convert.c, [...]: Replace overly specific references to "GNU C" and "GNU C Compiler...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116
117 /* All references to the following fixed hard registers go through
118 these unique rtl objects. On machines where the frame-pointer and
119 arg-pointer are the same register, they use the same unique object.
120
121 After register allocation, other rtl objects which used to be pseudo-regs
122 may be clobbered to refer to the frame-pointer register.
123 But references that were originally to the frame-pointer can be
124 distinguished from the others because they contain frame_pointer_rtx.
125
126 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
127 tricky: until register elimination has taken place hard_frame_pointer_rtx
128 should be used if it is being set, and frame_pointer_rtx otherwise. After
129 register elimination hard_frame_pointer_rtx should always be used.
130 On machines where the two registers are same (most) then these are the
131 same.
132
133 In an inline procedure, the stack and frame pointer rtxs may not be
134 used for anything else. */
135 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
136 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
137 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
138 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
139 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
140
141 /* This is used to implement __builtin_return_address for some machines.
142 See for instance the MIPS port. */
143 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
144
145 /* We make one copy of (const_int C) where C is in
146 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
147 to save space during the compilation and simplify comparisons of
148 integers. */
149
150 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
151
152 /* A hash table storing CONST_INTs whose absolute value is greater
153 than MAX_SAVED_CONST_INT. */
154
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
156 htab_t const_int_htab;
157
158 /* A hash table storing memory attribute structures. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
160 htab_t mem_attrs_htab;
161
162 /* A hash table storing register attribute structures. */
163 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
164 htab_t reg_attrs_htab;
165
166 /* A hash table storing all CONST_DOUBLEs. */
167 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
168 htab_t const_double_htab;
169
170 #define first_insn (cfun->emit->x_first_insn)
171 #define last_insn (cfun->emit->x_last_insn)
172 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
173 #define last_location (cfun->emit->x_last_location)
174 #define first_label_num (cfun->emit->x_first_label_num)
175
176 static rtx make_jump_insn_raw PARAMS ((rtx));
177 static rtx make_call_insn_raw PARAMS ((rtx));
178 static rtx find_line_note PARAMS ((rtx));
179 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
180 int));
181 static void unshare_all_rtl_1 PARAMS ((rtx));
182 static void unshare_all_decls PARAMS ((tree));
183 static void reset_used_decls PARAMS ((tree));
184 static void mark_label_nuses PARAMS ((rtx));
185 static hashval_t const_int_htab_hash PARAMS ((const void *));
186 static int const_int_htab_eq PARAMS ((const void *,
187 const void *));
188 static hashval_t const_double_htab_hash PARAMS ((const void *));
189 static int const_double_htab_eq PARAMS ((const void *,
190 const void *));
191 static rtx lookup_const_double PARAMS ((rtx));
192 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
193 static int mem_attrs_htab_eq PARAMS ((const void *,
194 const void *));
195 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
196 rtx, unsigned int,
197 enum machine_mode));
198 static hashval_t reg_attrs_htab_hash PARAMS ((const void *));
199 static int reg_attrs_htab_eq PARAMS ((const void *,
200 const void *));
201 static reg_attrs *get_reg_attrs PARAMS ((tree, int));
202 static tree component_ref_for_mem_expr PARAMS ((tree));
203 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
204 static rtx gen_complex_constant_part PARAMS ((enum machine_mode,
205 rtx, int));
206
207 /* Probability of the conditional branch currently proceeded by try_split.
208 Set to -1 otherwise. */
209 int split_branch_probability = -1;
210 \f
211 /* Returns a hash code for X (which is a really a CONST_INT). */
212
213 static hashval_t
214 const_int_htab_hash (x)
215 const void *x;
216 {
217 return (hashval_t) INTVAL ((struct rtx_def *) x);
218 }
219
220 /* Returns nonzero if the value represented by X (which is really a
221 CONST_INT) is the same as that given by Y (which is really a
222 HOST_WIDE_INT *). */
223
224 static int
225 const_int_htab_eq (x, y)
226 const void *x;
227 const void *y;
228 {
229 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
230 }
231
232 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
233 static hashval_t
234 const_double_htab_hash (x)
235 const void *x;
236 {
237 rtx value = (rtx) x;
238 hashval_t h;
239
240 if (GET_MODE (value) == VOIDmode)
241 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
242 else
243 {
244 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
245 /* MODE is used in the comparison, so it should be in the hash. */
246 h ^= GET_MODE (value);
247 }
248 return h;
249 }
250
251 /* Returns nonzero if the value represented by X (really a ...)
252 is the same as that represented by Y (really a ...) */
253 static int
254 const_double_htab_eq (x, y)
255 const void *x;
256 const void *y;
257 {
258 rtx a = (rtx)x, b = (rtx)y;
259
260 if (GET_MODE (a) != GET_MODE (b))
261 return 0;
262 if (GET_MODE (a) == VOIDmode)
263 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
264 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
265 else
266 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
267 CONST_DOUBLE_REAL_VALUE (b));
268 }
269
270 /* Returns a hash code for X (which is a really a mem_attrs *). */
271
272 static hashval_t
273 mem_attrs_htab_hash (x)
274 const void *x;
275 {
276 mem_attrs *p = (mem_attrs *) x;
277
278 return (p->alias ^ (p->align * 1000)
279 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
280 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
281 ^ (size_t) p->expr);
282 }
283
284 /* Returns nonzero if the value represented by X (which is really a
285 mem_attrs *) is the same as that given by Y (which is also really a
286 mem_attrs *). */
287
288 static int
289 mem_attrs_htab_eq (x, y)
290 const void *x;
291 const void *y;
292 {
293 mem_attrs *p = (mem_attrs *) x;
294 mem_attrs *q = (mem_attrs *) y;
295
296 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
297 && p->size == q->size && p->align == q->align);
298 }
299
300 /* Allocate a new mem_attrs structure and insert it into the hash table if
301 one identical to it is not already in the table. We are doing this for
302 MEM of mode MODE. */
303
304 static mem_attrs *
305 get_mem_attrs (alias, expr, offset, size, align, mode)
306 HOST_WIDE_INT alias;
307 tree expr;
308 rtx offset;
309 rtx size;
310 unsigned int align;
311 enum machine_mode mode;
312 {
313 mem_attrs attrs;
314 void **slot;
315
316 /* If everything is the default, we can just return zero.
317 This must match what the corresponding MEM_* macros return when the
318 field is not present. */
319 if (alias == 0 && expr == 0 && offset == 0
320 && (size == 0
321 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
322 && (STRICT_ALIGNMENT && mode != BLKmode
323 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
324 return 0;
325
326 attrs.alias = alias;
327 attrs.expr = expr;
328 attrs.offset = offset;
329 attrs.size = size;
330 attrs.align = align;
331
332 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
333 if (*slot == 0)
334 {
335 *slot = ggc_alloc (sizeof (mem_attrs));
336 memcpy (*slot, &attrs, sizeof (mem_attrs));
337 }
338
339 return *slot;
340 }
341
342 /* Returns a hash code for X (which is a really a reg_attrs *). */
343
344 static hashval_t
345 reg_attrs_htab_hash (x)
346 const void *x;
347 {
348 reg_attrs *p = (reg_attrs *) x;
349
350 return ((p->offset * 1000) ^ (long) p->decl);
351 }
352
353 /* Returns nonzero if the value represented by X (which is really a
354 reg_attrs *) is the same as that given by Y (which is also really a
355 reg_attrs *). */
356
357 static int
358 reg_attrs_htab_eq (x, y)
359 const void *x;
360 const void *y;
361 {
362 reg_attrs *p = (reg_attrs *) x;
363 reg_attrs *q = (reg_attrs *) y;
364
365 return (p->decl == q->decl && p->offset == q->offset);
366 }
367 /* Allocate a new reg_attrs structure and insert it into the hash table if
368 one identical to it is not already in the table. We are doing this for
369 MEM of mode MODE. */
370
371 static reg_attrs *
372 get_reg_attrs (decl, offset)
373 tree decl;
374 int offset;
375 {
376 reg_attrs attrs;
377 void **slot;
378
379 /* If everything is the default, we can just return zero. */
380 if (decl == 0 && offset == 0)
381 return 0;
382
383 attrs.decl = decl;
384 attrs.offset = offset;
385
386 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
387 if (*slot == 0)
388 {
389 *slot = ggc_alloc (sizeof (reg_attrs));
390 memcpy (*slot, &attrs, sizeof (reg_attrs));
391 }
392
393 return *slot;
394 }
395
396 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
397 don't attempt to share with the various global pieces of rtl (such as
398 frame_pointer_rtx). */
399
400 rtx
401 gen_raw_REG (mode, regno)
402 enum machine_mode mode;
403 int regno;
404 {
405 rtx x = gen_rtx_raw_REG (mode, regno);
406 ORIGINAL_REGNO (x) = regno;
407 return x;
408 }
409
410 /* There are some RTL codes that require special attention; the generation
411 functions do the raw handling. If you add to this list, modify
412 special_rtx in gengenrtl.c as well. */
413
414 rtx
415 gen_rtx_CONST_INT (mode, arg)
416 enum machine_mode mode ATTRIBUTE_UNUSED;
417 HOST_WIDE_INT arg;
418 {
419 void **slot;
420
421 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
422 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
423
424 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
425 if (const_true_rtx && arg == STORE_FLAG_VALUE)
426 return const_true_rtx;
427 #endif
428
429 /* Look up the CONST_INT in the hash table. */
430 slot = htab_find_slot_with_hash (const_int_htab, &arg,
431 (hashval_t) arg, INSERT);
432 if (*slot == 0)
433 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
434
435 return (rtx) *slot;
436 }
437
438 rtx
439 gen_int_mode (c, mode)
440 HOST_WIDE_INT c;
441 enum machine_mode mode;
442 {
443 return GEN_INT (trunc_int_for_mode (c, mode));
444 }
445
446 /* CONST_DOUBLEs might be created from pairs of integers, or from
447 REAL_VALUE_TYPEs. Also, their length is known only at run time,
448 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
449
450 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
451 hash table. If so, return its counterpart; otherwise add it
452 to the hash table and return it. */
453 static rtx
454 lookup_const_double (real)
455 rtx real;
456 {
457 void **slot = htab_find_slot (const_double_htab, real, INSERT);
458 if (*slot == 0)
459 *slot = real;
460
461 return (rtx) *slot;
462 }
463
464 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
465 VALUE in mode MODE. */
466 rtx
467 const_double_from_real_value (value, mode)
468 REAL_VALUE_TYPE value;
469 enum machine_mode mode;
470 {
471 rtx real = rtx_alloc (CONST_DOUBLE);
472 PUT_MODE (real, mode);
473
474 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
475
476 return lookup_const_double (real);
477 }
478
479 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
480 of ints: I0 is the low-order word and I1 is the high-order word.
481 Do not use this routine for non-integer modes; convert to
482 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
483
484 rtx
485 immed_double_const (i0, i1, mode)
486 HOST_WIDE_INT i0, i1;
487 enum machine_mode mode;
488 {
489 rtx value;
490 unsigned int i;
491
492 if (mode != VOIDmode)
493 {
494 int width;
495 if (GET_MODE_CLASS (mode) != MODE_INT
496 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
497 /* We can get a 0 for an error mark. */
498 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
499 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
500 abort ();
501
502 /* We clear out all bits that don't belong in MODE, unless they and
503 our sign bit are all one. So we get either a reasonable negative
504 value or a reasonable unsigned value for this mode. */
505 width = GET_MODE_BITSIZE (mode);
506 if (width < HOST_BITS_PER_WIDE_INT
507 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
508 != ((HOST_WIDE_INT) (-1) << (width - 1))))
509 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
510 else if (width == HOST_BITS_PER_WIDE_INT
511 && ! (i1 == ~0 && i0 < 0))
512 i1 = 0;
513 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
514 /* We cannot represent this value as a constant. */
515 abort ();
516
517 /* If this would be an entire word for the target, but is not for
518 the host, then sign-extend on the host so that the number will
519 look the same way on the host that it would on the target.
520
521 For example, when building a 64 bit alpha hosted 32 bit sparc
522 targeted compiler, then we want the 32 bit unsigned value -1 to be
523 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
524 The latter confuses the sparc backend. */
525
526 if (width < HOST_BITS_PER_WIDE_INT
527 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
528 i0 |= ((HOST_WIDE_INT) (-1) << width);
529
530 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
531 CONST_INT.
532
533 ??? Strictly speaking, this is wrong if we create a CONST_INT for
534 a large unsigned constant with the size of MODE being
535 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
536 in a wider mode. In that case we will mis-interpret it as a
537 negative number.
538
539 Unfortunately, the only alternative is to make a CONST_DOUBLE for
540 any constant in any mode if it is an unsigned constant larger
541 than the maximum signed integer in an int on the host. However,
542 doing this will break everyone that always expects to see a
543 CONST_INT for SImode and smaller.
544
545 We have always been making CONST_INTs in this case, so nothing
546 new is being broken. */
547
548 if (width <= HOST_BITS_PER_WIDE_INT)
549 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
550 }
551
552 /* If this integer fits in one word, return a CONST_INT. */
553 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
554 return GEN_INT (i0);
555
556 /* We use VOIDmode for integers. */
557 value = rtx_alloc (CONST_DOUBLE);
558 PUT_MODE (value, VOIDmode);
559
560 CONST_DOUBLE_LOW (value) = i0;
561 CONST_DOUBLE_HIGH (value) = i1;
562
563 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
564 XWINT (value, i) = 0;
565
566 return lookup_const_double (value);
567 }
568
569 rtx
570 gen_rtx_REG (mode, regno)
571 enum machine_mode mode;
572 unsigned int regno;
573 {
574 /* In case the MD file explicitly references the frame pointer, have
575 all such references point to the same frame pointer. This is
576 used during frame pointer elimination to distinguish the explicit
577 references to these registers from pseudos that happened to be
578 assigned to them.
579
580 If we have eliminated the frame pointer or arg pointer, we will
581 be using it as a normal register, for example as a spill
582 register. In such cases, we might be accessing it in a mode that
583 is not Pmode and therefore cannot use the pre-allocated rtx.
584
585 Also don't do this when we are making new REGs in reload, since
586 we don't want to get confused with the real pointers. */
587
588 if (mode == Pmode && !reload_in_progress)
589 {
590 if (regno == FRAME_POINTER_REGNUM
591 && (!reload_completed || frame_pointer_needed))
592 return frame_pointer_rtx;
593 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
594 if (regno == HARD_FRAME_POINTER_REGNUM
595 && (!reload_completed || frame_pointer_needed))
596 return hard_frame_pointer_rtx;
597 #endif
598 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
599 if (regno == ARG_POINTER_REGNUM)
600 return arg_pointer_rtx;
601 #endif
602 #ifdef RETURN_ADDRESS_POINTER_REGNUM
603 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
604 return return_address_pointer_rtx;
605 #endif
606 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
607 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
608 return pic_offset_table_rtx;
609 if (regno == STACK_POINTER_REGNUM)
610 return stack_pointer_rtx;
611 }
612
613 #if 0
614 /* If the per-function register table has been set up, try to re-use
615 an existing entry in that table to avoid useless generation of RTL.
616
617 This code is disabled for now until we can fix the various backends
618 which depend on having non-shared hard registers in some cases. Long
619 term we want to re-enable this code as it can significantly cut down
620 on the amount of useless RTL that gets generated.
621
622 We'll also need to fix some code that runs after reload that wants to
623 set ORIGINAL_REGNO. */
624
625 if (cfun
626 && cfun->emit
627 && regno_reg_rtx
628 && regno < FIRST_PSEUDO_REGISTER
629 && reg_raw_mode[regno] == mode)
630 return regno_reg_rtx[regno];
631 #endif
632
633 return gen_raw_REG (mode, regno);
634 }
635
636 rtx
637 gen_rtx_MEM (mode, addr)
638 enum machine_mode mode;
639 rtx addr;
640 {
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
642
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
646
647 return rt;
648 }
649
650 rtx
651 gen_rtx_SUBREG (mode, reg, offset)
652 enum machine_mode mode;
653 rtx reg;
654 int offset;
655 {
656 /* This is the most common failure type.
657 Catch it early so we can see who does it. */
658 if ((offset % GET_MODE_SIZE (mode)) != 0)
659 abort ();
660
661 /* This check isn't usable right now because combine will
662 throw arbitrary crap like a CALL into a SUBREG in
663 gen_lowpart_for_combine so we must just eat it. */
664 #if 0
665 /* Check for this too. */
666 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
667 abort ();
668 #endif
669 return gen_rtx_raw_SUBREG (mode, reg, offset);
670 }
671
672 /* Generate a SUBREG representing the least-significant part of REG if MODE
673 is smaller than mode of REG, otherwise paradoxical SUBREG. */
674
675 rtx
676 gen_lowpart_SUBREG (mode, reg)
677 enum machine_mode mode;
678 rtx reg;
679 {
680 enum machine_mode inmode;
681
682 inmode = GET_MODE (reg);
683 if (inmode == VOIDmode)
684 inmode = mode;
685 return gen_rtx_SUBREG (mode, reg,
686 subreg_lowpart_offset (mode, inmode));
687 }
688 \f
689 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
690 **
691 ** This routine generates an RTX of the size specified by
692 ** <code>, which is an RTX code. The RTX structure is initialized
693 ** from the arguments <element1> through <elementn>, which are
694 ** interpreted according to the specific RTX type's format. The
695 ** special machine mode associated with the rtx (if any) is specified
696 ** in <mode>.
697 **
698 ** gen_rtx can be invoked in a way which resembles the lisp-like
699 ** rtx it will generate. For example, the following rtx structure:
700 **
701 ** (plus:QI (mem:QI (reg:SI 1))
702 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
703 **
704 ** ...would be generated by the following C code:
705 **
706 ** gen_rtx (PLUS, QImode,
707 ** gen_rtx (MEM, QImode,
708 ** gen_rtx (REG, SImode, 1)),
709 ** gen_rtx (MEM, QImode,
710 ** gen_rtx (PLUS, SImode,
711 ** gen_rtx (REG, SImode, 2),
712 ** gen_rtx (REG, SImode, 3)))),
713 */
714
715 /*VARARGS2*/
716 rtx
717 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
718 {
719 int i; /* Array indices... */
720 const char *fmt; /* Current rtx's format... */
721 rtx rt_val; /* RTX to return to caller... */
722 va_list p;
723
724 va_start (p, mode);
725
726 switch (code)
727 {
728 case CONST_INT:
729 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
730 break;
731
732 case CONST_DOUBLE:
733 {
734 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
735 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
736
737 rt_val = immed_double_const (arg0, arg1, mode);
738 }
739 break;
740
741 case REG:
742 rt_val = gen_rtx_REG (mode, va_arg (p, int));
743 break;
744
745 case MEM:
746 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
747 break;
748
749 default:
750 rt_val = rtx_alloc (code); /* Allocate the storage space. */
751 rt_val->mode = mode; /* Store the machine mode... */
752
753 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
754 for (i = 0; i < GET_RTX_LENGTH (code); i++)
755 {
756 switch (*fmt++)
757 {
758 case '0': /* Field with unknown use. Zero it. */
759 X0EXP (rt_val, i) = NULL_RTX;
760 break;
761
762 case 'i': /* An integer? */
763 XINT (rt_val, i) = va_arg (p, int);
764 break;
765
766 case 'w': /* A wide integer? */
767 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
768 break;
769
770 case 's': /* A string? */
771 XSTR (rt_val, i) = va_arg (p, char *);
772 break;
773
774 case 'e': /* An expression? */
775 case 'u': /* An insn? Same except when printing. */
776 XEXP (rt_val, i) = va_arg (p, rtx);
777 break;
778
779 case 'E': /* An RTX vector? */
780 XVEC (rt_val, i) = va_arg (p, rtvec);
781 break;
782
783 case 'b': /* A bitmap? */
784 XBITMAP (rt_val, i) = va_arg (p, bitmap);
785 break;
786
787 case 't': /* A tree? */
788 XTREE (rt_val, i) = va_arg (p, tree);
789 break;
790
791 default:
792 abort ();
793 }
794 }
795 break;
796 }
797
798 va_end (p);
799 return rt_val;
800 }
801
802 /* gen_rtvec (n, [rt1, ..., rtn])
803 **
804 ** This routine creates an rtvec and stores within it the
805 ** pointers to rtx's which are its arguments.
806 */
807
808 /*VARARGS1*/
809 rtvec
810 gen_rtvec (int n, ...)
811 {
812 int i, save_n;
813 rtx *vector;
814 va_list p;
815
816 va_start (p, n);
817
818 if (n == 0)
819 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
820
821 vector = (rtx *) alloca (n * sizeof (rtx));
822
823 for (i = 0; i < n; i++)
824 vector[i] = va_arg (p, rtx);
825
826 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
827 save_n = n;
828 va_end (p);
829
830 return gen_rtvec_v (save_n, vector);
831 }
832
833 rtvec
834 gen_rtvec_v (n, argp)
835 int n;
836 rtx *argp;
837 {
838 int i;
839 rtvec rt_val;
840
841 if (n == 0)
842 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
843
844 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
845
846 for (i = 0; i < n; i++)
847 rt_val->elem[i] = *argp++;
848
849 return rt_val;
850 }
851 \f
852 /* Generate a REG rtx for a new pseudo register of mode MODE.
853 This pseudo is assigned the next sequential register number. */
854
855 rtx
856 gen_reg_rtx (mode)
857 enum machine_mode mode;
858 {
859 struct function *f = cfun;
860 rtx val;
861
862 /* Don't let anything called after initial flow analysis create new
863 registers. */
864 if (no_new_pseudos)
865 abort ();
866
867 if (generating_concat_p
868 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
869 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
870 {
871 /* For complex modes, don't make a single pseudo.
872 Instead, make a CONCAT of two pseudos.
873 This allows noncontiguous allocation of the real and imaginary parts,
874 which makes much better code. Besides, allocating DCmode
875 pseudos overstrains reload on some machines like the 386. */
876 rtx realpart, imagpart;
877 enum machine_mode partmode = GET_MODE_INNER (mode);
878
879 realpart = gen_reg_rtx (partmode);
880 imagpart = gen_reg_rtx (partmode);
881 return gen_rtx_CONCAT (mode, realpart, imagpart);
882 }
883
884 /* Make sure regno_pointer_align, and regno_reg_rtx are large
885 enough to have an element for this pseudo reg number. */
886
887 if (reg_rtx_no == f->emit->regno_pointer_align_length)
888 {
889 int old_size = f->emit->regno_pointer_align_length;
890 char *new;
891 rtx *new1;
892
893 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
894 memset (new + old_size, 0, old_size);
895 f->emit->regno_pointer_align = (unsigned char *) new;
896
897 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
898 old_size * 2 * sizeof (rtx));
899 memset (new1 + old_size, 0, old_size * sizeof (rtx));
900 regno_reg_rtx = new1;
901
902 f->emit->regno_pointer_align_length = old_size * 2;
903 }
904
905 val = gen_raw_REG (mode, reg_rtx_no);
906 regno_reg_rtx[reg_rtx_no++] = val;
907 return val;
908 }
909
910 /* Generate an register with same attributes as REG,
911 but offsetted by OFFSET. */
912
913 rtx
914 gen_rtx_REG_offset (reg, mode, regno, offset)
915 enum machine_mode mode;
916 unsigned int regno;
917 int offset;
918 rtx reg;
919 {
920 rtx new = gen_rtx_REG (mode, regno);
921 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
922 REG_OFFSET (reg) + offset);
923 return new;
924 }
925
926 /* Set the decl for MEM to DECL. */
927
928 void
929 set_reg_attrs_from_mem (reg, mem)
930 rtx reg;
931 rtx mem;
932 {
933 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
934 REG_ATTRS (reg)
935 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
936 }
937
938 /* Set the register attributes for registers contained in PARM_RTX.
939 Use needed values from memory attributes of MEM. */
940
941 void
942 set_reg_attrs_for_parm (parm_rtx, mem)
943 rtx parm_rtx;
944 rtx mem;
945 {
946 if (GET_CODE (parm_rtx) == REG)
947 set_reg_attrs_from_mem (parm_rtx, mem);
948 else if (GET_CODE (parm_rtx) == PARALLEL)
949 {
950 /* Check for a NULL entry in the first slot, used to indicate that the
951 parameter goes both on the stack and in registers. */
952 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
953 for (; i < XVECLEN (parm_rtx, 0); i++)
954 {
955 rtx x = XVECEXP (parm_rtx, 0, i);
956 if (GET_CODE (XEXP (x, 0)) == REG)
957 REG_ATTRS (XEXP (x, 0))
958 = get_reg_attrs (MEM_EXPR (mem),
959 INTVAL (XEXP (x, 1)));
960 }
961 }
962 }
963
964 /* Assign the RTX X to declaration T. */
965 void
966 set_decl_rtl (t, x)
967 tree t;
968 rtx x;
969 {
970 DECL_CHECK (t)->decl.rtl = x;
971
972 if (!x)
973 return;
974 /* For register, we maitain the reverse information too. */
975 if (GET_CODE (x) == REG)
976 REG_ATTRS (x) = get_reg_attrs (t, 0);
977 else if (GET_CODE (x) == SUBREG)
978 REG_ATTRS (SUBREG_REG (x))
979 = get_reg_attrs (t, -SUBREG_BYTE (x));
980 if (GET_CODE (x) == CONCAT)
981 {
982 if (REG_P (XEXP (x, 0)))
983 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
984 if (REG_P (XEXP (x, 1)))
985 REG_ATTRS (XEXP (x, 1))
986 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
987 }
988 if (GET_CODE (x) == PARALLEL)
989 {
990 int i;
991 for (i = 0; i < XVECLEN (x, 0); i++)
992 {
993 rtx y = XVECEXP (x, 0, i);
994 if (REG_P (XEXP (y, 0)))
995 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
996 }
997 }
998 }
999
1000 /* Identify REG (which may be a CONCAT) as a user register. */
1001
1002 void
1003 mark_user_reg (reg)
1004 rtx reg;
1005 {
1006 if (GET_CODE (reg) == CONCAT)
1007 {
1008 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1009 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1010 }
1011 else if (GET_CODE (reg) == REG)
1012 REG_USERVAR_P (reg) = 1;
1013 else
1014 abort ();
1015 }
1016
1017 /* Identify REG as a probable pointer register and show its alignment
1018 as ALIGN, if nonzero. */
1019
1020 void
1021 mark_reg_pointer (reg, align)
1022 rtx reg;
1023 int align;
1024 {
1025 if (! REG_POINTER (reg))
1026 {
1027 REG_POINTER (reg) = 1;
1028
1029 if (align)
1030 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1031 }
1032 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1033 /* We can no-longer be sure just how aligned this pointer is */
1034 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1035 }
1036
1037 /* Return 1 plus largest pseudo reg number used in the current function. */
1038
1039 int
1040 max_reg_num ()
1041 {
1042 return reg_rtx_no;
1043 }
1044
1045 /* Return 1 + the largest label number used so far in the current function. */
1046
1047 int
1048 max_label_num ()
1049 {
1050 if (last_label_num && label_num == base_label_num)
1051 return last_label_num;
1052 return label_num;
1053 }
1054
1055 /* Return first label number used in this function (if any were used). */
1056
1057 int
1058 get_first_label_num ()
1059 {
1060 return first_label_num;
1061 }
1062 \f
1063 /* Return the final regno of X, which is a SUBREG of a hard
1064 register. */
1065 int
1066 subreg_hard_regno (x, check_mode)
1067 rtx x;
1068 int check_mode;
1069 {
1070 enum machine_mode mode = GET_MODE (x);
1071 unsigned int byte_offset, base_regno, final_regno;
1072 rtx reg = SUBREG_REG (x);
1073
1074 /* This is where we attempt to catch illegal subregs
1075 created by the compiler. */
1076 if (GET_CODE (x) != SUBREG
1077 || GET_CODE (reg) != REG)
1078 abort ();
1079 base_regno = REGNO (reg);
1080 if (base_regno >= FIRST_PSEUDO_REGISTER)
1081 abort ();
1082 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1083 abort ();
1084 #ifdef ENABLE_CHECKING
1085 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1086 SUBREG_BYTE (x), mode))
1087 abort ();
1088 #endif
1089 /* Catch non-congruent offsets too. */
1090 byte_offset = SUBREG_BYTE (x);
1091 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1092 abort ();
1093
1094 final_regno = subreg_regno (x);
1095
1096 return final_regno;
1097 }
1098
1099 /* Return a value representing some low-order bits of X, where the number
1100 of low-order bits is given by MODE. Note that no conversion is done
1101 between floating-point and fixed-point values, rather, the bit
1102 representation is returned.
1103
1104 This function handles the cases in common between gen_lowpart, below,
1105 and two variants in cse.c and combine.c. These are the cases that can
1106 be safely handled at all points in the compilation.
1107
1108 If this is not a case we can handle, return 0. */
1109
1110 rtx
1111 gen_lowpart_common (mode, x)
1112 enum machine_mode mode;
1113 rtx x;
1114 {
1115 int msize = GET_MODE_SIZE (mode);
1116 int xsize = GET_MODE_SIZE (GET_MODE (x));
1117 int offset = 0;
1118
1119 if (GET_MODE (x) == mode)
1120 return x;
1121
1122 /* MODE must occupy no more words than the mode of X. */
1123 if (GET_MODE (x) != VOIDmode
1124 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1125 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1126 return 0;
1127
1128 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1129 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1130 && GET_MODE (x) != VOIDmode && msize > xsize)
1131 return 0;
1132
1133 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1134
1135 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1136 && (GET_MODE_CLASS (mode) == MODE_INT
1137 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1138 {
1139 /* If we are getting the low-order part of something that has been
1140 sign- or zero-extended, we can either just use the object being
1141 extended or make a narrower extension. If we want an even smaller
1142 piece than the size of the object being extended, call ourselves
1143 recursively.
1144
1145 This case is used mostly by combine and cse. */
1146
1147 if (GET_MODE (XEXP (x, 0)) == mode)
1148 return XEXP (x, 0);
1149 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1150 return gen_lowpart_common (mode, XEXP (x, 0));
1151 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1152 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1153 }
1154 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1155 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1156 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1157 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
1158 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1159 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1160 from the low-order part of the constant. */
1161 else if ((GET_MODE_CLASS (mode) == MODE_INT
1162 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1163 && GET_MODE (x) == VOIDmode
1164 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1165 {
1166 /* If MODE is twice the host word size, X is already the desired
1167 representation. Otherwise, if MODE is wider than a word, we can't
1168 do this. If MODE is exactly a word, return just one CONST_INT. */
1169
1170 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1171 return x;
1172 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1173 return 0;
1174 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1175 return (GET_CODE (x) == CONST_INT ? x
1176 : GEN_INT (CONST_DOUBLE_LOW (x)));
1177 else
1178 {
1179 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1180 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1181 : CONST_DOUBLE_LOW (x));
1182
1183 /* Sign extend to HOST_WIDE_INT. */
1184 val = trunc_int_for_mode (val, mode);
1185
1186 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1187 : GEN_INT (val));
1188 }
1189 }
1190
1191 /* The floating-point emulator can handle all conversions between
1192 FP and integer operands. This simplifies reload because it
1193 doesn't have to deal with constructs like (subreg:DI
1194 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1195 /* Single-precision floats are always 32-bits and double-precision
1196 floats are always 64-bits. */
1197
1198 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1199 && GET_MODE_BITSIZE (mode) == 32
1200 && GET_CODE (x) == CONST_INT)
1201 {
1202 REAL_VALUE_TYPE r;
1203 long i = INTVAL (x);
1204
1205 real_from_target (&r, &i, mode);
1206 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1207 }
1208 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1209 && GET_MODE_BITSIZE (mode) == 64
1210 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1211 && GET_MODE (x) == VOIDmode)
1212 {
1213 REAL_VALUE_TYPE r;
1214 HOST_WIDE_INT low, high;
1215 long i[2];
1216
1217 if (GET_CODE (x) == CONST_INT)
1218 {
1219 low = INTVAL (x);
1220 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1221 }
1222 else
1223 {
1224 low = CONST_DOUBLE_LOW (x);
1225 high = CONST_DOUBLE_HIGH (x);
1226 }
1227
1228 if (HOST_BITS_PER_WIDE_INT > 32)
1229 high = low >> 31 >> 1;
1230
1231 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1232 target machine. */
1233 if (WORDS_BIG_ENDIAN)
1234 i[0] = high, i[1] = low;
1235 else
1236 i[0] = low, i[1] = high;
1237
1238 real_from_target (&r, i, mode);
1239 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1240 }
1241 else if ((GET_MODE_CLASS (mode) == MODE_INT
1242 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1243 && GET_CODE (x) == CONST_DOUBLE
1244 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1245 {
1246 REAL_VALUE_TYPE r;
1247 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1248 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1249
1250 /* Convert 'r' into an array of four 32-bit words in target word
1251 order. */
1252 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1253 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1254 {
1255 case 32:
1256 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1257 i[1] = 0;
1258 i[2] = 0;
1259 i[3 - 3 * endian] = 0;
1260 break;
1261 case 64:
1262 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1263 i[2 - 2 * endian] = 0;
1264 i[3 - 2 * endian] = 0;
1265 break;
1266 case 96:
1267 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1268 i[3 - 3 * endian] = 0;
1269 break;
1270 case 128:
1271 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1272 break;
1273 default:
1274 abort ();
1275 }
1276 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1277 and return it. */
1278 #if HOST_BITS_PER_WIDE_INT == 32
1279 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1280 #else
1281 if (HOST_BITS_PER_WIDE_INT != 64)
1282 abort ();
1283
1284 return immed_double_const ((((unsigned long) i[3 * endian])
1285 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1286 (((unsigned long) i[2 - endian])
1287 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1288 mode);
1289 #endif
1290 }
1291 /* If MODE is a condition code and X is a CONST_INT, the value of X
1292 must already have been "recognized" by the back-end, and we can
1293 assume that it is valid for this mode. */
1294 else if (GET_MODE_CLASS (mode) == MODE_CC
1295 && GET_CODE (x) == CONST_INT)
1296 return x;
1297
1298 /* Otherwise, we can't do this. */
1299 return 0;
1300 }
1301 \f
1302 /* Return the constant real or imaginary part (which has mode MODE)
1303 of a complex value X. The IMAGPART_P argument determines whether
1304 the real or complex component should be returned. This function
1305 returns NULL_RTX if the component isn't a constant. */
1306
1307 static rtx
1308 gen_complex_constant_part (mode, x, imagpart_p)
1309 enum machine_mode mode;
1310 rtx x;
1311 int imagpart_p;
1312 {
1313 tree decl, part;
1314
1315 if (GET_CODE (x) == MEM
1316 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1317 {
1318 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1319 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1320 {
1321 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1322 if (TREE_CODE (part) == REAL_CST
1323 || TREE_CODE (part) == INTEGER_CST)
1324 return expand_expr (part, NULL_RTX, mode, 0);
1325 }
1326 }
1327 return NULL_RTX;
1328 }
1329
1330 /* Return the real part (which has mode MODE) of a complex value X.
1331 This always comes at the low address in memory. */
1332
1333 rtx
1334 gen_realpart (mode, x)
1335 enum machine_mode mode;
1336 rtx x;
1337 {
1338 rtx part;
1339
1340 /* Handle complex constants. */
1341 part = gen_complex_constant_part (mode, x, 0);
1342 if (part != NULL_RTX)
1343 return part;
1344
1345 if (WORDS_BIG_ENDIAN
1346 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1347 && REG_P (x)
1348 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1349 internal_error
1350 ("can't access real part of complex value in hard register");
1351 else if (WORDS_BIG_ENDIAN)
1352 return gen_highpart (mode, x);
1353 else
1354 return gen_lowpart (mode, x);
1355 }
1356
1357 /* Return the imaginary part (which has mode MODE) of a complex value X.
1358 This always comes at the high address in memory. */
1359
1360 rtx
1361 gen_imagpart (mode, x)
1362 enum machine_mode mode;
1363 rtx x;
1364 {
1365 rtx part;
1366
1367 /* Handle complex constants. */
1368 part = gen_complex_constant_part (mode, x, 1);
1369 if (part != NULL_RTX)
1370 return part;
1371
1372 if (WORDS_BIG_ENDIAN)
1373 return gen_lowpart (mode, x);
1374 else if (! WORDS_BIG_ENDIAN
1375 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1376 && REG_P (x)
1377 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1378 internal_error
1379 ("can't access imaginary part of complex value in hard register");
1380 else
1381 return gen_highpart (mode, x);
1382 }
1383
1384 /* Return 1 iff X, assumed to be a SUBREG,
1385 refers to the real part of the complex value in its containing reg.
1386 Complex values are always stored with the real part in the first word,
1387 regardless of WORDS_BIG_ENDIAN. */
1388
1389 int
1390 subreg_realpart_p (x)
1391 rtx x;
1392 {
1393 if (GET_CODE (x) != SUBREG)
1394 abort ();
1395
1396 return ((unsigned int) SUBREG_BYTE (x)
1397 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1398 }
1399 \f
1400 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1401 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1402 least-significant part of X.
1403 MODE specifies how big a part of X to return;
1404 it usually should not be larger than a word.
1405 If X is a MEM whose address is a QUEUED, the value may be so also. */
1406
1407 rtx
1408 gen_lowpart (mode, x)
1409 enum machine_mode mode;
1410 rtx x;
1411 {
1412 rtx result = gen_lowpart_common (mode, x);
1413
1414 if (result)
1415 return result;
1416 else if (GET_CODE (x) == REG)
1417 {
1418 /* Must be a hard reg that's not valid in MODE. */
1419 result = gen_lowpart_common (mode, copy_to_reg (x));
1420 if (result == 0)
1421 abort ();
1422 return result;
1423 }
1424 else if (GET_CODE (x) == MEM)
1425 {
1426 /* The only additional case we can do is MEM. */
1427 int offset = 0;
1428
1429 /* The following exposes the use of "x" to CSE. */
1430 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1431 && SCALAR_INT_MODE_P (GET_MODE (x))
1432 && ! no_new_pseudos)
1433 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1434
1435 if (WORDS_BIG_ENDIAN)
1436 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1437 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1438
1439 if (BYTES_BIG_ENDIAN)
1440 /* Adjust the address so that the address-after-the-data
1441 is unchanged. */
1442 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1443 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1444
1445 return adjust_address (x, mode, offset);
1446 }
1447 else if (GET_CODE (x) == ADDRESSOF)
1448 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1449 else
1450 abort ();
1451 }
1452
1453 /* Like `gen_lowpart', but refer to the most significant part.
1454 This is used to access the imaginary part of a complex number. */
1455
1456 rtx
1457 gen_highpart (mode, x)
1458 enum machine_mode mode;
1459 rtx x;
1460 {
1461 unsigned int msize = GET_MODE_SIZE (mode);
1462 rtx result;
1463
1464 /* This case loses if X is a subreg. To catch bugs early,
1465 complain if an invalid MODE is used even in other cases. */
1466 if (msize > UNITS_PER_WORD
1467 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1468 abort ();
1469
1470 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1471 subreg_highpart_offset (mode, GET_MODE (x)));
1472
1473 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1474 the target if we have a MEM. gen_highpart must return a valid operand,
1475 emitting code if necessary to do so. */
1476 if (result != NULL_RTX && GET_CODE (result) == MEM)
1477 result = validize_mem (result);
1478
1479 if (!result)
1480 abort ();
1481 return result;
1482 }
1483
1484 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1485 be VOIDmode constant. */
1486 rtx
1487 gen_highpart_mode (outermode, innermode, exp)
1488 enum machine_mode outermode, innermode;
1489 rtx exp;
1490 {
1491 if (GET_MODE (exp) != VOIDmode)
1492 {
1493 if (GET_MODE (exp) != innermode)
1494 abort ();
1495 return gen_highpart (outermode, exp);
1496 }
1497 return simplify_gen_subreg (outermode, exp, innermode,
1498 subreg_highpart_offset (outermode, innermode));
1499 }
1500
1501 /* Return offset in bytes to get OUTERMODE low part
1502 of the value in mode INNERMODE stored in memory in target format. */
1503
1504 unsigned int
1505 subreg_lowpart_offset (outermode, innermode)
1506 enum machine_mode outermode, innermode;
1507 {
1508 unsigned int offset = 0;
1509 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1510
1511 if (difference > 0)
1512 {
1513 if (WORDS_BIG_ENDIAN)
1514 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1515 if (BYTES_BIG_ENDIAN)
1516 offset += difference % UNITS_PER_WORD;
1517 }
1518
1519 return offset;
1520 }
1521
1522 /* Return offset in bytes to get OUTERMODE high part
1523 of the value in mode INNERMODE stored in memory in target format. */
1524 unsigned int
1525 subreg_highpart_offset (outermode, innermode)
1526 enum machine_mode outermode, innermode;
1527 {
1528 unsigned int offset = 0;
1529 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1530
1531 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1532 abort ();
1533
1534 if (difference > 0)
1535 {
1536 if (! WORDS_BIG_ENDIAN)
1537 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1538 if (! BYTES_BIG_ENDIAN)
1539 offset += difference % UNITS_PER_WORD;
1540 }
1541
1542 return offset;
1543 }
1544
1545 /* Return 1 iff X, assumed to be a SUBREG,
1546 refers to the least significant part of its containing reg.
1547 If X is not a SUBREG, always return 1 (it is its own low part!). */
1548
1549 int
1550 subreg_lowpart_p (x)
1551 rtx x;
1552 {
1553 if (GET_CODE (x) != SUBREG)
1554 return 1;
1555 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1556 return 0;
1557
1558 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1559 == SUBREG_BYTE (x));
1560 }
1561 \f
1562
1563 /* Helper routine for all the constant cases of operand_subword.
1564 Some places invoke this directly. */
1565
1566 rtx
1567 constant_subword (op, offset, mode)
1568 rtx op;
1569 int offset;
1570 enum machine_mode mode;
1571 {
1572 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1573 HOST_WIDE_INT val;
1574
1575 /* If OP is already an integer word, return it. */
1576 if (GET_MODE_CLASS (mode) == MODE_INT
1577 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1578 return op;
1579
1580 /* The output is some bits, the width of the target machine's word.
1581 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1582 host can't. */
1583 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1584 && GET_MODE_CLASS (mode) == MODE_FLOAT
1585 && GET_MODE_BITSIZE (mode) == 64
1586 && GET_CODE (op) == CONST_DOUBLE)
1587 {
1588 long k[2];
1589 REAL_VALUE_TYPE rv;
1590
1591 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1592 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1593
1594 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1595 which the words are written depends on the word endianness.
1596 ??? This is a potential portability problem and should
1597 be fixed at some point.
1598
1599 We must exercise caution with the sign bit. By definition there
1600 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1601 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1602 So we explicitly mask and sign-extend as necessary. */
1603 if (BITS_PER_WORD == 32)
1604 {
1605 val = k[offset];
1606 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1607 return GEN_INT (val);
1608 }
1609 #if HOST_BITS_PER_WIDE_INT >= 64
1610 else if (BITS_PER_WORD >= 64 && offset == 0)
1611 {
1612 val = k[! WORDS_BIG_ENDIAN];
1613 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1614 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1615 return GEN_INT (val);
1616 }
1617 #endif
1618 else if (BITS_PER_WORD == 16)
1619 {
1620 val = k[offset >> 1];
1621 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1622 val >>= 16;
1623 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1624 return GEN_INT (val);
1625 }
1626 else
1627 abort ();
1628 }
1629 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1630 && GET_MODE_CLASS (mode) == MODE_FLOAT
1631 && GET_MODE_BITSIZE (mode) > 64
1632 && GET_CODE (op) == CONST_DOUBLE)
1633 {
1634 long k[4];
1635 REAL_VALUE_TYPE rv;
1636
1637 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1638 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1639
1640 if (BITS_PER_WORD == 32)
1641 {
1642 val = k[offset];
1643 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1644 return GEN_INT (val);
1645 }
1646 #if HOST_BITS_PER_WIDE_INT >= 64
1647 else if (BITS_PER_WORD >= 64 && offset <= 1)
1648 {
1649 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1650 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1651 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1652 return GEN_INT (val);
1653 }
1654 #endif
1655 else
1656 abort ();
1657 }
1658
1659 /* Single word float is a little harder, since single- and double-word
1660 values often do not have the same high-order bits. We have already
1661 verified that we want the only defined word of the single-word value. */
1662 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1663 && GET_MODE_BITSIZE (mode) == 32
1664 && GET_CODE (op) == CONST_DOUBLE)
1665 {
1666 long l;
1667 REAL_VALUE_TYPE rv;
1668
1669 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1670 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1671
1672 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1673 val = l;
1674 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1675
1676 if (BITS_PER_WORD == 16)
1677 {
1678 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1679 val >>= 16;
1680 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1681 }
1682
1683 return GEN_INT (val);
1684 }
1685
1686 /* The only remaining cases that we can handle are integers.
1687 Convert to proper endianness now since these cases need it.
1688 At this point, offset == 0 means the low-order word.
1689
1690 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1691 in general. However, if OP is (const_int 0), we can just return
1692 it for any word. */
1693
1694 if (op == const0_rtx)
1695 return op;
1696
1697 if (GET_MODE_CLASS (mode) != MODE_INT
1698 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1699 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1700 return 0;
1701
1702 if (WORDS_BIG_ENDIAN)
1703 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1704
1705 /* Find out which word on the host machine this value is in and get
1706 it from the constant. */
1707 val = (offset / size_ratio == 0
1708 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1709 : (GET_CODE (op) == CONST_INT
1710 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1711
1712 /* Get the value we want into the low bits of val. */
1713 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1714 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1715
1716 val = trunc_int_for_mode (val, word_mode);
1717
1718 return GEN_INT (val);
1719 }
1720
1721 /* Return subword OFFSET of operand OP.
1722 The word number, OFFSET, is interpreted as the word number starting
1723 at the low-order address. OFFSET 0 is the low-order word if not
1724 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1725
1726 If we cannot extract the required word, we return zero. Otherwise,
1727 an rtx corresponding to the requested word will be returned.
1728
1729 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1730 reload has completed, a valid address will always be returned. After
1731 reload, if a valid address cannot be returned, we return zero.
1732
1733 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1734 it is the responsibility of the caller.
1735
1736 MODE is the mode of OP in case it is a CONST_INT.
1737
1738 ??? This is still rather broken for some cases. The problem for the
1739 moment is that all callers of this thing provide no 'goal mode' to
1740 tell us to work with. This exists because all callers were written
1741 in a word based SUBREG world.
1742 Now use of this function can be deprecated by simplify_subreg in most
1743 cases.
1744 */
1745
1746 rtx
1747 operand_subword (op, offset, validate_address, mode)
1748 rtx op;
1749 unsigned int offset;
1750 int validate_address;
1751 enum machine_mode mode;
1752 {
1753 if (mode == VOIDmode)
1754 mode = GET_MODE (op);
1755
1756 if (mode == VOIDmode)
1757 abort ();
1758
1759 /* If OP is narrower than a word, fail. */
1760 if (mode != BLKmode
1761 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1762 return 0;
1763
1764 /* If we want a word outside OP, return zero. */
1765 if (mode != BLKmode
1766 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1767 return const0_rtx;
1768
1769 /* Form a new MEM at the requested address. */
1770 if (GET_CODE (op) == MEM)
1771 {
1772 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1773
1774 if (! validate_address)
1775 return new;
1776
1777 else if (reload_completed)
1778 {
1779 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1780 return 0;
1781 }
1782 else
1783 return replace_equiv_address (new, XEXP (new, 0));
1784 }
1785
1786 /* Rest can be handled by simplify_subreg. */
1787 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1788 }
1789
1790 /* Similar to `operand_subword', but never return 0. If we can't extract
1791 the required subword, put OP into a register and try again. If that fails,
1792 abort. We always validate the address in this case.
1793
1794 MODE is the mode of OP, in case it is CONST_INT. */
1795
1796 rtx
1797 operand_subword_force (op, offset, mode)
1798 rtx op;
1799 unsigned int offset;
1800 enum machine_mode mode;
1801 {
1802 rtx result = operand_subword (op, offset, 1, mode);
1803
1804 if (result)
1805 return result;
1806
1807 if (mode != BLKmode && mode != VOIDmode)
1808 {
1809 /* If this is a register which can not be accessed by words, copy it
1810 to a pseudo register. */
1811 if (GET_CODE (op) == REG)
1812 op = copy_to_reg (op);
1813 else
1814 op = force_reg (mode, op);
1815 }
1816
1817 result = operand_subword (op, offset, 1, mode);
1818 if (result == 0)
1819 abort ();
1820
1821 return result;
1822 }
1823 \f
1824 /* Given a compare instruction, swap the operands.
1825 A test instruction is changed into a compare of 0 against the operand. */
1826
1827 void
1828 reverse_comparison (insn)
1829 rtx insn;
1830 {
1831 rtx body = PATTERN (insn);
1832 rtx comp;
1833
1834 if (GET_CODE (body) == SET)
1835 comp = SET_SRC (body);
1836 else
1837 comp = SET_SRC (XVECEXP (body, 0, 0));
1838
1839 if (GET_CODE (comp) == COMPARE)
1840 {
1841 rtx op0 = XEXP (comp, 0);
1842 rtx op1 = XEXP (comp, 1);
1843 XEXP (comp, 0) = op1;
1844 XEXP (comp, 1) = op0;
1845 }
1846 else
1847 {
1848 rtx new = gen_rtx_COMPARE (VOIDmode,
1849 CONST0_RTX (GET_MODE (comp)), comp);
1850 if (GET_CODE (body) == SET)
1851 SET_SRC (body) = new;
1852 else
1853 SET_SRC (XVECEXP (body, 0, 0)) = new;
1854 }
1855 }
1856 \f
1857 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1858 or (2) a component ref of something variable. Represent the later with
1859 a NULL expression. */
1860
1861 static tree
1862 component_ref_for_mem_expr (ref)
1863 tree ref;
1864 {
1865 tree inner = TREE_OPERAND (ref, 0);
1866
1867 if (TREE_CODE (inner) == COMPONENT_REF)
1868 inner = component_ref_for_mem_expr (inner);
1869 else
1870 {
1871 tree placeholder_ptr = 0;
1872
1873 /* Now remove any conversions: they don't change what the underlying
1874 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1875 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1876 || TREE_CODE (inner) == NON_LVALUE_EXPR
1877 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1878 || TREE_CODE (inner) == SAVE_EXPR
1879 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1880 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1881 inner = find_placeholder (inner, &placeholder_ptr);
1882 else
1883 inner = TREE_OPERAND (inner, 0);
1884
1885 if (! DECL_P (inner))
1886 inner = NULL_TREE;
1887 }
1888
1889 if (inner == TREE_OPERAND (ref, 0))
1890 return ref;
1891 else
1892 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1893 TREE_OPERAND (ref, 1));
1894 }
1895
1896 /* Given REF, a MEM, and T, either the type of X or the expression
1897 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1898 if we are making a new object of this type. BITPOS is nonzero if
1899 there is an offset outstanding on T that will be applied later. */
1900
1901 void
1902 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
1903 rtx ref;
1904 tree t;
1905 int objectp;
1906 HOST_WIDE_INT bitpos;
1907 {
1908 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1909 tree expr = MEM_EXPR (ref);
1910 rtx offset = MEM_OFFSET (ref);
1911 rtx size = MEM_SIZE (ref);
1912 unsigned int align = MEM_ALIGN (ref);
1913 HOST_WIDE_INT apply_bitpos = 0;
1914 tree type;
1915
1916 /* It can happen that type_for_mode was given a mode for which there
1917 is no language-level type. In which case it returns NULL, which
1918 we can see here. */
1919 if (t == NULL_TREE)
1920 return;
1921
1922 type = TYPE_P (t) ? t : TREE_TYPE (t);
1923
1924 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1925 wrong answer, as it assumes that DECL_RTL already has the right alias
1926 info. Callers should not set DECL_RTL until after the call to
1927 set_mem_attributes. */
1928 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1929 abort ();
1930
1931 /* Get the alias set from the expression or type (perhaps using a
1932 front-end routine) and use it. */
1933 alias = get_alias_set (t);
1934
1935 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1936 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1937 RTX_UNCHANGING_P (ref)
1938 |= ((lang_hooks.honor_readonly
1939 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1940 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1941
1942 /* If we are making an object of this type, or if this is a DECL, we know
1943 that it is a scalar if the type is not an aggregate. */
1944 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1945 MEM_SCALAR_P (ref) = 1;
1946
1947 /* We can set the alignment from the type if we are making an object,
1948 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1949 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1950 align = MAX (align, TYPE_ALIGN (type));
1951
1952 /* If the size is known, we can set that. */
1953 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1954 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1955
1956 /* If T is not a type, we may be able to deduce some more information about
1957 the expression. */
1958 if (! TYPE_P (t))
1959 {
1960 maybe_set_unchanging (ref, t);
1961 if (TREE_THIS_VOLATILE (t))
1962 MEM_VOLATILE_P (ref) = 1;
1963
1964 /* Now remove any conversions: they don't change what the underlying
1965 object is. Likewise for SAVE_EXPR. */
1966 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1967 || TREE_CODE (t) == NON_LVALUE_EXPR
1968 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1969 || TREE_CODE (t) == SAVE_EXPR)
1970 t = TREE_OPERAND (t, 0);
1971
1972 /* If this expression can't be addressed (e.g., it contains a reference
1973 to a non-addressable field), show we don't change its alias set. */
1974 if (! can_address_p (t))
1975 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1976
1977 /* If this is a decl, set the attributes of the MEM from it. */
1978 if (DECL_P (t))
1979 {
1980 expr = t;
1981 offset = const0_rtx;
1982 apply_bitpos = bitpos;
1983 size = (DECL_SIZE_UNIT (t)
1984 && host_integerp (DECL_SIZE_UNIT (t), 1)
1985 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1986 align = DECL_ALIGN (t);
1987 }
1988
1989 /* If this is a constant, we know the alignment. */
1990 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1991 {
1992 align = TYPE_ALIGN (type);
1993 #ifdef CONSTANT_ALIGNMENT
1994 align = CONSTANT_ALIGNMENT (t, align);
1995 #endif
1996 }
1997
1998 /* If this is a field reference and not a bit-field, record it. */
1999 /* ??? There is some information that can be gleened from bit-fields,
2000 such as the word offset in the structure that might be modified.
2001 But skip it for now. */
2002 else if (TREE_CODE (t) == COMPONENT_REF
2003 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2004 {
2005 expr = component_ref_for_mem_expr (t);
2006 offset = const0_rtx;
2007 apply_bitpos = bitpos;
2008 /* ??? Any reason the field size would be different than
2009 the size we got from the type? */
2010 }
2011
2012 /* If this is an array reference, look for an outer field reference. */
2013 else if (TREE_CODE (t) == ARRAY_REF)
2014 {
2015 tree off_tree = size_zero_node;
2016
2017 do
2018 {
2019 tree index = TREE_OPERAND (t, 1);
2020 tree array = TREE_OPERAND (t, 0);
2021 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
2022 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
2023 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
2024
2025 /* We assume all arrays have sizes that are a multiple of a byte.
2026 First subtract the lower bound, if any, in the type of the
2027 index, then convert to sizetype and multiply by the size of the
2028 array element. */
2029 if (low_bound != 0 && ! integer_zerop (low_bound))
2030 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
2031 index, low_bound));
2032
2033 /* If the index has a self-referential type, pass it to a
2034 WITH_RECORD_EXPR; if the component size is, pass our
2035 component to one. */
2036 if (CONTAINS_PLACEHOLDER_P (index))
2037 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t);
2038 if (CONTAINS_PLACEHOLDER_P (unit_size))
2039 unit_size = build (WITH_RECORD_EXPR, sizetype,
2040 unit_size, array);
2041
2042 off_tree
2043 = fold (build (PLUS_EXPR, sizetype,
2044 fold (build (MULT_EXPR, sizetype,
2045 index,
2046 unit_size)),
2047 off_tree));
2048 t = TREE_OPERAND (t, 0);
2049 }
2050 while (TREE_CODE (t) == ARRAY_REF);
2051
2052 if (DECL_P (t))
2053 {
2054 expr = t;
2055 offset = NULL;
2056 if (host_integerp (off_tree, 1))
2057 {
2058 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
2059 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
2060 align = DECL_ALIGN (t);
2061 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
2062 align = aoff;
2063 offset = GEN_INT (ioff);
2064 apply_bitpos = bitpos;
2065 }
2066 }
2067 else if (TREE_CODE (t) == COMPONENT_REF)
2068 {
2069 expr = component_ref_for_mem_expr (t);
2070 if (host_integerp (off_tree, 1))
2071 {
2072 offset = GEN_INT (tree_low_cst (off_tree, 1));
2073 apply_bitpos = bitpos;
2074 }
2075 /* ??? Any reason the field size would be different than
2076 the size we got from the type? */
2077 }
2078 else if (flag_argument_noalias > 1
2079 && TREE_CODE (t) == INDIRECT_REF
2080 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2081 {
2082 expr = t;
2083 offset = NULL;
2084 }
2085 }
2086
2087 /* If this is a Fortran indirect argument reference, record the
2088 parameter decl. */
2089 else if (flag_argument_noalias > 1
2090 && TREE_CODE (t) == INDIRECT_REF
2091 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2092 {
2093 expr = t;
2094 offset = NULL;
2095 }
2096 }
2097
2098 /* If we modified OFFSET based on T, then subtract the outstanding
2099 bit position offset. Similarly, increase the size of the accessed
2100 object to contain the negative offset. */
2101 if (apply_bitpos)
2102 {
2103 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2104 if (size)
2105 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2106 }
2107
2108 /* Now set the attributes we computed above. */
2109 MEM_ATTRS (ref)
2110 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2111
2112 /* If this is already known to be a scalar or aggregate, we are done. */
2113 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2114 return;
2115
2116 /* If it is a reference into an aggregate, this is part of an aggregate.
2117 Otherwise we don't know. */
2118 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2119 || TREE_CODE (t) == ARRAY_RANGE_REF
2120 || TREE_CODE (t) == BIT_FIELD_REF)
2121 MEM_IN_STRUCT_P (ref) = 1;
2122 }
2123
2124 void
2125 set_mem_attributes (ref, t, objectp)
2126 rtx ref;
2127 tree t;
2128 int objectp;
2129 {
2130 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2131 }
2132
2133 /* Set the decl for MEM to DECL. */
2134
2135 void
2136 set_mem_attrs_from_reg (mem, reg)
2137 rtx mem;
2138 rtx reg;
2139 {
2140 MEM_ATTRS (mem)
2141 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2142 GEN_INT (REG_OFFSET (reg)),
2143 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2144 }
2145
2146 /* Set the alias set of MEM to SET. */
2147
2148 void
2149 set_mem_alias_set (mem, set)
2150 rtx mem;
2151 HOST_WIDE_INT set;
2152 {
2153 #ifdef ENABLE_CHECKING
2154 /* If the new and old alias sets don't conflict, something is wrong. */
2155 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2156 abort ();
2157 #endif
2158
2159 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2160 MEM_SIZE (mem), MEM_ALIGN (mem),
2161 GET_MODE (mem));
2162 }
2163
2164 /* Set the alignment of MEM to ALIGN bits. */
2165
2166 void
2167 set_mem_align (mem, align)
2168 rtx mem;
2169 unsigned int align;
2170 {
2171 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2172 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2173 GET_MODE (mem));
2174 }
2175
2176 /* Set the expr for MEM to EXPR. */
2177
2178 void
2179 set_mem_expr (mem, expr)
2180 rtx mem;
2181 tree expr;
2182 {
2183 MEM_ATTRS (mem)
2184 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2185 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2186 }
2187
2188 /* Set the offset of MEM to OFFSET. */
2189
2190 void
2191 set_mem_offset (mem, offset)
2192 rtx mem, offset;
2193 {
2194 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2195 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2196 GET_MODE (mem));
2197 }
2198
2199 /* Set the size of MEM to SIZE. */
2200
2201 void
2202 set_mem_size (mem, size)
2203 rtx mem, size;
2204 {
2205 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2206 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2207 GET_MODE (mem));
2208 }
2209 \f
2210 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2211 and its address changed to ADDR. (VOIDmode means don't change the mode.
2212 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2213 returned memory location is required to be valid. The memory
2214 attributes are not changed. */
2215
2216 static rtx
2217 change_address_1 (memref, mode, addr, validate)
2218 rtx memref;
2219 enum machine_mode mode;
2220 rtx addr;
2221 int validate;
2222 {
2223 rtx new;
2224
2225 if (GET_CODE (memref) != MEM)
2226 abort ();
2227 if (mode == VOIDmode)
2228 mode = GET_MODE (memref);
2229 if (addr == 0)
2230 addr = XEXP (memref, 0);
2231
2232 if (validate)
2233 {
2234 if (reload_in_progress || reload_completed)
2235 {
2236 if (! memory_address_p (mode, addr))
2237 abort ();
2238 }
2239 else
2240 addr = memory_address (mode, addr);
2241 }
2242
2243 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2244 return memref;
2245
2246 new = gen_rtx_MEM (mode, addr);
2247 MEM_COPY_ATTRIBUTES (new, memref);
2248 return new;
2249 }
2250
2251 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2252 way we are changing MEMREF, so we only preserve the alias set. */
2253
2254 rtx
2255 change_address (memref, mode, addr)
2256 rtx memref;
2257 enum machine_mode mode;
2258 rtx addr;
2259 {
2260 rtx new = change_address_1 (memref, mode, addr, 1);
2261 enum machine_mode mmode = GET_MODE (new);
2262
2263 MEM_ATTRS (new)
2264 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2265 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2266 (mmode == BLKmode ? BITS_PER_UNIT
2267 : GET_MODE_ALIGNMENT (mmode)),
2268 mmode);
2269
2270 return new;
2271 }
2272
2273 /* Return a memory reference like MEMREF, but with its mode changed
2274 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2275 nonzero, the memory address is forced to be valid.
2276 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2277 and caller is responsible for adjusting MEMREF base register. */
2278
2279 rtx
2280 adjust_address_1 (memref, mode, offset, validate, adjust)
2281 rtx memref;
2282 enum machine_mode mode;
2283 HOST_WIDE_INT offset;
2284 int validate, adjust;
2285 {
2286 rtx addr = XEXP (memref, 0);
2287 rtx new;
2288 rtx memoffset = MEM_OFFSET (memref);
2289 rtx size = 0;
2290 unsigned int memalign = MEM_ALIGN (memref);
2291
2292 /* ??? Prefer to create garbage instead of creating shared rtl.
2293 This may happen even if offset is nonzero -- consider
2294 (plus (plus reg reg) const_int) -- so do this always. */
2295 addr = copy_rtx (addr);
2296
2297 if (adjust)
2298 {
2299 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2300 object, we can merge it into the LO_SUM. */
2301 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2302 && offset >= 0
2303 && (unsigned HOST_WIDE_INT) offset
2304 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2305 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2306 plus_constant (XEXP (addr, 1), offset));
2307 else
2308 addr = plus_constant (addr, offset);
2309 }
2310
2311 new = change_address_1 (memref, mode, addr, validate);
2312
2313 /* Compute the new values of the memory attributes due to this adjustment.
2314 We add the offsets and update the alignment. */
2315 if (memoffset)
2316 memoffset = GEN_INT (offset + INTVAL (memoffset));
2317
2318 /* Compute the new alignment by taking the MIN of the alignment and the
2319 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2320 if zero. */
2321 if (offset != 0)
2322 memalign
2323 = MIN (memalign,
2324 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2325
2326 /* We can compute the size in a number of ways. */
2327 if (GET_MODE (new) != BLKmode)
2328 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2329 else if (MEM_SIZE (memref))
2330 size = plus_constant (MEM_SIZE (memref), -offset);
2331
2332 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2333 memoffset, size, memalign, GET_MODE (new));
2334
2335 /* At some point, we should validate that this offset is within the object,
2336 if all the appropriate values are known. */
2337 return new;
2338 }
2339
2340 /* Return a memory reference like MEMREF, but with its mode changed
2341 to MODE and its address changed to ADDR, which is assumed to be
2342 MEMREF offseted by OFFSET bytes. If VALIDATE is
2343 nonzero, the memory address is forced to be valid. */
2344
2345 rtx
2346 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2347 rtx memref;
2348 enum machine_mode mode;
2349 rtx addr;
2350 HOST_WIDE_INT offset;
2351 int validate;
2352 {
2353 memref = change_address_1 (memref, VOIDmode, addr, validate);
2354 return adjust_address_1 (memref, mode, offset, validate, 0);
2355 }
2356
2357 /* Return a memory reference like MEMREF, but whose address is changed by
2358 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2359 known to be in OFFSET (possibly 1). */
2360
2361 rtx
2362 offset_address (memref, offset, pow2)
2363 rtx memref;
2364 rtx offset;
2365 unsigned HOST_WIDE_INT pow2;
2366 {
2367 rtx new, addr = XEXP (memref, 0);
2368
2369 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2370
2371 /* At this point we don't know _why_ the address is invalid. It
2372 could have secondary memory refereces, multiplies or anything.
2373
2374 However, if we did go and rearrange things, we can wind up not
2375 being able to recognize the magic around pic_offset_table_rtx.
2376 This stuff is fragile, and is yet another example of why it is
2377 bad to expose PIC machinery too early. */
2378 if (! memory_address_p (GET_MODE (memref), new)
2379 && GET_CODE (addr) == PLUS
2380 && XEXP (addr, 0) == pic_offset_table_rtx)
2381 {
2382 addr = force_reg (GET_MODE (addr), addr);
2383 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2384 }
2385
2386 update_temp_slot_address (XEXP (memref, 0), new);
2387 new = change_address_1 (memref, VOIDmode, new, 1);
2388
2389 /* Update the alignment to reflect the offset. Reset the offset, which
2390 we don't know. */
2391 MEM_ATTRS (new)
2392 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2393 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2394 GET_MODE (new));
2395 return new;
2396 }
2397
2398 /* Return a memory reference like MEMREF, but with its address changed to
2399 ADDR. The caller is asserting that the actual piece of memory pointed
2400 to is the same, just the form of the address is being changed, such as
2401 by putting something into a register. */
2402
2403 rtx
2404 replace_equiv_address (memref, addr)
2405 rtx memref;
2406 rtx addr;
2407 {
2408 /* change_address_1 copies the memory attribute structure without change
2409 and that's exactly what we want here. */
2410 update_temp_slot_address (XEXP (memref, 0), addr);
2411 return change_address_1 (memref, VOIDmode, addr, 1);
2412 }
2413
2414 /* Likewise, but the reference is not required to be valid. */
2415
2416 rtx
2417 replace_equiv_address_nv (memref, addr)
2418 rtx memref;
2419 rtx addr;
2420 {
2421 return change_address_1 (memref, VOIDmode, addr, 0);
2422 }
2423
2424 /* Return a memory reference like MEMREF, but with its mode widened to
2425 MODE and offset by OFFSET. This would be used by targets that e.g.
2426 cannot issue QImode memory operations and have to use SImode memory
2427 operations plus masking logic. */
2428
2429 rtx
2430 widen_memory_access (memref, mode, offset)
2431 rtx memref;
2432 enum machine_mode mode;
2433 HOST_WIDE_INT offset;
2434 {
2435 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2436 tree expr = MEM_EXPR (new);
2437 rtx memoffset = MEM_OFFSET (new);
2438 unsigned int size = GET_MODE_SIZE (mode);
2439
2440 /* If we don't know what offset we were at within the expression, then
2441 we can't know if we've overstepped the bounds. */
2442 if (! memoffset)
2443 expr = NULL_TREE;
2444
2445 while (expr)
2446 {
2447 if (TREE_CODE (expr) == COMPONENT_REF)
2448 {
2449 tree field = TREE_OPERAND (expr, 1);
2450
2451 if (! DECL_SIZE_UNIT (field))
2452 {
2453 expr = NULL_TREE;
2454 break;
2455 }
2456
2457 /* Is the field at least as large as the access? If so, ok,
2458 otherwise strip back to the containing structure. */
2459 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2460 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2461 && INTVAL (memoffset) >= 0)
2462 break;
2463
2464 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2465 {
2466 expr = NULL_TREE;
2467 break;
2468 }
2469
2470 expr = TREE_OPERAND (expr, 0);
2471 memoffset = (GEN_INT (INTVAL (memoffset)
2472 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2473 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2474 / BITS_PER_UNIT)));
2475 }
2476 /* Similarly for the decl. */
2477 else if (DECL_P (expr)
2478 && DECL_SIZE_UNIT (expr)
2479 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2480 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2481 && (! memoffset || INTVAL (memoffset) >= 0))
2482 break;
2483 else
2484 {
2485 /* The widened memory access overflows the expression, which means
2486 that it could alias another expression. Zap it. */
2487 expr = NULL_TREE;
2488 break;
2489 }
2490 }
2491
2492 if (! expr)
2493 memoffset = NULL_RTX;
2494
2495 /* The widened memory may alias other stuff, so zap the alias set. */
2496 /* ??? Maybe use get_alias_set on any remaining expression. */
2497
2498 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2499 MEM_ALIGN (new), mode);
2500
2501 return new;
2502 }
2503 \f
2504 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2505
2506 rtx
2507 gen_label_rtx ()
2508 {
2509 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2510 NULL, label_num++, NULL);
2511 }
2512 \f
2513 /* For procedure integration. */
2514
2515 /* Install new pointers to the first and last insns in the chain.
2516 Also, set cur_insn_uid to one higher than the last in use.
2517 Used for an inline-procedure after copying the insn chain. */
2518
2519 void
2520 set_new_first_and_last_insn (first, last)
2521 rtx first, last;
2522 {
2523 rtx insn;
2524
2525 first_insn = first;
2526 last_insn = last;
2527 cur_insn_uid = 0;
2528
2529 for (insn = first; insn; insn = NEXT_INSN (insn))
2530 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2531
2532 cur_insn_uid++;
2533 }
2534
2535 /* Set the range of label numbers found in the current function.
2536 This is used when belatedly compiling an inline function. */
2537
2538 void
2539 set_new_first_and_last_label_num (first, last)
2540 int first, last;
2541 {
2542 base_label_num = label_num;
2543 first_label_num = first;
2544 last_label_num = last;
2545 }
2546
2547 /* Set the last label number found in the current function.
2548 This is used when belatedly compiling an inline function. */
2549
2550 void
2551 set_new_last_label_num (last)
2552 int last;
2553 {
2554 base_label_num = label_num;
2555 last_label_num = last;
2556 }
2557 \f
2558 /* Restore all variables describing the current status from the structure *P.
2559 This is used after a nested function. */
2560
2561 void
2562 restore_emit_status (p)
2563 struct function *p ATTRIBUTE_UNUSED;
2564 {
2565 last_label_num = 0;
2566 }
2567 \f
2568 /* Go through all the RTL insn bodies and copy any invalid shared
2569 structure. This routine should only be called once. */
2570
2571 void
2572 unshare_all_rtl (fndecl, insn)
2573 tree fndecl;
2574 rtx insn;
2575 {
2576 tree decl;
2577
2578 /* Make sure that virtual parameters are not shared. */
2579 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2580 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2581
2582 /* Make sure that virtual stack slots are not shared. */
2583 unshare_all_decls (DECL_INITIAL (fndecl));
2584
2585 /* Unshare just about everything else. */
2586 unshare_all_rtl_1 (insn);
2587
2588 /* Make sure the addresses of stack slots found outside the insn chain
2589 (such as, in DECL_RTL of a variable) are not shared
2590 with the insn chain.
2591
2592 This special care is necessary when the stack slot MEM does not
2593 actually appear in the insn chain. If it does appear, its address
2594 is unshared from all else at that point. */
2595 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2596 }
2597
2598 /* Go through all the RTL insn bodies and copy any invalid shared
2599 structure, again. This is a fairly expensive thing to do so it
2600 should be done sparingly. */
2601
2602 void
2603 unshare_all_rtl_again (insn)
2604 rtx insn;
2605 {
2606 rtx p;
2607 tree decl;
2608
2609 for (p = insn; p; p = NEXT_INSN (p))
2610 if (INSN_P (p))
2611 {
2612 reset_used_flags (PATTERN (p));
2613 reset_used_flags (REG_NOTES (p));
2614 reset_used_flags (LOG_LINKS (p));
2615 }
2616
2617 /* Make sure that virtual stack slots are not shared. */
2618 reset_used_decls (DECL_INITIAL (cfun->decl));
2619
2620 /* Make sure that virtual parameters are not shared. */
2621 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2622 reset_used_flags (DECL_RTL (decl));
2623
2624 reset_used_flags (stack_slot_list);
2625
2626 unshare_all_rtl (cfun->decl, insn);
2627 }
2628
2629 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2630 Assumes the mark bits are cleared at entry. */
2631
2632 static void
2633 unshare_all_rtl_1 (insn)
2634 rtx insn;
2635 {
2636 for (; insn; insn = NEXT_INSN (insn))
2637 if (INSN_P (insn))
2638 {
2639 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2640 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2641 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2642 }
2643 }
2644
2645 /* Go through all virtual stack slots of a function and copy any
2646 shared structure. */
2647 static void
2648 unshare_all_decls (blk)
2649 tree blk;
2650 {
2651 tree t;
2652
2653 /* Copy shared decls. */
2654 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2655 if (DECL_RTL_SET_P (t))
2656 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2657
2658 /* Now process sub-blocks. */
2659 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2660 unshare_all_decls (t);
2661 }
2662
2663 /* Go through all virtual stack slots of a function and mark them as
2664 not shared. */
2665 static void
2666 reset_used_decls (blk)
2667 tree blk;
2668 {
2669 tree t;
2670
2671 /* Mark decls. */
2672 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2673 if (DECL_RTL_SET_P (t))
2674 reset_used_flags (DECL_RTL (t));
2675
2676 /* Now process sub-blocks. */
2677 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2678 reset_used_decls (t);
2679 }
2680
2681 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2682 placed in the result directly, rather than being copied. MAY_SHARE is
2683 either a MEM of an EXPR_LIST of MEMs. */
2684
2685 rtx
2686 copy_most_rtx (orig, may_share)
2687 rtx orig;
2688 rtx may_share;
2689 {
2690 rtx copy;
2691 int i, j;
2692 RTX_CODE code;
2693 const char *format_ptr;
2694
2695 if (orig == may_share
2696 || (GET_CODE (may_share) == EXPR_LIST
2697 && in_expr_list_p (may_share, orig)))
2698 return orig;
2699
2700 code = GET_CODE (orig);
2701
2702 switch (code)
2703 {
2704 case REG:
2705 case QUEUED:
2706 case CONST_INT:
2707 case CONST_DOUBLE:
2708 case CONST_VECTOR:
2709 case SYMBOL_REF:
2710 case CODE_LABEL:
2711 case PC:
2712 case CC0:
2713 return orig;
2714 default:
2715 break;
2716 }
2717
2718 copy = rtx_alloc (code);
2719 PUT_MODE (copy, GET_MODE (orig));
2720 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2721 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2722 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2723 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2724 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2725
2726 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2727
2728 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2729 {
2730 switch (*format_ptr++)
2731 {
2732 case 'e':
2733 XEXP (copy, i) = XEXP (orig, i);
2734 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2735 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2736 break;
2737
2738 case 'u':
2739 XEXP (copy, i) = XEXP (orig, i);
2740 break;
2741
2742 case 'E':
2743 case 'V':
2744 XVEC (copy, i) = XVEC (orig, i);
2745 if (XVEC (orig, i) != NULL)
2746 {
2747 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2748 for (j = 0; j < XVECLEN (copy, i); j++)
2749 XVECEXP (copy, i, j)
2750 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2751 }
2752 break;
2753
2754 case 'w':
2755 XWINT (copy, i) = XWINT (orig, i);
2756 break;
2757
2758 case 'n':
2759 case 'i':
2760 XINT (copy, i) = XINT (orig, i);
2761 break;
2762
2763 case 't':
2764 XTREE (copy, i) = XTREE (orig, i);
2765 break;
2766
2767 case 's':
2768 case 'S':
2769 XSTR (copy, i) = XSTR (orig, i);
2770 break;
2771
2772 case '0':
2773 /* Copy this through the wide int field; that's safest. */
2774 X0WINT (copy, i) = X0WINT (orig, i);
2775 break;
2776
2777 default:
2778 abort ();
2779 }
2780 }
2781 return copy;
2782 }
2783
2784 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2785 Recursively does the same for subexpressions. */
2786
2787 rtx
2788 copy_rtx_if_shared (orig)
2789 rtx orig;
2790 {
2791 rtx x = orig;
2792 int i;
2793 enum rtx_code code;
2794 const char *format_ptr;
2795 int copied = 0;
2796
2797 if (x == 0)
2798 return 0;
2799
2800 code = GET_CODE (x);
2801
2802 /* These types may be freely shared. */
2803
2804 switch (code)
2805 {
2806 case REG:
2807 case QUEUED:
2808 case CONST_INT:
2809 case CONST_DOUBLE:
2810 case CONST_VECTOR:
2811 case SYMBOL_REF:
2812 case CODE_LABEL:
2813 case PC:
2814 case CC0:
2815 case SCRATCH:
2816 /* SCRATCH must be shared because they represent distinct values. */
2817 return x;
2818
2819 case CONST:
2820 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2821 a LABEL_REF, it isn't sharable. */
2822 if (GET_CODE (XEXP (x, 0)) == PLUS
2823 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2824 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2825 return x;
2826 break;
2827
2828 case INSN:
2829 case JUMP_INSN:
2830 case CALL_INSN:
2831 case NOTE:
2832 case BARRIER:
2833 /* The chain of insns is not being copied. */
2834 return x;
2835
2836 case MEM:
2837 /* A MEM is allowed to be shared if its address is constant.
2838
2839 We used to allow sharing of MEMs which referenced
2840 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2841 that can lose. instantiate_virtual_regs will not unshare
2842 the MEMs, and combine may change the structure of the address
2843 because it looks safe and profitable in one context, but
2844 in some other context it creates unrecognizable RTL. */
2845 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2846 return x;
2847
2848 break;
2849
2850 default:
2851 break;
2852 }
2853
2854 /* This rtx may not be shared. If it has already been seen,
2855 replace it with a copy of itself. */
2856
2857 if (RTX_FLAG (x, used))
2858 {
2859 rtx copy;
2860
2861 copy = rtx_alloc (code);
2862 memcpy (copy, x,
2863 (sizeof (*copy) - sizeof (copy->fld)
2864 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2865 x = copy;
2866 copied = 1;
2867 }
2868 RTX_FLAG (x, used) = 1;
2869
2870 /* Now scan the subexpressions recursively.
2871 We can store any replaced subexpressions directly into X
2872 since we know X is not shared! Any vectors in X
2873 must be copied if X was copied. */
2874
2875 format_ptr = GET_RTX_FORMAT (code);
2876
2877 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2878 {
2879 switch (*format_ptr++)
2880 {
2881 case 'e':
2882 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2883 break;
2884
2885 case 'E':
2886 if (XVEC (x, i) != NULL)
2887 {
2888 int j;
2889 int len = XVECLEN (x, i);
2890
2891 if (copied && len > 0)
2892 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2893 for (j = 0; j < len; j++)
2894 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2895 }
2896 break;
2897 }
2898 }
2899 return x;
2900 }
2901
2902 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2903 to look for shared sub-parts. */
2904
2905 void
2906 reset_used_flags (x)
2907 rtx x;
2908 {
2909 int i, j;
2910 enum rtx_code code;
2911 const char *format_ptr;
2912
2913 if (x == 0)
2914 return;
2915
2916 code = GET_CODE (x);
2917
2918 /* These types may be freely shared so we needn't do any resetting
2919 for them. */
2920
2921 switch (code)
2922 {
2923 case REG:
2924 case QUEUED:
2925 case CONST_INT:
2926 case CONST_DOUBLE:
2927 case CONST_VECTOR:
2928 case SYMBOL_REF:
2929 case CODE_LABEL:
2930 case PC:
2931 case CC0:
2932 return;
2933
2934 case INSN:
2935 case JUMP_INSN:
2936 case CALL_INSN:
2937 case NOTE:
2938 case LABEL_REF:
2939 case BARRIER:
2940 /* The chain of insns is not being copied. */
2941 return;
2942
2943 default:
2944 break;
2945 }
2946
2947 RTX_FLAG (x, used) = 0;
2948
2949 format_ptr = GET_RTX_FORMAT (code);
2950 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2951 {
2952 switch (*format_ptr++)
2953 {
2954 case 'e':
2955 reset_used_flags (XEXP (x, i));
2956 break;
2957
2958 case 'E':
2959 for (j = 0; j < XVECLEN (x, i); j++)
2960 reset_used_flags (XVECEXP (x, i, j));
2961 break;
2962 }
2963 }
2964 }
2965 \f
2966 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2967 Return X or the rtx for the pseudo reg the value of X was copied into.
2968 OTHER must be valid as a SET_DEST. */
2969
2970 rtx
2971 make_safe_from (x, other)
2972 rtx x, other;
2973 {
2974 while (1)
2975 switch (GET_CODE (other))
2976 {
2977 case SUBREG:
2978 other = SUBREG_REG (other);
2979 break;
2980 case STRICT_LOW_PART:
2981 case SIGN_EXTEND:
2982 case ZERO_EXTEND:
2983 other = XEXP (other, 0);
2984 break;
2985 default:
2986 goto done;
2987 }
2988 done:
2989 if ((GET_CODE (other) == MEM
2990 && ! CONSTANT_P (x)
2991 && GET_CODE (x) != REG
2992 && GET_CODE (x) != SUBREG)
2993 || (GET_CODE (other) == REG
2994 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2995 || reg_mentioned_p (other, x))))
2996 {
2997 rtx temp = gen_reg_rtx (GET_MODE (x));
2998 emit_move_insn (temp, x);
2999 return temp;
3000 }
3001 return x;
3002 }
3003 \f
3004 /* Emission of insns (adding them to the doubly-linked list). */
3005
3006 /* Return the first insn of the current sequence or current function. */
3007
3008 rtx
3009 get_insns ()
3010 {
3011 return first_insn;
3012 }
3013
3014 /* Specify a new insn as the first in the chain. */
3015
3016 void
3017 set_first_insn (insn)
3018 rtx insn;
3019 {
3020 if (PREV_INSN (insn) != 0)
3021 abort ();
3022 first_insn = insn;
3023 }
3024
3025 /* Return the last insn emitted in current sequence or current function. */
3026
3027 rtx
3028 get_last_insn ()
3029 {
3030 return last_insn;
3031 }
3032
3033 /* Specify a new insn as the last in the chain. */
3034
3035 void
3036 set_last_insn (insn)
3037 rtx insn;
3038 {
3039 if (NEXT_INSN (insn) != 0)
3040 abort ();
3041 last_insn = insn;
3042 }
3043
3044 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3045
3046 rtx
3047 get_last_insn_anywhere ()
3048 {
3049 struct sequence_stack *stack;
3050 if (last_insn)
3051 return last_insn;
3052 for (stack = seq_stack; stack; stack = stack->next)
3053 if (stack->last != 0)
3054 return stack->last;
3055 return 0;
3056 }
3057
3058 /* Return the first nonnote insn emitted in current sequence or current
3059 function. This routine looks inside SEQUENCEs. */
3060
3061 rtx
3062 get_first_nonnote_insn ()
3063 {
3064 rtx insn = first_insn;
3065
3066 while (insn)
3067 {
3068 insn = next_insn (insn);
3069 if (insn == 0 || GET_CODE (insn) != NOTE)
3070 break;
3071 }
3072
3073 return insn;
3074 }
3075
3076 /* Return the last nonnote insn emitted in current sequence or current
3077 function. This routine looks inside SEQUENCEs. */
3078
3079 rtx
3080 get_last_nonnote_insn ()
3081 {
3082 rtx insn = last_insn;
3083
3084 while (insn)
3085 {
3086 insn = previous_insn (insn);
3087 if (insn == 0 || GET_CODE (insn) != NOTE)
3088 break;
3089 }
3090
3091 return insn;
3092 }
3093
3094 /* Return a number larger than any instruction's uid in this function. */
3095
3096 int
3097 get_max_uid ()
3098 {
3099 return cur_insn_uid;
3100 }
3101
3102 /* Renumber instructions so that no instruction UIDs are wasted. */
3103
3104 void
3105 renumber_insns (stream)
3106 FILE *stream;
3107 {
3108 rtx insn;
3109
3110 /* If we're not supposed to renumber instructions, don't. */
3111 if (!flag_renumber_insns)
3112 return;
3113
3114 /* If there aren't that many instructions, then it's not really
3115 worth renumbering them. */
3116 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
3117 return;
3118
3119 cur_insn_uid = 1;
3120
3121 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3122 {
3123 if (stream)
3124 fprintf (stream, "Renumbering insn %d to %d\n",
3125 INSN_UID (insn), cur_insn_uid);
3126 INSN_UID (insn) = cur_insn_uid++;
3127 }
3128 }
3129 \f
3130 /* Return the next insn. If it is a SEQUENCE, return the first insn
3131 of the sequence. */
3132
3133 rtx
3134 next_insn (insn)
3135 rtx insn;
3136 {
3137 if (insn)
3138 {
3139 insn = NEXT_INSN (insn);
3140 if (insn && GET_CODE (insn) == INSN
3141 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3142 insn = XVECEXP (PATTERN (insn), 0, 0);
3143 }
3144
3145 return insn;
3146 }
3147
3148 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3149 of the sequence. */
3150
3151 rtx
3152 previous_insn (insn)
3153 rtx insn;
3154 {
3155 if (insn)
3156 {
3157 insn = PREV_INSN (insn);
3158 if (insn && GET_CODE (insn) == INSN
3159 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3160 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3161 }
3162
3163 return insn;
3164 }
3165
3166 /* Return the next insn after INSN that is not a NOTE. This routine does not
3167 look inside SEQUENCEs. */
3168
3169 rtx
3170 next_nonnote_insn (insn)
3171 rtx insn;
3172 {
3173 while (insn)
3174 {
3175 insn = NEXT_INSN (insn);
3176 if (insn == 0 || GET_CODE (insn) != NOTE)
3177 break;
3178 }
3179
3180 return insn;
3181 }
3182
3183 /* Return the previous insn before INSN that is not a NOTE. This routine does
3184 not look inside SEQUENCEs. */
3185
3186 rtx
3187 prev_nonnote_insn (insn)
3188 rtx insn;
3189 {
3190 while (insn)
3191 {
3192 insn = PREV_INSN (insn);
3193 if (insn == 0 || GET_CODE (insn) != NOTE)
3194 break;
3195 }
3196
3197 return insn;
3198 }
3199
3200 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3201 or 0, if there is none. This routine does not look inside
3202 SEQUENCEs. */
3203
3204 rtx
3205 next_real_insn (insn)
3206 rtx insn;
3207 {
3208 while (insn)
3209 {
3210 insn = NEXT_INSN (insn);
3211 if (insn == 0 || GET_CODE (insn) == INSN
3212 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3213 break;
3214 }
3215
3216 return insn;
3217 }
3218
3219 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3220 or 0, if there is none. This routine does not look inside
3221 SEQUENCEs. */
3222
3223 rtx
3224 prev_real_insn (insn)
3225 rtx insn;
3226 {
3227 while (insn)
3228 {
3229 insn = PREV_INSN (insn);
3230 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3231 || GET_CODE (insn) == JUMP_INSN)
3232 break;
3233 }
3234
3235 return insn;
3236 }
3237
3238 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3239 This routine does not look inside SEQUENCEs. */
3240
3241 rtx
3242 last_call_insn ()
3243 {
3244 rtx insn;
3245
3246 for (insn = get_last_insn ();
3247 insn && GET_CODE (insn) != CALL_INSN;
3248 insn = PREV_INSN (insn))
3249 ;
3250
3251 return insn;
3252 }
3253
3254 /* Find the next insn after INSN that really does something. This routine
3255 does not look inside SEQUENCEs. Until reload has completed, this is the
3256 same as next_real_insn. */
3257
3258 int
3259 active_insn_p (insn)
3260 rtx insn;
3261 {
3262 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3263 || (GET_CODE (insn) == INSN
3264 && (! reload_completed
3265 || (GET_CODE (PATTERN (insn)) != USE
3266 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3267 }
3268
3269 rtx
3270 next_active_insn (insn)
3271 rtx insn;
3272 {
3273 while (insn)
3274 {
3275 insn = NEXT_INSN (insn);
3276 if (insn == 0 || active_insn_p (insn))
3277 break;
3278 }
3279
3280 return insn;
3281 }
3282
3283 /* Find the last insn before INSN that really does something. This routine
3284 does not look inside SEQUENCEs. Until reload has completed, this is the
3285 same as prev_real_insn. */
3286
3287 rtx
3288 prev_active_insn (insn)
3289 rtx insn;
3290 {
3291 while (insn)
3292 {
3293 insn = PREV_INSN (insn);
3294 if (insn == 0 || active_insn_p (insn))
3295 break;
3296 }
3297
3298 return insn;
3299 }
3300
3301 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3302
3303 rtx
3304 next_label (insn)
3305 rtx insn;
3306 {
3307 while (insn)
3308 {
3309 insn = NEXT_INSN (insn);
3310 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3311 break;
3312 }
3313
3314 return insn;
3315 }
3316
3317 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3318
3319 rtx
3320 prev_label (insn)
3321 rtx insn;
3322 {
3323 while (insn)
3324 {
3325 insn = PREV_INSN (insn);
3326 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3327 break;
3328 }
3329
3330 return insn;
3331 }
3332 \f
3333 #ifdef HAVE_cc0
3334 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3335 and REG_CC_USER notes so we can find it. */
3336
3337 void
3338 link_cc0_insns (insn)
3339 rtx insn;
3340 {
3341 rtx user = next_nonnote_insn (insn);
3342
3343 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3344 user = XVECEXP (PATTERN (user), 0, 0);
3345
3346 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3347 REG_NOTES (user));
3348 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3349 }
3350
3351 /* Return the next insn that uses CC0 after INSN, which is assumed to
3352 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3353 applied to the result of this function should yield INSN).
3354
3355 Normally, this is simply the next insn. However, if a REG_CC_USER note
3356 is present, it contains the insn that uses CC0.
3357
3358 Return 0 if we can't find the insn. */
3359
3360 rtx
3361 next_cc0_user (insn)
3362 rtx insn;
3363 {
3364 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3365
3366 if (note)
3367 return XEXP (note, 0);
3368
3369 insn = next_nonnote_insn (insn);
3370 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3371 insn = XVECEXP (PATTERN (insn), 0, 0);
3372
3373 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3374 return insn;
3375
3376 return 0;
3377 }
3378
3379 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3380 note, it is the previous insn. */
3381
3382 rtx
3383 prev_cc0_setter (insn)
3384 rtx insn;
3385 {
3386 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3387
3388 if (note)
3389 return XEXP (note, 0);
3390
3391 insn = prev_nonnote_insn (insn);
3392 if (! sets_cc0_p (PATTERN (insn)))
3393 abort ();
3394
3395 return insn;
3396 }
3397 #endif
3398
3399 /* Increment the label uses for all labels present in rtx. */
3400
3401 static void
3402 mark_label_nuses (x)
3403 rtx x;
3404 {
3405 enum rtx_code code;
3406 int i, j;
3407 const char *fmt;
3408
3409 code = GET_CODE (x);
3410 if (code == LABEL_REF)
3411 LABEL_NUSES (XEXP (x, 0))++;
3412
3413 fmt = GET_RTX_FORMAT (code);
3414 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3415 {
3416 if (fmt[i] == 'e')
3417 mark_label_nuses (XEXP (x, i));
3418 else if (fmt[i] == 'E')
3419 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3420 mark_label_nuses (XVECEXP (x, i, j));
3421 }
3422 }
3423
3424 \f
3425 /* Try splitting insns that can be split for better scheduling.
3426 PAT is the pattern which might split.
3427 TRIAL is the insn providing PAT.
3428 LAST is nonzero if we should return the last insn of the sequence produced.
3429
3430 If this routine succeeds in splitting, it returns the first or last
3431 replacement insn depending on the value of LAST. Otherwise, it
3432 returns TRIAL. If the insn to be returned can be split, it will be. */
3433
3434 rtx
3435 try_split (pat, trial, last)
3436 rtx pat, trial;
3437 int last;
3438 {
3439 rtx before = PREV_INSN (trial);
3440 rtx after = NEXT_INSN (trial);
3441 int has_barrier = 0;
3442 rtx tem;
3443 rtx note, seq;
3444 int probability;
3445 rtx insn_last, insn;
3446 int njumps = 0;
3447
3448 if (any_condjump_p (trial)
3449 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3450 split_branch_probability = INTVAL (XEXP (note, 0));
3451 probability = split_branch_probability;
3452
3453 seq = split_insns (pat, trial);
3454
3455 split_branch_probability = -1;
3456
3457 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3458 We may need to handle this specially. */
3459 if (after && GET_CODE (after) == BARRIER)
3460 {
3461 has_barrier = 1;
3462 after = NEXT_INSN (after);
3463 }
3464
3465 if (!seq)
3466 return trial;
3467
3468 /* Avoid infinite loop if any insn of the result matches
3469 the original pattern. */
3470 insn_last = seq;
3471 while (1)
3472 {
3473 if (INSN_P (insn_last)
3474 && rtx_equal_p (PATTERN (insn_last), pat))
3475 return trial;
3476 if (!NEXT_INSN (insn_last))
3477 break;
3478 insn_last = NEXT_INSN (insn_last);
3479 }
3480
3481 /* Mark labels. */
3482 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3483 {
3484 if (GET_CODE (insn) == JUMP_INSN)
3485 {
3486 mark_jump_label (PATTERN (insn), insn, 0);
3487 njumps++;
3488 if (probability != -1
3489 && any_condjump_p (insn)
3490 && !find_reg_note (insn, REG_BR_PROB, 0))
3491 {
3492 /* We can preserve the REG_BR_PROB notes only if exactly
3493 one jump is created, otherwise the machine description
3494 is responsible for this step using
3495 split_branch_probability variable. */
3496 if (njumps != 1)
3497 abort ();
3498 REG_NOTES (insn)
3499 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3500 GEN_INT (probability),
3501 REG_NOTES (insn));
3502 }
3503 }
3504 }
3505
3506 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3507 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3508 if (GET_CODE (trial) == CALL_INSN)
3509 {
3510 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3511 if (GET_CODE (insn) == CALL_INSN)
3512 {
3513 CALL_INSN_FUNCTION_USAGE (insn)
3514 = CALL_INSN_FUNCTION_USAGE (trial);
3515 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3516 }
3517 }
3518
3519 /* Copy notes, particularly those related to the CFG. */
3520 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3521 {
3522 switch (REG_NOTE_KIND (note))
3523 {
3524 case REG_EH_REGION:
3525 insn = insn_last;
3526 while (insn != NULL_RTX)
3527 {
3528 if (GET_CODE (insn) == CALL_INSN
3529 || (flag_non_call_exceptions
3530 && may_trap_p (PATTERN (insn))))
3531 REG_NOTES (insn)
3532 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3533 XEXP (note, 0),
3534 REG_NOTES (insn));
3535 insn = PREV_INSN (insn);
3536 }
3537 break;
3538
3539 case REG_NORETURN:
3540 case REG_SETJMP:
3541 case REG_ALWAYS_RETURN:
3542 insn = insn_last;
3543 while (insn != NULL_RTX)
3544 {
3545 if (GET_CODE (insn) == CALL_INSN)
3546 REG_NOTES (insn)
3547 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3548 XEXP (note, 0),
3549 REG_NOTES (insn));
3550 insn = PREV_INSN (insn);
3551 }
3552 break;
3553
3554 case REG_NON_LOCAL_GOTO:
3555 insn = insn_last;
3556 while (insn != NULL_RTX)
3557 {
3558 if (GET_CODE (insn) == JUMP_INSN)
3559 REG_NOTES (insn)
3560 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3561 XEXP (note, 0),
3562 REG_NOTES (insn));
3563 insn = PREV_INSN (insn);
3564 }
3565 break;
3566
3567 default:
3568 break;
3569 }
3570 }
3571
3572 /* If there are LABELS inside the split insns increment the
3573 usage count so we don't delete the label. */
3574 if (GET_CODE (trial) == INSN)
3575 {
3576 insn = insn_last;
3577 while (insn != NULL_RTX)
3578 {
3579 if (GET_CODE (insn) == INSN)
3580 mark_label_nuses (PATTERN (insn));
3581
3582 insn = PREV_INSN (insn);
3583 }
3584 }
3585
3586 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3587
3588 delete_insn (trial);
3589 if (has_barrier)
3590 emit_barrier_after (tem);
3591
3592 /* Recursively call try_split for each new insn created; by the
3593 time control returns here that insn will be fully split, so
3594 set LAST and continue from the insn after the one returned.
3595 We can't use next_active_insn here since AFTER may be a note.
3596 Ignore deleted insns, which can be occur if not optimizing. */
3597 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3598 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3599 tem = try_split (PATTERN (tem), tem, 1);
3600
3601 /* Return either the first or the last insn, depending on which was
3602 requested. */
3603 return last
3604 ? (after ? PREV_INSN (after) : last_insn)
3605 : NEXT_INSN (before);
3606 }
3607 \f
3608 /* Make and return an INSN rtx, initializing all its slots.
3609 Store PATTERN in the pattern slots. */
3610
3611 rtx
3612 make_insn_raw (pattern)
3613 rtx pattern;
3614 {
3615 rtx insn;
3616
3617 insn = rtx_alloc (INSN);
3618
3619 INSN_UID (insn) = cur_insn_uid++;
3620 PATTERN (insn) = pattern;
3621 INSN_CODE (insn) = -1;
3622 LOG_LINKS (insn) = NULL;
3623 REG_NOTES (insn) = NULL;
3624 INSN_LOCATOR (insn) = 0;
3625 BLOCK_FOR_INSN (insn) = NULL;
3626
3627 #ifdef ENABLE_RTL_CHECKING
3628 if (insn
3629 && INSN_P (insn)
3630 && (returnjump_p (insn)
3631 || (GET_CODE (insn) == SET
3632 && SET_DEST (insn) == pc_rtx)))
3633 {
3634 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3635 debug_rtx (insn);
3636 }
3637 #endif
3638
3639 return insn;
3640 }
3641
3642 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3643
3644 static rtx
3645 make_jump_insn_raw (pattern)
3646 rtx pattern;
3647 {
3648 rtx insn;
3649
3650 insn = rtx_alloc (JUMP_INSN);
3651 INSN_UID (insn) = cur_insn_uid++;
3652
3653 PATTERN (insn) = pattern;
3654 INSN_CODE (insn) = -1;
3655 LOG_LINKS (insn) = NULL;
3656 REG_NOTES (insn) = NULL;
3657 JUMP_LABEL (insn) = NULL;
3658 INSN_LOCATOR (insn) = 0;
3659 BLOCK_FOR_INSN (insn) = NULL;
3660
3661 return insn;
3662 }
3663
3664 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3665
3666 static rtx
3667 make_call_insn_raw (pattern)
3668 rtx pattern;
3669 {
3670 rtx insn;
3671
3672 insn = rtx_alloc (CALL_INSN);
3673 INSN_UID (insn) = cur_insn_uid++;
3674
3675 PATTERN (insn) = pattern;
3676 INSN_CODE (insn) = -1;
3677 LOG_LINKS (insn) = NULL;
3678 REG_NOTES (insn) = NULL;
3679 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3680 INSN_LOCATOR (insn) = 0;
3681 BLOCK_FOR_INSN (insn) = NULL;
3682
3683 return insn;
3684 }
3685 \f
3686 /* Add INSN to the end of the doubly-linked list.
3687 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3688
3689 void
3690 add_insn (insn)
3691 rtx insn;
3692 {
3693 PREV_INSN (insn) = last_insn;
3694 NEXT_INSN (insn) = 0;
3695
3696 if (NULL != last_insn)
3697 NEXT_INSN (last_insn) = insn;
3698
3699 if (NULL == first_insn)
3700 first_insn = insn;
3701
3702 last_insn = insn;
3703 }
3704
3705 /* Add INSN into the doubly-linked list after insn AFTER. This and
3706 the next should be the only functions called to insert an insn once
3707 delay slots have been filled since only they know how to update a
3708 SEQUENCE. */
3709
3710 void
3711 add_insn_after (insn, after)
3712 rtx insn, after;
3713 {
3714 rtx next = NEXT_INSN (after);
3715 basic_block bb;
3716
3717 if (optimize && INSN_DELETED_P (after))
3718 abort ();
3719
3720 NEXT_INSN (insn) = next;
3721 PREV_INSN (insn) = after;
3722
3723 if (next)
3724 {
3725 PREV_INSN (next) = insn;
3726 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3727 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3728 }
3729 else if (last_insn == after)
3730 last_insn = insn;
3731 else
3732 {
3733 struct sequence_stack *stack = seq_stack;
3734 /* Scan all pending sequences too. */
3735 for (; stack; stack = stack->next)
3736 if (after == stack->last)
3737 {
3738 stack->last = insn;
3739 break;
3740 }
3741
3742 if (stack == 0)
3743 abort ();
3744 }
3745
3746 if (GET_CODE (after) != BARRIER
3747 && GET_CODE (insn) != BARRIER
3748 && (bb = BLOCK_FOR_INSN (after)))
3749 {
3750 set_block_for_insn (insn, bb);
3751 if (INSN_P (insn))
3752 bb->flags |= BB_DIRTY;
3753 /* Should not happen as first in the BB is always
3754 either NOTE or LABEL. */
3755 if (bb->end == after
3756 /* Avoid clobbering of structure when creating new BB. */
3757 && GET_CODE (insn) != BARRIER
3758 && (GET_CODE (insn) != NOTE
3759 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3760 bb->end = insn;
3761 }
3762
3763 NEXT_INSN (after) = insn;
3764 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3765 {
3766 rtx sequence = PATTERN (after);
3767 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3768 }
3769 }
3770
3771 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3772 the previous should be the only functions called to insert an insn once
3773 delay slots have been filled since only they know how to update a
3774 SEQUENCE. */
3775
3776 void
3777 add_insn_before (insn, before)
3778 rtx insn, before;
3779 {
3780 rtx prev = PREV_INSN (before);
3781 basic_block bb;
3782
3783 if (optimize && INSN_DELETED_P (before))
3784 abort ();
3785
3786 PREV_INSN (insn) = prev;
3787 NEXT_INSN (insn) = before;
3788
3789 if (prev)
3790 {
3791 NEXT_INSN (prev) = insn;
3792 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3793 {
3794 rtx sequence = PATTERN (prev);
3795 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3796 }
3797 }
3798 else if (first_insn == before)
3799 first_insn = insn;
3800 else
3801 {
3802 struct sequence_stack *stack = seq_stack;
3803 /* Scan all pending sequences too. */
3804 for (; stack; stack = stack->next)
3805 if (before == stack->first)
3806 {
3807 stack->first = insn;
3808 break;
3809 }
3810
3811 if (stack == 0)
3812 abort ();
3813 }
3814
3815 if (GET_CODE (before) != BARRIER
3816 && GET_CODE (insn) != BARRIER
3817 && (bb = BLOCK_FOR_INSN (before)))
3818 {
3819 set_block_for_insn (insn, bb);
3820 if (INSN_P (insn))
3821 bb->flags |= BB_DIRTY;
3822 /* Should not happen as first in the BB is always
3823 either NOTE or LABEl. */
3824 if (bb->head == insn
3825 /* Avoid clobbering of structure when creating new BB. */
3826 && GET_CODE (insn) != BARRIER
3827 && (GET_CODE (insn) != NOTE
3828 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3829 abort ();
3830 }
3831
3832 PREV_INSN (before) = insn;
3833 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3834 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3835 }
3836
3837 /* Remove an insn from its doubly-linked list. This function knows how
3838 to handle sequences. */
3839 void
3840 remove_insn (insn)
3841 rtx insn;
3842 {
3843 rtx next = NEXT_INSN (insn);
3844 rtx prev = PREV_INSN (insn);
3845 basic_block bb;
3846
3847 if (prev)
3848 {
3849 NEXT_INSN (prev) = next;
3850 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3851 {
3852 rtx sequence = PATTERN (prev);
3853 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3854 }
3855 }
3856 else if (first_insn == insn)
3857 first_insn = next;
3858 else
3859 {
3860 struct sequence_stack *stack = seq_stack;
3861 /* Scan all pending sequences too. */
3862 for (; stack; stack = stack->next)
3863 if (insn == stack->first)
3864 {
3865 stack->first = next;
3866 break;
3867 }
3868
3869 if (stack == 0)
3870 abort ();
3871 }
3872
3873 if (next)
3874 {
3875 PREV_INSN (next) = prev;
3876 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3877 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3878 }
3879 else if (last_insn == insn)
3880 last_insn = prev;
3881 else
3882 {
3883 struct sequence_stack *stack = seq_stack;
3884 /* Scan all pending sequences too. */
3885 for (; stack; stack = stack->next)
3886 if (insn == stack->last)
3887 {
3888 stack->last = prev;
3889 break;
3890 }
3891
3892 if (stack == 0)
3893 abort ();
3894 }
3895 if (GET_CODE (insn) != BARRIER
3896 && (bb = BLOCK_FOR_INSN (insn)))
3897 {
3898 if (INSN_P (insn))
3899 bb->flags |= BB_DIRTY;
3900 if (bb->head == insn)
3901 {
3902 /* Never ever delete the basic block note without deleting whole
3903 basic block. */
3904 if (GET_CODE (insn) == NOTE)
3905 abort ();
3906 bb->head = next;
3907 }
3908 if (bb->end == insn)
3909 bb->end = prev;
3910 }
3911 }
3912
3913 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3914
3915 void
3916 add_function_usage_to (call_insn, call_fusage)
3917 rtx call_insn, call_fusage;
3918 {
3919 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3920 abort ();
3921
3922 /* Put the register usage information on the CALL. If there is already
3923 some usage information, put ours at the end. */
3924 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3925 {
3926 rtx link;
3927
3928 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3929 link = XEXP (link, 1))
3930 ;
3931
3932 XEXP (link, 1) = call_fusage;
3933 }
3934 else
3935 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3936 }
3937
3938 /* Delete all insns made since FROM.
3939 FROM becomes the new last instruction. */
3940
3941 void
3942 delete_insns_since (from)
3943 rtx from;
3944 {
3945 if (from == 0)
3946 first_insn = 0;
3947 else
3948 NEXT_INSN (from) = 0;
3949 last_insn = from;
3950 }
3951
3952 /* This function is deprecated, please use sequences instead.
3953
3954 Move a consecutive bunch of insns to a different place in the chain.
3955 The insns to be moved are those between FROM and TO.
3956 They are moved to a new position after the insn AFTER.
3957 AFTER must not be FROM or TO or any insn in between.
3958
3959 This function does not know about SEQUENCEs and hence should not be
3960 called after delay-slot filling has been done. */
3961
3962 void
3963 reorder_insns_nobb (from, to, after)
3964 rtx from, to, after;
3965 {
3966 /* Splice this bunch out of where it is now. */
3967 if (PREV_INSN (from))
3968 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3969 if (NEXT_INSN (to))
3970 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3971 if (last_insn == to)
3972 last_insn = PREV_INSN (from);
3973 if (first_insn == from)
3974 first_insn = NEXT_INSN (to);
3975
3976 /* Make the new neighbors point to it and it to them. */
3977 if (NEXT_INSN (after))
3978 PREV_INSN (NEXT_INSN (after)) = to;
3979
3980 NEXT_INSN (to) = NEXT_INSN (after);
3981 PREV_INSN (from) = after;
3982 NEXT_INSN (after) = from;
3983 if (after == last_insn)
3984 last_insn = to;
3985 }
3986
3987 /* Same as function above, but take care to update BB boundaries. */
3988 void
3989 reorder_insns (from, to, after)
3990 rtx from, to, after;
3991 {
3992 rtx prev = PREV_INSN (from);
3993 basic_block bb, bb2;
3994
3995 reorder_insns_nobb (from, to, after);
3996
3997 if (GET_CODE (after) != BARRIER
3998 && (bb = BLOCK_FOR_INSN (after)))
3999 {
4000 rtx x;
4001 bb->flags |= BB_DIRTY;
4002
4003 if (GET_CODE (from) != BARRIER
4004 && (bb2 = BLOCK_FOR_INSN (from)))
4005 {
4006 if (bb2->end == to)
4007 bb2->end = prev;
4008 bb2->flags |= BB_DIRTY;
4009 }
4010
4011 if (bb->end == after)
4012 bb->end = to;
4013
4014 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4015 set_block_for_insn (x, bb);
4016 }
4017 }
4018
4019 /* Return the line note insn preceding INSN. */
4020
4021 static rtx
4022 find_line_note (insn)
4023 rtx insn;
4024 {
4025 if (no_line_numbers)
4026 return 0;
4027
4028 for (; insn; insn = PREV_INSN (insn))
4029 if (GET_CODE (insn) == NOTE
4030 && NOTE_LINE_NUMBER (insn) >= 0)
4031 break;
4032
4033 return insn;
4034 }
4035
4036 /* Like reorder_insns, but inserts line notes to preserve the line numbers
4037 of the moved insns when debugging. This may insert a note between AFTER
4038 and FROM, and another one after TO. */
4039
4040 void
4041 reorder_insns_with_line_notes (from, to, after)
4042 rtx from, to, after;
4043 {
4044 rtx from_line = find_line_note (from);
4045 rtx after_line = find_line_note (after);
4046
4047 reorder_insns (from, to, after);
4048
4049 if (from_line == after_line)
4050 return;
4051
4052 if (from_line)
4053 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4054 NOTE_LINE_NUMBER (from_line),
4055 after);
4056 if (after_line)
4057 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4058 NOTE_LINE_NUMBER (after_line),
4059 to);
4060 }
4061
4062 /* Remove unnecessary notes from the instruction stream. */
4063
4064 void
4065 remove_unnecessary_notes ()
4066 {
4067 rtx block_stack = NULL_RTX;
4068 rtx eh_stack = NULL_RTX;
4069 rtx insn;
4070 rtx next;
4071 rtx tmp;
4072
4073 /* We must not remove the first instruction in the function because
4074 the compiler depends on the first instruction being a note. */
4075 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
4076 {
4077 /* Remember what's next. */
4078 next = NEXT_INSN (insn);
4079
4080 /* We're only interested in notes. */
4081 if (GET_CODE (insn) != NOTE)
4082 continue;
4083
4084 switch (NOTE_LINE_NUMBER (insn))
4085 {
4086 case NOTE_INSN_DELETED:
4087 case NOTE_INSN_LOOP_END_TOP_COND:
4088 remove_insn (insn);
4089 break;
4090
4091 case NOTE_INSN_EH_REGION_BEG:
4092 eh_stack = alloc_INSN_LIST (insn, eh_stack);
4093 break;
4094
4095 case NOTE_INSN_EH_REGION_END:
4096 /* Too many end notes. */
4097 if (eh_stack == NULL_RTX)
4098 abort ();
4099 /* Mismatched nesting. */
4100 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
4101 abort ();
4102 tmp = eh_stack;
4103 eh_stack = XEXP (eh_stack, 1);
4104 free_INSN_LIST_node (tmp);
4105 break;
4106
4107 case NOTE_INSN_BLOCK_BEG:
4108 /* By now, all notes indicating lexical blocks should have
4109 NOTE_BLOCK filled in. */
4110 if (NOTE_BLOCK (insn) == NULL_TREE)
4111 abort ();
4112 block_stack = alloc_INSN_LIST (insn, block_stack);
4113 break;
4114
4115 case NOTE_INSN_BLOCK_END:
4116 /* Too many end notes. */
4117 if (block_stack == NULL_RTX)
4118 abort ();
4119 /* Mismatched nesting. */
4120 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
4121 abort ();
4122 tmp = block_stack;
4123 block_stack = XEXP (block_stack, 1);
4124 free_INSN_LIST_node (tmp);
4125
4126 /* Scan back to see if there are any non-note instructions
4127 between INSN and the beginning of this block. If not,
4128 then there is no PC range in the generated code that will
4129 actually be in this block, so there's no point in
4130 remembering the existence of the block. */
4131 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
4132 {
4133 /* This block contains a real instruction. Note that we
4134 don't include labels; if the only thing in the block
4135 is a label, then there are still no PC values that
4136 lie within the block. */
4137 if (INSN_P (tmp))
4138 break;
4139
4140 /* We're only interested in NOTEs. */
4141 if (GET_CODE (tmp) != NOTE)
4142 continue;
4143
4144 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
4145 {
4146 /* We just verified that this BLOCK matches us with
4147 the block_stack check above. Never delete the
4148 BLOCK for the outermost scope of the function; we
4149 can refer to names from that scope even if the
4150 block notes are messed up. */
4151 if (! is_body_block (NOTE_BLOCK (insn))
4152 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
4153 {
4154 remove_insn (tmp);
4155 remove_insn (insn);
4156 }
4157 break;
4158 }
4159 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
4160 /* There's a nested block. We need to leave the
4161 current block in place since otherwise the debugger
4162 wouldn't be able to show symbols from our block in
4163 the nested block. */
4164 break;
4165 }
4166 }
4167 }
4168
4169 /* Too many begin notes. */
4170 if (block_stack || eh_stack)
4171 abort ();
4172 }
4173
4174 \f
4175 /* Emit insn(s) of given code and pattern
4176 at a specified place within the doubly-linked list.
4177
4178 All of the emit_foo global entry points accept an object
4179 X which is either an insn list or a PATTERN of a single
4180 instruction.
4181
4182 There are thus a few canonical ways to generate code and
4183 emit it at a specific place in the instruction stream. For
4184 example, consider the instruction named SPOT and the fact that
4185 we would like to emit some instructions before SPOT. We might
4186 do it like this:
4187
4188 start_sequence ();
4189 ... emit the new instructions ...
4190 insns_head = get_insns ();
4191 end_sequence ();
4192
4193 emit_insn_before (insns_head, SPOT);
4194
4195 It used to be common to generate SEQUENCE rtl instead, but that
4196 is a relic of the past which no longer occurs. The reason is that
4197 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4198 generated would almost certainly die right after it was created. */
4199
4200 /* Make X be output before the instruction BEFORE. */
4201
4202 rtx
4203 emit_insn_before (x, before)
4204 rtx x, before;
4205 {
4206 rtx last = before;
4207 rtx insn;
4208
4209 #ifdef ENABLE_RTL_CHECKING
4210 if (before == NULL_RTX)
4211 abort ();
4212 #endif
4213
4214 if (x == NULL_RTX)
4215 return last;
4216
4217 switch (GET_CODE (x))
4218 {
4219 case INSN:
4220 case JUMP_INSN:
4221 case CALL_INSN:
4222 case CODE_LABEL:
4223 case BARRIER:
4224 case NOTE:
4225 insn = x;
4226 while (insn)
4227 {
4228 rtx next = NEXT_INSN (insn);
4229 add_insn_before (insn, before);
4230 last = insn;
4231 insn = next;
4232 }
4233 break;
4234
4235 #ifdef ENABLE_RTL_CHECKING
4236 case SEQUENCE:
4237 abort ();
4238 break;
4239 #endif
4240
4241 default:
4242 last = make_insn_raw (x);
4243 add_insn_before (last, before);
4244 break;
4245 }
4246
4247 return last;
4248 }
4249
4250 /* Make an instruction with body X and code JUMP_INSN
4251 and output it before the instruction BEFORE. */
4252
4253 rtx
4254 emit_jump_insn_before (x, before)
4255 rtx x, before;
4256 {
4257 rtx insn, last = NULL_RTX;
4258
4259 #ifdef ENABLE_RTL_CHECKING
4260 if (before == NULL_RTX)
4261 abort ();
4262 #endif
4263
4264 switch (GET_CODE (x))
4265 {
4266 case INSN:
4267 case JUMP_INSN:
4268 case CALL_INSN:
4269 case CODE_LABEL:
4270 case BARRIER:
4271 case NOTE:
4272 insn = x;
4273 while (insn)
4274 {
4275 rtx next = NEXT_INSN (insn);
4276 add_insn_before (insn, before);
4277 last = insn;
4278 insn = next;
4279 }
4280 break;
4281
4282 #ifdef ENABLE_RTL_CHECKING
4283 case SEQUENCE:
4284 abort ();
4285 break;
4286 #endif
4287
4288 default:
4289 last = make_jump_insn_raw (x);
4290 add_insn_before (last, before);
4291 break;
4292 }
4293
4294 return last;
4295 }
4296
4297 /* Make an instruction with body X and code CALL_INSN
4298 and output it before the instruction BEFORE. */
4299
4300 rtx
4301 emit_call_insn_before (x, before)
4302 rtx x, before;
4303 {
4304 rtx last = NULL_RTX, insn;
4305
4306 #ifdef ENABLE_RTL_CHECKING
4307 if (before == NULL_RTX)
4308 abort ();
4309 #endif
4310
4311 switch (GET_CODE (x))
4312 {
4313 case INSN:
4314 case JUMP_INSN:
4315 case CALL_INSN:
4316 case CODE_LABEL:
4317 case BARRIER:
4318 case NOTE:
4319 insn = x;
4320 while (insn)
4321 {
4322 rtx next = NEXT_INSN (insn);
4323 add_insn_before (insn, before);
4324 last = insn;
4325 insn = next;
4326 }
4327 break;
4328
4329 #ifdef ENABLE_RTL_CHECKING
4330 case SEQUENCE:
4331 abort ();
4332 break;
4333 #endif
4334
4335 default:
4336 last = make_call_insn_raw (x);
4337 add_insn_before (last, before);
4338 break;
4339 }
4340
4341 return last;
4342 }
4343
4344 /* Make an insn of code BARRIER
4345 and output it before the insn BEFORE. */
4346
4347 rtx
4348 emit_barrier_before (before)
4349 rtx before;
4350 {
4351 rtx insn = rtx_alloc (BARRIER);
4352
4353 INSN_UID (insn) = cur_insn_uid++;
4354
4355 add_insn_before (insn, before);
4356 return insn;
4357 }
4358
4359 /* Emit the label LABEL before the insn BEFORE. */
4360
4361 rtx
4362 emit_label_before (label, before)
4363 rtx label, before;
4364 {
4365 /* This can be called twice for the same label as a result of the
4366 confusion that follows a syntax error! So make it harmless. */
4367 if (INSN_UID (label) == 0)
4368 {
4369 INSN_UID (label) = cur_insn_uid++;
4370 add_insn_before (label, before);
4371 }
4372
4373 return label;
4374 }
4375
4376 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4377
4378 rtx
4379 emit_note_before (subtype, before)
4380 int subtype;
4381 rtx before;
4382 {
4383 rtx note = rtx_alloc (NOTE);
4384 INSN_UID (note) = cur_insn_uid++;
4385 NOTE_SOURCE_FILE (note) = 0;
4386 NOTE_LINE_NUMBER (note) = subtype;
4387 BLOCK_FOR_INSN (note) = NULL;
4388
4389 add_insn_before (note, before);
4390 return note;
4391 }
4392 \f
4393 /* Helper for emit_insn_after, handles lists of instructions
4394 efficiently. */
4395
4396 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4397
4398 static rtx
4399 emit_insn_after_1 (first, after)
4400 rtx first, after;
4401 {
4402 rtx last;
4403 rtx after_after;
4404 basic_block bb;
4405
4406 if (GET_CODE (after) != BARRIER
4407 && (bb = BLOCK_FOR_INSN (after)))
4408 {
4409 bb->flags |= BB_DIRTY;
4410 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4411 if (GET_CODE (last) != BARRIER)
4412 set_block_for_insn (last, bb);
4413 if (GET_CODE (last) != BARRIER)
4414 set_block_for_insn (last, bb);
4415 if (bb->end == after)
4416 bb->end = last;
4417 }
4418 else
4419 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4420 continue;
4421
4422 after_after = NEXT_INSN (after);
4423
4424 NEXT_INSN (after) = first;
4425 PREV_INSN (first) = after;
4426 NEXT_INSN (last) = after_after;
4427 if (after_after)
4428 PREV_INSN (after_after) = last;
4429
4430 if (after == last_insn)
4431 last_insn = last;
4432 return last;
4433 }
4434
4435 /* Make X be output after the insn AFTER. */
4436
4437 rtx
4438 emit_insn_after (x, after)
4439 rtx x, after;
4440 {
4441 rtx last = after;
4442
4443 #ifdef ENABLE_RTL_CHECKING
4444 if (after == NULL_RTX)
4445 abort ();
4446 #endif
4447
4448 if (x == NULL_RTX)
4449 return last;
4450
4451 switch (GET_CODE (x))
4452 {
4453 case INSN:
4454 case JUMP_INSN:
4455 case CALL_INSN:
4456 case CODE_LABEL:
4457 case BARRIER:
4458 case NOTE:
4459 last = emit_insn_after_1 (x, after);
4460 break;
4461
4462 #ifdef ENABLE_RTL_CHECKING
4463 case SEQUENCE:
4464 abort ();
4465 break;
4466 #endif
4467
4468 default:
4469 last = make_insn_raw (x);
4470 add_insn_after (last, after);
4471 break;
4472 }
4473
4474 return last;
4475 }
4476
4477 /* Similar to emit_insn_after, except that line notes are to be inserted so
4478 as to act as if this insn were at FROM. */
4479
4480 void
4481 emit_insn_after_with_line_notes (x, after, from)
4482 rtx x, after, from;
4483 {
4484 rtx from_line = find_line_note (from);
4485 rtx after_line = find_line_note (after);
4486 rtx insn = emit_insn_after (x, after);
4487
4488 if (from_line)
4489 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4490 NOTE_LINE_NUMBER (from_line),
4491 after);
4492
4493 if (after_line)
4494 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4495 NOTE_LINE_NUMBER (after_line),
4496 insn);
4497 }
4498
4499 /* Make an insn of code JUMP_INSN with body X
4500 and output it after the insn AFTER. */
4501
4502 rtx
4503 emit_jump_insn_after (x, after)
4504 rtx x, after;
4505 {
4506 rtx last;
4507
4508 #ifdef ENABLE_RTL_CHECKING
4509 if (after == NULL_RTX)
4510 abort ();
4511 #endif
4512
4513 switch (GET_CODE (x))
4514 {
4515 case INSN:
4516 case JUMP_INSN:
4517 case CALL_INSN:
4518 case CODE_LABEL:
4519 case BARRIER:
4520 case NOTE:
4521 last = emit_insn_after_1 (x, after);
4522 break;
4523
4524 #ifdef ENABLE_RTL_CHECKING
4525 case SEQUENCE:
4526 abort ();
4527 break;
4528 #endif
4529
4530 default:
4531 last = make_jump_insn_raw (x);
4532 add_insn_after (last, after);
4533 break;
4534 }
4535
4536 return last;
4537 }
4538
4539 /* Make an instruction with body X and code CALL_INSN
4540 and output it after the instruction AFTER. */
4541
4542 rtx
4543 emit_call_insn_after (x, after)
4544 rtx x, after;
4545 {
4546 rtx last;
4547
4548 #ifdef ENABLE_RTL_CHECKING
4549 if (after == NULL_RTX)
4550 abort ();
4551 #endif
4552
4553 switch (GET_CODE (x))
4554 {
4555 case INSN:
4556 case JUMP_INSN:
4557 case CALL_INSN:
4558 case CODE_LABEL:
4559 case BARRIER:
4560 case NOTE:
4561 last = emit_insn_after_1 (x, after);
4562 break;
4563
4564 #ifdef ENABLE_RTL_CHECKING
4565 case SEQUENCE:
4566 abort ();
4567 break;
4568 #endif
4569
4570 default:
4571 last = make_call_insn_raw (x);
4572 add_insn_after (last, after);
4573 break;
4574 }
4575
4576 return last;
4577 }
4578
4579 /* Make an insn of code BARRIER
4580 and output it after the insn AFTER. */
4581
4582 rtx
4583 emit_barrier_after (after)
4584 rtx after;
4585 {
4586 rtx insn = rtx_alloc (BARRIER);
4587
4588 INSN_UID (insn) = cur_insn_uid++;
4589
4590 add_insn_after (insn, after);
4591 return insn;
4592 }
4593
4594 /* Emit the label LABEL after the insn AFTER. */
4595
4596 rtx
4597 emit_label_after (label, after)
4598 rtx label, after;
4599 {
4600 /* This can be called twice for the same label
4601 as a result of the confusion that follows a syntax error!
4602 So make it harmless. */
4603 if (INSN_UID (label) == 0)
4604 {
4605 INSN_UID (label) = cur_insn_uid++;
4606 add_insn_after (label, after);
4607 }
4608
4609 return label;
4610 }
4611
4612 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4613
4614 rtx
4615 emit_note_after (subtype, after)
4616 int subtype;
4617 rtx after;
4618 {
4619 rtx note = rtx_alloc (NOTE);
4620 INSN_UID (note) = cur_insn_uid++;
4621 NOTE_SOURCE_FILE (note) = 0;
4622 NOTE_LINE_NUMBER (note) = subtype;
4623 BLOCK_FOR_INSN (note) = NULL;
4624 add_insn_after (note, after);
4625 return note;
4626 }
4627
4628 /* Emit a line note for FILE and LINE after the insn AFTER. */
4629
4630 rtx
4631 emit_line_note_after (file, line, after)
4632 const char *file;
4633 int line;
4634 rtx after;
4635 {
4636 rtx note;
4637
4638 if (line < 0)
4639 abort ();
4640 if (no_line_numbers)
4641 {
4642 cur_insn_uid++;
4643 return 0;
4644 }
4645
4646 note = rtx_alloc (NOTE);
4647 INSN_UID (note) = cur_insn_uid++;
4648 NOTE_SOURCE_FILE (note) = file;
4649 NOTE_LINE_NUMBER (note) = line;
4650 BLOCK_FOR_INSN (note) = NULL;
4651 add_insn_after (note, after);
4652 return note;
4653 }
4654 \f
4655 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4656 rtx
4657 emit_insn_after_setloc (pattern, after, loc)
4658 rtx pattern, after;
4659 int loc;
4660 {
4661 rtx last = emit_insn_after (pattern, after);
4662
4663 after = NEXT_INSN (after);
4664 while (1)
4665 {
4666 if (active_insn_p (after))
4667 INSN_LOCATOR (after) = loc;
4668 if (after == last)
4669 break;
4670 after = NEXT_INSN (after);
4671 }
4672 return last;
4673 }
4674
4675 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4676 rtx
4677 emit_jump_insn_after_setloc (pattern, after, loc)
4678 rtx pattern, after;
4679 int loc;
4680 {
4681 rtx last = emit_jump_insn_after (pattern, after);
4682
4683 after = NEXT_INSN (after);
4684 while (1)
4685 {
4686 if (active_insn_p (after))
4687 INSN_LOCATOR (after) = loc;
4688 if (after == last)
4689 break;
4690 after = NEXT_INSN (after);
4691 }
4692 return last;
4693 }
4694
4695 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4696 rtx
4697 emit_call_insn_after_setloc (pattern, after, loc)
4698 rtx pattern, after;
4699 int loc;
4700 {
4701 rtx last = emit_call_insn_after (pattern, after);
4702
4703 after = NEXT_INSN (after);
4704 while (1)
4705 {
4706 if (active_insn_p (after))
4707 INSN_LOCATOR (after) = loc;
4708 if (after == last)
4709 break;
4710 after = NEXT_INSN (after);
4711 }
4712 return last;
4713 }
4714
4715 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4716 rtx
4717 emit_insn_before_setloc (pattern, before, loc)
4718 rtx pattern, before;
4719 int loc;
4720 {
4721 rtx first = PREV_INSN (before);
4722 rtx last = emit_insn_before (pattern, before);
4723
4724 first = NEXT_INSN (first);
4725 while (1)
4726 {
4727 if (active_insn_p (first))
4728 INSN_LOCATOR (first) = loc;
4729 if (first == last)
4730 break;
4731 first = NEXT_INSN (first);
4732 }
4733 return last;
4734 }
4735 \f
4736 /* Take X and emit it at the end of the doubly-linked
4737 INSN list.
4738
4739 Returns the last insn emitted. */
4740
4741 rtx
4742 emit_insn (x)
4743 rtx x;
4744 {
4745 rtx last = last_insn;
4746 rtx insn;
4747
4748 if (x == NULL_RTX)
4749 return last;
4750
4751 switch (GET_CODE (x))
4752 {
4753 case INSN:
4754 case JUMP_INSN:
4755 case CALL_INSN:
4756 case CODE_LABEL:
4757 case BARRIER:
4758 case NOTE:
4759 insn = x;
4760 while (insn)
4761 {
4762 rtx next = NEXT_INSN (insn);
4763 add_insn (insn);
4764 last = insn;
4765 insn = next;
4766 }
4767 break;
4768
4769 #ifdef ENABLE_RTL_CHECKING
4770 case SEQUENCE:
4771 abort ();
4772 break;
4773 #endif
4774
4775 default:
4776 last = make_insn_raw (x);
4777 add_insn (last);
4778 break;
4779 }
4780
4781 return last;
4782 }
4783
4784 /* Make an insn of code JUMP_INSN with pattern X
4785 and add it to the end of the doubly-linked list. */
4786
4787 rtx
4788 emit_jump_insn (x)
4789 rtx x;
4790 {
4791 rtx last = NULL_RTX, insn;
4792
4793 switch (GET_CODE (x))
4794 {
4795 case INSN:
4796 case JUMP_INSN:
4797 case CALL_INSN:
4798 case CODE_LABEL:
4799 case BARRIER:
4800 case NOTE:
4801 insn = x;
4802 while (insn)
4803 {
4804 rtx next = NEXT_INSN (insn);
4805 add_insn (insn);
4806 last = insn;
4807 insn = next;
4808 }
4809 break;
4810
4811 #ifdef ENABLE_RTL_CHECKING
4812 case SEQUENCE:
4813 abort ();
4814 break;
4815 #endif
4816
4817 default:
4818 last = make_jump_insn_raw (x);
4819 add_insn (last);
4820 break;
4821 }
4822
4823 return last;
4824 }
4825
4826 /* Make an insn of code CALL_INSN with pattern X
4827 and add it to the end of the doubly-linked list. */
4828
4829 rtx
4830 emit_call_insn (x)
4831 rtx x;
4832 {
4833 rtx insn;
4834
4835 switch (GET_CODE (x))
4836 {
4837 case INSN:
4838 case JUMP_INSN:
4839 case CALL_INSN:
4840 case CODE_LABEL:
4841 case BARRIER:
4842 case NOTE:
4843 insn = emit_insn (x);
4844 break;
4845
4846 #ifdef ENABLE_RTL_CHECKING
4847 case SEQUENCE:
4848 abort ();
4849 break;
4850 #endif
4851
4852 default:
4853 insn = make_call_insn_raw (x);
4854 add_insn (insn);
4855 break;
4856 }
4857
4858 return insn;
4859 }
4860
4861 /* Add the label LABEL to the end of the doubly-linked list. */
4862
4863 rtx
4864 emit_label (label)
4865 rtx label;
4866 {
4867 /* This can be called twice for the same label
4868 as a result of the confusion that follows a syntax error!
4869 So make it harmless. */
4870 if (INSN_UID (label) == 0)
4871 {
4872 INSN_UID (label) = cur_insn_uid++;
4873 add_insn (label);
4874 }
4875 return label;
4876 }
4877
4878 /* Make an insn of code BARRIER
4879 and add it to the end of the doubly-linked list. */
4880
4881 rtx
4882 emit_barrier ()
4883 {
4884 rtx barrier = rtx_alloc (BARRIER);
4885 INSN_UID (barrier) = cur_insn_uid++;
4886 add_insn (barrier);
4887 return barrier;
4888 }
4889
4890 /* Make an insn of code NOTE
4891 with data-fields specified by FILE and LINE
4892 and add it to the end of the doubly-linked list,
4893 but only if line-numbers are desired for debugging info. */
4894
4895 rtx
4896 emit_line_note (file, line)
4897 const char *file;
4898 int line;
4899 {
4900 if (line < 0)
4901 abort ();
4902
4903 set_file_and_line_for_stmt (file, line);
4904
4905 if (file && last_location.file && !strcmp (file, last_location.file)
4906 && line == last_location.line)
4907 return NULL_RTX;
4908 last_location.file = file;
4909 last_location.line = line;
4910
4911 if (no_line_numbers)
4912 {
4913 cur_insn_uid++;
4914 return NULL_RTX;
4915 }
4916
4917 return emit_note (file, line);
4918 }
4919
4920 /* Make an insn of code NOTE
4921 with data-fields specified by FILE and LINE
4922 and add it to the end of the doubly-linked list.
4923 If it is a line-number NOTE, omit it if it matches the previous one. */
4924
4925 rtx
4926 emit_note (file, line)
4927 const char *file;
4928 int line;
4929 {
4930 rtx note;
4931
4932 note = rtx_alloc (NOTE);
4933 INSN_UID (note) = cur_insn_uid++;
4934 NOTE_SOURCE_FILE (note) = file;
4935 NOTE_LINE_NUMBER (note) = line;
4936 BLOCK_FOR_INSN (note) = NULL;
4937 add_insn (note);
4938 return note;
4939 }
4940
4941 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4942
4943 rtx
4944 emit_line_note_force (file, line)
4945 const char *file;
4946 int line;
4947 {
4948 last_location.line = -1;
4949 return emit_line_note (file, line);
4950 }
4951
4952 /* Cause next statement to emit a line note even if the line number
4953 has not changed. This is used at the beginning of a function. */
4954
4955 void
4956 force_next_line_note ()
4957 {
4958 last_location.line = -1;
4959 }
4960
4961 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4962 note of this type already exists, remove it first. */
4963
4964 rtx
4965 set_unique_reg_note (insn, kind, datum)
4966 rtx insn;
4967 enum reg_note kind;
4968 rtx datum;
4969 {
4970 rtx note = find_reg_note (insn, kind, NULL_RTX);
4971
4972 switch (kind)
4973 {
4974 case REG_EQUAL:
4975 case REG_EQUIV:
4976 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4977 has multiple sets (some callers assume single_set
4978 means the insn only has one set, when in fact it
4979 means the insn only has one * useful * set). */
4980 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4981 {
4982 if (note)
4983 abort ();
4984 return NULL_RTX;
4985 }
4986
4987 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4988 It serves no useful purpose and breaks eliminate_regs. */
4989 if (GET_CODE (datum) == ASM_OPERANDS)
4990 return NULL_RTX;
4991 break;
4992
4993 default:
4994 break;
4995 }
4996
4997 if (note)
4998 {
4999 XEXP (note, 0) = datum;
5000 return note;
5001 }
5002
5003 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
5004 return REG_NOTES (insn);
5005 }
5006 \f
5007 /* Return an indication of which type of insn should have X as a body.
5008 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5009
5010 enum rtx_code
5011 classify_insn (x)
5012 rtx x;
5013 {
5014 if (GET_CODE (x) == CODE_LABEL)
5015 return CODE_LABEL;
5016 if (GET_CODE (x) == CALL)
5017 return CALL_INSN;
5018 if (GET_CODE (x) == RETURN)
5019 return JUMP_INSN;
5020 if (GET_CODE (x) == SET)
5021 {
5022 if (SET_DEST (x) == pc_rtx)
5023 return JUMP_INSN;
5024 else if (GET_CODE (SET_SRC (x)) == CALL)
5025 return CALL_INSN;
5026 else
5027 return INSN;
5028 }
5029 if (GET_CODE (x) == PARALLEL)
5030 {
5031 int j;
5032 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5033 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5034 return CALL_INSN;
5035 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5036 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5037 return JUMP_INSN;
5038 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5039 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5040 return CALL_INSN;
5041 }
5042 return INSN;
5043 }
5044
5045 /* Emit the rtl pattern X as an appropriate kind of insn.
5046 If X is a label, it is simply added into the insn chain. */
5047
5048 rtx
5049 emit (x)
5050 rtx x;
5051 {
5052 enum rtx_code code = classify_insn (x);
5053
5054 if (code == CODE_LABEL)
5055 return emit_label (x);
5056 else if (code == INSN)
5057 return emit_insn (x);
5058 else if (code == JUMP_INSN)
5059 {
5060 rtx insn = emit_jump_insn (x);
5061 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5062 return emit_barrier ();
5063 return insn;
5064 }
5065 else if (code == CALL_INSN)
5066 return emit_call_insn (x);
5067 else
5068 abort ();
5069 }
5070 \f
5071 /* Space for free sequence stack entries. */
5072 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
5073
5074 /* Begin emitting insns to a sequence which can be packaged in an
5075 RTL_EXPR. If this sequence will contain something that might cause
5076 the compiler to pop arguments to function calls (because those
5077 pops have previously been deferred; see INHIBIT_DEFER_POP for more
5078 details), use do_pending_stack_adjust before calling this function.
5079 That will ensure that the deferred pops are not accidentally
5080 emitted in the middle of this sequence. */
5081
5082 void
5083 start_sequence ()
5084 {
5085 struct sequence_stack *tem;
5086
5087 if (free_sequence_stack != NULL)
5088 {
5089 tem = free_sequence_stack;
5090 free_sequence_stack = tem->next;
5091 }
5092 else
5093 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
5094
5095 tem->next = seq_stack;
5096 tem->first = first_insn;
5097 tem->last = last_insn;
5098 tem->sequence_rtl_expr = seq_rtl_expr;
5099
5100 seq_stack = tem;
5101
5102 first_insn = 0;
5103 last_insn = 0;
5104 }
5105
5106 /* Similarly, but indicate that this sequence will be placed in T, an
5107 RTL_EXPR. See the documentation for start_sequence for more
5108 information about how to use this function. */
5109
5110 void
5111 start_sequence_for_rtl_expr (t)
5112 tree t;
5113 {
5114 start_sequence ();
5115
5116 seq_rtl_expr = t;
5117 }
5118
5119 /* Set up the insn chain starting with FIRST as the current sequence,
5120 saving the previously current one. See the documentation for
5121 start_sequence for more information about how to use this function. */
5122
5123 void
5124 push_to_sequence (first)
5125 rtx first;
5126 {
5127 rtx last;
5128
5129 start_sequence ();
5130
5131 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5132
5133 first_insn = first;
5134 last_insn = last;
5135 }
5136
5137 /* Set up the insn chain from a chain stort in FIRST to LAST. */
5138
5139 void
5140 push_to_full_sequence (first, last)
5141 rtx first, last;
5142 {
5143 start_sequence ();
5144 first_insn = first;
5145 last_insn = last;
5146 /* We really should have the end of the insn chain here. */
5147 if (last && NEXT_INSN (last))
5148 abort ();
5149 }
5150
5151 /* Set up the outer-level insn chain
5152 as the current sequence, saving the previously current one. */
5153
5154 void
5155 push_topmost_sequence ()
5156 {
5157 struct sequence_stack *stack, *top = NULL;
5158
5159 start_sequence ();
5160
5161 for (stack = seq_stack; stack; stack = stack->next)
5162 top = stack;
5163
5164 first_insn = top->first;
5165 last_insn = top->last;
5166 seq_rtl_expr = top->sequence_rtl_expr;
5167 }
5168
5169 /* After emitting to the outer-level insn chain, update the outer-level
5170 insn chain, and restore the previous saved state. */
5171
5172 void
5173 pop_topmost_sequence ()
5174 {
5175 struct sequence_stack *stack, *top = NULL;
5176
5177 for (stack = seq_stack; stack; stack = stack->next)
5178 top = stack;
5179
5180 top->first = first_insn;
5181 top->last = last_insn;
5182 /* ??? Why don't we save seq_rtl_expr here? */
5183
5184 end_sequence ();
5185 }
5186
5187 /* After emitting to a sequence, restore previous saved state.
5188
5189 To get the contents of the sequence just made, you must call
5190 `get_insns' *before* calling here.
5191
5192 If the compiler might have deferred popping arguments while
5193 generating this sequence, and this sequence will not be immediately
5194 inserted into the instruction stream, use do_pending_stack_adjust
5195 before calling get_insns. That will ensure that the deferred
5196 pops are inserted into this sequence, and not into some random
5197 location in the instruction stream. See INHIBIT_DEFER_POP for more
5198 information about deferred popping of arguments. */
5199
5200 void
5201 end_sequence ()
5202 {
5203 struct sequence_stack *tem = seq_stack;
5204
5205 first_insn = tem->first;
5206 last_insn = tem->last;
5207 seq_rtl_expr = tem->sequence_rtl_expr;
5208 seq_stack = tem->next;
5209
5210 memset (tem, 0, sizeof (*tem));
5211 tem->next = free_sequence_stack;
5212 free_sequence_stack = tem;
5213 }
5214
5215 /* This works like end_sequence, but records the old sequence in FIRST
5216 and LAST. */
5217
5218 void
5219 end_full_sequence (first, last)
5220 rtx *first, *last;
5221 {
5222 *first = first_insn;
5223 *last = last_insn;
5224 end_sequence ();
5225 }
5226
5227 /* Return 1 if currently emitting into a sequence. */
5228
5229 int
5230 in_sequence_p ()
5231 {
5232 return seq_stack != 0;
5233 }
5234 \f
5235 /* Put the various virtual registers into REGNO_REG_RTX. */
5236
5237 void
5238 init_virtual_regs (es)
5239 struct emit_status *es;
5240 {
5241 rtx *ptr = es->x_regno_reg_rtx;
5242 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5243 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5244 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5245 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5246 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5247 }
5248
5249 \f
5250 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5251 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5252 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5253 static int copy_insn_n_scratches;
5254
5255 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5256 copied an ASM_OPERANDS.
5257 In that case, it is the original input-operand vector. */
5258 static rtvec orig_asm_operands_vector;
5259
5260 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5261 copied an ASM_OPERANDS.
5262 In that case, it is the copied input-operand vector. */
5263 static rtvec copy_asm_operands_vector;
5264
5265 /* Likewise for the constraints vector. */
5266 static rtvec orig_asm_constraints_vector;
5267 static rtvec copy_asm_constraints_vector;
5268
5269 /* Recursively create a new copy of an rtx for copy_insn.
5270 This function differs from copy_rtx in that it handles SCRATCHes and
5271 ASM_OPERANDs properly.
5272 Normally, this function is not used directly; use copy_insn as front end.
5273 However, you could first copy an insn pattern with copy_insn and then use
5274 this function afterwards to properly copy any REG_NOTEs containing
5275 SCRATCHes. */
5276
5277 rtx
5278 copy_insn_1 (orig)
5279 rtx orig;
5280 {
5281 rtx copy;
5282 int i, j;
5283 RTX_CODE code;
5284 const char *format_ptr;
5285
5286 code = GET_CODE (orig);
5287
5288 switch (code)
5289 {
5290 case REG:
5291 case QUEUED:
5292 case CONST_INT:
5293 case CONST_DOUBLE:
5294 case CONST_VECTOR:
5295 case SYMBOL_REF:
5296 case CODE_LABEL:
5297 case PC:
5298 case CC0:
5299 case ADDRESSOF:
5300 return orig;
5301
5302 case SCRATCH:
5303 for (i = 0; i < copy_insn_n_scratches; i++)
5304 if (copy_insn_scratch_in[i] == orig)
5305 return copy_insn_scratch_out[i];
5306 break;
5307
5308 case CONST:
5309 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5310 a LABEL_REF, it isn't sharable. */
5311 if (GET_CODE (XEXP (orig, 0)) == PLUS
5312 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5313 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5314 return orig;
5315 break;
5316
5317 /* A MEM with a constant address is not sharable. The problem is that
5318 the constant address may need to be reloaded. If the mem is shared,
5319 then reloading one copy of this mem will cause all copies to appear
5320 to have been reloaded. */
5321
5322 default:
5323 break;
5324 }
5325
5326 copy = rtx_alloc (code);
5327
5328 /* Copy the various flags, and other information. We assume that
5329 all fields need copying, and then clear the fields that should
5330 not be copied. That is the sensible default behavior, and forces
5331 us to explicitly document why we are *not* copying a flag. */
5332 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5333
5334 /* We do not copy the USED flag, which is used as a mark bit during
5335 walks over the RTL. */
5336 RTX_FLAG (copy, used) = 0;
5337
5338 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5339 if (GET_RTX_CLASS (code) == 'i')
5340 {
5341 RTX_FLAG (copy, jump) = 0;
5342 RTX_FLAG (copy, call) = 0;
5343 RTX_FLAG (copy, frame_related) = 0;
5344 }
5345
5346 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5347
5348 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5349 {
5350 copy->fld[i] = orig->fld[i];
5351 switch (*format_ptr++)
5352 {
5353 case 'e':
5354 if (XEXP (orig, i) != NULL)
5355 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5356 break;
5357
5358 case 'E':
5359 case 'V':
5360 if (XVEC (orig, i) == orig_asm_constraints_vector)
5361 XVEC (copy, i) = copy_asm_constraints_vector;
5362 else if (XVEC (orig, i) == orig_asm_operands_vector)
5363 XVEC (copy, i) = copy_asm_operands_vector;
5364 else if (XVEC (orig, i) != NULL)
5365 {
5366 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5367 for (j = 0; j < XVECLEN (copy, i); j++)
5368 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5369 }
5370 break;
5371
5372 case 't':
5373 case 'w':
5374 case 'i':
5375 case 's':
5376 case 'S':
5377 case 'u':
5378 case '0':
5379 /* These are left unchanged. */
5380 break;
5381
5382 default:
5383 abort ();
5384 }
5385 }
5386
5387 if (code == SCRATCH)
5388 {
5389 i = copy_insn_n_scratches++;
5390 if (i >= MAX_RECOG_OPERANDS)
5391 abort ();
5392 copy_insn_scratch_in[i] = orig;
5393 copy_insn_scratch_out[i] = copy;
5394 }
5395 else if (code == ASM_OPERANDS)
5396 {
5397 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5398 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5399 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5400 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5401 }
5402
5403 return copy;
5404 }
5405
5406 /* Create a new copy of an rtx.
5407 This function differs from copy_rtx in that it handles SCRATCHes and
5408 ASM_OPERANDs properly.
5409 INSN doesn't really have to be a full INSN; it could be just the
5410 pattern. */
5411 rtx
5412 copy_insn (insn)
5413 rtx insn;
5414 {
5415 copy_insn_n_scratches = 0;
5416 orig_asm_operands_vector = 0;
5417 orig_asm_constraints_vector = 0;
5418 copy_asm_operands_vector = 0;
5419 copy_asm_constraints_vector = 0;
5420 return copy_insn_1 (insn);
5421 }
5422
5423 /* Initialize data structures and variables in this file
5424 before generating rtl for each function. */
5425
5426 void
5427 init_emit ()
5428 {
5429 struct function *f = cfun;
5430
5431 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5432 first_insn = NULL;
5433 last_insn = NULL;
5434 seq_rtl_expr = NULL;
5435 cur_insn_uid = 1;
5436 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5437 last_location.line = 0;
5438 last_location.file = 0;
5439 first_label_num = label_num;
5440 last_label_num = 0;
5441 seq_stack = NULL;
5442
5443 /* Init the tables that describe all the pseudo regs. */
5444
5445 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5446
5447 f->emit->regno_pointer_align
5448 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5449 * sizeof (unsigned char));
5450
5451 regno_reg_rtx
5452 = (rtx *) ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5453
5454 /* Put copies of all the hard registers into regno_reg_rtx. */
5455 memcpy (regno_reg_rtx,
5456 static_regno_reg_rtx,
5457 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5458
5459 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5460 init_virtual_regs (f->emit);
5461
5462 /* Indicate that the virtual registers and stack locations are
5463 all pointers. */
5464 REG_POINTER (stack_pointer_rtx) = 1;
5465 REG_POINTER (frame_pointer_rtx) = 1;
5466 REG_POINTER (hard_frame_pointer_rtx) = 1;
5467 REG_POINTER (arg_pointer_rtx) = 1;
5468
5469 REG_POINTER (virtual_incoming_args_rtx) = 1;
5470 REG_POINTER (virtual_stack_vars_rtx) = 1;
5471 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5472 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5473 REG_POINTER (virtual_cfa_rtx) = 1;
5474
5475 #ifdef STACK_BOUNDARY
5476 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5477 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5478 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5479 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5480
5481 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5482 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5483 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5484 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5485 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5486 #endif
5487
5488 #ifdef INIT_EXPANDERS
5489 INIT_EXPANDERS;
5490 #endif
5491 }
5492
5493 /* Generate the constant 0. */
5494
5495 static rtx
5496 gen_const_vector_0 (mode)
5497 enum machine_mode mode;
5498 {
5499 rtx tem;
5500 rtvec v;
5501 int units, i;
5502 enum machine_mode inner;
5503
5504 units = GET_MODE_NUNITS (mode);
5505 inner = GET_MODE_INNER (mode);
5506
5507 v = rtvec_alloc (units);
5508
5509 /* We need to call this function after we to set CONST0_RTX first. */
5510 if (!CONST0_RTX (inner))
5511 abort ();
5512
5513 for (i = 0; i < units; ++i)
5514 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5515
5516 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5517 return tem;
5518 }
5519
5520 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5521 all elements are zero. */
5522 rtx
5523 gen_rtx_CONST_VECTOR (mode, v)
5524 enum machine_mode mode;
5525 rtvec v;
5526 {
5527 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5528 int i;
5529
5530 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5531 if (RTVEC_ELT (v, i) != inner_zero)
5532 return gen_rtx_raw_CONST_VECTOR (mode, v);
5533 return CONST0_RTX (mode);
5534 }
5535
5536 /* Create some permanent unique rtl objects shared between all functions.
5537 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5538
5539 void
5540 init_emit_once (line_numbers)
5541 int line_numbers;
5542 {
5543 int i;
5544 enum machine_mode mode;
5545 enum machine_mode double_mode;
5546
5547 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5548 tables. */
5549 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5550 const_int_htab_eq, NULL);
5551
5552 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5553 const_double_htab_eq, NULL);
5554
5555 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5556 mem_attrs_htab_eq, NULL);
5557 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5558 reg_attrs_htab_eq, NULL);
5559
5560 no_line_numbers = ! line_numbers;
5561
5562 /* Compute the word and byte modes. */
5563
5564 byte_mode = VOIDmode;
5565 word_mode = VOIDmode;
5566 double_mode = VOIDmode;
5567
5568 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5569 mode = GET_MODE_WIDER_MODE (mode))
5570 {
5571 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5572 && byte_mode == VOIDmode)
5573 byte_mode = mode;
5574
5575 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5576 && word_mode == VOIDmode)
5577 word_mode = mode;
5578 }
5579
5580 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5581 mode = GET_MODE_WIDER_MODE (mode))
5582 {
5583 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5584 && double_mode == VOIDmode)
5585 double_mode = mode;
5586 }
5587
5588 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5589
5590 /* Assign register numbers to the globally defined register rtx.
5591 This must be done at runtime because the register number field
5592 is in a union and some compilers can't initialize unions. */
5593
5594 pc_rtx = gen_rtx (PC, VOIDmode);
5595 cc0_rtx = gen_rtx (CC0, VOIDmode);
5596 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5597 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5598 if (hard_frame_pointer_rtx == 0)
5599 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5600 HARD_FRAME_POINTER_REGNUM);
5601 if (arg_pointer_rtx == 0)
5602 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5603 virtual_incoming_args_rtx =
5604 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5605 virtual_stack_vars_rtx =
5606 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5607 virtual_stack_dynamic_rtx =
5608 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5609 virtual_outgoing_args_rtx =
5610 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5611 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5612
5613 /* Initialize RTL for commonly used hard registers. These are
5614 copied into regno_reg_rtx as we begin to compile each function. */
5615 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5616 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5617
5618 #ifdef INIT_EXPANDERS
5619 /* This is to initialize {init|mark|free}_machine_status before the first
5620 call to push_function_context_to. This is needed by the Chill front
5621 end which calls push_function_context_to before the first call to
5622 init_function_start. */
5623 INIT_EXPANDERS;
5624 #endif
5625
5626 /* Create the unique rtx's for certain rtx codes and operand values. */
5627
5628 /* Don't use gen_rtx here since gen_rtx in this case
5629 tries to use these variables. */
5630 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5631 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5632 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5633
5634 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5635 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5636 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5637 else
5638 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5639
5640 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5641 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5642 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5643 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5644 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5645
5646 dconsthalf = dconst1;
5647 dconsthalf.exp--;
5648
5649 for (i = 0; i <= 2; i++)
5650 {
5651 REAL_VALUE_TYPE *r =
5652 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5653
5654 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5655 mode = GET_MODE_WIDER_MODE (mode))
5656 const_tiny_rtx[i][(int) mode] =
5657 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5658
5659 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5660
5661 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5662 mode = GET_MODE_WIDER_MODE (mode))
5663 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5664
5665 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5666 mode != VOIDmode;
5667 mode = GET_MODE_WIDER_MODE (mode))
5668 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5669 }
5670
5671 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5672 mode != VOIDmode;
5673 mode = GET_MODE_WIDER_MODE (mode))
5674 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5675
5676 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5677 mode != VOIDmode;
5678 mode = GET_MODE_WIDER_MODE (mode))
5679 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5680
5681 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5682 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5683 const_tiny_rtx[0][i] = const0_rtx;
5684
5685 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5686 if (STORE_FLAG_VALUE == 1)
5687 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5688
5689 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5690 return_address_pointer_rtx
5691 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5692 #endif
5693
5694 #ifdef STRUCT_VALUE
5695 struct_value_rtx = STRUCT_VALUE;
5696 #else
5697 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5698 #endif
5699
5700 #ifdef STRUCT_VALUE_INCOMING
5701 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5702 #else
5703 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5704 struct_value_incoming_rtx
5705 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5706 #else
5707 struct_value_incoming_rtx = struct_value_rtx;
5708 #endif
5709 #endif
5710
5711 #ifdef STATIC_CHAIN_REGNUM
5712 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5713
5714 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5715 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5716 static_chain_incoming_rtx
5717 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5718 else
5719 #endif
5720 static_chain_incoming_rtx = static_chain_rtx;
5721 #endif
5722
5723 #ifdef STATIC_CHAIN
5724 static_chain_rtx = STATIC_CHAIN;
5725
5726 #ifdef STATIC_CHAIN_INCOMING
5727 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5728 #else
5729 static_chain_incoming_rtx = static_chain_rtx;
5730 #endif
5731 #endif
5732
5733 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5734 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5735 }
5736 \f
5737 /* Query and clear/ restore no_line_numbers. This is used by the
5738 switch / case handling in stmt.c to give proper line numbers in
5739 warnings about unreachable code. */
5740
5741 int
5742 force_line_numbers ()
5743 {
5744 int old = no_line_numbers;
5745
5746 no_line_numbers = 0;
5747 if (old)
5748 force_next_line_note ();
5749 return old;
5750 }
5751
5752 void
5753 restore_line_number_status (old_value)
5754 int old_value;
5755 {
5756 no_line_numbers = old_value;
5757 }
5758
5759 /* Produce exact duplicate of insn INSN after AFTER.
5760 Care updating of libcall regions if present. */
5761
5762 rtx
5763 emit_copy_of_insn_after (insn, after)
5764 rtx insn, after;
5765 {
5766 rtx new;
5767 rtx note1, note2, link;
5768
5769 switch (GET_CODE (insn))
5770 {
5771 case INSN:
5772 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5773 break;
5774
5775 case JUMP_INSN:
5776 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5777 break;
5778
5779 case CALL_INSN:
5780 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5781 if (CALL_INSN_FUNCTION_USAGE (insn))
5782 CALL_INSN_FUNCTION_USAGE (new)
5783 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5784 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5785 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5786 break;
5787
5788 default:
5789 abort ();
5790 }
5791
5792 /* Update LABEL_NUSES. */
5793 mark_jump_label (PATTERN (new), new, 0);
5794
5795 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5796
5797 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5798 make them. */
5799 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5800 if (REG_NOTE_KIND (link) != REG_LABEL)
5801 {
5802 if (GET_CODE (link) == EXPR_LIST)
5803 REG_NOTES (new)
5804 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5805 XEXP (link, 0),
5806 REG_NOTES (new)));
5807 else
5808 REG_NOTES (new)
5809 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5810 XEXP (link, 0),
5811 REG_NOTES (new)));
5812 }
5813
5814 /* Fix the libcall sequences. */
5815 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5816 {
5817 rtx p = new;
5818 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5819 p = PREV_INSN (p);
5820 XEXP (note1, 0) = p;
5821 XEXP (note2, 0) = new;
5822 }
5823 INSN_CODE (new) = INSN_CODE (insn);
5824 return new;
5825 }
5826
5827 #include "gt-emit-rtl.h"