Merge tree-ssa-20020619-branch into mainline.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 rtx (*gen_lowpart) (enum machine_mode mode, rtx x) = gen_lowpart_general;
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
125
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
130
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
137
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
152
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
157
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
160
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
164
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
168
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
172
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 rtx value = (rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 rtx a = (rtx)x, b = (rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
261
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
264 {
265 mem_attrs *p = (mem_attrs *) x;
266
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
271 }
272
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
276
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
282
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
285 }
286
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
290
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
325
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
328 {
329 reg_attrs *p = (reg_attrs *) x;
330
331 return ((p->offset * 1000) ^ (long) p->decl);
332 }
333
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
337
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
343
344 return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
349
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
352 {
353 reg_attrs attrs;
354 void **slot;
355
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
359
360 attrs.decl = decl;
361 attrs.offset = offset;
362
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
365 {
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 }
369
370 return *slot;
371 }
372
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
376
377 rtx
378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
383 }
384
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
388
389 rtx
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392 void **slot;
393
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
401
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407
408 return (rtx) *slot;
409 }
410
411 rtx
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414 return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
426 {
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
430
431 return (rtx) *slot;
432 }
433
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
436 rtx
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
441
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443
444 return lookup_const_double (real);
445 }
446
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451
452 rtx
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455 rtx value;
456 unsigned int i;
457
458 if (mode != VOIDmode)
459 {
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
467
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
482
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
486
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
491
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
495
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
498
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
504
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
510
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
513
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 }
517
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
521
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
525
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
528
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
531
532 return lookup_const_double (value);
533 }
534
535 rtx
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
543
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
548
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
551
552 if (mode == Pmode && !reload_in_progress)
553 {
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
575 }
576
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
580
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
585
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
588
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
596
597 return gen_raw_REG (mode, regno);
598 }
599
600 rtx
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
604
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
608
609 return rt;
610 }
611
612 rtx
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
619
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
633
634 rtx
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637 enum machine_mode inmode;
638
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
644 }
645 \f
646 /* gen_rtvec (n, [rt1, ..., rtn])
647 **
648 ** This routine creates an rtvec and stores within it the
649 ** pointers to rtx's which are its arguments.
650 */
651
652 /*VARARGS1*/
653 rtvec
654 gen_rtvec (int n, ...)
655 {
656 int i, save_n;
657 rtx *vector;
658 va_list p;
659
660 va_start (p, n);
661
662 if (n == 0)
663 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
664
665 vector = alloca (n * sizeof (rtx));
666
667 for (i = 0; i < n; i++)
668 vector[i] = va_arg (p, rtx);
669
670 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
671 save_n = n;
672 va_end (p);
673
674 return gen_rtvec_v (save_n, vector);
675 }
676
677 rtvec
678 gen_rtvec_v (int n, rtx *argp)
679 {
680 int i;
681 rtvec rt_val;
682
683 if (n == 0)
684 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
685
686 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
687
688 for (i = 0; i < n; i++)
689 rt_val->elem[i] = *argp++;
690
691 return rt_val;
692 }
693 \f
694 /* Generate a REG rtx for a new pseudo register of mode MODE.
695 This pseudo is assigned the next sequential register number. */
696
697 rtx
698 gen_reg_rtx (enum machine_mode mode)
699 {
700 struct function *f = cfun;
701 rtx val;
702
703 /* Don't let anything called after initial flow analysis create new
704 registers. */
705 if (no_new_pseudos)
706 abort ();
707
708 if (generating_concat_p
709 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
710 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
711 {
712 /* For complex modes, don't make a single pseudo.
713 Instead, make a CONCAT of two pseudos.
714 This allows noncontiguous allocation of the real and imaginary parts,
715 which makes much better code. Besides, allocating DCmode
716 pseudos overstrains reload on some machines like the 386. */
717 rtx realpart, imagpart;
718 enum machine_mode partmode = GET_MODE_INNER (mode);
719
720 realpart = gen_reg_rtx (partmode);
721 imagpart = gen_reg_rtx (partmode);
722 return gen_rtx_CONCAT (mode, realpart, imagpart);
723 }
724
725 /* Make sure regno_pointer_align, and regno_reg_rtx are large
726 enough to have an element for this pseudo reg number. */
727
728 if (reg_rtx_no == f->emit->regno_pointer_align_length)
729 {
730 int old_size = f->emit->regno_pointer_align_length;
731 char *new;
732 rtx *new1;
733
734 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
735 memset (new + old_size, 0, old_size);
736 f->emit->regno_pointer_align = (unsigned char *) new;
737
738 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
739 old_size * 2 * sizeof (rtx));
740 memset (new1 + old_size, 0, old_size * sizeof (rtx));
741 regno_reg_rtx = new1;
742
743 f->emit->regno_pointer_align_length = old_size * 2;
744 }
745
746 val = gen_raw_REG (mode, reg_rtx_no);
747 regno_reg_rtx[reg_rtx_no++] = val;
748 return val;
749 }
750
751 /* Generate a register with same attributes as REG,
752 but offsetted by OFFSET. */
753
754 rtx
755 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
756 {
757 rtx new = gen_rtx_REG (mode, regno);
758 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
759 REG_OFFSET (reg) + offset);
760 return new;
761 }
762
763 /* Set the decl for MEM to DECL. */
764
765 void
766 set_reg_attrs_from_mem (rtx reg, rtx mem)
767 {
768 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
769 REG_ATTRS (reg)
770 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
771 }
772
773 /* Set the register attributes for registers contained in PARM_RTX.
774 Use needed values from memory attributes of MEM. */
775
776 void
777 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
778 {
779 if (GET_CODE (parm_rtx) == REG)
780 set_reg_attrs_from_mem (parm_rtx, mem);
781 else if (GET_CODE (parm_rtx) == PARALLEL)
782 {
783 /* Check for a NULL entry in the first slot, used to indicate that the
784 parameter goes both on the stack and in registers. */
785 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
786 for (; i < XVECLEN (parm_rtx, 0); i++)
787 {
788 rtx x = XVECEXP (parm_rtx, 0, i);
789 if (GET_CODE (XEXP (x, 0)) == REG)
790 REG_ATTRS (XEXP (x, 0))
791 = get_reg_attrs (MEM_EXPR (mem),
792 INTVAL (XEXP (x, 1)));
793 }
794 }
795 }
796
797 /* Assign the RTX X to declaration T. */
798 void
799 set_decl_rtl (tree t, rtx x)
800 {
801 DECL_CHECK (t)->decl.rtl = x;
802
803 if (!x)
804 return;
805 /* For register, we maintain the reverse information too. */
806 if (GET_CODE (x) == REG)
807 REG_ATTRS (x) = get_reg_attrs (t, 0);
808 else if (GET_CODE (x) == SUBREG)
809 REG_ATTRS (SUBREG_REG (x))
810 = get_reg_attrs (t, -SUBREG_BYTE (x));
811 if (GET_CODE (x) == CONCAT)
812 {
813 if (REG_P (XEXP (x, 0)))
814 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
815 if (REG_P (XEXP (x, 1)))
816 REG_ATTRS (XEXP (x, 1))
817 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
818 }
819 if (GET_CODE (x) == PARALLEL)
820 {
821 int i;
822 for (i = 0; i < XVECLEN (x, 0); i++)
823 {
824 rtx y = XVECEXP (x, 0, i);
825 if (REG_P (XEXP (y, 0)))
826 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
827 }
828 }
829 }
830
831 /* Assign the RTX X to parameter declaration T. */
832 void
833 set_decl_incoming_rtl (tree t, rtx x)
834 {
835 DECL_INCOMING_RTL (t) = x;
836
837 if (!x)
838 return;
839 /* For register, we maintain the reverse information too. */
840 if (GET_CODE (x) == REG)
841 REG_ATTRS (x) = get_reg_attrs (t, 0);
842 else if (GET_CODE (x) == SUBREG)
843 REG_ATTRS (SUBREG_REG (x))
844 = get_reg_attrs (t, -SUBREG_BYTE (x));
845 if (GET_CODE (x) == CONCAT)
846 {
847 if (REG_P (XEXP (x, 0)))
848 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
849 if (REG_P (XEXP (x, 1)))
850 REG_ATTRS (XEXP (x, 1))
851 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
852 }
853 if (GET_CODE (x) == PARALLEL)
854 {
855 int i, start;
856
857 /* Check for a NULL entry, used to indicate that the parameter goes
858 both on the stack and in registers. */
859 if (XEXP (XVECEXP (x, 0, 0), 0))
860 start = 0;
861 else
862 start = 1;
863
864 for (i = start; i < XVECLEN (x, 0); i++)
865 {
866 rtx y = XVECEXP (x, 0, i);
867 if (REG_P (XEXP (y, 0)))
868 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
869 }
870 }
871 }
872
873 /* Identify REG (which may be a CONCAT) as a user register. */
874
875 void
876 mark_user_reg (rtx reg)
877 {
878 if (GET_CODE (reg) == CONCAT)
879 {
880 REG_USERVAR_P (XEXP (reg, 0)) = 1;
881 REG_USERVAR_P (XEXP (reg, 1)) = 1;
882 }
883 else if (GET_CODE (reg) == REG)
884 REG_USERVAR_P (reg) = 1;
885 else
886 abort ();
887 }
888
889 /* Identify REG as a probable pointer register and show its alignment
890 as ALIGN, if nonzero. */
891
892 void
893 mark_reg_pointer (rtx reg, int align)
894 {
895 if (! REG_POINTER (reg))
896 {
897 REG_POINTER (reg) = 1;
898
899 if (align)
900 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
901 }
902 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
903 /* We can no-longer be sure just how aligned this pointer is. */
904 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
905 }
906
907 /* Return 1 plus largest pseudo reg number used in the current function. */
908
909 int
910 max_reg_num (void)
911 {
912 return reg_rtx_no;
913 }
914
915 /* Return 1 + the largest label number used so far in the current function. */
916
917 int
918 max_label_num (void)
919 {
920 if (last_label_num && label_num == base_label_num)
921 return last_label_num;
922 return label_num;
923 }
924
925 /* Return first label number used in this function (if any were used). */
926
927 int
928 get_first_label_num (void)
929 {
930 return first_label_num;
931 }
932
933 /* If the rtx for label was created during the expansion of a nested
934 function, then first_label_num won't include this label number.
935 Fix this now so that array indicies work later. */
936
937 void
938 maybe_set_first_label_num (rtx x)
939 {
940 if (CODE_LABEL_NUMBER (x) < first_label_num)
941 first_label_num = CODE_LABEL_NUMBER (x);
942 }
943 \f
944 /* Return the final regno of X, which is a SUBREG of a hard
945 register. */
946 int
947 subreg_hard_regno (rtx x, int check_mode)
948 {
949 enum machine_mode mode = GET_MODE (x);
950 unsigned int byte_offset, base_regno, final_regno;
951 rtx reg = SUBREG_REG (x);
952
953 /* This is where we attempt to catch illegal subregs
954 created by the compiler. */
955 if (GET_CODE (x) != SUBREG
956 || GET_CODE (reg) != REG)
957 abort ();
958 base_regno = REGNO (reg);
959 if (base_regno >= FIRST_PSEUDO_REGISTER)
960 abort ();
961 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
962 abort ();
963 #ifdef ENABLE_CHECKING
964 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
965 SUBREG_BYTE (x), mode))
966 abort ();
967 #endif
968 /* Catch non-congruent offsets too. */
969 byte_offset = SUBREG_BYTE (x);
970 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
971 abort ();
972
973 final_regno = subreg_regno (x);
974
975 return final_regno;
976 }
977
978 /* Return a value representing some low-order bits of X, where the number
979 of low-order bits is given by MODE. Note that no conversion is done
980 between floating-point and fixed-point values, rather, the bit
981 representation is returned.
982
983 This function handles the cases in common between gen_lowpart, below,
984 and two variants in cse.c and combine.c. These are the cases that can
985 be safely handled at all points in the compilation.
986
987 If this is not a case we can handle, return 0. */
988
989 rtx
990 gen_lowpart_common (enum machine_mode mode, rtx x)
991 {
992 int msize = GET_MODE_SIZE (mode);
993 int xsize;
994 int offset = 0;
995 enum machine_mode innermode;
996
997 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
998 so we have to make one up. Yuk. */
999 innermode = GET_MODE (x);
1000 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1001 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1002 else if (innermode == VOIDmode)
1003 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1004
1005 xsize = GET_MODE_SIZE (innermode);
1006
1007 if (innermode == VOIDmode || innermode == BLKmode)
1008 abort ();
1009
1010 if (innermode == mode)
1011 return x;
1012
1013 /* MODE must occupy no more words than the mode of X. */
1014 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1015 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1016 return 0;
1017
1018 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1019 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1020 return 0;
1021
1022 offset = subreg_lowpart_offset (mode, innermode);
1023
1024 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1025 && (GET_MODE_CLASS (mode) == MODE_INT
1026 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1027 {
1028 /* If we are getting the low-order part of something that has been
1029 sign- or zero-extended, we can either just use the object being
1030 extended or make a narrower extension. If we want an even smaller
1031 piece than the size of the object being extended, call ourselves
1032 recursively.
1033
1034 This case is used mostly by combine and cse. */
1035
1036 if (GET_MODE (XEXP (x, 0)) == mode)
1037 return XEXP (x, 0);
1038 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1039 return gen_lowpart_common (mode, XEXP (x, 0));
1040 else if (msize < xsize)
1041 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1042 }
1043 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1044 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1045 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1046 return simplify_gen_subreg (mode, x, innermode, offset);
1047
1048 /* Otherwise, we can't do this. */
1049 return 0;
1050 }
1051 \f
1052 /* Return the constant real or imaginary part (which has mode MODE)
1053 of a complex value X. The IMAGPART_P argument determines whether
1054 the real or complex component should be returned. This function
1055 returns NULL_RTX if the component isn't a constant. */
1056
1057 static rtx
1058 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1059 {
1060 tree decl, part;
1061
1062 if (GET_CODE (x) == MEM
1063 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1064 {
1065 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1066 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1067 {
1068 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1069 if (TREE_CODE (part) == REAL_CST
1070 || TREE_CODE (part) == INTEGER_CST)
1071 return expand_expr (part, NULL_RTX, mode, 0);
1072 }
1073 }
1074 return NULL_RTX;
1075 }
1076
1077 /* Return the real part (which has mode MODE) of a complex value X.
1078 This always comes at the low address in memory. */
1079
1080 rtx
1081 gen_realpart (enum machine_mode mode, rtx x)
1082 {
1083 rtx part;
1084
1085 /* Handle complex constants. */
1086 part = gen_complex_constant_part (mode, x, 0);
1087 if (part != NULL_RTX)
1088 return part;
1089
1090 if (WORDS_BIG_ENDIAN
1091 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1092 && REG_P (x)
1093 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1094 internal_error
1095 ("can't access real part of complex value in hard register");
1096 else if (WORDS_BIG_ENDIAN)
1097 return gen_highpart (mode, x);
1098 else
1099 return gen_lowpart (mode, x);
1100 }
1101
1102 /* Return the imaginary part (which has mode MODE) of a complex value X.
1103 This always comes at the high address in memory. */
1104
1105 rtx
1106 gen_imagpart (enum machine_mode mode, rtx x)
1107 {
1108 rtx part;
1109
1110 /* Handle complex constants. */
1111 part = gen_complex_constant_part (mode, x, 1);
1112 if (part != NULL_RTX)
1113 return part;
1114
1115 if (WORDS_BIG_ENDIAN)
1116 return gen_lowpart (mode, x);
1117 else if (! WORDS_BIG_ENDIAN
1118 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1119 && REG_P (x)
1120 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1121 internal_error
1122 ("can't access imaginary part of complex value in hard register");
1123 else
1124 return gen_highpart (mode, x);
1125 }
1126 \f
1127 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1128 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1129 least-significant part of X.
1130 MODE specifies how big a part of X to return;
1131 it usually should not be larger than a word.
1132 If X is a MEM whose address is a QUEUED, the value may be so also. */
1133
1134 rtx
1135 gen_lowpart_general (enum machine_mode mode, rtx x)
1136 {
1137 rtx result = gen_lowpart_common (mode, x);
1138
1139 if (result)
1140 return result;
1141 else if (GET_CODE (x) == REG)
1142 {
1143 /* Must be a hard reg that's not valid in MODE. */
1144 result = gen_lowpart_common (mode, copy_to_reg (x));
1145 if (result == 0)
1146 abort ();
1147 return result;
1148 }
1149 else if (GET_CODE (x) == MEM)
1150 {
1151 /* The only additional case we can do is MEM. */
1152 int offset = 0;
1153
1154 /* The following exposes the use of "x" to CSE. */
1155 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1156 && SCALAR_INT_MODE_P (GET_MODE (x))
1157 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1158 GET_MODE_BITSIZE (GET_MODE (x)))
1159 && ! no_new_pseudos)
1160 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1161
1162 if (WORDS_BIG_ENDIAN)
1163 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1164 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1165
1166 if (BYTES_BIG_ENDIAN)
1167 /* Adjust the address so that the address-after-the-data
1168 is unchanged. */
1169 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1170 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1171
1172 return adjust_address (x, mode, offset);
1173 }
1174 else if (GET_CODE (x) == ADDRESSOF)
1175 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1176 else
1177 abort ();
1178 }
1179
1180 /* Like `gen_lowpart', but refer to the most significant part.
1181 This is used to access the imaginary part of a complex number. */
1182
1183 rtx
1184 gen_highpart (enum machine_mode mode, rtx x)
1185 {
1186 unsigned int msize = GET_MODE_SIZE (mode);
1187 rtx result;
1188
1189 /* This case loses if X is a subreg. To catch bugs early,
1190 complain if an invalid MODE is used even in other cases. */
1191 if (msize > UNITS_PER_WORD
1192 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1193 abort ();
1194
1195 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1196 subreg_highpart_offset (mode, GET_MODE (x)));
1197
1198 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1199 the target if we have a MEM. gen_highpart must return a valid operand,
1200 emitting code if necessary to do so. */
1201 if (result != NULL_RTX && GET_CODE (result) == MEM)
1202 result = validize_mem (result);
1203
1204 if (!result)
1205 abort ();
1206 return result;
1207 }
1208
1209 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1210 be VOIDmode constant. */
1211 rtx
1212 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1213 {
1214 if (GET_MODE (exp) != VOIDmode)
1215 {
1216 if (GET_MODE (exp) != innermode)
1217 abort ();
1218 return gen_highpart (outermode, exp);
1219 }
1220 return simplify_gen_subreg (outermode, exp, innermode,
1221 subreg_highpart_offset (outermode, innermode));
1222 }
1223
1224 /* Return offset in bytes to get OUTERMODE low part
1225 of the value in mode INNERMODE stored in memory in target format. */
1226
1227 unsigned int
1228 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1229 {
1230 unsigned int offset = 0;
1231 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1232
1233 if (difference > 0)
1234 {
1235 if (WORDS_BIG_ENDIAN)
1236 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1237 if (BYTES_BIG_ENDIAN)
1238 offset += difference % UNITS_PER_WORD;
1239 }
1240
1241 return offset;
1242 }
1243
1244 /* Return offset in bytes to get OUTERMODE high part
1245 of the value in mode INNERMODE stored in memory in target format. */
1246 unsigned int
1247 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1248 {
1249 unsigned int offset = 0;
1250 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1251
1252 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1253 abort ();
1254
1255 if (difference > 0)
1256 {
1257 if (! WORDS_BIG_ENDIAN)
1258 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1259 if (! BYTES_BIG_ENDIAN)
1260 offset += difference % UNITS_PER_WORD;
1261 }
1262
1263 return offset;
1264 }
1265
1266 /* Return 1 iff X, assumed to be a SUBREG,
1267 refers to the least significant part of its containing reg.
1268 If X is not a SUBREG, always return 1 (it is its own low part!). */
1269
1270 int
1271 subreg_lowpart_p (rtx x)
1272 {
1273 if (GET_CODE (x) != SUBREG)
1274 return 1;
1275 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1276 return 0;
1277
1278 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1279 == SUBREG_BYTE (x));
1280 }
1281 \f
1282 /* Return subword OFFSET of operand OP.
1283 The word number, OFFSET, is interpreted as the word number starting
1284 at the low-order address. OFFSET 0 is the low-order word if not
1285 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1286
1287 If we cannot extract the required word, we return zero. Otherwise,
1288 an rtx corresponding to the requested word will be returned.
1289
1290 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1291 reload has completed, a valid address will always be returned. After
1292 reload, if a valid address cannot be returned, we return zero.
1293
1294 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1295 it is the responsibility of the caller.
1296
1297 MODE is the mode of OP in case it is a CONST_INT.
1298
1299 ??? This is still rather broken for some cases. The problem for the
1300 moment is that all callers of this thing provide no 'goal mode' to
1301 tell us to work with. This exists because all callers were written
1302 in a word based SUBREG world.
1303 Now use of this function can be deprecated by simplify_subreg in most
1304 cases.
1305 */
1306
1307 rtx
1308 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1309 {
1310 if (mode == VOIDmode)
1311 mode = GET_MODE (op);
1312
1313 if (mode == VOIDmode)
1314 abort ();
1315
1316 /* If OP is narrower than a word, fail. */
1317 if (mode != BLKmode
1318 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1319 return 0;
1320
1321 /* If we want a word outside OP, return zero. */
1322 if (mode != BLKmode
1323 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1324 return const0_rtx;
1325
1326 /* Form a new MEM at the requested address. */
1327 if (GET_CODE (op) == MEM)
1328 {
1329 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1330
1331 if (! validate_address)
1332 return new;
1333
1334 else if (reload_completed)
1335 {
1336 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1337 return 0;
1338 }
1339 else
1340 return replace_equiv_address (new, XEXP (new, 0));
1341 }
1342
1343 /* Rest can be handled by simplify_subreg. */
1344 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1345 }
1346
1347 /* Similar to `operand_subword', but never return 0. If we can't extract
1348 the required subword, put OP into a register and try again. If that fails,
1349 abort. We always validate the address in this case.
1350
1351 MODE is the mode of OP, in case it is CONST_INT. */
1352
1353 rtx
1354 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1355 {
1356 rtx result = operand_subword (op, offset, 1, mode);
1357
1358 if (result)
1359 return result;
1360
1361 if (mode != BLKmode && mode != VOIDmode)
1362 {
1363 /* If this is a register which can not be accessed by words, copy it
1364 to a pseudo register. */
1365 if (GET_CODE (op) == REG)
1366 op = copy_to_reg (op);
1367 else
1368 op = force_reg (mode, op);
1369 }
1370
1371 result = operand_subword (op, offset, 1, mode);
1372 if (result == 0)
1373 abort ();
1374
1375 return result;
1376 }
1377 \f
1378 /* Given a compare instruction, swap the operands.
1379 A test instruction is changed into a compare of 0 against the operand. */
1380
1381 void
1382 reverse_comparison (rtx insn)
1383 {
1384 rtx body = PATTERN (insn);
1385 rtx comp;
1386
1387 if (GET_CODE (body) == SET)
1388 comp = SET_SRC (body);
1389 else
1390 comp = SET_SRC (XVECEXP (body, 0, 0));
1391
1392 if (GET_CODE (comp) == COMPARE)
1393 {
1394 rtx op0 = XEXP (comp, 0);
1395 rtx op1 = XEXP (comp, 1);
1396 XEXP (comp, 0) = op1;
1397 XEXP (comp, 1) = op0;
1398 }
1399 else
1400 {
1401 rtx new = gen_rtx_COMPARE (VOIDmode,
1402 CONST0_RTX (GET_MODE (comp)), comp);
1403 if (GET_CODE (body) == SET)
1404 SET_SRC (body) = new;
1405 else
1406 SET_SRC (XVECEXP (body, 0, 0)) = new;
1407 }
1408 }
1409 \f
1410 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1411 or (2) a component ref of something variable. Represent the later with
1412 a NULL expression. */
1413
1414 static tree
1415 component_ref_for_mem_expr (tree ref)
1416 {
1417 tree inner = TREE_OPERAND (ref, 0);
1418
1419 if (TREE_CODE (inner) == COMPONENT_REF)
1420 inner = component_ref_for_mem_expr (inner);
1421 else
1422 {
1423 /* Now remove any conversions: they don't change what the underlying
1424 object is. Likewise for SAVE_EXPR. */
1425 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1426 || TREE_CODE (inner) == NON_LVALUE_EXPR
1427 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1428 || TREE_CODE (inner) == SAVE_EXPR)
1429 inner = TREE_OPERAND (inner, 0);
1430
1431 if (! DECL_P (inner))
1432 inner = NULL_TREE;
1433 }
1434
1435 if (inner == TREE_OPERAND (ref, 0))
1436 return ref;
1437 else
1438 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1439 TREE_OPERAND (ref, 1));
1440 }
1441
1442 /* Returns 1 if both MEM_EXPR can be considered equal
1443 and 0 otherwise. */
1444
1445 int
1446 mem_expr_equal_p (tree expr1, tree expr2)
1447 {
1448 if (expr1 == expr2)
1449 return 1;
1450
1451 if (! expr1 || ! expr2)
1452 return 0;
1453
1454 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1455 return 0;
1456
1457 if (TREE_CODE (expr1) == COMPONENT_REF)
1458 return
1459 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1460 TREE_OPERAND (expr2, 0))
1461 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1462 TREE_OPERAND (expr2, 1));
1463
1464 if (TREE_CODE (expr1) == INDIRECT_REF)
1465 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1466 TREE_OPERAND (expr2, 0));
1467
1468 /* Decls with different pointers can't be equal. */
1469 if (DECL_P (expr1))
1470 return 0;
1471
1472 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1473 have been resolved here. */
1474 }
1475
1476 /* Given REF, a MEM, and T, either the type of X or the expression
1477 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1478 if we are making a new object of this type. BITPOS is nonzero if
1479 there is an offset outstanding on T that will be applied later. */
1480
1481 void
1482 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1483 HOST_WIDE_INT bitpos)
1484 {
1485 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1486 tree expr = MEM_EXPR (ref);
1487 rtx offset = MEM_OFFSET (ref);
1488 rtx size = MEM_SIZE (ref);
1489 unsigned int align = MEM_ALIGN (ref);
1490 HOST_WIDE_INT apply_bitpos = 0;
1491 tree type;
1492
1493 /* It can happen that type_for_mode was given a mode for which there
1494 is no language-level type. In which case it returns NULL, which
1495 we can see here. */
1496 if (t == NULL_TREE)
1497 return;
1498
1499 type = TYPE_P (t) ? t : TREE_TYPE (t);
1500 if (type == error_mark_node)
1501 return;
1502
1503 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1504 wrong answer, as it assumes that DECL_RTL already has the right alias
1505 info. Callers should not set DECL_RTL until after the call to
1506 set_mem_attributes. */
1507 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1508 abort ();
1509
1510 /* Get the alias set from the expression or type (perhaps using a
1511 front-end routine) and use it. */
1512 alias = get_alias_set (t);
1513
1514 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1515 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1516 RTX_UNCHANGING_P (ref)
1517 |= ((lang_hooks.honor_readonly
1518 && (TYPE_READONLY (type) || (t != type && TREE_READONLY (t))))
1519 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1520 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1521
1522 /* If we are making an object of this type, or if this is a DECL, we know
1523 that it is a scalar if the type is not an aggregate. */
1524 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1525 MEM_SCALAR_P (ref) = 1;
1526
1527 /* We can set the alignment from the type if we are making an object,
1528 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1529 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1530 align = MAX (align, TYPE_ALIGN (type));
1531
1532 /* If the size is known, we can set that. */
1533 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1534 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1535
1536 /* If T is not a type, we may be able to deduce some more information about
1537 the expression. */
1538 if (! TYPE_P (t))
1539 {
1540 maybe_set_unchanging (ref, t);
1541 if (TREE_THIS_VOLATILE (t))
1542 MEM_VOLATILE_P (ref) = 1;
1543
1544 /* Now remove any conversions: they don't change what the underlying
1545 object is. Likewise for SAVE_EXPR. */
1546 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1547 || TREE_CODE (t) == NON_LVALUE_EXPR
1548 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1549 || TREE_CODE (t) == SAVE_EXPR)
1550 t = TREE_OPERAND (t, 0);
1551
1552 /* If this expression can't be addressed (e.g., it contains a reference
1553 to a non-addressable field), show we don't change its alias set. */
1554 if (! can_address_p (t))
1555 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1556
1557 /* If this is a decl, set the attributes of the MEM from it. */
1558 if (DECL_P (t))
1559 {
1560 expr = t;
1561 offset = const0_rtx;
1562 apply_bitpos = bitpos;
1563 size = (DECL_SIZE_UNIT (t)
1564 && host_integerp (DECL_SIZE_UNIT (t), 1)
1565 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1566 align = DECL_ALIGN (t);
1567 }
1568
1569 /* If this is a constant, we know the alignment. */
1570 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1571 {
1572 align = TYPE_ALIGN (type);
1573 #ifdef CONSTANT_ALIGNMENT
1574 align = CONSTANT_ALIGNMENT (t, align);
1575 #endif
1576 }
1577
1578 /* If this is a field reference and not a bit-field, record it. */
1579 /* ??? There is some information that can be gleened from bit-fields,
1580 such as the word offset in the structure that might be modified.
1581 But skip it for now. */
1582 else if (TREE_CODE (t) == COMPONENT_REF
1583 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1584 {
1585 expr = component_ref_for_mem_expr (t);
1586 offset = const0_rtx;
1587 apply_bitpos = bitpos;
1588 /* ??? Any reason the field size would be different than
1589 the size we got from the type? */
1590 }
1591
1592 /* If this is an array reference, look for an outer field reference. */
1593 else if (TREE_CODE (t) == ARRAY_REF)
1594 {
1595 tree off_tree = size_zero_node;
1596 /* We can't modify t, because we use it at the end of the
1597 function. */
1598 tree t2 = t;
1599
1600 do
1601 {
1602 tree index = TREE_OPERAND (t2, 1);
1603 tree array = TREE_OPERAND (t2, 0);
1604 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1605 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1606 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1607
1608 /* We assume all arrays have sizes that are a multiple of a byte.
1609 First subtract the lower bound, if any, in the type of the
1610 index, then convert to sizetype and multiply by the size of the
1611 array element. */
1612 if (low_bound != 0 && ! integer_zerop (low_bound))
1613 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1614 index, low_bound));
1615
1616 /* If the index has a self-referential type, instantiate it;
1617 likewise for the component size. */
1618 index = SUBSTITUTE_PLACEHOLDER_IN_EXPR (index, t2);
1619 unit_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (unit_size, array);
1620 off_tree
1621 = fold (build (PLUS_EXPR, sizetype,
1622 fold (build (MULT_EXPR, sizetype,
1623 index, unit_size)),
1624 off_tree));
1625 t2 = TREE_OPERAND (t2, 0);
1626 }
1627 while (TREE_CODE (t2) == ARRAY_REF);
1628
1629 if (DECL_P (t2))
1630 {
1631 expr = t2;
1632 offset = NULL;
1633 if (host_integerp (off_tree, 1))
1634 {
1635 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1636 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1637 align = DECL_ALIGN (t2);
1638 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1639 align = aoff;
1640 offset = GEN_INT (ioff);
1641 apply_bitpos = bitpos;
1642 }
1643 }
1644 else if (TREE_CODE (t2) == COMPONENT_REF)
1645 {
1646 expr = component_ref_for_mem_expr (t2);
1647 if (host_integerp (off_tree, 1))
1648 {
1649 offset = GEN_INT (tree_low_cst (off_tree, 1));
1650 apply_bitpos = bitpos;
1651 }
1652 /* ??? Any reason the field size would be different than
1653 the size we got from the type? */
1654 }
1655 else if (flag_argument_noalias > 1
1656 && TREE_CODE (t2) == INDIRECT_REF
1657 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1658 {
1659 expr = t2;
1660 offset = NULL;
1661 }
1662 }
1663
1664 /* If this is a Fortran indirect argument reference, record the
1665 parameter decl. */
1666 else if (flag_argument_noalias > 1
1667 && TREE_CODE (t) == INDIRECT_REF
1668 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1669 {
1670 expr = t;
1671 offset = NULL;
1672 }
1673 }
1674
1675 /* If we modified OFFSET based on T, then subtract the outstanding
1676 bit position offset. Similarly, increase the size of the accessed
1677 object to contain the negative offset. */
1678 if (apply_bitpos)
1679 {
1680 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1681 if (size)
1682 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1683 }
1684
1685 /* Now set the attributes we computed above. */
1686 MEM_ATTRS (ref)
1687 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1688
1689 /* If this is already known to be a scalar or aggregate, we are done. */
1690 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1691 return;
1692
1693 /* If it is a reference into an aggregate, this is part of an aggregate.
1694 Otherwise we don't know. */
1695 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1696 || TREE_CODE (t) == ARRAY_RANGE_REF
1697 || TREE_CODE (t) == BIT_FIELD_REF)
1698 MEM_IN_STRUCT_P (ref) = 1;
1699 }
1700
1701 void
1702 set_mem_attributes (rtx ref, tree t, int objectp)
1703 {
1704 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1705 }
1706
1707 /* Set the decl for MEM to DECL. */
1708
1709 void
1710 set_mem_attrs_from_reg (rtx mem, rtx reg)
1711 {
1712 MEM_ATTRS (mem)
1713 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1714 GEN_INT (REG_OFFSET (reg)),
1715 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1716 }
1717
1718 /* Set the alias set of MEM to SET. */
1719
1720 void
1721 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1722 {
1723 #ifdef ENABLE_CHECKING
1724 /* If the new and old alias sets don't conflict, something is wrong. */
1725 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1726 abort ();
1727 #endif
1728
1729 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1730 MEM_SIZE (mem), MEM_ALIGN (mem),
1731 GET_MODE (mem));
1732 }
1733
1734 /* Set the alignment of MEM to ALIGN bits. */
1735
1736 void
1737 set_mem_align (rtx mem, unsigned int align)
1738 {
1739 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1740 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1741 GET_MODE (mem));
1742 }
1743
1744 /* Set the expr for MEM to EXPR. */
1745
1746 void
1747 set_mem_expr (rtx mem, tree expr)
1748 {
1749 MEM_ATTRS (mem)
1750 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1751 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1752 }
1753
1754 /* Set the offset of MEM to OFFSET. */
1755
1756 void
1757 set_mem_offset (rtx mem, rtx offset)
1758 {
1759 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1760 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1761 GET_MODE (mem));
1762 }
1763
1764 /* Set the size of MEM to SIZE. */
1765
1766 void
1767 set_mem_size (rtx mem, rtx size)
1768 {
1769 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1770 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1771 GET_MODE (mem));
1772 }
1773 \f
1774 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1775 and its address changed to ADDR. (VOIDmode means don't change the mode.
1776 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1777 returned memory location is required to be valid. The memory
1778 attributes are not changed. */
1779
1780 static rtx
1781 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1782 {
1783 rtx new;
1784
1785 if (GET_CODE (memref) != MEM)
1786 abort ();
1787 if (mode == VOIDmode)
1788 mode = GET_MODE (memref);
1789 if (addr == 0)
1790 addr = XEXP (memref, 0);
1791 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1792 && (!validate || memory_address_p (mode, addr)))
1793 return memref;
1794
1795 if (validate)
1796 {
1797 if (reload_in_progress || reload_completed)
1798 {
1799 if (! memory_address_p (mode, addr))
1800 abort ();
1801 }
1802 else
1803 addr = memory_address (mode, addr);
1804 }
1805
1806 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1807 return memref;
1808
1809 new = gen_rtx_MEM (mode, addr);
1810 MEM_COPY_ATTRIBUTES (new, memref);
1811 return new;
1812 }
1813
1814 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1815 way we are changing MEMREF, so we only preserve the alias set. */
1816
1817 rtx
1818 change_address (rtx memref, enum machine_mode mode, rtx addr)
1819 {
1820 rtx new = change_address_1 (memref, mode, addr, 1), size;
1821 enum machine_mode mmode = GET_MODE (new);
1822 unsigned int align;
1823
1824 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1825 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1826
1827 /* If there are no changes, just return the original memory reference. */
1828 if (new == memref)
1829 {
1830 if (MEM_ATTRS (memref) == 0
1831 || (MEM_EXPR (memref) == NULL
1832 && MEM_OFFSET (memref) == NULL
1833 && MEM_SIZE (memref) == size
1834 && MEM_ALIGN (memref) == align))
1835 return new;
1836
1837 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1838 MEM_COPY_ATTRIBUTES (new, memref);
1839 }
1840
1841 MEM_ATTRS (new)
1842 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1843
1844 return new;
1845 }
1846
1847 /* Return a memory reference like MEMREF, but with its mode changed
1848 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1849 nonzero, the memory address is forced to be valid.
1850 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1851 and caller is responsible for adjusting MEMREF base register. */
1852
1853 rtx
1854 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1855 int validate, int adjust)
1856 {
1857 rtx addr = XEXP (memref, 0);
1858 rtx new;
1859 rtx memoffset = MEM_OFFSET (memref);
1860 rtx size = 0;
1861 unsigned int memalign = MEM_ALIGN (memref);
1862
1863 /* If there are no changes, just return the original memory reference. */
1864 if (mode == GET_MODE (memref) && !offset
1865 && (!validate || memory_address_p (mode, addr)))
1866 return memref;
1867
1868 /* ??? Prefer to create garbage instead of creating shared rtl.
1869 This may happen even if offset is nonzero -- consider
1870 (plus (plus reg reg) const_int) -- so do this always. */
1871 addr = copy_rtx (addr);
1872
1873 if (adjust)
1874 {
1875 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1876 object, we can merge it into the LO_SUM. */
1877 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1878 && offset >= 0
1879 && (unsigned HOST_WIDE_INT) offset
1880 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1881 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1882 plus_constant (XEXP (addr, 1), offset));
1883 else
1884 addr = plus_constant (addr, offset);
1885 }
1886
1887 new = change_address_1 (memref, mode, addr, validate);
1888
1889 /* Compute the new values of the memory attributes due to this adjustment.
1890 We add the offsets and update the alignment. */
1891 if (memoffset)
1892 memoffset = GEN_INT (offset + INTVAL (memoffset));
1893
1894 /* Compute the new alignment by taking the MIN of the alignment and the
1895 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1896 if zero. */
1897 if (offset != 0)
1898 memalign
1899 = MIN (memalign,
1900 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1901
1902 /* We can compute the size in a number of ways. */
1903 if (GET_MODE (new) != BLKmode)
1904 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1905 else if (MEM_SIZE (memref))
1906 size = plus_constant (MEM_SIZE (memref), -offset);
1907
1908 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1909 memoffset, size, memalign, GET_MODE (new));
1910
1911 /* At some point, we should validate that this offset is within the object,
1912 if all the appropriate values are known. */
1913 return new;
1914 }
1915
1916 /* Return a memory reference like MEMREF, but with its mode changed
1917 to MODE and its address changed to ADDR, which is assumed to be
1918 MEMREF offseted by OFFSET bytes. If VALIDATE is
1919 nonzero, the memory address is forced to be valid. */
1920
1921 rtx
1922 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1923 HOST_WIDE_INT offset, int validate)
1924 {
1925 memref = change_address_1 (memref, VOIDmode, addr, validate);
1926 return adjust_address_1 (memref, mode, offset, validate, 0);
1927 }
1928
1929 /* Return a memory reference like MEMREF, but whose address is changed by
1930 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1931 known to be in OFFSET (possibly 1). */
1932
1933 rtx
1934 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1935 {
1936 rtx new, addr = XEXP (memref, 0);
1937
1938 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1939
1940 /* At this point we don't know _why_ the address is invalid. It
1941 could have secondary memory references, multiplies or anything.
1942
1943 However, if we did go and rearrange things, we can wind up not
1944 being able to recognize the magic around pic_offset_table_rtx.
1945 This stuff is fragile, and is yet another example of why it is
1946 bad to expose PIC machinery too early. */
1947 if (! memory_address_p (GET_MODE (memref), new)
1948 && GET_CODE (addr) == PLUS
1949 && XEXP (addr, 0) == pic_offset_table_rtx)
1950 {
1951 addr = force_reg (GET_MODE (addr), addr);
1952 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1953 }
1954
1955 update_temp_slot_address (XEXP (memref, 0), new);
1956 new = change_address_1 (memref, VOIDmode, new, 1);
1957
1958 /* If there are no changes, just return the original memory reference. */
1959 if (new == memref)
1960 return new;
1961
1962 /* Update the alignment to reflect the offset. Reset the offset, which
1963 we don't know. */
1964 MEM_ATTRS (new)
1965 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1966 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1967 GET_MODE (new));
1968 return new;
1969 }
1970
1971 /* Return a memory reference like MEMREF, but with its address changed to
1972 ADDR. The caller is asserting that the actual piece of memory pointed
1973 to is the same, just the form of the address is being changed, such as
1974 by putting something into a register. */
1975
1976 rtx
1977 replace_equiv_address (rtx memref, rtx addr)
1978 {
1979 /* change_address_1 copies the memory attribute structure without change
1980 and that's exactly what we want here. */
1981 update_temp_slot_address (XEXP (memref, 0), addr);
1982 return change_address_1 (memref, VOIDmode, addr, 1);
1983 }
1984
1985 /* Likewise, but the reference is not required to be valid. */
1986
1987 rtx
1988 replace_equiv_address_nv (rtx memref, rtx addr)
1989 {
1990 return change_address_1 (memref, VOIDmode, addr, 0);
1991 }
1992
1993 /* Return a memory reference like MEMREF, but with its mode widened to
1994 MODE and offset by OFFSET. This would be used by targets that e.g.
1995 cannot issue QImode memory operations and have to use SImode memory
1996 operations plus masking logic. */
1997
1998 rtx
1999 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2000 {
2001 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2002 tree expr = MEM_EXPR (new);
2003 rtx memoffset = MEM_OFFSET (new);
2004 unsigned int size = GET_MODE_SIZE (mode);
2005
2006 /* If there are no changes, just return the original memory reference. */
2007 if (new == memref)
2008 return new;
2009
2010 /* If we don't know what offset we were at within the expression, then
2011 we can't know if we've overstepped the bounds. */
2012 if (! memoffset)
2013 expr = NULL_TREE;
2014
2015 while (expr)
2016 {
2017 if (TREE_CODE (expr) == COMPONENT_REF)
2018 {
2019 tree field = TREE_OPERAND (expr, 1);
2020
2021 if (! DECL_SIZE_UNIT (field))
2022 {
2023 expr = NULL_TREE;
2024 break;
2025 }
2026
2027 /* Is the field at least as large as the access? If so, ok,
2028 otherwise strip back to the containing structure. */
2029 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2030 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2031 && INTVAL (memoffset) >= 0)
2032 break;
2033
2034 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2035 {
2036 expr = NULL_TREE;
2037 break;
2038 }
2039
2040 expr = TREE_OPERAND (expr, 0);
2041 memoffset = (GEN_INT (INTVAL (memoffset)
2042 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2043 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2044 / BITS_PER_UNIT)));
2045 }
2046 /* Similarly for the decl. */
2047 else if (DECL_P (expr)
2048 && DECL_SIZE_UNIT (expr)
2049 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2050 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2051 && (! memoffset || INTVAL (memoffset) >= 0))
2052 break;
2053 else
2054 {
2055 /* The widened memory access overflows the expression, which means
2056 that it could alias another expression. Zap it. */
2057 expr = NULL_TREE;
2058 break;
2059 }
2060 }
2061
2062 if (! expr)
2063 memoffset = NULL_RTX;
2064
2065 /* The widened memory may alias other stuff, so zap the alias set. */
2066 /* ??? Maybe use get_alias_set on any remaining expression. */
2067
2068 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2069 MEM_ALIGN (new), mode);
2070
2071 return new;
2072 }
2073 \f
2074 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2075
2076 rtx
2077 gen_label_rtx (void)
2078 {
2079 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2080 NULL, label_num++, NULL);
2081 }
2082 \f
2083 /* For procedure integration. */
2084
2085 /* Install new pointers to the first and last insns in the chain.
2086 Also, set cur_insn_uid to one higher than the last in use.
2087 Used for an inline-procedure after copying the insn chain. */
2088
2089 void
2090 set_new_first_and_last_insn (rtx first, rtx last)
2091 {
2092 rtx insn;
2093
2094 first_insn = first;
2095 last_insn = last;
2096 cur_insn_uid = 0;
2097
2098 for (insn = first; insn; insn = NEXT_INSN (insn))
2099 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2100
2101 cur_insn_uid++;
2102 }
2103
2104 /* Set the last label number found in the current function.
2105 This is used when belatedly compiling an inline function. */
2106
2107 void
2108 set_new_last_label_num (int last)
2109 {
2110 base_label_num = label_num;
2111 last_label_num = last;
2112 }
2113 \f
2114 /* Restore all variables describing the current status from the structure *P.
2115 This is used after a nested function. */
2116
2117 void
2118 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2119 {
2120 last_label_num = 0;
2121 }
2122 \f
2123 /* Go through all the RTL insn bodies and copy any invalid shared
2124 structure. This routine should only be called once. */
2125
2126 void
2127 unshare_all_rtl (tree fndecl, rtx insn)
2128 {
2129 tree decl;
2130
2131 /* Make sure that virtual parameters are not shared. */
2132 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2133 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2134
2135 /* Make sure that virtual stack slots are not shared. */
2136 unshare_all_decls (DECL_INITIAL (fndecl));
2137
2138 /* Unshare just about everything else. */
2139 unshare_all_rtl_in_chain (insn);
2140
2141 /* Make sure the addresses of stack slots found outside the insn chain
2142 (such as, in DECL_RTL of a variable) are not shared
2143 with the insn chain.
2144
2145 This special care is necessary when the stack slot MEM does not
2146 actually appear in the insn chain. If it does appear, its address
2147 is unshared from all else at that point. */
2148 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2149 }
2150
2151 /* Go through all the RTL insn bodies and copy any invalid shared
2152 structure, again. This is a fairly expensive thing to do so it
2153 should be done sparingly. */
2154
2155 void
2156 unshare_all_rtl_again (rtx insn)
2157 {
2158 rtx p;
2159 tree decl;
2160
2161 for (p = insn; p; p = NEXT_INSN (p))
2162 if (INSN_P (p))
2163 {
2164 reset_used_flags (PATTERN (p));
2165 reset_used_flags (REG_NOTES (p));
2166 reset_used_flags (LOG_LINKS (p));
2167 }
2168
2169 /* Make sure that virtual stack slots are not shared. */
2170 reset_used_decls (DECL_INITIAL (cfun->decl));
2171
2172 /* Make sure that virtual parameters are not shared. */
2173 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2174 reset_used_flags (DECL_RTL (decl));
2175
2176 reset_used_flags (stack_slot_list);
2177
2178 unshare_all_rtl (cfun->decl, insn);
2179 }
2180
2181 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2182 Recursively does the same for subexpressions. */
2183
2184 static void
2185 verify_rtx_sharing (rtx orig, rtx insn)
2186 {
2187 rtx x = orig;
2188 int i;
2189 enum rtx_code code;
2190 const char *format_ptr;
2191
2192 if (x == 0)
2193 return;
2194
2195 code = GET_CODE (x);
2196
2197 /* These types may be freely shared. */
2198
2199 switch (code)
2200 {
2201 case REG:
2202 case QUEUED:
2203 case CONST_INT:
2204 case CONST_DOUBLE:
2205 case CONST_VECTOR:
2206 case SYMBOL_REF:
2207 case LABEL_REF:
2208 case CODE_LABEL:
2209 case PC:
2210 case CC0:
2211 case SCRATCH:
2212 return;
2213 /* SCRATCH must be shared because they represent distinct values. */
2214 case CLOBBER:
2215 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2216 return;
2217 break;
2218
2219 case CONST:
2220 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2221 a LABEL_REF, it isn't sharable. */
2222 if (GET_CODE (XEXP (x, 0)) == PLUS
2223 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2224 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2225 return;
2226 break;
2227
2228 case MEM:
2229 /* A MEM is allowed to be shared if its address is constant. */
2230 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2231 || reload_completed || reload_in_progress)
2232 return;
2233
2234 break;
2235
2236 default:
2237 break;
2238 }
2239
2240 /* This rtx may not be shared. If it has already been seen,
2241 replace it with a copy of itself. */
2242
2243 if (RTX_FLAG (x, used))
2244 {
2245 error ("Invalid rtl sharing found in the insn");
2246 debug_rtx (insn);
2247 error ("Shared rtx");
2248 debug_rtx (x);
2249 abort ();
2250 }
2251 RTX_FLAG (x, used) = 1;
2252
2253 /* Now scan the subexpressions recursively. */
2254
2255 format_ptr = GET_RTX_FORMAT (code);
2256
2257 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2258 {
2259 switch (*format_ptr++)
2260 {
2261 case 'e':
2262 verify_rtx_sharing (XEXP (x, i), insn);
2263 break;
2264
2265 case 'E':
2266 if (XVEC (x, i) != NULL)
2267 {
2268 int j;
2269 int len = XVECLEN (x, i);
2270
2271 for (j = 0; j < len; j++)
2272 {
2273 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2274 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2275 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2276 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2277 else
2278 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2279 }
2280 }
2281 break;
2282 }
2283 }
2284 return;
2285 }
2286
2287 /* Go through all the RTL insn bodies and check that there is no unexpected
2288 sharing in between the subexpressions. */
2289
2290 void
2291 verify_rtl_sharing (void)
2292 {
2293 rtx p;
2294
2295 for (p = get_insns (); p; p = NEXT_INSN (p))
2296 if (INSN_P (p))
2297 {
2298 reset_used_flags (PATTERN (p));
2299 reset_used_flags (REG_NOTES (p));
2300 reset_used_flags (LOG_LINKS (p));
2301 }
2302
2303 for (p = get_insns (); p; p = NEXT_INSN (p))
2304 if (INSN_P (p))
2305 {
2306 verify_rtx_sharing (PATTERN (p), p);
2307 verify_rtx_sharing (REG_NOTES (p), p);
2308 verify_rtx_sharing (LOG_LINKS (p), p);
2309 }
2310 }
2311
2312 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2313 Assumes the mark bits are cleared at entry. */
2314
2315 void
2316 unshare_all_rtl_in_chain (rtx insn)
2317 {
2318 for (; insn; insn = NEXT_INSN (insn))
2319 if (INSN_P (insn))
2320 {
2321 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2322 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2323 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2324 }
2325 }
2326
2327 /* Go through all virtual stack slots of a function and copy any
2328 shared structure. */
2329 static void
2330 unshare_all_decls (tree blk)
2331 {
2332 tree t;
2333
2334 /* Copy shared decls. */
2335 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2336 if (DECL_RTL_SET_P (t))
2337 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2338
2339 /* Now process sub-blocks. */
2340 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2341 unshare_all_decls (t);
2342 }
2343
2344 /* Go through all virtual stack slots of a function and mark them as
2345 not shared. */
2346 static void
2347 reset_used_decls (tree blk)
2348 {
2349 tree t;
2350
2351 /* Mark decls. */
2352 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2353 if (DECL_RTL_SET_P (t))
2354 reset_used_flags (DECL_RTL (t));
2355
2356 /* Now process sub-blocks. */
2357 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2358 reset_used_decls (t);
2359 }
2360
2361 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2362 placed in the result directly, rather than being copied. MAY_SHARE is
2363 either a MEM of an EXPR_LIST of MEMs. */
2364
2365 rtx
2366 copy_most_rtx (rtx orig, rtx may_share)
2367 {
2368 rtx copy;
2369 int i, j;
2370 RTX_CODE code;
2371 const char *format_ptr;
2372
2373 if (orig == may_share
2374 || (GET_CODE (may_share) == EXPR_LIST
2375 && in_expr_list_p (may_share, orig)))
2376 return orig;
2377
2378 code = GET_CODE (orig);
2379
2380 switch (code)
2381 {
2382 case REG:
2383 case QUEUED:
2384 case CONST_INT:
2385 case CONST_DOUBLE:
2386 case CONST_VECTOR:
2387 case SYMBOL_REF:
2388 case CODE_LABEL:
2389 case PC:
2390 case CC0:
2391 return orig;
2392 default:
2393 break;
2394 }
2395
2396 copy = rtx_alloc (code);
2397 PUT_MODE (copy, GET_MODE (orig));
2398 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2399 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2400 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2401 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2402 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2403
2404 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2405
2406 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2407 {
2408 switch (*format_ptr++)
2409 {
2410 case 'e':
2411 XEXP (copy, i) = XEXP (orig, i);
2412 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2413 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2414 break;
2415
2416 case 'u':
2417 XEXP (copy, i) = XEXP (orig, i);
2418 break;
2419
2420 case 'E':
2421 case 'V':
2422 XVEC (copy, i) = XVEC (orig, i);
2423 if (XVEC (orig, i) != NULL)
2424 {
2425 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2426 for (j = 0; j < XVECLEN (copy, i); j++)
2427 XVECEXP (copy, i, j)
2428 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2429 }
2430 break;
2431
2432 case 'w':
2433 XWINT (copy, i) = XWINT (orig, i);
2434 break;
2435
2436 case 'n':
2437 case 'i':
2438 XINT (copy, i) = XINT (orig, i);
2439 break;
2440
2441 case 't':
2442 XTREE (copy, i) = XTREE (orig, i);
2443 break;
2444
2445 case 's':
2446 case 'S':
2447 XSTR (copy, i) = XSTR (orig, i);
2448 break;
2449
2450 case '0':
2451 X0ANY (copy, i) = X0ANY (orig, i);
2452 break;
2453
2454 default:
2455 abort ();
2456 }
2457 }
2458 return copy;
2459 }
2460
2461 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2462 Recursively does the same for subexpressions. Uses
2463 copy_rtx_if_shared_1 to reduce stack space. */
2464
2465 rtx
2466 copy_rtx_if_shared (rtx orig)
2467 {
2468 copy_rtx_if_shared_1 (&orig);
2469 return orig;
2470 }
2471
2472 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2473 use. Recursively does the same for subexpressions. */
2474
2475 static void
2476 copy_rtx_if_shared_1 (rtx *orig1)
2477 {
2478 rtx x;
2479 int i;
2480 enum rtx_code code;
2481 rtx *last_ptr;
2482 const char *format_ptr;
2483 int copied = 0;
2484 int length;
2485
2486 /* Repeat is used to turn tail-recursion into iteration. */
2487 repeat:
2488 x = *orig1;
2489
2490 if (x == 0)
2491 return;
2492
2493 code = GET_CODE (x);
2494
2495 /* These types may be freely shared. */
2496
2497 switch (code)
2498 {
2499 case REG:
2500 case QUEUED:
2501 case CONST_INT:
2502 case CONST_DOUBLE:
2503 case CONST_VECTOR:
2504 case SYMBOL_REF:
2505 case LABEL_REF:
2506 case CODE_LABEL:
2507 case PC:
2508 case CC0:
2509 case SCRATCH:
2510 /* SCRATCH must be shared because they represent distinct values. */
2511 return;
2512 case CLOBBER:
2513 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2514 return;
2515 break;
2516
2517 case CONST:
2518 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2519 a LABEL_REF, it isn't sharable. */
2520 if (GET_CODE (XEXP (x, 0)) == PLUS
2521 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2522 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2523 return;
2524 break;
2525
2526 case INSN:
2527 case JUMP_INSN:
2528 case CALL_INSN:
2529 case NOTE:
2530 case BARRIER:
2531 /* The chain of insns is not being copied. */
2532 return;
2533
2534 default:
2535 break;
2536 }
2537
2538 /* This rtx may not be shared. If it has already been seen,
2539 replace it with a copy of itself. */
2540
2541 if (RTX_FLAG (x, used))
2542 {
2543 rtx copy;
2544
2545 copy = rtx_alloc (code);
2546 memcpy (copy, x, RTX_SIZE (code));
2547 x = copy;
2548 copied = 1;
2549 }
2550 RTX_FLAG (x, used) = 1;
2551
2552 /* Now scan the subexpressions recursively.
2553 We can store any replaced subexpressions directly into X
2554 since we know X is not shared! Any vectors in X
2555 must be copied if X was copied. */
2556
2557 format_ptr = GET_RTX_FORMAT (code);
2558 length = GET_RTX_LENGTH (code);
2559 last_ptr = NULL;
2560
2561 for (i = 0; i < length; i++)
2562 {
2563 switch (*format_ptr++)
2564 {
2565 case 'e':
2566 if (last_ptr)
2567 copy_rtx_if_shared_1 (last_ptr);
2568 last_ptr = &XEXP (x, i);
2569 break;
2570
2571 case 'E':
2572 if (XVEC (x, i) != NULL)
2573 {
2574 int j;
2575 int len = XVECLEN (x, i);
2576
2577 /* Copy the vector iff I copied the rtx and the length
2578 is nonzero. */
2579 if (copied && len > 0)
2580 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2581
2582 /* Call recursively on all inside the vector. */
2583 for (j = 0; j < len; j++)
2584 {
2585 if (last_ptr)
2586 copy_rtx_if_shared_1 (last_ptr);
2587 last_ptr = &XVECEXP (x, i, j);
2588 }
2589 }
2590 break;
2591 }
2592 }
2593 *orig1 = x;
2594 if (last_ptr)
2595 {
2596 orig1 = last_ptr;
2597 goto repeat;
2598 }
2599 return;
2600 }
2601
2602 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2603 to look for shared sub-parts. */
2604
2605 void
2606 reset_used_flags (rtx x)
2607 {
2608 int i, j;
2609 enum rtx_code code;
2610 const char *format_ptr;
2611 int length;
2612
2613 /* Repeat is used to turn tail-recursion into iteration. */
2614 repeat:
2615 if (x == 0)
2616 return;
2617
2618 code = GET_CODE (x);
2619
2620 /* These types may be freely shared so we needn't do any resetting
2621 for them. */
2622
2623 switch (code)
2624 {
2625 case REG:
2626 case QUEUED:
2627 case CONST_INT:
2628 case CONST_DOUBLE:
2629 case CONST_VECTOR:
2630 case SYMBOL_REF:
2631 case CODE_LABEL:
2632 case PC:
2633 case CC0:
2634 return;
2635
2636 case INSN:
2637 case JUMP_INSN:
2638 case CALL_INSN:
2639 case NOTE:
2640 case LABEL_REF:
2641 case BARRIER:
2642 /* The chain of insns is not being copied. */
2643 return;
2644
2645 default:
2646 break;
2647 }
2648
2649 RTX_FLAG (x, used) = 0;
2650
2651 format_ptr = GET_RTX_FORMAT (code);
2652 length = GET_RTX_LENGTH (code);
2653
2654 for (i = 0; i < length; i++)
2655 {
2656 switch (*format_ptr++)
2657 {
2658 case 'e':
2659 if (i == length-1)
2660 {
2661 x = XEXP (x, i);
2662 goto repeat;
2663 }
2664 reset_used_flags (XEXP (x, i));
2665 break;
2666
2667 case 'E':
2668 for (j = 0; j < XVECLEN (x, i); j++)
2669 reset_used_flags (XVECEXP (x, i, j));
2670 break;
2671 }
2672 }
2673 }
2674
2675 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2676 to look for shared sub-parts. */
2677
2678 void
2679 set_used_flags (rtx x)
2680 {
2681 int i, j;
2682 enum rtx_code code;
2683 const char *format_ptr;
2684
2685 if (x == 0)
2686 return;
2687
2688 code = GET_CODE (x);
2689
2690 /* These types may be freely shared so we needn't do any resetting
2691 for them. */
2692
2693 switch (code)
2694 {
2695 case REG:
2696 case QUEUED:
2697 case CONST_INT:
2698 case CONST_DOUBLE:
2699 case CONST_VECTOR:
2700 case SYMBOL_REF:
2701 case CODE_LABEL:
2702 case PC:
2703 case CC0:
2704 return;
2705
2706 case INSN:
2707 case JUMP_INSN:
2708 case CALL_INSN:
2709 case NOTE:
2710 case LABEL_REF:
2711 case BARRIER:
2712 /* The chain of insns is not being copied. */
2713 return;
2714
2715 default:
2716 break;
2717 }
2718
2719 RTX_FLAG (x, used) = 1;
2720
2721 format_ptr = GET_RTX_FORMAT (code);
2722 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2723 {
2724 switch (*format_ptr++)
2725 {
2726 case 'e':
2727 set_used_flags (XEXP (x, i));
2728 break;
2729
2730 case 'E':
2731 for (j = 0; j < XVECLEN (x, i); j++)
2732 set_used_flags (XVECEXP (x, i, j));
2733 break;
2734 }
2735 }
2736 }
2737 \f
2738 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2739 Return X or the rtx for the pseudo reg the value of X was copied into.
2740 OTHER must be valid as a SET_DEST. */
2741
2742 rtx
2743 make_safe_from (rtx x, rtx other)
2744 {
2745 while (1)
2746 switch (GET_CODE (other))
2747 {
2748 case SUBREG:
2749 other = SUBREG_REG (other);
2750 break;
2751 case STRICT_LOW_PART:
2752 case SIGN_EXTEND:
2753 case ZERO_EXTEND:
2754 other = XEXP (other, 0);
2755 break;
2756 default:
2757 goto done;
2758 }
2759 done:
2760 if ((GET_CODE (other) == MEM
2761 && ! CONSTANT_P (x)
2762 && GET_CODE (x) != REG
2763 && GET_CODE (x) != SUBREG)
2764 || (GET_CODE (other) == REG
2765 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2766 || reg_mentioned_p (other, x))))
2767 {
2768 rtx temp = gen_reg_rtx (GET_MODE (x));
2769 emit_move_insn (temp, x);
2770 return temp;
2771 }
2772 return x;
2773 }
2774 \f
2775 /* Emission of insns (adding them to the doubly-linked list). */
2776
2777 /* Return the first insn of the current sequence or current function. */
2778
2779 rtx
2780 get_insns (void)
2781 {
2782 return first_insn;
2783 }
2784
2785 /* Specify a new insn as the first in the chain. */
2786
2787 void
2788 set_first_insn (rtx insn)
2789 {
2790 if (PREV_INSN (insn) != 0)
2791 abort ();
2792 first_insn = insn;
2793 }
2794
2795 /* Return the last insn emitted in current sequence or current function. */
2796
2797 rtx
2798 get_last_insn (void)
2799 {
2800 return last_insn;
2801 }
2802
2803 /* Specify a new insn as the last in the chain. */
2804
2805 void
2806 set_last_insn (rtx insn)
2807 {
2808 if (NEXT_INSN (insn) != 0)
2809 abort ();
2810 last_insn = insn;
2811 }
2812
2813 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2814
2815 rtx
2816 get_last_insn_anywhere (void)
2817 {
2818 struct sequence_stack *stack;
2819 if (last_insn)
2820 return last_insn;
2821 for (stack = seq_stack; stack; stack = stack->next)
2822 if (stack->last != 0)
2823 return stack->last;
2824 return 0;
2825 }
2826
2827 /* Return the first nonnote insn emitted in current sequence or current
2828 function. This routine looks inside SEQUENCEs. */
2829
2830 rtx
2831 get_first_nonnote_insn (void)
2832 {
2833 rtx insn = first_insn;
2834
2835 while (insn)
2836 {
2837 insn = next_insn (insn);
2838 if (insn == 0 || GET_CODE (insn) != NOTE)
2839 break;
2840 }
2841
2842 return insn;
2843 }
2844
2845 /* Return the last nonnote insn emitted in current sequence or current
2846 function. This routine looks inside SEQUENCEs. */
2847
2848 rtx
2849 get_last_nonnote_insn (void)
2850 {
2851 rtx insn = last_insn;
2852
2853 while (insn)
2854 {
2855 insn = previous_insn (insn);
2856 if (insn == 0 || GET_CODE (insn) != NOTE)
2857 break;
2858 }
2859
2860 return insn;
2861 }
2862
2863 /* Return a number larger than any instruction's uid in this function. */
2864
2865 int
2866 get_max_uid (void)
2867 {
2868 return cur_insn_uid;
2869 }
2870
2871 /* Renumber instructions so that no instruction UIDs are wasted. */
2872
2873 void
2874 renumber_insns (FILE *stream)
2875 {
2876 rtx insn;
2877
2878 /* If we're not supposed to renumber instructions, don't. */
2879 if (!flag_renumber_insns)
2880 return;
2881
2882 /* If there aren't that many instructions, then it's not really
2883 worth renumbering them. */
2884 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2885 return;
2886
2887 cur_insn_uid = 1;
2888
2889 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2890 {
2891 if (stream)
2892 fprintf (stream, "Renumbering insn %d to %d\n",
2893 INSN_UID (insn), cur_insn_uid);
2894 INSN_UID (insn) = cur_insn_uid++;
2895 }
2896 }
2897 \f
2898 /* Return the next insn. If it is a SEQUENCE, return the first insn
2899 of the sequence. */
2900
2901 rtx
2902 next_insn (rtx insn)
2903 {
2904 if (insn)
2905 {
2906 insn = NEXT_INSN (insn);
2907 if (insn && GET_CODE (insn) == INSN
2908 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2909 insn = XVECEXP (PATTERN (insn), 0, 0);
2910 }
2911
2912 return insn;
2913 }
2914
2915 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2916 of the sequence. */
2917
2918 rtx
2919 previous_insn (rtx insn)
2920 {
2921 if (insn)
2922 {
2923 insn = PREV_INSN (insn);
2924 if (insn && GET_CODE (insn) == INSN
2925 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2926 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2927 }
2928
2929 return insn;
2930 }
2931
2932 /* Return the next insn after INSN that is not a NOTE. This routine does not
2933 look inside SEQUENCEs. */
2934
2935 rtx
2936 next_nonnote_insn (rtx insn)
2937 {
2938 while (insn)
2939 {
2940 insn = NEXT_INSN (insn);
2941 if (insn == 0 || GET_CODE (insn) != NOTE)
2942 break;
2943 }
2944
2945 return insn;
2946 }
2947
2948 /* Return the previous insn before INSN that is not a NOTE. This routine does
2949 not look inside SEQUENCEs. */
2950
2951 rtx
2952 prev_nonnote_insn (rtx insn)
2953 {
2954 while (insn)
2955 {
2956 insn = PREV_INSN (insn);
2957 if (insn == 0 || GET_CODE (insn) != NOTE)
2958 break;
2959 }
2960
2961 return insn;
2962 }
2963
2964 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2965 or 0, if there is none. This routine does not look inside
2966 SEQUENCEs. */
2967
2968 rtx
2969 next_real_insn (rtx insn)
2970 {
2971 while (insn)
2972 {
2973 insn = NEXT_INSN (insn);
2974 if (insn == 0 || INSN_P (insn))
2975 break;
2976 }
2977
2978 return insn;
2979 }
2980
2981 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2982 or 0, if there is none. This routine does not look inside
2983 SEQUENCEs. */
2984
2985 rtx
2986 prev_real_insn (rtx insn)
2987 {
2988 while (insn)
2989 {
2990 insn = PREV_INSN (insn);
2991 if (insn == 0 || INSN_P (insn))
2992 break;
2993 }
2994
2995 return insn;
2996 }
2997
2998 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2999 This routine does not look inside SEQUENCEs. */
3000
3001 rtx
3002 last_call_insn (void)
3003 {
3004 rtx insn;
3005
3006 for (insn = get_last_insn ();
3007 insn && GET_CODE (insn) != CALL_INSN;
3008 insn = PREV_INSN (insn))
3009 ;
3010
3011 return insn;
3012 }
3013
3014 /* Find the next insn after INSN that really does something. This routine
3015 does not look inside SEQUENCEs. Until reload has completed, this is the
3016 same as next_real_insn. */
3017
3018 int
3019 active_insn_p (rtx insn)
3020 {
3021 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3022 || (GET_CODE (insn) == INSN
3023 && (! reload_completed
3024 || (GET_CODE (PATTERN (insn)) != USE
3025 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3026 }
3027
3028 rtx
3029 next_active_insn (rtx insn)
3030 {
3031 while (insn)
3032 {
3033 insn = NEXT_INSN (insn);
3034 if (insn == 0 || active_insn_p (insn))
3035 break;
3036 }
3037
3038 return insn;
3039 }
3040
3041 /* Find the last insn before INSN that really does something. This routine
3042 does not look inside SEQUENCEs. Until reload has completed, this is the
3043 same as prev_real_insn. */
3044
3045 rtx
3046 prev_active_insn (rtx insn)
3047 {
3048 while (insn)
3049 {
3050 insn = PREV_INSN (insn);
3051 if (insn == 0 || active_insn_p (insn))
3052 break;
3053 }
3054
3055 return insn;
3056 }
3057
3058 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3059
3060 rtx
3061 next_label (rtx insn)
3062 {
3063 while (insn)
3064 {
3065 insn = NEXT_INSN (insn);
3066 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3067 break;
3068 }
3069
3070 return insn;
3071 }
3072
3073 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3074
3075 rtx
3076 prev_label (rtx insn)
3077 {
3078 while (insn)
3079 {
3080 insn = PREV_INSN (insn);
3081 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3082 break;
3083 }
3084
3085 return insn;
3086 }
3087 \f
3088 #ifdef HAVE_cc0
3089 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3090 and REG_CC_USER notes so we can find it. */
3091
3092 void
3093 link_cc0_insns (rtx insn)
3094 {
3095 rtx user = next_nonnote_insn (insn);
3096
3097 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3098 user = XVECEXP (PATTERN (user), 0, 0);
3099
3100 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3101 REG_NOTES (user));
3102 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3103 }
3104
3105 /* Return the next insn that uses CC0 after INSN, which is assumed to
3106 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3107 applied to the result of this function should yield INSN).
3108
3109 Normally, this is simply the next insn. However, if a REG_CC_USER note
3110 is present, it contains the insn that uses CC0.
3111
3112 Return 0 if we can't find the insn. */
3113
3114 rtx
3115 next_cc0_user (rtx insn)
3116 {
3117 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3118
3119 if (note)
3120 return XEXP (note, 0);
3121
3122 insn = next_nonnote_insn (insn);
3123 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3124 insn = XVECEXP (PATTERN (insn), 0, 0);
3125
3126 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3127 return insn;
3128
3129 return 0;
3130 }
3131
3132 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3133 note, it is the previous insn. */
3134
3135 rtx
3136 prev_cc0_setter (rtx insn)
3137 {
3138 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3139
3140 if (note)
3141 return XEXP (note, 0);
3142
3143 insn = prev_nonnote_insn (insn);
3144 if (! sets_cc0_p (PATTERN (insn)))
3145 abort ();
3146
3147 return insn;
3148 }
3149 #endif
3150
3151 /* Increment the label uses for all labels present in rtx. */
3152
3153 static void
3154 mark_label_nuses (rtx x)
3155 {
3156 enum rtx_code code;
3157 int i, j;
3158 const char *fmt;
3159
3160 code = GET_CODE (x);
3161 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3162 LABEL_NUSES (XEXP (x, 0))++;
3163
3164 fmt = GET_RTX_FORMAT (code);
3165 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3166 {
3167 if (fmt[i] == 'e')
3168 mark_label_nuses (XEXP (x, i));
3169 else if (fmt[i] == 'E')
3170 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3171 mark_label_nuses (XVECEXP (x, i, j));
3172 }
3173 }
3174
3175 \f
3176 /* Try splitting insns that can be split for better scheduling.
3177 PAT is the pattern which might split.
3178 TRIAL is the insn providing PAT.
3179 LAST is nonzero if we should return the last insn of the sequence produced.
3180
3181 If this routine succeeds in splitting, it returns the first or last
3182 replacement insn depending on the value of LAST. Otherwise, it
3183 returns TRIAL. If the insn to be returned can be split, it will be. */
3184
3185 rtx
3186 try_split (rtx pat, rtx trial, int last)
3187 {
3188 rtx before = PREV_INSN (trial);
3189 rtx after = NEXT_INSN (trial);
3190 int has_barrier = 0;
3191 rtx tem;
3192 rtx note, seq;
3193 int probability;
3194 rtx insn_last, insn;
3195 int njumps = 0;
3196
3197 if (any_condjump_p (trial)
3198 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3199 split_branch_probability = INTVAL (XEXP (note, 0));
3200 probability = split_branch_probability;
3201
3202 seq = split_insns (pat, trial);
3203
3204 split_branch_probability = -1;
3205
3206 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3207 We may need to handle this specially. */
3208 if (after && GET_CODE (after) == BARRIER)
3209 {
3210 has_barrier = 1;
3211 after = NEXT_INSN (after);
3212 }
3213
3214 if (!seq)
3215 return trial;
3216
3217 /* Avoid infinite loop if any insn of the result matches
3218 the original pattern. */
3219 insn_last = seq;
3220 while (1)
3221 {
3222 if (INSN_P (insn_last)
3223 && rtx_equal_p (PATTERN (insn_last), pat))
3224 return trial;
3225 if (!NEXT_INSN (insn_last))
3226 break;
3227 insn_last = NEXT_INSN (insn_last);
3228 }
3229
3230 /* Mark labels. */
3231 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3232 {
3233 if (GET_CODE (insn) == JUMP_INSN)
3234 {
3235 mark_jump_label (PATTERN (insn), insn, 0);
3236 njumps++;
3237 if (probability != -1
3238 && any_condjump_p (insn)
3239 && !find_reg_note (insn, REG_BR_PROB, 0))
3240 {
3241 /* We can preserve the REG_BR_PROB notes only if exactly
3242 one jump is created, otherwise the machine description
3243 is responsible for this step using
3244 split_branch_probability variable. */
3245 if (njumps != 1)
3246 abort ();
3247 REG_NOTES (insn)
3248 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3249 GEN_INT (probability),
3250 REG_NOTES (insn));
3251 }
3252 }
3253 }
3254
3255 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3256 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3257 if (GET_CODE (trial) == CALL_INSN)
3258 {
3259 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3260 if (GET_CODE (insn) == CALL_INSN)
3261 {
3262 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3263 while (*p)
3264 p = &XEXP (*p, 1);
3265 *p = CALL_INSN_FUNCTION_USAGE (trial);
3266 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3267 }
3268 }
3269
3270 /* Copy notes, particularly those related to the CFG. */
3271 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3272 {
3273 switch (REG_NOTE_KIND (note))
3274 {
3275 case REG_EH_REGION:
3276 insn = insn_last;
3277 while (insn != NULL_RTX)
3278 {
3279 if (GET_CODE (insn) == CALL_INSN
3280 || (flag_non_call_exceptions
3281 && may_trap_p (PATTERN (insn))))
3282 REG_NOTES (insn)
3283 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3284 XEXP (note, 0),
3285 REG_NOTES (insn));
3286 insn = PREV_INSN (insn);
3287 }
3288 break;
3289
3290 case REG_NORETURN:
3291 case REG_SETJMP:
3292 case REG_ALWAYS_RETURN:
3293 insn = insn_last;
3294 while (insn != NULL_RTX)
3295 {
3296 if (GET_CODE (insn) == CALL_INSN)
3297 REG_NOTES (insn)
3298 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3299 XEXP (note, 0),
3300 REG_NOTES (insn));
3301 insn = PREV_INSN (insn);
3302 }
3303 break;
3304
3305 case REG_NON_LOCAL_GOTO:
3306 insn = insn_last;
3307 while (insn != NULL_RTX)
3308 {
3309 if (GET_CODE (insn) == JUMP_INSN)
3310 REG_NOTES (insn)
3311 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3312 XEXP (note, 0),
3313 REG_NOTES (insn));
3314 insn = PREV_INSN (insn);
3315 }
3316 break;
3317
3318 default:
3319 break;
3320 }
3321 }
3322
3323 /* If there are LABELS inside the split insns increment the
3324 usage count so we don't delete the label. */
3325 if (GET_CODE (trial) == INSN)
3326 {
3327 insn = insn_last;
3328 while (insn != NULL_RTX)
3329 {
3330 if (GET_CODE (insn) == INSN)
3331 mark_label_nuses (PATTERN (insn));
3332
3333 insn = PREV_INSN (insn);
3334 }
3335 }
3336
3337 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3338
3339 delete_insn (trial);
3340 if (has_barrier)
3341 emit_barrier_after (tem);
3342
3343 /* Recursively call try_split for each new insn created; by the
3344 time control returns here that insn will be fully split, so
3345 set LAST and continue from the insn after the one returned.
3346 We can't use next_active_insn here since AFTER may be a note.
3347 Ignore deleted insns, which can be occur if not optimizing. */
3348 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3349 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3350 tem = try_split (PATTERN (tem), tem, 1);
3351
3352 /* Return either the first or the last insn, depending on which was
3353 requested. */
3354 return last
3355 ? (after ? PREV_INSN (after) : last_insn)
3356 : NEXT_INSN (before);
3357 }
3358 \f
3359 /* Make and return an INSN rtx, initializing all its slots.
3360 Store PATTERN in the pattern slots. */
3361
3362 rtx
3363 make_insn_raw (rtx pattern)
3364 {
3365 rtx insn;
3366
3367 insn = rtx_alloc (INSN);
3368
3369 INSN_UID (insn) = cur_insn_uid++;
3370 PATTERN (insn) = pattern;
3371 INSN_CODE (insn) = -1;
3372 LOG_LINKS (insn) = NULL;
3373 REG_NOTES (insn) = NULL;
3374 INSN_LOCATOR (insn) = 0;
3375 BLOCK_FOR_INSN (insn) = NULL;
3376
3377 #ifdef ENABLE_RTL_CHECKING
3378 if (insn
3379 && INSN_P (insn)
3380 && (returnjump_p (insn)
3381 || (GET_CODE (insn) == SET
3382 && SET_DEST (insn) == pc_rtx)))
3383 {
3384 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3385 debug_rtx (insn);
3386 }
3387 #endif
3388
3389 return insn;
3390 }
3391
3392 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3393
3394 static rtx
3395 make_jump_insn_raw (rtx pattern)
3396 {
3397 rtx insn;
3398
3399 insn = rtx_alloc (JUMP_INSN);
3400 INSN_UID (insn) = cur_insn_uid++;
3401
3402 PATTERN (insn) = pattern;
3403 INSN_CODE (insn) = -1;
3404 LOG_LINKS (insn) = NULL;
3405 REG_NOTES (insn) = NULL;
3406 JUMP_LABEL (insn) = NULL;
3407 INSN_LOCATOR (insn) = 0;
3408 BLOCK_FOR_INSN (insn) = NULL;
3409
3410 return insn;
3411 }
3412
3413 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3414
3415 static rtx
3416 make_call_insn_raw (rtx pattern)
3417 {
3418 rtx insn;
3419
3420 insn = rtx_alloc (CALL_INSN);
3421 INSN_UID (insn) = cur_insn_uid++;
3422
3423 PATTERN (insn) = pattern;
3424 INSN_CODE (insn) = -1;
3425 LOG_LINKS (insn) = NULL;
3426 REG_NOTES (insn) = NULL;
3427 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3428 INSN_LOCATOR (insn) = 0;
3429 BLOCK_FOR_INSN (insn) = NULL;
3430
3431 return insn;
3432 }
3433 \f
3434 /* Add INSN to the end of the doubly-linked list.
3435 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3436
3437 void
3438 add_insn (rtx insn)
3439 {
3440 PREV_INSN (insn) = last_insn;
3441 NEXT_INSN (insn) = 0;
3442
3443 if (NULL != last_insn)
3444 NEXT_INSN (last_insn) = insn;
3445
3446 if (NULL == first_insn)
3447 first_insn = insn;
3448
3449 last_insn = insn;
3450 }
3451
3452 /* Add INSN into the doubly-linked list after insn AFTER. This and
3453 the next should be the only functions called to insert an insn once
3454 delay slots have been filled since only they know how to update a
3455 SEQUENCE. */
3456
3457 void
3458 add_insn_after (rtx insn, rtx after)
3459 {
3460 rtx next = NEXT_INSN (after);
3461 basic_block bb;
3462
3463 if (optimize && INSN_DELETED_P (after))
3464 abort ();
3465
3466 NEXT_INSN (insn) = next;
3467 PREV_INSN (insn) = after;
3468
3469 if (next)
3470 {
3471 PREV_INSN (next) = insn;
3472 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3473 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3474 }
3475 else if (last_insn == after)
3476 last_insn = insn;
3477 else
3478 {
3479 struct sequence_stack *stack = seq_stack;
3480 /* Scan all pending sequences too. */
3481 for (; stack; stack = stack->next)
3482 if (after == stack->last)
3483 {
3484 stack->last = insn;
3485 break;
3486 }
3487
3488 if (stack == 0)
3489 abort ();
3490 }
3491
3492 if (GET_CODE (after) != BARRIER
3493 && GET_CODE (insn) != BARRIER
3494 && (bb = BLOCK_FOR_INSN (after)))
3495 {
3496 set_block_for_insn (insn, bb);
3497 if (INSN_P (insn))
3498 bb->flags |= BB_DIRTY;
3499 /* Should not happen as first in the BB is always
3500 either NOTE or LABEL. */
3501 if (BB_END (bb) == after
3502 /* Avoid clobbering of structure when creating new BB. */
3503 && GET_CODE (insn) != BARRIER
3504 && (GET_CODE (insn) != NOTE
3505 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3506 BB_END (bb) = insn;
3507 }
3508
3509 NEXT_INSN (after) = insn;
3510 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3511 {
3512 rtx sequence = PATTERN (after);
3513 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3514 }
3515 }
3516
3517 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3518 the previous should be the only functions called to insert an insn once
3519 delay slots have been filled since only they know how to update a
3520 SEQUENCE. */
3521
3522 void
3523 add_insn_before (rtx insn, rtx before)
3524 {
3525 rtx prev = PREV_INSN (before);
3526 basic_block bb;
3527
3528 if (optimize && INSN_DELETED_P (before))
3529 abort ();
3530
3531 PREV_INSN (insn) = prev;
3532 NEXT_INSN (insn) = before;
3533
3534 if (prev)
3535 {
3536 NEXT_INSN (prev) = insn;
3537 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3538 {
3539 rtx sequence = PATTERN (prev);
3540 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3541 }
3542 }
3543 else if (first_insn == before)
3544 first_insn = insn;
3545 else
3546 {
3547 struct sequence_stack *stack = seq_stack;
3548 /* Scan all pending sequences too. */
3549 for (; stack; stack = stack->next)
3550 if (before == stack->first)
3551 {
3552 stack->first = insn;
3553 break;
3554 }
3555
3556 if (stack == 0)
3557 abort ();
3558 }
3559
3560 if (GET_CODE (before) != BARRIER
3561 && GET_CODE (insn) != BARRIER
3562 && (bb = BLOCK_FOR_INSN (before)))
3563 {
3564 set_block_for_insn (insn, bb);
3565 if (INSN_P (insn))
3566 bb->flags |= BB_DIRTY;
3567 /* Should not happen as first in the BB is always
3568 either NOTE or LABEl. */
3569 if (BB_HEAD (bb) == insn
3570 /* Avoid clobbering of structure when creating new BB. */
3571 && GET_CODE (insn) != BARRIER
3572 && (GET_CODE (insn) != NOTE
3573 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3574 abort ();
3575 }
3576
3577 PREV_INSN (before) = insn;
3578 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3579 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3580 }
3581
3582 /* Remove an insn from its doubly-linked list. This function knows how
3583 to handle sequences. */
3584 void
3585 remove_insn (rtx insn)
3586 {
3587 rtx next = NEXT_INSN (insn);
3588 rtx prev = PREV_INSN (insn);
3589 basic_block bb;
3590
3591 if (prev)
3592 {
3593 NEXT_INSN (prev) = next;
3594 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3595 {
3596 rtx sequence = PATTERN (prev);
3597 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3598 }
3599 }
3600 else if (first_insn == insn)
3601 first_insn = next;
3602 else
3603 {
3604 struct sequence_stack *stack = seq_stack;
3605 /* Scan all pending sequences too. */
3606 for (; stack; stack = stack->next)
3607 if (insn == stack->first)
3608 {
3609 stack->first = next;
3610 break;
3611 }
3612
3613 if (stack == 0)
3614 abort ();
3615 }
3616
3617 if (next)
3618 {
3619 PREV_INSN (next) = prev;
3620 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3621 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3622 }
3623 else if (last_insn == insn)
3624 last_insn = prev;
3625 else
3626 {
3627 struct sequence_stack *stack = seq_stack;
3628 /* Scan all pending sequences too. */
3629 for (; stack; stack = stack->next)
3630 if (insn == stack->last)
3631 {
3632 stack->last = prev;
3633 break;
3634 }
3635
3636 if (stack == 0)
3637 abort ();
3638 }
3639 if (GET_CODE (insn) != BARRIER
3640 && (bb = BLOCK_FOR_INSN (insn)))
3641 {
3642 if (INSN_P (insn))
3643 bb->flags |= BB_DIRTY;
3644 if (BB_HEAD (bb) == insn)
3645 {
3646 /* Never ever delete the basic block note without deleting whole
3647 basic block. */
3648 if (GET_CODE (insn) == NOTE)
3649 abort ();
3650 BB_HEAD (bb) = next;
3651 }
3652 if (BB_END (bb) == insn)
3653 BB_END (bb) = prev;
3654 }
3655 }
3656
3657 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3658
3659 void
3660 add_function_usage_to (rtx call_insn, rtx call_fusage)
3661 {
3662 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3663 abort ();
3664
3665 /* Put the register usage information on the CALL. If there is already
3666 some usage information, put ours at the end. */
3667 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3668 {
3669 rtx link;
3670
3671 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3672 link = XEXP (link, 1))
3673 ;
3674
3675 XEXP (link, 1) = call_fusage;
3676 }
3677 else
3678 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3679 }
3680
3681 /* Delete all insns made since FROM.
3682 FROM becomes the new last instruction. */
3683
3684 void
3685 delete_insns_since (rtx from)
3686 {
3687 if (from == 0)
3688 first_insn = 0;
3689 else
3690 NEXT_INSN (from) = 0;
3691 last_insn = from;
3692 }
3693
3694 /* This function is deprecated, please use sequences instead.
3695
3696 Move a consecutive bunch of insns to a different place in the chain.
3697 The insns to be moved are those between FROM and TO.
3698 They are moved to a new position after the insn AFTER.
3699 AFTER must not be FROM or TO or any insn in between.
3700
3701 This function does not know about SEQUENCEs and hence should not be
3702 called after delay-slot filling has been done. */
3703
3704 void
3705 reorder_insns_nobb (rtx from, rtx to, rtx after)
3706 {
3707 /* Splice this bunch out of where it is now. */
3708 if (PREV_INSN (from))
3709 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3710 if (NEXT_INSN (to))
3711 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3712 if (last_insn == to)
3713 last_insn = PREV_INSN (from);
3714 if (first_insn == from)
3715 first_insn = NEXT_INSN (to);
3716
3717 /* Make the new neighbors point to it and it to them. */
3718 if (NEXT_INSN (after))
3719 PREV_INSN (NEXT_INSN (after)) = to;
3720
3721 NEXT_INSN (to) = NEXT_INSN (after);
3722 PREV_INSN (from) = after;
3723 NEXT_INSN (after) = from;
3724 if (after == last_insn)
3725 last_insn = to;
3726 }
3727
3728 /* Same as function above, but take care to update BB boundaries. */
3729 void
3730 reorder_insns (rtx from, rtx to, rtx after)
3731 {
3732 rtx prev = PREV_INSN (from);
3733 basic_block bb, bb2;
3734
3735 reorder_insns_nobb (from, to, after);
3736
3737 if (GET_CODE (after) != BARRIER
3738 && (bb = BLOCK_FOR_INSN (after)))
3739 {
3740 rtx x;
3741 bb->flags |= BB_DIRTY;
3742
3743 if (GET_CODE (from) != BARRIER
3744 && (bb2 = BLOCK_FOR_INSN (from)))
3745 {
3746 if (BB_END (bb2) == to)
3747 BB_END (bb2) = prev;
3748 bb2->flags |= BB_DIRTY;
3749 }
3750
3751 if (BB_END (bb) == after)
3752 BB_END (bb) = to;
3753
3754 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3755 set_block_for_insn (x, bb);
3756 }
3757 }
3758
3759 /* Return the line note insn preceding INSN. */
3760
3761 static rtx
3762 find_line_note (rtx insn)
3763 {
3764 if (no_line_numbers)
3765 return 0;
3766
3767 for (; insn; insn = PREV_INSN (insn))
3768 if (GET_CODE (insn) == NOTE
3769 && NOTE_LINE_NUMBER (insn) >= 0)
3770 break;
3771
3772 return insn;
3773 }
3774
3775 /* Remove unnecessary notes from the instruction stream. */
3776
3777 void
3778 remove_unnecessary_notes (void)
3779 {
3780 rtx block_stack = NULL_RTX;
3781 rtx eh_stack = NULL_RTX;
3782 rtx insn;
3783 rtx next;
3784 rtx tmp;
3785
3786 /* We must not remove the first instruction in the function because
3787 the compiler depends on the first instruction being a note. */
3788 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3789 {
3790 /* Remember what's next. */
3791 next = NEXT_INSN (insn);
3792
3793 /* We're only interested in notes. */
3794 if (GET_CODE (insn) != NOTE)
3795 continue;
3796
3797 switch (NOTE_LINE_NUMBER (insn))
3798 {
3799 case NOTE_INSN_DELETED:
3800 case NOTE_INSN_LOOP_END_TOP_COND:
3801 remove_insn (insn);
3802 break;
3803
3804 case NOTE_INSN_EH_REGION_BEG:
3805 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3806 break;
3807
3808 case NOTE_INSN_EH_REGION_END:
3809 /* Too many end notes. */
3810 if (eh_stack == NULL_RTX)
3811 abort ();
3812 /* Mismatched nesting. */
3813 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3814 abort ();
3815 tmp = eh_stack;
3816 eh_stack = XEXP (eh_stack, 1);
3817 free_INSN_LIST_node (tmp);
3818 break;
3819
3820 case NOTE_INSN_BLOCK_BEG:
3821 /* By now, all notes indicating lexical blocks should have
3822 NOTE_BLOCK filled in. */
3823 if (NOTE_BLOCK (insn) == NULL_TREE)
3824 abort ();
3825 block_stack = alloc_INSN_LIST (insn, block_stack);
3826 break;
3827
3828 case NOTE_INSN_BLOCK_END:
3829 /* Too many end notes. */
3830 if (block_stack == NULL_RTX)
3831 abort ();
3832 /* Mismatched nesting. */
3833 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3834 abort ();
3835 tmp = block_stack;
3836 block_stack = XEXP (block_stack, 1);
3837 free_INSN_LIST_node (tmp);
3838
3839 /* Scan back to see if there are any non-note instructions
3840 between INSN and the beginning of this block. If not,
3841 then there is no PC range in the generated code that will
3842 actually be in this block, so there's no point in
3843 remembering the existence of the block. */
3844 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3845 {
3846 /* This block contains a real instruction. Note that we
3847 don't include labels; if the only thing in the block
3848 is a label, then there are still no PC values that
3849 lie within the block. */
3850 if (INSN_P (tmp))
3851 break;
3852
3853 /* We're only interested in NOTEs. */
3854 if (GET_CODE (tmp) != NOTE)
3855 continue;
3856
3857 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3858 {
3859 /* We just verified that this BLOCK matches us with
3860 the block_stack check above. Never delete the
3861 BLOCK for the outermost scope of the function; we
3862 can refer to names from that scope even if the
3863 block notes are messed up. */
3864 if (! is_body_block (NOTE_BLOCK (insn))
3865 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3866 {
3867 remove_insn (tmp);
3868 remove_insn (insn);
3869 }
3870 break;
3871 }
3872 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3873 /* There's a nested block. We need to leave the
3874 current block in place since otherwise the debugger
3875 wouldn't be able to show symbols from our block in
3876 the nested block. */
3877 break;
3878 }
3879 }
3880 }
3881
3882 /* Too many begin notes. */
3883 if (block_stack || eh_stack)
3884 abort ();
3885 }
3886
3887 \f
3888 /* Emit insn(s) of given code and pattern
3889 at a specified place within the doubly-linked list.
3890
3891 All of the emit_foo global entry points accept an object
3892 X which is either an insn list or a PATTERN of a single
3893 instruction.
3894
3895 There are thus a few canonical ways to generate code and
3896 emit it at a specific place in the instruction stream. For
3897 example, consider the instruction named SPOT and the fact that
3898 we would like to emit some instructions before SPOT. We might
3899 do it like this:
3900
3901 start_sequence ();
3902 ... emit the new instructions ...
3903 insns_head = get_insns ();
3904 end_sequence ();
3905
3906 emit_insn_before (insns_head, SPOT);
3907
3908 It used to be common to generate SEQUENCE rtl instead, but that
3909 is a relic of the past which no longer occurs. The reason is that
3910 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3911 generated would almost certainly die right after it was created. */
3912
3913 /* Make X be output before the instruction BEFORE. */
3914
3915 rtx
3916 emit_insn_before (rtx x, rtx before)
3917 {
3918 rtx last = before;
3919 rtx insn;
3920
3921 #ifdef ENABLE_RTL_CHECKING
3922 if (before == NULL_RTX)
3923 abort ();
3924 #endif
3925
3926 if (x == NULL_RTX)
3927 return last;
3928
3929 switch (GET_CODE (x))
3930 {
3931 case INSN:
3932 case JUMP_INSN:
3933 case CALL_INSN:
3934 case CODE_LABEL:
3935 case BARRIER:
3936 case NOTE:
3937 insn = x;
3938 while (insn)
3939 {
3940 rtx next = NEXT_INSN (insn);
3941 add_insn_before (insn, before);
3942 last = insn;
3943 insn = next;
3944 }
3945 break;
3946
3947 #ifdef ENABLE_RTL_CHECKING
3948 case SEQUENCE:
3949 abort ();
3950 break;
3951 #endif
3952
3953 default:
3954 last = make_insn_raw (x);
3955 add_insn_before (last, before);
3956 break;
3957 }
3958
3959 return last;
3960 }
3961
3962 /* Make an instruction with body X and code JUMP_INSN
3963 and output it before the instruction BEFORE. */
3964
3965 rtx
3966 emit_jump_insn_before (rtx x, rtx before)
3967 {
3968 rtx insn, last = NULL_RTX;
3969
3970 #ifdef ENABLE_RTL_CHECKING
3971 if (before == NULL_RTX)
3972 abort ();
3973 #endif
3974
3975 switch (GET_CODE (x))
3976 {
3977 case INSN:
3978 case JUMP_INSN:
3979 case CALL_INSN:
3980 case CODE_LABEL:
3981 case BARRIER:
3982 case NOTE:
3983 insn = x;
3984 while (insn)
3985 {
3986 rtx next = NEXT_INSN (insn);
3987 add_insn_before (insn, before);
3988 last = insn;
3989 insn = next;
3990 }
3991 break;
3992
3993 #ifdef ENABLE_RTL_CHECKING
3994 case SEQUENCE:
3995 abort ();
3996 break;
3997 #endif
3998
3999 default:
4000 last = make_jump_insn_raw (x);
4001 add_insn_before (last, before);
4002 break;
4003 }
4004
4005 return last;
4006 }
4007
4008 /* Make an instruction with body X and code CALL_INSN
4009 and output it before the instruction BEFORE. */
4010
4011 rtx
4012 emit_call_insn_before (rtx x, rtx before)
4013 {
4014 rtx last = NULL_RTX, insn;
4015
4016 #ifdef ENABLE_RTL_CHECKING
4017 if (before == NULL_RTX)
4018 abort ();
4019 #endif
4020
4021 switch (GET_CODE (x))
4022 {
4023 case INSN:
4024 case JUMP_INSN:
4025 case CALL_INSN:
4026 case CODE_LABEL:
4027 case BARRIER:
4028 case NOTE:
4029 insn = x;
4030 while (insn)
4031 {
4032 rtx next = NEXT_INSN (insn);
4033 add_insn_before (insn, before);
4034 last = insn;
4035 insn = next;
4036 }
4037 break;
4038
4039 #ifdef ENABLE_RTL_CHECKING
4040 case SEQUENCE:
4041 abort ();
4042 break;
4043 #endif
4044
4045 default:
4046 last = make_call_insn_raw (x);
4047 add_insn_before (last, before);
4048 break;
4049 }
4050
4051 return last;
4052 }
4053
4054 /* Make an insn of code BARRIER
4055 and output it before the insn BEFORE. */
4056
4057 rtx
4058 emit_barrier_before (rtx before)
4059 {
4060 rtx insn = rtx_alloc (BARRIER);
4061
4062 INSN_UID (insn) = cur_insn_uid++;
4063
4064 add_insn_before (insn, before);
4065 return insn;
4066 }
4067
4068 /* Emit the label LABEL before the insn BEFORE. */
4069
4070 rtx
4071 emit_label_before (rtx label, rtx before)
4072 {
4073 /* This can be called twice for the same label as a result of the
4074 confusion that follows a syntax error! So make it harmless. */
4075 if (INSN_UID (label) == 0)
4076 {
4077 INSN_UID (label) = cur_insn_uid++;
4078 add_insn_before (label, before);
4079 }
4080
4081 return label;
4082 }
4083
4084 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4085
4086 rtx
4087 emit_note_before (int subtype, rtx before)
4088 {
4089 rtx note = rtx_alloc (NOTE);
4090 INSN_UID (note) = cur_insn_uid++;
4091 NOTE_SOURCE_FILE (note) = 0;
4092 NOTE_LINE_NUMBER (note) = subtype;
4093 BLOCK_FOR_INSN (note) = NULL;
4094
4095 add_insn_before (note, before);
4096 return note;
4097 }
4098 \f
4099 /* Helper for emit_insn_after, handles lists of instructions
4100 efficiently. */
4101
4102 static rtx emit_insn_after_1 (rtx, rtx);
4103
4104 static rtx
4105 emit_insn_after_1 (rtx first, rtx after)
4106 {
4107 rtx last;
4108 rtx after_after;
4109 basic_block bb;
4110
4111 if (GET_CODE (after) != BARRIER
4112 && (bb = BLOCK_FOR_INSN (after)))
4113 {
4114 bb->flags |= BB_DIRTY;
4115 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4116 if (GET_CODE (last) != BARRIER)
4117 set_block_for_insn (last, bb);
4118 if (GET_CODE (last) != BARRIER)
4119 set_block_for_insn (last, bb);
4120 if (BB_END (bb) == after)
4121 BB_END (bb) = last;
4122 }
4123 else
4124 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4125 continue;
4126
4127 after_after = NEXT_INSN (after);
4128
4129 NEXT_INSN (after) = first;
4130 PREV_INSN (first) = after;
4131 NEXT_INSN (last) = after_after;
4132 if (after_after)
4133 PREV_INSN (after_after) = last;
4134
4135 if (after == last_insn)
4136 last_insn = last;
4137 return last;
4138 }
4139
4140 /* Make X be output after the insn AFTER. */
4141
4142 rtx
4143 emit_insn_after (rtx x, rtx after)
4144 {
4145 rtx last = after;
4146
4147 #ifdef ENABLE_RTL_CHECKING
4148 if (after == NULL_RTX)
4149 abort ();
4150 #endif
4151
4152 if (x == NULL_RTX)
4153 return last;
4154
4155 switch (GET_CODE (x))
4156 {
4157 case INSN:
4158 case JUMP_INSN:
4159 case CALL_INSN:
4160 case CODE_LABEL:
4161 case BARRIER:
4162 case NOTE:
4163 last = emit_insn_after_1 (x, after);
4164 break;
4165
4166 #ifdef ENABLE_RTL_CHECKING
4167 case SEQUENCE:
4168 abort ();
4169 break;
4170 #endif
4171
4172 default:
4173 last = make_insn_raw (x);
4174 add_insn_after (last, after);
4175 break;
4176 }
4177
4178 return last;
4179 }
4180
4181 /* Similar to emit_insn_after, except that line notes are to be inserted so
4182 as to act as if this insn were at FROM. */
4183
4184 void
4185 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4186 {
4187 rtx from_line = find_line_note (from);
4188 rtx after_line = find_line_note (after);
4189 rtx insn = emit_insn_after (x, after);
4190
4191 if (from_line)
4192 emit_note_copy_after (from_line, after);
4193
4194 if (after_line)
4195 emit_note_copy_after (after_line, insn);
4196 }
4197
4198 /* Make an insn of code JUMP_INSN with body X
4199 and output it after the insn AFTER. */
4200
4201 rtx
4202 emit_jump_insn_after (rtx x, rtx after)
4203 {
4204 rtx last;
4205
4206 #ifdef ENABLE_RTL_CHECKING
4207 if (after == NULL_RTX)
4208 abort ();
4209 #endif
4210
4211 switch (GET_CODE (x))
4212 {
4213 case INSN:
4214 case JUMP_INSN:
4215 case CALL_INSN:
4216 case CODE_LABEL:
4217 case BARRIER:
4218 case NOTE:
4219 last = emit_insn_after_1 (x, after);
4220 break;
4221
4222 #ifdef ENABLE_RTL_CHECKING
4223 case SEQUENCE:
4224 abort ();
4225 break;
4226 #endif
4227
4228 default:
4229 last = make_jump_insn_raw (x);
4230 add_insn_after (last, after);
4231 break;
4232 }
4233
4234 return last;
4235 }
4236
4237 /* Make an instruction with body X and code CALL_INSN
4238 and output it after the instruction AFTER. */
4239
4240 rtx
4241 emit_call_insn_after (rtx x, rtx after)
4242 {
4243 rtx last;
4244
4245 #ifdef ENABLE_RTL_CHECKING
4246 if (after == NULL_RTX)
4247 abort ();
4248 #endif
4249
4250 switch (GET_CODE (x))
4251 {
4252 case INSN:
4253 case JUMP_INSN:
4254 case CALL_INSN:
4255 case CODE_LABEL:
4256 case BARRIER:
4257 case NOTE:
4258 last = emit_insn_after_1 (x, after);
4259 break;
4260
4261 #ifdef ENABLE_RTL_CHECKING
4262 case SEQUENCE:
4263 abort ();
4264 break;
4265 #endif
4266
4267 default:
4268 last = make_call_insn_raw (x);
4269 add_insn_after (last, after);
4270 break;
4271 }
4272
4273 return last;
4274 }
4275
4276 /* Make an insn of code BARRIER
4277 and output it after the insn AFTER. */
4278
4279 rtx
4280 emit_barrier_after (rtx after)
4281 {
4282 rtx insn = rtx_alloc (BARRIER);
4283
4284 INSN_UID (insn) = cur_insn_uid++;
4285
4286 add_insn_after (insn, after);
4287 return insn;
4288 }
4289
4290 /* Emit the label LABEL after the insn AFTER. */
4291
4292 rtx
4293 emit_label_after (rtx label, rtx after)
4294 {
4295 /* This can be called twice for the same label
4296 as a result of the confusion that follows a syntax error!
4297 So make it harmless. */
4298 if (INSN_UID (label) == 0)
4299 {
4300 INSN_UID (label) = cur_insn_uid++;
4301 add_insn_after (label, after);
4302 }
4303
4304 return label;
4305 }
4306
4307 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4308
4309 rtx
4310 emit_note_after (int subtype, rtx after)
4311 {
4312 rtx note = rtx_alloc (NOTE);
4313 INSN_UID (note) = cur_insn_uid++;
4314 NOTE_SOURCE_FILE (note) = 0;
4315 NOTE_LINE_NUMBER (note) = subtype;
4316 BLOCK_FOR_INSN (note) = NULL;
4317 add_insn_after (note, after);
4318 return note;
4319 }
4320
4321 /* Emit a copy of note ORIG after the insn AFTER. */
4322
4323 rtx
4324 emit_note_copy_after (rtx orig, rtx after)
4325 {
4326 rtx note;
4327
4328 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4329 {
4330 cur_insn_uid++;
4331 return 0;
4332 }
4333
4334 note = rtx_alloc (NOTE);
4335 INSN_UID (note) = cur_insn_uid++;
4336 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4337 NOTE_DATA (note) = NOTE_DATA (orig);
4338 BLOCK_FOR_INSN (note) = NULL;
4339 add_insn_after (note, after);
4340 return note;
4341 }
4342 \f
4343 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4344 rtx
4345 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4346 {
4347 rtx last = emit_insn_after (pattern, after);
4348
4349 if (pattern == NULL_RTX)
4350 return last;
4351
4352 after = NEXT_INSN (after);
4353 while (1)
4354 {
4355 if (active_insn_p (after))
4356 INSN_LOCATOR (after) = loc;
4357 if (after == last)
4358 break;
4359 after = NEXT_INSN (after);
4360 }
4361 return last;
4362 }
4363
4364 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4365 rtx
4366 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4367 {
4368 rtx last = emit_jump_insn_after (pattern, after);
4369
4370 if (pattern == NULL_RTX)
4371 return last;
4372
4373 after = NEXT_INSN (after);
4374 while (1)
4375 {
4376 if (active_insn_p (after))
4377 INSN_LOCATOR (after) = loc;
4378 if (after == last)
4379 break;
4380 after = NEXT_INSN (after);
4381 }
4382 return last;
4383 }
4384
4385 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4386 rtx
4387 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4388 {
4389 rtx last = emit_call_insn_after (pattern, after);
4390
4391 if (pattern == NULL_RTX)
4392 return last;
4393
4394 after = NEXT_INSN (after);
4395 while (1)
4396 {
4397 if (active_insn_p (after))
4398 INSN_LOCATOR (after) = loc;
4399 if (after == last)
4400 break;
4401 after = NEXT_INSN (after);
4402 }
4403 return last;
4404 }
4405
4406 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4407 rtx
4408 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4409 {
4410 rtx first = PREV_INSN (before);
4411 rtx last = emit_insn_before (pattern, before);
4412
4413 if (pattern == NULL_RTX)
4414 return last;
4415
4416 first = NEXT_INSN (first);
4417 while (1)
4418 {
4419 if (active_insn_p (first))
4420 INSN_LOCATOR (first) = loc;
4421 if (first == last)
4422 break;
4423 first = NEXT_INSN (first);
4424 }
4425 return last;
4426 }
4427 \f
4428 /* Take X and emit it at the end of the doubly-linked
4429 INSN list.
4430
4431 Returns the last insn emitted. */
4432
4433 rtx
4434 emit_insn (rtx x)
4435 {
4436 rtx last = last_insn;
4437 rtx insn;
4438
4439 if (x == NULL_RTX)
4440 return last;
4441
4442 switch (GET_CODE (x))
4443 {
4444 case INSN:
4445 case JUMP_INSN:
4446 case CALL_INSN:
4447 case CODE_LABEL:
4448 case BARRIER:
4449 case NOTE:
4450 insn = x;
4451 while (insn)
4452 {
4453 rtx next = NEXT_INSN (insn);
4454 add_insn (insn);
4455 last = insn;
4456 insn = next;
4457 }
4458 break;
4459
4460 #ifdef ENABLE_RTL_CHECKING
4461 case SEQUENCE:
4462 abort ();
4463 break;
4464 #endif
4465
4466 default:
4467 last = make_insn_raw (x);
4468 add_insn (last);
4469 break;
4470 }
4471
4472 return last;
4473 }
4474
4475 /* Make an insn of code JUMP_INSN with pattern X
4476 and add it to the end of the doubly-linked list. */
4477
4478 rtx
4479 emit_jump_insn (rtx x)
4480 {
4481 rtx last = NULL_RTX, insn;
4482
4483 switch (GET_CODE (x))
4484 {
4485 case INSN:
4486 case JUMP_INSN:
4487 case CALL_INSN:
4488 case CODE_LABEL:
4489 case BARRIER:
4490 case NOTE:
4491 insn = x;
4492 while (insn)
4493 {
4494 rtx next = NEXT_INSN (insn);
4495 add_insn (insn);
4496 last = insn;
4497 insn = next;
4498 }
4499 break;
4500
4501 #ifdef ENABLE_RTL_CHECKING
4502 case SEQUENCE:
4503 abort ();
4504 break;
4505 #endif
4506
4507 default:
4508 last = make_jump_insn_raw (x);
4509 add_insn (last);
4510 break;
4511 }
4512
4513 return last;
4514 }
4515
4516 /* Make an insn of code CALL_INSN with pattern X
4517 and add it to the end of the doubly-linked list. */
4518
4519 rtx
4520 emit_call_insn (rtx x)
4521 {
4522 rtx insn;
4523
4524 switch (GET_CODE (x))
4525 {
4526 case INSN:
4527 case JUMP_INSN:
4528 case CALL_INSN:
4529 case CODE_LABEL:
4530 case BARRIER:
4531 case NOTE:
4532 insn = emit_insn (x);
4533 break;
4534
4535 #ifdef ENABLE_RTL_CHECKING
4536 case SEQUENCE:
4537 abort ();
4538 break;
4539 #endif
4540
4541 default:
4542 insn = make_call_insn_raw (x);
4543 add_insn (insn);
4544 break;
4545 }
4546
4547 return insn;
4548 }
4549
4550 /* Add the label LABEL to the end of the doubly-linked list. */
4551
4552 rtx
4553 emit_label (rtx label)
4554 {
4555 /* This can be called twice for the same label
4556 as a result of the confusion that follows a syntax error!
4557 So make it harmless. */
4558 if (INSN_UID (label) == 0)
4559 {
4560 INSN_UID (label) = cur_insn_uid++;
4561 add_insn (label);
4562 }
4563 return label;
4564 }
4565
4566 /* Make an insn of code BARRIER
4567 and add it to the end of the doubly-linked list. */
4568
4569 rtx
4570 emit_barrier (void)
4571 {
4572 rtx barrier = rtx_alloc (BARRIER);
4573 INSN_UID (barrier) = cur_insn_uid++;
4574 add_insn (barrier);
4575 return barrier;
4576 }
4577
4578 /* Make line numbering NOTE insn for LOCATION add it to the end
4579 of the doubly-linked list, but only if line-numbers are desired for
4580 debugging info and it doesn't match the previous one. */
4581
4582 rtx
4583 emit_line_note (location_t location)
4584 {
4585 rtx note;
4586
4587 set_file_and_line_for_stmt (location);
4588
4589 if (location.file && last_location.file
4590 && !strcmp (location.file, last_location.file)
4591 && location.line == last_location.line)
4592 return NULL_RTX;
4593 last_location = location;
4594
4595 if (no_line_numbers)
4596 {
4597 cur_insn_uid++;
4598 return NULL_RTX;
4599 }
4600
4601 note = emit_note (location.line);
4602 NOTE_SOURCE_FILE (note) = location.file;
4603
4604 return note;
4605 }
4606
4607 /* Emit a copy of note ORIG. */
4608
4609 rtx
4610 emit_note_copy (rtx orig)
4611 {
4612 rtx note;
4613
4614 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4615 {
4616 cur_insn_uid++;
4617 return NULL_RTX;
4618 }
4619
4620 note = rtx_alloc (NOTE);
4621
4622 INSN_UID (note) = cur_insn_uid++;
4623 NOTE_DATA (note) = NOTE_DATA (orig);
4624 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4625 BLOCK_FOR_INSN (note) = NULL;
4626 add_insn (note);
4627
4628 return note;
4629 }
4630
4631 /* Make an insn of code NOTE or type NOTE_NO
4632 and add it to the end of the doubly-linked list. */
4633
4634 rtx
4635 emit_note (int note_no)
4636 {
4637 rtx note;
4638
4639 note = rtx_alloc (NOTE);
4640 INSN_UID (note) = cur_insn_uid++;
4641 NOTE_LINE_NUMBER (note) = note_no;
4642 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4643 BLOCK_FOR_INSN (note) = NULL;
4644 add_insn (note);
4645 return note;
4646 }
4647
4648 /* Cause next statement to emit a line note even if the line number
4649 has not changed. */
4650
4651 void
4652 force_next_line_note (void)
4653 {
4654 last_location.line = -1;
4655 }
4656
4657 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4658 note of this type already exists, remove it first. */
4659
4660 rtx
4661 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4662 {
4663 rtx note = find_reg_note (insn, kind, NULL_RTX);
4664
4665 switch (kind)
4666 {
4667 case REG_EQUAL:
4668 case REG_EQUIV:
4669 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4670 has multiple sets (some callers assume single_set
4671 means the insn only has one set, when in fact it
4672 means the insn only has one * useful * set). */
4673 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4674 {
4675 if (note)
4676 abort ();
4677 return NULL_RTX;
4678 }
4679
4680 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4681 It serves no useful purpose and breaks eliminate_regs. */
4682 if (GET_CODE (datum) == ASM_OPERANDS)
4683 return NULL_RTX;
4684 break;
4685
4686 default:
4687 break;
4688 }
4689
4690 if (note)
4691 {
4692 XEXP (note, 0) = datum;
4693 return note;
4694 }
4695
4696 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4697 return REG_NOTES (insn);
4698 }
4699 \f
4700 /* Return an indication of which type of insn should have X as a body.
4701 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4702
4703 enum rtx_code
4704 classify_insn (rtx x)
4705 {
4706 if (GET_CODE (x) == CODE_LABEL)
4707 return CODE_LABEL;
4708 if (GET_CODE (x) == CALL)
4709 return CALL_INSN;
4710 if (GET_CODE (x) == RETURN)
4711 return JUMP_INSN;
4712 if (GET_CODE (x) == SET)
4713 {
4714 if (SET_DEST (x) == pc_rtx)
4715 return JUMP_INSN;
4716 else if (GET_CODE (SET_SRC (x)) == CALL)
4717 return CALL_INSN;
4718 else
4719 return INSN;
4720 }
4721 if (GET_CODE (x) == PARALLEL)
4722 {
4723 int j;
4724 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4725 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4726 return CALL_INSN;
4727 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4728 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4729 return JUMP_INSN;
4730 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4731 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4732 return CALL_INSN;
4733 }
4734 return INSN;
4735 }
4736
4737 /* Emit the rtl pattern X as an appropriate kind of insn.
4738 If X is a label, it is simply added into the insn chain. */
4739
4740 rtx
4741 emit (rtx x)
4742 {
4743 enum rtx_code code = classify_insn (x);
4744
4745 if (code == CODE_LABEL)
4746 return emit_label (x);
4747 else if (code == INSN)
4748 return emit_insn (x);
4749 else if (code == JUMP_INSN)
4750 {
4751 rtx insn = emit_jump_insn (x);
4752 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4753 return emit_barrier ();
4754 return insn;
4755 }
4756 else if (code == CALL_INSN)
4757 return emit_call_insn (x);
4758 else
4759 abort ();
4760 }
4761 \f
4762 /* Space for free sequence stack entries. */
4763 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4764
4765 /* Begin emitting insns to a sequence which can be packaged in an
4766 RTL_EXPR. If this sequence will contain something that might cause
4767 the compiler to pop arguments to function calls (because those
4768 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4769 details), use do_pending_stack_adjust before calling this function.
4770 That will ensure that the deferred pops are not accidentally
4771 emitted in the middle of this sequence. */
4772
4773 void
4774 start_sequence (void)
4775 {
4776 struct sequence_stack *tem;
4777
4778 if (free_sequence_stack != NULL)
4779 {
4780 tem = free_sequence_stack;
4781 free_sequence_stack = tem->next;
4782 }
4783 else
4784 tem = ggc_alloc (sizeof (struct sequence_stack));
4785
4786 tem->next = seq_stack;
4787 tem->first = first_insn;
4788 tem->last = last_insn;
4789 tem->sequence_rtl_expr = seq_rtl_expr;
4790
4791 seq_stack = tem;
4792
4793 first_insn = 0;
4794 last_insn = 0;
4795 }
4796
4797 /* Similarly, but indicate that this sequence will be placed in T, an
4798 RTL_EXPR. See the documentation for start_sequence for more
4799 information about how to use this function. */
4800
4801 void
4802 start_sequence_for_rtl_expr (tree t)
4803 {
4804 start_sequence ();
4805
4806 seq_rtl_expr = t;
4807 }
4808
4809 /* Set up the insn chain starting with FIRST as the current sequence,
4810 saving the previously current one. See the documentation for
4811 start_sequence for more information about how to use this function. */
4812
4813 void
4814 push_to_sequence (rtx first)
4815 {
4816 rtx last;
4817
4818 start_sequence ();
4819
4820 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4821
4822 first_insn = first;
4823 last_insn = last;
4824 }
4825
4826 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4827
4828 void
4829 push_to_full_sequence (rtx first, rtx last)
4830 {
4831 start_sequence ();
4832 first_insn = first;
4833 last_insn = last;
4834 /* We really should have the end of the insn chain here. */
4835 if (last && NEXT_INSN (last))
4836 abort ();
4837 }
4838
4839 /* Set up the outer-level insn chain
4840 as the current sequence, saving the previously current one. */
4841
4842 void
4843 push_topmost_sequence (void)
4844 {
4845 struct sequence_stack *stack, *top = NULL;
4846
4847 start_sequence ();
4848
4849 for (stack = seq_stack; stack; stack = stack->next)
4850 top = stack;
4851
4852 first_insn = top->first;
4853 last_insn = top->last;
4854 seq_rtl_expr = top->sequence_rtl_expr;
4855 }
4856
4857 /* After emitting to the outer-level insn chain, update the outer-level
4858 insn chain, and restore the previous saved state. */
4859
4860 void
4861 pop_topmost_sequence (void)
4862 {
4863 struct sequence_stack *stack, *top = NULL;
4864
4865 for (stack = seq_stack; stack; stack = stack->next)
4866 top = stack;
4867
4868 top->first = first_insn;
4869 top->last = last_insn;
4870 /* ??? Why don't we save seq_rtl_expr here? */
4871
4872 end_sequence ();
4873 }
4874
4875 /* After emitting to a sequence, restore previous saved state.
4876
4877 To get the contents of the sequence just made, you must call
4878 `get_insns' *before* calling here.
4879
4880 If the compiler might have deferred popping arguments while
4881 generating this sequence, and this sequence will not be immediately
4882 inserted into the instruction stream, use do_pending_stack_adjust
4883 before calling get_insns. That will ensure that the deferred
4884 pops are inserted into this sequence, and not into some random
4885 location in the instruction stream. See INHIBIT_DEFER_POP for more
4886 information about deferred popping of arguments. */
4887
4888 void
4889 end_sequence (void)
4890 {
4891 struct sequence_stack *tem = seq_stack;
4892
4893 first_insn = tem->first;
4894 last_insn = tem->last;
4895 seq_rtl_expr = tem->sequence_rtl_expr;
4896 seq_stack = tem->next;
4897
4898 memset (tem, 0, sizeof (*tem));
4899 tem->next = free_sequence_stack;
4900 free_sequence_stack = tem;
4901 }
4902
4903 /* Return 1 if currently emitting into a sequence. */
4904
4905 int
4906 in_sequence_p (void)
4907 {
4908 return seq_stack != 0;
4909 }
4910 \f
4911 /* Put the various virtual registers into REGNO_REG_RTX. */
4912
4913 void
4914 init_virtual_regs (struct emit_status *es)
4915 {
4916 rtx *ptr = es->x_regno_reg_rtx;
4917 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4918 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4919 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4920 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4921 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4922 }
4923
4924 \f
4925 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4926 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4927 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4928 static int copy_insn_n_scratches;
4929
4930 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4931 copied an ASM_OPERANDS.
4932 In that case, it is the original input-operand vector. */
4933 static rtvec orig_asm_operands_vector;
4934
4935 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4936 copied an ASM_OPERANDS.
4937 In that case, it is the copied input-operand vector. */
4938 static rtvec copy_asm_operands_vector;
4939
4940 /* Likewise for the constraints vector. */
4941 static rtvec orig_asm_constraints_vector;
4942 static rtvec copy_asm_constraints_vector;
4943
4944 /* Recursively create a new copy of an rtx for copy_insn.
4945 This function differs from copy_rtx in that it handles SCRATCHes and
4946 ASM_OPERANDs properly.
4947 Normally, this function is not used directly; use copy_insn as front end.
4948 However, you could first copy an insn pattern with copy_insn and then use
4949 this function afterwards to properly copy any REG_NOTEs containing
4950 SCRATCHes. */
4951
4952 rtx
4953 copy_insn_1 (rtx orig)
4954 {
4955 rtx copy;
4956 int i, j;
4957 RTX_CODE code;
4958 const char *format_ptr;
4959
4960 code = GET_CODE (orig);
4961
4962 switch (code)
4963 {
4964 case REG:
4965 case QUEUED:
4966 case CONST_INT:
4967 case CONST_DOUBLE:
4968 case CONST_VECTOR:
4969 case SYMBOL_REF:
4970 case CODE_LABEL:
4971 case PC:
4972 case CC0:
4973 case ADDRESSOF:
4974 return orig;
4975 case CLOBBER:
4976 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4977 return orig;
4978 break;
4979
4980 case SCRATCH:
4981 for (i = 0; i < copy_insn_n_scratches; i++)
4982 if (copy_insn_scratch_in[i] == orig)
4983 return copy_insn_scratch_out[i];
4984 break;
4985
4986 case CONST:
4987 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4988 a LABEL_REF, it isn't sharable. */
4989 if (GET_CODE (XEXP (orig, 0)) == PLUS
4990 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4991 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4992 return orig;
4993 break;
4994
4995 /* A MEM with a constant address is not sharable. The problem is that
4996 the constant address may need to be reloaded. If the mem is shared,
4997 then reloading one copy of this mem will cause all copies to appear
4998 to have been reloaded. */
4999
5000 default:
5001 break;
5002 }
5003
5004 copy = rtx_alloc (code);
5005
5006 /* Copy the various flags, and other information. We assume that
5007 all fields need copying, and then clear the fields that should
5008 not be copied. That is the sensible default behavior, and forces
5009 us to explicitly document why we are *not* copying a flag. */
5010 memcpy (copy, orig, RTX_HDR_SIZE);
5011
5012 /* We do not copy the USED flag, which is used as a mark bit during
5013 walks over the RTL. */
5014 RTX_FLAG (copy, used) = 0;
5015
5016 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5017 if (INSN_P (orig))
5018 {
5019 RTX_FLAG (copy, jump) = 0;
5020 RTX_FLAG (copy, call) = 0;
5021 RTX_FLAG (copy, frame_related) = 0;
5022 }
5023
5024 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5025
5026 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5027 {
5028 copy->u.fld[i] = orig->u.fld[i];
5029 switch (*format_ptr++)
5030 {
5031 case 'e':
5032 if (XEXP (orig, i) != NULL)
5033 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5034 break;
5035
5036 case 'E':
5037 case 'V':
5038 if (XVEC (orig, i) == orig_asm_constraints_vector)
5039 XVEC (copy, i) = copy_asm_constraints_vector;
5040 else if (XVEC (orig, i) == orig_asm_operands_vector)
5041 XVEC (copy, i) = copy_asm_operands_vector;
5042 else if (XVEC (orig, i) != NULL)
5043 {
5044 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5045 for (j = 0; j < XVECLEN (copy, i); j++)
5046 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5047 }
5048 break;
5049
5050 case 't':
5051 case 'w':
5052 case 'i':
5053 case 's':
5054 case 'S':
5055 case 'u':
5056 case '0':
5057 /* These are left unchanged. */
5058 break;
5059
5060 default:
5061 abort ();
5062 }
5063 }
5064
5065 if (code == SCRATCH)
5066 {
5067 i = copy_insn_n_scratches++;
5068 if (i >= MAX_RECOG_OPERANDS)
5069 abort ();
5070 copy_insn_scratch_in[i] = orig;
5071 copy_insn_scratch_out[i] = copy;
5072 }
5073 else if (code == ASM_OPERANDS)
5074 {
5075 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5076 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5077 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5078 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5079 }
5080
5081 return copy;
5082 }
5083
5084 /* Create a new copy of an rtx.
5085 This function differs from copy_rtx in that it handles SCRATCHes and
5086 ASM_OPERANDs properly.
5087 INSN doesn't really have to be a full INSN; it could be just the
5088 pattern. */
5089 rtx
5090 copy_insn (rtx insn)
5091 {
5092 copy_insn_n_scratches = 0;
5093 orig_asm_operands_vector = 0;
5094 orig_asm_constraints_vector = 0;
5095 copy_asm_operands_vector = 0;
5096 copy_asm_constraints_vector = 0;
5097 return copy_insn_1 (insn);
5098 }
5099
5100 /* Initialize data structures and variables in this file
5101 before generating rtl for each function. */
5102
5103 void
5104 init_emit (void)
5105 {
5106 struct function *f = cfun;
5107
5108 f->emit = ggc_alloc (sizeof (struct emit_status));
5109 first_insn = NULL;
5110 last_insn = NULL;
5111 seq_rtl_expr = NULL;
5112 cur_insn_uid = 1;
5113 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5114 last_location.line = 0;
5115 last_location.file = 0;
5116 first_label_num = label_num;
5117 last_label_num = 0;
5118 seq_stack = NULL;
5119
5120 /* Init the tables that describe all the pseudo regs. */
5121
5122 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5123
5124 f->emit->regno_pointer_align
5125 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5126 * sizeof (unsigned char));
5127
5128 regno_reg_rtx
5129 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5130
5131 /* Put copies of all the hard registers into regno_reg_rtx. */
5132 memcpy (regno_reg_rtx,
5133 static_regno_reg_rtx,
5134 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5135
5136 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5137 init_virtual_regs (f->emit);
5138
5139 /* Indicate that the virtual registers and stack locations are
5140 all pointers. */
5141 REG_POINTER (stack_pointer_rtx) = 1;
5142 REG_POINTER (frame_pointer_rtx) = 1;
5143 REG_POINTER (hard_frame_pointer_rtx) = 1;
5144 REG_POINTER (arg_pointer_rtx) = 1;
5145
5146 REG_POINTER (virtual_incoming_args_rtx) = 1;
5147 REG_POINTER (virtual_stack_vars_rtx) = 1;
5148 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5149 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5150 REG_POINTER (virtual_cfa_rtx) = 1;
5151
5152 #ifdef STACK_BOUNDARY
5153 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5154 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5155 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5156 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5157
5158 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5159 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5160 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5161 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5162 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5163 #endif
5164
5165 #ifdef INIT_EXPANDERS
5166 INIT_EXPANDERS;
5167 #endif
5168 }
5169
5170 /* Generate the constant 0. */
5171
5172 static rtx
5173 gen_const_vector_0 (enum machine_mode mode)
5174 {
5175 rtx tem;
5176 rtvec v;
5177 int units, i;
5178 enum machine_mode inner;
5179
5180 units = GET_MODE_NUNITS (mode);
5181 inner = GET_MODE_INNER (mode);
5182
5183 v = rtvec_alloc (units);
5184
5185 /* We need to call this function after we to set CONST0_RTX first. */
5186 if (!CONST0_RTX (inner))
5187 abort ();
5188
5189 for (i = 0; i < units; ++i)
5190 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5191
5192 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5193 return tem;
5194 }
5195
5196 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5197 all elements are zero. */
5198 rtx
5199 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5200 {
5201 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5202 int i;
5203
5204 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5205 if (RTVEC_ELT (v, i) != inner_zero)
5206 return gen_rtx_raw_CONST_VECTOR (mode, v);
5207 return CONST0_RTX (mode);
5208 }
5209
5210 /* Create some permanent unique rtl objects shared between all functions.
5211 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5212
5213 void
5214 init_emit_once (int line_numbers)
5215 {
5216 int i;
5217 enum machine_mode mode;
5218 enum machine_mode double_mode;
5219
5220 /* We need reg_raw_mode, so initialize the modes now. */
5221 init_reg_modes_once ();
5222
5223 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5224 tables. */
5225 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5226 const_int_htab_eq, NULL);
5227
5228 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5229 const_double_htab_eq, NULL);
5230
5231 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5232 mem_attrs_htab_eq, NULL);
5233 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5234 reg_attrs_htab_eq, NULL);
5235
5236 no_line_numbers = ! line_numbers;
5237
5238 /* Compute the word and byte modes. */
5239
5240 byte_mode = VOIDmode;
5241 word_mode = VOIDmode;
5242 double_mode = VOIDmode;
5243
5244 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5245 mode = GET_MODE_WIDER_MODE (mode))
5246 {
5247 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5248 && byte_mode == VOIDmode)
5249 byte_mode = mode;
5250
5251 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5252 && word_mode == VOIDmode)
5253 word_mode = mode;
5254 }
5255
5256 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5257 mode = GET_MODE_WIDER_MODE (mode))
5258 {
5259 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5260 && double_mode == VOIDmode)
5261 double_mode = mode;
5262 }
5263
5264 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5265
5266 /* Assign register numbers to the globally defined register rtx.
5267 This must be done at runtime because the register number field
5268 is in a union and some compilers can't initialize unions. */
5269
5270 pc_rtx = gen_rtx_PC (VOIDmode);
5271 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5272 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5273 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5274 if (hard_frame_pointer_rtx == 0)
5275 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5276 HARD_FRAME_POINTER_REGNUM);
5277 if (arg_pointer_rtx == 0)
5278 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5279 virtual_incoming_args_rtx =
5280 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5281 virtual_stack_vars_rtx =
5282 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5283 virtual_stack_dynamic_rtx =
5284 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5285 virtual_outgoing_args_rtx =
5286 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5287 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5288
5289 /* Initialize RTL for commonly used hard registers. These are
5290 copied into regno_reg_rtx as we begin to compile each function. */
5291 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5292 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5293
5294 #ifdef INIT_EXPANDERS
5295 /* This is to initialize {init|mark|free}_machine_status before the first
5296 call to push_function_context_to. This is needed by the Chill front
5297 end which calls push_function_context_to before the first call to
5298 init_function_start. */
5299 INIT_EXPANDERS;
5300 #endif
5301
5302 /* Create the unique rtx's for certain rtx codes and operand values. */
5303
5304 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5305 tries to use these variables. */
5306 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5307 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5308 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5309
5310 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5311 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5312 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5313 else
5314 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5315
5316 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5317 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5318 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5319 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5320 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5321 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5322 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5323
5324 dconsthalf = dconst1;
5325 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5326
5327 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5328
5329 /* Initialize mathematical constants for constant folding builtins.
5330 These constants need to be given to at least 160 bits precision. */
5331 real_from_string (&dconstpi,
5332 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5333 real_from_string (&dconste,
5334 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5335
5336 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5337 {
5338 REAL_VALUE_TYPE *r =
5339 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5340
5341 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5342 mode = GET_MODE_WIDER_MODE (mode))
5343 const_tiny_rtx[i][(int) mode] =
5344 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5345
5346 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5347
5348 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5349 mode = GET_MODE_WIDER_MODE (mode))
5350 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5351
5352 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5353 mode != VOIDmode;
5354 mode = GET_MODE_WIDER_MODE (mode))
5355 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5356 }
5357
5358 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5359 mode != VOIDmode;
5360 mode = GET_MODE_WIDER_MODE (mode))
5361 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5362
5363 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5364 mode != VOIDmode;
5365 mode = GET_MODE_WIDER_MODE (mode))
5366 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5367
5368 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5369 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5370 const_tiny_rtx[0][i] = const0_rtx;
5371
5372 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5373 if (STORE_FLAG_VALUE == 1)
5374 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5375
5376 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5377 return_address_pointer_rtx
5378 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5379 #endif
5380
5381 #ifdef STATIC_CHAIN_REGNUM
5382 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5383
5384 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5385 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5386 static_chain_incoming_rtx
5387 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5388 else
5389 #endif
5390 static_chain_incoming_rtx = static_chain_rtx;
5391 #endif
5392
5393 #ifdef STATIC_CHAIN
5394 static_chain_rtx = STATIC_CHAIN;
5395
5396 #ifdef STATIC_CHAIN_INCOMING
5397 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5398 #else
5399 static_chain_incoming_rtx = static_chain_rtx;
5400 #endif
5401 #endif
5402
5403 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5404 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5405 }
5406 \f
5407 /* Query and clear/ restore no_line_numbers. This is used by the
5408 switch / case handling in stmt.c to give proper line numbers in
5409 warnings about unreachable code. */
5410
5411 int
5412 force_line_numbers (void)
5413 {
5414 int old = no_line_numbers;
5415
5416 no_line_numbers = 0;
5417 if (old)
5418 force_next_line_note ();
5419 return old;
5420 }
5421
5422 void
5423 restore_line_number_status (int old_value)
5424 {
5425 no_line_numbers = old_value;
5426 }
5427
5428 /* Produce exact duplicate of insn INSN after AFTER.
5429 Care updating of libcall regions if present. */
5430
5431 rtx
5432 emit_copy_of_insn_after (rtx insn, rtx after)
5433 {
5434 rtx new;
5435 rtx note1, note2, link;
5436
5437 switch (GET_CODE (insn))
5438 {
5439 case INSN:
5440 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5441 break;
5442
5443 case JUMP_INSN:
5444 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5445 break;
5446
5447 case CALL_INSN:
5448 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5449 if (CALL_INSN_FUNCTION_USAGE (insn))
5450 CALL_INSN_FUNCTION_USAGE (new)
5451 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5452 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5453 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5454 break;
5455
5456 default:
5457 abort ();
5458 }
5459
5460 /* Update LABEL_NUSES. */
5461 mark_jump_label (PATTERN (new), new, 0);
5462
5463 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5464
5465 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5466 make them. */
5467 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5468 if (REG_NOTE_KIND (link) != REG_LABEL)
5469 {
5470 if (GET_CODE (link) == EXPR_LIST)
5471 REG_NOTES (new)
5472 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5473 XEXP (link, 0),
5474 REG_NOTES (new)));
5475 else
5476 REG_NOTES (new)
5477 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5478 XEXP (link, 0),
5479 REG_NOTES (new)));
5480 }
5481
5482 /* Fix the libcall sequences. */
5483 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5484 {
5485 rtx p = new;
5486 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5487 p = PREV_INSN (p);
5488 XEXP (note1, 0) = p;
5489 XEXP (note2, 0) = new;
5490 }
5491 INSN_CODE (new) = INSN_CODE (insn);
5492 return new;
5493 }
5494
5495 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5496 rtx
5497 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5498 {
5499 if (hard_reg_clobbers[mode][regno])
5500 return hard_reg_clobbers[mode][regno];
5501 else
5502 return (hard_reg_clobbers[mode][regno] =
5503 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5504 }
5505
5506 #include "gt-emit-rtl.h"