cfgexpand.c (expand_debug_locations): Encapsulate test for CONST_DOUBLE in macro.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* Middle-to-low level generation of rtx code and insns.
25
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
28
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "vecprim.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
62
63 struct target_rtl default_target_rtl;
64 #if SWITCHABLE_TARGET
65 struct target_rtl *this_target_rtl = &default_target_rtl;
66 #endif
67
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69
70 /* Commonly used modes. */
71
72 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
73 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
74 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* A hash table storing CONST_INTs whose absolute value is greater
126 than MAX_SAVED_CONST_INT. */
127
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t const_int_htab;
130
131 /* A hash table storing memory attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
133 htab_t mem_attrs_htab;
134
135 /* A hash table storing register attribute structures. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
137 htab_t reg_attrs_htab;
138
139 /* A hash table storing all CONST_DOUBLEs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
141 htab_t const_double_htab;
142
143 /* A hash table storing all CONST_FIXEDs. */
144 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
145 htab_t const_fixed_htab;
146
147 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
148 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
149 #define first_label_num (crtl->emit.x_first_label_num)
150
151 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
152 static void set_used_decls (tree);
153 static void mark_label_nuses (rtx);
154 static hashval_t const_int_htab_hash (const void *);
155 static int const_int_htab_eq (const void *, const void *);
156 static hashval_t const_double_htab_hash (const void *);
157 static int const_double_htab_eq (const void *, const void *);
158 static rtx lookup_const_double (rtx);
159 static hashval_t const_fixed_htab_hash (const void *);
160 static int const_fixed_htab_eq (const void *, const void *);
161 static rtx lookup_const_fixed (rtx);
162 static hashval_t mem_attrs_htab_hash (const void *);
163 static int mem_attrs_htab_eq (const void *, const void *);
164 static hashval_t reg_attrs_htab_hash (const void *);
165 static int reg_attrs_htab_eq (const void *, const void *);
166 static reg_attrs *get_reg_attrs (tree, int);
167 static rtx gen_const_vector (enum machine_mode, int);
168 static void copy_rtx_if_shared_1 (rtx *orig);
169
170 /* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172 int split_branch_probability = -1;
173 \f
174 /* Returns a hash code for X (which is a really a CONST_INT). */
175
176 static hashval_t
177 const_int_htab_hash (const void *x)
178 {
179 return (hashval_t) INTVAL ((const_rtx) x);
180 }
181
182 /* Returns nonzero if the value represented by X (which is really a
183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
185
186 static int
187 const_int_htab_eq (const void *x, const void *y)
188 {
189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
190 }
191
192 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
193 static hashval_t
194 const_double_htab_hash (const void *x)
195 {
196 const_rtx const value = (const_rtx) x;
197 hashval_t h;
198
199 if (GET_MODE (value) == VOIDmode)
200 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
201 else
202 {
203 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
204 /* MODE is used in the comparison, so it should be in the hash. */
205 h ^= GET_MODE (value);
206 }
207 return h;
208 }
209
210 /* Returns nonzero if the value represented by X (really a ...)
211 is the same as that represented by Y (really a ...) */
212 static int
213 const_double_htab_eq (const void *x, const void *y)
214 {
215 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
216
217 if (GET_MODE (a) != GET_MODE (b))
218 return 0;
219 if (GET_MODE (a) == VOIDmode)
220 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
221 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
222 else
223 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
224 CONST_DOUBLE_REAL_VALUE (b));
225 }
226
227 /* Returns a hash code for X (which is really a CONST_FIXED). */
228
229 static hashval_t
230 const_fixed_htab_hash (const void *x)
231 {
232 const_rtx const value = (const_rtx) x;
233 hashval_t h;
234
235 h = fixed_hash (CONST_FIXED_VALUE (value));
236 /* MODE is used in the comparison, so it should be in the hash. */
237 h ^= GET_MODE (value);
238 return h;
239 }
240
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...). */
243
244 static int
245 const_fixed_htab_eq (const void *x, const void *y)
246 {
247 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
248
249 if (GET_MODE (a) != GET_MODE (b))
250 return 0;
251 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
252 }
253
254 /* Returns a hash code for X (which is a really a mem_attrs *). */
255
256 static hashval_t
257 mem_attrs_htab_hash (const void *x)
258 {
259 const mem_attrs *const p = (const mem_attrs *) x;
260
261 return (p->alias ^ (p->align * 1000)
262 ^ (p->addrspace * 4000)
263 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
264 ^ ((p->size_known_p ? p->size : 0) * 2500000)
265 ^ (size_t) iterative_hash_expr (p->expr, 0));
266 }
267
268 /* Return true if the given memory attributes are equal. */
269
270 static bool
271 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
272 {
273 return (p->alias == q->alias
274 && p->offset_known_p == q->offset_known_p
275 && (!p->offset_known_p || p->offset == q->offset)
276 && p->size_known_p == q->size_known_p
277 && (!p->size_known_p || p->size == q->size)
278 && p->align == q->align
279 && p->addrspace == q->addrspace
280 && (p->expr == q->expr
281 || (p->expr != NULL_TREE && q->expr != NULL_TREE
282 && operand_equal_p (p->expr, q->expr, 0))));
283 }
284
285 /* Returns nonzero if the value represented by X (which is really a
286 mem_attrs *) is the same as that given by Y (which is also really a
287 mem_attrs *). */
288
289 static int
290 mem_attrs_htab_eq (const void *x, const void *y)
291 {
292 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
293 }
294
295 /* Set MEM's memory attributes so that they are the same as ATTRS. */
296
297 static void
298 set_mem_attrs (rtx mem, mem_attrs *attrs)
299 {
300 void **slot;
301
302 /* If everything is the default, we can just clear the attributes. */
303 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
304 {
305 MEM_ATTRS (mem) = 0;
306 return;
307 }
308
309 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
310 if (*slot == 0)
311 {
312 *slot = ggc_alloc_mem_attrs ();
313 memcpy (*slot, attrs, sizeof (mem_attrs));
314 }
315
316 MEM_ATTRS (mem) = (mem_attrs *) *slot;
317 }
318
319 /* Returns a hash code for X (which is a really a reg_attrs *). */
320
321 static hashval_t
322 reg_attrs_htab_hash (const void *x)
323 {
324 const reg_attrs *const p = (const reg_attrs *) x;
325
326 return ((p->offset * 1000) ^ (intptr_t) p->decl);
327 }
328
329 /* Returns nonzero if the value represented by X (which is really a
330 reg_attrs *) is the same as that given by Y (which is also really a
331 reg_attrs *). */
332
333 static int
334 reg_attrs_htab_eq (const void *x, const void *y)
335 {
336 const reg_attrs *const p = (const reg_attrs *) x;
337 const reg_attrs *const q = (const reg_attrs *) y;
338
339 return (p->decl == q->decl && p->offset == q->offset);
340 }
341 /* Allocate a new reg_attrs structure and insert it into the hash table if
342 one identical to it is not already in the table. We are doing this for
343 MEM of mode MODE. */
344
345 static reg_attrs *
346 get_reg_attrs (tree decl, int offset)
347 {
348 reg_attrs attrs;
349 void **slot;
350
351 /* If everything is the default, we can just return zero. */
352 if (decl == 0 && offset == 0)
353 return 0;
354
355 attrs.decl = decl;
356 attrs.offset = offset;
357
358 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
359 if (*slot == 0)
360 {
361 *slot = ggc_alloc_reg_attrs ();
362 memcpy (*slot, &attrs, sizeof (reg_attrs));
363 }
364
365 return (reg_attrs *) *slot;
366 }
367
368
369 #if !HAVE_blockage
370 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
371 across this insn. */
372
373 rtx
374 gen_blockage (void)
375 {
376 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
377 MEM_VOLATILE_P (x) = true;
378 return x;
379 }
380 #endif
381
382
383 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
384 don't attempt to share with the various global pieces of rtl (such as
385 frame_pointer_rtx). */
386
387 rtx
388 gen_raw_REG (enum machine_mode mode, int regno)
389 {
390 rtx x = gen_rtx_raw_REG (mode, regno);
391 ORIGINAL_REGNO (x) = regno;
392 return x;
393 }
394
395 /* There are some RTL codes that require special attention; the generation
396 functions do the raw handling. If you add to this list, modify
397 special_rtx in gengenrtl.c as well. */
398
399 rtx
400 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
401 {
402 void **slot;
403
404 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
405 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
406
407 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
408 if (const_true_rtx && arg == STORE_FLAG_VALUE)
409 return const_true_rtx;
410 #endif
411
412 /* Look up the CONST_INT in the hash table. */
413 slot = htab_find_slot_with_hash (const_int_htab, &arg,
414 (hashval_t) arg, INSERT);
415 if (*slot == 0)
416 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
417
418 return (rtx) *slot;
419 }
420
421 rtx
422 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
423 {
424 return GEN_INT (trunc_int_for_mode (c, mode));
425 }
426
427 /* CONST_DOUBLEs might be created from pairs of integers, or from
428 REAL_VALUE_TYPEs. Also, their length is known only at run time,
429 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
430
431 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
432 hash table. If so, return its counterpart; otherwise add it
433 to the hash table and return it. */
434 static rtx
435 lookup_const_double (rtx real)
436 {
437 void **slot = htab_find_slot (const_double_htab, real, INSERT);
438 if (*slot == 0)
439 *slot = real;
440
441 return (rtx) *slot;
442 }
443
444 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
445 VALUE in mode MODE. */
446 rtx
447 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
448 {
449 rtx real = rtx_alloc (CONST_DOUBLE);
450 PUT_MODE (real, mode);
451
452 real->u.rv = value;
453
454 return lookup_const_double (real);
455 }
456
457 /* Determine whether FIXED, a CONST_FIXED, already exists in the
458 hash table. If so, return its counterpart; otherwise add it
459 to the hash table and return it. */
460
461 static rtx
462 lookup_const_fixed (rtx fixed)
463 {
464 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
465 if (*slot == 0)
466 *slot = fixed;
467
468 return (rtx) *slot;
469 }
470
471 /* Return a CONST_FIXED rtx for a fixed-point value specified by
472 VALUE in mode MODE. */
473
474 rtx
475 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
476 {
477 rtx fixed = rtx_alloc (CONST_FIXED);
478 PUT_MODE (fixed, mode);
479
480 fixed->u.fv = value;
481
482 return lookup_const_fixed (fixed);
483 }
484
485 /* Constructs double_int from rtx CST. */
486
487 double_int
488 rtx_to_double_int (const_rtx cst)
489 {
490 double_int r;
491
492 if (CONST_INT_P (cst))
493 r = shwi_to_double_int (INTVAL (cst));
494 else if (CONST_DOUBLE_AS_INT_P (cst))
495 {
496 r.low = CONST_DOUBLE_LOW (cst);
497 r.high = CONST_DOUBLE_HIGH (cst);
498 }
499 else
500 gcc_unreachable ();
501
502 return r;
503 }
504
505
506 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
507 a double_int. */
508
509 rtx
510 immed_double_int_const (double_int i, enum machine_mode mode)
511 {
512 return immed_double_const (i.low, i.high, mode);
513 }
514
515 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
516 of ints: I0 is the low-order word and I1 is the high-order word.
517 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
518 implied upper bits are copies of the high bit of i1. The value
519 itself is neither signed nor unsigned. Do not use this routine for
520 non-integer modes; convert to REAL_VALUE_TYPE and use
521 CONST_DOUBLE_FROM_REAL_VALUE. */
522
523 rtx
524 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
525 {
526 rtx value;
527 unsigned int i;
528
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
531
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) If the value of the integer fits into HOST_WIDE_INT anyway
535 (i.e., i1 consists only from copies of the sign bit, and sign
536 of i0 and i1 are the same), then we return a CONST_INT for i0.
537 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
538 if (mode != VOIDmode)
539 {
540 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
541 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
542 /* We can get a 0 for an error mark. */
543 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
545
546 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
547 return gen_int_mode (i0, mode);
548 }
549
550 /* If this integer fits in one word, return a CONST_INT. */
551 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
552 return GEN_INT (i0);
553
554 /* We use VOIDmode for integers. */
555 value = rtx_alloc (CONST_DOUBLE);
556 PUT_MODE (value, VOIDmode);
557
558 CONST_DOUBLE_LOW (value) = i0;
559 CONST_DOUBLE_HIGH (value) = i1;
560
561 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
562 XWINT (value, i) = 0;
563
564 return lookup_const_double (value);
565 }
566
567 rtx
568 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
569 {
570 /* In case the MD file explicitly references the frame pointer, have
571 all such references point to the same frame pointer. This is
572 used during frame pointer elimination to distinguish the explicit
573 references to these registers from pseudos that happened to be
574 assigned to them.
575
576 If we have eliminated the frame pointer or arg pointer, we will
577 be using it as a normal register, for example as a spill
578 register. In such cases, we might be accessing it in a mode that
579 is not Pmode and therefore cannot use the pre-allocated rtx.
580
581 Also don't do this when we are making new REGs in reload, since
582 we don't want to get confused with the real pointers. */
583
584 if (mode == Pmode && !reload_in_progress)
585 {
586 if (regno == FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return frame_pointer_rtx;
589 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
590 if (regno == HARD_FRAME_POINTER_REGNUM
591 && (!reload_completed || frame_pointer_needed))
592 return hard_frame_pointer_rtx;
593 #endif
594 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
595 if (regno == ARG_POINTER_REGNUM)
596 return arg_pointer_rtx;
597 #endif
598 #ifdef RETURN_ADDRESS_POINTER_REGNUM
599 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
600 return return_address_pointer_rtx;
601 #endif
602 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
603 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
604 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
605 return pic_offset_table_rtx;
606 if (regno == STACK_POINTER_REGNUM)
607 return stack_pointer_rtx;
608 }
609
610 #if 0
611 /* If the per-function register table has been set up, try to re-use
612 an existing entry in that table to avoid useless generation of RTL.
613
614 This code is disabled for now until we can fix the various backends
615 which depend on having non-shared hard registers in some cases. Long
616 term we want to re-enable this code as it can significantly cut down
617 on the amount of useless RTL that gets generated.
618
619 We'll also need to fix some code that runs after reload that wants to
620 set ORIGINAL_REGNO. */
621
622 if (cfun
623 && cfun->emit
624 && regno_reg_rtx
625 && regno < FIRST_PSEUDO_REGISTER
626 && reg_raw_mode[regno] == mode)
627 return regno_reg_rtx[regno];
628 #endif
629
630 return gen_raw_REG (mode, regno);
631 }
632
633 rtx
634 gen_rtx_MEM (enum machine_mode mode, rtx addr)
635 {
636 rtx rt = gen_rtx_raw_MEM (mode, addr);
637
638 /* This field is not cleared by the mere allocation of the rtx, so
639 we clear it here. */
640 MEM_ATTRS (rt) = 0;
641
642 return rt;
643 }
644
645 /* Generate a memory referring to non-trapping constant memory. */
646
647 rtx
648 gen_const_mem (enum machine_mode mode, rtx addr)
649 {
650 rtx mem = gen_rtx_MEM (mode, addr);
651 MEM_READONLY_P (mem) = 1;
652 MEM_NOTRAP_P (mem) = 1;
653 return mem;
654 }
655
656 /* Generate a MEM referring to fixed portions of the frame, e.g., register
657 save areas. */
658
659 rtx
660 gen_frame_mem (enum machine_mode mode, rtx addr)
661 {
662 rtx mem = gen_rtx_MEM (mode, addr);
663 MEM_NOTRAP_P (mem) = 1;
664 set_mem_alias_set (mem, get_frame_alias_set ());
665 return mem;
666 }
667
668 /* Generate a MEM referring to a temporary use of the stack, not part
669 of the fixed stack frame. For example, something which is pushed
670 by a target splitter. */
671 rtx
672 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
673 {
674 rtx mem = gen_rtx_MEM (mode, addr);
675 MEM_NOTRAP_P (mem) = 1;
676 if (!cfun->calls_alloca)
677 set_mem_alias_set (mem, get_frame_alias_set ());
678 return mem;
679 }
680
681 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
682 this construct would be valid, and false otherwise. */
683
684 bool
685 validate_subreg (enum machine_mode omode, enum machine_mode imode,
686 const_rtx reg, unsigned int offset)
687 {
688 unsigned int isize = GET_MODE_SIZE (imode);
689 unsigned int osize = GET_MODE_SIZE (omode);
690
691 /* All subregs must be aligned. */
692 if (offset % osize != 0)
693 return false;
694
695 /* The subreg offset cannot be outside the inner object. */
696 if (offset >= isize)
697 return false;
698
699 /* ??? This should not be here. Temporarily continue to allow word_mode
700 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
701 Generally, backends are doing something sketchy but it'll take time to
702 fix them all. */
703 if (omode == word_mode)
704 ;
705 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
706 is the culprit here, and not the backends. */
707 else if (osize >= UNITS_PER_WORD && isize >= osize)
708 ;
709 /* Allow component subregs of complex and vector. Though given the below
710 extraction rules, it's not always clear what that means. */
711 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
712 && GET_MODE_INNER (imode) == omode)
713 ;
714 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
715 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
716 represent this. It's questionable if this ought to be represented at
717 all -- why can't this all be hidden in post-reload splitters that make
718 arbitrarily mode changes to the registers themselves. */
719 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
720 ;
721 /* Subregs involving floating point modes are not allowed to
722 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
723 (subreg:SI (reg:DF) 0) isn't. */
724 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
725 {
726 if (isize != osize)
727 return false;
728 }
729
730 /* Paradoxical subregs must have offset zero. */
731 if (osize > isize)
732 return offset == 0;
733
734 /* This is a normal subreg. Verify that the offset is representable. */
735
736 /* For hard registers, we already have most of these rules collected in
737 subreg_offset_representable_p. */
738 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
739 {
740 unsigned int regno = REGNO (reg);
741
742 #ifdef CANNOT_CHANGE_MODE_CLASS
743 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
744 && GET_MODE_INNER (imode) == omode)
745 ;
746 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
747 return false;
748 #endif
749
750 return subreg_offset_representable_p (regno, imode, offset, omode);
751 }
752
753 /* For pseudo registers, we want most of the same checks. Namely:
754 If the register no larger than a word, the subreg must be lowpart.
755 If the register is larger than a word, the subreg must be the lowpart
756 of a subword. A subreg does *not* perform arbitrary bit extraction.
757 Given that we've already checked mode/offset alignment, we only have
758 to check subword subregs here. */
759 if (osize < UNITS_PER_WORD)
760 {
761 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
762 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
763 if (offset % UNITS_PER_WORD != low_off)
764 return false;
765 }
766 return true;
767 }
768
769 rtx
770 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
771 {
772 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
773 return gen_rtx_raw_SUBREG (mode, reg, offset);
774 }
775
776 /* Generate a SUBREG representing the least-significant part of REG if MODE
777 is smaller than mode of REG, otherwise paradoxical SUBREG. */
778
779 rtx
780 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
781 {
782 enum machine_mode inmode;
783
784 inmode = GET_MODE (reg);
785 if (inmode == VOIDmode)
786 inmode = mode;
787 return gen_rtx_SUBREG (mode, reg,
788 subreg_lowpart_offset (mode, inmode));
789 }
790 \f
791
792 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
793
794 rtvec
795 gen_rtvec (int n, ...)
796 {
797 int i;
798 rtvec rt_val;
799 va_list p;
800
801 va_start (p, n);
802
803 /* Don't allocate an empty rtvec... */
804 if (n == 0)
805 {
806 va_end (p);
807 return NULL_RTVEC;
808 }
809
810 rt_val = rtvec_alloc (n);
811
812 for (i = 0; i < n; i++)
813 rt_val->elem[i] = va_arg (p, rtx);
814
815 va_end (p);
816 return rt_val;
817 }
818
819 rtvec
820 gen_rtvec_v (int n, rtx *argp)
821 {
822 int i;
823 rtvec rt_val;
824
825 /* Don't allocate an empty rtvec... */
826 if (n == 0)
827 return NULL_RTVEC;
828
829 rt_val = rtvec_alloc (n);
830
831 for (i = 0; i < n; i++)
832 rt_val->elem[i] = *argp++;
833
834 return rt_val;
835 }
836 \f
837 /* Return the number of bytes between the start of an OUTER_MODE
838 in-memory value and the start of an INNER_MODE in-memory value,
839 given that the former is a lowpart of the latter. It may be a
840 paradoxical lowpart, in which case the offset will be negative
841 on big-endian targets. */
842
843 int
844 byte_lowpart_offset (enum machine_mode outer_mode,
845 enum machine_mode inner_mode)
846 {
847 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
848 return subreg_lowpart_offset (outer_mode, inner_mode);
849 else
850 return -subreg_lowpart_offset (inner_mode, outer_mode);
851 }
852 \f
853 /* Generate a REG rtx for a new pseudo register of mode MODE.
854 This pseudo is assigned the next sequential register number. */
855
856 rtx
857 gen_reg_rtx (enum machine_mode mode)
858 {
859 rtx val;
860 unsigned int align = GET_MODE_ALIGNMENT (mode);
861
862 gcc_assert (can_create_pseudo_p ());
863
864 /* If a virtual register with bigger mode alignment is generated,
865 increase stack alignment estimation because it might be spilled
866 to stack later. */
867 if (SUPPORTS_STACK_ALIGNMENT
868 && crtl->stack_alignment_estimated < align
869 && !crtl->stack_realign_processed)
870 {
871 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
872 if (crtl->stack_alignment_estimated < min_align)
873 crtl->stack_alignment_estimated = min_align;
874 }
875
876 if (generating_concat_p
877 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
878 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
879 {
880 /* For complex modes, don't make a single pseudo.
881 Instead, make a CONCAT of two pseudos.
882 This allows noncontiguous allocation of the real and imaginary parts,
883 which makes much better code. Besides, allocating DCmode
884 pseudos overstrains reload on some machines like the 386. */
885 rtx realpart, imagpart;
886 enum machine_mode partmode = GET_MODE_INNER (mode);
887
888 realpart = gen_reg_rtx (partmode);
889 imagpart = gen_reg_rtx (partmode);
890 return gen_rtx_CONCAT (mode, realpart, imagpart);
891 }
892
893 /* Make sure regno_pointer_align, and regno_reg_rtx are large
894 enough to have an element for this pseudo reg number. */
895
896 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
897 {
898 int old_size = crtl->emit.regno_pointer_align_length;
899 char *tmp;
900 rtx *new1;
901
902 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
903 memset (tmp + old_size, 0, old_size);
904 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
905
906 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
907 memset (new1 + old_size, 0, old_size * sizeof (rtx));
908 regno_reg_rtx = new1;
909
910 crtl->emit.regno_pointer_align_length = old_size * 2;
911 }
912
913 val = gen_raw_REG (mode, reg_rtx_no);
914 regno_reg_rtx[reg_rtx_no++] = val;
915 return val;
916 }
917
918 /* Update NEW with the same attributes as REG, but with OFFSET added
919 to the REG_OFFSET. */
920
921 static void
922 update_reg_offset (rtx new_rtx, rtx reg, int offset)
923 {
924 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
925 REG_OFFSET (reg) + offset);
926 }
927
928 /* Generate a register with same attributes as REG, but with OFFSET
929 added to the REG_OFFSET. */
930
931 rtx
932 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
933 int offset)
934 {
935 rtx new_rtx = gen_rtx_REG (mode, regno);
936
937 update_reg_offset (new_rtx, reg, offset);
938 return new_rtx;
939 }
940
941 /* Generate a new pseudo-register with the same attributes as REG, but
942 with OFFSET added to the REG_OFFSET. */
943
944 rtx
945 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
946 {
947 rtx new_rtx = gen_reg_rtx (mode);
948
949 update_reg_offset (new_rtx, reg, offset);
950 return new_rtx;
951 }
952
953 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
954 new register is a (possibly paradoxical) lowpart of the old one. */
955
956 void
957 adjust_reg_mode (rtx reg, enum machine_mode mode)
958 {
959 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
960 PUT_MODE (reg, mode);
961 }
962
963 /* Copy REG's attributes from X, if X has any attributes. If REG and X
964 have different modes, REG is a (possibly paradoxical) lowpart of X. */
965
966 void
967 set_reg_attrs_from_value (rtx reg, rtx x)
968 {
969 int offset;
970 bool can_be_reg_pointer = true;
971
972 /* Don't call mark_reg_pointer for incompatible pointer sign
973 extension. */
974 while (GET_CODE (x) == SIGN_EXTEND
975 || GET_CODE (x) == ZERO_EXTEND
976 || GET_CODE (x) == TRUNCATE
977 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
978 {
979 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
980 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
981 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
982 can_be_reg_pointer = false;
983 #endif
984 x = XEXP (x, 0);
985 }
986
987 /* Hard registers can be reused for multiple purposes within the same
988 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
989 on them is wrong. */
990 if (HARD_REGISTER_P (reg))
991 return;
992
993 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
994 if (MEM_P (x))
995 {
996 if (MEM_OFFSET_KNOWN_P (x))
997 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
998 MEM_OFFSET (x) + offset);
999 if (can_be_reg_pointer && MEM_POINTER (x))
1000 mark_reg_pointer (reg, 0);
1001 }
1002 else if (REG_P (x))
1003 {
1004 if (REG_ATTRS (x))
1005 update_reg_offset (reg, x, offset);
1006 if (can_be_reg_pointer && REG_POINTER (x))
1007 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1008 }
1009 }
1010
1011 /* Generate a REG rtx for a new pseudo register, copying the mode
1012 and attributes from X. */
1013
1014 rtx
1015 gen_reg_rtx_and_attrs (rtx x)
1016 {
1017 rtx reg = gen_reg_rtx (GET_MODE (x));
1018 set_reg_attrs_from_value (reg, x);
1019 return reg;
1020 }
1021
1022 /* Set the register attributes for registers contained in PARM_RTX.
1023 Use needed values from memory attributes of MEM. */
1024
1025 void
1026 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1027 {
1028 if (REG_P (parm_rtx))
1029 set_reg_attrs_from_value (parm_rtx, mem);
1030 else if (GET_CODE (parm_rtx) == PARALLEL)
1031 {
1032 /* Check for a NULL entry in the first slot, used to indicate that the
1033 parameter goes both on the stack and in registers. */
1034 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1035 for (; i < XVECLEN (parm_rtx, 0); i++)
1036 {
1037 rtx x = XVECEXP (parm_rtx, 0, i);
1038 if (REG_P (XEXP (x, 0)))
1039 REG_ATTRS (XEXP (x, 0))
1040 = get_reg_attrs (MEM_EXPR (mem),
1041 INTVAL (XEXP (x, 1)));
1042 }
1043 }
1044 }
1045
1046 /* Set the REG_ATTRS for registers in value X, given that X represents
1047 decl T. */
1048
1049 void
1050 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1051 {
1052 if (GET_CODE (x) == SUBREG)
1053 {
1054 gcc_assert (subreg_lowpart_p (x));
1055 x = SUBREG_REG (x);
1056 }
1057 if (REG_P (x))
1058 REG_ATTRS (x)
1059 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1060 DECL_MODE (t)));
1061 if (GET_CODE (x) == CONCAT)
1062 {
1063 if (REG_P (XEXP (x, 0)))
1064 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1065 if (REG_P (XEXP (x, 1)))
1066 REG_ATTRS (XEXP (x, 1))
1067 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1068 }
1069 if (GET_CODE (x) == PARALLEL)
1070 {
1071 int i, start;
1072
1073 /* Check for a NULL entry, used to indicate that the parameter goes
1074 both on the stack and in registers. */
1075 if (XEXP (XVECEXP (x, 0, 0), 0))
1076 start = 0;
1077 else
1078 start = 1;
1079
1080 for (i = start; i < XVECLEN (x, 0); i++)
1081 {
1082 rtx y = XVECEXP (x, 0, i);
1083 if (REG_P (XEXP (y, 0)))
1084 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1085 }
1086 }
1087 }
1088
1089 /* Assign the RTX X to declaration T. */
1090
1091 void
1092 set_decl_rtl (tree t, rtx x)
1093 {
1094 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1095 if (x)
1096 set_reg_attrs_for_decl_rtl (t, x);
1097 }
1098
1099 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1100 if the ABI requires the parameter to be passed by reference. */
1101
1102 void
1103 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1104 {
1105 DECL_INCOMING_RTL (t) = x;
1106 if (x && !by_reference_p)
1107 set_reg_attrs_for_decl_rtl (t, x);
1108 }
1109
1110 /* Identify REG (which may be a CONCAT) as a user register. */
1111
1112 void
1113 mark_user_reg (rtx reg)
1114 {
1115 if (GET_CODE (reg) == CONCAT)
1116 {
1117 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1118 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1119 }
1120 else
1121 {
1122 gcc_assert (REG_P (reg));
1123 REG_USERVAR_P (reg) = 1;
1124 }
1125 }
1126
1127 /* Identify REG as a probable pointer register and show its alignment
1128 as ALIGN, if nonzero. */
1129
1130 void
1131 mark_reg_pointer (rtx reg, int align)
1132 {
1133 if (! REG_POINTER (reg))
1134 {
1135 REG_POINTER (reg) = 1;
1136
1137 if (align)
1138 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1139 }
1140 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1141 /* We can no-longer be sure just how aligned this pointer is. */
1142 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1143 }
1144
1145 /* Return 1 plus largest pseudo reg number used in the current function. */
1146
1147 int
1148 max_reg_num (void)
1149 {
1150 return reg_rtx_no;
1151 }
1152
1153 /* Return 1 + the largest label number used so far in the current function. */
1154
1155 int
1156 max_label_num (void)
1157 {
1158 return label_num;
1159 }
1160
1161 /* Return first label number used in this function (if any were used). */
1162
1163 int
1164 get_first_label_num (void)
1165 {
1166 return first_label_num;
1167 }
1168
1169 /* If the rtx for label was created during the expansion of a nested
1170 function, then first_label_num won't include this label number.
1171 Fix this now so that array indices work later. */
1172
1173 void
1174 maybe_set_first_label_num (rtx x)
1175 {
1176 if (CODE_LABEL_NUMBER (x) < first_label_num)
1177 first_label_num = CODE_LABEL_NUMBER (x);
1178 }
1179 \f
1180 /* Return a value representing some low-order bits of X, where the number
1181 of low-order bits is given by MODE. Note that no conversion is done
1182 between floating-point and fixed-point values, rather, the bit
1183 representation is returned.
1184
1185 This function handles the cases in common between gen_lowpart, below,
1186 and two variants in cse.c and combine.c. These are the cases that can
1187 be safely handled at all points in the compilation.
1188
1189 If this is not a case we can handle, return 0. */
1190
1191 rtx
1192 gen_lowpart_common (enum machine_mode mode, rtx x)
1193 {
1194 int msize = GET_MODE_SIZE (mode);
1195 int xsize;
1196 int offset = 0;
1197 enum machine_mode innermode;
1198
1199 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1200 so we have to make one up. Yuk. */
1201 innermode = GET_MODE (x);
1202 if (CONST_INT_P (x)
1203 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1204 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1205 else if (innermode == VOIDmode)
1206 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1207
1208 xsize = GET_MODE_SIZE (innermode);
1209
1210 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1211
1212 if (innermode == mode)
1213 return x;
1214
1215 /* MODE must occupy no more words than the mode of X. */
1216 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1217 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1218 return 0;
1219
1220 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1221 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1222 return 0;
1223
1224 offset = subreg_lowpart_offset (mode, innermode);
1225
1226 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1227 && (GET_MODE_CLASS (mode) == MODE_INT
1228 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1229 {
1230 /* If we are getting the low-order part of something that has been
1231 sign- or zero-extended, we can either just use the object being
1232 extended or make a narrower extension. If we want an even smaller
1233 piece than the size of the object being extended, call ourselves
1234 recursively.
1235
1236 This case is used mostly by combine and cse. */
1237
1238 if (GET_MODE (XEXP (x, 0)) == mode)
1239 return XEXP (x, 0);
1240 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1241 return gen_lowpart_common (mode, XEXP (x, 0));
1242 else if (msize < xsize)
1243 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1244 }
1245 else if (GET_CODE (x) == SUBREG || REG_P (x)
1246 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1247 || CONST_DOUBLE_P (x) || CONST_INT_P (x))
1248 return simplify_gen_subreg (mode, x, innermode, offset);
1249
1250 /* Otherwise, we can't do this. */
1251 return 0;
1252 }
1253 \f
1254 rtx
1255 gen_highpart (enum machine_mode mode, rtx x)
1256 {
1257 unsigned int msize = GET_MODE_SIZE (mode);
1258 rtx result;
1259
1260 /* This case loses if X is a subreg. To catch bugs early,
1261 complain if an invalid MODE is used even in other cases. */
1262 gcc_assert (msize <= UNITS_PER_WORD
1263 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1264
1265 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1266 subreg_highpart_offset (mode, GET_MODE (x)));
1267 gcc_assert (result);
1268
1269 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1270 the target if we have a MEM. gen_highpart must return a valid operand,
1271 emitting code if necessary to do so. */
1272 if (MEM_P (result))
1273 {
1274 result = validize_mem (result);
1275 gcc_assert (result);
1276 }
1277
1278 return result;
1279 }
1280
1281 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1282 be VOIDmode constant. */
1283 rtx
1284 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1285 {
1286 if (GET_MODE (exp) != VOIDmode)
1287 {
1288 gcc_assert (GET_MODE (exp) == innermode);
1289 return gen_highpart (outermode, exp);
1290 }
1291 return simplify_gen_subreg (outermode, exp, innermode,
1292 subreg_highpart_offset (outermode, innermode));
1293 }
1294
1295 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1296
1297 unsigned int
1298 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1299 {
1300 unsigned int offset = 0;
1301 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1302
1303 if (difference > 0)
1304 {
1305 if (WORDS_BIG_ENDIAN)
1306 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1307 if (BYTES_BIG_ENDIAN)
1308 offset += difference % UNITS_PER_WORD;
1309 }
1310
1311 return offset;
1312 }
1313
1314 /* Return offset in bytes to get OUTERMODE high part
1315 of the value in mode INNERMODE stored in memory in target format. */
1316 unsigned int
1317 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1318 {
1319 unsigned int offset = 0;
1320 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1321
1322 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1323
1324 if (difference > 0)
1325 {
1326 if (! WORDS_BIG_ENDIAN)
1327 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1328 if (! BYTES_BIG_ENDIAN)
1329 offset += difference % UNITS_PER_WORD;
1330 }
1331
1332 return offset;
1333 }
1334
1335 /* Return 1 iff X, assumed to be a SUBREG,
1336 refers to the least significant part of its containing reg.
1337 If X is not a SUBREG, always return 1 (it is its own low part!). */
1338
1339 int
1340 subreg_lowpart_p (const_rtx x)
1341 {
1342 if (GET_CODE (x) != SUBREG)
1343 return 1;
1344 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1345 return 0;
1346
1347 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1348 == SUBREG_BYTE (x));
1349 }
1350
1351 /* Return true if X is a paradoxical subreg, false otherwise. */
1352 bool
1353 paradoxical_subreg_p (const_rtx x)
1354 {
1355 if (GET_CODE (x) != SUBREG)
1356 return false;
1357 return (GET_MODE_PRECISION (GET_MODE (x))
1358 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1359 }
1360 \f
1361 /* Return subword OFFSET of operand OP.
1362 The word number, OFFSET, is interpreted as the word number starting
1363 at the low-order address. OFFSET 0 is the low-order word if not
1364 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1365
1366 If we cannot extract the required word, we return zero. Otherwise,
1367 an rtx corresponding to the requested word will be returned.
1368
1369 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1370 reload has completed, a valid address will always be returned. After
1371 reload, if a valid address cannot be returned, we return zero.
1372
1373 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1374 it is the responsibility of the caller.
1375
1376 MODE is the mode of OP in case it is a CONST_INT.
1377
1378 ??? This is still rather broken for some cases. The problem for the
1379 moment is that all callers of this thing provide no 'goal mode' to
1380 tell us to work with. This exists because all callers were written
1381 in a word based SUBREG world.
1382 Now use of this function can be deprecated by simplify_subreg in most
1383 cases.
1384 */
1385
1386 rtx
1387 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1388 {
1389 if (mode == VOIDmode)
1390 mode = GET_MODE (op);
1391
1392 gcc_assert (mode != VOIDmode);
1393
1394 /* If OP is narrower than a word, fail. */
1395 if (mode != BLKmode
1396 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1397 return 0;
1398
1399 /* If we want a word outside OP, return zero. */
1400 if (mode != BLKmode
1401 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1402 return const0_rtx;
1403
1404 /* Form a new MEM at the requested address. */
1405 if (MEM_P (op))
1406 {
1407 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1408
1409 if (! validate_address)
1410 return new_rtx;
1411
1412 else if (reload_completed)
1413 {
1414 if (! strict_memory_address_addr_space_p (word_mode,
1415 XEXP (new_rtx, 0),
1416 MEM_ADDR_SPACE (op)))
1417 return 0;
1418 }
1419 else
1420 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1421 }
1422
1423 /* Rest can be handled by simplify_subreg. */
1424 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1425 }
1426
1427 /* Similar to `operand_subword', but never return 0. If we can't
1428 extract the required subword, put OP into a register and try again.
1429 The second attempt must succeed. We always validate the address in
1430 this case.
1431
1432 MODE is the mode of OP, in case it is CONST_INT. */
1433
1434 rtx
1435 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1436 {
1437 rtx result = operand_subword (op, offset, 1, mode);
1438
1439 if (result)
1440 return result;
1441
1442 if (mode != BLKmode && mode != VOIDmode)
1443 {
1444 /* If this is a register which can not be accessed by words, copy it
1445 to a pseudo register. */
1446 if (REG_P (op))
1447 op = copy_to_reg (op);
1448 else
1449 op = force_reg (mode, op);
1450 }
1451
1452 result = operand_subword (op, offset, 1, mode);
1453 gcc_assert (result);
1454
1455 return result;
1456 }
1457 \f
1458 /* Returns 1 if both MEM_EXPR can be considered equal
1459 and 0 otherwise. */
1460
1461 int
1462 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1463 {
1464 if (expr1 == expr2)
1465 return 1;
1466
1467 if (! expr1 || ! expr2)
1468 return 0;
1469
1470 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1471 return 0;
1472
1473 return operand_equal_p (expr1, expr2, 0);
1474 }
1475
1476 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1477 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1478 -1 if not known. */
1479
1480 int
1481 get_mem_align_offset (rtx mem, unsigned int align)
1482 {
1483 tree expr;
1484 unsigned HOST_WIDE_INT offset;
1485
1486 /* This function can't use
1487 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1488 || (MAX (MEM_ALIGN (mem),
1489 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1490 < align))
1491 return -1;
1492 else
1493 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1494 for two reasons:
1495 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1496 for <variable>. get_inner_reference doesn't handle it and
1497 even if it did, the alignment in that case needs to be determined
1498 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1499 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1500 isn't sufficiently aligned, the object it is in might be. */
1501 gcc_assert (MEM_P (mem));
1502 expr = MEM_EXPR (mem);
1503 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1504 return -1;
1505
1506 offset = MEM_OFFSET (mem);
1507 if (DECL_P (expr))
1508 {
1509 if (DECL_ALIGN (expr) < align)
1510 return -1;
1511 }
1512 else if (INDIRECT_REF_P (expr))
1513 {
1514 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1515 return -1;
1516 }
1517 else if (TREE_CODE (expr) == COMPONENT_REF)
1518 {
1519 while (1)
1520 {
1521 tree inner = TREE_OPERAND (expr, 0);
1522 tree field = TREE_OPERAND (expr, 1);
1523 tree byte_offset = component_ref_field_offset (expr);
1524 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1525
1526 if (!byte_offset
1527 || !host_integerp (byte_offset, 1)
1528 || !host_integerp (bit_offset, 1))
1529 return -1;
1530
1531 offset += tree_low_cst (byte_offset, 1);
1532 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1533
1534 if (inner == NULL_TREE)
1535 {
1536 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1537 < (unsigned int) align)
1538 return -1;
1539 break;
1540 }
1541 else if (DECL_P (inner))
1542 {
1543 if (DECL_ALIGN (inner) < align)
1544 return -1;
1545 break;
1546 }
1547 else if (TREE_CODE (inner) != COMPONENT_REF)
1548 return -1;
1549 expr = inner;
1550 }
1551 }
1552 else
1553 return -1;
1554
1555 return offset & ((align / BITS_PER_UNIT) - 1);
1556 }
1557
1558 /* Given REF (a MEM) and T, either the type of X or the expression
1559 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1560 if we are making a new object of this type. BITPOS is nonzero if
1561 there is an offset outstanding on T that will be applied later. */
1562
1563 void
1564 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1565 HOST_WIDE_INT bitpos)
1566 {
1567 HOST_WIDE_INT apply_bitpos = 0;
1568 tree type;
1569 struct mem_attrs attrs, *defattrs, *refattrs;
1570 addr_space_t as;
1571
1572 /* It can happen that type_for_mode was given a mode for which there
1573 is no language-level type. In which case it returns NULL, which
1574 we can see here. */
1575 if (t == NULL_TREE)
1576 return;
1577
1578 type = TYPE_P (t) ? t : TREE_TYPE (t);
1579 if (type == error_mark_node)
1580 return;
1581
1582 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1583 wrong answer, as it assumes that DECL_RTL already has the right alias
1584 info. Callers should not set DECL_RTL until after the call to
1585 set_mem_attributes. */
1586 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1587
1588 memset (&attrs, 0, sizeof (attrs));
1589
1590 /* Get the alias set from the expression or type (perhaps using a
1591 front-end routine) and use it. */
1592 attrs.alias = get_alias_set (t);
1593
1594 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1595 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1596
1597 /* Default values from pre-existing memory attributes if present. */
1598 refattrs = MEM_ATTRS (ref);
1599 if (refattrs)
1600 {
1601 /* ??? Can this ever happen? Calling this routine on a MEM that
1602 already carries memory attributes should probably be invalid. */
1603 attrs.expr = refattrs->expr;
1604 attrs.offset_known_p = refattrs->offset_known_p;
1605 attrs.offset = refattrs->offset;
1606 attrs.size_known_p = refattrs->size_known_p;
1607 attrs.size = refattrs->size;
1608 attrs.align = refattrs->align;
1609 }
1610
1611 /* Otherwise, default values from the mode of the MEM reference. */
1612 else
1613 {
1614 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1615 gcc_assert (!defattrs->expr);
1616 gcc_assert (!defattrs->offset_known_p);
1617
1618 /* Respect mode size. */
1619 attrs.size_known_p = defattrs->size_known_p;
1620 attrs.size = defattrs->size;
1621 /* ??? Is this really necessary? We probably should always get
1622 the size from the type below. */
1623
1624 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1625 if T is an object, always compute the object alignment below. */
1626 if (TYPE_P (t))
1627 attrs.align = defattrs->align;
1628 else
1629 attrs.align = BITS_PER_UNIT;
1630 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1631 e.g. if the type carries an alignment attribute. Should we be
1632 able to simply always use TYPE_ALIGN? */
1633 }
1634
1635 /* We can set the alignment from the type if we are making an object,
1636 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1637 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1638 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1639
1640 else if (TREE_CODE (t) == MEM_REF)
1641 {
1642 tree op0 = TREE_OPERAND (t, 0);
1643 if (TREE_CODE (op0) == ADDR_EXPR
1644 && (DECL_P (TREE_OPERAND (op0, 0))
1645 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1646 {
1647 if (DECL_P (TREE_OPERAND (op0, 0)))
1648 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1649 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1650 {
1651 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1652 #ifdef CONSTANT_ALIGNMENT
1653 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1654 attrs.align);
1655 #endif
1656 }
1657 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1658 {
1659 unsigned HOST_WIDE_INT ioff
1660 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1661 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1662 attrs.align = MIN (aoff, attrs.align);
1663 }
1664 }
1665 else
1666 /* ??? This isn't fully correct, we can't set the alignment from the
1667 type in all cases. */
1668 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1669 }
1670
1671 else if (TREE_CODE (t) == TARGET_MEM_REF)
1672 /* ??? This isn't fully correct, we can't set the alignment from the
1673 type in all cases. */
1674 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1675
1676 /* If the size is known, we can set that. */
1677 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1678 {
1679 attrs.size_known_p = true;
1680 attrs.size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1681 }
1682
1683 /* If T is not a type, we may be able to deduce some more information about
1684 the expression. */
1685 if (! TYPE_P (t))
1686 {
1687 tree base;
1688 bool align_computed = false;
1689
1690 if (TREE_THIS_VOLATILE (t))
1691 MEM_VOLATILE_P (ref) = 1;
1692
1693 /* Now remove any conversions: they don't change what the underlying
1694 object is. Likewise for SAVE_EXPR. */
1695 while (CONVERT_EXPR_P (t)
1696 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1697 || TREE_CODE (t) == SAVE_EXPR)
1698 t = TREE_OPERAND (t, 0);
1699
1700 /* Note whether this expression can trap. */
1701 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1702
1703 base = get_base_address (t);
1704 if (base)
1705 {
1706 if (DECL_P (base)
1707 && TREE_READONLY (base)
1708 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1709 && !TREE_THIS_VOLATILE (base))
1710 MEM_READONLY_P (ref) = 1;
1711
1712 /* Mark static const strings readonly as well. */
1713 if (TREE_CODE (base) == STRING_CST
1714 && TREE_READONLY (base)
1715 && TREE_STATIC (base))
1716 MEM_READONLY_P (ref) = 1;
1717
1718 if (TREE_CODE (base) == MEM_REF
1719 || TREE_CODE (base) == TARGET_MEM_REF)
1720 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1721 0))));
1722 else
1723 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1724 }
1725 else
1726 as = TYPE_ADDR_SPACE (type);
1727
1728 /* If this expression uses it's parent's alias set, mark it such
1729 that we won't change it. */
1730 if (component_uses_parent_alias_set (t))
1731 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1732
1733 /* If this is a decl, set the attributes of the MEM from it. */
1734 if (DECL_P (t))
1735 {
1736 attrs.expr = t;
1737 attrs.offset_known_p = true;
1738 attrs.offset = 0;
1739 apply_bitpos = bitpos;
1740 if (DECL_SIZE_UNIT (t) && host_integerp (DECL_SIZE_UNIT (t), 1))
1741 {
1742 attrs.size_known_p = true;
1743 attrs.size = tree_low_cst (DECL_SIZE_UNIT (t), 1);
1744 }
1745 else
1746 attrs.size_known_p = false;
1747 attrs.align = DECL_ALIGN (t);
1748 align_computed = true;
1749 }
1750
1751 /* If this is a constant, we know the alignment. */
1752 else if (CONSTANT_CLASS_P (t))
1753 {
1754 attrs.align = TYPE_ALIGN (type);
1755 #ifdef CONSTANT_ALIGNMENT
1756 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1757 #endif
1758 align_computed = true;
1759 }
1760
1761 /* If this is a field reference and not a bit-field, record it. */
1762 /* ??? There is some information that can be gleaned from bit-fields,
1763 such as the word offset in the structure that might be modified.
1764 But skip it for now. */
1765 else if (TREE_CODE (t) == COMPONENT_REF
1766 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1767 {
1768 attrs.expr = t;
1769 attrs.offset_known_p = true;
1770 attrs.offset = 0;
1771 apply_bitpos = bitpos;
1772 /* ??? Any reason the field size would be different than
1773 the size we got from the type? */
1774 }
1775
1776 /* If this is an array reference, look for an outer field reference. */
1777 else if (TREE_CODE (t) == ARRAY_REF)
1778 {
1779 tree off_tree = size_zero_node;
1780 /* We can't modify t, because we use it at the end of the
1781 function. */
1782 tree t2 = t;
1783
1784 do
1785 {
1786 tree index = TREE_OPERAND (t2, 1);
1787 tree low_bound = array_ref_low_bound (t2);
1788 tree unit_size = array_ref_element_size (t2);
1789
1790 /* We assume all arrays have sizes that are a multiple of a byte.
1791 First subtract the lower bound, if any, in the type of the
1792 index, then convert to sizetype and multiply by the size of
1793 the array element. */
1794 if (! integer_zerop (low_bound))
1795 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1796 index, low_bound);
1797
1798 off_tree = size_binop (PLUS_EXPR,
1799 size_binop (MULT_EXPR,
1800 fold_convert (sizetype,
1801 index),
1802 unit_size),
1803 off_tree);
1804 t2 = TREE_OPERAND (t2, 0);
1805 }
1806 while (TREE_CODE (t2) == ARRAY_REF);
1807
1808 if (DECL_P (t2))
1809 {
1810 attrs.expr = t2;
1811 attrs.offset_known_p = false;
1812 if (host_integerp (off_tree, 1))
1813 {
1814 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1815 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1816 attrs.align = DECL_ALIGN (t2);
1817 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1818 attrs.align = aoff;
1819 align_computed = true;
1820 attrs.offset_known_p = true;
1821 attrs.offset = ioff;
1822 apply_bitpos = bitpos;
1823 }
1824 }
1825 else if (TREE_CODE (t2) == COMPONENT_REF)
1826 {
1827 attrs.expr = t2;
1828 attrs.offset_known_p = false;
1829 if (host_integerp (off_tree, 1))
1830 {
1831 attrs.offset_known_p = true;
1832 attrs.offset = tree_low_cst (off_tree, 1);
1833 apply_bitpos = bitpos;
1834 }
1835 /* ??? Any reason the field size would be different than
1836 the size we got from the type? */
1837 }
1838 }
1839
1840 /* If this is an indirect reference, record it. */
1841 else if (TREE_CODE (t) == MEM_REF
1842 || TREE_CODE (t) == TARGET_MEM_REF)
1843 {
1844 attrs.expr = t;
1845 attrs.offset_known_p = true;
1846 attrs.offset = 0;
1847 apply_bitpos = bitpos;
1848 }
1849
1850 if (!align_computed)
1851 {
1852 unsigned int obj_align = get_object_alignment (t);
1853 attrs.align = MAX (attrs.align, obj_align);
1854 }
1855 }
1856 else
1857 as = TYPE_ADDR_SPACE (type);
1858
1859 /* If we modified OFFSET based on T, then subtract the outstanding
1860 bit position offset. Similarly, increase the size of the accessed
1861 object to contain the negative offset. */
1862 if (apply_bitpos)
1863 {
1864 gcc_assert (attrs.offset_known_p);
1865 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1866 if (attrs.size_known_p)
1867 attrs.size += apply_bitpos / BITS_PER_UNIT;
1868 }
1869
1870 /* Now set the attributes we computed above. */
1871 attrs.addrspace = as;
1872 set_mem_attrs (ref, &attrs);
1873 }
1874
1875 void
1876 set_mem_attributes (rtx ref, tree t, int objectp)
1877 {
1878 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1879 }
1880
1881 /* Set the alias set of MEM to SET. */
1882
1883 void
1884 set_mem_alias_set (rtx mem, alias_set_type set)
1885 {
1886 struct mem_attrs attrs;
1887
1888 /* If the new and old alias sets don't conflict, something is wrong. */
1889 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1890 attrs = *get_mem_attrs (mem);
1891 attrs.alias = set;
1892 set_mem_attrs (mem, &attrs);
1893 }
1894
1895 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1896
1897 void
1898 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1899 {
1900 struct mem_attrs attrs;
1901
1902 attrs = *get_mem_attrs (mem);
1903 attrs.addrspace = addrspace;
1904 set_mem_attrs (mem, &attrs);
1905 }
1906
1907 /* Set the alignment of MEM to ALIGN bits. */
1908
1909 void
1910 set_mem_align (rtx mem, unsigned int align)
1911 {
1912 struct mem_attrs attrs;
1913
1914 attrs = *get_mem_attrs (mem);
1915 attrs.align = align;
1916 set_mem_attrs (mem, &attrs);
1917 }
1918
1919 /* Set the expr for MEM to EXPR. */
1920
1921 void
1922 set_mem_expr (rtx mem, tree expr)
1923 {
1924 struct mem_attrs attrs;
1925
1926 attrs = *get_mem_attrs (mem);
1927 attrs.expr = expr;
1928 set_mem_attrs (mem, &attrs);
1929 }
1930
1931 /* Set the offset of MEM to OFFSET. */
1932
1933 void
1934 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1935 {
1936 struct mem_attrs attrs;
1937
1938 attrs = *get_mem_attrs (mem);
1939 attrs.offset_known_p = true;
1940 attrs.offset = offset;
1941 set_mem_attrs (mem, &attrs);
1942 }
1943
1944 /* Clear the offset of MEM. */
1945
1946 void
1947 clear_mem_offset (rtx mem)
1948 {
1949 struct mem_attrs attrs;
1950
1951 attrs = *get_mem_attrs (mem);
1952 attrs.offset_known_p = false;
1953 set_mem_attrs (mem, &attrs);
1954 }
1955
1956 /* Set the size of MEM to SIZE. */
1957
1958 void
1959 set_mem_size (rtx mem, HOST_WIDE_INT size)
1960 {
1961 struct mem_attrs attrs;
1962
1963 attrs = *get_mem_attrs (mem);
1964 attrs.size_known_p = true;
1965 attrs.size = size;
1966 set_mem_attrs (mem, &attrs);
1967 }
1968
1969 /* Clear the size of MEM. */
1970
1971 void
1972 clear_mem_size (rtx mem)
1973 {
1974 struct mem_attrs attrs;
1975
1976 attrs = *get_mem_attrs (mem);
1977 attrs.size_known_p = false;
1978 set_mem_attrs (mem, &attrs);
1979 }
1980 \f
1981 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1982 and its address changed to ADDR. (VOIDmode means don't change the mode.
1983 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1984 returned memory location is required to be valid. The memory
1985 attributes are not changed. */
1986
1987 static rtx
1988 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1989 {
1990 addr_space_t as;
1991 rtx new_rtx;
1992
1993 gcc_assert (MEM_P (memref));
1994 as = MEM_ADDR_SPACE (memref);
1995 if (mode == VOIDmode)
1996 mode = GET_MODE (memref);
1997 if (addr == 0)
1998 addr = XEXP (memref, 0);
1999 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2000 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2001 return memref;
2002
2003 if (validate)
2004 {
2005 if (reload_in_progress || reload_completed)
2006 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2007 else
2008 addr = memory_address_addr_space (mode, addr, as);
2009 }
2010
2011 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2012 return memref;
2013
2014 new_rtx = gen_rtx_MEM (mode, addr);
2015 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2016 return new_rtx;
2017 }
2018
2019 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2020 way we are changing MEMREF, so we only preserve the alias set. */
2021
2022 rtx
2023 change_address (rtx memref, enum machine_mode mode, rtx addr)
2024 {
2025 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2026 enum machine_mode mmode = GET_MODE (new_rtx);
2027 struct mem_attrs attrs, *defattrs;
2028
2029 attrs = *get_mem_attrs (memref);
2030 defattrs = mode_mem_attrs[(int) mmode];
2031 attrs.expr = NULL_TREE;
2032 attrs.offset_known_p = false;
2033 attrs.size_known_p = defattrs->size_known_p;
2034 attrs.size = defattrs->size;
2035 attrs.align = defattrs->align;
2036
2037 /* If there are no changes, just return the original memory reference. */
2038 if (new_rtx == memref)
2039 {
2040 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2041 return new_rtx;
2042
2043 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2044 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2045 }
2046
2047 set_mem_attrs (new_rtx, &attrs);
2048 return new_rtx;
2049 }
2050
2051 /* Return a memory reference like MEMREF, but with its mode changed
2052 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2053 nonzero, the memory address is forced to be valid.
2054 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2055 and caller is responsible for adjusting MEMREF base register. */
2056
2057 rtx
2058 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2059 int validate, int adjust)
2060 {
2061 rtx addr = XEXP (memref, 0);
2062 rtx new_rtx;
2063 enum machine_mode address_mode;
2064 int pbits;
2065 struct mem_attrs attrs, *defattrs;
2066 unsigned HOST_WIDE_INT max_align;
2067
2068 attrs = *get_mem_attrs (memref);
2069
2070 /* If there are no changes, just return the original memory reference. */
2071 if (mode == GET_MODE (memref) && !offset
2072 && (!validate || memory_address_addr_space_p (mode, addr,
2073 attrs.addrspace)))
2074 return memref;
2075
2076 /* ??? Prefer to create garbage instead of creating shared rtl.
2077 This may happen even if offset is nonzero -- consider
2078 (plus (plus reg reg) const_int) -- so do this always. */
2079 addr = copy_rtx (addr);
2080
2081 /* Convert a possibly large offset to a signed value within the
2082 range of the target address space. */
2083 address_mode = get_address_mode (memref);
2084 pbits = GET_MODE_BITSIZE (address_mode);
2085 if (HOST_BITS_PER_WIDE_INT > pbits)
2086 {
2087 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2088 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2089 >> shift);
2090 }
2091
2092 if (adjust)
2093 {
2094 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2095 object, we can merge it into the LO_SUM. */
2096 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2097 && offset >= 0
2098 && (unsigned HOST_WIDE_INT) offset
2099 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2100 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2101 plus_constant (address_mode,
2102 XEXP (addr, 1), offset));
2103 else
2104 addr = plus_constant (address_mode, addr, offset);
2105 }
2106
2107 new_rtx = change_address_1 (memref, mode, addr, validate);
2108
2109 /* If the address is a REG, change_address_1 rightfully returns memref,
2110 but this would destroy memref's MEM_ATTRS. */
2111 if (new_rtx == memref && offset != 0)
2112 new_rtx = copy_rtx (new_rtx);
2113
2114 /* Compute the new values of the memory attributes due to this adjustment.
2115 We add the offsets and update the alignment. */
2116 if (attrs.offset_known_p)
2117 attrs.offset += offset;
2118
2119 /* Compute the new alignment by taking the MIN of the alignment and the
2120 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2121 if zero. */
2122 if (offset != 0)
2123 {
2124 max_align = (offset & -offset) * BITS_PER_UNIT;
2125 attrs.align = MIN (attrs.align, max_align);
2126 }
2127
2128 /* We can compute the size in a number of ways. */
2129 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2130 if (defattrs->size_known_p)
2131 {
2132 attrs.size_known_p = true;
2133 attrs.size = defattrs->size;
2134 }
2135 else if (attrs.size_known_p)
2136 attrs.size -= offset;
2137
2138 set_mem_attrs (new_rtx, &attrs);
2139
2140 /* At some point, we should validate that this offset is within the object,
2141 if all the appropriate values are known. */
2142 return new_rtx;
2143 }
2144
2145 /* Return a memory reference like MEMREF, but with its mode changed
2146 to MODE and its address changed to ADDR, which is assumed to be
2147 MEMREF offset by OFFSET bytes. If VALIDATE is
2148 nonzero, the memory address is forced to be valid. */
2149
2150 rtx
2151 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2152 HOST_WIDE_INT offset, int validate)
2153 {
2154 memref = change_address_1 (memref, VOIDmode, addr, validate);
2155 return adjust_address_1 (memref, mode, offset, validate, 0);
2156 }
2157
2158 /* Return a memory reference like MEMREF, but whose address is changed by
2159 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2160 known to be in OFFSET (possibly 1). */
2161
2162 rtx
2163 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2164 {
2165 rtx new_rtx, addr = XEXP (memref, 0);
2166 enum machine_mode address_mode;
2167 struct mem_attrs attrs, *defattrs;
2168
2169 attrs = *get_mem_attrs (memref);
2170 address_mode = get_address_mode (memref);
2171 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2172
2173 /* At this point we don't know _why_ the address is invalid. It
2174 could have secondary memory references, multiplies or anything.
2175
2176 However, if we did go and rearrange things, we can wind up not
2177 being able to recognize the magic around pic_offset_table_rtx.
2178 This stuff is fragile, and is yet another example of why it is
2179 bad to expose PIC machinery too early. */
2180 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2181 attrs.addrspace)
2182 && GET_CODE (addr) == PLUS
2183 && XEXP (addr, 0) == pic_offset_table_rtx)
2184 {
2185 addr = force_reg (GET_MODE (addr), addr);
2186 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2187 }
2188
2189 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2190 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2191
2192 /* If there are no changes, just return the original memory reference. */
2193 if (new_rtx == memref)
2194 return new_rtx;
2195
2196 /* Update the alignment to reflect the offset. Reset the offset, which
2197 we don't know. */
2198 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2199 attrs.offset_known_p = false;
2200 attrs.size_known_p = defattrs->size_known_p;
2201 attrs.size = defattrs->size;
2202 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2203 set_mem_attrs (new_rtx, &attrs);
2204 return new_rtx;
2205 }
2206
2207 /* Return a memory reference like MEMREF, but with its address changed to
2208 ADDR. The caller is asserting that the actual piece of memory pointed
2209 to is the same, just the form of the address is being changed, such as
2210 by putting something into a register. */
2211
2212 rtx
2213 replace_equiv_address (rtx memref, rtx addr)
2214 {
2215 /* change_address_1 copies the memory attribute structure without change
2216 and that's exactly what we want here. */
2217 update_temp_slot_address (XEXP (memref, 0), addr);
2218 return change_address_1 (memref, VOIDmode, addr, 1);
2219 }
2220
2221 /* Likewise, but the reference is not required to be valid. */
2222
2223 rtx
2224 replace_equiv_address_nv (rtx memref, rtx addr)
2225 {
2226 return change_address_1 (memref, VOIDmode, addr, 0);
2227 }
2228
2229 /* Return a memory reference like MEMREF, but with its mode widened to
2230 MODE and offset by OFFSET. This would be used by targets that e.g.
2231 cannot issue QImode memory operations and have to use SImode memory
2232 operations plus masking logic. */
2233
2234 rtx
2235 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2236 {
2237 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2238 struct mem_attrs attrs;
2239 unsigned int size = GET_MODE_SIZE (mode);
2240
2241 /* If there are no changes, just return the original memory reference. */
2242 if (new_rtx == memref)
2243 return new_rtx;
2244
2245 attrs = *get_mem_attrs (new_rtx);
2246
2247 /* If we don't know what offset we were at within the expression, then
2248 we can't know if we've overstepped the bounds. */
2249 if (! attrs.offset_known_p)
2250 attrs.expr = NULL_TREE;
2251
2252 while (attrs.expr)
2253 {
2254 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2255 {
2256 tree field = TREE_OPERAND (attrs.expr, 1);
2257 tree offset = component_ref_field_offset (attrs.expr);
2258
2259 if (! DECL_SIZE_UNIT (field))
2260 {
2261 attrs.expr = NULL_TREE;
2262 break;
2263 }
2264
2265 /* Is the field at least as large as the access? If so, ok,
2266 otherwise strip back to the containing structure. */
2267 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2268 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2269 && attrs.offset >= 0)
2270 break;
2271
2272 if (! host_integerp (offset, 1))
2273 {
2274 attrs.expr = NULL_TREE;
2275 break;
2276 }
2277
2278 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2279 attrs.offset += tree_low_cst (offset, 1);
2280 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2281 / BITS_PER_UNIT);
2282 }
2283 /* Similarly for the decl. */
2284 else if (DECL_P (attrs.expr)
2285 && DECL_SIZE_UNIT (attrs.expr)
2286 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2287 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2288 && (! attrs.offset_known_p || attrs.offset >= 0))
2289 break;
2290 else
2291 {
2292 /* The widened memory access overflows the expression, which means
2293 that it could alias another expression. Zap it. */
2294 attrs.expr = NULL_TREE;
2295 break;
2296 }
2297 }
2298
2299 if (! attrs.expr)
2300 attrs.offset_known_p = false;
2301
2302 /* The widened memory may alias other stuff, so zap the alias set. */
2303 /* ??? Maybe use get_alias_set on any remaining expression. */
2304 attrs.alias = 0;
2305 attrs.size_known_p = true;
2306 attrs.size = size;
2307 set_mem_attrs (new_rtx, &attrs);
2308 return new_rtx;
2309 }
2310 \f
2311 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2312 static GTY(()) tree spill_slot_decl;
2313
2314 tree
2315 get_spill_slot_decl (bool force_build_p)
2316 {
2317 tree d = spill_slot_decl;
2318 rtx rd;
2319 struct mem_attrs attrs;
2320
2321 if (d || !force_build_p)
2322 return d;
2323
2324 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2325 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2326 DECL_ARTIFICIAL (d) = 1;
2327 DECL_IGNORED_P (d) = 1;
2328 TREE_USED (d) = 1;
2329 spill_slot_decl = d;
2330
2331 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2332 MEM_NOTRAP_P (rd) = 1;
2333 attrs = *mode_mem_attrs[(int) BLKmode];
2334 attrs.alias = new_alias_set ();
2335 attrs.expr = d;
2336 set_mem_attrs (rd, &attrs);
2337 SET_DECL_RTL (d, rd);
2338
2339 return d;
2340 }
2341
2342 /* Given MEM, a result from assign_stack_local, fill in the memory
2343 attributes as appropriate for a register allocator spill slot.
2344 These slots are not aliasable by other memory. We arrange for
2345 them all to use a single MEM_EXPR, so that the aliasing code can
2346 work properly in the case of shared spill slots. */
2347
2348 void
2349 set_mem_attrs_for_spill (rtx mem)
2350 {
2351 struct mem_attrs attrs;
2352 rtx addr;
2353
2354 attrs = *get_mem_attrs (mem);
2355 attrs.expr = get_spill_slot_decl (true);
2356 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2357 attrs.addrspace = ADDR_SPACE_GENERIC;
2358
2359 /* We expect the incoming memory to be of the form:
2360 (mem:MODE (plus (reg sfp) (const_int offset)))
2361 with perhaps the plus missing for offset = 0. */
2362 addr = XEXP (mem, 0);
2363 attrs.offset_known_p = true;
2364 attrs.offset = 0;
2365 if (GET_CODE (addr) == PLUS
2366 && CONST_INT_P (XEXP (addr, 1)))
2367 attrs.offset = INTVAL (XEXP (addr, 1));
2368
2369 set_mem_attrs (mem, &attrs);
2370 MEM_NOTRAP_P (mem) = 1;
2371 }
2372 \f
2373 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2374
2375 rtx
2376 gen_label_rtx (void)
2377 {
2378 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2379 NULL, label_num++, NULL);
2380 }
2381 \f
2382 /* For procedure integration. */
2383
2384 /* Install new pointers to the first and last insns in the chain.
2385 Also, set cur_insn_uid to one higher than the last in use.
2386 Used for an inline-procedure after copying the insn chain. */
2387
2388 void
2389 set_new_first_and_last_insn (rtx first, rtx last)
2390 {
2391 rtx insn;
2392
2393 set_first_insn (first);
2394 set_last_insn (last);
2395 cur_insn_uid = 0;
2396
2397 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2398 {
2399 int debug_count = 0;
2400
2401 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2402 cur_debug_insn_uid = 0;
2403
2404 for (insn = first; insn; insn = NEXT_INSN (insn))
2405 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2406 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2407 else
2408 {
2409 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2410 if (DEBUG_INSN_P (insn))
2411 debug_count++;
2412 }
2413
2414 if (debug_count)
2415 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2416 else
2417 cur_debug_insn_uid++;
2418 }
2419 else
2420 for (insn = first; insn; insn = NEXT_INSN (insn))
2421 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2422
2423 cur_insn_uid++;
2424 }
2425 \f
2426 /* Go through all the RTL insn bodies and copy any invalid shared
2427 structure. This routine should only be called once. */
2428
2429 static void
2430 unshare_all_rtl_1 (rtx insn)
2431 {
2432 /* Unshare just about everything else. */
2433 unshare_all_rtl_in_chain (insn);
2434
2435 /* Make sure the addresses of stack slots found outside the insn chain
2436 (such as, in DECL_RTL of a variable) are not shared
2437 with the insn chain.
2438
2439 This special care is necessary when the stack slot MEM does not
2440 actually appear in the insn chain. If it does appear, its address
2441 is unshared from all else at that point. */
2442 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2443 }
2444
2445 /* Go through all the RTL insn bodies and copy any invalid shared
2446 structure, again. This is a fairly expensive thing to do so it
2447 should be done sparingly. */
2448
2449 void
2450 unshare_all_rtl_again (rtx insn)
2451 {
2452 rtx p;
2453 tree decl;
2454
2455 for (p = insn; p; p = NEXT_INSN (p))
2456 if (INSN_P (p))
2457 {
2458 reset_used_flags (PATTERN (p));
2459 reset_used_flags (REG_NOTES (p));
2460 if (CALL_P (p))
2461 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2462 }
2463
2464 /* Make sure that virtual stack slots are not shared. */
2465 set_used_decls (DECL_INITIAL (cfun->decl));
2466
2467 /* Make sure that virtual parameters are not shared. */
2468 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2469 set_used_flags (DECL_RTL (decl));
2470
2471 reset_used_flags (stack_slot_list);
2472
2473 unshare_all_rtl_1 (insn);
2474 }
2475
2476 unsigned int
2477 unshare_all_rtl (void)
2478 {
2479 unshare_all_rtl_1 (get_insns ());
2480 return 0;
2481 }
2482
2483
2484 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2485 Recursively does the same for subexpressions. */
2486
2487 static void
2488 verify_rtx_sharing (rtx orig, rtx insn)
2489 {
2490 rtx x = orig;
2491 int i;
2492 enum rtx_code code;
2493 const char *format_ptr;
2494
2495 if (x == 0)
2496 return;
2497
2498 code = GET_CODE (x);
2499
2500 /* These types may be freely shared. */
2501
2502 switch (code)
2503 {
2504 case REG:
2505 case DEBUG_EXPR:
2506 case VALUE:
2507 case CONST_INT:
2508 case CONST_DOUBLE:
2509 case CONST_FIXED:
2510 case CONST_VECTOR:
2511 case SYMBOL_REF:
2512 case LABEL_REF:
2513 case CODE_LABEL:
2514 case PC:
2515 case CC0:
2516 case RETURN:
2517 case SIMPLE_RETURN:
2518 case SCRATCH:
2519 return;
2520 /* SCRATCH must be shared because they represent distinct values. */
2521 case CLOBBER:
2522 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2523 return;
2524 break;
2525
2526 case CONST:
2527 if (shared_const_p (orig))
2528 return;
2529 break;
2530
2531 case MEM:
2532 /* A MEM is allowed to be shared if its address is constant. */
2533 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2534 || reload_completed || reload_in_progress)
2535 return;
2536
2537 break;
2538
2539 default:
2540 break;
2541 }
2542
2543 /* This rtx may not be shared. If it has already been seen,
2544 replace it with a copy of itself. */
2545 #ifdef ENABLE_CHECKING
2546 if (RTX_FLAG (x, used))
2547 {
2548 error ("invalid rtl sharing found in the insn");
2549 debug_rtx (insn);
2550 error ("shared rtx");
2551 debug_rtx (x);
2552 internal_error ("internal consistency failure");
2553 }
2554 #endif
2555 gcc_assert (!RTX_FLAG (x, used));
2556
2557 RTX_FLAG (x, used) = 1;
2558
2559 /* Now scan the subexpressions recursively. */
2560
2561 format_ptr = GET_RTX_FORMAT (code);
2562
2563 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2564 {
2565 switch (*format_ptr++)
2566 {
2567 case 'e':
2568 verify_rtx_sharing (XEXP (x, i), insn);
2569 break;
2570
2571 case 'E':
2572 if (XVEC (x, i) != NULL)
2573 {
2574 int j;
2575 int len = XVECLEN (x, i);
2576
2577 for (j = 0; j < len; j++)
2578 {
2579 /* We allow sharing of ASM_OPERANDS inside single
2580 instruction. */
2581 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2582 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2583 == ASM_OPERANDS))
2584 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2585 else
2586 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2587 }
2588 }
2589 break;
2590 }
2591 }
2592 return;
2593 }
2594
2595 /* Go through all the RTL insn bodies and check that there is no unexpected
2596 sharing in between the subexpressions. */
2597
2598 DEBUG_FUNCTION void
2599 verify_rtl_sharing (void)
2600 {
2601 rtx p;
2602
2603 timevar_push (TV_VERIFY_RTL_SHARING);
2604
2605 for (p = get_insns (); p; p = NEXT_INSN (p))
2606 if (INSN_P (p))
2607 {
2608 reset_used_flags (PATTERN (p));
2609 reset_used_flags (REG_NOTES (p));
2610 if (CALL_P (p))
2611 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2612 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2613 {
2614 int i;
2615 rtx q, sequence = PATTERN (p);
2616
2617 for (i = 0; i < XVECLEN (sequence, 0); i++)
2618 {
2619 q = XVECEXP (sequence, 0, i);
2620 gcc_assert (INSN_P (q));
2621 reset_used_flags (PATTERN (q));
2622 reset_used_flags (REG_NOTES (q));
2623 if (CALL_P (q))
2624 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2625 }
2626 }
2627 }
2628
2629 for (p = get_insns (); p; p = NEXT_INSN (p))
2630 if (INSN_P (p))
2631 {
2632 verify_rtx_sharing (PATTERN (p), p);
2633 verify_rtx_sharing (REG_NOTES (p), p);
2634 if (CALL_P (p))
2635 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2636 }
2637
2638 timevar_pop (TV_VERIFY_RTL_SHARING);
2639 }
2640
2641 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2642 Assumes the mark bits are cleared at entry. */
2643
2644 void
2645 unshare_all_rtl_in_chain (rtx insn)
2646 {
2647 for (; insn; insn = NEXT_INSN (insn))
2648 if (INSN_P (insn))
2649 {
2650 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2651 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2652 if (CALL_P (insn))
2653 CALL_INSN_FUNCTION_USAGE (insn)
2654 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2655 }
2656 }
2657
2658 /* Go through all virtual stack slots of a function and mark them as
2659 shared. We never replace the DECL_RTLs themselves with a copy,
2660 but expressions mentioned into a DECL_RTL cannot be shared with
2661 expressions in the instruction stream.
2662
2663 Note that reload may convert pseudo registers into memories in-place.
2664 Pseudo registers are always shared, but MEMs never are. Thus if we
2665 reset the used flags on MEMs in the instruction stream, we must set
2666 them again on MEMs that appear in DECL_RTLs. */
2667
2668 static void
2669 set_used_decls (tree blk)
2670 {
2671 tree t;
2672
2673 /* Mark decls. */
2674 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2675 if (DECL_RTL_SET_P (t))
2676 set_used_flags (DECL_RTL (t));
2677
2678 /* Now process sub-blocks. */
2679 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2680 set_used_decls (t);
2681 }
2682
2683 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2684 Recursively does the same for subexpressions. Uses
2685 copy_rtx_if_shared_1 to reduce stack space. */
2686
2687 rtx
2688 copy_rtx_if_shared (rtx orig)
2689 {
2690 copy_rtx_if_shared_1 (&orig);
2691 return orig;
2692 }
2693
2694 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2695 use. Recursively does the same for subexpressions. */
2696
2697 static void
2698 copy_rtx_if_shared_1 (rtx *orig1)
2699 {
2700 rtx x;
2701 int i;
2702 enum rtx_code code;
2703 rtx *last_ptr;
2704 const char *format_ptr;
2705 int copied = 0;
2706 int length;
2707
2708 /* Repeat is used to turn tail-recursion into iteration. */
2709 repeat:
2710 x = *orig1;
2711
2712 if (x == 0)
2713 return;
2714
2715 code = GET_CODE (x);
2716
2717 /* These types may be freely shared. */
2718
2719 switch (code)
2720 {
2721 case REG:
2722 case DEBUG_EXPR:
2723 case VALUE:
2724 case CONST_INT:
2725 case CONST_DOUBLE:
2726 case CONST_FIXED:
2727 case CONST_VECTOR:
2728 case SYMBOL_REF:
2729 case LABEL_REF:
2730 case CODE_LABEL:
2731 case PC:
2732 case CC0:
2733 case RETURN:
2734 case SIMPLE_RETURN:
2735 case SCRATCH:
2736 /* SCRATCH must be shared because they represent distinct values. */
2737 return;
2738 case CLOBBER:
2739 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2740 return;
2741 break;
2742
2743 case CONST:
2744 if (shared_const_p (x))
2745 return;
2746 break;
2747
2748 case DEBUG_INSN:
2749 case INSN:
2750 case JUMP_INSN:
2751 case CALL_INSN:
2752 case NOTE:
2753 case BARRIER:
2754 /* The chain of insns is not being copied. */
2755 return;
2756
2757 default:
2758 break;
2759 }
2760
2761 /* This rtx may not be shared. If it has already been seen,
2762 replace it with a copy of itself. */
2763
2764 if (RTX_FLAG (x, used))
2765 {
2766 x = shallow_copy_rtx (x);
2767 copied = 1;
2768 }
2769 RTX_FLAG (x, used) = 1;
2770
2771 /* Now scan the subexpressions recursively.
2772 We can store any replaced subexpressions directly into X
2773 since we know X is not shared! Any vectors in X
2774 must be copied if X was copied. */
2775
2776 format_ptr = GET_RTX_FORMAT (code);
2777 length = GET_RTX_LENGTH (code);
2778 last_ptr = NULL;
2779
2780 for (i = 0; i < length; i++)
2781 {
2782 switch (*format_ptr++)
2783 {
2784 case 'e':
2785 if (last_ptr)
2786 copy_rtx_if_shared_1 (last_ptr);
2787 last_ptr = &XEXP (x, i);
2788 break;
2789
2790 case 'E':
2791 if (XVEC (x, i) != NULL)
2792 {
2793 int j;
2794 int len = XVECLEN (x, i);
2795
2796 /* Copy the vector iff I copied the rtx and the length
2797 is nonzero. */
2798 if (copied && len > 0)
2799 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2800
2801 /* Call recursively on all inside the vector. */
2802 for (j = 0; j < len; j++)
2803 {
2804 if (last_ptr)
2805 copy_rtx_if_shared_1 (last_ptr);
2806 last_ptr = &XVECEXP (x, i, j);
2807 }
2808 }
2809 break;
2810 }
2811 }
2812 *orig1 = x;
2813 if (last_ptr)
2814 {
2815 orig1 = last_ptr;
2816 goto repeat;
2817 }
2818 return;
2819 }
2820
2821 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2822
2823 static void
2824 mark_used_flags (rtx x, int flag)
2825 {
2826 int i, j;
2827 enum rtx_code code;
2828 const char *format_ptr;
2829 int length;
2830
2831 /* Repeat is used to turn tail-recursion into iteration. */
2832 repeat:
2833 if (x == 0)
2834 return;
2835
2836 code = GET_CODE (x);
2837
2838 /* These types may be freely shared so we needn't do any resetting
2839 for them. */
2840
2841 switch (code)
2842 {
2843 case REG:
2844 case DEBUG_EXPR:
2845 case VALUE:
2846 case CONST_INT:
2847 case CONST_DOUBLE:
2848 case CONST_FIXED:
2849 case CONST_VECTOR:
2850 case SYMBOL_REF:
2851 case CODE_LABEL:
2852 case PC:
2853 case CC0:
2854 case RETURN:
2855 case SIMPLE_RETURN:
2856 return;
2857
2858 case DEBUG_INSN:
2859 case INSN:
2860 case JUMP_INSN:
2861 case CALL_INSN:
2862 case NOTE:
2863 case LABEL_REF:
2864 case BARRIER:
2865 /* The chain of insns is not being copied. */
2866 return;
2867
2868 default:
2869 break;
2870 }
2871
2872 RTX_FLAG (x, used) = flag;
2873
2874 format_ptr = GET_RTX_FORMAT (code);
2875 length = GET_RTX_LENGTH (code);
2876
2877 for (i = 0; i < length; i++)
2878 {
2879 switch (*format_ptr++)
2880 {
2881 case 'e':
2882 if (i == length-1)
2883 {
2884 x = XEXP (x, i);
2885 goto repeat;
2886 }
2887 mark_used_flags (XEXP (x, i), flag);
2888 break;
2889
2890 case 'E':
2891 for (j = 0; j < XVECLEN (x, i); j++)
2892 mark_used_flags (XVECEXP (x, i, j), flag);
2893 break;
2894 }
2895 }
2896 }
2897
2898 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2899 to look for shared sub-parts. */
2900
2901 void
2902 reset_used_flags (rtx x)
2903 {
2904 mark_used_flags (x, 0);
2905 }
2906
2907 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2908 to look for shared sub-parts. */
2909
2910 void
2911 set_used_flags (rtx x)
2912 {
2913 mark_used_flags (x, 1);
2914 }
2915 \f
2916 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2917 Return X or the rtx for the pseudo reg the value of X was copied into.
2918 OTHER must be valid as a SET_DEST. */
2919
2920 rtx
2921 make_safe_from (rtx x, rtx other)
2922 {
2923 while (1)
2924 switch (GET_CODE (other))
2925 {
2926 case SUBREG:
2927 other = SUBREG_REG (other);
2928 break;
2929 case STRICT_LOW_PART:
2930 case SIGN_EXTEND:
2931 case ZERO_EXTEND:
2932 other = XEXP (other, 0);
2933 break;
2934 default:
2935 goto done;
2936 }
2937 done:
2938 if ((MEM_P (other)
2939 && ! CONSTANT_P (x)
2940 && !REG_P (x)
2941 && GET_CODE (x) != SUBREG)
2942 || (REG_P (other)
2943 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2944 || reg_mentioned_p (other, x))))
2945 {
2946 rtx temp = gen_reg_rtx (GET_MODE (x));
2947 emit_move_insn (temp, x);
2948 return temp;
2949 }
2950 return x;
2951 }
2952 \f
2953 /* Emission of insns (adding them to the doubly-linked list). */
2954
2955 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2956
2957 rtx
2958 get_last_insn_anywhere (void)
2959 {
2960 struct sequence_stack *stack;
2961 if (get_last_insn ())
2962 return get_last_insn ();
2963 for (stack = seq_stack; stack; stack = stack->next)
2964 if (stack->last != 0)
2965 return stack->last;
2966 return 0;
2967 }
2968
2969 /* Return the first nonnote insn emitted in current sequence or current
2970 function. This routine looks inside SEQUENCEs. */
2971
2972 rtx
2973 get_first_nonnote_insn (void)
2974 {
2975 rtx insn = get_insns ();
2976
2977 if (insn)
2978 {
2979 if (NOTE_P (insn))
2980 for (insn = next_insn (insn);
2981 insn && NOTE_P (insn);
2982 insn = next_insn (insn))
2983 continue;
2984 else
2985 {
2986 if (NONJUMP_INSN_P (insn)
2987 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2988 insn = XVECEXP (PATTERN (insn), 0, 0);
2989 }
2990 }
2991
2992 return insn;
2993 }
2994
2995 /* Return the last nonnote insn emitted in current sequence or current
2996 function. This routine looks inside SEQUENCEs. */
2997
2998 rtx
2999 get_last_nonnote_insn (void)
3000 {
3001 rtx insn = get_last_insn ();
3002
3003 if (insn)
3004 {
3005 if (NOTE_P (insn))
3006 for (insn = previous_insn (insn);
3007 insn && NOTE_P (insn);
3008 insn = previous_insn (insn))
3009 continue;
3010 else
3011 {
3012 if (NONJUMP_INSN_P (insn)
3013 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3014 insn = XVECEXP (PATTERN (insn), 0,
3015 XVECLEN (PATTERN (insn), 0) - 1);
3016 }
3017 }
3018
3019 return insn;
3020 }
3021
3022 /* Return the number of actual (non-debug) insns emitted in this
3023 function. */
3024
3025 int
3026 get_max_insn_count (void)
3027 {
3028 int n = cur_insn_uid;
3029
3030 /* The table size must be stable across -g, to avoid codegen
3031 differences due to debug insns, and not be affected by
3032 -fmin-insn-uid, to avoid excessive table size and to simplify
3033 debugging of -fcompare-debug failures. */
3034 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3035 n -= cur_debug_insn_uid;
3036 else
3037 n -= MIN_NONDEBUG_INSN_UID;
3038
3039 return n;
3040 }
3041
3042 \f
3043 /* Return the next insn. If it is a SEQUENCE, return the first insn
3044 of the sequence. */
3045
3046 rtx
3047 next_insn (rtx insn)
3048 {
3049 if (insn)
3050 {
3051 insn = NEXT_INSN (insn);
3052 if (insn && NONJUMP_INSN_P (insn)
3053 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3054 insn = XVECEXP (PATTERN (insn), 0, 0);
3055 }
3056
3057 return insn;
3058 }
3059
3060 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3061 of the sequence. */
3062
3063 rtx
3064 previous_insn (rtx insn)
3065 {
3066 if (insn)
3067 {
3068 insn = PREV_INSN (insn);
3069 if (insn && NONJUMP_INSN_P (insn)
3070 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3071 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3072 }
3073
3074 return insn;
3075 }
3076
3077 /* Return the next insn after INSN that is not a NOTE. This routine does not
3078 look inside SEQUENCEs. */
3079
3080 rtx
3081 next_nonnote_insn (rtx insn)
3082 {
3083 while (insn)
3084 {
3085 insn = NEXT_INSN (insn);
3086 if (insn == 0 || !NOTE_P (insn))
3087 break;
3088 }
3089
3090 return insn;
3091 }
3092
3093 /* Return the next insn after INSN that is not a NOTE, but stop the
3094 search before we enter another basic block. This routine does not
3095 look inside SEQUENCEs. */
3096
3097 rtx
3098 next_nonnote_insn_bb (rtx insn)
3099 {
3100 while (insn)
3101 {
3102 insn = NEXT_INSN (insn);
3103 if (insn == 0 || !NOTE_P (insn))
3104 break;
3105 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3106 return NULL_RTX;
3107 }
3108
3109 return insn;
3110 }
3111
3112 /* Return the previous insn before INSN that is not a NOTE. This routine does
3113 not look inside SEQUENCEs. */
3114
3115 rtx
3116 prev_nonnote_insn (rtx insn)
3117 {
3118 while (insn)
3119 {
3120 insn = PREV_INSN (insn);
3121 if (insn == 0 || !NOTE_P (insn))
3122 break;
3123 }
3124
3125 return insn;
3126 }
3127
3128 /* Return the previous insn before INSN that is not a NOTE, but stop
3129 the search before we enter another basic block. This routine does
3130 not look inside SEQUENCEs. */
3131
3132 rtx
3133 prev_nonnote_insn_bb (rtx insn)
3134 {
3135 while (insn)
3136 {
3137 insn = PREV_INSN (insn);
3138 if (insn == 0 || !NOTE_P (insn))
3139 break;
3140 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3141 return NULL_RTX;
3142 }
3143
3144 return insn;
3145 }
3146
3147 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3148 routine does not look inside SEQUENCEs. */
3149
3150 rtx
3151 next_nondebug_insn (rtx insn)
3152 {
3153 while (insn)
3154 {
3155 insn = NEXT_INSN (insn);
3156 if (insn == 0 || !DEBUG_INSN_P (insn))
3157 break;
3158 }
3159
3160 return insn;
3161 }
3162
3163 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3164 This routine does not look inside SEQUENCEs. */
3165
3166 rtx
3167 prev_nondebug_insn (rtx insn)
3168 {
3169 while (insn)
3170 {
3171 insn = PREV_INSN (insn);
3172 if (insn == 0 || !DEBUG_INSN_P (insn))
3173 break;
3174 }
3175
3176 return insn;
3177 }
3178
3179 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3180 This routine does not look inside SEQUENCEs. */
3181
3182 rtx
3183 next_nonnote_nondebug_insn (rtx insn)
3184 {
3185 while (insn)
3186 {
3187 insn = NEXT_INSN (insn);
3188 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3189 break;
3190 }
3191
3192 return insn;
3193 }
3194
3195 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3196 This routine does not look inside SEQUENCEs. */
3197
3198 rtx
3199 prev_nonnote_nondebug_insn (rtx insn)
3200 {
3201 while (insn)
3202 {
3203 insn = PREV_INSN (insn);
3204 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3205 break;
3206 }
3207
3208 return insn;
3209 }
3210
3211 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3212 or 0, if there is none. This routine does not look inside
3213 SEQUENCEs. */
3214
3215 rtx
3216 next_real_insn (rtx insn)
3217 {
3218 while (insn)
3219 {
3220 insn = NEXT_INSN (insn);
3221 if (insn == 0 || INSN_P (insn))
3222 break;
3223 }
3224
3225 return insn;
3226 }
3227
3228 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3229 or 0, if there is none. This routine does not look inside
3230 SEQUENCEs. */
3231
3232 rtx
3233 prev_real_insn (rtx insn)
3234 {
3235 while (insn)
3236 {
3237 insn = PREV_INSN (insn);
3238 if (insn == 0 || INSN_P (insn))
3239 break;
3240 }
3241
3242 return insn;
3243 }
3244
3245 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3246 This routine does not look inside SEQUENCEs. */
3247
3248 rtx
3249 last_call_insn (void)
3250 {
3251 rtx insn;
3252
3253 for (insn = get_last_insn ();
3254 insn && !CALL_P (insn);
3255 insn = PREV_INSN (insn))
3256 ;
3257
3258 return insn;
3259 }
3260
3261 /* Find the next insn after INSN that really does something. This routine
3262 does not look inside SEQUENCEs. After reload this also skips over
3263 standalone USE and CLOBBER insn. */
3264
3265 int
3266 active_insn_p (const_rtx insn)
3267 {
3268 return (CALL_P (insn) || JUMP_P (insn)
3269 || (NONJUMP_INSN_P (insn)
3270 && (! reload_completed
3271 || (GET_CODE (PATTERN (insn)) != USE
3272 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3273 }
3274
3275 rtx
3276 next_active_insn (rtx insn)
3277 {
3278 while (insn)
3279 {
3280 insn = NEXT_INSN (insn);
3281 if (insn == 0 || active_insn_p (insn))
3282 break;
3283 }
3284
3285 return insn;
3286 }
3287
3288 /* Find the last insn before INSN that really does something. This routine
3289 does not look inside SEQUENCEs. After reload this also skips over
3290 standalone USE and CLOBBER insn. */
3291
3292 rtx
3293 prev_active_insn (rtx insn)
3294 {
3295 while (insn)
3296 {
3297 insn = PREV_INSN (insn);
3298 if (insn == 0 || active_insn_p (insn))
3299 break;
3300 }
3301
3302 return insn;
3303 }
3304
3305 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3306
3307 rtx
3308 next_label (rtx insn)
3309 {
3310 while (insn)
3311 {
3312 insn = NEXT_INSN (insn);
3313 if (insn == 0 || LABEL_P (insn))
3314 break;
3315 }
3316
3317 return insn;
3318 }
3319
3320 /* Return the last label to mark the same position as LABEL. Return LABEL
3321 itself if it is null or any return rtx. */
3322
3323 rtx
3324 skip_consecutive_labels (rtx label)
3325 {
3326 rtx insn;
3327
3328 if (label && ANY_RETURN_P (label))
3329 return label;
3330
3331 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3332 if (LABEL_P (insn))
3333 label = insn;
3334
3335 return label;
3336 }
3337 \f
3338 #ifdef HAVE_cc0
3339 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3340 and REG_CC_USER notes so we can find it. */
3341
3342 void
3343 link_cc0_insns (rtx insn)
3344 {
3345 rtx user = next_nonnote_insn (insn);
3346
3347 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3348 user = XVECEXP (PATTERN (user), 0, 0);
3349
3350 add_reg_note (user, REG_CC_SETTER, insn);
3351 add_reg_note (insn, REG_CC_USER, user);
3352 }
3353
3354 /* Return the next insn that uses CC0 after INSN, which is assumed to
3355 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3356 applied to the result of this function should yield INSN).
3357
3358 Normally, this is simply the next insn. However, if a REG_CC_USER note
3359 is present, it contains the insn that uses CC0.
3360
3361 Return 0 if we can't find the insn. */
3362
3363 rtx
3364 next_cc0_user (rtx insn)
3365 {
3366 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3367
3368 if (note)
3369 return XEXP (note, 0);
3370
3371 insn = next_nonnote_insn (insn);
3372 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3373 insn = XVECEXP (PATTERN (insn), 0, 0);
3374
3375 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3376 return insn;
3377
3378 return 0;
3379 }
3380
3381 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3382 note, it is the previous insn. */
3383
3384 rtx
3385 prev_cc0_setter (rtx insn)
3386 {
3387 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3388
3389 if (note)
3390 return XEXP (note, 0);
3391
3392 insn = prev_nonnote_insn (insn);
3393 gcc_assert (sets_cc0_p (PATTERN (insn)));
3394
3395 return insn;
3396 }
3397 #endif
3398
3399 #ifdef AUTO_INC_DEC
3400 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3401
3402 static int
3403 find_auto_inc (rtx *xp, void *data)
3404 {
3405 rtx x = *xp;
3406 rtx reg = (rtx) data;
3407
3408 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3409 return 0;
3410
3411 switch (GET_CODE (x))
3412 {
3413 case PRE_DEC:
3414 case PRE_INC:
3415 case POST_DEC:
3416 case POST_INC:
3417 case PRE_MODIFY:
3418 case POST_MODIFY:
3419 if (rtx_equal_p (reg, XEXP (x, 0)))
3420 return 1;
3421 break;
3422
3423 default:
3424 gcc_unreachable ();
3425 }
3426 return -1;
3427 }
3428 #endif
3429
3430 /* Increment the label uses for all labels present in rtx. */
3431
3432 static void
3433 mark_label_nuses (rtx x)
3434 {
3435 enum rtx_code code;
3436 int i, j;
3437 const char *fmt;
3438
3439 code = GET_CODE (x);
3440 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3441 LABEL_NUSES (XEXP (x, 0))++;
3442
3443 fmt = GET_RTX_FORMAT (code);
3444 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3445 {
3446 if (fmt[i] == 'e')
3447 mark_label_nuses (XEXP (x, i));
3448 else if (fmt[i] == 'E')
3449 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3450 mark_label_nuses (XVECEXP (x, i, j));
3451 }
3452 }
3453
3454 \f
3455 /* Try splitting insns that can be split for better scheduling.
3456 PAT is the pattern which might split.
3457 TRIAL is the insn providing PAT.
3458 LAST is nonzero if we should return the last insn of the sequence produced.
3459
3460 If this routine succeeds in splitting, it returns the first or last
3461 replacement insn depending on the value of LAST. Otherwise, it
3462 returns TRIAL. If the insn to be returned can be split, it will be. */
3463
3464 rtx
3465 try_split (rtx pat, rtx trial, int last)
3466 {
3467 rtx before = PREV_INSN (trial);
3468 rtx after = NEXT_INSN (trial);
3469 int has_barrier = 0;
3470 rtx note, seq, tem;
3471 int probability;
3472 rtx insn_last, insn;
3473 int njumps = 0;
3474
3475 /* We're not good at redistributing frame information. */
3476 if (RTX_FRAME_RELATED_P (trial))
3477 return trial;
3478
3479 if (any_condjump_p (trial)
3480 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3481 split_branch_probability = INTVAL (XEXP (note, 0));
3482 probability = split_branch_probability;
3483
3484 seq = split_insns (pat, trial);
3485
3486 split_branch_probability = -1;
3487
3488 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3489 We may need to handle this specially. */
3490 if (after && BARRIER_P (after))
3491 {
3492 has_barrier = 1;
3493 after = NEXT_INSN (after);
3494 }
3495
3496 if (!seq)
3497 return trial;
3498
3499 /* Avoid infinite loop if any insn of the result matches
3500 the original pattern. */
3501 insn_last = seq;
3502 while (1)
3503 {
3504 if (INSN_P (insn_last)
3505 && rtx_equal_p (PATTERN (insn_last), pat))
3506 return trial;
3507 if (!NEXT_INSN (insn_last))
3508 break;
3509 insn_last = NEXT_INSN (insn_last);
3510 }
3511
3512 /* We will be adding the new sequence to the function. The splitters
3513 may have introduced invalid RTL sharing, so unshare the sequence now. */
3514 unshare_all_rtl_in_chain (seq);
3515
3516 /* Mark labels. */
3517 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3518 {
3519 if (JUMP_P (insn))
3520 {
3521 mark_jump_label (PATTERN (insn), insn, 0);
3522 njumps++;
3523 if (probability != -1
3524 && any_condjump_p (insn)
3525 && !find_reg_note (insn, REG_BR_PROB, 0))
3526 {
3527 /* We can preserve the REG_BR_PROB notes only if exactly
3528 one jump is created, otherwise the machine description
3529 is responsible for this step using
3530 split_branch_probability variable. */
3531 gcc_assert (njumps == 1);
3532 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3533 }
3534 }
3535 }
3536
3537 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3538 in SEQ and copy any additional information across. */
3539 if (CALL_P (trial))
3540 {
3541 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3542 if (CALL_P (insn))
3543 {
3544 rtx next, *p;
3545
3546 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3547 target may have explicitly specified. */
3548 p = &CALL_INSN_FUNCTION_USAGE (insn);
3549 while (*p)
3550 p = &XEXP (*p, 1);
3551 *p = CALL_INSN_FUNCTION_USAGE (trial);
3552
3553 /* If the old call was a sibling call, the new one must
3554 be too. */
3555 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3556
3557 /* If the new call is the last instruction in the sequence,
3558 it will effectively replace the old call in-situ. Otherwise
3559 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3560 so that it comes immediately after the new call. */
3561 if (NEXT_INSN (insn))
3562 for (next = NEXT_INSN (trial);
3563 next && NOTE_P (next);
3564 next = NEXT_INSN (next))
3565 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3566 {
3567 remove_insn (next);
3568 add_insn_after (next, insn, NULL);
3569 break;
3570 }
3571 }
3572 }
3573
3574 /* Copy notes, particularly those related to the CFG. */
3575 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3576 {
3577 switch (REG_NOTE_KIND (note))
3578 {
3579 case REG_EH_REGION:
3580 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3581 break;
3582
3583 case REG_NORETURN:
3584 case REG_SETJMP:
3585 case REG_TM:
3586 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3587 {
3588 if (CALL_P (insn))
3589 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3590 }
3591 break;
3592
3593 case REG_NON_LOCAL_GOTO:
3594 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3595 {
3596 if (JUMP_P (insn))
3597 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3598 }
3599 break;
3600
3601 #ifdef AUTO_INC_DEC
3602 case REG_INC:
3603 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3604 {
3605 rtx reg = XEXP (note, 0);
3606 if (!FIND_REG_INC_NOTE (insn, reg)
3607 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3608 add_reg_note (insn, REG_INC, reg);
3609 }
3610 break;
3611 #endif
3612
3613 case REG_ARGS_SIZE:
3614 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3615 break;
3616
3617 default:
3618 break;
3619 }
3620 }
3621
3622 /* If there are LABELS inside the split insns increment the
3623 usage count so we don't delete the label. */
3624 if (INSN_P (trial))
3625 {
3626 insn = insn_last;
3627 while (insn != NULL_RTX)
3628 {
3629 /* JUMP_P insns have already been "marked" above. */
3630 if (NONJUMP_INSN_P (insn))
3631 mark_label_nuses (PATTERN (insn));
3632
3633 insn = PREV_INSN (insn);
3634 }
3635 }
3636
3637 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3638
3639 delete_insn (trial);
3640 if (has_barrier)
3641 emit_barrier_after (tem);
3642
3643 /* Recursively call try_split for each new insn created; by the
3644 time control returns here that insn will be fully split, so
3645 set LAST and continue from the insn after the one returned.
3646 We can't use next_active_insn here since AFTER may be a note.
3647 Ignore deleted insns, which can be occur if not optimizing. */
3648 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3649 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3650 tem = try_split (PATTERN (tem), tem, 1);
3651
3652 /* Return either the first or the last insn, depending on which was
3653 requested. */
3654 return last
3655 ? (after ? PREV_INSN (after) : get_last_insn ())
3656 : NEXT_INSN (before);
3657 }
3658 \f
3659 /* Make and return an INSN rtx, initializing all its slots.
3660 Store PATTERN in the pattern slots. */
3661
3662 rtx
3663 make_insn_raw (rtx pattern)
3664 {
3665 rtx insn;
3666
3667 insn = rtx_alloc (INSN);
3668
3669 INSN_UID (insn) = cur_insn_uid++;
3670 PATTERN (insn) = pattern;
3671 INSN_CODE (insn) = -1;
3672 REG_NOTES (insn) = NULL;
3673 INSN_LOCATOR (insn) = curr_insn_locator ();
3674 BLOCK_FOR_INSN (insn) = NULL;
3675
3676 #ifdef ENABLE_RTL_CHECKING
3677 if (insn
3678 && INSN_P (insn)
3679 && (returnjump_p (insn)
3680 || (GET_CODE (insn) == SET
3681 && SET_DEST (insn) == pc_rtx)))
3682 {
3683 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3684 debug_rtx (insn);
3685 }
3686 #endif
3687
3688 return insn;
3689 }
3690
3691 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3692
3693 static rtx
3694 make_debug_insn_raw (rtx pattern)
3695 {
3696 rtx insn;
3697
3698 insn = rtx_alloc (DEBUG_INSN);
3699 INSN_UID (insn) = cur_debug_insn_uid++;
3700 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3701 INSN_UID (insn) = cur_insn_uid++;
3702
3703 PATTERN (insn) = pattern;
3704 INSN_CODE (insn) = -1;
3705 REG_NOTES (insn) = NULL;
3706 INSN_LOCATOR (insn) = curr_insn_locator ();
3707 BLOCK_FOR_INSN (insn) = NULL;
3708
3709 return insn;
3710 }
3711
3712 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3713
3714 static rtx
3715 make_jump_insn_raw (rtx pattern)
3716 {
3717 rtx insn;
3718
3719 insn = rtx_alloc (JUMP_INSN);
3720 INSN_UID (insn) = cur_insn_uid++;
3721
3722 PATTERN (insn) = pattern;
3723 INSN_CODE (insn) = -1;
3724 REG_NOTES (insn) = NULL;
3725 JUMP_LABEL (insn) = NULL;
3726 INSN_LOCATOR (insn) = curr_insn_locator ();
3727 BLOCK_FOR_INSN (insn) = NULL;
3728
3729 return insn;
3730 }
3731
3732 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3733
3734 static rtx
3735 make_call_insn_raw (rtx pattern)
3736 {
3737 rtx insn;
3738
3739 insn = rtx_alloc (CALL_INSN);
3740 INSN_UID (insn) = cur_insn_uid++;
3741
3742 PATTERN (insn) = pattern;
3743 INSN_CODE (insn) = -1;
3744 REG_NOTES (insn) = NULL;
3745 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3746 INSN_LOCATOR (insn) = curr_insn_locator ();
3747 BLOCK_FOR_INSN (insn) = NULL;
3748
3749 return insn;
3750 }
3751 \f
3752 /* Add INSN to the end of the doubly-linked list.
3753 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3754
3755 void
3756 add_insn (rtx insn)
3757 {
3758 PREV_INSN (insn) = get_last_insn();
3759 NEXT_INSN (insn) = 0;
3760
3761 if (NULL != get_last_insn())
3762 NEXT_INSN (get_last_insn ()) = insn;
3763
3764 if (NULL == get_insns ())
3765 set_first_insn (insn);
3766
3767 set_last_insn (insn);
3768 }
3769
3770 /* Add INSN into the doubly-linked list after insn AFTER. This and
3771 the next should be the only functions called to insert an insn once
3772 delay slots have been filled since only they know how to update a
3773 SEQUENCE. */
3774
3775 void
3776 add_insn_after (rtx insn, rtx after, basic_block bb)
3777 {
3778 rtx next = NEXT_INSN (after);
3779
3780 gcc_assert (!optimize || !INSN_DELETED_P (after));
3781
3782 NEXT_INSN (insn) = next;
3783 PREV_INSN (insn) = after;
3784
3785 if (next)
3786 {
3787 PREV_INSN (next) = insn;
3788 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3789 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3790 }
3791 else if (get_last_insn () == after)
3792 set_last_insn (insn);
3793 else
3794 {
3795 struct sequence_stack *stack = seq_stack;
3796 /* Scan all pending sequences too. */
3797 for (; stack; stack = stack->next)
3798 if (after == stack->last)
3799 {
3800 stack->last = insn;
3801 break;
3802 }
3803
3804 gcc_assert (stack);
3805 }
3806
3807 if (!BARRIER_P (after)
3808 && !BARRIER_P (insn)
3809 && (bb = BLOCK_FOR_INSN (after)))
3810 {
3811 set_block_for_insn (insn, bb);
3812 if (INSN_P (insn))
3813 df_insn_rescan (insn);
3814 /* Should not happen as first in the BB is always
3815 either NOTE or LABEL. */
3816 if (BB_END (bb) == after
3817 /* Avoid clobbering of structure when creating new BB. */
3818 && !BARRIER_P (insn)
3819 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3820 BB_END (bb) = insn;
3821 }
3822
3823 NEXT_INSN (after) = insn;
3824 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3825 {
3826 rtx sequence = PATTERN (after);
3827 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3828 }
3829 }
3830
3831 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3832 the previous should be the only functions called to insert an insn
3833 once delay slots have been filled since only they know how to
3834 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3835 bb from before. */
3836
3837 void
3838 add_insn_before (rtx insn, rtx before, basic_block bb)
3839 {
3840 rtx prev = PREV_INSN (before);
3841
3842 gcc_assert (!optimize || !INSN_DELETED_P (before));
3843
3844 PREV_INSN (insn) = prev;
3845 NEXT_INSN (insn) = before;
3846
3847 if (prev)
3848 {
3849 NEXT_INSN (prev) = insn;
3850 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3851 {
3852 rtx sequence = PATTERN (prev);
3853 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3854 }
3855 }
3856 else if (get_insns () == before)
3857 set_first_insn (insn);
3858 else
3859 {
3860 struct sequence_stack *stack = seq_stack;
3861 /* Scan all pending sequences too. */
3862 for (; stack; stack = stack->next)
3863 if (before == stack->first)
3864 {
3865 stack->first = insn;
3866 break;
3867 }
3868
3869 gcc_assert (stack);
3870 }
3871
3872 if (!bb
3873 && !BARRIER_P (before)
3874 && !BARRIER_P (insn))
3875 bb = BLOCK_FOR_INSN (before);
3876
3877 if (bb)
3878 {
3879 set_block_for_insn (insn, bb);
3880 if (INSN_P (insn))
3881 df_insn_rescan (insn);
3882 /* Should not happen as first in the BB is always either NOTE or
3883 LABEL. */
3884 gcc_assert (BB_HEAD (bb) != insn
3885 /* Avoid clobbering of structure when creating new BB. */
3886 || BARRIER_P (insn)
3887 || NOTE_INSN_BASIC_BLOCK_P (insn));
3888 }
3889
3890 PREV_INSN (before) = insn;
3891 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3892 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3893 }
3894
3895
3896 /* Replace insn with an deleted instruction note. */
3897
3898 void
3899 set_insn_deleted (rtx insn)
3900 {
3901 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3902 PUT_CODE (insn, NOTE);
3903 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3904 }
3905
3906
3907 /* Remove an insn from its doubly-linked list. This function knows how
3908 to handle sequences. */
3909 void
3910 remove_insn (rtx insn)
3911 {
3912 rtx next = NEXT_INSN (insn);
3913 rtx prev = PREV_INSN (insn);
3914 basic_block bb;
3915
3916 /* Later in the code, the block will be marked dirty. */
3917 df_insn_delete (NULL, INSN_UID (insn));
3918
3919 if (prev)
3920 {
3921 NEXT_INSN (prev) = next;
3922 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3923 {
3924 rtx sequence = PATTERN (prev);
3925 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3926 }
3927 }
3928 else if (get_insns () == insn)
3929 {
3930 if (next)
3931 PREV_INSN (next) = NULL;
3932 set_first_insn (next);
3933 }
3934 else
3935 {
3936 struct sequence_stack *stack = seq_stack;
3937 /* Scan all pending sequences too. */
3938 for (; stack; stack = stack->next)
3939 if (insn == stack->first)
3940 {
3941 stack->first = next;
3942 break;
3943 }
3944
3945 gcc_assert (stack);
3946 }
3947
3948 if (next)
3949 {
3950 PREV_INSN (next) = prev;
3951 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3952 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3953 }
3954 else if (get_last_insn () == insn)
3955 set_last_insn (prev);
3956 else
3957 {
3958 struct sequence_stack *stack = seq_stack;
3959 /* Scan all pending sequences too. */
3960 for (; stack; stack = stack->next)
3961 if (insn == stack->last)
3962 {
3963 stack->last = prev;
3964 break;
3965 }
3966
3967 gcc_assert (stack);
3968 }
3969 if (!BARRIER_P (insn)
3970 && (bb = BLOCK_FOR_INSN (insn)))
3971 {
3972 if (NONDEBUG_INSN_P (insn))
3973 df_set_bb_dirty (bb);
3974 if (BB_HEAD (bb) == insn)
3975 {
3976 /* Never ever delete the basic block note without deleting whole
3977 basic block. */
3978 gcc_assert (!NOTE_P (insn));
3979 BB_HEAD (bb) = next;
3980 }
3981 if (BB_END (bb) == insn)
3982 BB_END (bb) = prev;
3983 }
3984 }
3985
3986 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3987
3988 void
3989 add_function_usage_to (rtx call_insn, rtx call_fusage)
3990 {
3991 gcc_assert (call_insn && CALL_P (call_insn));
3992
3993 /* Put the register usage information on the CALL. If there is already
3994 some usage information, put ours at the end. */
3995 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3996 {
3997 rtx link;
3998
3999 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4000 link = XEXP (link, 1))
4001 ;
4002
4003 XEXP (link, 1) = call_fusage;
4004 }
4005 else
4006 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4007 }
4008
4009 /* Delete all insns made since FROM.
4010 FROM becomes the new last instruction. */
4011
4012 void
4013 delete_insns_since (rtx from)
4014 {
4015 if (from == 0)
4016 set_first_insn (0);
4017 else
4018 NEXT_INSN (from) = 0;
4019 set_last_insn (from);
4020 }
4021
4022 /* This function is deprecated, please use sequences instead.
4023
4024 Move a consecutive bunch of insns to a different place in the chain.
4025 The insns to be moved are those between FROM and TO.
4026 They are moved to a new position after the insn AFTER.
4027 AFTER must not be FROM or TO or any insn in between.
4028
4029 This function does not know about SEQUENCEs and hence should not be
4030 called after delay-slot filling has been done. */
4031
4032 void
4033 reorder_insns_nobb (rtx from, rtx to, rtx after)
4034 {
4035 #ifdef ENABLE_CHECKING
4036 rtx x;
4037 for (x = from; x != to; x = NEXT_INSN (x))
4038 gcc_assert (after != x);
4039 gcc_assert (after != to);
4040 #endif
4041
4042 /* Splice this bunch out of where it is now. */
4043 if (PREV_INSN (from))
4044 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4045 if (NEXT_INSN (to))
4046 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4047 if (get_last_insn () == to)
4048 set_last_insn (PREV_INSN (from));
4049 if (get_insns () == from)
4050 set_first_insn (NEXT_INSN (to));
4051
4052 /* Make the new neighbors point to it and it to them. */
4053 if (NEXT_INSN (after))
4054 PREV_INSN (NEXT_INSN (after)) = to;
4055
4056 NEXT_INSN (to) = NEXT_INSN (after);
4057 PREV_INSN (from) = after;
4058 NEXT_INSN (after) = from;
4059 if (after == get_last_insn())
4060 set_last_insn (to);
4061 }
4062
4063 /* Same as function above, but take care to update BB boundaries. */
4064 void
4065 reorder_insns (rtx from, rtx to, rtx after)
4066 {
4067 rtx prev = PREV_INSN (from);
4068 basic_block bb, bb2;
4069
4070 reorder_insns_nobb (from, to, after);
4071
4072 if (!BARRIER_P (after)
4073 && (bb = BLOCK_FOR_INSN (after)))
4074 {
4075 rtx x;
4076 df_set_bb_dirty (bb);
4077
4078 if (!BARRIER_P (from)
4079 && (bb2 = BLOCK_FOR_INSN (from)))
4080 {
4081 if (BB_END (bb2) == to)
4082 BB_END (bb2) = prev;
4083 df_set_bb_dirty (bb2);
4084 }
4085
4086 if (BB_END (bb) == after)
4087 BB_END (bb) = to;
4088
4089 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4090 if (!BARRIER_P (x))
4091 df_insn_change_bb (x, bb);
4092 }
4093 }
4094
4095 \f
4096 /* Emit insn(s) of given code and pattern
4097 at a specified place within the doubly-linked list.
4098
4099 All of the emit_foo global entry points accept an object
4100 X which is either an insn list or a PATTERN of a single
4101 instruction.
4102
4103 There are thus a few canonical ways to generate code and
4104 emit it at a specific place in the instruction stream. For
4105 example, consider the instruction named SPOT and the fact that
4106 we would like to emit some instructions before SPOT. We might
4107 do it like this:
4108
4109 start_sequence ();
4110 ... emit the new instructions ...
4111 insns_head = get_insns ();
4112 end_sequence ();
4113
4114 emit_insn_before (insns_head, SPOT);
4115
4116 It used to be common to generate SEQUENCE rtl instead, but that
4117 is a relic of the past which no longer occurs. The reason is that
4118 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4119 generated would almost certainly die right after it was created. */
4120
4121 static rtx
4122 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4123 rtx (*make_raw) (rtx))
4124 {
4125 rtx insn;
4126
4127 gcc_assert (before);
4128
4129 if (x == NULL_RTX)
4130 return last;
4131
4132 switch (GET_CODE (x))
4133 {
4134 case DEBUG_INSN:
4135 case INSN:
4136 case JUMP_INSN:
4137 case CALL_INSN:
4138 case CODE_LABEL:
4139 case BARRIER:
4140 case NOTE:
4141 insn = x;
4142 while (insn)
4143 {
4144 rtx next = NEXT_INSN (insn);
4145 add_insn_before (insn, before, bb);
4146 last = insn;
4147 insn = next;
4148 }
4149 break;
4150
4151 #ifdef ENABLE_RTL_CHECKING
4152 case SEQUENCE:
4153 gcc_unreachable ();
4154 break;
4155 #endif
4156
4157 default:
4158 last = (*make_raw) (x);
4159 add_insn_before (last, before, bb);
4160 break;
4161 }
4162
4163 return last;
4164 }
4165
4166 /* Make X be output before the instruction BEFORE. */
4167
4168 rtx
4169 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4170 {
4171 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4172 }
4173
4174 /* Make an instruction with body X and code JUMP_INSN
4175 and output it before the instruction BEFORE. */
4176
4177 rtx
4178 emit_jump_insn_before_noloc (rtx x, rtx before)
4179 {
4180 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4181 make_jump_insn_raw);
4182 }
4183
4184 /* Make an instruction with body X and code CALL_INSN
4185 and output it before the instruction BEFORE. */
4186
4187 rtx
4188 emit_call_insn_before_noloc (rtx x, rtx before)
4189 {
4190 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4191 make_call_insn_raw);
4192 }
4193
4194 /* Make an instruction with body X and code DEBUG_INSN
4195 and output it before the instruction BEFORE. */
4196
4197 rtx
4198 emit_debug_insn_before_noloc (rtx x, rtx before)
4199 {
4200 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4201 make_debug_insn_raw);
4202 }
4203
4204 /* Make an insn of code BARRIER
4205 and output it before the insn BEFORE. */
4206
4207 rtx
4208 emit_barrier_before (rtx before)
4209 {
4210 rtx insn = rtx_alloc (BARRIER);
4211
4212 INSN_UID (insn) = cur_insn_uid++;
4213
4214 add_insn_before (insn, before, NULL);
4215 return insn;
4216 }
4217
4218 /* Emit the label LABEL before the insn BEFORE. */
4219
4220 rtx
4221 emit_label_before (rtx label, rtx before)
4222 {
4223 gcc_checking_assert (INSN_UID (label) == 0);
4224 INSN_UID (label) = cur_insn_uid++;
4225 add_insn_before (label, before, NULL);
4226 return label;
4227 }
4228
4229 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4230
4231 rtx
4232 emit_note_before (enum insn_note subtype, rtx before)
4233 {
4234 rtx note = rtx_alloc (NOTE);
4235 INSN_UID (note) = cur_insn_uid++;
4236 NOTE_KIND (note) = subtype;
4237 BLOCK_FOR_INSN (note) = NULL;
4238 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4239
4240 add_insn_before (note, before, NULL);
4241 return note;
4242 }
4243 \f
4244 /* Helper for emit_insn_after, handles lists of instructions
4245 efficiently. */
4246
4247 static rtx
4248 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4249 {
4250 rtx last;
4251 rtx after_after;
4252 if (!bb && !BARRIER_P (after))
4253 bb = BLOCK_FOR_INSN (after);
4254
4255 if (bb)
4256 {
4257 df_set_bb_dirty (bb);
4258 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4259 if (!BARRIER_P (last))
4260 {
4261 set_block_for_insn (last, bb);
4262 df_insn_rescan (last);
4263 }
4264 if (!BARRIER_P (last))
4265 {
4266 set_block_for_insn (last, bb);
4267 df_insn_rescan (last);
4268 }
4269 if (BB_END (bb) == after)
4270 BB_END (bb) = last;
4271 }
4272 else
4273 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4274 continue;
4275
4276 after_after = NEXT_INSN (after);
4277
4278 NEXT_INSN (after) = first;
4279 PREV_INSN (first) = after;
4280 NEXT_INSN (last) = after_after;
4281 if (after_after)
4282 PREV_INSN (after_after) = last;
4283
4284 if (after == get_last_insn())
4285 set_last_insn (last);
4286
4287 return last;
4288 }
4289
4290 static rtx
4291 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4292 rtx (*make_raw)(rtx))
4293 {
4294 rtx last = after;
4295
4296 gcc_assert (after);
4297
4298 if (x == NULL_RTX)
4299 return last;
4300
4301 switch (GET_CODE (x))
4302 {
4303 case DEBUG_INSN:
4304 case INSN:
4305 case JUMP_INSN:
4306 case CALL_INSN:
4307 case CODE_LABEL:
4308 case BARRIER:
4309 case NOTE:
4310 last = emit_insn_after_1 (x, after, bb);
4311 break;
4312
4313 #ifdef ENABLE_RTL_CHECKING
4314 case SEQUENCE:
4315 gcc_unreachable ();
4316 break;
4317 #endif
4318
4319 default:
4320 last = (*make_raw) (x);
4321 add_insn_after (last, after, bb);
4322 break;
4323 }
4324
4325 return last;
4326 }
4327
4328 /* Make X be output after the insn AFTER and set the BB of insn. If
4329 BB is NULL, an attempt is made to infer the BB from AFTER. */
4330
4331 rtx
4332 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4333 {
4334 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4335 }
4336
4337
4338 /* Make an insn of code JUMP_INSN with body X
4339 and output it after the insn AFTER. */
4340
4341 rtx
4342 emit_jump_insn_after_noloc (rtx x, rtx after)
4343 {
4344 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4345 }
4346
4347 /* Make an instruction with body X and code CALL_INSN
4348 and output it after the instruction AFTER. */
4349
4350 rtx
4351 emit_call_insn_after_noloc (rtx x, rtx after)
4352 {
4353 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4354 }
4355
4356 /* Make an instruction with body X and code CALL_INSN
4357 and output it after the instruction AFTER. */
4358
4359 rtx
4360 emit_debug_insn_after_noloc (rtx x, rtx after)
4361 {
4362 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4363 }
4364
4365 /* Make an insn of code BARRIER
4366 and output it after the insn AFTER. */
4367
4368 rtx
4369 emit_barrier_after (rtx after)
4370 {
4371 rtx insn = rtx_alloc (BARRIER);
4372
4373 INSN_UID (insn) = cur_insn_uid++;
4374
4375 add_insn_after (insn, after, NULL);
4376 return insn;
4377 }
4378
4379 /* Emit the label LABEL after the insn AFTER. */
4380
4381 rtx
4382 emit_label_after (rtx label, rtx after)
4383 {
4384 gcc_checking_assert (INSN_UID (label) == 0);
4385 INSN_UID (label) = cur_insn_uid++;
4386 add_insn_after (label, after, NULL);
4387 return label;
4388 }
4389
4390 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4391
4392 rtx
4393 emit_note_after (enum insn_note subtype, rtx after)
4394 {
4395 rtx note = rtx_alloc (NOTE);
4396 INSN_UID (note) = cur_insn_uid++;
4397 NOTE_KIND (note) = subtype;
4398 BLOCK_FOR_INSN (note) = NULL;
4399 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4400 add_insn_after (note, after, NULL);
4401 return note;
4402 }
4403 \f
4404 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4405 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4406
4407 static rtx
4408 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4409 rtx (*make_raw) (rtx))
4410 {
4411 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4412
4413 if (pattern == NULL_RTX || !loc)
4414 return last;
4415
4416 after = NEXT_INSN (after);
4417 while (1)
4418 {
4419 if (active_insn_p (after) && !INSN_LOCATOR (after))
4420 INSN_LOCATOR (after) = loc;
4421 if (after == last)
4422 break;
4423 after = NEXT_INSN (after);
4424 }
4425 return last;
4426 }
4427
4428 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4429 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4430 any DEBUG_INSNs. */
4431
4432 static rtx
4433 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4434 rtx (*make_raw) (rtx))
4435 {
4436 rtx prev = after;
4437
4438 if (skip_debug_insns)
4439 while (DEBUG_INSN_P (prev))
4440 prev = PREV_INSN (prev);
4441
4442 if (INSN_P (prev))
4443 return emit_pattern_after_setloc (pattern, after, INSN_LOCATOR (prev),
4444 make_raw);
4445 else
4446 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4447 }
4448
4449 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4450 rtx
4451 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4452 {
4453 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4454 }
4455
4456 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4457 rtx
4458 emit_insn_after (rtx pattern, rtx after)
4459 {
4460 return emit_pattern_after (pattern, after, true, make_insn_raw);
4461 }
4462
4463 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4464 rtx
4465 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4466 {
4467 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4468 }
4469
4470 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4471 rtx
4472 emit_jump_insn_after (rtx pattern, rtx after)
4473 {
4474 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4475 }
4476
4477 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4478 rtx
4479 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4480 {
4481 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4482 }
4483
4484 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4485 rtx
4486 emit_call_insn_after (rtx pattern, rtx after)
4487 {
4488 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4489 }
4490
4491 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4492 rtx
4493 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4494 {
4495 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4496 }
4497
4498 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4499 rtx
4500 emit_debug_insn_after (rtx pattern, rtx after)
4501 {
4502 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4503 }
4504
4505 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4506 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4507 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4508 CALL_INSN, etc. */
4509
4510 static rtx
4511 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4512 rtx (*make_raw) (rtx))
4513 {
4514 rtx first = PREV_INSN (before);
4515 rtx last = emit_pattern_before_noloc (pattern, before,
4516 insnp ? before : NULL_RTX,
4517 NULL, make_raw);
4518
4519 if (pattern == NULL_RTX || !loc)
4520 return last;
4521
4522 if (!first)
4523 first = get_insns ();
4524 else
4525 first = NEXT_INSN (first);
4526 while (1)
4527 {
4528 if (active_insn_p (first) && !INSN_LOCATOR (first))
4529 INSN_LOCATOR (first) = loc;
4530 if (first == last)
4531 break;
4532 first = NEXT_INSN (first);
4533 }
4534 return last;
4535 }
4536
4537 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4538 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4539 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4540 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4541
4542 static rtx
4543 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4544 bool insnp, rtx (*make_raw) (rtx))
4545 {
4546 rtx next = before;
4547
4548 if (skip_debug_insns)
4549 while (DEBUG_INSN_P (next))
4550 next = PREV_INSN (next);
4551
4552 if (INSN_P (next))
4553 return emit_pattern_before_setloc (pattern, before, INSN_LOCATOR (next),
4554 insnp, make_raw);
4555 else
4556 return emit_pattern_before_noloc (pattern, before,
4557 insnp ? before : NULL_RTX,
4558 NULL, make_raw);
4559 }
4560
4561 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4562 rtx
4563 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4564 {
4565 return emit_pattern_before_setloc (pattern, before, loc, true,
4566 make_insn_raw);
4567 }
4568
4569 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4570 rtx
4571 emit_insn_before (rtx pattern, rtx before)
4572 {
4573 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4574 }
4575
4576 /* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4577 rtx
4578 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4579 {
4580 return emit_pattern_before_setloc (pattern, before, loc, false,
4581 make_jump_insn_raw);
4582 }
4583
4584 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4585 rtx
4586 emit_jump_insn_before (rtx pattern, rtx before)
4587 {
4588 return emit_pattern_before (pattern, before, true, false,
4589 make_jump_insn_raw);
4590 }
4591
4592 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4593 rtx
4594 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4595 {
4596 return emit_pattern_before_setloc (pattern, before, loc, false,
4597 make_call_insn_raw);
4598 }
4599
4600 /* Like emit_call_insn_before_noloc,
4601 but set insn_locator according to BEFORE. */
4602 rtx
4603 emit_call_insn_before (rtx pattern, rtx before)
4604 {
4605 return emit_pattern_before (pattern, before, true, false,
4606 make_call_insn_raw);
4607 }
4608
4609 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4610 rtx
4611 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4612 {
4613 return emit_pattern_before_setloc (pattern, before, loc, false,
4614 make_debug_insn_raw);
4615 }
4616
4617 /* Like emit_debug_insn_before_noloc,
4618 but set insn_locator according to BEFORE. */
4619 rtx
4620 emit_debug_insn_before (rtx pattern, rtx before)
4621 {
4622 return emit_pattern_before (pattern, before, false, false,
4623 make_debug_insn_raw);
4624 }
4625 \f
4626 /* Take X and emit it at the end of the doubly-linked
4627 INSN list.
4628
4629 Returns the last insn emitted. */
4630
4631 rtx
4632 emit_insn (rtx x)
4633 {
4634 rtx last = get_last_insn();
4635 rtx insn;
4636
4637 if (x == NULL_RTX)
4638 return last;
4639
4640 switch (GET_CODE (x))
4641 {
4642 case DEBUG_INSN:
4643 case INSN:
4644 case JUMP_INSN:
4645 case CALL_INSN:
4646 case CODE_LABEL:
4647 case BARRIER:
4648 case NOTE:
4649 insn = x;
4650 while (insn)
4651 {
4652 rtx next = NEXT_INSN (insn);
4653 add_insn (insn);
4654 last = insn;
4655 insn = next;
4656 }
4657 break;
4658
4659 #ifdef ENABLE_RTL_CHECKING
4660 case SEQUENCE:
4661 gcc_unreachable ();
4662 break;
4663 #endif
4664
4665 default:
4666 last = make_insn_raw (x);
4667 add_insn (last);
4668 break;
4669 }
4670
4671 return last;
4672 }
4673
4674 /* Make an insn of code DEBUG_INSN with pattern X
4675 and add it to the end of the doubly-linked list. */
4676
4677 rtx
4678 emit_debug_insn (rtx x)
4679 {
4680 rtx last = get_last_insn();
4681 rtx insn;
4682
4683 if (x == NULL_RTX)
4684 return last;
4685
4686 switch (GET_CODE (x))
4687 {
4688 case DEBUG_INSN:
4689 case INSN:
4690 case JUMP_INSN:
4691 case CALL_INSN:
4692 case CODE_LABEL:
4693 case BARRIER:
4694 case NOTE:
4695 insn = x;
4696 while (insn)
4697 {
4698 rtx next = NEXT_INSN (insn);
4699 add_insn (insn);
4700 last = insn;
4701 insn = next;
4702 }
4703 break;
4704
4705 #ifdef ENABLE_RTL_CHECKING
4706 case SEQUENCE:
4707 gcc_unreachable ();
4708 break;
4709 #endif
4710
4711 default:
4712 last = make_debug_insn_raw (x);
4713 add_insn (last);
4714 break;
4715 }
4716
4717 return last;
4718 }
4719
4720 /* Make an insn of code JUMP_INSN with pattern X
4721 and add it to the end of the doubly-linked list. */
4722
4723 rtx
4724 emit_jump_insn (rtx x)
4725 {
4726 rtx last = NULL_RTX, insn;
4727
4728 switch (GET_CODE (x))
4729 {
4730 case DEBUG_INSN:
4731 case INSN:
4732 case JUMP_INSN:
4733 case CALL_INSN:
4734 case CODE_LABEL:
4735 case BARRIER:
4736 case NOTE:
4737 insn = x;
4738 while (insn)
4739 {
4740 rtx next = NEXT_INSN (insn);
4741 add_insn (insn);
4742 last = insn;
4743 insn = next;
4744 }
4745 break;
4746
4747 #ifdef ENABLE_RTL_CHECKING
4748 case SEQUENCE:
4749 gcc_unreachable ();
4750 break;
4751 #endif
4752
4753 default:
4754 last = make_jump_insn_raw (x);
4755 add_insn (last);
4756 break;
4757 }
4758
4759 return last;
4760 }
4761
4762 /* Make an insn of code CALL_INSN with pattern X
4763 and add it to the end of the doubly-linked list. */
4764
4765 rtx
4766 emit_call_insn (rtx x)
4767 {
4768 rtx insn;
4769
4770 switch (GET_CODE (x))
4771 {
4772 case DEBUG_INSN:
4773 case INSN:
4774 case JUMP_INSN:
4775 case CALL_INSN:
4776 case CODE_LABEL:
4777 case BARRIER:
4778 case NOTE:
4779 insn = emit_insn (x);
4780 break;
4781
4782 #ifdef ENABLE_RTL_CHECKING
4783 case SEQUENCE:
4784 gcc_unreachable ();
4785 break;
4786 #endif
4787
4788 default:
4789 insn = make_call_insn_raw (x);
4790 add_insn (insn);
4791 break;
4792 }
4793
4794 return insn;
4795 }
4796
4797 /* Add the label LABEL to the end of the doubly-linked list. */
4798
4799 rtx
4800 emit_label (rtx label)
4801 {
4802 gcc_checking_assert (INSN_UID (label) == 0);
4803 INSN_UID (label) = cur_insn_uid++;
4804 add_insn (label);
4805 return label;
4806 }
4807
4808 /* Make an insn of code BARRIER
4809 and add it to the end of the doubly-linked list. */
4810
4811 rtx
4812 emit_barrier (void)
4813 {
4814 rtx barrier = rtx_alloc (BARRIER);
4815 INSN_UID (barrier) = cur_insn_uid++;
4816 add_insn (barrier);
4817 return barrier;
4818 }
4819
4820 /* Emit a copy of note ORIG. */
4821
4822 rtx
4823 emit_note_copy (rtx orig)
4824 {
4825 rtx note;
4826
4827 note = rtx_alloc (NOTE);
4828
4829 INSN_UID (note) = cur_insn_uid++;
4830 NOTE_DATA (note) = NOTE_DATA (orig);
4831 NOTE_KIND (note) = NOTE_KIND (orig);
4832 BLOCK_FOR_INSN (note) = NULL;
4833 add_insn (note);
4834
4835 return note;
4836 }
4837
4838 /* Make an insn of code NOTE or type NOTE_NO
4839 and add it to the end of the doubly-linked list. */
4840
4841 rtx
4842 emit_note (enum insn_note kind)
4843 {
4844 rtx note;
4845
4846 note = rtx_alloc (NOTE);
4847 INSN_UID (note) = cur_insn_uid++;
4848 NOTE_KIND (note) = kind;
4849 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4850 BLOCK_FOR_INSN (note) = NULL;
4851 add_insn (note);
4852 return note;
4853 }
4854
4855 /* Emit a clobber of lvalue X. */
4856
4857 rtx
4858 emit_clobber (rtx x)
4859 {
4860 /* CONCATs should not appear in the insn stream. */
4861 if (GET_CODE (x) == CONCAT)
4862 {
4863 emit_clobber (XEXP (x, 0));
4864 return emit_clobber (XEXP (x, 1));
4865 }
4866 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4867 }
4868
4869 /* Return a sequence of insns to clobber lvalue X. */
4870
4871 rtx
4872 gen_clobber (rtx x)
4873 {
4874 rtx seq;
4875
4876 start_sequence ();
4877 emit_clobber (x);
4878 seq = get_insns ();
4879 end_sequence ();
4880 return seq;
4881 }
4882
4883 /* Emit a use of rvalue X. */
4884
4885 rtx
4886 emit_use (rtx x)
4887 {
4888 /* CONCATs should not appear in the insn stream. */
4889 if (GET_CODE (x) == CONCAT)
4890 {
4891 emit_use (XEXP (x, 0));
4892 return emit_use (XEXP (x, 1));
4893 }
4894 return emit_insn (gen_rtx_USE (VOIDmode, x));
4895 }
4896
4897 /* Return a sequence of insns to use rvalue X. */
4898
4899 rtx
4900 gen_use (rtx x)
4901 {
4902 rtx seq;
4903
4904 start_sequence ();
4905 emit_use (x);
4906 seq = get_insns ();
4907 end_sequence ();
4908 return seq;
4909 }
4910
4911 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4912 note of this type already exists, remove it first. */
4913
4914 rtx
4915 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4916 {
4917 rtx note = find_reg_note (insn, kind, NULL_RTX);
4918
4919 switch (kind)
4920 {
4921 case REG_EQUAL:
4922 case REG_EQUIV:
4923 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4924 has multiple sets (some callers assume single_set
4925 means the insn only has one set, when in fact it
4926 means the insn only has one * useful * set). */
4927 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4928 {
4929 gcc_assert (!note);
4930 return NULL_RTX;
4931 }
4932
4933 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4934 It serves no useful purpose and breaks eliminate_regs. */
4935 if (GET_CODE (datum) == ASM_OPERANDS)
4936 return NULL_RTX;
4937
4938 if (note)
4939 {
4940 XEXP (note, 0) = datum;
4941 df_notes_rescan (insn);
4942 return note;
4943 }
4944 break;
4945
4946 default:
4947 if (note)
4948 {
4949 XEXP (note, 0) = datum;
4950 return note;
4951 }
4952 break;
4953 }
4954
4955 add_reg_note (insn, kind, datum);
4956
4957 switch (kind)
4958 {
4959 case REG_EQUAL:
4960 case REG_EQUIV:
4961 df_notes_rescan (insn);
4962 break;
4963 default:
4964 break;
4965 }
4966
4967 return REG_NOTES (insn);
4968 }
4969
4970 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
4971 rtx
4972 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
4973 {
4974 rtx set = single_set (insn);
4975
4976 if (set && SET_DEST (set) == dst)
4977 return set_unique_reg_note (insn, kind, datum);
4978 return NULL_RTX;
4979 }
4980 \f
4981 /* Return an indication of which type of insn should have X as a body.
4982 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4983
4984 static enum rtx_code
4985 classify_insn (rtx x)
4986 {
4987 if (LABEL_P (x))
4988 return CODE_LABEL;
4989 if (GET_CODE (x) == CALL)
4990 return CALL_INSN;
4991 if (ANY_RETURN_P (x))
4992 return JUMP_INSN;
4993 if (GET_CODE (x) == SET)
4994 {
4995 if (SET_DEST (x) == pc_rtx)
4996 return JUMP_INSN;
4997 else if (GET_CODE (SET_SRC (x)) == CALL)
4998 return CALL_INSN;
4999 else
5000 return INSN;
5001 }
5002 if (GET_CODE (x) == PARALLEL)
5003 {
5004 int j;
5005 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5006 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5007 return CALL_INSN;
5008 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5009 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5010 return JUMP_INSN;
5011 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5012 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5013 return CALL_INSN;
5014 }
5015 return INSN;
5016 }
5017
5018 /* Emit the rtl pattern X as an appropriate kind of insn.
5019 If X is a label, it is simply added into the insn chain. */
5020
5021 rtx
5022 emit (rtx x)
5023 {
5024 enum rtx_code code = classify_insn (x);
5025
5026 switch (code)
5027 {
5028 case CODE_LABEL:
5029 return emit_label (x);
5030 case INSN:
5031 return emit_insn (x);
5032 case JUMP_INSN:
5033 {
5034 rtx insn = emit_jump_insn (x);
5035 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5036 return emit_barrier ();
5037 return insn;
5038 }
5039 case CALL_INSN:
5040 return emit_call_insn (x);
5041 case DEBUG_INSN:
5042 return emit_debug_insn (x);
5043 default:
5044 gcc_unreachable ();
5045 }
5046 }
5047 \f
5048 /* Space for free sequence stack entries. */
5049 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5050
5051 /* Begin emitting insns to a sequence. If this sequence will contain
5052 something that might cause the compiler to pop arguments to function
5053 calls (because those pops have previously been deferred; see
5054 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5055 before calling this function. That will ensure that the deferred
5056 pops are not accidentally emitted in the middle of this sequence. */
5057
5058 void
5059 start_sequence (void)
5060 {
5061 struct sequence_stack *tem;
5062
5063 if (free_sequence_stack != NULL)
5064 {
5065 tem = free_sequence_stack;
5066 free_sequence_stack = tem->next;
5067 }
5068 else
5069 tem = ggc_alloc_sequence_stack ();
5070
5071 tem->next = seq_stack;
5072 tem->first = get_insns ();
5073 tem->last = get_last_insn ();
5074
5075 seq_stack = tem;
5076
5077 set_first_insn (0);
5078 set_last_insn (0);
5079 }
5080
5081 /* Set up the insn chain starting with FIRST as the current sequence,
5082 saving the previously current one. See the documentation for
5083 start_sequence for more information about how to use this function. */
5084
5085 void
5086 push_to_sequence (rtx first)
5087 {
5088 rtx last;
5089
5090 start_sequence ();
5091
5092 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5093 ;
5094
5095 set_first_insn (first);
5096 set_last_insn (last);
5097 }
5098
5099 /* Like push_to_sequence, but take the last insn as an argument to avoid
5100 looping through the list. */
5101
5102 void
5103 push_to_sequence2 (rtx first, rtx last)
5104 {
5105 start_sequence ();
5106
5107 set_first_insn (first);
5108 set_last_insn (last);
5109 }
5110
5111 /* Set up the outer-level insn chain
5112 as the current sequence, saving the previously current one. */
5113
5114 void
5115 push_topmost_sequence (void)
5116 {
5117 struct sequence_stack *stack, *top = NULL;
5118
5119 start_sequence ();
5120
5121 for (stack = seq_stack; stack; stack = stack->next)
5122 top = stack;
5123
5124 set_first_insn (top->first);
5125 set_last_insn (top->last);
5126 }
5127
5128 /* After emitting to the outer-level insn chain, update the outer-level
5129 insn chain, and restore the previous saved state. */
5130
5131 void
5132 pop_topmost_sequence (void)
5133 {
5134 struct sequence_stack *stack, *top = NULL;
5135
5136 for (stack = seq_stack; stack; stack = stack->next)
5137 top = stack;
5138
5139 top->first = get_insns ();
5140 top->last = get_last_insn ();
5141
5142 end_sequence ();
5143 }
5144
5145 /* After emitting to a sequence, restore previous saved state.
5146
5147 To get the contents of the sequence just made, you must call
5148 `get_insns' *before* calling here.
5149
5150 If the compiler might have deferred popping arguments while
5151 generating this sequence, and this sequence will not be immediately
5152 inserted into the instruction stream, use do_pending_stack_adjust
5153 before calling get_insns. That will ensure that the deferred
5154 pops are inserted into this sequence, and not into some random
5155 location in the instruction stream. See INHIBIT_DEFER_POP for more
5156 information about deferred popping of arguments. */
5157
5158 void
5159 end_sequence (void)
5160 {
5161 struct sequence_stack *tem = seq_stack;
5162
5163 set_first_insn (tem->first);
5164 set_last_insn (tem->last);
5165 seq_stack = tem->next;
5166
5167 memset (tem, 0, sizeof (*tem));
5168 tem->next = free_sequence_stack;
5169 free_sequence_stack = tem;
5170 }
5171
5172 /* Return 1 if currently emitting into a sequence. */
5173
5174 int
5175 in_sequence_p (void)
5176 {
5177 return seq_stack != 0;
5178 }
5179 \f
5180 /* Put the various virtual registers into REGNO_REG_RTX. */
5181
5182 static void
5183 init_virtual_regs (void)
5184 {
5185 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5186 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5187 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5188 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5189 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5190 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5191 = virtual_preferred_stack_boundary_rtx;
5192 }
5193
5194 \f
5195 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5196 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5197 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5198 static int copy_insn_n_scratches;
5199
5200 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5201 copied an ASM_OPERANDS.
5202 In that case, it is the original input-operand vector. */
5203 static rtvec orig_asm_operands_vector;
5204
5205 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5206 copied an ASM_OPERANDS.
5207 In that case, it is the copied input-operand vector. */
5208 static rtvec copy_asm_operands_vector;
5209
5210 /* Likewise for the constraints vector. */
5211 static rtvec orig_asm_constraints_vector;
5212 static rtvec copy_asm_constraints_vector;
5213
5214 /* Recursively create a new copy of an rtx for copy_insn.
5215 This function differs from copy_rtx in that it handles SCRATCHes and
5216 ASM_OPERANDs properly.
5217 Normally, this function is not used directly; use copy_insn as front end.
5218 However, you could first copy an insn pattern with copy_insn and then use
5219 this function afterwards to properly copy any REG_NOTEs containing
5220 SCRATCHes. */
5221
5222 rtx
5223 copy_insn_1 (rtx orig)
5224 {
5225 rtx copy;
5226 int i, j;
5227 RTX_CODE code;
5228 const char *format_ptr;
5229
5230 if (orig == NULL)
5231 return NULL;
5232
5233 code = GET_CODE (orig);
5234
5235 switch (code)
5236 {
5237 case REG:
5238 case DEBUG_EXPR:
5239 case CONST_INT:
5240 case CONST_DOUBLE:
5241 case CONST_FIXED:
5242 case CONST_VECTOR:
5243 case SYMBOL_REF:
5244 case CODE_LABEL:
5245 case PC:
5246 case CC0:
5247 case RETURN:
5248 case SIMPLE_RETURN:
5249 return orig;
5250 case CLOBBER:
5251 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5252 return orig;
5253 break;
5254
5255 case SCRATCH:
5256 for (i = 0; i < copy_insn_n_scratches; i++)
5257 if (copy_insn_scratch_in[i] == orig)
5258 return copy_insn_scratch_out[i];
5259 break;
5260
5261 case CONST:
5262 if (shared_const_p (orig))
5263 return orig;
5264 break;
5265
5266 /* A MEM with a constant address is not sharable. The problem is that
5267 the constant address may need to be reloaded. If the mem is shared,
5268 then reloading one copy of this mem will cause all copies to appear
5269 to have been reloaded. */
5270
5271 default:
5272 break;
5273 }
5274
5275 /* Copy the various flags, fields, and other information. We assume
5276 that all fields need copying, and then clear the fields that should
5277 not be copied. That is the sensible default behavior, and forces
5278 us to explicitly document why we are *not* copying a flag. */
5279 copy = shallow_copy_rtx (orig);
5280
5281 /* We do not copy the USED flag, which is used as a mark bit during
5282 walks over the RTL. */
5283 RTX_FLAG (copy, used) = 0;
5284
5285 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5286 if (INSN_P (orig))
5287 {
5288 RTX_FLAG (copy, jump) = 0;
5289 RTX_FLAG (copy, call) = 0;
5290 RTX_FLAG (copy, frame_related) = 0;
5291 }
5292
5293 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5294
5295 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5296 switch (*format_ptr++)
5297 {
5298 case 'e':
5299 if (XEXP (orig, i) != NULL)
5300 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5301 break;
5302
5303 case 'E':
5304 case 'V':
5305 if (XVEC (orig, i) == orig_asm_constraints_vector)
5306 XVEC (copy, i) = copy_asm_constraints_vector;
5307 else if (XVEC (orig, i) == orig_asm_operands_vector)
5308 XVEC (copy, i) = copy_asm_operands_vector;
5309 else if (XVEC (orig, i) != NULL)
5310 {
5311 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5312 for (j = 0; j < XVECLEN (copy, i); j++)
5313 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5314 }
5315 break;
5316
5317 case 't':
5318 case 'w':
5319 case 'i':
5320 case 's':
5321 case 'S':
5322 case 'u':
5323 case '0':
5324 /* These are left unchanged. */
5325 break;
5326
5327 default:
5328 gcc_unreachable ();
5329 }
5330
5331 if (code == SCRATCH)
5332 {
5333 i = copy_insn_n_scratches++;
5334 gcc_assert (i < MAX_RECOG_OPERANDS);
5335 copy_insn_scratch_in[i] = orig;
5336 copy_insn_scratch_out[i] = copy;
5337 }
5338 else if (code == ASM_OPERANDS)
5339 {
5340 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5341 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5342 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5343 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5344 }
5345
5346 return copy;
5347 }
5348
5349 /* Create a new copy of an rtx.
5350 This function differs from copy_rtx in that it handles SCRATCHes and
5351 ASM_OPERANDs properly.
5352 INSN doesn't really have to be a full INSN; it could be just the
5353 pattern. */
5354 rtx
5355 copy_insn (rtx insn)
5356 {
5357 copy_insn_n_scratches = 0;
5358 orig_asm_operands_vector = 0;
5359 orig_asm_constraints_vector = 0;
5360 copy_asm_operands_vector = 0;
5361 copy_asm_constraints_vector = 0;
5362 return copy_insn_1 (insn);
5363 }
5364
5365 /* Initialize data structures and variables in this file
5366 before generating rtl for each function. */
5367
5368 void
5369 init_emit (void)
5370 {
5371 set_first_insn (NULL);
5372 set_last_insn (NULL);
5373 if (MIN_NONDEBUG_INSN_UID)
5374 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5375 else
5376 cur_insn_uid = 1;
5377 cur_debug_insn_uid = 1;
5378 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5379 first_label_num = label_num;
5380 seq_stack = NULL;
5381
5382 /* Init the tables that describe all the pseudo regs. */
5383
5384 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5385
5386 crtl->emit.regno_pointer_align
5387 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5388
5389 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5390
5391 /* Put copies of all the hard registers into regno_reg_rtx. */
5392 memcpy (regno_reg_rtx,
5393 initial_regno_reg_rtx,
5394 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5395
5396 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5397 init_virtual_regs ();
5398
5399 /* Indicate that the virtual registers and stack locations are
5400 all pointers. */
5401 REG_POINTER (stack_pointer_rtx) = 1;
5402 REG_POINTER (frame_pointer_rtx) = 1;
5403 REG_POINTER (hard_frame_pointer_rtx) = 1;
5404 REG_POINTER (arg_pointer_rtx) = 1;
5405
5406 REG_POINTER (virtual_incoming_args_rtx) = 1;
5407 REG_POINTER (virtual_stack_vars_rtx) = 1;
5408 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5409 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5410 REG_POINTER (virtual_cfa_rtx) = 1;
5411
5412 #ifdef STACK_BOUNDARY
5413 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5414 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5415 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5416 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5417
5418 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5419 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5420 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5421 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5422 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5423 #endif
5424
5425 #ifdef INIT_EXPANDERS
5426 INIT_EXPANDERS;
5427 #endif
5428 }
5429
5430 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5431
5432 static rtx
5433 gen_const_vector (enum machine_mode mode, int constant)
5434 {
5435 rtx tem;
5436 rtvec v;
5437 int units, i;
5438 enum machine_mode inner;
5439
5440 units = GET_MODE_NUNITS (mode);
5441 inner = GET_MODE_INNER (mode);
5442
5443 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5444
5445 v = rtvec_alloc (units);
5446
5447 /* We need to call this function after we set the scalar const_tiny_rtx
5448 entries. */
5449 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5450
5451 for (i = 0; i < units; ++i)
5452 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5453
5454 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5455 return tem;
5456 }
5457
5458 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5459 all elements are zero, and the one vector when all elements are one. */
5460 rtx
5461 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5462 {
5463 enum machine_mode inner = GET_MODE_INNER (mode);
5464 int nunits = GET_MODE_NUNITS (mode);
5465 rtx x;
5466 int i;
5467
5468 /* Check to see if all of the elements have the same value. */
5469 x = RTVEC_ELT (v, nunits - 1);
5470 for (i = nunits - 2; i >= 0; i--)
5471 if (RTVEC_ELT (v, i) != x)
5472 break;
5473
5474 /* If the values are all the same, check to see if we can use one of the
5475 standard constant vectors. */
5476 if (i == -1)
5477 {
5478 if (x == CONST0_RTX (inner))
5479 return CONST0_RTX (mode);
5480 else if (x == CONST1_RTX (inner))
5481 return CONST1_RTX (mode);
5482 else if (x == CONSTM1_RTX (inner))
5483 return CONSTM1_RTX (mode);
5484 }
5485
5486 return gen_rtx_raw_CONST_VECTOR (mode, v);
5487 }
5488
5489 /* Initialise global register information required by all functions. */
5490
5491 void
5492 init_emit_regs (void)
5493 {
5494 int i;
5495 enum machine_mode mode;
5496 mem_attrs *attrs;
5497
5498 /* Reset register attributes */
5499 htab_empty (reg_attrs_htab);
5500
5501 /* We need reg_raw_mode, so initialize the modes now. */
5502 init_reg_modes_target ();
5503
5504 /* Assign register numbers to the globally defined register rtx. */
5505 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5506 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5507 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5508 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5509 virtual_incoming_args_rtx =
5510 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5511 virtual_stack_vars_rtx =
5512 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5513 virtual_stack_dynamic_rtx =
5514 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5515 virtual_outgoing_args_rtx =
5516 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5517 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5518 virtual_preferred_stack_boundary_rtx =
5519 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5520
5521 /* Initialize RTL for commonly used hard registers. These are
5522 copied into regno_reg_rtx as we begin to compile each function. */
5523 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5524 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5525
5526 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5527 return_address_pointer_rtx
5528 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5529 #endif
5530
5531 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5532 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5533 else
5534 pic_offset_table_rtx = NULL_RTX;
5535
5536 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5537 {
5538 mode = (enum machine_mode) i;
5539 attrs = ggc_alloc_cleared_mem_attrs ();
5540 attrs->align = BITS_PER_UNIT;
5541 attrs->addrspace = ADDR_SPACE_GENERIC;
5542 if (mode != BLKmode)
5543 {
5544 attrs->size_known_p = true;
5545 attrs->size = GET_MODE_SIZE (mode);
5546 if (STRICT_ALIGNMENT)
5547 attrs->align = GET_MODE_ALIGNMENT (mode);
5548 }
5549 mode_mem_attrs[i] = attrs;
5550 }
5551 }
5552
5553 /* Create some permanent unique rtl objects shared between all functions. */
5554
5555 void
5556 init_emit_once (void)
5557 {
5558 int i;
5559 enum machine_mode mode;
5560 enum machine_mode double_mode;
5561
5562 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5563 hash tables. */
5564 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5565 const_int_htab_eq, NULL);
5566
5567 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5568 const_double_htab_eq, NULL);
5569
5570 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5571 const_fixed_htab_eq, NULL);
5572
5573 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5574 mem_attrs_htab_eq, NULL);
5575 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5576 reg_attrs_htab_eq, NULL);
5577
5578 /* Compute the word and byte modes. */
5579
5580 byte_mode = VOIDmode;
5581 word_mode = VOIDmode;
5582 double_mode = VOIDmode;
5583
5584 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5585 mode != VOIDmode;
5586 mode = GET_MODE_WIDER_MODE (mode))
5587 {
5588 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5589 && byte_mode == VOIDmode)
5590 byte_mode = mode;
5591
5592 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5593 && word_mode == VOIDmode)
5594 word_mode = mode;
5595 }
5596
5597 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5598 mode != VOIDmode;
5599 mode = GET_MODE_WIDER_MODE (mode))
5600 {
5601 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5602 && double_mode == VOIDmode)
5603 double_mode = mode;
5604 }
5605
5606 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5607
5608 #ifdef INIT_EXPANDERS
5609 /* This is to initialize {init|mark|free}_machine_status before the first
5610 call to push_function_context_to. This is needed by the Chill front
5611 end which calls push_function_context_to before the first call to
5612 init_function_start. */
5613 INIT_EXPANDERS;
5614 #endif
5615
5616 /* Create the unique rtx's for certain rtx codes and operand values. */
5617
5618 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5619 tries to use these variables. */
5620 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5621 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5622 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5623
5624 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5625 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5626 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5627 else
5628 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5629
5630 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5631 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5632 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5633
5634 dconstm1 = dconst1;
5635 dconstm1.sign = 1;
5636
5637 dconsthalf = dconst1;
5638 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5639
5640 for (i = 0; i < 3; i++)
5641 {
5642 const REAL_VALUE_TYPE *const r =
5643 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5644
5645 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5646 mode != VOIDmode;
5647 mode = GET_MODE_WIDER_MODE (mode))
5648 const_tiny_rtx[i][(int) mode] =
5649 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5650
5651 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5652 mode != VOIDmode;
5653 mode = GET_MODE_WIDER_MODE (mode))
5654 const_tiny_rtx[i][(int) mode] =
5655 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5656
5657 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5658
5659 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5660 mode != VOIDmode;
5661 mode = GET_MODE_WIDER_MODE (mode))
5662 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5663
5664 for (mode = MIN_MODE_PARTIAL_INT;
5665 mode <= MAX_MODE_PARTIAL_INT;
5666 mode = (enum machine_mode)((int)(mode) + 1))
5667 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5668 }
5669
5670 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5671
5672 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5673 mode != VOIDmode;
5674 mode = GET_MODE_WIDER_MODE (mode))
5675 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5676
5677 for (mode = MIN_MODE_PARTIAL_INT;
5678 mode <= MAX_MODE_PARTIAL_INT;
5679 mode = (enum machine_mode)((int)(mode) + 1))
5680 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5681
5682 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5683 mode != VOIDmode;
5684 mode = GET_MODE_WIDER_MODE (mode))
5685 {
5686 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5687 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5688 }
5689
5690 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5691 mode != VOIDmode;
5692 mode = GET_MODE_WIDER_MODE (mode))
5693 {
5694 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5695 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5696 }
5697
5698 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5699 mode != VOIDmode;
5700 mode = GET_MODE_WIDER_MODE (mode))
5701 {
5702 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5703 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5704 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5705 }
5706
5707 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5708 mode != VOIDmode;
5709 mode = GET_MODE_WIDER_MODE (mode))
5710 {
5711 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5712 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5713 }
5714
5715 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5716 mode != VOIDmode;
5717 mode = GET_MODE_WIDER_MODE (mode))
5718 {
5719 FCONST0(mode).data.high = 0;
5720 FCONST0(mode).data.low = 0;
5721 FCONST0(mode).mode = mode;
5722 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5723 FCONST0 (mode), mode);
5724 }
5725
5726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5727 mode != VOIDmode;
5728 mode = GET_MODE_WIDER_MODE (mode))
5729 {
5730 FCONST0(mode).data.high = 0;
5731 FCONST0(mode).data.low = 0;
5732 FCONST0(mode).mode = mode;
5733 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5734 FCONST0 (mode), mode);
5735 }
5736
5737 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5738 mode != VOIDmode;
5739 mode = GET_MODE_WIDER_MODE (mode))
5740 {
5741 FCONST0(mode).data.high = 0;
5742 FCONST0(mode).data.low = 0;
5743 FCONST0(mode).mode = mode;
5744 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5745 FCONST0 (mode), mode);
5746
5747 /* We store the value 1. */
5748 FCONST1(mode).data.high = 0;
5749 FCONST1(mode).data.low = 0;
5750 FCONST1(mode).mode = mode;
5751 lshift_double (1, 0, GET_MODE_FBIT (mode),
5752 HOST_BITS_PER_DOUBLE_INT,
5753 &FCONST1(mode).data.low,
5754 &FCONST1(mode).data.high,
5755 SIGNED_FIXED_POINT_MODE_P (mode));
5756 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5757 FCONST1 (mode), mode);
5758 }
5759
5760 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5761 mode != VOIDmode;
5762 mode = GET_MODE_WIDER_MODE (mode))
5763 {
5764 FCONST0(mode).data.high = 0;
5765 FCONST0(mode).data.low = 0;
5766 FCONST0(mode).mode = mode;
5767 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5768 FCONST0 (mode), mode);
5769
5770 /* We store the value 1. */
5771 FCONST1(mode).data.high = 0;
5772 FCONST1(mode).data.low = 0;
5773 FCONST1(mode).mode = mode;
5774 lshift_double (1, 0, GET_MODE_FBIT (mode),
5775 HOST_BITS_PER_DOUBLE_INT,
5776 &FCONST1(mode).data.low,
5777 &FCONST1(mode).data.high,
5778 SIGNED_FIXED_POINT_MODE_P (mode));
5779 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5780 FCONST1 (mode), mode);
5781 }
5782
5783 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5784 mode != VOIDmode;
5785 mode = GET_MODE_WIDER_MODE (mode))
5786 {
5787 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5788 }
5789
5790 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5791 mode != VOIDmode;
5792 mode = GET_MODE_WIDER_MODE (mode))
5793 {
5794 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5795 }
5796
5797 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5798 mode != VOIDmode;
5799 mode = GET_MODE_WIDER_MODE (mode))
5800 {
5801 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5802 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5803 }
5804
5805 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5806 mode != VOIDmode;
5807 mode = GET_MODE_WIDER_MODE (mode))
5808 {
5809 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5810 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5811 }
5812
5813 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5814 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5815 const_tiny_rtx[0][i] = const0_rtx;
5816
5817 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5818 if (STORE_FLAG_VALUE == 1)
5819 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5820
5821 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5822 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5823 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5824 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5825 }
5826 \f
5827 /* Produce exact duplicate of insn INSN after AFTER.
5828 Care updating of libcall regions if present. */
5829
5830 rtx
5831 emit_copy_of_insn_after (rtx insn, rtx after)
5832 {
5833 rtx new_rtx, link;
5834
5835 switch (GET_CODE (insn))
5836 {
5837 case INSN:
5838 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5839 break;
5840
5841 case JUMP_INSN:
5842 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5843 break;
5844
5845 case DEBUG_INSN:
5846 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5847 break;
5848
5849 case CALL_INSN:
5850 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5851 if (CALL_INSN_FUNCTION_USAGE (insn))
5852 CALL_INSN_FUNCTION_USAGE (new_rtx)
5853 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5854 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5855 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5856 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5857 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5858 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5859 break;
5860
5861 default:
5862 gcc_unreachable ();
5863 }
5864
5865 /* Update LABEL_NUSES. */
5866 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5867
5868 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5869
5870 /* If the old insn is frame related, then so is the new one. This is
5871 primarily needed for IA-64 unwind info which marks epilogue insns,
5872 which may be duplicated by the basic block reordering code. */
5873 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5874
5875 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5876 will make them. REG_LABEL_TARGETs are created there too, but are
5877 supposed to be sticky, so we copy them. */
5878 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5879 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5880 {
5881 if (GET_CODE (link) == EXPR_LIST)
5882 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5883 copy_insn_1 (XEXP (link, 0)));
5884 else
5885 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5886 }
5887
5888 INSN_CODE (new_rtx) = INSN_CODE (insn);
5889 return new_rtx;
5890 }
5891
5892 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5893 rtx
5894 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5895 {
5896 if (hard_reg_clobbers[mode][regno])
5897 return hard_reg_clobbers[mode][regno];
5898 else
5899 return (hard_reg_clobbers[mode][regno] =
5900 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5901 }
5902
5903 /* Data structures representing mapping of INSN_LOCATOR into scope blocks, line
5904 numbers and files. In order to be GGC friendly we need to use separate
5905 varrays. This also slightly improve the memory locality in binary search.
5906 The _locs array contains locators where the given property change. The
5907 block_locators_blocks contains the scope block that is used for all insn
5908 locator greater than corresponding block_locators_locs value and smaller
5909 than the following one. Similarly for the other properties. */
5910 static VEC(int,heap) *block_locators_locs;
5911 static GTY(()) VEC(tree,gc) *block_locators_blocks;
5912 static VEC(int,heap) *locations_locators_locs;
5913 DEF_VEC_A(location_t);
5914 DEF_VEC_ALLOC_A(location_t,heap);
5915 static VEC(location_t,heap) *locations_locators_vals;
5916 int prologue_locator;
5917 int epilogue_locator;
5918
5919 /* Hold current location information and last location information, so the
5920 datastructures are built lazily only when some instructions in given
5921 place are needed. */
5922 static location_t curr_location, last_location;
5923 static tree curr_block, last_block;
5924 static int curr_rtl_loc = -1;
5925
5926 /* Allocate insn locator datastructure. */
5927 void
5928 insn_locators_alloc (void)
5929 {
5930 prologue_locator = epilogue_locator = 0;
5931
5932 block_locators_locs = VEC_alloc (int, heap, 32);
5933 block_locators_blocks = VEC_alloc (tree, gc, 32);
5934 locations_locators_locs = VEC_alloc (int, heap, 32);
5935 locations_locators_vals = VEC_alloc (location_t, heap, 32);
5936
5937 curr_location = UNKNOWN_LOCATION;
5938 last_location = UNKNOWN_LOCATION;
5939 curr_block = NULL;
5940 last_block = NULL;
5941 curr_rtl_loc = 0;
5942 }
5943
5944 /* At the end of emit stage, clear current location. */
5945 void
5946 insn_locators_finalize (void)
5947 {
5948 if (curr_rtl_loc >= 0)
5949 epilogue_locator = curr_insn_locator ();
5950 curr_rtl_loc = -1;
5951 }
5952
5953 /* Allocate insn locator datastructure. */
5954 void
5955 insn_locators_free (void)
5956 {
5957 prologue_locator = epilogue_locator = 0;
5958
5959 VEC_free (int, heap, block_locators_locs);
5960 VEC_free (tree,gc, block_locators_blocks);
5961 VEC_free (int, heap, locations_locators_locs);
5962 VEC_free (location_t, heap, locations_locators_vals);
5963 }
5964
5965 /* Set current location. */
5966 void
5967 set_curr_insn_source_location (location_t location)
5968 {
5969 /* IV opts calls into RTL expansion to compute costs of operations. At this
5970 time locators are not initialized. */
5971 if (curr_rtl_loc == -1)
5972 return;
5973 curr_location = location;
5974 }
5975
5976 /* Get current location. */
5977 location_t
5978 get_curr_insn_source_location (void)
5979 {
5980 return curr_location;
5981 }
5982
5983 /* Set current scope block. */
5984 void
5985 set_curr_insn_block (tree b)
5986 {
5987 /* IV opts calls into RTL expansion to compute costs of operations. At this
5988 time locators are not initialized. */
5989 if (curr_rtl_loc == -1)
5990 return;
5991 if (b)
5992 curr_block = b;
5993 }
5994
5995 /* Get current scope block. */
5996 tree
5997 get_curr_insn_block (void)
5998 {
5999 return curr_block;
6000 }
6001
6002 /* Return current insn locator. */
6003 int
6004 curr_insn_locator (void)
6005 {
6006 if (curr_rtl_loc == -1 || curr_location == UNKNOWN_LOCATION)
6007 return 0;
6008 if (last_block != curr_block)
6009 {
6010 curr_rtl_loc++;
6011 VEC_safe_push (int, heap, block_locators_locs, curr_rtl_loc);
6012 VEC_safe_push (tree, gc, block_locators_blocks, curr_block);
6013 last_block = curr_block;
6014 }
6015 if (last_location != curr_location)
6016 {
6017 curr_rtl_loc++;
6018 VEC_safe_push (int, heap, locations_locators_locs, curr_rtl_loc);
6019 VEC_safe_push (location_t, heap, locations_locators_vals, &curr_location);
6020 last_location = curr_location;
6021 }
6022 return curr_rtl_loc;
6023 }
6024 \f
6025
6026 /* Return lexical scope block locator belongs to. */
6027 static tree
6028 locator_scope (int loc)
6029 {
6030 int max = VEC_length (int, block_locators_locs);
6031 int min = 0;
6032
6033 /* When block_locators_locs was initialized, the pro- and epilogue
6034 insns didn't exist yet and can therefore not be found this way.
6035 But we know that they belong to the outer most block of the
6036 current function.
6037 Without this test, the prologue would be put inside the block of
6038 the first valid instruction in the function and when that first
6039 insn is part of an inlined function then the low_pc of that
6040 inlined function is messed up. Likewise for the epilogue and
6041 the last valid instruction. */
6042 if (loc == prologue_locator || loc == epilogue_locator)
6043 return DECL_INITIAL (cfun->decl);
6044
6045 if (!max || !loc)
6046 return NULL;
6047 while (1)
6048 {
6049 int pos = (min + max) / 2;
6050 int tmp = VEC_index (int, block_locators_locs, pos);
6051
6052 if (tmp <= loc && min != pos)
6053 min = pos;
6054 else if (tmp > loc && max != pos)
6055 max = pos;
6056 else
6057 {
6058 min = pos;
6059 break;
6060 }
6061 }
6062 return VEC_index (tree, block_locators_blocks, min);
6063 }
6064
6065 /* Return lexical scope block insn belongs to. */
6066 tree
6067 insn_scope (const_rtx insn)
6068 {
6069 return locator_scope (INSN_LOCATOR (insn));
6070 }
6071
6072 /* Return line number of the statement specified by the locator. */
6073 location_t
6074 locator_location (int loc)
6075 {
6076 int max = VEC_length (int, locations_locators_locs);
6077 int min = 0;
6078
6079 while (1)
6080 {
6081 int pos = (min + max) / 2;
6082 int tmp = VEC_index (int, locations_locators_locs, pos);
6083
6084 if (tmp <= loc && min != pos)
6085 min = pos;
6086 else if (tmp > loc && max != pos)
6087 max = pos;
6088 else
6089 {
6090 min = pos;
6091 break;
6092 }
6093 }
6094 return *VEC_index (location_t, locations_locators_vals, min);
6095 }
6096
6097 /* Return source line of the statement that produced this insn. */
6098 int
6099 locator_line (int loc)
6100 {
6101 expanded_location xloc;
6102 if (!loc)
6103 return 0;
6104 else
6105 xloc = expand_location (locator_location (loc));
6106 return xloc.line;
6107 }
6108
6109 /* Return line number of the statement that produced this insn. */
6110 int
6111 insn_line (const_rtx insn)
6112 {
6113 return locator_line (INSN_LOCATOR (insn));
6114 }
6115
6116 /* Return source file of the statement specified by LOC. */
6117 const char *
6118 locator_file (int loc)
6119 {
6120 expanded_location xloc;
6121 if (!loc)
6122 return 0;
6123 else
6124 xloc = expand_location (locator_location (loc));
6125 return xloc.file;
6126 }
6127
6128 /* Return source file of the statement that produced this insn. */
6129 const char *
6130 insn_file (const_rtx insn)
6131 {
6132 return locator_file (INSN_LOCATOR (insn));
6133 }
6134
6135 /* Return true if LOC1 and LOC2 locators have the same location and scope. */
6136 bool
6137 locator_eq (int loc1, int loc2)
6138 {
6139 if (loc1 == loc2)
6140 return true;
6141 if (locator_location (loc1) != locator_location (loc2))
6142 return false;
6143 return locator_scope (loc1) == locator_scope (loc2);
6144 }
6145 \f
6146
6147 /* Return true if memory model MODEL requires a pre-operation (release-style)
6148 barrier or a post-operation (acquire-style) barrier. While not universal,
6149 this function matches behavior of several targets. */
6150
6151 bool
6152 need_atomic_barrier_p (enum memmodel model, bool pre)
6153 {
6154 switch (model)
6155 {
6156 case MEMMODEL_RELAXED:
6157 case MEMMODEL_CONSUME:
6158 return false;
6159 case MEMMODEL_RELEASE:
6160 return pre;
6161 case MEMMODEL_ACQUIRE:
6162 return !pre;
6163 case MEMMODEL_ACQ_REL:
6164 case MEMMODEL_SEQ_CST:
6165 return true;
6166 default:
6167 gcc_unreachable ();
6168 }
6169 }
6170 \f
6171 #include "gt-emit-rtl.h"