ChangeLog: Follow spelling conventions.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116
117 /* All references to the following fixed hard registers go through
118 these unique rtl objects. On machines where the frame-pointer and
119 arg-pointer are the same register, they use the same unique object.
120
121 After register allocation, other rtl objects which used to be pseudo-regs
122 may be clobbered to refer to the frame-pointer register.
123 But references that were originally to the frame-pointer can be
124 distinguished from the others because they contain frame_pointer_rtx.
125
126 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
127 tricky: until register elimination has taken place hard_frame_pointer_rtx
128 should be used if it is being set, and frame_pointer_rtx otherwise. After
129 register elimination hard_frame_pointer_rtx should always be used.
130 On machines where the two registers are same (most) then these are the
131 same.
132
133 In an inline procedure, the stack and frame pointer rtxs may not be
134 used for anything else. */
135 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
136 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
137 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
138 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
139 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
140
141 /* This is used to implement __builtin_return_address for some machines.
142 See for instance the MIPS port. */
143 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
144
145 /* We make one copy of (const_int C) where C is in
146 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
147 to save space during the compilation and simplify comparisons of
148 integers. */
149
150 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
151
152 /* A hash table storing CONST_INTs whose absolute value is greater
153 than MAX_SAVED_CONST_INT. */
154
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
156 htab_t const_int_htab;
157
158 /* A hash table storing memory attribute structures. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
160 htab_t mem_attrs_htab;
161
162 /* A hash table storing register attribute structures. */
163 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
164 htab_t reg_attrs_htab;
165
166 /* A hash table storing all CONST_DOUBLEs. */
167 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
168 htab_t const_double_htab;
169
170 #define first_insn (cfun->emit->x_first_insn)
171 #define last_insn (cfun->emit->x_last_insn)
172 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
173 #define last_linenum (cfun->emit->x_last_linenum)
174 #define last_filename (cfun->emit->x_last_filename)
175 #define first_label_num (cfun->emit->x_first_label_num)
176
177 static rtx make_jump_insn_raw PARAMS ((rtx));
178 static rtx make_call_insn_raw PARAMS ((rtx));
179 static rtx find_line_note PARAMS ((rtx));
180 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
181 int));
182 static void unshare_all_rtl_1 PARAMS ((rtx));
183 static void unshare_all_decls PARAMS ((tree));
184 static void reset_used_decls PARAMS ((tree));
185 static void mark_label_nuses PARAMS ((rtx));
186 static hashval_t const_int_htab_hash PARAMS ((const void *));
187 static int const_int_htab_eq PARAMS ((const void *,
188 const void *));
189 static hashval_t const_double_htab_hash PARAMS ((const void *));
190 static int const_double_htab_eq PARAMS ((const void *,
191 const void *));
192 static rtx lookup_const_double PARAMS ((rtx));
193 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
194 static int mem_attrs_htab_eq PARAMS ((const void *,
195 const void *));
196 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
197 rtx, unsigned int,
198 enum machine_mode));
199 static hashval_t reg_attrs_htab_hash PARAMS ((const void *));
200 static int reg_attrs_htab_eq PARAMS ((const void *,
201 const void *));
202 static reg_attrs *get_reg_attrs PARAMS ((tree, int));
203 static tree component_ref_for_mem_expr PARAMS ((tree));
204 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
205 static rtx gen_complex_constant_part PARAMS ((enum machine_mode,
206 rtx, int));
207
208 /* Probability of the conditional branch currently proceeded by try_split.
209 Set to -1 otherwise. */
210 int split_branch_probability = -1;
211 \f
212 /* Returns a hash code for X (which is a really a CONST_INT). */
213
214 static hashval_t
215 const_int_htab_hash (x)
216 const void *x;
217 {
218 return (hashval_t) INTVAL ((struct rtx_def *) x);
219 }
220
221 /* Returns nonzero if the value represented by X (which is really a
222 CONST_INT) is the same as that given by Y (which is really a
223 HOST_WIDE_INT *). */
224
225 static int
226 const_int_htab_eq (x, y)
227 const void *x;
228 const void *y;
229 {
230 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
231 }
232
233 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
234 static hashval_t
235 const_double_htab_hash (x)
236 const void *x;
237 {
238 rtx value = (rtx) x;
239 hashval_t h;
240
241 if (GET_MODE (value) == VOIDmode)
242 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
243 else
244 {
245 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
246 /* MODE is used in the comparison, so it should be in the hash. */
247 h ^= GET_MODE (value);
248 }
249 return h;
250 }
251
252 /* Returns nonzero if the value represented by X (really a ...)
253 is the same as that represented by Y (really a ...) */
254 static int
255 const_double_htab_eq (x, y)
256 const void *x;
257 const void *y;
258 {
259 rtx a = (rtx)x, b = (rtx)y;
260
261 if (GET_MODE (a) != GET_MODE (b))
262 return 0;
263 if (GET_MODE (a) == VOIDmode)
264 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
265 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
266 else
267 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
268 CONST_DOUBLE_REAL_VALUE (b));
269 }
270
271 /* Returns a hash code for X (which is a really a mem_attrs *). */
272
273 static hashval_t
274 mem_attrs_htab_hash (x)
275 const void *x;
276 {
277 mem_attrs *p = (mem_attrs *) x;
278
279 return (p->alias ^ (p->align * 1000)
280 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
281 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
282 ^ (size_t) p->expr);
283 }
284
285 /* Returns nonzero if the value represented by X (which is really a
286 mem_attrs *) is the same as that given by Y (which is also really a
287 mem_attrs *). */
288
289 static int
290 mem_attrs_htab_eq (x, y)
291 const void *x;
292 const void *y;
293 {
294 mem_attrs *p = (mem_attrs *) x;
295 mem_attrs *q = (mem_attrs *) y;
296
297 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
298 && p->size == q->size && p->align == q->align);
299 }
300
301 /* Allocate a new mem_attrs structure and insert it into the hash table if
302 one identical to it is not already in the table. We are doing this for
303 MEM of mode MODE. */
304
305 static mem_attrs *
306 get_mem_attrs (alias, expr, offset, size, align, mode)
307 HOST_WIDE_INT alias;
308 tree expr;
309 rtx offset;
310 rtx size;
311 unsigned int align;
312 enum machine_mode mode;
313 {
314 mem_attrs attrs;
315 void **slot;
316
317 /* If everything is the default, we can just return zero.
318 This must match what the corresponding MEM_* macros return when the
319 field is not present. */
320 if (alias == 0 && expr == 0 && offset == 0
321 && (size == 0
322 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
323 && (STRICT_ALIGNMENT && mode != BLKmode
324 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
325 return 0;
326
327 attrs.alias = alias;
328 attrs.expr = expr;
329 attrs.offset = offset;
330 attrs.size = size;
331 attrs.align = align;
332
333 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
334 if (*slot == 0)
335 {
336 *slot = ggc_alloc (sizeof (mem_attrs));
337 memcpy (*slot, &attrs, sizeof (mem_attrs));
338 }
339
340 return *slot;
341 }
342
343 /* Returns a hash code for X (which is a really a reg_attrs *). */
344
345 static hashval_t
346 reg_attrs_htab_hash (x)
347 const void *x;
348 {
349 reg_attrs *p = (reg_attrs *) x;
350
351 return ((p->offset * 1000) ^ (long) p->decl);
352 }
353
354 /* Returns nonzero if the value represented by X (which is really a
355 reg_attrs *) is the same as that given by Y (which is also really a
356 reg_attrs *). */
357
358 static int
359 reg_attrs_htab_eq (x, y)
360 const void *x;
361 const void *y;
362 {
363 reg_attrs *p = (reg_attrs *) x;
364 reg_attrs *q = (reg_attrs *) y;
365
366 return (p->decl == q->decl && p->offset == q->offset);
367 }
368 /* Allocate a new reg_attrs structure and insert it into the hash table if
369 one identical to it is not already in the table. We are doing this for
370 MEM of mode MODE. */
371
372 static reg_attrs *
373 get_reg_attrs (decl, offset)
374 tree decl;
375 int offset;
376 {
377 reg_attrs attrs;
378 void **slot;
379
380 /* If everything is the default, we can just return zero. */
381 if (decl == 0 && offset == 0)
382 return 0;
383
384 attrs.decl = decl;
385 attrs.offset = offset;
386
387 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
388 if (*slot == 0)
389 {
390 *slot = ggc_alloc (sizeof (reg_attrs));
391 memcpy (*slot, &attrs, sizeof (reg_attrs));
392 }
393
394 return *slot;
395 }
396
397 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
398 don't attempt to share with the various global pieces of rtl (such as
399 frame_pointer_rtx). */
400
401 rtx
402 gen_raw_REG (mode, regno)
403 enum machine_mode mode;
404 int regno;
405 {
406 rtx x = gen_rtx_raw_REG (mode, regno);
407 ORIGINAL_REGNO (x) = regno;
408 return x;
409 }
410
411 /* There are some RTL codes that require special attention; the generation
412 functions do the raw handling. If you add to this list, modify
413 special_rtx in gengenrtl.c as well. */
414
415 rtx
416 gen_rtx_CONST_INT (mode, arg)
417 enum machine_mode mode ATTRIBUTE_UNUSED;
418 HOST_WIDE_INT arg;
419 {
420 void **slot;
421
422 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
423 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
424
425 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
426 if (const_true_rtx && arg == STORE_FLAG_VALUE)
427 return const_true_rtx;
428 #endif
429
430 /* Look up the CONST_INT in the hash table. */
431 slot = htab_find_slot_with_hash (const_int_htab, &arg,
432 (hashval_t) arg, INSERT);
433 if (*slot == 0)
434 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
435
436 return (rtx) *slot;
437 }
438
439 rtx
440 gen_int_mode (c, mode)
441 HOST_WIDE_INT c;
442 enum machine_mode mode;
443 {
444 return GEN_INT (trunc_int_for_mode (c, mode));
445 }
446
447 /* CONST_DOUBLEs might be created from pairs of integers, or from
448 REAL_VALUE_TYPEs. Also, their length is known only at run time,
449 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
450
451 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
452 hash table. If so, return its counterpart; otherwise add it
453 to the hash table and return it. */
454 static rtx
455 lookup_const_double (real)
456 rtx real;
457 {
458 void **slot = htab_find_slot (const_double_htab, real, INSERT);
459 if (*slot == 0)
460 *slot = real;
461
462 return (rtx) *slot;
463 }
464
465 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
466 VALUE in mode MODE. */
467 rtx
468 const_double_from_real_value (value, mode)
469 REAL_VALUE_TYPE value;
470 enum machine_mode mode;
471 {
472 rtx real = rtx_alloc (CONST_DOUBLE);
473 PUT_MODE (real, mode);
474
475 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
476
477 return lookup_const_double (real);
478 }
479
480 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
481 of ints: I0 is the low-order word and I1 is the high-order word.
482 Do not use this routine for non-integer modes; convert to
483 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
484
485 rtx
486 immed_double_const (i0, i1, mode)
487 HOST_WIDE_INT i0, i1;
488 enum machine_mode mode;
489 {
490 rtx value;
491 unsigned int i;
492
493 if (mode != VOIDmode)
494 {
495 int width;
496 if (GET_MODE_CLASS (mode) != MODE_INT
497 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
498 /* We can get a 0 for an error mark. */
499 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
500 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
501 abort ();
502
503 /* We clear out all bits that don't belong in MODE, unless they and
504 our sign bit are all one. So we get either a reasonable negative
505 value or a reasonable unsigned value for this mode. */
506 width = GET_MODE_BITSIZE (mode);
507 if (width < HOST_BITS_PER_WIDE_INT
508 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
509 != ((HOST_WIDE_INT) (-1) << (width - 1))))
510 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
511 else if (width == HOST_BITS_PER_WIDE_INT
512 && ! (i1 == ~0 && i0 < 0))
513 i1 = 0;
514 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
515 /* We cannot represent this value as a constant. */
516 abort ();
517
518 /* If this would be an entire word for the target, but is not for
519 the host, then sign-extend on the host so that the number will
520 look the same way on the host that it would on the target.
521
522 For example, when building a 64 bit alpha hosted 32 bit sparc
523 targeted compiler, then we want the 32 bit unsigned value -1 to be
524 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
525 The latter confuses the sparc backend. */
526
527 if (width < HOST_BITS_PER_WIDE_INT
528 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
529 i0 |= ((HOST_WIDE_INT) (-1) << width);
530
531 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
532 CONST_INT.
533
534 ??? Strictly speaking, this is wrong if we create a CONST_INT for
535 a large unsigned constant with the size of MODE being
536 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
537 in a wider mode. In that case we will mis-interpret it as a
538 negative number.
539
540 Unfortunately, the only alternative is to make a CONST_DOUBLE for
541 any constant in any mode if it is an unsigned constant larger
542 than the maximum signed integer in an int on the host. However,
543 doing this will break everyone that always expects to see a
544 CONST_INT for SImode and smaller.
545
546 We have always been making CONST_INTs in this case, so nothing
547 new is being broken. */
548
549 if (width <= HOST_BITS_PER_WIDE_INT)
550 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
551 }
552
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
555 return GEN_INT (i0);
556
557 /* We use VOIDmode for integers. */
558 value = rtx_alloc (CONST_DOUBLE);
559 PUT_MODE (value, VOIDmode);
560
561 CONST_DOUBLE_LOW (value) = i0;
562 CONST_DOUBLE_HIGH (value) = i1;
563
564 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
565 XWINT (value, i) = 0;
566
567 return lookup_const_double (value);
568 }
569
570 rtx
571 gen_rtx_REG (mode, regno)
572 enum machine_mode mode;
573 unsigned int regno;
574 {
575 /* In case the MD file explicitly references the frame pointer, have
576 all such references point to the same frame pointer. This is
577 used during frame pointer elimination to distinguish the explicit
578 references to these registers from pseudos that happened to be
579 assigned to them.
580
581 If we have eliminated the frame pointer or arg pointer, we will
582 be using it as a normal register, for example as a spill
583 register. In such cases, we might be accessing it in a mode that
584 is not Pmode and therefore cannot use the pre-allocated rtx.
585
586 Also don't do this when we are making new REGs in reload, since
587 we don't want to get confused with the real pointers. */
588
589 if (mode == Pmode && !reload_in_progress)
590 {
591 if (regno == FRAME_POINTER_REGNUM
592 && (!reload_completed || frame_pointer_needed))
593 return frame_pointer_rtx;
594 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
595 if (regno == HARD_FRAME_POINTER_REGNUM
596 && (!reload_completed || frame_pointer_needed))
597 return hard_frame_pointer_rtx;
598 #endif
599 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
600 if (regno == ARG_POINTER_REGNUM)
601 return arg_pointer_rtx;
602 #endif
603 #ifdef RETURN_ADDRESS_POINTER_REGNUM
604 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
605 return return_address_pointer_rtx;
606 #endif
607 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
608 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
609 return pic_offset_table_rtx;
610 if (regno == STACK_POINTER_REGNUM)
611 return stack_pointer_rtx;
612 }
613
614 #if 0
615 /* If the per-function register table has been set up, try to re-use
616 an existing entry in that table to avoid useless generation of RTL.
617
618 This code is disabled for now until we can fix the various backends
619 which depend on having non-shared hard registers in some cases. Long
620 term we want to re-enable this code as it can significantly cut down
621 on the amount of useless RTL that gets generated.
622
623 We'll also need to fix some code that runs after reload that wants to
624 set ORIGINAL_REGNO. */
625
626 if (cfun
627 && cfun->emit
628 && regno_reg_rtx
629 && regno < FIRST_PSEUDO_REGISTER
630 && reg_raw_mode[regno] == mode)
631 return regno_reg_rtx[regno];
632 #endif
633
634 return gen_raw_REG (mode, regno);
635 }
636
637 rtx
638 gen_rtx_MEM (mode, addr)
639 enum machine_mode mode;
640 rtx addr;
641 {
642 rtx rt = gen_rtx_raw_MEM (mode, addr);
643
644 /* This field is not cleared by the mere allocation of the rtx, so
645 we clear it here. */
646 MEM_ATTRS (rt) = 0;
647
648 return rt;
649 }
650
651 rtx
652 gen_rtx_SUBREG (mode, reg, offset)
653 enum machine_mode mode;
654 rtx reg;
655 int offset;
656 {
657 /* This is the most common failure type.
658 Catch it early so we can see who does it. */
659 if ((offset % GET_MODE_SIZE (mode)) != 0)
660 abort ();
661
662 /* This check isn't usable right now because combine will
663 throw arbitrary crap like a CALL into a SUBREG in
664 gen_lowpart_for_combine so we must just eat it. */
665 #if 0
666 /* Check for this too. */
667 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
668 abort ();
669 #endif
670 return gen_rtx_raw_SUBREG (mode, reg, offset);
671 }
672
673 /* Generate a SUBREG representing the least-significant part of REG if MODE
674 is smaller than mode of REG, otherwise paradoxical SUBREG. */
675
676 rtx
677 gen_lowpart_SUBREG (mode, reg)
678 enum machine_mode mode;
679 rtx reg;
680 {
681 enum machine_mode inmode;
682
683 inmode = GET_MODE (reg);
684 if (inmode == VOIDmode)
685 inmode = mode;
686 return gen_rtx_SUBREG (mode, reg,
687 subreg_lowpart_offset (mode, inmode));
688 }
689 \f
690 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
691 **
692 ** This routine generates an RTX of the size specified by
693 ** <code>, which is an RTX code. The RTX structure is initialized
694 ** from the arguments <element1> through <elementn>, which are
695 ** interpreted according to the specific RTX type's format. The
696 ** special machine mode associated with the rtx (if any) is specified
697 ** in <mode>.
698 **
699 ** gen_rtx can be invoked in a way which resembles the lisp-like
700 ** rtx it will generate. For example, the following rtx structure:
701 **
702 ** (plus:QI (mem:QI (reg:SI 1))
703 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
704 **
705 ** ...would be generated by the following C code:
706 **
707 ** gen_rtx (PLUS, QImode,
708 ** gen_rtx (MEM, QImode,
709 ** gen_rtx (REG, SImode, 1)),
710 ** gen_rtx (MEM, QImode,
711 ** gen_rtx (PLUS, SImode,
712 ** gen_rtx (REG, SImode, 2),
713 ** gen_rtx (REG, SImode, 3)))),
714 */
715
716 /*VARARGS2*/
717 rtx
718 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
719 {
720 int i; /* Array indices... */
721 const char *fmt; /* Current rtx's format... */
722 rtx rt_val; /* RTX to return to caller... */
723 va_list p;
724
725 va_start (p, mode);
726
727 switch (code)
728 {
729 case CONST_INT:
730 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
731 break;
732
733 case CONST_DOUBLE:
734 {
735 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
736 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
737
738 rt_val = immed_double_const (arg0, arg1, mode);
739 }
740 break;
741
742 case REG:
743 rt_val = gen_rtx_REG (mode, va_arg (p, int));
744 break;
745
746 case MEM:
747 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
748 break;
749
750 default:
751 rt_val = rtx_alloc (code); /* Allocate the storage space. */
752 rt_val->mode = mode; /* Store the machine mode... */
753
754 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
755 for (i = 0; i < GET_RTX_LENGTH (code); i++)
756 {
757 switch (*fmt++)
758 {
759 case '0': /* Field with unknown use. Zero it. */
760 X0EXP (rt_val, i) = NULL_RTX;
761 break;
762
763 case 'i': /* An integer? */
764 XINT (rt_val, i) = va_arg (p, int);
765 break;
766
767 case 'w': /* A wide integer? */
768 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
769 break;
770
771 case 's': /* A string? */
772 XSTR (rt_val, i) = va_arg (p, char *);
773 break;
774
775 case 'e': /* An expression? */
776 case 'u': /* An insn? Same except when printing. */
777 XEXP (rt_val, i) = va_arg (p, rtx);
778 break;
779
780 case 'E': /* An RTX vector? */
781 XVEC (rt_val, i) = va_arg (p, rtvec);
782 break;
783
784 case 'b': /* A bitmap? */
785 XBITMAP (rt_val, i) = va_arg (p, bitmap);
786 break;
787
788 case 't': /* A tree? */
789 XTREE (rt_val, i) = va_arg (p, tree);
790 break;
791
792 default:
793 abort ();
794 }
795 }
796 break;
797 }
798
799 va_end (p);
800 return rt_val;
801 }
802
803 /* gen_rtvec (n, [rt1, ..., rtn])
804 **
805 ** This routine creates an rtvec and stores within it the
806 ** pointers to rtx's which are its arguments.
807 */
808
809 /*VARARGS1*/
810 rtvec
811 gen_rtvec (int n, ...)
812 {
813 int i, save_n;
814 rtx *vector;
815 va_list p;
816
817 va_start (p, n);
818
819 if (n == 0)
820 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
821
822 vector = (rtx *) alloca (n * sizeof (rtx));
823
824 for (i = 0; i < n; i++)
825 vector[i] = va_arg (p, rtx);
826
827 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
828 save_n = n;
829 va_end (p);
830
831 return gen_rtvec_v (save_n, vector);
832 }
833
834 rtvec
835 gen_rtvec_v (n, argp)
836 int n;
837 rtx *argp;
838 {
839 int i;
840 rtvec rt_val;
841
842 if (n == 0)
843 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
844
845 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
846
847 for (i = 0; i < n; i++)
848 rt_val->elem[i] = *argp++;
849
850 return rt_val;
851 }
852 \f
853 /* Generate a REG rtx for a new pseudo register of mode MODE.
854 This pseudo is assigned the next sequential register number. */
855
856 rtx
857 gen_reg_rtx (mode)
858 enum machine_mode mode;
859 {
860 struct function *f = cfun;
861 rtx val;
862
863 /* Don't let anything called after initial flow analysis create new
864 registers. */
865 if (no_new_pseudos)
866 abort ();
867
868 if (generating_concat_p
869 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
870 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
871 {
872 /* For complex modes, don't make a single pseudo.
873 Instead, make a CONCAT of two pseudos.
874 This allows noncontiguous allocation of the real and imaginary parts,
875 which makes much better code. Besides, allocating DCmode
876 pseudos overstrains reload on some machines like the 386. */
877 rtx realpart, imagpart;
878 enum machine_mode partmode = GET_MODE_INNER (mode);
879
880 realpart = gen_reg_rtx (partmode);
881 imagpart = gen_reg_rtx (partmode);
882 return gen_rtx_CONCAT (mode, realpart, imagpart);
883 }
884
885 /* Make sure regno_pointer_align, and regno_reg_rtx are large
886 enough to have an element for this pseudo reg number. */
887
888 if (reg_rtx_no == f->emit->regno_pointer_align_length)
889 {
890 int old_size = f->emit->regno_pointer_align_length;
891 char *new;
892 rtx *new1;
893
894 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
895 memset (new + old_size, 0, old_size);
896 f->emit->regno_pointer_align = (unsigned char *) new;
897
898 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
899 old_size * 2 * sizeof (rtx));
900 memset (new1 + old_size, 0, old_size * sizeof (rtx));
901 regno_reg_rtx = new1;
902
903 f->emit->regno_pointer_align_length = old_size * 2;
904 }
905
906 val = gen_raw_REG (mode, reg_rtx_no);
907 regno_reg_rtx[reg_rtx_no++] = val;
908 return val;
909 }
910
911 /* Generate an register with same attributes as REG,
912 but offsetted by OFFSET. */
913
914 rtx
915 gen_rtx_REG_offset (reg, mode, regno, offset)
916 enum machine_mode mode;
917 unsigned int regno;
918 int offset;
919 rtx reg;
920 {
921 rtx new = gen_rtx_REG (mode, regno);
922 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
923 REG_OFFSET (reg) + offset);
924 return new;
925 }
926
927 /* Set the decl for MEM to DECL. */
928
929 void
930 set_reg_attrs_from_mem (reg, mem)
931 rtx reg;
932 rtx mem;
933 {
934 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
935 REG_ATTRS (reg)
936 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
937 }
938
939 /* Set the register attributes for registers contained in PARM_RTX.
940 Use needed values from memory attributes of MEM. */
941
942 void
943 set_reg_attrs_for_parm (parm_rtx, mem)
944 rtx parm_rtx;
945 rtx mem;
946 {
947 if (GET_CODE (parm_rtx) == REG)
948 set_reg_attrs_from_mem (parm_rtx, mem);
949 else if (GET_CODE (parm_rtx) == PARALLEL)
950 {
951 /* Check for a NULL entry in the first slot, used to indicate that the
952 parameter goes both on the stack and in registers. */
953 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
954 for (; i < XVECLEN (parm_rtx, 0); i++)
955 {
956 rtx x = XVECEXP (parm_rtx, 0, i);
957 if (GET_CODE (XEXP (x, 0)) == REG)
958 REG_ATTRS (XEXP (x, 0))
959 = get_reg_attrs (MEM_EXPR (mem),
960 INTVAL (XEXP (x, 1)));
961 }
962 }
963 }
964
965 /* Assign the RTX X to declaration T. */
966 void
967 set_decl_rtl (t, x)
968 tree t;
969 rtx x;
970 {
971 DECL_CHECK (t)->decl.rtl = x;
972
973 if (!x)
974 return;
975 /* For register, we maitain the reverse information too. */
976 if (GET_CODE (x) == REG)
977 REG_ATTRS (x) = get_reg_attrs (t, 0);
978 else if (GET_CODE (x) == SUBREG)
979 REG_ATTRS (SUBREG_REG (x))
980 = get_reg_attrs (t, -SUBREG_BYTE (x));
981 if (GET_CODE (x) == CONCAT)
982 {
983 if (REG_P (XEXP (x, 0)))
984 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
985 if (REG_P (XEXP (x, 1)))
986 REG_ATTRS (XEXP (x, 1))
987 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
988 }
989 if (GET_CODE (x) == PARALLEL)
990 {
991 int i;
992 for (i = 0; i < XVECLEN (x, 0); i++)
993 {
994 rtx y = XVECEXP (x, 0, i);
995 if (REG_P (XEXP (y, 0)))
996 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
997 }
998 }
999 }
1000
1001 /* Identify REG (which may be a CONCAT) as a user register. */
1002
1003 void
1004 mark_user_reg (reg)
1005 rtx reg;
1006 {
1007 if (GET_CODE (reg) == CONCAT)
1008 {
1009 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1010 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1011 }
1012 else if (GET_CODE (reg) == REG)
1013 REG_USERVAR_P (reg) = 1;
1014 else
1015 abort ();
1016 }
1017
1018 /* Identify REG as a probable pointer register and show its alignment
1019 as ALIGN, if nonzero. */
1020
1021 void
1022 mark_reg_pointer (reg, align)
1023 rtx reg;
1024 int align;
1025 {
1026 if (! REG_POINTER (reg))
1027 {
1028 REG_POINTER (reg) = 1;
1029
1030 if (align)
1031 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1032 }
1033 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1034 /* We can no-longer be sure just how aligned this pointer is */
1035 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1036 }
1037
1038 /* Return 1 plus largest pseudo reg number used in the current function. */
1039
1040 int
1041 max_reg_num ()
1042 {
1043 return reg_rtx_no;
1044 }
1045
1046 /* Return 1 + the largest label number used so far in the current function. */
1047
1048 int
1049 max_label_num ()
1050 {
1051 if (last_label_num && label_num == base_label_num)
1052 return last_label_num;
1053 return label_num;
1054 }
1055
1056 /* Return first label number used in this function (if any were used). */
1057
1058 int
1059 get_first_label_num ()
1060 {
1061 return first_label_num;
1062 }
1063 \f
1064 /* Return the final regno of X, which is a SUBREG of a hard
1065 register. */
1066 int
1067 subreg_hard_regno (x, check_mode)
1068 rtx x;
1069 int check_mode;
1070 {
1071 enum machine_mode mode = GET_MODE (x);
1072 unsigned int byte_offset, base_regno, final_regno;
1073 rtx reg = SUBREG_REG (x);
1074
1075 /* This is where we attempt to catch illegal subregs
1076 created by the compiler. */
1077 if (GET_CODE (x) != SUBREG
1078 || GET_CODE (reg) != REG)
1079 abort ();
1080 base_regno = REGNO (reg);
1081 if (base_regno >= FIRST_PSEUDO_REGISTER)
1082 abort ();
1083 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1084 abort ();
1085 #ifdef ENABLE_CHECKING
1086 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1087 SUBREG_BYTE (x), mode))
1088 abort ();
1089 #endif
1090 /* Catch non-congruent offsets too. */
1091 byte_offset = SUBREG_BYTE (x);
1092 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1093 abort ();
1094
1095 final_regno = subreg_regno (x);
1096
1097 return final_regno;
1098 }
1099
1100 /* Return a value representing some low-order bits of X, where the number
1101 of low-order bits is given by MODE. Note that no conversion is done
1102 between floating-point and fixed-point values, rather, the bit
1103 representation is returned.
1104
1105 This function handles the cases in common between gen_lowpart, below,
1106 and two variants in cse.c and combine.c. These are the cases that can
1107 be safely handled at all points in the compilation.
1108
1109 If this is not a case we can handle, return 0. */
1110
1111 rtx
1112 gen_lowpart_common (mode, x)
1113 enum machine_mode mode;
1114 rtx x;
1115 {
1116 int msize = GET_MODE_SIZE (mode);
1117 int xsize = GET_MODE_SIZE (GET_MODE (x));
1118 int offset = 0;
1119
1120 if (GET_MODE (x) == mode)
1121 return x;
1122
1123 /* MODE must occupy no more words than the mode of X. */
1124 if (GET_MODE (x) != VOIDmode
1125 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1126 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1127 return 0;
1128
1129 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1130 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1131 && GET_MODE (x) != VOIDmode && msize > xsize)
1132 return 0;
1133
1134 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1135
1136 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1137 && (GET_MODE_CLASS (mode) == MODE_INT
1138 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1139 {
1140 /* If we are getting the low-order part of something that has been
1141 sign- or zero-extended, we can either just use the object being
1142 extended or make a narrower extension. If we want an even smaller
1143 piece than the size of the object being extended, call ourselves
1144 recursively.
1145
1146 This case is used mostly by combine and cse. */
1147
1148 if (GET_MODE (XEXP (x, 0)) == mode)
1149 return XEXP (x, 0);
1150 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1151 return gen_lowpart_common (mode, XEXP (x, 0));
1152 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1153 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1154 }
1155 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1156 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1157 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1158 else if ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
1159 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
1160 && GET_MODE (x) == VOIDmode)
1161 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1162 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1163 from the low-order part of the constant. */
1164 else if ((GET_MODE_CLASS (mode) == MODE_INT
1165 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1166 && GET_MODE (x) == VOIDmode
1167 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1168 {
1169 /* If MODE is twice the host word size, X is already the desired
1170 representation. Otherwise, if MODE is wider than a word, we can't
1171 do this. If MODE is exactly a word, return just one CONST_INT. */
1172
1173 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1174 return x;
1175 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1176 return 0;
1177 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1178 return (GET_CODE (x) == CONST_INT ? x
1179 : GEN_INT (CONST_DOUBLE_LOW (x)));
1180 else
1181 {
1182 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1183 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1184 : CONST_DOUBLE_LOW (x));
1185
1186 /* Sign extend to HOST_WIDE_INT. */
1187 val = trunc_int_for_mode (val, mode);
1188
1189 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1190 : GEN_INT (val));
1191 }
1192 }
1193
1194 /* The floating-point emulator can handle all conversions between
1195 FP and integer operands. This simplifies reload because it
1196 doesn't have to deal with constructs like (subreg:DI
1197 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1198 /* Single-precision floats are always 32-bits and double-precision
1199 floats are always 64-bits. */
1200
1201 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1202 && GET_MODE_BITSIZE (mode) == 32
1203 && GET_CODE (x) == CONST_INT)
1204 {
1205 REAL_VALUE_TYPE r;
1206 long i = INTVAL (x);
1207
1208 real_from_target (&r, &i, mode);
1209 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1210 }
1211 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1212 && GET_MODE_BITSIZE (mode) == 64
1213 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1214 && GET_MODE (x) == VOIDmode)
1215 {
1216 REAL_VALUE_TYPE r;
1217 HOST_WIDE_INT low, high;
1218 long i[2];
1219
1220 if (GET_CODE (x) == CONST_INT)
1221 {
1222 low = INTVAL (x);
1223 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1224 }
1225 else
1226 {
1227 low = CONST_DOUBLE_LOW (x);
1228 high = CONST_DOUBLE_HIGH (x);
1229 }
1230
1231 if (HOST_BITS_PER_WIDE_INT > 32)
1232 high = low >> 31 >> 1;
1233
1234 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1235 target machine. */
1236 if (WORDS_BIG_ENDIAN)
1237 i[0] = high, i[1] = low;
1238 else
1239 i[0] = low, i[1] = high;
1240
1241 real_from_target (&r, i, mode);
1242 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1243 }
1244 else if ((GET_MODE_CLASS (mode) == MODE_INT
1245 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1246 && GET_CODE (x) == CONST_DOUBLE
1247 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1248 {
1249 REAL_VALUE_TYPE r;
1250 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1251 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1252
1253 /* Convert 'r' into an array of four 32-bit words in target word
1254 order. */
1255 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1256 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1257 {
1258 case 32:
1259 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1260 i[1] = 0;
1261 i[2] = 0;
1262 i[3 - 3 * endian] = 0;
1263 break;
1264 case 64:
1265 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1266 i[2 - 2 * endian] = 0;
1267 i[3 - 2 * endian] = 0;
1268 break;
1269 case 96:
1270 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1271 i[3 - 3 * endian] = 0;
1272 break;
1273 case 128:
1274 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1275 break;
1276 default:
1277 abort ();
1278 }
1279 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1280 and return it. */
1281 #if HOST_BITS_PER_WIDE_INT == 32
1282 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1283 #else
1284 if (HOST_BITS_PER_WIDE_INT != 64)
1285 abort ();
1286
1287 return immed_double_const ((((unsigned long) i[3 * endian])
1288 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1289 (((unsigned long) i[2 - endian])
1290 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1291 mode);
1292 #endif
1293 }
1294 /* If MODE is a condition code and X is a CONST_INT, the value of X
1295 must already have been "recognized" by the back-end, and we can
1296 assume that it is valid for this mode. */
1297 else if (GET_MODE_CLASS (mode) == MODE_CC
1298 && GET_CODE (x) == CONST_INT)
1299 return x;
1300
1301 /* Otherwise, we can't do this. */
1302 return 0;
1303 }
1304 \f
1305 /* Return the constant real or imaginary part (which has mode MODE)
1306 of a complex value X. The IMAGPART_P argument determines whether
1307 the real or complex component should be returned. This function
1308 returns NULL_RTX if the component isn't a constant. */
1309
1310 static rtx
1311 gen_complex_constant_part (mode, x, imagpart_p)
1312 enum machine_mode mode;
1313 rtx x;
1314 int imagpart_p;
1315 {
1316 tree decl, part;
1317
1318 if (GET_CODE (x) == MEM
1319 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1320 {
1321 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1322 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1323 {
1324 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1325 if (TREE_CODE (part) == REAL_CST
1326 || TREE_CODE (part) == INTEGER_CST)
1327 return expand_expr (part, NULL_RTX, mode, 0);
1328 }
1329 }
1330 return NULL_RTX;
1331 }
1332
1333 /* Return the real part (which has mode MODE) of a complex value X.
1334 This always comes at the low address in memory. */
1335
1336 rtx
1337 gen_realpart (mode, x)
1338 enum machine_mode mode;
1339 rtx x;
1340 {
1341 rtx part;
1342
1343 /* Handle complex constants. */
1344 part = gen_complex_constant_part (mode, x, 0);
1345 if (part != NULL_RTX)
1346 return part;
1347
1348 if (WORDS_BIG_ENDIAN
1349 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1350 && REG_P (x)
1351 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1352 internal_error
1353 ("can't access real part of complex value in hard register");
1354 else if (WORDS_BIG_ENDIAN)
1355 return gen_highpart (mode, x);
1356 else
1357 return gen_lowpart (mode, x);
1358 }
1359
1360 /* Return the imaginary part (which has mode MODE) of a complex value X.
1361 This always comes at the high address in memory. */
1362
1363 rtx
1364 gen_imagpart (mode, x)
1365 enum machine_mode mode;
1366 rtx x;
1367 {
1368 rtx part;
1369
1370 /* Handle complex constants. */
1371 part = gen_complex_constant_part (mode, x, 1);
1372 if (part != NULL_RTX)
1373 return part;
1374
1375 if (WORDS_BIG_ENDIAN)
1376 return gen_lowpart (mode, x);
1377 else if (! WORDS_BIG_ENDIAN
1378 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1379 && REG_P (x)
1380 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1381 internal_error
1382 ("can't access imaginary part of complex value in hard register");
1383 else
1384 return gen_highpart (mode, x);
1385 }
1386
1387 /* Return 1 iff X, assumed to be a SUBREG,
1388 refers to the real part of the complex value in its containing reg.
1389 Complex values are always stored with the real part in the first word,
1390 regardless of WORDS_BIG_ENDIAN. */
1391
1392 int
1393 subreg_realpart_p (x)
1394 rtx x;
1395 {
1396 if (GET_CODE (x) != SUBREG)
1397 abort ();
1398
1399 return ((unsigned int) SUBREG_BYTE (x)
1400 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1401 }
1402 \f
1403 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1404 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1405 least-significant part of X.
1406 MODE specifies how big a part of X to return;
1407 it usually should not be larger than a word.
1408 If X is a MEM whose address is a QUEUED, the value may be so also. */
1409
1410 rtx
1411 gen_lowpart (mode, x)
1412 enum machine_mode mode;
1413 rtx x;
1414 {
1415 rtx result = gen_lowpart_common (mode, x);
1416
1417 if (result)
1418 return result;
1419 else if (GET_CODE (x) == REG)
1420 {
1421 /* Must be a hard reg that's not valid in MODE. */
1422 result = gen_lowpart_common (mode, copy_to_reg (x));
1423 if (result == 0)
1424 abort ();
1425 return result;
1426 }
1427 else if (GET_CODE (x) == MEM)
1428 {
1429 /* The only additional case we can do is MEM. */
1430 int offset = 0;
1431
1432 /* The following exposes the use of "x" to CSE. */
1433 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1434 && SCALAR_INT_MODE_P (GET_MODE (x))
1435 && ! no_new_pseudos)
1436 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1437
1438 if (WORDS_BIG_ENDIAN)
1439 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1440 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1441
1442 if (BYTES_BIG_ENDIAN)
1443 /* Adjust the address so that the address-after-the-data
1444 is unchanged. */
1445 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1446 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1447
1448 return adjust_address (x, mode, offset);
1449 }
1450 else if (GET_CODE (x) == ADDRESSOF)
1451 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1452 else
1453 abort ();
1454 }
1455
1456 /* Like `gen_lowpart', but refer to the most significant part.
1457 This is used to access the imaginary part of a complex number. */
1458
1459 rtx
1460 gen_highpart (mode, x)
1461 enum machine_mode mode;
1462 rtx x;
1463 {
1464 unsigned int msize = GET_MODE_SIZE (mode);
1465 rtx result;
1466
1467 /* This case loses if X is a subreg. To catch bugs early,
1468 complain if an invalid MODE is used even in other cases. */
1469 if (msize > UNITS_PER_WORD
1470 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1471 abort ();
1472
1473 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1474 subreg_highpart_offset (mode, GET_MODE (x)));
1475
1476 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1477 the target if we have a MEM. gen_highpart must return a valid operand,
1478 emitting code if necessary to do so. */
1479 if (result != NULL_RTX && GET_CODE (result) == MEM)
1480 result = validize_mem (result);
1481
1482 if (!result)
1483 abort ();
1484 return result;
1485 }
1486
1487 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1488 be VOIDmode constant. */
1489 rtx
1490 gen_highpart_mode (outermode, innermode, exp)
1491 enum machine_mode outermode, innermode;
1492 rtx exp;
1493 {
1494 if (GET_MODE (exp) != VOIDmode)
1495 {
1496 if (GET_MODE (exp) != innermode)
1497 abort ();
1498 return gen_highpart (outermode, exp);
1499 }
1500 return simplify_gen_subreg (outermode, exp, innermode,
1501 subreg_highpart_offset (outermode, innermode));
1502 }
1503
1504 /* Return offset in bytes to get OUTERMODE low part
1505 of the value in mode INNERMODE stored in memory in target format. */
1506
1507 unsigned int
1508 subreg_lowpart_offset (outermode, innermode)
1509 enum machine_mode outermode, innermode;
1510 {
1511 unsigned int offset = 0;
1512 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1513
1514 if (difference > 0)
1515 {
1516 if (WORDS_BIG_ENDIAN)
1517 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1518 if (BYTES_BIG_ENDIAN)
1519 offset += difference % UNITS_PER_WORD;
1520 }
1521
1522 return offset;
1523 }
1524
1525 /* Return offset in bytes to get OUTERMODE high part
1526 of the value in mode INNERMODE stored in memory in target format. */
1527 unsigned int
1528 subreg_highpart_offset (outermode, innermode)
1529 enum machine_mode outermode, innermode;
1530 {
1531 unsigned int offset = 0;
1532 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1533
1534 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1535 abort ();
1536
1537 if (difference > 0)
1538 {
1539 if (! WORDS_BIG_ENDIAN)
1540 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1541 if (! BYTES_BIG_ENDIAN)
1542 offset += difference % UNITS_PER_WORD;
1543 }
1544
1545 return offset;
1546 }
1547
1548 /* Return 1 iff X, assumed to be a SUBREG,
1549 refers to the least significant part of its containing reg.
1550 If X is not a SUBREG, always return 1 (it is its own low part!). */
1551
1552 int
1553 subreg_lowpart_p (x)
1554 rtx x;
1555 {
1556 if (GET_CODE (x) != SUBREG)
1557 return 1;
1558 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1559 return 0;
1560
1561 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1562 == SUBREG_BYTE (x));
1563 }
1564 \f
1565
1566 /* Helper routine for all the constant cases of operand_subword.
1567 Some places invoke this directly. */
1568
1569 rtx
1570 constant_subword (op, offset, mode)
1571 rtx op;
1572 int offset;
1573 enum machine_mode mode;
1574 {
1575 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1576 HOST_WIDE_INT val;
1577
1578 /* If OP is already an integer word, return it. */
1579 if (GET_MODE_CLASS (mode) == MODE_INT
1580 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1581 return op;
1582
1583 /* The output is some bits, the width of the target machine's word.
1584 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1585 host can't. */
1586 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1587 && GET_MODE_CLASS (mode) == MODE_FLOAT
1588 && GET_MODE_BITSIZE (mode) == 64
1589 && GET_CODE (op) == CONST_DOUBLE)
1590 {
1591 long k[2];
1592 REAL_VALUE_TYPE rv;
1593
1594 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1595 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1596
1597 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1598 which the words are written depends on the word endianness.
1599 ??? This is a potential portability problem and should
1600 be fixed at some point.
1601
1602 We must exercise caution with the sign bit. By definition there
1603 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1604 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1605 So we explicitly mask and sign-extend as necessary. */
1606 if (BITS_PER_WORD == 32)
1607 {
1608 val = k[offset];
1609 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1610 return GEN_INT (val);
1611 }
1612 #if HOST_BITS_PER_WIDE_INT >= 64
1613 else if (BITS_PER_WORD >= 64 && offset == 0)
1614 {
1615 val = k[! WORDS_BIG_ENDIAN];
1616 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1617 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1618 return GEN_INT (val);
1619 }
1620 #endif
1621 else if (BITS_PER_WORD == 16)
1622 {
1623 val = k[offset >> 1];
1624 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1625 val >>= 16;
1626 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1627 return GEN_INT (val);
1628 }
1629 else
1630 abort ();
1631 }
1632 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1633 && GET_MODE_CLASS (mode) == MODE_FLOAT
1634 && GET_MODE_BITSIZE (mode) > 64
1635 && GET_CODE (op) == CONST_DOUBLE)
1636 {
1637 long k[4];
1638 REAL_VALUE_TYPE rv;
1639
1640 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1641 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1642
1643 if (BITS_PER_WORD == 32)
1644 {
1645 val = k[offset];
1646 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1647 return GEN_INT (val);
1648 }
1649 #if HOST_BITS_PER_WIDE_INT >= 64
1650 else if (BITS_PER_WORD >= 64 && offset <= 1)
1651 {
1652 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1653 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1654 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1655 return GEN_INT (val);
1656 }
1657 #endif
1658 else
1659 abort ();
1660 }
1661
1662 /* Single word float is a little harder, since single- and double-word
1663 values often do not have the same high-order bits. We have already
1664 verified that we want the only defined word of the single-word value. */
1665 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1666 && GET_MODE_BITSIZE (mode) == 32
1667 && GET_CODE (op) == CONST_DOUBLE)
1668 {
1669 long l;
1670 REAL_VALUE_TYPE rv;
1671
1672 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1673 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1674
1675 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1676 val = l;
1677 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1678
1679 if (BITS_PER_WORD == 16)
1680 {
1681 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1682 val >>= 16;
1683 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1684 }
1685
1686 return GEN_INT (val);
1687 }
1688
1689 /* The only remaining cases that we can handle are integers.
1690 Convert to proper endianness now since these cases need it.
1691 At this point, offset == 0 means the low-order word.
1692
1693 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1694 in general. However, if OP is (const_int 0), we can just return
1695 it for any word. */
1696
1697 if (op == const0_rtx)
1698 return op;
1699
1700 if (GET_MODE_CLASS (mode) != MODE_INT
1701 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1702 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1703 return 0;
1704
1705 if (WORDS_BIG_ENDIAN)
1706 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1707
1708 /* Find out which word on the host machine this value is in and get
1709 it from the constant. */
1710 val = (offset / size_ratio == 0
1711 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1712 : (GET_CODE (op) == CONST_INT
1713 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1714
1715 /* Get the value we want into the low bits of val. */
1716 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1717 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1718
1719 val = trunc_int_for_mode (val, word_mode);
1720
1721 return GEN_INT (val);
1722 }
1723
1724 /* Return subword OFFSET of operand OP.
1725 The word number, OFFSET, is interpreted as the word number starting
1726 at the low-order address. OFFSET 0 is the low-order word if not
1727 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1728
1729 If we cannot extract the required word, we return zero. Otherwise,
1730 an rtx corresponding to the requested word will be returned.
1731
1732 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1733 reload has completed, a valid address will always be returned. After
1734 reload, if a valid address cannot be returned, we return zero.
1735
1736 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1737 it is the responsibility of the caller.
1738
1739 MODE is the mode of OP in case it is a CONST_INT.
1740
1741 ??? This is still rather broken for some cases. The problem for the
1742 moment is that all callers of this thing provide no 'goal mode' to
1743 tell us to work with. This exists because all callers were written
1744 in a word based SUBREG world.
1745 Now use of this function can be deprecated by simplify_subreg in most
1746 cases.
1747 */
1748
1749 rtx
1750 operand_subword (op, offset, validate_address, mode)
1751 rtx op;
1752 unsigned int offset;
1753 int validate_address;
1754 enum machine_mode mode;
1755 {
1756 if (mode == VOIDmode)
1757 mode = GET_MODE (op);
1758
1759 if (mode == VOIDmode)
1760 abort ();
1761
1762 /* If OP is narrower than a word, fail. */
1763 if (mode != BLKmode
1764 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1765 return 0;
1766
1767 /* If we want a word outside OP, return zero. */
1768 if (mode != BLKmode
1769 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1770 return const0_rtx;
1771
1772 /* Form a new MEM at the requested address. */
1773 if (GET_CODE (op) == MEM)
1774 {
1775 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1776
1777 if (! validate_address)
1778 return new;
1779
1780 else if (reload_completed)
1781 {
1782 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1783 return 0;
1784 }
1785 else
1786 return replace_equiv_address (new, XEXP (new, 0));
1787 }
1788
1789 /* Rest can be handled by simplify_subreg. */
1790 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1791 }
1792
1793 /* Similar to `operand_subword', but never return 0. If we can't extract
1794 the required subword, put OP into a register and try again. If that fails,
1795 abort. We always validate the address in this case.
1796
1797 MODE is the mode of OP, in case it is CONST_INT. */
1798
1799 rtx
1800 operand_subword_force (op, offset, mode)
1801 rtx op;
1802 unsigned int offset;
1803 enum machine_mode mode;
1804 {
1805 rtx result = operand_subword (op, offset, 1, mode);
1806
1807 if (result)
1808 return result;
1809
1810 if (mode != BLKmode && mode != VOIDmode)
1811 {
1812 /* If this is a register which can not be accessed by words, copy it
1813 to a pseudo register. */
1814 if (GET_CODE (op) == REG)
1815 op = copy_to_reg (op);
1816 else
1817 op = force_reg (mode, op);
1818 }
1819
1820 result = operand_subword (op, offset, 1, mode);
1821 if (result == 0)
1822 abort ();
1823
1824 return result;
1825 }
1826 \f
1827 /* Given a compare instruction, swap the operands.
1828 A test instruction is changed into a compare of 0 against the operand. */
1829
1830 void
1831 reverse_comparison (insn)
1832 rtx insn;
1833 {
1834 rtx body = PATTERN (insn);
1835 rtx comp;
1836
1837 if (GET_CODE (body) == SET)
1838 comp = SET_SRC (body);
1839 else
1840 comp = SET_SRC (XVECEXP (body, 0, 0));
1841
1842 if (GET_CODE (comp) == COMPARE)
1843 {
1844 rtx op0 = XEXP (comp, 0);
1845 rtx op1 = XEXP (comp, 1);
1846 XEXP (comp, 0) = op1;
1847 XEXP (comp, 1) = op0;
1848 }
1849 else
1850 {
1851 rtx new = gen_rtx_COMPARE (VOIDmode,
1852 CONST0_RTX (GET_MODE (comp)), comp);
1853 if (GET_CODE (body) == SET)
1854 SET_SRC (body) = new;
1855 else
1856 SET_SRC (XVECEXP (body, 0, 0)) = new;
1857 }
1858 }
1859 \f
1860 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1861 or (2) a component ref of something variable. Represent the later with
1862 a NULL expression. */
1863
1864 static tree
1865 component_ref_for_mem_expr (ref)
1866 tree ref;
1867 {
1868 tree inner = TREE_OPERAND (ref, 0);
1869
1870 if (TREE_CODE (inner) == COMPONENT_REF)
1871 inner = component_ref_for_mem_expr (inner);
1872 else
1873 {
1874 tree placeholder_ptr = 0;
1875
1876 /* Now remove any conversions: they don't change what the underlying
1877 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1878 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1879 || TREE_CODE (inner) == NON_LVALUE_EXPR
1880 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1881 || TREE_CODE (inner) == SAVE_EXPR
1882 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1883 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1884 inner = find_placeholder (inner, &placeholder_ptr);
1885 else
1886 inner = TREE_OPERAND (inner, 0);
1887
1888 if (! DECL_P (inner))
1889 inner = NULL_TREE;
1890 }
1891
1892 if (inner == TREE_OPERAND (ref, 0))
1893 return ref;
1894 else
1895 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1896 TREE_OPERAND (ref, 1));
1897 }
1898
1899 /* Given REF, a MEM, and T, either the type of X or the expression
1900 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1901 if we are making a new object of this type. BITPOS is nonzero if
1902 there is an offset outstanding on T that will be applied later. */
1903
1904 void
1905 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
1906 rtx ref;
1907 tree t;
1908 int objectp;
1909 HOST_WIDE_INT bitpos;
1910 {
1911 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1912 tree expr = MEM_EXPR (ref);
1913 rtx offset = MEM_OFFSET (ref);
1914 rtx size = MEM_SIZE (ref);
1915 unsigned int align = MEM_ALIGN (ref);
1916 HOST_WIDE_INT apply_bitpos = 0;
1917 tree type;
1918
1919 /* It can happen that type_for_mode was given a mode for which there
1920 is no language-level type. In which case it returns NULL, which
1921 we can see here. */
1922 if (t == NULL_TREE)
1923 return;
1924
1925 type = TYPE_P (t) ? t : TREE_TYPE (t);
1926
1927 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1928 wrong answer, as it assumes that DECL_RTL already has the right alias
1929 info. Callers should not set DECL_RTL until after the call to
1930 set_mem_attributes. */
1931 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1932 abort ();
1933
1934 /* Get the alias set from the expression or type (perhaps using a
1935 front-end routine) and use it. */
1936 alias = get_alias_set (t);
1937
1938 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1939 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1940 RTX_UNCHANGING_P (ref)
1941 |= ((lang_hooks.honor_readonly
1942 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1943 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1944
1945 /* If we are making an object of this type, or if this is a DECL, we know
1946 that it is a scalar if the type is not an aggregate. */
1947 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1948 MEM_SCALAR_P (ref) = 1;
1949
1950 /* We can set the alignment from the type if we are making an object,
1951 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1952 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1953 align = MAX (align, TYPE_ALIGN (type));
1954
1955 /* If the size is known, we can set that. */
1956 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1957 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1958
1959 /* If T is not a type, we may be able to deduce some more information about
1960 the expression. */
1961 if (! TYPE_P (t))
1962 {
1963 maybe_set_unchanging (ref, t);
1964 if (TREE_THIS_VOLATILE (t))
1965 MEM_VOLATILE_P (ref) = 1;
1966
1967 /* Now remove any conversions: they don't change what the underlying
1968 object is. Likewise for SAVE_EXPR. */
1969 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1970 || TREE_CODE (t) == NON_LVALUE_EXPR
1971 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1972 || TREE_CODE (t) == SAVE_EXPR)
1973 t = TREE_OPERAND (t, 0);
1974
1975 /* If this expression can't be addressed (e.g., it contains a reference
1976 to a non-addressable field), show we don't change its alias set. */
1977 if (! can_address_p (t))
1978 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1979
1980 /* If this is a decl, set the attributes of the MEM from it. */
1981 if (DECL_P (t))
1982 {
1983 expr = t;
1984 offset = const0_rtx;
1985 apply_bitpos = bitpos;
1986 size = (DECL_SIZE_UNIT (t)
1987 && host_integerp (DECL_SIZE_UNIT (t), 1)
1988 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1989 align = DECL_ALIGN (t);
1990 }
1991
1992 /* If this is a constant, we know the alignment. */
1993 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1994 {
1995 align = TYPE_ALIGN (type);
1996 #ifdef CONSTANT_ALIGNMENT
1997 align = CONSTANT_ALIGNMENT (t, align);
1998 #endif
1999 }
2000
2001 /* If this is a field reference and not a bit-field, record it. */
2002 /* ??? There is some information that can be gleened from bit-fields,
2003 such as the word offset in the structure that might be modified.
2004 But skip it for now. */
2005 else if (TREE_CODE (t) == COMPONENT_REF
2006 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2007 {
2008 expr = component_ref_for_mem_expr (t);
2009 offset = const0_rtx;
2010 apply_bitpos = bitpos;
2011 /* ??? Any reason the field size would be different than
2012 the size we got from the type? */
2013 }
2014
2015 /* If this is an array reference, look for an outer field reference. */
2016 else if (TREE_CODE (t) == ARRAY_REF)
2017 {
2018 tree off_tree = size_zero_node;
2019
2020 do
2021 {
2022 tree index = TREE_OPERAND (t, 1);
2023 tree array = TREE_OPERAND (t, 0);
2024 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
2025 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
2026 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
2027
2028 /* We assume all arrays have sizes that are a multiple of a byte.
2029 First subtract the lower bound, if any, in the type of the
2030 index, then convert to sizetype and multiply by the size of the
2031 array element. */
2032 if (low_bound != 0 && ! integer_zerop (low_bound))
2033 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
2034 index, low_bound));
2035
2036 /* If the index has a self-referential type, pass it to a
2037 WITH_RECORD_EXPR; if the component size is, pass our
2038 component to one. */
2039 if (CONTAINS_PLACEHOLDER_P (index))
2040 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t);
2041 if (CONTAINS_PLACEHOLDER_P (unit_size))
2042 unit_size = build (WITH_RECORD_EXPR, sizetype,
2043 unit_size, array);
2044
2045 off_tree
2046 = fold (build (PLUS_EXPR, sizetype,
2047 fold (build (MULT_EXPR, sizetype,
2048 index,
2049 unit_size)),
2050 off_tree));
2051 t = TREE_OPERAND (t, 0);
2052 }
2053 while (TREE_CODE (t) == ARRAY_REF);
2054
2055 if (DECL_P (t))
2056 {
2057 expr = t;
2058 offset = NULL;
2059 if (host_integerp (off_tree, 1))
2060 {
2061 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
2062 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
2063 align = DECL_ALIGN (t);
2064 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
2065 align = aoff;
2066 offset = GEN_INT (ioff);
2067 apply_bitpos = bitpos;
2068 }
2069 }
2070 else if (TREE_CODE (t) == COMPONENT_REF)
2071 {
2072 expr = component_ref_for_mem_expr (t);
2073 if (host_integerp (off_tree, 1))
2074 {
2075 offset = GEN_INT (tree_low_cst (off_tree, 1));
2076 apply_bitpos = bitpos;
2077 }
2078 /* ??? Any reason the field size would be different than
2079 the size we got from the type? */
2080 }
2081 else if (flag_argument_noalias > 1
2082 && TREE_CODE (t) == INDIRECT_REF
2083 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2084 {
2085 expr = t;
2086 offset = NULL;
2087 }
2088 }
2089
2090 /* If this is a Fortran indirect argument reference, record the
2091 parameter decl. */
2092 else if (flag_argument_noalias > 1
2093 && TREE_CODE (t) == INDIRECT_REF
2094 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2095 {
2096 expr = t;
2097 offset = NULL;
2098 }
2099 }
2100
2101 /* If we modified OFFSET based on T, then subtract the outstanding
2102 bit position offset. Similarly, increase the size of the accessed
2103 object to contain the negative offset. */
2104 if (apply_bitpos)
2105 {
2106 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2107 if (size)
2108 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2109 }
2110
2111 /* Now set the attributes we computed above. */
2112 MEM_ATTRS (ref)
2113 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2114
2115 /* If this is already known to be a scalar or aggregate, we are done. */
2116 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2117 return;
2118
2119 /* If it is a reference into an aggregate, this is part of an aggregate.
2120 Otherwise we don't know. */
2121 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2122 || TREE_CODE (t) == ARRAY_RANGE_REF
2123 || TREE_CODE (t) == BIT_FIELD_REF)
2124 MEM_IN_STRUCT_P (ref) = 1;
2125 }
2126
2127 void
2128 set_mem_attributes (ref, t, objectp)
2129 rtx ref;
2130 tree t;
2131 int objectp;
2132 {
2133 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2134 }
2135
2136 /* Set the decl for MEM to DECL. */
2137
2138 void
2139 set_mem_attrs_from_reg (mem, reg)
2140 rtx mem;
2141 rtx reg;
2142 {
2143 MEM_ATTRS (mem)
2144 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2145 GEN_INT (REG_OFFSET (reg)),
2146 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2147 }
2148
2149 /* Set the alias set of MEM to SET. */
2150
2151 void
2152 set_mem_alias_set (mem, set)
2153 rtx mem;
2154 HOST_WIDE_INT set;
2155 {
2156 #ifdef ENABLE_CHECKING
2157 /* If the new and old alias sets don't conflict, something is wrong. */
2158 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2159 abort ();
2160 #endif
2161
2162 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2163 MEM_SIZE (mem), MEM_ALIGN (mem),
2164 GET_MODE (mem));
2165 }
2166
2167 /* Set the alignment of MEM to ALIGN bits. */
2168
2169 void
2170 set_mem_align (mem, align)
2171 rtx mem;
2172 unsigned int align;
2173 {
2174 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2175 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2176 GET_MODE (mem));
2177 }
2178
2179 /* Set the expr for MEM to EXPR. */
2180
2181 void
2182 set_mem_expr (mem, expr)
2183 rtx mem;
2184 tree expr;
2185 {
2186 MEM_ATTRS (mem)
2187 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2188 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2189 }
2190
2191 /* Set the offset of MEM to OFFSET. */
2192
2193 void
2194 set_mem_offset (mem, offset)
2195 rtx mem, offset;
2196 {
2197 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2198 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2199 GET_MODE (mem));
2200 }
2201
2202 /* Set the size of MEM to SIZE. */
2203
2204 void
2205 set_mem_size (mem, size)
2206 rtx mem, size;
2207 {
2208 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2209 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2210 GET_MODE (mem));
2211 }
2212 \f
2213 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2214 and its address changed to ADDR. (VOIDmode means don't change the mode.
2215 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2216 returned memory location is required to be valid. The memory
2217 attributes are not changed. */
2218
2219 static rtx
2220 change_address_1 (memref, mode, addr, validate)
2221 rtx memref;
2222 enum machine_mode mode;
2223 rtx addr;
2224 int validate;
2225 {
2226 rtx new;
2227
2228 if (GET_CODE (memref) != MEM)
2229 abort ();
2230 if (mode == VOIDmode)
2231 mode = GET_MODE (memref);
2232 if (addr == 0)
2233 addr = XEXP (memref, 0);
2234
2235 if (validate)
2236 {
2237 if (reload_in_progress || reload_completed)
2238 {
2239 if (! memory_address_p (mode, addr))
2240 abort ();
2241 }
2242 else
2243 addr = memory_address (mode, addr);
2244 }
2245
2246 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2247 return memref;
2248
2249 new = gen_rtx_MEM (mode, addr);
2250 MEM_COPY_ATTRIBUTES (new, memref);
2251 return new;
2252 }
2253
2254 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2255 way we are changing MEMREF, so we only preserve the alias set. */
2256
2257 rtx
2258 change_address (memref, mode, addr)
2259 rtx memref;
2260 enum machine_mode mode;
2261 rtx addr;
2262 {
2263 rtx new = change_address_1 (memref, mode, addr, 1);
2264 enum machine_mode mmode = GET_MODE (new);
2265
2266 MEM_ATTRS (new)
2267 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2268 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2269 (mmode == BLKmode ? BITS_PER_UNIT
2270 : GET_MODE_ALIGNMENT (mmode)),
2271 mmode);
2272
2273 return new;
2274 }
2275
2276 /* Return a memory reference like MEMREF, but with its mode changed
2277 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2278 nonzero, the memory address is forced to be valid.
2279 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2280 and caller is responsible for adjusting MEMREF base register. */
2281
2282 rtx
2283 adjust_address_1 (memref, mode, offset, validate, adjust)
2284 rtx memref;
2285 enum machine_mode mode;
2286 HOST_WIDE_INT offset;
2287 int validate, adjust;
2288 {
2289 rtx addr = XEXP (memref, 0);
2290 rtx new;
2291 rtx memoffset = MEM_OFFSET (memref);
2292 rtx size = 0;
2293 unsigned int memalign = MEM_ALIGN (memref);
2294
2295 /* ??? Prefer to create garbage instead of creating shared rtl.
2296 This may happen even if offset is nonzero -- consider
2297 (plus (plus reg reg) const_int) -- so do this always. */
2298 addr = copy_rtx (addr);
2299
2300 if (adjust)
2301 {
2302 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2303 object, we can merge it into the LO_SUM. */
2304 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2305 && offset >= 0
2306 && (unsigned HOST_WIDE_INT) offset
2307 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2308 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2309 plus_constant (XEXP (addr, 1), offset));
2310 else
2311 addr = plus_constant (addr, offset);
2312 }
2313
2314 new = change_address_1 (memref, mode, addr, validate);
2315
2316 /* Compute the new values of the memory attributes due to this adjustment.
2317 We add the offsets and update the alignment. */
2318 if (memoffset)
2319 memoffset = GEN_INT (offset + INTVAL (memoffset));
2320
2321 /* Compute the new alignment by taking the MIN of the alignment and the
2322 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2323 if zero. */
2324 if (offset != 0)
2325 memalign
2326 = MIN (memalign,
2327 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2328
2329 /* We can compute the size in a number of ways. */
2330 if (GET_MODE (new) != BLKmode)
2331 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2332 else if (MEM_SIZE (memref))
2333 size = plus_constant (MEM_SIZE (memref), -offset);
2334
2335 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2336 memoffset, size, memalign, GET_MODE (new));
2337
2338 /* At some point, we should validate that this offset is within the object,
2339 if all the appropriate values are known. */
2340 return new;
2341 }
2342
2343 /* Return a memory reference like MEMREF, but with its mode changed
2344 to MODE and its address changed to ADDR, which is assumed to be
2345 MEMREF offseted by OFFSET bytes. If VALIDATE is
2346 nonzero, the memory address is forced to be valid. */
2347
2348 rtx
2349 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2350 rtx memref;
2351 enum machine_mode mode;
2352 rtx addr;
2353 HOST_WIDE_INT offset;
2354 int validate;
2355 {
2356 memref = change_address_1 (memref, VOIDmode, addr, validate);
2357 return adjust_address_1 (memref, mode, offset, validate, 0);
2358 }
2359
2360 /* Return a memory reference like MEMREF, but whose address is changed by
2361 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2362 known to be in OFFSET (possibly 1). */
2363
2364 rtx
2365 offset_address (memref, offset, pow2)
2366 rtx memref;
2367 rtx offset;
2368 unsigned HOST_WIDE_INT pow2;
2369 {
2370 rtx new, addr = XEXP (memref, 0);
2371
2372 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2373
2374 /* At this point we don't know _why_ the address is invalid. It
2375 could have secondary memory refereces, multiplies or anything.
2376
2377 However, if we did go and rearrange things, we can wind up not
2378 being able to recognize the magic around pic_offset_table_rtx.
2379 This stuff is fragile, and is yet another example of why it is
2380 bad to expose PIC machinery too early. */
2381 if (! memory_address_p (GET_MODE (memref), new)
2382 && GET_CODE (addr) == PLUS
2383 && XEXP (addr, 0) == pic_offset_table_rtx)
2384 {
2385 addr = force_reg (GET_MODE (addr), addr);
2386 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2387 }
2388
2389 update_temp_slot_address (XEXP (memref, 0), new);
2390 new = change_address_1 (memref, VOIDmode, new, 1);
2391
2392 /* Update the alignment to reflect the offset. Reset the offset, which
2393 we don't know. */
2394 MEM_ATTRS (new)
2395 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2396 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2397 GET_MODE (new));
2398 return new;
2399 }
2400
2401 /* Return a memory reference like MEMREF, but with its address changed to
2402 ADDR. The caller is asserting that the actual piece of memory pointed
2403 to is the same, just the form of the address is being changed, such as
2404 by putting something into a register. */
2405
2406 rtx
2407 replace_equiv_address (memref, addr)
2408 rtx memref;
2409 rtx addr;
2410 {
2411 /* change_address_1 copies the memory attribute structure without change
2412 and that's exactly what we want here. */
2413 update_temp_slot_address (XEXP (memref, 0), addr);
2414 return change_address_1 (memref, VOIDmode, addr, 1);
2415 }
2416
2417 /* Likewise, but the reference is not required to be valid. */
2418
2419 rtx
2420 replace_equiv_address_nv (memref, addr)
2421 rtx memref;
2422 rtx addr;
2423 {
2424 return change_address_1 (memref, VOIDmode, addr, 0);
2425 }
2426
2427 /* Return a memory reference like MEMREF, but with its mode widened to
2428 MODE and offset by OFFSET. This would be used by targets that e.g.
2429 cannot issue QImode memory operations and have to use SImode memory
2430 operations plus masking logic. */
2431
2432 rtx
2433 widen_memory_access (memref, mode, offset)
2434 rtx memref;
2435 enum machine_mode mode;
2436 HOST_WIDE_INT offset;
2437 {
2438 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2439 tree expr = MEM_EXPR (new);
2440 rtx memoffset = MEM_OFFSET (new);
2441 unsigned int size = GET_MODE_SIZE (mode);
2442
2443 /* If we don't know what offset we were at within the expression, then
2444 we can't know if we've overstepped the bounds. */
2445 if (! memoffset)
2446 expr = NULL_TREE;
2447
2448 while (expr)
2449 {
2450 if (TREE_CODE (expr) == COMPONENT_REF)
2451 {
2452 tree field = TREE_OPERAND (expr, 1);
2453
2454 if (! DECL_SIZE_UNIT (field))
2455 {
2456 expr = NULL_TREE;
2457 break;
2458 }
2459
2460 /* Is the field at least as large as the access? If so, ok,
2461 otherwise strip back to the containing structure. */
2462 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2463 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2464 && INTVAL (memoffset) >= 0)
2465 break;
2466
2467 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2468 {
2469 expr = NULL_TREE;
2470 break;
2471 }
2472
2473 expr = TREE_OPERAND (expr, 0);
2474 memoffset = (GEN_INT (INTVAL (memoffset)
2475 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2476 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2477 / BITS_PER_UNIT)));
2478 }
2479 /* Similarly for the decl. */
2480 else if (DECL_P (expr)
2481 && DECL_SIZE_UNIT (expr)
2482 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2483 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2484 && (! memoffset || INTVAL (memoffset) >= 0))
2485 break;
2486 else
2487 {
2488 /* The widened memory access overflows the expression, which means
2489 that it could alias another expression. Zap it. */
2490 expr = NULL_TREE;
2491 break;
2492 }
2493 }
2494
2495 if (! expr)
2496 memoffset = NULL_RTX;
2497
2498 /* The widened memory may alias other stuff, so zap the alias set. */
2499 /* ??? Maybe use get_alias_set on any remaining expression. */
2500
2501 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2502 MEM_ALIGN (new), mode);
2503
2504 return new;
2505 }
2506 \f
2507 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2508
2509 rtx
2510 gen_label_rtx ()
2511 {
2512 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2513 NULL, label_num++, NULL);
2514 }
2515 \f
2516 /* For procedure integration. */
2517
2518 /* Install new pointers to the first and last insns in the chain.
2519 Also, set cur_insn_uid to one higher than the last in use.
2520 Used for an inline-procedure after copying the insn chain. */
2521
2522 void
2523 set_new_first_and_last_insn (first, last)
2524 rtx first, last;
2525 {
2526 rtx insn;
2527
2528 first_insn = first;
2529 last_insn = last;
2530 cur_insn_uid = 0;
2531
2532 for (insn = first; insn; insn = NEXT_INSN (insn))
2533 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2534
2535 cur_insn_uid++;
2536 }
2537
2538 /* Set the range of label numbers found in the current function.
2539 This is used when belatedly compiling an inline function. */
2540
2541 void
2542 set_new_first_and_last_label_num (first, last)
2543 int first, last;
2544 {
2545 base_label_num = label_num;
2546 first_label_num = first;
2547 last_label_num = last;
2548 }
2549
2550 /* Set the last label number found in the current function.
2551 This is used when belatedly compiling an inline function. */
2552
2553 void
2554 set_new_last_label_num (last)
2555 int last;
2556 {
2557 base_label_num = label_num;
2558 last_label_num = last;
2559 }
2560 \f
2561 /* Restore all variables describing the current status from the structure *P.
2562 This is used after a nested function. */
2563
2564 void
2565 restore_emit_status (p)
2566 struct function *p ATTRIBUTE_UNUSED;
2567 {
2568 last_label_num = 0;
2569 }
2570 \f
2571 /* Go through all the RTL insn bodies and copy any invalid shared
2572 structure. This routine should only be called once. */
2573
2574 void
2575 unshare_all_rtl (fndecl, insn)
2576 tree fndecl;
2577 rtx insn;
2578 {
2579 tree decl;
2580
2581 /* Make sure that virtual parameters are not shared. */
2582 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2583 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2584
2585 /* Make sure that virtual stack slots are not shared. */
2586 unshare_all_decls (DECL_INITIAL (fndecl));
2587
2588 /* Unshare just about everything else. */
2589 unshare_all_rtl_1 (insn);
2590
2591 /* Make sure the addresses of stack slots found outside the insn chain
2592 (such as, in DECL_RTL of a variable) are not shared
2593 with the insn chain.
2594
2595 This special care is necessary when the stack slot MEM does not
2596 actually appear in the insn chain. If it does appear, its address
2597 is unshared from all else at that point. */
2598 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2599 }
2600
2601 /* Go through all the RTL insn bodies and copy any invalid shared
2602 structure, again. This is a fairly expensive thing to do so it
2603 should be done sparingly. */
2604
2605 void
2606 unshare_all_rtl_again (insn)
2607 rtx insn;
2608 {
2609 rtx p;
2610 tree decl;
2611
2612 for (p = insn; p; p = NEXT_INSN (p))
2613 if (INSN_P (p))
2614 {
2615 reset_used_flags (PATTERN (p));
2616 reset_used_flags (REG_NOTES (p));
2617 reset_used_flags (LOG_LINKS (p));
2618 }
2619
2620 /* Make sure that virtual stack slots are not shared. */
2621 reset_used_decls (DECL_INITIAL (cfun->decl));
2622
2623 /* Make sure that virtual parameters are not shared. */
2624 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2625 reset_used_flags (DECL_RTL (decl));
2626
2627 reset_used_flags (stack_slot_list);
2628
2629 unshare_all_rtl (cfun->decl, insn);
2630 }
2631
2632 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2633 Assumes the mark bits are cleared at entry. */
2634
2635 static void
2636 unshare_all_rtl_1 (insn)
2637 rtx insn;
2638 {
2639 for (; insn; insn = NEXT_INSN (insn))
2640 if (INSN_P (insn))
2641 {
2642 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2643 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2644 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2645 }
2646 }
2647
2648 /* Go through all virtual stack slots of a function and copy any
2649 shared structure. */
2650 static void
2651 unshare_all_decls (blk)
2652 tree blk;
2653 {
2654 tree t;
2655
2656 /* Copy shared decls. */
2657 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2658 if (DECL_RTL_SET_P (t))
2659 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2660
2661 /* Now process sub-blocks. */
2662 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2663 unshare_all_decls (t);
2664 }
2665
2666 /* Go through all virtual stack slots of a function and mark them as
2667 not shared. */
2668 static void
2669 reset_used_decls (blk)
2670 tree blk;
2671 {
2672 tree t;
2673
2674 /* Mark decls. */
2675 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2676 if (DECL_RTL_SET_P (t))
2677 reset_used_flags (DECL_RTL (t));
2678
2679 /* Now process sub-blocks. */
2680 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2681 reset_used_decls (t);
2682 }
2683
2684 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2685 placed in the result directly, rather than being copied. MAY_SHARE is
2686 either a MEM of an EXPR_LIST of MEMs. */
2687
2688 rtx
2689 copy_most_rtx (orig, may_share)
2690 rtx orig;
2691 rtx may_share;
2692 {
2693 rtx copy;
2694 int i, j;
2695 RTX_CODE code;
2696 const char *format_ptr;
2697
2698 if (orig == may_share
2699 || (GET_CODE (may_share) == EXPR_LIST
2700 && in_expr_list_p (may_share, orig)))
2701 return orig;
2702
2703 code = GET_CODE (orig);
2704
2705 switch (code)
2706 {
2707 case REG:
2708 case QUEUED:
2709 case CONST_INT:
2710 case CONST_DOUBLE:
2711 case CONST_VECTOR:
2712 case SYMBOL_REF:
2713 case CODE_LABEL:
2714 case PC:
2715 case CC0:
2716 return orig;
2717 default:
2718 break;
2719 }
2720
2721 copy = rtx_alloc (code);
2722 PUT_MODE (copy, GET_MODE (orig));
2723 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2724 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2725 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2726 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2727 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2728
2729 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2730
2731 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2732 {
2733 switch (*format_ptr++)
2734 {
2735 case 'e':
2736 XEXP (copy, i) = XEXP (orig, i);
2737 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2738 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2739 break;
2740
2741 case 'u':
2742 XEXP (copy, i) = XEXP (orig, i);
2743 break;
2744
2745 case 'E':
2746 case 'V':
2747 XVEC (copy, i) = XVEC (orig, i);
2748 if (XVEC (orig, i) != NULL)
2749 {
2750 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2751 for (j = 0; j < XVECLEN (copy, i); j++)
2752 XVECEXP (copy, i, j)
2753 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2754 }
2755 break;
2756
2757 case 'w':
2758 XWINT (copy, i) = XWINT (orig, i);
2759 break;
2760
2761 case 'n':
2762 case 'i':
2763 XINT (copy, i) = XINT (orig, i);
2764 break;
2765
2766 case 't':
2767 XTREE (copy, i) = XTREE (orig, i);
2768 break;
2769
2770 case 's':
2771 case 'S':
2772 XSTR (copy, i) = XSTR (orig, i);
2773 break;
2774
2775 case '0':
2776 /* Copy this through the wide int field; that's safest. */
2777 X0WINT (copy, i) = X0WINT (orig, i);
2778 break;
2779
2780 default:
2781 abort ();
2782 }
2783 }
2784 return copy;
2785 }
2786
2787 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2788 Recursively does the same for subexpressions. */
2789
2790 rtx
2791 copy_rtx_if_shared (orig)
2792 rtx orig;
2793 {
2794 rtx x = orig;
2795 int i;
2796 enum rtx_code code;
2797 const char *format_ptr;
2798 int copied = 0;
2799
2800 if (x == 0)
2801 return 0;
2802
2803 code = GET_CODE (x);
2804
2805 /* These types may be freely shared. */
2806
2807 switch (code)
2808 {
2809 case REG:
2810 case QUEUED:
2811 case CONST_INT:
2812 case CONST_DOUBLE:
2813 case CONST_VECTOR:
2814 case SYMBOL_REF:
2815 case CODE_LABEL:
2816 case PC:
2817 case CC0:
2818 case SCRATCH:
2819 /* SCRATCH must be shared because they represent distinct values. */
2820 return x;
2821
2822 case CONST:
2823 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2824 a LABEL_REF, it isn't sharable. */
2825 if (GET_CODE (XEXP (x, 0)) == PLUS
2826 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2827 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2828 return x;
2829 break;
2830
2831 case INSN:
2832 case JUMP_INSN:
2833 case CALL_INSN:
2834 case NOTE:
2835 case BARRIER:
2836 /* The chain of insns is not being copied. */
2837 return x;
2838
2839 case MEM:
2840 /* A MEM is allowed to be shared if its address is constant.
2841
2842 We used to allow sharing of MEMs which referenced
2843 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2844 that can lose. instantiate_virtual_regs will not unshare
2845 the MEMs, and combine may change the structure of the address
2846 because it looks safe and profitable in one context, but
2847 in some other context it creates unrecognizable RTL. */
2848 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2849 return x;
2850
2851 break;
2852
2853 default:
2854 break;
2855 }
2856
2857 /* This rtx may not be shared. If it has already been seen,
2858 replace it with a copy of itself. */
2859
2860 if (RTX_FLAG (x, used))
2861 {
2862 rtx copy;
2863
2864 copy = rtx_alloc (code);
2865 memcpy (copy, x,
2866 (sizeof (*copy) - sizeof (copy->fld)
2867 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2868 x = copy;
2869 copied = 1;
2870 }
2871 RTX_FLAG (x, used) = 1;
2872
2873 /* Now scan the subexpressions recursively.
2874 We can store any replaced subexpressions directly into X
2875 since we know X is not shared! Any vectors in X
2876 must be copied if X was copied. */
2877
2878 format_ptr = GET_RTX_FORMAT (code);
2879
2880 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2881 {
2882 switch (*format_ptr++)
2883 {
2884 case 'e':
2885 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2886 break;
2887
2888 case 'E':
2889 if (XVEC (x, i) != NULL)
2890 {
2891 int j;
2892 int len = XVECLEN (x, i);
2893
2894 if (copied && len > 0)
2895 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2896 for (j = 0; j < len; j++)
2897 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2898 }
2899 break;
2900 }
2901 }
2902 return x;
2903 }
2904
2905 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2906 to look for shared sub-parts. */
2907
2908 void
2909 reset_used_flags (x)
2910 rtx x;
2911 {
2912 int i, j;
2913 enum rtx_code code;
2914 const char *format_ptr;
2915
2916 if (x == 0)
2917 return;
2918
2919 code = GET_CODE (x);
2920
2921 /* These types may be freely shared so we needn't do any resetting
2922 for them. */
2923
2924 switch (code)
2925 {
2926 case REG:
2927 case QUEUED:
2928 case CONST_INT:
2929 case CONST_DOUBLE:
2930 case CONST_VECTOR:
2931 case SYMBOL_REF:
2932 case CODE_LABEL:
2933 case PC:
2934 case CC0:
2935 return;
2936
2937 case INSN:
2938 case JUMP_INSN:
2939 case CALL_INSN:
2940 case NOTE:
2941 case LABEL_REF:
2942 case BARRIER:
2943 /* The chain of insns is not being copied. */
2944 return;
2945
2946 default:
2947 break;
2948 }
2949
2950 RTX_FLAG (x, used) = 0;
2951
2952 format_ptr = GET_RTX_FORMAT (code);
2953 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2954 {
2955 switch (*format_ptr++)
2956 {
2957 case 'e':
2958 reset_used_flags (XEXP (x, i));
2959 break;
2960
2961 case 'E':
2962 for (j = 0; j < XVECLEN (x, i); j++)
2963 reset_used_flags (XVECEXP (x, i, j));
2964 break;
2965 }
2966 }
2967 }
2968 \f
2969 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2970 Return X or the rtx for the pseudo reg the value of X was copied into.
2971 OTHER must be valid as a SET_DEST. */
2972
2973 rtx
2974 make_safe_from (x, other)
2975 rtx x, other;
2976 {
2977 while (1)
2978 switch (GET_CODE (other))
2979 {
2980 case SUBREG:
2981 other = SUBREG_REG (other);
2982 break;
2983 case STRICT_LOW_PART:
2984 case SIGN_EXTEND:
2985 case ZERO_EXTEND:
2986 other = XEXP (other, 0);
2987 break;
2988 default:
2989 goto done;
2990 }
2991 done:
2992 if ((GET_CODE (other) == MEM
2993 && ! CONSTANT_P (x)
2994 && GET_CODE (x) != REG
2995 && GET_CODE (x) != SUBREG)
2996 || (GET_CODE (other) == REG
2997 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2998 || reg_mentioned_p (other, x))))
2999 {
3000 rtx temp = gen_reg_rtx (GET_MODE (x));
3001 emit_move_insn (temp, x);
3002 return temp;
3003 }
3004 return x;
3005 }
3006 \f
3007 /* Emission of insns (adding them to the doubly-linked list). */
3008
3009 /* Return the first insn of the current sequence or current function. */
3010
3011 rtx
3012 get_insns ()
3013 {
3014 return first_insn;
3015 }
3016
3017 /* Specify a new insn as the first in the chain. */
3018
3019 void
3020 set_first_insn (insn)
3021 rtx insn;
3022 {
3023 if (PREV_INSN (insn) != 0)
3024 abort ();
3025 first_insn = insn;
3026 }
3027
3028 /* Return the last insn emitted in current sequence or current function. */
3029
3030 rtx
3031 get_last_insn ()
3032 {
3033 return last_insn;
3034 }
3035
3036 /* Specify a new insn as the last in the chain. */
3037
3038 void
3039 set_last_insn (insn)
3040 rtx insn;
3041 {
3042 if (NEXT_INSN (insn) != 0)
3043 abort ();
3044 last_insn = insn;
3045 }
3046
3047 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3048
3049 rtx
3050 get_last_insn_anywhere ()
3051 {
3052 struct sequence_stack *stack;
3053 if (last_insn)
3054 return last_insn;
3055 for (stack = seq_stack; stack; stack = stack->next)
3056 if (stack->last != 0)
3057 return stack->last;
3058 return 0;
3059 }
3060
3061 /* Return the first nonnote insn emitted in current sequence or current
3062 function. This routine looks inside SEQUENCEs. */
3063
3064 rtx
3065 get_first_nonnote_insn ()
3066 {
3067 rtx insn = first_insn;
3068
3069 while (insn)
3070 {
3071 insn = next_insn (insn);
3072 if (insn == 0 || GET_CODE (insn) != NOTE)
3073 break;
3074 }
3075
3076 return insn;
3077 }
3078
3079 /* Return the last nonnote insn emitted in current sequence or current
3080 function. This routine looks inside SEQUENCEs. */
3081
3082 rtx
3083 get_last_nonnote_insn ()
3084 {
3085 rtx insn = last_insn;
3086
3087 while (insn)
3088 {
3089 insn = previous_insn (insn);
3090 if (insn == 0 || GET_CODE (insn) != NOTE)
3091 break;
3092 }
3093
3094 return insn;
3095 }
3096
3097 /* Return a number larger than any instruction's uid in this function. */
3098
3099 int
3100 get_max_uid ()
3101 {
3102 return cur_insn_uid;
3103 }
3104
3105 /* Renumber instructions so that no instruction UIDs are wasted. */
3106
3107 void
3108 renumber_insns (stream)
3109 FILE *stream;
3110 {
3111 rtx insn;
3112
3113 /* If we're not supposed to renumber instructions, don't. */
3114 if (!flag_renumber_insns)
3115 return;
3116
3117 /* If there aren't that many instructions, then it's not really
3118 worth renumbering them. */
3119 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
3120 return;
3121
3122 cur_insn_uid = 1;
3123
3124 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3125 {
3126 if (stream)
3127 fprintf (stream, "Renumbering insn %d to %d\n",
3128 INSN_UID (insn), cur_insn_uid);
3129 INSN_UID (insn) = cur_insn_uid++;
3130 }
3131 }
3132 \f
3133 /* Return the next insn. If it is a SEQUENCE, return the first insn
3134 of the sequence. */
3135
3136 rtx
3137 next_insn (insn)
3138 rtx insn;
3139 {
3140 if (insn)
3141 {
3142 insn = NEXT_INSN (insn);
3143 if (insn && GET_CODE (insn) == INSN
3144 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3145 insn = XVECEXP (PATTERN (insn), 0, 0);
3146 }
3147
3148 return insn;
3149 }
3150
3151 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3152 of the sequence. */
3153
3154 rtx
3155 previous_insn (insn)
3156 rtx insn;
3157 {
3158 if (insn)
3159 {
3160 insn = PREV_INSN (insn);
3161 if (insn && GET_CODE (insn) == INSN
3162 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3163 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3164 }
3165
3166 return insn;
3167 }
3168
3169 /* Return the next insn after INSN that is not a NOTE. This routine does not
3170 look inside SEQUENCEs. */
3171
3172 rtx
3173 next_nonnote_insn (insn)
3174 rtx insn;
3175 {
3176 while (insn)
3177 {
3178 insn = NEXT_INSN (insn);
3179 if (insn == 0 || GET_CODE (insn) != NOTE)
3180 break;
3181 }
3182
3183 return insn;
3184 }
3185
3186 /* Return the previous insn before INSN that is not a NOTE. This routine does
3187 not look inside SEQUENCEs. */
3188
3189 rtx
3190 prev_nonnote_insn (insn)
3191 rtx insn;
3192 {
3193 while (insn)
3194 {
3195 insn = PREV_INSN (insn);
3196 if (insn == 0 || GET_CODE (insn) != NOTE)
3197 break;
3198 }
3199
3200 return insn;
3201 }
3202
3203 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3204 or 0, if there is none. This routine does not look inside
3205 SEQUENCEs. */
3206
3207 rtx
3208 next_real_insn (insn)
3209 rtx insn;
3210 {
3211 while (insn)
3212 {
3213 insn = NEXT_INSN (insn);
3214 if (insn == 0 || GET_CODE (insn) == INSN
3215 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3216 break;
3217 }
3218
3219 return insn;
3220 }
3221
3222 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3223 or 0, if there is none. This routine does not look inside
3224 SEQUENCEs. */
3225
3226 rtx
3227 prev_real_insn (insn)
3228 rtx insn;
3229 {
3230 while (insn)
3231 {
3232 insn = PREV_INSN (insn);
3233 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3234 || GET_CODE (insn) == JUMP_INSN)
3235 break;
3236 }
3237
3238 return insn;
3239 }
3240
3241 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3242 This routine does not look inside SEQUENCEs. */
3243
3244 rtx
3245 last_call_insn ()
3246 {
3247 rtx insn;
3248
3249 for (insn = get_last_insn ();
3250 insn && GET_CODE (insn) != CALL_INSN;
3251 insn = PREV_INSN (insn))
3252 ;
3253
3254 return insn;
3255 }
3256
3257 /* Find the next insn after INSN that really does something. This routine
3258 does not look inside SEQUENCEs. Until reload has completed, this is the
3259 same as next_real_insn. */
3260
3261 int
3262 active_insn_p (insn)
3263 rtx insn;
3264 {
3265 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3266 || (GET_CODE (insn) == INSN
3267 && (! reload_completed
3268 || (GET_CODE (PATTERN (insn)) != USE
3269 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3270 }
3271
3272 rtx
3273 next_active_insn (insn)
3274 rtx insn;
3275 {
3276 while (insn)
3277 {
3278 insn = NEXT_INSN (insn);
3279 if (insn == 0 || active_insn_p (insn))
3280 break;
3281 }
3282
3283 return insn;
3284 }
3285
3286 /* Find the last insn before INSN that really does something. This routine
3287 does not look inside SEQUENCEs. Until reload has completed, this is the
3288 same as prev_real_insn. */
3289
3290 rtx
3291 prev_active_insn (insn)
3292 rtx insn;
3293 {
3294 while (insn)
3295 {
3296 insn = PREV_INSN (insn);
3297 if (insn == 0 || active_insn_p (insn))
3298 break;
3299 }
3300
3301 return insn;
3302 }
3303
3304 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3305
3306 rtx
3307 next_label (insn)
3308 rtx insn;
3309 {
3310 while (insn)
3311 {
3312 insn = NEXT_INSN (insn);
3313 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3314 break;
3315 }
3316
3317 return insn;
3318 }
3319
3320 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3321
3322 rtx
3323 prev_label (insn)
3324 rtx insn;
3325 {
3326 while (insn)
3327 {
3328 insn = PREV_INSN (insn);
3329 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3330 break;
3331 }
3332
3333 return insn;
3334 }
3335 \f
3336 #ifdef HAVE_cc0
3337 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3338 and REG_CC_USER notes so we can find it. */
3339
3340 void
3341 link_cc0_insns (insn)
3342 rtx insn;
3343 {
3344 rtx user = next_nonnote_insn (insn);
3345
3346 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3347 user = XVECEXP (PATTERN (user), 0, 0);
3348
3349 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3350 REG_NOTES (user));
3351 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3352 }
3353
3354 /* Return the next insn that uses CC0 after INSN, which is assumed to
3355 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3356 applied to the result of this function should yield INSN).
3357
3358 Normally, this is simply the next insn. However, if a REG_CC_USER note
3359 is present, it contains the insn that uses CC0.
3360
3361 Return 0 if we can't find the insn. */
3362
3363 rtx
3364 next_cc0_user (insn)
3365 rtx insn;
3366 {
3367 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3368
3369 if (note)
3370 return XEXP (note, 0);
3371
3372 insn = next_nonnote_insn (insn);
3373 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3374 insn = XVECEXP (PATTERN (insn), 0, 0);
3375
3376 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3377 return insn;
3378
3379 return 0;
3380 }
3381
3382 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3383 note, it is the previous insn. */
3384
3385 rtx
3386 prev_cc0_setter (insn)
3387 rtx insn;
3388 {
3389 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3390
3391 if (note)
3392 return XEXP (note, 0);
3393
3394 insn = prev_nonnote_insn (insn);
3395 if (! sets_cc0_p (PATTERN (insn)))
3396 abort ();
3397
3398 return insn;
3399 }
3400 #endif
3401
3402 /* Increment the label uses for all labels present in rtx. */
3403
3404 static void
3405 mark_label_nuses (x)
3406 rtx x;
3407 {
3408 enum rtx_code code;
3409 int i, j;
3410 const char *fmt;
3411
3412 code = GET_CODE (x);
3413 if (code == LABEL_REF)
3414 LABEL_NUSES (XEXP (x, 0))++;
3415
3416 fmt = GET_RTX_FORMAT (code);
3417 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3418 {
3419 if (fmt[i] == 'e')
3420 mark_label_nuses (XEXP (x, i));
3421 else if (fmt[i] == 'E')
3422 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3423 mark_label_nuses (XVECEXP (x, i, j));
3424 }
3425 }
3426
3427 \f
3428 /* Try splitting insns that can be split for better scheduling.
3429 PAT is the pattern which might split.
3430 TRIAL is the insn providing PAT.
3431 LAST is nonzero if we should return the last insn of the sequence produced.
3432
3433 If this routine succeeds in splitting, it returns the first or last
3434 replacement insn depending on the value of LAST. Otherwise, it
3435 returns TRIAL. If the insn to be returned can be split, it will be. */
3436
3437 rtx
3438 try_split (pat, trial, last)
3439 rtx pat, trial;
3440 int last;
3441 {
3442 rtx before = PREV_INSN (trial);
3443 rtx after = NEXT_INSN (trial);
3444 int has_barrier = 0;
3445 rtx tem;
3446 rtx note, seq;
3447 int probability;
3448 rtx insn_last, insn;
3449 int njumps = 0;
3450
3451 if (any_condjump_p (trial)
3452 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3453 split_branch_probability = INTVAL (XEXP (note, 0));
3454 probability = split_branch_probability;
3455
3456 seq = split_insns (pat, trial);
3457
3458 split_branch_probability = -1;
3459
3460 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3461 We may need to handle this specially. */
3462 if (after && GET_CODE (after) == BARRIER)
3463 {
3464 has_barrier = 1;
3465 after = NEXT_INSN (after);
3466 }
3467
3468 if (!seq)
3469 return trial;
3470
3471 /* Avoid infinite loop if any insn of the result matches
3472 the original pattern. */
3473 insn_last = seq;
3474 while (1)
3475 {
3476 if (INSN_P (insn_last)
3477 && rtx_equal_p (PATTERN (insn_last), pat))
3478 return trial;
3479 if (!NEXT_INSN (insn_last))
3480 break;
3481 insn_last = NEXT_INSN (insn_last);
3482 }
3483
3484 /* Mark labels. */
3485 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3486 {
3487 if (GET_CODE (insn) == JUMP_INSN)
3488 {
3489 mark_jump_label (PATTERN (insn), insn, 0);
3490 njumps++;
3491 if (probability != -1
3492 && any_condjump_p (insn)
3493 && !find_reg_note (insn, REG_BR_PROB, 0))
3494 {
3495 /* We can preserve the REG_BR_PROB notes only if exactly
3496 one jump is created, otherwise the machine description
3497 is responsible for this step using
3498 split_branch_probability variable. */
3499 if (njumps != 1)
3500 abort ();
3501 REG_NOTES (insn)
3502 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3503 GEN_INT (probability),
3504 REG_NOTES (insn));
3505 }
3506 }
3507 }
3508
3509 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3510 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3511 if (GET_CODE (trial) == CALL_INSN)
3512 {
3513 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3514 if (GET_CODE (insn) == CALL_INSN)
3515 {
3516 CALL_INSN_FUNCTION_USAGE (insn)
3517 = CALL_INSN_FUNCTION_USAGE (trial);
3518 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3519 }
3520 }
3521
3522 /* Copy notes, particularly those related to the CFG. */
3523 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3524 {
3525 switch (REG_NOTE_KIND (note))
3526 {
3527 case REG_EH_REGION:
3528 insn = insn_last;
3529 while (insn != NULL_RTX)
3530 {
3531 if (GET_CODE (insn) == CALL_INSN
3532 || (flag_non_call_exceptions
3533 && may_trap_p (PATTERN (insn))))
3534 REG_NOTES (insn)
3535 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3536 XEXP (note, 0),
3537 REG_NOTES (insn));
3538 insn = PREV_INSN (insn);
3539 }
3540 break;
3541
3542 case REG_NORETURN:
3543 case REG_SETJMP:
3544 case REG_ALWAYS_RETURN:
3545 insn = insn_last;
3546 while (insn != NULL_RTX)
3547 {
3548 if (GET_CODE (insn) == CALL_INSN)
3549 REG_NOTES (insn)
3550 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3551 XEXP (note, 0),
3552 REG_NOTES (insn));
3553 insn = PREV_INSN (insn);
3554 }
3555 break;
3556
3557 case REG_NON_LOCAL_GOTO:
3558 insn = insn_last;
3559 while (insn != NULL_RTX)
3560 {
3561 if (GET_CODE (insn) == JUMP_INSN)
3562 REG_NOTES (insn)
3563 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3564 XEXP (note, 0),
3565 REG_NOTES (insn));
3566 insn = PREV_INSN (insn);
3567 }
3568 break;
3569
3570 default:
3571 break;
3572 }
3573 }
3574
3575 /* If there are LABELS inside the split insns increment the
3576 usage count so we don't delete the label. */
3577 if (GET_CODE (trial) == INSN)
3578 {
3579 insn = insn_last;
3580 while (insn != NULL_RTX)
3581 {
3582 if (GET_CODE (insn) == INSN)
3583 mark_label_nuses (PATTERN (insn));
3584
3585 insn = PREV_INSN (insn);
3586 }
3587 }
3588
3589 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3590
3591 delete_insn (trial);
3592 if (has_barrier)
3593 emit_barrier_after (tem);
3594
3595 /* Recursively call try_split for each new insn created; by the
3596 time control returns here that insn will be fully split, so
3597 set LAST and continue from the insn after the one returned.
3598 We can't use next_active_insn here since AFTER may be a note.
3599 Ignore deleted insns, which can be occur if not optimizing. */
3600 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3601 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3602 tem = try_split (PATTERN (tem), tem, 1);
3603
3604 /* Return either the first or the last insn, depending on which was
3605 requested. */
3606 return last
3607 ? (after ? PREV_INSN (after) : last_insn)
3608 : NEXT_INSN (before);
3609 }
3610 \f
3611 /* Make and return an INSN rtx, initializing all its slots.
3612 Store PATTERN in the pattern slots. */
3613
3614 rtx
3615 make_insn_raw (pattern)
3616 rtx pattern;
3617 {
3618 rtx insn;
3619
3620 insn = rtx_alloc (INSN);
3621
3622 INSN_UID (insn) = cur_insn_uid++;
3623 PATTERN (insn) = pattern;
3624 INSN_CODE (insn) = -1;
3625 LOG_LINKS (insn) = NULL;
3626 REG_NOTES (insn) = NULL;
3627 INSN_LOCATOR (insn) = 0;
3628 BLOCK_FOR_INSN (insn) = NULL;
3629
3630 #ifdef ENABLE_RTL_CHECKING
3631 if (insn
3632 && INSN_P (insn)
3633 && (returnjump_p (insn)
3634 || (GET_CODE (insn) == SET
3635 && SET_DEST (insn) == pc_rtx)))
3636 {
3637 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3638 debug_rtx (insn);
3639 }
3640 #endif
3641
3642 return insn;
3643 }
3644
3645 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3646
3647 static rtx
3648 make_jump_insn_raw (pattern)
3649 rtx pattern;
3650 {
3651 rtx insn;
3652
3653 insn = rtx_alloc (JUMP_INSN);
3654 INSN_UID (insn) = cur_insn_uid++;
3655
3656 PATTERN (insn) = pattern;
3657 INSN_CODE (insn) = -1;
3658 LOG_LINKS (insn) = NULL;
3659 REG_NOTES (insn) = NULL;
3660 JUMP_LABEL (insn) = NULL;
3661 INSN_LOCATOR (insn) = 0;
3662 BLOCK_FOR_INSN (insn) = NULL;
3663
3664 return insn;
3665 }
3666
3667 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3668
3669 static rtx
3670 make_call_insn_raw (pattern)
3671 rtx pattern;
3672 {
3673 rtx insn;
3674
3675 insn = rtx_alloc (CALL_INSN);
3676 INSN_UID (insn) = cur_insn_uid++;
3677
3678 PATTERN (insn) = pattern;
3679 INSN_CODE (insn) = -1;
3680 LOG_LINKS (insn) = NULL;
3681 REG_NOTES (insn) = NULL;
3682 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3683 INSN_LOCATOR (insn) = 0;
3684 BLOCK_FOR_INSN (insn) = NULL;
3685
3686 return insn;
3687 }
3688 \f
3689 /* Add INSN to the end of the doubly-linked list.
3690 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3691
3692 void
3693 add_insn (insn)
3694 rtx insn;
3695 {
3696 PREV_INSN (insn) = last_insn;
3697 NEXT_INSN (insn) = 0;
3698
3699 if (NULL != last_insn)
3700 NEXT_INSN (last_insn) = insn;
3701
3702 if (NULL == first_insn)
3703 first_insn = insn;
3704
3705 last_insn = insn;
3706 }
3707
3708 /* Add INSN into the doubly-linked list after insn AFTER. This and
3709 the next should be the only functions called to insert an insn once
3710 delay slots have been filled since only they know how to update a
3711 SEQUENCE. */
3712
3713 void
3714 add_insn_after (insn, after)
3715 rtx insn, after;
3716 {
3717 rtx next = NEXT_INSN (after);
3718 basic_block bb;
3719
3720 if (optimize && INSN_DELETED_P (after))
3721 abort ();
3722
3723 NEXT_INSN (insn) = next;
3724 PREV_INSN (insn) = after;
3725
3726 if (next)
3727 {
3728 PREV_INSN (next) = insn;
3729 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3730 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3731 }
3732 else if (last_insn == after)
3733 last_insn = insn;
3734 else
3735 {
3736 struct sequence_stack *stack = seq_stack;
3737 /* Scan all pending sequences too. */
3738 for (; stack; stack = stack->next)
3739 if (after == stack->last)
3740 {
3741 stack->last = insn;
3742 break;
3743 }
3744
3745 if (stack == 0)
3746 abort ();
3747 }
3748
3749 if (GET_CODE (after) != BARRIER
3750 && GET_CODE (insn) != BARRIER
3751 && (bb = BLOCK_FOR_INSN (after)))
3752 {
3753 set_block_for_insn (insn, bb);
3754 if (INSN_P (insn))
3755 bb->flags |= BB_DIRTY;
3756 /* Should not happen as first in the BB is always
3757 either NOTE or LABEL. */
3758 if (bb->end == after
3759 /* Avoid clobbering of structure when creating new BB. */
3760 && GET_CODE (insn) != BARRIER
3761 && (GET_CODE (insn) != NOTE
3762 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3763 bb->end = insn;
3764 }
3765
3766 NEXT_INSN (after) = insn;
3767 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3768 {
3769 rtx sequence = PATTERN (after);
3770 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3771 }
3772 }
3773
3774 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3775 the previous should be the only functions called to insert an insn once
3776 delay slots have been filled since only they know how to update a
3777 SEQUENCE. */
3778
3779 void
3780 add_insn_before (insn, before)
3781 rtx insn, before;
3782 {
3783 rtx prev = PREV_INSN (before);
3784 basic_block bb;
3785
3786 if (optimize && INSN_DELETED_P (before))
3787 abort ();
3788
3789 PREV_INSN (insn) = prev;
3790 NEXT_INSN (insn) = before;
3791
3792 if (prev)
3793 {
3794 NEXT_INSN (prev) = insn;
3795 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3796 {
3797 rtx sequence = PATTERN (prev);
3798 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3799 }
3800 }
3801 else if (first_insn == before)
3802 first_insn = insn;
3803 else
3804 {
3805 struct sequence_stack *stack = seq_stack;
3806 /* Scan all pending sequences too. */
3807 for (; stack; stack = stack->next)
3808 if (before == stack->first)
3809 {
3810 stack->first = insn;
3811 break;
3812 }
3813
3814 if (stack == 0)
3815 abort ();
3816 }
3817
3818 if (GET_CODE (before) != BARRIER
3819 && GET_CODE (insn) != BARRIER
3820 && (bb = BLOCK_FOR_INSN (before)))
3821 {
3822 set_block_for_insn (insn, bb);
3823 if (INSN_P (insn))
3824 bb->flags |= BB_DIRTY;
3825 /* Should not happen as first in the BB is always
3826 either NOTE or LABEl. */
3827 if (bb->head == insn
3828 /* Avoid clobbering of structure when creating new BB. */
3829 && GET_CODE (insn) != BARRIER
3830 && (GET_CODE (insn) != NOTE
3831 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3832 abort ();
3833 }
3834
3835 PREV_INSN (before) = insn;
3836 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3837 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3838 }
3839
3840 /* Remove an insn from its doubly-linked list. This function knows how
3841 to handle sequences. */
3842 void
3843 remove_insn (insn)
3844 rtx insn;
3845 {
3846 rtx next = NEXT_INSN (insn);
3847 rtx prev = PREV_INSN (insn);
3848 basic_block bb;
3849
3850 if (prev)
3851 {
3852 NEXT_INSN (prev) = next;
3853 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3854 {
3855 rtx sequence = PATTERN (prev);
3856 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3857 }
3858 }
3859 else if (first_insn == insn)
3860 first_insn = next;
3861 else
3862 {
3863 struct sequence_stack *stack = seq_stack;
3864 /* Scan all pending sequences too. */
3865 for (; stack; stack = stack->next)
3866 if (insn == stack->first)
3867 {
3868 stack->first = next;
3869 break;
3870 }
3871
3872 if (stack == 0)
3873 abort ();
3874 }
3875
3876 if (next)
3877 {
3878 PREV_INSN (next) = prev;
3879 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3880 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3881 }
3882 else if (last_insn == insn)
3883 last_insn = prev;
3884 else
3885 {
3886 struct sequence_stack *stack = seq_stack;
3887 /* Scan all pending sequences too. */
3888 for (; stack; stack = stack->next)
3889 if (insn == stack->last)
3890 {
3891 stack->last = prev;
3892 break;
3893 }
3894
3895 if (stack == 0)
3896 abort ();
3897 }
3898 if (GET_CODE (insn) != BARRIER
3899 && (bb = BLOCK_FOR_INSN (insn)))
3900 {
3901 if (INSN_P (insn))
3902 bb->flags |= BB_DIRTY;
3903 if (bb->head == insn)
3904 {
3905 /* Never ever delete the basic block note without deleting whole
3906 basic block. */
3907 if (GET_CODE (insn) == NOTE)
3908 abort ();
3909 bb->head = next;
3910 }
3911 if (bb->end == insn)
3912 bb->end = prev;
3913 }
3914 }
3915
3916 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3917
3918 void
3919 add_function_usage_to (call_insn, call_fusage)
3920 rtx call_insn, call_fusage;
3921 {
3922 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3923 abort ();
3924
3925 /* Put the register usage information on the CALL. If there is already
3926 some usage information, put ours at the end. */
3927 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3928 {
3929 rtx link;
3930
3931 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3932 link = XEXP (link, 1))
3933 ;
3934
3935 XEXP (link, 1) = call_fusage;
3936 }
3937 else
3938 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3939 }
3940
3941 /* Delete all insns made since FROM.
3942 FROM becomes the new last instruction. */
3943
3944 void
3945 delete_insns_since (from)
3946 rtx from;
3947 {
3948 if (from == 0)
3949 first_insn = 0;
3950 else
3951 NEXT_INSN (from) = 0;
3952 last_insn = from;
3953 }
3954
3955 /* This function is deprecated, please use sequences instead.
3956
3957 Move a consecutive bunch of insns to a different place in the chain.
3958 The insns to be moved are those between FROM and TO.
3959 They are moved to a new position after the insn AFTER.
3960 AFTER must not be FROM or TO or any insn in between.
3961
3962 This function does not know about SEQUENCEs and hence should not be
3963 called after delay-slot filling has been done. */
3964
3965 void
3966 reorder_insns_nobb (from, to, after)
3967 rtx from, to, after;
3968 {
3969 /* Splice this bunch out of where it is now. */
3970 if (PREV_INSN (from))
3971 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3972 if (NEXT_INSN (to))
3973 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3974 if (last_insn == to)
3975 last_insn = PREV_INSN (from);
3976 if (first_insn == from)
3977 first_insn = NEXT_INSN (to);
3978
3979 /* Make the new neighbors point to it and it to them. */
3980 if (NEXT_INSN (after))
3981 PREV_INSN (NEXT_INSN (after)) = to;
3982
3983 NEXT_INSN (to) = NEXT_INSN (after);
3984 PREV_INSN (from) = after;
3985 NEXT_INSN (after) = from;
3986 if (after == last_insn)
3987 last_insn = to;
3988 }
3989
3990 /* Same as function above, but take care to update BB boundaries. */
3991 void
3992 reorder_insns (from, to, after)
3993 rtx from, to, after;
3994 {
3995 rtx prev = PREV_INSN (from);
3996 basic_block bb, bb2;
3997
3998 reorder_insns_nobb (from, to, after);
3999
4000 if (GET_CODE (after) != BARRIER
4001 && (bb = BLOCK_FOR_INSN (after)))
4002 {
4003 rtx x;
4004 bb->flags |= BB_DIRTY;
4005
4006 if (GET_CODE (from) != BARRIER
4007 && (bb2 = BLOCK_FOR_INSN (from)))
4008 {
4009 if (bb2->end == to)
4010 bb2->end = prev;
4011 bb2->flags |= BB_DIRTY;
4012 }
4013
4014 if (bb->end == after)
4015 bb->end = to;
4016
4017 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4018 set_block_for_insn (x, bb);
4019 }
4020 }
4021
4022 /* Return the line note insn preceding INSN. */
4023
4024 static rtx
4025 find_line_note (insn)
4026 rtx insn;
4027 {
4028 if (no_line_numbers)
4029 return 0;
4030
4031 for (; insn; insn = PREV_INSN (insn))
4032 if (GET_CODE (insn) == NOTE
4033 && NOTE_LINE_NUMBER (insn) >= 0)
4034 break;
4035
4036 return insn;
4037 }
4038
4039 /* Like reorder_insns, but inserts line notes to preserve the line numbers
4040 of the moved insns when debugging. This may insert a note between AFTER
4041 and FROM, and another one after TO. */
4042
4043 void
4044 reorder_insns_with_line_notes (from, to, after)
4045 rtx from, to, after;
4046 {
4047 rtx from_line = find_line_note (from);
4048 rtx after_line = find_line_note (after);
4049
4050 reorder_insns (from, to, after);
4051
4052 if (from_line == after_line)
4053 return;
4054
4055 if (from_line)
4056 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4057 NOTE_LINE_NUMBER (from_line),
4058 after);
4059 if (after_line)
4060 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4061 NOTE_LINE_NUMBER (after_line),
4062 to);
4063 }
4064
4065 /* Remove unnecessary notes from the instruction stream. */
4066
4067 void
4068 remove_unnecessary_notes ()
4069 {
4070 rtx block_stack = NULL_RTX;
4071 rtx eh_stack = NULL_RTX;
4072 rtx insn;
4073 rtx next;
4074 rtx tmp;
4075
4076 /* We must not remove the first instruction in the function because
4077 the compiler depends on the first instruction being a note. */
4078 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
4079 {
4080 /* Remember what's next. */
4081 next = NEXT_INSN (insn);
4082
4083 /* We're only interested in notes. */
4084 if (GET_CODE (insn) != NOTE)
4085 continue;
4086
4087 switch (NOTE_LINE_NUMBER (insn))
4088 {
4089 case NOTE_INSN_DELETED:
4090 case NOTE_INSN_LOOP_END_TOP_COND:
4091 remove_insn (insn);
4092 break;
4093
4094 case NOTE_INSN_EH_REGION_BEG:
4095 eh_stack = alloc_INSN_LIST (insn, eh_stack);
4096 break;
4097
4098 case NOTE_INSN_EH_REGION_END:
4099 /* Too many end notes. */
4100 if (eh_stack == NULL_RTX)
4101 abort ();
4102 /* Mismatched nesting. */
4103 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
4104 abort ();
4105 tmp = eh_stack;
4106 eh_stack = XEXP (eh_stack, 1);
4107 free_INSN_LIST_node (tmp);
4108 break;
4109
4110 case NOTE_INSN_BLOCK_BEG:
4111 /* By now, all notes indicating lexical blocks should have
4112 NOTE_BLOCK filled in. */
4113 if (NOTE_BLOCK (insn) == NULL_TREE)
4114 abort ();
4115 block_stack = alloc_INSN_LIST (insn, block_stack);
4116 break;
4117
4118 case NOTE_INSN_BLOCK_END:
4119 /* Too many end notes. */
4120 if (block_stack == NULL_RTX)
4121 abort ();
4122 /* Mismatched nesting. */
4123 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
4124 abort ();
4125 tmp = block_stack;
4126 block_stack = XEXP (block_stack, 1);
4127 free_INSN_LIST_node (tmp);
4128
4129 /* Scan back to see if there are any non-note instructions
4130 between INSN and the beginning of this block. If not,
4131 then there is no PC range in the generated code that will
4132 actually be in this block, so there's no point in
4133 remembering the existence of the block. */
4134 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
4135 {
4136 /* This block contains a real instruction. Note that we
4137 don't include labels; if the only thing in the block
4138 is a label, then there are still no PC values that
4139 lie within the block. */
4140 if (INSN_P (tmp))
4141 break;
4142
4143 /* We're only interested in NOTEs. */
4144 if (GET_CODE (tmp) != NOTE)
4145 continue;
4146
4147 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
4148 {
4149 /* We just verified that this BLOCK matches us with
4150 the block_stack check above. Never delete the
4151 BLOCK for the outermost scope of the function; we
4152 can refer to names from that scope even if the
4153 block notes are messed up. */
4154 if (! is_body_block (NOTE_BLOCK (insn))
4155 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
4156 {
4157 remove_insn (tmp);
4158 remove_insn (insn);
4159 }
4160 break;
4161 }
4162 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
4163 /* There's a nested block. We need to leave the
4164 current block in place since otherwise the debugger
4165 wouldn't be able to show symbols from our block in
4166 the nested block. */
4167 break;
4168 }
4169 }
4170 }
4171
4172 /* Too many begin notes. */
4173 if (block_stack || eh_stack)
4174 abort ();
4175 }
4176
4177 \f
4178 /* Emit insn(s) of given code and pattern
4179 at a specified place within the doubly-linked list.
4180
4181 All of the emit_foo global entry points accept an object
4182 X which is either an insn list or a PATTERN of a single
4183 instruction.
4184
4185 There are thus a few canonical ways to generate code and
4186 emit it at a specific place in the instruction stream. For
4187 example, consider the instruction named SPOT and the fact that
4188 we would like to emit some instructions before SPOT. We might
4189 do it like this:
4190
4191 start_sequence ();
4192 ... emit the new instructions ...
4193 insns_head = get_insns ();
4194 end_sequence ();
4195
4196 emit_insn_before (insns_head, SPOT);
4197
4198 It used to be common to generate SEQUENCE rtl instead, but that
4199 is a relic of the past which no longer occurs. The reason is that
4200 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4201 generated would almost certainly die right after it was created. */
4202
4203 /* Make X be output before the instruction BEFORE. */
4204
4205 rtx
4206 emit_insn_before (x, before)
4207 rtx x, before;
4208 {
4209 rtx last = before;
4210 rtx insn;
4211
4212 #ifdef ENABLE_RTL_CHECKING
4213 if (before == NULL_RTX)
4214 abort ();
4215 #endif
4216
4217 if (x == NULL_RTX)
4218 return last;
4219
4220 switch (GET_CODE (x))
4221 {
4222 case INSN:
4223 case JUMP_INSN:
4224 case CALL_INSN:
4225 case CODE_LABEL:
4226 case BARRIER:
4227 case NOTE:
4228 insn = x;
4229 while (insn)
4230 {
4231 rtx next = NEXT_INSN (insn);
4232 add_insn_before (insn, before);
4233 last = insn;
4234 insn = next;
4235 }
4236 break;
4237
4238 #ifdef ENABLE_RTL_CHECKING
4239 case SEQUENCE:
4240 abort ();
4241 break;
4242 #endif
4243
4244 default:
4245 last = make_insn_raw (x);
4246 add_insn_before (last, before);
4247 break;
4248 }
4249
4250 return last;
4251 }
4252
4253 /* Make an instruction with body X and code JUMP_INSN
4254 and output it before the instruction BEFORE. */
4255
4256 rtx
4257 emit_jump_insn_before (x, before)
4258 rtx x, before;
4259 {
4260 rtx insn, last = NULL_RTX;
4261
4262 #ifdef ENABLE_RTL_CHECKING
4263 if (before == NULL_RTX)
4264 abort ();
4265 #endif
4266
4267 switch (GET_CODE (x))
4268 {
4269 case INSN:
4270 case JUMP_INSN:
4271 case CALL_INSN:
4272 case CODE_LABEL:
4273 case BARRIER:
4274 case NOTE:
4275 insn = x;
4276 while (insn)
4277 {
4278 rtx next = NEXT_INSN (insn);
4279 add_insn_before (insn, before);
4280 last = insn;
4281 insn = next;
4282 }
4283 break;
4284
4285 #ifdef ENABLE_RTL_CHECKING
4286 case SEQUENCE:
4287 abort ();
4288 break;
4289 #endif
4290
4291 default:
4292 last = make_jump_insn_raw (x);
4293 add_insn_before (last, before);
4294 break;
4295 }
4296
4297 return last;
4298 }
4299
4300 /* Make an instruction with body X and code CALL_INSN
4301 and output it before the instruction BEFORE. */
4302
4303 rtx
4304 emit_call_insn_before (x, before)
4305 rtx x, before;
4306 {
4307 rtx last = NULL_RTX, insn;
4308
4309 #ifdef ENABLE_RTL_CHECKING
4310 if (before == NULL_RTX)
4311 abort ();
4312 #endif
4313
4314 switch (GET_CODE (x))
4315 {
4316 case INSN:
4317 case JUMP_INSN:
4318 case CALL_INSN:
4319 case CODE_LABEL:
4320 case BARRIER:
4321 case NOTE:
4322 insn = x;
4323 while (insn)
4324 {
4325 rtx next = NEXT_INSN (insn);
4326 add_insn_before (insn, before);
4327 last = insn;
4328 insn = next;
4329 }
4330 break;
4331
4332 #ifdef ENABLE_RTL_CHECKING
4333 case SEQUENCE:
4334 abort ();
4335 break;
4336 #endif
4337
4338 default:
4339 last = make_call_insn_raw (x);
4340 add_insn_before (last, before);
4341 break;
4342 }
4343
4344 return last;
4345 }
4346
4347 /* Make an insn of code BARRIER
4348 and output it before the insn BEFORE. */
4349
4350 rtx
4351 emit_barrier_before (before)
4352 rtx before;
4353 {
4354 rtx insn = rtx_alloc (BARRIER);
4355
4356 INSN_UID (insn) = cur_insn_uid++;
4357
4358 add_insn_before (insn, before);
4359 return insn;
4360 }
4361
4362 /* Emit the label LABEL before the insn BEFORE. */
4363
4364 rtx
4365 emit_label_before (label, before)
4366 rtx label, before;
4367 {
4368 /* This can be called twice for the same label as a result of the
4369 confusion that follows a syntax error! So make it harmless. */
4370 if (INSN_UID (label) == 0)
4371 {
4372 INSN_UID (label) = cur_insn_uid++;
4373 add_insn_before (label, before);
4374 }
4375
4376 return label;
4377 }
4378
4379 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4380
4381 rtx
4382 emit_note_before (subtype, before)
4383 int subtype;
4384 rtx before;
4385 {
4386 rtx note = rtx_alloc (NOTE);
4387 INSN_UID (note) = cur_insn_uid++;
4388 NOTE_SOURCE_FILE (note) = 0;
4389 NOTE_LINE_NUMBER (note) = subtype;
4390 BLOCK_FOR_INSN (note) = NULL;
4391
4392 add_insn_before (note, before);
4393 return note;
4394 }
4395 \f
4396 /* Helper for emit_insn_after, handles lists of instructions
4397 efficiently. */
4398
4399 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4400
4401 static rtx
4402 emit_insn_after_1 (first, after)
4403 rtx first, after;
4404 {
4405 rtx last;
4406 rtx after_after;
4407 basic_block bb;
4408
4409 if (GET_CODE (after) != BARRIER
4410 && (bb = BLOCK_FOR_INSN (after)))
4411 {
4412 bb->flags |= BB_DIRTY;
4413 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4414 if (GET_CODE (last) != BARRIER)
4415 set_block_for_insn (last, bb);
4416 if (GET_CODE (last) != BARRIER)
4417 set_block_for_insn (last, bb);
4418 if (bb->end == after)
4419 bb->end = last;
4420 }
4421 else
4422 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4423 continue;
4424
4425 after_after = NEXT_INSN (after);
4426
4427 NEXT_INSN (after) = first;
4428 PREV_INSN (first) = after;
4429 NEXT_INSN (last) = after_after;
4430 if (after_after)
4431 PREV_INSN (after_after) = last;
4432
4433 if (after == last_insn)
4434 last_insn = last;
4435 return last;
4436 }
4437
4438 /* Make X be output after the insn AFTER. */
4439
4440 rtx
4441 emit_insn_after (x, after)
4442 rtx x, after;
4443 {
4444 rtx last = after;
4445
4446 #ifdef ENABLE_RTL_CHECKING
4447 if (after == NULL_RTX)
4448 abort ();
4449 #endif
4450
4451 if (x == NULL_RTX)
4452 return last;
4453
4454 switch (GET_CODE (x))
4455 {
4456 case INSN:
4457 case JUMP_INSN:
4458 case CALL_INSN:
4459 case CODE_LABEL:
4460 case BARRIER:
4461 case NOTE:
4462 last = emit_insn_after_1 (x, after);
4463 break;
4464
4465 #ifdef ENABLE_RTL_CHECKING
4466 case SEQUENCE:
4467 abort ();
4468 break;
4469 #endif
4470
4471 default:
4472 last = make_insn_raw (x);
4473 add_insn_after (last, after);
4474 break;
4475 }
4476
4477 return last;
4478 }
4479
4480 /* Similar to emit_insn_after, except that line notes are to be inserted so
4481 as to act as if this insn were at FROM. */
4482
4483 void
4484 emit_insn_after_with_line_notes (x, after, from)
4485 rtx x, after, from;
4486 {
4487 rtx from_line = find_line_note (from);
4488 rtx after_line = find_line_note (after);
4489 rtx insn = emit_insn_after (x, after);
4490
4491 if (from_line)
4492 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4493 NOTE_LINE_NUMBER (from_line),
4494 after);
4495
4496 if (after_line)
4497 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4498 NOTE_LINE_NUMBER (after_line),
4499 insn);
4500 }
4501
4502 /* Make an insn of code JUMP_INSN with body X
4503 and output it after the insn AFTER. */
4504
4505 rtx
4506 emit_jump_insn_after (x, after)
4507 rtx x, after;
4508 {
4509 rtx last;
4510
4511 #ifdef ENABLE_RTL_CHECKING
4512 if (after == NULL_RTX)
4513 abort ();
4514 #endif
4515
4516 switch (GET_CODE (x))
4517 {
4518 case INSN:
4519 case JUMP_INSN:
4520 case CALL_INSN:
4521 case CODE_LABEL:
4522 case BARRIER:
4523 case NOTE:
4524 last = emit_insn_after_1 (x, after);
4525 break;
4526
4527 #ifdef ENABLE_RTL_CHECKING
4528 case SEQUENCE:
4529 abort ();
4530 break;
4531 #endif
4532
4533 default:
4534 last = make_jump_insn_raw (x);
4535 add_insn_after (last, after);
4536 break;
4537 }
4538
4539 return last;
4540 }
4541
4542 /* Make an instruction with body X and code CALL_INSN
4543 and output it after the instruction AFTER. */
4544
4545 rtx
4546 emit_call_insn_after (x, after)
4547 rtx x, after;
4548 {
4549 rtx last;
4550
4551 #ifdef ENABLE_RTL_CHECKING
4552 if (after == NULL_RTX)
4553 abort ();
4554 #endif
4555
4556 switch (GET_CODE (x))
4557 {
4558 case INSN:
4559 case JUMP_INSN:
4560 case CALL_INSN:
4561 case CODE_LABEL:
4562 case BARRIER:
4563 case NOTE:
4564 last = emit_insn_after_1 (x, after);
4565 break;
4566
4567 #ifdef ENABLE_RTL_CHECKING
4568 case SEQUENCE:
4569 abort ();
4570 break;
4571 #endif
4572
4573 default:
4574 last = make_call_insn_raw (x);
4575 add_insn_after (last, after);
4576 break;
4577 }
4578
4579 return last;
4580 }
4581
4582 /* Make an insn of code BARRIER
4583 and output it after the insn AFTER. */
4584
4585 rtx
4586 emit_barrier_after (after)
4587 rtx after;
4588 {
4589 rtx insn = rtx_alloc (BARRIER);
4590
4591 INSN_UID (insn) = cur_insn_uid++;
4592
4593 add_insn_after (insn, after);
4594 return insn;
4595 }
4596
4597 /* Emit the label LABEL after the insn AFTER. */
4598
4599 rtx
4600 emit_label_after (label, after)
4601 rtx label, after;
4602 {
4603 /* This can be called twice for the same label
4604 as a result of the confusion that follows a syntax error!
4605 So make it harmless. */
4606 if (INSN_UID (label) == 0)
4607 {
4608 INSN_UID (label) = cur_insn_uid++;
4609 add_insn_after (label, after);
4610 }
4611
4612 return label;
4613 }
4614
4615 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4616
4617 rtx
4618 emit_note_after (subtype, after)
4619 int subtype;
4620 rtx after;
4621 {
4622 rtx note = rtx_alloc (NOTE);
4623 INSN_UID (note) = cur_insn_uid++;
4624 NOTE_SOURCE_FILE (note) = 0;
4625 NOTE_LINE_NUMBER (note) = subtype;
4626 BLOCK_FOR_INSN (note) = NULL;
4627 add_insn_after (note, after);
4628 return note;
4629 }
4630
4631 /* Emit a line note for FILE and LINE after the insn AFTER. */
4632
4633 rtx
4634 emit_line_note_after (file, line, after)
4635 const char *file;
4636 int line;
4637 rtx after;
4638 {
4639 rtx note;
4640
4641 if (no_line_numbers && line > 0)
4642 {
4643 cur_insn_uid++;
4644 return 0;
4645 }
4646
4647 note = rtx_alloc (NOTE);
4648 INSN_UID (note) = cur_insn_uid++;
4649 NOTE_SOURCE_FILE (note) = file;
4650 NOTE_LINE_NUMBER (note) = line;
4651 BLOCK_FOR_INSN (note) = NULL;
4652 add_insn_after (note, after);
4653 return note;
4654 }
4655 \f
4656 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4657 rtx
4658 emit_insn_after_setloc (pattern, after, loc)
4659 rtx pattern, after;
4660 int loc;
4661 {
4662 rtx last = emit_insn_after (pattern, after);
4663
4664 after = NEXT_INSN (after);
4665 while (1)
4666 {
4667 if (active_insn_p (after))
4668 INSN_LOCATOR (after) = loc;
4669 if (after == last)
4670 break;
4671 after = NEXT_INSN (after);
4672 }
4673 return last;
4674 }
4675
4676 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4677 rtx
4678 emit_jump_insn_after_setloc (pattern, after, loc)
4679 rtx pattern, after;
4680 int loc;
4681 {
4682 rtx last = emit_jump_insn_after (pattern, after);
4683
4684 after = NEXT_INSN (after);
4685 while (1)
4686 {
4687 if (active_insn_p (after))
4688 INSN_LOCATOR (after) = loc;
4689 if (after == last)
4690 break;
4691 after = NEXT_INSN (after);
4692 }
4693 return last;
4694 }
4695
4696 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4697 rtx
4698 emit_call_insn_after_setloc (pattern, after, loc)
4699 rtx pattern, after;
4700 int loc;
4701 {
4702 rtx last = emit_call_insn_after (pattern, after);
4703
4704 after = NEXT_INSN (after);
4705 while (1)
4706 {
4707 if (active_insn_p (after))
4708 INSN_LOCATOR (after) = loc;
4709 if (after == last)
4710 break;
4711 after = NEXT_INSN (after);
4712 }
4713 return last;
4714 }
4715
4716 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4717 rtx
4718 emit_insn_before_setloc (pattern, before, loc)
4719 rtx pattern, before;
4720 int loc;
4721 {
4722 rtx first = PREV_INSN (before);
4723 rtx last = emit_insn_before (pattern, before);
4724
4725 first = NEXT_INSN (first);
4726 while (1)
4727 {
4728 if (active_insn_p (first))
4729 INSN_LOCATOR (first) = loc;
4730 if (first == last)
4731 break;
4732 first = NEXT_INSN (first);
4733 }
4734 return last;
4735 }
4736 \f
4737 /* Take X and emit it at the end of the doubly-linked
4738 INSN list.
4739
4740 Returns the last insn emitted. */
4741
4742 rtx
4743 emit_insn (x)
4744 rtx x;
4745 {
4746 rtx last = last_insn;
4747 rtx insn;
4748
4749 if (x == NULL_RTX)
4750 return last;
4751
4752 switch (GET_CODE (x))
4753 {
4754 case INSN:
4755 case JUMP_INSN:
4756 case CALL_INSN:
4757 case CODE_LABEL:
4758 case BARRIER:
4759 case NOTE:
4760 insn = x;
4761 while (insn)
4762 {
4763 rtx next = NEXT_INSN (insn);
4764 add_insn (insn);
4765 last = insn;
4766 insn = next;
4767 }
4768 break;
4769
4770 #ifdef ENABLE_RTL_CHECKING
4771 case SEQUENCE:
4772 abort ();
4773 break;
4774 #endif
4775
4776 default:
4777 last = make_insn_raw (x);
4778 add_insn (last);
4779 break;
4780 }
4781
4782 return last;
4783 }
4784
4785 /* Make an insn of code JUMP_INSN with pattern X
4786 and add it to the end of the doubly-linked list. */
4787
4788 rtx
4789 emit_jump_insn (x)
4790 rtx x;
4791 {
4792 rtx last = NULL_RTX, insn;
4793
4794 switch (GET_CODE (x))
4795 {
4796 case INSN:
4797 case JUMP_INSN:
4798 case CALL_INSN:
4799 case CODE_LABEL:
4800 case BARRIER:
4801 case NOTE:
4802 insn = x;
4803 while (insn)
4804 {
4805 rtx next = NEXT_INSN (insn);
4806 add_insn (insn);
4807 last = insn;
4808 insn = next;
4809 }
4810 break;
4811
4812 #ifdef ENABLE_RTL_CHECKING
4813 case SEQUENCE:
4814 abort ();
4815 break;
4816 #endif
4817
4818 default:
4819 last = make_jump_insn_raw (x);
4820 add_insn (last);
4821 break;
4822 }
4823
4824 return last;
4825 }
4826
4827 /* Make an insn of code CALL_INSN with pattern X
4828 and add it to the end of the doubly-linked list. */
4829
4830 rtx
4831 emit_call_insn (x)
4832 rtx x;
4833 {
4834 rtx insn;
4835
4836 switch (GET_CODE (x))
4837 {
4838 case INSN:
4839 case JUMP_INSN:
4840 case CALL_INSN:
4841 case CODE_LABEL:
4842 case BARRIER:
4843 case NOTE:
4844 insn = emit_insn (x);
4845 break;
4846
4847 #ifdef ENABLE_RTL_CHECKING
4848 case SEQUENCE:
4849 abort ();
4850 break;
4851 #endif
4852
4853 default:
4854 insn = make_call_insn_raw (x);
4855 add_insn (insn);
4856 break;
4857 }
4858
4859 return insn;
4860 }
4861
4862 /* Add the label LABEL to the end of the doubly-linked list. */
4863
4864 rtx
4865 emit_label (label)
4866 rtx label;
4867 {
4868 /* This can be called twice for the same label
4869 as a result of the confusion that follows a syntax error!
4870 So make it harmless. */
4871 if (INSN_UID (label) == 0)
4872 {
4873 INSN_UID (label) = cur_insn_uid++;
4874 add_insn (label);
4875 }
4876 return label;
4877 }
4878
4879 /* Make an insn of code BARRIER
4880 and add it to the end of the doubly-linked list. */
4881
4882 rtx
4883 emit_barrier ()
4884 {
4885 rtx barrier = rtx_alloc (BARRIER);
4886 INSN_UID (barrier) = cur_insn_uid++;
4887 add_insn (barrier);
4888 return barrier;
4889 }
4890
4891 /* Make an insn of code NOTE
4892 with data-fields specified by FILE and LINE
4893 and add it to the end of the doubly-linked list,
4894 but only if line-numbers are desired for debugging info. */
4895
4896 rtx
4897 emit_line_note (file, line)
4898 const char *file;
4899 int line;
4900 {
4901 set_file_and_line_for_stmt (file, line);
4902
4903 #if 0
4904 if (no_line_numbers)
4905 return 0;
4906 #endif
4907
4908 return emit_note (file, line);
4909 }
4910
4911 /* Make an insn of code NOTE
4912 with data-fields specified by FILE and LINE
4913 and add it to the end of the doubly-linked list.
4914 If it is a line-number NOTE, omit it if it matches the previous one. */
4915
4916 rtx
4917 emit_note (file, line)
4918 const char *file;
4919 int line;
4920 {
4921 rtx note;
4922
4923 if (line > 0)
4924 {
4925 if (file && last_filename && !strcmp (file, last_filename)
4926 && line == last_linenum)
4927 return 0;
4928 last_filename = file;
4929 last_linenum = line;
4930 }
4931
4932 if (no_line_numbers && line > 0)
4933 {
4934 cur_insn_uid++;
4935 return 0;
4936 }
4937
4938 note = rtx_alloc (NOTE);
4939 INSN_UID (note) = cur_insn_uid++;
4940 NOTE_SOURCE_FILE (note) = file;
4941 NOTE_LINE_NUMBER (note) = line;
4942 BLOCK_FOR_INSN (note) = NULL;
4943 add_insn (note);
4944 return note;
4945 }
4946
4947 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4948
4949 rtx
4950 emit_line_note_force (file, line)
4951 const char *file;
4952 int line;
4953 {
4954 last_linenum = -1;
4955 return emit_line_note (file, line);
4956 }
4957
4958 /* Cause next statement to emit a line note even if the line number
4959 has not changed. This is used at the beginning of a function. */
4960
4961 void
4962 force_next_line_note ()
4963 {
4964 last_linenum = -1;
4965 }
4966
4967 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4968 note of this type already exists, remove it first. */
4969
4970 rtx
4971 set_unique_reg_note (insn, kind, datum)
4972 rtx insn;
4973 enum reg_note kind;
4974 rtx datum;
4975 {
4976 rtx note = find_reg_note (insn, kind, NULL_RTX);
4977
4978 switch (kind)
4979 {
4980 case REG_EQUAL:
4981 case REG_EQUIV:
4982 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4983 has multiple sets (some callers assume single_set
4984 means the insn only has one set, when in fact it
4985 means the insn only has one * useful * set). */
4986 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4987 {
4988 if (note)
4989 abort ();
4990 return NULL_RTX;
4991 }
4992
4993 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4994 It serves no useful purpose and breaks eliminate_regs. */
4995 if (GET_CODE (datum) == ASM_OPERANDS)
4996 return NULL_RTX;
4997 break;
4998
4999 default:
5000 break;
5001 }
5002
5003 if (note)
5004 {
5005 XEXP (note, 0) = datum;
5006 return note;
5007 }
5008
5009 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
5010 return REG_NOTES (insn);
5011 }
5012 \f
5013 /* Return an indication of which type of insn should have X as a body.
5014 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5015
5016 enum rtx_code
5017 classify_insn (x)
5018 rtx x;
5019 {
5020 if (GET_CODE (x) == CODE_LABEL)
5021 return CODE_LABEL;
5022 if (GET_CODE (x) == CALL)
5023 return CALL_INSN;
5024 if (GET_CODE (x) == RETURN)
5025 return JUMP_INSN;
5026 if (GET_CODE (x) == SET)
5027 {
5028 if (SET_DEST (x) == pc_rtx)
5029 return JUMP_INSN;
5030 else if (GET_CODE (SET_SRC (x)) == CALL)
5031 return CALL_INSN;
5032 else
5033 return INSN;
5034 }
5035 if (GET_CODE (x) == PARALLEL)
5036 {
5037 int j;
5038 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5039 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5040 return CALL_INSN;
5041 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5042 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5043 return JUMP_INSN;
5044 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5045 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5046 return CALL_INSN;
5047 }
5048 return INSN;
5049 }
5050
5051 /* Emit the rtl pattern X as an appropriate kind of insn.
5052 If X is a label, it is simply added into the insn chain. */
5053
5054 rtx
5055 emit (x)
5056 rtx x;
5057 {
5058 enum rtx_code code = classify_insn (x);
5059
5060 if (code == CODE_LABEL)
5061 return emit_label (x);
5062 else if (code == INSN)
5063 return emit_insn (x);
5064 else if (code == JUMP_INSN)
5065 {
5066 rtx insn = emit_jump_insn (x);
5067 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5068 return emit_barrier ();
5069 return insn;
5070 }
5071 else if (code == CALL_INSN)
5072 return emit_call_insn (x);
5073 else
5074 abort ();
5075 }
5076 \f
5077 /* Space for free sequence stack entries. */
5078 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
5079
5080 /* Begin emitting insns to a sequence which can be packaged in an
5081 RTL_EXPR. If this sequence will contain something that might cause
5082 the compiler to pop arguments to function calls (because those
5083 pops have previously been deferred; see INHIBIT_DEFER_POP for more
5084 details), use do_pending_stack_adjust before calling this function.
5085 That will ensure that the deferred pops are not accidentally
5086 emitted in the middle of this sequence. */
5087
5088 void
5089 start_sequence ()
5090 {
5091 struct sequence_stack *tem;
5092
5093 if (free_sequence_stack != NULL)
5094 {
5095 tem = free_sequence_stack;
5096 free_sequence_stack = tem->next;
5097 }
5098 else
5099 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
5100
5101 tem->next = seq_stack;
5102 tem->first = first_insn;
5103 tem->last = last_insn;
5104 tem->sequence_rtl_expr = seq_rtl_expr;
5105
5106 seq_stack = tem;
5107
5108 first_insn = 0;
5109 last_insn = 0;
5110 }
5111
5112 /* Similarly, but indicate that this sequence will be placed in T, an
5113 RTL_EXPR. See the documentation for start_sequence for more
5114 information about how to use this function. */
5115
5116 void
5117 start_sequence_for_rtl_expr (t)
5118 tree t;
5119 {
5120 start_sequence ();
5121
5122 seq_rtl_expr = t;
5123 }
5124
5125 /* Set up the insn chain starting with FIRST as the current sequence,
5126 saving the previously current one. See the documentation for
5127 start_sequence for more information about how to use this function. */
5128
5129 void
5130 push_to_sequence (first)
5131 rtx first;
5132 {
5133 rtx last;
5134
5135 start_sequence ();
5136
5137 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5138
5139 first_insn = first;
5140 last_insn = last;
5141 }
5142
5143 /* Set up the insn chain from a chain stort in FIRST to LAST. */
5144
5145 void
5146 push_to_full_sequence (first, last)
5147 rtx first, last;
5148 {
5149 start_sequence ();
5150 first_insn = first;
5151 last_insn = last;
5152 /* We really should have the end of the insn chain here. */
5153 if (last && NEXT_INSN (last))
5154 abort ();
5155 }
5156
5157 /* Set up the outer-level insn chain
5158 as the current sequence, saving the previously current one. */
5159
5160 void
5161 push_topmost_sequence ()
5162 {
5163 struct sequence_stack *stack, *top = NULL;
5164
5165 start_sequence ();
5166
5167 for (stack = seq_stack; stack; stack = stack->next)
5168 top = stack;
5169
5170 first_insn = top->first;
5171 last_insn = top->last;
5172 seq_rtl_expr = top->sequence_rtl_expr;
5173 }
5174
5175 /* After emitting to the outer-level insn chain, update the outer-level
5176 insn chain, and restore the previous saved state. */
5177
5178 void
5179 pop_topmost_sequence ()
5180 {
5181 struct sequence_stack *stack, *top = NULL;
5182
5183 for (stack = seq_stack; stack; stack = stack->next)
5184 top = stack;
5185
5186 top->first = first_insn;
5187 top->last = last_insn;
5188 /* ??? Why don't we save seq_rtl_expr here? */
5189
5190 end_sequence ();
5191 }
5192
5193 /* After emitting to a sequence, restore previous saved state.
5194
5195 To get the contents of the sequence just made, you must call
5196 `get_insns' *before* calling here.
5197
5198 If the compiler might have deferred popping arguments while
5199 generating this sequence, and this sequence will not be immediately
5200 inserted into the instruction stream, use do_pending_stack_adjust
5201 before calling get_insns. That will ensure that the deferred
5202 pops are inserted into this sequence, and not into some random
5203 location in the instruction stream. See INHIBIT_DEFER_POP for more
5204 information about deferred popping of arguments. */
5205
5206 void
5207 end_sequence ()
5208 {
5209 struct sequence_stack *tem = seq_stack;
5210
5211 first_insn = tem->first;
5212 last_insn = tem->last;
5213 seq_rtl_expr = tem->sequence_rtl_expr;
5214 seq_stack = tem->next;
5215
5216 memset (tem, 0, sizeof (*tem));
5217 tem->next = free_sequence_stack;
5218 free_sequence_stack = tem;
5219 }
5220
5221 /* This works like end_sequence, but records the old sequence in FIRST
5222 and LAST. */
5223
5224 void
5225 end_full_sequence (first, last)
5226 rtx *first, *last;
5227 {
5228 *first = first_insn;
5229 *last = last_insn;
5230 end_sequence ();
5231 }
5232
5233 /* Return 1 if currently emitting into a sequence. */
5234
5235 int
5236 in_sequence_p ()
5237 {
5238 return seq_stack != 0;
5239 }
5240 \f
5241 /* Put the various virtual registers into REGNO_REG_RTX. */
5242
5243 void
5244 init_virtual_regs (es)
5245 struct emit_status *es;
5246 {
5247 rtx *ptr = es->x_regno_reg_rtx;
5248 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5249 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5250 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5251 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5252 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5253 }
5254
5255 \f
5256 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5257 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5258 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5259 static int copy_insn_n_scratches;
5260
5261 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5262 copied an ASM_OPERANDS.
5263 In that case, it is the original input-operand vector. */
5264 static rtvec orig_asm_operands_vector;
5265
5266 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5267 copied an ASM_OPERANDS.
5268 In that case, it is the copied input-operand vector. */
5269 static rtvec copy_asm_operands_vector;
5270
5271 /* Likewise for the constraints vector. */
5272 static rtvec orig_asm_constraints_vector;
5273 static rtvec copy_asm_constraints_vector;
5274
5275 /* Recursively create a new copy of an rtx for copy_insn.
5276 This function differs from copy_rtx in that it handles SCRATCHes and
5277 ASM_OPERANDs properly.
5278 Normally, this function is not used directly; use copy_insn as front end.
5279 However, you could first copy an insn pattern with copy_insn and then use
5280 this function afterwards to properly copy any REG_NOTEs containing
5281 SCRATCHes. */
5282
5283 rtx
5284 copy_insn_1 (orig)
5285 rtx orig;
5286 {
5287 rtx copy;
5288 int i, j;
5289 RTX_CODE code;
5290 const char *format_ptr;
5291
5292 code = GET_CODE (orig);
5293
5294 switch (code)
5295 {
5296 case REG:
5297 case QUEUED:
5298 case CONST_INT:
5299 case CONST_DOUBLE:
5300 case CONST_VECTOR:
5301 case SYMBOL_REF:
5302 case CODE_LABEL:
5303 case PC:
5304 case CC0:
5305 case ADDRESSOF:
5306 return orig;
5307
5308 case SCRATCH:
5309 for (i = 0; i < copy_insn_n_scratches; i++)
5310 if (copy_insn_scratch_in[i] == orig)
5311 return copy_insn_scratch_out[i];
5312 break;
5313
5314 case CONST:
5315 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5316 a LABEL_REF, it isn't sharable. */
5317 if (GET_CODE (XEXP (orig, 0)) == PLUS
5318 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5319 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5320 return orig;
5321 break;
5322
5323 /* A MEM with a constant address is not sharable. The problem is that
5324 the constant address may need to be reloaded. If the mem is shared,
5325 then reloading one copy of this mem will cause all copies to appear
5326 to have been reloaded. */
5327
5328 default:
5329 break;
5330 }
5331
5332 copy = rtx_alloc (code);
5333
5334 /* Copy the various flags, and other information. We assume that
5335 all fields need copying, and then clear the fields that should
5336 not be copied. That is the sensible default behavior, and forces
5337 us to explicitly document why we are *not* copying a flag. */
5338 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5339
5340 /* We do not copy the USED flag, which is used as a mark bit during
5341 walks over the RTL. */
5342 RTX_FLAG (copy, used) = 0;
5343
5344 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5345 if (GET_RTX_CLASS (code) == 'i')
5346 {
5347 RTX_FLAG (copy, jump) = 0;
5348 RTX_FLAG (copy, call) = 0;
5349 RTX_FLAG (copy, frame_related) = 0;
5350 }
5351
5352 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5353
5354 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5355 {
5356 copy->fld[i] = orig->fld[i];
5357 switch (*format_ptr++)
5358 {
5359 case 'e':
5360 if (XEXP (orig, i) != NULL)
5361 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5362 break;
5363
5364 case 'E':
5365 case 'V':
5366 if (XVEC (orig, i) == orig_asm_constraints_vector)
5367 XVEC (copy, i) = copy_asm_constraints_vector;
5368 else if (XVEC (orig, i) == orig_asm_operands_vector)
5369 XVEC (copy, i) = copy_asm_operands_vector;
5370 else if (XVEC (orig, i) != NULL)
5371 {
5372 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5373 for (j = 0; j < XVECLEN (copy, i); j++)
5374 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5375 }
5376 break;
5377
5378 case 't':
5379 case 'w':
5380 case 'i':
5381 case 's':
5382 case 'S':
5383 case 'u':
5384 case '0':
5385 /* These are left unchanged. */
5386 break;
5387
5388 default:
5389 abort ();
5390 }
5391 }
5392
5393 if (code == SCRATCH)
5394 {
5395 i = copy_insn_n_scratches++;
5396 if (i >= MAX_RECOG_OPERANDS)
5397 abort ();
5398 copy_insn_scratch_in[i] = orig;
5399 copy_insn_scratch_out[i] = copy;
5400 }
5401 else if (code == ASM_OPERANDS)
5402 {
5403 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5404 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5405 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5406 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5407 }
5408
5409 return copy;
5410 }
5411
5412 /* Create a new copy of an rtx.
5413 This function differs from copy_rtx in that it handles SCRATCHes and
5414 ASM_OPERANDs properly.
5415 INSN doesn't really have to be a full INSN; it could be just the
5416 pattern. */
5417 rtx
5418 copy_insn (insn)
5419 rtx insn;
5420 {
5421 copy_insn_n_scratches = 0;
5422 orig_asm_operands_vector = 0;
5423 orig_asm_constraints_vector = 0;
5424 copy_asm_operands_vector = 0;
5425 copy_asm_constraints_vector = 0;
5426 return copy_insn_1 (insn);
5427 }
5428
5429 /* Initialize data structures and variables in this file
5430 before generating rtl for each function. */
5431
5432 void
5433 init_emit ()
5434 {
5435 struct function *f = cfun;
5436
5437 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5438 first_insn = NULL;
5439 last_insn = NULL;
5440 seq_rtl_expr = NULL;
5441 cur_insn_uid = 1;
5442 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5443 last_linenum = 0;
5444 last_filename = 0;
5445 first_label_num = label_num;
5446 last_label_num = 0;
5447 seq_stack = NULL;
5448
5449 /* Init the tables that describe all the pseudo regs. */
5450
5451 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5452
5453 f->emit->regno_pointer_align
5454 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5455 * sizeof (unsigned char));
5456
5457 regno_reg_rtx
5458 = (rtx *) ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5459
5460 /* Put copies of all the hard registers into regno_reg_rtx. */
5461 memcpy (regno_reg_rtx,
5462 static_regno_reg_rtx,
5463 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5464
5465 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5466 init_virtual_regs (f->emit);
5467
5468 /* Indicate that the virtual registers and stack locations are
5469 all pointers. */
5470 REG_POINTER (stack_pointer_rtx) = 1;
5471 REG_POINTER (frame_pointer_rtx) = 1;
5472 REG_POINTER (hard_frame_pointer_rtx) = 1;
5473 REG_POINTER (arg_pointer_rtx) = 1;
5474
5475 REG_POINTER (virtual_incoming_args_rtx) = 1;
5476 REG_POINTER (virtual_stack_vars_rtx) = 1;
5477 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5478 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5479 REG_POINTER (virtual_cfa_rtx) = 1;
5480
5481 #ifdef STACK_BOUNDARY
5482 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5483 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5484 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5485 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5486
5487 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5488 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5489 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5490 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5491 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5492 #endif
5493
5494 #ifdef INIT_EXPANDERS
5495 INIT_EXPANDERS;
5496 #endif
5497 }
5498
5499 /* Generate the constant 0. */
5500
5501 static rtx
5502 gen_const_vector_0 (mode)
5503 enum machine_mode mode;
5504 {
5505 rtx tem;
5506 rtvec v;
5507 int units, i;
5508 enum machine_mode inner;
5509
5510 units = GET_MODE_NUNITS (mode);
5511 inner = GET_MODE_INNER (mode);
5512
5513 v = rtvec_alloc (units);
5514
5515 /* We need to call this function after we to set CONST0_RTX first. */
5516 if (!CONST0_RTX (inner))
5517 abort ();
5518
5519 for (i = 0; i < units; ++i)
5520 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5521
5522 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5523 return tem;
5524 }
5525
5526 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5527 all elements are zero. */
5528 rtx
5529 gen_rtx_CONST_VECTOR (mode, v)
5530 enum machine_mode mode;
5531 rtvec v;
5532 {
5533 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5534 int i;
5535
5536 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5537 if (RTVEC_ELT (v, i) != inner_zero)
5538 return gen_rtx_raw_CONST_VECTOR (mode, v);
5539 return CONST0_RTX (mode);
5540 }
5541
5542 /* Create some permanent unique rtl objects shared between all functions.
5543 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5544
5545 void
5546 init_emit_once (line_numbers)
5547 int line_numbers;
5548 {
5549 int i;
5550 enum machine_mode mode;
5551 enum machine_mode double_mode;
5552
5553 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5554 tables. */
5555 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5556 const_int_htab_eq, NULL);
5557
5558 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5559 const_double_htab_eq, NULL);
5560
5561 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5562 mem_attrs_htab_eq, NULL);
5563 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5564 reg_attrs_htab_eq, NULL);
5565
5566 no_line_numbers = ! line_numbers;
5567
5568 /* Compute the word and byte modes. */
5569
5570 byte_mode = VOIDmode;
5571 word_mode = VOIDmode;
5572 double_mode = VOIDmode;
5573
5574 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5575 mode = GET_MODE_WIDER_MODE (mode))
5576 {
5577 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5578 && byte_mode == VOIDmode)
5579 byte_mode = mode;
5580
5581 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5582 && word_mode == VOIDmode)
5583 word_mode = mode;
5584 }
5585
5586 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5587 mode = GET_MODE_WIDER_MODE (mode))
5588 {
5589 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5590 && double_mode == VOIDmode)
5591 double_mode = mode;
5592 }
5593
5594 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5595
5596 /* Assign register numbers to the globally defined register rtx.
5597 This must be done at runtime because the register number field
5598 is in a union and some compilers can't initialize unions. */
5599
5600 pc_rtx = gen_rtx (PC, VOIDmode);
5601 cc0_rtx = gen_rtx (CC0, VOIDmode);
5602 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5603 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5604 if (hard_frame_pointer_rtx == 0)
5605 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5606 HARD_FRAME_POINTER_REGNUM);
5607 if (arg_pointer_rtx == 0)
5608 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5609 virtual_incoming_args_rtx =
5610 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5611 virtual_stack_vars_rtx =
5612 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5613 virtual_stack_dynamic_rtx =
5614 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5615 virtual_outgoing_args_rtx =
5616 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5617 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5618
5619 /* Initialize RTL for commonly used hard registers. These are
5620 copied into regno_reg_rtx as we begin to compile each function. */
5621 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5622 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5623
5624 #ifdef INIT_EXPANDERS
5625 /* This is to initialize {init|mark|free}_machine_status before the first
5626 call to push_function_context_to. This is needed by the Chill front
5627 end which calls push_function_context_to before the first call to
5628 init_function_start. */
5629 INIT_EXPANDERS;
5630 #endif
5631
5632 /* Create the unique rtx's for certain rtx codes and operand values. */
5633
5634 /* Don't use gen_rtx here since gen_rtx in this case
5635 tries to use these variables. */
5636 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5637 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5638 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5639
5640 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5641 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5642 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5643 else
5644 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5645
5646 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5647 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5648 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5649 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5650 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5651
5652 dconsthalf = dconst1;
5653 dconsthalf.exp--;
5654
5655 for (i = 0; i <= 2; i++)
5656 {
5657 REAL_VALUE_TYPE *r =
5658 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5659
5660 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5661 mode = GET_MODE_WIDER_MODE (mode))
5662 const_tiny_rtx[i][(int) mode] =
5663 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5664
5665 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5666
5667 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5668 mode = GET_MODE_WIDER_MODE (mode))
5669 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5670
5671 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5672 mode != VOIDmode;
5673 mode = GET_MODE_WIDER_MODE (mode))
5674 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5675 }
5676
5677 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5678 mode != VOIDmode;
5679 mode = GET_MODE_WIDER_MODE (mode))
5680 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5681
5682 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5683 mode != VOIDmode;
5684 mode = GET_MODE_WIDER_MODE (mode))
5685 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5686
5687 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5688 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5689 const_tiny_rtx[0][i] = const0_rtx;
5690
5691 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5692 if (STORE_FLAG_VALUE == 1)
5693 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5694
5695 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5696 return_address_pointer_rtx
5697 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5698 #endif
5699
5700 #ifdef STRUCT_VALUE
5701 struct_value_rtx = STRUCT_VALUE;
5702 #else
5703 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5704 #endif
5705
5706 #ifdef STRUCT_VALUE_INCOMING
5707 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5708 #else
5709 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5710 struct_value_incoming_rtx
5711 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5712 #else
5713 struct_value_incoming_rtx = struct_value_rtx;
5714 #endif
5715 #endif
5716
5717 #ifdef STATIC_CHAIN_REGNUM
5718 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5719
5720 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5721 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5722 static_chain_incoming_rtx
5723 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5724 else
5725 #endif
5726 static_chain_incoming_rtx = static_chain_rtx;
5727 #endif
5728
5729 #ifdef STATIC_CHAIN
5730 static_chain_rtx = STATIC_CHAIN;
5731
5732 #ifdef STATIC_CHAIN_INCOMING
5733 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5734 #else
5735 static_chain_incoming_rtx = static_chain_rtx;
5736 #endif
5737 #endif
5738
5739 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5740 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5741 }
5742 \f
5743 /* Query and clear/ restore no_line_numbers. This is used by the
5744 switch / case handling in stmt.c to give proper line numbers in
5745 warnings about unreachable code. */
5746
5747 int
5748 force_line_numbers ()
5749 {
5750 int old = no_line_numbers;
5751
5752 no_line_numbers = 0;
5753 if (old)
5754 force_next_line_note ();
5755 return old;
5756 }
5757
5758 void
5759 restore_line_number_status (old_value)
5760 int old_value;
5761 {
5762 no_line_numbers = old_value;
5763 }
5764
5765 /* Produce exact duplicate of insn INSN after AFTER.
5766 Care updating of libcall regions if present. */
5767
5768 rtx
5769 emit_copy_of_insn_after (insn, after)
5770 rtx insn, after;
5771 {
5772 rtx new;
5773 rtx note1, note2, link;
5774
5775 switch (GET_CODE (insn))
5776 {
5777 case INSN:
5778 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5779 break;
5780
5781 case JUMP_INSN:
5782 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5783 break;
5784
5785 case CALL_INSN:
5786 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5787 if (CALL_INSN_FUNCTION_USAGE (insn))
5788 CALL_INSN_FUNCTION_USAGE (new)
5789 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5790 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5791 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5792 break;
5793
5794 default:
5795 abort ();
5796 }
5797
5798 /* Update LABEL_NUSES. */
5799 mark_jump_label (PATTERN (new), new, 0);
5800
5801 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5802
5803 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5804 make them. */
5805 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5806 if (REG_NOTE_KIND (link) != REG_LABEL)
5807 {
5808 if (GET_CODE (link) == EXPR_LIST)
5809 REG_NOTES (new)
5810 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5811 XEXP (link, 0),
5812 REG_NOTES (new)));
5813 else
5814 REG_NOTES (new)
5815 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5816 XEXP (link, 0),
5817 REG_NOTES (new)));
5818 }
5819
5820 /* Fix the libcall sequences. */
5821 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5822 {
5823 rtx p = new;
5824 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5825 p = PREV_INSN (p);
5826 XEXP (note1, 0) = p;
5827 XEXP (note2, 0) = new;
5828 }
5829 INSN_CODE (new) = INSN_CODE (insn);
5830 return new;
5831 }
5832
5833 #include "gt-emit-rtl.h"