re PR target/65697 (__atomic memory barriers not strong enough for __sync builtins)
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "hash-set.h"
41 #include "machmode.h"
42 #include "vec.h"
43 #include "double-int.h"
44 #include "input.h"
45 #include "alias.h"
46 #include "symtab.h"
47 #include "wide-int.h"
48 #include "inchash.h"
49 #include "real.h"
50 #include "tree.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "predict.h"
54 #include "hard-reg-set.h"
55 #include "function.h"
56 #include "cfgrtl.h"
57 #include "basic-block.h"
58 #include "tree-eh.h"
59 #include "tm_p.h"
60 #include "flags.h"
61 #include "stringpool.h"
62 #include "hashtab.h"
63 #include "statistics.h"
64 #include "fixed-value.h"
65 #include "insn-config.h"
66 #include "expmed.h"
67 #include "dojump.h"
68 #include "explow.h"
69 #include "calls.h"
70 #include "emit-rtl.h"
71 #include "stmt.h"
72 #include "expr.h"
73 #include "regs.h"
74 #include "recog.h"
75 #include "bitmap.h"
76 #include "debug.h"
77 #include "langhooks.h"
78 #include "df.h"
79 #include "params.h"
80 #include "target.h"
81 #include "builtins.h"
82 #include "rtl-iter.h"
83
84 struct target_rtl default_target_rtl;
85 #if SWITCHABLE_TARGET
86 struct target_rtl *this_target_rtl = &default_target_rtl;
87 #endif
88
89 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
90
91 /* Commonly used modes. */
92
93 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
94 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
95 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
96 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
97
98 /* Datastructures maintained for currently processed function in RTL form. */
99
100 struct rtl_data x_rtl;
101
102 /* Indexed by pseudo register number, gives the rtx for that pseudo.
103 Allocated in parallel with regno_pointer_align.
104 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
105 with length attribute nested in top level structures. */
106
107 rtx * regno_reg_rtx;
108
109 /* This is *not* reset after each function. It gives each CODE_LABEL
110 in the entire compilation a unique label number. */
111
112 static GTY(()) int label_num = 1;
113
114 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
115 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
116 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
117 is set only for MODE_INT and MODE_VECTOR_INT modes. */
118
119 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
120
121 rtx const_true_rtx;
122
123 REAL_VALUE_TYPE dconst0;
124 REAL_VALUE_TYPE dconst1;
125 REAL_VALUE_TYPE dconst2;
126 REAL_VALUE_TYPE dconstm1;
127 REAL_VALUE_TYPE dconsthalf;
128
129 /* Record fixed-point constant 0 and 1. */
130 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
131 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
132
133 /* We make one copy of (const_int C) where C is in
134 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
135 to save space during the compilation and simplify comparisons of
136 integers. */
137
138 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
139
140 /* Standard pieces of rtx, to be substituted directly into things. */
141 rtx pc_rtx;
142 rtx ret_rtx;
143 rtx simple_return_rtx;
144 rtx cc0_rtx;
145
146 /* A hash table storing CONST_INTs whose absolute value is greater
147 than MAX_SAVED_CONST_INT. */
148
149 struct const_int_hasher : ggc_cache_hasher<rtx>
150 {
151 typedef HOST_WIDE_INT compare_type;
152
153 static hashval_t hash (rtx i);
154 static bool equal (rtx i, HOST_WIDE_INT h);
155 };
156
157 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
158
159 struct const_wide_int_hasher : ggc_cache_hasher<rtx>
160 {
161 static hashval_t hash (rtx x);
162 static bool equal (rtx x, rtx y);
163 };
164
165 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
166
167 /* A hash table storing register attribute structures. */
168 struct reg_attr_hasher : ggc_cache_hasher<reg_attrs *>
169 {
170 static hashval_t hash (reg_attrs *x);
171 static bool equal (reg_attrs *a, reg_attrs *b);
172 };
173
174 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
175
176 /* A hash table storing all CONST_DOUBLEs. */
177 struct const_double_hasher : ggc_cache_hasher<rtx>
178 {
179 static hashval_t hash (rtx x);
180 static bool equal (rtx x, rtx y);
181 };
182
183 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
184
185 /* A hash table storing all CONST_FIXEDs. */
186 struct const_fixed_hasher : ggc_cache_hasher<rtx>
187 {
188 static hashval_t hash (rtx x);
189 static bool equal (rtx x, rtx y);
190 };
191
192 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
193
194 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
195 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
196 #define first_label_num (crtl->emit.x_first_label_num)
197
198 static void set_used_decls (tree);
199 static void mark_label_nuses (rtx);
200 #if TARGET_SUPPORTS_WIDE_INT
201 static rtx lookup_const_wide_int (rtx);
202 #endif
203 static rtx lookup_const_double (rtx);
204 static rtx lookup_const_fixed (rtx);
205 static reg_attrs *get_reg_attrs (tree, int);
206 static rtx gen_const_vector (machine_mode, int);
207 static void copy_rtx_if_shared_1 (rtx *orig);
208
209 /* Probability of the conditional branch currently proceeded by try_split.
210 Set to -1 otherwise. */
211 int split_branch_probability = -1;
212 \f
213 /* Returns a hash code for X (which is a really a CONST_INT). */
214
215 hashval_t
216 const_int_hasher::hash (rtx x)
217 {
218 return (hashval_t) INTVAL (x);
219 }
220
221 /* Returns nonzero if the value represented by X (which is really a
222 CONST_INT) is the same as that given by Y (which is really a
223 HOST_WIDE_INT *). */
224
225 bool
226 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
227 {
228 return (INTVAL (x) == y);
229 }
230
231 #if TARGET_SUPPORTS_WIDE_INT
232 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
233
234 hashval_t
235 const_wide_int_hasher::hash (rtx x)
236 {
237 int i;
238 unsigned HOST_WIDE_INT hash = 0;
239 const_rtx xr = x;
240
241 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
242 hash += CONST_WIDE_INT_ELT (xr, i);
243
244 return (hashval_t) hash;
245 }
246
247 /* Returns nonzero if the value represented by X (which is really a
248 CONST_WIDE_INT) is the same as that given by Y (which is really a
249 CONST_WIDE_INT). */
250
251 bool
252 const_wide_int_hasher::equal (rtx x, rtx y)
253 {
254 int i;
255 const_rtx xr = x;
256 const_rtx yr = y;
257 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
258 return false;
259
260 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
261 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
262 return false;
263
264 return true;
265 }
266 #endif
267
268 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
269 hashval_t
270 const_double_hasher::hash (rtx x)
271 {
272 const_rtx const value = x;
273 hashval_t h;
274
275 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
276 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
277 else
278 {
279 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
280 /* MODE is used in the comparison, so it should be in the hash. */
281 h ^= GET_MODE (value);
282 }
283 return h;
284 }
285
286 /* Returns nonzero if the value represented by X (really a ...)
287 is the same as that represented by Y (really a ...) */
288 bool
289 const_double_hasher::equal (rtx x, rtx y)
290 {
291 const_rtx const a = x, b = y;
292
293 if (GET_MODE (a) != GET_MODE (b))
294 return 0;
295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
296 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
297 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
298 else
299 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
300 CONST_DOUBLE_REAL_VALUE (b));
301 }
302
303 /* Returns a hash code for X (which is really a CONST_FIXED). */
304
305 hashval_t
306 const_fixed_hasher::hash (rtx x)
307 {
308 const_rtx const value = x;
309 hashval_t h;
310
311 h = fixed_hash (CONST_FIXED_VALUE (value));
312 /* MODE is used in the comparison, so it should be in the hash. */
313 h ^= GET_MODE (value);
314 return h;
315 }
316
317 /* Returns nonzero if the value represented by X is the same as that
318 represented by Y. */
319
320 bool
321 const_fixed_hasher::equal (rtx x, rtx y)
322 {
323 const_rtx const a = x, b = y;
324
325 if (GET_MODE (a) != GET_MODE (b))
326 return 0;
327 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
328 }
329
330 /* Return true if the given memory attributes are equal. */
331
332 bool
333 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
334 {
335 if (p == q)
336 return true;
337 if (!p || !q)
338 return false;
339 return (p->alias == q->alias
340 && p->offset_known_p == q->offset_known_p
341 && (!p->offset_known_p || p->offset == q->offset)
342 && p->size_known_p == q->size_known_p
343 && (!p->size_known_p || p->size == q->size)
344 && p->align == q->align
345 && p->addrspace == q->addrspace
346 && (p->expr == q->expr
347 || (p->expr != NULL_TREE && q->expr != NULL_TREE
348 && operand_equal_p (p->expr, q->expr, 0))));
349 }
350
351 /* Set MEM's memory attributes so that they are the same as ATTRS. */
352
353 static void
354 set_mem_attrs (rtx mem, mem_attrs *attrs)
355 {
356 /* If everything is the default, we can just clear the attributes. */
357 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
358 {
359 MEM_ATTRS (mem) = 0;
360 return;
361 }
362
363 if (!MEM_ATTRS (mem)
364 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
365 {
366 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
367 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
368 }
369 }
370
371 /* Returns a hash code for X (which is a really a reg_attrs *). */
372
373 hashval_t
374 reg_attr_hasher::hash (reg_attrs *x)
375 {
376 const reg_attrs *const p = x;
377
378 return ((p->offset * 1000) ^ (intptr_t) p->decl);
379 }
380
381 /* Returns nonzero if the value represented by X is the same as that given by
382 Y. */
383
384 bool
385 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
386 {
387 const reg_attrs *const p = x;
388 const reg_attrs *const q = y;
389
390 return (p->decl == q->decl && p->offset == q->offset);
391 }
392 /* Allocate a new reg_attrs structure and insert it into the hash table if
393 one identical to it is not already in the table. We are doing this for
394 MEM of mode MODE. */
395
396 static reg_attrs *
397 get_reg_attrs (tree decl, int offset)
398 {
399 reg_attrs attrs;
400
401 /* If everything is the default, we can just return zero. */
402 if (decl == 0 && offset == 0)
403 return 0;
404
405 attrs.decl = decl;
406 attrs.offset = offset;
407
408 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
409 if (*slot == 0)
410 {
411 *slot = ggc_alloc<reg_attrs> ();
412 memcpy (*slot, &attrs, sizeof (reg_attrs));
413 }
414
415 return *slot;
416 }
417
418
419 #if !HAVE_blockage
420 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
421 and to block register equivalences to be seen across this insn. */
422
423 rtx
424 gen_blockage (void)
425 {
426 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
427 MEM_VOLATILE_P (x) = true;
428 return x;
429 }
430 #endif
431
432
433 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
434 don't attempt to share with the various global pieces of rtl (such as
435 frame_pointer_rtx). */
436
437 rtx
438 gen_raw_REG (machine_mode mode, int regno)
439 {
440 rtx x = gen_rtx_raw_REG (mode, regno);
441 ORIGINAL_REGNO (x) = regno;
442 return x;
443 }
444
445 /* There are some RTL codes that require special attention; the generation
446 functions do the raw handling. If you add to this list, modify
447 special_rtx in gengenrtl.c as well. */
448
449 rtx_expr_list *
450 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
451 {
452 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
453 expr_list));
454 }
455
456 rtx_insn_list *
457 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
458 {
459 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
460 insn_list));
461 }
462
463 rtx_insn *
464 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
465 basic_block bb, rtx pattern, int location, int code,
466 rtx reg_notes)
467 {
468 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
469 prev_insn, next_insn,
470 bb, pattern, location, code,
471 reg_notes));
472 }
473
474 rtx
475 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
476 {
477 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
478 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
479
480 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
481 if (const_true_rtx && arg == STORE_FLAG_VALUE)
482 return const_true_rtx;
483 #endif
484
485 /* Look up the CONST_INT in the hash table. */
486 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
487 INSERT);
488 if (*slot == 0)
489 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
490
491 return *slot;
492 }
493
494 rtx
495 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
496 {
497 return GEN_INT (trunc_int_for_mode (c, mode));
498 }
499
500 /* CONST_DOUBLEs might be created from pairs of integers, or from
501 REAL_VALUE_TYPEs. Also, their length is known only at run time,
502 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
503
504 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
505 hash table. If so, return its counterpart; otherwise add it
506 to the hash table and return it. */
507 static rtx
508 lookup_const_double (rtx real)
509 {
510 rtx *slot = const_double_htab->find_slot (real, INSERT);
511 if (*slot == 0)
512 *slot = real;
513
514 return *slot;
515 }
516
517 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
518 VALUE in mode MODE. */
519 rtx
520 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
521 {
522 rtx real = rtx_alloc (CONST_DOUBLE);
523 PUT_MODE (real, mode);
524
525 real->u.rv = value;
526
527 return lookup_const_double (real);
528 }
529
530 /* Determine whether FIXED, a CONST_FIXED, already exists in the
531 hash table. If so, return its counterpart; otherwise add it
532 to the hash table and return it. */
533
534 static rtx
535 lookup_const_fixed (rtx fixed)
536 {
537 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
538 if (*slot == 0)
539 *slot = fixed;
540
541 return *slot;
542 }
543
544 /* Return a CONST_FIXED rtx for a fixed-point value specified by
545 VALUE in mode MODE. */
546
547 rtx
548 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
549 {
550 rtx fixed = rtx_alloc (CONST_FIXED);
551 PUT_MODE (fixed, mode);
552
553 fixed->u.fv = value;
554
555 return lookup_const_fixed (fixed);
556 }
557
558 #if TARGET_SUPPORTS_WIDE_INT == 0
559 /* Constructs double_int from rtx CST. */
560
561 double_int
562 rtx_to_double_int (const_rtx cst)
563 {
564 double_int r;
565
566 if (CONST_INT_P (cst))
567 r = double_int::from_shwi (INTVAL (cst));
568 else if (CONST_DOUBLE_AS_INT_P (cst))
569 {
570 r.low = CONST_DOUBLE_LOW (cst);
571 r.high = CONST_DOUBLE_HIGH (cst);
572 }
573 else
574 gcc_unreachable ();
575
576 return r;
577 }
578 #endif
579
580 #if TARGET_SUPPORTS_WIDE_INT
581 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
582 If so, return its counterpart; otherwise add it to the hash table and
583 return it. */
584
585 static rtx
586 lookup_const_wide_int (rtx wint)
587 {
588 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
589 if (*slot == 0)
590 *slot = wint;
591
592 return *slot;
593 }
594 #endif
595
596 /* Return an rtx constant for V, given that the constant has mode MODE.
597 The returned rtx will be a CONST_INT if V fits, otherwise it will be
598 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
599 (if TARGET_SUPPORTS_WIDE_INT). */
600
601 rtx
602 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
603 {
604 unsigned int len = v.get_len ();
605 unsigned int prec = GET_MODE_PRECISION (mode);
606
607 /* Allow truncation but not extension since we do not know if the
608 number is signed or unsigned. */
609 gcc_assert (prec <= v.get_precision ());
610
611 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
612 return gen_int_mode (v.elt (0), mode);
613
614 #if TARGET_SUPPORTS_WIDE_INT
615 {
616 unsigned int i;
617 rtx value;
618 unsigned int blocks_needed
619 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
620
621 if (len > blocks_needed)
622 len = blocks_needed;
623
624 value = const_wide_int_alloc (len);
625
626 /* It is so tempting to just put the mode in here. Must control
627 myself ... */
628 PUT_MODE (value, VOIDmode);
629 CWI_PUT_NUM_ELEM (value, len);
630
631 for (i = 0; i < len; i++)
632 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
633
634 return lookup_const_wide_int (value);
635 }
636 #else
637 return immed_double_const (v.elt (0), v.elt (1), mode);
638 #endif
639 }
640
641 #if TARGET_SUPPORTS_WIDE_INT == 0
642 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
643 of ints: I0 is the low-order word and I1 is the high-order word.
644 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
645 implied upper bits are copies of the high bit of i1. The value
646 itself is neither signed nor unsigned. Do not use this routine for
647 non-integer modes; convert to REAL_VALUE_TYPE and use
648 CONST_DOUBLE_FROM_REAL_VALUE. */
649
650 rtx
651 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
652 {
653 rtx value;
654 unsigned int i;
655
656 /* There are the following cases (note that there are no modes with
657 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
658
659 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
660 gen_int_mode.
661 2) If the value of the integer fits into HOST_WIDE_INT anyway
662 (i.e., i1 consists only from copies of the sign bit, and sign
663 of i0 and i1 are the same), then we return a CONST_INT for i0.
664 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
665 if (mode != VOIDmode)
666 {
667 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
668 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
669 /* We can get a 0 for an error mark. */
670 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
671 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
672 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
673
674 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
675 return gen_int_mode (i0, mode);
676 }
677
678 /* If this integer fits in one word, return a CONST_INT. */
679 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
680 return GEN_INT (i0);
681
682 /* We use VOIDmode for integers. */
683 value = rtx_alloc (CONST_DOUBLE);
684 PUT_MODE (value, VOIDmode);
685
686 CONST_DOUBLE_LOW (value) = i0;
687 CONST_DOUBLE_HIGH (value) = i1;
688
689 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
690 XWINT (value, i) = 0;
691
692 return lookup_const_double (value);
693 }
694 #endif
695
696 rtx
697 gen_rtx_REG (machine_mode mode, unsigned int regno)
698 {
699 /* In case the MD file explicitly references the frame pointer, have
700 all such references point to the same frame pointer. This is
701 used during frame pointer elimination to distinguish the explicit
702 references to these registers from pseudos that happened to be
703 assigned to them.
704
705 If we have eliminated the frame pointer or arg pointer, we will
706 be using it as a normal register, for example as a spill
707 register. In such cases, we might be accessing it in a mode that
708 is not Pmode and therefore cannot use the pre-allocated rtx.
709
710 Also don't do this when we are making new REGs in reload, since
711 we don't want to get confused with the real pointers. */
712
713 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
714 {
715 if (regno == FRAME_POINTER_REGNUM
716 && (!reload_completed || frame_pointer_needed))
717 return frame_pointer_rtx;
718
719 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
720 && regno == HARD_FRAME_POINTER_REGNUM
721 && (!reload_completed || frame_pointer_needed))
722 return hard_frame_pointer_rtx;
723 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
724 if (regno == ARG_POINTER_REGNUM)
725 return arg_pointer_rtx;
726 #endif
727 #ifdef RETURN_ADDRESS_POINTER_REGNUM
728 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
729 return return_address_pointer_rtx;
730 #endif
731 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
732 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
733 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
734 return pic_offset_table_rtx;
735 if (regno == STACK_POINTER_REGNUM)
736 return stack_pointer_rtx;
737 }
738
739 #if 0
740 /* If the per-function register table has been set up, try to re-use
741 an existing entry in that table to avoid useless generation of RTL.
742
743 This code is disabled for now until we can fix the various backends
744 which depend on having non-shared hard registers in some cases. Long
745 term we want to re-enable this code as it can significantly cut down
746 on the amount of useless RTL that gets generated.
747
748 We'll also need to fix some code that runs after reload that wants to
749 set ORIGINAL_REGNO. */
750
751 if (cfun
752 && cfun->emit
753 && regno_reg_rtx
754 && regno < FIRST_PSEUDO_REGISTER
755 && reg_raw_mode[regno] == mode)
756 return regno_reg_rtx[regno];
757 #endif
758
759 return gen_raw_REG (mode, regno);
760 }
761
762 rtx
763 gen_rtx_MEM (machine_mode mode, rtx addr)
764 {
765 rtx rt = gen_rtx_raw_MEM (mode, addr);
766
767 /* This field is not cleared by the mere allocation of the rtx, so
768 we clear it here. */
769 MEM_ATTRS (rt) = 0;
770
771 return rt;
772 }
773
774 /* Generate a memory referring to non-trapping constant memory. */
775
776 rtx
777 gen_const_mem (machine_mode mode, rtx addr)
778 {
779 rtx mem = gen_rtx_MEM (mode, addr);
780 MEM_READONLY_P (mem) = 1;
781 MEM_NOTRAP_P (mem) = 1;
782 return mem;
783 }
784
785 /* Generate a MEM referring to fixed portions of the frame, e.g., register
786 save areas. */
787
788 rtx
789 gen_frame_mem (machine_mode mode, rtx addr)
790 {
791 rtx mem = gen_rtx_MEM (mode, addr);
792 MEM_NOTRAP_P (mem) = 1;
793 set_mem_alias_set (mem, get_frame_alias_set ());
794 return mem;
795 }
796
797 /* Generate a MEM referring to a temporary use of the stack, not part
798 of the fixed stack frame. For example, something which is pushed
799 by a target splitter. */
800 rtx
801 gen_tmp_stack_mem (machine_mode mode, rtx addr)
802 {
803 rtx mem = gen_rtx_MEM (mode, addr);
804 MEM_NOTRAP_P (mem) = 1;
805 if (!cfun->calls_alloca)
806 set_mem_alias_set (mem, get_frame_alias_set ());
807 return mem;
808 }
809
810 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
811 this construct would be valid, and false otherwise. */
812
813 bool
814 validate_subreg (machine_mode omode, machine_mode imode,
815 const_rtx reg, unsigned int offset)
816 {
817 unsigned int isize = GET_MODE_SIZE (imode);
818 unsigned int osize = GET_MODE_SIZE (omode);
819
820 /* All subregs must be aligned. */
821 if (offset % osize != 0)
822 return false;
823
824 /* The subreg offset cannot be outside the inner object. */
825 if (offset >= isize)
826 return false;
827
828 /* ??? This should not be here. Temporarily continue to allow word_mode
829 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
830 Generally, backends are doing something sketchy but it'll take time to
831 fix them all. */
832 if (omode == word_mode)
833 ;
834 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
835 is the culprit here, and not the backends. */
836 else if (osize >= UNITS_PER_WORD && isize >= osize)
837 ;
838 /* Allow component subregs of complex and vector. Though given the below
839 extraction rules, it's not always clear what that means. */
840 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
841 && GET_MODE_INNER (imode) == omode)
842 ;
843 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
844 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
845 represent this. It's questionable if this ought to be represented at
846 all -- why can't this all be hidden in post-reload splitters that make
847 arbitrarily mode changes to the registers themselves. */
848 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
849 ;
850 /* Subregs involving floating point modes are not allowed to
851 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
852 (subreg:SI (reg:DF) 0) isn't. */
853 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
854 {
855 if (! (isize == osize
856 /* LRA can use subreg to store a floating point value in
857 an integer mode. Although the floating point and the
858 integer modes need the same number of hard registers,
859 the size of floating point mode can be less than the
860 integer mode. LRA also uses subregs for a register
861 should be used in different mode in on insn. */
862 || lra_in_progress))
863 return false;
864 }
865
866 /* Paradoxical subregs must have offset zero. */
867 if (osize > isize)
868 return offset == 0;
869
870 /* This is a normal subreg. Verify that the offset is representable. */
871
872 /* For hard registers, we already have most of these rules collected in
873 subreg_offset_representable_p. */
874 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
875 {
876 unsigned int regno = REGNO (reg);
877
878 #ifdef CANNOT_CHANGE_MODE_CLASS
879 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
880 && GET_MODE_INNER (imode) == omode)
881 ;
882 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
883 return false;
884 #endif
885
886 return subreg_offset_representable_p (regno, imode, offset, omode);
887 }
888
889 /* For pseudo registers, we want most of the same checks. Namely:
890 If the register no larger than a word, the subreg must be lowpart.
891 If the register is larger than a word, the subreg must be the lowpart
892 of a subword. A subreg does *not* perform arbitrary bit extraction.
893 Given that we've already checked mode/offset alignment, we only have
894 to check subword subregs here. */
895 if (osize < UNITS_PER_WORD
896 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
897 {
898 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
899 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
900 if (offset % UNITS_PER_WORD != low_off)
901 return false;
902 }
903 return true;
904 }
905
906 rtx
907 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
908 {
909 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
910 return gen_rtx_raw_SUBREG (mode, reg, offset);
911 }
912
913 /* Generate a SUBREG representing the least-significant part of REG if MODE
914 is smaller than mode of REG, otherwise paradoxical SUBREG. */
915
916 rtx
917 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
918 {
919 machine_mode inmode;
920
921 inmode = GET_MODE (reg);
922 if (inmode == VOIDmode)
923 inmode = mode;
924 return gen_rtx_SUBREG (mode, reg,
925 subreg_lowpart_offset (mode, inmode));
926 }
927
928 rtx
929 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
930 enum var_init_status status)
931 {
932 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
933 PAT_VAR_LOCATION_STATUS (x) = status;
934 return x;
935 }
936 \f
937
938 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
939
940 rtvec
941 gen_rtvec (int n, ...)
942 {
943 int i;
944 rtvec rt_val;
945 va_list p;
946
947 va_start (p, n);
948
949 /* Don't allocate an empty rtvec... */
950 if (n == 0)
951 {
952 va_end (p);
953 return NULL_RTVEC;
954 }
955
956 rt_val = rtvec_alloc (n);
957
958 for (i = 0; i < n; i++)
959 rt_val->elem[i] = va_arg (p, rtx);
960
961 va_end (p);
962 return rt_val;
963 }
964
965 rtvec
966 gen_rtvec_v (int n, rtx *argp)
967 {
968 int i;
969 rtvec rt_val;
970
971 /* Don't allocate an empty rtvec... */
972 if (n == 0)
973 return NULL_RTVEC;
974
975 rt_val = rtvec_alloc (n);
976
977 for (i = 0; i < n; i++)
978 rt_val->elem[i] = *argp++;
979
980 return rt_val;
981 }
982
983 rtvec
984 gen_rtvec_v (int n, rtx_insn **argp)
985 {
986 int i;
987 rtvec rt_val;
988
989 /* Don't allocate an empty rtvec... */
990 if (n == 0)
991 return NULL_RTVEC;
992
993 rt_val = rtvec_alloc (n);
994
995 for (i = 0; i < n; i++)
996 rt_val->elem[i] = *argp++;
997
998 return rt_val;
999 }
1000
1001 \f
1002 /* Return the number of bytes between the start of an OUTER_MODE
1003 in-memory value and the start of an INNER_MODE in-memory value,
1004 given that the former is a lowpart of the latter. It may be a
1005 paradoxical lowpart, in which case the offset will be negative
1006 on big-endian targets. */
1007
1008 int
1009 byte_lowpart_offset (machine_mode outer_mode,
1010 machine_mode inner_mode)
1011 {
1012 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1013 return subreg_lowpart_offset (outer_mode, inner_mode);
1014 else
1015 return -subreg_lowpart_offset (inner_mode, outer_mode);
1016 }
1017 \f
1018 /* Generate a REG rtx for a new pseudo register of mode MODE.
1019 This pseudo is assigned the next sequential register number. */
1020
1021 rtx
1022 gen_reg_rtx (machine_mode mode)
1023 {
1024 rtx val;
1025 unsigned int align = GET_MODE_ALIGNMENT (mode);
1026
1027 gcc_assert (can_create_pseudo_p ());
1028
1029 /* If a virtual register with bigger mode alignment is generated,
1030 increase stack alignment estimation because it might be spilled
1031 to stack later. */
1032 if (SUPPORTS_STACK_ALIGNMENT
1033 && crtl->stack_alignment_estimated < align
1034 && !crtl->stack_realign_processed)
1035 {
1036 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1037 if (crtl->stack_alignment_estimated < min_align)
1038 crtl->stack_alignment_estimated = min_align;
1039 }
1040
1041 if (generating_concat_p
1042 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1043 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1044 {
1045 /* For complex modes, don't make a single pseudo.
1046 Instead, make a CONCAT of two pseudos.
1047 This allows noncontiguous allocation of the real and imaginary parts,
1048 which makes much better code. Besides, allocating DCmode
1049 pseudos overstrains reload on some machines like the 386. */
1050 rtx realpart, imagpart;
1051 machine_mode partmode = GET_MODE_INNER (mode);
1052
1053 realpart = gen_reg_rtx (partmode);
1054 imagpart = gen_reg_rtx (partmode);
1055 return gen_rtx_CONCAT (mode, realpart, imagpart);
1056 }
1057
1058 /* Do not call gen_reg_rtx with uninitialized crtl. */
1059 gcc_assert (crtl->emit.regno_pointer_align_length);
1060
1061 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1062 enough to have an element for this pseudo reg number. */
1063
1064 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1065 {
1066 int old_size = crtl->emit.regno_pointer_align_length;
1067 char *tmp;
1068 rtx *new1;
1069
1070 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1071 memset (tmp + old_size, 0, old_size);
1072 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1073
1074 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1075 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1076 regno_reg_rtx = new1;
1077
1078 crtl->emit.regno_pointer_align_length = old_size * 2;
1079 }
1080
1081 val = gen_raw_REG (mode, reg_rtx_no);
1082 regno_reg_rtx[reg_rtx_no++] = val;
1083 return val;
1084 }
1085
1086 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1087
1088 bool
1089 reg_is_parm_p (rtx reg)
1090 {
1091 tree decl;
1092
1093 gcc_assert (REG_P (reg));
1094 decl = REG_EXPR (reg);
1095 return (decl && TREE_CODE (decl) == PARM_DECL);
1096 }
1097
1098 /* Update NEW with the same attributes as REG, but with OFFSET added
1099 to the REG_OFFSET. */
1100
1101 static void
1102 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1103 {
1104 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1105 REG_OFFSET (reg) + offset);
1106 }
1107
1108 /* Generate a register with same attributes as REG, but with OFFSET
1109 added to the REG_OFFSET. */
1110
1111 rtx
1112 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1113 int offset)
1114 {
1115 rtx new_rtx = gen_rtx_REG (mode, regno);
1116
1117 update_reg_offset (new_rtx, reg, offset);
1118 return new_rtx;
1119 }
1120
1121 /* Generate a new pseudo-register with the same attributes as REG, but
1122 with OFFSET added to the REG_OFFSET. */
1123
1124 rtx
1125 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1126 {
1127 rtx new_rtx = gen_reg_rtx (mode);
1128
1129 update_reg_offset (new_rtx, reg, offset);
1130 return new_rtx;
1131 }
1132
1133 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1134 new register is a (possibly paradoxical) lowpart of the old one. */
1135
1136 void
1137 adjust_reg_mode (rtx reg, machine_mode mode)
1138 {
1139 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1140 PUT_MODE (reg, mode);
1141 }
1142
1143 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1144 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1145
1146 void
1147 set_reg_attrs_from_value (rtx reg, rtx x)
1148 {
1149 int offset;
1150 bool can_be_reg_pointer = true;
1151
1152 /* Don't call mark_reg_pointer for incompatible pointer sign
1153 extension. */
1154 while (GET_CODE (x) == SIGN_EXTEND
1155 || GET_CODE (x) == ZERO_EXTEND
1156 || GET_CODE (x) == TRUNCATE
1157 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1158 {
1159 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1160 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1161 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1162 can_be_reg_pointer = false;
1163 #endif
1164 x = XEXP (x, 0);
1165 }
1166
1167 /* Hard registers can be reused for multiple purposes within the same
1168 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1169 on them is wrong. */
1170 if (HARD_REGISTER_P (reg))
1171 return;
1172
1173 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1174 if (MEM_P (x))
1175 {
1176 if (MEM_OFFSET_KNOWN_P (x))
1177 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1178 MEM_OFFSET (x) + offset);
1179 if (can_be_reg_pointer && MEM_POINTER (x))
1180 mark_reg_pointer (reg, 0);
1181 }
1182 else if (REG_P (x))
1183 {
1184 if (REG_ATTRS (x))
1185 update_reg_offset (reg, x, offset);
1186 if (can_be_reg_pointer && REG_POINTER (x))
1187 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1188 }
1189 }
1190
1191 /* Generate a REG rtx for a new pseudo register, copying the mode
1192 and attributes from X. */
1193
1194 rtx
1195 gen_reg_rtx_and_attrs (rtx x)
1196 {
1197 rtx reg = gen_reg_rtx (GET_MODE (x));
1198 set_reg_attrs_from_value (reg, x);
1199 return reg;
1200 }
1201
1202 /* Set the register attributes for registers contained in PARM_RTX.
1203 Use needed values from memory attributes of MEM. */
1204
1205 void
1206 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1207 {
1208 if (REG_P (parm_rtx))
1209 set_reg_attrs_from_value (parm_rtx, mem);
1210 else if (GET_CODE (parm_rtx) == PARALLEL)
1211 {
1212 /* Check for a NULL entry in the first slot, used to indicate that the
1213 parameter goes both on the stack and in registers. */
1214 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1215 for (; i < XVECLEN (parm_rtx, 0); i++)
1216 {
1217 rtx x = XVECEXP (parm_rtx, 0, i);
1218 if (REG_P (XEXP (x, 0)))
1219 REG_ATTRS (XEXP (x, 0))
1220 = get_reg_attrs (MEM_EXPR (mem),
1221 INTVAL (XEXP (x, 1)));
1222 }
1223 }
1224 }
1225
1226 /* Set the REG_ATTRS for registers in value X, given that X represents
1227 decl T. */
1228
1229 void
1230 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1231 {
1232 if (GET_CODE (x) == SUBREG)
1233 {
1234 gcc_assert (subreg_lowpart_p (x));
1235 x = SUBREG_REG (x);
1236 }
1237 if (REG_P (x))
1238 REG_ATTRS (x)
1239 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1240 DECL_MODE (t)));
1241 if (GET_CODE (x) == CONCAT)
1242 {
1243 if (REG_P (XEXP (x, 0)))
1244 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1245 if (REG_P (XEXP (x, 1)))
1246 REG_ATTRS (XEXP (x, 1))
1247 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1248 }
1249 if (GET_CODE (x) == PARALLEL)
1250 {
1251 int i, start;
1252
1253 /* Check for a NULL entry, used to indicate that the parameter goes
1254 both on the stack and in registers. */
1255 if (XEXP (XVECEXP (x, 0, 0), 0))
1256 start = 0;
1257 else
1258 start = 1;
1259
1260 for (i = start; i < XVECLEN (x, 0); i++)
1261 {
1262 rtx y = XVECEXP (x, 0, i);
1263 if (REG_P (XEXP (y, 0)))
1264 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1265 }
1266 }
1267 }
1268
1269 /* Assign the RTX X to declaration T. */
1270
1271 void
1272 set_decl_rtl (tree t, rtx x)
1273 {
1274 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1275 if (x)
1276 set_reg_attrs_for_decl_rtl (t, x);
1277 }
1278
1279 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1280 if the ABI requires the parameter to be passed by reference. */
1281
1282 void
1283 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1284 {
1285 DECL_INCOMING_RTL (t) = x;
1286 if (x && !by_reference_p)
1287 set_reg_attrs_for_decl_rtl (t, x);
1288 }
1289
1290 /* Identify REG (which may be a CONCAT) as a user register. */
1291
1292 void
1293 mark_user_reg (rtx reg)
1294 {
1295 if (GET_CODE (reg) == CONCAT)
1296 {
1297 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1298 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1299 }
1300 else
1301 {
1302 gcc_assert (REG_P (reg));
1303 REG_USERVAR_P (reg) = 1;
1304 }
1305 }
1306
1307 /* Identify REG as a probable pointer register and show its alignment
1308 as ALIGN, if nonzero. */
1309
1310 void
1311 mark_reg_pointer (rtx reg, int align)
1312 {
1313 if (! REG_POINTER (reg))
1314 {
1315 REG_POINTER (reg) = 1;
1316
1317 if (align)
1318 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1319 }
1320 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1321 /* We can no-longer be sure just how aligned this pointer is. */
1322 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1323 }
1324
1325 /* Return 1 plus largest pseudo reg number used in the current function. */
1326
1327 int
1328 max_reg_num (void)
1329 {
1330 return reg_rtx_no;
1331 }
1332
1333 /* Return 1 + the largest label number used so far in the current function. */
1334
1335 int
1336 max_label_num (void)
1337 {
1338 return label_num;
1339 }
1340
1341 /* Return first label number used in this function (if any were used). */
1342
1343 int
1344 get_first_label_num (void)
1345 {
1346 return first_label_num;
1347 }
1348
1349 /* If the rtx for label was created during the expansion of a nested
1350 function, then first_label_num won't include this label number.
1351 Fix this now so that array indices work later. */
1352
1353 void
1354 maybe_set_first_label_num (rtx x)
1355 {
1356 if (CODE_LABEL_NUMBER (x) < first_label_num)
1357 first_label_num = CODE_LABEL_NUMBER (x);
1358 }
1359 \f
1360 /* Return a value representing some low-order bits of X, where the number
1361 of low-order bits is given by MODE. Note that no conversion is done
1362 between floating-point and fixed-point values, rather, the bit
1363 representation is returned.
1364
1365 This function handles the cases in common between gen_lowpart, below,
1366 and two variants in cse.c and combine.c. These are the cases that can
1367 be safely handled at all points in the compilation.
1368
1369 If this is not a case we can handle, return 0. */
1370
1371 rtx
1372 gen_lowpart_common (machine_mode mode, rtx x)
1373 {
1374 int msize = GET_MODE_SIZE (mode);
1375 int xsize;
1376 int offset = 0;
1377 machine_mode innermode;
1378
1379 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1380 so we have to make one up. Yuk. */
1381 innermode = GET_MODE (x);
1382 if (CONST_INT_P (x)
1383 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1384 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1385 else if (innermode == VOIDmode)
1386 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1387
1388 xsize = GET_MODE_SIZE (innermode);
1389
1390 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1391
1392 if (innermode == mode)
1393 return x;
1394
1395 /* MODE must occupy no more words than the mode of X. */
1396 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1397 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1398 return 0;
1399
1400 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1401 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1402 return 0;
1403
1404 offset = subreg_lowpart_offset (mode, innermode);
1405
1406 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1407 && (GET_MODE_CLASS (mode) == MODE_INT
1408 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1409 {
1410 /* If we are getting the low-order part of something that has been
1411 sign- or zero-extended, we can either just use the object being
1412 extended or make a narrower extension. If we want an even smaller
1413 piece than the size of the object being extended, call ourselves
1414 recursively.
1415
1416 This case is used mostly by combine and cse. */
1417
1418 if (GET_MODE (XEXP (x, 0)) == mode)
1419 return XEXP (x, 0);
1420 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1421 return gen_lowpart_common (mode, XEXP (x, 0));
1422 else if (msize < xsize)
1423 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1424 }
1425 else if (GET_CODE (x) == SUBREG || REG_P (x)
1426 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1427 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1428 return simplify_gen_subreg (mode, x, innermode, offset);
1429
1430 /* Otherwise, we can't do this. */
1431 return 0;
1432 }
1433 \f
1434 rtx
1435 gen_highpart (machine_mode mode, rtx x)
1436 {
1437 unsigned int msize = GET_MODE_SIZE (mode);
1438 rtx result;
1439
1440 /* This case loses if X is a subreg. To catch bugs early,
1441 complain if an invalid MODE is used even in other cases. */
1442 gcc_assert (msize <= UNITS_PER_WORD
1443 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1444
1445 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1446 subreg_highpart_offset (mode, GET_MODE (x)));
1447 gcc_assert (result);
1448
1449 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1450 the target if we have a MEM. gen_highpart must return a valid operand,
1451 emitting code if necessary to do so. */
1452 if (MEM_P (result))
1453 {
1454 result = validize_mem (result);
1455 gcc_assert (result);
1456 }
1457
1458 return result;
1459 }
1460
1461 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1462 be VOIDmode constant. */
1463 rtx
1464 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1465 {
1466 if (GET_MODE (exp) != VOIDmode)
1467 {
1468 gcc_assert (GET_MODE (exp) == innermode);
1469 return gen_highpart (outermode, exp);
1470 }
1471 return simplify_gen_subreg (outermode, exp, innermode,
1472 subreg_highpart_offset (outermode, innermode));
1473 }
1474
1475 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1476
1477 unsigned int
1478 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1479 {
1480 unsigned int offset = 0;
1481 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1482
1483 if (difference > 0)
1484 {
1485 if (WORDS_BIG_ENDIAN)
1486 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1487 if (BYTES_BIG_ENDIAN)
1488 offset += difference % UNITS_PER_WORD;
1489 }
1490
1491 return offset;
1492 }
1493
1494 /* Return offset in bytes to get OUTERMODE high part
1495 of the value in mode INNERMODE stored in memory in target format. */
1496 unsigned int
1497 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1498 {
1499 unsigned int offset = 0;
1500 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1501
1502 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1503
1504 if (difference > 0)
1505 {
1506 if (! WORDS_BIG_ENDIAN)
1507 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1508 if (! BYTES_BIG_ENDIAN)
1509 offset += difference % UNITS_PER_WORD;
1510 }
1511
1512 return offset;
1513 }
1514
1515 /* Return 1 iff X, assumed to be a SUBREG,
1516 refers to the least significant part of its containing reg.
1517 If X is not a SUBREG, always return 1 (it is its own low part!). */
1518
1519 int
1520 subreg_lowpart_p (const_rtx x)
1521 {
1522 if (GET_CODE (x) != SUBREG)
1523 return 1;
1524 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1525 return 0;
1526
1527 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1528 == SUBREG_BYTE (x));
1529 }
1530
1531 /* Return true if X is a paradoxical subreg, false otherwise. */
1532 bool
1533 paradoxical_subreg_p (const_rtx x)
1534 {
1535 if (GET_CODE (x) != SUBREG)
1536 return false;
1537 return (GET_MODE_PRECISION (GET_MODE (x))
1538 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1539 }
1540 \f
1541 /* Return subword OFFSET of operand OP.
1542 The word number, OFFSET, is interpreted as the word number starting
1543 at the low-order address. OFFSET 0 is the low-order word if not
1544 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1545
1546 If we cannot extract the required word, we return zero. Otherwise,
1547 an rtx corresponding to the requested word will be returned.
1548
1549 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1550 reload has completed, a valid address will always be returned. After
1551 reload, if a valid address cannot be returned, we return zero.
1552
1553 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1554 it is the responsibility of the caller.
1555
1556 MODE is the mode of OP in case it is a CONST_INT.
1557
1558 ??? This is still rather broken for some cases. The problem for the
1559 moment is that all callers of this thing provide no 'goal mode' to
1560 tell us to work with. This exists because all callers were written
1561 in a word based SUBREG world.
1562 Now use of this function can be deprecated by simplify_subreg in most
1563 cases.
1564 */
1565
1566 rtx
1567 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1568 {
1569 if (mode == VOIDmode)
1570 mode = GET_MODE (op);
1571
1572 gcc_assert (mode != VOIDmode);
1573
1574 /* If OP is narrower than a word, fail. */
1575 if (mode != BLKmode
1576 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1577 return 0;
1578
1579 /* If we want a word outside OP, return zero. */
1580 if (mode != BLKmode
1581 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1582 return const0_rtx;
1583
1584 /* Form a new MEM at the requested address. */
1585 if (MEM_P (op))
1586 {
1587 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1588
1589 if (! validate_address)
1590 return new_rtx;
1591
1592 else if (reload_completed)
1593 {
1594 if (! strict_memory_address_addr_space_p (word_mode,
1595 XEXP (new_rtx, 0),
1596 MEM_ADDR_SPACE (op)))
1597 return 0;
1598 }
1599 else
1600 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1601 }
1602
1603 /* Rest can be handled by simplify_subreg. */
1604 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1605 }
1606
1607 /* Similar to `operand_subword', but never return 0. If we can't
1608 extract the required subword, put OP into a register and try again.
1609 The second attempt must succeed. We always validate the address in
1610 this case.
1611
1612 MODE is the mode of OP, in case it is CONST_INT. */
1613
1614 rtx
1615 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1616 {
1617 rtx result = operand_subword (op, offset, 1, mode);
1618
1619 if (result)
1620 return result;
1621
1622 if (mode != BLKmode && mode != VOIDmode)
1623 {
1624 /* If this is a register which can not be accessed by words, copy it
1625 to a pseudo register. */
1626 if (REG_P (op))
1627 op = copy_to_reg (op);
1628 else
1629 op = force_reg (mode, op);
1630 }
1631
1632 result = operand_subword (op, offset, 1, mode);
1633 gcc_assert (result);
1634
1635 return result;
1636 }
1637 \f
1638 /* Returns 1 if both MEM_EXPR can be considered equal
1639 and 0 otherwise. */
1640
1641 int
1642 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1643 {
1644 if (expr1 == expr2)
1645 return 1;
1646
1647 if (! expr1 || ! expr2)
1648 return 0;
1649
1650 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1651 return 0;
1652
1653 return operand_equal_p (expr1, expr2, 0);
1654 }
1655
1656 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1657 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1658 -1 if not known. */
1659
1660 int
1661 get_mem_align_offset (rtx mem, unsigned int align)
1662 {
1663 tree expr;
1664 unsigned HOST_WIDE_INT offset;
1665
1666 /* This function can't use
1667 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1668 || (MAX (MEM_ALIGN (mem),
1669 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1670 < align))
1671 return -1;
1672 else
1673 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1674 for two reasons:
1675 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1676 for <variable>. get_inner_reference doesn't handle it and
1677 even if it did, the alignment in that case needs to be determined
1678 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1679 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1680 isn't sufficiently aligned, the object it is in might be. */
1681 gcc_assert (MEM_P (mem));
1682 expr = MEM_EXPR (mem);
1683 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1684 return -1;
1685
1686 offset = MEM_OFFSET (mem);
1687 if (DECL_P (expr))
1688 {
1689 if (DECL_ALIGN (expr) < align)
1690 return -1;
1691 }
1692 else if (INDIRECT_REF_P (expr))
1693 {
1694 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1695 return -1;
1696 }
1697 else if (TREE_CODE (expr) == COMPONENT_REF)
1698 {
1699 while (1)
1700 {
1701 tree inner = TREE_OPERAND (expr, 0);
1702 tree field = TREE_OPERAND (expr, 1);
1703 tree byte_offset = component_ref_field_offset (expr);
1704 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1705
1706 if (!byte_offset
1707 || !tree_fits_uhwi_p (byte_offset)
1708 || !tree_fits_uhwi_p (bit_offset))
1709 return -1;
1710
1711 offset += tree_to_uhwi (byte_offset);
1712 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1713
1714 if (inner == NULL_TREE)
1715 {
1716 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1717 < (unsigned int) align)
1718 return -1;
1719 break;
1720 }
1721 else if (DECL_P (inner))
1722 {
1723 if (DECL_ALIGN (inner) < align)
1724 return -1;
1725 break;
1726 }
1727 else if (TREE_CODE (inner) != COMPONENT_REF)
1728 return -1;
1729 expr = inner;
1730 }
1731 }
1732 else
1733 return -1;
1734
1735 return offset & ((align / BITS_PER_UNIT) - 1);
1736 }
1737
1738 /* Given REF (a MEM) and T, either the type of X or the expression
1739 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1740 if we are making a new object of this type. BITPOS is nonzero if
1741 there is an offset outstanding on T that will be applied later. */
1742
1743 void
1744 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1745 HOST_WIDE_INT bitpos)
1746 {
1747 HOST_WIDE_INT apply_bitpos = 0;
1748 tree type;
1749 struct mem_attrs attrs, *defattrs, *refattrs;
1750 addr_space_t as;
1751
1752 /* It can happen that type_for_mode was given a mode for which there
1753 is no language-level type. In which case it returns NULL, which
1754 we can see here. */
1755 if (t == NULL_TREE)
1756 return;
1757
1758 type = TYPE_P (t) ? t : TREE_TYPE (t);
1759 if (type == error_mark_node)
1760 return;
1761
1762 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1763 wrong answer, as it assumes that DECL_RTL already has the right alias
1764 info. Callers should not set DECL_RTL until after the call to
1765 set_mem_attributes. */
1766 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1767
1768 memset (&attrs, 0, sizeof (attrs));
1769
1770 /* Get the alias set from the expression or type (perhaps using a
1771 front-end routine) and use it. */
1772 attrs.alias = get_alias_set (t);
1773
1774 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1775 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1776
1777 /* Default values from pre-existing memory attributes if present. */
1778 refattrs = MEM_ATTRS (ref);
1779 if (refattrs)
1780 {
1781 /* ??? Can this ever happen? Calling this routine on a MEM that
1782 already carries memory attributes should probably be invalid. */
1783 attrs.expr = refattrs->expr;
1784 attrs.offset_known_p = refattrs->offset_known_p;
1785 attrs.offset = refattrs->offset;
1786 attrs.size_known_p = refattrs->size_known_p;
1787 attrs.size = refattrs->size;
1788 attrs.align = refattrs->align;
1789 }
1790
1791 /* Otherwise, default values from the mode of the MEM reference. */
1792 else
1793 {
1794 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1795 gcc_assert (!defattrs->expr);
1796 gcc_assert (!defattrs->offset_known_p);
1797
1798 /* Respect mode size. */
1799 attrs.size_known_p = defattrs->size_known_p;
1800 attrs.size = defattrs->size;
1801 /* ??? Is this really necessary? We probably should always get
1802 the size from the type below. */
1803
1804 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1805 if T is an object, always compute the object alignment below. */
1806 if (TYPE_P (t))
1807 attrs.align = defattrs->align;
1808 else
1809 attrs.align = BITS_PER_UNIT;
1810 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1811 e.g. if the type carries an alignment attribute. Should we be
1812 able to simply always use TYPE_ALIGN? */
1813 }
1814
1815 /* We can set the alignment from the type if we are making an object,
1816 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1817 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1818 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1819
1820 /* If the size is known, we can set that. */
1821 tree new_size = TYPE_SIZE_UNIT (type);
1822
1823 /* The address-space is that of the type. */
1824 as = TYPE_ADDR_SPACE (type);
1825
1826 /* If T is not a type, we may be able to deduce some more information about
1827 the expression. */
1828 if (! TYPE_P (t))
1829 {
1830 tree base;
1831
1832 if (TREE_THIS_VOLATILE (t))
1833 MEM_VOLATILE_P (ref) = 1;
1834
1835 /* Now remove any conversions: they don't change what the underlying
1836 object is. Likewise for SAVE_EXPR. */
1837 while (CONVERT_EXPR_P (t)
1838 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1839 || TREE_CODE (t) == SAVE_EXPR)
1840 t = TREE_OPERAND (t, 0);
1841
1842 /* Note whether this expression can trap. */
1843 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1844
1845 base = get_base_address (t);
1846 if (base)
1847 {
1848 if (DECL_P (base)
1849 && TREE_READONLY (base)
1850 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1851 && !TREE_THIS_VOLATILE (base))
1852 MEM_READONLY_P (ref) = 1;
1853
1854 /* Mark static const strings readonly as well. */
1855 if (TREE_CODE (base) == STRING_CST
1856 && TREE_READONLY (base)
1857 && TREE_STATIC (base))
1858 MEM_READONLY_P (ref) = 1;
1859
1860 /* Address-space information is on the base object. */
1861 if (TREE_CODE (base) == MEM_REF
1862 || TREE_CODE (base) == TARGET_MEM_REF)
1863 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1864 0))));
1865 else
1866 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1867 }
1868
1869 /* If this expression uses it's parent's alias set, mark it such
1870 that we won't change it. */
1871 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1872 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1873
1874 /* If this is a decl, set the attributes of the MEM from it. */
1875 if (DECL_P (t))
1876 {
1877 attrs.expr = t;
1878 attrs.offset_known_p = true;
1879 attrs.offset = 0;
1880 apply_bitpos = bitpos;
1881 new_size = DECL_SIZE_UNIT (t);
1882 }
1883
1884 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1885 else if (CONSTANT_CLASS_P (t))
1886 ;
1887
1888 /* If this is a field reference, record it. */
1889 else if (TREE_CODE (t) == COMPONENT_REF)
1890 {
1891 attrs.expr = t;
1892 attrs.offset_known_p = true;
1893 attrs.offset = 0;
1894 apply_bitpos = bitpos;
1895 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1896 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1897 }
1898
1899 /* If this is an array reference, look for an outer field reference. */
1900 else if (TREE_CODE (t) == ARRAY_REF)
1901 {
1902 tree off_tree = size_zero_node;
1903 /* We can't modify t, because we use it at the end of the
1904 function. */
1905 tree t2 = t;
1906
1907 do
1908 {
1909 tree index = TREE_OPERAND (t2, 1);
1910 tree low_bound = array_ref_low_bound (t2);
1911 tree unit_size = array_ref_element_size (t2);
1912
1913 /* We assume all arrays have sizes that are a multiple of a byte.
1914 First subtract the lower bound, if any, in the type of the
1915 index, then convert to sizetype and multiply by the size of
1916 the array element. */
1917 if (! integer_zerop (low_bound))
1918 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1919 index, low_bound);
1920
1921 off_tree = size_binop (PLUS_EXPR,
1922 size_binop (MULT_EXPR,
1923 fold_convert (sizetype,
1924 index),
1925 unit_size),
1926 off_tree);
1927 t2 = TREE_OPERAND (t2, 0);
1928 }
1929 while (TREE_CODE (t2) == ARRAY_REF);
1930
1931 if (DECL_P (t2)
1932 || TREE_CODE (t2) == COMPONENT_REF)
1933 {
1934 attrs.expr = t2;
1935 attrs.offset_known_p = false;
1936 if (tree_fits_uhwi_p (off_tree))
1937 {
1938 attrs.offset_known_p = true;
1939 attrs.offset = tree_to_uhwi (off_tree);
1940 apply_bitpos = bitpos;
1941 }
1942 }
1943 /* Else do not record a MEM_EXPR. */
1944 }
1945
1946 /* If this is an indirect reference, record it. */
1947 else if (TREE_CODE (t) == MEM_REF
1948 || TREE_CODE (t) == TARGET_MEM_REF)
1949 {
1950 attrs.expr = t;
1951 attrs.offset_known_p = true;
1952 attrs.offset = 0;
1953 apply_bitpos = bitpos;
1954 }
1955
1956 /* Compute the alignment. */
1957 unsigned int obj_align;
1958 unsigned HOST_WIDE_INT obj_bitpos;
1959 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1960 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1961 if (obj_bitpos != 0)
1962 obj_align = (obj_bitpos & -obj_bitpos);
1963 attrs.align = MAX (attrs.align, obj_align);
1964 }
1965
1966 if (tree_fits_uhwi_p (new_size))
1967 {
1968 attrs.size_known_p = true;
1969 attrs.size = tree_to_uhwi (new_size);
1970 }
1971
1972 /* If we modified OFFSET based on T, then subtract the outstanding
1973 bit position offset. Similarly, increase the size of the accessed
1974 object to contain the negative offset. */
1975 if (apply_bitpos)
1976 {
1977 gcc_assert (attrs.offset_known_p);
1978 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1979 if (attrs.size_known_p)
1980 attrs.size += apply_bitpos / BITS_PER_UNIT;
1981 }
1982
1983 /* Now set the attributes we computed above. */
1984 attrs.addrspace = as;
1985 set_mem_attrs (ref, &attrs);
1986 }
1987
1988 void
1989 set_mem_attributes (rtx ref, tree t, int objectp)
1990 {
1991 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1992 }
1993
1994 /* Set the alias set of MEM to SET. */
1995
1996 void
1997 set_mem_alias_set (rtx mem, alias_set_type set)
1998 {
1999 struct mem_attrs attrs;
2000
2001 /* If the new and old alias sets don't conflict, something is wrong. */
2002 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2003 attrs = *get_mem_attrs (mem);
2004 attrs.alias = set;
2005 set_mem_attrs (mem, &attrs);
2006 }
2007
2008 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2009
2010 void
2011 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2012 {
2013 struct mem_attrs attrs;
2014
2015 attrs = *get_mem_attrs (mem);
2016 attrs.addrspace = addrspace;
2017 set_mem_attrs (mem, &attrs);
2018 }
2019
2020 /* Set the alignment of MEM to ALIGN bits. */
2021
2022 void
2023 set_mem_align (rtx mem, unsigned int align)
2024 {
2025 struct mem_attrs attrs;
2026
2027 attrs = *get_mem_attrs (mem);
2028 attrs.align = align;
2029 set_mem_attrs (mem, &attrs);
2030 }
2031
2032 /* Set the expr for MEM to EXPR. */
2033
2034 void
2035 set_mem_expr (rtx mem, tree expr)
2036 {
2037 struct mem_attrs attrs;
2038
2039 attrs = *get_mem_attrs (mem);
2040 attrs.expr = expr;
2041 set_mem_attrs (mem, &attrs);
2042 }
2043
2044 /* Set the offset of MEM to OFFSET. */
2045
2046 void
2047 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2048 {
2049 struct mem_attrs attrs;
2050
2051 attrs = *get_mem_attrs (mem);
2052 attrs.offset_known_p = true;
2053 attrs.offset = offset;
2054 set_mem_attrs (mem, &attrs);
2055 }
2056
2057 /* Clear the offset of MEM. */
2058
2059 void
2060 clear_mem_offset (rtx mem)
2061 {
2062 struct mem_attrs attrs;
2063
2064 attrs = *get_mem_attrs (mem);
2065 attrs.offset_known_p = false;
2066 set_mem_attrs (mem, &attrs);
2067 }
2068
2069 /* Set the size of MEM to SIZE. */
2070
2071 void
2072 set_mem_size (rtx mem, HOST_WIDE_INT size)
2073 {
2074 struct mem_attrs attrs;
2075
2076 attrs = *get_mem_attrs (mem);
2077 attrs.size_known_p = true;
2078 attrs.size = size;
2079 set_mem_attrs (mem, &attrs);
2080 }
2081
2082 /* Clear the size of MEM. */
2083
2084 void
2085 clear_mem_size (rtx mem)
2086 {
2087 struct mem_attrs attrs;
2088
2089 attrs = *get_mem_attrs (mem);
2090 attrs.size_known_p = false;
2091 set_mem_attrs (mem, &attrs);
2092 }
2093 \f
2094 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2095 and its address changed to ADDR. (VOIDmode means don't change the mode.
2096 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2097 returned memory location is required to be valid. INPLACE is true if any
2098 changes can be made directly to MEMREF or false if MEMREF must be treated
2099 as immutable.
2100
2101 The memory attributes are not changed. */
2102
2103 static rtx
2104 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2105 bool inplace)
2106 {
2107 addr_space_t as;
2108 rtx new_rtx;
2109
2110 gcc_assert (MEM_P (memref));
2111 as = MEM_ADDR_SPACE (memref);
2112 if (mode == VOIDmode)
2113 mode = GET_MODE (memref);
2114 if (addr == 0)
2115 addr = XEXP (memref, 0);
2116 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2117 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2118 return memref;
2119
2120 /* Don't validate address for LRA. LRA can make the address valid
2121 by itself in most efficient way. */
2122 if (validate && !lra_in_progress)
2123 {
2124 if (reload_in_progress || reload_completed)
2125 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2126 else
2127 addr = memory_address_addr_space (mode, addr, as);
2128 }
2129
2130 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2131 return memref;
2132
2133 if (inplace)
2134 {
2135 XEXP (memref, 0) = addr;
2136 return memref;
2137 }
2138
2139 new_rtx = gen_rtx_MEM (mode, addr);
2140 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2141 return new_rtx;
2142 }
2143
2144 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2145 way we are changing MEMREF, so we only preserve the alias set. */
2146
2147 rtx
2148 change_address (rtx memref, machine_mode mode, rtx addr)
2149 {
2150 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2151 machine_mode mmode = GET_MODE (new_rtx);
2152 struct mem_attrs attrs, *defattrs;
2153
2154 attrs = *get_mem_attrs (memref);
2155 defattrs = mode_mem_attrs[(int) mmode];
2156 attrs.expr = NULL_TREE;
2157 attrs.offset_known_p = false;
2158 attrs.size_known_p = defattrs->size_known_p;
2159 attrs.size = defattrs->size;
2160 attrs.align = defattrs->align;
2161
2162 /* If there are no changes, just return the original memory reference. */
2163 if (new_rtx == memref)
2164 {
2165 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2166 return new_rtx;
2167
2168 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2169 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2170 }
2171
2172 set_mem_attrs (new_rtx, &attrs);
2173 return new_rtx;
2174 }
2175
2176 /* Return a memory reference like MEMREF, but with its mode changed
2177 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2178 nonzero, the memory address is forced to be valid.
2179 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2180 and the caller is responsible for adjusting MEMREF base register.
2181 If ADJUST_OBJECT is zero, the underlying object associated with the
2182 memory reference is left unchanged and the caller is responsible for
2183 dealing with it. Otherwise, if the new memory reference is outside
2184 the underlying object, even partially, then the object is dropped.
2185 SIZE, if nonzero, is the size of an access in cases where MODE
2186 has no inherent size. */
2187
2188 rtx
2189 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2190 int validate, int adjust_address, int adjust_object,
2191 HOST_WIDE_INT size)
2192 {
2193 rtx addr = XEXP (memref, 0);
2194 rtx new_rtx;
2195 machine_mode address_mode;
2196 int pbits;
2197 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2198 unsigned HOST_WIDE_INT max_align;
2199 #ifdef POINTERS_EXTEND_UNSIGNED
2200 machine_mode pointer_mode
2201 = targetm.addr_space.pointer_mode (attrs.addrspace);
2202 #endif
2203
2204 /* VOIDmode means no mode change for change_address_1. */
2205 if (mode == VOIDmode)
2206 mode = GET_MODE (memref);
2207
2208 /* Take the size of non-BLKmode accesses from the mode. */
2209 defattrs = mode_mem_attrs[(int) mode];
2210 if (defattrs->size_known_p)
2211 size = defattrs->size;
2212
2213 /* If there are no changes, just return the original memory reference. */
2214 if (mode == GET_MODE (memref) && !offset
2215 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2216 && (!validate || memory_address_addr_space_p (mode, addr,
2217 attrs.addrspace)))
2218 return memref;
2219
2220 /* ??? Prefer to create garbage instead of creating shared rtl.
2221 This may happen even if offset is nonzero -- consider
2222 (plus (plus reg reg) const_int) -- so do this always. */
2223 addr = copy_rtx (addr);
2224
2225 /* Convert a possibly large offset to a signed value within the
2226 range of the target address space. */
2227 address_mode = get_address_mode (memref);
2228 pbits = GET_MODE_BITSIZE (address_mode);
2229 if (HOST_BITS_PER_WIDE_INT > pbits)
2230 {
2231 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2232 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2233 >> shift);
2234 }
2235
2236 if (adjust_address)
2237 {
2238 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2239 object, we can merge it into the LO_SUM. */
2240 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2241 && offset >= 0
2242 && (unsigned HOST_WIDE_INT) offset
2243 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2244 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2245 plus_constant (address_mode,
2246 XEXP (addr, 1), offset));
2247 #ifdef POINTERS_EXTEND_UNSIGNED
2248 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2249 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2250 the fact that pointers are not allowed to overflow. */
2251 else if (POINTERS_EXTEND_UNSIGNED > 0
2252 && GET_CODE (addr) == ZERO_EXTEND
2253 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2254 && trunc_int_for_mode (offset, pointer_mode) == offset)
2255 addr = gen_rtx_ZERO_EXTEND (address_mode,
2256 plus_constant (pointer_mode,
2257 XEXP (addr, 0), offset));
2258 #endif
2259 else
2260 addr = plus_constant (address_mode, addr, offset);
2261 }
2262
2263 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2264
2265 /* If the address is a REG, change_address_1 rightfully returns memref,
2266 but this would destroy memref's MEM_ATTRS. */
2267 if (new_rtx == memref && offset != 0)
2268 new_rtx = copy_rtx (new_rtx);
2269
2270 /* Conservatively drop the object if we don't know where we start from. */
2271 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2272 {
2273 attrs.expr = NULL_TREE;
2274 attrs.alias = 0;
2275 }
2276
2277 /* Compute the new values of the memory attributes due to this adjustment.
2278 We add the offsets and update the alignment. */
2279 if (attrs.offset_known_p)
2280 {
2281 attrs.offset += offset;
2282
2283 /* Drop the object if the new left end is not within its bounds. */
2284 if (adjust_object && attrs.offset < 0)
2285 {
2286 attrs.expr = NULL_TREE;
2287 attrs.alias = 0;
2288 }
2289 }
2290
2291 /* Compute the new alignment by taking the MIN of the alignment and the
2292 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2293 if zero. */
2294 if (offset != 0)
2295 {
2296 max_align = (offset & -offset) * BITS_PER_UNIT;
2297 attrs.align = MIN (attrs.align, max_align);
2298 }
2299
2300 if (size)
2301 {
2302 /* Drop the object if the new right end is not within its bounds. */
2303 if (adjust_object && (offset + size) > attrs.size)
2304 {
2305 attrs.expr = NULL_TREE;
2306 attrs.alias = 0;
2307 }
2308 attrs.size_known_p = true;
2309 attrs.size = size;
2310 }
2311 else if (attrs.size_known_p)
2312 {
2313 gcc_assert (!adjust_object);
2314 attrs.size -= offset;
2315 /* ??? The store_by_pieces machinery generates negative sizes,
2316 so don't assert for that here. */
2317 }
2318
2319 set_mem_attrs (new_rtx, &attrs);
2320
2321 return new_rtx;
2322 }
2323
2324 /* Return a memory reference like MEMREF, but with its mode changed
2325 to MODE and its address changed to ADDR, which is assumed to be
2326 MEMREF offset by OFFSET bytes. If VALIDATE is
2327 nonzero, the memory address is forced to be valid. */
2328
2329 rtx
2330 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2331 HOST_WIDE_INT offset, int validate)
2332 {
2333 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2334 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2335 }
2336
2337 /* Return a memory reference like MEMREF, but whose address is changed by
2338 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2339 known to be in OFFSET (possibly 1). */
2340
2341 rtx
2342 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2343 {
2344 rtx new_rtx, addr = XEXP (memref, 0);
2345 machine_mode address_mode;
2346 struct mem_attrs attrs, *defattrs;
2347
2348 attrs = *get_mem_attrs (memref);
2349 address_mode = get_address_mode (memref);
2350 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2351
2352 /* At this point we don't know _why_ the address is invalid. It
2353 could have secondary memory references, multiplies or anything.
2354
2355 However, if we did go and rearrange things, we can wind up not
2356 being able to recognize the magic around pic_offset_table_rtx.
2357 This stuff is fragile, and is yet another example of why it is
2358 bad to expose PIC machinery too early. */
2359 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2360 attrs.addrspace)
2361 && GET_CODE (addr) == PLUS
2362 && XEXP (addr, 0) == pic_offset_table_rtx)
2363 {
2364 addr = force_reg (GET_MODE (addr), addr);
2365 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2366 }
2367
2368 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2369 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2370
2371 /* If there are no changes, just return the original memory reference. */
2372 if (new_rtx == memref)
2373 return new_rtx;
2374
2375 /* Update the alignment to reflect the offset. Reset the offset, which
2376 we don't know. */
2377 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2378 attrs.offset_known_p = false;
2379 attrs.size_known_p = defattrs->size_known_p;
2380 attrs.size = defattrs->size;
2381 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2382 set_mem_attrs (new_rtx, &attrs);
2383 return new_rtx;
2384 }
2385
2386 /* Return a memory reference like MEMREF, but with its address changed to
2387 ADDR. The caller is asserting that the actual piece of memory pointed
2388 to is the same, just the form of the address is being changed, such as
2389 by putting something into a register. INPLACE is true if any changes
2390 can be made directly to MEMREF or false if MEMREF must be treated as
2391 immutable. */
2392
2393 rtx
2394 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2395 {
2396 /* change_address_1 copies the memory attribute structure without change
2397 and that's exactly what we want here. */
2398 update_temp_slot_address (XEXP (memref, 0), addr);
2399 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2400 }
2401
2402 /* Likewise, but the reference is not required to be valid. */
2403
2404 rtx
2405 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2406 {
2407 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2408 }
2409
2410 /* Return a memory reference like MEMREF, but with its mode widened to
2411 MODE and offset by OFFSET. This would be used by targets that e.g.
2412 cannot issue QImode memory operations and have to use SImode memory
2413 operations plus masking logic. */
2414
2415 rtx
2416 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2417 {
2418 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2419 struct mem_attrs attrs;
2420 unsigned int size = GET_MODE_SIZE (mode);
2421
2422 /* If there are no changes, just return the original memory reference. */
2423 if (new_rtx == memref)
2424 return new_rtx;
2425
2426 attrs = *get_mem_attrs (new_rtx);
2427
2428 /* If we don't know what offset we were at within the expression, then
2429 we can't know if we've overstepped the bounds. */
2430 if (! attrs.offset_known_p)
2431 attrs.expr = NULL_TREE;
2432
2433 while (attrs.expr)
2434 {
2435 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2436 {
2437 tree field = TREE_OPERAND (attrs.expr, 1);
2438 tree offset = component_ref_field_offset (attrs.expr);
2439
2440 if (! DECL_SIZE_UNIT (field))
2441 {
2442 attrs.expr = NULL_TREE;
2443 break;
2444 }
2445
2446 /* Is the field at least as large as the access? If so, ok,
2447 otherwise strip back to the containing structure. */
2448 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2449 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2450 && attrs.offset >= 0)
2451 break;
2452
2453 if (! tree_fits_uhwi_p (offset))
2454 {
2455 attrs.expr = NULL_TREE;
2456 break;
2457 }
2458
2459 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2460 attrs.offset += tree_to_uhwi (offset);
2461 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2462 / BITS_PER_UNIT);
2463 }
2464 /* Similarly for the decl. */
2465 else if (DECL_P (attrs.expr)
2466 && DECL_SIZE_UNIT (attrs.expr)
2467 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2468 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2469 && (! attrs.offset_known_p || attrs.offset >= 0))
2470 break;
2471 else
2472 {
2473 /* The widened memory access overflows the expression, which means
2474 that it could alias another expression. Zap it. */
2475 attrs.expr = NULL_TREE;
2476 break;
2477 }
2478 }
2479
2480 if (! attrs.expr)
2481 attrs.offset_known_p = false;
2482
2483 /* The widened memory may alias other stuff, so zap the alias set. */
2484 /* ??? Maybe use get_alias_set on any remaining expression. */
2485 attrs.alias = 0;
2486 attrs.size_known_p = true;
2487 attrs.size = size;
2488 set_mem_attrs (new_rtx, &attrs);
2489 return new_rtx;
2490 }
2491 \f
2492 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2493 static GTY(()) tree spill_slot_decl;
2494
2495 tree
2496 get_spill_slot_decl (bool force_build_p)
2497 {
2498 tree d = spill_slot_decl;
2499 rtx rd;
2500 struct mem_attrs attrs;
2501
2502 if (d || !force_build_p)
2503 return d;
2504
2505 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2506 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2507 DECL_ARTIFICIAL (d) = 1;
2508 DECL_IGNORED_P (d) = 1;
2509 TREE_USED (d) = 1;
2510 spill_slot_decl = d;
2511
2512 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2513 MEM_NOTRAP_P (rd) = 1;
2514 attrs = *mode_mem_attrs[(int) BLKmode];
2515 attrs.alias = new_alias_set ();
2516 attrs.expr = d;
2517 set_mem_attrs (rd, &attrs);
2518 SET_DECL_RTL (d, rd);
2519
2520 return d;
2521 }
2522
2523 /* Given MEM, a result from assign_stack_local, fill in the memory
2524 attributes as appropriate for a register allocator spill slot.
2525 These slots are not aliasable by other memory. We arrange for
2526 them all to use a single MEM_EXPR, so that the aliasing code can
2527 work properly in the case of shared spill slots. */
2528
2529 void
2530 set_mem_attrs_for_spill (rtx mem)
2531 {
2532 struct mem_attrs attrs;
2533 rtx addr;
2534
2535 attrs = *get_mem_attrs (mem);
2536 attrs.expr = get_spill_slot_decl (true);
2537 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2538 attrs.addrspace = ADDR_SPACE_GENERIC;
2539
2540 /* We expect the incoming memory to be of the form:
2541 (mem:MODE (plus (reg sfp) (const_int offset)))
2542 with perhaps the plus missing for offset = 0. */
2543 addr = XEXP (mem, 0);
2544 attrs.offset_known_p = true;
2545 attrs.offset = 0;
2546 if (GET_CODE (addr) == PLUS
2547 && CONST_INT_P (XEXP (addr, 1)))
2548 attrs.offset = INTVAL (XEXP (addr, 1));
2549
2550 set_mem_attrs (mem, &attrs);
2551 MEM_NOTRAP_P (mem) = 1;
2552 }
2553 \f
2554 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2555
2556 rtx_code_label *
2557 gen_label_rtx (void)
2558 {
2559 return as_a <rtx_code_label *> (
2560 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2561 NULL, label_num++, NULL));
2562 }
2563 \f
2564 /* For procedure integration. */
2565
2566 /* Install new pointers to the first and last insns in the chain.
2567 Also, set cur_insn_uid to one higher than the last in use.
2568 Used for an inline-procedure after copying the insn chain. */
2569
2570 void
2571 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2572 {
2573 rtx_insn *insn;
2574
2575 set_first_insn (first);
2576 set_last_insn (last);
2577 cur_insn_uid = 0;
2578
2579 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2580 {
2581 int debug_count = 0;
2582
2583 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2584 cur_debug_insn_uid = 0;
2585
2586 for (insn = first; insn; insn = NEXT_INSN (insn))
2587 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2588 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2589 else
2590 {
2591 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2592 if (DEBUG_INSN_P (insn))
2593 debug_count++;
2594 }
2595
2596 if (debug_count)
2597 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2598 else
2599 cur_debug_insn_uid++;
2600 }
2601 else
2602 for (insn = first; insn; insn = NEXT_INSN (insn))
2603 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2604
2605 cur_insn_uid++;
2606 }
2607 \f
2608 /* Go through all the RTL insn bodies and copy any invalid shared
2609 structure. This routine should only be called once. */
2610
2611 static void
2612 unshare_all_rtl_1 (rtx_insn *insn)
2613 {
2614 /* Unshare just about everything else. */
2615 unshare_all_rtl_in_chain (insn);
2616
2617 /* Make sure the addresses of stack slots found outside the insn chain
2618 (such as, in DECL_RTL of a variable) are not shared
2619 with the insn chain.
2620
2621 This special care is necessary when the stack slot MEM does not
2622 actually appear in the insn chain. If it does appear, its address
2623 is unshared from all else at that point. */
2624 stack_slot_list = safe_as_a <rtx_expr_list *> (
2625 copy_rtx_if_shared (stack_slot_list));
2626 }
2627
2628 /* Go through all the RTL insn bodies and copy any invalid shared
2629 structure, again. This is a fairly expensive thing to do so it
2630 should be done sparingly. */
2631
2632 void
2633 unshare_all_rtl_again (rtx_insn *insn)
2634 {
2635 rtx_insn *p;
2636 tree decl;
2637
2638 for (p = insn; p; p = NEXT_INSN (p))
2639 if (INSN_P (p))
2640 {
2641 reset_used_flags (PATTERN (p));
2642 reset_used_flags (REG_NOTES (p));
2643 if (CALL_P (p))
2644 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2645 }
2646
2647 /* Make sure that virtual stack slots are not shared. */
2648 set_used_decls (DECL_INITIAL (cfun->decl));
2649
2650 /* Make sure that virtual parameters are not shared. */
2651 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2652 set_used_flags (DECL_RTL (decl));
2653
2654 reset_used_flags (stack_slot_list);
2655
2656 unshare_all_rtl_1 (insn);
2657 }
2658
2659 unsigned int
2660 unshare_all_rtl (void)
2661 {
2662 unshare_all_rtl_1 (get_insns ());
2663 return 0;
2664 }
2665
2666
2667 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2668 Recursively does the same for subexpressions. */
2669
2670 static void
2671 verify_rtx_sharing (rtx orig, rtx insn)
2672 {
2673 rtx x = orig;
2674 int i;
2675 enum rtx_code code;
2676 const char *format_ptr;
2677
2678 if (x == 0)
2679 return;
2680
2681 code = GET_CODE (x);
2682
2683 /* These types may be freely shared. */
2684
2685 switch (code)
2686 {
2687 case REG:
2688 case DEBUG_EXPR:
2689 case VALUE:
2690 CASE_CONST_ANY:
2691 case SYMBOL_REF:
2692 case LABEL_REF:
2693 case CODE_LABEL:
2694 case PC:
2695 case CC0:
2696 case RETURN:
2697 case SIMPLE_RETURN:
2698 case SCRATCH:
2699 /* SCRATCH must be shared because they represent distinct values. */
2700 return;
2701 case CLOBBER:
2702 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2703 clobbers or clobbers of hard registers that originated as pseudos.
2704 This is needed to allow safe register renaming. */
2705 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2707 return;
2708 break;
2709
2710 case CONST:
2711 if (shared_const_p (orig))
2712 return;
2713 break;
2714
2715 case MEM:
2716 /* A MEM is allowed to be shared if its address is constant. */
2717 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2718 || reload_completed || reload_in_progress)
2719 return;
2720
2721 break;
2722
2723 default:
2724 break;
2725 }
2726
2727 /* This rtx may not be shared. If it has already been seen,
2728 replace it with a copy of itself. */
2729 #ifdef ENABLE_CHECKING
2730 if (RTX_FLAG (x, used))
2731 {
2732 error ("invalid rtl sharing found in the insn");
2733 debug_rtx (insn);
2734 error ("shared rtx");
2735 debug_rtx (x);
2736 internal_error ("internal consistency failure");
2737 }
2738 #endif
2739 gcc_assert (!RTX_FLAG (x, used));
2740
2741 RTX_FLAG (x, used) = 1;
2742
2743 /* Now scan the subexpressions recursively. */
2744
2745 format_ptr = GET_RTX_FORMAT (code);
2746
2747 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2748 {
2749 switch (*format_ptr++)
2750 {
2751 case 'e':
2752 verify_rtx_sharing (XEXP (x, i), insn);
2753 break;
2754
2755 case 'E':
2756 if (XVEC (x, i) != NULL)
2757 {
2758 int j;
2759 int len = XVECLEN (x, i);
2760
2761 for (j = 0; j < len; j++)
2762 {
2763 /* We allow sharing of ASM_OPERANDS inside single
2764 instruction. */
2765 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2766 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2767 == ASM_OPERANDS))
2768 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2769 else
2770 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2771 }
2772 }
2773 break;
2774 }
2775 }
2776 return;
2777 }
2778
2779 /* Reset used-flags for INSN. */
2780
2781 static void
2782 reset_insn_used_flags (rtx insn)
2783 {
2784 gcc_assert (INSN_P (insn));
2785 reset_used_flags (PATTERN (insn));
2786 reset_used_flags (REG_NOTES (insn));
2787 if (CALL_P (insn))
2788 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2789 }
2790
2791 /* Go through all the RTL insn bodies and clear all the USED bits. */
2792
2793 static void
2794 reset_all_used_flags (void)
2795 {
2796 rtx_insn *p;
2797
2798 for (p = get_insns (); p; p = NEXT_INSN (p))
2799 if (INSN_P (p))
2800 {
2801 rtx pat = PATTERN (p);
2802 if (GET_CODE (pat) != SEQUENCE)
2803 reset_insn_used_flags (p);
2804 else
2805 {
2806 gcc_assert (REG_NOTES (p) == NULL);
2807 for (int i = 0; i < XVECLEN (pat, 0); i++)
2808 {
2809 rtx insn = XVECEXP (pat, 0, i);
2810 if (INSN_P (insn))
2811 reset_insn_used_flags (insn);
2812 }
2813 }
2814 }
2815 }
2816
2817 /* Verify sharing in INSN. */
2818
2819 static void
2820 verify_insn_sharing (rtx insn)
2821 {
2822 gcc_assert (INSN_P (insn));
2823 reset_used_flags (PATTERN (insn));
2824 reset_used_flags (REG_NOTES (insn));
2825 if (CALL_P (insn))
2826 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2827 }
2828
2829 /* Go through all the RTL insn bodies and check that there is no unexpected
2830 sharing in between the subexpressions. */
2831
2832 DEBUG_FUNCTION void
2833 verify_rtl_sharing (void)
2834 {
2835 rtx_insn *p;
2836
2837 timevar_push (TV_VERIFY_RTL_SHARING);
2838
2839 reset_all_used_flags ();
2840
2841 for (p = get_insns (); p; p = NEXT_INSN (p))
2842 if (INSN_P (p))
2843 {
2844 rtx pat = PATTERN (p);
2845 if (GET_CODE (pat) != SEQUENCE)
2846 verify_insn_sharing (p);
2847 else
2848 for (int i = 0; i < XVECLEN (pat, 0); i++)
2849 {
2850 rtx insn = XVECEXP (pat, 0, i);
2851 if (INSN_P (insn))
2852 verify_insn_sharing (insn);
2853 }
2854 }
2855
2856 reset_all_used_flags ();
2857
2858 timevar_pop (TV_VERIFY_RTL_SHARING);
2859 }
2860
2861 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2862 Assumes the mark bits are cleared at entry. */
2863
2864 void
2865 unshare_all_rtl_in_chain (rtx_insn *insn)
2866 {
2867 for (; insn; insn = NEXT_INSN (insn))
2868 if (INSN_P (insn))
2869 {
2870 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2871 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2872 if (CALL_P (insn))
2873 CALL_INSN_FUNCTION_USAGE (insn)
2874 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2875 }
2876 }
2877
2878 /* Go through all virtual stack slots of a function and mark them as
2879 shared. We never replace the DECL_RTLs themselves with a copy,
2880 but expressions mentioned into a DECL_RTL cannot be shared with
2881 expressions in the instruction stream.
2882
2883 Note that reload may convert pseudo registers into memories in-place.
2884 Pseudo registers are always shared, but MEMs never are. Thus if we
2885 reset the used flags on MEMs in the instruction stream, we must set
2886 them again on MEMs that appear in DECL_RTLs. */
2887
2888 static void
2889 set_used_decls (tree blk)
2890 {
2891 tree t;
2892
2893 /* Mark decls. */
2894 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2895 if (DECL_RTL_SET_P (t))
2896 set_used_flags (DECL_RTL (t));
2897
2898 /* Now process sub-blocks. */
2899 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2900 set_used_decls (t);
2901 }
2902
2903 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2904 Recursively does the same for subexpressions. Uses
2905 copy_rtx_if_shared_1 to reduce stack space. */
2906
2907 rtx
2908 copy_rtx_if_shared (rtx orig)
2909 {
2910 copy_rtx_if_shared_1 (&orig);
2911 return orig;
2912 }
2913
2914 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2915 use. Recursively does the same for subexpressions. */
2916
2917 static void
2918 copy_rtx_if_shared_1 (rtx *orig1)
2919 {
2920 rtx x;
2921 int i;
2922 enum rtx_code code;
2923 rtx *last_ptr;
2924 const char *format_ptr;
2925 int copied = 0;
2926 int length;
2927
2928 /* Repeat is used to turn tail-recursion into iteration. */
2929 repeat:
2930 x = *orig1;
2931
2932 if (x == 0)
2933 return;
2934
2935 code = GET_CODE (x);
2936
2937 /* These types may be freely shared. */
2938
2939 switch (code)
2940 {
2941 case REG:
2942 case DEBUG_EXPR:
2943 case VALUE:
2944 CASE_CONST_ANY:
2945 case SYMBOL_REF:
2946 case LABEL_REF:
2947 case CODE_LABEL:
2948 case PC:
2949 case CC0:
2950 case RETURN:
2951 case SIMPLE_RETURN:
2952 case SCRATCH:
2953 /* SCRATCH must be shared because they represent distinct values. */
2954 return;
2955 case CLOBBER:
2956 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2957 clobbers or clobbers of hard registers that originated as pseudos.
2958 This is needed to allow safe register renaming. */
2959 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2960 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2961 return;
2962 break;
2963
2964 case CONST:
2965 if (shared_const_p (x))
2966 return;
2967 break;
2968
2969 case DEBUG_INSN:
2970 case INSN:
2971 case JUMP_INSN:
2972 case CALL_INSN:
2973 case NOTE:
2974 case BARRIER:
2975 /* The chain of insns is not being copied. */
2976 return;
2977
2978 default:
2979 break;
2980 }
2981
2982 /* This rtx may not be shared. If it has already been seen,
2983 replace it with a copy of itself. */
2984
2985 if (RTX_FLAG (x, used))
2986 {
2987 x = shallow_copy_rtx (x);
2988 copied = 1;
2989 }
2990 RTX_FLAG (x, used) = 1;
2991
2992 /* Now scan the subexpressions recursively.
2993 We can store any replaced subexpressions directly into X
2994 since we know X is not shared! Any vectors in X
2995 must be copied if X was copied. */
2996
2997 format_ptr = GET_RTX_FORMAT (code);
2998 length = GET_RTX_LENGTH (code);
2999 last_ptr = NULL;
3000
3001 for (i = 0; i < length; i++)
3002 {
3003 switch (*format_ptr++)
3004 {
3005 case 'e':
3006 if (last_ptr)
3007 copy_rtx_if_shared_1 (last_ptr);
3008 last_ptr = &XEXP (x, i);
3009 break;
3010
3011 case 'E':
3012 if (XVEC (x, i) != NULL)
3013 {
3014 int j;
3015 int len = XVECLEN (x, i);
3016
3017 /* Copy the vector iff I copied the rtx and the length
3018 is nonzero. */
3019 if (copied && len > 0)
3020 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3021
3022 /* Call recursively on all inside the vector. */
3023 for (j = 0; j < len; j++)
3024 {
3025 if (last_ptr)
3026 copy_rtx_if_shared_1 (last_ptr);
3027 last_ptr = &XVECEXP (x, i, j);
3028 }
3029 }
3030 break;
3031 }
3032 }
3033 *orig1 = x;
3034 if (last_ptr)
3035 {
3036 orig1 = last_ptr;
3037 goto repeat;
3038 }
3039 return;
3040 }
3041
3042 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3043
3044 static void
3045 mark_used_flags (rtx x, int flag)
3046 {
3047 int i, j;
3048 enum rtx_code code;
3049 const char *format_ptr;
3050 int length;
3051
3052 /* Repeat is used to turn tail-recursion into iteration. */
3053 repeat:
3054 if (x == 0)
3055 return;
3056
3057 code = GET_CODE (x);
3058
3059 /* These types may be freely shared so we needn't do any resetting
3060 for them. */
3061
3062 switch (code)
3063 {
3064 case REG:
3065 case DEBUG_EXPR:
3066 case VALUE:
3067 CASE_CONST_ANY:
3068 case SYMBOL_REF:
3069 case CODE_LABEL:
3070 case PC:
3071 case CC0:
3072 case RETURN:
3073 case SIMPLE_RETURN:
3074 return;
3075
3076 case DEBUG_INSN:
3077 case INSN:
3078 case JUMP_INSN:
3079 case CALL_INSN:
3080 case NOTE:
3081 case LABEL_REF:
3082 case BARRIER:
3083 /* The chain of insns is not being copied. */
3084 return;
3085
3086 default:
3087 break;
3088 }
3089
3090 RTX_FLAG (x, used) = flag;
3091
3092 format_ptr = GET_RTX_FORMAT (code);
3093 length = GET_RTX_LENGTH (code);
3094
3095 for (i = 0; i < length; i++)
3096 {
3097 switch (*format_ptr++)
3098 {
3099 case 'e':
3100 if (i == length-1)
3101 {
3102 x = XEXP (x, i);
3103 goto repeat;
3104 }
3105 mark_used_flags (XEXP (x, i), flag);
3106 break;
3107
3108 case 'E':
3109 for (j = 0; j < XVECLEN (x, i); j++)
3110 mark_used_flags (XVECEXP (x, i, j), flag);
3111 break;
3112 }
3113 }
3114 }
3115
3116 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3117 to look for shared sub-parts. */
3118
3119 void
3120 reset_used_flags (rtx x)
3121 {
3122 mark_used_flags (x, 0);
3123 }
3124
3125 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3126 to look for shared sub-parts. */
3127
3128 void
3129 set_used_flags (rtx x)
3130 {
3131 mark_used_flags (x, 1);
3132 }
3133 \f
3134 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3135 Return X or the rtx for the pseudo reg the value of X was copied into.
3136 OTHER must be valid as a SET_DEST. */
3137
3138 rtx
3139 make_safe_from (rtx x, rtx other)
3140 {
3141 while (1)
3142 switch (GET_CODE (other))
3143 {
3144 case SUBREG:
3145 other = SUBREG_REG (other);
3146 break;
3147 case STRICT_LOW_PART:
3148 case SIGN_EXTEND:
3149 case ZERO_EXTEND:
3150 other = XEXP (other, 0);
3151 break;
3152 default:
3153 goto done;
3154 }
3155 done:
3156 if ((MEM_P (other)
3157 && ! CONSTANT_P (x)
3158 && !REG_P (x)
3159 && GET_CODE (x) != SUBREG)
3160 || (REG_P (other)
3161 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3162 || reg_mentioned_p (other, x))))
3163 {
3164 rtx temp = gen_reg_rtx (GET_MODE (x));
3165 emit_move_insn (temp, x);
3166 return temp;
3167 }
3168 return x;
3169 }
3170 \f
3171 /* Emission of insns (adding them to the doubly-linked list). */
3172
3173 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3174
3175 rtx_insn *
3176 get_last_insn_anywhere (void)
3177 {
3178 struct sequence_stack *seq;
3179 for (seq = get_current_sequence (); seq; seq = seq->next)
3180 if (seq->last != 0)
3181 return seq->last;
3182 return 0;
3183 }
3184
3185 /* Return the first nonnote insn emitted in current sequence or current
3186 function. This routine looks inside SEQUENCEs. */
3187
3188 rtx_insn *
3189 get_first_nonnote_insn (void)
3190 {
3191 rtx_insn *insn = get_insns ();
3192
3193 if (insn)
3194 {
3195 if (NOTE_P (insn))
3196 for (insn = next_insn (insn);
3197 insn && NOTE_P (insn);
3198 insn = next_insn (insn))
3199 continue;
3200 else
3201 {
3202 if (NONJUMP_INSN_P (insn)
3203 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3204 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3205 }
3206 }
3207
3208 return insn;
3209 }
3210
3211 /* Return the last nonnote insn emitted in current sequence or current
3212 function. This routine looks inside SEQUENCEs. */
3213
3214 rtx_insn *
3215 get_last_nonnote_insn (void)
3216 {
3217 rtx_insn *insn = get_last_insn ();
3218
3219 if (insn)
3220 {
3221 if (NOTE_P (insn))
3222 for (insn = previous_insn (insn);
3223 insn && NOTE_P (insn);
3224 insn = previous_insn (insn))
3225 continue;
3226 else
3227 {
3228 if (NONJUMP_INSN_P (insn))
3229 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3230 insn = seq->insn (seq->len () - 1);
3231 }
3232 }
3233
3234 return insn;
3235 }
3236
3237 /* Return the number of actual (non-debug) insns emitted in this
3238 function. */
3239
3240 int
3241 get_max_insn_count (void)
3242 {
3243 int n = cur_insn_uid;
3244
3245 /* The table size must be stable across -g, to avoid codegen
3246 differences due to debug insns, and not be affected by
3247 -fmin-insn-uid, to avoid excessive table size and to simplify
3248 debugging of -fcompare-debug failures. */
3249 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3250 n -= cur_debug_insn_uid;
3251 else
3252 n -= MIN_NONDEBUG_INSN_UID;
3253
3254 return n;
3255 }
3256
3257 \f
3258 /* Return the next insn. If it is a SEQUENCE, return the first insn
3259 of the sequence. */
3260
3261 rtx_insn *
3262 next_insn (rtx_insn *insn)
3263 {
3264 if (insn)
3265 {
3266 insn = NEXT_INSN (insn);
3267 if (insn && NONJUMP_INSN_P (insn)
3268 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3269 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3270 }
3271
3272 return insn;
3273 }
3274
3275 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3276 of the sequence. */
3277
3278 rtx_insn *
3279 previous_insn (rtx_insn *insn)
3280 {
3281 if (insn)
3282 {
3283 insn = PREV_INSN (insn);
3284 if (insn && NONJUMP_INSN_P (insn))
3285 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3286 insn = seq->insn (seq->len () - 1);
3287 }
3288
3289 return insn;
3290 }
3291
3292 /* Return the next insn after INSN that is not a NOTE. This routine does not
3293 look inside SEQUENCEs. */
3294
3295 rtx_insn *
3296 next_nonnote_insn (rtx uncast_insn)
3297 {
3298 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3299 while (insn)
3300 {
3301 insn = NEXT_INSN (insn);
3302 if (insn == 0 || !NOTE_P (insn))
3303 break;
3304 }
3305
3306 return insn;
3307 }
3308
3309 /* Return the next insn after INSN that is not a NOTE, but stop the
3310 search before we enter another basic block. This routine does not
3311 look inside SEQUENCEs. */
3312
3313 rtx_insn *
3314 next_nonnote_insn_bb (rtx_insn *insn)
3315 {
3316 while (insn)
3317 {
3318 insn = NEXT_INSN (insn);
3319 if (insn == 0 || !NOTE_P (insn))
3320 break;
3321 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3322 return NULL;
3323 }
3324
3325 return insn;
3326 }
3327
3328 /* Return the previous insn before INSN that is not a NOTE. This routine does
3329 not look inside SEQUENCEs. */
3330
3331 rtx_insn *
3332 prev_nonnote_insn (rtx uncast_insn)
3333 {
3334 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3335
3336 while (insn)
3337 {
3338 insn = PREV_INSN (insn);
3339 if (insn == 0 || !NOTE_P (insn))
3340 break;
3341 }
3342
3343 return insn;
3344 }
3345
3346 /* Return the previous insn before INSN that is not a NOTE, but stop
3347 the search before we enter another basic block. This routine does
3348 not look inside SEQUENCEs. */
3349
3350 rtx_insn *
3351 prev_nonnote_insn_bb (rtx uncast_insn)
3352 {
3353 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3354
3355 while (insn)
3356 {
3357 insn = PREV_INSN (insn);
3358 if (insn == 0 || !NOTE_P (insn))
3359 break;
3360 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3361 return NULL;
3362 }
3363
3364 return insn;
3365 }
3366
3367 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3368 routine does not look inside SEQUENCEs. */
3369
3370 rtx_insn *
3371 next_nondebug_insn (rtx uncast_insn)
3372 {
3373 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3374
3375 while (insn)
3376 {
3377 insn = NEXT_INSN (insn);
3378 if (insn == 0 || !DEBUG_INSN_P (insn))
3379 break;
3380 }
3381
3382 return insn;
3383 }
3384
3385 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3386 This routine does not look inside SEQUENCEs. */
3387
3388 rtx_insn *
3389 prev_nondebug_insn (rtx uncast_insn)
3390 {
3391 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3392
3393 while (insn)
3394 {
3395 insn = PREV_INSN (insn);
3396 if (insn == 0 || !DEBUG_INSN_P (insn))
3397 break;
3398 }
3399
3400 return insn;
3401 }
3402
3403 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3404 This routine does not look inside SEQUENCEs. */
3405
3406 rtx_insn *
3407 next_nonnote_nondebug_insn (rtx uncast_insn)
3408 {
3409 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3410
3411 while (insn)
3412 {
3413 insn = NEXT_INSN (insn);
3414 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3415 break;
3416 }
3417
3418 return insn;
3419 }
3420
3421 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3422 This routine does not look inside SEQUENCEs. */
3423
3424 rtx_insn *
3425 prev_nonnote_nondebug_insn (rtx uncast_insn)
3426 {
3427 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3428
3429 while (insn)
3430 {
3431 insn = PREV_INSN (insn);
3432 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3433 break;
3434 }
3435
3436 return insn;
3437 }
3438
3439 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3440 or 0, if there is none. This routine does not look inside
3441 SEQUENCEs. */
3442
3443 rtx_insn *
3444 next_real_insn (rtx uncast_insn)
3445 {
3446 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3447
3448 while (insn)
3449 {
3450 insn = NEXT_INSN (insn);
3451 if (insn == 0 || INSN_P (insn))
3452 break;
3453 }
3454
3455 return insn;
3456 }
3457
3458 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3459 or 0, if there is none. This routine does not look inside
3460 SEQUENCEs. */
3461
3462 rtx_insn *
3463 prev_real_insn (rtx uncast_insn)
3464 {
3465 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3466
3467 while (insn)
3468 {
3469 insn = PREV_INSN (insn);
3470 if (insn == 0 || INSN_P (insn))
3471 break;
3472 }
3473
3474 return insn;
3475 }
3476
3477 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3478 This routine does not look inside SEQUENCEs. */
3479
3480 rtx_call_insn *
3481 last_call_insn (void)
3482 {
3483 rtx_insn *insn;
3484
3485 for (insn = get_last_insn ();
3486 insn && !CALL_P (insn);
3487 insn = PREV_INSN (insn))
3488 ;
3489
3490 return safe_as_a <rtx_call_insn *> (insn);
3491 }
3492
3493 /* Find the next insn after INSN that really does something. This routine
3494 does not look inside SEQUENCEs. After reload this also skips over
3495 standalone USE and CLOBBER insn. */
3496
3497 int
3498 active_insn_p (const_rtx insn)
3499 {
3500 return (CALL_P (insn) || JUMP_P (insn)
3501 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3502 || (NONJUMP_INSN_P (insn)
3503 && (! reload_completed
3504 || (GET_CODE (PATTERN (insn)) != USE
3505 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3506 }
3507
3508 rtx_insn *
3509 next_active_insn (rtx uncast_insn)
3510 {
3511 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3512
3513 while (insn)
3514 {
3515 insn = NEXT_INSN (insn);
3516 if (insn == 0 || active_insn_p (insn))
3517 break;
3518 }
3519
3520 return insn;
3521 }
3522
3523 /* Find the last insn before INSN that really does something. This routine
3524 does not look inside SEQUENCEs. After reload this also skips over
3525 standalone USE and CLOBBER insn. */
3526
3527 rtx_insn *
3528 prev_active_insn (rtx uncast_insn)
3529 {
3530 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3531
3532 while (insn)
3533 {
3534 insn = PREV_INSN (insn);
3535 if (insn == 0 || active_insn_p (insn))
3536 break;
3537 }
3538
3539 return insn;
3540 }
3541 \f
3542 /* Return the next insn that uses CC0 after INSN, which is assumed to
3543 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3544 applied to the result of this function should yield INSN).
3545
3546 Normally, this is simply the next insn. However, if a REG_CC_USER note
3547 is present, it contains the insn that uses CC0.
3548
3549 Return 0 if we can't find the insn. */
3550
3551 rtx_insn *
3552 next_cc0_user (rtx uncast_insn)
3553 {
3554 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3555
3556 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3557
3558 if (note)
3559 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3560
3561 insn = next_nonnote_insn (insn);
3562 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3563 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3564
3565 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3566 return insn;
3567
3568 return 0;
3569 }
3570
3571 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3572 note, it is the previous insn. */
3573
3574 rtx_insn *
3575 prev_cc0_setter (rtx_insn *insn)
3576 {
3577 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3578
3579 if (note)
3580 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3581
3582 insn = prev_nonnote_insn (insn);
3583 gcc_assert (sets_cc0_p (PATTERN (insn)));
3584
3585 return insn;
3586 }
3587
3588 #ifdef AUTO_INC_DEC
3589 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3590
3591 static int
3592 find_auto_inc (const_rtx x, const_rtx reg)
3593 {
3594 subrtx_iterator::array_type array;
3595 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3596 {
3597 const_rtx x = *iter;
3598 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3599 && rtx_equal_p (reg, XEXP (x, 0)))
3600 return true;
3601 }
3602 return false;
3603 }
3604 #endif
3605
3606 /* Increment the label uses for all labels present in rtx. */
3607
3608 static void
3609 mark_label_nuses (rtx x)
3610 {
3611 enum rtx_code code;
3612 int i, j;
3613 const char *fmt;
3614
3615 code = GET_CODE (x);
3616 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3617 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3618
3619 fmt = GET_RTX_FORMAT (code);
3620 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3621 {
3622 if (fmt[i] == 'e')
3623 mark_label_nuses (XEXP (x, i));
3624 else if (fmt[i] == 'E')
3625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3626 mark_label_nuses (XVECEXP (x, i, j));
3627 }
3628 }
3629
3630 \f
3631 /* Try splitting insns that can be split for better scheduling.
3632 PAT is the pattern which might split.
3633 TRIAL is the insn providing PAT.
3634 LAST is nonzero if we should return the last insn of the sequence produced.
3635
3636 If this routine succeeds in splitting, it returns the first or last
3637 replacement insn depending on the value of LAST. Otherwise, it
3638 returns TRIAL. If the insn to be returned can be split, it will be. */
3639
3640 rtx_insn *
3641 try_split (rtx pat, rtx uncast_trial, int last)
3642 {
3643 rtx_insn *trial = as_a <rtx_insn *> (uncast_trial);
3644 rtx_insn *before = PREV_INSN (trial);
3645 rtx_insn *after = NEXT_INSN (trial);
3646 rtx note;
3647 rtx_insn *seq, *tem;
3648 int probability;
3649 rtx_insn *insn_last, *insn;
3650 int njumps = 0;
3651 rtx call_insn = NULL_RTX;
3652
3653 /* We're not good at redistributing frame information. */
3654 if (RTX_FRAME_RELATED_P (trial))
3655 return trial;
3656
3657 if (any_condjump_p (trial)
3658 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3659 split_branch_probability = XINT (note, 0);
3660 probability = split_branch_probability;
3661
3662 seq = safe_as_a <rtx_insn *> (split_insns (pat, trial));
3663
3664 split_branch_probability = -1;
3665
3666 if (!seq)
3667 return trial;
3668
3669 /* Avoid infinite loop if any insn of the result matches
3670 the original pattern. */
3671 insn_last = seq;
3672 while (1)
3673 {
3674 if (INSN_P (insn_last)
3675 && rtx_equal_p (PATTERN (insn_last), pat))
3676 return trial;
3677 if (!NEXT_INSN (insn_last))
3678 break;
3679 insn_last = NEXT_INSN (insn_last);
3680 }
3681
3682 /* We will be adding the new sequence to the function. The splitters
3683 may have introduced invalid RTL sharing, so unshare the sequence now. */
3684 unshare_all_rtl_in_chain (seq);
3685
3686 /* Mark labels and copy flags. */
3687 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3688 {
3689 if (JUMP_P (insn))
3690 {
3691 if (JUMP_P (trial))
3692 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3693 mark_jump_label (PATTERN (insn), insn, 0);
3694 njumps++;
3695 if (probability != -1
3696 && any_condjump_p (insn)
3697 && !find_reg_note (insn, REG_BR_PROB, 0))
3698 {
3699 /* We can preserve the REG_BR_PROB notes only if exactly
3700 one jump is created, otherwise the machine description
3701 is responsible for this step using
3702 split_branch_probability variable. */
3703 gcc_assert (njumps == 1);
3704 add_int_reg_note (insn, REG_BR_PROB, probability);
3705 }
3706 }
3707 }
3708
3709 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3710 in SEQ and copy any additional information across. */
3711 if (CALL_P (trial))
3712 {
3713 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3714 if (CALL_P (insn))
3715 {
3716 rtx_insn *next;
3717 rtx *p;
3718
3719 gcc_assert (call_insn == NULL_RTX);
3720 call_insn = insn;
3721
3722 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3723 target may have explicitly specified. */
3724 p = &CALL_INSN_FUNCTION_USAGE (insn);
3725 while (*p)
3726 p = &XEXP (*p, 1);
3727 *p = CALL_INSN_FUNCTION_USAGE (trial);
3728
3729 /* If the old call was a sibling call, the new one must
3730 be too. */
3731 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3732
3733 /* If the new call is the last instruction in the sequence,
3734 it will effectively replace the old call in-situ. Otherwise
3735 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3736 so that it comes immediately after the new call. */
3737 if (NEXT_INSN (insn))
3738 for (next = NEXT_INSN (trial);
3739 next && NOTE_P (next);
3740 next = NEXT_INSN (next))
3741 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3742 {
3743 remove_insn (next);
3744 add_insn_after (next, insn, NULL);
3745 break;
3746 }
3747 }
3748 }
3749
3750 /* Copy notes, particularly those related to the CFG. */
3751 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3752 {
3753 switch (REG_NOTE_KIND (note))
3754 {
3755 case REG_EH_REGION:
3756 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3757 break;
3758
3759 case REG_NORETURN:
3760 case REG_SETJMP:
3761 case REG_TM:
3762 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3763 {
3764 if (CALL_P (insn))
3765 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3766 }
3767 break;
3768
3769 case REG_NON_LOCAL_GOTO:
3770 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3771 {
3772 if (JUMP_P (insn))
3773 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3774 }
3775 break;
3776
3777 #ifdef AUTO_INC_DEC
3778 case REG_INC:
3779 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3780 {
3781 rtx reg = XEXP (note, 0);
3782 if (!FIND_REG_INC_NOTE (insn, reg)
3783 && find_auto_inc (PATTERN (insn), reg))
3784 add_reg_note (insn, REG_INC, reg);
3785 }
3786 break;
3787 #endif
3788
3789 case REG_ARGS_SIZE:
3790 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3791 break;
3792
3793 case REG_CALL_DECL:
3794 gcc_assert (call_insn != NULL_RTX);
3795 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3796 break;
3797
3798 default:
3799 break;
3800 }
3801 }
3802
3803 /* If there are LABELS inside the split insns increment the
3804 usage count so we don't delete the label. */
3805 if (INSN_P (trial))
3806 {
3807 insn = insn_last;
3808 while (insn != NULL_RTX)
3809 {
3810 /* JUMP_P insns have already been "marked" above. */
3811 if (NONJUMP_INSN_P (insn))
3812 mark_label_nuses (PATTERN (insn));
3813
3814 insn = PREV_INSN (insn);
3815 }
3816 }
3817
3818 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3819
3820 delete_insn (trial);
3821
3822 /* Recursively call try_split for each new insn created; by the
3823 time control returns here that insn will be fully split, so
3824 set LAST and continue from the insn after the one returned.
3825 We can't use next_active_insn here since AFTER may be a note.
3826 Ignore deleted insns, which can be occur if not optimizing. */
3827 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3828 if (! tem->deleted () && INSN_P (tem))
3829 tem = try_split (PATTERN (tem), tem, 1);
3830
3831 /* Return either the first or the last insn, depending on which was
3832 requested. */
3833 return last
3834 ? (after ? PREV_INSN (after) : get_last_insn ())
3835 : NEXT_INSN (before);
3836 }
3837 \f
3838 /* Make and return an INSN rtx, initializing all its slots.
3839 Store PATTERN in the pattern slots. */
3840
3841 rtx_insn *
3842 make_insn_raw (rtx pattern)
3843 {
3844 rtx_insn *insn;
3845
3846 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3847
3848 INSN_UID (insn) = cur_insn_uid++;
3849 PATTERN (insn) = pattern;
3850 INSN_CODE (insn) = -1;
3851 REG_NOTES (insn) = NULL;
3852 INSN_LOCATION (insn) = curr_insn_location ();
3853 BLOCK_FOR_INSN (insn) = NULL;
3854
3855 #ifdef ENABLE_RTL_CHECKING
3856 if (insn
3857 && INSN_P (insn)
3858 && (returnjump_p (insn)
3859 || (GET_CODE (insn) == SET
3860 && SET_DEST (insn) == pc_rtx)))
3861 {
3862 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3863 debug_rtx (insn);
3864 }
3865 #endif
3866
3867 return insn;
3868 }
3869
3870 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3871
3872 static rtx_insn *
3873 make_debug_insn_raw (rtx pattern)
3874 {
3875 rtx_debug_insn *insn;
3876
3877 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3878 INSN_UID (insn) = cur_debug_insn_uid++;
3879 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3880 INSN_UID (insn) = cur_insn_uid++;
3881
3882 PATTERN (insn) = pattern;
3883 INSN_CODE (insn) = -1;
3884 REG_NOTES (insn) = NULL;
3885 INSN_LOCATION (insn) = curr_insn_location ();
3886 BLOCK_FOR_INSN (insn) = NULL;
3887
3888 return insn;
3889 }
3890
3891 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3892
3893 static rtx_insn *
3894 make_jump_insn_raw (rtx pattern)
3895 {
3896 rtx_jump_insn *insn;
3897
3898 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3899 INSN_UID (insn) = cur_insn_uid++;
3900
3901 PATTERN (insn) = pattern;
3902 INSN_CODE (insn) = -1;
3903 REG_NOTES (insn) = NULL;
3904 JUMP_LABEL (insn) = NULL;
3905 INSN_LOCATION (insn) = curr_insn_location ();
3906 BLOCK_FOR_INSN (insn) = NULL;
3907
3908 return insn;
3909 }
3910
3911 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3912
3913 static rtx_insn *
3914 make_call_insn_raw (rtx pattern)
3915 {
3916 rtx_call_insn *insn;
3917
3918 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3919 INSN_UID (insn) = cur_insn_uid++;
3920
3921 PATTERN (insn) = pattern;
3922 INSN_CODE (insn) = -1;
3923 REG_NOTES (insn) = NULL;
3924 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3925 INSN_LOCATION (insn) = curr_insn_location ();
3926 BLOCK_FOR_INSN (insn) = NULL;
3927
3928 return insn;
3929 }
3930
3931 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3932
3933 static rtx_note *
3934 make_note_raw (enum insn_note subtype)
3935 {
3936 /* Some notes are never created this way at all. These notes are
3937 only created by patching out insns. */
3938 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3939 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3940
3941 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3942 INSN_UID (note) = cur_insn_uid++;
3943 NOTE_KIND (note) = subtype;
3944 BLOCK_FOR_INSN (note) = NULL;
3945 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3946 return note;
3947 }
3948 \f
3949 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3950 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3951 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3952
3953 static inline void
3954 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3955 {
3956 SET_PREV_INSN (insn) = prev;
3957 SET_NEXT_INSN (insn) = next;
3958 if (prev != NULL)
3959 {
3960 SET_NEXT_INSN (prev) = insn;
3961 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3962 {
3963 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3964 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3965 }
3966 }
3967 if (next != NULL)
3968 {
3969 SET_PREV_INSN (next) = insn;
3970 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3971 {
3972 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3973 SET_PREV_INSN (sequence->insn (0)) = insn;
3974 }
3975 }
3976
3977 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3978 {
3979 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3980 SET_PREV_INSN (sequence->insn (0)) = prev;
3981 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3982 }
3983 }
3984
3985 /* Add INSN to the end of the doubly-linked list.
3986 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3987
3988 void
3989 add_insn (rtx_insn *insn)
3990 {
3991 rtx_insn *prev = get_last_insn ();
3992 link_insn_into_chain (insn, prev, NULL);
3993 if (NULL == get_insns ())
3994 set_first_insn (insn);
3995 set_last_insn (insn);
3996 }
3997
3998 /* Add INSN into the doubly-linked list after insn AFTER. */
3999
4000 static void
4001 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4002 {
4003 rtx_insn *next = NEXT_INSN (after);
4004
4005 gcc_assert (!optimize || !after->deleted ());
4006
4007 link_insn_into_chain (insn, after, next);
4008
4009 if (next == NULL)
4010 {
4011 struct sequence_stack *seq;
4012
4013 for (seq = get_current_sequence (); seq; seq = seq->next)
4014 if (after == seq->last)
4015 {
4016 seq->last = insn;
4017 break;
4018 }
4019 }
4020 }
4021
4022 /* Add INSN into the doubly-linked list before insn BEFORE. */
4023
4024 static void
4025 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4026 {
4027 rtx_insn *prev = PREV_INSN (before);
4028
4029 gcc_assert (!optimize || !before->deleted ());
4030
4031 link_insn_into_chain (insn, prev, before);
4032
4033 if (prev == NULL)
4034 {
4035 struct sequence_stack *seq;
4036
4037 for (seq = get_current_sequence (); seq; seq = seq->next)
4038 if (before == seq->first)
4039 {
4040 seq->first = insn;
4041 break;
4042 }
4043
4044 gcc_assert (seq);
4045 }
4046 }
4047
4048 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4049 If BB is NULL, an attempt is made to infer the bb from before.
4050
4051 This and the next function should be the only functions called
4052 to insert an insn once delay slots have been filled since only
4053 they know how to update a SEQUENCE. */
4054
4055 void
4056 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4057 {
4058 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4059 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4060 add_insn_after_nobb (insn, after);
4061 if (!BARRIER_P (after)
4062 && !BARRIER_P (insn)
4063 && (bb = BLOCK_FOR_INSN (after)))
4064 {
4065 set_block_for_insn (insn, bb);
4066 if (INSN_P (insn))
4067 df_insn_rescan (insn);
4068 /* Should not happen as first in the BB is always
4069 either NOTE or LABEL. */
4070 if (BB_END (bb) == after
4071 /* Avoid clobbering of structure when creating new BB. */
4072 && !BARRIER_P (insn)
4073 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4074 BB_END (bb) = insn;
4075 }
4076 }
4077
4078 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4079 If BB is NULL, an attempt is made to infer the bb from before.
4080
4081 This and the previous function should be the only functions called
4082 to insert an insn once delay slots have been filled since only
4083 they know how to update a SEQUENCE. */
4084
4085 void
4086 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4087 {
4088 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4089 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4090 add_insn_before_nobb (insn, before);
4091
4092 if (!bb
4093 && !BARRIER_P (before)
4094 && !BARRIER_P (insn))
4095 bb = BLOCK_FOR_INSN (before);
4096
4097 if (bb)
4098 {
4099 set_block_for_insn (insn, bb);
4100 if (INSN_P (insn))
4101 df_insn_rescan (insn);
4102 /* Should not happen as first in the BB is always either NOTE or
4103 LABEL. */
4104 gcc_assert (BB_HEAD (bb) != insn
4105 /* Avoid clobbering of structure when creating new BB. */
4106 || BARRIER_P (insn)
4107 || NOTE_INSN_BASIC_BLOCK_P (insn));
4108 }
4109 }
4110
4111 /* Replace insn with an deleted instruction note. */
4112
4113 void
4114 set_insn_deleted (rtx insn)
4115 {
4116 if (INSN_P (insn))
4117 df_insn_delete (as_a <rtx_insn *> (insn));
4118 PUT_CODE (insn, NOTE);
4119 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4120 }
4121
4122
4123 /* Unlink INSN from the insn chain.
4124
4125 This function knows how to handle sequences.
4126
4127 This function does not invalidate data flow information associated with
4128 INSN (i.e. does not call df_insn_delete). That makes this function
4129 usable for only disconnecting an insn from the chain, and re-emit it
4130 elsewhere later.
4131
4132 To later insert INSN elsewhere in the insn chain via add_insn and
4133 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4134 the caller. Nullifying them here breaks many insn chain walks.
4135
4136 To really delete an insn and related DF information, use delete_insn. */
4137
4138 void
4139 remove_insn (rtx uncast_insn)
4140 {
4141 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4142 rtx_insn *next = NEXT_INSN (insn);
4143 rtx_insn *prev = PREV_INSN (insn);
4144 basic_block bb;
4145
4146 if (prev)
4147 {
4148 SET_NEXT_INSN (prev) = next;
4149 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4150 {
4151 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4152 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4153 }
4154 }
4155 else
4156 {
4157 struct sequence_stack *seq;
4158
4159 for (seq = get_current_sequence (); seq; seq = seq->next)
4160 if (insn == seq->first)
4161 {
4162 seq->first = next;
4163 break;
4164 }
4165
4166 gcc_assert (seq);
4167 }
4168
4169 if (next)
4170 {
4171 SET_PREV_INSN (next) = prev;
4172 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4173 {
4174 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4175 SET_PREV_INSN (sequence->insn (0)) = prev;
4176 }
4177 }
4178 else
4179 {
4180 struct sequence_stack *seq;
4181
4182 for (seq = get_current_sequence (); seq; seq = seq->next)
4183 if (insn == seq->last)
4184 {
4185 seq->last = prev;
4186 break;
4187 }
4188
4189 gcc_assert (seq);
4190 }
4191
4192 /* Fix up basic block boundaries, if necessary. */
4193 if (!BARRIER_P (insn)
4194 && (bb = BLOCK_FOR_INSN (insn)))
4195 {
4196 if (BB_HEAD (bb) == insn)
4197 {
4198 /* Never ever delete the basic block note without deleting whole
4199 basic block. */
4200 gcc_assert (!NOTE_P (insn));
4201 BB_HEAD (bb) = next;
4202 }
4203 if (BB_END (bb) == insn)
4204 BB_END (bb) = prev;
4205 }
4206 }
4207
4208 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4209
4210 void
4211 add_function_usage_to (rtx call_insn, rtx call_fusage)
4212 {
4213 gcc_assert (call_insn && CALL_P (call_insn));
4214
4215 /* Put the register usage information on the CALL. If there is already
4216 some usage information, put ours at the end. */
4217 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4218 {
4219 rtx link;
4220
4221 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4222 link = XEXP (link, 1))
4223 ;
4224
4225 XEXP (link, 1) = call_fusage;
4226 }
4227 else
4228 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4229 }
4230
4231 /* Delete all insns made since FROM.
4232 FROM becomes the new last instruction. */
4233
4234 void
4235 delete_insns_since (rtx_insn *from)
4236 {
4237 if (from == 0)
4238 set_first_insn (0);
4239 else
4240 SET_NEXT_INSN (from) = 0;
4241 set_last_insn (from);
4242 }
4243
4244 /* This function is deprecated, please use sequences instead.
4245
4246 Move a consecutive bunch of insns to a different place in the chain.
4247 The insns to be moved are those between FROM and TO.
4248 They are moved to a new position after the insn AFTER.
4249 AFTER must not be FROM or TO or any insn in between.
4250
4251 This function does not know about SEQUENCEs and hence should not be
4252 called after delay-slot filling has been done. */
4253
4254 void
4255 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4256 {
4257 #ifdef ENABLE_CHECKING
4258 rtx_insn *x;
4259 for (x = from; x != to; x = NEXT_INSN (x))
4260 gcc_assert (after != x);
4261 gcc_assert (after != to);
4262 #endif
4263
4264 /* Splice this bunch out of where it is now. */
4265 if (PREV_INSN (from))
4266 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4267 if (NEXT_INSN (to))
4268 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4269 if (get_last_insn () == to)
4270 set_last_insn (PREV_INSN (from));
4271 if (get_insns () == from)
4272 set_first_insn (NEXT_INSN (to));
4273
4274 /* Make the new neighbors point to it and it to them. */
4275 if (NEXT_INSN (after))
4276 SET_PREV_INSN (NEXT_INSN (after)) = to;
4277
4278 SET_NEXT_INSN (to) = NEXT_INSN (after);
4279 SET_PREV_INSN (from) = after;
4280 SET_NEXT_INSN (after) = from;
4281 if (after == get_last_insn ())
4282 set_last_insn (to);
4283 }
4284
4285 /* Same as function above, but take care to update BB boundaries. */
4286 void
4287 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4288 {
4289 rtx_insn *prev = PREV_INSN (from);
4290 basic_block bb, bb2;
4291
4292 reorder_insns_nobb (from, to, after);
4293
4294 if (!BARRIER_P (after)
4295 && (bb = BLOCK_FOR_INSN (after)))
4296 {
4297 rtx_insn *x;
4298 df_set_bb_dirty (bb);
4299
4300 if (!BARRIER_P (from)
4301 && (bb2 = BLOCK_FOR_INSN (from)))
4302 {
4303 if (BB_END (bb2) == to)
4304 BB_END (bb2) = prev;
4305 df_set_bb_dirty (bb2);
4306 }
4307
4308 if (BB_END (bb) == after)
4309 BB_END (bb) = to;
4310
4311 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4312 if (!BARRIER_P (x))
4313 df_insn_change_bb (x, bb);
4314 }
4315 }
4316
4317 \f
4318 /* Emit insn(s) of given code and pattern
4319 at a specified place within the doubly-linked list.
4320
4321 All of the emit_foo global entry points accept an object
4322 X which is either an insn list or a PATTERN of a single
4323 instruction.
4324
4325 There are thus a few canonical ways to generate code and
4326 emit it at a specific place in the instruction stream. For
4327 example, consider the instruction named SPOT and the fact that
4328 we would like to emit some instructions before SPOT. We might
4329 do it like this:
4330
4331 start_sequence ();
4332 ... emit the new instructions ...
4333 insns_head = get_insns ();
4334 end_sequence ();
4335
4336 emit_insn_before (insns_head, SPOT);
4337
4338 It used to be common to generate SEQUENCE rtl instead, but that
4339 is a relic of the past which no longer occurs. The reason is that
4340 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4341 generated would almost certainly die right after it was created. */
4342
4343 static rtx_insn *
4344 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4345 rtx_insn *(*make_raw) (rtx))
4346 {
4347 rtx_insn *insn;
4348
4349 gcc_assert (before);
4350
4351 if (x == NULL_RTX)
4352 return safe_as_a <rtx_insn *> (last);
4353
4354 switch (GET_CODE (x))
4355 {
4356 case DEBUG_INSN:
4357 case INSN:
4358 case JUMP_INSN:
4359 case CALL_INSN:
4360 case CODE_LABEL:
4361 case BARRIER:
4362 case NOTE:
4363 insn = as_a <rtx_insn *> (x);
4364 while (insn)
4365 {
4366 rtx_insn *next = NEXT_INSN (insn);
4367 add_insn_before (insn, before, bb);
4368 last = insn;
4369 insn = next;
4370 }
4371 break;
4372
4373 #ifdef ENABLE_RTL_CHECKING
4374 case SEQUENCE:
4375 gcc_unreachable ();
4376 break;
4377 #endif
4378
4379 default:
4380 last = (*make_raw) (x);
4381 add_insn_before (last, before, bb);
4382 break;
4383 }
4384
4385 return safe_as_a <rtx_insn *> (last);
4386 }
4387
4388 /* Make X be output before the instruction BEFORE. */
4389
4390 rtx_insn *
4391 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4392 {
4393 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4394 }
4395
4396 /* Make an instruction with body X and code JUMP_INSN
4397 and output it before the instruction BEFORE. */
4398
4399 rtx_insn *
4400 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4401 {
4402 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4403 make_jump_insn_raw);
4404 }
4405
4406 /* Make an instruction with body X and code CALL_INSN
4407 and output it before the instruction BEFORE. */
4408
4409 rtx_insn *
4410 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4411 {
4412 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4413 make_call_insn_raw);
4414 }
4415
4416 /* Make an instruction with body X and code DEBUG_INSN
4417 and output it before the instruction BEFORE. */
4418
4419 rtx_insn *
4420 emit_debug_insn_before_noloc (rtx x, rtx before)
4421 {
4422 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4423 make_debug_insn_raw);
4424 }
4425
4426 /* Make an insn of code BARRIER
4427 and output it before the insn BEFORE. */
4428
4429 rtx_barrier *
4430 emit_barrier_before (rtx before)
4431 {
4432 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4433
4434 INSN_UID (insn) = cur_insn_uid++;
4435
4436 add_insn_before (insn, before, NULL);
4437 return insn;
4438 }
4439
4440 /* Emit the label LABEL before the insn BEFORE. */
4441
4442 rtx_insn *
4443 emit_label_before (rtx label, rtx_insn *before)
4444 {
4445 gcc_checking_assert (INSN_UID (label) == 0);
4446 INSN_UID (label) = cur_insn_uid++;
4447 add_insn_before (label, before, NULL);
4448 return as_a <rtx_insn *> (label);
4449 }
4450 \f
4451 /* Helper for emit_insn_after, handles lists of instructions
4452 efficiently. */
4453
4454 static rtx_insn *
4455 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4456 {
4457 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4458 rtx_insn *last;
4459 rtx_insn *after_after;
4460 if (!bb && !BARRIER_P (after))
4461 bb = BLOCK_FOR_INSN (after);
4462
4463 if (bb)
4464 {
4465 df_set_bb_dirty (bb);
4466 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4467 if (!BARRIER_P (last))
4468 {
4469 set_block_for_insn (last, bb);
4470 df_insn_rescan (last);
4471 }
4472 if (!BARRIER_P (last))
4473 {
4474 set_block_for_insn (last, bb);
4475 df_insn_rescan (last);
4476 }
4477 if (BB_END (bb) == after)
4478 BB_END (bb) = last;
4479 }
4480 else
4481 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4482 continue;
4483
4484 after_after = NEXT_INSN (after);
4485
4486 SET_NEXT_INSN (after) = first;
4487 SET_PREV_INSN (first) = after;
4488 SET_NEXT_INSN (last) = after_after;
4489 if (after_after)
4490 SET_PREV_INSN (after_after) = last;
4491
4492 if (after == get_last_insn ())
4493 set_last_insn (last);
4494
4495 return last;
4496 }
4497
4498 static rtx_insn *
4499 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4500 rtx_insn *(*make_raw)(rtx))
4501 {
4502 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4503 rtx_insn *last = after;
4504
4505 gcc_assert (after);
4506
4507 if (x == NULL_RTX)
4508 return last;
4509
4510 switch (GET_CODE (x))
4511 {
4512 case DEBUG_INSN:
4513 case INSN:
4514 case JUMP_INSN:
4515 case CALL_INSN:
4516 case CODE_LABEL:
4517 case BARRIER:
4518 case NOTE:
4519 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4520 break;
4521
4522 #ifdef ENABLE_RTL_CHECKING
4523 case SEQUENCE:
4524 gcc_unreachable ();
4525 break;
4526 #endif
4527
4528 default:
4529 last = (*make_raw) (x);
4530 add_insn_after (last, after, bb);
4531 break;
4532 }
4533
4534 return last;
4535 }
4536
4537 /* Make X be output after the insn AFTER and set the BB of insn. If
4538 BB is NULL, an attempt is made to infer the BB from AFTER. */
4539
4540 rtx_insn *
4541 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4542 {
4543 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4544 }
4545
4546
4547 /* Make an insn of code JUMP_INSN with body X
4548 and output it after the insn AFTER. */
4549
4550 rtx_insn *
4551 emit_jump_insn_after_noloc (rtx x, rtx after)
4552 {
4553 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4554 }
4555
4556 /* Make an instruction with body X and code CALL_INSN
4557 and output it after the instruction AFTER. */
4558
4559 rtx_insn *
4560 emit_call_insn_after_noloc (rtx x, rtx after)
4561 {
4562 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4563 }
4564
4565 /* Make an instruction with body X and code CALL_INSN
4566 and output it after the instruction AFTER. */
4567
4568 rtx_insn *
4569 emit_debug_insn_after_noloc (rtx x, rtx after)
4570 {
4571 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4572 }
4573
4574 /* Make an insn of code BARRIER
4575 and output it after the insn AFTER. */
4576
4577 rtx_barrier *
4578 emit_barrier_after (rtx after)
4579 {
4580 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4581
4582 INSN_UID (insn) = cur_insn_uid++;
4583
4584 add_insn_after (insn, after, NULL);
4585 return insn;
4586 }
4587
4588 /* Emit the label LABEL after the insn AFTER. */
4589
4590 rtx_insn *
4591 emit_label_after (rtx label, rtx_insn *after)
4592 {
4593 gcc_checking_assert (INSN_UID (label) == 0);
4594 INSN_UID (label) = cur_insn_uid++;
4595 add_insn_after (label, after, NULL);
4596 return as_a <rtx_insn *> (label);
4597 }
4598 \f
4599 /* Notes require a bit of special handling: Some notes need to have their
4600 BLOCK_FOR_INSN set, others should never have it set, and some should
4601 have it set or clear depending on the context. */
4602
4603 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4604 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4605 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4606
4607 static bool
4608 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4609 {
4610 switch (subtype)
4611 {
4612 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4613 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4614 return true;
4615
4616 /* Notes for var tracking and EH region markers can appear between or
4617 inside basic blocks. If the caller is emitting on the basic block
4618 boundary, do not set BLOCK_FOR_INSN on the new note. */
4619 case NOTE_INSN_VAR_LOCATION:
4620 case NOTE_INSN_CALL_ARG_LOCATION:
4621 case NOTE_INSN_EH_REGION_BEG:
4622 case NOTE_INSN_EH_REGION_END:
4623 return on_bb_boundary_p;
4624
4625 /* Otherwise, BLOCK_FOR_INSN must be set. */
4626 default:
4627 return false;
4628 }
4629 }
4630
4631 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4632
4633 rtx_note *
4634 emit_note_after (enum insn_note subtype, rtx_insn *after)
4635 {
4636 rtx_note *note = make_note_raw (subtype);
4637 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4638 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4639
4640 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4641 add_insn_after_nobb (note, after);
4642 else
4643 add_insn_after (note, after, bb);
4644 return note;
4645 }
4646
4647 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4648
4649 rtx_note *
4650 emit_note_before (enum insn_note subtype, rtx_insn *before)
4651 {
4652 rtx_note *note = make_note_raw (subtype);
4653 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4654 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4655
4656 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4657 add_insn_before_nobb (note, before);
4658 else
4659 add_insn_before (note, before, bb);
4660 return note;
4661 }
4662 \f
4663 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4664 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4665
4666 static rtx_insn *
4667 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4668 rtx_insn *(*make_raw) (rtx))
4669 {
4670 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4671 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4672
4673 if (pattern == NULL_RTX || !loc)
4674 return safe_as_a <rtx_insn *> (last);
4675
4676 after = NEXT_INSN (after);
4677 while (1)
4678 {
4679 if (active_insn_p (after)
4680 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4681 && !INSN_LOCATION (after))
4682 INSN_LOCATION (after) = loc;
4683 if (after == last)
4684 break;
4685 after = NEXT_INSN (after);
4686 }
4687 return safe_as_a <rtx_insn *> (last);
4688 }
4689
4690 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4691 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4692 any DEBUG_INSNs. */
4693
4694 static rtx_insn *
4695 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4696 rtx_insn *(*make_raw) (rtx))
4697 {
4698 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4699 rtx_insn *prev = after;
4700
4701 if (skip_debug_insns)
4702 while (DEBUG_INSN_P (prev))
4703 prev = PREV_INSN (prev);
4704
4705 if (INSN_P (prev))
4706 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4707 make_raw);
4708 else
4709 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4710 }
4711
4712 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4713 rtx_insn *
4714 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4715 {
4716 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4717 }
4718
4719 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4720 rtx_insn *
4721 emit_insn_after (rtx pattern, rtx after)
4722 {
4723 return emit_pattern_after (pattern, after, true, make_insn_raw);
4724 }
4725
4726 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4727 rtx_insn *
4728 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4729 {
4730 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4731 }
4732
4733 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4734 rtx_insn *
4735 emit_jump_insn_after (rtx pattern, rtx after)
4736 {
4737 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4738 }
4739
4740 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4741 rtx_insn *
4742 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4743 {
4744 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4745 }
4746
4747 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4748 rtx_insn *
4749 emit_call_insn_after (rtx pattern, rtx after)
4750 {
4751 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4752 }
4753
4754 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4755 rtx_insn *
4756 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4757 {
4758 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4759 }
4760
4761 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4762 rtx_insn *
4763 emit_debug_insn_after (rtx pattern, rtx after)
4764 {
4765 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4766 }
4767
4768 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4769 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4770 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4771 CALL_INSN, etc. */
4772
4773 static rtx_insn *
4774 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4775 rtx_insn *(*make_raw) (rtx))
4776 {
4777 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4778 rtx_insn *first = PREV_INSN (before);
4779 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4780 insnp ? before : NULL_RTX,
4781 NULL, make_raw);
4782
4783 if (pattern == NULL_RTX || !loc)
4784 return last;
4785
4786 if (!first)
4787 first = get_insns ();
4788 else
4789 first = NEXT_INSN (first);
4790 while (1)
4791 {
4792 if (active_insn_p (first)
4793 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4794 && !INSN_LOCATION (first))
4795 INSN_LOCATION (first) = loc;
4796 if (first == last)
4797 break;
4798 first = NEXT_INSN (first);
4799 }
4800 return last;
4801 }
4802
4803 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4804 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4805 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4806 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4807
4808 static rtx_insn *
4809 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4810 bool insnp, rtx_insn *(*make_raw) (rtx))
4811 {
4812 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4813 rtx_insn *next = before;
4814
4815 if (skip_debug_insns)
4816 while (DEBUG_INSN_P (next))
4817 next = PREV_INSN (next);
4818
4819 if (INSN_P (next))
4820 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4821 insnp, make_raw);
4822 else
4823 return emit_pattern_before_noloc (pattern, before,
4824 insnp ? before : NULL_RTX,
4825 NULL, make_raw);
4826 }
4827
4828 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4829 rtx_insn *
4830 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4831 {
4832 return emit_pattern_before_setloc (pattern, before, loc, true,
4833 make_insn_raw);
4834 }
4835
4836 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4837 rtx_insn *
4838 emit_insn_before (rtx pattern, rtx before)
4839 {
4840 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4841 }
4842
4843 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4844 rtx_insn *
4845 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4846 {
4847 return emit_pattern_before_setloc (pattern, before, loc, false,
4848 make_jump_insn_raw);
4849 }
4850
4851 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4852 rtx_insn *
4853 emit_jump_insn_before (rtx pattern, rtx before)
4854 {
4855 return emit_pattern_before (pattern, before, true, false,
4856 make_jump_insn_raw);
4857 }
4858
4859 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4860 rtx_insn *
4861 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4862 {
4863 return emit_pattern_before_setloc (pattern, before, loc, false,
4864 make_call_insn_raw);
4865 }
4866
4867 /* Like emit_call_insn_before_noloc,
4868 but set insn_location according to BEFORE. */
4869 rtx_insn *
4870 emit_call_insn_before (rtx pattern, rtx_insn *before)
4871 {
4872 return emit_pattern_before (pattern, before, true, false,
4873 make_call_insn_raw);
4874 }
4875
4876 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4877 rtx_insn *
4878 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4879 {
4880 return emit_pattern_before_setloc (pattern, before, loc, false,
4881 make_debug_insn_raw);
4882 }
4883
4884 /* Like emit_debug_insn_before_noloc,
4885 but set insn_location according to BEFORE. */
4886 rtx_insn *
4887 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4888 {
4889 return emit_pattern_before (pattern, before, false, false,
4890 make_debug_insn_raw);
4891 }
4892 \f
4893 /* Take X and emit it at the end of the doubly-linked
4894 INSN list.
4895
4896 Returns the last insn emitted. */
4897
4898 rtx_insn *
4899 emit_insn (rtx x)
4900 {
4901 rtx_insn *last = get_last_insn ();
4902 rtx_insn *insn;
4903
4904 if (x == NULL_RTX)
4905 return last;
4906
4907 switch (GET_CODE (x))
4908 {
4909 case DEBUG_INSN:
4910 case INSN:
4911 case JUMP_INSN:
4912 case CALL_INSN:
4913 case CODE_LABEL:
4914 case BARRIER:
4915 case NOTE:
4916 insn = as_a <rtx_insn *> (x);
4917 while (insn)
4918 {
4919 rtx_insn *next = NEXT_INSN (insn);
4920 add_insn (insn);
4921 last = insn;
4922 insn = next;
4923 }
4924 break;
4925
4926 #ifdef ENABLE_RTL_CHECKING
4927 case JUMP_TABLE_DATA:
4928 case SEQUENCE:
4929 gcc_unreachable ();
4930 break;
4931 #endif
4932
4933 default:
4934 last = make_insn_raw (x);
4935 add_insn (last);
4936 break;
4937 }
4938
4939 return last;
4940 }
4941
4942 /* Make an insn of code DEBUG_INSN with pattern X
4943 and add it to the end of the doubly-linked list. */
4944
4945 rtx_insn *
4946 emit_debug_insn (rtx x)
4947 {
4948 rtx_insn *last = get_last_insn ();
4949 rtx_insn *insn;
4950
4951 if (x == NULL_RTX)
4952 return last;
4953
4954 switch (GET_CODE (x))
4955 {
4956 case DEBUG_INSN:
4957 case INSN:
4958 case JUMP_INSN:
4959 case CALL_INSN:
4960 case CODE_LABEL:
4961 case BARRIER:
4962 case NOTE:
4963 insn = as_a <rtx_insn *> (x);
4964 while (insn)
4965 {
4966 rtx_insn *next = NEXT_INSN (insn);
4967 add_insn (insn);
4968 last = insn;
4969 insn = next;
4970 }
4971 break;
4972
4973 #ifdef ENABLE_RTL_CHECKING
4974 case JUMP_TABLE_DATA:
4975 case SEQUENCE:
4976 gcc_unreachable ();
4977 break;
4978 #endif
4979
4980 default:
4981 last = make_debug_insn_raw (x);
4982 add_insn (last);
4983 break;
4984 }
4985
4986 return last;
4987 }
4988
4989 /* Make an insn of code JUMP_INSN with pattern X
4990 and add it to the end of the doubly-linked list. */
4991
4992 rtx_insn *
4993 emit_jump_insn (rtx x)
4994 {
4995 rtx_insn *last = NULL;
4996 rtx_insn *insn;
4997
4998 switch (GET_CODE (x))
4999 {
5000 case DEBUG_INSN:
5001 case INSN:
5002 case JUMP_INSN:
5003 case CALL_INSN:
5004 case CODE_LABEL:
5005 case BARRIER:
5006 case NOTE:
5007 insn = as_a <rtx_insn *> (x);
5008 while (insn)
5009 {
5010 rtx_insn *next = NEXT_INSN (insn);
5011 add_insn (insn);
5012 last = insn;
5013 insn = next;
5014 }
5015 break;
5016
5017 #ifdef ENABLE_RTL_CHECKING
5018 case JUMP_TABLE_DATA:
5019 case SEQUENCE:
5020 gcc_unreachable ();
5021 break;
5022 #endif
5023
5024 default:
5025 last = make_jump_insn_raw (x);
5026 add_insn (last);
5027 break;
5028 }
5029
5030 return last;
5031 }
5032
5033 /* Make an insn of code CALL_INSN with pattern X
5034 and add it to the end of the doubly-linked list. */
5035
5036 rtx_insn *
5037 emit_call_insn (rtx x)
5038 {
5039 rtx_insn *insn;
5040
5041 switch (GET_CODE (x))
5042 {
5043 case DEBUG_INSN:
5044 case INSN:
5045 case JUMP_INSN:
5046 case CALL_INSN:
5047 case CODE_LABEL:
5048 case BARRIER:
5049 case NOTE:
5050 insn = emit_insn (x);
5051 break;
5052
5053 #ifdef ENABLE_RTL_CHECKING
5054 case SEQUENCE:
5055 case JUMP_TABLE_DATA:
5056 gcc_unreachable ();
5057 break;
5058 #endif
5059
5060 default:
5061 insn = make_call_insn_raw (x);
5062 add_insn (insn);
5063 break;
5064 }
5065
5066 return insn;
5067 }
5068
5069 /* Add the label LABEL to the end of the doubly-linked list. */
5070
5071 rtx_insn *
5072 emit_label (rtx label)
5073 {
5074 gcc_checking_assert (INSN_UID (label) == 0);
5075 INSN_UID (label) = cur_insn_uid++;
5076 add_insn (as_a <rtx_insn *> (label));
5077 return as_a <rtx_insn *> (label);
5078 }
5079
5080 /* Make an insn of code JUMP_TABLE_DATA
5081 and add it to the end of the doubly-linked list. */
5082
5083 rtx_jump_table_data *
5084 emit_jump_table_data (rtx table)
5085 {
5086 rtx_jump_table_data *jump_table_data =
5087 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5088 INSN_UID (jump_table_data) = cur_insn_uid++;
5089 PATTERN (jump_table_data) = table;
5090 BLOCK_FOR_INSN (jump_table_data) = NULL;
5091 add_insn (jump_table_data);
5092 return jump_table_data;
5093 }
5094
5095 /* Make an insn of code BARRIER
5096 and add it to the end of the doubly-linked list. */
5097
5098 rtx_barrier *
5099 emit_barrier (void)
5100 {
5101 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5102 INSN_UID (barrier) = cur_insn_uid++;
5103 add_insn (barrier);
5104 return barrier;
5105 }
5106
5107 /* Emit a copy of note ORIG. */
5108
5109 rtx_note *
5110 emit_note_copy (rtx_note *orig)
5111 {
5112 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5113 rtx_note *note = make_note_raw (kind);
5114 NOTE_DATA (note) = NOTE_DATA (orig);
5115 add_insn (note);
5116 return note;
5117 }
5118
5119 /* Make an insn of code NOTE or type NOTE_NO
5120 and add it to the end of the doubly-linked list. */
5121
5122 rtx_note *
5123 emit_note (enum insn_note kind)
5124 {
5125 rtx_note *note = make_note_raw (kind);
5126 add_insn (note);
5127 return note;
5128 }
5129
5130 /* Emit a clobber of lvalue X. */
5131
5132 rtx_insn *
5133 emit_clobber (rtx x)
5134 {
5135 /* CONCATs should not appear in the insn stream. */
5136 if (GET_CODE (x) == CONCAT)
5137 {
5138 emit_clobber (XEXP (x, 0));
5139 return emit_clobber (XEXP (x, 1));
5140 }
5141 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5142 }
5143
5144 /* Return a sequence of insns to clobber lvalue X. */
5145
5146 rtx_insn *
5147 gen_clobber (rtx x)
5148 {
5149 rtx_insn *seq;
5150
5151 start_sequence ();
5152 emit_clobber (x);
5153 seq = get_insns ();
5154 end_sequence ();
5155 return seq;
5156 }
5157
5158 /* Emit a use of rvalue X. */
5159
5160 rtx_insn *
5161 emit_use (rtx x)
5162 {
5163 /* CONCATs should not appear in the insn stream. */
5164 if (GET_CODE (x) == CONCAT)
5165 {
5166 emit_use (XEXP (x, 0));
5167 return emit_use (XEXP (x, 1));
5168 }
5169 return emit_insn (gen_rtx_USE (VOIDmode, x));
5170 }
5171
5172 /* Return a sequence of insns to use rvalue X. */
5173
5174 rtx_insn *
5175 gen_use (rtx x)
5176 {
5177 rtx_insn *seq;
5178
5179 start_sequence ();
5180 emit_use (x);
5181 seq = get_insns ();
5182 end_sequence ();
5183 return seq;
5184 }
5185
5186 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5187 Return the set in INSN that such notes describe, or NULL if the notes
5188 have no meaning for INSN. */
5189
5190 rtx
5191 set_for_reg_notes (rtx insn)
5192 {
5193 rtx pat, reg;
5194
5195 if (!INSN_P (insn))
5196 return NULL_RTX;
5197
5198 pat = PATTERN (insn);
5199 if (GET_CODE (pat) == PARALLEL)
5200 {
5201 /* We do not use single_set because that ignores SETs of unused
5202 registers. REG_EQUAL and REG_EQUIV notes really do require the
5203 PARALLEL to have a single SET. */
5204 if (multiple_sets (insn))
5205 return NULL_RTX;
5206 pat = XVECEXP (pat, 0, 0);
5207 }
5208
5209 if (GET_CODE (pat) != SET)
5210 return NULL_RTX;
5211
5212 reg = SET_DEST (pat);
5213
5214 /* Notes apply to the contents of a STRICT_LOW_PART. */
5215 if (GET_CODE (reg) == STRICT_LOW_PART)
5216 reg = XEXP (reg, 0);
5217
5218 /* Check that we have a register. */
5219 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5220 return NULL_RTX;
5221
5222 return pat;
5223 }
5224
5225 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5226 note of this type already exists, remove it first. */
5227
5228 rtx
5229 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5230 {
5231 rtx note = find_reg_note (insn, kind, NULL_RTX);
5232
5233 switch (kind)
5234 {
5235 case REG_EQUAL:
5236 case REG_EQUIV:
5237 if (!set_for_reg_notes (insn))
5238 return NULL_RTX;
5239
5240 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5241 It serves no useful purpose and breaks eliminate_regs. */
5242 if (GET_CODE (datum) == ASM_OPERANDS)
5243 return NULL_RTX;
5244
5245 /* Notes with side effects are dangerous. Even if the side-effect
5246 initially mirrors one in PATTERN (INSN), later optimizations
5247 might alter the way that the final register value is calculated
5248 and so move or alter the side-effect in some way. The note would
5249 then no longer be a valid substitution for SET_SRC. */
5250 if (side_effects_p (datum))
5251 return NULL_RTX;
5252 break;
5253
5254 default:
5255 break;
5256 }
5257
5258 if (note)
5259 XEXP (note, 0) = datum;
5260 else
5261 {
5262 add_reg_note (insn, kind, datum);
5263 note = REG_NOTES (insn);
5264 }
5265
5266 switch (kind)
5267 {
5268 case REG_EQUAL:
5269 case REG_EQUIV:
5270 df_notes_rescan (as_a <rtx_insn *> (insn));
5271 break;
5272 default:
5273 break;
5274 }
5275
5276 return note;
5277 }
5278
5279 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5280 rtx
5281 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5282 {
5283 rtx set = set_for_reg_notes (insn);
5284
5285 if (set && SET_DEST (set) == dst)
5286 return set_unique_reg_note (insn, kind, datum);
5287 return NULL_RTX;
5288 }
5289 \f
5290 /* Return an indication of which type of insn should have X as a body.
5291 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5292
5293 static enum rtx_code
5294 classify_insn (rtx x)
5295 {
5296 if (LABEL_P (x))
5297 return CODE_LABEL;
5298 if (GET_CODE (x) == CALL)
5299 return CALL_INSN;
5300 if (ANY_RETURN_P (x))
5301 return JUMP_INSN;
5302 if (GET_CODE (x) == SET)
5303 {
5304 if (SET_DEST (x) == pc_rtx)
5305 return JUMP_INSN;
5306 else if (GET_CODE (SET_SRC (x)) == CALL)
5307 return CALL_INSN;
5308 else
5309 return INSN;
5310 }
5311 if (GET_CODE (x) == PARALLEL)
5312 {
5313 int j;
5314 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5315 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5316 return CALL_INSN;
5317 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5318 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5319 return JUMP_INSN;
5320 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5321 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5322 return CALL_INSN;
5323 }
5324 return INSN;
5325 }
5326
5327 /* Emit the rtl pattern X as an appropriate kind of insn.
5328 If X is a label, it is simply added into the insn chain. */
5329
5330 rtx_insn *
5331 emit (rtx x)
5332 {
5333 enum rtx_code code = classify_insn (x);
5334
5335 switch (code)
5336 {
5337 case CODE_LABEL:
5338 return emit_label (x);
5339 case INSN:
5340 return emit_insn (x);
5341 case JUMP_INSN:
5342 {
5343 rtx_insn *insn = emit_jump_insn (x);
5344 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5345 return emit_barrier ();
5346 return insn;
5347 }
5348 case CALL_INSN:
5349 return emit_call_insn (x);
5350 case DEBUG_INSN:
5351 return emit_debug_insn (x);
5352 default:
5353 gcc_unreachable ();
5354 }
5355 }
5356 \f
5357 /* Space for free sequence stack entries. */
5358 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5359
5360 /* Begin emitting insns to a sequence. If this sequence will contain
5361 something that might cause the compiler to pop arguments to function
5362 calls (because those pops have previously been deferred; see
5363 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5364 before calling this function. That will ensure that the deferred
5365 pops are not accidentally emitted in the middle of this sequence. */
5366
5367 void
5368 start_sequence (void)
5369 {
5370 struct sequence_stack *tem;
5371
5372 if (free_sequence_stack != NULL)
5373 {
5374 tem = free_sequence_stack;
5375 free_sequence_stack = tem->next;
5376 }
5377 else
5378 tem = ggc_alloc<sequence_stack> ();
5379
5380 tem->next = get_current_sequence ()->next;
5381 tem->first = get_insns ();
5382 tem->last = get_last_insn ();
5383 get_current_sequence ()->next = tem;
5384
5385 set_first_insn (0);
5386 set_last_insn (0);
5387 }
5388
5389 /* Set up the insn chain starting with FIRST as the current sequence,
5390 saving the previously current one. See the documentation for
5391 start_sequence for more information about how to use this function. */
5392
5393 void
5394 push_to_sequence (rtx_insn *first)
5395 {
5396 rtx_insn *last;
5397
5398 start_sequence ();
5399
5400 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5401 ;
5402
5403 set_first_insn (first);
5404 set_last_insn (last);
5405 }
5406
5407 /* Like push_to_sequence, but take the last insn as an argument to avoid
5408 looping through the list. */
5409
5410 void
5411 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5412 {
5413 start_sequence ();
5414
5415 set_first_insn (first);
5416 set_last_insn (last);
5417 }
5418
5419 /* Set up the outer-level insn chain
5420 as the current sequence, saving the previously current one. */
5421
5422 void
5423 push_topmost_sequence (void)
5424 {
5425 struct sequence_stack *top;
5426
5427 start_sequence ();
5428
5429 top = get_topmost_sequence ();
5430 set_first_insn (top->first);
5431 set_last_insn (top->last);
5432 }
5433
5434 /* After emitting to the outer-level insn chain, update the outer-level
5435 insn chain, and restore the previous saved state. */
5436
5437 void
5438 pop_topmost_sequence (void)
5439 {
5440 struct sequence_stack *top;
5441
5442 top = get_topmost_sequence ();
5443 top->first = get_insns ();
5444 top->last = get_last_insn ();
5445
5446 end_sequence ();
5447 }
5448
5449 /* After emitting to a sequence, restore previous saved state.
5450
5451 To get the contents of the sequence just made, you must call
5452 `get_insns' *before* calling here.
5453
5454 If the compiler might have deferred popping arguments while
5455 generating this sequence, and this sequence will not be immediately
5456 inserted into the instruction stream, use do_pending_stack_adjust
5457 before calling get_insns. That will ensure that the deferred
5458 pops are inserted into this sequence, and not into some random
5459 location in the instruction stream. See INHIBIT_DEFER_POP for more
5460 information about deferred popping of arguments. */
5461
5462 void
5463 end_sequence (void)
5464 {
5465 struct sequence_stack *tem = get_current_sequence ()->next;
5466
5467 set_first_insn (tem->first);
5468 set_last_insn (tem->last);
5469 get_current_sequence ()->next = tem->next;
5470
5471 memset (tem, 0, sizeof (*tem));
5472 tem->next = free_sequence_stack;
5473 free_sequence_stack = tem;
5474 }
5475
5476 /* Return 1 if currently emitting into a sequence. */
5477
5478 int
5479 in_sequence_p (void)
5480 {
5481 return get_current_sequence ()->next != 0;
5482 }
5483 \f
5484 /* Put the various virtual registers into REGNO_REG_RTX. */
5485
5486 static void
5487 init_virtual_regs (void)
5488 {
5489 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5490 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5491 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5492 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5493 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5494 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5495 = virtual_preferred_stack_boundary_rtx;
5496 }
5497
5498 \f
5499 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5500 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5501 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5502 static int copy_insn_n_scratches;
5503
5504 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5505 copied an ASM_OPERANDS.
5506 In that case, it is the original input-operand vector. */
5507 static rtvec orig_asm_operands_vector;
5508
5509 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5510 copied an ASM_OPERANDS.
5511 In that case, it is the copied input-operand vector. */
5512 static rtvec copy_asm_operands_vector;
5513
5514 /* Likewise for the constraints vector. */
5515 static rtvec orig_asm_constraints_vector;
5516 static rtvec copy_asm_constraints_vector;
5517
5518 /* Recursively create a new copy of an rtx for copy_insn.
5519 This function differs from copy_rtx in that it handles SCRATCHes and
5520 ASM_OPERANDs properly.
5521 Normally, this function is not used directly; use copy_insn as front end.
5522 However, you could first copy an insn pattern with copy_insn and then use
5523 this function afterwards to properly copy any REG_NOTEs containing
5524 SCRATCHes. */
5525
5526 rtx
5527 copy_insn_1 (rtx orig)
5528 {
5529 rtx copy;
5530 int i, j;
5531 RTX_CODE code;
5532 const char *format_ptr;
5533
5534 if (orig == NULL)
5535 return NULL;
5536
5537 code = GET_CODE (orig);
5538
5539 switch (code)
5540 {
5541 case REG:
5542 case DEBUG_EXPR:
5543 CASE_CONST_ANY:
5544 case SYMBOL_REF:
5545 case CODE_LABEL:
5546 case PC:
5547 case CC0:
5548 case RETURN:
5549 case SIMPLE_RETURN:
5550 return orig;
5551 case CLOBBER:
5552 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5553 clobbers or clobbers of hard registers that originated as pseudos.
5554 This is needed to allow safe register renaming. */
5555 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5556 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5557 return orig;
5558 break;
5559
5560 case SCRATCH:
5561 for (i = 0; i < copy_insn_n_scratches; i++)
5562 if (copy_insn_scratch_in[i] == orig)
5563 return copy_insn_scratch_out[i];
5564 break;
5565
5566 case CONST:
5567 if (shared_const_p (orig))
5568 return orig;
5569 break;
5570
5571 /* A MEM with a constant address is not sharable. The problem is that
5572 the constant address may need to be reloaded. If the mem is shared,
5573 then reloading one copy of this mem will cause all copies to appear
5574 to have been reloaded. */
5575
5576 default:
5577 break;
5578 }
5579
5580 /* Copy the various flags, fields, and other information. We assume
5581 that all fields need copying, and then clear the fields that should
5582 not be copied. That is the sensible default behavior, and forces
5583 us to explicitly document why we are *not* copying a flag. */
5584 copy = shallow_copy_rtx (orig);
5585
5586 /* We do not copy the USED flag, which is used as a mark bit during
5587 walks over the RTL. */
5588 RTX_FLAG (copy, used) = 0;
5589
5590 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5591 if (INSN_P (orig))
5592 {
5593 RTX_FLAG (copy, jump) = 0;
5594 RTX_FLAG (copy, call) = 0;
5595 RTX_FLAG (copy, frame_related) = 0;
5596 }
5597
5598 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5599
5600 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5601 switch (*format_ptr++)
5602 {
5603 case 'e':
5604 if (XEXP (orig, i) != NULL)
5605 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5606 break;
5607
5608 case 'E':
5609 case 'V':
5610 if (XVEC (orig, i) == orig_asm_constraints_vector)
5611 XVEC (copy, i) = copy_asm_constraints_vector;
5612 else if (XVEC (orig, i) == orig_asm_operands_vector)
5613 XVEC (copy, i) = copy_asm_operands_vector;
5614 else if (XVEC (orig, i) != NULL)
5615 {
5616 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5617 for (j = 0; j < XVECLEN (copy, i); j++)
5618 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5619 }
5620 break;
5621
5622 case 't':
5623 case 'w':
5624 case 'i':
5625 case 's':
5626 case 'S':
5627 case 'u':
5628 case '0':
5629 /* These are left unchanged. */
5630 break;
5631
5632 default:
5633 gcc_unreachable ();
5634 }
5635
5636 if (code == SCRATCH)
5637 {
5638 i = copy_insn_n_scratches++;
5639 gcc_assert (i < MAX_RECOG_OPERANDS);
5640 copy_insn_scratch_in[i] = orig;
5641 copy_insn_scratch_out[i] = copy;
5642 }
5643 else if (code == ASM_OPERANDS)
5644 {
5645 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5646 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5647 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5648 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5649 }
5650
5651 return copy;
5652 }
5653
5654 /* Create a new copy of an rtx.
5655 This function differs from copy_rtx in that it handles SCRATCHes and
5656 ASM_OPERANDs properly.
5657 INSN doesn't really have to be a full INSN; it could be just the
5658 pattern. */
5659 rtx
5660 copy_insn (rtx insn)
5661 {
5662 copy_insn_n_scratches = 0;
5663 orig_asm_operands_vector = 0;
5664 orig_asm_constraints_vector = 0;
5665 copy_asm_operands_vector = 0;
5666 copy_asm_constraints_vector = 0;
5667 return copy_insn_1 (insn);
5668 }
5669
5670 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5671 on that assumption that INSN itself remains in its original place. */
5672
5673 rtx_insn *
5674 copy_delay_slot_insn (rtx_insn *insn)
5675 {
5676 /* Copy INSN with its rtx_code, all its notes, location etc. */
5677 insn = as_a <rtx_insn *> (copy_rtx (insn));
5678 INSN_UID (insn) = cur_insn_uid++;
5679 return insn;
5680 }
5681
5682 /* Initialize data structures and variables in this file
5683 before generating rtl for each function. */
5684
5685 void
5686 init_emit (void)
5687 {
5688 set_first_insn (NULL);
5689 set_last_insn (NULL);
5690 if (MIN_NONDEBUG_INSN_UID)
5691 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5692 else
5693 cur_insn_uid = 1;
5694 cur_debug_insn_uid = 1;
5695 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5696 first_label_num = label_num;
5697 get_current_sequence ()->next = NULL;
5698
5699 /* Init the tables that describe all the pseudo regs. */
5700
5701 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5702
5703 crtl->emit.regno_pointer_align
5704 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5705
5706 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5707
5708 /* Put copies of all the hard registers into regno_reg_rtx. */
5709 memcpy (regno_reg_rtx,
5710 initial_regno_reg_rtx,
5711 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5712
5713 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5714 init_virtual_regs ();
5715
5716 /* Indicate that the virtual registers and stack locations are
5717 all pointers. */
5718 REG_POINTER (stack_pointer_rtx) = 1;
5719 REG_POINTER (frame_pointer_rtx) = 1;
5720 REG_POINTER (hard_frame_pointer_rtx) = 1;
5721 REG_POINTER (arg_pointer_rtx) = 1;
5722
5723 REG_POINTER (virtual_incoming_args_rtx) = 1;
5724 REG_POINTER (virtual_stack_vars_rtx) = 1;
5725 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5726 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5727 REG_POINTER (virtual_cfa_rtx) = 1;
5728
5729 #ifdef STACK_BOUNDARY
5730 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5731 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5732 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5733 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5734
5735 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5736 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5737 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5738 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5739 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5740 #endif
5741
5742 #ifdef INIT_EXPANDERS
5743 INIT_EXPANDERS;
5744 #endif
5745 }
5746
5747 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5748
5749 static rtx
5750 gen_const_vector (machine_mode mode, int constant)
5751 {
5752 rtx tem;
5753 rtvec v;
5754 int units, i;
5755 machine_mode inner;
5756
5757 units = GET_MODE_NUNITS (mode);
5758 inner = GET_MODE_INNER (mode);
5759
5760 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5761
5762 v = rtvec_alloc (units);
5763
5764 /* We need to call this function after we set the scalar const_tiny_rtx
5765 entries. */
5766 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5767
5768 for (i = 0; i < units; ++i)
5769 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5770
5771 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5772 return tem;
5773 }
5774
5775 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5776 all elements are zero, and the one vector when all elements are one. */
5777 rtx
5778 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5779 {
5780 machine_mode inner = GET_MODE_INNER (mode);
5781 int nunits = GET_MODE_NUNITS (mode);
5782 rtx x;
5783 int i;
5784
5785 /* Check to see if all of the elements have the same value. */
5786 x = RTVEC_ELT (v, nunits - 1);
5787 for (i = nunits - 2; i >= 0; i--)
5788 if (RTVEC_ELT (v, i) != x)
5789 break;
5790
5791 /* If the values are all the same, check to see if we can use one of the
5792 standard constant vectors. */
5793 if (i == -1)
5794 {
5795 if (x == CONST0_RTX (inner))
5796 return CONST0_RTX (mode);
5797 else if (x == CONST1_RTX (inner))
5798 return CONST1_RTX (mode);
5799 else if (x == CONSTM1_RTX (inner))
5800 return CONSTM1_RTX (mode);
5801 }
5802
5803 return gen_rtx_raw_CONST_VECTOR (mode, v);
5804 }
5805
5806 /* Initialise global register information required by all functions. */
5807
5808 void
5809 init_emit_regs (void)
5810 {
5811 int i;
5812 machine_mode mode;
5813 mem_attrs *attrs;
5814
5815 /* Reset register attributes */
5816 reg_attrs_htab->empty ();
5817
5818 /* We need reg_raw_mode, so initialize the modes now. */
5819 init_reg_modes_target ();
5820
5821 /* Assign register numbers to the globally defined register rtx. */
5822 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5823 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5824 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5825 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5826 virtual_incoming_args_rtx =
5827 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5828 virtual_stack_vars_rtx =
5829 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5830 virtual_stack_dynamic_rtx =
5831 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5832 virtual_outgoing_args_rtx =
5833 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5834 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5835 virtual_preferred_stack_boundary_rtx =
5836 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5837
5838 /* Initialize RTL for commonly used hard registers. These are
5839 copied into regno_reg_rtx as we begin to compile each function. */
5840 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5841 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5842
5843 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5844 return_address_pointer_rtx
5845 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5846 #endif
5847
5848 pic_offset_table_rtx = NULL_RTX;
5849 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5850 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5851
5852 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5853 {
5854 mode = (machine_mode) i;
5855 attrs = ggc_cleared_alloc<mem_attrs> ();
5856 attrs->align = BITS_PER_UNIT;
5857 attrs->addrspace = ADDR_SPACE_GENERIC;
5858 if (mode != BLKmode)
5859 {
5860 attrs->size_known_p = true;
5861 attrs->size = GET_MODE_SIZE (mode);
5862 if (STRICT_ALIGNMENT)
5863 attrs->align = GET_MODE_ALIGNMENT (mode);
5864 }
5865 mode_mem_attrs[i] = attrs;
5866 }
5867 }
5868
5869 /* Initialize global machine_mode variables. */
5870
5871 void
5872 init_derived_machine_modes (void)
5873 {
5874 byte_mode = VOIDmode;
5875 word_mode = VOIDmode;
5876
5877 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5878 mode != VOIDmode;
5879 mode = GET_MODE_WIDER_MODE (mode))
5880 {
5881 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5882 && byte_mode == VOIDmode)
5883 byte_mode = mode;
5884
5885 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5886 && word_mode == VOIDmode)
5887 word_mode = mode;
5888 }
5889
5890 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5891 }
5892
5893 /* Create some permanent unique rtl objects shared between all functions. */
5894
5895 void
5896 init_emit_once (void)
5897 {
5898 int i;
5899 machine_mode mode;
5900 machine_mode double_mode;
5901
5902 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5903 CONST_FIXED, and memory attribute hash tables. */
5904 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5905
5906 #if TARGET_SUPPORTS_WIDE_INT
5907 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5908 #endif
5909 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5910
5911 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5912
5913 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5914
5915 #ifdef INIT_EXPANDERS
5916 /* This is to initialize {init|mark|free}_machine_status before the first
5917 call to push_function_context_to. This is needed by the Chill front
5918 end which calls push_function_context_to before the first call to
5919 init_function_start. */
5920 INIT_EXPANDERS;
5921 #endif
5922
5923 /* Create the unique rtx's for certain rtx codes and operand values. */
5924
5925 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5926 tries to use these variables. */
5927 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5928 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5929 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5930
5931 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5932 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5933 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5934 else
5935 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5936
5937 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5938
5939 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5940 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5941 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5942
5943 dconstm1 = dconst1;
5944 dconstm1.sign = 1;
5945
5946 dconsthalf = dconst1;
5947 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5948
5949 for (i = 0; i < 3; i++)
5950 {
5951 const REAL_VALUE_TYPE *const r =
5952 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5953
5954 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5955 mode != VOIDmode;
5956 mode = GET_MODE_WIDER_MODE (mode))
5957 const_tiny_rtx[i][(int) mode] =
5958 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5959
5960 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5961 mode != VOIDmode;
5962 mode = GET_MODE_WIDER_MODE (mode))
5963 const_tiny_rtx[i][(int) mode] =
5964 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5965
5966 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5967
5968 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5969 mode != VOIDmode;
5970 mode = GET_MODE_WIDER_MODE (mode))
5971 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5972
5973 for (mode = MIN_MODE_PARTIAL_INT;
5974 mode <= MAX_MODE_PARTIAL_INT;
5975 mode = (machine_mode)((int)(mode) + 1))
5976 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5977 }
5978
5979 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5980
5981 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5982 mode != VOIDmode;
5983 mode = GET_MODE_WIDER_MODE (mode))
5984 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5985
5986 for (mode = MIN_MODE_PARTIAL_INT;
5987 mode <= MAX_MODE_PARTIAL_INT;
5988 mode = (machine_mode)((int)(mode) + 1))
5989 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5990
5991 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5992 mode != VOIDmode;
5993 mode = GET_MODE_WIDER_MODE (mode))
5994 {
5995 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5996 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5997 }
5998
5999 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
6000 mode != VOIDmode;
6001 mode = GET_MODE_WIDER_MODE (mode))
6002 {
6003 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6004 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6005 }
6006
6007 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
6008 mode != VOIDmode;
6009 mode = GET_MODE_WIDER_MODE (mode))
6010 {
6011 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6012 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6013 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6014 }
6015
6016 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6017 mode != VOIDmode;
6018 mode = GET_MODE_WIDER_MODE (mode))
6019 {
6020 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6021 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6022 }
6023
6024 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6025 mode != VOIDmode;
6026 mode = GET_MODE_WIDER_MODE (mode))
6027 {
6028 FCONST0 (mode).data.high = 0;
6029 FCONST0 (mode).data.low = 0;
6030 FCONST0 (mode).mode = mode;
6031 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6032 FCONST0 (mode), mode);
6033 }
6034
6035 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6036 mode != VOIDmode;
6037 mode = GET_MODE_WIDER_MODE (mode))
6038 {
6039 FCONST0 (mode).data.high = 0;
6040 FCONST0 (mode).data.low = 0;
6041 FCONST0 (mode).mode = mode;
6042 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6043 FCONST0 (mode), mode);
6044 }
6045
6046 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6047 mode != VOIDmode;
6048 mode = GET_MODE_WIDER_MODE (mode))
6049 {
6050 FCONST0 (mode).data.high = 0;
6051 FCONST0 (mode).data.low = 0;
6052 FCONST0 (mode).mode = mode;
6053 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6054 FCONST0 (mode), mode);
6055
6056 /* We store the value 1. */
6057 FCONST1 (mode).data.high = 0;
6058 FCONST1 (mode).data.low = 0;
6059 FCONST1 (mode).mode = mode;
6060 FCONST1 (mode).data
6061 = double_int_one.lshift (GET_MODE_FBIT (mode),
6062 HOST_BITS_PER_DOUBLE_INT,
6063 SIGNED_FIXED_POINT_MODE_P (mode));
6064 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6065 FCONST1 (mode), mode);
6066 }
6067
6068 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6069 mode != VOIDmode;
6070 mode = GET_MODE_WIDER_MODE (mode))
6071 {
6072 FCONST0 (mode).data.high = 0;
6073 FCONST0 (mode).data.low = 0;
6074 FCONST0 (mode).mode = mode;
6075 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6076 FCONST0 (mode), mode);
6077
6078 /* We store the value 1. */
6079 FCONST1 (mode).data.high = 0;
6080 FCONST1 (mode).data.low = 0;
6081 FCONST1 (mode).mode = mode;
6082 FCONST1 (mode).data
6083 = double_int_one.lshift (GET_MODE_FBIT (mode),
6084 HOST_BITS_PER_DOUBLE_INT,
6085 SIGNED_FIXED_POINT_MODE_P (mode));
6086 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6087 FCONST1 (mode), mode);
6088 }
6089
6090 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6091 mode != VOIDmode;
6092 mode = GET_MODE_WIDER_MODE (mode))
6093 {
6094 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6095 }
6096
6097 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6098 mode != VOIDmode;
6099 mode = GET_MODE_WIDER_MODE (mode))
6100 {
6101 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6102 }
6103
6104 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6105 mode != VOIDmode;
6106 mode = GET_MODE_WIDER_MODE (mode))
6107 {
6108 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6109 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6110 }
6111
6112 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6113 mode != VOIDmode;
6114 mode = GET_MODE_WIDER_MODE (mode))
6115 {
6116 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6117 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6118 }
6119
6120 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6121 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6122 const_tiny_rtx[0][i] = const0_rtx;
6123
6124 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6125 if (STORE_FLAG_VALUE == 1)
6126 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6127
6128 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6129 mode != VOIDmode;
6130 mode = GET_MODE_WIDER_MODE (mode))
6131 {
6132 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6133 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6134 }
6135
6136 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6137 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6138 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6139 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6140 }
6141 \f
6142 /* Produce exact duplicate of insn INSN after AFTER.
6143 Care updating of libcall regions if present. */
6144
6145 rtx_insn *
6146 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6147 {
6148 rtx_insn *new_rtx;
6149 rtx link;
6150
6151 switch (GET_CODE (insn))
6152 {
6153 case INSN:
6154 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6155 break;
6156
6157 case JUMP_INSN:
6158 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6159 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6160 break;
6161
6162 case DEBUG_INSN:
6163 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6164 break;
6165
6166 case CALL_INSN:
6167 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6168 if (CALL_INSN_FUNCTION_USAGE (insn))
6169 CALL_INSN_FUNCTION_USAGE (new_rtx)
6170 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6171 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6172 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6173 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6174 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6175 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6176 break;
6177
6178 default:
6179 gcc_unreachable ();
6180 }
6181
6182 /* Update LABEL_NUSES. */
6183 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6184
6185 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6186
6187 /* If the old insn is frame related, then so is the new one. This is
6188 primarily needed for IA-64 unwind info which marks epilogue insns,
6189 which may be duplicated by the basic block reordering code. */
6190 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6191
6192 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6193 will make them. REG_LABEL_TARGETs are created there too, but are
6194 supposed to be sticky, so we copy them. */
6195 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6196 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6197 {
6198 if (GET_CODE (link) == EXPR_LIST)
6199 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6200 copy_insn_1 (XEXP (link, 0)));
6201 else
6202 add_shallow_copy_of_reg_note (new_rtx, link);
6203 }
6204
6205 INSN_CODE (new_rtx) = INSN_CODE (insn);
6206 return new_rtx;
6207 }
6208
6209 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6210 rtx
6211 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6212 {
6213 if (hard_reg_clobbers[mode][regno])
6214 return hard_reg_clobbers[mode][regno];
6215 else
6216 return (hard_reg_clobbers[mode][regno] =
6217 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6218 }
6219
6220 location_t prologue_location;
6221 location_t epilogue_location;
6222
6223 /* Hold current location information and last location information, so the
6224 datastructures are built lazily only when some instructions in given
6225 place are needed. */
6226 static location_t curr_location;
6227
6228 /* Allocate insn location datastructure. */
6229 void
6230 insn_locations_init (void)
6231 {
6232 prologue_location = epilogue_location = 0;
6233 curr_location = UNKNOWN_LOCATION;
6234 }
6235
6236 /* At the end of emit stage, clear current location. */
6237 void
6238 insn_locations_finalize (void)
6239 {
6240 epilogue_location = curr_location;
6241 curr_location = UNKNOWN_LOCATION;
6242 }
6243
6244 /* Set current location. */
6245 void
6246 set_curr_insn_location (location_t location)
6247 {
6248 curr_location = location;
6249 }
6250
6251 /* Get current location. */
6252 location_t
6253 curr_insn_location (void)
6254 {
6255 return curr_location;
6256 }
6257
6258 /* Return lexical scope block insn belongs to. */
6259 tree
6260 insn_scope (const rtx_insn *insn)
6261 {
6262 return LOCATION_BLOCK (INSN_LOCATION (insn));
6263 }
6264
6265 /* Return line number of the statement that produced this insn. */
6266 int
6267 insn_line (const rtx_insn *insn)
6268 {
6269 return LOCATION_LINE (INSN_LOCATION (insn));
6270 }
6271
6272 /* Return source file of the statement that produced this insn. */
6273 const char *
6274 insn_file (const rtx_insn *insn)
6275 {
6276 return LOCATION_FILE (INSN_LOCATION (insn));
6277 }
6278
6279 /* Return expanded location of the statement that produced this insn. */
6280 expanded_location
6281 insn_location (const rtx_insn *insn)
6282 {
6283 return expand_location (INSN_LOCATION (insn));
6284 }
6285
6286 /* Return true if memory model MODEL requires a pre-operation (release-style)
6287 barrier or a post-operation (acquire-style) barrier. While not universal,
6288 this function matches behavior of several targets. */
6289
6290 bool
6291 need_atomic_barrier_p (enum memmodel model, bool pre)
6292 {
6293 switch (model & MEMMODEL_MASK)
6294 {
6295 case MEMMODEL_RELAXED:
6296 case MEMMODEL_CONSUME:
6297 return false;
6298 case MEMMODEL_RELEASE:
6299 case MEMMODEL_SYNC_RELEASE:
6300 return pre;
6301 case MEMMODEL_ACQUIRE:
6302 case MEMMODEL_SYNC_ACQUIRE:
6303 return !pre;
6304 case MEMMODEL_ACQ_REL:
6305 case MEMMODEL_SEQ_CST:
6306 case MEMMODEL_SYNC_SEQ_CST:
6307 return true;
6308 default:
6309 gcc_unreachable ();
6310 }
6311 }
6312 \f
6313 #include "gt-emit-rtl.h"