function.h (struct emit_status): Delete x_first_insn, x_last_insn and sequence_stack.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "hash-set.h"
41 #include "machmode.h"
42 #include "vec.h"
43 #include "double-int.h"
44 #include "input.h"
45 #include "alias.h"
46 #include "symtab.h"
47 #include "wide-int.h"
48 #include "inchash.h"
49 #include "real.h"
50 #include "tree.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "predict.h"
54 #include "hard-reg-set.h"
55 #include "function.h"
56 #include "cfgrtl.h"
57 #include "basic-block.h"
58 #include "tree-eh.h"
59 #include "tm_p.h"
60 #include "flags.h"
61 #include "stringpool.h"
62 #include "hashtab.h"
63 #include "statistics.h"
64 #include "fixed-value.h"
65 #include "insn-config.h"
66 #include "expmed.h"
67 #include "dojump.h"
68 #include "explow.h"
69 #include "calls.h"
70 #include "emit-rtl.h"
71 #include "stmt.h"
72 #include "expr.h"
73 #include "regs.h"
74 #include "recog.h"
75 #include "bitmap.h"
76 #include "debug.h"
77 #include "langhooks.h"
78 #include "df.h"
79 #include "params.h"
80 #include "target.h"
81 #include "builtins.h"
82 #include "rtl-iter.h"
83
84 struct target_rtl default_target_rtl;
85 #if SWITCHABLE_TARGET
86 struct target_rtl *this_target_rtl = &default_target_rtl;
87 #endif
88
89 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
90
91 /* Commonly used modes. */
92
93 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
94 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
95 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
96 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
97
98 /* Datastructures maintained for currently processed function in RTL form. */
99
100 struct rtl_data x_rtl;
101
102 /* Indexed by pseudo register number, gives the rtx for that pseudo.
103 Allocated in parallel with regno_pointer_align.
104 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
105 with length attribute nested in top level structures. */
106
107 rtx * regno_reg_rtx;
108
109 /* This is *not* reset after each function. It gives each CODE_LABEL
110 in the entire compilation a unique label number. */
111
112 static GTY(()) int label_num = 1;
113
114 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
115 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
116 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
117 is set only for MODE_INT and MODE_VECTOR_INT modes. */
118
119 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
120
121 rtx const_true_rtx;
122
123 REAL_VALUE_TYPE dconst0;
124 REAL_VALUE_TYPE dconst1;
125 REAL_VALUE_TYPE dconst2;
126 REAL_VALUE_TYPE dconstm1;
127 REAL_VALUE_TYPE dconsthalf;
128
129 /* Record fixed-point constant 0 and 1. */
130 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
131 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
132
133 /* We make one copy of (const_int C) where C is in
134 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
135 to save space during the compilation and simplify comparisons of
136 integers. */
137
138 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
139
140 /* Standard pieces of rtx, to be substituted directly into things. */
141 rtx pc_rtx;
142 rtx ret_rtx;
143 rtx simple_return_rtx;
144 rtx cc0_rtx;
145
146 /* A hash table storing CONST_INTs whose absolute value is greater
147 than MAX_SAVED_CONST_INT. */
148
149 struct const_int_hasher : ggc_cache_hasher<rtx>
150 {
151 typedef HOST_WIDE_INT compare_type;
152
153 static hashval_t hash (rtx i);
154 static bool equal (rtx i, HOST_WIDE_INT h);
155 };
156
157 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
158
159 struct const_wide_int_hasher : ggc_cache_hasher<rtx>
160 {
161 static hashval_t hash (rtx x);
162 static bool equal (rtx x, rtx y);
163 };
164
165 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
166
167 /* A hash table storing register attribute structures. */
168 struct reg_attr_hasher : ggc_cache_hasher<reg_attrs *>
169 {
170 static hashval_t hash (reg_attrs *x);
171 static bool equal (reg_attrs *a, reg_attrs *b);
172 };
173
174 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
175
176 /* A hash table storing all CONST_DOUBLEs. */
177 struct const_double_hasher : ggc_cache_hasher<rtx>
178 {
179 static hashval_t hash (rtx x);
180 static bool equal (rtx x, rtx y);
181 };
182
183 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
184
185 /* A hash table storing all CONST_FIXEDs. */
186 struct const_fixed_hasher : ggc_cache_hasher<rtx>
187 {
188 static hashval_t hash (rtx x);
189 static bool equal (rtx x, rtx y);
190 };
191
192 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
193
194 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
195 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
196 #define first_label_num (crtl->emit.x_first_label_num)
197
198 static void set_used_decls (tree);
199 static void mark_label_nuses (rtx);
200 #if TARGET_SUPPORTS_WIDE_INT
201 static rtx lookup_const_wide_int (rtx);
202 #endif
203 static rtx lookup_const_double (rtx);
204 static rtx lookup_const_fixed (rtx);
205 static reg_attrs *get_reg_attrs (tree, int);
206 static rtx gen_const_vector (machine_mode, int);
207 static void copy_rtx_if_shared_1 (rtx *orig);
208
209 /* Probability of the conditional branch currently proceeded by try_split.
210 Set to -1 otherwise. */
211 int split_branch_probability = -1;
212 \f
213 /* Returns a hash code for X (which is a really a CONST_INT). */
214
215 hashval_t
216 const_int_hasher::hash (rtx x)
217 {
218 return (hashval_t) INTVAL (x);
219 }
220
221 /* Returns nonzero if the value represented by X (which is really a
222 CONST_INT) is the same as that given by Y (which is really a
223 HOST_WIDE_INT *). */
224
225 bool
226 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
227 {
228 return (INTVAL (x) == y);
229 }
230
231 #if TARGET_SUPPORTS_WIDE_INT
232 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
233
234 hashval_t
235 const_wide_int_hasher::hash (rtx x)
236 {
237 int i;
238 unsigned HOST_WIDE_INT hash = 0;
239 const_rtx xr = x;
240
241 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
242 hash += CONST_WIDE_INT_ELT (xr, i);
243
244 return (hashval_t) hash;
245 }
246
247 /* Returns nonzero if the value represented by X (which is really a
248 CONST_WIDE_INT) is the same as that given by Y (which is really a
249 CONST_WIDE_INT). */
250
251 bool
252 const_wide_int_hasher::equal (rtx x, rtx y)
253 {
254 int i;
255 const_rtx xr = x;
256 const_rtx yr = y;
257 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
258 return false;
259
260 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
261 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
262 return false;
263
264 return true;
265 }
266 #endif
267
268 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
269 hashval_t
270 const_double_hasher::hash (rtx x)
271 {
272 const_rtx const value = x;
273 hashval_t h;
274
275 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
276 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
277 else
278 {
279 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
280 /* MODE is used in the comparison, so it should be in the hash. */
281 h ^= GET_MODE (value);
282 }
283 return h;
284 }
285
286 /* Returns nonzero if the value represented by X (really a ...)
287 is the same as that represented by Y (really a ...) */
288 bool
289 const_double_hasher::equal (rtx x, rtx y)
290 {
291 const_rtx const a = x, b = y;
292
293 if (GET_MODE (a) != GET_MODE (b))
294 return 0;
295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
296 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
297 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
298 else
299 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
300 CONST_DOUBLE_REAL_VALUE (b));
301 }
302
303 /* Returns a hash code for X (which is really a CONST_FIXED). */
304
305 hashval_t
306 const_fixed_hasher::hash (rtx x)
307 {
308 const_rtx const value = x;
309 hashval_t h;
310
311 h = fixed_hash (CONST_FIXED_VALUE (value));
312 /* MODE is used in the comparison, so it should be in the hash. */
313 h ^= GET_MODE (value);
314 return h;
315 }
316
317 /* Returns nonzero if the value represented by X is the same as that
318 represented by Y. */
319
320 bool
321 const_fixed_hasher::equal (rtx x, rtx y)
322 {
323 const_rtx const a = x, b = y;
324
325 if (GET_MODE (a) != GET_MODE (b))
326 return 0;
327 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
328 }
329
330 /* Return true if the given memory attributes are equal. */
331
332 bool
333 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
334 {
335 if (p == q)
336 return true;
337 if (!p || !q)
338 return false;
339 return (p->alias == q->alias
340 && p->offset_known_p == q->offset_known_p
341 && (!p->offset_known_p || p->offset == q->offset)
342 && p->size_known_p == q->size_known_p
343 && (!p->size_known_p || p->size == q->size)
344 && p->align == q->align
345 && p->addrspace == q->addrspace
346 && (p->expr == q->expr
347 || (p->expr != NULL_TREE && q->expr != NULL_TREE
348 && operand_equal_p (p->expr, q->expr, 0))));
349 }
350
351 /* Set MEM's memory attributes so that they are the same as ATTRS. */
352
353 static void
354 set_mem_attrs (rtx mem, mem_attrs *attrs)
355 {
356 /* If everything is the default, we can just clear the attributes. */
357 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
358 {
359 MEM_ATTRS (mem) = 0;
360 return;
361 }
362
363 if (!MEM_ATTRS (mem)
364 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
365 {
366 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
367 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
368 }
369 }
370
371 /* Returns a hash code for X (which is a really a reg_attrs *). */
372
373 hashval_t
374 reg_attr_hasher::hash (reg_attrs *x)
375 {
376 const reg_attrs *const p = x;
377
378 return ((p->offset * 1000) ^ (intptr_t) p->decl);
379 }
380
381 /* Returns nonzero if the value represented by X is the same as that given by
382 Y. */
383
384 bool
385 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
386 {
387 const reg_attrs *const p = x;
388 const reg_attrs *const q = y;
389
390 return (p->decl == q->decl && p->offset == q->offset);
391 }
392 /* Allocate a new reg_attrs structure and insert it into the hash table if
393 one identical to it is not already in the table. We are doing this for
394 MEM of mode MODE. */
395
396 static reg_attrs *
397 get_reg_attrs (tree decl, int offset)
398 {
399 reg_attrs attrs;
400
401 /* If everything is the default, we can just return zero. */
402 if (decl == 0 && offset == 0)
403 return 0;
404
405 attrs.decl = decl;
406 attrs.offset = offset;
407
408 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
409 if (*slot == 0)
410 {
411 *slot = ggc_alloc<reg_attrs> ();
412 memcpy (*slot, &attrs, sizeof (reg_attrs));
413 }
414
415 return *slot;
416 }
417
418
419 #if !HAVE_blockage
420 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
421 and to block register equivalences to be seen across this insn. */
422
423 rtx
424 gen_blockage (void)
425 {
426 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
427 MEM_VOLATILE_P (x) = true;
428 return x;
429 }
430 #endif
431
432
433 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
434 don't attempt to share with the various global pieces of rtl (such as
435 frame_pointer_rtx). */
436
437 rtx
438 gen_raw_REG (machine_mode mode, int regno)
439 {
440 rtx x = gen_rtx_raw_REG (mode, regno);
441 ORIGINAL_REGNO (x) = regno;
442 return x;
443 }
444
445 /* There are some RTL codes that require special attention; the generation
446 functions do the raw handling. If you add to this list, modify
447 special_rtx in gengenrtl.c as well. */
448
449 rtx_expr_list *
450 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
451 {
452 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
453 expr_list));
454 }
455
456 rtx_insn_list *
457 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
458 {
459 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
460 insn_list));
461 }
462
463 rtx_insn *
464 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
465 basic_block bb, rtx pattern, int location, int code,
466 rtx reg_notes)
467 {
468 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
469 prev_insn, next_insn,
470 bb, pattern, location, code,
471 reg_notes));
472 }
473
474 rtx
475 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
476 {
477 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
478 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
479
480 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
481 if (const_true_rtx && arg == STORE_FLAG_VALUE)
482 return const_true_rtx;
483 #endif
484
485 /* Look up the CONST_INT in the hash table. */
486 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
487 INSERT);
488 if (*slot == 0)
489 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
490
491 return *slot;
492 }
493
494 rtx
495 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
496 {
497 return GEN_INT (trunc_int_for_mode (c, mode));
498 }
499
500 /* CONST_DOUBLEs might be created from pairs of integers, or from
501 REAL_VALUE_TYPEs. Also, their length is known only at run time,
502 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
503
504 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
505 hash table. If so, return its counterpart; otherwise add it
506 to the hash table and return it. */
507 static rtx
508 lookup_const_double (rtx real)
509 {
510 rtx *slot = const_double_htab->find_slot (real, INSERT);
511 if (*slot == 0)
512 *slot = real;
513
514 return *slot;
515 }
516
517 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
518 VALUE in mode MODE. */
519 rtx
520 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
521 {
522 rtx real = rtx_alloc (CONST_DOUBLE);
523 PUT_MODE (real, mode);
524
525 real->u.rv = value;
526
527 return lookup_const_double (real);
528 }
529
530 /* Determine whether FIXED, a CONST_FIXED, already exists in the
531 hash table. If so, return its counterpart; otherwise add it
532 to the hash table and return it. */
533
534 static rtx
535 lookup_const_fixed (rtx fixed)
536 {
537 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
538 if (*slot == 0)
539 *slot = fixed;
540
541 return *slot;
542 }
543
544 /* Return a CONST_FIXED rtx for a fixed-point value specified by
545 VALUE in mode MODE. */
546
547 rtx
548 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
549 {
550 rtx fixed = rtx_alloc (CONST_FIXED);
551 PUT_MODE (fixed, mode);
552
553 fixed->u.fv = value;
554
555 return lookup_const_fixed (fixed);
556 }
557
558 #if TARGET_SUPPORTS_WIDE_INT == 0
559 /* Constructs double_int from rtx CST. */
560
561 double_int
562 rtx_to_double_int (const_rtx cst)
563 {
564 double_int r;
565
566 if (CONST_INT_P (cst))
567 r = double_int::from_shwi (INTVAL (cst));
568 else if (CONST_DOUBLE_AS_INT_P (cst))
569 {
570 r.low = CONST_DOUBLE_LOW (cst);
571 r.high = CONST_DOUBLE_HIGH (cst);
572 }
573 else
574 gcc_unreachable ();
575
576 return r;
577 }
578 #endif
579
580 #if TARGET_SUPPORTS_WIDE_INT
581 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
582 If so, return its counterpart; otherwise add it to the hash table and
583 return it. */
584
585 static rtx
586 lookup_const_wide_int (rtx wint)
587 {
588 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
589 if (*slot == 0)
590 *slot = wint;
591
592 return *slot;
593 }
594 #endif
595
596 /* Return an rtx constant for V, given that the constant has mode MODE.
597 The returned rtx will be a CONST_INT if V fits, otherwise it will be
598 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
599 (if TARGET_SUPPORTS_WIDE_INT). */
600
601 rtx
602 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
603 {
604 unsigned int len = v.get_len ();
605 unsigned int prec = GET_MODE_PRECISION (mode);
606
607 /* Allow truncation but not extension since we do not know if the
608 number is signed or unsigned. */
609 gcc_assert (prec <= v.get_precision ());
610
611 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
612 return gen_int_mode (v.elt (0), mode);
613
614 #if TARGET_SUPPORTS_WIDE_INT
615 {
616 unsigned int i;
617 rtx value;
618 unsigned int blocks_needed
619 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
620
621 if (len > blocks_needed)
622 len = blocks_needed;
623
624 value = const_wide_int_alloc (len);
625
626 /* It is so tempting to just put the mode in here. Must control
627 myself ... */
628 PUT_MODE (value, VOIDmode);
629 CWI_PUT_NUM_ELEM (value, len);
630
631 for (i = 0; i < len; i++)
632 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
633
634 return lookup_const_wide_int (value);
635 }
636 #else
637 return immed_double_const (v.elt (0), v.elt (1), mode);
638 #endif
639 }
640
641 #if TARGET_SUPPORTS_WIDE_INT == 0
642 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
643 of ints: I0 is the low-order word and I1 is the high-order word.
644 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
645 implied upper bits are copies of the high bit of i1. The value
646 itself is neither signed nor unsigned. Do not use this routine for
647 non-integer modes; convert to REAL_VALUE_TYPE and use
648 CONST_DOUBLE_FROM_REAL_VALUE. */
649
650 rtx
651 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
652 {
653 rtx value;
654 unsigned int i;
655
656 /* There are the following cases (note that there are no modes with
657 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
658
659 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
660 gen_int_mode.
661 2) If the value of the integer fits into HOST_WIDE_INT anyway
662 (i.e., i1 consists only from copies of the sign bit, and sign
663 of i0 and i1 are the same), then we return a CONST_INT for i0.
664 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
665 if (mode != VOIDmode)
666 {
667 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
668 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
669 /* We can get a 0 for an error mark. */
670 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
671 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
672 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
673
674 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
675 return gen_int_mode (i0, mode);
676 }
677
678 /* If this integer fits in one word, return a CONST_INT. */
679 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
680 return GEN_INT (i0);
681
682 /* We use VOIDmode for integers. */
683 value = rtx_alloc (CONST_DOUBLE);
684 PUT_MODE (value, VOIDmode);
685
686 CONST_DOUBLE_LOW (value) = i0;
687 CONST_DOUBLE_HIGH (value) = i1;
688
689 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
690 XWINT (value, i) = 0;
691
692 return lookup_const_double (value);
693 }
694 #endif
695
696 rtx
697 gen_rtx_REG (machine_mode mode, unsigned int regno)
698 {
699 /* In case the MD file explicitly references the frame pointer, have
700 all such references point to the same frame pointer. This is
701 used during frame pointer elimination to distinguish the explicit
702 references to these registers from pseudos that happened to be
703 assigned to them.
704
705 If we have eliminated the frame pointer or arg pointer, we will
706 be using it as a normal register, for example as a spill
707 register. In such cases, we might be accessing it in a mode that
708 is not Pmode and therefore cannot use the pre-allocated rtx.
709
710 Also don't do this when we are making new REGs in reload, since
711 we don't want to get confused with the real pointers. */
712
713 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
714 {
715 if (regno == FRAME_POINTER_REGNUM
716 && (!reload_completed || frame_pointer_needed))
717 return frame_pointer_rtx;
718 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
719 if (regno == HARD_FRAME_POINTER_REGNUM
720 && (!reload_completed || frame_pointer_needed))
721 return hard_frame_pointer_rtx;
722 #endif
723 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
724 if (regno == ARG_POINTER_REGNUM)
725 return arg_pointer_rtx;
726 #endif
727 #ifdef RETURN_ADDRESS_POINTER_REGNUM
728 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
729 return return_address_pointer_rtx;
730 #endif
731 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
732 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
733 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
734 return pic_offset_table_rtx;
735 if (regno == STACK_POINTER_REGNUM)
736 return stack_pointer_rtx;
737 }
738
739 #if 0
740 /* If the per-function register table has been set up, try to re-use
741 an existing entry in that table to avoid useless generation of RTL.
742
743 This code is disabled for now until we can fix the various backends
744 which depend on having non-shared hard registers in some cases. Long
745 term we want to re-enable this code as it can significantly cut down
746 on the amount of useless RTL that gets generated.
747
748 We'll also need to fix some code that runs after reload that wants to
749 set ORIGINAL_REGNO. */
750
751 if (cfun
752 && cfun->emit
753 && regno_reg_rtx
754 && regno < FIRST_PSEUDO_REGISTER
755 && reg_raw_mode[regno] == mode)
756 return regno_reg_rtx[regno];
757 #endif
758
759 return gen_raw_REG (mode, regno);
760 }
761
762 rtx
763 gen_rtx_MEM (machine_mode mode, rtx addr)
764 {
765 rtx rt = gen_rtx_raw_MEM (mode, addr);
766
767 /* This field is not cleared by the mere allocation of the rtx, so
768 we clear it here. */
769 MEM_ATTRS (rt) = 0;
770
771 return rt;
772 }
773
774 /* Generate a memory referring to non-trapping constant memory. */
775
776 rtx
777 gen_const_mem (machine_mode mode, rtx addr)
778 {
779 rtx mem = gen_rtx_MEM (mode, addr);
780 MEM_READONLY_P (mem) = 1;
781 MEM_NOTRAP_P (mem) = 1;
782 return mem;
783 }
784
785 /* Generate a MEM referring to fixed portions of the frame, e.g., register
786 save areas. */
787
788 rtx
789 gen_frame_mem (machine_mode mode, rtx addr)
790 {
791 rtx mem = gen_rtx_MEM (mode, addr);
792 MEM_NOTRAP_P (mem) = 1;
793 set_mem_alias_set (mem, get_frame_alias_set ());
794 return mem;
795 }
796
797 /* Generate a MEM referring to a temporary use of the stack, not part
798 of the fixed stack frame. For example, something which is pushed
799 by a target splitter. */
800 rtx
801 gen_tmp_stack_mem (machine_mode mode, rtx addr)
802 {
803 rtx mem = gen_rtx_MEM (mode, addr);
804 MEM_NOTRAP_P (mem) = 1;
805 if (!cfun->calls_alloca)
806 set_mem_alias_set (mem, get_frame_alias_set ());
807 return mem;
808 }
809
810 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
811 this construct would be valid, and false otherwise. */
812
813 bool
814 validate_subreg (machine_mode omode, machine_mode imode,
815 const_rtx reg, unsigned int offset)
816 {
817 unsigned int isize = GET_MODE_SIZE (imode);
818 unsigned int osize = GET_MODE_SIZE (omode);
819
820 /* All subregs must be aligned. */
821 if (offset % osize != 0)
822 return false;
823
824 /* The subreg offset cannot be outside the inner object. */
825 if (offset >= isize)
826 return false;
827
828 /* ??? This should not be here. Temporarily continue to allow word_mode
829 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
830 Generally, backends are doing something sketchy but it'll take time to
831 fix them all. */
832 if (omode == word_mode)
833 ;
834 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
835 is the culprit here, and not the backends. */
836 else if (osize >= UNITS_PER_WORD && isize >= osize)
837 ;
838 /* Allow component subregs of complex and vector. Though given the below
839 extraction rules, it's not always clear what that means. */
840 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
841 && GET_MODE_INNER (imode) == omode)
842 ;
843 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
844 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
845 represent this. It's questionable if this ought to be represented at
846 all -- why can't this all be hidden in post-reload splitters that make
847 arbitrarily mode changes to the registers themselves. */
848 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
849 ;
850 /* Subregs involving floating point modes are not allowed to
851 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
852 (subreg:SI (reg:DF) 0) isn't. */
853 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
854 {
855 if (! (isize == osize
856 /* LRA can use subreg to store a floating point value in
857 an integer mode. Although the floating point and the
858 integer modes need the same number of hard registers,
859 the size of floating point mode can be less than the
860 integer mode. LRA also uses subregs for a register
861 should be used in different mode in on insn. */
862 || lra_in_progress))
863 return false;
864 }
865
866 /* Paradoxical subregs must have offset zero. */
867 if (osize > isize)
868 return offset == 0;
869
870 /* This is a normal subreg. Verify that the offset is representable. */
871
872 /* For hard registers, we already have most of these rules collected in
873 subreg_offset_representable_p. */
874 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
875 {
876 unsigned int regno = REGNO (reg);
877
878 #ifdef CANNOT_CHANGE_MODE_CLASS
879 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
880 && GET_MODE_INNER (imode) == omode)
881 ;
882 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
883 return false;
884 #endif
885
886 return subreg_offset_representable_p (regno, imode, offset, omode);
887 }
888
889 /* For pseudo registers, we want most of the same checks. Namely:
890 If the register no larger than a word, the subreg must be lowpart.
891 If the register is larger than a word, the subreg must be the lowpart
892 of a subword. A subreg does *not* perform arbitrary bit extraction.
893 Given that we've already checked mode/offset alignment, we only have
894 to check subword subregs here. */
895 if (osize < UNITS_PER_WORD
896 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
897 {
898 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
899 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
900 if (offset % UNITS_PER_WORD != low_off)
901 return false;
902 }
903 return true;
904 }
905
906 rtx
907 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
908 {
909 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
910 return gen_rtx_raw_SUBREG (mode, reg, offset);
911 }
912
913 /* Generate a SUBREG representing the least-significant part of REG if MODE
914 is smaller than mode of REG, otherwise paradoxical SUBREG. */
915
916 rtx
917 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
918 {
919 machine_mode inmode;
920
921 inmode = GET_MODE (reg);
922 if (inmode == VOIDmode)
923 inmode = mode;
924 return gen_rtx_SUBREG (mode, reg,
925 subreg_lowpart_offset (mode, inmode));
926 }
927
928 rtx
929 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
930 enum var_init_status status)
931 {
932 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
933 PAT_VAR_LOCATION_STATUS (x) = status;
934 return x;
935 }
936 \f
937
938 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
939
940 rtvec
941 gen_rtvec (int n, ...)
942 {
943 int i;
944 rtvec rt_val;
945 va_list p;
946
947 va_start (p, n);
948
949 /* Don't allocate an empty rtvec... */
950 if (n == 0)
951 {
952 va_end (p);
953 return NULL_RTVEC;
954 }
955
956 rt_val = rtvec_alloc (n);
957
958 for (i = 0; i < n; i++)
959 rt_val->elem[i] = va_arg (p, rtx);
960
961 va_end (p);
962 return rt_val;
963 }
964
965 rtvec
966 gen_rtvec_v (int n, rtx *argp)
967 {
968 int i;
969 rtvec rt_val;
970
971 /* Don't allocate an empty rtvec... */
972 if (n == 0)
973 return NULL_RTVEC;
974
975 rt_val = rtvec_alloc (n);
976
977 for (i = 0; i < n; i++)
978 rt_val->elem[i] = *argp++;
979
980 return rt_val;
981 }
982
983 rtvec
984 gen_rtvec_v (int n, rtx_insn **argp)
985 {
986 int i;
987 rtvec rt_val;
988
989 /* Don't allocate an empty rtvec... */
990 if (n == 0)
991 return NULL_RTVEC;
992
993 rt_val = rtvec_alloc (n);
994
995 for (i = 0; i < n; i++)
996 rt_val->elem[i] = *argp++;
997
998 return rt_val;
999 }
1000
1001 \f
1002 /* Return the number of bytes between the start of an OUTER_MODE
1003 in-memory value and the start of an INNER_MODE in-memory value,
1004 given that the former is a lowpart of the latter. It may be a
1005 paradoxical lowpart, in which case the offset will be negative
1006 on big-endian targets. */
1007
1008 int
1009 byte_lowpart_offset (machine_mode outer_mode,
1010 machine_mode inner_mode)
1011 {
1012 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1013 return subreg_lowpart_offset (outer_mode, inner_mode);
1014 else
1015 return -subreg_lowpart_offset (inner_mode, outer_mode);
1016 }
1017 \f
1018 /* Generate a REG rtx for a new pseudo register of mode MODE.
1019 This pseudo is assigned the next sequential register number. */
1020
1021 rtx
1022 gen_reg_rtx (machine_mode mode)
1023 {
1024 rtx val;
1025 unsigned int align = GET_MODE_ALIGNMENT (mode);
1026
1027 gcc_assert (can_create_pseudo_p ());
1028
1029 /* If a virtual register with bigger mode alignment is generated,
1030 increase stack alignment estimation because it might be spilled
1031 to stack later. */
1032 if (SUPPORTS_STACK_ALIGNMENT
1033 && crtl->stack_alignment_estimated < align
1034 && !crtl->stack_realign_processed)
1035 {
1036 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1037 if (crtl->stack_alignment_estimated < min_align)
1038 crtl->stack_alignment_estimated = min_align;
1039 }
1040
1041 if (generating_concat_p
1042 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1043 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1044 {
1045 /* For complex modes, don't make a single pseudo.
1046 Instead, make a CONCAT of two pseudos.
1047 This allows noncontiguous allocation of the real and imaginary parts,
1048 which makes much better code. Besides, allocating DCmode
1049 pseudos overstrains reload on some machines like the 386. */
1050 rtx realpart, imagpart;
1051 machine_mode partmode = GET_MODE_INNER (mode);
1052
1053 realpart = gen_reg_rtx (partmode);
1054 imagpart = gen_reg_rtx (partmode);
1055 return gen_rtx_CONCAT (mode, realpart, imagpart);
1056 }
1057
1058 /* Do not call gen_reg_rtx with uninitialized crtl. */
1059 gcc_assert (crtl->emit.regno_pointer_align_length);
1060
1061 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1062 enough to have an element for this pseudo reg number. */
1063
1064 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1065 {
1066 int old_size = crtl->emit.regno_pointer_align_length;
1067 char *tmp;
1068 rtx *new1;
1069
1070 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1071 memset (tmp + old_size, 0, old_size);
1072 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1073
1074 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1075 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1076 regno_reg_rtx = new1;
1077
1078 crtl->emit.regno_pointer_align_length = old_size * 2;
1079 }
1080
1081 val = gen_raw_REG (mode, reg_rtx_no);
1082 regno_reg_rtx[reg_rtx_no++] = val;
1083 return val;
1084 }
1085
1086 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1087
1088 bool
1089 reg_is_parm_p (rtx reg)
1090 {
1091 tree decl;
1092
1093 gcc_assert (REG_P (reg));
1094 decl = REG_EXPR (reg);
1095 return (decl && TREE_CODE (decl) == PARM_DECL);
1096 }
1097
1098 /* Update NEW with the same attributes as REG, but with OFFSET added
1099 to the REG_OFFSET. */
1100
1101 static void
1102 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1103 {
1104 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1105 REG_OFFSET (reg) + offset);
1106 }
1107
1108 /* Generate a register with same attributes as REG, but with OFFSET
1109 added to the REG_OFFSET. */
1110
1111 rtx
1112 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1113 int offset)
1114 {
1115 rtx new_rtx = gen_rtx_REG (mode, regno);
1116
1117 update_reg_offset (new_rtx, reg, offset);
1118 return new_rtx;
1119 }
1120
1121 /* Generate a new pseudo-register with the same attributes as REG, but
1122 with OFFSET added to the REG_OFFSET. */
1123
1124 rtx
1125 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1126 {
1127 rtx new_rtx = gen_reg_rtx (mode);
1128
1129 update_reg_offset (new_rtx, reg, offset);
1130 return new_rtx;
1131 }
1132
1133 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1134 new register is a (possibly paradoxical) lowpart of the old one. */
1135
1136 void
1137 adjust_reg_mode (rtx reg, machine_mode mode)
1138 {
1139 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1140 PUT_MODE (reg, mode);
1141 }
1142
1143 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1144 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1145
1146 void
1147 set_reg_attrs_from_value (rtx reg, rtx x)
1148 {
1149 int offset;
1150 bool can_be_reg_pointer = true;
1151
1152 /* Don't call mark_reg_pointer for incompatible pointer sign
1153 extension. */
1154 while (GET_CODE (x) == SIGN_EXTEND
1155 || GET_CODE (x) == ZERO_EXTEND
1156 || GET_CODE (x) == TRUNCATE
1157 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1158 {
1159 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1160 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1161 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1162 can_be_reg_pointer = false;
1163 #endif
1164 x = XEXP (x, 0);
1165 }
1166
1167 /* Hard registers can be reused for multiple purposes within the same
1168 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1169 on them is wrong. */
1170 if (HARD_REGISTER_P (reg))
1171 return;
1172
1173 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1174 if (MEM_P (x))
1175 {
1176 if (MEM_OFFSET_KNOWN_P (x))
1177 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1178 MEM_OFFSET (x) + offset);
1179 if (can_be_reg_pointer && MEM_POINTER (x))
1180 mark_reg_pointer (reg, 0);
1181 }
1182 else if (REG_P (x))
1183 {
1184 if (REG_ATTRS (x))
1185 update_reg_offset (reg, x, offset);
1186 if (can_be_reg_pointer && REG_POINTER (x))
1187 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1188 }
1189 }
1190
1191 /* Generate a REG rtx for a new pseudo register, copying the mode
1192 and attributes from X. */
1193
1194 rtx
1195 gen_reg_rtx_and_attrs (rtx x)
1196 {
1197 rtx reg = gen_reg_rtx (GET_MODE (x));
1198 set_reg_attrs_from_value (reg, x);
1199 return reg;
1200 }
1201
1202 /* Set the register attributes for registers contained in PARM_RTX.
1203 Use needed values from memory attributes of MEM. */
1204
1205 void
1206 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1207 {
1208 if (REG_P (parm_rtx))
1209 set_reg_attrs_from_value (parm_rtx, mem);
1210 else if (GET_CODE (parm_rtx) == PARALLEL)
1211 {
1212 /* Check for a NULL entry in the first slot, used to indicate that the
1213 parameter goes both on the stack and in registers. */
1214 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1215 for (; i < XVECLEN (parm_rtx, 0); i++)
1216 {
1217 rtx x = XVECEXP (parm_rtx, 0, i);
1218 if (REG_P (XEXP (x, 0)))
1219 REG_ATTRS (XEXP (x, 0))
1220 = get_reg_attrs (MEM_EXPR (mem),
1221 INTVAL (XEXP (x, 1)));
1222 }
1223 }
1224 }
1225
1226 /* Set the REG_ATTRS for registers in value X, given that X represents
1227 decl T. */
1228
1229 void
1230 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1231 {
1232 if (GET_CODE (x) == SUBREG)
1233 {
1234 gcc_assert (subreg_lowpart_p (x));
1235 x = SUBREG_REG (x);
1236 }
1237 if (REG_P (x))
1238 REG_ATTRS (x)
1239 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1240 DECL_MODE (t)));
1241 if (GET_CODE (x) == CONCAT)
1242 {
1243 if (REG_P (XEXP (x, 0)))
1244 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1245 if (REG_P (XEXP (x, 1)))
1246 REG_ATTRS (XEXP (x, 1))
1247 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1248 }
1249 if (GET_CODE (x) == PARALLEL)
1250 {
1251 int i, start;
1252
1253 /* Check for a NULL entry, used to indicate that the parameter goes
1254 both on the stack and in registers. */
1255 if (XEXP (XVECEXP (x, 0, 0), 0))
1256 start = 0;
1257 else
1258 start = 1;
1259
1260 for (i = start; i < XVECLEN (x, 0); i++)
1261 {
1262 rtx y = XVECEXP (x, 0, i);
1263 if (REG_P (XEXP (y, 0)))
1264 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1265 }
1266 }
1267 }
1268
1269 /* Assign the RTX X to declaration T. */
1270
1271 void
1272 set_decl_rtl (tree t, rtx x)
1273 {
1274 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1275 if (x)
1276 set_reg_attrs_for_decl_rtl (t, x);
1277 }
1278
1279 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1280 if the ABI requires the parameter to be passed by reference. */
1281
1282 void
1283 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1284 {
1285 DECL_INCOMING_RTL (t) = x;
1286 if (x && !by_reference_p)
1287 set_reg_attrs_for_decl_rtl (t, x);
1288 }
1289
1290 /* Identify REG (which may be a CONCAT) as a user register. */
1291
1292 void
1293 mark_user_reg (rtx reg)
1294 {
1295 if (GET_CODE (reg) == CONCAT)
1296 {
1297 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1298 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1299 }
1300 else
1301 {
1302 gcc_assert (REG_P (reg));
1303 REG_USERVAR_P (reg) = 1;
1304 }
1305 }
1306
1307 /* Identify REG as a probable pointer register and show its alignment
1308 as ALIGN, if nonzero. */
1309
1310 void
1311 mark_reg_pointer (rtx reg, int align)
1312 {
1313 if (! REG_POINTER (reg))
1314 {
1315 REG_POINTER (reg) = 1;
1316
1317 if (align)
1318 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1319 }
1320 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1321 /* We can no-longer be sure just how aligned this pointer is. */
1322 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1323 }
1324
1325 /* Return 1 plus largest pseudo reg number used in the current function. */
1326
1327 int
1328 max_reg_num (void)
1329 {
1330 return reg_rtx_no;
1331 }
1332
1333 /* Return 1 + the largest label number used so far in the current function. */
1334
1335 int
1336 max_label_num (void)
1337 {
1338 return label_num;
1339 }
1340
1341 /* Return first label number used in this function (if any were used). */
1342
1343 int
1344 get_first_label_num (void)
1345 {
1346 return first_label_num;
1347 }
1348
1349 /* If the rtx for label was created during the expansion of a nested
1350 function, then first_label_num won't include this label number.
1351 Fix this now so that array indices work later. */
1352
1353 void
1354 maybe_set_first_label_num (rtx x)
1355 {
1356 if (CODE_LABEL_NUMBER (x) < first_label_num)
1357 first_label_num = CODE_LABEL_NUMBER (x);
1358 }
1359 \f
1360 /* Return a value representing some low-order bits of X, where the number
1361 of low-order bits is given by MODE. Note that no conversion is done
1362 between floating-point and fixed-point values, rather, the bit
1363 representation is returned.
1364
1365 This function handles the cases in common between gen_lowpart, below,
1366 and two variants in cse.c and combine.c. These are the cases that can
1367 be safely handled at all points in the compilation.
1368
1369 If this is not a case we can handle, return 0. */
1370
1371 rtx
1372 gen_lowpart_common (machine_mode mode, rtx x)
1373 {
1374 int msize = GET_MODE_SIZE (mode);
1375 int xsize;
1376 int offset = 0;
1377 machine_mode innermode;
1378
1379 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1380 so we have to make one up. Yuk. */
1381 innermode = GET_MODE (x);
1382 if (CONST_INT_P (x)
1383 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1384 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1385 else if (innermode == VOIDmode)
1386 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1387
1388 xsize = GET_MODE_SIZE (innermode);
1389
1390 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1391
1392 if (innermode == mode)
1393 return x;
1394
1395 /* MODE must occupy no more words than the mode of X. */
1396 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1397 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1398 return 0;
1399
1400 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1401 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1402 return 0;
1403
1404 offset = subreg_lowpart_offset (mode, innermode);
1405
1406 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1407 && (GET_MODE_CLASS (mode) == MODE_INT
1408 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1409 {
1410 /* If we are getting the low-order part of something that has been
1411 sign- or zero-extended, we can either just use the object being
1412 extended or make a narrower extension. If we want an even smaller
1413 piece than the size of the object being extended, call ourselves
1414 recursively.
1415
1416 This case is used mostly by combine and cse. */
1417
1418 if (GET_MODE (XEXP (x, 0)) == mode)
1419 return XEXP (x, 0);
1420 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1421 return gen_lowpart_common (mode, XEXP (x, 0));
1422 else if (msize < xsize)
1423 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1424 }
1425 else if (GET_CODE (x) == SUBREG || REG_P (x)
1426 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1427 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1428 return simplify_gen_subreg (mode, x, innermode, offset);
1429
1430 /* Otherwise, we can't do this. */
1431 return 0;
1432 }
1433 \f
1434 rtx
1435 gen_highpart (machine_mode mode, rtx x)
1436 {
1437 unsigned int msize = GET_MODE_SIZE (mode);
1438 rtx result;
1439
1440 /* This case loses if X is a subreg. To catch bugs early,
1441 complain if an invalid MODE is used even in other cases. */
1442 gcc_assert (msize <= UNITS_PER_WORD
1443 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1444
1445 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1446 subreg_highpart_offset (mode, GET_MODE (x)));
1447 gcc_assert (result);
1448
1449 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1450 the target if we have a MEM. gen_highpart must return a valid operand,
1451 emitting code if necessary to do so. */
1452 if (MEM_P (result))
1453 {
1454 result = validize_mem (result);
1455 gcc_assert (result);
1456 }
1457
1458 return result;
1459 }
1460
1461 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1462 be VOIDmode constant. */
1463 rtx
1464 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1465 {
1466 if (GET_MODE (exp) != VOIDmode)
1467 {
1468 gcc_assert (GET_MODE (exp) == innermode);
1469 return gen_highpart (outermode, exp);
1470 }
1471 return simplify_gen_subreg (outermode, exp, innermode,
1472 subreg_highpart_offset (outermode, innermode));
1473 }
1474
1475 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1476
1477 unsigned int
1478 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1479 {
1480 unsigned int offset = 0;
1481 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1482
1483 if (difference > 0)
1484 {
1485 if (WORDS_BIG_ENDIAN)
1486 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1487 if (BYTES_BIG_ENDIAN)
1488 offset += difference % UNITS_PER_WORD;
1489 }
1490
1491 return offset;
1492 }
1493
1494 /* Return offset in bytes to get OUTERMODE high part
1495 of the value in mode INNERMODE stored in memory in target format. */
1496 unsigned int
1497 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1498 {
1499 unsigned int offset = 0;
1500 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1501
1502 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1503
1504 if (difference > 0)
1505 {
1506 if (! WORDS_BIG_ENDIAN)
1507 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1508 if (! BYTES_BIG_ENDIAN)
1509 offset += difference % UNITS_PER_WORD;
1510 }
1511
1512 return offset;
1513 }
1514
1515 /* Return 1 iff X, assumed to be a SUBREG,
1516 refers to the least significant part of its containing reg.
1517 If X is not a SUBREG, always return 1 (it is its own low part!). */
1518
1519 int
1520 subreg_lowpart_p (const_rtx x)
1521 {
1522 if (GET_CODE (x) != SUBREG)
1523 return 1;
1524 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1525 return 0;
1526
1527 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1528 == SUBREG_BYTE (x));
1529 }
1530
1531 /* Return true if X is a paradoxical subreg, false otherwise. */
1532 bool
1533 paradoxical_subreg_p (const_rtx x)
1534 {
1535 if (GET_CODE (x) != SUBREG)
1536 return false;
1537 return (GET_MODE_PRECISION (GET_MODE (x))
1538 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1539 }
1540 \f
1541 /* Return subword OFFSET of operand OP.
1542 The word number, OFFSET, is interpreted as the word number starting
1543 at the low-order address. OFFSET 0 is the low-order word if not
1544 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1545
1546 If we cannot extract the required word, we return zero. Otherwise,
1547 an rtx corresponding to the requested word will be returned.
1548
1549 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1550 reload has completed, a valid address will always be returned. After
1551 reload, if a valid address cannot be returned, we return zero.
1552
1553 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1554 it is the responsibility of the caller.
1555
1556 MODE is the mode of OP in case it is a CONST_INT.
1557
1558 ??? This is still rather broken for some cases. The problem for the
1559 moment is that all callers of this thing provide no 'goal mode' to
1560 tell us to work with. This exists because all callers were written
1561 in a word based SUBREG world.
1562 Now use of this function can be deprecated by simplify_subreg in most
1563 cases.
1564 */
1565
1566 rtx
1567 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1568 {
1569 if (mode == VOIDmode)
1570 mode = GET_MODE (op);
1571
1572 gcc_assert (mode != VOIDmode);
1573
1574 /* If OP is narrower than a word, fail. */
1575 if (mode != BLKmode
1576 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1577 return 0;
1578
1579 /* If we want a word outside OP, return zero. */
1580 if (mode != BLKmode
1581 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1582 return const0_rtx;
1583
1584 /* Form a new MEM at the requested address. */
1585 if (MEM_P (op))
1586 {
1587 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1588
1589 if (! validate_address)
1590 return new_rtx;
1591
1592 else if (reload_completed)
1593 {
1594 if (! strict_memory_address_addr_space_p (word_mode,
1595 XEXP (new_rtx, 0),
1596 MEM_ADDR_SPACE (op)))
1597 return 0;
1598 }
1599 else
1600 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1601 }
1602
1603 /* Rest can be handled by simplify_subreg. */
1604 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1605 }
1606
1607 /* Similar to `operand_subword', but never return 0. If we can't
1608 extract the required subword, put OP into a register and try again.
1609 The second attempt must succeed. We always validate the address in
1610 this case.
1611
1612 MODE is the mode of OP, in case it is CONST_INT. */
1613
1614 rtx
1615 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1616 {
1617 rtx result = operand_subword (op, offset, 1, mode);
1618
1619 if (result)
1620 return result;
1621
1622 if (mode != BLKmode && mode != VOIDmode)
1623 {
1624 /* If this is a register which can not be accessed by words, copy it
1625 to a pseudo register. */
1626 if (REG_P (op))
1627 op = copy_to_reg (op);
1628 else
1629 op = force_reg (mode, op);
1630 }
1631
1632 result = operand_subword (op, offset, 1, mode);
1633 gcc_assert (result);
1634
1635 return result;
1636 }
1637 \f
1638 /* Returns 1 if both MEM_EXPR can be considered equal
1639 and 0 otherwise. */
1640
1641 int
1642 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1643 {
1644 if (expr1 == expr2)
1645 return 1;
1646
1647 if (! expr1 || ! expr2)
1648 return 0;
1649
1650 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1651 return 0;
1652
1653 return operand_equal_p (expr1, expr2, 0);
1654 }
1655
1656 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1657 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1658 -1 if not known. */
1659
1660 int
1661 get_mem_align_offset (rtx mem, unsigned int align)
1662 {
1663 tree expr;
1664 unsigned HOST_WIDE_INT offset;
1665
1666 /* This function can't use
1667 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1668 || (MAX (MEM_ALIGN (mem),
1669 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1670 < align))
1671 return -1;
1672 else
1673 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1674 for two reasons:
1675 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1676 for <variable>. get_inner_reference doesn't handle it and
1677 even if it did, the alignment in that case needs to be determined
1678 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1679 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1680 isn't sufficiently aligned, the object it is in might be. */
1681 gcc_assert (MEM_P (mem));
1682 expr = MEM_EXPR (mem);
1683 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1684 return -1;
1685
1686 offset = MEM_OFFSET (mem);
1687 if (DECL_P (expr))
1688 {
1689 if (DECL_ALIGN (expr) < align)
1690 return -1;
1691 }
1692 else if (INDIRECT_REF_P (expr))
1693 {
1694 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1695 return -1;
1696 }
1697 else if (TREE_CODE (expr) == COMPONENT_REF)
1698 {
1699 while (1)
1700 {
1701 tree inner = TREE_OPERAND (expr, 0);
1702 tree field = TREE_OPERAND (expr, 1);
1703 tree byte_offset = component_ref_field_offset (expr);
1704 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1705
1706 if (!byte_offset
1707 || !tree_fits_uhwi_p (byte_offset)
1708 || !tree_fits_uhwi_p (bit_offset))
1709 return -1;
1710
1711 offset += tree_to_uhwi (byte_offset);
1712 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1713
1714 if (inner == NULL_TREE)
1715 {
1716 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1717 < (unsigned int) align)
1718 return -1;
1719 break;
1720 }
1721 else if (DECL_P (inner))
1722 {
1723 if (DECL_ALIGN (inner) < align)
1724 return -1;
1725 break;
1726 }
1727 else if (TREE_CODE (inner) != COMPONENT_REF)
1728 return -1;
1729 expr = inner;
1730 }
1731 }
1732 else
1733 return -1;
1734
1735 return offset & ((align / BITS_PER_UNIT) - 1);
1736 }
1737
1738 /* Given REF (a MEM) and T, either the type of X or the expression
1739 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1740 if we are making a new object of this type. BITPOS is nonzero if
1741 there is an offset outstanding on T that will be applied later. */
1742
1743 void
1744 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1745 HOST_WIDE_INT bitpos)
1746 {
1747 HOST_WIDE_INT apply_bitpos = 0;
1748 tree type;
1749 struct mem_attrs attrs, *defattrs, *refattrs;
1750 addr_space_t as;
1751
1752 /* It can happen that type_for_mode was given a mode for which there
1753 is no language-level type. In which case it returns NULL, which
1754 we can see here. */
1755 if (t == NULL_TREE)
1756 return;
1757
1758 type = TYPE_P (t) ? t : TREE_TYPE (t);
1759 if (type == error_mark_node)
1760 return;
1761
1762 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1763 wrong answer, as it assumes that DECL_RTL already has the right alias
1764 info. Callers should not set DECL_RTL until after the call to
1765 set_mem_attributes. */
1766 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1767
1768 memset (&attrs, 0, sizeof (attrs));
1769
1770 /* Get the alias set from the expression or type (perhaps using a
1771 front-end routine) and use it. */
1772 attrs.alias = get_alias_set (t);
1773
1774 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1775 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1776
1777 /* Default values from pre-existing memory attributes if present. */
1778 refattrs = MEM_ATTRS (ref);
1779 if (refattrs)
1780 {
1781 /* ??? Can this ever happen? Calling this routine on a MEM that
1782 already carries memory attributes should probably be invalid. */
1783 attrs.expr = refattrs->expr;
1784 attrs.offset_known_p = refattrs->offset_known_p;
1785 attrs.offset = refattrs->offset;
1786 attrs.size_known_p = refattrs->size_known_p;
1787 attrs.size = refattrs->size;
1788 attrs.align = refattrs->align;
1789 }
1790
1791 /* Otherwise, default values from the mode of the MEM reference. */
1792 else
1793 {
1794 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1795 gcc_assert (!defattrs->expr);
1796 gcc_assert (!defattrs->offset_known_p);
1797
1798 /* Respect mode size. */
1799 attrs.size_known_p = defattrs->size_known_p;
1800 attrs.size = defattrs->size;
1801 /* ??? Is this really necessary? We probably should always get
1802 the size from the type below. */
1803
1804 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1805 if T is an object, always compute the object alignment below. */
1806 if (TYPE_P (t))
1807 attrs.align = defattrs->align;
1808 else
1809 attrs.align = BITS_PER_UNIT;
1810 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1811 e.g. if the type carries an alignment attribute. Should we be
1812 able to simply always use TYPE_ALIGN? */
1813 }
1814
1815 /* We can set the alignment from the type if we are making an object,
1816 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1817 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1818 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1819
1820 /* If the size is known, we can set that. */
1821 tree new_size = TYPE_SIZE_UNIT (type);
1822
1823 /* The address-space is that of the type. */
1824 as = TYPE_ADDR_SPACE (type);
1825
1826 /* If T is not a type, we may be able to deduce some more information about
1827 the expression. */
1828 if (! TYPE_P (t))
1829 {
1830 tree base;
1831
1832 if (TREE_THIS_VOLATILE (t))
1833 MEM_VOLATILE_P (ref) = 1;
1834
1835 /* Now remove any conversions: they don't change what the underlying
1836 object is. Likewise for SAVE_EXPR. */
1837 while (CONVERT_EXPR_P (t)
1838 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1839 || TREE_CODE (t) == SAVE_EXPR)
1840 t = TREE_OPERAND (t, 0);
1841
1842 /* Note whether this expression can trap. */
1843 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1844
1845 base = get_base_address (t);
1846 if (base)
1847 {
1848 if (DECL_P (base)
1849 && TREE_READONLY (base)
1850 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1851 && !TREE_THIS_VOLATILE (base))
1852 MEM_READONLY_P (ref) = 1;
1853
1854 /* Mark static const strings readonly as well. */
1855 if (TREE_CODE (base) == STRING_CST
1856 && TREE_READONLY (base)
1857 && TREE_STATIC (base))
1858 MEM_READONLY_P (ref) = 1;
1859
1860 /* Address-space information is on the base object. */
1861 if (TREE_CODE (base) == MEM_REF
1862 || TREE_CODE (base) == TARGET_MEM_REF)
1863 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1864 0))));
1865 else
1866 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1867 }
1868
1869 /* If this expression uses it's parent's alias set, mark it such
1870 that we won't change it. */
1871 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1872 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1873
1874 /* If this is a decl, set the attributes of the MEM from it. */
1875 if (DECL_P (t))
1876 {
1877 attrs.expr = t;
1878 attrs.offset_known_p = true;
1879 attrs.offset = 0;
1880 apply_bitpos = bitpos;
1881 new_size = DECL_SIZE_UNIT (t);
1882 }
1883
1884 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1885 else if (CONSTANT_CLASS_P (t))
1886 ;
1887
1888 /* If this is a field reference, record it. */
1889 else if (TREE_CODE (t) == COMPONENT_REF)
1890 {
1891 attrs.expr = t;
1892 attrs.offset_known_p = true;
1893 attrs.offset = 0;
1894 apply_bitpos = bitpos;
1895 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1896 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1897 }
1898
1899 /* If this is an array reference, look for an outer field reference. */
1900 else if (TREE_CODE (t) == ARRAY_REF)
1901 {
1902 tree off_tree = size_zero_node;
1903 /* We can't modify t, because we use it at the end of the
1904 function. */
1905 tree t2 = t;
1906
1907 do
1908 {
1909 tree index = TREE_OPERAND (t2, 1);
1910 tree low_bound = array_ref_low_bound (t2);
1911 tree unit_size = array_ref_element_size (t2);
1912
1913 /* We assume all arrays have sizes that are a multiple of a byte.
1914 First subtract the lower bound, if any, in the type of the
1915 index, then convert to sizetype and multiply by the size of
1916 the array element. */
1917 if (! integer_zerop (low_bound))
1918 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1919 index, low_bound);
1920
1921 off_tree = size_binop (PLUS_EXPR,
1922 size_binop (MULT_EXPR,
1923 fold_convert (sizetype,
1924 index),
1925 unit_size),
1926 off_tree);
1927 t2 = TREE_OPERAND (t2, 0);
1928 }
1929 while (TREE_CODE (t2) == ARRAY_REF);
1930
1931 if (DECL_P (t2)
1932 || TREE_CODE (t2) == COMPONENT_REF)
1933 {
1934 attrs.expr = t2;
1935 attrs.offset_known_p = false;
1936 if (tree_fits_uhwi_p (off_tree))
1937 {
1938 attrs.offset_known_p = true;
1939 attrs.offset = tree_to_uhwi (off_tree);
1940 apply_bitpos = bitpos;
1941 }
1942 }
1943 /* Else do not record a MEM_EXPR. */
1944 }
1945
1946 /* If this is an indirect reference, record it. */
1947 else if (TREE_CODE (t) == MEM_REF
1948 || TREE_CODE (t) == TARGET_MEM_REF)
1949 {
1950 attrs.expr = t;
1951 attrs.offset_known_p = true;
1952 attrs.offset = 0;
1953 apply_bitpos = bitpos;
1954 }
1955
1956 /* Compute the alignment. */
1957 unsigned int obj_align;
1958 unsigned HOST_WIDE_INT obj_bitpos;
1959 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1960 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1961 if (obj_bitpos != 0)
1962 obj_align = (obj_bitpos & -obj_bitpos);
1963 attrs.align = MAX (attrs.align, obj_align);
1964 }
1965
1966 if (tree_fits_uhwi_p (new_size))
1967 {
1968 attrs.size_known_p = true;
1969 attrs.size = tree_to_uhwi (new_size);
1970 }
1971
1972 /* If we modified OFFSET based on T, then subtract the outstanding
1973 bit position offset. Similarly, increase the size of the accessed
1974 object to contain the negative offset. */
1975 if (apply_bitpos)
1976 {
1977 gcc_assert (attrs.offset_known_p);
1978 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1979 if (attrs.size_known_p)
1980 attrs.size += apply_bitpos / BITS_PER_UNIT;
1981 }
1982
1983 /* Now set the attributes we computed above. */
1984 attrs.addrspace = as;
1985 set_mem_attrs (ref, &attrs);
1986 }
1987
1988 void
1989 set_mem_attributes (rtx ref, tree t, int objectp)
1990 {
1991 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1992 }
1993
1994 /* Set the alias set of MEM to SET. */
1995
1996 void
1997 set_mem_alias_set (rtx mem, alias_set_type set)
1998 {
1999 struct mem_attrs attrs;
2000
2001 /* If the new and old alias sets don't conflict, something is wrong. */
2002 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2003 attrs = *get_mem_attrs (mem);
2004 attrs.alias = set;
2005 set_mem_attrs (mem, &attrs);
2006 }
2007
2008 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2009
2010 void
2011 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2012 {
2013 struct mem_attrs attrs;
2014
2015 attrs = *get_mem_attrs (mem);
2016 attrs.addrspace = addrspace;
2017 set_mem_attrs (mem, &attrs);
2018 }
2019
2020 /* Set the alignment of MEM to ALIGN bits. */
2021
2022 void
2023 set_mem_align (rtx mem, unsigned int align)
2024 {
2025 struct mem_attrs attrs;
2026
2027 attrs = *get_mem_attrs (mem);
2028 attrs.align = align;
2029 set_mem_attrs (mem, &attrs);
2030 }
2031
2032 /* Set the expr for MEM to EXPR. */
2033
2034 void
2035 set_mem_expr (rtx mem, tree expr)
2036 {
2037 struct mem_attrs attrs;
2038
2039 attrs = *get_mem_attrs (mem);
2040 attrs.expr = expr;
2041 set_mem_attrs (mem, &attrs);
2042 }
2043
2044 /* Set the offset of MEM to OFFSET. */
2045
2046 void
2047 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2048 {
2049 struct mem_attrs attrs;
2050
2051 attrs = *get_mem_attrs (mem);
2052 attrs.offset_known_p = true;
2053 attrs.offset = offset;
2054 set_mem_attrs (mem, &attrs);
2055 }
2056
2057 /* Clear the offset of MEM. */
2058
2059 void
2060 clear_mem_offset (rtx mem)
2061 {
2062 struct mem_attrs attrs;
2063
2064 attrs = *get_mem_attrs (mem);
2065 attrs.offset_known_p = false;
2066 set_mem_attrs (mem, &attrs);
2067 }
2068
2069 /* Set the size of MEM to SIZE. */
2070
2071 void
2072 set_mem_size (rtx mem, HOST_WIDE_INT size)
2073 {
2074 struct mem_attrs attrs;
2075
2076 attrs = *get_mem_attrs (mem);
2077 attrs.size_known_p = true;
2078 attrs.size = size;
2079 set_mem_attrs (mem, &attrs);
2080 }
2081
2082 /* Clear the size of MEM. */
2083
2084 void
2085 clear_mem_size (rtx mem)
2086 {
2087 struct mem_attrs attrs;
2088
2089 attrs = *get_mem_attrs (mem);
2090 attrs.size_known_p = false;
2091 set_mem_attrs (mem, &attrs);
2092 }
2093 \f
2094 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2095 and its address changed to ADDR. (VOIDmode means don't change the mode.
2096 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2097 returned memory location is required to be valid. INPLACE is true if any
2098 changes can be made directly to MEMREF or false if MEMREF must be treated
2099 as immutable.
2100
2101 The memory attributes are not changed. */
2102
2103 static rtx
2104 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2105 bool inplace)
2106 {
2107 addr_space_t as;
2108 rtx new_rtx;
2109
2110 gcc_assert (MEM_P (memref));
2111 as = MEM_ADDR_SPACE (memref);
2112 if (mode == VOIDmode)
2113 mode = GET_MODE (memref);
2114 if (addr == 0)
2115 addr = XEXP (memref, 0);
2116 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2117 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2118 return memref;
2119
2120 /* Don't validate address for LRA. LRA can make the address valid
2121 by itself in most efficient way. */
2122 if (validate && !lra_in_progress)
2123 {
2124 if (reload_in_progress || reload_completed)
2125 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2126 else
2127 addr = memory_address_addr_space (mode, addr, as);
2128 }
2129
2130 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2131 return memref;
2132
2133 if (inplace)
2134 {
2135 XEXP (memref, 0) = addr;
2136 return memref;
2137 }
2138
2139 new_rtx = gen_rtx_MEM (mode, addr);
2140 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2141 return new_rtx;
2142 }
2143
2144 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2145 way we are changing MEMREF, so we only preserve the alias set. */
2146
2147 rtx
2148 change_address (rtx memref, machine_mode mode, rtx addr)
2149 {
2150 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2151 machine_mode mmode = GET_MODE (new_rtx);
2152 struct mem_attrs attrs, *defattrs;
2153
2154 attrs = *get_mem_attrs (memref);
2155 defattrs = mode_mem_attrs[(int) mmode];
2156 attrs.expr = NULL_TREE;
2157 attrs.offset_known_p = false;
2158 attrs.size_known_p = defattrs->size_known_p;
2159 attrs.size = defattrs->size;
2160 attrs.align = defattrs->align;
2161
2162 /* If there are no changes, just return the original memory reference. */
2163 if (new_rtx == memref)
2164 {
2165 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2166 return new_rtx;
2167
2168 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2169 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2170 }
2171
2172 set_mem_attrs (new_rtx, &attrs);
2173 return new_rtx;
2174 }
2175
2176 /* Return a memory reference like MEMREF, but with its mode changed
2177 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2178 nonzero, the memory address is forced to be valid.
2179 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2180 and the caller is responsible for adjusting MEMREF base register.
2181 If ADJUST_OBJECT is zero, the underlying object associated with the
2182 memory reference is left unchanged and the caller is responsible for
2183 dealing with it. Otherwise, if the new memory reference is outside
2184 the underlying object, even partially, then the object is dropped.
2185 SIZE, if nonzero, is the size of an access in cases where MODE
2186 has no inherent size. */
2187
2188 rtx
2189 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2190 int validate, int adjust_address, int adjust_object,
2191 HOST_WIDE_INT size)
2192 {
2193 rtx addr = XEXP (memref, 0);
2194 rtx new_rtx;
2195 machine_mode address_mode;
2196 int pbits;
2197 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2198 unsigned HOST_WIDE_INT max_align;
2199 #ifdef POINTERS_EXTEND_UNSIGNED
2200 machine_mode pointer_mode
2201 = targetm.addr_space.pointer_mode (attrs.addrspace);
2202 #endif
2203
2204 /* VOIDmode means no mode change for change_address_1. */
2205 if (mode == VOIDmode)
2206 mode = GET_MODE (memref);
2207
2208 /* Take the size of non-BLKmode accesses from the mode. */
2209 defattrs = mode_mem_attrs[(int) mode];
2210 if (defattrs->size_known_p)
2211 size = defattrs->size;
2212
2213 /* If there are no changes, just return the original memory reference. */
2214 if (mode == GET_MODE (memref) && !offset
2215 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2216 && (!validate || memory_address_addr_space_p (mode, addr,
2217 attrs.addrspace)))
2218 return memref;
2219
2220 /* ??? Prefer to create garbage instead of creating shared rtl.
2221 This may happen even if offset is nonzero -- consider
2222 (plus (plus reg reg) const_int) -- so do this always. */
2223 addr = copy_rtx (addr);
2224
2225 /* Convert a possibly large offset to a signed value within the
2226 range of the target address space. */
2227 address_mode = get_address_mode (memref);
2228 pbits = GET_MODE_BITSIZE (address_mode);
2229 if (HOST_BITS_PER_WIDE_INT > pbits)
2230 {
2231 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2232 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2233 >> shift);
2234 }
2235
2236 if (adjust_address)
2237 {
2238 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2239 object, we can merge it into the LO_SUM. */
2240 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2241 && offset >= 0
2242 && (unsigned HOST_WIDE_INT) offset
2243 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2244 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2245 plus_constant (address_mode,
2246 XEXP (addr, 1), offset));
2247 #ifdef POINTERS_EXTEND_UNSIGNED
2248 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2249 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2250 the fact that pointers are not allowed to overflow. */
2251 else if (POINTERS_EXTEND_UNSIGNED > 0
2252 && GET_CODE (addr) == ZERO_EXTEND
2253 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2254 && trunc_int_for_mode (offset, pointer_mode) == offset)
2255 addr = gen_rtx_ZERO_EXTEND (address_mode,
2256 plus_constant (pointer_mode,
2257 XEXP (addr, 0), offset));
2258 #endif
2259 else
2260 addr = plus_constant (address_mode, addr, offset);
2261 }
2262
2263 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2264
2265 /* If the address is a REG, change_address_1 rightfully returns memref,
2266 but this would destroy memref's MEM_ATTRS. */
2267 if (new_rtx == memref && offset != 0)
2268 new_rtx = copy_rtx (new_rtx);
2269
2270 /* Conservatively drop the object if we don't know where we start from. */
2271 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2272 {
2273 attrs.expr = NULL_TREE;
2274 attrs.alias = 0;
2275 }
2276
2277 /* Compute the new values of the memory attributes due to this adjustment.
2278 We add the offsets and update the alignment. */
2279 if (attrs.offset_known_p)
2280 {
2281 attrs.offset += offset;
2282
2283 /* Drop the object if the new left end is not within its bounds. */
2284 if (adjust_object && attrs.offset < 0)
2285 {
2286 attrs.expr = NULL_TREE;
2287 attrs.alias = 0;
2288 }
2289 }
2290
2291 /* Compute the new alignment by taking the MIN of the alignment and the
2292 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2293 if zero. */
2294 if (offset != 0)
2295 {
2296 max_align = (offset & -offset) * BITS_PER_UNIT;
2297 attrs.align = MIN (attrs.align, max_align);
2298 }
2299
2300 if (size)
2301 {
2302 /* Drop the object if the new right end is not within its bounds. */
2303 if (adjust_object && (offset + size) > attrs.size)
2304 {
2305 attrs.expr = NULL_TREE;
2306 attrs.alias = 0;
2307 }
2308 attrs.size_known_p = true;
2309 attrs.size = size;
2310 }
2311 else if (attrs.size_known_p)
2312 {
2313 gcc_assert (!adjust_object);
2314 attrs.size -= offset;
2315 /* ??? The store_by_pieces machinery generates negative sizes,
2316 so don't assert for that here. */
2317 }
2318
2319 set_mem_attrs (new_rtx, &attrs);
2320
2321 return new_rtx;
2322 }
2323
2324 /* Return a memory reference like MEMREF, but with its mode changed
2325 to MODE and its address changed to ADDR, which is assumed to be
2326 MEMREF offset by OFFSET bytes. If VALIDATE is
2327 nonzero, the memory address is forced to be valid. */
2328
2329 rtx
2330 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2331 HOST_WIDE_INT offset, int validate)
2332 {
2333 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2334 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2335 }
2336
2337 /* Return a memory reference like MEMREF, but whose address is changed by
2338 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2339 known to be in OFFSET (possibly 1). */
2340
2341 rtx
2342 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2343 {
2344 rtx new_rtx, addr = XEXP (memref, 0);
2345 machine_mode address_mode;
2346 struct mem_attrs attrs, *defattrs;
2347
2348 attrs = *get_mem_attrs (memref);
2349 address_mode = get_address_mode (memref);
2350 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2351
2352 /* At this point we don't know _why_ the address is invalid. It
2353 could have secondary memory references, multiplies or anything.
2354
2355 However, if we did go and rearrange things, we can wind up not
2356 being able to recognize the magic around pic_offset_table_rtx.
2357 This stuff is fragile, and is yet another example of why it is
2358 bad to expose PIC machinery too early. */
2359 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2360 attrs.addrspace)
2361 && GET_CODE (addr) == PLUS
2362 && XEXP (addr, 0) == pic_offset_table_rtx)
2363 {
2364 addr = force_reg (GET_MODE (addr), addr);
2365 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2366 }
2367
2368 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2369 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2370
2371 /* If there are no changes, just return the original memory reference. */
2372 if (new_rtx == memref)
2373 return new_rtx;
2374
2375 /* Update the alignment to reflect the offset. Reset the offset, which
2376 we don't know. */
2377 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2378 attrs.offset_known_p = false;
2379 attrs.size_known_p = defattrs->size_known_p;
2380 attrs.size = defattrs->size;
2381 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2382 set_mem_attrs (new_rtx, &attrs);
2383 return new_rtx;
2384 }
2385
2386 /* Return a memory reference like MEMREF, but with its address changed to
2387 ADDR. The caller is asserting that the actual piece of memory pointed
2388 to is the same, just the form of the address is being changed, such as
2389 by putting something into a register. INPLACE is true if any changes
2390 can be made directly to MEMREF or false if MEMREF must be treated as
2391 immutable. */
2392
2393 rtx
2394 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2395 {
2396 /* change_address_1 copies the memory attribute structure without change
2397 and that's exactly what we want here. */
2398 update_temp_slot_address (XEXP (memref, 0), addr);
2399 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2400 }
2401
2402 /* Likewise, but the reference is not required to be valid. */
2403
2404 rtx
2405 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2406 {
2407 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2408 }
2409
2410 /* Return a memory reference like MEMREF, but with its mode widened to
2411 MODE and offset by OFFSET. This would be used by targets that e.g.
2412 cannot issue QImode memory operations and have to use SImode memory
2413 operations plus masking logic. */
2414
2415 rtx
2416 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2417 {
2418 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2419 struct mem_attrs attrs;
2420 unsigned int size = GET_MODE_SIZE (mode);
2421
2422 /* If there are no changes, just return the original memory reference. */
2423 if (new_rtx == memref)
2424 return new_rtx;
2425
2426 attrs = *get_mem_attrs (new_rtx);
2427
2428 /* If we don't know what offset we were at within the expression, then
2429 we can't know if we've overstepped the bounds. */
2430 if (! attrs.offset_known_p)
2431 attrs.expr = NULL_TREE;
2432
2433 while (attrs.expr)
2434 {
2435 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2436 {
2437 tree field = TREE_OPERAND (attrs.expr, 1);
2438 tree offset = component_ref_field_offset (attrs.expr);
2439
2440 if (! DECL_SIZE_UNIT (field))
2441 {
2442 attrs.expr = NULL_TREE;
2443 break;
2444 }
2445
2446 /* Is the field at least as large as the access? If so, ok,
2447 otherwise strip back to the containing structure. */
2448 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2449 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2450 && attrs.offset >= 0)
2451 break;
2452
2453 if (! tree_fits_uhwi_p (offset))
2454 {
2455 attrs.expr = NULL_TREE;
2456 break;
2457 }
2458
2459 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2460 attrs.offset += tree_to_uhwi (offset);
2461 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2462 / BITS_PER_UNIT);
2463 }
2464 /* Similarly for the decl. */
2465 else if (DECL_P (attrs.expr)
2466 && DECL_SIZE_UNIT (attrs.expr)
2467 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2468 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2469 && (! attrs.offset_known_p || attrs.offset >= 0))
2470 break;
2471 else
2472 {
2473 /* The widened memory access overflows the expression, which means
2474 that it could alias another expression. Zap it. */
2475 attrs.expr = NULL_TREE;
2476 break;
2477 }
2478 }
2479
2480 if (! attrs.expr)
2481 attrs.offset_known_p = false;
2482
2483 /* The widened memory may alias other stuff, so zap the alias set. */
2484 /* ??? Maybe use get_alias_set on any remaining expression. */
2485 attrs.alias = 0;
2486 attrs.size_known_p = true;
2487 attrs.size = size;
2488 set_mem_attrs (new_rtx, &attrs);
2489 return new_rtx;
2490 }
2491 \f
2492 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2493 static GTY(()) tree spill_slot_decl;
2494
2495 tree
2496 get_spill_slot_decl (bool force_build_p)
2497 {
2498 tree d = spill_slot_decl;
2499 rtx rd;
2500 struct mem_attrs attrs;
2501
2502 if (d || !force_build_p)
2503 return d;
2504
2505 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2506 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2507 DECL_ARTIFICIAL (d) = 1;
2508 DECL_IGNORED_P (d) = 1;
2509 TREE_USED (d) = 1;
2510 spill_slot_decl = d;
2511
2512 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2513 MEM_NOTRAP_P (rd) = 1;
2514 attrs = *mode_mem_attrs[(int) BLKmode];
2515 attrs.alias = new_alias_set ();
2516 attrs.expr = d;
2517 set_mem_attrs (rd, &attrs);
2518 SET_DECL_RTL (d, rd);
2519
2520 return d;
2521 }
2522
2523 /* Given MEM, a result from assign_stack_local, fill in the memory
2524 attributes as appropriate for a register allocator spill slot.
2525 These slots are not aliasable by other memory. We arrange for
2526 them all to use a single MEM_EXPR, so that the aliasing code can
2527 work properly in the case of shared spill slots. */
2528
2529 void
2530 set_mem_attrs_for_spill (rtx mem)
2531 {
2532 struct mem_attrs attrs;
2533 rtx addr;
2534
2535 attrs = *get_mem_attrs (mem);
2536 attrs.expr = get_spill_slot_decl (true);
2537 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2538 attrs.addrspace = ADDR_SPACE_GENERIC;
2539
2540 /* We expect the incoming memory to be of the form:
2541 (mem:MODE (plus (reg sfp) (const_int offset)))
2542 with perhaps the plus missing for offset = 0. */
2543 addr = XEXP (mem, 0);
2544 attrs.offset_known_p = true;
2545 attrs.offset = 0;
2546 if (GET_CODE (addr) == PLUS
2547 && CONST_INT_P (XEXP (addr, 1)))
2548 attrs.offset = INTVAL (XEXP (addr, 1));
2549
2550 set_mem_attrs (mem, &attrs);
2551 MEM_NOTRAP_P (mem) = 1;
2552 }
2553 \f
2554 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2555
2556 rtx_code_label *
2557 gen_label_rtx (void)
2558 {
2559 return as_a <rtx_code_label *> (
2560 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2561 NULL, label_num++, NULL));
2562 }
2563 \f
2564 /* For procedure integration. */
2565
2566 /* Install new pointers to the first and last insns in the chain.
2567 Also, set cur_insn_uid to one higher than the last in use.
2568 Used for an inline-procedure after copying the insn chain. */
2569
2570 void
2571 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2572 {
2573 rtx_insn *insn;
2574
2575 set_first_insn (first);
2576 set_last_insn (last);
2577 cur_insn_uid = 0;
2578
2579 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2580 {
2581 int debug_count = 0;
2582
2583 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2584 cur_debug_insn_uid = 0;
2585
2586 for (insn = first; insn; insn = NEXT_INSN (insn))
2587 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2588 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2589 else
2590 {
2591 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2592 if (DEBUG_INSN_P (insn))
2593 debug_count++;
2594 }
2595
2596 if (debug_count)
2597 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2598 else
2599 cur_debug_insn_uid++;
2600 }
2601 else
2602 for (insn = first; insn; insn = NEXT_INSN (insn))
2603 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2604
2605 cur_insn_uid++;
2606 }
2607 \f
2608 /* Go through all the RTL insn bodies and copy any invalid shared
2609 structure. This routine should only be called once. */
2610
2611 static void
2612 unshare_all_rtl_1 (rtx_insn *insn)
2613 {
2614 /* Unshare just about everything else. */
2615 unshare_all_rtl_in_chain (insn);
2616
2617 /* Make sure the addresses of stack slots found outside the insn chain
2618 (such as, in DECL_RTL of a variable) are not shared
2619 with the insn chain.
2620
2621 This special care is necessary when the stack slot MEM does not
2622 actually appear in the insn chain. If it does appear, its address
2623 is unshared from all else at that point. */
2624 stack_slot_list = safe_as_a <rtx_expr_list *> (
2625 copy_rtx_if_shared (stack_slot_list));
2626 }
2627
2628 /* Go through all the RTL insn bodies and copy any invalid shared
2629 structure, again. This is a fairly expensive thing to do so it
2630 should be done sparingly. */
2631
2632 void
2633 unshare_all_rtl_again (rtx_insn *insn)
2634 {
2635 rtx_insn *p;
2636 tree decl;
2637
2638 for (p = insn; p; p = NEXT_INSN (p))
2639 if (INSN_P (p))
2640 {
2641 reset_used_flags (PATTERN (p));
2642 reset_used_flags (REG_NOTES (p));
2643 if (CALL_P (p))
2644 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2645 }
2646
2647 /* Make sure that virtual stack slots are not shared. */
2648 set_used_decls (DECL_INITIAL (cfun->decl));
2649
2650 /* Make sure that virtual parameters are not shared. */
2651 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2652 set_used_flags (DECL_RTL (decl));
2653
2654 reset_used_flags (stack_slot_list);
2655
2656 unshare_all_rtl_1 (insn);
2657 }
2658
2659 unsigned int
2660 unshare_all_rtl (void)
2661 {
2662 unshare_all_rtl_1 (get_insns ());
2663 return 0;
2664 }
2665
2666
2667 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2668 Recursively does the same for subexpressions. */
2669
2670 static void
2671 verify_rtx_sharing (rtx orig, rtx insn)
2672 {
2673 rtx x = orig;
2674 int i;
2675 enum rtx_code code;
2676 const char *format_ptr;
2677
2678 if (x == 0)
2679 return;
2680
2681 code = GET_CODE (x);
2682
2683 /* These types may be freely shared. */
2684
2685 switch (code)
2686 {
2687 case REG:
2688 case DEBUG_EXPR:
2689 case VALUE:
2690 CASE_CONST_ANY:
2691 case SYMBOL_REF:
2692 case LABEL_REF:
2693 case CODE_LABEL:
2694 case PC:
2695 case CC0:
2696 case RETURN:
2697 case SIMPLE_RETURN:
2698 case SCRATCH:
2699 /* SCRATCH must be shared because they represent distinct values. */
2700 return;
2701 case CLOBBER:
2702 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2703 clobbers or clobbers of hard registers that originated as pseudos.
2704 This is needed to allow safe register renaming. */
2705 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2707 return;
2708 break;
2709
2710 case CONST:
2711 if (shared_const_p (orig))
2712 return;
2713 break;
2714
2715 case MEM:
2716 /* A MEM is allowed to be shared if its address is constant. */
2717 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2718 || reload_completed || reload_in_progress)
2719 return;
2720
2721 break;
2722
2723 default:
2724 break;
2725 }
2726
2727 /* This rtx may not be shared. If it has already been seen,
2728 replace it with a copy of itself. */
2729 #ifdef ENABLE_CHECKING
2730 if (RTX_FLAG (x, used))
2731 {
2732 error ("invalid rtl sharing found in the insn");
2733 debug_rtx (insn);
2734 error ("shared rtx");
2735 debug_rtx (x);
2736 internal_error ("internal consistency failure");
2737 }
2738 #endif
2739 gcc_assert (!RTX_FLAG (x, used));
2740
2741 RTX_FLAG (x, used) = 1;
2742
2743 /* Now scan the subexpressions recursively. */
2744
2745 format_ptr = GET_RTX_FORMAT (code);
2746
2747 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2748 {
2749 switch (*format_ptr++)
2750 {
2751 case 'e':
2752 verify_rtx_sharing (XEXP (x, i), insn);
2753 break;
2754
2755 case 'E':
2756 if (XVEC (x, i) != NULL)
2757 {
2758 int j;
2759 int len = XVECLEN (x, i);
2760
2761 for (j = 0; j < len; j++)
2762 {
2763 /* We allow sharing of ASM_OPERANDS inside single
2764 instruction. */
2765 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2766 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2767 == ASM_OPERANDS))
2768 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2769 else
2770 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2771 }
2772 }
2773 break;
2774 }
2775 }
2776 return;
2777 }
2778
2779 /* Reset used-flags for INSN. */
2780
2781 static void
2782 reset_insn_used_flags (rtx insn)
2783 {
2784 gcc_assert (INSN_P (insn));
2785 reset_used_flags (PATTERN (insn));
2786 reset_used_flags (REG_NOTES (insn));
2787 if (CALL_P (insn))
2788 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2789 }
2790
2791 /* Go through all the RTL insn bodies and clear all the USED bits. */
2792
2793 static void
2794 reset_all_used_flags (void)
2795 {
2796 rtx_insn *p;
2797
2798 for (p = get_insns (); p; p = NEXT_INSN (p))
2799 if (INSN_P (p))
2800 {
2801 rtx pat = PATTERN (p);
2802 if (GET_CODE (pat) != SEQUENCE)
2803 reset_insn_used_flags (p);
2804 else
2805 {
2806 gcc_assert (REG_NOTES (p) == NULL);
2807 for (int i = 0; i < XVECLEN (pat, 0); i++)
2808 {
2809 rtx insn = XVECEXP (pat, 0, i);
2810 if (INSN_P (insn))
2811 reset_insn_used_flags (insn);
2812 }
2813 }
2814 }
2815 }
2816
2817 /* Verify sharing in INSN. */
2818
2819 static void
2820 verify_insn_sharing (rtx insn)
2821 {
2822 gcc_assert (INSN_P (insn));
2823 reset_used_flags (PATTERN (insn));
2824 reset_used_flags (REG_NOTES (insn));
2825 if (CALL_P (insn))
2826 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2827 }
2828
2829 /* Go through all the RTL insn bodies and check that there is no unexpected
2830 sharing in between the subexpressions. */
2831
2832 DEBUG_FUNCTION void
2833 verify_rtl_sharing (void)
2834 {
2835 rtx_insn *p;
2836
2837 timevar_push (TV_VERIFY_RTL_SHARING);
2838
2839 reset_all_used_flags ();
2840
2841 for (p = get_insns (); p; p = NEXT_INSN (p))
2842 if (INSN_P (p))
2843 {
2844 rtx pat = PATTERN (p);
2845 if (GET_CODE (pat) != SEQUENCE)
2846 verify_insn_sharing (p);
2847 else
2848 for (int i = 0; i < XVECLEN (pat, 0); i++)
2849 {
2850 rtx insn = XVECEXP (pat, 0, i);
2851 if (INSN_P (insn))
2852 verify_insn_sharing (insn);
2853 }
2854 }
2855
2856 reset_all_used_flags ();
2857
2858 timevar_pop (TV_VERIFY_RTL_SHARING);
2859 }
2860
2861 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2862 Assumes the mark bits are cleared at entry. */
2863
2864 void
2865 unshare_all_rtl_in_chain (rtx_insn *insn)
2866 {
2867 for (; insn; insn = NEXT_INSN (insn))
2868 if (INSN_P (insn))
2869 {
2870 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2871 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2872 if (CALL_P (insn))
2873 CALL_INSN_FUNCTION_USAGE (insn)
2874 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2875 }
2876 }
2877
2878 /* Go through all virtual stack slots of a function and mark them as
2879 shared. We never replace the DECL_RTLs themselves with a copy,
2880 but expressions mentioned into a DECL_RTL cannot be shared with
2881 expressions in the instruction stream.
2882
2883 Note that reload may convert pseudo registers into memories in-place.
2884 Pseudo registers are always shared, but MEMs never are. Thus if we
2885 reset the used flags on MEMs in the instruction stream, we must set
2886 them again on MEMs that appear in DECL_RTLs. */
2887
2888 static void
2889 set_used_decls (tree blk)
2890 {
2891 tree t;
2892
2893 /* Mark decls. */
2894 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2895 if (DECL_RTL_SET_P (t))
2896 set_used_flags (DECL_RTL (t));
2897
2898 /* Now process sub-blocks. */
2899 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2900 set_used_decls (t);
2901 }
2902
2903 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2904 Recursively does the same for subexpressions. Uses
2905 copy_rtx_if_shared_1 to reduce stack space. */
2906
2907 rtx
2908 copy_rtx_if_shared (rtx orig)
2909 {
2910 copy_rtx_if_shared_1 (&orig);
2911 return orig;
2912 }
2913
2914 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2915 use. Recursively does the same for subexpressions. */
2916
2917 static void
2918 copy_rtx_if_shared_1 (rtx *orig1)
2919 {
2920 rtx x;
2921 int i;
2922 enum rtx_code code;
2923 rtx *last_ptr;
2924 const char *format_ptr;
2925 int copied = 0;
2926 int length;
2927
2928 /* Repeat is used to turn tail-recursion into iteration. */
2929 repeat:
2930 x = *orig1;
2931
2932 if (x == 0)
2933 return;
2934
2935 code = GET_CODE (x);
2936
2937 /* These types may be freely shared. */
2938
2939 switch (code)
2940 {
2941 case REG:
2942 case DEBUG_EXPR:
2943 case VALUE:
2944 CASE_CONST_ANY:
2945 case SYMBOL_REF:
2946 case LABEL_REF:
2947 case CODE_LABEL:
2948 case PC:
2949 case CC0:
2950 case RETURN:
2951 case SIMPLE_RETURN:
2952 case SCRATCH:
2953 /* SCRATCH must be shared because they represent distinct values. */
2954 return;
2955 case CLOBBER:
2956 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2957 clobbers or clobbers of hard registers that originated as pseudos.
2958 This is needed to allow safe register renaming. */
2959 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2960 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2961 return;
2962 break;
2963
2964 case CONST:
2965 if (shared_const_p (x))
2966 return;
2967 break;
2968
2969 case DEBUG_INSN:
2970 case INSN:
2971 case JUMP_INSN:
2972 case CALL_INSN:
2973 case NOTE:
2974 case BARRIER:
2975 /* The chain of insns is not being copied. */
2976 return;
2977
2978 default:
2979 break;
2980 }
2981
2982 /* This rtx may not be shared. If it has already been seen,
2983 replace it with a copy of itself. */
2984
2985 if (RTX_FLAG (x, used))
2986 {
2987 x = shallow_copy_rtx (x);
2988 copied = 1;
2989 }
2990 RTX_FLAG (x, used) = 1;
2991
2992 /* Now scan the subexpressions recursively.
2993 We can store any replaced subexpressions directly into X
2994 since we know X is not shared! Any vectors in X
2995 must be copied if X was copied. */
2996
2997 format_ptr = GET_RTX_FORMAT (code);
2998 length = GET_RTX_LENGTH (code);
2999 last_ptr = NULL;
3000
3001 for (i = 0; i < length; i++)
3002 {
3003 switch (*format_ptr++)
3004 {
3005 case 'e':
3006 if (last_ptr)
3007 copy_rtx_if_shared_1 (last_ptr);
3008 last_ptr = &XEXP (x, i);
3009 break;
3010
3011 case 'E':
3012 if (XVEC (x, i) != NULL)
3013 {
3014 int j;
3015 int len = XVECLEN (x, i);
3016
3017 /* Copy the vector iff I copied the rtx and the length
3018 is nonzero. */
3019 if (copied && len > 0)
3020 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3021
3022 /* Call recursively on all inside the vector. */
3023 for (j = 0; j < len; j++)
3024 {
3025 if (last_ptr)
3026 copy_rtx_if_shared_1 (last_ptr);
3027 last_ptr = &XVECEXP (x, i, j);
3028 }
3029 }
3030 break;
3031 }
3032 }
3033 *orig1 = x;
3034 if (last_ptr)
3035 {
3036 orig1 = last_ptr;
3037 goto repeat;
3038 }
3039 return;
3040 }
3041
3042 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3043
3044 static void
3045 mark_used_flags (rtx x, int flag)
3046 {
3047 int i, j;
3048 enum rtx_code code;
3049 const char *format_ptr;
3050 int length;
3051
3052 /* Repeat is used to turn tail-recursion into iteration. */
3053 repeat:
3054 if (x == 0)
3055 return;
3056
3057 code = GET_CODE (x);
3058
3059 /* These types may be freely shared so we needn't do any resetting
3060 for them. */
3061
3062 switch (code)
3063 {
3064 case REG:
3065 case DEBUG_EXPR:
3066 case VALUE:
3067 CASE_CONST_ANY:
3068 case SYMBOL_REF:
3069 case CODE_LABEL:
3070 case PC:
3071 case CC0:
3072 case RETURN:
3073 case SIMPLE_RETURN:
3074 return;
3075
3076 case DEBUG_INSN:
3077 case INSN:
3078 case JUMP_INSN:
3079 case CALL_INSN:
3080 case NOTE:
3081 case LABEL_REF:
3082 case BARRIER:
3083 /* The chain of insns is not being copied. */
3084 return;
3085
3086 default:
3087 break;
3088 }
3089
3090 RTX_FLAG (x, used) = flag;
3091
3092 format_ptr = GET_RTX_FORMAT (code);
3093 length = GET_RTX_LENGTH (code);
3094
3095 for (i = 0; i < length; i++)
3096 {
3097 switch (*format_ptr++)
3098 {
3099 case 'e':
3100 if (i == length-1)
3101 {
3102 x = XEXP (x, i);
3103 goto repeat;
3104 }
3105 mark_used_flags (XEXP (x, i), flag);
3106 break;
3107
3108 case 'E':
3109 for (j = 0; j < XVECLEN (x, i); j++)
3110 mark_used_flags (XVECEXP (x, i, j), flag);
3111 break;
3112 }
3113 }
3114 }
3115
3116 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3117 to look for shared sub-parts. */
3118
3119 void
3120 reset_used_flags (rtx x)
3121 {
3122 mark_used_flags (x, 0);
3123 }
3124
3125 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3126 to look for shared sub-parts. */
3127
3128 void
3129 set_used_flags (rtx x)
3130 {
3131 mark_used_flags (x, 1);
3132 }
3133 \f
3134 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3135 Return X or the rtx for the pseudo reg the value of X was copied into.
3136 OTHER must be valid as a SET_DEST. */
3137
3138 rtx
3139 make_safe_from (rtx x, rtx other)
3140 {
3141 while (1)
3142 switch (GET_CODE (other))
3143 {
3144 case SUBREG:
3145 other = SUBREG_REG (other);
3146 break;
3147 case STRICT_LOW_PART:
3148 case SIGN_EXTEND:
3149 case ZERO_EXTEND:
3150 other = XEXP (other, 0);
3151 break;
3152 default:
3153 goto done;
3154 }
3155 done:
3156 if ((MEM_P (other)
3157 && ! CONSTANT_P (x)
3158 && !REG_P (x)
3159 && GET_CODE (x) != SUBREG)
3160 || (REG_P (other)
3161 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3162 || reg_mentioned_p (other, x))))
3163 {
3164 rtx temp = gen_reg_rtx (GET_MODE (x));
3165 emit_move_insn (temp, x);
3166 return temp;
3167 }
3168 return x;
3169 }
3170 \f
3171 /* Emission of insns (adding them to the doubly-linked list). */
3172
3173 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3174
3175 rtx_insn *
3176 get_last_insn_anywhere (void)
3177 {
3178 struct sequence_stack *seq;
3179 for (seq = get_current_sequence (); seq; seq = seq->next)
3180 if (seq->last != 0)
3181 return seq->last;
3182 return 0;
3183 }
3184
3185 /* Return the first nonnote insn emitted in current sequence or current
3186 function. This routine looks inside SEQUENCEs. */
3187
3188 rtx_insn *
3189 get_first_nonnote_insn (void)
3190 {
3191 rtx_insn *insn = get_insns ();
3192
3193 if (insn)
3194 {
3195 if (NOTE_P (insn))
3196 for (insn = next_insn (insn);
3197 insn && NOTE_P (insn);
3198 insn = next_insn (insn))
3199 continue;
3200 else
3201 {
3202 if (NONJUMP_INSN_P (insn)
3203 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3204 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3205 }
3206 }
3207
3208 return insn;
3209 }
3210
3211 /* Return the last nonnote insn emitted in current sequence or current
3212 function. This routine looks inside SEQUENCEs. */
3213
3214 rtx_insn *
3215 get_last_nonnote_insn (void)
3216 {
3217 rtx_insn *insn = get_last_insn ();
3218
3219 if (insn)
3220 {
3221 if (NOTE_P (insn))
3222 for (insn = previous_insn (insn);
3223 insn && NOTE_P (insn);
3224 insn = previous_insn (insn))
3225 continue;
3226 else
3227 {
3228 if (NONJUMP_INSN_P (insn))
3229 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3230 insn = seq->insn (seq->len () - 1);
3231 }
3232 }
3233
3234 return insn;
3235 }
3236
3237 /* Return the number of actual (non-debug) insns emitted in this
3238 function. */
3239
3240 int
3241 get_max_insn_count (void)
3242 {
3243 int n = cur_insn_uid;
3244
3245 /* The table size must be stable across -g, to avoid codegen
3246 differences due to debug insns, and not be affected by
3247 -fmin-insn-uid, to avoid excessive table size and to simplify
3248 debugging of -fcompare-debug failures. */
3249 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3250 n -= cur_debug_insn_uid;
3251 else
3252 n -= MIN_NONDEBUG_INSN_UID;
3253
3254 return n;
3255 }
3256
3257 \f
3258 /* Return the next insn. If it is a SEQUENCE, return the first insn
3259 of the sequence. */
3260
3261 rtx_insn *
3262 next_insn (rtx_insn *insn)
3263 {
3264 if (insn)
3265 {
3266 insn = NEXT_INSN (insn);
3267 if (insn && NONJUMP_INSN_P (insn)
3268 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3269 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3270 }
3271
3272 return insn;
3273 }
3274
3275 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3276 of the sequence. */
3277
3278 rtx_insn *
3279 previous_insn (rtx_insn *insn)
3280 {
3281 if (insn)
3282 {
3283 insn = PREV_INSN (insn);
3284 if (insn && NONJUMP_INSN_P (insn))
3285 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3286 insn = seq->insn (seq->len () - 1);
3287 }
3288
3289 return insn;
3290 }
3291
3292 /* Return the next insn after INSN that is not a NOTE. This routine does not
3293 look inside SEQUENCEs. */
3294
3295 rtx_insn *
3296 next_nonnote_insn (rtx uncast_insn)
3297 {
3298 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3299 while (insn)
3300 {
3301 insn = NEXT_INSN (insn);
3302 if (insn == 0 || !NOTE_P (insn))
3303 break;
3304 }
3305
3306 return insn;
3307 }
3308
3309 /* Return the next insn after INSN that is not a NOTE, but stop the
3310 search before we enter another basic block. This routine does not
3311 look inside SEQUENCEs. */
3312
3313 rtx_insn *
3314 next_nonnote_insn_bb (rtx_insn *insn)
3315 {
3316 while (insn)
3317 {
3318 insn = NEXT_INSN (insn);
3319 if (insn == 0 || !NOTE_P (insn))
3320 break;
3321 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3322 return NULL;
3323 }
3324
3325 return insn;
3326 }
3327
3328 /* Return the previous insn before INSN that is not a NOTE. This routine does
3329 not look inside SEQUENCEs. */
3330
3331 rtx_insn *
3332 prev_nonnote_insn (rtx uncast_insn)
3333 {
3334 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3335
3336 while (insn)
3337 {
3338 insn = PREV_INSN (insn);
3339 if (insn == 0 || !NOTE_P (insn))
3340 break;
3341 }
3342
3343 return insn;
3344 }
3345
3346 /* Return the previous insn before INSN that is not a NOTE, but stop
3347 the search before we enter another basic block. This routine does
3348 not look inside SEQUENCEs. */
3349
3350 rtx_insn *
3351 prev_nonnote_insn_bb (rtx uncast_insn)
3352 {
3353 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3354
3355 while (insn)
3356 {
3357 insn = PREV_INSN (insn);
3358 if (insn == 0 || !NOTE_P (insn))
3359 break;
3360 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3361 return NULL;
3362 }
3363
3364 return insn;
3365 }
3366
3367 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3368 routine does not look inside SEQUENCEs. */
3369
3370 rtx_insn *
3371 next_nondebug_insn (rtx uncast_insn)
3372 {
3373 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3374
3375 while (insn)
3376 {
3377 insn = NEXT_INSN (insn);
3378 if (insn == 0 || !DEBUG_INSN_P (insn))
3379 break;
3380 }
3381
3382 return insn;
3383 }
3384
3385 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3386 This routine does not look inside SEQUENCEs. */
3387
3388 rtx_insn *
3389 prev_nondebug_insn (rtx uncast_insn)
3390 {
3391 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3392
3393 while (insn)
3394 {
3395 insn = PREV_INSN (insn);
3396 if (insn == 0 || !DEBUG_INSN_P (insn))
3397 break;
3398 }
3399
3400 return insn;
3401 }
3402
3403 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3404 This routine does not look inside SEQUENCEs. */
3405
3406 rtx_insn *
3407 next_nonnote_nondebug_insn (rtx uncast_insn)
3408 {
3409 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3410
3411 while (insn)
3412 {
3413 insn = NEXT_INSN (insn);
3414 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3415 break;
3416 }
3417
3418 return insn;
3419 }
3420
3421 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3422 This routine does not look inside SEQUENCEs. */
3423
3424 rtx_insn *
3425 prev_nonnote_nondebug_insn (rtx uncast_insn)
3426 {
3427 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3428
3429 while (insn)
3430 {
3431 insn = PREV_INSN (insn);
3432 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3433 break;
3434 }
3435
3436 return insn;
3437 }
3438
3439 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3440 or 0, if there is none. This routine does not look inside
3441 SEQUENCEs. */
3442
3443 rtx_insn *
3444 next_real_insn (rtx uncast_insn)
3445 {
3446 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3447
3448 while (insn)
3449 {
3450 insn = NEXT_INSN (insn);
3451 if (insn == 0 || INSN_P (insn))
3452 break;
3453 }
3454
3455 return insn;
3456 }
3457
3458 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3459 or 0, if there is none. This routine does not look inside
3460 SEQUENCEs. */
3461
3462 rtx_insn *
3463 prev_real_insn (rtx uncast_insn)
3464 {
3465 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3466
3467 while (insn)
3468 {
3469 insn = PREV_INSN (insn);
3470 if (insn == 0 || INSN_P (insn))
3471 break;
3472 }
3473
3474 return insn;
3475 }
3476
3477 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3478 This routine does not look inside SEQUENCEs. */
3479
3480 rtx_call_insn *
3481 last_call_insn (void)
3482 {
3483 rtx_insn *insn;
3484
3485 for (insn = get_last_insn ();
3486 insn && !CALL_P (insn);
3487 insn = PREV_INSN (insn))
3488 ;
3489
3490 return safe_as_a <rtx_call_insn *> (insn);
3491 }
3492
3493 /* Find the next insn after INSN that really does something. This routine
3494 does not look inside SEQUENCEs. After reload this also skips over
3495 standalone USE and CLOBBER insn. */
3496
3497 int
3498 active_insn_p (const_rtx insn)
3499 {
3500 return (CALL_P (insn) || JUMP_P (insn)
3501 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3502 || (NONJUMP_INSN_P (insn)
3503 && (! reload_completed
3504 || (GET_CODE (PATTERN (insn)) != USE
3505 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3506 }
3507
3508 rtx_insn *
3509 next_active_insn (rtx uncast_insn)
3510 {
3511 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3512
3513 while (insn)
3514 {
3515 insn = NEXT_INSN (insn);
3516 if (insn == 0 || active_insn_p (insn))
3517 break;
3518 }
3519
3520 return insn;
3521 }
3522
3523 /* Find the last insn before INSN that really does something. This routine
3524 does not look inside SEQUENCEs. After reload this also skips over
3525 standalone USE and CLOBBER insn. */
3526
3527 rtx_insn *
3528 prev_active_insn (rtx uncast_insn)
3529 {
3530 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3531
3532 while (insn)
3533 {
3534 insn = PREV_INSN (insn);
3535 if (insn == 0 || active_insn_p (insn))
3536 break;
3537 }
3538
3539 return insn;
3540 }
3541 \f
3542 #ifdef HAVE_cc0
3543 /* Return the next insn that uses CC0 after INSN, which is assumed to
3544 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3545 applied to the result of this function should yield INSN).
3546
3547 Normally, this is simply the next insn. However, if a REG_CC_USER note
3548 is present, it contains the insn that uses CC0.
3549
3550 Return 0 if we can't find the insn. */
3551
3552 rtx_insn *
3553 next_cc0_user (rtx uncast_insn)
3554 {
3555 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3556
3557 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3558
3559 if (note)
3560 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3561
3562 insn = next_nonnote_insn (insn);
3563 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3564 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3565
3566 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3567 return insn;
3568
3569 return 0;
3570 }
3571
3572 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3573 note, it is the previous insn. */
3574
3575 rtx_insn *
3576 prev_cc0_setter (rtx uncast_insn)
3577 {
3578 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3579
3580 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3581
3582 if (note)
3583 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3584
3585 insn = prev_nonnote_insn (insn);
3586 gcc_assert (sets_cc0_p (PATTERN (insn)));
3587
3588 return insn;
3589 }
3590 #endif
3591
3592 #ifdef AUTO_INC_DEC
3593 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3594
3595 static int
3596 find_auto_inc (const_rtx x, const_rtx reg)
3597 {
3598 subrtx_iterator::array_type array;
3599 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3600 {
3601 const_rtx x = *iter;
3602 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3603 && rtx_equal_p (reg, XEXP (x, 0)))
3604 return true;
3605 }
3606 return false;
3607 }
3608 #endif
3609
3610 /* Increment the label uses for all labels present in rtx. */
3611
3612 static void
3613 mark_label_nuses (rtx x)
3614 {
3615 enum rtx_code code;
3616 int i, j;
3617 const char *fmt;
3618
3619 code = GET_CODE (x);
3620 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3621 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3622
3623 fmt = GET_RTX_FORMAT (code);
3624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3625 {
3626 if (fmt[i] == 'e')
3627 mark_label_nuses (XEXP (x, i));
3628 else if (fmt[i] == 'E')
3629 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3630 mark_label_nuses (XVECEXP (x, i, j));
3631 }
3632 }
3633
3634 \f
3635 /* Try splitting insns that can be split for better scheduling.
3636 PAT is the pattern which might split.
3637 TRIAL is the insn providing PAT.
3638 LAST is nonzero if we should return the last insn of the sequence produced.
3639
3640 If this routine succeeds in splitting, it returns the first or last
3641 replacement insn depending on the value of LAST. Otherwise, it
3642 returns TRIAL. If the insn to be returned can be split, it will be. */
3643
3644 rtx_insn *
3645 try_split (rtx pat, rtx uncast_trial, int last)
3646 {
3647 rtx_insn *trial = as_a <rtx_insn *> (uncast_trial);
3648 rtx_insn *before = PREV_INSN (trial);
3649 rtx_insn *after = NEXT_INSN (trial);
3650 rtx note;
3651 rtx_insn *seq, *tem;
3652 int probability;
3653 rtx_insn *insn_last, *insn;
3654 int njumps = 0;
3655 rtx call_insn = NULL_RTX;
3656
3657 /* We're not good at redistributing frame information. */
3658 if (RTX_FRAME_RELATED_P (trial))
3659 return trial;
3660
3661 if (any_condjump_p (trial)
3662 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3663 split_branch_probability = XINT (note, 0);
3664 probability = split_branch_probability;
3665
3666 seq = safe_as_a <rtx_insn *> (split_insns (pat, trial));
3667
3668 split_branch_probability = -1;
3669
3670 if (!seq)
3671 return trial;
3672
3673 /* Avoid infinite loop if any insn of the result matches
3674 the original pattern. */
3675 insn_last = seq;
3676 while (1)
3677 {
3678 if (INSN_P (insn_last)
3679 && rtx_equal_p (PATTERN (insn_last), pat))
3680 return trial;
3681 if (!NEXT_INSN (insn_last))
3682 break;
3683 insn_last = NEXT_INSN (insn_last);
3684 }
3685
3686 /* We will be adding the new sequence to the function. The splitters
3687 may have introduced invalid RTL sharing, so unshare the sequence now. */
3688 unshare_all_rtl_in_chain (seq);
3689
3690 /* Mark labels and copy flags. */
3691 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3692 {
3693 if (JUMP_P (insn))
3694 {
3695 if (JUMP_P (trial))
3696 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3697 mark_jump_label (PATTERN (insn), insn, 0);
3698 njumps++;
3699 if (probability != -1
3700 && any_condjump_p (insn)
3701 && !find_reg_note (insn, REG_BR_PROB, 0))
3702 {
3703 /* We can preserve the REG_BR_PROB notes only if exactly
3704 one jump is created, otherwise the machine description
3705 is responsible for this step using
3706 split_branch_probability variable. */
3707 gcc_assert (njumps == 1);
3708 add_int_reg_note (insn, REG_BR_PROB, probability);
3709 }
3710 }
3711 }
3712
3713 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3714 in SEQ and copy any additional information across. */
3715 if (CALL_P (trial))
3716 {
3717 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3718 if (CALL_P (insn))
3719 {
3720 rtx_insn *next;
3721 rtx *p;
3722
3723 gcc_assert (call_insn == NULL_RTX);
3724 call_insn = insn;
3725
3726 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3727 target may have explicitly specified. */
3728 p = &CALL_INSN_FUNCTION_USAGE (insn);
3729 while (*p)
3730 p = &XEXP (*p, 1);
3731 *p = CALL_INSN_FUNCTION_USAGE (trial);
3732
3733 /* If the old call was a sibling call, the new one must
3734 be too. */
3735 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3736
3737 /* If the new call is the last instruction in the sequence,
3738 it will effectively replace the old call in-situ. Otherwise
3739 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3740 so that it comes immediately after the new call. */
3741 if (NEXT_INSN (insn))
3742 for (next = NEXT_INSN (trial);
3743 next && NOTE_P (next);
3744 next = NEXT_INSN (next))
3745 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3746 {
3747 remove_insn (next);
3748 add_insn_after (next, insn, NULL);
3749 break;
3750 }
3751 }
3752 }
3753
3754 /* Copy notes, particularly those related to the CFG. */
3755 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3756 {
3757 switch (REG_NOTE_KIND (note))
3758 {
3759 case REG_EH_REGION:
3760 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3761 break;
3762
3763 case REG_NORETURN:
3764 case REG_SETJMP:
3765 case REG_TM:
3766 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3767 {
3768 if (CALL_P (insn))
3769 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3770 }
3771 break;
3772
3773 case REG_NON_LOCAL_GOTO:
3774 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3775 {
3776 if (JUMP_P (insn))
3777 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3778 }
3779 break;
3780
3781 #ifdef AUTO_INC_DEC
3782 case REG_INC:
3783 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3784 {
3785 rtx reg = XEXP (note, 0);
3786 if (!FIND_REG_INC_NOTE (insn, reg)
3787 && find_auto_inc (PATTERN (insn), reg))
3788 add_reg_note (insn, REG_INC, reg);
3789 }
3790 break;
3791 #endif
3792
3793 case REG_ARGS_SIZE:
3794 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3795 break;
3796
3797 case REG_CALL_DECL:
3798 gcc_assert (call_insn != NULL_RTX);
3799 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3800 break;
3801
3802 default:
3803 break;
3804 }
3805 }
3806
3807 /* If there are LABELS inside the split insns increment the
3808 usage count so we don't delete the label. */
3809 if (INSN_P (trial))
3810 {
3811 insn = insn_last;
3812 while (insn != NULL_RTX)
3813 {
3814 /* JUMP_P insns have already been "marked" above. */
3815 if (NONJUMP_INSN_P (insn))
3816 mark_label_nuses (PATTERN (insn));
3817
3818 insn = PREV_INSN (insn);
3819 }
3820 }
3821
3822 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3823
3824 delete_insn (trial);
3825
3826 /* Recursively call try_split for each new insn created; by the
3827 time control returns here that insn will be fully split, so
3828 set LAST and continue from the insn after the one returned.
3829 We can't use next_active_insn here since AFTER may be a note.
3830 Ignore deleted insns, which can be occur if not optimizing. */
3831 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3832 if (! tem->deleted () && INSN_P (tem))
3833 tem = try_split (PATTERN (tem), tem, 1);
3834
3835 /* Return either the first or the last insn, depending on which was
3836 requested. */
3837 return last
3838 ? (after ? PREV_INSN (after) : get_last_insn ())
3839 : NEXT_INSN (before);
3840 }
3841 \f
3842 /* Make and return an INSN rtx, initializing all its slots.
3843 Store PATTERN in the pattern slots. */
3844
3845 rtx_insn *
3846 make_insn_raw (rtx pattern)
3847 {
3848 rtx_insn *insn;
3849
3850 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3851
3852 INSN_UID (insn) = cur_insn_uid++;
3853 PATTERN (insn) = pattern;
3854 INSN_CODE (insn) = -1;
3855 REG_NOTES (insn) = NULL;
3856 INSN_LOCATION (insn) = curr_insn_location ();
3857 BLOCK_FOR_INSN (insn) = NULL;
3858
3859 #ifdef ENABLE_RTL_CHECKING
3860 if (insn
3861 && INSN_P (insn)
3862 && (returnjump_p (insn)
3863 || (GET_CODE (insn) == SET
3864 && SET_DEST (insn) == pc_rtx)))
3865 {
3866 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3867 debug_rtx (insn);
3868 }
3869 #endif
3870
3871 return insn;
3872 }
3873
3874 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3875
3876 static rtx_insn *
3877 make_debug_insn_raw (rtx pattern)
3878 {
3879 rtx_debug_insn *insn;
3880
3881 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3882 INSN_UID (insn) = cur_debug_insn_uid++;
3883 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3884 INSN_UID (insn) = cur_insn_uid++;
3885
3886 PATTERN (insn) = pattern;
3887 INSN_CODE (insn) = -1;
3888 REG_NOTES (insn) = NULL;
3889 INSN_LOCATION (insn) = curr_insn_location ();
3890 BLOCK_FOR_INSN (insn) = NULL;
3891
3892 return insn;
3893 }
3894
3895 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3896
3897 static rtx_insn *
3898 make_jump_insn_raw (rtx pattern)
3899 {
3900 rtx_jump_insn *insn;
3901
3902 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3903 INSN_UID (insn) = cur_insn_uid++;
3904
3905 PATTERN (insn) = pattern;
3906 INSN_CODE (insn) = -1;
3907 REG_NOTES (insn) = NULL;
3908 JUMP_LABEL (insn) = NULL;
3909 INSN_LOCATION (insn) = curr_insn_location ();
3910 BLOCK_FOR_INSN (insn) = NULL;
3911
3912 return insn;
3913 }
3914
3915 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3916
3917 static rtx_insn *
3918 make_call_insn_raw (rtx pattern)
3919 {
3920 rtx_call_insn *insn;
3921
3922 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3923 INSN_UID (insn) = cur_insn_uid++;
3924
3925 PATTERN (insn) = pattern;
3926 INSN_CODE (insn) = -1;
3927 REG_NOTES (insn) = NULL;
3928 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3929 INSN_LOCATION (insn) = curr_insn_location ();
3930 BLOCK_FOR_INSN (insn) = NULL;
3931
3932 return insn;
3933 }
3934
3935 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3936
3937 static rtx_note *
3938 make_note_raw (enum insn_note subtype)
3939 {
3940 /* Some notes are never created this way at all. These notes are
3941 only created by patching out insns. */
3942 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3943 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3944
3945 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3946 INSN_UID (note) = cur_insn_uid++;
3947 NOTE_KIND (note) = subtype;
3948 BLOCK_FOR_INSN (note) = NULL;
3949 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3950 return note;
3951 }
3952 \f
3953 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3954 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3955 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3956
3957 static inline void
3958 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3959 {
3960 SET_PREV_INSN (insn) = prev;
3961 SET_NEXT_INSN (insn) = next;
3962 if (prev != NULL)
3963 {
3964 SET_NEXT_INSN (prev) = insn;
3965 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3966 {
3967 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3968 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3969 }
3970 }
3971 if (next != NULL)
3972 {
3973 SET_PREV_INSN (next) = insn;
3974 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3975 {
3976 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3977 SET_PREV_INSN (sequence->insn (0)) = insn;
3978 }
3979 }
3980
3981 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3982 {
3983 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3984 SET_PREV_INSN (sequence->insn (0)) = prev;
3985 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3986 }
3987 }
3988
3989 /* Add INSN to the end of the doubly-linked list.
3990 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3991
3992 void
3993 add_insn (rtx_insn *insn)
3994 {
3995 rtx_insn *prev = get_last_insn ();
3996 link_insn_into_chain (insn, prev, NULL);
3997 if (NULL == get_insns ())
3998 set_first_insn (insn);
3999 set_last_insn (insn);
4000 }
4001
4002 /* Add INSN into the doubly-linked list after insn AFTER. */
4003
4004 static void
4005 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4006 {
4007 rtx_insn *next = NEXT_INSN (after);
4008
4009 gcc_assert (!optimize || !after->deleted ());
4010
4011 link_insn_into_chain (insn, after, next);
4012
4013 if (next == NULL)
4014 {
4015 struct sequence_stack *seq;
4016
4017 for (seq = get_current_sequence (); seq; seq = seq->next)
4018 if (after == seq->last)
4019 {
4020 seq->last = insn;
4021 break;
4022 }
4023 }
4024 }
4025
4026 /* Add INSN into the doubly-linked list before insn BEFORE. */
4027
4028 static void
4029 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4030 {
4031 rtx_insn *prev = PREV_INSN (before);
4032
4033 gcc_assert (!optimize || !before->deleted ());
4034
4035 link_insn_into_chain (insn, prev, before);
4036
4037 if (prev == NULL)
4038 {
4039 struct sequence_stack *seq;
4040
4041 for (seq = get_current_sequence (); seq; seq = seq->next)
4042 if (before == seq->first)
4043 {
4044 seq->first = insn;
4045 break;
4046 }
4047
4048 gcc_assert (seq);
4049 }
4050 }
4051
4052 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4053 If BB is NULL, an attempt is made to infer the bb from before.
4054
4055 This and the next function should be the only functions called
4056 to insert an insn once delay slots have been filled since only
4057 they know how to update a SEQUENCE. */
4058
4059 void
4060 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4061 {
4062 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4063 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4064 add_insn_after_nobb (insn, after);
4065 if (!BARRIER_P (after)
4066 && !BARRIER_P (insn)
4067 && (bb = BLOCK_FOR_INSN (after)))
4068 {
4069 set_block_for_insn (insn, bb);
4070 if (INSN_P (insn))
4071 df_insn_rescan (insn);
4072 /* Should not happen as first in the BB is always
4073 either NOTE or LABEL. */
4074 if (BB_END (bb) == after
4075 /* Avoid clobbering of structure when creating new BB. */
4076 && !BARRIER_P (insn)
4077 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4078 BB_END (bb) = insn;
4079 }
4080 }
4081
4082 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4083 If BB is NULL, an attempt is made to infer the bb from before.
4084
4085 This and the previous function should be the only functions called
4086 to insert an insn once delay slots have been filled since only
4087 they know how to update a SEQUENCE. */
4088
4089 void
4090 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4091 {
4092 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4093 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4094 add_insn_before_nobb (insn, before);
4095
4096 if (!bb
4097 && !BARRIER_P (before)
4098 && !BARRIER_P (insn))
4099 bb = BLOCK_FOR_INSN (before);
4100
4101 if (bb)
4102 {
4103 set_block_for_insn (insn, bb);
4104 if (INSN_P (insn))
4105 df_insn_rescan (insn);
4106 /* Should not happen as first in the BB is always either NOTE or
4107 LABEL. */
4108 gcc_assert (BB_HEAD (bb) != insn
4109 /* Avoid clobbering of structure when creating new BB. */
4110 || BARRIER_P (insn)
4111 || NOTE_INSN_BASIC_BLOCK_P (insn));
4112 }
4113 }
4114
4115 /* Replace insn with an deleted instruction note. */
4116
4117 void
4118 set_insn_deleted (rtx insn)
4119 {
4120 if (INSN_P (insn))
4121 df_insn_delete (as_a <rtx_insn *> (insn));
4122 PUT_CODE (insn, NOTE);
4123 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4124 }
4125
4126
4127 /* Unlink INSN from the insn chain.
4128
4129 This function knows how to handle sequences.
4130
4131 This function does not invalidate data flow information associated with
4132 INSN (i.e. does not call df_insn_delete). That makes this function
4133 usable for only disconnecting an insn from the chain, and re-emit it
4134 elsewhere later.
4135
4136 To later insert INSN elsewhere in the insn chain via add_insn and
4137 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4138 the caller. Nullifying them here breaks many insn chain walks.
4139
4140 To really delete an insn and related DF information, use delete_insn. */
4141
4142 void
4143 remove_insn (rtx uncast_insn)
4144 {
4145 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4146 rtx_insn *next = NEXT_INSN (insn);
4147 rtx_insn *prev = PREV_INSN (insn);
4148 basic_block bb;
4149
4150 if (prev)
4151 {
4152 SET_NEXT_INSN (prev) = next;
4153 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4154 {
4155 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4156 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4157 }
4158 }
4159 else
4160 {
4161 struct sequence_stack *seq;
4162
4163 for (seq = get_current_sequence (); seq; seq = seq->next)
4164 if (insn == seq->first)
4165 {
4166 seq->first = next;
4167 break;
4168 }
4169
4170 gcc_assert (seq);
4171 }
4172
4173 if (next)
4174 {
4175 SET_PREV_INSN (next) = prev;
4176 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4177 {
4178 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4179 SET_PREV_INSN (sequence->insn (0)) = prev;
4180 }
4181 }
4182 else
4183 {
4184 struct sequence_stack *seq;
4185
4186 for (seq = get_current_sequence (); seq; seq = seq->next)
4187 if (insn == seq->last)
4188 {
4189 seq->last = prev;
4190 break;
4191 }
4192
4193 gcc_assert (seq);
4194 }
4195
4196 /* Fix up basic block boundaries, if necessary. */
4197 if (!BARRIER_P (insn)
4198 && (bb = BLOCK_FOR_INSN (insn)))
4199 {
4200 if (BB_HEAD (bb) == insn)
4201 {
4202 /* Never ever delete the basic block note without deleting whole
4203 basic block. */
4204 gcc_assert (!NOTE_P (insn));
4205 BB_HEAD (bb) = next;
4206 }
4207 if (BB_END (bb) == insn)
4208 BB_END (bb) = prev;
4209 }
4210 }
4211
4212 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4213
4214 void
4215 add_function_usage_to (rtx call_insn, rtx call_fusage)
4216 {
4217 gcc_assert (call_insn && CALL_P (call_insn));
4218
4219 /* Put the register usage information on the CALL. If there is already
4220 some usage information, put ours at the end. */
4221 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4222 {
4223 rtx link;
4224
4225 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4226 link = XEXP (link, 1))
4227 ;
4228
4229 XEXP (link, 1) = call_fusage;
4230 }
4231 else
4232 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4233 }
4234
4235 /* Delete all insns made since FROM.
4236 FROM becomes the new last instruction. */
4237
4238 void
4239 delete_insns_since (rtx_insn *from)
4240 {
4241 if (from == 0)
4242 set_first_insn (0);
4243 else
4244 SET_NEXT_INSN (from) = 0;
4245 set_last_insn (from);
4246 }
4247
4248 /* This function is deprecated, please use sequences instead.
4249
4250 Move a consecutive bunch of insns to a different place in the chain.
4251 The insns to be moved are those between FROM and TO.
4252 They are moved to a new position after the insn AFTER.
4253 AFTER must not be FROM or TO or any insn in between.
4254
4255 This function does not know about SEQUENCEs and hence should not be
4256 called after delay-slot filling has been done. */
4257
4258 void
4259 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4260 {
4261 #ifdef ENABLE_CHECKING
4262 rtx_insn *x;
4263 for (x = from; x != to; x = NEXT_INSN (x))
4264 gcc_assert (after != x);
4265 gcc_assert (after != to);
4266 #endif
4267
4268 /* Splice this bunch out of where it is now. */
4269 if (PREV_INSN (from))
4270 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4271 if (NEXT_INSN (to))
4272 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4273 if (get_last_insn () == to)
4274 set_last_insn (PREV_INSN (from));
4275 if (get_insns () == from)
4276 set_first_insn (NEXT_INSN (to));
4277
4278 /* Make the new neighbors point to it and it to them. */
4279 if (NEXT_INSN (after))
4280 SET_PREV_INSN (NEXT_INSN (after)) = to;
4281
4282 SET_NEXT_INSN (to) = NEXT_INSN (after);
4283 SET_PREV_INSN (from) = after;
4284 SET_NEXT_INSN (after) = from;
4285 if (after == get_last_insn ())
4286 set_last_insn (to);
4287 }
4288
4289 /* Same as function above, but take care to update BB boundaries. */
4290 void
4291 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4292 {
4293 rtx_insn *prev = PREV_INSN (from);
4294 basic_block bb, bb2;
4295
4296 reorder_insns_nobb (from, to, after);
4297
4298 if (!BARRIER_P (after)
4299 && (bb = BLOCK_FOR_INSN (after)))
4300 {
4301 rtx_insn *x;
4302 df_set_bb_dirty (bb);
4303
4304 if (!BARRIER_P (from)
4305 && (bb2 = BLOCK_FOR_INSN (from)))
4306 {
4307 if (BB_END (bb2) == to)
4308 BB_END (bb2) = prev;
4309 df_set_bb_dirty (bb2);
4310 }
4311
4312 if (BB_END (bb) == after)
4313 BB_END (bb) = to;
4314
4315 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4316 if (!BARRIER_P (x))
4317 df_insn_change_bb (x, bb);
4318 }
4319 }
4320
4321 \f
4322 /* Emit insn(s) of given code and pattern
4323 at a specified place within the doubly-linked list.
4324
4325 All of the emit_foo global entry points accept an object
4326 X which is either an insn list or a PATTERN of a single
4327 instruction.
4328
4329 There are thus a few canonical ways to generate code and
4330 emit it at a specific place in the instruction stream. For
4331 example, consider the instruction named SPOT and the fact that
4332 we would like to emit some instructions before SPOT. We might
4333 do it like this:
4334
4335 start_sequence ();
4336 ... emit the new instructions ...
4337 insns_head = get_insns ();
4338 end_sequence ();
4339
4340 emit_insn_before (insns_head, SPOT);
4341
4342 It used to be common to generate SEQUENCE rtl instead, but that
4343 is a relic of the past which no longer occurs. The reason is that
4344 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4345 generated would almost certainly die right after it was created. */
4346
4347 static rtx_insn *
4348 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4349 rtx_insn *(*make_raw) (rtx))
4350 {
4351 rtx_insn *insn;
4352
4353 gcc_assert (before);
4354
4355 if (x == NULL_RTX)
4356 return safe_as_a <rtx_insn *> (last);
4357
4358 switch (GET_CODE (x))
4359 {
4360 case DEBUG_INSN:
4361 case INSN:
4362 case JUMP_INSN:
4363 case CALL_INSN:
4364 case CODE_LABEL:
4365 case BARRIER:
4366 case NOTE:
4367 insn = as_a <rtx_insn *> (x);
4368 while (insn)
4369 {
4370 rtx_insn *next = NEXT_INSN (insn);
4371 add_insn_before (insn, before, bb);
4372 last = insn;
4373 insn = next;
4374 }
4375 break;
4376
4377 #ifdef ENABLE_RTL_CHECKING
4378 case SEQUENCE:
4379 gcc_unreachable ();
4380 break;
4381 #endif
4382
4383 default:
4384 last = (*make_raw) (x);
4385 add_insn_before (last, before, bb);
4386 break;
4387 }
4388
4389 return safe_as_a <rtx_insn *> (last);
4390 }
4391
4392 /* Make X be output before the instruction BEFORE. */
4393
4394 rtx_insn *
4395 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4396 {
4397 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4398 }
4399
4400 /* Make an instruction with body X and code JUMP_INSN
4401 and output it before the instruction BEFORE. */
4402
4403 rtx_insn *
4404 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4405 {
4406 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4407 make_jump_insn_raw);
4408 }
4409
4410 /* Make an instruction with body X and code CALL_INSN
4411 and output it before the instruction BEFORE. */
4412
4413 rtx_insn *
4414 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4415 {
4416 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4417 make_call_insn_raw);
4418 }
4419
4420 /* Make an instruction with body X and code DEBUG_INSN
4421 and output it before the instruction BEFORE. */
4422
4423 rtx_insn *
4424 emit_debug_insn_before_noloc (rtx x, rtx before)
4425 {
4426 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4427 make_debug_insn_raw);
4428 }
4429
4430 /* Make an insn of code BARRIER
4431 and output it before the insn BEFORE. */
4432
4433 rtx_barrier *
4434 emit_barrier_before (rtx before)
4435 {
4436 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4437
4438 INSN_UID (insn) = cur_insn_uid++;
4439
4440 add_insn_before (insn, before, NULL);
4441 return insn;
4442 }
4443
4444 /* Emit the label LABEL before the insn BEFORE. */
4445
4446 rtx_insn *
4447 emit_label_before (rtx label, rtx_insn *before)
4448 {
4449 gcc_checking_assert (INSN_UID (label) == 0);
4450 INSN_UID (label) = cur_insn_uid++;
4451 add_insn_before (label, before, NULL);
4452 return as_a <rtx_insn *> (label);
4453 }
4454 \f
4455 /* Helper for emit_insn_after, handles lists of instructions
4456 efficiently. */
4457
4458 static rtx_insn *
4459 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4460 {
4461 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4462 rtx_insn *last;
4463 rtx_insn *after_after;
4464 if (!bb && !BARRIER_P (after))
4465 bb = BLOCK_FOR_INSN (after);
4466
4467 if (bb)
4468 {
4469 df_set_bb_dirty (bb);
4470 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4471 if (!BARRIER_P (last))
4472 {
4473 set_block_for_insn (last, bb);
4474 df_insn_rescan (last);
4475 }
4476 if (!BARRIER_P (last))
4477 {
4478 set_block_for_insn (last, bb);
4479 df_insn_rescan (last);
4480 }
4481 if (BB_END (bb) == after)
4482 BB_END (bb) = last;
4483 }
4484 else
4485 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4486 continue;
4487
4488 after_after = NEXT_INSN (after);
4489
4490 SET_NEXT_INSN (after) = first;
4491 SET_PREV_INSN (first) = after;
4492 SET_NEXT_INSN (last) = after_after;
4493 if (after_after)
4494 SET_PREV_INSN (after_after) = last;
4495
4496 if (after == get_last_insn ())
4497 set_last_insn (last);
4498
4499 return last;
4500 }
4501
4502 static rtx_insn *
4503 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4504 rtx_insn *(*make_raw)(rtx))
4505 {
4506 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4507 rtx_insn *last = after;
4508
4509 gcc_assert (after);
4510
4511 if (x == NULL_RTX)
4512 return last;
4513
4514 switch (GET_CODE (x))
4515 {
4516 case DEBUG_INSN:
4517 case INSN:
4518 case JUMP_INSN:
4519 case CALL_INSN:
4520 case CODE_LABEL:
4521 case BARRIER:
4522 case NOTE:
4523 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4524 break;
4525
4526 #ifdef ENABLE_RTL_CHECKING
4527 case SEQUENCE:
4528 gcc_unreachable ();
4529 break;
4530 #endif
4531
4532 default:
4533 last = (*make_raw) (x);
4534 add_insn_after (last, after, bb);
4535 break;
4536 }
4537
4538 return last;
4539 }
4540
4541 /* Make X be output after the insn AFTER and set the BB of insn. If
4542 BB is NULL, an attempt is made to infer the BB from AFTER. */
4543
4544 rtx_insn *
4545 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4546 {
4547 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4548 }
4549
4550
4551 /* Make an insn of code JUMP_INSN with body X
4552 and output it after the insn AFTER. */
4553
4554 rtx_insn *
4555 emit_jump_insn_after_noloc (rtx x, rtx after)
4556 {
4557 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4558 }
4559
4560 /* Make an instruction with body X and code CALL_INSN
4561 and output it after the instruction AFTER. */
4562
4563 rtx_insn *
4564 emit_call_insn_after_noloc (rtx x, rtx after)
4565 {
4566 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4567 }
4568
4569 /* Make an instruction with body X and code CALL_INSN
4570 and output it after the instruction AFTER. */
4571
4572 rtx_insn *
4573 emit_debug_insn_after_noloc (rtx x, rtx after)
4574 {
4575 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4576 }
4577
4578 /* Make an insn of code BARRIER
4579 and output it after the insn AFTER. */
4580
4581 rtx_barrier *
4582 emit_barrier_after (rtx after)
4583 {
4584 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4585
4586 INSN_UID (insn) = cur_insn_uid++;
4587
4588 add_insn_after (insn, after, NULL);
4589 return insn;
4590 }
4591
4592 /* Emit the label LABEL after the insn AFTER. */
4593
4594 rtx_insn *
4595 emit_label_after (rtx label, rtx_insn *after)
4596 {
4597 gcc_checking_assert (INSN_UID (label) == 0);
4598 INSN_UID (label) = cur_insn_uid++;
4599 add_insn_after (label, after, NULL);
4600 return as_a <rtx_insn *> (label);
4601 }
4602 \f
4603 /* Notes require a bit of special handling: Some notes need to have their
4604 BLOCK_FOR_INSN set, others should never have it set, and some should
4605 have it set or clear depending on the context. */
4606
4607 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4608 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4609 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4610
4611 static bool
4612 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4613 {
4614 switch (subtype)
4615 {
4616 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4617 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4618 return true;
4619
4620 /* Notes for var tracking and EH region markers can appear between or
4621 inside basic blocks. If the caller is emitting on the basic block
4622 boundary, do not set BLOCK_FOR_INSN on the new note. */
4623 case NOTE_INSN_VAR_LOCATION:
4624 case NOTE_INSN_CALL_ARG_LOCATION:
4625 case NOTE_INSN_EH_REGION_BEG:
4626 case NOTE_INSN_EH_REGION_END:
4627 return on_bb_boundary_p;
4628
4629 /* Otherwise, BLOCK_FOR_INSN must be set. */
4630 default:
4631 return false;
4632 }
4633 }
4634
4635 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4636
4637 rtx_note *
4638 emit_note_after (enum insn_note subtype, rtx uncast_after)
4639 {
4640 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4641 rtx_note *note = make_note_raw (subtype);
4642 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4643 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4644
4645 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4646 add_insn_after_nobb (note, after);
4647 else
4648 add_insn_after (note, after, bb);
4649 return note;
4650 }
4651
4652 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4653
4654 rtx_note *
4655 emit_note_before (enum insn_note subtype, rtx uncast_before)
4656 {
4657 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4658 rtx_note *note = make_note_raw (subtype);
4659 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4660 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4661
4662 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4663 add_insn_before_nobb (note, before);
4664 else
4665 add_insn_before (note, before, bb);
4666 return note;
4667 }
4668 \f
4669 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4670 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4671
4672 static rtx_insn *
4673 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4674 rtx_insn *(*make_raw) (rtx))
4675 {
4676 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4677 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4678
4679 if (pattern == NULL_RTX || !loc)
4680 return safe_as_a <rtx_insn *> (last);
4681
4682 after = NEXT_INSN (after);
4683 while (1)
4684 {
4685 if (active_insn_p (after) && !INSN_LOCATION (after))
4686 INSN_LOCATION (after) = loc;
4687 if (after == last)
4688 break;
4689 after = NEXT_INSN (after);
4690 }
4691 return safe_as_a <rtx_insn *> (last);
4692 }
4693
4694 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4695 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4696 any DEBUG_INSNs. */
4697
4698 static rtx_insn *
4699 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4700 rtx_insn *(*make_raw) (rtx))
4701 {
4702 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4703 rtx_insn *prev = after;
4704
4705 if (skip_debug_insns)
4706 while (DEBUG_INSN_P (prev))
4707 prev = PREV_INSN (prev);
4708
4709 if (INSN_P (prev))
4710 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4711 make_raw);
4712 else
4713 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4714 }
4715
4716 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4717 rtx_insn *
4718 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4719 {
4720 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4721 }
4722
4723 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4724 rtx_insn *
4725 emit_insn_after (rtx pattern, rtx after)
4726 {
4727 return emit_pattern_after (pattern, after, true, make_insn_raw);
4728 }
4729
4730 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4731 rtx_insn *
4732 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4733 {
4734 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4735 }
4736
4737 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4738 rtx_insn *
4739 emit_jump_insn_after (rtx pattern, rtx after)
4740 {
4741 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4742 }
4743
4744 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4745 rtx_insn *
4746 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4747 {
4748 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4749 }
4750
4751 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4752 rtx_insn *
4753 emit_call_insn_after (rtx pattern, rtx after)
4754 {
4755 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4756 }
4757
4758 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4759 rtx_insn *
4760 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4761 {
4762 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4763 }
4764
4765 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4766 rtx_insn *
4767 emit_debug_insn_after (rtx pattern, rtx after)
4768 {
4769 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4770 }
4771
4772 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4773 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4774 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4775 CALL_INSN, etc. */
4776
4777 static rtx_insn *
4778 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4779 rtx_insn *(*make_raw) (rtx))
4780 {
4781 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4782 rtx_insn *first = PREV_INSN (before);
4783 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4784 insnp ? before : NULL_RTX,
4785 NULL, make_raw);
4786
4787 if (pattern == NULL_RTX || !loc)
4788 return last;
4789
4790 if (!first)
4791 first = get_insns ();
4792 else
4793 first = NEXT_INSN (first);
4794 while (1)
4795 {
4796 if (active_insn_p (first) && !INSN_LOCATION (first))
4797 INSN_LOCATION (first) = loc;
4798 if (first == last)
4799 break;
4800 first = NEXT_INSN (first);
4801 }
4802 return last;
4803 }
4804
4805 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4806 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4807 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4808 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4809
4810 static rtx_insn *
4811 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4812 bool insnp, rtx_insn *(*make_raw) (rtx))
4813 {
4814 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4815 rtx_insn *next = before;
4816
4817 if (skip_debug_insns)
4818 while (DEBUG_INSN_P (next))
4819 next = PREV_INSN (next);
4820
4821 if (INSN_P (next))
4822 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4823 insnp, make_raw);
4824 else
4825 return emit_pattern_before_noloc (pattern, before,
4826 insnp ? before : NULL_RTX,
4827 NULL, make_raw);
4828 }
4829
4830 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4831 rtx_insn *
4832 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4833 {
4834 return emit_pattern_before_setloc (pattern, before, loc, true,
4835 make_insn_raw);
4836 }
4837
4838 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4839 rtx_insn *
4840 emit_insn_before (rtx pattern, rtx before)
4841 {
4842 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4843 }
4844
4845 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4846 rtx_insn *
4847 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4848 {
4849 return emit_pattern_before_setloc (pattern, before, loc, false,
4850 make_jump_insn_raw);
4851 }
4852
4853 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4854 rtx_insn *
4855 emit_jump_insn_before (rtx pattern, rtx before)
4856 {
4857 return emit_pattern_before (pattern, before, true, false,
4858 make_jump_insn_raw);
4859 }
4860
4861 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4862 rtx_insn *
4863 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4864 {
4865 return emit_pattern_before_setloc (pattern, before, loc, false,
4866 make_call_insn_raw);
4867 }
4868
4869 /* Like emit_call_insn_before_noloc,
4870 but set insn_location according to BEFORE. */
4871 rtx_insn *
4872 emit_call_insn_before (rtx pattern, rtx_insn *before)
4873 {
4874 return emit_pattern_before (pattern, before, true, false,
4875 make_call_insn_raw);
4876 }
4877
4878 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4879 rtx_insn *
4880 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4881 {
4882 return emit_pattern_before_setloc (pattern, before, loc, false,
4883 make_debug_insn_raw);
4884 }
4885
4886 /* Like emit_debug_insn_before_noloc,
4887 but set insn_location according to BEFORE. */
4888 rtx_insn *
4889 emit_debug_insn_before (rtx pattern, rtx before)
4890 {
4891 return emit_pattern_before (pattern, before, false, false,
4892 make_debug_insn_raw);
4893 }
4894 \f
4895 /* Take X and emit it at the end of the doubly-linked
4896 INSN list.
4897
4898 Returns the last insn emitted. */
4899
4900 rtx_insn *
4901 emit_insn (rtx x)
4902 {
4903 rtx_insn *last = get_last_insn ();
4904 rtx_insn *insn;
4905
4906 if (x == NULL_RTX)
4907 return last;
4908
4909 switch (GET_CODE (x))
4910 {
4911 case DEBUG_INSN:
4912 case INSN:
4913 case JUMP_INSN:
4914 case CALL_INSN:
4915 case CODE_LABEL:
4916 case BARRIER:
4917 case NOTE:
4918 insn = as_a <rtx_insn *> (x);
4919 while (insn)
4920 {
4921 rtx_insn *next = NEXT_INSN (insn);
4922 add_insn (insn);
4923 last = insn;
4924 insn = next;
4925 }
4926 break;
4927
4928 #ifdef ENABLE_RTL_CHECKING
4929 case JUMP_TABLE_DATA:
4930 case SEQUENCE:
4931 gcc_unreachable ();
4932 break;
4933 #endif
4934
4935 default:
4936 last = make_insn_raw (x);
4937 add_insn (last);
4938 break;
4939 }
4940
4941 return last;
4942 }
4943
4944 /* Make an insn of code DEBUG_INSN with pattern X
4945 and add it to the end of the doubly-linked list. */
4946
4947 rtx_insn *
4948 emit_debug_insn (rtx x)
4949 {
4950 rtx_insn *last = get_last_insn ();
4951 rtx_insn *insn;
4952
4953 if (x == NULL_RTX)
4954 return last;
4955
4956 switch (GET_CODE (x))
4957 {
4958 case DEBUG_INSN:
4959 case INSN:
4960 case JUMP_INSN:
4961 case CALL_INSN:
4962 case CODE_LABEL:
4963 case BARRIER:
4964 case NOTE:
4965 insn = as_a <rtx_insn *> (x);
4966 while (insn)
4967 {
4968 rtx_insn *next = NEXT_INSN (insn);
4969 add_insn (insn);
4970 last = insn;
4971 insn = next;
4972 }
4973 break;
4974
4975 #ifdef ENABLE_RTL_CHECKING
4976 case JUMP_TABLE_DATA:
4977 case SEQUENCE:
4978 gcc_unreachable ();
4979 break;
4980 #endif
4981
4982 default:
4983 last = make_debug_insn_raw (x);
4984 add_insn (last);
4985 break;
4986 }
4987
4988 return last;
4989 }
4990
4991 /* Make an insn of code JUMP_INSN with pattern X
4992 and add it to the end of the doubly-linked list. */
4993
4994 rtx_insn *
4995 emit_jump_insn (rtx x)
4996 {
4997 rtx_insn *last = NULL;
4998 rtx_insn *insn;
4999
5000 switch (GET_CODE (x))
5001 {
5002 case DEBUG_INSN:
5003 case INSN:
5004 case JUMP_INSN:
5005 case CALL_INSN:
5006 case CODE_LABEL:
5007 case BARRIER:
5008 case NOTE:
5009 insn = as_a <rtx_insn *> (x);
5010 while (insn)
5011 {
5012 rtx_insn *next = NEXT_INSN (insn);
5013 add_insn (insn);
5014 last = insn;
5015 insn = next;
5016 }
5017 break;
5018
5019 #ifdef ENABLE_RTL_CHECKING
5020 case JUMP_TABLE_DATA:
5021 case SEQUENCE:
5022 gcc_unreachable ();
5023 break;
5024 #endif
5025
5026 default:
5027 last = make_jump_insn_raw (x);
5028 add_insn (last);
5029 break;
5030 }
5031
5032 return last;
5033 }
5034
5035 /* Make an insn of code CALL_INSN with pattern X
5036 and add it to the end of the doubly-linked list. */
5037
5038 rtx_insn *
5039 emit_call_insn (rtx x)
5040 {
5041 rtx_insn *insn;
5042
5043 switch (GET_CODE (x))
5044 {
5045 case DEBUG_INSN:
5046 case INSN:
5047 case JUMP_INSN:
5048 case CALL_INSN:
5049 case CODE_LABEL:
5050 case BARRIER:
5051 case NOTE:
5052 insn = emit_insn (x);
5053 break;
5054
5055 #ifdef ENABLE_RTL_CHECKING
5056 case SEQUENCE:
5057 case JUMP_TABLE_DATA:
5058 gcc_unreachable ();
5059 break;
5060 #endif
5061
5062 default:
5063 insn = make_call_insn_raw (x);
5064 add_insn (insn);
5065 break;
5066 }
5067
5068 return insn;
5069 }
5070
5071 /* Add the label LABEL to the end of the doubly-linked list. */
5072
5073 rtx_insn *
5074 emit_label (rtx label)
5075 {
5076 gcc_checking_assert (INSN_UID (label) == 0);
5077 INSN_UID (label) = cur_insn_uid++;
5078 add_insn (as_a <rtx_insn *> (label));
5079 return as_a <rtx_insn *> (label);
5080 }
5081
5082 /* Make an insn of code JUMP_TABLE_DATA
5083 and add it to the end of the doubly-linked list. */
5084
5085 rtx_jump_table_data *
5086 emit_jump_table_data (rtx table)
5087 {
5088 rtx_jump_table_data *jump_table_data =
5089 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5090 INSN_UID (jump_table_data) = cur_insn_uid++;
5091 PATTERN (jump_table_data) = table;
5092 BLOCK_FOR_INSN (jump_table_data) = NULL;
5093 add_insn (jump_table_data);
5094 return jump_table_data;
5095 }
5096
5097 /* Make an insn of code BARRIER
5098 and add it to the end of the doubly-linked list. */
5099
5100 rtx_barrier *
5101 emit_barrier (void)
5102 {
5103 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5104 INSN_UID (barrier) = cur_insn_uid++;
5105 add_insn (barrier);
5106 return barrier;
5107 }
5108
5109 /* Emit a copy of note ORIG. */
5110
5111 rtx_note *
5112 emit_note_copy (rtx_note *orig)
5113 {
5114 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5115 rtx_note *note = make_note_raw (kind);
5116 NOTE_DATA (note) = NOTE_DATA (orig);
5117 add_insn (note);
5118 return note;
5119 }
5120
5121 /* Make an insn of code NOTE or type NOTE_NO
5122 and add it to the end of the doubly-linked list. */
5123
5124 rtx_note *
5125 emit_note (enum insn_note kind)
5126 {
5127 rtx_note *note = make_note_raw (kind);
5128 add_insn (note);
5129 return note;
5130 }
5131
5132 /* Emit a clobber of lvalue X. */
5133
5134 rtx_insn *
5135 emit_clobber (rtx x)
5136 {
5137 /* CONCATs should not appear in the insn stream. */
5138 if (GET_CODE (x) == CONCAT)
5139 {
5140 emit_clobber (XEXP (x, 0));
5141 return emit_clobber (XEXP (x, 1));
5142 }
5143 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5144 }
5145
5146 /* Return a sequence of insns to clobber lvalue X. */
5147
5148 rtx_insn *
5149 gen_clobber (rtx x)
5150 {
5151 rtx_insn *seq;
5152
5153 start_sequence ();
5154 emit_clobber (x);
5155 seq = get_insns ();
5156 end_sequence ();
5157 return seq;
5158 }
5159
5160 /* Emit a use of rvalue X. */
5161
5162 rtx_insn *
5163 emit_use (rtx x)
5164 {
5165 /* CONCATs should not appear in the insn stream. */
5166 if (GET_CODE (x) == CONCAT)
5167 {
5168 emit_use (XEXP (x, 0));
5169 return emit_use (XEXP (x, 1));
5170 }
5171 return emit_insn (gen_rtx_USE (VOIDmode, x));
5172 }
5173
5174 /* Return a sequence of insns to use rvalue X. */
5175
5176 rtx_insn *
5177 gen_use (rtx x)
5178 {
5179 rtx_insn *seq;
5180
5181 start_sequence ();
5182 emit_use (x);
5183 seq = get_insns ();
5184 end_sequence ();
5185 return seq;
5186 }
5187
5188 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5189 Return the set in INSN that such notes describe, or NULL if the notes
5190 have no meaning for INSN. */
5191
5192 rtx
5193 set_for_reg_notes (rtx insn)
5194 {
5195 rtx pat, reg;
5196
5197 if (!INSN_P (insn))
5198 return NULL_RTX;
5199
5200 pat = PATTERN (insn);
5201 if (GET_CODE (pat) == PARALLEL)
5202 {
5203 /* We do not use single_set because that ignores SETs of unused
5204 registers. REG_EQUAL and REG_EQUIV notes really do require the
5205 PARALLEL to have a single SET. */
5206 if (multiple_sets (insn))
5207 return NULL_RTX;
5208 pat = XVECEXP (pat, 0, 0);
5209 }
5210
5211 if (GET_CODE (pat) != SET)
5212 return NULL_RTX;
5213
5214 reg = SET_DEST (pat);
5215
5216 /* Notes apply to the contents of a STRICT_LOW_PART. */
5217 if (GET_CODE (reg) == STRICT_LOW_PART)
5218 reg = XEXP (reg, 0);
5219
5220 /* Check that we have a register. */
5221 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5222 return NULL_RTX;
5223
5224 return pat;
5225 }
5226
5227 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5228 note of this type already exists, remove it first. */
5229
5230 rtx
5231 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5232 {
5233 rtx note = find_reg_note (insn, kind, NULL_RTX);
5234
5235 switch (kind)
5236 {
5237 case REG_EQUAL:
5238 case REG_EQUIV:
5239 if (!set_for_reg_notes (insn))
5240 return NULL_RTX;
5241
5242 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5243 It serves no useful purpose and breaks eliminate_regs. */
5244 if (GET_CODE (datum) == ASM_OPERANDS)
5245 return NULL_RTX;
5246
5247 /* Notes with side effects are dangerous. Even if the side-effect
5248 initially mirrors one in PATTERN (INSN), later optimizations
5249 might alter the way that the final register value is calculated
5250 and so move or alter the side-effect in some way. The note would
5251 then no longer be a valid substitution for SET_SRC. */
5252 if (side_effects_p (datum))
5253 return NULL_RTX;
5254 break;
5255
5256 default:
5257 break;
5258 }
5259
5260 if (note)
5261 XEXP (note, 0) = datum;
5262 else
5263 {
5264 add_reg_note (insn, kind, datum);
5265 note = REG_NOTES (insn);
5266 }
5267
5268 switch (kind)
5269 {
5270 case REG_EQUAL:
5271 case REG_EQUIV:
5272 df_notes_rescan (as_a <rtx_insn *> (insn));
5273 break;
5274 default:
5275 break;
5276 }
5277
5278 return note;
5279 }
5280
5281 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5282 rtx
5283 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5284 {
5285 rtx set = set_for_reg_notes (insn);
5286
5287 if (set && SET_DEST (set) == dst)
5288 return set_unique_reg_note (insn, kind, datum);
5289 return NULL_RTX;
5290 }
5291 \f
5292 /* Return an indication of which type of insn should have X as a body.
5293 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5294
5295 static enum rtx_code
5296 classify_insn (rtx x)
5297 {
5298 if (LABEL_P (x))
5299 return CODE_LABEL;
5300 if (GET_CODE (x) == CALL)
5301 return CALL_INSN;
5302 if (ANY_RETURN_P (x))
5303 return JUMP_INSN;
5304 if (GET_CODE (x) == SET)
5305 {
5306 if (SET_DEST (x) == pc_rtx)
5307 return JUMP_INSN;
5308 else if (GET_CODE (SET_SRC (x)) == CALL)
5309 return CALL_INSN;
5310 else
5311 return INSN;
5312 }
5313 if (GET_CODE (x) == PARALLEL)
5314 {
5315 int j;
5316 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5317 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5318 return CALL_INSN;
5319 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5320 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5321 return JUMP_INSN;
5322 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5323 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5324 return CALL_INSN;
5325 }
5326 return INSN;
5327 }
5328
5329 /* Emit the rtl pattern X as an appropriate kind of insn.
5330 If X is a label, it is simply added into the insn chain. */
5331
5332 rtx_insn *
5333 emit (rtx x)
5334 {
5335 enum rtx_code code = classify_insn (x);
5336
5337 switch (code)
5338 {
5339 case CODE_LABEL:
5340 return emit_label (x);
5341 case INSN:
5342 return emit_insn (x);
5343 case JUMP_INSN:
5344 {
5345 rtx_insn *insn = emit_jump_insn (x);
5346 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5347 return emit_barrier ();
5348 return insn;
5349 }
5350 case CALL_INSN:
5351 return emit_call_insn (x);
5352 case DEBUG_INSN:
5353 return emit_debug_insn (x);
5354 default:
5355 gcc_unreachable ();
5356 }
5357 }
5358 \f
5359 /* Space for free sequence stack entries. */
5360 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5361
5362 /* Begin emitting insns to a sequence. If this sequence will contain
5363 something that might cause the compiler to pop arguments to function
5364 calls (because those pops have previously been deferred; see
5365 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5366 before calling this function. That will ensure that the deferred
5367 pops are not accidentally emitted in the middle of this sequence. */
5368
5369 void
5370 start_sequence (void)
5371 {
5372 struct sequence_stack *tem;
5373
5374 if (free_sequence_stack != NULL)
5375 {
5376 tem = free_sequence_stack;
5377 free_sequence_stack = tem->next;
5378 }
5379 else
5380 tem = ggc_alloc<sequence_stack> ();
5381
5382 tem->next = get_current_sequence ()->next;
5383 tem->first = get_insns ();
5384 tem->last = get_last_insn ();
5385 get_current_sequence ()->next = tem;
5386
5387 set_first_insn (0);
5388 set_last_insn (0);
5389 }
5390
5391 /* Set up the insn chain starting with FIRST as the current sequence,
5392 saving the previously current one. See the documentation for
5393 start_sequence for more information about how to use this function. */
5394
5395 void
5396 push_to_sequence (rtx_insn *first)
5397 {
5398 rtx_insn *last;
5399
5400 start_sequence ();
5401
5402 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5403 ;
5404
5405 set_first_insn (first);
5406 set_last_insn (last);
5407 }
5408
5409 /* Like push_to_sequence, but take the last insn as an argument to avoid
5410 looping through the list. */
5411
5412 void
5413 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5414 {
5415 start_sequence ();
5416
5417 set_first_insn (first);
5418 set_last_insn (last);
5419 }
5420
5421 /* Set up the outer-level insn chain
5422 as the current sequence, saving the previously current one. */
5423
5424 void
5425 push_topmost_sequence (void)
5426 {
5427 struct sequence_stack *top;
5428
5429 start_sequence ();
5430
5431 top = get_topmost_sequence ();
5432 set_first_insn (top->first);
5433 set_last_insn (top->last);
5434 }
5435
5436 /* After emitting to the outer-level insn chain, update the outer-level
5437 insn chain, and restore the previous saved state. */
5438
5439 void
5440 pop_topmost_sequence (void)
5441 {
5442 struct sequence_stack *top;
5443
5444 top = get_topmost_sequence ();
5445 top->first = get_insns ();
5446 top->last = get_last_insn ();
5447
5448 end_sequence ();
5449 }
5450
5451 /* After emitting to a sequence, restore previous saved state.
5452
5453 To get the contents of the sequence just made, you must call
5454 `get_insns' *before* calling here.
5455
5456 If the compiler might have deferred popping arguments while
5457 generating this sequence, and this sequence will not be immediately
5458 inserted into the instruction stream, use do_pending_stack_adjust
5459 before calling get_insns. That will ensure that the deferred
5460 pops are inserted into this sequence, and not into some random
5461 location in the instruction stream. See INHIBIT_DEFER_POP for more
5462 information about deferred popping of arguments. */
5463
5464 void
5465 end_sequence (void)
5466 {
5467 struct sequence_stack *tem = get_current_sequence ()->next;
5468
5469 set_first_insn (tem->first);
5470 set_last_insn (tem->last);
5471 get_current_sequence ()->next = tem->next;
5472
5473 memset (tem, 0, sizeof (*tem));
5474 tem->next = free_sequence_stack;
5475 free_sequence_stack = tem;
5476 }
5477
5478 /* Return 1 if currently emitting into a sequence. */
5479
5480 int
5481 in_sequence_p (void)
5482 {
5483 return get_current_sequence ()->next != 0;
5484 }
5485 \f
5486 /* Put the various virtual registers into REGNO_REG_RTX. */
5487
5488 static void
5489 init_virtual_regs (void)
5490 {
5491 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5492 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5493 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5494 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5495 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5496 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5497 = virtual_preferred_stack_boundary_rtx;
5498 }
5499
5500 \f
5501 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5502 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5503 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5504 static int copy_insn_n_scratches;
5505
5506 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5507 copied an ASM_OPERANDS.
5508 In that case, it is the original input-operand vector. */
5509 static rtvec orig_asm_operands_vector;
5510
5511 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5512 copied an ASM_OPERANDS.
5513 In that case, it is the copied input-operand vector. */
5514 static rtvec copy_asm_operands_vector;
5515
5516 /* Likewise for the constraints vector. */
5517 static rtvec orig_asm_constraints_vector;
5518 static rtvec copy_asm_constraints_vector;
5519
5520 /* Recursively create a new copy of an rtx for copy_insn.
5521 This function differs from copy_rtx in that it handles SCRATCHes and
5522 ASM_OPERANDs properly.
5523 Normally, this function is not used directly; use copy_insn as front end.
5524 However, you could first copy an insn pattern with copy_insn and then use
5525 this function afterwards to properly copy any REG_NOTEs containing
5526 SCRATCHes. */
5527
5528 rtx
5529 copy_insn_1 (rtx orig)
5530 {
5531 rtx copy;
5532 int i, j;
5533 RTX_CODE code;
5534 const char *format_ptr;
5535
5536 if (orig == NULL)
5537 return NULL;
5538
5539 code = GET_CODE (orig);
5540
5541 switch (code)
5542 {
5543 case REG:
5544 case DEBUG_EXPR:
5545 CASE_CONST_ANY:
5546 case SYMBOL_REF:
5547 case CODE_LABEL:
5548 case PC:
5549 case CC0:
5550 case RETURN:
5551 case SIMPLE_RETURN:
5552 return orig;
5553 case CLOBBER:
5554 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5555 clobbers or clobbers of hard registers that originated as pseudos.
5556 This is needed to allow safe register renaming. */
5557 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5558 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5559 return orig;
5560 break;
5561
5562 case SCRATCH:
5563 for (i = 0; i < copy_insn_n_scratches; i++)
5564 if (copy_insn_scratch_in[i] == orig)
5565 return copy_insn_scratch_out[i];
5566 break;
5567
5568 case CONST:
5569 if (shared_const_p (orig))
5570 return orig;
5571 break;
5572
5573 /* A MEM with a constant address is not sharable. The problem is that
5574 the constant address may need to be reloaded. If the mem is shared,
5575 then reloading one copy of this mem will cause all copies to appear
5576 to have been reloaded. */
5577
5578 default:
5579 break;
5580 }
5581
5582 /* Copy the various flags, fields, and other information. We assume
5583 that all fields need copying, and then clear the fields that should
5584 not be copied. That is the sensible default behavior, and forces
5585 us to explicitly document why we are *not* copying a flag. */
5586 copy = shallow_copy_rtx (orig);
5587
5588 /* We do not copy the USED flag, which is used as a mark bit during
5589 walks over the RTL. */
5590 RTX_FLAG (copy, used) = 0;
5591
5592 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5593 if (INSN_P (orig))
5594 {
5595 RTX_FLAG (copy, jump) = 0;
5596 RTX_FLAG (copy, call) = 0;
5597 RTX_FLAG (copy, frame_related) = 0;
5598 }
5599
5600 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5601
5602 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5603 switch (*format_ptr++)
5604 {
5605 case 'e':
5606 if (XEXP (orig, i) != NULL)
5607 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5608 break;
5609
5610 case 'E':
5611 case 'V':
5612 if (XVEC (orig, i) == orig_asm_constraints_vector)
5613 XVEC (copy, i) = copy_asm_constraints_vector;
5614 else if (XVEC (orig, i) == orig_asm_operands_vector)
5615 XVEC (copy, i) = copy_asm_operands_vector;
5616 else if (XVEC (orig, i) != NULL)
5617 {
5618 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5619 for (j = 0; j < XVECLEN (copy, i); j++)
5620 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5621 }
5622 break;
5623
5624 case 't':
5625 case 'w':
5626 case 'i':
5627 case 's':
5628 case 'S':
5629 case 'u':
5630 case '0':
5631 /* These are left unchanged. */
5632 break;
5633
5634 default:
5635 gcc_unreachable ();
5636 }
5637
5638 if (code == SCRATCH)
5639 {
5640 i = copy_insn_n_scratches++;
5641 gcc_assert (i < MAX_RECOG_OPERANDS);
5642 copy_insn_scratch_in[i] = orig;
5643 copy_insn_scratch_out[i] = copy;
5644 }
5645 else if (code == ASM_OPERANDS)
5646 {
5647 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5648 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5649 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5650 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5651 }
5652
5653 return copy;
5654 }
5655
5656 /* Create a new copy of an rtx.
5657 This function differs from copy_rtx in that it handles SCRATCHes and
5658 ASM_OPERANDs properly.
5659 INSN doesn't really have to be a full INSN; it could be just the
5660 pattern. */
5661 rtx
5662 copy_insn (rtx insn)
5663 {
5664 copy_insn_n_scratches = 0;
5665 orig_asm_operands_vector = 0;
5666 orig_asm_constraints_vector = 0;
5667 copy_asm_operands_vector = 0;
5668 copy_asm_constraints_vector = 0;
5669 return copy_insn_1 (insn);
5670 }
5671
5672 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5673 on that assumption that INSN itself remains in its original place. */
5674
5675 rtx_insn *
5676 copy_delay_slot_insn (rtx_insn *insn)
5677 {
5678 /* Copy INSN with its rtx_code, all its notes, location etc. */
5679 insn = as_a <rtx_insn *> (copy_rtx (insn));
5680 INSN_UID (insn) = cur_insn_uid++;
5681 return insn;
5682 }
5683
5684 /* Initialize data structures and variables in this file
5685 before generating rtl for each function. */
5686
5687 void
5688 init_emit (void)
5689 {
5690 set_first_insn (NULL);
5691 set_last_insn (NULL);
5692 if (MIN_NONDEBUG_INSN_UID)
5693 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5694 else
5695 cur_insn_uid = 1;
5696 cur_debug_insn_uid = 1;
5697 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5698 first_label_num = label_num;
5699 get_current_sequence ()->next = NULL;
5700
5701 /* Init the tables that describe all the pseudo regs. */
5702
5703 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5704
5705 crtl->emit.regno_pointer_align
5706 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5707
5708 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5709
5710 /* Put copies of all the hard registers into regno_reg_rtx. */
5711 memcpy (regno_reg_rtx,
5712 initial_regno_reg_rtx,
5713 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5714
5715 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5716 init_virtual_regs ();
5717
5718 /* Indicate that the virtual registers and stack locations are
5719 all pointers. */
5720 REG_POINTER (stack_pointer_rtx) = 1;
5721 REG_POINTER (frame_pointer_rtx) = 1;
5722 REG_POINTER (hard_frame_pointer_rtx) = 1;
5723 REG_POINTER (arg_pointer_rtx) = 1;
5724
5725 REG_POINTER (virtual_incoming_args_rtx) = 1;
5726 REG_POINTER (virtual_stack_vars_rtx) = 1;
5727 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5728 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5729 REG_POINTER (virtual_cfa_rtx) = 1;
5730
5731 #ifdef STACK_BOUNDARY
5732 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5733 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5734 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5735 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5736
5737 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5738 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5739 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5740 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5741 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5742 #endif
5743
5744 #ifdef INIT_EXPANDERS
5745 INIT_EXPANDERS;
5746 #endif
5747 }
5748
5749 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5750
5751 static rtx
5752 gen_const_vector (machine_mode mode, int constant)
5753 {
5754 rtx tem;
5755 rtvec v;
5756 int units, i;
5757 machine_mode inner;
5758
5759 units = GET_MODE_NUNITS (mode);
5760 inner = GET_MODE_INNER (mode);
5761
5762 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5763
5764 v = rtvec_alloc (units);
5765
5766 /* We need to call this function after we set the scalar const_tiny_rtx
5767 entries. */
5768 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5769
5770 for (i = 0; i < units; ++i)
5771 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5772
5773 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5774 return tem;
5775 }
5776
5777 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5778 all elements are zero, and the one vector when all elements are one. */
5779 rtx
5780 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5781 {
5782 machine_mode inner = GET_MODE_INNER (mode);
5783 int nunits = GET_MODE_NUNITS (mode);
5784 rtx x;
5785 int i;
5786
5787 /* Check to see if all of the elements have the same value. */
5788 x = RTVEC_ELT (v, nunits - 1);
5789 for (i = nunits - 2; i >= 0; i--)
5790 if (RTVEC_ELT (v, i) != x)
5791 break;
5792
5793 /* If the values are all the same, check to see if we can use one of the
5794 standard constant vectors. */
5795 if (i == -1)
5796 {
5797 if (x == CONST0_RTX (inner))
5798 return CONST0_RTX (mode);
5799 else if (x == CONST1_RTX (inner))
5800 return CONST1_RTX (mode);
5801 else if (x == CONSTM1_RTX (inner))
5802 return CONSTM1_RTX (mode);
5803 }
5804
5805 return gen_rtx_raw_CONST_VECTOR (mode, v);
5806 }
5807
5808 /* Initialise global register information required by all functions. */
5809
5810 void
5811 init_emit_regs (void)
5812 {
5813 int i;
5814 machine_mode mode;
5815 mem_attrs *attrs;
5816
5817 /* Reset register attributes */
5818 reg_attrs_htab->empty ();
5819
5820 /* We need reg_raw_mode, so initialize the modes now. */
5821 init_reg_modes_target ();
5822
5823 /* Assign register numbers to the globally defined register rtx. */
5824 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5825 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5826 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5827 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5828 virtual_incoming_args_rtx =
5829 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5830 virtual_stack_vars_rtx =
5831 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5832 virtual_stack_dynamic_rtx =
5833 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5834 virtual_outgoing_args_rtx =
5835 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5836 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5837 virtual_preferred_stack_boundary_rtx =
5838 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5839
5840 /* Initialize RTL for commonly used hard registers. These are
5841 copied into regno_reg_rtx as we begin to compile each function. */
5842 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5843 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5844
5845 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5846 return_address_pointer_rtx
5847 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5848 #endif
5849
5850 pic_offset_table_rtx = NULL_RTX;
5851 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5852 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5853
5854 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5855 {
5856 mode = (machine_mode) i;
5857 attrs = ggc_cleared_alloc<mem_attrs> ();
5858 attrs->align = BITS_PER_UNIT;
5859 attrs->addrspace = ADDR_SPACE_GENERIC;
5860 if (mode != BLKmode)
5861 {
5862 attrs->size_known_p = true;
5863 attrs->size = GET_MODE_SIZE (mode);
5864 if (STRICT_ALIGNMENT)
5865 attrs->align = GET_MODE_ALIGNMENT (mode);
5866 }
5867 mode_mem_attrs[i] = attrs;
5868 }
5869 }
5870
5871 /* Initialize global machine_mode variables. */
5872
5873 void
5874 init_derived_machine_modes (void)
5875 {
5876 byte_mode = VOIDmode;
5877 word_mode = VOIDmode;
5878
5879 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5880 mode != VOIDmode;
5881 mode = GET_MODE_WIDER_MODE (mode))
5882 {
5883 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5884 && byte_mode == VOIDmode)
5885 byte_mode = mode;
5886
5887 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5888 && word_mode == VOIDmode)
5889 word_mode = mode;
5890 }
5891
5892 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5893 }
5894
5895 /* Create some permanent unique rtl objects shared between all functions. */
5896
5897 void
5898 init_emit_once (void)
5899 {
5900 int i;
5901 machine_mode mode;
5902 machine_mode double_mode;
5903
5904 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5905 CONST_FIXED, and memory attribute hash tables. */
5906 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5907
5908 #if TARGET_SUPPORTS_WIDE_INT
5909 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5910 #endif
5911 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5912
5913 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5914
5915 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5916
5917 #ifdef INIT_EXPANDERS
5918 /* This is to initialize {init|mark|free}_machine_status before the first
5919 call to push_function_context_to. This is needed by the Chill front
5920 end which calls push_function_context_to before the first call to
5921 init_function_start. */
5922 INIT_EXPANDERS;
5923 #endif
5924
5925 /* Create the unique rtx's for certain rtx codes and operand values. */
5926
5927 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5928 tries to use these variables. */
5929 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5930 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5931 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5932
5933 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5934 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5935 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5936 else
5937 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5938
5939 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5940
5941 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5942 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5943 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5944
5945 dconstm1 = dconst1;
5946 dconstm1.sign = 1;
5947
5948 dconsthalf = dconst1;
5949 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5950
5951 for (i = 0; i < 3; i++)
5952 {
5953 const REAL_VALUE_TYPE *const r =
5954 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5955
5956 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5957 mode != VOIDmode;
5958 mode = GET_MODE_WIDER_MODE (mode))
5959 const_tiny_rtx[i][(int) mode] =
5960 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5961
5962 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5963 mode != VOIDmode;
5964 mode = GET_MODE_WIDER_MODE (mode))
5965 const_tiny_rtx[i][(int) mode] =
5966 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5967
5968 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5969
5970 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5971 mode != VOIDmode;
5972 mode = GET_MODE_WIDER_MODE (mode))
5973 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5974
5975 for (mode = MIN_MODE_PARTIAL_INT;
5976 mode <= MAX_MODE_PARTIAL_INT;
5977 mode = (machine_mode)((int)(mode) + 1))
5978 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5979 }
5980
5981 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5982
5983 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5984 mode != VOIDmode;
5985 mode = GET_MODE_WIDER_MODE (mode))
5986 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5987
5988 for (mode = MIN_MODE_PARTIAL_INT;
5989 mode <= MAX_MODE_PARTIAL_INT;
5990 mode = (machine_mode)((int)(mode) + 1))
5991 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5992
5993 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5994 mode != VOIDmode;
5995 mode = GET_MODE_WIDER_MODE (mode))
5996 {
5997 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5998 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5999 }
6000
6001 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
6002 mode != VOIDmode;
6003 mode = GET_MODE_WIDER_MODE (mode))
6004 {
6005 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6006 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6007 }
6008
6009 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
6010 mode != VOIDmode;
6011 mode = GET_MODE_WIDER_MODE (mode))
6012 {
6013 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6014 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6015 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6016 }
6017
6018 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6019 mode != VOIDmode;
6020 mode = GET_MODE_WIDER_MODE (mode))
6021 {
6022 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6023 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6024 }
6025
6026 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6027 mode != VOIDmode;
6028 mode = GET_MODE_WIDER_MODE (mode))
6029 {
6030 FCONST0 (mode).data.high = 0;
6031 FCONST0 (mode).data.low = 0;
6032 FCONST0 (mode).mode = mode;
6033 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6034 FCONST0 (mode), mode);
6035 }
6036
6037 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6038 mode != VOIDmode;
6039 mode = GET_MODE_WIDER_MODE (mode))
6040 {
6041 FCONST0 (mode).data.high = 0;
6042 FCONST0 (mode).data.low = 0;
6043 FCONST0 (mode).mode = mode;
6044 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6045 FCONST0 (mode), mode);
6046 }
6047
6048 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6049 mode != VOIDmode;
6050 mode = GET_MODE_WIDER_MODE (mode))
6051 {
6052 FCONST0 (mode).data.high = 0;
6053 FCONST0 (mode).data.low = 0;
6054 FCONST0 (mode).mode = mode;
6055 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6056 FCONST0 (mode), mode);
6057
6058 /* We store the value 1. */
6059 FCONST1 (mode).data.high = 0;
6060 FCONST1 (mode).data.low = 0;
6061 FCONST1 (mode).mode = mode;
6062 FCONST1 (mode).data
6063 = double_int_one.lshift (GET_MODE_FBIT (mode),
6064 HOST_BITS_PER_DOUBLE_INT,
6065 SIGNED_FIXED_POINT_MODE_P (mode));
6066 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6067 FCONST1 (mode), mode);
6068 }
6069
6070 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6071 mode != VOIDmode;
6072 mode = GET_MODE_WIDER_MODE (mode))
6073 {
6074 FCONST0 (mode).data.high = 0;
6075 FCONST0 (mode).data.low = 0;
6076 FCONST0 (mode).mode = mode;
6077 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6078 FCONST0 (mode), mode);
6079
6080 /* We store the value 1. */
6081 FCONST1 (mode).data.high = 0;
6082 FCONST1 (mode).data.low = 0;
6083 FCONST1 (mode).mode = mode;
6084 FCONST1 (mode).data
6085 = double_int_one.lshift (GET_MODE_FBIT (mode),
6086 HOST_BITS_PER_DOUBLE_INT,
6087 SIGNED_FIXED_POINT_MODE_P (mode));
6088 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6089 FCONST1 (mode), mode);
6090 }
6091
6092 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6093 mode != VOIDmode;
6094 mode = GET_MODE_WIDER_MODE (mode))
6095 {
6096 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6097 }
6098
6099 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6100 mode != VOIDmode;
6101 mode = GET_MODE_WIDER_MODE (mode))
6102 {
6103 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6104 }
6105
6106 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6107 mode != VOIDmode;
6108 mode = GET_MODE_WIDER_MODE (mode))
6109 {
6110 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6111 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6112 }
6113
6114 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6115 mode != VOIDmode;
6116 mode = GET_MODE_WIDER_MODE (mode))
6117 {
6118 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6119 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6120 }
6121
6122 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6123 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6124 const_tiny_rtx[0][i] = const0_rtx;
6125
6126 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6127 if (STORE_FLAG_VALUE == 1)
6128 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6129
6130 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6131 mode != VOIDmode;
6132 mode = GET_MODE_WIDER_MODE (mode))
6133 {
6134 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6135 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6136 }
6137
6138 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6139 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6140 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6141 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6142 }
6143 \f
6144 /* Produce exact duplicate of insn INSN after AFTER.
6145 Care updating of libcall regions if present. */
6146
6147 rtx_insn *
6148 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6149 {
6150 rtx_insn *new_rtx;
6151 rtx link;
6152
6153 switch (GET_CODE (insn))
6154 {
6155 case INSN:
6156 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6157 break;
6158
6159 case JUMP_INSN:
6160 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6161 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6162 break;
6163
6164 case DEBUG_INSN:
6165 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6166 break;
6167
6168 case CALL_INSN:
6169 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6170 if (CALL_INSN_FUNCTION_USAGE (insn))
6171 CALL_INSN_FUNCTION_USAGE (new_rtx)
6172 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6173 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6174 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6175 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6176 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6177 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6178 break;
6179
6180 default:
6181 gcc_unreachable ();
6182 }
6183
6184 /* Update LABEL_NUSES. */
6185 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6186
6187 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6188
6189 /* If the old insn is frame related, then so is the new one. This is
6190 primarily needed for IA-64 unwind info which marks epilogue insns,
6191 which may be duplicated by the basic block reordering code. */
6192 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6193
6194 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6195 will make them. REG_LABEL_TARGETs are created there too, but are
6196 supposed to be sticky, so we copy them. */
6197 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6198 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6199 {
6200 if (GET_CODE (link) == EXPR_LIST)
6201 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6202 copy_insn_1 (XEXP (link, 0)));
6203 else
6204 add_shallow_copy_of_reg_note (new_rtx, link);
6205 }
6206
6207 INSN_CODE (new_rtx) = INSN_CODE (insn);
6208 return new_rtx;
6209 }
6210
6211 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6212 rtx
6213 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6214 {
6215 if (hard_reg_clobbers[mode][regno])
6216 return hard_reg_clobbers[mode][regno];
6217 else
6218 return (hard_reg_clobbers[mode][regno] =
6219 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6220 }
6221
6222 location_t prologue_location;
6223 location_t epilogue_location;
6224
6225 /* Hold current location information and last location information, so the
6226 datastructures are built lazily only when some instructions in given
6227 place are needed. */
6228 static location_t curr_location;
6229
6230 /* Allocate insn location datastructure. */
6231 void
6232 insn_locations_init (void)
6233 {
6234 prologue_location = epilogue_location = 0;
6235 curr_location = UNKNOWN_LOCATION;
6236 }
6237
6238 /* At the end of emit stage, clear current location. */
6239 void
6240 insn_locations_finalize (void)
6241 {
6242 epilogue_location = curr_location;
6243 curr_location = UNKNOWN_LOCATION;
6244 }
6245
6246 /* Set current location. */
6247 void
6248 set_curr_insn_location (location_t location)
6249 {
6250 curr_location = location;
6251 }
6252
6253 /* Get current location. */
6254 location_t
6255 curr_insn_location (void)
6256 {
6257 return curr_location;
6258 }
6259
6260 /* Return lexical scope block insn belongs to. */
6261 tree
6262 insn_scope (const rtx_insn *insn)
6263 {
6264 return LOCATION_BLOCK (INSN_LOCATION (insn));
6265 }
6266
6267 /* Return line number of the statement that produced this insn. */
6268 int
6269 insn_line (const rtx_insn *insn)
6270 {
6271 return LOCATION_LINE (INSN_LOCATION (insn));
6272 }
6273
6274 /* Return source file of the statement that produced this insn. */
6275 const char *
6276 insn_file (const rtx_insn *insn)
6277 {
6278 return LOCATION_FILE (INSN_LOCATION (insn));
6279 }
6280
6281 /* Return expanded location of the statement that produced this insn. */
6282 expanded_location
6283 insn_location (const rtx_insn *insn)
6284 {
6285 return expand_location (INSN_LOCATION (insn));
6286 }
6287
6288 /* Return true if memory model MODEL requires a pre-operation (release-style)
6289 barrier or a post-operation (acquire-style) barrier. While not universal,
6290 this function matches behavior of several targets. */
6291
6292 bool
6293 need_atomic_barrier_p (enum memmodel model, bool pre)
6294 {
6295 switch (model & MEMMODEL_MASK)
6296 {
6297 case MEMMODEL_RELAXED:
6298 case MEMMODEL_CONSUME:
6299 return false;
6300 case MEMMODEL_RELEASE:
6301 return pre;
6302 case MEMMODEL_ACQUIRE:
6303 return !pre;
6304 case MEMMODEL_ACQ_REL:
6305 case MEMMODEL_SEQ_CST:
6306 return true;
6307 default:
6308 gcc_unreachable ();
6309 }
6310 }
6311 \f
6312 #include "gt-emit-rtl.h"