain
4882 as the current sequence, saving the previously current one. */
4883
4884 void
4885 push_topmost_sequence (void)
4886 {
4887 struct sequence_stack *stack, *top = NULL;
4888
4889 start_sequence ();
4890
4891 for (stack = seq_stack; stack; stack = stack->next)
4892 top = stack;
4893
4894 first_insn = top->first;
4895 last_insn = top->last;
4896 seq_rtl_expr = top->sequence_rtl_expr;
4897 }
4898
4899 /* After emitting to the outer-level insn chain, update the outer-level
4900 insn chain, and restore the previous saved state. */
4901
4902 void
4903 pop_topmost_sequence (void)
4904 {
4905 struct sequence_stack *stack, *top = NULL;
4906
4907 for (stack = seq_stack; stack; stack = stack->next)
4908 top = stack;
4909
4910 top->first = first_insn;
4911 top->last = last_insn;
4912 /* ??? Why don't we save seq_rtl_expr here? */
4913
4914 end_sequence ();
4915 }
4916
4917 /* After emitting to a sequence, restore previous saved state.
4918
4919 To get the contents of the sequence just made, you must call
4920 `get_insns' *before* calling here.
4921
4922 If the compiler might have deferred popping arguments while
4923 generating this sequence, and this sequence will not be immediately
4924 inserted into the instruction stream, use do_pending_stack_adjust
4925 before calling get_insns. That will ensure that the deferred
4926 pops are inserted into this sequence, and not into some random
4927 location in the instruction stream. See INHIBIT_DEFER_POP for more
4928 information about deferred popping of arguments. */
4929
4930 void
4931 end_sequence (void)
4932 {
4933 struct sequence_stack *tem = seq_stack;
4934
4935 first_insn = tem->first;
4936 last_insn = tem->last;
4937 seq_rtl_expr = tem->sequence_rtl_expr;
4938 seq_stack = tem->next;
4939
4940 memset (tem, 0, sizeof (*tem));
4941 tem->next = free_sequence_stack;
4942 free_sequence_stack = tem;
4943 }
4944
4945 /* Return 1 if currently emitting into a sequence. */
4946
4947 int
4948 in_sequence_p (void)
4949 {
4950 return seq_stack != 0;
4951 }
4952 \f
4953 /* Put the various virtual registers into REGNO_REG_RTX. */
4954
4955 void
4956 init_virtual_regs (struct emit_status *es)
4957 {
4958 rtx *ptr = es->x_regno_reg_rtx;
4959 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4960 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4961 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4962 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4963 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4964 }
4965
4966 \f
4967 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4968 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4969 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4970 static int copy_insn_n_scratches;
4971
4972 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4973 copied an ASM_OPERANDS.
4974 In that case, it is the original input-operand vector. */
4975 static rtvec orig_asm_operands_vector;
4976
4977 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4978 copied an ASM_OPERANDS.
4979 In that case, it is the copied input-operand vector. */
4980 static rtvec copy_asm_operands_vector;
4981
4982 /* Likewise for the constraints vector. */
4983 static rtvec orig_asm_constraints_vector;
4984 static rtvec copy_asm_constraints_vector;
4985
4986 /* Recursively create a new copy of an rtx for copy_insn.
4987 This function differs from copy_rtx in that it handles SCRATCHes and
4988 ASM_OPERANDs properly.
4989 Normally, this function is not used directly; use copy_insn as front end.
4990 However, you could first copy an insn pattern with copy_insn and then use
4991 this function afterwards to properly copy any REG_NOTEs containing
4992 SCRATCHes. */
4993
4994 rtx
4995 copy_insn_1 (rtx orig)
4996 {
4997 rtx copy;
4998 int i, j;
4999 RTX_CODE code;
5000 const char *format_ptr;
5001
5002 code = GET_CODE (orig);
5003
5004 switch (code)
5005 {
5006 case REG:
5007 case QUEUED:
5008 case CONST_INT:
5009 case CONST_DOUBLE:
5010 case CONST_VECTOR:
5011 case SYMBOL_REF:
5012 case CODE_LABEL:
5013 case PC:
5014 case CC0:
5015 case ADDRESSOF:
5016 return orig;
5017 case CLOBBER:
5018 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5019 return orig;
5020 break;
5021
5022 case SCRATCH:
5023 for (i = 0; i < copy_insn_n_scratches; i++)
5024 if (copy_insn_scratch_in[i] == orig)
5025 return copy_insn_scratch_out[i];
5026 break;
5027
5028 case CONST:
5029 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5030 a LABEL_REF, it isn't sharable. */
5031 if (GET_CODE (XEXP (orig, 0)) == PLUS
5032 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5033 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5034 return orig;
5035 break;
5036
5037 /* A MEM with a constant address is not sharable. The problem is that
5038 the constant address may need to be reloaded. If the mem is shared,
5039 then reloading one copy of this mem will cause all copies to appear
5040 to have been reloaded. */
5041
5042 default:
5043 break;
5044 }
5045
5046 copy = rtx_alloc (code);
5047
5048 /* Copy the various flags, and other information. We assume that
5049 all fields need copying, and then clear the fields that should
5050 not be copied. That is the sensible default behavior, and forces
5051 us to explicitly document why we are *not* copying a flag. */
5052 memcpy (copy, orig, RTX_HDR_SIZE);
5053
5054 /* We do not copy the USED flag, which is used as a mark bit during
5055 walks over the RTL. */
5056 RTX_FLAG (copy, used) = 0;
5057
5058 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5059 if (INSN_P (orig))
5060 {
5061 RTX_FLAG (copy, jump) = 0;
5062 RTX_FLAG (copy, call) = 0;
5063 RTX_FLAG (copy, frame_related) = 0;
5064 }
5065
5066 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5067
5068 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5069 {
5070 copy->u.fld[i] = orig->u.fld[i];
5071 switch (*format_ptr++)
5072 {
5073 case 'e':
5074 if (XEXP (orig, i) != NULL)
5075 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5076 break;
5077
5078 case 'E':
5079 case 'V':
5080 if (XVEC (orig, i) == orig_asm_constraints_vector)
5081 XVEC (copy, i) = copy_asm_constraints_vector;
5082 else if (XVEC (orig, i) == orig_asm_operands_vector)
5083 XVEC (copy, i) = copy_asm_operands_vector;
5084 else if (XVEC (orig, i) != NULL)
5085 {
5086 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5087 for (j = 0; j < XVECLEN (copy, i); j++)
5088 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5089 }
5090 break;
5091
5092 case 't':
5093 case 'w':
5094 case 'i':
5095 case 's':
5096 case 'S':
5097 case 'u':
5098 case '0':
5099 /* These are left unchanged. */
5100 break;
5101
5102 default:
5103 abort ();
5104 }
5105 }
5106
5107 if (code == SCRATCH)
5108 {
5109 i = copy_insn_n_scratches++;
5110 if (i >= MAX_RECOG_OPERANDS)
5111 abort ();
5112 copy_insn_scratch_in[i] = orig;
5113 copy_insn_scratch_out[i] = copy;
5114 }
5115 else if (code == ASM_OPERANDS)
5116 {
5117 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5118 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5119 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5120 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5121 }
5122
5123 return copy;
5124 }
5125
5126 /* Create a new copy of an rtx.
5127 This function differs from copy_rtx in that it handles SCRATCHes and
5128 ASM_OPERANDs properly.
5129 INSN doesn't really have to be a full INSN; it could be just the
5130 pattern. */
5131 rtx
5132 copy_insn (rtx insn)
5133 {
5134 copy_insn_n_scratches = 0;
5135 orig_asm_operands_vector = 0;
5136 orig_asm_constraints_vector = 0;
5137 copy_asm_operands_vector = 0;
5138 copy_asm_constraints_vector = 0;
5139 return copy_insn_1 (insn);
5140 }
5141
5142 /* Initialize data structures and variables in this file
5143 before generating rtl for each function. */
5144
5145 void
5146 init_emit (void)
5147 {
5148 struct function *f = cfun;
5149
5150 f->emit = ggc_alloc (sizeof (struct emit_status));
5151 first_insn = NULL;
5152 last_insn = NULL;
5153 seq_rtl_expr = NULL;
5154 cur_insn_uid = 1;
5155 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5156 last_location.line = 0;
5157 last_location.file = 0;
5158 first_label_num = label_num;
5159 last_label_num = 0;
5160 seq_stack = NULL;
5161
5162 /* Init the tables that describe all the pseudo regs. */
5163
5164 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5165
5166 f->emit->regno_pointer_align
5167 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5168 * sizeof (unsigned char));
5169
5170 regno_reg_rtx
5171 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5172
5173 /* Put copies of all the hard registers into regno_reg_rtx. */
5174 memcpy (regno_reg_rtx,
5175 static_regno_reg_rtx,
5176 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5177
5178 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5179 init_virtual_regs (f->emit);
5180
5181 /* Indicate that the virtual registers and stack locations are
5182 all pointers. */
5183 REG_POINTER (stack_pointer_rtx) = 1;
5184 REG_POINTER (frame_pointer_rtx) = 1;
5185 REG_POINTER (hard_frame_pointer_rtx) = 1;
5186 REG_POINTER (arg_pointer_rtx) = 1;
5187
5188 REG_POINTER (virtual_incoming_args_rtx) = 1;
5189 REG_POINTER (virtual_stack_vars_rtx) = 1;
5190 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5191 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5192 REG_POINTER (virtual_cfa_rtx) = 1;
5193
5194 #ifdef STACK_BOUNDARY
5195 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5196 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5197 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5198 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5199
5200 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5201 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5202 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5203 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5204 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5205 #endif
5206
5207 #ifdef INIT_EXPANDERS
5208 INIT_EXPANDERS;
5209 #endif
5210 }
5211
5212 /* Generate the constant 0. */
5213
5214 static rtx
5215 gen_const_vector_0 (enum machine_mode mode)
5216 {
5217 rtx tem;
5218 rtvec v;
5219 int units, i;
5220 enum machine_mode inner;
5221
5222 units = GET_MODE_NUNITS (mode);
5223 inner = GET_MODE_INNER (mode);
5224
5225 v = rtvec_alloc (units);
5226
5227 /* We need to call this function after we to set CONST0_RTX first. */
5228 if (!CONST0_RTX (inner))
5229 abort ();
5230
5231 for (i = 0; i < units; ++i)
5232 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5233
5234 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5235 return tem;
5236 }
5237
5238 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5239 all elements are zero. */
5240 rtx
5241 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5242 {
5243 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5244 int i;
5245
5246 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5247 if (RTVEC_ELT (v, i) != inner_zero)
5248 return gen_rtx_raw_CONST_VECTOR (mode, v);
5249 return CONST0_RTX (mode);
5250 }
5251
5252 /* Create some permanent unique rtl objects shared between all functions.
5253 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5254
5255 void
5256 init_emit_once (int line_numbers)
5257 {
5258 int i;
5259 enum machine_mode mode;
5260 enum machine_mode double_mode;
5261
5262 /* We need reg_raw_mode, so initialize the modes now. */
5263 init_reg_modes_once ();
5264
5265 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5266 tables. */
5267 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5268 const_int_htab_eq, NULL);
5269
5270 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5271 const_double_htab_eq, NULL);
5272
5273 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5274 mem_attrs_htab_eq, NULL);
5275 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5276 reg_attrs_htab_eq, NULL);
5277
5278 no_line_numbers = ! line_numbers;
5279
5280 /* Compute the word and byte modes. */
5281
5282 byte_mode = VOIDmode;
5283 word_mode = VOIDmode;
5284 double_mode = VOIDmode;
5285
5286 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5287 mode = GET_MODE_WIDER_MODE (mode))
5288 {
5289 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5290 && byte_mode == VOIDmode)
5291 byte_mode = mode;
5292
5293 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5294 && word_mode == VOIDmode)
5295 word_mode = mode;
5296 }
5297
5298 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5299 mode = GET_MODE_WIDER_MODE (mode))
5300 {
5301 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5302 && double_mode == VOIDmode)
5303 double_mode = mode;
5304 }
5305
5306 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5307
5308 /* Assign register numbers to the globally defined register rtx.
5309 This must be done at runtime because the register number field
5310 is in a union and some compilers can't initialize unions. */
5311
5312 pc_rtx = gen_rtx_PC (VOIDmode);
5313 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5314 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5315 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5316 if (hard_frame_pointer_rtx == 0)
5317 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5318 HARD_FRAME_POINTER_REGNUM);
5319 if (arg_pointer_rtx == 0)
5320 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5321 virtual_incoming_args_rtx =
5322 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5323 virtual_stack_vars_rtx =
5324 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5325 virtual_stack_dynamic_rtx =
5326 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5327 virtual_outgoing_args_rtx =
5328 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5329 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5330
5331 /* Initialize RTL for commonly used hard registers. These are
5332 copied into regno_reg_rtx as we begin to compile each function. */
5333 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5334 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5335
5336 #ifdef INIT_EXPANDERS
5337 /* This is to initialize {init|mark|free}_machine_status before the first
5338 call to push_function_context_to. This is needed by the Chill front
5339 end which calls push_function_context_to before the first call to
5340 init_function_start. */
5341 INIT_EXPANDERS;
5342 #endif
5343
5344 /* Create the unique rtx's for certain rtx codes and operand values. */
5345
5346 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5347 tries to use these variables. */
5348 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5349 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5350 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5351
5352 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5353 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5354 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5355 else
5356 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5357
5358 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5359 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5360 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5361 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5362 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5363 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5364 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5365
5366 dconsthalf = dconst1;
5367 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5368
5369 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5370
5371 /* Initialize mathematical constants for constant folding builtins.
5372 These constants need to be given to at least 160 bits precision. */
5373 real_from_string (&dconstpi,
5374 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5375 real_from_string (&dconste,
5376 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5377
5378 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5379 {
5380 REAL_VALUE_TYPE *r =
5381 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5382
5383 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5384 mode = GET_MODE_WIDER_MODE (mode))
5385 const_tiny_rtx[i][(int) mode] =
5386 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5387
5388 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5389
5390 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5391 mode = GET_MODE_WIDER_MODE (mode))
5392 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5393
5394 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5395 mode != VOIDmode;
5396 mode = GET_MODE_WIDER_MODE (mode))
5397 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5398 }
5399
5400 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5401 mode != VOIDmode;
5402 mode = GET_MODE_WIDER_MODE (mode))
5403 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5404
5405 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5406 mode != VOIDmode;
5407 mode = GET_MODE_WIDER_MODE (mode))
5408 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5409
5410 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5411 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5412 const_tiny_rtx[0][i] = const0_rtx;
5413
5414 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5415 if (STORE_FLAG_VALUE == 1)
5416 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5417
5418 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5419 return_address_pointer_rtx
5420 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5421 #endif
5422
5423 #ifdef STATIC_CHAIN_REGNUM
5424 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5425
5426 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5427 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5428 static_chain_incoming_rtx
5429 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5430 else
5431 #endif
5432 static_chain_incoming_rtx = static_chain_rtx;
5433 #endif
5434
5435 #ifdef STATIC_CHAIN
5436 static_chain_rtx = STATIC_CHAIN;
5437
5438 #ifdef STATIC_CHAIN_INCOMING
5439 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5440 #else
5441 static_chain_incoming_rtx = static_chain_rtx;
5442 #endif
5443 #endif
5444
5445 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5446 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5447 }
5448 \f
5449 /* Query and clear/ restore no_line_numbers. This is used by the
5450 switch / case handling in stmt.c to give proper line numbers in
5451 warnings about unreachable code. */
5452
5453 int
5454 force_line_numbers (void)
5455 {
5456 int old = no_line_numbers;
5457
5458 no_line_numbers = 0;
5459 if (old)
5460 force_next_line_note ();
5461 return old;
5462 }
5463
5464 void
5465 restore_line_number_status (int old_value)
5466 {
5467 no_line_numbers = old_value;
5468 }
5469
5470 /* Produce exact duplicate of insn INSN after AFTER.
5471 Care updating of libcall regions if present. */
5472
5473 rtx
5474 emit_copy_of_insn_after (rtx insn, rtx after)
5475 {
5476 rtx new;
5477 rtx note1, note2, link;
5478
5479 switch (GET_CODE (insn))
5480 {
5481 case INSN:
5482 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5483 break;
5484
5485 case JUMP_INSN:
5486 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5487 break;
5488
5489 case CALL_INSN:
5490 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5491 if (CALL_INSN_FUNCTION_USAGE (insn))
5492 CALL_INSN_FUNCTION_USAGE (new)
5493 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5494 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5495 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5496 break;
5497
5498 default:
5499 abort ();
5500 }
5501
5502 /* Update LABEL_NUSES. */
5503 mark_jump_label (PATTERN (new), new, 0);
5504
5505 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5506
5507 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5508 make them. */
5509 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5510 if (REG_NOTE_KIND (link) != REG_LABEL)
5511 {
5512 if (GET_CODE (link) == EXPR_LIST)
5513 REG_NOTES (new)
5514 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5515 XEXP (link, 0),
5516 REG_NOTES (new)));
5517 else
5518 REG_NOTES (new)
5519 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5520 XEXP (link, 0),
5521 REG_NOTES (new)));
5522 }
5523
5524 /* Fix the libcall sequences. */
5525 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5526 {
5527 rtx p = new;
5528 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5529 p = PREV_INSN (p);
5530 XEXP (note1, 0) = p;
5531 XEXP (note2, 0) = new;
5532 }
5533 INSN_CODE (new) = INSN_CODE (insn);
5534 return new;
5535 }
5536
5537 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5538 rtx
5539 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5540 {
5541 if (hard_reg_clobbers[mode][regno])
5542 return hard_reg_clobbers[mode][regno];
5543 else
5544 return (hard_reg_clobbers[mode][regno] =
5545 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5546 }
5547
5548 #include "gt-emit-rtl.h"