emit-rtl.c (change_address): Use XEXP (memref, 0) instead of addr when creating MEM...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_last_label_num was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
125
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
130
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
137
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
152
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
157
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
160
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
164
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
168
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
172
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 rtx value = (rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 rtx a = (rtx)x, b = (rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
261
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
264 {
265 mem_attrs *p = (mem_attrs *) x;
266
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
271 }
272
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
276
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
282
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
285 }
286
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
290
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
325
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
328 {
329 reg_attrs *p = (reg_attrs *) x;
330
331 return ((p->offset * 1000) ^ (long) p->decl);
332 }
333
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
337
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
343
344 return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
349
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
352 {
353 reg_attrs attrs;
354 void **slot;
355
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
359
360 attrs.decl = decl;
361 attrs.offset = offset;
362
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
365 {
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 }
369
370 return *slot;
371 }
372
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
376
377 rtx
378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
383 }
384
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
388
389 rtx
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392 void **slot;
393
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
401
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407
408 return (rtx) *slot;
409 }
410
411 rtx
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414 return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
426 {
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
430
431 return (rtx) *slot;
432 }
433
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
436 rtx
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
441
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443
444 return lookup_const_double (real);
445 }
446
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451
452 rtx
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455 rtx value;
456 unsigned int i;
457
458 if (mode != VOIDmode)
459 {
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
467
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
482
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
486
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
491
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
495
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
498
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
504
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
510
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
513
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 }
517
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
521
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
525
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
528
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
531
532 return lookup_const_double (value);
533 }
534
535 rtx
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
543
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
548
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
551
552 if (mode == Pmode && !reload_in_progress)
553 {
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
575 }
576
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
580
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
585
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
588
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
596
597 return gen_raw_REG (mode, regno);
598 }
599
600 rtx
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
604
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
608
609 return rt;
610 }
611
612 rtx
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
619
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
633
634 rtx
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637 enum machine_mode inmode;
638
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
644 }
645 \f
646 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
647 **
648 ** This routine generates an RTX of the size specified by
649 ** <code>, which is an RTX code. The RTX structure is initialized
650 ** from the arguments <element1> through <elementn>, which are
651 ** interpreted according to the specific RTX type's format. The
652 ** special machine mode associated with the rtx (if any) is specified
653 ** in <mode>.
654 **
655 ** gen_rtx can be invoked in a way which resembles the lisp-like
656 ** rtx it will generate. For example, the following rtx structure:
657 **
658 ** (plus:QI (mem:QI (reg:SI 1))
659 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
660 **
661 ** ...would be generated by the following C code:
662 **
663 ** gen_rtx (PLUS, QImode,
664 ** gen_rtx (MEM, QImode,
665 ** gen_rtx (REG, SImode, 1)),
666 ** gen_rtx (MEM, QImode,
667 ** gen_rtx (PLUS, SImode,
668 ** gen_rtx (REG, SImode, 2),
669 ** gen_rtx (REG, SImode, 3)))),
670 */
671
672 /*VARARGS2*/
673 rtx
674 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
675 {
676 int i; /* Array indices... */
677 const char *fmt; /* Current rtx's format... */
678 rtx rt_val; /* RTX to return to caller... */
679 va_list p;
680
681 va_start (p, mode);
682
683 switch (code)
684 {
685 case CONST_INT:
686 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
687 break;
688
689 case CONST_DOUBLE:
690 {
691 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
692 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
693
694 rt_val = immed_double_const (arg0, arg1, mode);
695 }
696 break;
697
698 case REG:
699 rt_val = gen_rtx_REG (mode, va_arg (p, int));
700 break;
701
702 case MEM:
703 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
704 break;
705
706 default:
707 rt_val = rtx_alloc (code); /* Allocate the storage space. */
708 rt_val->mode = mode; /* Store the machine mode... */
709
710 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
712 {
713 switch (*fmt++)
714 {
715 case '0': /* Field with unknown use. Zero it. */
716 X0EXP (rt_val, i) = NULL_RTX;
717 break;
718
719 case 'i': /* An integer? */
720 XINT (rt_val, i) = va_arg (p, int);
721 break;
722
723 case 'w': /* A wide integer? */
724 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
725 break;
726
727 case 's': /* A string? */
728 XSTR (rt_val, i) = va_arg (p, char *);
729 break;
730
731 case 'e': /* An expression? */
732 case 'u': /* An insn? Same except when printing. */
733 XEXP (rt_val, i) = va_arg (p, rtx);
734 break;
735
736 case 'E': /* An RTX vector? */
737 XVEC (rt_val, i) = va_arg (p, rtvec);
738 break;
739
740 case 'b': /* A bitmap? */
741 XBITMAP (rt_val, i) = va_arg (p, bitmap);
742 break;
743
744 case 't': /* A tree? */
745 XTREE (rt_val, i) = va_arg (p, tree);
746 break;
747
748 default:
749 abort ();
750 }
751 }
752 break;
753 }
754
755 va_end (p);
756 return rt_val;
757 }
758
759 /* gen_rtvec (n, [rt1, ..., rtn])
760 **
761 ** This routine creates an rtvec and stores within it the
762 ** pointers to rtx's which are its arguments.
763 */
764
765 /*VARARGS1*/
766 rtvec
767 gen_rtvec (int n, ...)
768 {
769 int i, save_n;
770 rtx *vector;
771 va_list p;
772
773 va_start (p, n);
774
775 if (n == 0)
776 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
777
778 vector = alloca (n * sizeof (rtx));
779
780 for (i = 0; i < n; i++)
781 vector[i] = va_arg (p, rtx);
782
783 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
784 save_n = n;
785 va_end (p);
786
787 return gen_rtvec_v (save_n, vector);
788 }
789
790 rtvec
791 gen_rtvec_v (int n, rtx *argp)
792 {
793 int i;
794 rtvec rt_val;
795
796 if (n == 0)
797 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
798
799 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
800
801 for (i = 0; i < n; i++)
802 rt_val->elem[i] = *argp++;
803
804 return rt_val;
805 }
806 \f
807 /* Generate a REG rtx for a new pseudo register of mode MODE.
808 This pseudo is assigned the next sequential register number. */
809
810 rtx
811 gen_reg_rtx (enum machine_mode mode)
812 {
813 struct function *f = cfun;
814 rtx val;
815
816 /* Don't let anything called after initial flow analysis create new
817 registers. */
818 if (no_new_pseudos)
819 abort ();
820
821 if (generating_concat_p
822 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
823 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
824 {
825 /* For complex modes, don't make a single pseudo.
826 Instead, make a CONCAT of two pseudos.
827 This allows noncontiguous allocation of the real and imaginary parts,
828 which makes much better code. Besides, allocating DCmode
829 pseudos overstrains reload on some machines like the 386. */
830 rtx realpart, imagpart;
831 enum machine_mode partmode = GET_MODE_INNER (mode);
832
833 realpart = gen_reg_rtx (partmode);
834 imagpart = gen_reg_rtx (partmode);
835 return gen_rtx_CONCAT (mode, realpart, imagpart);
836 }
837
838 /* Make sure regno_pointer_align, and regno_reg_rtx are large
839 enough to have an element for this pseudo reg number. */
840
841 if (reg_rtx_no == f->emit->regno_pointer_align_length)
842 {
843 int old_size = f->emit->regno_pointer_align_length;
844 char *new;
845 rtx *new1;
846
847 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
848 memset (new + old_size, 0, old_size);
849 f->emit->regno_pointer_align = (unsigned char *) new;
850
851 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
852 old_size * 2 * sizeof (rtx));
853 memset (new1 + old_size, 0, old_size * sizeof (rtx));
854 regno_reg_rtx = new1;
855
856 f->emit->regno_pointer_align_length = old_size * 2;
857 }
858
859 val = gen_raw_REG (mode, reg_rtx_no);
860 regno_reg_rtx[reg_rtx_no++] = val;
861 return val;
862 }
863
864 /* Generate a register with same attributes as REG,
865 but offsetted by OFFSET. */
866
867 rtx
868 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
869 {
870 rtx new = gen_rtx_REG (mode, regno);
871 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
872 REG_OFFSET (reg) + offset);
873 return new;
874 }
875
876 /* Set the decl for MEM to DECL. */
877
878 void
879 set_reg_attrs_from_mem (rtx reg, rtx mem)
880 {
881 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
882 REG_ATTRS (reg)
883 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
884 }
885
886 /* Set the register attributes for registers contained in PARM_RTX.
887 Use needed values from memory attributes of MEM. */
888
889 void
890 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
891 {
892 if (GET_CODE (parm_rtx) == REG)
893 set_reg_attrs_from_mem (parm_rtx, mem);
894 else if (GET_CODE (parm_rtx) == PARALLEL)
895 {
896 /* Check for a NULL entry in the first slot, used to indicate that the
897 parameter goes both on the stack and in registers. */
898 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
899 for (; i < XVECLEN (parm_rtx, 0); i++)
900 {
901 rtx x = XVECEXP (parm_rtx, 0, i);
902 if (GET_CODE (XEXP (x, 0)) == REG)
903 REG_ATTRS (XEXP (x, 0))
904 = get_reg_attrs (MEM_EXPR (mem),
905 INTVAL (XEXP (x, 1)));
906 }
907 }
908 }
909
910 /* Assign the RTX X to declaration T. */
911 void
912 set_decl_rtl (tree t, rtx x)
913 {
914 DECL_CHECK (t)->decl.rtl = x;
915
916 if (!x)
917 return;
918 /* For register, we maintain the reverse information too. */
919 if (GET_CODE (x) == REG)
920 REG_ATTRS (x) = get_reg_attrs (t, 0);
921 else if (GET_CODE (x) == SUBREG)
922 REG_ATTRS (SUBREG_REG (x))
923 = get_reg_attrs (t, -SUBREG_BYTE (x));
924 if (GET_CODE (x) == CONCAT)
925 {
926 if (REG_P (XEXP (x, 0)))
927 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
928 if (REG_P (XEXP (x, 1)))
929 REG_ATTRS (XEXP (x, 1))
930 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
931 }
932 if (GET_CODE (x) == PARALLEL)
933 {
934 int i;
935 for (i = 0; i < XVECLEN (x, 0); i++)
936 {
937 rtx y = XVECEXP (x, 0, i);
938 if (REG_P (XEXP (y, 0)))
939 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
940 }
941 }
942 }
943
944 /* Identify REG (which may be a CONCAT) as a user register. */
945
946 void
947 mark_user_reg (rtx reg)
948 {
949 if (GET_CODE (reg) == CONCAT)
950 {
951 REG_USERVAR_P (XEXP (reg, 0)) = 1;
952 REG_USERVAR_P (XEXP (reg, 1)) = 1;
953 }
954 else if (GET_CODE (reg) == REG)
955 REG_USERVAR_P (reg) = 1;
956 else
957 abort ();
958 }
959
960 /* Identify REG as a probable pointer register and show its alignment
961 as ALIGN, if nonzero. */
962
963 void
964 mark_reg_pointer (rtx reg, int align)
965 {
966 if (! REG_POINTER (reg))
967 {
968 REG_POINTER (reg) = 1;
969
970 if (align)
971 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
972 }
973 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
974 /* We can no-longer be sure just how aligned this pointer is. */
975 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
976 }
977
978 /* Return 1 plus largest pseudo reg number used in the current function. */
979
980 int
981 max_reg_num (void)
982 {
983 return reg_rtx_no;
984 }
985
986 /* Return 1 + the largest label number used so far in the current function. */
987
988 int
989 max_label_num (void)
990 {
991 if (last_label_num && label_num == base_label_num)
992 return last_label_num;
993 return label_num;
994 }
995
996 /* Return first label number used in this function (if any were used). */
997
998 int
999 get_first_label_num (void)
1000 {
1001 return first_label_num;
1002 }
1003 \f
1004 /* Return the final regno of X, which is a SUBREG of a hard
1005 register. */
1006 int
1007 subreg_hard_regno (rtx x, int check_mode)
1008 {
1009 enum machine_mode mode = GET_MODE (x);
1010 unsigned int byte_offset, base_regno, final_regno;
1011 rtx reg = SUBREG_REG (x);
1012
1013 /* This is where we attempt to catch illegal subregs
1014 created by the compiler. */
1015 if (GET_CODE (x) != SUBREG
1016 || GET_CODE (reg) != REG)
1017 abort ();
1018 base_regno = REGNO (reg);
1019 if (base_regno >= FIRST_PSEUDO_REGISTER)
1020 abort ();
1021 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1022 abort ();
1023 #ifdef ENABLE_CHECKING
1024 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1025 SUBREG_BYTE (x), mode))
1026 abort ();
1027 #endif
1028 /* Catch non-congruent offsets too. */
1029 byte_offset = SUBREG_BYTE (x);
1030 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1031 abort ();
1032
1033 final_regno = subreg_regno (x);
1034
1035 return final_regno;
1036 }
1037
1038 /* Return a value representing some low-order bits of X, where the number
1039 of low-order bits is given by MODE. Note that no conversion is done
1040 between floating-point and fixed-point values, rather, the bit
1041 representation is returned.
1042
1043 This function handles the cases in common between gen_lowpart, below,
1044 and two variants in cse.c and combine.c. These are the cases that can
1045 be safely handled at all points in the compilation.
1046
1047 If this is not a case we can handle, return 0. */
1048
1049 rtx
1050 gen_lowpart_common (enum machine_mode mode, rtx x)
1051 {
1052 int msize = GET_MODE_SIZE (mode);
1053 int xsize;
1054 int offset = 0;
1055 enum machine_mode innermode;
1056
1057 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1058 so we have to make one up. Yuk. */
1059 innermode = GET_MODE (x);
1060 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1061 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1062 else if (innermode == VOIDmode)
1063 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1064
1065 xsize = GET_MODE_SIZE (innermode);
1066
1067 if (innermode == VOIDmode || innermode == BLKmode)
1068 abort ();
1069
1070 if (innermode == mode)
1071 return x;
1072
1073 /* MODE must occupy no more words than the mode of X. */
1074 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1075 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1076 return 0;
1077
1078 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1079 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1080 return 0;
1081
1082 offset = subreg_lowpart_offset (mode, innermode);
1083
1084 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1085 && (GET_MODE_CLASS (mode) == MODE_INT
1086 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1087 {
1088 /* If we are getting the low-order part of something that has been
1089 sign- or zero-extended, we can either just use the object being
1090 extended or make a narrower extension. If we want an even smaller
1091 piece than the size of the object being extended, call ourselves
1092 recursively.
1093
1094 This case is used mostly by combine and cse. */
1095
1096 if (GET_MODE (XEXP (x, 0)) == mode)
1097 return XEXP (x, 0);
1098 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1099 return gen_lowpart_common (mode, XEXP (x, 0));
1100 else if (msize < xsize)
1101 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1102 }
1103 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1104 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1105 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1106 return simplify_gen_subreg (mode, x, innermode, offset);
1107
1108 /* Otherwise, we can't do this. */
1109 return 0;
1110 }
1111 \f
1112 /* Return the constant real or imaginary part (which has mode MODE)
1113 of a complex value X. The IMAGPART_P argument determines whether
1114 the real or complex component should be returned. This function
1115 returns NULL_RTX if the component isn't a constant. */
1116
1117 static rtx
1118 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1119 {
1120 tree decl, part;
1121
1122 if (GET_CODE (x) == MEM
1123 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1124 {
1125 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1126 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1127 {
1128 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1129 if (TREE_CODE (part) == REAL_CST
1130 || TREE_CODE (part) == INTEGER_CST)
1131 return expand_expr (part, NULL_RTX, mode, 0);
1132 }
1133 }
1134 return NULL_RTX;
1135 }
1136
1137 /* Return the real part (which has mode MODE) of a complex value X.
1138 This always comes at the low address in memory. */
1139
1140 rtx
1141 gen_realpart (enum machine_mode mode, rtx x)
1142 {
1143 rtx part;
1144
1145 /* Handle complex constants. */
1146 part = gen_complex_constant_part (mode, x, 0);
1147 if (part != NULL_RTX)
1148 return part;
1149
1150 if (WORDS_BIG_ENDIAN
1151 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1152 && REG_P (x)
1153 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1154 internal_error
1155 ("can't access real part of complex value in hard register");
1156 else if (WORDS_BIG_ENDIAN)
1157 return gen_highpart (mode, x);
1158 else
1159 return gen_lowpart (mode, x);
1160 }
1161
1162 /* Return the imaginary part (which has mode MODE) of a complex value X.
1163 This always comes at the high address in memory. */
1164
1165 rtx
1166 gen_imagpart (enum machine_mode mode, rtx x)
1167 {
1168 rtx part;
1169
1170 /* Handle complex constants. */
1171 part = gen_complex_constant_part (mode, x, 1);
1172 if (part != NULL_RTX)
1173 return part;
1174
1175 if (WORDS_BIG_ENDIAN)
1176 return gen_lowpart (mode, x);
1177 else if (! WORDS_BIG_ENDIAN
1178 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1179 && REG_P (x)
1180 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1181 internal_error
1182 ("can't access imaginary part of complex value in hard register");
1183 else
1184 return gen_highpart (mode, x);
1185 }
1186
1187 /* Return 1 iff X, assumed to be a SUBREG,
1188 refers to the real part of the complex value in its containing reg.
1189 Complex values are always stored with the real part in the first word,
1190 regardless of WORDS_BIG_ENDIAN. */
1191
1192 int
1193 subreg_realpart_p (rtx x)
1194 {
1195 if (GET_CODE (x) != SUBREG)
1196 abort ();
1197
1198 return ((unsigned int) SUBREG_BYTE (x)
1199 < (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1200 }
1201 \f
1202 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1203 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1204 least-significant part of X.
1205 MODE specifies how big a part of X to return;
1206 it usually should not be larger than a word.
1207 If X is a MEM whose address is a QUEUED, the value may be so also. */
1208
1209 rtx
1210 gen_lowpart (enum machine_mode mode, rtx x)
1211 {
1212 rtx result = gen_lowpart_common (mode, x);
1213
1214 if (result)
1215 return result;
1216 else if (GET_CODE (x) == REG)
1217 {
1218 /* Must be a hard reg that's not valid in MODE. */
1219 result = gen_lowpart_common (mode, copy_to_reg (x));
1220 if (result == 0)
1221 abort ();
1222 return result;
1223 }
1224 else if (GET_CODE (x) == MEM)
1225 {
1226 /* The only additional case we can do is MEM. */
1227 int offset = 0;
1228
1229 /* The following exposes the use of "x" to CSE. */
1230 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1231 && SCALAR_INT_MODE_P (GET_MODE (x))
1232 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1233 GET_MODE_BITSIZE (GET_MODE (x)))
1234 && ! no_new_pseudos)
1235 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1236
1237 if (WORDS_BIG_ENDIAN)
1238 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1239 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1240
1241 if (BYTES_BIG_ENDIAN)
1242 /* Adjust the address so that the address-after-the-data
1243 is unchanged. */
1244 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1245 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1246
1247 return adjust_address (x, mode, offset);
1248 }
1249 else if (GET_CODE (x) == ADDRESSOF)
1250 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1251 else
1252 abort ();
1253 }
1254
1255 /* Like `gen_lowpart', but refer to the most significant part.
1256 This is used to access the imaginary part of a complex number. */
1257
1258 rtx
1259 gen_highpart (enum machine_mode mode, rtx x)
1260 {
1261 unsigned int msize = GET_MODE_SIZE (mode);
1262 rtx result;
1263
1264 /* This case loses if X is a subreg. To catch bugs early,
1265 complain if an invalid MODE is used even in other cases. */
1266 if (msize > UNITS_PER_WORD
1267 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1268 abort ();
1269
1270 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1271 subreg_highpart_offset (mode, GET_MODE (x)));
1272
1273 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1274 the target if we have a MEM. gen_highpart must return a valid operand,
1275 emitting code if necessary to do so. */
1276 if (result != NULL_RTX && GET_CODE (result) == MEM)
1277 result = validize_mem (result);
1278
1279 if (!result)
1280 abort ();
1281 return result;
1282 }
1283
1284 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1285 be VOIDmode constant. */
1286 rtx
1287 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1288 {
1289 if (GET_MODE (exp) != VOIDmode)
1290 {
1291 if (GET_MODE (exp) != innermode)
1292 abort ();
1293 return gen_highpart (outermode, exp);
1294 }
1295 return simplify_gen_subreg (outermode, exp, innermode,
1296 subreg_highpart_offset (outermode, innermode));
1297 }
1298
1299 /* Return offset in bytes to get OUTERMODE low part
1300 of the value in mode INNERMODE stored in memory in target format. */
1301
1302 unsigned int
1303 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1304 {
1305 unsigned int offset = 0;
1306 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1307
1308 if (difference > 0)
1309 {
1310 if (WORDS_BIG_ENDIAN)
1311 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1312 if (BYTES_BIG_ENDIAN)
1313 offset += difference % UNITS_PER_WORD;
1314 }
1315
1316 return offset;
1317 }
1318
1319 /* Return offset in bytes to get OUTERMODE high part
1320 of the value in mode INNERMODE stored in memory in target format. */
1321 unsigned int
1322 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1323 {
1324 unsigned int offset = 0;
1325 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1326
1327 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1328 abort ();
1329
1330 if (difference > 0)
1331 {
1332 if (! WORDS_BIG_ENDIAN)
1333 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1334 if (! BYTES_BIG_ENDIAN)
1335 offset += difference % UNITS_PER_WORD;
1336 }
1337
1338 return offset;
1339 }
1340
1341 /* Return 1 iff X, assumed to be a SUBREG,
1342 refers to the least significant part of its containing reg.
1343 If X is not a SUBREG, always return 1 (it is its own low part!). */
1344
1345 int
1346 subreg_lowpart_p (rtx x)
1347 {
1348 if (GET_CODE (x) != SUBREG)
1349 return 1;
1350 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1351 return 0;
1352
1353 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1354 == SUBREG_BYTE (x));
1355 }
1356 \f
1357 /* Return subword OFFSET of operand OP.
1358 The word number, OFFSET, is interpreted as the word number starting
1359 at the low-order address. OFFSET 0 is the low-order word if not
1360 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1361
1362 If we cannot extract the required word, we return zero. Otherwise,
1363 an rtx corresponding to the requested word will be returned.
1364
1365 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1366 reload has completed, a valid address will always be returned. After
1367 reload, if a valid address cannot be returned, we return zero.
1368
1369 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1370 it is the responsibility of the caller.
1371
1372 MODE is the mode of OP in case it is a CONST_INT.
1373
1374 ??? This is still rather broken for some cases. The problem for the
1375 moment is that all callers of this thing provide no 'goal mode' to
1376 tell us to work with. This exists because all callers were written
1377 in a word based SUBREG world.
1378 Now use of this function can be deprecated by simplify_subreg in most
1379 cases.
1380 */
1381
1382 rtx
1383 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1384 {
1385 if (mode == VOIDmode)
1386 mode = GET_MODE (op);
1387
1388 if (mode == VOIDmode)
1389 abort ();
1390
1391 /* If OP is narrower than a word, fail. */
1392 if (mode != BLKmode
1393 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1394 return 0;
1395
1396 /* If we want a word outside OP, return zero. */
1397 if (mode != BLKmode
1398 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1399 return const0_rtx;
1400
1401 /* Form a new MEM at the requested address. */
1402 if (GET_CODE (op) == MEM)
1403 {
1404 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1405
1406 if (! validate_address)
1407 return new;
1408
1409 else if (reload_completed)
1410 {
1411 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1412 return 0;
1413 }
1414 else
1415 return replace_equiv_address (new, XEXP (new, 0));
1416 }
1417
1418 /* Rest can be handled by simplify_subreg. */
1419 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1420 }
1421
1422 /* Similar to `operand_subword', but never return 0. If we can't extract
1423 the required subword, put OP into a register and try again. If that fails,
1424 abort. We always validate the address in this case.
1425
1426 MODE is the mode of OP, in case it is CONST_INT. */
1427
1428 rtx
1429 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1430 {
1431 rtx result = operand_subword (op, offset, 1, mode);
1432
1433 if (result)
1434 return result;
1435
1436 if (mode != BLKmode && mode != VOIDmode)
1437 {
1438 /* If this is a register which can not be accessed by words, copy it
1439 to a pseudo register. */
1440 if (GET_CODE (op) == REG)
1441 op = copy_to_reg (op);
1442 else
1443 op = force_reg (mode, op);
1444 }
1445
1446 result = operand_subword (op, offset, 1, mode);
1447 if (result == 0)
1448 abort ();
1449
1450 return result;
1451 }
1452 \f
1453 /* Given a compare instruction, swap the operands.
1454 A test instruction is changed into a compare of 0 against the operand. */
1455
1456 void
1457 reverse_comparison (rtx insn)
1458 {
1459 rtx body = PATTERN (insn);
1460 rtx comp;
1461
1462 if (GET_CODE (body) == SET)
1463 comp = SET_SRC (body);
1464 else
1465 comp = SET_SRC (XVECEXP (body, 0, 0));
1466
1467 if (GET_CODE (comp) == COMPARE)
1468 {
1469 rtx op0 = XEXP (comp, 0);
1470 rtx op1 = XEXP (comp, 1);
1471 XEXP (comp, 0) = op1;
1472 XEXP (comp, 1) = op0;
1473 }
1474 else
1475 {
1476 rtx new = gen_rtx_COMPARE (VOIDmode,
1477 CONST0_RTX (GET_MODE (comp)), comp);
1478 if (GET_CODE (body) == SET)
1479 SET_SRC (body) = new;
1480 else
1481 SET_SRC (XVECEXP (body, 0, 0)) = new;
1482 }
1483 }
1484 \f
1485 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1486 or (2) a component ref of something variable. Represent the later with
1487 a NULL expression. */
1488
1489 static tree
1490 component_ref_for_mem_expr (tree ref)
1491 {
1492 tree inner = TREE_OPERAND (ref, 0);
1493
1494 if (TREE_CODE (inner) == COMPONENT_REF)
1495 inner = component_ref_for_mem_expr (inner);
1496 else
1497 {
1498 tree placeholder_ptr = 0;
1499
1500 /* Now remove any conversions: they don't change what the underlying
1501 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1502 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1503 || TREE_CODE (inner) == NON_LVALUE_EXPR
1504 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1505 || TREE_CODE (inner) == SAVE_EXPR
1506 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1507 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1508 inner = find_placeholder (inner, &placeholder_ptr);
1509 else
1510 inner = TREE_OPERAND (inner, 0);
1511
1512 if (! DECL_P (inner))
1513 inner = NULL_TREE;
1514 }
1515
1516 if (inner == TREE_OPERAND (ref, 0))
1517 return ref;
1518 else
1519 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1520 TREE_OPERAND (ref, 1));
1521 }
1522
1523 /* Given REF, a MEM, and T, either the type of X or the expression
1524 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1525 if we are making a new object of this type. BITPOS is nonzero if
1526 there is an offset outstanding on T that will be applied later. */
1527
1528 void
1529 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1530 HOST_WIDE_INT bitpos)
1531 {
1532 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1533 tree expr = MEM_EXPR (ref);
1534 rtx offset = MEM_OFFSET (ref);
1535 rtx size = MEM_SIZE (ref);
1536 unsigned int align = MEM_ALIGN (ref);
1537 HOST_WIDE_INT apply_bitpos = 0;
1538 tree type;
1539
1540 /* It can happen that type_for_mode was given a mode for which there
1541 is no language-level type. In which case it returns NULL, which
1542 we can see here. */
1543 if (t == NULL_TREE)
1544 return;
1545
1546 type = TYPE_P (t) ? t : TREE_TYPE (t);
1547 if (type == error_mark_node)
1548 return;
1549
1550 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1551 wrong answer, as it assumes that DECL_RTL already has the right alias
1552 info. Callers should not set DECL_RTL until after the call to
1553 set_mem_attributes. */
1554 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1555 abort ();
1556
1557 /* Get the alias set from the expression or type (perhaps using a
1558 front-end routine) and use it. */
1559 alias = get_alias_set (t);
1560
1561 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1562 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1563 RTX_UNCHANGING_P (ref)
1564 |= ((lang_hooks.honor_readonly
1565 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1566 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1567
1568 /* If we are making an object of this type, or if this is a DECL, we know
1569 that it is a scalar if the type is not an aggregate. */
1570 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1571 MEM_SCALAR_P (ref) = 1;
1572
1573 /* We can set the alignment from the type if we are making an object,
1574 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1575 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1576 align = MAX (align, TYPE_ALIGN (type));
1577
1578 /* If the size is known, we can set that. */
1579 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1580 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1581
1582 /* If T is not a type, we may be able to deduce some more information about
1583 the expression. */
1584 if (! TYPE_P (t))
1585 {
1586 maybe_set_unchanging (ref, t);
1587 if (TREE_THIS_VOLATILE (t))
1588 MEM_VOLATILE_P (ref) = 1;
1589
1590 /* Now remove any conversions: they don't change what the underlying
1591 object is. Likewise for SAVE_EXPR. */
1592 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1593 || TREE_CODE (t) == NON_LVALUE_EXPR
1594 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1595 || TREE_CODE (t) == SAVE_EXPR)
1596 t = TREE_OPERAND (t, 0);
1597
1598 /* If this expression can't be addressed (e.g., it contains a reference
1599 to a non-addressable field), show we don't change its alias set. */
1600 if (! can_address_p (t))
1601 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1602
1603 /* If this is a decl, set the attributes of the MEM from it. */
1604 if (DECL_P (t))
1605 {
1606 expr = t;
1607 offset = const0_rtx;
1608 apply_bitpos = bitpos;
1609 size = (DECL_SIZE_UNIT (t)
1610 && host_integerp (DECL_SIZE_UNIT (t), 1)
1611 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1612 align = DECL_ALIGN (t);
1613 }
1614
1615 /* If this is a constant, we know the alignment. */
1616 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1617 {
1618 align = TYPE_ALIGN (type);
1619 #ifdef CONSTANT_ALIGNMENT
1620 align = CONSTANT_ALIGNMENT (t, align);
1621 #endif
1622 }
1623
1624 /* If this is a field reference and not a bit-field, record it. */
1625 /* ??? There is some information that can be gleened from bit-fields,
1626 such as the word offset in the structure that might be modified.
1627 But skip it for now. */
1628 else if (TREE_CODE (t) == COMPONENT_REF
1629 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1630 {
1631 expr = component_ref_for_mem_expr (t);
1632 offset = const0_rtx;
1633 apply_bitpos = bitpos;
1634 /* ??? Any reason the field size would be different than
1635 the size we got from the type? */
1636 }
1637
1638 /* If this is an array reference, look for an outer field reference. */
1639 else if (TREE_CODE (t) == ARRAY_REF)
1640 {
1641 tree off_tree = size_zero_node;
1642 /* We can't modify t, because we use it at the end of the
1643 function. */
1644 tree t2 = t;
1645
1646 do
1647 {
1648 tree index = TREE_OPERAND (t2, 1);
1649 tree array = TREE_OPERAND (t2, 0);
1650 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1651 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1652 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1653
1654 /* We assume all arrays have sizes that are a multiple of a byte.
1655 First subtract the lower bound, if any, in the type of the
1656 index, then convert to sizetype and multiply by the size of the
1657 array element. */
1658 if (low_bound != 0 && ! integer_zerop (low_bound))
1659 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1660 index, low_bound));
1661
1662 /* If the index has a self-referential type, pass it to a
1663 WITH_RECORD_EXPR; if the component size is, pass our
1664 component to one. */
1665 if (CONTAINS_PLACEHOLDER_P (index))
1666 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1667 if (CONTAINS_PLACEHOLDER_P (unit_size))
1668 unit_size = build (WITH_RECORD_EXPR, sizetype,
1669 unit_size, array);
1670
1671 off_tree
1672 = fold (build (PLUS_EXPR, sizetype,
1673 fold (build (MULT_EXPR, sizetype,
1674 index,
1675 unit_size)),
1676 off_tree));
1677 t2 = TREE_OPERAND (t2, 0);
1678 }
1679 while (TREE_CODE (t2) == ARRAY_REF);
1680
1681 if (DECL_P (t2))
1682 {
1683 expr = t2;
1684 offset = NULL;
1685 if (host_integerp (off_tree, 1))
1686 {
1687 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1688 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1689 align = DECL_ALIGN (t2);
1690 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1691 align = aoff;
1692 offset = GEN_INT (ioff);
1693 apply_bitpos = bitpos;
1694 }
1695 }
1696 else if (TREE_CODE (t2) == COMPONENT_REF)
1697 {
1698 expr = component_ref_for_mem_expr (t2);
1699 if (host_integerp (off_tree, 1))
1700 {
1701 offset = GEN_INT (tree_low_cst (off_tree, 1));
1702 apply_bitpos = bitpos;
1703 }
1704 /* ??? Any reason the field size would be different than
1705 the size we got from the type? */
1706 }
1707 else if (flag_argument_noalias > 1
1708 && TREE_CODE (t2) == INDIRECT_REF
1709 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1710 {
1711 expr = t2;
1712 offset = NULL;
1713 }
1714 }
1715
1716 /* If this is a Fortran indirect argument reference, record the
1717 parameter decl. */
1718 else if (flag_argument_noalias > 1
1719 && TREE_CODE (t) == INDIRECT_REF
1720 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1721 {
1722 expr = t;
1723 offset = NULL;
1724 }
1725 }
1726
1727 /* If we modified OFFSET based on T, then subtract the outstanding
1728 bit position offset. Similarly, increase the size of the accessed
1729 object to contain the negative offset. */
1730 if (apply_bitpos)
1731 {
1732 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1733 if (size)
1734 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1735 }
1736
1737 /* Now set the attributes we computed above. */
1738 MEM_ATTRS (ref)
1739 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1740
1741 /* If this is already known to be a scalar or aggregate, we are done. */
1742 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1743 return;
1744
1745 /* If it is a reference into an aggregate, this is part of an aggregate.
1746 Otherwise we don't know. */
1747 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1748 || TREE_CODE (t) == ARRAY_RANGE_REF
1749 || TREE_CODE (t) == BIT_FIELD_REF)
1750 MEM_IN_STRUCT_P (ref) = 1;
1751 }
1752
1753 void
1754 set_mem_attributes (rtx ref, tree t, int objectp)
1755 {
1756 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1757 }
1758
1759 /* Set the decl for MEM to DECL. */
1760
1761 void
1762 set_mem_attrs_from_reg (rtx mem, rtx reg)
1763 {
1764 MEM_ATTRS (mem)
1765 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1766 GEN_INT (REG_OFFSET (reg)),
1767 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1768 }
1769
1770 /* Set the alias set of MEM to SET. */
1771
1772 void
1773 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1774 {
1775 #ifdef ENABLE_CHECKING
1776 /* If the new and old alias sets don't conflict, something is wrong. */
1777 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1778 abort ();
1779 #endif
1780
1781 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1782 MEM_SIZE (mem), MEM_ALIGN (mem),
1783 GET_MODE (mem));
1784 }
1785
1786 /* Set the alignment of MEM to ALIGN bits. */
1787
1788 void
1789 set_mem_align (rtx mem, unsigned int align)
1790 {
1791 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1792 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1793 GET_MODE (mem));
1794 }
1795
1796 /* Set the expr for MEM to EXPR. */
1797
1798 void
1799 set_mem_expr (rtx mem, tree expr)
1800 {
1801 MEM_ATTRS (mem)
1802 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1803 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1804 }
1805
1806 /* Set the offset of MEM to OFFSET. */
1807
1808 void
1809 set_mem_offset (rtx mem, rtx offset)
1810 {
1811 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1812 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1813 GET_MODE (mem));
1814 }
1815
1816 /* Set the size of MEM to SIZE. */
1817
1818 void
1819 set_mem_size (rtx mem, rtx size)
1820 {
1821 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1822 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1823 GET_MODE (mem));
1824 }
1825 \f
1826 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1827 and its address changed to ADDR. (VOIDmode means don't change the mode.
1828 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1829 returned memory location is required to be valid. The memory
1830 attributes are not changed. */
1831
1832 static rtx
1833 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1834 {
1835 rtx new;
1836
1837 if (GET_CODE (memref) != MEM)
1838 abort ();
1839 if (mode == VOIDmode)
1840 mode = GET_MODE (memref);
1841 if (addr == 0)
1842 addr = XEXP (memref, 0);
1843 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1844 && (!validate || memory_address_p (mode, addr)))
1845 return memref;
1846
1847 if (validate)
1848 {
1849 if (reload_in_progress || reload_completed)
1850 {
1851 if (! memory_address_p (mode, addr))
1852 abort ();
1853 }
1854 else
1855 addr = memory_address (mode, addr);
1856 }
1857
1858 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1859 return memref;
1860
1861 new = gen_rtx_MEM (mode, addr);
1862 MEM_COPY_ATTRIBUTES (new, memref);
1863 return new;
1864 }
1865
1866 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1867 way we are changing MEMREF, so we only preserve the alias set. */
1868
1869 rtx
1870 change_address (rtx memref, enum machine_mode mode, rtx addr)
1871 {
1872 rtx new = change_address_1 (memref, mode, addr, 1), size;
1873 enum machine_mode mmode = GET_MODE (new);
1874 unsigned int align;
1875
1876 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1877 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1878
1879 /* If there are no changes, just return the original memory reference. */
1880 if (new == memref)
1881 {
1882 if (MEM_ATTRS (memref) == 0
1883 || (MEM_EXPR (memref) == NULL
1884 && MEM_OFFSET (memref) == NULL
1885 && MEM_SIZE (memref) == size
1886 && MEM_ALIGN (memref) == align))
1887 return new;
1888
1889 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1890 MEM_COPY_ATTRIBUTES (new, memref);
1891 }
1892
1893 MEM_ATTRS (new)
1894 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1895
1896 return new;
1897 }
1898
1899 /* Return a memory reference like MEMREF, but with its mode changed
1900 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1901 nonzero, the memory address is forced to be valid.
1902 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1903 and caller is responsible for adjusting MEMREF base register. */
1904
1905 rtx
1906 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1907 int validate, int adjust)
1908 {
1909 rtx addr = XEXP (memref, 0);
1910 rtx new;
1911 rtx memoffset = MEM_OFFSET (memref);
1912 rtx size = 0;
1913 unsigned int memalign = MEM_ALIGN (memref);
1914
1915 /* If there are no changes, just return the original memory reference. */
1916 if (mode == GET_MODE (memref) && !offset
1917 && (!validate || memory_address_p (mode, addr)))
1918 return memref;
1919
1920 /* ??? Prefer to create garbage instead of creating shared rtl.
1921 This may happen even if offset is nonzero -- consider
1922 (plus (plus reg reg) const_int) -- so do this always. */
1923 addr = copy_rtx (addr);
1924
1925 if (adjust)
1926 {
1927 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1928 object, we can merge it into the LO_SUM. */
1929 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1930 && offset >= 0
1931 && (unsigned HOST_WIDE_INT) offset
1932 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1933 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1934 plus_constant (XEXP (addr, 1), offset));
1935 else
1936 addr = plus_constant (addr, offset);
1937 }
1938
1939 new = change_address_1 (memref, mode, addr, validate);
1940
1941 /* Compute the new values of the memory attributes due to this adjustment.
1942 We add the offsets and update the alignment. */
1943 if (memoffset)
1944 memoffset = GEN_INT (offset + INTVAL (memoffset));
1945
1946 /* Compute the new alignment by taking the MIN of the alignment and the
1947 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1948 if zero. */
1949 if (offset != 0)
1950 memalign
1951 = MIN (memalign,
1952 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1953
1954 /* We can compute the size in a number of ways. */
1955 if (GET_MODE (new) != BLKmode)
1956 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1957 else if (MEM_SIZE (memref))
1958 size = plus_constant (MEM_SIZE (memref), -offset);
1959
1960 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1961 memoffset, size, memalign, GET_MODE (new));
1962
1963 /* At some point, we should validate that this offset is within the object,
1964 if all the appropriate values are known. */
1965 return new;
1966 }
1967
1968 /* Return a memory reference like MEMREF, but with its mode changed
1969 to MODE and its address changed to ADDR, which is assumed to be
1970 MEMREF offseted by OFFSET bytes. If VALIDATE is
1971 nonzero, the memory address is forced to be valid. */
1972
1973 rtx
1974 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1975 HOST_WIDE_INT offset, int validate)
1976 {
1977 memref = change_address_1 (memref, VOIDmode, addr, validate);
1978 return adjust_address_1 (memref, mode, offset, validate, 0);
1979 }
1980
1981 /* Return a memory reference like MEMREF, but whose address is changed by
1982 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1983 known to be in OFFSET (possibly 1). */
1984
1985 rtx
1986 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1987 {
1988 rtx new, addr = XEXP (memref, 0);
1989
1990 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1991
1992 /* At this point we don't know _why_ the address is invalid. It
1993 could have secondary memory references, multiplies or anything.
1994
1995 However, if we did go and rearrange things, we can wind up not
1996 being able to recognize the magic around pic_offset_table_rtx.
1997 This stuff is fragile, and is yet another example of why it is
1998 bad to expose PIC machinery too early. */
1999 if (! memory_address_p (GET_MODE (memref), new)
2000 && GET_CODE (addr) == PLUS
2001 && XEXP (addr, 0) == pic_offset_table_rtx)
2002 {
2003 addr = force_reg (GET_MODE (addr), addr);
2004 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2005 }
2006
2007 update_temp_slot_address (XEXP (memref, 0), new);
2008 new = change_address_1 (memref, VOIDmode, new, 1);
2009
2010 /* If there are no changes, just return the original memory reference. */
2011 if (new == memref)
2012 return new;
2013
2014 /* Update the alignment to reflect the offset. Reset the offset, which
2015 we don't know. */
2016 MEM_ATTRS (new)
2017 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2018 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2019 GET_MODE (new));
2020 return new;
2021 }
2022
2023 /* Return a memory reference like MEMREF, but with its address changed to
2024 ADDR. The caller is asserting that the actual piece of memory pointed
2025 to is the same, just the form of the address is being changed, such as
2026 by putting something into a register. */
2027
2028 rtx
2029 replace_equiv_address (rtx memref, rtx addr)
2030 {
2031 /* change_address_1 copies the memory attribute structure without change
2032 and that's exactly what we want here. */
2033 update_temp_slot_address (XEXP (memref, 0), addr);
2034 return change_address_1 (memref, VOIDmode, addr, 1);
2035 }
2036
2037 /* Likewise, but the reference is not required to be valid. */
2038
2039 rtx
2040 replace_equiv_address_nv (rtx memref, rtx addr)
2041 {
2042 return change_address_1 (memref, VOIDmode, addr, 0);
2043 }
2044
2045 /* Return a memory reference like MEMREF, but with its mode widened to
2046 MODE and offset by OFFSET. This would be used by targets that e.g.
2047 cannot issue QImode memory operations and have to use SImode memory
2048 operations plus masking logic. */
2049
2050 rtx
2051 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2052 {
2053 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2054 tree expr = MEM_EXPR (new);
2055 rtx memoffset = MEM_OFFSET (new);
2056 unsigned int size = GET_MODE_SIZE (mode);
2057
2058 /* If there are no changes, just return the original memory reference. */
2059 if (new == memref)
2060 return new;
2061
2062 /* If we don't know what offset we were at within the expression, then
2063 we can't know if we've overstepped the bounds. */
2064 if (! memoffset)
2065 expr = NULL_TREE;
2066
2067 while (expr)
2068 {
2069 if (TREE_CODE (expr) == COMPONENT_REF)
2070 {
2071 tree field = TREE_OPERAND (expr, 1);
2072
2073 if (! DECL_SIZE_UNIT (field))
2074 {
2075 expr = NULL_TREE;
2076 break;
2077 }
2078
2079 /* Is the field at least as large as the access? If so, ok,
2080 otherwise strip back to the containing structure. */
2081 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2082 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2083 && INTVAL (memoffset) >= 0)
2084 break;
2085
2086 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2087 {
2088 expr = NULL_TREE;
2089 break;
2090 }
2091
2092 expr = TREE_OPERAND (expr, 0);
2093 memoffset = (GEN_INT (INTVAL (memoffset)
2094 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2095 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2096 / BITS_PER_UNIT)));
2097 }
2098 /* Similarly for the decl. */
2099 else if (DECL_P (expr)
2100 && DECL_SIZE_UNIT (expr)
2101 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2102 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2103 && (! memoffset || INTVAL (memoffset) >= 0))
2104 break;
2105 else
2106 {
2107 /* The widened memory access overflows the expression, which means
2108 that it could alias another expression. Zap it. */
2109 expr = NULL_TREE;
2110 break;
2111 }
2112 }
2113
2114 if (! expr)
2115 memoffset = NULL_RTX;
2116
2117 /* The widened memory may alias other stuff, so zap the alias set. */
2118 /* ??? Maybe use get_alias_set on any remaining expression. */
2119
2120 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2121 MEM_ALIGN (new), mode);
2122
2123 return new;
2124 }
2125 \f
2126 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2127
2128 rtx
2129 gen_label_rtx (void)
2130 {
2131 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2132 NULL, label_num++, NULL);
2133 }
2134 \f
2135 /* For procedure integration. */
2136
2137 /* Install new pointers to the first and last insns in the chain.
2138 Also, set cur_insn_uid to one higher than the last in use.
2139 Used for an inline-procedure after copying the insn chain. */
2140
2141 void
2142 set_new_first_and_last_insn (rtx first, rtx last)
2143 {
2144 rtx insn;
2145
2146 first_insn = first;
2147 last_insn = last;
2148 cur_insn_uid = 0;
2149
2150 for (insn = first; insn; insn = NEXT_INSN (insn))
2151 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2152
2153 cur_insn_uid++;
2154 }
2155
2156 /* Set the last label number found in the current function.
2157 This is used when belatedly compiling an inline function. */
2158
2159 void
2160 set_new_last_label_num (int last)
2161 {
2162 base_label_num = label_num;
2163 last_label_num = last;
2164 }
2165 \f
2166 /* Restore all variables describing the current status from the structure *P.
2167 This is used after a nested function. */
2168
2169 void
2170 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2171 {
2172 last_label_num = 0;
2173 }
2174 \f
2175 /* Go through all the RTL insn bodies and copy any invalid shared
2176 structure. This routine should only be called once. */
2177
2178 void
2179 unshare_all_rtl (tree fndecl, rtx insn)
2180 {
2181 tree decl;
2182
2183 /* Make sure that virtual parameters are not shared. */
2184 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2185 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2186
2187 /* Make sure that virtual stack slots are not shared. */
2188 unshare_all_decls (DECL_INITIAL (fndecl));
2189
2190 /* Unshare just about everything else. */
2191 unshare_all_rtl_in_chain (insn);
2192
2193 /* Make sure the addresses of stack slots found outside the insn chain
2194 (such as, in DECL_RTL of a variable) are not shared
2195 with the insn chain.
2196
2197 This special care is necessary when the stack slot MEM does not
2198 actually appear in the insn chain. If it does appear, its address
2199 is unshared from all else at that point. */
2200 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2201 }
2202
2203 /* Go through all the RTL insn bodies and copy any invalid shared
2204 structure, again. This is a fairly expensive thing to do so it
2205 should be done sparingly. */
2206
2207 void
2208 unshare_all_rtl_again (rtx insn)
2209 {
2210 rtx p;
2211 tree decl;
2212
2213 for (p = insn; p; p = NEXT_INSN (p))
2214 if (INSN_P (p))
2215 {
2216 reset_used_flags (PATTERN (p));
2217 reset_used_flags (REG_NOTES (p));
2218 reset_used_flags (LOG_LINKS (p));
2219 }
2220
2221 /* Make sure that virtual stack slots are not shared. */
2222 reset_used_decls (DECL_INITIAL (cfun->decl));
2223
2224 /* Make sure that virtual parameters are not shared. */
2225 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2226 reset_used_flags (DECL_RTL (decl));
2227
2228 reset_used_flags (stack_slot_list);
2229
2230 unshare_all_rtl (cfun->decl, insn);
2231 }
2232
2233 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2234 Recursively does the same for subexpressions. */
2235
2236 static void
2237 verify_rtx_sharing (rtx orig, rtx insn)
2238 {
2239 rtx x = orig;
2240 int i;
2241 enum rtx_code code;
2242 const char *format_ptr;
2243
2244 if (x == 0)
2245 return;
2246
2247 code = GET_CODE (x);
2248
2249 /* These types may be freely shared. */
2250
2251 switch (code)
2252 {
2253 case REG:
2254 case QUEUED:
2255 case CONST_INT:
2256 case CONST_DOUBLE:
2257 case CONST_VECTOR:
2258 case SYMBOL_REF:
2259 case LABEL_REF:
2260 case CODE_LABEL:
2261 case PC:
2262 case CC0:
2263 case SCRATCH:
2264 return;
2265 /* SCRATCH must be shared because they represent distinct values. */
2266 case CLOBBER:
2267 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2268 return;
2269 break;
2270
2271 case CONST:
2272 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2273 a LABEL_REF, it isn't sharable. */
2274 if (GET_CODE (XEXP (x, 0)) == PLUS
2275 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2276 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2277 return;
2278 break;
2279
2280 case MEM:
2281 /* A MEM is allowed to be shared if its address is constant. */
2282 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2283 || reload_completed || reload_in_progress)
2284 return;
2285
2286 break;
2287
2288 default:
2289 break;
2290 }
2291
2292 /* This rtx may not be shared. If it has already been seen,
2293 replace it with a copy of itself. */
2294
2295 if (RTX_FLAG (x, used))
2296 {
2297 error ("Invalid rtl sharing found in the insn");
2298 debug_rtx (insn);
2299 error ("Shared rtx");
2300 debug_rtx (x);
2301 abort ();
2302 }
2303 RTX_FLAG (x, used) = 1;
2304
2305 /* Now scan the subexpressions recursively. */
2306
2307 format_ptr = GET_RTX_FORMAT (code);
2308
2309 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2310 {
2311 switch (*format_ptr++)
2312 {
2313 case 'e':
2314 verify_rtx_sharing (XEXP (x, i), insn);
2315 break;
2316
2317 case 'E':
2318 if (XVEC (x, i) != NULL)
2319 {
2320 int j;
2321 int len = XVECLEN (x, i);
2322
2323 for (j = 0; j < len; j++)
2324 {
2325 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2326 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2327 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2328 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2329 else
2330 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2331 }
2332 }
2333 break;
2334 }
2335 }
2336 return;
2337 }
2338
2339 /* Go through all the RTL insn bodies and check that there is no unexpected
2340 sharing in between the subexpressions. */
2341
2342 void
2343 verify_rtl_sharing (void)
2344 {
2345 rtx p;
2346
2347 for (p = get_insns (); p; p = NEXT_INSN (p))
2348 if (INSN_P (p))
2349 {
2350 reset_used_flags (PATTERN (p));
2351 reset_used_flags (REG_NOTES (p));
2352 reset_used_flags (LOG_LINKS (p));
2353 }
2354
2355 for (p = get_insns (); p; p = NEXT_INSN (p))
2356 if (INSN_P (p))
2357 {
2358 verify_rtx_sharing (PATTERN (p), p);
2359 verify_rtx_sharing (REG_NOTES (p), p);
2360 verify_rtx_sharing (LOG_LINKS (p), p);
2361 }
2362 }
2363
2364 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2365 Assumes the mark bits are cleared at entry. */
2366
2367 void
2368 unshare_all_rtl_in_chain (rtx insn)
2369 {
2370 for (; insn; insn = NEXT_INSN (insn))
2371 if (INSN_P (insn))
2372 {
2373 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2374 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2375 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2376 }
2377 }
2378
2379 /* Go through all virtual stack slots of a function and copy any
2380 shared structure. */
2381 static void
2382 unshare_all_decls (tree blk)
2383 {
2384 tree t;
2385
2386 /* Copy shared decls. */
2387 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2388 if (DECL_RTL_SET_P (t))
2389 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2390
2391 /* Now process sub-blocks. */
2392 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2393 unshare_all_decls (t);
2394 }
2395
2396 /* Go through all virtual stack slots of a function and mark them as
2397 not shared. */
2398 static void
2399 reset_used_decls (tree blk)
2400 {
2401 tree t;
2402
2403 /* Mark decls. */
2404 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2405 if (DECL_RTL_SET_P (t))
2406 reset_used_flags (DECL_RTL (t));
2407
2408 /* Now process sub-blocks. */
2409 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2410 reset_used_decls (t);
2411 }
2412
2413 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2414 placed in the result directly, rather than being copied. MAY_SHARE is
2415 either a MEM of an EXPR_LIST of MEMs. */
2416
2417 rtx
2418 copy_most_rtx (rtx orig, rtx may_share)
2419 {
2420 rtx copy;
2421 int i, j;
2422 RTX_CODE code;
2423 const char *format_ptr;
2424
2425 if (orig == may_share
2426 || (GET_CODE (may_share) == EXPR_LIST
2427 && in_expr_list_p (may_share, orig)))
2428 return orig;
2429
2430 code = GET_CODE (orig);
2431
2432 switch (code)
2433 {
2434 case REG:
2435 case QUEUED:
2436 case CONST_INT:
2437 case CONST_DOUBLE:
2438 case CONST_VECTOR:
2439 case SYMBOL_REF:
2440 case CODE_LABEL:
2441 case PC:
2442 case CC0:
2443 return orig;
2444 default:
2445 break;
2446 }
2447
2448 copy = rtx_alloc (code);
2449 PUT_MODE (copy, GET_MODE (orig));
2450 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2451 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2452 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2453 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2454 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2455
2456 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2457
2458 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2459 {
2460 switch (*format_ptr++)
2461 {
2462 case 'e':
2463 XEXP (copy, i) = XEXP (orig, i);
2464 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2465 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2466 break;
2467
2468 case 'u':
2469 XEXP (copy, i) = XEXP (orig, i);
2470 break;
2471
2472 case 'E':
2473 case 'V':
2474 XVEC (copy, i) = XVEC (orig, i);
2475 if (XVEC (orig, i) != NULL)
2476 {
2477 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2478 for (j = 0; j < XVECLEN (copy, i); j++)
2479 XVECEXP (copy, i, j)
2480 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2481 }
2482 break;
2483
2484 case 'w':
2485 XWINT (copy, i) = XWINT (orig, i);
2486 break;
2487
2488 case 'n':
2489 case 'i':
2490 XINT (copy, i) = XINT (orig, i);
2491 break;
2492
2493 case 't':
2494 XTREE (copy, i) = XTREE (orig, i);
2495 break;
2496
2497 case 's':
2498 case 'S':
2499 XSTR (copy, i) = XSTR (orig, i);
2500 break;
2501
2502 case '0':
2503 X0ANY (copy, i) = X0ANY (orig, i);
2504 break;
2505
2506 default:
2507 abort ();
2508 }
2509 }
2510 return copy;
2511 }
2512
2513 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2514 Recursively does the same for subexpressions. Uses
2515 copy_rtx_if_shared_1 to reduce stack space. */
2516
2517 rtx
2518 copy_rtx_if_shared (rtx orig)
2519 {
2520 copy_rtx_if_shared_1 (&orig);
2521 return orig;
2522 }
2523
2524 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2525 use. Recursively does the same for subexpressions. */
2526
2527 static void
2528 copy_rtx_if_shared_1 (rtx *orig1)
2529 {
2530 rtx x;
2531 int i;
2532 enum rtx_code code;
2533 rtx *last_ptr;
2534 const char *format_ptr;
2535 int copied = 0;
2536 int length;
2537
2538 /* Repeat is used to turn tail-recursion into iteration. */
2539 repeat:
2540 x = *orig1;
2541
2542 if (x == 0)
2543 return;
2544
2545 code = GET_CODE (x);
2546
2547 /* These types may be freely shared. */
2548
2549 switch (code)
2550 {
2551 case REG:
2552 case QUEUED:
2553 case CONST_INT:
2554 case CONST_DOUBLE:
2555 case CONST_VECTOR:
2556 case SYMBOL_REF:
2557 case LABEL_REF:
2558 case CODE_LABEL:
2559 case PC:
2560 case CC0:
2561 case SCRATCH:
2562 /* SCRATCH must be shared because they represent distinct values. */
2563 return;
2564 case CLOBBER:
2565 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2566 return;
2567 break;
2568
2569 case CONST:
2570 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2571 a LABEL_REF, it isn't sharable. */
2572 if (GET_CODE (XEXP (x, 0)) == PLUS
2573 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2574 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2575 return;
2576 break;
2577
2578 case INSN:
2579 case JUMP_INSN:
2580 case CALL_INSN:
2581 case NOTE:
2582 case BARRIER:
2583 /* The chain of insns is not being copied. */
2584 return;
2585
2586 default:
2587 break;
2588 }
2589
2590 /* This rtx may not be shared. If it has already been seen,
2591 replace it with a copy of itself. */
2592
2593 if (RTX_FLAG (x, used))
2594 {
2595 rtx copy;
2596
2597 copy = rtx_alloc (code);
2598 memcpy (copy, x, RTX_SIZE (code));
2599 x = copy;
2600 copied = 1;
2601 }
2602 RTX_FLAG (x, used) = 1;
2603
2604 /* Now scan the subexpressions recursively.
2605 We can store any replaced subexpressions directly into X
2606 since we know X is not shared! Any vectors in X
2607 must be copied if X was copied. */
2608
2609 format_ptr = GET_RTX_FORMAT (code);
2610 length = GET_RTX_LENGTH (code);
2611 last_ptr = NULL;
2612
2613 for (i = 0; i < length; i++)
2614 {
2615 switch (*format_ptr++)
2616 {
2617 case 'e':
2618 if (last_ptr)
2619 copy_rtx_if_shared_1 (last_ptr);
2620 last_ptr = &XEXP (x, i);
2621 break;
2622
2623 case 'E':
2624 if (XVEC (x, i) != NULL)
2625 {
2626 int j;
2627 int len = XVECLEN (x, i);
2628
2629 /* Copy the vector iff I copied the rtx and the length
2630 is nonzero. */
2631 if (copied && len > 0)
2632 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2633
2634 /* Call recursively on all inside the vector. */
2635 for (j = 0; j < len; j++)
2636 {
2637 if (last_ptr)
2638 copy_rtx_if_shared_1 (last_ptr);
2639 last_ptr = &XVECEXP (x, i, j);
2640 }
2641 }
2642 break;
2643 }
2644 }
2645 *orig1 = x;
2646 if (last_ptr)
2647 {
2648 orig1 = last_ptr;
2649 goto repeat;
2650 }
2651 return;
2652 }
2653
2654 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2655 to look for shared sub-parts. */
2656
2657 void
2658 reset_used_flags (rtx x)
2659 {
2660 int i, j;
2661 enum rtx_code code;
2662 const char *format_ptr;
2663 int length;
2664
2665 /* Repeat is used to turn tail-recursion into iteration. */
2666 repeat:
2667 if (x == 0)
2668 return;
2669
2670 code = GET_CODE (x);
2671
2672 /* These types may be freely shared so we needn't do any resetting
2673 for them. */
2674
2675 switch (code)
2676 {
2677 case REG:
2678 case QUEUED:
2679 case CONST_INT:
2680 case CONST_DOUBLE:
2681 case CONST_VECTOR:
2682 case SYMBOL_REF:
2683 case CODE_LABEL:
2684 case PC:
2685 case CC0:
2686 return;
2687
2688 case INSN:
2689 case JUMP_INSN:
2690 case CALL_INSN:
2691 case NOTE:
2692 case LABEL_REF:
2693 case BARRIER:
2694 /* The chain of insns is not being copied. */
2695 return;
2696
2697 default:
2698 break;
2699 }
2700
2701 RTX_FLAG (x, used) = 0;
2702
2703 format_ptr = GET_RTX_FORMAT (code);
2704 length = GET_RTX_LENGTH (code);
2705
2706 for (i = 0; i < length; i++)
2707 {
2708 switch (*format_ptr++)
2709 {
2710 case 'e':
2711 if (i == length-1)
2712 {
2713 x = XEXP (x, i);
2714 goto repeat;
2715 }
2716 reset_used_flags (XEXP (x, i));
2717 break;
2718
2719 case 'E':
2720 for (j = 0; j < XVECLEN (x, i); j++)
2721 reset_used_flags (XVECEXP (x, i, j));
2722 break;
2723 }
2724 }
2725 }
2726
2727 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2728 to look for shared sub-parts. */
2729
2730 void
2731 set_used_flags (rtx x)
2732 {
2733 int i, j;
2734 enum rtx_code code;
2735 const char *format_ptr;
2736
2737 if (x == 0)
2738 return;
2739
2740 code = GET_CODE (x);
2741
2742 /* These types may be freely shared so we needn't do any resetting
2743 for them. */
2744
2745 switch (code)
2746 {
2747 case REG:
2748 case QUEUED:
2749 case CONST_INT:
2750 case CONST_DOUBLE:
2751 case CONST_VECTOR:
2752 case SYMBOL_REF:
2753 case CODE_LABEL:
2754 case PC:
2755 case CC0:
2756 return;
2757
2758 case INSN:
2759 case JUMP_INSN:
2760 case CALL_INSN:
2761 case NOTE:
2762 case LABEL_REF:
2763 case BARRIER:
2764 /* The chain of insns is not being copied. */
2765 return;
2766
2767 default:
2768 break;
2769 }
2770
2771 RTX_FLAG (x, used) = 1;
2772
2773 format_ptr = GET_RTX_FORMAT (code);
2774 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2775 {
2776 switch (*format_ptr++)
2777 {
2778 case 'e':
2779 set_used_flags (XEXP (x, i));
2780 break;
2781
2782 case 'E':
2783 for (j = 0; j < XVECLEN (x, i); j++)
2784 set_used_flags (XVECEXP (x, i, j));
2785 break;
2786 }
2787 }
2788 }
2789 \f
2790 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2791 Return X or the rtx for the pseudo reg the value of X was copied into.
2792 OTHER must be valid as a SET_DEST. */
2793
2794 rtx
2795 make_safe_from (rtx x, rtx other)
2796 {
2797 while (1)
2798 switch (GET_CODE (other))
2799 {
2800 case SUBREG:
2801 other = SUBREG_REG (other);
2802 break;
2803 case STRICT_LOW_PART:
2804 case SIGN_EXTEND:
2805 case ZERO_EXTEND:
2806 other = XEXP (other, 0);
2807 break;
2808 default:
2809 goto done;
2810 }
2811 done:
2812 if ((GET_CODE (other) == MEM
2813 && ! CONSTANT_P (x)
2814 && GET_CODE (x) != REG
2815 && GET_CODE (x) != SUBREG)
2816 || (GET_CODE (other) == REG
2817 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2818 || reg_mentioned_p (other, x))))
2819 {
2820 rtx temp = gen_reg_rtx (GET_MODE (x));
2821 emit_move_insn (temp, x);
2822 return temp;
2823 }
2824 return x;
2825 }
2826 \f
2827 /* Emission of insns (adding them to the doubly-linked list). */
2828
2829 /* Return the first insn of the current sequence or current function. */
2830
2831 rtx
2832 get_insns (void)
2833 {
2834 return first_insn;
2835 }
2836
2837 /* Specify a new insn as the first in the chain. */
2838
2839 void
2840 set_first_insn (rtx insn)
2841 {
2842 if (PREV_INSN (insn) != 0)
2843 abort ();
2844 first_insn = insn;
2845 }
2846
2847 /* Return the last insn emitted in current sequence or current function. */
2848
2849 rtx
2850 get_last_insn (void)
2851 {
2852 return last_insn;
2853 }
2854
2855 /* Specify a new insn as the last in the chain. */
2856
2857 void
2858 set_last_insn (rtx insn)
2859 {
2860 if (NEXT_INSN (insn) != 0)
2861 abort ();
2862 last_insn = insn;
2863 }
2864
2865 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2866
2867 rtx
2868 get_last_insn_anywhere (void)
2869 {
2870 struct sequence_stack *stack;
2871 if (last_insn)
2872 return last_insn;
2873 for (stack = seq_stack; stack; stack = stack->next)
2874 if (stack->last != 0)
2875 return stack->last;
2876 return 0;
2877 }
2878
2879 /* Return the first nonnote insn emitted in current sequence or current
2880 function. This routine looks inside SEQUENCEs. */
2881
2882 rtx
2883 get_first_nonnote_insn (void)
2884 {
2885 rtx insn = first_insn;
2886
2887 while (insn)
2888 {
2889 insn = next_insn (insn);
2890 if (insn == 0 || GET_CODE (insn) != NOTE)
2891 break;
2892 }
2893
2894 return insn;
2895 }
2896
2897 /* Return the last nonnote insn emitted in current sequence or current
2898 function. This routine looks inside SEQUENCEs. */
2899
2900 rtx
2901 get_last_nonnote_insn (void)
2902 {
2903 rtx insn = last_insn;
2904
2905 while (insn)
2906 {
2907 insn = previous_insn (insn);
2908 if (insn == 0 || GET_CODE (insn) != NOTE)
2909 break;
2910 }
2911
2912 return insn;
2913 }
2914
2915 /* Return a number larger than any instruction's uid in this function. */
2916
2917 int
2918 get_max_uid (void)
2919 {
2920 return cur_insn_uid;
2921 }
2922
2923 /* Renumber instructions so that no instruction UIDs are wasted. */
2924
2925 void
2926 renumber_insns (FILE *stream)
2927 {
2928 rtx insn;
2929
2930 /* If we're not supposed to renumber instructions, don't. */
2931 if (!flag_renumber_insns)
2932 return;
2933
2934 /* If there aren't that many instructions, then it's not really
2935 worth renumbering them. */
2936 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2937 return;
2938
2939 cur_insn_uid = 1;
2940
2941 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2942 {
2943 if (stream)
2944 fprintf (stream, "Renumbering insn %d to %d\n",
2945 INSN_UID (insn), cur_insn_uid);
2946 INSN_UID (insn) = cur_insn_uid++;
2947 }
2948 }
2949 \f
2950 /* Return the next insn. If it is a SEQUENCE, return the first insn
2951 of the sequence. */
2952
2953 rtx
2954 next_insn (rtx insn)
2955 {
2956 if (insn)
2957 {
2958 insn = NEXT_INSN (insn);
2959 if (insn && GET_CODE (insn) == INSN
2960 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2961 insn = XVECEXP (PATTERN (insn), 0, 0);
2962 }
2963
2964 return insn;
2965 }
2966
2967 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2968 of the sequence. */
2969
2970 rtx
2971 previous_insn (rtx insn)
2972 {
2973 if (insn)
2974 {
2975 insn = PREV_INSN (insn);
2976 if (insn && GET_CODE (insn) == INSN
2977 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2978 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2979 }
2980
2981 return insn;
2982 }
2983
2984 /* Return the next insn after INSN that is not a NOTE. This routine does not
2985 look inside SEQUENCEs. */
2986
2987 rtx
2988 next_nonnote_insn (rtx insn)
2989 {
2990 while (insn)
2991 {
2992 insn = NEXT_INSN (insn);
2993 if (insn == 0 || GET_CODE (insn) != NOTE)
2994 break;
2995 }
2996
2997 return insn;
2998 }
2999
3000 /* Return the previous insn before INSN that is not a NOTE. This routine does
3001 not look inside SEQUENCEs. */
3002
3003 rtx
3004 prev_nonnote_insn (rtx insn)
3005 {
3006 while (insn)
3007 {
3008 insn = PREV_INSN (insn);
3009 if (insn == 0 || GET_CODE (insn) != NOTE)
3010 break;
3011 }
3012
3013 return insn;
3014 }
3015
3016 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3017 or 0, if there is none. This routine does not look inside
3018 SEQUENCEs. */
3019
3020 rtx
3021 next_real_insn (rtx insn)
3022 {
3023 while (insn)
3024 {
3025 insn = NEXT_INSN (insn);
3026 if (insn == 0 || GET_CODE (insn) == INSN
3027 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3028 break;
3029 }
3030
3031 return insn;
3032 }
3033
3034 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3035 or 0, if there is none. This routine does not look inside
3036 SEQUENCEs. */
3037
3038 rtx
3039 prev_real_insn (rtx insn)
3040 {
3041 while (insn)
3042 {
3043 insn = PREV_INSN (insn);
3044 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3045 || GET_CODE (insn) == JUMP_INSN)
3046 break;
3047 }
3048
3049 return insn;
3050 }
3051
3052 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3053 This routine does not look inside SEQUENCEs. */
3054
3055 rtx
3056 last_call_insn (void)
3057 {
3058 rtx insn;
3059
3060 for (insn = get_last_insn ();
3061 insn && GET_CODE (insn) != CALL_INSN;
3062 insn = PREV_INSN (insn))
3063 ;
3064
3065 return insn;
3066 }
3067
3068 /* Find the next insn after INSN that really does something. This routine
3069 does not look inside SEQUENCEs. Until reload has completed, this is the
3070 same as next_real_insn. */
3071
3072 int
3073 active_insn_p (rtx insn)
3074 {
3075 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3076 || (GET_CODE (insn) == INSN
3077 && (! reload_completed
3078 || (GET_CODE (PATTERN (insn)) != USE
3079 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3080 }
3081
3082 rtx
3083 next_active_insn (rtx insn)
3084 {
3085 while (insn)
3086 {
3087 insn = NEXT_INSN (insn);
3088 if (insn == 0 || active_insn_p (insn))
3089 break;
3090 }
3091
3092 return insn;
3093 }
3094
3095 /* Find the last insn before INSN that really does something. This routine
3096 does not look inside SEQUENCEs. Until reload has completed, this is the
3097 same as prev_real_insn. */
3098
3099 rtx
3100 prev_active_insn (rtx insn)
3101 {
3102 while (insn)
3103 {
3104 insn = PREV_INSN (insn);
3105 if (insn == 0 || active_insn_p (insn))
3106 break;
3107 }
3108
3109 return insn;
3110 }
3111
3112 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3113
3114 rtx
3115 next_label (rtx insn)
3116 {
3117 while (insn)
3118 {
3119 insn = NEXT_INSN (insn);
3120 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3121 break;
3122 }
3123
3124 return insn;
3125 }
3126
3127 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3128
3129 rtx
3130 prev_label (rtx insn)
3131 {
3132 while (insn)
3133 {
3134 insn = PREV_INSN (insn);
3135 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3136 break;
3137 }
3138
3139 return insn;
3140 }
3141 \f
3142 #ifdef HAVE_cc0
3143 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3144 and REG_CC_USER notes so we can find it. */
3145
3146 void
3147 link_cc0_insns (rtx insn)
3148 {
3149 rtx user = next_nonnote_insn (insn);
3150
3151 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3152 user = XVECEXP (PATTERN (user), 0, 0);
3153
3154 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3155 REG_NOTES (user));
3156 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3157 }
3158
3159 /* Return the next insn that uses CC0 after INSN, which is assumed to
3160 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3161 applied to the result of this function should yield INSN).
3162
3163 Normally, this is simply the next insn. However, if a REG_CC_USER note
3164 is present, it contains the insn that uses CC0.
3165
3166 Return 0 if we can't find the insn. */
3167
3168 rtx
3169 next_cc0_user (rtx insn)
3170 {
3171 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3172
3173 if (note)
3174 return XEXP (note, 0);
3175
3176 insn = next_nonnote_insn (insn);
3177 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3178 insn = XVECEXP (PATTERN (insn), 0, 0);
3179
3180 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3181 return insn;
3182
3183 return 0;
3184 }
3185
3186 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3187 note, it is the previous insn. */
3188
3189 rtx
3190 prev_cc0_setter (rtx insn)
3191 {
3192 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3193
3194 if (note)
3195 return XEXP (note, 0);
3196
3197 insn = prev_nonnote_insn (insn);
3198 if (! sets_cc0_p (PATTERN (insn)))
3199 abort ();
3200
3201 return insn;
3202 }
3203 #endif
3204
3205 /* Increment the label uses for all labels present in rtx. */
3206
3207 static void
3208 mark_label_nuses (rtx x)
3209 {
3210 enum rtx_code code;
3211 int i, j;
3212 const char *fmt;
3213
3214 code = GET_CODE (x);
3215 if (code == LABEL_REF)
3216 LABEL_NUSES (XEXP (x, 0))++;
3217
3218 fmt = GET_RTX_FORMAT (code);
3219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3220 {
3221 if (fmt[i] == 'e')
3222 mark_label_nuses (XEXP (x, i));
3223 else if (fmt[i] == 'E')
3224 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3225 mark_label_nuses (XVECEXP (x, i, j));
3226 }
3227 }
3228
3229 \f
3230 /* Try splitting insns that can be split for better scheduling.
3231 PAT is the pattern which might split.
3232 TRIAL is the insn providing PAT.
3233 LAST is nonzero if we should return the last insn of the sequence produced.
3234
3235 If this routine succeeds in splitting, it returns the first or last
3236 replacement insn depending on the value of LAST. Otherwise, it
3237 returns TRIAL. If the insn to be returned can be split, it will be. */
3238
3239 rtx
3240 try_split (rtx pat, rtx trial, int last)
3241 {
3242 rtx before = PREV_INSN (trial);
3243 rtx after = NEXT_INSN (trial);
3244 int has_barrier = 0;
3245 rtx tem;
3246 rtx note, seq;
3247 int probability;
3248 rtx insn_last, insn;
3249 int njumps = 0;
3250
3251 if (any_condjump_p (trial)
3252 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3253 split_branch_probability = INTVAL (XEXP (note, 0));
3254 probability = split_branch_probability;
3255
3256 seq = split_insns (pat, trial);
3257
3258 split_branch_probability = -1;
3259
3260 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3261 We may need to handle this specially. */
3262 if (after && GET_CODE (after) == BARRIER)
3263 {
3264 has_barrier = 1;
3265 after = NEXT_INSN (after);
3266 }
3267
3268 if (!seq)
3269 return trial;
3270
3271 /* Avoid infinite loop if any insn of the result matches
3272 the original pattern. */
3273 insn_last = seq;
3274 while (1)
3275 {
3276 if (INSN_P (insn_last)
3277 && rtx_equal_p (PATTERN (insn_last), pat))
3278 return trial;
3279 if (!NEXT_INSN (insn_last))
3280 break;
3281 insn_last = NEXT_INSN (insn_last);
3282 }
3283
3284 /* Mark labels. */
3285 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3286 {
3287 if (GET_CODE (insn) == JUMP_INSN)
3288 {
3289 mark_jump_label (PATTERN (insn), insn, 0);
3290 njumps++;
3291 if (probability != -1
3292 && any_condjump_p (insn)
3293 && !find_reg_note (insn, REG_BR_PROB, 0))
3294 {
3295 /* We can preserve the REG_BR_PROB notes only if exactly
3296 one jump is created, otherwise the machine description
3297 is responsible for this step using
3298 split_branch_probability variable. */
3299 if (njumps != 1)
3300 abort ();
3301 REG_NOTES (insn)
3302 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3303 GEN_INT (probability),
3304 REG_NOTES (insn));
3305 }
3306 }
3307 }
3308
3309 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3310 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3311 if (GET_CODE (trial) == CALL_INSN)
3312 {
3313 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3314 if (GET_CODE (insn) == CALL_INSN)
3315 {
3316 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3317 while (*p)
3318 p = &XEXP (*p, 1);
3319 *p = CALL_INSN_FUNCTION_USAGE (trial);
3320 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3321 }
3322 }
3323
3324 /* Copy notes, particularly those related to the CFG. */
3325 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3326 {
3327 switch (REG_NOTE_KIND (note))
3328 {
3329 case REG_EH_REGION:
3330 insn = insn_last;
3331 while (insn != NULL_RTX)
3332 {
3333 if (GET_CODE (insn) == CALL_INSN
3334 || (flag_non_call_exceptions
3335 && may_trap_p (PATTERN (insn))))
3336 REG_NOTES (insn)
3337 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3338 XEXP (note, 0),
3339 REG_NOTES (insn));
3340 insn = PREV_INSN (insn);
3341 }
3342 break;
3343
3344 case REG_NORETURN:
3345 case REG_SETJMP:
3346 case REG_ALWAYS_RETURN:
3347 insn = insn_last;
3348 while (insn != NULL_RTX)
3349 {
3350 if (GET_CODE (insn) == CALL_INSN)
3351 REG_NOTES (insn)
3352 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3353 XEXP (note, 0),
3354 REG_NOTES (insn));
3355 insn = PREV_INSN (insn);
3356 }
3357 break;
3358
3359 case REG_NON_LOCAL_GOTO:
3360 insn = insn_last;
3361 while (insn != NULL_RTX)
3362 {
3363 if (GET_CODE (insn) == JUMP_INSN)
3364 REG_NOTES (insn)
3365 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3366 XEXP (note, 0),
3367 REG_NOTES (insn));
3368 insn = PREV_INSN (insn);
3369 }
3370 break;
3371
3372 default:
3373 break;
3374 }
3375 }
3376
3377 /* If there are LABELS inside the split insns increment the
3378 usage count so we don't delete the label. */
3379 if (GET_CODE (trial) == INSN)
3380 {
3381 insn = insn_last;
3382 while (insn != NULL_RTX)
3383 {
3384 if (GET_CODE (insn) == INSN)
3385 mark_label_nuses (PATTERN (insn));
3386
3387 insn = PREV_INSN (insn);
3388 }
3389 }
3390
3391 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3392
3393 delete_insn (trial);
3394 if (has_barrier)
3395 emit_barrier_after (tem);
3396
3397 /* Recursively call try_split for each new insn created; by the
3398 time control returns here that insn will be fully split, so
3399 set LAST and continue from the insn after the one returned.
3400 We can't use next_active_insn here since AFTER may be a note.
3401 Ignore deleted insns, which can be occur if not optimizing. */
3402 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3403 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3404 tem = try_split (PATTERN (tem), tem, 1);
3405
3406 /* Return either the first or the last insn, depending on which was
3407 requested. */
3408 return last
3409 ? (after ? PREV_INSN (after) : last_insn)
3410 : NEXT_INSN (before);
3411 }
3412 \f
3413 /* Make and return an INSN rtx, initializing all its slots.
3414 Store PATTERN in the pattern slots. */
3415
3416 rtx
3417 make_insn_raw (rtx pattern)
3418 {
3419 rtx insn;
3420
3421 insn = rtx_alloc (INSN);
3422
3423 INSN_UID (insn) = cur_insn_uid++;
3424 PATTERN (insn) = pattern;
3425 INSN_CODE (insn) = -1;
3426 LOG_LINKS (insn) = NULL;
3427 REG_NOTES (insn) = NULL;
3428 INSN_LOCATOR (insn) = 0;
3429 BLOCK_FOR_INSN (insn) = NULL;
3430
3431 #ifdef ENABLE_RTL_CHECKING
3432 if (insn
3433 && INSN_P (insn)
3434 && (returnjump_p (insn)
3435 || (GET_CODE (insn) == SET
3436 && SET_DEST (insn) == pc_rtx)))
3437 {
3438 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3439 debug_rtx (insn);
3440 }
3441 #endif
3442
3443 return insn;
3444 }
3445
3446 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3447
3448 static rtx
3449 make_jump_insn_raw (rtx pattern)
3450 {
3451 rtx insn;
3452
3453 insn = rtx_alloc (JUMP_INSN);
3454 INSN_UID (insn) = cur_insn_uid++;
3455
3456 PATTERN (insn) = pattern;
3457 INSN_CODE (insn) = -1;
3458 LOG_LINKS (insn) = NULL;
3459 REG_NOTES (insn) = NULL;
3460 JUMP_LABEL (insn) = NULL;
3461 INSN_LOCATOR (insn) = 0;
3462 BLOCK_FOR_INSN (insn) = NULL;
3463
3464 return insn;
3465 }
3466
3467 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3468
3469 static rtx
3470 make_call_insn_raw (rtx pattern)
3471 {
3472 rtx insn;
3473
3474 insn = rtx_alloc (CALL_INSN);
3475 INSN_UID (insn) = cur_insn_uid++;
3476
3477 PATTERN (insn) = pattern;
3478 INSN_CODE (insn) = -1;
3479 LOG_LINKS (insn) = NULL;
3480 REG_NOTES (insn) = NULL;
3481 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3482 INSN_LOCATOR (insn) = 0;
3483 BLOCK_FOR_INSN (insn) = NULL;
3484
3485 return insn;
3486 }
3487 \f
3488 /* Add INSN to the end of the doubly-linked list.
3489 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3490
3491 void
3492 add_insn (rtx insn)
3493 {
3494 PREV_INSN (insn) = last_insn;
3495 NEXT_INSN (insn) = 0;
3496
3497 if (NULL != last_insn)
3498 NEXT_INSN (last_insn) = insn;
3499
3500 if (NULL == first_insn)
3501 first_insn = insn;
3502
3503 last_insn = insn;
3504 }
3505
3506 /* Add INSN into the doubly-linked list after insn AFTER. This and
3507 the next should be the only functions called to insert an insn once
3508 delay slots have been filled since only they know how to update a
3509 SEQUENCE. */
3510
3511 void
3512 add_insn_after (rtx insn, rtx after)
3513 {
3514 rtx next = NEXT_INSN (after);
3515 basic_block bb;
3516
3517 if (optimize && INSN_DELETED_P (after))
3518 abort ();
3519
3520 NEXT_INSN (insn) = next;
3521 PREV_INSN (insn) = after;
3522
3523 if (next)
3524 {
3525 PREV_INSN (next) = insn;
3526 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3527 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3528 }
3529 else if (last_insn == after)
3530 last_insn = insn;
3531 else
3532 {
3533 struct sequence_stack *stack = seq_stack;
3534 /* Scan all pending sequences too. */
3535 for (; stack; stack = stack->next)
3536 if (after == stack->last)
3537 {
3538 stack->last = insn;
3539 break;
3540 }
3541
3542 if (stack == 0)
3543 abort ();
3544 }
3545
3546 if (GET_CODE (after) != BARRIER
3547 && GET_CODE (insn) != BARRIER
3548 && (bb = BLOCK_FOR_INSN (after)))
3549 {
3550 set_block_for_insn (insn, bb);
3551 if (INSN_P (insn))
3552 bb->flags |= BB_DIRTY;
3553 /* Should not happen as first in the BB is always
3554 either NOTE or LABEL. */
3555 if (BB_END (bb) == after
3556 /* Avoid clobbering of structure when creating new BB. */
3557 && GET_CODE (insn) != BARRIER
3558 && (GET_CODE (insn) != NOTE
3559 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3560 BB_END (bb) = insn;
3561 }
3562
3563 NEXT_INSN (after) = insn;
3564 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3565 {
3566 rtx sequence = PATTERN (after);
3567 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3568 }
3569 }
3570
3571 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3572 the previous should be the only functions called to insert an insn once
3573 delay slots have been filled since only they know how to update a
3574 SEQUENCE. */
3575
3576 void
3577 add_insn_before (rtx insn, rtx before)
3578 {
3579 rtx prev = PREV_INSN (before);
3580 basic_block bb;
3581
3582 if (optimize && INSN_DELETED_P (before))
3583 abort ();
3584
3585 PREV_INSN (insn) = prev;
3586 NEXT_INSN (insn) = before;
3587
3588 if (prev)
3589 {
3590 NEXT_INSN (prev) = insn;
3591 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3592 {
3593 rtx sequence = PATTERN (prev);
3594 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3595 }
3596 }
3597 else if (first_insn == before)
3598 first_insn = insn;
3599 else
3600 {
3601 struct sequence_stack *stack = seq_stack;
3602 /* Scan all pending sequences too. */
3603 for (; stack; stack = stack->next)
3604 if (before == stack->first)
3605 {
3606 stack->first = insn;
3607 break;
3608 }
3609
3610 if (stack == 0)
3611 abort ();
3612 }
3613
3614 if (GET_CODE (before) != BARRIER
3615 && GET_CODE (insn) != BARRIER
3616 && (bb = BLOCK_FOR_INSN (before)))
3617 {
3618 set_block_for_insn (insn, bb);
3619 if (INSN_P (insn))
3620 bb->flags |= BB_DIRTY;
3621 /* Should not happen as first in the BB is always
3622 either NOTE or LABEl. */
3623 if (BB_HEAD (bb) == insn
3624 /* Avoid clobbering of structure when creating new BB. */
3625 && GET_CODE (insn) != BARRIER
3626 && (GET_CODE (insn) != NOTE
3627 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3628 abort ();
3629 }
3630
3631 PREV_INSN (before) = insn;
3632 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3633 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3634 }
3635
3636 /* Remove an insn from its doubly-linked list. This function knows how
3637 to handle sequences. */
3638 void
3639 remove_insn (rtx insn)
3640 {
3641 rtx next = NEXT_INSN (insn);
3642 rtx prev = PREV_INSN (insn);
3643 basic_block bb;
3644
3645 if (prev)
3646 {
3647 NEXT_INSN (prev) = next;
3648 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3649 {
3650 rtx sequence = PATTERN (prev);
3651 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3652 }
3653 }
3654 else if (first_insn == insn)
3655 first_insn = next;
3656 else
3657 {
3658 struct sequence_stack *stack = seq_stack;
3659 /* Scan all pending sequences too. */
3660 for (; stack; stack = stack->next)
3661 if (insn == stack->first)
3662 {
3663 stack->first = next;
3664 break;
3665 }
3666
3667 if (stack == 0)
3668 abort ();
3669 }
3670
3671 if (next)
3672 {
3673 PREV_INSN (next) = prev;
3674 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3675 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3676 }
3677 else if (last_insn == insn)
3678 last_insn = prev;
3679 else
3680 {
3681 struct sequence_stack *stack = seq_stack;
3682 /* Scan all pending sequences too. */
3683 for (; stack; stack = stack->next)
3684 if (insn == stack->last)
3685 {
3686 stack->last = prev;
3687 break;
3688 }
3689
3690 if (stack == 0)
3691 abort ();
3692 }
3693 if (GET_CODE (insn) != BARRIER
3694 && (bb = BLOCK_FOR_INSN (insn)))
3695 {
3696 if (INSN_P (insn))
3697 bb->flags |= BB_DIRTY;
3698 if (BB_HEAD (bb) == insn)
3699 {
3700 /* Never ever delete the basic block note without deleting whole
3701 basic block. */
3702 if (GET_CODE (insn) == NOTE)
3703 abort ();
3704 BB_HEAD (bb) = next;
3705 }
3706 if (BB_END (bb) == insn)
3707 BB_END (bb) = prev;
3708 }
3709 }
3710
3711 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3712
3713 void
3714 add_function_usage_to (rtx call_insn, rtx call_fusage)
3715 {
3716 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3717 abort ();
3718
3719 /* Put the register usage information on the CALL. If there is already
3720 some usage information, put ours at the end. */
3721 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3722 {
3723 rtx link;
3724
3725 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3726 link = XEXP (link, 1))
3727 ;
3728
3729 XEXP (link, 1) = call_fusage;
3730 }
3731 else
3732 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3733 }
3734
3735 /* Delete all insns made since FROM.
3736 FROM becomes the new last instruction. */
3737
3738 void
3739 delete_insns_since (rtx from)
3740 {
3741 if (from == 0)
3742 first_insn = 0;
3743 else
3744 NEXT_INSN (from) = 0;
3745 last_insn = from;
3746 }
3747
3748 /* This function is deprecated, please use sequences instead.
3749
3750 Move a consecutive bunch of insns to a different place in the chain.
3751 The insns to be moved are those between FROM and TO.
3752 They are moved to a new position after the insn AFTER.
3753 AFTER must not be FROM or TO or any insn in between.
3754
3755 This function does not know about SEQUENCEs and hence should not be
3756 called after delay-slot filling has been done. */
3757
3758 void
3759 reorder_insns_nobb (rtx from, rtx to, rtx after)
3760 {
3761 /* Splice this bunch out of where it is now. */
3762 if (PREV_INSN (from))
3763 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3764 if (NEXT_INSN (to))
3765 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3766 if (last_insn == to)
3767 last_insn = PREV_INSN (from);
3768 if (first_insn == from)
3769 first_insn = NEXT_INSN (to);
3770
3771 /* Make the new neighbors point to it and it to them. */
3772 if (NEXT_INSN (after))
3773 PREV_INSN (NEXT_INSN (after)) = to;
3774
3775 NEXT_INSN (to) = NEXT_INSN (after);
3776 PREV_INSN (from) = after;
3777 NEXT_INSN (after) = from;
3778 if (after == last_insn)
3779 last_insn = to;
3780 }
3781
3782 /* Same as function above, but take care to update BB boundaries. */
3783 void
3784 reorder_insns (rtx from, rtx to, rtx after)
3785 {
3786 rtx prev = PREV_INSN (from);
3787 basic_block bb, bb2;
3788
3789 reorder_insns_nobb (from, to, after);
3790
3791 if (GET_CODE (after) != BARRIER
3792 && (bb = BLOCK_FOR_INSN (after)))
3793 {
3794 rtx x;
3795 bb->flags |= BB_DIRTY;
3796
3797 if (GET_CODE (from) != BARRIER
3798 && (bb2 = BLOCK_FOR_INSN (from)))
3799 {
3800 if (BB_END (bb2) == to)
3801 BB_END (bb2) = prev;
3802 bb2->flags |= BB_DIRTY;
3803 }
3804
3805 if (BB_END (bb) == after)
3806 BB_END (bb) = to;
3807
3808 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3809 set_block_for_insn (x, bb);
3810 }
3811 }
3812
3813 /* Return the line note insn preceding INSN. */
3814
3815 static rtx
3816 find_line_note (rtx insn)
3817 {
3818 if (no_line_numbers)
3819 return 0;
3820
3821 for (; insn; insn = PREV_INSN (insn))
3822 if (GET_CODE (insn) == NOTE
3823 && NOTE_LINE_NUMBER (insn) >= 0)
3824 break;
3825
3826 return insn;
3827 }
3828
3829 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3830 of the moved insns when debugging. This may insert a note between AFTER
3831 and FROM, and another one after TO. */
3832
3833 void
3834 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
3835 {
3836 rtx from_line = find_line_note (from);
3837 rtx after_line = find_line_note (after);
3838
3839 reorder_insns (from, to, after);
3840
3841 if (from_line == after_line)
3842 return;
3843
3844 if (from_line)
3845 emit_note_copy_after (from_line, after);
3846 if (after_line)
3847 emit_note_copy_after (after_line, to);
3848 }
3849
3850 /* Remove unnecessary notes from the instruction stream. */
3851
3852 void
3853 remove_unnecessary_notes (void)
3854 {
3855 rtx block_stack = NULL_RTX;
3856 rtx eh_stack = NULL_RTX;
3857 rtx insn;
3858 rtx next;
3859 rtx tmp;
3860
3861 /* We must not remove the first instruction in the function because
3862 the compiler depends on the first instruction being a note. */
3863 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3864 {
3865 /* Remember what's next. */
3866 next = NEXT_INSN (insn);
3867
3868 /* We're only interested in notes. */
3869 if (GET_CODE (insn) != NOTE)
3870 continue;
3871
3872 switch (NOTE_LINE_NUMBER (insn))
3873 {
3874 case NOTE_INSN_DELETED:
3875 case NOTE_INSN_LOOP_END_TOP_COND:
3876 remove_insn (insn);
3877 break;
3878
3879 case NOTE_INSN_EH_REGION_BEG:
3880 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3881 break;
3882
3883 case NOTE_INSN_EH_REGION_END:
3884 /* Too many end notes. */
3885 if (eh_stack == NULL_RTX)
3886 abort ();
3887 /* Mismatched nesting. */
3888 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3889 abort ();
3890 tmp = eh_stack;
3891 eh_stack = XEXP (eh_stack, 1);
3892 free_INSN_LIST_node (tmp);
3893 break;
3894
3895 case NOTE_INSN_BLOCK_BEG:
3896 /* By now, all notes indicating lexical blocks should have
3897 NOTE_BLOCK filled in. */
3898 if (NOTE_BLOCK (insn) == NULL_TREE)
3899 abort ();
3900 block_stack = alloc_INSN_LIST (insn, block_stack);
3901 break;
3902
3903 case NOTE_INSN_BLOCK_END:
3904 /* Too many end notes. */
3905 if (block_stack == NULL_RTX)
3906 abort ();
3907 /* Mismatched nesting. */
3908 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3909 abort ();
3910 tmp = block_stack;
3911 block_stack = XEXP (block_stack, 1);
3912 free_INSN_LIST_node (tmp);
3913
3914 /* Scan back to see if there are any non-note instructions
3915 between INSN and the beginning of this block. If not,
3916 then there is no PC range in the generated code that will
3917 actually be in this block, so there's no point in
3918 remembering the existence of the block. */
3919 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3920 {
3921 /* This block contains a real instruction. Note that we
3922 don't include labels; if the only thing in the block
3923 is a label, then there are still no PC values that
3924 lie within the block. */
3925 if (INSN_P (tmp))
3926 break;
3927
3928 /* We're only interested in NOTEs. */
3929 if (GET_CODE (tmp) != NOTE)
3930 continue;
3931
3932 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3933 {
3934 /* We just verified that this BLOCK matches us with
3935 the block_stack check above. Never delete the
3936 BLOCK for the outermost scope of the function; we
3937 can refer to names from that scope even if the
3938 block notes are messed up. */
3939 if (! is_body_block (NOTE_BLOCK (insn))
3940 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3941 {
3942 remove_insn (tmp);
3943 remove_insn (insn);
3944 }
3945 break;
3946 }
3947 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3948 /* There's a nested block. We need to leave the
3949 current block in place since otherwise the debugger
3950 wouldn't be able to show symbols from our block in
3951 the nested block. */
3952 break;
3953 }
3954 }
3955 }
3956
3957 /* Too many begin notes. */
3958 if (block_stack || eh_stack)
3959 abort ();
3960 }
3961
3962 \f
3963 /* Emit insn(s) of given code and pattern
3964 at a specified place within the doubly-linked list.
3965
3966 All of the emit_foo global entry points accept an object
3967 X which is either an insn list or a PATTERN of a single
3968 instruction.
3969
3970 There are thus a few canonical ways to generate code and
3971 emit it at a specific place in the instruction stream. For
3972 example, consider the instruction named SPOT and the fact that
3973 we would like to emit some instructions before SPOT. We might
3974 do it like this:
3975
3976 start_sequence ();
3977 ... emit the new instructions ...
3978 insns_head = get_insns ();
3979 end_sequence ();
3980
3981 emit_insn_before (insns_head, SPOT);
3982
3983 It used to be common to generate SEQUENCE rtl instead, but that
3984 is a relic of the past which no longer occurs. The reason is that
3985 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3986 generated would almost certainly die right after it was created. */
3987
3988 /* Make X be output before the instruction BEFORE. */
3989
3990 rtx
3991 emit_insn_before (rtx x, rtx before)
3992 {
3993 rtx last = before;
3994 rtx insn;
3995
3996 #ifdef ENABLE_RTL_CHECKING
3997 if (before == NULL_RTX)
3998 abort ();
3999 #endif
4000
4001 if (x == NULL_RTX)
4002 return last;
4003
4004 switch (GET_CODE (x))
4005 {
4006 case INSN:
4007 case JUMP_INSN:
4008 case CALL_INSN:
4009 case CODE_LABEL:
4010 case BARRIER:
4011 case NOTE:
4012 insn = x;
4013 while (insn)
4014 {
4015 rtx next = NEXT_INSN (insn);
4016 add_insn_before (insn, before);
4017 last = insn;
4018 insn = next;
4019 }
4020 break;
4021
4022 #ifdef ENABLE_RTL_CHECKING
4023 case SEQUENCE:
4024 abort ();
4025 break;
4026 #endif
4027
4028 default:
4029 last = make_insn_raw (x);
4030 add_insn_before (last, before);
4031 break;
4032 }
4033
4034 return last;
4035 }
4036
4037 /* Make an instruction with body X and code JUMP_INSN
4038 and output it before the instruction BEFORE. */
4039
4040 rtx
4041 emit_jump_insn_before (rtx x, rtx before)
4042 {
4043 rtx insn, last = NULL_RTX;
4044
4045 #ifdef ENABLE_RTL_CHECKING
4046 if (before == NULL_RTX)
4047 abort ();
4048 #endif
4049
4050 switch (GET_CODE (x))
4051 {
4052 case INSN:
4053 case JUMP_INSN:
4054 case CALL_INSN:
4055 case CODE_LABEL:
4056 case BARRIER:
4057 case NOTE:
4058 insn = x;
4059 while (insn)
4060 {
4061 rtx next = NEXT_INSN (insn);
4062 add_insn_before (insn, before);
4063 last = insn;
4064 insn = next;
4065 }
4066 break;
4067
4068 #ifdef ENABLE_RTL_CHECKING
4069 case SEQUENCE:
4070 abort ();
4071 break;
4072 #endif
4073
4074 default:
4075 last = make_jump_insn_raw (x);
4076 add_insn_before (last, before);
4077 break;
4078 }
4079
4080 return last;
4081 }
4082
4083 /* Make an instruction with body X and code CALL_INSN
4084 and output it before the instruction BEFORE. */
4085
4086 rtx
4087 emit_call_insn_before (rtx x, rtx before)
4088 {
4089 rtx last = NULL_RTX, insn;
4090
4091 #ifdef ENABLE_RTL_CHECKING
4092 if (before == NULL_RTX)
4093 abort ();
4094 #endif
4095
4096 switch (GET_CODE (x))
4097 {
4098 case INSN:
4099 case JUMP_INSN:
4100 case CALL_INSN:
4101 case CODE_LABEL:
4102 case BARRIER:
4103 case NOTE:
4104 insn = x;
4105 while (insn)
4106 {
4107 rtx next = NEXT_INSN (insn);
4108 add_insn_before (insn, before);
4109 last = insn;
4110 insn = next;
4111 }
4112 break;
4113
4114 #ifdef ENABLE_RTL_CHECKING
4115 case SEQUENCE:
4116 abort ();
4117 break;
4118 #endif
4119
4120 default:
4121 last = make_call_insn_raw (x);
4122 add_insn_before (last, before);
4123 break;
4124 }
4125
4126 return last;
4127 }
4128
4129 /* Make an insn of code BARRIER
4130 and output it before the insn BEFORE. */
4131
4132 rtx
4133 emit_barrier_before (rtx before)
4134 {
4135 rtx insn = rtx_alloc (BARRIER);
4136
4137 INSN_UID (insn) = cur_insn_uid++;
4138
4139 add_insn_before (insn, before);
4140 return insn;
4141 }
4142
4143 /* Emit the label LABEL before the insn BEFORE. */
4144
4145 rtx
4146 emit_label_before (rtx label, rtx before)
4147 {
4148 /* This can be called twice for the same label as a result of the
4149 confusion that follows a syntax error! So make it harmless. */
4150 if (INSN_UID (label) == 0)
4151 {
4152 INSN_UID (label) = cur_insn_uid++;
4153 add_insn_before (label, before);
4154 }
4155
4156 return label;
4157 }
4158
4159 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4160
4161 rtx
4162 emit_note_before (int subtype, rtx before)
4163 {
4164 rtx note = rtx_alloc (NOTE);
4165 INSN_UID (note) = cur_insn_uid++;
4166 NOTE_SOURCE_FILE (note) = 0;
4167 NOTE_LINE_NUMBER (note) = subtype;
4168 BLOCK_FOR_INSN (note) = NULL;
4169
4170 add_insn_before (note, before);
4171 return note;
4172 }
4173 \f
4174 /* Helper for emit_insn_after, handles lists of instructions
4175 efficiently. */
4176
4177 static rtx emit_insn_after_1 (rtx, rtx);
4178
4179 static rtx
4180 emit_insn_after_1 (rtx first, rtx after)
4181 {
4182 rtx last;
4183 rtx after_after;
4184 basic_block bb;
4185
4186 if (GET_CODE (after) != BARRIER
4187 && (bb = BLOCK_FOR_INSN (after)))
4188 {
4189 bb->flags |= BB_DIRTY;
4190 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4191 if (GET_CODE (last) != BARRIER)
4192 set_block_for_insn (last, bb);
4193 if (GET_CODE (last) != BARRIER)
4194 set_block_for_insn (last, bb);
4195 if (BB_END (bb) == after)
4196 BB_END (bb) = last;
4197 }
4198 else
4199 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4200 continue;
4201
4202 after_after = NEXT_INSN (after);
4203
4204 NEXT_INSN (after) = first;
4205 PREV_INSN (first) = after;
4206 NEXT_INSN (last) = after_after;
4207 if (after_after)
4208 PREV_INSN (after_after) = last;
4209
4210 if (after == last_insn)
4211 last_insn = last;
4212 return last;
4213 }
4214
4215 /* Make X be output after the insn AFTER. */
4216
4217 rtx
4218 emit_insn_after (rtx x, rtx after)
4219 {
4220 rtx last = after;
4221
4222 #ifdef ENABLE_RTL_CHECKING
4223 if (after == NULL_RTX)
4224 abort ();
4225 #endif
4226
4227 if (x == NULL_RTX)
4228 return last;
4229
4230 switch (GET_CODE (x))
4231 {
4232 case INSN:
4233 case JUMP_INSN:
4234 case CALL_INSN:
4235 case CODE_LABEL:
4236 case BARRIER:
4237 case NOTE:
4238 last = emit_insn_after_1 (x, after);
4239 break;
4240
4241 #ifdef ENABLE_RTL_CHECKING
4242 case SEQUENCE:
4243 abort ();
4244 break;
4245 #endif
4246
4247 default:
4248 last = make_insn_raw (x);
4249 add_insn_after (last, after);
4250 break;
4251 }
4252
4253 return last;
4254 }
4255
4256 /* Similar to emit_insn_after, except that line notes are to be inserted so
4257 as to act as if this insn were at FROM. */
4258
4259 void
4260 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4261 {
4262 rtx from_line = find_line_note (from);
4263 rtx after_line = find_line_note (after);
4264 rtx insn = emit_insn_after (x, after);
4265
4266 if (from_line)
4267 emit_note_copy_after (from_line, after);
4268
4269 if (after_line)
4270 emit_note_copy_after (after_line, insn);
4271 }
4272
4273 /* Make an insn of code JUMP_INSN with body X
4274 and output it after the insn AFTER. */
4275
4276 rtx
4277 emit_jump_insn_after (rtx x, rtx after)
4278 {
4279 rtx last;
4280
4281 #ifdef ENABLE_RTL_CHECKING
4282 if (after == NULL_RTX)
4283 abort ();
4284 #endif
4285
4286 switch (GET_CODE (x))
4287 {
4288 case INSN:
4289 case JUMP_INSN:
4290 case CALL_INSN:
4291 case CODE_LABEL:
4292 case BARRIER:
4293 case NOTE:
4294 last = emit_insn_after_1 (x, after);
4295 break;
4296
4297 #ifdef ENABLE_RTL_CHECKING
4298 case SEQUENCE:
4299 abort ();
4300 break;
4301 #endif
4302
4303 default:
4304 last = make_jump_insn_raw (x);
4305 add_insn_after (last, after);
4306 break;
4307 }
4308
4309 return last;
4310 }
4311
4312 /* Make an instruction with body X and code CALL_INSN
4313 and output it after the instruction AFTER. */
4314
4315 rtx
4316 emit_call_insn_after (rtx x, rtx after)
4317 {
4318 rtx last;
4319
4320 #ifdef ENABLE_RTL_CHECKING
4321 if (after == NULL_RTX)
4322 abort ();
4323 #endif
4324
4325 switch (GET_CODE (x))
4326 {
4327 case INSN:
4328 case JUMP_INSN:
4329 case CALL_INSN:
4330 case CODE_LABEL:
4331 case BARRIER:
4332 case NOTE:
4333 last = emit_insn_after_1 (x, after);
4334 break;
4335
4336 #ifdef ENABLE_RTL_CHECKING
4337 case SEQUENCE:
4338 abort ();
4339 break;
4340 #endif
4341
4342 default:
4343 last = make_call_insn_raw (x);
4344 add_insn_after (last, after);
4345 break;
4346 }
4347
4348 return last;
4349 }
4350
4351 /* Make an insn of code BARRIER
4352 and output it after the insn AFTER. */
4353
4354 rtx
4355 emit_barrier_after (rtx after)
4356 {
4357 rtx insn = rtx_alloc (BARRIER);
4358
4359 INSN_UID (insn) = cur_insn_uid++;
4360
4361 add_insn_after (insn, after);
4362 return insn;
4363 }
4364
4365 /* Emit the label LABEL after the insn AFTER. */
4366
4367 rtx
4368 emit_label_after (rtx label, rtx after)
4369 {
4370 /* This can be called twice for the same label
4371 as a result of the confusion that follows a syntax error!
4372 So make it harmless. */
4373 if (INSN_UID (label) == 0)
4374 {
4375 INSN_UID (label) = cur_insn_uid++;
4376 add_insn_after (label, after);
4377 }
4378
4379 return label;
4380 }
4381
4382 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4383
4384 rtx
4385 emit_note_after (int subtype, rtx after)
4386 {
4387 rtx note = rtx_alloc (NOTE);
4388 INSN_UID (note) = cur_insn_uid++;
4389 NOTE_SOURCE_FILE (note) = 0;
4390 NOTE_LINE_NUMBER (note) = subtype;
4391 BLOCK_FOR_INSN (note) = NULL;
4392 add_insn_after (note, after);
4393 return note;
4394 }
4395
4396 /* Emit a copy of note ORIG after the insn AFTER. */
4397
4398 rtx
4399 emit_note_copy_after (rtx orig, rtx after)
4400 {
4401 rtx note;
4402
4403 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4404 {
4405 cur_insn_uid++;
4406 return 0;
4407 }
4408
4409 note = rtx_alloc (NOTE);
4410 INSN_UID (note) = cur_insn_uid++;
4411 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4412 NOTE_DATA (note) = NOTE_DATA (orig);
4413 BLOCK_FOR_INSN (note) = NULL;
4414 add_insn_after (note, after);
4415 return note;
4416 }
4417 \f
4418 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4419 rtx
4420 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4421 {
4422 rtx last = emit_insn_after (pattern, after);
4423
4424 if (pattern == NULL_RTX)
4425 return last;
4426
4427 after = NEXT_INSN (after);
4428 while (1)
4429 {
4430 if (active_insn_p (after))
4431 INSN_LOCATOR (after) = loc;
4432 if (after == last)
4433 break;
4434 after = NEXT_INSN (after);
4435 }
4436 return last;
4437 }
4438
4439 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4440 rtx
4441 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4442 {
4443 rtx last = emit_jump_insn_after (pattern, after);
4444
4445 if (pattern == NULL_RTX)
4446 return last;
4447
4448 after = NEXT_INSN (after);
4449 while (1)
4450 {
4451 if (active_insn_p (after))
4452 INSN_LOCATOR (after) = loc;
4453 if (after == last)
4454 break;
4455 after = NEXT_INSN (after);
4456 }
4457 return last;
4458 }
4459
4460 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4461 rtx
4462 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4463 {
4464 rtx last = emit_call_insn_after (pattern, after);
4465
4466 if (pattern == NULL_RTX)
4467 return last;
4468
4469 after = NEXT_INSN (after);
4470 while (1)
4471 {
4472 if (active_insn_p (after))
4473 INSN_LOCATOR (after) = loc;
4474 if (after == last)
4475 break;
4476 after = NEXT_INSN (after);
4477 }
4478 return last;
4479 }
4480
4481 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4482 rtx
4483 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4484 {
4485 rtx first = PREV_INSN (before);
4486 rtx last = emit_insn_before (pattern, before);
4487
4488 if (pattern == NULL_RTX)
4489 return last;
4490
4491 first = NEXT_INSN (first);
4492 while (1)
4493 {
4494 if (active_insn_p (first))
4495 INSN_LOCATOR (first) = loc;
4496 if (first == last)
4497 break;
4498 first = NEXT_INSN (first);
4499 }
4500 return last;
4501 }
4502 \f
4503 /* Take X and emit it at the end of the doubly-linked
4504 INSN list.
4505
4506 Returns the last insn emitted. */
4507
4508 rtx
4509 emit_insn (rtx x)
4510 {
4511 rtx last = last_insn;
4512 rtx insn;
4513
4514 if (x == NULL_RTX)
4515 return last;
4516
4517 switch (GET_CODE (x))
4518 {
4519 case INSN:
4520 case JUMP_INSN:
4521 case CALL_INSN:
4522 case CODE_LABEL:
4523 case BARRIER:
4524 case NOTE:
4525 insn = x;
4526 while (insn)
4527 {
4528 rtx next = NEXT_INSN (insn);
4529 add_insn (insn);
4530 last = insn;
4531 insn = next;
4532 }
4533 break;
4534
4535 #ifdef ENABLE_RTL_CHECKING
4536 case SEQUENCE:
4537 abort ();
4538 break;
4539 #endif
4540
4541 default:
4542 last = make_insn_raw (x);
4543 add_insn (last);
4544 break;
4545 }
4546
4547 return last;
4548 }
4549
4550 /* Make an insn of code JUMP_INSN with pattern X
4551 and add it to the end of the doubly-linked list. */
4552
4553 rtx
4554 emit_jump_insn (rtx x)
4555 {
4556 rtx last = NULL_RTX, insn;
4557
4558 switch (GET_CODE (x))
4559 {
4560 case INSN:
4561 case JUMP_INSN:
4562 case CALL_INSN:
4563 case CODE_LABEL:
4564 case BARRIER:
4565 case NOTE:
4566 insn = x;
4567 while (insn)
4568 {
4569 rtx next = NEXT_INSN (insn);
4570 add_insn (insn);
4571 last = insn;
4572 insn = next;
4573 }
4574 break;
4575
4576 #ifdef ENABLE_RTL_CHECKING
4577 case SEQUENCE:
4578 abort ();
4579 break;
4580 #endif
4581
4582 default:
4583 last = make_jump_insn_raw (x);
4584 add_insn (last);
4585 break;
4586 }
4587
4588 return last;
4589 }
4590
4591 /* Make an insn of code CALL_INSN with pattern X
4592 and add it to the end of the doubly-linked list. */
4593
4594 rtx
4595 emit_call_insn (rtx x)
4596 {
4597 rtx insn;
4598
4599 switch (GET_CODE (x))
4600 {
4601 case INSN:
4602 case JUMP_INSN:
4603 case CALL_INSN:
4604 case CODE_LABEL:
4605 case BARRIER:
4606 case NOTE:
4607 insn = emit_insn (x);
4608 break;
4609
4610 #ifdef ENABLE_RTL_CHECKING
4611 case SEQUENCE:
4612 abort ();
4613 break;
4614 #endif
4615
4616 default:
4617 insn = make_call_insn_raw (x);
4618 add_insn (insn);
4619 break;
4620 }
4621
4622 return insn;
4623 }
4624
4625 /* Add the label LABEL to the end of the doubly-linked list. */
4626
4627 rtx
4628 emit_label (rtx label)
4629 {
4630 /* This can be called twice for the same label
4631 as a result of the confusion that follows a syntax error!
4632 So make it harmless. */
4633 if (INSN_UID (label) == 0)
4634 {
4635 INSN_UID (label) = cur_insn_uid++;
4636 add_insn (label);
4637 }
4638 return label;
4639 }
4640
4641 /* Make an insn of code BARRIER
4642 and add it to the end of the doubly-linked list. */
4643
4644 rtx
4645 emit_barrier (void)
4646 {
4647 rtx barrier = rtx_alloc (BARRIER);
4648 INSN_UID (barrier) = cur_insn_uid++;
4649 add_insn (barrier);
4650 return barrier;
4651 }
4652
4653 /* Make line numbering NOTE insn for LOCATION add it to the end
4654 of the doubly-linked list, but only if line-numbers are desired for
4655 debugging info and it doesn't match the previous one. */
4656
4657 rtx
4658 emit_line_note (location_t location)
4659 {
4660 rtx note;
4661
4662 set_file_and_line_for_stmt (location);
4663
4664 if (location.file && last_location.file
4665 && !strcmp (location.file, last_location.file)
4666 && location.line == last_location.line)
4667 return NULL_RTX;
4668 last_location = location;
4669
4670 if (no_line_numbers)
4671 {
4672 cur_insn_uid++;
4673 return NULL_RTX;
4674 }
4675
4676 note = emit_note (location.line);
4677 NOTE_SOURCE_FILE (note) = location.file;
4678
4679 return note;
4680 }
4681
4682 /* Emit a copy of note ORIG. */
4683
4684 rtx
4685 emit_note_copy (rtx orig)
4686 {
4687 rtx note;
4688
4689 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4690 {
4691 cur_insn_uid++;
4692 return NULL_RTX;
4693 }
4694
4695 note = rtx_alloc (NOTE);
4696
4697 INSN_UID (note) = cur_insn_uid++;
4698 NOTE_DATA (note) = NOTE_DATA (orig);
4699 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4700 BLOCK_FOR_INSN (note) = NULL;
4701 add_insn (note);
4702
4703 return note;
4704 }
4705
4706 /* Make an insn of code NOTE or type NOTE_NO
4707 and add it to the end of the doubly-linked list. */
4708
4709 rtx
4710 emit_note (int note_no)
4711 {
4712 rtx note;
4713
4714 note = rtx_alloc (NOTE);
4715 INSN_UID (note) = cur_insn_uid++;
4716 NOTE_LINE_NUMBER (note) = note_no;
4717 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4718 BLOCK_FOR_INSN (note) = NULL;
4719 add_insn (note);
4720 return note;
4721 }
4722
4723 /* Cause next statement to emit a line note even if the line number
4724 has not changed. */
4725
4726 void
4727 force_next_line_note (void)
4728 {
4729 last_location.line = -1;
4730 }
4731
4732 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4733 note of this type already exists, remove it first. */
4734
4735 rtx
4736 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4737 {
4738 rtx note = find_reg_note (insn, kind, NULL_RTX);
4739
4740 switch (kind)
4741 {
4742 case REG_EQUAL:
4743 case REG_EQUIV:
4744 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4745 has multiple sets (some callers assume single_set
4746 means the insn only has one set, when in fact it
4747 means the insn only has one * useful * set). */
4748 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4749 {
4750 if (note)
4751 abort ();
4752 return NULL_RTX;
4753 }
4754
4755 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4756 It serves no useful purpose and breaks eliminate_regs. */
4757 if (GET_CODE (datum) == ASM_OPERANDS)
4758 return NULL_RTX;
4759 break;
4760
4761 default:
4762 break;
4763 }
4764
4765 if (note)
4766 {
4767 XEXP (note, 0) = datum;
4768 return note;
4769 }
4770
4771 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4772 return REG_NOTES (insn);
4773 }
4774 \f
4775 /* Return an indication of which type of insn should have X as a body.
4776 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4777
4778 enum rtx_code
4779 classify_insn (rtx x)
4780 {
4781 if (GET_CODE (x) == CODE_LABEL)
4782 return CODE_LABEL;
4783 if (GET_CODE (x) == CALL)
4784 return CALL_INSN;
4785 if (GET_CODE (x) == RETURN)
4786 return JUMP_INSN;
4787 if (GET_CODE (x) == SET)
4788 {
4789 if (SET_DEST (x) == pc_rtx)
4790 return JUMP_INSN;
4791 else if (GET_CODE (SET_SRC (x)) == CALL)
4792 return CALL_INSN;
4793 else
4794 return INSN;
4795 }
4796 if (GET_CODE (x) == PARALLEL)
4797 {
4798 int j;
4799 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4800 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4801 return CALL_INSN;
4802 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4803 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4804 return JUMP_INSN;
4805 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4806 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4807 return CALL_INSN;
4808 }
4809 return INSN;
4810 }
4811
4812 /* Emit the rtl pattern X as an appropriate kind of insn.
4813 If X is a label, it is simply added into the insn chain. */
4814
4815 rtx
4816 emit (rtx x)
4817 {
4818 enum rtx_code code = classify_insn (x);
4819
4820 if (code == CODE_LABEL)
4821 return emit_label (x);
4822 else if (code == INSN)
4823 return emit_insn (x);
4824 else if (code == JUMP_INSN)
4825 {
4826 rtx insn = emit_jump_insn (x);
4827 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4828 return emit_barrier ();
4829 return insn;
4830 }
4831 else if (code == CALL_INSN)
4832 return emit_call_insn (x);
4833 else
4834 abort ();
4835 }
4836 \f
4837 /* Space for free sequence stack entries. */
4838 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4839
4840 /* Begin emitting insns to a sequence which can be packaged in an
4841 RTL_EXPR. If this sequence will contain something that might cause
4842 the compiler to pop arguments to function calls (because those
4843 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4844 details), use do_pending_stack_adjust before calling this function.
4845 That will ensure that the deferred pops are not accidentally
4846 emitted in the middle of this sequence. */
4847
4848 void
4849 start_sequence (void)
4850 {
4851 struct sequence_stack *tem;
4852
4853 if (free_sequence_stack != NULL)
4854 {
4855 tem = free_sequence_stack;
4856 free_sequence_stack = tem->next;
4857 }
4858 else
4859 tem = ggc_alloc (sizeof (struct sequence_stack));
4860
4861 tem->next = seq_stack;
4862 tem->first = first_insn;
4863 tem->last = last_insn;
4864 tem->sequence_rtl_expr = seq_rtl_expr;
4865
4866 seq_stack = tem;
4867
4868 first_insn = 0;
4869 last_insn = 0;
4870 }
4871
4872 /* Similarly, but indicate that this sequence will be placed in T, an
4873 RTL_EXPR. See the documentation for start_sequence for more
4874 information about how to use this function. */
4875
4876 void
4877 start_sequence_for_rtl_expr (tree t)
4878 {
4879 start_sequence ();
4880
4881 seq_rtl_expr = t;
4882 }
4883
4884 /* Set up the insn chain starting with FIRST as the current sequence,
4885 saving the previously current one. See the documentation for
4886 start_sequence for more information about how to use this function. */
4887
4888 void
4889 push_to_sequence (rtx first)
4890 {
4891 rtx last;
4892
4893 start_sequence ();
4894
4895 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4896
4897 first_insn = first;
4898 last_insn = last;
4899 }
4900
4901 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4902
4903 void
4904 push_to_full_sequence (rtx first, rtx last)
4905 {
4906 start_sequence ();
4907 first_insn = first;
4908 last_insn = last;
4909 /* We really should have the end of the insn chain here. */
4910 if (last && NEXT_INSN (last))
4911 abort ();
4912 }
4913
4914 /* Set up the outer-level insn chain
4915 as the current sequence, saving the previously current one. */
4916
4917 void
4918 push_topmost_sequence (void)
4919 {
4920 struct sequence_stack *stack, *top = NULL;
4921
4922 start_sequence ();
4923
4924 for (stack = seq_stack; stack; stack = stack->next)
4925 top = stack;
4926
4927 first_insn = top->first;
4928 last_insn = top->last;
4929 seq_rtl_expr = top->sequence_rtl_expr;
4930 }
4931
4932 /* After emitting to the outer-level insn chain, update the outer-level
4933 insn chain, and restore the previous saved state. */
4934
4935 void
4936 pop_topmost_sequence (void)
4937 {
4938 struct sequence_stack *stack, *top = NULL;
4939
4940 for (stack = seq_stack; stack; stack = stack->next)
4941 top = stack;
4942
4943 top->first = first_insn;
4944 top->last = last_insn;
4945 /* ??? Why don't we save seq_rtl_expr here? */
4946
4947 end_sequence ();
4948 }
4949
4950 /* After emitting to a sequence, restore previous saved state.
4951
4952 To get the contents of the sequence just made, you must call
4953 `get_insns' *before* calling here.
4954
4955 If the compiler might have deferred popping arguments while
4956 generating this sequence, and this sequence will not be immediately
4957 inserted into the instruction stream, use do_pending_stack_adjust
4958 before calling get_insns. That will ensure that the deferred
4959 pops are inserted into this sequence, and not into some random
4960 location in the instruction stream. See INHIBIT_DEFER_POP for more
4961 information about deferred popping of arguments. */
4962
4963 void
4964 end_sequence (void)
4965 {
4966 struct sequence_stack *tem = seq_stack;
4967
4968 first_insn = tem->first;
4969 last_insn = tem->last;
4970 seq_rtl_expr = tem->sequence_rtl_expr;
4971 seq_stack = tem->next;
4972
4973 memset (tem, 0, sizeof (*tem));
4974 tem->next = free_sequence_stack;
4975 free_sequence_stack = tem;
4976 }
4977
4978 /* This works like end_sequence, but records the old sequence in FIRST
4979 and LAST. */
4980
4981 void
4982 end_full_sequence (rtx *first, rtx *last)
4983 {
4984 *first = first_insn;
4985 *last = last_insn;
4986 end_sequence ();
4987 }
4988
4989 /* Return 1 if currently emitting into a sequence. */
4990
4991 int
4992 in_sequence_p (void)
4993 {
4994 return seq_stack != 0;
4995 }
4996 \f
4997 /* Put the various virtual registers into REGNO_REG_RTX. */
4998
4999 void
5000 init_virtual_regs (struct emit_status *es)
5001 {
5002 rtx *ptr = es->x_regno_reg_rtx;
5003 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5004 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5005 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5006 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5007 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5008 }
5009
5010 \f
5011 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5012 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5013 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5014 static int copy_insn_n_scratches;
5015
5016 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5017 copied an ASM_OPERANDS.
5018 In that case, it is the original input-operand vector. */
5019 static rtvec orig_asm_operands_vector;
5020
5021 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5022 copied an ASM_OPERANDS.
5023 In that case, it is the copied input-operand vector. */
5024 static rtvec copy_asm_operands_vector;
5025
5026 /* Likewise for the constraints vector. */
5027 static rtvec orig_asm_constraints_vector;
5028 static rtvec copy_asm_constraints_vector;
5029
5030 /* Recursively create a new copy of an rtx for copy_insn.
5031 This function differs from copy_rtx in that it handles SCRATCHes and
5032 ASM_OPERANDs properly.
5033 Normally, this function is not used directly; use copy_insn as front end.
5034 However, you could first copy an insn pattern with copy_insn and then use
5035 this function afterwards to properly copy any REG_NOTEs containing
5036 SCRATCHes. */
5037
5038 rtx
5039 copy_insn_1 (rtx orig)
5040 {
5041 rtx copy;
5042 int i, j;
5043 RTX_CODE code;
5044 const char *format_ptr;
5045
5046 code = GET_CODE (orig);
5047
5048 switch (code)
5049 {
5050 case REG:
5051 case QUEUED:
5052 case CONST_INT:
5053 case CONST_DOUBLE:
5054 case CONST_VECTOR:
5055 case SYMBOL_REF:
5056 case CODE_LABEL:
5057 case PC:
5058 case CC0:
5059 case ADDRESSOF:
5060 return orig;
5061 case CLOBBER:
5062 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5063 return orig;
5064 break;
5065
5066 case SCRATCH:
5067 for (i = 0; i < copy_insn_n_scratches; i++)
5068 if (copy_insn_scratch_in[i] == orig)
5069 return copy_insn_scratch_out[i];
5070 break;
5071
5072 case CONST:
5073 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5074 a LABEL_REF, it isn't sharable. */
5075 if (GET_CODE (XEXP (orig, 0)) == PLUS
5076 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5077 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5078 return orig;
5079 break;
5080
5081 /* A MEM with a constant address is not sharable. The problem is that
5082 the constant address may need to be reloaded. If the mem is shared,
5083 then reloading one copy of this mem will cause all copies to appear
5084 to have been reloaded. */
5085
5086 default:
5087 break;
5088 }
5089
5090 copy = rtx_alloc (code);
5091
5092 /* Copy the various flags, and other information. We assume that
5093 all fields need copying, and then clear the fields that should
5094 not be copied. That is the sensible default behavior, and forces
5095 us to explicitly document why we are *not* copying a flag. */
5096 memcpy (copy, orig, RTX_HDR_SIZE);
5097
5098 /* We do not copy the USED flag, which is used as a mark bit during
5099 walks over the RTL. */
5100 RTX_FLAG (copy, used) = 0;
5101
5102 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5103 if (GET_RTX_CLASS (code) == 'i')
5104 {
5105 RTX_FLAG (copy, jump) = 0;
5106 RTX_FLAG (copy, call) = 0;
5107 RTX_FLAG (copy, frame_related) = 0;
5108 }
5109
5110 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5111
5112 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5113 {
5114 copy->u.fld[i] = orig->u.fld[i];
5115 switch (*format_ptr++)
5116 {
5117 case 'e':
5118 if (XEXP (orig, i) != NULL)
5119 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5120 break;
5121
5122 case 'E':
5123 case 'V':
5124 if (XVEC (orig, i) == orig_asm_constraints_vector)
5125 XVEC (copy, i) = copy_asm_constraints_vector;
5126 else if (XVEC (orig, i) == orig_asm_operands_vector)
5127 XVEC (copy, i) = copy_asm_operands_vector;
5128 else if (XVEC (orig, i) != NULL)
5129 {
5130 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5131 for (j = 0; j < XVECLEN (copy, i); j++)
5132 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5133 }
5134 break;
5135
5136 case 't':
5137 case 'w':
5138 case 'i':
5139 case 's':
5140 case 'S':
5141 case 'u':
5142 case '0':
5143 /* These are left unchanged. */
5144 break;
5145
5146 default:
5147 abort ();
5148 }
5149 }
5150
5151 if (code == SCRATCH)
5152 {
5153 i = copy_insn_n_scratches++;
5154 if (i >= MAX_RECOG_OPERANDS)
5155 abort ();
5156 copy_insn_scratch_in[i] = orig;
5157 copy_insn_scratch_out[i] = copy;
5158 }
5159 else if (code == ASM_OPERANDS)
5160 {
5161 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5162 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5163 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5164 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5165 }
5166
5167 return copy;
5168 }
5169
5170 /* Create a new copy of an rtx.
5171 This function differs from copy_rtx in that it handles SCRATCHes and
5172 ASM_OPERANDs properly.
5173 INSN doesn't really have to be a full INSN; it could be just the
5174 pattern. */
5175 rtx
5176 copy_insn (rtx insn)
5177 {
5178 copy_insn_n_scratches = 0;
5179 orig_asm_operands_vector = 0;
5180 orig_asm_constraints_vector = 0;
5181 copy_asm_operands_vector = 0;
5182 copy_asm_constraints_vector = 0;
5183 return copy_insn_1 (insn);
5184 }
5185
5186 /* Initialize data structures and variables in this file
5187 before generating rtl for each function. */
5188
5189 void
5190 init_emit (void)
5191 {
5192 struct function *f = cfun;
5193
5194 f->emit = ggc_alloc (sizeof (struct emit_status));
5195 first_insn = NULL;
5196 last_insn = NULL;
5197 seq_rtl_expr = NULL;
5198 cur_insn_uid = 1;
5199 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5200 last_location.line = 0;
5201 last_location.file = 0;
5202 first_label_num = label_num;
5203 last_label_num = 0;
5204 seq_stack = NULL;
5205
5206 /* Init the tables that describe all the pseudo regs. */
5207
5208 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5209
5210 f->emit->regno_pointer_align
5211 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5212 * sizeof (unsigned char));
5213
5214 regno_reg_rtx
5215 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5216
5217 /* Put copies of all the hard registers into regno_reg_rtx. */
5218 memcpy (regno_reg_rtx,
5219 static_regno_reg_rtx,
5220 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5221
5222 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5223 init_virtual_regs (f->emit);
5224
5225 /* Indicate that the virtual registers and stack locations are
5226 all pointers. */
5227 REG_POINTER (stack_pointer_rtx) = 1;
5228 REG_POINTER (frame_pointer_rtx) = 1;
5229 REG_POINTER (hard_frame_pointer_rtx) = 1;
5230 REG_POINTER (arg_pointer_rtx) = 1;
5231
5232 REG_POINTER (virtual_incoming_args_rtx) = 1;
5233 REG_POINTER (virtual_stack_vars_rtx) = 1;
5234 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5235 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5236 REG_POINTER (virtual_cfa_rtx) = 1;
5237
5238 #ifdef STACK_BOUNDARY
5239 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5240 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5241 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5242 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5243
5244 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5245 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5246 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5247 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5248 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5249 #endif
5250
5251 #ifdef INIT_EXPANDERS
5252 INIT_EXPANDERS;
5253 #endif
5254 }
5255
5256 /* Generate the constant 0. */
5257
5258 static rtx
5259 gen_const_vector_0 (enum machine_mode mode)
5260 {
5261 rtx tem;
5262 rtvec v;
5263 int units, i;
5264 enum machine_mode inner;
5265
5266 units = GET_MODE_NUNITS (mode);
5267 inner = GET_MODE_INNER (mode);
5268
5269 v = rtvec_alloc (units);
5270
5271 /* We need to call this function after we to set CONST0_RTX first. */
5272 if (!CONST0_RTX (inner))
5273 abort ();
5274
5275 for (i = 0; i < units; ++i)
5276 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5277
5278 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5279 return tem;
5280 }
5281
5282 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5283 all elements are zero. */
5284 rtx
5285 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5286 {
5287 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5288 int i;
5289
5290 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5291 if (RTVEC_ELT (v, i) != inner_zero)
5292 return gen_rtx_raw_CONST_VECTOR (mode, v);
5293 return CONST0_RTX (mode);
5294 }
5295
5296 /* Create some permanent unique rtl objects shared between all functions.
5297 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5298
5299 void
5300 init_emit_once (int line_numbers)
5301 {
5302 int i;
5303 enum machine_mode mode;
5304 enum machine_mode double_mode;
5305
5306 /* We need reg_raw_mode, so initialize the modes now. */
5307 init_reg_modes_once ();
5308
5309 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5310 tables. */
5311 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5312 const_int_htab_eq, NULL);
5313
5314 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5315 const_double_htab_eq, NULL);
5316
5317 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5318 mem_attrs_htab_eq, NULL);
5319 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5320 reg_attrs_htab_eq, NULL);
5321
5322 no_line_numbers = ! line_numbers;
5323
5324 /* Compute the word and byte modes. */
5325
5326 byte_mode = VOIDmode;
5327 word_mode = VOIDmode;
5328 double_mode = VOIDmode;
5329
5330 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5331 mode = GET_MODE_WIDER_MODE (mode))
5332 {
5333 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5334 && byte_mode == VOIDmode)
5335 byte_mode = mode;
5336
5337 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5338 && word_mode == VOIDmode)
5339 word_mode = mode;
5340 }
5341
5342 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5343 mode = GET_MODE_WIDER_MODE (mode))
5344 {
5345 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5346 && double_mode == VOIDmode)
5347 double_mode = mode;
5348 }
5349
5350 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5351
5352 /* Assign register numbers to the globally defined register rtx.
5353 This must be done at runtime because the register number field
5354 is in a union and some compilers can't initialize unions. */
5355
5356 pc_rtx = gen_rtx (PC, VOIDmode);
5357 cc0_rtx = gen_rtx (CC0, VOIDmode);
5358 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5359 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5360 if (hard_frame_pointer_rtx == 0)
5361 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5362 HARD_FRAME_POINTER_REGNUM);
5363 if (arg_pointer_rtx == 0)
5364 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5365 virtual_incoming_args_rtx =
5366 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5367 virtual_stack_vars_rtx =
5368 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5369 virtual_stack_dynamic_rtx =
5370 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5371 virtual_outgoing_args_rtx =
5372 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5373 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5374
5375 /* Initialize RTL for commonly used hard registers. These are
5376 copied into regno_reg_rtx as we begin to compile each function. */
5377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5378 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5379
5380 #ifdef INIT_EXPANDERS
5381 /* This is to initialize {init|mark|free}_machine_status before the first
5382 call to push_function_context_to. This is needed by the Chill front
5383 end which calls push_function_context_to before the first call to
5384 init_function_start. */
5385 INIT_EXPANDERS;
5386 #endif
5387
5388 /* Create the unique rtx's for certain rtx codes and operand values. */
5389
5390 /* Don't use gen_rtx here since gen_rtx in this case
5391 tries to use these variables. */
5392 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5393 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5394 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5395
5396 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5397 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5398 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5399 else
5400 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5401
5402 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5403 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5404 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5405 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5406 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5407 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5408 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5409
5410 dconsthalf = dconst1;
5411 dconsthalf.exp--;
5412
5413 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5414
5415 /* Initialize mathematical constants for constant folding builtins.
5416 These constants need to be given to at least 160 bits precision. */
5417 real_from_string (&dconstpi,
5418 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5419 real_from_string (&dconste,
5420 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5421
5422 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5423 {
5424 REAL_VALUE_TYPE *r =
5425 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5426
5427 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5428 mode = GET_MODE_WIDER_MODE (mode))
5429 const_tiny_rtx[i][(int) mode] =
5430 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5431
5432 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5433
5434 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5435 mode = GET_MODE_WIDER_MODE (mode))
5436 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5437
5438 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5439 mode != VOIDmode;
5440 mode = GET_MODE_WIDER_MODE (mode))
5441 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5442 }
5443
5444 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5445 mode != VOIDmode;
5446 mode = GET_MODE_WIDER_MODE (mode))
5447 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5448
5449 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5450 mode != VOIDmode;
5451 mode = GET_MODE_WIDER_MODE (mode))
5452 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5453
5454 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5455 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5456 const_tiny_rtx[0][i] = const0_rtx;
5457
5458 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5459 if (STORE_FLAG_VALUE == 1)
5460 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5461
5462 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5463 return_address_pointer_rtx
5464 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5465 #endif
5466
5467 #ifdef STATIC_CHAIN_REGNUM
5468 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5469
5470 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5471 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5472 static_chain_incoming_rtx
5473 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5474 else
5475 #endif
5476 static_chain_incoming_rtx = static_chain_rtx;
5477 #endif
5478
5479 #ifdef STATIC_CHAIN
5480 static_chain_rtx = STATIC_CHAIN;
5481
5482 #ifdef STATIC_CHAIN_INCOMING
5483 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5484 #else
5485 static_chain_incoming_rtx = static_chain_rtx;
5486 #endif
5487 #endif
5488
5489 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5490 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5491 }
5492 \f
5493 /* Query and clear/ restore no_line_numbers. This is used by the
5494 switch / case handling in stmt.c to give proper line numbers in
5495 warnings about unreachable code. */
5496
5497 int
5498 force_line_numbers (void)
5499 {
5500 int old = no_line_numbers;
5501
5502 no_line_numbers = 0;
5503 if (old)
5504 force_next_line_note ();
5505 return old;
5506 }
5507
5508 void
5509 restore_line_number_status (int old_value)
5510 {
5511 no_line_numbers = old_value;
5512 }
5513
5514 /* Produce exact duplicate of insn INSN after AFTER.
5515 Care updating of libcall regions if present. */
5516
5517 rtx
5518 emit_copy_of_insn_after (rtx insn, rtx after)
5519 {
5520 rtx new;
5521 rtx note1, note2, link;
5522
5523 switch (GET_CODE (insn))
5524 {
5525 case INSN:
5526 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5527 break;
5528
5529 case JUMP_INSN:
5530 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5531 break;
5532
5533 case CALL_INSN:
5534 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5535 if (CALL_INSN_FUNCTION_USAGE (insn))
5536 CALL_INSN_FUNCTION_USAGE (new)
5537 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5538 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5539 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5540 break;
5541
5542 default:
5543 abort ();
5544 }
5545
5546 /* Update LABEL_NUSES. */
5547 mark_jump_label (PATTERN (new), new, 0);
5548
5549 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5550
5551 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5552 make them. */
5553 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5554 if (REG_NOTE_KIND (link) != REG_LABEL)
5555 {
5556 if (GET_CODE (link) == EXPR_LIST)
5557 REG_NOTES (new)
5558 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5559 XEXP (link, 0),
5560 REG_NOTES (new)));
5561 else
5562 REG_NOTES (new)
5563 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5564 XEXP (link, 0),
5565 REG_NOTES (new)));
5566 }
5567
5568 /* Fix the libcall sequences. */
5569 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5570 {
5571 rtx p = new;
5572 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5573 p = PREV_INSN (p);
5574 XEXP (note1, 0) = p;
5575 XEXP (note2, 0) = new;
5576 }
5577 INSN_CODE (new) = INSN_CODE (insn);
5578 return new;
5579 }
5580
5581 static GTY((deletable(""))) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5582 rtx
5583 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5584 {
5585 if (hard_reg_clobbers[mode][regno])
5586 return hard_reg_clobbers[mode][regno];
5587 else
5588 return (hard_reg_clobbers[mode][regno] =
5589 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5590 }
5591
5592 #include "gt-emit-rtl.h"