Add support for MODE_VECTOR_BOOL
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62 #include "predict.h"
63 #include "rtx-vector-builder.h"
64
65 struct target_rtl default_target_rtl;
66 #if SWITCHABLE_TARGET
67 struct target_rtl *this_target_rtl = &default_target_rtl;
68 #endif
69
70 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71
72 /* Commonly used modes. */
73
74 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
75 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
76 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
77
78 /* Datastructures maintained for currently processed function in RTL form. */
79
80 struct rtl_data x_rtl;
81
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
86
87 rtx * regno_reg_rtx;
88
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
91
92 static GTY(()) int label_num = 1;
93
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
97 is set only for MODE_INT and MODE_VECTOR_INT modes. */
98
99 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
100
101 rtx const_true_rtx;
102
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
107 REAL_VALUE_TYPE dconsthalf;
108
109 /* Record fixed-point constant 0 and 1. */
110 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
111 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112
113 /* We make one copy of (const_int C) where C is in
114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
115 to save space during the compilation and simplify comparisons of
116 integers. */
117
118 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
119
120 /* Standard pieces of rtx, to be substituted directly into things. */
121 rtx pc_rtx;
122 rtx ret_rtx;
123 rtx simple_return_rtx;
124 rtx cc0_rtx;
125
126 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
127 this pointer should normally never be dereferenced), but is required to be
128 distinct from NULL_RTX. Currently used by peephole2 pass. */
129 rtx_insn *invalid_insn_rtx;
130
131 /* A hash table storing CONST_INTs whose absolute value is greater
132 than MAX_SAVED_CONST_INT. */
133
134 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
135 {
136 typedef HOST_WIDE_INT compare_type;
137
138 static hashval_t hash (rtx i);
139 static bool equal (rtx i, HOST_WIDE_INT h);
140 };
141
142 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
143
144 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
145 {
146 static hashval_t hash (rtx x);
147 static bool equal (rtx x, rtx y);
148 };
149
150 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
151
152 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
153 {
154 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
155
156 static hashval_t hash (rtx x);
157 static bool equal (rtx x, const compare_type &y);
158 };
159
160 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
161
162 /* A hash table storing register attribute structures. */
163 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
164 {
165 static hashval_t hash (reg_attrs *x);
166 static bool equal (reg_attrs *a, reg_attrs *b);
167 };
168
169 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
170
171 /* A hash table storing all CONST_DOUBLEs. */
172 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
173 {
174 static hashval_t hash (rtx x);
175 static bool equal (rtx x, rtx y);
176 };
177
178 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
179
180 /* A hash table storing all CONST_FIXEDs. */
181 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
182 {
183 static hashval_t hash (rtx x);
184 static bool equal (rtx x, rtx y);
185 };
186
187 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
188
189 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
190 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
191 #define first_label_num (crtl->emit.x_first_label_num)
192
193 static void set_used_decls (tree);
194 static void mark_label_nuses (rtx);
195 #if TARGET_SUPPORTS_WIDE_INT
196 static rtx lookup_const_wide_int (rtx);
197 #endif
198 static rtx lookup_const_double (rtx);
199 static rtx lookup_const_fixed (rtx);
200 static rtx gen_const_vector (machine_mode, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split. */
204 profile_probability split_branch_probability;
205 \f
206 /* Returns a hash code for X (which is a really a CONST_INT). */
207
208 hashval_t
209 const_int_hasher::hash (rtx x)
210 {
211 return (hashval_t) INTVAL (x);
212 }
213
214 /* Returns nonzero if the value represented by X (which is really a
215 CONST_INT) is the same as that given by Y (which is really a
216 HOST_WIDE_INT *). */
217
218 bool
219 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
220 {
221 return (INTVAL (x) == y);
222 }
223
224 #if TARGET_SUPPORTS_WIDE_INT
225 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
226
227 hashval_t
228 const_wide_int_hasher::hash (rtx x)
229 {
230 int i;
231 unsigned HOST_WIDE_INT hash = 0;
232 const_rtx xr = x;
233
234 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
235 hash += CONST_WIDE_INT_ELT (xr, i);
236
237 return (hashval_t) hash;
238 }
239
240 /* Returns nonzero if the value represented by X (which is really a
241 CONST_WIDE_INT) is the same as that given by Y (which is really a
242 CONST_WIDE_INT). */
243
244 bool
245 const_wide_int_hasher::equal (rtx x, rtx y)
246 {
247 int i;
248 const_rtx xr = x;
249 const_rtx yr = y;
250 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
251 return false;
252
253 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
254 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
255 return false;
256
257 return true;
258 }
259 #endif
260
261 /* Returns a hash code for CONST_POLY_INT X. */
262
263 hashval_t
264 const_poly_int_hasher::hash (rtx x)
265 {
266 inchash::hash h;
267 h.add_int (GET_MODE (x));
268 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
269 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
270 return h.end ();
271 }
272
273 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
274
275 bool
276 const_poly_int_hasher::equal (rtx x, const compare_type &y)
277 {
278 if (GET_MODE (x) != y.first)
279 return false;
280 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
281 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
282 return false;
283 return true;
284 }
285
286 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
287 hashval_t
288 const_double_hasher::hash (rtx x)
289 {
290 const_rtx const value = x;
291 hashval_t h;
292
293 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
294 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
295 else
296 {
297 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
298 /* MODE is used in the comparison, so it should be in the hash. */
299 h ^= GET_MODE (value);
300 }
301 return h;
302 }
303
304 /* Returns nonzero if the value represented by X (really a ...)
305 is the same as that represented by Y (really a ...) */
306 bool
307 const_double_hasher::equal (rtx x, rtx y)
308 {
309 const_rtx const a = x, b = y;
310
311 if (GET_MODE (a) != GET_MODE (b))
312 return 0;
313 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
314 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
315 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
316 else
317 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
318 CONST_DOUBLE_REAL_VALUE (b));
319 }
320
321 /* Returns a hash code for X (which is really a CONST_FIXED). */
322
323 hashval_t
324 const_fixed_hasher::hash (rtx x)
325 {
326 const_rtx const value = x;
327 hashval_t h;
328
329 h = fixed_hash (CONST_FIXED_VALUE (value));
330 /* MODE is used in the comparison, so it should be in the hash. */
331 h ^= GET_MODE (value);
332 return h;
333 }
334
335 /* Returns nonzero if the value represented by X is the same as that
336 represented by Y. */
337
338 bool
339 const_fixed_hasher::equal (rtx x, rtx y)
340 {
341 const_rtx const a = x, b = y;
342
343 if (GET_MODE (a) != GET_MODE (b))
344 return 0;
345 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
346 }
347
348 /* Return true if the given memory attributes are equal. */
349
350 bool
351 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
352 {
353 if (p == q)
354 return true;
355 if (!p || !q)
356 return false;
357 return (p->alias == q->alias
358 && p->offset_known_p == q->offset_known_p
359 && (!p->offset_known_p || known_eq (p->offset, q->offset))
360 && p->size_known_p == q->size_known_p
361 && (!p->size_known_p || known_eq (p->size, q->size))
362 && p->align == q->align
363 && p->addrspace == q->addrspace
364 && (p->expr == q->expr
365 || (p->expr != NULL_TREE && q->expr != NULL_TREE
366 && operand_equal_p (p->expr, q->expr, 0))));
367 }
368
369 /* Set MEM's memory attributes so that they are the same as ATTRS. */
370
371 static void
372 set_mem_attrs (rtx mem, mem_attrs *attrs)
373 {
374 /* If everything is the default, we can just clear the attributes. */
375 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
376 {
377 MEM_ATTRS (mem) = 0;
378 return;
379 }
380
381 if (!MEM_ATTRS (mem)
382 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
383 {
384 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
385 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
386 }
387 }
388
389 /* Returns a hash code for X (which is a really a reg_attrs *). */
390
391 hashval_t
392 reg_attr_hasher::hash (reg_attrs *x)
393 {
394 const reg_attrs *const p = x;
395
396 inchash::hash h;
397 h.add_ptr (p->decl);
398 h.add_poly_hwi (p->offset);
399 return h.end ();
400 }
401
402 /* Returns nonzero if the value represented by X is the same as that given by
403 Y. */
404
405 bool
406 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
407 {
408 const reg_attrs *const p = x;
409 const reg_attrs *const q = y;
410
411 return (p->decl == q->decl && known_eq (p->offset, q->offset));
412 }
413 /* Allocate a new reg_attrs structure and insert it into the hash table if
414 one identical to it is not already in the table. We are doing this for
415 MEM of mode MODE. */
416
417 static reg_attrs *
418 get_reg_attrs (tree decl, poly_int64 offset)
419 {
420 reg_attrs attrs;
421
422 /* If everything is the default, we can just return zero. */
423 if (decl == 0 && known_eq (offset, 0))
424 return 0;
425
426 attrs.decl = decl;
427 attrs.offset = offset;
428
429 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
430 if (*slot == 0)
431 {
432 *slot = ggc_alloc<reg_attrs> ();
433 memcpy (*slot, &attrs, sizeof (reg_attrs));
434 }
435
436 return *slot;
437 }
438
439
440 #if !HAVE_blockage
441 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
442 and to block register equivalences to be seen across this insn. */
443
444 rtx
445 gen_blockage (void)
446 {
447 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
448 MEM_VOLATILE_P (x) = true;
449 return x;
450 }
451 #endif
452
453
454 /* Set the mode and register number of X to MODE and REGNO. */
455
456 void
457 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
458 {
459 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
460 ? hard_regno_nregs (regno, mode)
461 : 1);
462 PUT_MODE_RAW (x, mode);
463 set_regno_raw (x, regno, nregs);
464 }
465
466 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
467 don't attempt to share with the various global pieces of rtl (such as
468 frame_pointer_rtx). */
469
470 rtx
471 gen_raw_REG (machine_mode mode, unsigned int regno)
472 {
473 rtx x = rtx_alloc (REG MEM_STAT_INFO);
474 set_mode_and_regno (x, mode, regno);
475 REG_ATTRS (x) = NULL;
476 ORIGINAL_REGNO (x) = regno;
477 return x;
478 }
479
480 /* There are some RTL codes that require special attention; the generation
481 functions do the raw handling. If you add to this list, modify
482 special_rtx in gengenrtl.c as well. */
483
484 rtx_expr_list *
485 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
486 {
487 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
488 expr_list));
489 }
490
491 rtx_insn_list *
492 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
493 {
494 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
495 insn_list));
496 }
497
498 rtx_insn *
499 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
500 basic_block bb, rtx pattern, int location, int code,
501 rtx reg_notes)
502 {
503 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
504 prev_insn, next_insn,
505 bb, pattern, location, code,
506 reg_notes));
507 }
508
509 rtx
510 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
511 {
512 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
513 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
514
515 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
516 if (const_true_rtx && arg == STORE_FLAG_VALUE)
517 return const_true_rtx;
518 #endif
519
520 /* Look up the CONST_INT in the hash table. */
521 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
522 INSERT);
523 if (*slot == 0)
524 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
525
526 return *slot;
527 }
528
529 rtx
530 gen_int_mode (poly_int64 c, machine_mode mode)
531 {
532 c = trunc_int_for_mode (c, mode);
533 if (c.is_constant ())
534 return GEN_INT (c.coeffs[0]);
535 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
536 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
537 }
538
539 /* CONST_DOUBLEs might be created from pairs of integers, or from
540 REAL_VALUE_TYPEs. Also, their length is known only at run time,
541 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
542
543 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
544 hash table. If so, return its counterpart; otherwise add it
545 to the hash table and return it. */
546 static rtx
547 lookup_const_double (rtx real)
548 {
549 rtx *slot = const_double_htab->find_slot (real, INSERT);
550 if (*slot == 0)
551 *slot = real;
552
553 return *slot;
554 }
555
556 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
557 VALUE in mode MODE. */
558 rtx
559 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
560 {
561 rtx real = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (real, mode);
563
564 real->u.rv = value;
565
566 return lookup_const_double (real);
567 }
568
569 /* Determine whether FIXED, a CONST_FIXED, already exists in the
570 hash table. If so, return its counterpart; otherwise add it
571 to the hash table and return it. */
572
573 static rtx
574 lookup_const_fixed (rtx fixed)
575 {
576 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
577 if (*slot == 0)
578 *slot = fixed;
579
580 return *slot;
581 }
582
583 /* Return a CONST_FIXED rtx for a fixed-point value specified by
584 VALUE in mode MODE. */
585
586 rtx
587 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
588 {
589 rtx fixed = rtx_alloc (CONST_FIXED);
590 PUT_MODE (fixed, mode);
591
592 fixed->u.fv = value;
593
594 return lookup_const_fixed (fixed);
595 }
596
597 #if TARGET_SUPPORTS_WIDE_INT == 0
598 /* Constructs double_int from rtx CST. */
599
600 double_int
601 rtx_to_double_int (const_rtx cst)
602 {
603 double_int r;
604
605 if (CONST_INT_P (cst))
606 r = double_int::from_shwi (INTVAL (cst));
607 else if (CONST_DOUBLE_AS_INT_P (cst))
608 {
609 r.low = CONST_DOUBLE_LOW (cst);
610 r.high = CONST_DOUBLE_HIGH (cst);
611 }
612 else
613 gcc_unreachable ();
614
615 return r;
616 }
617 #endif
618
619 #if TARGET_SUPPORTS_WIDE_INT
620 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
621 If so, return its counterpart; otherwise add it to the hash table and
622 return it. */
623
624 static rtx
625 lookup_const_wide_int (rtx wint)
626 {
627 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
628 if (*slot == 0)
629 *slot = wint;
630
631 return *slot;
632 }
633 #endif
634
635 /* Return an rtx constant for V, given that the constant has mode MODE.
636 The returned rtx will be a CONST_INT if V fits, otherwise it will be
637 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
638 (if TARGET_SUPPORTS_WIDE_INT). */
639
640 static rtx
641 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
642 {
643 unsigned int len = v.get_len ();
644 /* Not scalar_int_mode because we also allow pointer bound modes. */
645 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
646
647 /* Allow truncation but not extension since we do not know if the
648 number is signed or unsigned. */
649 gcc_assert (prec <= v.get_precision ());
650
651 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
652 return gen_int_mode (v.elt (0), mode);
653
654 #if TARGET_SUPPORTS_WIDE_INT
655 {
656 unsigned int i;
657 rtx value;
658 unsigned int blocks_needed
659 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
660
661 if (len > blocks_needed)
662 len = blocks_needed;
663
664 value = const_wide_int_alloc (len);
665
666 /* It is so tempting to just put the mode in here. Must control
667 myself ... */
668 PUT_MODE (value, VOIDmode);
669 CWI_PUT_NUM_ELEM (value, len);
670
671 for (i = 0; i < len; i++)
672 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
673
674 return lookup_const_wide_int (value);
675 }
676 #else
677 return immed_double_const (v.elt (0), v.elt (1), mode);
678 #endif
679 }
680
681 #if TARGET_SUPPORTS_WIDE_INT == 0
682 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
683 of ints: I0 is the low-order word and I1 is the high-order word.
684 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
685 implied upper bits are copies of the high bit of i1. The value
686 itself is neither signed nor unsigned. Do not use this routine for
687 non-integer modes; convert to REAL_VALUE_TYPE and use
688 const_double_from_real_value. */
689
690 rtx
691 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
692 {
693 rtx value;
694 unsigned int i;
695
696 /* There are the following cases (note that there are no modes with
697 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
698
699 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
700 gen_int_mode.
701 2) If the value of the integer fits into HOST_WIDE_INT anyway
702 (i.e., i1 consists only from copies of the sign bit, and sign
703 of i0 and i1 are the same), then we return a CONST_INT for i0.
704 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
705 scalar_mode smode;
706 if (is_a <scalar_mode> (mode, &smode)
707 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
708 return gen_int_mode (i0, mode);
709
710 /* If this integer fits in one word, return a CONST_INT. */
711 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
712 return GEN_INT (i0);
713
714 /* We use VOIDmode for integers. */
715 value = rtx_alloc (CONST_DOUBLE);
716 PUT_MODE (value, VOIDmode);
717
718 CONST_DOUBLE_LOW (value) = i0;
719 CONST_DOUBLE_HIGH (value) = i1;
720
721 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
722 XWINT (value, i) = 0;
723
724 return lookup_const_double (value);
725 }
726 #endif
727
728 /* Return an rtx representation of C in mode MODE. */
729
730 rtx
731 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
732 {
733 if (c.is_constant ())
734 return immed_wide_int_const_1 (c.coeffs[0], mode);
735
736 /* Not scalar_int_mode because we also allow pointer bound modes. */
737 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
738
739 /* Allow truncation but not extension since we do not know if the
740 number is signed or unsigned. */
741 gcc_assert (prec <= c.coeffs[0].get_precision ());
742 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
743
744 /* See whether we already have an rtx for this constant. */
745 inchash::hash h;
746 h.add_int (mode);
747 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
748 h.add_wide_int (newc.coeffs[i]);
749 const_poly_int_hasher::compare_type typed_value (mode, newc);
750 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
751 h.end (), INSERT);
752 rtx x = *slot;
753 if (x)
754 return x;
755
756 /* Create a new rtx. There's a choice to be made here between installing
757 the actual mode of the rtx or leaving it as VOIDmode (for consistency
758 with CONST_INT). In practice the handling of the codes is different
759 enough that we get no benefit from using VOIDmode, and various places
760 assume that VOIDmode implies CONST_INT. Using the real mode seems like
761 the right long-term direction anyway. */
762 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
763 size_t extra_size = twi::extra_size (prec);
764 x = rtx_alloc_v (CONST_POLY_INT,
765 sizeof (struct const_poly_int_def) + extra_size);
766 PUT_MODE (x, mode);
767 CONST_POLY_INT_COEFFS (x).set_precision (prec);
768 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
769 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
770
771 *slot = x;
772 return x;
773 }
774
775 rtx
776 gen_rtx_REG (machine_mode mode, unsigned int regno)
777 {
778 /* In case the MD file explicitly references the frame pointer, have
779 all such references point to the same frame pointer. This is
780 used during frame pointer elimination to distinguish the explicit
781 references to these registers from pseudos that happened to be
782 assigned to them.
783
784 If we have eliminated the frame pointer or arg pointer, we will
785 be using it as a normal register, for example as a spill
786 register. In such cases, we might be accessing it in a mode that
787 is not Pmode and therefore cannot use the pre-allocated rtx.
788
789 Also don't do this when we are making new REGs in reload, since
790 we don't want to get confused with the real pointers. */
791
792 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
793 {
794 if (regno == FRAME_POINTER_REGNUM
795 && (!reload_completed || frame_pointer_needed))
796 return frame_pointer_rtx;
797
798 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
799 && regno == HARD_FRAME_POINTER_REGNUM
800 && (!reload_completed || frame_pointer_needed))
801 return hard_frame_pointer_rtx;
802 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
803 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
804 && regno == ARG_POINTER_REGNUM)
805 return arg_pointer_rtx;
806 #endif
807 #ifdef RETURN_ADDRESS_POINTER_REGNUM
808 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
809 return return_address_pointer_rtx;
810 #endif
811 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
812 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
813 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
814 return pic_offset_table_rtx;
815 if (regno == STACK_POINTER_REGNUM)
816 return stack_pointer_rtx;
817 }
818
819 #if 0
820 /* If the per-function register table has been set up, try to re-use
821 an existing entry in that table to avoid useless generation of RTL.
822
823 This code is disabled for now until we can fix the various backends
824 which depend on having non-shared hard registers in some cases. Long
825 term we want to re-enable this code as it can significantly cut down
826 on the amount of useless RTL that gets generated.
827
828 We'll also need to fix some code that runs after reload that wants to
829 set ORIGINAL_REGNO. */
830
831 if (cfun
832 && cfun->emit
833 && regno_reg_rtx
834 && regno < FIRST_PSEUDO_REGISTER
835 && reg_raw_mode[regno] == mode)
836 return regno_reg_rtx[regno];
837 #endif
838
839 return gen_raw_REG (mode, regno);
840 }
841
842 rtx
843 gen_rtx_MEM (machine_mode mode, rtx addr)
844 {
845 rtx rt = gen_rtx_raw_MEM (mode, addr);
846
847 /* This field is not cleared by the mere allocation of the rtx, so
848 we clear it here. */
849 MEM_ATTRS (rt) = 0;
850
851 return rt;
852 }
853
854 /* Generate a memory referring to non-trapping constant memory. */
855
856 rtx
857 gen_const_mem (machine_mode mode, rtx addr)
858 {
859 rtx mem = gen_rtx_MEM (mode, addr);
860 MEM_READONLY_P (mem) = 1;
861 MEM_NOTRAP_P (mem) = 1;
862 return mem;
863 }
864
865 /* Generate a MEM referring to fixed portions of the frame, e.g., register
866 save areas. */
867
868 rtx
869 gen_frame_mem (machine_mode mode, rtx addr)
870 {
871 rtx mem = gen_rtx_MEM (mode, addr);
872 MEM_NOTRAP_P (mem) = 1;
873 set_mem_alias_set (mem, get_frame_alias_set ());
874 return mem;
875 }
876
877 /* Generate a MEM referring to a temporary use of the stack, not part
878 of the fixed stack frame. For example, something which is pushed
879 by a target splitter. */
880 rtx
881 gen_tmp_stack_mem (machine_mode mode, rtx addr)
882 {
883 rtx mem = gen_rtx_MEM (mode, addr);
884 MEM_NOTRAP_P (mem) = 1;
885 if (!cfun->calls_alloca)
886 set_mem_alias_set (mem, get_frame_alias_set ());
887 return mem;
888 }
889
890 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
891 this construct would be valid, and false otherwise. */
892
893 bool
894 validate_subreg (machine_mode omode, machine_mode imode,
895 const_rtx reg, poly_uint64 offset)
896 {
897 poly_uint64 isize = GET_MODE_SIZE (imode);
898 poly_uint64 osize = GET_MODE_SIZE (omode);
899
900 /* The sizes must be ordered, so that we know whether the subreg
901 is partial, paradoxical or complete. */
902 if (!ordered_p (isize, osize))
903 return false;
904
905 /* All subregs must be aligned. */
906 if (!multiple_p (offset, osize))
907 return false;
908
909 /* The subreg offset cannot be outside the inner object. */
910 if (maybe_ge (offset, isize))
911 return false;
912
913 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
914
915 /* ??? This should not be here. Temporarily continue to allow word_mode
916 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
917 Generally, backends are doing something sketchy but it'll take time to
918 fix them all. */
919 if (omode == word_mode)
920 ;
921 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
922 is the culprit here, and not the backends. */
923 else if (known_ge (osize, regsize) && known_ge (isize, osize))
924 ;
925 /* Allow component subregs of complex and vector. Though given the below
926 extraction rules, it's not always clear what that means. */
927 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
928 && GET_MODE_INNER (imode) == omode)
929 ;
930 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
931 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
932 represent this. It's questionable if this ought to be represented at
933 all -- why can't this all be hidden in post-reload splitters that make
934 arbitrarily mode changes to the registers themselves. */
935 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
936 ;
937 /* Subregs involving floating point modes are not allowed to
938 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
939 (subreg:SI (reg:DF) 0) isn't. */
940 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
941 {
942 if (! (known_eq (isize, osize)
943 /* LRA can use subreg to store a floating point value in
944 an integer mode. Although the floating point and the
945 integer modes need the same number of hard registers,
946 the size of floating point mode can be less than the
947 integer mode. LRA also uses subregs for a register
948 should be used in different mode in on insn. */
949 || lra_in_progress))
950 return false;
951 }
952
953 /* Paradoxical subregs must have offset zero. */
954 if (maybe_gt (osize, isize))
955 return known_eq (offset, 0U);
956
957 /* This is a normal subreg. Verify that the offset is representable. */
958
959 /* For hard registers, we already have most of these rules collected in
960 subreg_offset_representable_p. */
961 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
962 {
963 unsigned int regno = REGNO (reg);
964
965 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
966 && GET_MODE_INNER (imode) == omode)
967 ;
968 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
969 return false;
970
971 return subreg_offset_representable_p (regno, imode, offset, omode);
972 }
973
974 /* The outer size must be ordered wrt the register size, otherwise
975 we wouldn't know at compile time how many registers the outer
976 mode occupies. */
977 if (!ordered_p (osize, regsize))
978 return false;
979
980 /* For pseudo registers, we want most of the same checks. Namely:
981
982 Assume that the pseudo register will be allocated to hard registers
983 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
984 the remainder must correspond to the lowpart of the containing hard
985 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
986 otherwise it is at the lowest offset.
987
988 Given that we've already checked the mode and offset alignment,
989 we only have to check subblock subregs here. */
990 if (maybe_lt (osize, regsize)
991 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
992 {
993 /* It is invalid for the target to pick a register size for a mode
994 that isn't ordered wrt to the size of that mode. */
995 poly_uint64 block_size = ordered_min (isize, regsize);
996 unsigned int start_reg;
997 poly_uint64 offset_within_reg;
998 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
999 || (BYTES_BIG_ENDIAN
1000 ? maybe_ne (offset_within_reg, block_size - osize)
1001 : maybe_ne (offset_within_reg, 0U)))
1002 return false;
1003 }
1004 return true;
1005 }
1006
1007 rtx
1008 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
1009 {
1010 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
1011 return gen_rtx_raw_SUBREG (mode, reg, offset);
1012 }
1013
1014 /* Generate a SUBREG representing the least-significant part of REG if MODE
1015 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1016
1017 rtx
1018 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
1019 {
1020 machine_mode inmode;
1021
1022 inmode = GET_MODE (reg);
1023 if (inmode == VOIDmode)
1024 inmode = mode;
1025 return gen_rtx_SUBREG (mode, reg,
1026 subreg_lowpart_offset (mode, inmode));
1027 }
1028
1029 rtx
1030 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
1031 enum var_init_status status)
1032 {
1033 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1034 PAT_VAR_LOCATION_STATUS (x) = status;
1035 return x;
1036 }
1037 \f
1038
1039 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
1040
1041 rtvec
1042 gen_rtvec (int n, ...)
1043 {
1044 int i;
1045 rtvec rt_val;
1046 va_list p;
1047
1048 va_start (p, n);
1049
1050 /* Don't allocate an empty rtvec... */
1051 if (n == 0)
1052 {
1053 va_end (p);
1054 return NULL_RTVEC;
1055 }
1056
1057 rt_val = rtvec_alloc (n);
1058
1059 for (i = 0; i < n; i++)
1060 rt_val->elem[i] = va_arg (p, rtx);
1061
1062 va_end (p);
1063 return rt_val;
1064 }
1065
1066 rtvec
1067 gen_rtvec_v (int n, rtx *argp)
1068 {
1069 int i;
1070 rtvec rt_val;
1071
1072 /* Don't allocate an empty rtvec... */
1073 if (n == 0)
1074 return NULL_RTVEC;
1075
1076 rt_val = rtvec_alloc (n);
1077
1078 for (i = 0; i < n; i++)
1079 rt_val->elem[i] = *argp++;
1080
1081 return rt_val;
1082 }
1083
1084 rtvec
1085 gen_rtvec_v (int n, rtx_insn **argp)
1086 {
1087 int i;
1088 rtvec rt_val;
1089
1090 /* Don't allocate an empty rtvec... */
1091 if (n == 0)
1092 return NULL_RTVEC;
1093
1094 rt_val = rtvec_alloc (n);
1095
1096 for (i = 0; i < n; i++)
1097 rt_val->elem[i] = *argp++;
1098
1099 return rt_val;
1100 }
1101
1102 \f
1103 /* Return the number of bytes between the start of an OUTER_MODE
1104 in-memory value and the start of an INNER_MODE in-memory value,
1105 given that the former is a lowpart of the latter. It may be a
1106 paradoxical lowpart, in which case the offset will be negative
1107 on big-endian targets. */
1108
1109 poly_int64
1110 byte_lowpart_offset (machine_mode outer_mode,
1111 machine_mode inner_mode)
1112 {
1113 if (paradoxical_subreg_p (outer_mode, inner_mode))
1114 return -subreg_lowpart_offset (inner_mode, outer_mode);
1115 else
1116 return subreg_lowpart_offset (outer_mode, inner_mode);
1117 }
1118
1119 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1120 from address X. For paradoxical big-endian subregs this is a
1121 negative value, otherwise it's the same as OFFSET. */
1122
1123 poly_int64
1124 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1125 poly_uint64 offset)
1126 {
1127 if (paradoxical_subreg_p (outer_mode, inner_mode))
1128 {
1129 gcc_assert (known_eq (offset, 0U));
1130 return -subreg_lowpart_offset (inner_mode, outer_mode);
1131 }
1132 return offset;
1133 }
1134
1135 /* As above, but return the offset that existing subreg X would have
1136 if SUBREG_REG (X) were stored in memory. The only significant thing
1137 about the current SUBREG_REG is its mode. */
1138
1139 poly_int64
1140 subreg_memory_offset (const_rtx x)
1141 {
1142 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1143 SUBREG_BYTE (x));
1144 }
1145 \f
1146 /* Generate a REG rtx for a new pseudo register of mode MODE.
1147 This pseudo is assigned the next sequential register number. */
1148
1149 rtx
1150 gen_reg_rtx (machine_mode mode)
1151 {
1152 rtx val;
1153 unsigned int align = GET_MODE_ALIGNMENT (mode);
1154
1155 gcc_assert (can_create_pseudo_p ());
1156
1157 /* If a virtual register with bigger mode alignment is generated,
1158 increase stack alignment estimation because it might be spilled
1159 to stack later. */
1160 if (SUPPORTS_STACK_ALIGNMENT
1161 && crtl->stack_alignment_estimated < align
1162 && !crtl->stack_realign_processed)
1163 {
1164 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1165 if (crtl->stack_alignment_estimated < min_align)
1166 crtl->stack_alignment_estimated = min_align;
1167 }
1168
1169 if (generating_concat_p
1170 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1171 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1172 {
1173 /* For complex modes, don't make a single pseudo.
1174 Instead, make a CONCAT of two pseudos.
1175 This allows noncontiguous allocation of the real and imaginary parts,
1176 which makes much better code. Besides, allocating DCmode
1177 pseudos overstrains reload on some machines like the 386. */
1178 rtx realpart, imagpart;
1179 machine_mode partmode = GET_MODE_INNER (mode);
1180
1181 realpart = gen_reg_rtx (partmode);
1182 imagpart = gen_reg_rtx (partmode);
1183 return gen_rtx_CONCAT (mode, realpart, imagpart);
1184 }
1185
1186 /* Do not call gen_reg_rtx with uninitialized crtl. */
1187 gcc_assert (crtl->emit.regno_pointer_align_length);
1188
1189 crtl->emit.ensure_regno_capacity ();
1190 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1191
1192 val = gen_raw_REG (mode, reg_rtx_no);
1193 regno_reg_rtx[reg_rtx_no++] = val;
1194 return val;
1195 }
1196
1197 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1198 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1199
1200 void
1201 emit_status::ensure_regno_capacity ()
1202 {
1203 int old_size = regno_pointer_align_length;
1204
1205 if (reg_rtx_no < old_size)
1206 return;
1207
1208 int new_size = old_size * 2;
1209 while (reg_rtx_no >= new_size)
1210 new_size *= 2;
1211
1212 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1213 memset (tmp + old_size, 0, new_size - old_size);
1214 regno_pointer_align = (unsigned char *) tmp;
1215
1216 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1217 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1218 regno_reg_rtx = new1;
1219
1220 crtl->emit.regno_pointer_align_length = new_size;
1221 }
1222
1223 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1224
1225 bool
1226 reg_is_parm_p (rtx reg)
1227 {
1228 tree decl;
1229
1230 gcc_assert (REG_P (reg));
1231 decl = REG_EXPR (reg);
1232 return (decl && TREE_CODE (decl) == PARM_DECL);
1233 }
1234
1235 /* Update NEW with the same attributes as REG, but with OFFSET added
1236 to the REG_OFFSET. */
1237
1238 static void
1239 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
1240 {
1241 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1242 REG_OFFSET (reg) + offset);
1243 }
1244
1245 /* Generate a register with same attributes as REG, but with OFFSET
1246 added to the REG_OFFSET. */
1247
1248 rtx
1249 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1250 poly_int64 offset)
1251 {
1252 rtx new_rtx = gen_rtx_REG (mode, regno);
1253
1254 update_reg_offset (new_rtx, reg, offset);
1255 return new_rtx;
1256 }
1257
1258 /* Generate a new pseudo-register with the same attributes as REG, but
1259 with OFFSET added to the REG_OFFSET. */
1260
1261 rtx
1262 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1263 {
1264 rtx new_rtx = gen_reg_rtx (mode);
1265
1266 update_reg_offset (new_rtx, reg, offset);
1267 return new_rtx;
1268 }
1269
1270 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1271 new register is a (possibly paradoxical) lowpart of the old one. */
1272
1273 void
1274 adjust_reg_mode (rtx reg, machine_mode mode)
1275 {
1276 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1277 PUT_MODE (reg, mode);
1278 }
1279
1280 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1281 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1282
1283 void
1284 set_reg_attrs_from_value (rtx reg, rtx x)
1285 {
1286 poly_int64 offset;
1287 bool can_be_reg_pointer = true;
1288
1289 /* Don't call mark_reg_pointer for incompatible pointer sign
1290 extension. */
1291 while (GET_CODE (x) == SIGN_EXTEND
1292 || GET_CODE (x) == ZERO_EXTEND
1293 || GET_CODE (x) == TRUNCATE
1294 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1295 {
1296 #if defined(POINTERS_EXTEND_UNSIGNED)
1297 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1298 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1299 || (paradoxical_subreg_p (x)
1300 && ! (SUBREG_PROMOTED_VAR_P (x)
1301 && SUBREG_CHECK_PROMOTED_SIGN (x,
1302 POINTERS_EXTEND_UNSIGNED))))
1303 && !targetm.have_ptr_extend ())
1304 can_be_reg_pointer = false;
1305 #endif
1306 x = XEXP (x, 0);
1307 }
1308
1309 /* Hard registers can be reused for multiple purposes within the same
1310 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1311 on them is wrong. */
1312 if (HARD_REGISTER_P (reg))
1313 return;
1314
1315 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1316 if (MEM_P (x))
1317 {
1318 if (MEM_OFFSET_KNOWN_P (x))
1319 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1320 MEM_OFFSET (x) + offset);
1321 if (can_be_reg_pointer && MEM_POINTER (x))
1322 mark_reg_pointer (reg, 0);
1323 }
1324 else if (REG_P (x))
1325 {
1326 if (REG_ATTRS (x))
1327 update_reg_offset (reg, x, offset);
1328 if (can_be_reg_pointer && REG_POINTER (x))
1329 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1330 }
1331 }
1332
1333 /* Generate a REG rtx for a new pseudo register, copying the mode
1334 and attributes from X. */
1335
1336 rtx
1337 gen_reg_rtx_and_attrs (rtx x)
1338 {
1339 rtx reg = gen_reg_rtx (GET_MODE (x));
1340 set_reg_attrs_from_value (reg, x);
1341 return reg;
1342 }
1343
1344 /* Set the register attributes for registers contained in PARM_RTX.
1345 Use needed values from memory attributes of MEM. */
1346
1347 void
1348 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1349 {
1350 if (REG_P (parm_rtx))
1351 set_reg_attrs_from_value (parm_rtx, mem);
1352 else if (GET_CODE (parm_rtx) == PARALLEL)
1353 {
1354 /* Check for a NULL entry in the first slot, used to indicate that the
1355 parameter goes both on the stack and in registers. */
1356 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1357 for (; i < XVECLEN (parm_rtx, 0); i++)
1358 {
1359 rtx x = XVECEXP (parm_rtx, 0, i);
1360 if (REG_P (XEXP (x, 0)))
1361 REG_ATTRS (XEXP (x, 0))
1362 = get_reg_attrs (MEM_EXPR (mem),
1363 INTVAL (XEXP (x, 1)));
1364 }
1365 }
1366 }
1367
1368 /* Set the REG_ATTRS for registers in value X, given that X represents
1369 decl T. */
1370
1371 void
1372 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1373 {
1374 if (!t)
1375 return;
1376 tree tdecl = t;
1377 if (GET_CODE (x) == SUBREG)
1378 {
1379 gcc_assert (subreg_lowpart_p (x));
1380 x = SUBREG_REG (x);
1381 }
1382 if (REG_P (x))
1383 REG_ATTRS (x)
1384 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1385 DECL_P (tdecl)
1386 ? DECL_MODE (tdecl)
1387 : TYPE_MODE (TREE_TYPE (tdecl))));
1388 if (GET_CODE (x) == CONCAT)
1389 {
1390 if (REG_P (XEXP (x, 0)))
1391 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1392 if (REG_P (XEXP (x, 1)))
1393 REG_ATTRS (XEXP (x, 1))
1394 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1395 }
1396 if (GET_CODE (x) == PARALLEL)
1397 {
1398 int i, start;
1399
1400 /* Check for a NULL entry, used to indicate that the parameter goes
1401 both on the stack and in registers. */
1402 if (XEXP (XVECEXP (x, 0, 0), 0))
1403 start = 0;
1404 else
1405 start = 1;
1406
1407 for (i = start; i < XVECLEN (x, 0); i++)
1408 {
1409 rtx y = XVECEXP (x, 0, i);
1410 if (REG_P (XEXP (y, 0)))
1411 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1412 }
1413 }
1414 }
1415
1416 /* Assign the RTX X to declaration T. */
1417
1418 void
1419 set_decl_rtl (tree t, rtx x)
1420 {
1421 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1422 if (x)
1423 set_reg_attrs_for_decl_rtl (t, x);
1424 }
1425
1426 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1427 if the ABI requires the parameter to be passed by reference. */
1428
1429 void
1430 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1431 {
1432 DECL_INCOMING_RTL (t) = x;
1433 if (x && !by_reference_p)
1434 set_reg_attrs_for_decl_rtl (t, x);
1435 }
1436
1437 /* Identify REG (which may be a CONCAT) as a user register. */
1438
1439 void
1440 mark_user_reg (rtx reg)
1441 {
1442 if (GET_CODE (reg) == CONCAT)
1443 {
1444 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1445 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1446 }
1447 else
1448 {
1449 gcc_assert (REG_P (reg));
1450 REG_USERVAR_P (reg) = 1;
1451 }
1452 }
1453
1454 /* Identify REG as a probable pointer register and show its alignment
1455 as ALIGN, if nonzero. */
1456
1457 void
1458 mark_reg_pointer (rtx reg, int align)
1459 {
1460 if (! REG_POINTER (reg))
1461 {
1462 REG_POINTER (reg) = 1;
1463
1464 if (align)
1465 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1466 }
1467 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1468 /* We can no-longer be sure just how aligned this pointer is. */
1469 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1470 }
1471
1472 /* Return 1 plus largest pseudo reg number used in the current function. */
1473
1474 int
1475 max_reg_num (void)
1476 {
1477 return reg_rtx_no;
1478 }
1479
1480 /* Return 1 + the largest label number used so far in the current function. */
1481
1482 int
1483 max_label_num (void)
1484 {
1485 return label_num;
1486 }
1487
1488 /* Return first label number used in this function (if any were used). */
1489
1490 int
1491 get_first_label_num (void)
1492 {
1493 return first_label_num;
1494 }
1495
1496 /* If the rtx for label was created during the expansion of a nested
1497 function, then first_label_num won't include this label number.
1498 Fix this now so that array indices work later. */
1499
1500 void
1501 maybe_set_first_label_num (rtx_code_label *x)
1502 {
1503 if (CODE_LABEL_NUMBER (x) < first_label_num)
1504 first_label_num = CODE_LABEL_NUMBER (x);
1505 }
1506
1507 /* For use by the RTL function loader, when mingling with normal
1508 functions.
1509 Ensure that label_num is greater than the label num of X, to avoid
1510 duplicate labels in the generated assembler. */
1511
1512 void
1513 maybe_set_max_label_num (rtx_code_label *x)
1514 {
1515 if (CODE_LABEL_NUMBER (x) >= label_num)
1516 label_num = CODE_LABEL_NUMBER (x) + 1;
1517 }
1518
1519 \f
1520 /* Return a value representing some low-order bits of X, where the number
1521 of low-order bits is given by MODE. Note that no conversion is done
1522 between floating-point and fixed-point values, rather, the bit
1523 representation is returned.
1524
1525 This function handles the cases in common between gen_lowpart, below,
1526 and two variants in cse.c and combine.c. These are the cases that can
1527 be safely handled at all points in the compilation.
1528
1529 If this is not a case we can handle, return 0. */
1530
1531 rtx
1532 gen_lowpart_common (machine_mode mode, rtx x)
1533 {
1534 poly_uint64 msize = GET_MODE_SIZE (mode);
1535 machine_mode innermode;
1536
1537 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1538 so we have to make one up. Yuk. */
1539 innermode = GET_MODE (x);
1540 if (CONST_INT_P (x)
1541 && known_le (msize * BITS_PER_UNIT,
1542 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
1543 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1544 else if (innermode == VOIDmode)
1545 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1546
1547 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1548
1549 if (innermode == mode)
1550 return x;
1551
1552 /* The size of the outer and inner modes must be ordered. */
1553 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1554 if (!ordered_p (msize, xsize))
1555 return 0;
1556
1557 if (SCALAR_FLOAT_MODE_P (mode))
1558 {
1559 /* Don't allow paradoxical FLOAT_MODE subregs. */
1560 if (maybe_gt (msize, xsize))
1561 return 0;
1562 }
1563 else
1564 {
1565 /* MODE must occupy no more of the underlying registers than X. */
1566 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1567 unsigned int mregs, xregs;
1568 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1569 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1570 || mregs > xregs)
1571 return 0;
1572 }
1573
1574 scalar_int_mode int_mode, int_innermode, from_mode;
1575 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1576 && is_a <scalar_int_mode> (mode, &int_mode)
1577 && is_a <scalar_int_mode> (innermode, &int_innermode)
1578 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1579 {
1580 /* If we are getting the low-order part of something that has been
1581 sign- or zero-extended, we can either just use the object being
1582 extended or make a narrower extension. If we want an even smaller
1583 piece than the size of the object being extended, call ourselves
1584 recursively.
1585
1586 This case is used mostly by combine and cse. */
1587
1588 if (from_mode == int_mode)
1589 return XEXP (x, 0);
1590 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1591 return gen_lowpart_common (int_mode, XEXP (x, 0));
1592 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1593 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1594 }
1595 else if (GET_CODE (x) == SUBREG || REG_P (x)
1596 || GET_CODE (x) == CONCAT || const_vec_p (x)
1597 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1598 || CONST_POLY_INT_P (x))
1599 return lowpart_subreg (mode, x, innermode);
1600
1601 /* Otherwise, we can't do this. */
1602 return 0;
1603 }
1604 \f
1605 rtx
1606 gen_highpart (machine_mode mode, rtx x)
1607 {
1608 poly_uint64 msize = GET_MODE_SIZE (mode);
1609 rtx result;
1610
1611 /* This case loses if X is a subreg. To catch bugs early,
1612 complain if an invalid MODE is used even in other cases. */
1613 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1614 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
1615
1616 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1617 subreg_highpart_offset (mode, GET_MODE (x)));
1618 gcc_assert (result);
1619
1620 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1621 the target if we have a MEM. gen_highpart must return a valid operand,
1622 emitting code if necessary to do so. */
1623 if (MEM_P (result))
1624 {
1625 result = validize_mem (result);
1626 gcc_assert (result);
1627 }
1628
1629 return result;
1630 }
1631
1632 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1633 be VOIDmode constant. */
1634 rtx
1635 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1636 {
1637 if (GET_MODE (exp) != VOIDmode)
1638 {
1639 gcc_assert (GET_MODE (exp) == innermode);
1640 return gen_highpart (outermode, exp);
1641 }
1642 return simplify_gen_subreg (outermode, exp, innermode,
1643 subreg_highpart_offset (outermode, innermode));
1644 }
1645
1646 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1647 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1648
1649 poly_uint64
1650 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1651 {
1652 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1653 if (maybe_gt (outer_bytes, inner_bytes))
1654 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1655 return 0;
1656
1657 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1658 return inner_bytes - outer_bytes;
1659 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1660 return 0;
1661 else
1662 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1663 }
1664
1665 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1666 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1667
1668 poly_uint64
1669 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1670 {
1671 gcc_assert (known_ge (inner_bytes, outer_bytes));
1672
1673 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1674 return 0;
1675 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1676 return inner_bytes - outer_bytes;
1677 else
1678 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1679 (inner_bytes - outer_bytes)
1680 * BITS_PER_UNIT);
1681 }
1682
1683 /* Return 1 iff X, assumed to be a SUBREG,
1684 refers to the least significant part of its containing reg.
1685 If X is not a SUBREG, always return 1 (it is its own low part!). */
1686
1687 int
1688 subreg_lowpart_p (const_rtx x)
1689 {
1690 if (GET_CODE (x) != SUBREG)
1691 return 1;
1692 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1693 return 0;
1694
1695 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1696 GET_MODE (SUBREG_REG (x))),
1697 SUBREG_BYTE (x));
1698 }
1699 \f
1700 /* Return subword OFFSET of operand OP.
1701 The word number, OFFSET, is interpreted as the word number starting
1702 at the low-order address. OFFSET 0 is the low-order word if not
1703 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1704
1705 If we cannot extract the required word, we return zero. Otherwise,
1706 an rtx corresponding to the requested word will be returned.
1707
1708 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1709 reload has completed, a valid address will always be returned. After
1710 reload, if a valid address cannot be returned, we return zero.
1711
1712 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1713 it is the responsibility of the caller.
1714
1715 MODE is the mode of OP in case it is a CONST_INT.
1716
1717 ??? This is still rather broken for some cases. The problem for the
1718 moment is that all callers of this thing provide no 'goal mode' to
1719 tell us to work with. This exists because all callers were written
1720 in a word based SUBREG world.
1721 Now use of this function can be deprecated by simplify_subreg in most
1722 cases.
1723 */
1724
1725 rtx
1726 operand_subword (rtx op, poly_uint64 offset, int validate_address,
1727 machine_mode mode)
1728 {
1729 if (mode == VOIDmode)
1730 mode = GET_MODE (op);
1731
1732 gcc_assert (mode != VOIDmode);
1733
1734 /* If OP is narrower than a word, fail. */
1735 if (mode != BLKmode
1736 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1737 return 0;
1738
1739 /* If we want a word outside OP, return zero. */
1740 if (mode != BLKmode
1741 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
1742 return const0_rtx;
1743
1744 /* Form a new MEM at the requested address. */
1745 if (MEM_P (op))
1746 {
1747 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1748
1749 if (! validate_address)
1750 return new_rtx;
1751
1752 else if (reload_completed)
1753 {
1754 if (! strict_memory_address_addr_space_p (word_mode,
1755 XEXP (new_rtx, 0),
1756 MEM_ADDR_SPACE (op)))
1757 return 0;
1758 }
1759 else
1760 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1761 }
1762
1763 /* Rest can be handled by simplify_subreg. */
1764 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1765 }
1766
1767 /* Similar to `operand_subword', but never return 0. If we can't
1768 extract the required subword, put OP into a register and try again.
1769 The second attempt must succeed. We always validate the address in
1770 this case.
1771
1772 MODE is the mode of OP, in case it is CONST_INT. */
1773
1774 rtx
1775 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
1776 {
1777 rtx result = operand_subword (op, offset, 1, mode);
1778
1779 if (result)
1780 return result;
1781
1782 if (mode != BLKmode && mode != VOIDmode)
1783 {
1784 /* If this is a register which can not be accessed by words, copy it
1785 to a pseudo register. */
1786 if (REG_P (op))
1787 op = copy_to_reg (op);
1788 else
1789 op = force_reg (mode, op);
1790 }
1791
1792 result = operand_subword (op, offset, 1, mode);
1793 gcc_assert (result);
1794
1795 return result;
1796 }
1797 \f
1798 mem_attrs::mem_attrs ()
1799 : expr (NULL_TREE),
1800 offset (0),
1801 size (0),
1802 alias (0),
1803 align (0),
1804 addrspace (ADDR_SPACE_GENERIC),
1805 offset_known_p (false),
1806 size_known_p (false)
1807 {}
1808
1809 /* Returns 1 if both MEM_EXPR can be considered equal
1810 and 0 otherwise. */
1811
1812 int
1813 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1814 {
1815 if (expr1 == expr2)
1816 return 1;
1817
1818 if (! expr1 || ! expr2)
1819 return 0;
1820
1821 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1822 return 0;
1823
1824 return operand_equal_p (expr1, expr2, 0);
1825 }
1826
1827 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1828 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1829 -1 if not known. */
1830
1831 int
1832 get_mem_align_offset (rtx mem, unsigned int align)
1833 {
1834 tree expr;
1835 poly_uint64 offset;
1836
1837 /* This function can't use
1838 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1839 || (MAX (MEM_ALIGN (mem),
1840 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1841 < align))
1842 return -1;
1843 else
1844 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1845 for two reasons:
1846 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1847 for <variable>. get_inner_reference doesn't handle it and
1848 even if it did, the alignment in that case needs to be determined
1849 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1850 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1851 isn't sufficiently aligned, the object it is in might be. */
1852 gcc_assert (MEM_P (mem));
1853 expr = MEM_EXPR (mem);
1854 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1855 return -1;
1856
1857 offset = MEM_OFFSET (mem);
1858 if (DECL_P (expr))
1859 {
1860 if (DECL_ALIGN (expr) < align)
1861 return -1;
1862 }
1863 else if (INDIRECT_REF_P (expr))
1864 {
1865 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1866 return -1;
1867 }
1868 else if (TREE_CODE (expr) == COMPONENT_REF)
1869 {
1870 while (1)
1871 {
1872 tree inner = TREE_OPERAND (expr, 0);
1873 tree field = TREE_OPERAND (expr, 1);
1874 tree byte_offset = component_ref_field_offset (expr);
1875 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1876
1877 poly_uint64 suboffset;
1878 if (!byte_offset
1879 || !poly_int_tree_p (byte_offset, &suboffset)
1880 || !tree_fits_uhwi_p (bit_offset))
1881 return -1;
1882
1883 offset += suboffset;
1884 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1885
1886 if (inner == NULL_TREE)
1887 {
1888 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1889 < (unsigned int) align)
1890 return -1;
1891 break;
1892 }
1893 else if (DECL_P (inner))
1894 {
1895 if (DECL_ALIGN (inner) < align)
1896 return -1;
1897 break;
1898 }
1899 else if (TREE_CODE (inner) != COMPONENT_REF)
1900 return -1;
1901 expr = inner;
1902 }
1903 }
1904 else
1905 return -1;
1906
1907 HOST_WIDE_INT misalign;
1908 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1909 return -1;
1910 return misalign;
1911 }
1912
1913 /* Given REF (a MEM) and T, either the type of X or the expression
1914 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1915 if we are making a new object of this type. BITPOS is nonzero if
1916 there is an offset outstanding on T that will be applied later. */
1917
1918 void
1919 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1920 poly_int64 bitpos)
1921 {
1922 poly_int64 apply_bitpos = 0;
1923 tree type;
1924 struct mem_attrs attrs, *defattrs, *refattrs;
1925 addr_space_t as;
1926
1927 /* It can happen that type_for_mode was given a mode for which there
1928 is no language-level type. In which case it returns NULL, which
1929 we can see here. */
1930 if (t == NULL_TREE)
1931 return;
1932
1933 type = TYPE_P (t) ? t : TREE_TYPE (t);
1934 if (type == error_mark_node)
1935 return;
1936
1937 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1938 wrong answer, as it assumes that DECL_RTL already has the right alias
1939 info. Callers should not set DECL_RTL until after the call to
1940 set_mem_attributes. */
1941 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1942
1943 /* Get the alias set from the expression or type (perhaps using a
1944 front-end routine) and use it. */
1945 attrs.alias = get_alias_set (t);
1946
1947 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1948 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1949
1950 /* Default values from pre-existing memory attributes if present. */
1951 refattrs = MEM_ATTRS (ref);
1952 if (refattrs)
1953 {
1954 /* ??? Can this ever happen? Calling this routine on a MEM that
1955 already carries memory attributes should probably be invalid. */
1956 attrs.expr = refattrs->expr;
1957 attrs.offset_known_p = refattrs->offset_known_p;
1958 attrs.offset = refattrs->offset;
1959 attrs.size_known_p = refattrs->size_known_p;
1960 attrs.size = refattrs->size;
1961 attrs.align = refattrs->align;
1962 }
1963
1964 /* Otherwise, default values from the mode of the MEM reference. */
1965 else
1966 {
1967 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1968 gcc_assert (!defattrs->expr);
1969 gcc_assert (!defattrs->offset_known_p);
1970
1971 /* Respect mode size. */
1972 attrs.size_known_p = defattrs->size_known_p;
1973 attrs.size = defattrs->size;
1974 /* ??? Is this really necessary? We probably should always get
1975 the size from the type below. */
1976
1977 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1978 if T is an object, always compute the object alignment below. */
1979 if (TYPE_P (t))
1980 attrs.align = defattrs->align;
1981 else
1982 attrs.align = BITS_PER_UNIT;
1983 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1984 e.g. if the type carries an alignment attribute. Should we be
1985 able to simply always use TYPE_ALIGN? */
1986 }
1987
1988 /* We can set the alignment from the type if we are making an object or if
1989 this is an INDIRECT_REF. */
1990 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1991 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1992
1993 /* If the size is known, we can set that. */
1994 tree new_size = TYPE_SIZE_UNIT (type);
1995
1996 /* The address-space is that of the type. */
1997 as = TYPE_ADDR_SPACE (type);
1998
1999 /* If T is not a type, we may be able to deduce some more information about
2000 the expression. */
2001 if (! TYPE_P (t))
2002 {
2003 tree base;
2004
2005 if (TREE_THIS_VOLATILE (t))
2006 MEM_VOLATILE_P (ref) = 1;
2007
2008 /* Now remove any conversions: they don't change what the underlying
2009 object is. Likewise for SAVE_EXPR. */
2010 while (CONVERT_EXPR_P (t)
2011 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2012 || TREE_CODE (t) == SAVE_EXPR)
2013 t = TREE_OPERAND (t, 0);
2014
2015 /* Note whether this expression can trap. */
2016 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2017
2018 base = get_base_address (t);
2019 if (base)
2020 {
2021 if (DECL_P (base)
2022 && TREE_READONLY (base)
2023 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2024 && !TREE_THIS_VOLATILE (base))
2025 MEM_READONLY_P (ref) = 1;
2026
2027 /* Mark static const strings readonly as well. */
2028 if (TREE_CODE (base) == STRING_CST
2029 && TREE_READONLY (base)
2030 && TREE_STATIC (base))
2031 MEM_READONLY_P (ref) = 1;
2032
2033 /* Address-space information is on the base object. */
2034 if (TREE_CODE (base) == MEM_REF
2035 || TREE_CODE (base) == TARGET_MEM_REF)
2036 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2037 0))));
2038 else
2039 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2040 }
2041
2042 /* If this expression uses it's parent's alias set, mark it such
2043 that we won't change it. */
2044 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
2045 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2046
2047 /* If this is a decl, set the attributes of the MEM from it. */
2048 if (DECL_P (t))
2049 {
2050 attrs.expr = t;
2051 attrs.offset_known_p = true;
2052 attrs.offset = 0;
2053 apply_bitpos = bitpos;
2054 new_size = DECL_SIZE_UNIT (t);
2055 }
2056
2057 /* ??? If we end up with a constant here do record a MEM_EXPR. */
2058 else if (CONSTANT_CLASS_P (t))
2059 ;
2060
2061 /* If this is a field reference, record it. */
2062 else if (TREE_CODE (t) == COMPONENT_REF)
2063 {
2064 attrs.expr = t;
2065 attrs.offset_known_p = true;
2066 attrs.offset = 0;
2067 apply_bitpos = bitpos;
2068 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2069 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
2070 }
2071
2072 /* If this is an array reference, look for an outer field reference. */
2073 else if (TREE_CODE (t) == ARRAY_REF)
2074 {
2075 tree off_tree = size_zero_node;
2076 /* We can't modify t, because we use it at the end of the
2077 function. */
2078 tree t2 = t;
2079
2080 do
2081 {
2082 tree index = TREE_OPERAND (t2, 1);
2083 tree low_bound = array_ref_low_bound (t2);
2084 tree unit_size = array_ref_element_size (t2);
2085
2086 /* We assume all arrays have sizes that are a multiple of a byte.
2087 First subtract the lower bound, if any, in the type of the
2088 index, then convert to sizetype and multiply by the size of
2089 the array element. */
2090 if (! integer_zerop (low_bound))
2091 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
2092 index, low_bound);
2093
2094 off_tree = size_binop (PLUS_EXPR,
2095 size_binop (MULT_EXPR,
2096 fold_convert (sizetype,
2097 index),
2098 unit_size),
2099 off_tree);
2100 t2 = TREE_OPERAND (t2, 0);
2101 }
2102 while (TREE_CODE (t2) == ARRAY_REF);
2103
2104 if (DECL_P (t2)
2105 || (TREE_CODE (t2) == COMPONENT_REF
2106 /* For trailing arrays t2 doesn't have a size that
2107 covers all valid accesses. */
2108 && ! array_at_struct_end_p (t)))
2109 {
2110 attrs.expr = t2;
2111 attrs.offset_known_p = false;
2112 if (poly_int_tree_p (off_tree, &attrs.offset))
2113 {
2114 attrs.offset_known_p = true;
2115 apply_bitpos = bitpos;
2116 }
2117 }
2118 /* Else do not record a MEM_EXPR. */
2119 }
2120
2121 /* If this is an indirect reference, record it. */
2122 else if (TREE_CODE (t) == MEM_REF
2123 || TREE_CODE (t) == TARGET_MEM_REF)
2124 {
2125 attrs.expr = t;
2126 attrs.offset_known_p = true;
2127 attrs.offset = 0;
2128 apply_bitpos = bitpos;
2129 }
2130
2131 /* Compute the alignment. */
2132 unsigned int obj_align;
2133 unsigned HOST_WIDE_INT obj_bitpos;
2134 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
2135 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2136 if (diff_align != 0)
2137 obj_align = MIN (obj_align, diff_align);
2138 attrs.align = MAX (attrs.align, obj_align);
2139 }
2140
2141 poly_uint64 const_size;
2142 if (poly_int_tree_p (new_size, &const_size))
2143 {
2144 attrs.size_known_p = true;
2145 attrs.size = const_size;
2146 }
2147
2148 /* If we modified OFFSET based on T, then subtract the outstanding
2149 bit position offset. Similarly, increase the size of the accessed
2150 object to contain the negative offset. */
2151 if (maybe_ne (apply_bitpos, 0))
2152 {
2153 gcc_assert (attrs.offset_known_p);
2154 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2155 attrs.offset -= bytepos;
2156 if (attrs.size_known_p)
2157 attrs.size += bytepos;
2158 }
2159
2160 /* Now set the attributes we computed above. */
2161 attrs.addrspace = as;
2162 set_mem_attrs (ref, &attrs);
2163 }
2164
2165 void
2166 set_mem_attributes (rtx ref, tree t, int objectp)
2167 {
2168 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2169 }
2170
2171 /* Set the alias set of MEM to SET. */
2172
2173 void
2174 set_mem_alias_set (rtx mem, alias_set_type set)
2175 {
2176 /* If the new and old alias sets don't conflict, something is wrong. */
2177 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2178 mem_attrs attrs (*get_mem_attrs (mem));
2179 attrs.alias = set;
2180 set_mem_attrs (mem, &attrs);
2181 }
2182
2183 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2184
2185 void
2186 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2187 {
2188 mem_attrs attrs (*get_mem_attrs (mem));
2189 attrs.addrspace = addrspace;
2190 set_mem_attrs (mem, &attrs);
2191 }
2192
2193 /* Set the alignment of MEM to ALIGN bits. */
2194
2195 void
2196 set_mem_align (rtx mem, unsigned int align)
2197 {
2198 mem_attrs attrs (*get_mem_attrs (mem));
2199 attrs.align = align;
2200 set_mem_attrs (mem, &attrs);
2201 }
2202
2203 /* Set the expr for MEM to EXPR. */
2204
2205 void
2206 set_mem_expr (rtx mem, tree expr)
2207 {
2208 mem_attrs attrs (*get_mem_attrs (mem));
2209 attrs.expr = expr;
2210 set_mem_attrs (mem, &attrs);
2211 }
2212
2213 /* Set the offset of MEM to OFFSET. */
2214
2215 void
2216 set_mem_offset (rtx mem, poly_int64 offset)
2217 {
2218 mem_attrs attrs (*get_mem_attrs (mem));
2219 attrs.offset_known_p = true;
2220 attrs.offset = offset;
2221 set_mem_attrs (mem, &attrs);
2222 }
2223
2224 /* Clear the offset of MEM. */
2225
2226 void
2227 clear_mem_offset (rtx mem)
2228 {
2229 mem_attrs attrs (*get_mem_attrs (mem));
2230 attrs.offset_known_p = false;
2231 set_mem_attrs (mem, &attrs);
2232 }
2233
2234 /* Set the size of MEM to SIZE. */
2235
2236 void
2237 set_mem_size (rtx mem, poly_int64 size)
2238 {
2239 mem_attrs attrs (*get_mem_attrs (mem));
2240 attrs.size_known_p = true;
2241 attrs.size = size;
2242 set_mem_attrs (mem, &attrs);
2243 }
2244
2245 /* Clear the size of MEM. */
2246
2247 void
2248 clear_mem_size (rtx mem)
2249 {
2250 mem_attrs attrs (*get_mem_attrs (mem));
2251 attrs.size_known_p = false;
2252 set_mem_attrs (mem, &attrs);
2253 }
2254 \f
2255 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2256 and its address changed to ADDR. (VOIDmode means don't change the mode.
2257 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2258 returned memory location is required to be valid. INPLACE is true if any
2259 changes can be made directly to MEMREF or false if MEMREF must be treated
2260 as immutable.
2261
2262 The memory attributes are not changed. */
2263
2264 static rtx
2265 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2266 bool inplace)
2267 {
2268 addr_space_t as;
2269 rtx new_rtx;
2270
2271 gcc_assert (MEM_P (memref));
2272 as = MEM_ADDR_SPACE (memref);
2273 if (mode == VOIDmode)
2274 mode = GET_MODE (memref);
2275 if (addr == 0)
2276 addr = XEXP (memref, 0);
2277 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2278 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2279 return memref;
2280
2281 /* Don't validate address for LRA. LRA can make the address valid
2282 by itself in most efficient way. */
2283 if (validate && !lra_in_progress)
2284 {
2285 if (reload_in_progress || reload_completed)
2286 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2287 else
2288 addr = memory_address_addr_space (mode, addr, as);
2289 }
2290
2291 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2292 return memref;
2293
2294 if (inplace)
2295 {
2296 XEXP (memref, 0) = addr;
2297 return memref;
2298 }
2299
2300 new_rtx = gen_rtx_MEM (mode, addr);
2301 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2302 return new_rtx;
2303 }
2304
2305 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2306 way we are changing MEMREF, so we only preserve the alias set. */
2307
2308 rtx
2309 change_address (rtx memref, machine_mode mode, rtx addr)
2310 {
2311 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2312 machine_mode mmode = GET_MODE (new_rtx);
2313 struct mem_attrs *defattrs;
2314
2315 mem_attrs attrs (*get_mem_attrs (memref));
2316 defattrs = mode_mem_attrs[(int) mmode];
2317 attrs.expr = NULL_TREE;
2318 attrs.offset_known_p = false;
2319 attrs.size_known_p = defattrs->size_known_p;
2320 attrs.size = defattrs->size;
2321 attrs.align = defattrs->align;
2322
2323 /* If there are no changes, just return the original memory reference. */
2324 if (new_rtx == memref)
2325 {
2326 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2327 return new_rtx;
2328
2329 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2330 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2331 }
2332
2333 set_mem_attrs (new_rtx, &attrs);
2334 return new_rtx;
2335 }
2336
2337 /* Return a memory reference like MEMREF, but with its mode changed
2338 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2339 nonzero, the memory address is forced to be valid.
2340 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2341 and the caller is responsible for adjusting MEMREF base register.
2342 If ADJUST_OBJECT is zero, the underlying object associated with the
2343 memory reference is left unchanged and the caller is responsible for
2344 dealing with it. Otherwise, if the new memory reference is outside
2345 the underlying object, even partially, then the object is dropped.
2346 SIZE, if nonzero, is the size of an access in cases where MODE
2347 has no inherent size. */
2348
2349 rtx
2350 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
2351 int validate, int adjust_address, int adjust_object,
2352 poly_int64 size)
2353 {
2354 rtx addr = XEXP (memref, 0);
2355 rtx new_rtx;
2356 scalar_int_mode address_mode;
2357 struct mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
2358 unsigned HOST_WIDE_INT max_align;
2359 #ifdef POINTERS_EXTEND_UNSIGNED
2360 scalar_int_mode pointer_mode
2361 = targetm.addr_space.pointer_mode (attrs.addrspace);
2362 #endif
2363
2364 /* VOIDmode means no mode change for change_address_1. */
2365 if (mode == VOIDmode)
2366 mode = GET_MODE (memref);
2367
2368 /* Take the size of non-BLKmode accesses from the mode. */
2369 defattrs = mode_mem_attrs[(int) mode];
2370 if (defattrs->size_known_p)
2371 size = defattrs->size;
2372
2373 /* If there are no changes, just return the original memory reference. */
2374 if (mode == GET_MODE (memref)
2375 && known_eq (offset, 0)
2376 && (known_eq (size, 0)
2377 || (attrs.size_known_p && known_eq (attrs.size, size)))
2378 && (!validate || memory_address_addr_space_p (mode, addr,
2379 attrs.addrspace)))
2380 return memref;
2381
2382 /* ??? Prefer to create garbage instead of creating shared rtl.
2383 This may happen even if offset is nonzero -- consider
2384 (plus (plus reg reg) const_int) -- so do this always. */
2385 addr = copy_rtx (addr);
2386
2387 /* Convert a possibly large offset to a signed value within the
2388 range of the target address space. */
2389 address_mode = get_address_mode (memref);
2390 offset = trunc_int_for_mode (offset, address_mode);
2391
2392 if (adjust_address)
2393 {
2394 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2395 object, we can merge it into the LO_SUM. */
2396 if (GET_MODE (memref) != BLKmode
2397 && GET_CODE (addr) == LO_SUM
2398 && known_in_range_p (offset,
2399 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2400 / BITS_PER_UNIT)))
2401 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2402 plus_constant (address_mode,
2403 XEXP (addr, 1), offset));
2404 #ifdef POINTERS_EXTEND_UNSIGNED
2405 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2406 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2407 the fact that pointers are not allowed to overflow. */
2408 else if (POINTERS_EXTEND_UNSIGNED > 0
2409 && GET_CODE (addr) == ZERO_EXTEND
2410 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2411 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
2412 addr = gen_rtx_ZERO_EXTEND (address_mode,
2413 plus_constant (pointer_mode,
2414 XEXP (addr, 0), offset));
2415 #endif
2416 else
2417 addr = plus_constant (address_mode, addr, offset);
2418 }
2419
2420 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2421
2422 /* If the address is a REG, change_address_1 rightfully returns memref,
2423 but this would destroy memref's MEM_ATTRS. */
2424 if (new_rtx == memref && maybe_ne (offset, 0))
2425 new_rtx = copy_rtx (new_rtx);
2426
2427 /* Conservatively drop the object if we don't know where we start from. */
2428 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2429 {
2430 attrs.expr = NULL_TREE;
2431 attrs.alias = 0;
2432 }
2433
2434 /* Compute the new values of the memory attributes due to this adjustment.
2435 We add the offsets and update the alignment. */
2436 if (attrs.offset_known_p)
2437 {
2438 attrs.offset += offset;
2439
2440 /* Drop the object if the new left end is not within its bounds. */
2441 if (adjust_object && maybe_lt (attrs.offset, 0))
2442 {
2443 attrs.expr = NULL_TREE;
2444 attrs.alias = 0;
2445 }
2446 }
2447
2448 /* Compute the new alignment by taking the MIN of the alignment and the
2449 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2450 if zero. */
2451 if (maybe_ne (offset, 0))
2452 {
2453 max_align = known_alignment (offset) * BITS_PER_UNIT;
2454 attrs.align = MIN (attrs.align, max_align);
2455 }
2456
2457 if (maybe_ne (size, 0))
2458 {
2459 /* Drop the object if the new right end is not within its bounds. */
2460 if (adjust_object && maybe_gt (offset + size, attrs.size))
2461 {
2462 attrs.expr = NULL_TREE;
2463 attrs.alias = 0;
2464 }
2465 attrs.size_known_p = true;
2466 attrs.size = size;
2467 }
2468 else if (attrs.size_known_p)
2469 {
2470 gcc_assert (!adjust_object);
2471 attrs.size -= offset;
2472 /* ??? The store_by_pieces machinery generates negative sizes,
2473 so don't assert for that here. */
2474 }
2475
2476 set_mem_attrs (new_rtx, &attrs);
2477
2478 return new_rtx;
2479 }
2480
2481 /* Return a memory reference like MEMREF, but with its mode changed
2482 to MODE and its address changed to ADDR, which is assumed to be
2483 MEMREF offset by OFFSET bytes. If VALIDATE is
2484 nonzero, the memory address is forced to be valid. */
2485
2486 rtx
2487 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2488 poly_int64 offset, int validate)
2489 {
2490 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2491 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2492 }
2493
2494 /* Return a memory reference like MEMREF, but whose address is changed by
2495 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2496 known to be in OFFSET (possibly 1). */
2497
2498 rtx
2499 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2500 {
2501 rtx new_rtx, addr = XEXP (memref, 0);
2502 machine_mode address_mode;
2503 struct mem_attrs *defattrs;
2504
2505 mem_attrs attrs (*get_mem_attrs (memref));
2506 address_mode = get_address_mode (memref);
2507 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2508
2509 /* At this point we don't know _why_ the address is invalid. It
2510 could have secondary memory references, multiplies or anything.
2511
2512 However, if we did go and rearrange things, we can wind up not
2513 being able to recognize the magic around pic_offset_table_rtx.
2514 This stuff is fragile, and is yet another example of why it is
2515 bad to expose PIC machinery too early. */
2516 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2517 attrs.addrspace)
2518 && GET_CODE (addr) == PLUS
2519 && XEXP (addr, 0) == pic_offset_table_rtx)
2520 {
2521 addr = force_reg (GET_MODE (addr), addr);
2522 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2523 }
2524
2525 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2526 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2527
2528 /* If there are no changes, just return the original memory reference. */
2529 if (new_rtx == memref)
2530 return new_rtx;
2531
2532 /* Update the alignment to reflect the offset. Reset the offset, which
2533 we don't know. */
2534 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2535 attrs.offset_known_p = false;
2536 attrs.size_known_p = defattrs->size_known_p;
2537 attrs.size = defattrs->size;
2538 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2539 set_mem_attrs (new_rtx, &attrs);
2540 return new_rtx;
2541 }
2542
2543 /* Return a memory reference like MEMREF, but with its address changed to
2544 ADDR. The caller is asserting that the actual piece of memory pointed
2545 to is the same, just the form of the address is being changed, such as
2546 by putting something into a register. INPLACE is true if any changes
2547 can be made directly to MEMREF or false if MEMREF must be treated as
2548 immutable. */
2549
2550 rtx
2551 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2552 {
2553 /* change_address_1 copies the memory attribute structure without change
2554 and that's exactly what we want here. */
2555 update_temp_slot_address (XEXP (memref, 0), addr);
2556 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2557 }
2558
2559 /* Likewise, but the reference is not required to be valid. */
2560
2561 rtx
2562 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2563 {
2564 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2565 }
2566
2567 /* Return a memory reference like MEMREF, but with its mode widened to
2568 MODE and offset by OFFSET. This would be used by targets that e.g.
2569 cannot issue QImode memory operations and have to use SImode memory
2570 operations plus masking logic. */
2571
2572 rtx
2573 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
2574 {
2575 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2576 poly_uint64 size = GET_MODE_SIZE (mode);
2577
2578 /* If there are no changes, just return the original memory reference. */
2579 if (new_rtx == memref)
2580 return new_rtx;
2581
2582 mem_attrs attrs (*get_mem_attrs (new_rtx));
2583
2584 /* If we don't know what offset we were at within the expression, then
2585 we can't know if we've overstepped the bounds. */
2586 if (! attrs.offset_known_p)
2587 attrs.expr = NULL_TREE;
2588
2589 while (attrs.expr)
2590 {
2591 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2592 {
2593 tree field = TREE_OPERAND (attrs.expr, 1);
2594 tree offset = component_ref_field_offset (attrs.expr);
2595
2596 if (! DECL_SIZE_UNIT (field))
2597 {
2598 attrs.expr = NULL_TREE;
2599 break;
2600 }
2601
2602 /* Is the field at least as large as the access? If so, ok,
2603 otherwise strip back to the containing structure. */
2604 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2605 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2606 && known_ge (attrs.offset, 0))
2607 break;
2608
2609 poly_uint64 suboffset;
2610 if (!poly_int_tree_p (offset, &suboffset))
2611 {
2612 attrs.expr = NULL_TREE;
2613 break;
2614 }
2615
2616 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2617 attrs.offset += suboffset;
2618 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2619 / BITS_PER_UNIT);
2620 }
2621 /* Similarly for the decl. */
2622 else if (DECL_P (attrs.expr)
2623 && DECL_SIZE_UNIT (attrs.expr)
2624 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2625 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2626 size)
2627 && known_ge (attrs.offset, 0))
2628 break;
2629 else
2630 {
2631 /* The widened memory access overflows the expression, which means
2632 that it could alias another expression. Zap it. */
2633 attrs.expr = NULL_TREE;
2634 break;
2635 }
2636 }
2637
2638 if (! attrs.expr)
2639 attrs.offset_known_p = false;
2640
2641 /* The widened memory may alias other stuff, so zap the alias set. */
2642 /* ??? Maybe use get_alias_set on any remaining expression. */
2643 attrs.alias = 0;
2644 attrs.size_known_p = true;
2645 attrs.size = size;
2646 set_mem_attrs (new_rtx, &attrs);
2647 return new_rtx;
2648 }
2649 \f
2650 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2651 static GTY(()) tree spill_slot_decl;
2652
2653 tree
2654 get_spill_slot_decl (bool force_build_p)
2655 {
2656 tree d = spill_slot_decl;
2657 rtx rd;
2658
2659 if (d || !force_build_p)
2660 return d;
2661
2662 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2663 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2664 DECL_ARTIFICIAL (d) = 1;
2665 DECL_IGNORED_P (d) = 1;
2666 TREE_USED (d) = 1;
2667 spill_slot_decl = d;
2668
2669 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2670 MEM_NOTRAP_P (rd) = 1;
2671 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
2672 attrs.alias = new_alias_set ();
2673 attrs.expr = d;
2674 set_mem_attrs (rd, &attrs);
2675 SET_DECL_RTL (d, rd);
2676
2677 return d;
2678 }
2679
2680 /* Given MEM, a result from assign_stack_local, fill in the memory
2681 attributes as appropriate for a register allocator spill slot.
2682 These slots are not aliasable by other memory. We arrange for
2683 them all to use a single MEM_EXPR, so that the aliasing code can
2684 work properly in the case of shared spill slots. */
2685
2686 void
2687 set_mem_attrs_for_spill (rtx mem)
2688 {
2689 rtx addr;
2690
2691 mem_attrs attrs (*get_mem_attrs (mem));
2692 attrs.expr = get_spill_slot_decl (true);
2693 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2694 attrs.addrspace = ADDR_SPACE_GENERIC;
2695
2696 /* We expect the incoming memory to be of the form:
2697 (mem:MODE (plus (reg sfp) (const_int offset)))
2698 with perhaps the plus missing for offset = 0. */
2699 addr = XEXP (mem, 0);
2700 attrs.offset_known_p = true;
2701 strip_offset (addr, &attrs.offset);
2702
2703 set_mem_attrs (mem, &attrs);
2704 MEM_NOTRAP_P (mem) = 1;
2705 }
2706 \f
2707 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2708
2709 rtx_code_label *
2710 gen_label_rtx (void)
2711 {
2712 return as_a <rtx_code_label *> (
2713 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2714 NULL, label_num++, NULL));
2715 }
2716 \f
2717 /* For procedure integration. */
2718
2719 /* Install new pointers to the first and last insns in the chain.
2720 Also, set cur_insn_uid to one higher than the last in use.
2721 Used for an inline-procedure after copying the insn chain. */
2722
2723 void
2724 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2725 {
2726 rtx_insn *insn;
2727
2728 set_first_insn (first);
2729 set_last_insn (last);
2730 cur_insn_uid = 0;
2731
2732 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2733 {
2734 int debug_count = 0;
2735
2736 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2737 cur_debug_insn_uid = 0;
2738
2739 for (insn = first; insn; insn = NEXT_INSN (insn))
2740 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2741 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2742 else
2743 {
2744 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2745 if (DEBUG_INSN_P (insn))
2746 debug_count++;
2747 }
2748
2749 if (debug_count)
2750 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2751 else
2752 cur_debug_insn_uid++;
2753 }
2754 else
2755 for (insn = first; insn; insn = NEXT_INSN (insn))
2756 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2757
2758 cur_insn_uid++;
2759 }
2760 \f
2761 /* Go through all the RTL insn bodies and copy any invalid shared
2762 structure. This routine should only be called once. */
2763
2764 static void
2765 unshare_all_rtl_1 (rtx_insn *insn)
2766 {
2767 /* Unshare just about everything else. */
2768 unshare_all_rtl_in_chain (insn);
2769
2770 /* Make sure the addresses of stack slots found outside the insn chain
2771 (such as, in DECL_RTL of a variable) are not shared
2772 with the insn chain.
2773
2774 This special care is necessary when the stack slot MEM does not
2775 actually appear in the insn chain. If it does appear, its address
2776 is unshared from all else at that point. */
2777 unsigned int i;
2778 rtx temp;
2779 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2780 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2781 }
2782
2783 /* Go through all the RTL insn bodies and copy any invalid shared
2784 structure, again. This is a fairly expensive thing to do so it
2785 should be done sparingly. */
2786
2787 void
2788 unshare_all_rtl_again (rtx_insn *insn)
2789 {
2790 rtx_insn *p;
2791 tree decl;
2792
2793 for (p = insn; p; p = NEXT_INSN (p))
2794 if (INSN_P (p))
2795 {
2796 reset_used_flags (PATTERN (p));
2797 reset_used_flags (REG_NOTES (p));
2798 if (CALL_P (p))
2799 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2800 }
2801
2802 /* Make sure that virtual stack slots are not shared. */
2803 set_used_decls (DECL_INITIAL (cfun->decl));
2804
2805 /* Make sure that virtual parameters are not shared. */
2806 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2807 set_used_flags (DECL_RTL (decl));
2808
2809 rtx temp;
2810 unsigned int i;
2811 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2812 reset_used_flags (temp);
2813
2814 unshare_all_rtl_1 (insn);
2815 }
2816
2817 unsigned int
2818 unshare_all_rtl (void)
2819 {
2820 unshare_all_rtl_1 (get_insns ());
2821
2822 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2823 {
2824 if (DECL_RTL_SET_P (decl))
2825 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2826 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2827 }
2828
2829 return 0;
2830 }
2831
2832
2833 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2834 Recursively does the same for subexpressions. */
2835
2836 static void
2837 verify_rtx_sharing (rtx orig, rtx insn)
2838 {
2839 rtx x = orig;
2840 int i;
2841 enum rtx_code code;
2842 const char *format_ptr;
2843
2844 if (x == 0)
2845 return;
2846
2847 code = GET_CODE (x);
2848
2849 /* These types may be freely shared. */
2850
2851 switch (code)
2852 {
2853 case REG:
2854 case DEBUG_EXPR:
2855 case VALUE:
2856 CASE_CONST_ANY:
2857 case SYMBOL_REF:
2858 case LABEL_REF:
2859 case CODE_LABEL:
2860 case PC:
2861 case CC0:
2862 case RETURN:
2863 case SIMPLE_RETURN:
2864 case SCRATCH:
2865 /* SCRATCH must be shared because they represent distinct values. */
2866 return;
2867 case CLOBBER:
2868 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2869 clobbers or clobbers of hard registers that originated as pseudos.
2870 This is needed to allow safe register renaming. */
2871 if (REG_P (XEXP (x, 0))
2872 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2873 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2874 return;
2875 break;
2876
2877 case CONST:
2878 if (shared_const_p (orig))
2879 return;
2880 break;
2881
2882 case MEM:
2883 /* A MEM is allowed to be shared if its address is constant. */
2884 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2885 || reload_completed || reload_in_progress)
2886 return;
2887
2888 break;
2889
2890 default:
2891 break;
2892 }
2893
2894 /* This rtx may not be shared. If it has already been seen,
2895 replace it with a copy of itself. */
2896 if (flag_checking && RTX_FLAG (x, used))
2897 {
2898 error ("invalid rtl sharing found in the insn");
2899 debug_rtx (insn);
2900 error ("shared rtx");
2901 debug_rtx (x);
2902 internal_error ("internal consistency failure");
2903 }
2904 gcc_assert (!RTX_FLAG (x, used));
2905
2906 RTX_FLAG (x, used) = 1;
2907
2908 /* Now scan the subexpressions recursively. */
2909
2910 format_ptr = GET_RTX_FORMAT (code);
2911
2912 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2913 {
2914 switch (*format_ptr++)
2915 {
2916 case 'e':
2917 verify_rtx_sharing (XEXP (x, i), insn);
2918 break;
2919
2920 case 'E':
2921 if (XVEC (x, i) != NULL)
2922 {
2923 int j;
2924 int len = XVECLEN (x, i);
2925
2926 for (j = 0; j < len; j++)
2927 {
2928 /* We allow sharing of ASM_OPERANDS inside single
2929 instruction. */
2930 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2931 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2932 == ASM_OPERANDS))
2933 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2934 else
2935 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2936 }
2937 }
2938 break;
2939 }
2940 }
2941 return;
2942 }
2943
2944 /* Reset used-flags for INSN. */
2945
2946 static void
2947 reset_insn_used_flags (rtx insn)
2948 {
2949 gcc_assert (INSN_P (insn));
2950 reset_used_flags (PATTERN (insn));
2951 reset_used_flags (REG_NOTES (insn));
2952 if (CALL_P (insn))
2953 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2954 }
2955
2956 /* Go through all the RTL insn bodies and clear all the USED bits. */
2957
2958 static void
2959 reset_all_used_flags (void)
2960 {
2961 rtx_insn *p;
2962
2963 for (p = get_insns (); p; p = NEXT_INSN (p))
2964 if (INSN_P (p))
2965 {
2966 rtx pat = PATTERN (p);
2967 if (GET_CODE (pat) != SEQUENCE)
2968 reset_insn_used_flags (p);
2969 else
2970 {
2971 gcc_assert (REG_NOTES (p) == NULL);
2972 for (int i = 0; i < XVECLEN (pat, 0); i++)
2973 {
2974 rtx insn = XVECEXP (pat, 0, i);
2975 if (INSN_P (insn))
2976 reset_insn_used_flags (insn);
2977 }
2978 }
2979 }
2980 }
2981
2982 /* Verify sharing in INSN. */
2983
2984 static void
2985 verify_insn_sharing (rtx insn)
2986 {
2987 gcc_assert (INSN_P (insn));
2988 verify_rtx_sharing (PATTERN (insn), insn);
2989 verify_rtx_sharing (REG_NOTES (insn), insn);
2990 if (CALL_P (insn))
2991 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2992 }
2993
2994 /* Go through all the RTL insn bodies and check that there is no unexpected
2995 sharing in between the subexpressions. */
2996
2997 DEBUG_FUNCTION void
2998 verify_rtl_sharing (void)
2999 {
3000 rtx_insn *p;
3001
3002 timevar_push (TV_VERIFY_RTL_SHARING);
3003
3004 reset_all_used_flags ();
3005
3006 for (p = get_insns (); p; p = NEXT_INSN (p))
3007 if (INSN_P (p))
3008 {
3009 rtx pat = PATTERN (p);
3010 if (GET_CODE (pat) != SEQUENCE)
3011 verify_insn_sharing (p);
3012 else
3013 for (int i = 0; i < XVECLEN (pat, 0); i++)
3014 {
3015 rtx insn = XVECEXP (pat, 0, i);
3016 if (INSN_P (insn))
3017 verify_insn_sharing (insn);
3018 }
3019 }
3020
3021 reset_all_used_flags ();
3022
3023 timevar_pop (TV_VERIFY_RTL_SHARING);
3024 }
3025
3026 /* Go through all the RTL insn bodies and copy any invalid shared structure.
3027 Assumes the mark bits are cleared at entry. */
3028
3029 void
3030 unshare_all_rtl_in_chain (rtx_insn *insn)
3031 {
3032 for (; insn; insn = NEXT_INSN (insn))
3033 if (INSN_P (insn))
3034 {
3035 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3036 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
3037 if (CALL_P (insn))
3038 CALL_INSN_FUNCTION_USAGE (insn)
3039 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
3040 }
3041 }
3042
3043 /* Go through all virtual stack slots of a function and mark them as
3044 shared. We never replace the DECL_RTLs themselves with a copy,
3045 but expressions mentioned into a DECL_RTL cannot be shared with
3046 expressions in the instruction stream.
3047
3048 Note that reload may convert pseudo registers into memories in-place.
3049 Pseudo registers are always shared, but MEMs never are. Thus if we
3050 reset the used flags on MEMs in the instruction stream, we must set
3051 them again on MEMs that appear in DECL_RTLs. */
3052
3053 static void
3054 set_used_decls (tree blk)
3055 {
3056 tree t;
3057
3058 /* Mark decls. */
3059 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
3060 if (DECL_RTL_SET_P (t))
3061 set_used_flags (DECL_RTL (t));
3062
3063 /* Now process sub-blocks. */
3064 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
3065 set_used_decls (t);
3066 }
3067
3068 /* Mark ORIG as in use, and return a copy of it if it was already in use.
3069 Recursively does the same for subexpressions. Uses
3070 copy_rtx_if_shared_1 to reduce stack space. */
3071
3072 rtx
3073 copy_rtx_if_shared (rtx orig)
3074 {
3075 copy_rtx_if_shared_1 (&orig);
3076 return orig;
3077 }
3078
3079 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3080 use. Recursively does the same for subexpressions. */
3081
3082 static void
3083 copy_rtx_if_shared_1 (rtx *orig1)
3084 {
3085 rtx x;
3086 int i;
3087 enum rtx_code code;
3088 rtx *last_ptr;
3089 const char *format_ptr;
3090 int copied = 0;
3091 int length;
3092
3093 /* Repeat is used to turn tail-recursion into iteration. */
3094 repeat:
3095 x = *orig1;
3096
3097 if (x == 0)
3098 return;
3099
3100 code = GET_CODE (x);
3101
3102 /* These types may be freely shared. */
3103
3104 switch (code)
3105 {
3106 case REG:
3107 case DEBUG_EXPR:
3108 case VALUE:
3109 CASE_CONST_ANY:
3110 case SYMBOL_REF:
3111 case LABEL_REF:
3112 case CODE_LABEL:
3113 case PC:
3114 case CC0:
3115 case RETURN:
3116 case SIMPLE_RETURN:
3117 case SCRATCH:
3118 /* SCRATCH must be shared because they represent distinct values. */
3119 return;
3120 case CLOBBER:
3121 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3122 clobbers or clobbers of hard registers that originated as pseudos.
3123 This is needed to allow safe register renaming. */
3124 if (REG_P (XEXP (x, 0))
3125 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3126 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3127 return;
3128 break;
3129
3130 case CONST:
3131 if (shared_const_p (x))
3132 return;
3133 break;
3134
3135 case DEBUG_INSN:
3136 case INSN:
3137 case JUMP_INSN:
3138 case CALL_INSN:
3139 case NOTE:
3140 case BARRIER:
3141 /* The chain of insns is not being copied. */
3142 return;
3143
3144 default:
3145 break;
3146 }
3147
3148 /* This rtx may not be shared. If it has already been seen,
3149 replace it with a copy of itself. */
3150
3151 if (RTX_FLAG (x, used))
3152 {
3153 x = shallow_copy_rtx (x);
3154 copied = 1;
3155 }
3156 RTX_FLAG (x, used) = 1;
3157
3158 /* Now scan the subexpressions recursively.
3159 We can store any replaced subexpressions directly into X
3160 since we know X is not shared! Any vectors in X
3161 must be copied if X was copied. */
3162
3163 format_ptr = GET_RTX_FORMAT (code);
3164 length = GET_RTX_LENGTH (code);
3165 last_ptr = NULL;
3166
3167 for (i = 0; i < length; i++)
3168 {
3169 switch (*format_ptr++)
3170 {
3171 case 'e':
3172 if (last_ptr)
3173 copy_rtx_if_shared_1 (last_ptr);
3174 last_ptr = &XEXP (x, i);
3175 break;
3176
3177 case 'E':
3178 if (XVEC (x, i) != NULL)
3179 {
3180 int j;
3181 int len = XVECLEN (x, i);
3182
3183 /* Copy the vector iff I copied the rtx and the length
3184 is nonzero. */
3185 if (copied && len > 0)
3186 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3187
3188 /* Call recursively on all inside the vector. */
3189 for (j = 0; j < len; j++)
3190 {
3191 if (last_ptr)
3192 copy_rtx_if_shared_1 (last_ptr);
3193 last_ptr = &XVECEXP (x, i, j);
3194 }
3195 }
3196 break;
3197 }
3198 }
3199 *orig1 = x;
3200 if (last_ptr)
3201 {
3202 orig1 = last_ptr;
3203 goto repeat;
3204 }
3205 return;
3206 }
3207
3208 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3209
3210 static void
3211 mark_used_flags (rtx x, int flag)
3212 {
3213 int i, j;
3214 enum rtx_code code;
3215 const char *format_ptr;
3216 int length;
3217
3218 /* Repeat is used to turn tail-recursion into iteration. */
3219 repeat:
3220 if (x == 0)
3221 return;
3222
3223 code = GET_CODE (x);
3224
3225 /* These types may be freely shared so we needn't do any resetting
3226 for them. */
3227
3228 switch (code)
3229 {
3230 case REG:
3231 case DEBUG_EXPR:
3232 case VALUE:
3233 CASE_CONST_ANY:
3234 case SYMBOL_REF:
3235 case CODE_LABEL:
3236 case PC:
3237 case CC0:
3238 case RETURN:
3239 case SIMPLE_RETURN:
3240 return;
3241
3242 case DEBUG_INSN:
3243 case INSN:
3244 case JUMP_INSN:
3245 case CALL_INSN:
3246 case NOTE:
3247 case LABEL_REF:
3248 case BARRIER:
3249 /* The chain of insns is not being copied. */
3250 return;
3251
3252 default:
3253 break;
3254 }
3255
3256 RTX_FLAG (x, used) = flag;
3257
3258 format_ptr = GET_RTX_FORMAT (code);
3259 length = GET_RTX_LENGTH (code);
3260
3261 for (i = 0; i < length; i++)
3262 {
3263 switch (*format_ptr++)
3264 {
3265 case 'e':
3266 if (i == length-1)
3267 {
3268 x = XEXP (x, i);
3269 goto repeat;
3270 }
3271 mark_used_flags (XEXP (x, i), flag);
3272 break;
3273
3274 case 'E':
3275 for (j = 0; j < XVECLEN (x, i); j++)
3276 mark_used_flags (XVECEXP (x, i, j), flag);
3277 break;
3278 }
3279 }
3280 }
3281
3282 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3283 to look for shared sub-parts. */
3284
3285 void
3286 reset_used_flags (rtx x)
3287 {
3288 mark_used_flags (x, 0);
3289 }
3290
3291 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3292 to look for shared sub-parts. */
3293
3294 void
3295 set_used_flags (rtx x)
3296 {
3297 mark_used_flags (x, 1);
3298 }
3299 \f
3300 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3301 Return X or the rtx for the pseudo reg the value of X was copied into.
3302 OTHER must be valid as a SET_DEST. */
3303
3304 rtx
3305 make_safe_from (rtx x, rtx other)
3306 {
3307 while (1)
3308 switch (GET_CODE (other))
3309 {
3310 case SUBREG:
3311 other = SUBREG_REG (other);
3312 break;
3313 case STRICT_LOW_PART:
3314 case SIGN_EXTEND:
3315 case ZERO_EXTEND:
3316 other = XEXP (other, 0);
3317 break;
3318 default:
3319 goto done;
3320 }
3321 done:
3322 if ((MEM_P (other)
3323 && ! CONSTANT_P (x)
3324 && !REG_P (x)
3325 && GET_CODE (x) != SUBREG)
3326 || (REG_P (other)
3327 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3328 || reg_mentioned_p (other, x))))
3329 {
3330 rtx temp = gen_reg_rtx (GET_MODE (x));
3331 emit_move_insn (temp, x);
3332 return temp;
3333 }
3334 return x;
3335 }
3336 \f
3337 /* Emission of insns (adding them to the doubly-linked list). */
3338
3339 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3340
3341 rtx_insn *
3342 get_last_insn_anywhere (void)
3343 {
3344 struct sequence_stack *seq;
3345 for (seq = get_current_sequence (); seq; seq = seq->next)
3346 if (seq->last != 0)
3347 return seq->last;
3348 return 0;
3349 }
3350
3351 /* Return the first nonnote insn emitted in current sequence or current
3352 function. This routine looks inside SEQUENCEs. */
3353
3354 rtx_insn *
3355 get_first_nonnote_insn (void)
3356 {
3357 rtx_insn *insn = get_insns ();
3358
3359 if (insn)
3360 {
3361 if (NOTE_P (insn))
3362 for (insn = next_insn (insn);
3363 insn && NOTE_P (insn);
3364 insn = next_insn (insn))
3365 continue;
3366 else
3367 {
3368 if (NONJUMP_INSN_P (insn)
3369 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3370 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3371 }
3372 }
3373
3374 return insn;
3375 }
3376
3377 /* Return the last nonnote insn emitted in current sequence or current
3378 function. This routine looks inside SEQUENCEs. */
3379
3380 rtx_insn *
3381 get_last_nonnote_insn (void)
3382 {
3383 rtx_insn *insn = get_last_insn ();
3384
3385 if (insn)
3386 {
3387 if (NOTE_P (insn))
3388 for (insn = previous_insn (insn);
3389 insn && NOTE_P (insn);
3390 insn = previous_insn (insn))
3391 continue;
3392 else
3393 {
3394 if (NONJUMP_INSN_P (insn))
3395 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3396 insn = seq->insn (seq->len () - 1);
3397 }
3398 }
3399
3400 return insn;
3401 }
3402
3403 /* Return the number of actual (non-debug) insns emitted in this
3404 function. */
3405
3406 int
3407 get_max_insn_count (void)
3408 {
3409 int n = cur_insn_uid;
3410
3411 /* The table size must be stable across -g, to avoid codegen
3412 differences due to debug insns, and not be affected by
3413 -fmin-insn-uid, to avoid excessive table size and to simplify
3414 debugging of -fcompare-debug failures. */
3415 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3416 n -= cur_debug_insn_uid;
3417 else
3418 n -= MIN_NONDEBUG_INSN_UID;
3419
3420 return n;
3421 }
3422
3423 \f
3424 /* Return the next insn. If it is a SEQUENCE, return the first insn
3425 of the sequence. */
3426
3427 rtx_insn *
3428 next_insn (rtx_insn *insn)
3429 {
3430 if (insn)
3431 {
3432 insn = NEXT_INSN (insn);
3433 if (insn && NONJUMP_INSN_P (insn)
3434 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3435 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3436 }
3437
3438 return insn;
3439 }
3440
3441 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3442 of the sequence. */
3443
3444 rtx_insn *
3445 previous_insn (rtx_insn *insn)
3446 {
3447 if (insn)
3448 {
3449 insn = PREV_INSN (insn);
3450 if (insn && NONJUMP_INSN_P (insn))
3451 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3452 insn = seq->insn (seq->len () - 1);
3453 }
3454
3455 return insn;
3456 }
3457
3458 /* Return the next insn after INSN that is not a NOTE. This routine does not
3459 look inside SEQUENCEs. */
3460
3461 rtx_insn *
3462 next_nonnote_insn (rtx_insn *insn)
3463 {
3464 while (insn)
3465 {
3466 insn = NEXT_INSN (insn);
3467 if (insn == 0 || !NOTE_P (insn))
3468 break;
3469 }
3470
3471 return insn;
3472 }
3473
3474 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3475 routine does not look inside SEQUENCEs. */
3476
3477 rtx_insn *
3478 next_nondebug_insn (rtx_insn *insn)
3479 {
3480 while (insn)
3481 {
3482 insn = NEXT_INSN (insn);
3483 if (insn == 0 || !DEBUG_INSN_P (insn))
3484 break;
3485 }
3486
3487 return insn;
3488 }
3489
3490 /* Return the previous insn before INSN that is not a NOTE. This routine does
3491 not look inside SEQUENCEs. */
3492
3493 rtx_insn *
3494 prev_nonnote_insn (rtx_insn *insn)
3495 {
3496 while (insn)
3497 {
3498 insn = PREV_INSN (insn);
3499 if (insn == 0 || !NOTE_P (insn))
3500 break;
3501 }
3502
3503 return insn;
3504 }
3505
3506 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3507 This routine does not look inside SEQUENCEs. */
3508
3509 rtx_insn *
3510 prev_nondebug_insn (rtx_insn *insn)
3511 {
3512 while (insn)
3513 {
3514 insn = PREV_INSN (insn);
3515 if (insn == 0 || !DEBUG_INSN_P (insn))
3516 break;
3517 }
3518
3519 return insn;
3520 }
3521
3522 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3523 This routine does not look inside SEQUENCEs. */
3524
3525 rtx_insn *
3526 next_nonnote_nondebug_insn (rtx_insn *insn)
3527 {
3528 while (insn)
3529 {
3530 insn = NEXT_INSN (insn);
3531 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3532 break;
3533 }
3534
3535 return insn;
3536 }
3537
3538 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3539 but stop the search before we enter another basic block. This
3540 routine does not look inside SEQUENCEs. */
3541
3542 rtx_insn *
3543 next_nonnote_nondebug_insn_bb (rtx_insn *insn)
3544 {
3545 while (insn)
3546 {
3547 insn = NEXT_INSN (insn);
3548 if (insn == 0)
3549 break;
3550 if (DEBUG_INSN_P (insn))
3551 continue;
3552 if (!NOTE_P (insn))
3553 break;
3554 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3555 return NULL;
3556 }
3557
3558 return insn;
3559 }
3560
3561 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3562 This routine does not look inside SEQUENCEs. */
3563
3564 rtx_insn *
3565 prev_nonnote_nondebug_insn (rtx_insn *insn)
3566 {
3567 while (insn)
3568 {
3569 insn = PREV_INSN (insn);
3570 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3571 break;
3572 }
3573
3574 return insn;
3575 }
3576
3577 /* Return the previous insn before INSN that is not a NOTE nor
3578 DEBUG_INSN, but stop the search before we enter another basic
3579 block. This routine does not look inside SEQUENCEs. */
3580
3581 rtx_insn *
3582 prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
3583 {
3584 while (insn)
3585 {
3586 insn = PREV_INSN (insn);
3587 if (insn == 0)
3588 break;
3589 if (DEBUG_INSN_P (insn))
3590 continue;
3591 if (!NOTE_P (insn))
3592 break;
3593 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3594 return NULL;
3595 }
3596
3597 return insn;
3598 }
3599
3600 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3601 or 0, if there is none. This routine does not look inside
3602 SEQUENCEs. */
3603
3604 rtx_insn *
3605 next_real_insn (rtx uncast_insn)
3606 {
3607 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3608
3609 while (insn)
3610 {
3611 insn = NEXT_INSN (insn);
3612 if (insn == 0 || INSN_P (insn))
3613 break;
3614 }
3615
3616 return insn;
3617 }
3618
3619 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3620 or 0, if there is none. This routine does not look inside
3621 SEQUENCEs. */
3622
3623 rtx_insn *
3624 prev_real_insn (rtx_insn *insn)
3625 {
3626 while (insn)
3627 {
3628 insn = PREV_INSN (insn);
3629 if (insn == 0 || INSN_P (insn))
3630 break;
3631 }
3632
3633 return insn;
3634 }
3635
3636 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3637 This routine does not look inside SEQUENCEs. */
3638
3639 rtx_call_insn *
3640 last_call_insn (void)
3641 {
3642 rtx_insn *insn;
3643
3644 for (insn = get_last_insn ();
3645 insn && !CALL_P (insn);
3646 insn = PREV_INSN (insn))
3647 ;
3648
3649 return safe_as_a <rtx_call_insn *> (insn);
3650 }
3651
3652 /* Find the next insn after INSN that really does something. This routine
3653 does not look inside SEQUENCEs. After reload this also skips over
3654 standalone USE and CLOBBER insn. */
3655
3656 int
3657 active_insn_p (const rtx_insn *insn)
3658 {
3659 return (CALL_P (insn) || JUMP_P (insn)
3660 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3661 || (NONJUMP_INSN_P (insn)
3662 && (! reload_completed
3663 || (GET_CODE (PATTERN (insn)) != USE
3664 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3665 }
3666
3667 rtx_insn *
3668 next_active_insn (rtx_insn *insn)
3669 {
3670 while (insn)
3671 {
3672 insn = NEXT_INSN (insn);
3673 if (insn == 0 || active_insn_p (insn))
3674 break;
3675 }
3676
3677 return insn;
3678 }
3679
3680 /* Find the last insn before INSN that really does something. This routine
3681 does not look inside SEQUENCEs. After reload this also skips over
3682 standalone USE and CLOBBER insn. */
3683
3684 rtx_insn *
3685 prev_active_insn (rtx_insn *insn)
3686 {
3687 while (insn)
3688 {
3689 insn = PREV_INSN (insn);
3690 if (insn == 0 || active_insn_p (insn))
3691 break;
3692 }
3693
3694 return insn;
3695 }
3696 \f
3697 /* Return the next insn that uses CC0 after INSN, which is assumed to
3698 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3699 applied to the result of this function should yield INSN).
3700
3701 Normally, this is simply the next insn. However, if a REG_CC_USER note
3702 is present, it contains the insn that uses CC0.
3703
3704 Return 0 if we can't find the insn. */
3705
3706 rtx_insn *
3707 next_cc0_user (rtx_insn *insn)
3708 {
3709 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3710
3711 if (note)
3712 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3713
3714 insn = next_nonnote_insn (insn);
3715 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3716 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3717
3718 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3719 return insn;
3720
3721 return 0;
3722 }
3723
3724 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3725 note, it is the previous insn. */
3726
3727 rtx_insn *
3728 prev_cc0_setter (rtx_insn *insn)
3729 {
3730 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3731
3732 if (note)
3733 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3734
3735 insn = prev_nonnote_insn (insn);
3736 gcc_assert (sets_cc0_p (PATTERN (insn)));
3737
3738 return insn;
3739 }
3740
3741 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3742
3743 static int
3744 find_auto_inc (const_rtx x, const_rtx reg)
3745 {
3746 subrtx_iterator::array_type array;
3747 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3748 {
3749 const_rtx x = *iter;
3750 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3751 && rtx_equal_p (reg, XEXP (x, 0)))
3752 return true;
3753 }
3754 return false;
3755 }
3756
3757 /* Increment the label uses for all labels present in rtx. */
3758
3759 static void
3760 mark_label_nuses (rtx x)
3761 {
3762 enum rtx_code code;
3763 int i, j;
3764 const char *fmt;
3765
3766 code = GET_CODE (x);
3767 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3768 LABEL_NUSES (label_ref_label (x))++;
3769
3770 fmt = GET_RTX_FORMAT (code);
3771 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3772 {
3773 if (fmt[i] == 'e')
3774 mark_label_nuses (XEXP (x, i));
3775 else if (fmt[i] == 'E')
3776 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3777 mark_label_nuses (XVECEXP (x, i, j));
3778 }
3779 }
3780
3781 \f
3782 /* Try splitting insns that can be split for better scheduling.
3783 PAT is the pattern which might split.
3784 TRIAL is the insn providing PAT.
3785 LAST is nonzero if we should return the last insn of the sequence produced.
3786
3787 If this routine succeeds in splitting, it returns the first or last
3788 replacement insn depending on the value of LAST. Otherwise, it
3789 returns TRIAL. If the insn to be returned can be split, it will be. */
3790
3791 rtx_insn *
3792 try_split (rtx pat, rtx_insn *trial, int last)
3793 {
3794 rtx_insn *before, *after;
3795 rtx note;
3796 rtx_insn *seq, *tem;
3797 profile_probability probability;
3798 rtx_insn *insn_last, *insn;
3799 int njumps = 0;
3800 rtx_insn *call_insn = NULL;
3801
3802 /* We're not good at redistributing frame information. */
3803 if (RTX_FRAME_RELATED_P (trial))
3804 return trial;
3805
3806 if (any_condjump_p (trial)
3807 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3808 split_branch_probability
3809 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3810 else
3811 split_branch_probability = profile_probability::uninitialized ();
3812
3813 probability = split_branch_probability;
3814
3815 seq = split_insns (pat, trial);
3816
3817 split_branch_probability = profile_probability::uninitialized ();
3818
3819 if (!seq)
3820 return trial;
3821
3822 /* Avoid infinite loop if any insn of the result matches
3823 the original pattern. */
3824 insn_last = seq;
3825 while (1)
3826 {
3827 if (INSN_P (insn_last)
3828 && rtx_equal_p (PATTERN (insn_last), pat))
3829 return trial;
3830 if (!NEXT_INSN (insn_last))
3831 break;
3832 insn_last = NEXT_INSN (insn_last);
3833 }
3834
3835 /* We will be adding the new sequence to the function. The splitters
3836 may have introduced invalid RTL sharing, so unshare the sequence now. */
3837 unshare_all_rtl_in_chain (seq);
3838
3839 /* Mark labels and copy flags. */
3840 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3841 {
3842 if (JUMP_P (insn))
3843 {
3844 if (JUMP_P (trial))
3845 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3846 mark_jump_label (PATTERN (insn), insn, 0);
3847 njumps++;
3848 if (probability.initialized_p ()
3849 && any_condjump_p (insn)
3850 && !find_reg_note (insn, REG_BR_PROB, 0))
3851 {
3852 /* We can preserve the REG_BR_PROB notes only if exactly
3853 one jump is created, otherwise the machine description
3854 is responsible for this step using
3855 split_branch_probability variable. */
3856 gcc_assert (njumps == 1);
3857 add_reg_br_prob_note (insn, probability);
3858 }
3859 }
3860 }
3861
3862 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3863 in SEQ and copy any additional information across. */
3864 if (CALL_P (trial))
3865 {
3866 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3867 if (CALL_P (insn))
3868 {
3869 rtx_insn *next;
3870 rtx *p;
3871
3872 gcc_assert (call_insn == NULL_RTX);
3873 call_insn = insn;
3874
3875 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3876 target may have explicitly specified. */
3877 p = &CALL_INSN_FUNCTION_USAGE (insn);
3878 while (*p)
3879 p = &XEXP (*p, 1);
3880 *p = CALL_INSN_FUNCTION_USAGE (trial);
3881
3882 /* If the old call was a sibling call, the new one must
3883 be too. */
3884 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3885
3886 /* If the new call is the last instruction in the sequence,
3887 it will effectively replace the old call in-situ. Otherwise
3888 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3889 so that it comes immediately after the new call. */
3890 if (NEXT_INSN (insn))
3891 for (next = NEXT_INSN (trial);
3892 next && NOTE_P (next);
3893 next = NEXT_INSN (next))
3894 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3895 {
3896 remove_insn (next);
3897 add_insn_after (next, insn, NULL);
3898 break;
3899 }
3900 }
3901 }
3902
3903 /* Copy notes, particularly those related to the CFG. */
3904 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3905 {
3906 switch (REG_NOTE_KIND (note))
3907 {
3908 case REG_EH_REGION:
3909 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3910 break;
3911
3912 case REG_NORETURN:
3913 case REG_SETJMP:
3914 case REG_TM:
3915 case REG_CALL_NOCF_CHECK:
3916 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3917 {
3918 if (CALL_P (insn))
3919 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3920 }
3921 break;
3922
3923 case REG_NON_LOCAL_GOTO:
3924 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3925 {
3926 if (JUMP_P (insn))
3927 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3928 }
3929 break;
3930
3931 case REG_INC:
3932 if (!AUTO_INC_DEC)
3933 break;
3934
3935 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3936 {
3937 rtx reg = XEXP (note, 0);
3938 if (!FIND_REG_INC_NOTE (insn, reg)
3939 && find_auto_inc (PATTERN (insn), reg))
3940 add_reg_note (insn, REG_INC, reg);
3941 }
3942 break;
3943
3944 case REG_ARGS_SIZE:
3945 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
3946 break;
3947
3948 case REG_CALL_DECL:
3949 gcc_assert (call_insn != NULL_RTX);
3950 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3951 break;
3952
3953 default:
3954 break;
3955 }
3956 }
3957
3958 /* If there are LABELS inside the split insns increment the
3959 usage count so we don't delete the label. */
3960 if (INSN_P (trial))
3961 {
3962 insn = insn_last;
3963 while (insn != NULL_RTX)
3964 {
3965 /* JUMP_P insns have already been "marked" above. */
3966 if (NONJUMP_INSN_P (insn))
3967 mark_label_nuses (PATTERN (insn));
3968
3969 insn = PREV_INSN (insn);
3970 }
3971 }
3972
3973 before = PREV_INSN (trial);
3974 after = NEXT_INSN (trial);
3975
3976 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3977
3978 delete_insn (trial);
3979
3980 /* Recursively call try_split for each new insn created; by the
3981 time control returns here that insn will be fully split, so
3982 set LAST and continue from the insn after the one returned.
3983 We can't use next_active_insn here since AFTER may be a note.
3984 Ignore deleted insns, which can be occur if not optimizing. */
3985 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3986 if (! tem->deleted () && INSN_P (tem))
3987 tem = try_split (PATTERN (tem), tem, 1);
3988
3989 /* Return either the first or the last insn, depending on which was
3990 requested. */
3991 return last
3992 ? (after ? PREV_INSN (after) : get_last_insn ())
3993 : NEXT_INSN (before);
3994 }
3995 \f
3996 /* Make and return an INSN rtx, initializing all its slots.
3997 Store PATTERN in the pattern slots. */
3998
3999 rtx_insn *
4000 make_insn_raw (rtx pattern)
4001 {
4002 rtx_insn *insn;
4003
4004 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
4005
4006 INSN_UID (insn) = cur_insn_uid++;
4007 PATTERN (insn) = pattern;
4008 INSN_CODE (insn) = -1;
4009 REG_NOTES (insn) = NULL;
4010 INSN_LOCATION (insn) = curr_insn_location ();
4011 BLOCK_FOR_INSN (insn) = NULL;
4012
4013 #ifdef ENABLE_RTL_CHECKING
4014 if (insn
4015 && INSN_P (insn)
4016 && (returnjump_p (insn)
4017 || (GET_CODE (insn) == SET
4018 && SET_DEST (insn) == pc_rtx)))
4019 {
4020 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
4021 debug_rtx (insn);
4022 }
4023 #endif
4024
4025 return insn;
4026 }
4027
4028 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4029
4030 static rtx_insn *
4031 make_debug_insn_raw (rtx pattern)
4032 {
4033 rtx_debug_insn *insn;
4034
4035 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
4036 INSN_UID (insn) = cur_debug_insn_uid++;
4037 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
4038 INSN_UID (insn) = cur_insn_uid++;
4039
4040 PATTERN (insn) = pattern;
4041 INSN_CODE (insn) = -1;
4042 REG_NOTES (insn) = NULL;
4043 INSN_LOCATION (insn) = curr_insn_location ();
4044 BLOCK_FOR_INSN (insn) = NULL;
4045
4046 return insn;
4047 }
4048
4049 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
4050
4051 static rtx_insn *
4052 make_jump_insn_raw (rtx pattern)
4053 {
4054 rtx_jump_insn *insn;
4055
4056 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
4057 INSN_UID (insn) = cur_insn_uid++;
4058
4059 PATTERN (insn) = pattern;
4060 INSN_CODE (insn) = -1;
4061 REG_NOTES (insn) = NULL;
4062 JUMP_LABEL (insn) = NULL;
4063 INSN_LOCATION (insn) = curr_insn_location ();
4064 BLOCK_FOR_INSN (insn) = NULL;
4065
4066 return insn;
4067 }
4068
4069 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
4070
4071 static rtx_insn *
4072 make_call_insn_raw (rtx pattern)
4073 {
4074 rtx_call_insn *insn;
4075
4076 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
4077 INSN_UID (insn) = cur_insn_uid++;
4078
4079 PATTERN (insn) = pattern;
4080 INSN_CODE (insn) = -1;
4081 REG_NOTES (insn) = NULL;
4082 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
4083 INSN_LOCATION (insn) = curr_insn_location ();
4084 BLOCK_FOR_INSN (insn) = NULL;
4085
4086 return insn;
4087 }
4088
4089 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
4090
4091 static rtx_note *
4092 make_note_raw (enum insn_note subtype)
4093 {
4094 /* Some notes are never created this way at all. These notes are
4095 only created by patching out insns. */
4096 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4097 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4098
4099 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
4100 INSN_UID (note) = cur_insn_uid++;
4101 NOTE_KIND (note) = subtype;
4102 BLOCK_FOR_INSN (note) = NULL;
4103 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4104 return note;
4105 }
4106 \f
4107 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4108 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4109 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4110
4111 static inline void
4112 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4113 {
4114 SET_PREV_INSN (insn) = prev;
4115 SET_NEXT_INSN (insn) = next;
4116 if (prev != NULL)
4117 {
4118 SET_NEXT_INSN (prev) = insn;
4119 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4120 {
4121 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4122 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
4123 }
4124 }
4125 if (next != NULL)
4126 {
4127 SET_PREV_INSN (next) = insn;
4128 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4129 {
4130 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4131 SET_PREV_INSN (sequence->insn (0)) = insn;
4132 }
4133 }
4134
4135 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4136 {
4137 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4138 SET_PREV_INSN (sequence->insn (0)) = prev;
4139 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4140 }
4141 }
4142
4143 /* Add INSN to the end of the doubly-linked list.
4144 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4145
4146 void
4147 add_insn (rtx_insn *insn)
4148 {
4149 rtx_insn *prev = get_last_insn ();
4150 link_insn_into_chain (insn, prev, NULL);
4151 if (get_insns () == NULL)
4152 set_first_insn (insn);
4153 set_last_insn (insn);
4154 }
4155
4156 /* Add INSN into the doubly-linked list after insn AFTER. */
4157
4158 static void
4159 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4160 {
4161 rtx_insn *next = NEXT_INSN (after);
4162
4163 gcc_assert (!optimize || !after->deleted ());
4164
4165 link_insn_into_chain (insn, after, next);
4166
4167 if (next == NULL)
4168 {
4169 struct sequence_stack *seq;
4170
4171 for (seq = get_current_sequence (); seq; seq = seq->next)
4172 if (after == seq->last)
4173 {
4174 seq->last = insn;
4175 break;
4176 }
4177 }
4178 }
4179
4180 /* Add INSN into the doubly-linked list before insn BEFORE. */
4181
4182 static void
4183 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4184 {
4185 rtx_insn *prev = PREV_INSN (before);
4186
4187 gcc_assert (!optimize || !before->deleted ());
4188
4189 link_insn_into_chain (insn, prev, before);
4190
4191 if (prev == NULL)
4192 {
4193 struct sequence_stack *seq;
4194
4195 for (seq = get_current_sequence (); seq; seq = seq->next)
4196 if (before == seq->first)
4197 {
4198 seq->first = insn;
4199 break;
4200 }
4201
4202 gcc_assert (seq);
4203 }
4204 }
4205
4206 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4207 If BB is NULL, an attempt is made to infer the bb from before.
4208
4209 This and the next function should be the only functions called
4210 to insert an insn once delay slots have been filled since only
4211 they know how to update a SEQUENCE. */
4212
4213 void
4214 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4215 {
4216 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4217 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4218 add_insn_after_nobb (insn, after);
4219 if (!BARRIER_P (after)
4220 && !BARRIER_P (insn)
4221 && (bb = BLOCK_FOR_INSN (after)))
4222 {
4223 set_block_for_insn (insn, bb);
4224 if (INSN_P (insn))
4225 df_insn_rescan (insn);
4226 /* Should not happen as first in the BB is always
4227 either NOTE or LABEL. */
4228 if (BB_END (bb) == after
4229 /* Avoid clobbering of structure when creating new BB. */
4230 && !BARRIER_P (insn)
4231 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4232 BB_END (bb) = insn;
4233 }
4234 }
4235
4236 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4237 If BB is NULL, an attempt is made to infer the bb from before.
4238
4239 This and the previous function should be the only functions called
4240 to insert an insn once delay slots have been filled since only
4241 they know how to update a SEQUENCE. */
4242
4243 void
4244 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4245 {
4246 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4247 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4248 add_insn_before_nobb (insn, before);
4249
4250 if (!bb
4251 && !BARRIER_P (before)
4252 && !BARRIER_P (insn))
4253 bb = BLOCK_FOR_INSN (before);
4254
4255 if (bb)
4256 {
4257 set_block_for_insn (insn, bb);
4258 if (INSN_P (insn))
4259 df_insn_rescan (insn);
4260 /* Should not happen as first in the BB is always either NOTE or
4261 LABEL. */
4262 gcc_assert (BB_HEAD (bb) != insn
4263 /* Avoid clobbering of structure when creating new BB. */
4264 || BARRIER_P (insn)
4265 || NOTE_INSN_BASIC_BLOCK_P (insn));
4266 }
4267 }
4268
4269 /* Replace insn with an deleted instruction note. */
4270
4271 void
4272 set_insn_deleted (rtx insn)
4273 {
4274 if (INSN_P (insn))
4275 df_insn_delete (as_a <rtx_insn *> (insn));
4276 PUT_CODE (insn, NOTE);
4277 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4278 }
4279
4280
4281 /* Unlink INSN from the insn chain.
4282
4283 This function knows how to handle sequences.
4284
4285 This function does not invalidate data flow information associated with
4286 INSN (i.e. does not call df_insn_delete). That makes this function
4287 usable for only disconnecting an insn from the chain, and re-emit it
4288 elsewhere later.
4289
4290 To later insert INSN elsewhere in the insn chain via add_insn and
4291 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4292 the caller. Nullifying them here breaks many insn chain walks.
4293
4294 To really delete an insn and related DF information, use delete_insn. */
4295
4296 void
4297 remove_insn (rtx uncast_insn)
4298 {
4299 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4300 rtx_insn *next = NEXT_INSN (insn);
4301 rtx_insn *prev = PREV_INSN (insn);
4302 basic_block bb;
4303
4304 if (prev)
4305 {
4306 SET_NEXT_INSN (prev) = next;
4307 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4308 {
4309 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4310 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4311 }
4312 }
4313 else
4314 {
4315 struct sequence_stack *seq;
4316
4317 for (seq = get_current_sequence (); seq; seq = seq->next)
4318 if (insn == seq->first)
4319 {
4320 seq->first = next;
4321 break;
4322 }
4323
4324 gcc_assert (seq);
4325 }
4326
4327 if (next)
4328 {
4329 SET_PREV_INSN (next) = prev;
4330 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4331 {
4332 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4333 SET_PREV_INSN (sequence->insn (0)) = prev;
4334 }
4335 }
4336 else
4337 {
4338 struct sequence_stack *seq;
4339
4340 for (seq = get_current_sequence (); seq; seq = seq->next)
4341 if (insn == seq->last)
4342 {
4343 seq->last = prev;
4344 break;
4345 }
4346
4347 gcc_assert (seq);
4348 }
4349
4350 /* Fix up basic block boundaries, if necessary. */
4351 if (!BARRIER_P (insn)
4352 && (bb = BLOCK_FOR_INSN (insn)))
4353 {
4354 if (BB_HEAD (bb) == insn)
4355 {
4356 /* Never ever delete the basic block note without deleting whole
4357 basic block. */
4358 gcc_assert (!NOTE_P (insn));
4359 BB_HEAD (bb) = next;
4360 }
4361 if (BB_END (bb) == insn)
4362 BB_END (bb) = prev;
4363 }
4364 }
4365
4366 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4367
4368 void
4369 add_function_usage_to (rtx call_insn, rtx call_fusage)
4370 {
4371 gcc_assert (call_insn && CALL_P (call_insn));
4372
4373 /* Put the register usage information on the CALL. If there is already
4374 some usage information, put ours at the end. */
4375 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4376 {
4377 rtx link;
4378
4379 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4380 link = XEXP (link, 1))
4381 ;
4382
4383 XEXP (link, 1) = call_fusage;
4384 }
4385 else
4386 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4387 }
4388
4389 /* Delete all insns made since FROM.
4390 FROM becomes the new last instruction. */
4391
4392 void
4393 delete_insns_since (rtx_insn *from)
4394 {
4395 if (from == 0)
4396 set_first_insn (0);
4397 else
4398 SET_NEXT_INSN (from) = 0;
4399 set_last_insn (from);
4400 }
4401
4402 /* This function is deprecated, please use sequences instead.
4403
4404 Move a consecutive bunch of insns to a different place in the chain.
4405 The insns to be moved are those between FROM and TO.
4406 They are moved to a new position after the insn AFTER.
4407 AFTER must not be FROM or TO or any insn in between.
4408
4409 This function does not know about SEQUENCEs and hence should not be
4410 called after delay-slot filling has been done. */
4411
4412 void
4413 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4414 {
4415 if (flag_checking)
4416 {
4417 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4418 gcc_assert (after != x);
4419 gcc_assert (after != to);
4420 }
4421
4422 /* Splice this bunch out of where it is now. */
4423 if (PREV_INSN (from))
4424 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4425 if (NEXT_INSN (to))
4426 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4427 if (get_last_insn () == to)
4428 set_last_insn (PREV_INSN (from));
4429 if (get_insns () == from)
4430 set_first_insn (NEXT_INSN (to));
4431
4432 /* Make the new neighbors point to it and it to them. */
4433 if (NEXT_INSN (after))
4434 SET_PREV_INSN (NEXT_INSN (after)) = to;
4435
4436 SET_NEXT_INSN (to) = NEXT_INSN (after);
4437 SET_PREV_INSN (from) = after;
4438 SET_NEXT_INSN (after) = from;
4439 if (after == get_last_insn ())
4440 set_last_insn (to);
4441 }
4442
4443 /* Same as function above, but take care to update BB boundaries. */
4444 void
4445 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4446 {
4447 rtx_insn *prev = PREV_INSN (from);
4448 basic_block bb, bb2;
4449
4450 reorder_insns_nobb (from, to, after);
4451
4452 if (!BARRIER_P (after)
4453 && (bb = BLOCK_FOR_INSN (after)))
4454 {
4455 rtx_insn *x;
4456 df_set_bb_dirty (bb);
4457
4458 if (!BARRIER_P (from)
4459 && (bb2 = BLOCK_FOR_INSN (from)))
4460 {
4461 if (BB_END (bb2) == to)
4462 BB_END (bb2) = prev;
4463 df_set_bb_dirty (bb2);
4464 }
4465
4466 if (BB_END (bb) == after)
4467 BB_END (bb) = to;
4468
4469 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4470 if (!BARRIER_P (x))
4471 df_insn_change_bb (x, bb);
4472 }
4473 }
4474
4475 \f
4476 /* Emit insn(s) of given code and pattern
4477 at a specified place within the doubly-linked list.
4478
4479 All of the emit_foo global entry points accept an object
4480 X which is either an insn list or a PATTERN of a single
4481 instruction.
4482
4483 There are thus a few canonical ways to generate code and
4484 emit it at a specific place in the instruction stream. For
4485 example, consider the instruction named SPOT and the fact that
4486 we would like to emit some instructions before SPOT. We might
4487 do it like this:
4488
4489 start_sequence ();
4490 ... emit the new instructions ...
4491 insns_head = get_insns ();
4492 end_sequence ();
4493
4494 emit_insn_before (insns_head, SPOT);
4495
4496 It used to be common to generate SEQUENCE rtl instead, but that
4497 is a relic of the past which no longer occurs. The reason is that
4498 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4499 generated would almost certainly die right after it was created. */
4500
4501 static rtx_insn *
4502 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4503 rtx_insn *(*make_raw) (rtx))
4504 {
4505 rtx_insn *insn;
4506
4507 gcc_assert (before);
4508
4509 if (x == NULL_RTX)
4510 return safe_as_a <rtx_insn *> (last);
4511
4512 switch (GET_CODE (x))
4513 {
4514 case DEBUG_INSN:
4515 case INSN:
4516 case JUMP_INSN:
4517 case CALL_INSN:
4518 case CODE_LABEL:
4519 case BARRIER:
4520 case NOTE:
4521 insn = as_a <rtx_insn *> (x);
4522 while (insn)
4523 {
4524 rtx_insn *next = NEXT_INSN (insn);
4525 add_insn_before (insn, before, bb);
4526 last = insn;
4527 insn = next;
4528 }
4529 break;
4530
4531 #ifdef ENABLE_RTL_CHECKING
4532 case SEQUENCE:
4533 gcc_unreachable ();
4534 break;
4535 #endif
4536
4537 default:
4538 last = (*make_raw) (x);
4539 add_insn_before (last, before, bb);
4540 break;
4541 }
4542
4543 return safe_as_a <rtx_insn *> (last);
4544 }
4545
4546 /* Make X be output before the instruction BEFORE. */
4547
4548 rtx_insn *
4549 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4550 {
4551 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4552 }
4553
4554 /* Make an instruction with body X and code JUMP_INSN
4555 and output it before the instruction BEFORE. */
4556
4557 rtx_jump_insn *
4558 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4559 {
4560 return as_a <rtx_jump_insn *> (
4561 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4562 make_jump_insn_raw));
4563 }
4564
4565 /* Make an instruction with body X and code CALL_INSN
4566 and output it before the instruction BEFORE. */
4567
4568 rtx_insn *
4569 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4570 {
4571 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4572 make_call_insn_raw);
4573 }
4574
4575 /* Make an instruction with body X and code DEBUG_INSN
4576 and output it before the instruction BEFORE. */
4577
4578 rtx_insn *
4579 emit_debug_insn_before_noloc (rtx x, rtx before)
4580 {
4581 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4582 make_debug_insn_raw);
4583 }
4584
4585 /* Make an insn of code BARRIER
4586 and output it before the insn BEFORE. */
4587
4588 rtx_barrier *
4589 emit_barrier_before (rtx before)
4590 {
4591 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4592
4593 INSN_UID (insn) = cur_insn_uid++;
4594
4595 add_insn_before (insn, before, NULL);
4596 return insn;
4597 }
4598
4599 /* Emit the label LABEL before the insn BEFORE. */
4600
4601 rtx_code_label *
4602 emit_label_before (rtx label, rtx_insn *before)
4603 {
4604 gcc_checking_assert (INSN_UID (label) == 0);
4605 INSN_UID (label) = cur_insn_uid++;
4606 add_insn_before (label, before, NULL);
4607 return as_a <rtx_code_label *> (label);
4608 }
4609 \f
4610 /* Helper for emit_insn_after, handles lists of instructions
4611 efficiently. */
4612
4613 static rtx_insn *
4614 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4615 {
4616 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4617 rtx_insn *last;
4618 rtx_insn *after_after;
4619 if (!bb && !BARRIER_P (after))
4620 bb = BLOCK_FOR_INSN (after);
4621
4622 if (bb)
4623 {
4624 df_set_bb_dirty (bb);
4625 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4626 if (!BARRIER_P (last))
4627 {
4628 set_block_for_insn (last, bb);
4629 df_insn_rescan (last);
4630 }
4631 if (!BARRIER_P (last))
4632 {
4633 set_block_for_insn (last, bb);
4634 df_insn_rescan (last);
4635 }
4636 if (BB_END (bb) == after)
4637 BB_END (bb) = last;
4638 }
4639 else
4640 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4641 continue;
4642
4643 after_after = NEXT_INSN (after);
4644
4645 SET_NEXT_INSN (after) = first;
4646 SET_PREV_INSN (first) = after;
4647 SET_NEXT_INSN (last) = after_after;
4648 if (after_after)
4649 SET_PREV_INSN (after_after) = last;
4650
4651 if (after == get_last_insn ())
4652 set_last_insn (last);
4653
4654 return last;
4655 }
4656
4657 static rtx_insn *
4658 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4659 rtx_insn *(*make_raw)(rtx))
4660 {
4661 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4662 rtx_insn *last = after;
4663
4664 gcc_assert (after);
4665
4666 if (x == NULL_RTX)
4667 return last;
4668
4669 switch (GET_CODE (x))
4670 {
4671 case DEBUG_INSN:
4672 case INSN:
4673 case JUMP_INSN:
4674 case CALL_INSN:
4675 case CODE_LABEL:
4676 case BARRIER:
4677 case NOTE:
4678 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4679 break;
4680
4681 #ifdef ENABLE_RTL_CHECKING
4682 case SEQUENCE:
4683 gcc_unreachable ();
4684 break;
4685 #endif
4686
4687 default:
4688 last = (*make_raw) (x);
4689 add_insn_after (last, after, bb);
4690 break;
4691 }
4692
4693 return last;
4694 }
4695
4696 /* Make X be output after the insn AFTER and set the BB of insn. If
4697 BB is NULL, an attempt is made to infer the BB from AFTER. */
4698
4699 rtx_insn *
4700 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4701 {
4702 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4703 }
4704
4705
4706 /* Make an insn of code JUMP_INSN with body X
4707 and output it after the insn AFTER. */
4708
4709 rtx_jump_insn *
4710 emit_jump_insn_after_noloc (rtx x, rtx after)
4711 {
4712 return as_a <rtx_jump_insn *> (
4713 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4714 }
4715
4716 /* Make an instruction with body X and code CALL_INSN
4717 and output it after the instruction AFTER. */
4718
4719 rtx_insn *
4720 emit_call_insn_after_noloc (rtx x, rtx after)
4721 {
4722 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4723 }
4724
4725 /* Make an instruction with body X and code CALL_INSN
4726 and output it after the instruction AFTER. */
4727
4728 rtx_insn *
4729 emit_debug_insn_after_noloc (rtx x, rtx after)
4730 {
4731 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4732 }
4733
4734 /* Make an insn of code BARRIER
4735 and output it after the insn AFTER. */
4736
4737 rtx_barrier *
4738 emit_barrier_after (rtx after)
4739 {
4740 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4741
4742 INSN_UID (insn) = cur_insn_uid++;
4743
4744 add_insn_after (insn, after, NULL);
4745 return insn;
4746 }
4747
4748 /* Emit the label LABEL after the insn AFTER. */
4749
4750 rtx_insn *
4751 emit_label_after (rtx label, rtx_insn *after)
4752 {
4753 gcc_checking_assert (INSN_UID (label) == 0);
4754 INSN_UID (label) = cur_insn_uid++;
4755 add_insn_after (label, after, NULL);
4756 return as_a <rtx_insn *> (label);
4757 }
4758 \f
4759 /* Notes require a bit of special handling: Some notes need to have their
4760 BLOCK_FOR_INSN set, others should never have it set, and some should
4761 have it set or clear depending on the context. */
4762
4763 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4764 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4765 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4766
4767 static bool
4768 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4769 {
4770 switch (subtype)
4771 {
4772 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4773 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4774 return true;
4775
4776 /* Notes for var tracking and EH region markers can appear between or
4777 inside basic blocks. If the caller is emitting on the basic block
4778 boundary, do not set BLOCK_FOR_INSN on the new note. */
4779 case NOTE_INSN_VAR_LOCATION:
4780 case NOTE_INSN_CALL_ARG_LOCATION:
4781 case NOTE_INSN_EH_REGION_BEG:
4782 case NOTE_INSN_EH_REGION_END:
4783 return on_bb_boundary_p;
4784
4785 /* Otherwise, BLOCK_FOR_INSN must be set. */
4786 default:
4787 return false;
4788 }
4789 }
4790
4791 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4792
4793 rtx_note *
4794 emit_note_after (enum insn_note subtype, rtx_insn *after)
4795 {
4796 rtx_note *note = make_note_raw (subtype);
4797 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4798 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4799
4800 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4801 add_insn_after_nobb (note, after);
4802 else
4803 add_insn_after (note, after, bb);
4804 return note;
4805 }
4806
4807 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4808
4809 rtx_note *
4810 emit_note_before (enum insn_note subtype, rtx_insn *before)
4811 {
4812 rtx_note *note = make_note_raw (subtype);
4813 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4814 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4815
4816 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4817 add_insn_before_nobb (note, before);
4818 else
4819 add_insn_before (note, before, bb);
4820 return note;
4821 }
4822 \f
4823 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4824 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4825
4826 static rtx_insn *
4827 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4828 rtx_insn *(*make_raw) (rtx))
4829 {
4830 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4831 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4832
4833 if (pattern == NULL_RTX || !loc)
4834 return last;
4835
4836 after = NEXT_INSN (after);
4837 while (1)
4838 {
4839 if (active_insn_p (after)
4840 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4841 && !INSN_LOCATION (after))
4842 INSN_LOCATION (after) = loc;
4843 if (after == last)
4844 break;
4845 after = NEXT_INSN (after);
4846 }
4847 return last;
4848 }
4849
4850 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4851 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4852 any DEBUG_INSNs. */
4853
4854 static rtx_insn *
4855 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4856 rtx_insn *(*make_raw) (rtx))
4857 {
4858 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4859 rtx_insn *prev = after;
4860
4861 if (skip_debug_insns)
4862 while (DEBUG_INSN_P (prev))
4863 prev = PREV_INSN (prev);
4864
4865 if (INSN_P (prev))
4866 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4867 make_raw);
4868 else
4869 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4870 }
4871
4872 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4873 rtx_insn *
4874 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4875 {
4876 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4877 }
4878
4879 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4880 rtx_insn *
4881 emit_insn_after (rtx pattern, rtx after)
4882 {
4883 return emit_pattern_after (pattern, after, true, make_insn_raw);
4884 }
4885
4886 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4887 rtx_jump_insn *
4888 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4889 {
4890 return as_a <rtx_jump_insn *> (
4891 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4892 }
4893
4894 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4895 rtx_jump_insn *
4896 emit_jump_insn_after (rtx pattern, rtx after)
4897 {
4898 return as_a <rtx_jump_insn *> (
4899 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4900 }
4901
4902 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4903 rtx_insn *
4904 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4905 {
4906 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4907 }
4908
4909 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4910 rtx_insn *
4911 emit_call_insn_after (rtx pattern, rtx after)
4912 {
4913 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4914 }
4915
4916 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4917 rtx_insn *
4918 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4919 {
4920 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4921 }
4922
4923 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4924 rtx_insn *
4925 emit_debug_insn_after (rtx pattern, rtx after)
4926 {
4927 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4928 }
4929
4930 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4931 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4932 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4933 CALL_INSN, etc. */
4934
4935 static rtx_insn *
4936 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4937 rtx_insn *(*make_raw) (rtx))
4938 {
4939 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4940 rtx_insn *first = PREV_INSN (before);
4941 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4942 insnp ? before : NULL_RTX,
4943 NULL, make_raw);
4944
4945 if (pattern == NULL_RTX || !loc)
4946 return last;
4947
4948 if (!first)
4949 first = get_insns ();
4950 else
4951 first = NEXT_INSN (first);
4952 while (1)
4953 {
4954 if (active_insn_p (first)
4955 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4956 && !INSN_LOCATION (first))
4957 INSN_LOCATION (first) = loc;
4958 if (first == last)
4959 break;
4960 first = NEXT_INSN (first);
4961 }
4962 return last;
4963 }
4964
4965 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4966 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4967 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4968 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4969
4970 static rtx_insn *
4971 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4972 bool insnp, rtx_insn *(*make_raw) (rtx))
4973 {
4974 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4975 rtx_insn *next = before;
4976
4977 if (skip_debug_insns)
4978 while (DEBUG_INSN_P (next))
4979 next = PREV_INSN (next);
4980
4981 if (INSN_P (next))
4982 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4983 insnp, make_raw);
4984 else
4985 return emit_pattern_before_noloc (pattern, before,
4986 insnp ? before : NULL_RTX,
4987 NULL, make_raw);
4988 }
4989
4990 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4991 rtx_insn *
4992 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4993 {
4994 return emit_pattern_before_setloc (pattern, before, loc, true,
4995 make_insn_raw);
4996 }
4997
4998 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4999 rtx_insn *
5000 emit_insn_before (rtx pattern, rtx before)
5001 {
5002 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
5003 }
5004
5005 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5006 rtx_jump_insn *
5007 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
5008 {
5009 return as_a <rtx_jump_insn *> (
5010 emit_pattern_before_setloc (pattern, before, loc, false,
5011 make_jump_insn_raw));
5012 }
5013
5014 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5015 rtx_jump_insn *
5016 emit_jump_insn_before (rtx pattern, rtx before)
5017 {
5018 return as_a <rtx_jump_insn *> (
5019 emit_pattern_before (pattern, before, true, false,
5020 make_jump_insn_raw));
5021 }
5022
5023 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5024 rtx_insn *
5025 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
5026 {
5027 return emit_pattern_before_setloc (pattern, before, loc, false,
5028 make_call_insn_raw);
5029 }
5030
5031 /* Like emit_call_insn_before_noloc,
5032 but set insn_location according to BEFORE. */
5033 rtx_insn *
5034 emit_call_insn_before (rtx pattern, rtx_insn *before)
5035 {
5036 return emit_pattern_before (pattern, before, true, false,
5037 make_call_insn_raw);
5038 }
5039
5040 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5041 rtx_insn *
5042 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
5043 {
5044 return emit_pattern_before_setloc (pattern, before, loc, false,
5045 make_debug_insn_raw);
5046 }
5047
5048 /* Like emit_debug_insn_before_noloc,
5049 but set insn_location according to BEFORE. */
5050 rtx_insn *
5051 emit_debug_insn_before (rtx pattern, rtx_insn *before)
5052 {
5053 return emit_pattern_before (pattern, before, false, false,
5054 make_debug_insn_raw);
5055 }
5056 \f
5057 /* Take X and emit it at the end of the doubly-linked
5058 INSN list.
5059
5060 Returns the last insn emitted. */
5061
5062 rtx_insn *
5063 emit_insn (rtx x)
5064 {
5065 rtx_insn *last = get_last_insn ();
5066 rtx_insn *insn;
5067
5068 if (x == NULL_RTX)
5069 return last;
5070
5071 switch (GET_CODE (x))
5072 {
5073 case DEBUG_INSN:
5074 case INSN:
5075 case JUMP_INSN:
5076 case CALL_INSN:
5077 case CODE_LABEL:
5078 case BARRIER:
5079 case NOTE:
5080 insn = as_a <rtx_insn *> (x);
5081 while (insn)
5082 {
5083 rtx_insn *next = NEXT_INSN (insn);
5084 add_insn (insn);
5085 last = insn;
5086 insn = next;
5087 }
5088 break;
5089
5090 #ifdef ENABLE_RTL_CHECKING
5091 case JUMP_TABLE_DATA:
5092 case SEQUENCE:
5093 gcc_unreachable ();
5094 break;
5095 #endif
5096
5097 default:
5098 last = make_insn_raw (x);
5099 add_insn (last);
5100 break;
5101 }
5102
5103 return last;
5104 }
5105
5106 /* Make an insn of code DEBUG_INSN with pattern X
5107 and add it to the end of the doubly-linked list. */
5108
5109 rtx_insn *
5110 emit_debug_insn (rtx x)
5111 {
5112 rtx_insn *last = get_last_insn ();
5113 rtx_insn *insn;
5114
5115 if (x == NULL_RTX)
5116 return last;
5117
5118 switch (GET_CODE (x))
5119 {
5120 case DEBUG_INSN:
5121 case INSN:
5122 case JUMP_INSN:
5123 case CALL_INSN:
5124 case CODE_LABEL:
5125 case BARRIER:
5126 case NOTE:
5127 insn = as_a <rtx_insn *> (x);
5128 while (insn)
5129 {
5130 rtx_insn *next = NEXT_INSN (insn);
5131 add_insn (insn);
5132 last = insn;
5133 insn = next;
5134 }
5135 break;
5136
5137 #ifdef ENABLE_RTL_CHECKING
5138 case JUMP_TABLE_DATA:
5139 case SEQUENCE:
5140 gcc_unreachable ();
5141 break;
5142 #endif
5143
5144 default:
5145 last = make_debug_insn_raw (x);
5146 add_insn (last);
5147 break;
5148 }
5149
5150 return last;
5151 }
5152
5153 /* Make an insn of code JUMP_INSN with pattern X
5154 and add it to the end of the doubly-linked list. */
5155
5156 rtx_insn *
5157 emit_jump_insn (rtx x)
5158 {
5159 rtx_insn *last = NULL;
5160 rtx_insn *insn;
5161
5162 switch (GET_CODE (x))
5163 {
5164 case DEBUG_INSN:
5165 case INSN:
5166 case JUMP_INSN:
5167 case CALL_INSN:
5168 case CODE_LABEL:
5169 case BARRIER:
5170 case NOTE:
5171 insn = as_a <rtx_insn *> (x);
5172 while (insn)
5173 {
5174 rtx_insn *next = NEXT_INSN (insn);
5175 add_insn (insn);
5176 last = insn;
5177 insn = next;
5178 }
5179 break;
5180
5181 #ifdef ENABLE_RTL_CHECKING
5182 case JUMP_TABLE_DATA:
5183 case SEQUENCE:
5184 gcc_unreachable ();
5185 break;
5186 #endif
5187
5188 default:
5189 last = make_jump_insn_raw (x);
5190 add_insn (last);
5191 break;
5192 }
5193
5194 return last;
5195 }
5196
5197 /* Make an insn of code CALL_INSN with pattern X
5198 and add it to the end of the doubly-linked list. */
5199
5200 rtx_insn *
5201 emit_call_insn (rtx x)
5202 {
5203 rtx_insn *insn;
5204
5205 switch (GET_CODE (x))
5206 {
5207 case DEBUG_INSN:
5208 case INSN:
5209 case JUMP_INSN:
5210 case CALL_INSN:
5211 case CODE_LABEL:
5212 case BARRIER:
5213 case NOTE:
5214 insn = emit_insn (x);
5215 break;
5216
5217 #ifdef ENABLE_RTL_CHECKING
5218 case SEQUENCE:
5219 case JUMP_TABLE_DATA:
5220 gcc_unreachable ();
5221 break;
5222 #endif
5223
5224 default:
5225 insn = make_call_insn_raw (x);
5226 add_insn (insn);
5227 break;
5228 }
5229
5230 return insn;
5231 }
5232
5233 /* Add the label LABEL to the end of the doubly-linked list. */
5234
5235 rtx_code_label *
5236 emit_label (rtx uncast_label)
5237 {
5238 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5239
5240 gcc_checking_assert (INSN_UID (label) == 0);
5241 INSN_UID (label) = cur_insn_uid++;
5242 add_insn (label);
5243 return label;
5244 }
5245
5246 /* Make an insn of code JUMP_TABLE_DATA
5247 and add it to the end of the doubly-linked list. */
5248
5249 rtx_jump_table_data *
5250 emit_jump_table_data (rtx table)
5251 {
5252 rtx_jump_table_data *jump_table_data =
5253 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5254 INSN_UID (jump_table_data) = cur_insn_uid++;
5255 PATTERN (jump_table_data) = table;
5256 BLOCK_FOR_INSN (jump_table_data) = NULL;
5257 add_insn (jump_table_data);
5258 return jump_table_data;
5259 }
5260
5261 /* Make an insn of code BARRIER
5262 and add it to the end of the doubly-linked list. */
5263
5264 rtx_barrier *
5265 emit_barrier (void)
5266 {
5267 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5268 INSN_UID (barrier) = cur_insn_uid++;
5269 add_insn (barrier);
5270 return barrier;
5271 }
5272
5273 /* Emit a copy of note ORIG. */
5274
5275 rtx_note *
5276 emit_note_copy (rtx_note *orig)
5277 {
5278 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5279 rtx_note *note = make_note_raw (kind);
5280 NOTE_DATA (note) = NOTE_DATA (orig);
5281 add_insn (note);
5282 return note;
5283 }
5284
5285 /* Make an insn of code NOTE or type NOTE_NO
5286 and add it to the end of the doubly-linked list. */
5287
5288 rtx_note *
5289 emit_note (enum insn_note kind)
5290 {
5291 rtx_note *note = make_note_raw (kind);
5292 add_insn (note);
5293 return note;
5294 }
5295
5296 /* Emit a clobber of lvalue X. */
5297
5298 rtx_insn *
5299 emit_clobber (rtx x)
5300 {
5301 /* CONCATs should not appear in the insn stream. */
5302 if (GET_CODE (x) == CONCAT)
5303 {
5304 emit_clobber (XEXP (x, 0));
5305 return emit_clobber (XEXP (x, 1));
5306 }
5307 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5308 }
5309
5310 /* Return a sequence of insns to clobber lvalue X. */
5311
5312 rtx_insn *
5313 gen_clobber (rtx x)
5314 {
5315 rtx_insn *seq;
5316
5317 start_sequence ();
5318 emit_clobber (x);
5319 seq = get_insns ();
5320 end_sequence ();
5321 return seq;
5322 }
5323
5324 /* Emit a use of rvalue X. */
5325
5326 rtx_insn *
5327 emit_use (rtx x)
5328 {
5329 /* CONCATs should not appear in the insn stream. */
5330 if (GET_CODE (x) == CONCAT)
5331 {
5332 emit_use (XEXP (x, 0));
5333 return emit_use (XEXP (x, 1));
5334 }
5335 return emit_insn (gen_rtx_USE (VOIDmode, x));
5336 }
5337
5338 /* Return a sequence of insns to use rvalue X. */
5339
5340 rtx_insn *
5341 gen_use (rtx x)
5342 {
5343 rtx_insn *seq;
5344
5345 start_sequence ();
5346 emit_use (x);
5347 seq = get_insns ();
5348 end_sequence ();
5349 return seq;
5350 }
5351
5352 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5353 Return the set in INSN that such notes describe, or NULL if the notes
5354 have no meaning for INSN. */
5355
5356 rtx
5357 set_for_reg_notes (rtx insn)
5358 {
5359 rtx pat, reg;
5360
5361 if (!INSN_P (insn))
5362 return NULL_RTX;
5363
5364 pat = PATTERN (insn);
5365 if (GET_CODE (pat) == PARALLEL)
5366 {
5367 /* We do not use single_set because that ignores SETs of unused
5368 registers. REG_EQUAL and REG_EQUIV notes really do require the
5369 PARALLEL to have a single SET. */
5370 if (multiple_sets (insn))
5371 return NULL_RTX;
5372 pat = XVECEXP (pat, 0, 0);
5373 }
5374
5375 if (GET_CODE (pat) != SET)
5376 return NULL_RTX;
5377
5378 reg = SET_DEST (pat);
5379
5380 /* Notes apply to the contents of a STRICT_LOW_PART. */
5381 if (GET_CODE (reg) == STRICT_LOW_PART
5382 || GET_CODE (reg) == ZERO_EXTRACT)
5383 reg = XEXP (reg, 0);
5384
5385 /* Check that we have a register. */
5386 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5387 return NULL_RTX;
5388
5389 return pat;
5390 }
5391
5392 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5393 note of this type already exists, remove it first. */
5394
5395 rtx
5396 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5397 {
5398 rtx note = find_reg_note (insn, kind, NULL_RTX);
5399
5400 switch (kind)
5401 {
5402 case REG_EQUAL:
5403 case REG_EQUIV:
5404 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5405 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5406 return NULL_RTX;
5407
5408 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5409 It serves no useful purpose and breaks eliminate_regs. */
5410 if (GET_CODE (datum) == ASM_OPERANDS)
5411 return NULL_RTX;
5412
5413 /* Notes with side effects are dangerous. Even if the side-effect
5414 initially mirrors one in PATTERN (INSN), later optimizations
5415 might alter the way that the final register value is calculated
5416 and so move or alter the side-effect in some way. The note would
5417 then no longer be a valid substitution for SET_SRC. */
5418 if (side_effects_p (datum))
5419 return NULL_RTX;
5420 break;
5421
5422 default:
5423 break;
5424 }
5425
5426 if (note)
5427 XEXP (note, 0) = datum;
5428 else
5429 {
5430 add_reg_note (insn, kind, datum);
5431 note = REG_NOTES (insn);
5432 }
5433
5434 switch (kind)
5435 {
5436 case REG_EQUAL:
5437 case REG_EQUIV:
5438 df_notes_rescan (as_a <rtx_insn *> (insn));
5439 break;
5440 default:
5441 break;
5442 }
5443
5444 return note;
5445 }
5446
5447 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5448 rtx
5449 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5450 {
5451 rtx set = set_for_reg_notes (insn);
5452
5453 if (set && SET_DEST (set) == dst)
5454 return set_unique_reg_note (insn, kind, datum);
5455 return NULL_RTX;
5456 }
5457 \f
5458 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5459 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5460 is true.
5461
5462 If X is a label, it is simply added into the insn chain. */
5463
5464 rtx_insn *
5465 emit (rtx x, bool allow_barrier_p)
5466 {
5467 enum rtx_code code = classify_insn (x);
5468
5469 switch (code)
5470 {
5471 case CODE_LABEL:
5472 return emit_label (x);
5473 case INSN:
5474 return emit_insn (x);
5475 case JUMP_INSN:
5476 {
5477 rtx_insn *insn = emit_jump_insn (x);
5478 if (allow_barrier_p
5479 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5480 return emit_barrier ();
5481 return insn;
5482 }
5483 case CALL_INSN:
5484 return emit_call_insn (x);
5485 case DEBUG_INSN:
5486 return emit_debug_insn (x);
5487 default:
5488 gcc_unreachable ();
5489 }
5490 }
5491 \f
5492 /* Space for free sequence stack entries. */
5493 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5494
5495 /* Begin emitting insns to a sequence. If this sequence will contain
5496 something that might cause the compiler to pop arguments to function
5497 calls (because those pops have previously been deferred; see
5498 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5499 before calling this function. That will ensure that the deferred
5500 pops are not accidentally emitted in the middle of this sequence. */
5501
5502 void
5503 start_sequence (void)
5504 {
5505 struct sequence_stack *tem;
5506
5507 if (free_sequence_stack != NULL)
5508 {
5509 tem = free_sequence_stack;
5510 free_sequence_stack = tem->next;
5511 }
5512 else
5513 tem = ggc_alloc<sequence_stack> ();
5514
5515 tem->next = get_current_sequence ()->next;
5516 tem->first = get_insns ();
5517 tem->last = get_last_insn ();
5518 get_current_sequence ()->next = tem;
5519
5520 set_first_insn (0);
5521 set_last_insn (0);
5522 }
5523
5524 /* Set up the insn chain starting with FIRST as the current sequence,
5525 saving the previously current one. See the documentation for
5526 start_sequence for more information about how to use this function. */
5527
5528 void
5529 push_to_sequence (rtx_insn *first)
5530 {
5531 rtx_insn *last;
5532
5533 start_sequence ();
5534
5535 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5536 ;
5537
5538 set_first_insn (first);
5539 set_last_insn (last);
5540 }
5541
5542 /* Like push_to_sequence, but take the last insn as an argument to avoid
5543 looping through the list. */
5544
5545 void
5546 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5547 {
5548 start_sequence ();
5549
5550 set_first_insn (first);
5551 set_last_insn (last);
5552 }
5553
5554 /* Set up the outer-level insn chain
5555 as the current sequence, saving the previously current one. */
5556
5557 void
5558 push_topmost_sequence (void)
5559 {
5560 struct sequence_stack *top;
5561
5562 start_sequence ();
5563
5564 top = get_topmost_sequence ();
5565 set_first_insn (top->first);
5566 set_last_insn (top->last);
5567 }
5568
5569 /* After emitting to the outer-level insn chain, update the outer-level
5570 insn chain, and restore the previous saved state. */
5571
5572 void
5573 pop_topmost_sequence (void)
5574 {
5575 struct sequence_stack *top;
5576
5577 top = get_topmost_sequence ();
5578 top->first = get_insns ();
5579 top->last = get_last_insn ();
5580
5581 end_sequence ();
5582 }
5583
5584 /* After emitting to a sequence, restore previous saved state.
5585
5586 To get the contents of the sequence just made, you must call
5587 `get_insns' *before* calling here.
5588
5589 If the compiler might have deferred popping arguments while
5590 generating this sequence, and this sequence will not be immediately
5591 inserted into the instruction stream, use do_pending_stack_adjust
5592 before calling get_insns. That will ensure that the deferred
5593 pops are inserted into this sequence, and not into some random
5594 location in the instruction stream. See INHIBIT_DEFER_POP for more
5595 information about deferred popping of arguments. */
5596
5597 void
5598 end_sequence (void)
5599 {
5600 struct sequence_stack *tem = get_current_sequence ()->next;
5601
5602 set_first_insn (tem->first);
5603 set_last_insn (tem->last);
5604 get_current_sequence ()->next = tem->next;
5605
5606 memset (tem, 0, sizeof (*tem));
5607 tem->next = free_sequence_stack;
5608 free_sequence_stack = tem;
5609 }
5610
5611 /* Return 1 if currently emitting into a sequence. */
5612
5613 int
5614 in_sequence_p (void)
5615 {
5616 return get_current_sequence ()->next != 0;
5617 }
5618 \f
5619 /* Put the various virtual registers into REGNO_REG_RTX. */
5620
5621 static void
5622 init_virtual_regs (void)
5623 {
5624 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5625 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5626 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5627 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5628 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5629 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5630 = virtual_preferred_stack_boundary_rtx;
5631 }
5632
5633 \f
5634 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5635 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5636 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5637 static int copy_insn_n_scratches;
5638
5639 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5640 copied an ASM_OPERANDS.
5641 In that case, it is the original input-operand vector. */
5642 static rtvec orig_asm_operands_vector;
5643
5644 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5645 copied an ASM_OPERANDS.
5646 In that case, it is the copied input-operand vector. */
5647 static rtvec copy_asm_operands_vector;
5648
5649 /* Likewise for the constraints vector. */
5650 static rtvec orig_asm_constraints_vector;
5651 static rtvec copy_asm_constraints_vector;
5652
5653 /* Recursively create a new copy of an rtx for copy_insn.
5654 This function differs from copy_rtx in that it handles SCRATCHes and
5655 ASM_OPERANDs properly.
5656 Normally, this function is not used directly; use copy_insn as front end.
5657 However, you could first copy an insn pattern with copy_insn and then use
5658 this function afterwards to properly copy any REG_NOTEs containing
5659 SCRATCHes. */
5660
5661 rtx
5662 copy_insn_1 (rtx orig)
5663 {
5664 rtx copy;
5665 int i, j;
5666 RTX_CODE code;
5667 const char *format_ptr;
5668
5669 if (orig == NULL)
5670 return NULL;
5671
5672 code = GET_CODE (orig);
5673
5674 switch (code)
5675 {
5676 case REG:
5677 case DEBUG_EXPR:
5678 CASE_CONST_ANY:
5679 case SYMBOL_REF:
5680 case CODE_LABEL:
5681 case PC:
5682 case CC0:
5683 case RETURN:
5684 case SIMPLE_RETURN:
5685 return orig;
5686 case CLOBBER:
5687 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5688 clobbers or clobbers of hard registers that originated as pseudos.
5689 This is needed to allow safe register renaming. */
5690 if (REG_P (XEXP (orig, 0))
5691 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5692 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5693 return orig;
5694 break;
5695
5696 case SCRATCH:
5697 for (i = 0; i < copy_insn_n_scratches; i++)
5698 if (copy_insn_scratch_in[i] == orig)
5699 return copy_insn_scratch_out[i];
5700 break;
5701
5702 case CONST:
5703 if (shared_const_p (orig))
5704 return orig;
5705 break;
5706
5707 /* A MEM with a constant address is not sharable. The problem is that
5708 the constant address may need to be reloaded. If the mem is shared,
5709 then reloading one copy of this mem will cause all copies to appear
5710 to have been reloaded. */
5711
5712 default:
5713 break;
5714 }
5715
5716 /* Copy the various flags, fields, and other information. We assume
5717 that all fields need copying, and then clear the fields that should
5718 not be copied. That is the sensible default behavior, and forces
5719 us to explicitly document why we are *not* copying a flag. */
5720 copy = shallow_copy_rtx (orig);
5721
5722 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5723 if (INSN_P (orig))
5724 {
5725 RTX_FLAG (copy, jump) = 0;
5726 RTX_FLAG (copy, call) = 0;
5727 RTX_FLAG (copy, frame_related) = 0;
5728 }
5729
5730 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5731
5732 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5733 switch (*format_ptr++)
5734 {
5735 case 'e':
5736 if (XEXP (orig, i) != NULL)
5737 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5738 break;
5739
5740 case 'E':
5741 case 'V':
5742 if (XVEC (orig, i) == orig_asm_constraints_vector)
5743 XVEC (copy, i) = copy_asm_constraints_vector;
5744 else if (XVEC (orig, i) == orig_asm_operands_vector)
5745 XVEC (copy, i) = copy_asm_operands_vector;
5746 else if (XVEC (orig, i) != NULL)
5747 {
5748 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5749 for (j = 0; j < XVECLEN (copy, i); j++)
5750 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5751 }
5752 break;
5753
5754 case 't':
5755 case 'w':
5756 case 'i':
5757 case 'p':
5758 case 's':
5759 case 'S':
5760 case 'u':
5761 case '0':
5762 /* These are left unchanged. */
5763 break;
5764
5765 default:
5766 gcc_unreachable ();
5767 }
5768
5769 if (code == SCRATCH)
5770 {
5771 i = copy_insn_n_scratches++;
5772 gcc_assert (i < MAX_RECOG_OPERANDS);
5773 copy_insn_scratch_in[i] = orig;
5774 copy_insn_scratch_out[i] = copy;
5775 }
5776 else if (code == ASM_OPERANDS)
5777 {
5778 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5779 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5780 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5781 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5782 }
5783
5784 return copy;
5785 }
5786
5787 /* Create a new copy of an rtx.
5788 This function differs from copy_rtx in that it handles SCRATCHes and
5789 ASM_OPERANDs properly.
5790 INSN doesn't really have to be a full INSN; it could be just the
5791 pattern. */
5792 rtx
5793 copy_insn (rtx insn)
5794 {
5795 copy_insn_n_scratches = 0;
5796 orig_asm_operands_vector = 0;
5797 orig_asm_constraints_vector = 0;
5798 copy_asm_operands_vector = 0;
5799 copy_asm_constraints_vector = 0;
5800 return copy_insn_1 (insn);
5801 }
5802
5803 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5804 on that assumption that INSN itself remains in its original place. */
5805
5806 rtx_insn *
5807 copy_delay_slot_insn (rtx_insn *insn)
5808 {
5809 /* Copy INSN with its rtx_code, all its notes, location etc. */
5810 insn = as_a <rtx_insn *> (copy_rtx (insn));
5811 INSN_UID (insn) = cur_insn_uid++;
5812 return insn;
5813 }
5814
5815 /* Initialize data structures and variables in this file
5816 before generating rtl for each function. */
5817
5818 void
5819 init_emit (void)
5820 {
5821 set_first_insn (NULL);
5822 set_last_insn (NULL);
5823 if (MIN_NONDEBUG_INSN_UID)
5824 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5825 else
5826 cur_insn_uid = 1;
5827 cur_debug_insn_uid = 1;
5828 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5829 first_label_num = label_num;
5830 get_current_sequence ()->next = NULL;
5831
5832 /* Init the tables that describe all the pseudo regs. */
5833
5834 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5835
5836 crtl->emit.regno_pointer_align
5837 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5838
5839 regno_reg_rtx
5840 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5841
5842 /* Put copies of all the hard registers into regno_reg_rtx. */
5843 memcpy (regno_reg_rtx,
5844 initial_regno_reg_rtx,
5845 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5846
5847 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5848 init_virtual_regs ();
5849
5850 /* Indicate that the virtual registers and stack locations are
5851 all pointers. */
5852 REG_POINTER (stack_pointer_rtx) = 1;
5853 REG_POINTER (frame_pointer_rtx) = 1;
5854 REG_POINTER (hard_frame_pointer_rtx) = 1;
5855 REG_POINTER (arg_pointer_rtx) = 1;
5856
5857 REG_POINTER (virtual_incoming_args_rtx) = 1;
5858 REG_POINTER (virtual_stack_vars_rtx) = 1;
5859 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5860 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5861 REG_POINTER (virtual_cfa_rtx) = 1;
5862
5863 #ifdef STACK_BOUNDARY
5864 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5865 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5866 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5867 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5868
5869 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5870 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5871 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5872 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5873
5874 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5875 #endif
5876
5877 #ifdef INIT_EXPANDERS
5878 INIT_EXPANDERS;
5879 #endif
5880 }
5881
5882 /* Return the value of element I of CONST_VECTOR X as a wide_int. */
5883
5884 wide_int
5885 const_vector_int_elt (const_rtx x, unsigned int i)
5886 {
5887 /* First handle elements that are directly encoded. */
5888 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5889 if (i < (unsigned int) XVECLEN (x, 0))
5890 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5891
5892 /* Identify the pattern that contains element I and work out the index of
5893 the last encoded element for that pattern. */
5894 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5895 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5896 unsigned int count = i / npatterns;
5897 unsigned int pattern = i % npatterns;
5898 unsigned int final_i = encoded_nelts - npatterns + pattern;
5899
5900 /* If there are no steps, the final encoded value is the right one. */
5901 if (!CONST_VECTOR_STEPPED_P (x))
5902 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5903
5904 /* Otherwise work out the value from the last two encoded elements. */
5905 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5906 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5907 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5908 rtx_mode_t (v1, elt_mode));
5909 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5910 }
5911
5912 /* Return the value of element I of CONST_VECTOR X. */
5913
5914 rtx
5915 const_vector_elt (const_rtx x, unsigned int i)
5916 {
5917 /* First handle elements that are directly encoded. */
5918 if (i < (unsigned int) XVECLEN (x, 0))
5919 return CONST_VECTOR_ENCODED_ELT (x, i);
5920
5921 /* If there are no steps, the final encoded value is the right one. */
5922 if (!CONST_VECTOR_STEPPED_P (x))
5923 {
5924 /* Identify the pattern that contains element I and work out the index of
5925 the last encoded element for that pattern. */
5926 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5927 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5928 unsigned int pattern = i % npatterns;
5929 unsigned int final_i = encoded_nelts - npatterns + pattern;
5930 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5931 }
5932
5933 /* Otherwise work out the value from the last two encoded elements. */
5934 return immed_wide_int_const (const_vector_int_elt (x, i),
5935 GET_MODE_INNER (GET_MODE (x)));
5936 }
5937
5938 /* Return true if X is a valid element for a CONST_VECTOR of the given
5939 mode. */
5940
5941 bool
5942 valid_for_const_vector_p (machine_mode, rtx x)
5943 {
5944 return (CONST_SCALAR_INT_P (x)
5945 || CONST_DOUBLE_AS_FLOAT_P (x)
5946 || CONST_FIXED_P (x));
5947 }
5948
5949 /* Generate a vector constant of mode MODE in which every element has
5950 value ELT. */
5951
5952 rtx
5953 gen_const_vec_duplicate (machine_mode mode, rtx elt)
5954 {
5955 rtx_vector_builder builder (mode, 1, 1);
5956 builder.quick_push (elt);
5957 return builder.build ();
5958 }
5959
5960 /* Return a vector rtx of mode MODE in which every element has value X.
5961 The result will be a constant if X is constant. */
5962
5963 rtx
5964 gen_vec_duplicate (machine_mode mode, rtx x)
5965 {
5966 if (valid_for_const_vector_p (mode, x))
5967 return gen_const_vec_duplicate (mode, x);
5968 return gen_rtx_VEC_DUPLICATE (mode, x);
5969 }
5970
5971 /* A subroutine of const_vec_series_p that handles the case in which:
5972
5973 (GET_CODE (X) == CONST_VECTOR
5974 && CONST_VECTOR_NPATTERNS (X) == 1
5975 && !CONST_VECTOR_DUPLICATE_P (X))
5976
5977 is known to hold. */
5978
5979 bool
5980 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5981 {
5982 /* Stepped sequences are only defined for integers, to avoid specifying
5983 rounding behavior. */
5984 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5985 return false;
5986
5987 /* A non-duplicated vector with two elements can always be seen as a
5988 series with a nonzero step. Longer vectors must have a stepped
5989 encoding. */
5990 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
5991 && !CONST_VECTOR_STEPPED_P (x))
5992 return false;
5993
5994 /* Calculate the step between the first and second elements. */
5995 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5996 rtx base = CONST_VECTOR_ELT (x, 0);
5997 rtx step = simplify_binary_operation (MINUS, inner,
5998 CONST_VECTOR_ENCODED_ELT (x, 1), base);
5999 if (rtx_equal_p (step, CONST0_RTX (inner)))
6000 return false;
6001
6002 /* If we have a stepped encoding, check that the step between the
6003 second and third elements is the same as STEP. */
6004 if (CONST_VECTOR_STEPPED_P (x))
6005 {
6006 rtx diff = simplify_binary_operation (MINUS, inner,
6007 CONST_VECTOR_ENCODED_ELT (x, 2),
6008 CONST_VECTOR_ENCODED_ELT (x, 1));
6009 if (!rtx_equal_p (step, diff))
6010 return false;
6011 }
6012
6013 *base_out = base;
6014 *step_out = step;
6015 return true;
6016 }
6017
6018 /* Generate a vector constant of mode MODE in which element I has
6019 the value BASE + I * STEP. */
6020
6021 rtx
6022 gen_const_vec_series (machine_mode mode, rtx base, rtx step)
6023 {
6024 gcc_assert (valid_for_const_vector_p (mode, base)
6025 && valid_for_const_vector_p (mode, step));
6026
6027 rtx_vector_builder builder (mode, 1, 3);
6028 builder.quick_push (base);
6029 for (int i = 1; i < 3; ++i)
6030 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
6031 builder[i - 1], step));
6032 return builder.build ();
6033 }
6034
6035 /* Generate a vector of mode MODE in which element I has the value
6036 BASE + I * STEP. The result will be a constant if BASE and STEP
6037 are both constants. */
6038
6039 rtx
6040 gen_vec_series (machine_mode mode, rtx base, rtx step)
6041 {
6042 if (step == const0_rtx)
6043 return gen_vec_duplicate (mode, base);
6044 if (valid_for_const_vector_p (mode, base)
6045 && valid_for_const_vector_p (mode, step))
6046 return gen_const_vec_series (mode, base, step);
6047 return gen_rtx_VEC_SERIES (mode, base, step);
6048 }
6049
6050 /* Generate a new vector constant for mode MODE and constant value
6051 CONSTANT. */
6052
6053 static rtx
6054 gen_const_vector (machine_mode mode, int constant)
6055 {
6056 machine_mode inner = GET_MODE_INNER (mode);
6057
6058 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6059
6060 rtx el = const_tiny_rtx[constant][(int) inner];
6061 gcc_assert (el);
6062
6063 return gen_const_vec_duplicate (mode, el);
6064 }
6065
6066 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6067 all elements are zero, and the one vector when all elements are one. */
6068 rtx
6069 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
6070 {
6071 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
6072
6073 /* If the values are all the same, check to see if we can use one of the
6074 standard constant vectors. */
6075 if (rtvec_all_equal_p (v))
6076 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6077
6078 unsigned int nunits = GET_NUM_ELEM (v);
6079 rtx_vector_builder builder (mode, nunits, 1);
6080 for (unsigned int i = 0; i < nunits; ++i)
6081 builder.quick_push (RTVEC_ELT (v, i));
6082 return builder.build (v);
6083 }
6084
6085 /* Initialise global register information required by all functions. */
6086
6087 void
6088 init_emit_regs (void)
6089 {
6090 int i;
6091 machine_mode mode;
6092 mem_attrs *attrs;
6093
6094 /* Reset register attributes */
6095 reg_attrs_htab->empty ();
6096
6097 /* We need reg_raw_mode, so initialize the modes now. */
6098 init_reg_modes_target ();
6099
6100 /* Assign register numbers to the globally defined register rtx. */
6101 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6102 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6103 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6104 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6105 virtual_incoming_args_rtx =
6106 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6107 virtual_stack_vars_rtx =
6108 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6109 virtual_stack_dynamic_rtx =
6110 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6111 virtual_outgoing_args_rtx =
6112 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6113 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
6114 virtual_preferred_stack_boundary_rtx =
6115 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6116
6117 /* Initialize RTL for commonly used hard registers. These are
6118 copied into regno_reg_rtx as we begin to compile each function. */
6119 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6120 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6121
6122 #ifdef RETURN_ADDRESS_POINTER_REGNUM
6123 return_address_pointer_rtx
6124 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6125 #endif
6126
6127 pic_offset_table_rtx = NULL_RTX;
6128 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6129 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
6130
6131 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6132 {
6133 mode = (machine_mode) i;
6134 attrs = ggc_cleared_alloc<mem_attrs> ();
6135 attrs->align = BITS_PER_UNIT;
6136 attrs->addrspace = ADDR_SPACE_GENERIC;
6137 if (mode != BLKmode)
6138 {
6139 attrs->size_known_p = true;
6140 attrs->size = GET_MODE_SIZE (mode);
6141 if (STRICT_ALIGNMENT)
6142 attrs->align = GET_MODE_ALIGNMENT (mode);
6143 }
6144 mode_mem_attrs[i] = attrs;
6145 }
6146
6147 split_branch_probability = profile_probability::uninitialized ();
6148 }
6149
6150 /* Initialize global machine_mode variables. */
6151
6152 void
6153 init_derived_machine_modes (void)
6154 {
6155 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6156 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
6157 {
6158 scalar_int_mode mode = mode_iter.require ();
6159
6160 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
6161 && !opt_byte_mode.exists ())
6162 opt_byte_mode = mode;
6163
6164 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
6165 && !opt_word_mode.exists ())
6166 opt_word_mode = mode;
6167 }
6168
6169 byte_mode = opt_byte_mode.require ();
6170 word_mode = opt_word_mode.require ();
6171 ptr_mode = as_a <scalar_int_mode>
6172 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
6173 }
6174
6175 /* Create some permanent unique rtl objects shared between all functions. */
6176
6177 void
6178 init_emit_once (void)
6179 {
6180 int i;
6181 machine_mode mode;
6182 scalar_float_mode double_mode;
6183 opt_scalar_mode smode_iter;
6184
6185 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6186 CONST_FIXED, and memory attribute hash tables. */
6187 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
6188
6189 #if TARGET_SUPPORTS_WIDE_INT
6190 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
6191 #endif
6192 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
6193
6194 if (NUM_POLY_INT_COEFFS > 1)
6195 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6196
6197 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
6198
6199 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
6200
6201 #ifdef INIT_EXPANDERS
6202 /* This is to initialize {init|mark|free}_machine_status before the first
6203 call to push_function_context_to. This is needed by the Chill front
6204 end which calls push_function_context_to before the first call to
6205 init_function_start. */
6206 INIT_EXPANDERS;
6207 #endif
6208
6209 /* Create the unique rtx's for certain rtx codes and operand values. */
6210
6211 /* Process stack-limiting command-line options. */
6212 if (opt_fstack_limit_symbol_arg != NULL)
6213 stack_limit_rtx
6214 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6215 if (opt_fstack_limit_register_no >= 0)
6216 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6217
6218 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6219 tries to use these variables. */
6220 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
6221 const_int_rtx[i + MAX_SAVED_CONST_INT] =
6222 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
6223
6224 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6225 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
6226 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
6227 else
6228 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
6229
6230 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
6231
6232 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6233 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6234 real_from_integer (&dconst2, double_mode, 2, SIGNED);
6235
6236 dconstm1 = dconst1;
6237 dconstm1.sign = 1;
6238
6239 dconsthalf = dconst1;
6240 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
6241
6242 for (i = 0; i < 3; i++)
6243 {
6244 const REAL_VALUE_TYPE *const r =
6245 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6246
6247 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
6248 const_tiny_rtx[i][(int) mode] =
6249 const_double_from_real_value (*r, mode);
6250
6251 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
6252 const_tiny_rtx[i][(int) mode] =
6253 const_double_from_real_value (*r, mode);
6254
6255 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
6256
6257 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6258 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6259
6260 for (mode = MIN_MODE_PARTIAL_INT;
6261 mode <= MAX_MODE_PARTIAL_INT;
6262 mode = (machine_mode)((int)(mode) + 1))
6263 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6264 }
6265
6266 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6267
6268 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6269 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6270
6271 /* For BImode, 1 and -1 are unsigned and signed interpretations
6272 of the same value. */
6273 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6274 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6275 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6276
6277 for (mode = MIN_MODE_PARTIAL_INT;
6278 mode <= MAX_MODE_PARTIAL_INT;
6279 mode = (machine_mode)((int)(mode) + 1))
6280 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6281
6282 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6283 {
6284 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6285 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6286 }
6287
6288 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6289 {
6290 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6291 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6292 }
6293
6294 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6295 interpretations of the same value. */
6296 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6297 {
6298 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6299 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6300 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6301 }
6302
6303 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6304 {
6305 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6306 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6307 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6308 }
6309
6310 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6311 {
6312 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6313 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6314 }
6315
6316 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6317 {
6318 scalar_mode smode = smode_iter.require ();
6319 FCONST0 (smode).data.high = 0;
6320 FCONST0 (smode).data.low = 0;
6321 FCONST0 (smode).mode = smode;
6322 const_tiny_rtx[0][(int) smode]
6323 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6324 }
6325
6326 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6327 {
6328 scalar_mode smode = smode_iter.require ();
6329 FCONST0 (smode).data.high = 0;
6330 FCONST0 (smode).data.low = 0;
6331 FCONST0 (smode).mode = smode;
6332 const_tiny_rtx[0][(int) smode]
6333 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6334 }
6335
6336 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6337 {
6338 scalar_mode smode = smode_iter.require ();
6339 FCONST0 (smode).data.high = 0;
6340 FCONST0 (smode).data.low = 0;
6341 FCONST0 (smode).mode = smode;
6342 const_tiny_rtx[0][(int) smode]
6343 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6344
6345 /* We store the value 1. */
6346 FCONST1 (smode).data.high = 0;
6347 FCONST1 (smode).data.low = 0;
6348 FCONST1 (smode).mode = smode;
6349 FCONST1 (smode).data
6350 = double_int_one.lshift (GET_MODE_FBIT (smode),
6351 HOST_BITS_PER_DOUBLE_INT,
6352 SIGNED_FIXED_POINT_MODE_P (smode));
6353 const_tiny_rtx[1][(int) smode]
6354 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6355 }
6356
6357 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6358 {
6359 scalar_mode smode = smode_iter.require ();
6360 FCONST0 (smode).data.high = 0;
6361 FCONST0 (smode).data.low = 0;
6362 FCONST0 (smode).mode = smode;
6363 const_tiny_rtx[0][(int) smode]
6364 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6365
6366 /* We store the value 1. */
6367 FCONST1 (smode).data.high = 0;
6368 FCONST1 (smode).data.low = 0;
6369 FCONST1 (smode).mode = smode;
6370 FCONST1 (smode).data
6371 = double_int_one.lshift (GET_MODE_FBIT (smode),
6372 HOST_BITS_PER_DOUBLE_INT,
6373 SIGNED_FIXED_POINT_MODE_P (smode));
6374 const_tiny_rtx[1][(int) smode]
6375 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6376 }
6377
6378 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6379 {
6380 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6381 }
6382
6383 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6384 {
6385 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6386 }
6387
6388 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6389 {
6390 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6391 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6392 }
6393
6394 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6395 {
6396 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6397 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6398 }
6399
6400 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6401 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6402 const_tiny_rtx[0][i] = const0_rtx;
6403
6404 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_POINTER_BOUNDS)
6405 {
6406 scalar_mode smode = smode_iter.require ();
6407 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (smode));
6408 const_tiny_rtx[0][smode] = immed_wide_int_const (wi_zero, smode);
6409 }
6410
6411 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6412 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6413 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6414 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6415 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6416 /*prev_insn=*/NULL,
6417 /*next_insn=*/NULL,
6418 /*bb=*/NULL,
6419 /*pattern=*/NULL_RTX,
6420 /*location=*/-1,
6421 CODE_FOR_nothing,
6422 /*reg_notes=*/NULL_RTX);
6423 }
6424 \f
6425 /* Produce exact duplicate of insn INSN after AFTER.
6426 Care updating of libcall regions if present. */
6427
6428 rtx_insn *
6429 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6430 {
6431 rtx_insn *new_rtx;
6432 rtx link;
6433
6434 switch (GET_CODE (insn))
6435 {
6436 case INSN:
6437 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6438 break;
6439
6440 case JUMP_INSN:
6441 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6442 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6443 break;
6444
6445 case DEBUG_INSN:
6446 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6447 break;
6448
6449 case CALL_INSN:
6450 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6451 if (CALL_INSN_FUNCTION_USAGE (insn))
6452 CALL_INSN_FUNCTION_USAGE (new_rtx)
6453 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6454 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6455 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6456 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6457 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6458 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6459 break;
6460
6461 default:
6462 gcc_unreachable ();
6463 }
6464
6465 /* Update LABEL_NUSES. */
6466 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6467
6468 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6469
6470 /* If the old insn is frame related, then so is the new one. This is
6471 primarily needed for IA-64 unwind info which marks epilogue insns,
6472 which may be duplicated by the basic block reordering code. */
6473 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6474
6475 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6476 rtx *ptail = &REG_NOTES (new_rtx);
6477 while (*ptail != NULL_RTX)
6478 ptail = &XEXP (*ptail, 1);
6479
6480 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6481 will make them. REG_LABEL_TARGETs are created there too, but are
6482 supposed to be sticky, so we copy them. */
6483 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6484 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6485 {
6486 *ptail = duplicate_reg_note (link);
6487 ptail = &XEXP (*ptail, 1);
6488 }
6489
6490 INSN_CODE (new_rtx) = INSN_CODE (insn);
6491 return new_rtx;
6492 }
6493
6494 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6495 rtx
6496 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6497 {
6498 if (hard_reg_clobbers[mode][regno])
6499 return hard_reg_clobbers[mode][regno];
6500 else
6501 return (hard_reg_clobbers[mode][regno] =
6502 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6503 }
6504
6505 location_t prologue_location;
6506 location_t epilogue_location;
6507
6508 /* Hold current location information and last location information, so the
6509 datastructures are built lazily only when some instructions in given
6510 place are needed. */
6511 static location_t curr_location;
6512
6513 /* Allocate insn location datastructure. */
6514 void
6515 insn_locations_init (void)
6516 {
6517 prologue_location = epilogue_location = 0;
6518 curr_location = UNKNOWN_LOCATION;
6519 }
6520
6521 /* At the end of emit stage, clear current location. */
6522 void
6523 insn_locations_finalize (void)
6524 {
6525 epilogue_location = curr_location;
6526 curr_location = UNKNOWN_LOCATION;
6527 }
6528
6529 /* Set current location. */
6530 void
6531 set_curr_insn_location (location_t location)
6532 {
6533 curr_location = location;
6534 }
6535
6536 /* Get current location. */
6537 location_t
6538 curr_insn_location (void)
6539 {
6540 return curr_location;
6541 }
6542
6543 /* Return lexical scope block insn belongs to. */
6544 tree
6545 insn_scope (const rtx_insn *insn)
6546 {
6547 return LOCATION_BLOCK (INSN_LOCATION (insn));
6548 }
6549
6550 /* Return line number of the statement that produced this insn. */
6551 int
6552 insn_line (const rtx_insn *insn)
6553 {
6554 return LOCATION_LINE (INSN_LOCATION (insn));
6555 }
6556
6557 /* Return source file of the statement that produced this insn. */
6558 const char *
6559 insn_file (const rtx_insn *insn)
6560 {
6561 return LOCATION_FILE (INSN_LOCATION (insn));
6562 }
6563
6564 /* Return expanded location of the statement that produced this insn. */
6565 expanded_location
6566 insn_location (const rtx_insn *insn)
6567 {
6568 return expand_location (INSN_LOCATION (insn));
6569 }
6570
6571 /* Return true if memory model MODEL requires a pre-operation (release-style)
6572 barrier or a post-operation (acquire-style) barrier. While not universal,
6573 this function matches behavior of several targets. */
6574
6575 bool
6576 need_atomic_barrier_p (enum memmodel model, bool pre)
6577 {
6578 switch (model & MEMMODEL_BASE_MASK)
6579 {
6580 case MEMMODEL_RELAXED:
6581 case MEMMODEL_CONSUME:
6582 return false;
6583 case MEMMODEL_RELEASE:
6584 return pre;
6585 case MEMMODEL_ACQUIRE:
6586 return !pre;
6587 case MEMMODEL_ACQ_REL:
6588 case MEMMODEL_SEQ_CST:
6589 return true;
6590 default:
6591 gcc_unreachable ();
6592 }
6593 }
6594
6595 /* Return a constant shift amount for shifting a value of mode MODE
6596 by VALUE bits. */
6597
6598 rtx
6599 gen_int_shift_amount (machine_mode, poly_int64 value)
6600 {
6601 /* Use a 64-bit mode, to avoid any truncation.
6602
6603 ??? Perhaps this should be automatically derived from the .md files
6604 instead, or perhaps have a target hook. */
6605 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6606 ? DImode
6607 : int_mode_for_size (64, 0).require ());
6608 return gen_int_mode (value, shift_mode);
6609 }
6610
6611 /* Initialize fields of rtl_data related to stack alignment. */
6612
6613 void
6614 rtl_data::init_stack_alignment ()
6615 {
6616 stack_alignment_needed = STACK_BOUNDARY;
6617 max_used_stack_slot_alignment = STACK_BOUNDARY;
6618 stack_alignment_estimated = 0;
6619 preferred_stack_boundary = STACK_BOUNDARY;
6620 }
6621
6622 \f
6623 #include "gt-emit-rtl.h"