* emit-rtl.c (emit_copy_of_insn_after): Copy insn recog cache too.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114
115 /* All references to the following fixed hard registers go through
116 these unique rtl objects. On machines where the frame-pointer and
117 arg-pointer are the same register, they use the same unique object.
118
119 After register allocation, other rtl objects which used to be pseudo-regs
120 may be clobbered to refer to the frame-pointer register.
121 But references that were originally to the frame-pointer can be
122 distinguished from the others because they contain frame_pointer_rtx.
123
124 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
125 tricky: until register elimination has taken place hard_frame_pointer_rtx
126 should be used if it is being set, and frame_pointer_rtx otherwise. After
127 register elimination hard_frame_pointer_rtx should always be used.
128 On machines where the two registers are same (most) then these are the
129 same.
130
131 In an inline procedure, the stack and frame pointer rtxs may not be
132 used for anything else. */
133 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
134 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
135 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
136 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
137 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
138
139 /* This is used to implement __builtin_return_address for some machines.
140 See for instance the MIPS port. */
141 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
142
143 /* We make one copy of (const_int C) where C is in
144 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
145 to save space during the compilation and simplify comparisons of
146 integers. */
147
148 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
149
150 /* A hash table storing CONST_INTs whose absolute value is greater
151 than MAX_SAVED_CONST_INT. */
152
153 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
154 htab_t const_int_htab;
155
156 /* A hash table storing memory attribute structures. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
158 htab_t mem_attrs_htab;
159
160 /* A hash table storing register attribute structures. */
161 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
162 htab_t reg_attrs_htab;
163
164 /* A hash table storing all CONST_DOUBLEs. */
165 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
166 htab_t const_double_htab;
167
168 #define first_insn (cfun->emit->x_first_insn)
169 #define last_insn (cfun->emit->x_last_insn)
170 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
171 #define last_linenum (cfun->emit->x_last_linenum)
172 #define last_filename (cfun->emit->x_last_filename)
173 #define first_label_num (cfun->emit->x_first_label_num)
174
175 static rtx make_jump_insn_raw PARAMS ((rtx));
176 static rtx make_call_insn_raw PARAMS ((rtx));
177 static rtx find_line_note PARAMS ((rtx));
178 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
179 int));
180 static void unshare_all_rtl_1 PARAMS ((rtx));
181 static void unshare_all_decls PARAMS ((tree));
182 static void reset_used_decls PARAMS ((tree));
183 static void mark_label_nuses PARAMS ((rtx));
184 static hashval_t const_int_htab_hash PARAMS ((const void *));
185 static int const_int_htab_eq PARAMS ((const void *,
186 const void *));
187 static hashval_t const_double_htab_hash PARAMS ((const void *));
188 static int const_double_htab_eq PARAMS ((const void *,
189 const void *));
190 static rtx lookup_const_double PARAMS ((rtx));
191 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
192 static int mem_attrs_htab_eq PARAMS ((const void *,
193 const void *));
194 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
195 rtx, unsigned int,
196 enum machine_mode));
197 static hashval_t reg_attrs_htab_hash PARAMS ((const void *));
198 static int reg_attrs_htab_eq PARAMS ((const void *,
199 const void *));
200 static reg_attrs *get_reg_attrs PARAMS ((tree, int));
201 static tree component_ref_for_mem_expr PARAMS ((tree));
202 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
203
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
207 \f
208 /* Returns a hash code for X (which is a really a CONST_INT). */
209
210 static hashval_t
211 const_int_htab_hash (x)
212 const void *x;
213 {
214 return (hashval_t) INTVAL ((struct rtx_def *) x);
215 }
216
217 /* Returns nonzero if the value represented by X (which is really a
218 CONST_INT) is the same as that given by Y (which is really a
219 HOST_WIDE_INT *). */
220
221 static int
222 const_int_htab_eq (x, y)
223 const void *x;
224 const void *y;
225 {
226 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
227 }
228
229 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
230 static hashval_t
231 const_double_htab_hash (x)
232 const void *x;
233 {
234 rtx value = (rtx) x;
235 hashval_t h;
236
237 if (GET_MODE (value) == VOIDmode)
238 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
239 else
240 {
241 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
242 /* MODE is used in the comparison, so it should be in the hash. */
243 h ^= GET_MODE (value);
244 }
245 return h;
246 }
247
248 /* Returns nonzero if the value represented by X (really a ...)
249 is the same as that represented by Y (really a ...) */
250 static int
251 const_double_htab_eq (x, y)
252 const void *x;
253 const void *y;
254 {
255 rtx a = (rtx)x, b = (rtx)y;
256
257 if (GET_MODE (a) != GET_MODE (b))
258 return 0;
259 if (GET_MODE (a) == VOIDmode)
260 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
261 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
262 else
263 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
264 CONST_DOUBLE_REAL_VALUE (b));
265 }
266
267 /* Returns a hash code for X (which is a really a mem_attrs *). */
268
269 static hashval_t
270 mem_attrs_htab_hash (x)
271 const void *x;
272 {
273 mem_attrs *p = (mem_attrs *) x;
274
275 return (p->alias ^ (p->align * 1000)
276 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
277 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
278 ^ (size_t) p->expr);
279 }
280
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
283 mem_attrs *). */
284
285 static int
286 mem_attrs_htab_eq (x, y)
287 const void *x;
288 const void *y;
289 {
290 mem_attrs *p = (mem_attrs *) x;
291 mem_attrs *q = (mem_attrs *) y;
292
293 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
294 && p->size == q->size && p->align == q->align);
295 }
296
297 /* Allocate a new mem_attrs structure and insert it into the hash table if
298 one identical to it is not already in the table. We are doing this for
299 MEM of mode MODE. */
300
301 static mem_attrs *
302 get_mem_attrs (alias, expr, offset, size, align, mode)
303 HOST_WIDE_INT alias;
304 tree expr;
305 rtx offset;
306 rtx size;
307 unsigned int align;
308 enum machine_mode mode;
309 {
310 mem_attrs attrs;
311 void **slot;
312
313 /* If everything is the default, we can just return zero. */
314 if (alias == 0 && expr == 0 && offset == 0
315 && (size == 0
316 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
317 && (align == BITS_PER_UNIT
318 || (STRICT_ALIGNMENT
319 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
320 return 0;
321
322 attrs.alias = alias;
323 attrs.expr = expr;
324 attrs.offset = offset;
325 attrs.size = size;
326 attrs.align = align;
327
328 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
329 if (*slot == 0)
330 {
331 *slot = ggc_alloc (sizeof (mem_attrs));
332 memcpy (*slot, &attrs, sizeof (mem_attrs));
333 }
334
335 return *slot;
336 }
337
338 /* Returns a hash code for X (which is a really a reg_attrs *). */
339
340 static hashval_t
341 reg_attrs_htab_hash (x)
342 const void *x;
343 {
344 reg_attrs *p = (reg_attrs *) x;
345
346 return ((p->offset * 1000) ^ (long) p->decl);
347 }
348
349 /* Returns non-zero if the value represented by X (which is really a
350 reg_attrs *) is the same as that given by Y (which is also really a
351 reg_attrs *). */
352
353 static int
354 reg_attrs_htab_eq (x, y)
355 const void *x;
356 const void *y;
357 {
358 reg_attrs *p = (reg_attrs *) x;
359 reg_attrs *q = (reg_attrs *) y;
360
361 return (p->decl == q->decl && p->offset == q->offset);
362 }
363 /* Allocate a new reg_attrs structure and insert it into the hash table if
364 one identical to it is not already in the table. We are doing this for
365 MEM of mode MODE. */
366
367 static reg_attrs *
368 get_reg_attrs (decl, offset)
369 tree decl;
370 int offset;
371 {
372 reg_attrs attrs;
373 void **slot;
374
375 /* If everything is the default, we can just return zero. */
376 if (decl == 0 && offset == 0)
377 return 0;
378
379 attrs.decl = decl;
380 attrs.offset = offset;
381
382 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
383 if (*slot == 0)
384 {
385 *slot = ggc_alloc (sizeof (reg_attrs));
386 memcpy (*slot, &attrs, sizeof (reg_attrs));
387 }
388
389 return *slot;
390 }
391
392 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
393 don't attempt to share with the various global pieces of rtl (such as
394 frame_pointer_rtx). */
395
396 rtx
397 gen_raw_REG (mode, regno)
398 enum machine_mode mode;
399 int regno;
400 {
401 rtx x = gen_rtx_raw_REG (mode, regno);
402 ORIGINAL_REGNO (x) = regno;
403 return x;
404 }
405
406 /* There are some RTL codes that require special attention; the generation
407 functions do the raw handling. If you add to this list, modify
408 special_rtx in gengenrtl.c as well. */
409
410 rtx
411 gen_rtx_CONST_INT (mode, arg)
412 enum machine_mode mode ATTRIBUTE_UNUSED;
413 HOST_WIDE_INT arg;
414 {
415 void **slot;
416
417 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
418 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
419
420 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
421 if (const_true_rtx && arg == STORE_FLAG_VALUE)
422 return const_true_rtx;
423 #endif
424
425 /* Look up the CONST_INT in the hash table. */
426 slot = htab_find_slot_with_hash (const_int_htab, &arg,
427 (hashval_t) arg, INSERT);
428 if (*slot == 0)
429 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
430
431 return (rtx) *slot;
432 }
433
434 rtx
435 gen_int_mode (c, mode)
436 HOST_WIDE_INT c;
437 enum machine_mode mode;
438 {
439 return GEN_INT (trunc_int_for_mode (c, mode));
440 }
441
442 /* CONST_DOUBLEs might be created from pairs of integers, or from
443 REAL_VALUE_TYPEs. Also, their length is known only at run time,
444 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
445
446 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
447 hash table. If so, return its counterpart; otherwise add it
448 to the hash table and return it. */
449 static rtx
450 lookup_const_double (real)
451 rtx real;
452 {
453 void **slot = htab_find_slot (const_double_htab, real, INSERT);
454 if (*slot == 0)
455 *slot = real;
456
457 return (rtx) *slot;
458 }
459
460 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
461 VALUE in mode MODE. */
462 rtx
463 const_double_from_real_value (value, mode)
464 REAL_VALUE_TYPE value;
465 enum machine_mode mode;
466 {
467 rtx real = rtx_alloc (CONST_DOUBLE);
468 PUT_MODE (real, mode);
469
470 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
471
472 return lookup_const_double (real);
473 }
474
475 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
476 of ints: I0 is the low-order word and I1 is the high-order word.
477 Do not use this routine for non-integer modes; convert to
478 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
479
480 rtx
481 immed_double_const (i0, i1, mode)
482 HOST_WIDE_INT i0, i1;
483 enum machine_mode mode;
484 {
485 rtx value;
486 unsigned int i;
487
488 if (mode != VOIDmode)
489 {
490 int width;
491 if (GET_MODE_CLASS (mode) != MODE_INT
492 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
493 /* We can get a 0 for an error mark. */
494 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
495 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
496 abort ();
497
498 /* We clear out all bits that don't belong in MODE, unless they and
499 our sign bit are all one. So we get either a reasonable negative
500 value or a reasonable unsigned value for this mode. */
501 width = GET_MODE_BITSIZE (mode);
502 if (width < HOST_BITS_PER_WIDE_INT
503 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
504 != ((HOST_WIDE_INT) (-1) << (width - 1))))
505 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
506 else if (width == HOST_BITS_PER_WIDE_INT
507 && ! (i1 == ~0 && i0 < 0))
508 i1 = 0;
509 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
510 /* We cannot represent this value as a constant. */
511 abort ();
512
513 /* If this would be an entire word for the target, but is not for
514 the host, then sign-extend on the host so that the number will
515 look the same way on the host that it would on the target.
516
517 For example, when building a 64 bit alpha hosted 32 bit sparc
518 targeted compiler, then we want the 32 bit unsigned value -1 to be
519 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
520 The latter confuses the sparc backend. */
521
522 if (width < HOST_BITS_PER_WIDE_INT
523 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
524 i0 |= ((HOST_WIDE_INT) (-1) << width);
525
526 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
527 CONST_INT.
528
529 ??? Strictly speaking, this is wrong if we create a CONST_INT for
530 a large unsigned constant with the size of MODE being
531 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
532 in a wider mode. In that case we will mis-interpret it as a
533 negative number.
534
535 Unfortunately, the only alternative is to make a CONST_DOUBLE for
536 any constant in any mode if it is an unsigned constant larger
537 than the maximum signed integer in an int on the host. However,
538 doing this will break everyone that always expects to see a
539 CONST_INT for SImode and smaller.
540
541 We have always been making CONST_INTs in this case, so nothing
542 new is being broken. */
543
544 if (width <= HOST_BITS_PER_WIDE_INT)
545 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
546 }
547
548 /* If this integer fits in one word, return a CONST_INT. */
549 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
550 return GEN_INT (i0);
551
552 /* We use VOIDmode for integers. */
553 value = rtx_alloc (CONST_DOUBLE);
554 PUT_MODE (value, VOIDmode);
555
556 CONST_DOUBLE_LOW (value) = i0;
557 CONST_DOUBLE_HIGH (value) = i1;
558
559 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
560 XWINT (value, i) = 0;
561
562 return lookup_const_double (value);
563 }
564
565 rtx
566 gen_rtx_REG (mode, regno)
567 enum machine_mode mode;
568 unsigned int regno;
569 {
570 /* In case the MD file explicitly references the frame pointer, have
571 all such references point to the same frame pointer. This is
572 used during frame pointer elimination to distinguish the explicit
573 references to these registers from pseudos that happened to be
574 assigned to them.
575
576 If we have eliminated the frame pointer or arg pointer, we will
577 be using it as a normal register, for example as a spill
578 register. In such cases, we might be accessing it in a mode that
579 is not Pmode and therefore cannot use the pre-allocated rtx.
580
581 Also don't do this when we are making new REGs in reload, since
582 we don't want to get confused with the real pointers. */
583
584 if (mode == Pmode && !reload_in_progress)
585 {
586 if (regno == FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return frame_pointer_rtx;
589 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
590 if (regno == HARD_FRAME_POINTER_REGNUM
591 && (!reload_completed || frame_pointer_needed))
592 return hard_frame_pointer_rtx;
593 #endif
594 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
595 if (regno == ARG_POINTER_REGNUM)
596 return arg_pointer_rtx;
597 #endif
598 #ifdef RETURN_ADDRESS_POINTER_REGNUM
599 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
600 return return_address_pointer_rtx;
601 #endif
602 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
603 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
604 return pic_offset_table_rtx;
605 if (regno == STACK_POINTER_REGNUM)
606 return stack_pointer_rtx;
607 }
608
609 #if 0
610 /* If the per-function register table has been set up, try to re-use
611 an existing entry in that table to avoid useless generation of RTL.
612
613 This code is disabled for now until we can fix the various backends
614 which depend on having non-shared hard registers in some cases. Long
615 term we want to re-enable this code as it can significantly cut down
616 on the amount of useless RTL that gets generated.
617
618 We'll also need to fix some code that runs after reload that wants to
619 set ORIGINAL_REGNO. */
620
621 if (cfun
622 && cfun->emit
623 && regno_reg_rtx
624 && regno < FIRST_PSEUDO_REGISTER
625 && reg_raw_mode[regno] == mode)
626 return regno_reg_rtx[regno];
627 #endif
628
629 return gen_raw_REG (mode, regno);
630 }
631
632 rtx
633 gen_rtx_MEM (mode, addr)
634 enum machine_mode mode;
635 rtx addr;
636 {
637 rtx rt = gen_rtx_raw_MEM (mode, addr);
638
639 /* This field is not cleared by the mere allocation of the rtx, so
640 we clear it here. */
641 MEM_ATTRS (rt) = 0;
642
643 return rt;
644 }
645
646 rtx
647 gen_rtx_SUBREG (mode, reg, offset)
648 enum machine_mode mode;
649 rtx reg;
650 int offset;
651 {
652 /* This is the most common failure type.
653 Catch it early so we can see who does it. */
654 if ((offset % GET_MODE_SIZE (mode)) != 0)
655 abort ();
656
657 /* This check isn't usable right now because combine will
658 throw arbitrary crap like a CALL into a SUBREG in
659 gen_lowpart_for_combine so we must just eat it. */
660 #if 0
661 /* Check for this too. */
662 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
663 abort ();
664 #endif
665 return gen_rtx_raw_SUBREG (mode, reg, offset);
666 }
667
668 /* Generate a SUBREG representing the least-significant part of REG if MODE
669 is smaller than mode of REG, otherwise paradoxical SUBREG. */
670
671 rtx
672 gen_lowpart_SUBREG (mode, reg)
673 enum machine_mode mode;
674 rtx reg;
675 {
676 enum machine_mode inmode;
677
678 inmode = GET_MODE (reg);
679 if (inmode == VOIDmode)
680 inmode = mode;
681 return gen_rtx_SUBREG (mode, reg,
682 subreg_lowpart_offset (mode, inmode));
683 }
684 \f
685 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
686 **
687 ** This routine generates an RTX of the size specified by
688 ** <code>, which is an RTX code. The RTX structure is initialized
689 ** from the arguments <element1> through <elementn>, which are
690 ** interpreted according to the specific RTX type's format. The
691 ** special machine mode associated with the rtx (if any) is specified
692 ** in <mode>.
693 **
694 ** gen_rtx can be invoked in a way which resembles the lisp-like
695 ** rtx it will generate. For example, the following rtx structure:
696 **
697 ** (plus:QI (mem:QI (reg:SI 1))
698 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
699 **
700 ** ...would be generated by the following C code:
701 **
702 ** gen_rtx (PLUS, QImode,
703 ** gen_rtx (MEM, QImode,
704 ** gen_rtx (REG, SImode, 1)),
705 ** gen_rtx (MEM, QImode,
706 ** gen_rtx (PLUS, SImode,
707 ** gen_rtx (REG, SImode, 2),
708 ** gen_rtx (REG, SImode, 3)))),
709 */
710
711 /*VARARGS2*/
712 rtx
713 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
714 {
715 int i; /* Array indices... */
716 const char *fmt; /* Current rtx's format... */
717 rtx rt_val; /* RTX to return to caller... */
718
719 VA_OPEN (p, mode);
720 VA_FIXEDARG (p, enum rtx_code, code);
721 VA_FIXEDARG (p, enum machine_mode, mode);
722
723 switch (code)
724 {
725 case CONST_INT:
726 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
727 break;
728
729 case CONST_DOUBLE:
730 {
731 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
732 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
733
734 rt_val = immed_double_const (arg0, arg1, mode);
735 }
736 break;
737
738 case REG:
739 rt_val = gen_rtx_REG (mode, va_arg (p, int));
740 break;
741
742 case MEM:
743 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
744 break;
745
746 default:
747 rt_val = rtx_alloc (code); /* Allocate the storage space. */
748 rt_val->mode = mode; /* Store the machine mode... */
749
750 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
751 for (i = 0; i < GET_RTX_LENGTH (code); i++)
752 {
753 switch (*fmt++)
754 {
755 case '0': /* Unused field. */
756 break;
757
758 case 'i': /* An integer? */
759 XINT (rt_val, i) = va_arg (p, int);
760 break;
761
762 case 'w': /* A wide integer? */
763 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
764 break;
765
766 case 's': /* A string? */
767 XSTR (rt_val, i) = va_arg (p, char *);
768 break;
769
770 case 'e': /* An expression? */
771 case 'u': /* An insn? Same except when printing. */
772 XEXP (rt_val, i) = va_arg (p, rtx);
773 break;
774
775 case 'E': /* An RTX vector? */
776 XVEC (rt_val, i) = va_arg (p, rtvec);
777 break;
778
779 case 'b': /* A bitmap? */
780 XBITMAP (rt_val, i) = va_arg (p, bitmap);
781 break;
782
783 case 't': /* A tree? */
784 XTREE (rt_val, i) = va_arg (p, tree);
785 break;
786
787 default:
788 abort ();
789 }
790 }
791 break;
792 }
793
794 VA_CLOSE (p);
795 return rt_val;
796 }
797
798 /* gen_rtvec (n, [rt1, ..., rtn])
799 **
800 ** This routine creates an rtvec and stores within it the
801 ** pointers to rtx's which are its arguments.
802 */
803
804 /*VARARGS1*/
805 rtvec
806 gen_rtvec VPARAMS ((int n, ...))
807 {
808 int i, save_n;
809 rtx *vector;
810
811 VA_OPEN (p, n);
812 VA_FIXEDARG (p, int, n);
813
814 if (n == 0)
815 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
816
817 vector = (rtx *) alloca (n * sizeof (rtx));
818
819 for (i = 0; i < n; i++)
820 vector[i] = va_arg (p, rtx);
821
822 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
823 save_n = n;
824 VA_CLOSE (p);
825
826 return gen_rtvec_v (save_n, vector);
827 }
828
829 rtvec
830 gen_rtvec_v (n, argp)
831 int n;
832 rtx *argp;
833 {
834 int i;
835 rtvec rt_val;
836
837 if (n == 0)
838 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
839
840 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
841
842 for (i = 0; i < n; i++)
843 rt_val->elem[i] = *argp++;
844
845 return rt_val;
846 }
847 \f
848 /* Generate a REG rtx for a new pseudo register of mode MODE.
849 This pseudo is assigned the next sequential register number. */
850
851 rtx
852 gen_reg_rtx (mode)
853 enum machine_mode mode;
854 {
855 struct function *f = cfun;
856 rtx val;
857
858 /* Don't let anything called after initial flow analysis create new
859 registers. */
860 if (no_new_pseudos)
861 abort ();
862
863 if (generating_concat_p
864 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
865 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
866 {
867 /* For complex modes, don't make a single pseudo.
868 Instead, make a CONCAT of two pseudos.
869 This allows noncontiguous allocation of the real and imaginary parts,
870 which makes much better code. Besides, allocating DCmode
871 pseudos overstrains reload on some machines like the 386. */
872 rtx realpart, imagpart;
873 enum machine_mode partmode = GET_MODE_INNER (mode);
874
875 realpart = gen_reg_rtx (partmode);
876 imagpart = gen_reg_rtx (partmode);
877 return gen_rtx_CONCAT (mode, realpart, imagpart);
878 }
879
880 /* Make sure regno_pointer_align, and regno_reg_rtx are large
881 enough to have an element for this pseudo reg number. */
882
883 if (reg_rtx_no == f->emit->regno_pointer_align_length)
884 {
885 int old_size = f->emit->regno_pointer_align_length;
886 char *new;
887 rtx *new1;
888
889 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
890 memset (new + old_size, 0, old_size);
891 f->emit->regno_pointer_align = (unsigned char *) new;
892
893 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
894 old_size * 2 * sizeof (rtx));
895 memset (new1 + old_size, 0, old_size * sizeof (rtx));
896 regno_reg_rtx = new1;
897
898 f->emit->regno_pointer_align_length = old_size * 2;
899 }
900
901 val = gen_raw_REG (mode, reg_rtx_no);
902 regno_reg_rtx[reg_rtx_no++] = val;
903 return val;
904 }
905
906 /* Generate an register with same attributes as REG,
907 but offsetted by OFFSET. */
908
909 rtx
910 gen_rtx_REG_offset (reg, mode, regno, offset)
911 enum machine_mode mode;
912 unsigned int regno;
913 int offset;
914 rtx reg;
915 {
916 rtx new = gen_rtx_REG (mode, regno);
917 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
918 REG_OFFSET (reg) + offset);
919 return new;
920 }
921
922 /* Set the decl for MEM to DECL. */
923
924 void
925 set_reg_attrs_from_mem (reg, mem)
926 rtx reg;
927 rtx mem;
928 {
929 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
930 REG_ATTRS (reg)
931 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
932 }
933
934 /* Assign the RTX X to declaration T. */
935 void
936 set_decl_rtl (t, x)
937 tree t;
938 rtx x;
939 {
940 DECL_CHECK (t)->decl.rtl = x;
941
942 if (!x)
943 return;
944 /* For register, we maitain the reverse information too. */
945 if (GET_CODE (x) == REG)
946 REG_ATTRS (x) = get_reg_attrs (t, 0);
947 else if (GET_CODE (x) == SUBREG)
948 REG_ATTRS (SUBREG_REG (x))
949 = get_reg_attrs (t, -SUBREG_BYTE (x));
950 if (GET_CODE (x) == CONCAT)
951 {
952 if (REG_P (XEXP (x, 0)))
953 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
954 if (REG_P (XEXP (x, 1)))
955 REG_ATTRS (XEXP (x, 1))
956 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
957 }
958 if (GET_CODE (x) == PARALLEL)
959 {
960 int i;
961 for (i = 0; i < XVECLEN (x, 0); i++)
962 {
963 rtx y = XVECEXP (x, 0, i);
964 if (REG_P (XEXP (y, 0)))
965 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
966 }
967 }
968 }
969
970 /* Identify REG (which may be a CONCAT) as a user register. */
971
972 void
973 mark_user_reg (reg)
974 rtx reg;
975 {
976 if (GET_CODE (reg) == CONCAT)
977 {
978 REG_USERVAR_P (XEXP (reg, 0)) = 1;
979 REG_USERVAR_P (XEXP (reg, 1)) = 1;
980 }
981 else if (GET_CODE (reg) == REG)
982 REG_USERVAR_P (reg) = 1;
983 else
984 abort ();
985 }
986
987 /* Identify REG as a probable pointer register and show its alignment
988 as ALIGN, if nonzero. */
989
990 void
991 mark_reg_pointer (reg, align)
992 rtx reg;
993 int align;
994 {
995 if (! REG_POINTER (reg))
996 {
997 REG_POINTER (reg) = 1;
998
999 if (align)
1000 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1001 }
1002 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1003 /* We can no-longer be sure just how aligned this pointer is */
1004 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1005 }
1006
1007 /* Return 1 plus largest pseudo reg number used in the current function. */
1008
1009 int
1010 max_reg_num ()
1011 {
1012 return reg_rtx_no;
1013 }
1014
1015 /* Return 1 + the largest label number used so far in the current function. */
1016
1017 int
1018 max_label_num ()
1019 {
1020 if (last_label_num && label_num == base_label_num)
1021 return last_label_num;
1022 return label_num;
1023 }
1024
1025 /* Return first label number used in this function (if any were used). */
1026
1027 int
1028 get_first_label_num ()
1029 {
1030 return first_label_num;
1031 }
1032 \f
1033 /* Return the final regno of X, which is a SUBREG of a hard
1034 register. */
1035 int
1036 subreg_hard_regno (x, check_mode)
1037 rtx x;
1038 int check_mode;
1039 {
1040 enum machine_mode mode = GET_MODE (x);
1041 unsigned int byte_offset, base_regno, final_regno;
1042 rtx reg = SUBREG_REG (x);
1043
1044 /* This is where we attempt to catch illegal subregs
1045 created by the compiler. */
1046 if (GET_CODE (x) != SUBREG
1047 || GET_CODE (reg) != REG)
1048 abort ();
1049 base_regno = REGNO (reg);
1050 if (base_regno >= FIRST_PSEUDO_REGISTER)
1051 abort ();
1052 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1053 abort ();
1054
1055 /* Catch non-congruent offsets too. */
1056 byte_offset = SUBREG_BYTE (x);
1057 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1058 abort ();
1059
1060 final_regno = subreg_regno (x);
1061
1062 return final_regno;
1063 }
1064
1065 /* Return a value representing some low-order bits of X, where the number
1066 of low-order bits is given by MODE. Note that no conversion is done
1067 between floating-point and fixed-point values, rather, the bit
1068 representation is returned.
1069
1070 This function handles the cases in common between gen_lowpart, below,
1071 and two variants in cse.c and combine.c. These are the cases that can
1072 be safely handled at all points in the compilation.
1073
1074 If this is not a case we can handle, return 0. */
1075
1076 rtx
1077 gen_lowpart_common (mode, x)
1078 enum machine_mode mode;
1079 rtx x;
1080 {
1081 int msize = GET_MODE_SIZE (mode);
1082 int xsize = GET_MODE_SIZE (GET_MODE (x));
1083 int offset = 0;
1084
1085 if (GET_MODE (x) == mode)
1086 return x;
1087
1088 /* MODE must occupy no more words than the mode of X. */
1089 if (GET_MODE (x) != VOIDmode
1090 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1091 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1092 return 0;
1093
1094 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1095 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1096 && GET_MODE (x) != VOIDmode && msize > xsize)
1097 return 0;
1098
1099 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1100
1101 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1102 && (GET_MODE_CLASS (mode) == MODE_INT
1103 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1104 {
1105 /* If we are getting the low-order part of something that has been
1106 sign- or zero-extended, we can either just use the object being
1107 extended or make a narrower extension. If we want an even smaller
1108 piece than the size of the object being extended, call ourselves
1109 recursively.
1110
1111 This case is used mostly by combine and cse. */
1112
1113 if (GET_MODE (XEXP (x, 0)) == mode)
1114 return XEXP (x, 0);
1115 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1116 return gen_lowpart_common (mode, XEXP (x, 0));
1117 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1118 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1119 }
1120 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1121 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1122 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1123 else if ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
1124 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
1125 && GET_MODE (x) == VOIDmode)
1126 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1127 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1128 from the low-order part of the constant. */
1129 else if ((GET_MODE_CLASS (mode) == MODE_INT
1130 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1131 && GET_MODE (x) == VOIDmode
1132 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1133 {
1134 /* If MODE is twice the host word size, X is already the desired
1135 representation. Otherwise, if MODE is wider than a word, we can't
1136 do this. If MODE is exactly a word, return just one CONST_INT. */
1137
1138 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1139 return x;
1140 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1141 return 0;
1142 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1143 return (GET_CODE (x) == CONST_INT ? x
1144 : GEN_INT (CONST_DOUBLE_LOW (x)));
1145 else
1146 {
1147 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1148 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1149 : CONST_DOUBLE_LOW (x));
1150
1151 /* Sign extend to HOST_WIDE_INT. */
1152 val = trunc_int_for_mode (val, mode);
1153
1154 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1155 : GEN_INT (val));
1156 }
1157 }
1158
1159 /* The floating-point emulator can handle all conversions between
1160 FP and integer operands. This simplifies reload because it
1161 doesn't have to deal with constructs like (subreg:DI
1162 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1163 /* Single-precision floats are always 32-bits and double-precision
1164 floats are always 64-bits. */
1165
1166 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1167 && GET_MODE_BITSIZE (mode) == 32
1168 && GET_CODE (x) == CONST_INT)
1169 {
1170 REAL_VALUE_TYPE r;
1171 long i = INTVAL (x);
1172
1173 real_from_target (&r, &i, mode);
1174 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1175 }
1176 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1177 && GET_MODE_BITSIZE (mode) == 64
1178 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1179 && GET_MODE (x) == VOIDmode)
1180 {
1181 REAL_VALUE_TYPE r;
1182 HOST_WIDE_INT low, high;
1183 long i[2];
1184
1185 if (GET_CODE (x) == CONST_INT)
1186 {
1187 low = INTVAL (x);
1188 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1189 }
1190 else
1191 {
1192 low = CONST_DOUBLE_LOW (x);
1193 high = CONST_DOUBLE_HIGH (x);
1194 }
1195
1196 if (HOST_BITS_PER_WIDE_INT > 32)
1197 high = low >> 31 >> 1;
1198
1199 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1200 target machine. */
1201 if (WORDS_BIG_ENDIAN)
1202 i[0] = high, i[1] = low;
1203 else
1204 i[0] = low, i[1] = high;
1205
1206 real_from_target (&r, i, mode);
1207 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1208 }
1209 else if ((GET_MODE_CLASS (mode) == MODE_INT
1210 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1211 && GET_CODE (x) == CONST_DOUBLE
1212 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1213 {
1214 REAL_VALUE_TYPE r;
1215 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1216 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1217
1218 /* Convert 'r' into an array of four 32-bit words in target word
1219 order. */
1220 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1221 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1222 {
1223 case 32:
1224 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1225 i[1] = 0;
1226 i[2] = 0;
1227 i[3 - 3 * endian] = 0;
1228 break;
1229 case 64:
1230 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1231 i[2 - 2 * endian] = 0;
1232 i[3 - 2 * endian] = 0;
1233 break;
1234 case 96:
1235 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1236 i[3 - 3 * endian] = 0;
1237 break;
1238 case 128:
1239 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1240 break;
1241 default:
1242 abort ();
1243 }
1244 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1245 and return it. */
1246 #if HOST_BITS_PER_WIDE_INT == 32
1247 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1248 #else
1249 if (HOST_BITS_PER_WIDE_INT != 64)
1250 abort ();
1251
1252 return immed_double_const ((((unsigned long) i[3 * endian])
1253 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1254 (((unsigned long) i[2 - endian])
1255 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1256 mode);
1257 #endif
1258 }
1259
1260 /* Otherwise, we can't do this. */
1261 return 0;
1262 }
1263 \f
1264 /* Return the real part (which has mode MODE) of a complex value X.
1265 This always comes at the low address in memory. */
1266
1267 rtx
1268 gen_realpart (mode, x)
1269 enum machine_mode mode;
1270 rtx x;
1271 {
1272 if (WORDS_BIG_ENDIAN
1273 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1274 && REG_P (x)
1275 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1276 internal_error
1277 ("can't access real part of complex value in hard register");
1278 else if (WORDS_BIG_ENDIAN)
1279 return gen_highpart (mode, x);
1280 else
1281 return gen_lowpart (mode, x);
1282 }
1283
1284 /* Return the imaginary part (which has mode MODE) of a complex value X.
1285 This always comes at the high address in memory. */
1286
1287 rtx
1288 gen_imagpart (mode, x)
1289 enum machine_mode mode;
1290 rtx x;
1291 {
1292 if (WORDS_BIG_ENDIAN)
1293 return gen_lowpart (mode, x);
1294 else if (! WORDS_BIG_ENDIAN
1295 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1296 && REG_P (x)
1297 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1298 internal_error
1299 ("can't access imaginary part of complex value in hard register");
1300 else
1301 return gen_highpart (mode, x);
1302 }
1303
1304 /* Return 1 iff X, assumed to be a SUBREG,
1305 refers to the real part of the complex value in its containing reg.
1306 Complex values are always stored with the real part in the first word,
1307 regardless of WORDS_BIG_ENDIAN. */
1308
1309 int
1310 subreg_realpart_p (x)
1311 rtx x;
1312 {
1313 if (GET_CODE (x) != SUBREG)
1314 abort ();
1315
1316 return ((unsigned int) SUBREG_BYTE (x)
1317 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1318 }
1319 \f
1320 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1321 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1322 least-significant part of X.
1323 MODE specifies how big a part of X to return;
1324 it usually should not be larger than a word.
1325 If X is a MEM whose address is a QUEUED, the value may be so also. */
1326
1327 rtx
1328 gen_lowpart (mode, x)
1329 enum machine_mode mode;
1330 rtx x;
1331 {
1332 rtx result = gen_lowpart_common (mode, x);
1333
1334 if (result)
1335 return result;
1336 else if (GET_CODE (x) == REG)
1337 {
1338 /* Must be a hard reg that's not valid in MODE. */
1339 result = gen_lowpart_common (mode, copy_to_reg (x));
1340 if (result == 0)
1341 abort ();
1342 return result;
1343 }
1344 else if (GET_CODE (x) == MEM)
1345 {
1346 /* The only additional case we can do is MEM. */
1347 int offset = 0;
1348 if (WORDS_BIG_ENDIAN)
1349 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1350 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1351
1352 if (BYTES_BIG_ENDIAN)
1353 /* Adjust the address so that the address-after-the-data
1354 is unchanged. */
1355 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1356 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1357
1358 return adjust_address (x, mode, offset);
1359 }
1360 else if (GET_CODE (x) == ADDRESSOF)
1361 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1362 else
1363 abort ();
1364 }
1365
1366 /* Like `gen_lowpart', but refer to the most significant part.
1367 This is used to access the imaginary part of a complex number. */
1368
1369 rtx
1370 gen_highpart (mode, x)
1371 enum machine_mode mode;
1372 rtx x;
1373 {
1374 unsigned int msize = GET_MODE_SIZE (mode);
1375 rtx result;
1376
1377 /* This case loses if X is a subreg. To catch bugs early,
1378 complain if an invalid MODE is used even in other cases. */
1379 if (msize > UNITS_PER_WORD
1380 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1381 abort ();
1382
1383 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1384 subreg_highpart_offset (mode, GET_MODE (x)));
1385
1386 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1387 the target if we have a MEM. gen_highpart must return a valid operand,
1388 emitting code if necessary to do so. */
1389 if (result != NULL_RTX && GET_CODE (result) == MEM)
1390 result = validize_mem (result);
1391
1392 if (!result)
1393 abort ();
1394 return result;
1395 }
1396
1397 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1398 be VOIDmode constant. */
1399 rtx
1400 gen_highpart_mode (outermode, innermode, exp)
1401 enum machine_mode outermode, innermode;
1402 rtx exp;
1403 {
1404 if (GET_MODE (exp) != VOIDmode)
1405 {
1406 if (GET_MODE (exp) != innermode)
1407 abort ();
1408 return gen_highpart (outermode, exp);
1409 }
1410 return simplify_gen_subreg (outermode, exp, innermode,
1411 subreg_highpart_offset (outermode, innermode));
1412 }
1413
1414 /* Return offset in bytes to get OUTERMODE low part
1415 of the value in mode INNERMODE stored in memory in target format. */
1416
1417 unsigned int
1418 subreg_lowpart_offset (outermode, innermode)
1419 enum machine_mode outermode, innermode;
1420 {
1421 unsigned int offset = 0;
1422 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1423
1424 if (difference > 0)
1425 {
1426 if (WORDS_BIG_ENDIAN)
1427 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1428 if (BYTES_BIG_ENDIAN)
1429 offset += difference % UNITS_PER_WORD;
1430 }
1431
1432 return offset;
1433 }
1434
1435 /* Return offset in bytes to get OUTERMODE high part
1436 of the value in mode INNERMODE stored in memory in target format. */
1437 unsigned int
1438 subreg_highpart_offset (outermode, innermode)
1439 enum machine_mode outermode, innermode;
1440 {
1441 unsigned int offset = 0;
1442 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1443
1444 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1445 abort ();
1446
1447 if (difference > 0)
1448 {
1449 if (! WORDS_BIG_ENDIAN)
1450 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1451 if (! BYTES_BIG_ENDIAN)
1452 offset += difference % UNITS_PER_WORD;
1453 }
1454
1455 return offset;
1456 }
1457
1458 /* Return 1 iff X, assumed to be a SUBREG,
1459 refers to the least significant part of its containing reg.
1460 If X is not a SUBREG, always return 1 (it is its own low part!). */
1461
1462 int
1463 subreg_lowpart_p (x)
1464 rtx x;
1465 {
1466 if (GET_CODE (x) != SUBREG)
1467 return 1;
1468 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1469 return 0;
1470
1471 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1472 == SUBREG_BYTE (x));
1473 }
1474 \f
1475
1476 /* Helper routine for all the constant cases of operand_subword.
1477 Some places invoke this directly. */
1478
1479 rtx
1480 constant_subword (op, offset, mode)
1481 rtx op;
1482 int offset;
1483 enum machine_mode mode;
1484 {
1485 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1486 HOST_WIDE_INT val;
1487
1488 /* If OP is already an integer word, return it. */
1489 if (GET_MODE_CLASS (mode) == MODE_INT
1490 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1491 return op;
1492
1493 /* The output is some bits, the width of the target machine's word.
1494 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1495 host can't. */
1496 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1497 && GET_MODE_CLASS (mode) == MODE_FLOAT
1498 && GET_MODE_BITSIZE (mode) == 64
1499 && GET_CODE (op) == CONST_DOUBLE)
1500 {
1501 long k[2];
1502 REAL_VALUE_TYPE rv;
1503
1504 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1505 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1506
1507 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1508 which the words are written depends on the word endianness.
1509 ??? This is a potential portability problem and should
1510 be fixed at some point.
1511
1512 We must exercise caution with the sign bit. By definition there
1513 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1514 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1515 So we explicitly mask and sign-extend as necessary. */
1516 if (BITS_PER_WORD == 32)
1517 {
1518 val = k[offset];
1519 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1520 return GEN_INT (val);
1521 }
1522 #if HOST_BITS_PER_WIDE_INT >= 64
1523 else if (BITS_PER_WORD >= 64 && offset == 0)
1524 {
1525 val = k[! WORDS_BIG_ENDIAN];
1526 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1527 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1528 return GEN_INT (val);
1529 }
1530 #endif
1531 else if (BITS_PER_WORD == 16)
1532 {
1533 val = k[offset >> 1];
1534 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1535 val >>= 16;
1536 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1537 return GEN_INT (val);
1538 }
1539 else
1540 abort ();
1541 }
1542 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1543 && GET_MODE_CLASS (mode) == MODE_FLOAT
1544 && GET_MODE_BITSIZE (mode) > 64
1545 && GET_CODE (op) == CONST_DOUBLE)
1546 {
1547 long k[4];
1548 REAL_VALUE_TYPE rv;
1549
1550 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1551 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1552
1553 if (BITS_PER_WORD == 32)
1554 {
1555 val = k[offset];
1556 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1557 return GEN_INT (val);
1558 }
1559 #if HOST_BITS_PER_WIDE_INT >= 64
1560 else if (BITS_PER_WORD >= 64 && offset <= 1)
1561 {
1562 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1563 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1564 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1565 return GEN_INT (val);
1566 }
1567 #endif
1568 else
1569 abort ();
1570 }
1571
1572 /* Single word float is a little harder, since single- and double-word
1573 values often do not have the same high-order bits. We have already
1574 verified that we want the only defined word of the single-word value. */
1575 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1576 && GET_MODE_BITSIZE (mode) == 32
1577 && GET_CODE (op) == CONST_DOUBLE)
1578 {
1579 long l;
1580 REAL_VALUE_TYPE rv;
1581
1582 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1583 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1584
1585 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1586 val = l;
1587 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1588
1589 if (BITS_PER_WORD == 16)
1590 {
1591 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1592 val >>= 16;
1593 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1594 }
1595
1596 return GEN_INT (val);
1597 }
1598
1599 /* The only remaining cases that we can handle are integers.
1600 Convert to proper endianness now since these cases need it.
1601 At this point, offset == 0 means the low-order word.
1602
1603 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1604 in general. However, if OP is (const_int 0), we can just return
1605 it for any word. */
1606
1607 if (op == const0_rtx)
1608 return op;
1609
1610 if (GET_MODE_CLASS (mode) != MODE_INT
1611 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1612 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1613 return 0;
1614
1615 if (WORDS_BIG_ENDIAN)
1616 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1617
1618 /* Find out which word on the host machine this value is in and get
1619 it from the constant. */
1620 val = (offset / size_ratio == 0
1621 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1622 : (GET_CODE (op) == CONST_INT
1623 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1624
1625 /* Get the value we want into the low bits of val. */
1626 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1627 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1628
1629 val = trunc_int_for_mode (val, word_mode);
1630
1631 return GEN_INT (val);
1632 }
1633
1634 /* Return subword OFFSET of operand OP.
1635 The word number, OFFSET, is interpreted as the word number starting
1636 at the low-order address. OFFSET 0 is the low-order word if not
1637 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1638
1639 If we cannot extract the required word, we return zero. Otherwise,
1640 an rtx corresponding to the requested word will be returned.
1641
1642 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1643 reload has completed, a valid address will always be returned. After
1644 reload, if a valid address cannot be returned, we return zero.
1645
1646 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1647 it is the responsibility of the caller.
1648
1649 MODE is the mode of OP in case it is a CONST_INT.
1650
1651 ??? This is still rather broken for some cases. The problem for the
1652 moment is that all callers of this thing provide no 'goal mode' to
1653 tell us to work with. This exists because all callers were written
1654 in a word based SUBREG world.
1655 Now use of this function can be deprecated by simplify_subreg in most
1656 cases.
1657 */
1658
1659 rtx
1660 operand_subword (op, offset, validate_address, mode)
1661 rtx op;
1662 unsigned int offset;
1663 int validate_address;
1664 enum machine_mode mode;
1665 {
1666 if (mode == VOIDmode)
1667 mode = GET_MODE (op);
1668
1669 if (mode == VOIDmode)
1670 abort ();
1671
1672 /* If OP is narrower than a word, fail. */
1673 if (mode != BLKmode
1674 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1675 return 0;
1676
1677 /* If we want a word outside OP, return zero. */
1678 if (mode != BLKmode
1679 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1680 return const0_rtx;
1681
1682 /* Form a new MEM at the requested address. */
1683 if (GET_CODE (op) == MEM)
1684 {
1685 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1686
1687 if (! validate_address)
1688 return new;
1689
1690 else if (reload_completed)
1691 {
1692 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1693 return 0;
1694 }
1695 else
1696 return replace_equiv_address (new, XEXP (new, 0));
1697 }
1698
1699 /* Rest can be handled by simplify_subreg. */
1700 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1701 }
1702
1703 /* Similar to `operand_subword', but never return 0. If we can't extract
1704 the required subword, put OP into a register and try again. If that fails,
1705 abort. We always validate the address in this case.
1706
1707 MODE is the mode of OP, in case it is CONST_INT. */
1708
1709 rtx
1710 operand_subword_force (op, offset, mode)
1711 rtx op;
1712 unsigned int offset;
1713 enum machine_mode mode;
1714 {
1715 rtx result = operand_subword (op, offset, 1, mode);
1716
1717 if (result)
1718 return result;
1719
1720 if (mode != BLKmode && mode != VOIDmode)
1721 {
1722 /* If this is a register which can not be accessed by words, copy it
1723 to a pseudo register. */
1724 if (GET_CODE (op) == REG)
1725 op = copy_to_reg (op);
1726 else
1727 op = force_reg (mode, op);
1728 }
1729
1730 result = operand_subword (op, offset, 1, mode);
1731 if (result == 0)
1732 abort ();
1733
1734 return result;
1735 }
1736 \f
1737 /* Given a compare instruction, swap the operands.
1738 A test instruction is changed into a compare of 0 against the operand. */
1739
1740 void
1741 reverse_comparison (insn)
1742 rtx insn;
1743 {
1744 rtx body = PATTERN (insn);
1745 rtx comp;
1746
1747 if (GET_CODE (body) == SET)
1748 comp = SET_SRC (body);
1749 else
1750 comp = SET_SRC (XVECEXP (body, 0, 0));
1751
1752 if (GET_CODE (comp) == COMPARE)
1753 {
1754 rtx op0 = XEXP (comp, 0);
1755 rtx op1 = XEXP (comp, 1);
1756 XEXP (comp, 0) = op1;
1757 XEXP (comp, 1) = op0;
1758 }
1759 else
1760 {
1761 rtx new = gen_rtx_COMPARE (VOIDmode,
1762 CONST0_RTX (GET_MODE (comp)), comp);
1763 if (GET_CODE (body) == SET)
1764 SET_SRC (body) = new;
1765 else
1766 SET_SRC (XVECEXP (body, 0, 0)) = new;
1767 }
1768 }
1769 \f
1770 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1771 or (2) a component ref of something variable. Represent the later with
1772 a NULL expression. */
1773
1774 static tree
1775 component_ref_for_mem_expr (ref)
1776 tree ref;
1777 {
1778 tree inner = TREE_OPERAND (ref, 0);
1779
1780 if (TREE_CODE (inner) == COMPONENT_REF)
1781 inner = component_ref_for_mem_expr (inner);
1782 else
1783 {
1784 tree placeholder_ptr = 0;
1785
1786 /* Now remove any conversions: they don't change what the underlying
1787 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1788 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1789 || TREE_CODE (inner) == NON_LVALUE_EXPR
1790 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1791 || TREE_CODE (inner) == SAVE_EXPR
1792 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1793 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1794 inner = find_placeholder (inner, &placeholder_ptr);
1795 else
1796 inner = TREE_OPERAND (inner, 0);
1797
1798 if (! DECL_P (inner))
1799 inner = NULL_TREE;
1800 }
1801
1802 if (inner == TREE_OPERAND (ref, 0))
1803 return ref;
1804 else
1805 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1806 TREE_OPERAND (ref, 1));
1807 }
1808
1809 /* Given REF, a MEM, and T, either the type of X or the expression
1810 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1811 if we are making a new object of this type. BITPOS is nonzero if
1812 there is an offset outstanding on T that will be applied later. */
1813
1814 void
1815 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
1816 rtx ref;
1817 tree t;
1818 int objectp;
1819 HOST_WIDE_INT bitpos;
1820 {
1821 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1822 tree expr = MEM_EXPR (ref);
1823 rtx offset = MEM_OFFSET (ref);
1824 rtx size = MEM_SIZE (ref);
1825 unsigned int align = MEM_ALIGN (ref);
1826 HOST_WIDE_INT apply_bitpos = 0;
1827 tree type;
1828
1829 /* It can happen that type_for_mode was given a mode for which there
1830 is no language-level type. In which case it returns NULL, which
1831 we can see here. */
1832 if (t == NULL_TREE)
1833 return;
1834
1835 type = TYPE_P (t) ? t : TREE_TYPE (t);
1836
1837 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1838 wrong answer, as it assumes that DECL_RTL already has the right alias
1839 info. Callers should not set DECL_RTL until after the call to
1840 set_mem_attributes. */
1841 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1842 abort ();
1843
1844 /* Get the alias set from the expression or type (perhaps using a
1845 front-end routine) and use it. */
1846 alias = get_alias_set (t);
1847
1848 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1849 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1850 RTX_UNCHANGING_P (ref)
1851 |= ((lang_hooks.honor_readonly
1852 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1853 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1854
1855 /* If we are making an object of this type, or if this is a DECL, we know
1856 that it is a scalar if the type is not an aggregate. */
1857 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1858 MEM_SCALAR_P (ref) = 1;
1859
1860 /* We can set the alignment from the type if we are making an object,
1861 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1862 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1863 align = MAX (align, TYPE_ALIGN (type));
1864
1865 /* If the size is known, we can set that. */
1866 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1867 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1868
1869 /* If T is not a type, we may be able to deduce some more information about
1870 the expression. */
1871 if (! TYPE_P (t))
1872 {
1873 maybe_set_unchanging (ref, t);
1874 if (TREE_THIS_VOLATILE (t))
1875 MEM_VOLATILE_P (ref) = 1;
1876
1877 /* Now remove any conversions: they don't change what the underlying
1878 object is. Likewise for SAVE_EXPR. */
1879 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1880 || TREE_CODE (t) == NON_LVALUE_EXPR
1881 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1882 || TREE_CODE (t) == SAVE_EXPR)
1883 t = TREE_OPERAND (t, 0);
1884
1885 /* If this expression can't be addressed (e.g., it contains a reference
1886 to a non-addressable field), show we don't change its alias set. */
1887 if (! can_address_p (t))
1888 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1889
1890 /* If this is a decl, set the attributes of the MEM from it. */
1891 if (DECL_P (t))
1892 {
1893 expr = t;
1894 offset = const0_rtx;
1895 apply_bitpos = bitpos;
1896 size = (DECL_SIZE_UNIT (t)
1897 && host_integerp (DECL_SIZE_UNIT (t), 1)
1898 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1899 align = DECL_ALIGN (t);
1900 }
1901
1902 /* If this is a constant, we know the alignment. */
1903 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1904 {
1905 align = TYPE_ALIGN (type);
1906 #ifdef CONSTANT_ALIGNMENT
1907 align = CONSTANT_ALIGNMENT (t, align);
1908 #endif
1909 }
1910
1911 /* If this is a field reference and not a bit-field, record it. */
1912 /* ??? There is some information that can be gleened from bit-fields,
1913 such as the word offset in the structure that might be modified.
1914 But skip it for now. */
1915 else if (TREE_CODE (t) == COMPONENT_REF
1916 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1917 {
1918 expr = component_ref_for_mem_expr (t);
1919 offset = const0_rtx;
1920 apply_bitpos = bitpos;
1921 /* ??? Any reason the field size would be different than
1922 the size we got from the type? */
1923 }
1924
1925 /* If this is an array reference, look for an outer field reference. */
1926 else if (TREE_CODE (t) == ARRAY_REF)
1927 {
1928 tree off_tree = size_zero_node;
1929
1930 do
1931 {
1932 tree index = TREE_OPERAND (t, 1);
1933 tree array = TREE_OPERAND (t, 0);
1934 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1935 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1936 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1937
1938 /* We assume all arrays have sizes that are a multiple of a byte.
1939 First subtract the lower bound, if any, in the type of the
1940 index, then convert to sizetype and multiply by the size of the
1941 array element. */
1942 if (low_bound != 0 && ! integer_zerop (low_bound))
1943 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1944 index, low_bound));
1945
1946 /* If the index has a self-referential type, pass it to a
1947 WITH_RECORD_EXPR; if the component size is, pass our
1948 component to one. */
1949 if (! TREE_CONSTANT (index)
1950 && contains_placeholder_p (index))
1951 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t);
1952 if (! TREE_CONSTANT (unit_size)
1953 && contains_placeholder_p (unit_size))
1954 unit_size = build (WITH_RECORD_EXPR, sizetype,
1955 unit_size, array);
1956
1957 off_tree
1958 = fold (build (PLUS_EXPR, sizetype,
1959 fold (build (MULT_EXPR, sizetype,
1960 index,
1961 unit_size)),
1962 off_tree));
1963 t = TREE_OPERAND (t, 0);
1964 }
1965 while (TREE_CODE (t) == ARRAY_REF);
1966
1967 if (DECL_P (t))
1968 {
1969 expr = t;
1970 offset = NULL;
1971 if (host_integerp (off_tree, 1))
1972 {
1973 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1974 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1975 align = DECL_ALIGN (t);
1976 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1977 align = aoff;
1978 offset = GEN_INT (ioff);
1979 apply_bitpos = bitpos;
1980 }
1981 }
1982 else if (TREE_CODE (t) == COMPONENT_REF)
1983 {
1984 expr = component_ref_for_mem_expr (t);
1985 if (host_integerp (off_tree, 1))
1986 {
1987 offset = GEN_INT (tree_low_cst (off_tree, 1));
1988 apply_bitpos = bitpos;
1989 }
1990 /* ??? Any reason the field size would be different than
1991 the size we got from the type? */
1992 }
1993 else if (flag_argument_noalias > 1
1994 && TREE_CODE (t) == INDIRECT_REF
1995 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1996 {
1997 expr = t;
1998 offset = NULL;
1999 }
2000 }
2001
2002 /* If this is a Fortran indirect argument reference, record the
2003 parameter decl. */
2004 else if (flag_argument_noalias > 1
2005 && TREE_CODE (t) == INDIRECT_REF
2006 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2007 {
2008 expr = t;
2009 offset = NULL;
2010 }
2011 }
2012
2013 /* If we modified OFFSET based on T, then subtract the outstanding
2014 bit position offset. Similarly, increase the size of the accessed
2015 object to contain the negative offset. */
2016 if (apply_bitpos)
2017 {
2018 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2019 if (size)
2020 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2021 }
2022
2023 /* Now set the attributes we computed above. */
2024 MEM_ATTRS (ref)
2025 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2026
2027 /* If this is already known to be a scalar or aggregate, we are done. */
2028 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2029 return;
2030
2031 /* If it is a reference into an aggregate, this is part of an aggregate.
2032 Otherwise we don't know. */
2033 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2034 || TREE_CODE (t) == ARRAY_RANGE_REF
2035 || TREE_CODE (t) == BIT_FIELD_REF)
2036 MEM_IN_STRUCT_P (ref) = 1;
2037 }
2038
2039 void
2040 set_mem_attributes (ref, t, objectp)
2041 rtx ref;
2042 tree t;
2043 int objectp;
2044 {
2045 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2046 }
2047
2048 /* Set the decl for MEM to DECL. */
2049
2050 void
2051 set_mem_attrs_from_reg (mem, reg)
2052 rtx mem;
2053 rtx reg;
2054 {
2055 MEM_ATTRS (mem)
2056 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2057 GEN_INT (REG_OFFSET (reg)),
2058 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2059 }
2060
2061 /* Set the alias set of MEM to SET. */
2062
2063 void
2064 set_mem_alias_set (mem, set)
2065 rtx mem;
2066 HOST_WIDE_INT set;
2067 {
2068 #ifdef ENABLE_CHECKING
2069 /* If the new and old alias sets don't conflict, something is wrong. */
2070 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2071 abort ();
2072 #endif
2073
2074 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2075 MEM_SIZE (mem), MEM_ALIGN (mem),
2076 GET_MODE (mem));
2077 }
2078
2079 /* Set the alignment of MEM to ALIGN bits. */
2080
2081 void
2082 set_mem_align (mem, align)
2083 rtx mem;
2084 unsigned int align;
2085 {
2086 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2087 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2088 GET_MODE (mem));
2089 }
2090
2091 /* Set the expr for MEM to EXPR. */
2092
2093 void
2094 set_mem_expr (mem, expr)
2095 rtx mem;
2096 tree expr;
2097 {
2098 MEM_ATTRS (mem)
2099 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2100 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2101 }
2102
2103 /* Set the offset of MEM to OFFSET. */
2104
2105 void
2106 set_mem_offset (mem, offset)
2107 rtx mem, offset;
2108 {
2109 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2110 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2111 GET_MODE (mem));
2112 }
2113
2114 /* Set the size of MEM to SIZE. */
2115
2116 void
2117 set_mem_size (mem, size)
2118 rtx mem, size;
2119 {
2120 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2121 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2122 GET_MODE (mem));
2123 }
2124 \f
2125 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2126 and its address changed to ADDR. (VOIDmode means don't change the mode.
2127 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2128 returned memory location is required to be valid. The memory
2129 attributes are not changed. */
2130
2131 static rtx
2132 change_address_1 (memref, mode, addr, validate)
2133 rtx memref;
2134 enum machine_mode mode;
2135 rtx addr;
2136 int validate;
2137 {
2138 rtx new;
2139
2140 if (GET_CODE (memref) != MEM)
2141 abort ();
2142 if (mode == VOIDmode)
2143 mode = GET_MODE (memref);
2144 if (addr == 0)
2145 addr = XEXP (memref, 0);
2146
2147 if (validate)
2148 {
2149 if (reload_in_progress || reload_completed)
2150 {
2151 if (! memory_address_p (mode, addr))
2152 abort ();
2153 }
2154 else
2155 addr = memory_address (mode, addr);
2156 }
2157
2158 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2159 return memref;
2160
2161 new = gen_rtx_MEM (mode, addr);
2162 MEM_COPY_ATTRIBUTES (new, memref);
2163 return new;
2164 }
2165
2166 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2167 way we are changing MEMREF, so we only preserve the alias set. */
2168
2169 rtx
2170 change_address (memref, mode, addr)
2171 rtx memref;
2172 enum machine_mode mode;
2173 rtx addr;
2174 {
2175 rtx new = change_address_1 (memref, mode, addr, 1);
2176 enum machine_mode mmode = GET_MODE (new);
2177
2178 MEM_ATTRS (new)
2179 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2180 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2181 (mmode == BLKmode ? BITS_PER_UNIT
2182 : GET_MODE_ALIGNMENT (mmode)),
2183 mmode);
2184
2185 return new;
2186 }
2187
2188 /* Return a memory reference like MEMREF, but with its mode changed
2189 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2190 nonzero, the memory address is forced to be valid.
2191 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2192 and caller is responsible for adjusting MEMREF base register. */
2193
2194 rtx
2195 adjust_address_1 (memref, mode, offset, validate, adjust)
2196 rtx memref;
2197 enum machine_mode mode;
2198 HOST_WIDE_INT offset;
2199 int validate, adjust;
2200 {
2201 rtx addr = XEXP (memref, 0);
2202 rtx new;
2203 rtx memoffset = MEM_OFFSET (memref);
2204 rtx size = 0;
2205 unsigned int memalign = MEM_ALIGN (memref);
2206
2207 /* ??? Prefer to create garbage instead of creating shared rtl.
2208 This may happen even if offset is nonzero -- consider
2209 (plus (plus reg reg) const_int) -- so do this always. */
2210 addr = copy_rtx (addr);
2211
2212 if (adjust)
2213 {
2214 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2215 object, we can merge it into the LO_SUM. */
2216 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2217 && offset >= 0
2218 && (unsigned HOST_WIDE_INT) offset
2219 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2220 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2221 plus_constant (XEXP (addr, 1), offset));
2222 else
2223 addr = plus_constant (addr, offset);
2224 }
2225
2226 new = change_address_1 (memref, mode, addr, validate);
2227
2228 /* Compute the new values of the memory attributes due to this adjustment.
2229 We add the offsets and update the alignment. */
2230 if (memoffset)
2231 memoffset = GEN_INT (offset + INTVAL (memoffset));
2232
2233 /* Compute the new alignment by taking the MIN of the alignment and the
2234 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2235 if zero. */
2236 if (offset != 0)
2237 memalign
2238 = MIN (memalign,
2239 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2240
2241 /* We can compute the size in a number of ways. */
2242 if (GET_MODE (new) != BLKmode)
2243 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2244 else if (MEM_SIZE (memref))
2245 size = plus_constant (MEM_SIZE (memref), -offset);
2246
2247 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2248 memoffset, size, memalign, GET_MODE (new));
2249
2250 /* At some point, we should validate that this offset is within the object,
2251 if all the appropriate values are known. */
2252 return new;
2253 }
2254
2255 /* Return a memory reference like MEMREF, but with its mode changed
2256 to MODE and its address changed to ADDR, which is assumed to be
2257 MEMREF offseted by OFFSET bytes. If VALIDATE is
2258 nonzero, the memory address is forced to be valid. */
2259
2260 rtx
2261 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2262 rtx memref;
2263 enum machine_mode mode;
2264 rtx addr;
2265 HOST_WIDE_INT offset;
2266 int validate;
2267 {
2268 memref = change_address_1 (memref, VOIDmode, addr, validate);
2269 return adjust_address_1 (memref, mode, offset, validate, 0);
2270 }
2271
2272 /* Return a memory reference like MEMREF, but whose address is changed by
2273 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2274 known to be in OFFSET (possibly 1). */
2275
2276 rtx
2277 offset_address (memref, offset, pow2)
2278 rtx memref;
2279 rtx offset;
2280 HOST_WIDE_INT pow2;
2281 {
2282 rtx new, addr = XEXP (memref, 0);
2283
2284 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2285
2286 /* At this point we don't know _why_ the address is invalid. It
2287 could have secondary memory refereces, multiplies or anything.
2288
2289 However, if we did go and rearrange things, we can wind up not
2290 being able to recognize the magic around pic_offset_table_rtx.
2291 This stuff is fragile, and is yet another example of why it is
2292 bad to expose PIC machinery too early. */
2293 if (! memory_address_p (GET_MODE (memref), new)
2294 && GET_CODE (addr) == PLUS
2295 && XEXP (addr, 0) == pic_offset_table_rtx)
2296 {
2297 addr = force_reg (GET_MODE (addr), addr);
2298 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2299 }
2300
2301 update_temp_slot_address (XEXP (memref, 0), new);
2302 new = change_address_1 (memref, VOIDmode, new, 1);
2303
2304 /* Update the alignment to reflect the offset. Reset the offset, which
2305 we don't know. */
2306 MEM_ATTRS (new)
2307 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2308 MIN (MEM_ALIGN (memref),
2309 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2310 GET_MODE (new));
2311 return new;
2312 }
2313
2314 /* Return a memory reference like MEMREF, but with its address changed to
2315 ADDR. The caller is asserting that the actual piece of memory pointed
2316 to is the same, just the form of the address is being changed, such as
2317 by putting something into a register. */
2318
2319 rtx
2320 replace_equiv_address (memref, addr)
2321 rtx memref;
2322 rtx addr;
2323 {
2324 /* change_address_1 copies the memory attribute structure without change
2325 and that's exactly what we want here. */
2326 update_temp_slot_address (XEXP (memref, 0), addr);
2327 return change_address_1 (memref, VOIDmode, addr, 1);
2328 }
2329
2330 /* Likewise, but the reference is not required to be valid. */
2331
2332 rtx
2333 replace_equiv_address_nv (memref, addr)
2334 rtx memref;
2335 rtx addr;
2336 {
2337 return change_address_1 (memref, VOIDmode, addr, 0);
2338 }
2339
2340 /* Return a memory reference like MEMREF, but with its mode widened to
2341 MODE and offset by OFFSET. This would be used by targets that e.g.
2342 cannot issue QImode memory operations and have to use SImode memory
2343 operations plus masking logic. */
2344
2345 rtx
2346 widen_memory_access (memref, mode, offset)
2347 rtx memref;
2348 enum machine_mode mode;
2349 HOST_WIDE_INT offset;
2350 {
2351 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2352 tree expr = MEM_EXPR (new);
2353 rtx memoffset = MEM_OFFSET (new);
2354 unsigned int size = GET_MODE_SIZE (mode);
2355
2356 /* If we don't know what offset we were at within the expression, then
2357 we can't know if we've overstepped the bounds. */
2358 if (! memoffset)
2359 expr = NULL_TREE;
2360
2361 while (expr)
2362 {
2363 if (TREE_CODE (expr) == COMPONENT_REF)
2364 {
2365 tree field = TREE_OPERAND (expr, 1);
2366
2367 if (! DECL_SIZE_UNIT (field))
2368 {
2369 expr = NULL_TREE;
2370 break;
2371 }
2372
2373 /* Is the field at least as large as the access? If so, ok,
2374 otherwise strip back to the containing structure. */
2375 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2376 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2377 && INTVAL (memoffset) >= 0)
2378 break;
2379
2380 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2381 {
2382 expr = NULL_TREE;
2383 break;
2384 }
2385
2386 expr = TREE_OPERAND (expr, 0);
2387 memoffset = (GEN_INT (INTVAL (memoffset)
2388 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2389 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2390 / BITS_PER_UNIT)));
2391 }
2392 /* Similarly for the decl. */
2393 else if (DECL_P (expr)
2394 && DECL_SIZE_UNIT (expr)
2395 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2396 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2397 && (! memoffset || INTVAL (memoffset) >= 0))
2398 break;
2399 else
2400 {
2401 /* The widened memory access overflows the expression, which means
2402 that it could alias another expression. Zap it. */
2403 expr = NULL_TREE;
2404 break;
2405 }
2406 }
2407
2408 if (! expr)
2409 memoffset = NULL_RTX;
2410
2411 /* The widened memory may alias other stuff, so zap the alias set. */
2412 /* ??? Maybe use get_alias_set on any remaining expression. */
2413
2414 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2415 MEM_ALIGN (new), mode);
2416
2417 return new;
2418 }
2419 \f
2420 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2421
2422 rtx
2423 gen_label_rtx ()
2424 {
2425 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2426 NULL, label_num++, NULL);
2427 }
2428 \f
2429 /* For procedure integration. */
2430
2431 /* Install new pointers to the first and last insns in the chain.
2432 Also, set cur_insn_uid to one higher than the last in use.
2433 Used for an inline-procedure after copying the insn chain. */
2434
2435 void
2436 set_new_first_and_last_insn (first, last)
2437 rtx first, last;
2438 {
2439 rtx insn;
2440
2441 first_insn = first;
2442 last_insn = last;
2443 cur_insn_uid = 0;
2444
2445 for (insn = first; insn; insn = NEXT_INSN (insn))
2446 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2447
2448 cur_insn_uid++;
2449 }
2450
2451 /* Set the range of label numbers found in the current function.
2452 This is used when belatedly compiling an inline function. */
2453
2454 void
2455 set_new_first_and_last_label_num (first, last)
2456 int first, last;
2457 {
2458 base_label_num = label_num;
2459 first_label_num = first;
2460 last_label_num = last;
2461 }
2462
2463 /* Set the last label number found in the current function.
2464 This is used when belatedly compiling an inline function. */
2465
2466 void
2467 set_new_last_label_num (last)
2468 int last;
2469 {
2470 base_label_num = label_num;
2471 last_label_num = last;
2472 }
2473 \f
2474 /* Restore all variables describing the current status from the structure *P.
2475 This is used after a nested function. */
2476
2477 void
2478 restore_emit_status (p)
2479 struct function *p ATTRIBUTE_UNUSED;
2480 {
2481 last_label_num = 0;
2482 }
2483 \f
2484 /* Go through all the RTL insn bodies and copy any invalid shared
2485 structure. This routine should only be called once. */
2486
2487 void
2488 unshare_all_rtl (fndecl, insn)
2489 tree fndecl;
2490 rtx insn;
2491 {
2492 tree decl;
2493
2494 /* Make sure that virtual parameters are not shared. */
2495 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2496 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2497
2498 /* Make sure that virtual stack slots are not shared. */
2499 unshare_all_decls (DECL_INITIAL (fndecl));
2500
2501 /* Unshare just about everything else. */
2502 unshare_all_rtl_1 (insn);
2503
2504 /* Make sure the addresses of stack slots found outside the insn chain
2505 (such as, in DECL_RTL of a variable) are not shared
2506 with the insn chain.
2507
2508 This special care is necessary when the stack slot MEM does not
2509 actually appear in the insn chain. If it does appear, its address
2510 is unshared from all else at that point. */
2511 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2512 }
2513
2514 /* Go through all the RTL insn bodies and copy any invalid shared
2515 structure, again. This is a fairly expensive thing to do so it
2516 should be done sparingly. */
2517
2518 void
2519 unshare_all_rtl_again (insn)
2520 rtx insn;
2521 {
2522 rtx p;
2523 tree decl;
2524
2525 for (p = insn; p; p = NEXT_INSN (p))
2526 if (INSN_P (p))
2527 {
2528 reset_used_flags (PATTERN (p));
2529 reset_used_flags (REG_NOTES (p));
2530 reset_used_flags (LOG_LINKS (p));
2531 }
2532
2533 /* Make sure that virtual stack slots are not shared. */
2534 reset_used_decls (DECL_INITIAL (cfun->decl));
2535
2536 /* Make sure that virtual parameters are not shared. */
2537 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2538 reset_used_flags (DECL_RTL (decl));
2539
2540 reset_used_flags (stack_slot_list);
2541
2542 unshare_all_rtl (cfun->decl, insn);
2543 }
2544
2545 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2546 Assumes the mark bits are cleared at entry. */
2547
2548 static void
2549 unshare_all_rtl_1 (insn)
2550 rtx insn;
2551 {
2552 for (; insn; insn = NEXT_INSN (insn))
2553 if (INSN_P (insn))
2554 {
2555 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2556 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2557 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2558 }
2559 }
2560
2561 /* Go through all virtual stack slots of a function and copy any
2562 shared structure. */
2563 static void
2564 unshare_all_decls (blk)
2565 tree blk;
2566 {
2567 tree t;
2568
2569 /* Copy shared decls. */
2570 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2571 if (DECL_RTL_SET_P (t))
2572 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2573
2574 /* Now process sub-blocks. */
2575 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2576 unshare_all_decls (t);
2577 }
2578
2579 /* Go through all virtual stack slots of a function and mark them as
2580 not shared. */
2581 static void
2582 reset_used_decls (blk)
2583 tree blk;
2584 {
2585 tree t;
2586
2587 /* Mark decls. */
2588 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2589 if (DECL_RTL_SET_P (t))
2590 reset_used_flags (DECL_RTL (t));
2591
2592 /* Now process sub-blocks. */
2593 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2594 reset_used_decls (t);
2595 }
2596
2597 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2598 placed in the result directly, rather than being copied. MAY_SHARE is
2599 either a MEM of an EXPR_LIST of MEMs. */
2600
2601 rtx
2602 copy_most_rtx (orig, may_share)
2603 rtx orig;
2604 rtx may_share;
2605 {
2606 rtx copy;
2607 int i, j;
2608 RTX_CODE code;
2609 const char *format_ptr;
2610
2611 if (orig == may_share
2612 || (GET_CODE (may_share) == EXPR_LIST
2613 && in_expr_list_p (may_share, orig)))
2614 return orig;
2615
2616 code = GET_CODE (orig);
2617
2618 switch (code)
2619 {
2620 case REG:
2621 case QUEUED:
2622 case CONST_INT:
2623 case CONST_DOUBLE:
2624 case CONST_VECTOR:
2625 case SYMBOL_REF:
2626 case CODE_LABEL:
2627 case PC:
2628 case CC0:
2629 return orig;
2630 default:
2631 break;
2632 }
2633
2634 copy = rtx_alloc (code);
2635 PUT_MODE (copy, GET_MODE (orig));
2636 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2637 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2638 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2639 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2640 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2641
2642 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2643
2644 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2645 {
2646 switch (*format_ptr++)
2647 {
2648 case 'e':
2649 XEXP (copy, i) = XEXP (orig, i);
2650 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2651 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2652 break;
2653
2654 case 'u':
2655 XEXP (copy, i) = XEXP (orig, i);
2656 break;
2657
2658 case 'E':
2659 case 'V':
2660 XVEC (copy, i) = XVEC (orig, i);
2661 if (XVEC (orig, i) != NULL)
2662 {
2663 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2664 for (j = 0; j < XVECLEN (copy, i); j++)
2665 XVECEXP (copy, i, j)
2666 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2667 }
2668 break;
2669
2670 case 'w':
2671 XWINT (copy, i) = XWINT (orig, i);
2672 break;
2673
2674 case 'n':
2675 case 'i':
2676 XINT (copy, i) = XINT (orig, i);
2677 break;
2678
2679 case 't':
2680 XTREE (copy, i) = XTREE (orig, i);
2681 break;
2682
2683 case 's':
2684 case 'S':
2685 XSTR (copy, i) = XSTR (orig, i);
2686 break;
2687
2688 case '0':
2689 /* Copy this through the wide int field; that's safest. */
2690 X0WINT (copy, i) = X0WINT (orig, i);
2691 break;
2692
2693 default:
2694 abort ();
2695 }
2696 }
2697 return copy;
2698 }
2699
2700 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2701 Recursively does the same for subexpressions. */
2702
2703 rtx
2704 copy_rtx_if_shared (orig)
2705 rtx orig;
2706 {
2707 rtx x = orig;
2708 int i;
2709 enum rtx_code code;
2710 const char *format_ptr;
2711 int copied = 0;
2712
2713 if (x == 0)
2714 return 0;
2715
2716 code = GET_CODE (x);
2717
2718 /* These types may be freely shared. */
2719
2720 switch (code)
2721 {
2722 case REG:
2723 case QUEUED:
2724 case CONST_INT:
2725 case CONST_DOUBLE:
2726 case CONST_VECTOR:
2727 case SYMBOL_REF:
2728 case CODE_LABEL:
2729 case PC:
2730 case CC0:
2731 case SCRATCH:
2732 /* SCRATCH must be shared because they represent distinct values. */
2733 return x;
2734
2735 case CONST:
2736 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2737 a LABEL_REF, it isn't sharable. */
2738 if (GET_CODE (XEXP (x, 0)) == PLUS
2739 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2740 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2741 return x;
2742 break;
2743
2744 case INSN:
2745 case JUMP_INSN:
2746 case CALL_INSN:
2747 case NOTE:
2748 case BARRIER:
2749 /* The chain of insns is not being copied. */
2750 return x;
2751
2752 case MEM:
2753 /* A MEM is allowed to be shared if its address is constant.
2754
2755 We used to allow sharing of MEMs which referenced
2756 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2757 that can lose. instantiate_virtual_regs will not unshare
2758 the MEMs, and combine may change the structure of the address
2759 because it looks safe and profitable in one context, but
2760 in some other context it creates unrecognizable RTL. */
2761 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2762 return x;
2763
2764 break;
2765
2766 default:
2767 break;
2768 }
2769
2770 /* This rtx may not be shared. If it has already been seen,
2771 replace it with a copy of itself. */
2772
2773 if (RTX_FLAG (x, used))
2774 {
2775 rtx copy;
2776
2777 copy = rtx_alloc (code);
2778 memcpy (copy, x,
2779 (sizeof (*copy) - sizeof (copy->fld)
2780 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2781 x = copy;
2782 copied = 1;
2783 }
2784 RTX_FLAG (x, used) = 1;
2785
2786 /* Now scan the subexpressions recursively.
2787 We can store any replaced subexpressions directly into X
2788 since we know X is not shared! Any vectors in X
2789 must be copied if X was copied. */
2790
2791 format_ptr = GET_RTX_FORMAT (code);
2792
2793 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2794 {
2795 switch (*format_ptr++)
2796 {
2797 case 'e':
2798 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2799 break;
2800
2801 case 'E':
2802 if (XVEC (x, i) != NULL)
2803 {
2804 int j;
2805 int len = XVECLEN (x, i);
2806
2807 if (copied && len > 0)
2808 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2809 for (j = 0; j < len; j++)
2810 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2811 }
2812 break;
2813 }
2814 }
2815 return x;
2816 }
2817
2818 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2819 to look for shared sub-parts. */
2820
2821 void
2822 reset_used_flags (x)
2823 rtx x;
2824 {
2825 int i, j;
2826 enum rtx_code code;
2827 const char *format_ptr;
2828
2829 if (x == 0)
2830 return;
2831
2832 code = GET_CODE (x);
2833
2834 /* These types may be freely shared so we needn't do any resetting
2835 for them. */
2836
2837 switch (code)
2838 {
2839 case REG:
2840 case QUEUED:
2841 case CONST_INT:
2842 case CONST_DOUBLE:
2843 case CONST_VECTOR:
2844 case SYMBOL_REF:
2845 case CODE_LABEL:
2846 case PC:
2847 case CC0:
2848 return;
2849
2850 case INSN:
2851 case JUMP_INSN:
2852 case CALL_INSN:
2853 case NOTE:
2854 case LABEL_REF:
2855 case BARRIER:
2856 /* The chain of insns is not being copied. */
2857 return;
2858
2859 default:
2860 break;
2861 }
2862
2863 RTX_FLAG (x, used) = 0;
2864
2865 format_ptr = GET_RTX_FORMAT (code);
2866 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2867 {
2868 switch (*format_ptr++)
2869 {
2870 case 'e':
2871 reset_used_flags (XEXP (x, i));
2872 break;
2873
2874 case 'E':
2875 for (j = 0; j < XVECLEN (x, i); j++)
2876 reset_used_flags (XVECEXP (x, i, j));
2877 break;
2878 }
2879 }
2880 }
2881 \f
2882 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2883 Return X or the rtx for the pseudo reg the value of X was copied into.
2884 OTHER must be valid as a SET_DEST. */
2885
2886 rtx
2887 make_safe_from (x, other)
2888 rtx x, other;
2889 {
2890 while (1)
2891 switch (GET_CODE (other))
2892 {
2893 case SUBREG:
2894 other = SUBREG_REG (other);
2895 break;
2896 case STRICT_LOW_PART:
2897 case SIGN_EXTEND:
2898 case ZERO_EXTEND:
2899 other = XEXP (other, 0);
2900 break;
2901 default:
2902 goto done;
2903 }
2904 done:
2905 if ((GET_CODE (other) == MEM
2906 && ! CONSTANT_P (x)
2907 && GET_CODE (x) != REG
2908 && GET_CODE (x) != SUBREG)
2909 || (GET_CODE (other) == REG
2910 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2911 || reg_mentioned_p (other, x))))
2912 {
2913 rtx temp = gen_reg_rtx (GET_MODE (x));
2914 emit_move_insn (temp, x);
2915 return temp;
2916 }
2917 return x;
2918 }
2919 \f
2920 /* Emission of insns (adding them to the doubly-linked list). */
2921
2922 /* Return the first insn of the current sequence or current function. */
2923
2924 rtx
2925 get_insns ()
2926 {
2927 return first_insn;
2928 }
2929
2930 /* Specify a new insn as the first in the chain. */
2931
2932 void
2933 set_first_insn (insn)
2934 rtx insn;
2935 {
2936 if (PREV_INSN (insn) != 0)
2937 abort ();
2938 first_insn = insn;
2939 }
2940
2941 /* Return the last insn emitted in current sequence or current function. */
2942
2943 rtx
2944 get_last_insn ()
2945 {
2946 return last_insn;
2947 }
2948
2949 /* Specify a new insn as the last in the chain. */
2950
2951 void
2952 set_last_insn (insn)
2953 rtx insn;
2954 {
2955 if (NEXT_INSN (insn) != 0)
2956 abort ();
2957 last_insn = insn;
2958 }
2959
2960 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2961
2962 rtx
2963 get_last_insn_anywhere ()
2964 {
2965 struct sequence_stack *stack;
2966 if (last_insn)
2967 return last_insn;
2968 for (stack = seq_stack; stack; stack = stack->next)
2969 if (stack->last != 0)
2970 return stack->last;
2971 return 0;
2972 }
2973
2974 /* Return the first nonnote insn emitted in current sequence or current
2975 function. This routine looks inside SEQUENCEs. */
2976
2977 rtx
2978 get_first_nonnote_insn ()
2979 {
2980 rtx insn = first_insn;
2981
2982 while (insn)
2983 {
2984 insn = next_insn (insn);
2985 if (insn == 0 || GET_CODE (insn) != NOTE)
2986 break;
2987 }
2988
2989 return insn;
2990 }
2991
2992 /* Return the last nonnote insn emitted in current sequence or current
2993 function. This routine looks inside SEQUENCEs. */
2994
2995 rtx
2996 get_last_nonnote_insn ()
2997 {
2998 rtx insn = last_insn;
2999
3000 while (insn)
3001 {
3002 insn = previous_insn (insn);
3003 if (insn == 0 || GET_CODE (insn) != NOTE)
3004 break;
3005 }
3006
3007 return insn;
3008 }
3009
3010 /* Return a number larger than any instruction's uid in this function. */
3011
3012 int
3013 get_max_uid ()
3014 {
3015 return cur_insn_uid;
3016 }
3017
3018 /* Renumber instructions so that no instruction UIDs are wasted. */
3019
3020 void
3021 renumber_insns (stream)
3022 FILE *stream;
3023 {
3024 rtx insn;
3025
3026 /* If we're not supposed to renumber instructions, don't. */
3027 if (!flag_renumber_insns)
3028 return;
3029
3030 /* If there aren't that many instructions, then it's not really
3031 worth renumbering them. */
3032 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
3033 return;
3034
3035 cur_insn_uid = 1;
3036
3037 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3038 {
3039 if (stream)
3040 fprintf (stream, "Renumbering insn %d to %d\n",
3041 INSN_UID (insn), cur_insn_uid);
3042 INSN_UID (insn) = cur_insn_uid++;
3043 }
3044 }
3045 \f
3046 /* Return the next insn. If it is a SEQUENCE, return the first insn
3047 of the sequence. */
3048
3049 rtx
3050 next_insn (insn)
3051 rtx insn;
3052 {
3053 if (insn)
3054 {
3055 insn = NEXT_INSN (insn);
3056 if (insn && GET_CODE (insn) == INSN
3057 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3058 insn = XVECEXP (PATTERN (insn), 0, 0);
3059 }
3060
3061 return insn;
3062 }
3063
3064 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3065 of the sequence. */
3066
3067 rtx
3068 previous_insn (insn)
3069 rtx insn;
3070 {
3071 if (insn)
3072 {
3073 insn = PREV_INSN (insn);
3074 if (insn && GET_CODE (insn) == INSN
3075 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3076 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3077 }
3078
3079 return insn;
3080 }
3081
3082 /* Return the next insn after INSN that is not a NOTE. This routine does not
3083 look inside SEQUENCEs. */
3084
3085 rtx
3086 next_nonnote_insn (insn)
3087 rtx insn;
3088 {
3089 while (insn)
3090 {
3091 insn = NEXT_INSN (insn);
3092 if (insn == 0 || GET_CODE (insn) != NOTE)
3093 break;
3094 }
3095
3096 return insn;
3097 }
3098
3099 /* Return the previous insn before INSN that is not a NOTE. This routine does
3100 not look inside SEQUENCEs. */
3101
3102 rtx
3103 prev_nonnote_insn (insn)
3104 rtx insn;
3105 {
3106 while (insn)
3107 {
3108 insn = PREV_INSN (insn);
3109 if (insn == 0 || GET_CODE (insn) != NOTE)
3110 break;
3111 }
3112
3113 return insn;
3114 }
3115
3116 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3117 or 0, if there is none. This routine does not look inside
3118 SEQUENCEs. */
3119
3120 rtx
3121 next_real_insn (insn)
3122 rtx insn;
3123 {
3124 while (insn)
3125 {
3126 insn = NEXT_INSN (insn);
3127 if (insn == 0 || GET_CODE (insn) == INSN
3128 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3129 break;
3130 }
3131
3132 return insn;
3133 }
3134
3135 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3136 or 0, if there is none. This routine does not look inside
3137 SEQUENCEs. */
3138
3139 rtx
3140 prev_real_insn (insn)
3141 rtx insn;
3142 {
3143 while (insn)
3144 {
3145 insn = PREV_INSN (insn);
3146 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3147 || GET_CODE (insn) == JUMP_INSN)
3148 break;
3149 }
3150
3151 return insn;
3152 }
3153
3154 /* Find the next insn after INSN that really does something. This routine
3155 does not look inside SEQUENCEs. Until reload has completed, this is the
3156 same as next_real_insn. */
3157
3158 int
3159 active_insn_p (insn)
3160 rtx insn;
3161 {
3162 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3163 || (GET_CODE (insn) == INSN
3164 && (! reload_completed
3165 || (GET_CODE (PATTERN (insn)) != USE
3166 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3167 }
3168
3169 rtx
3170 next_active_insn (insn)
3171 rtx insn;
3172 {
3173 while (insn)
3174 {
3175 insn = NEXT_INSN (insn);
3176 if (insn == 0 || active_insn_p (insn))
3177 break;
3178 }
3179
3180 return insn;
3181 }
3182
3183 /* Find the last insn before INSN that really does something. This routine
3184 does not look inside SEQUENCEs. Until reload has completed, this is the
3185 same as prev_real_insn. */
3186
3187 rtx
3188 prev_active_insn (insn)
3189 rtx insn;
3190 {
3191 while (insn)
3192 {
3193 insn = PREV_INSN (insn);
3194 if (insn == 0 || active_insn_p (insn))
3195 break;
3196 }
3197
3198 return insn;
3199 }
3200
3201 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3202
3203 rtx
3204 next_label (insn)
3205 rtx insn;
3206 {
3207 while (insn)
3208 {
3209 insn = NEXT_INSN (insn);
3210 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3211 break;
3212 }
3213
3214 return insn;
3215 }
3216
3217 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3218
3219 rtx
3220 prev_label (insn)
3221 rtx insn;
3222 {
3223 while (insn)
3224 {
3225 insn = PREV_INSN (insn);
3226 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3227 break;
3228 }
3229
3230 return insn;
3231 }
3232 \f
3233 #ifdef HAVE_cc0
3234 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3235 and REG_CC_USER notes so we can find it. */
3236
3237 void
3238 link_cc0_insns (insn)
3239 rtx insn;
3240 {
3241 rtx user = next_nonnote_insn (insn);
3242
3243 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3244 user = XVECEXP (PATTERN (user), 0, 0);
3245
3246 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3247 REG_NOTES (user));
3248 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3249 }
3250
3251 /* Return the next insn that uses CC0 after INSN, which is assumed to
3252 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3253 applied to the result of this function should yield INSN).
3254
3255 Normally, this is simply the next insn. However, if a REG_CC_USER note
3256 is present, it contains the insn that uses CC0.
3257
3258 Return 0 if we can't find the insn. */
3259
3260 rtx
3261 next_cc0_user (insn)
3262 rtx insn;
3263 {
3264 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3265
3266 if (note)
3267 return XEXP (note, 0);
3268
3269 insn = next_nonnote_insn (insn);
3270 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3271 insn = XVECEXP (PATTERN (insn), 0, 0);
3272
3273 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3274 return insn;
3275
3276 return 0;
3277 }
3278
3279 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3280 note, it is the previous insn. */
3281
3282 rtx
3283 prev_cc0_setter (insn)
3284 rtx insn;
3285 {
3286 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3287
3288 if (note)
3289 return XEXP (note, 0);
3290
3291 insn = prev_nonnote_insn (insn);
3292 if (! sets_cc0_p (PATTERN (insn)))
3293 abort ();
3294
3295 return insn;
3296 }
3297 #endif
3298
3299 /* Increment the label uses for all labels present in rtx. */
3300
3301 static void
3302 mark_label_nuses (x)
3303 rtx x;
3304 {
3305 enum rtx_code code;
3306 int i, j;
3307 const char *fmt;
3308
3309 code = GET_CODE (x);
3310 if (code == LABEL_REF)
3311 LABEL_NUSES (XEXP (x, 0))++;
3312
3313 fmt = GET_RTX_FORMAT (code);
3314 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3315 {
3316 if (fmt[i] == 'e')
3317 mark_label_nuses (XEXP (x, i));
3318 else if (fmt[i] == 'E')
3319 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3320 mark_label_nuses (XVECEXP (x, i, j));
3321 }
3322 }
3323
3324 \f
3325 /* Try splitting insns that can be split for better scheduling.
3326 PAT is the pattern which might split.
3327 TRIAL is the insn providing PAT.
3328 LAST is nonzero if we should return the last insn of the sequence produced.
3329
3330 If this routine succeeds in splitting, it returns the first or last
3331 replacement insn depending on the value of LAST. Otherwise, it
3332 returns TRIAL. If the insn to be returned can be split, it will be. */
3333
3334 rtx
3335 try_split (pat, trial, last)
3336 rtx pat, trial;
3337 int last;
3338 {
3339 rtx before = PREV_INSN (trial);
3340 rtx after = NEXT_INSN (trial);
3341 int has_barrier = 0;
3342 rtx tem;
3343 rtx note, seq;
3344 int probability;
3345
3346 if (any_condjump_p (trial)
3347 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3348 split_branch_probability = INTVAL (XEXP (note, 0));
3349 probability = split_branch_probability;
3350
3351 seq = split_insns (pat, trial);
3352
3353 split_branch_probability = -1;
3354
3355 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3356 We may need to handle this specially. */
3357 if (after && GET_CODE (after) == BARRIER)
3358 {
3359 has_barrier = 1;
3360 after = NEXT_INSN (after);
3361 }
3362
3363 if (seq)
3364 {
3365 /* Sometimes there will be only one insn in that list, this case will
3366 normally arise only when we want it in turn to be split (SFmode on
3367 the 29k is an example). */
3368 if (NEXT_INSN (seq) != NULL_RTX)
3369 {
3370 rtx insn_last, insn;
3371 int njumps = 0;
3372
3373 /* Avoid infinite loop if any insn of the result matches
3374 the original pattern. */
3375 insn_last = seq;
3376 while (1)
3377 {
3378 if (INSN_P (insn_last)
3379 && rtx_equal_p (PATTERN (insn_last), pat))
3380 return trial;
3381 if (NEXT_INSN (insn_last) == NULL_RTX)
3382 break;
3383 insn_last = NEXT_INSN (insn_last);
3384 }
3385
3386 /* Mark labels. */
3387 insn = insn_last;
3388 while (insn != NULL_RTX)
3389 {
3390 if (GET_CODE (insn) == JUMP_INSN)
3391 {
3392 mark_jump_label (PATTERN (insn), insn, 0);
3393 njumps++;
3394 if (probability != -1
3395 && any_condjump_p (insn)
3396 && !find_reg_note (insn, REG_BR_PROB, 0))
3397 {
3398 /* We can preserve the REG_BR_PROB notes only if exactly
3399 one jump is created, otherwise the machine description
3400 is responsible for this step using
3401 split_branch_probability variable. */
3402 if (njumps != 1)
3403 abort ();
3404 REG_NOTES (insn)
3405 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3406 GEN_INT (probability),
3407 REG_NOTES (insn));
3408 }
3409 }
3410
3411 insn = PREV_INSN (insn);
3412 }
3413
3414 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3415 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3416 if (GET_CODE (trial) == CALL_INSN)
3417 {
3418 insn = insn_last;
3419 while (insn != NULL_RTX)
3420 {
3421 if (GET_CODE (insn) == CALL_INSN)
3422 CALL_INSN_FUNCTION_USAGE (insn)
3423 = CALL_INSN_FUNCTION_USAGE (trial);
3424
3425 insn = PREV_INSN (insn);
3426 }
3427 }
3428
3429 /* Copy notes, particularly those related to the CFG. */
3430 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3431 {
3432 switch (REG_NOTE_KIND (note))
3433 {
3434 case REG_EH_REGION:
3435 insn = insn_last;
3436 while (insn != NULL_RTX)
3437 {
3438 if (GET_CODE (insn) == CALL_INSN
3439 || (flag_non_call_exceptions
3440 && may_trap_p (PATTERN (insn))))
3441 REG_NOTES (insn)
3442 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3443 XEXP (note, 0),
3444 REG_NOTES (insn));
3445 insn = PREV_INSN (insn);
3446 }
3447 break;
3448
3449 case REG_NORETURN:
3450 case REG_SETJMP:
3451 case REG_ALWAYS_RETURN:
3452 insn = insn_last;
3453 while (insn != NULL_RTX)
3454 {
3455 if (GET_CODE (insn) == CALL_INSN)
3456 REG_NOTES (insn)
3457 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3458 XEXP (note, 0),
3459 REG_NOTES (insn));
3460 insn = PREV_INSN (insn);
3461 }
3462 break;
3463
3464 case REG_NON_LOCAL_GOTO:
3465 insn = insn_last;
3466 while (insn != NULL_RTX)
3467 {
3468 if (GET_CODE (insn) == JUMP_INSN)
3469 REG_NOTES (insn)
3470 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3471 XEXP (note, 0),
3472 REG_NOTES (insn));
3473 insn = PREV_INSN (insn);
3474 }
3475 break;
3476
3477 default:
3478 break;
3479 }
3480 }
3481
3482 /* If there are LABELS inside the split insns increment the
3483 usage count so we don't delete the label. */
3484 if (GET_CODE (trial) == INSN)
3485 {
3486 insn = insn_last;
3487 while (insn != NULL_RTX)
3488 {
3489 if (GET_CODE (insn) == INSN)
3490 mark_label_nuses (PATTERN (insn));
3491
3492 insn = PREV_INSN (insn);
3493 }
3494 }
3495
3496 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
3497
3498 delete_insn (trial);
3499 if (has_barrier)
3500 emit_barrier_after (tem);
3501
3502 /* Recursively call try_split for each new insn created; by the
3503 time control returns here that insn will be fully split, so
3504 set LAST and continue from the insn after the one returned.
3505 We can't use next_active_insn here since AFTER may be a note.
3506 Ignore deleted insns, which can be occur if not optimizing. */
3507 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3508 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3509 tem = try_split (PATTERN (tem), tem, 1);
3510 }
3511 /* Avoid infinite loop if the result matches the original pattern. */
3512 else if (rtx_equal_p (PATTERN (seq), pat))
3513 return trial;
3514 else
3515 {
3516 PATTERN (trial) = PATTERN (seq);
3517 INSN_CODE (trial) = -1;
3518 try_split (PATTERN (trial), trial, last);
3519 }
3520
3521 /* Return either the first or the last insn, depending on which was
3522 requested. */
3523 return last
3524 ? (after ? PREV_INSN (after) : last_insn)
3525 : NEXT_INSN (before);
3526 }
3527
3528 return trial;
3529 }
3530 \f
3531 /* Make and return an INSN rtx, initializing all its slots.
3532 Store PATTERN in the pattern slots. */
3533
3534 rtx
3535 make_insn_raw (pattern)
3536 rtx pattern;
3537 {
3538 rtx insn;
3539
3540 insn = rtx_alloc (INSN);
3541
3542 INSN_UID (insn) = cur_insn_uid++;
3543 PATTERN (insn) = pattern;
3544 INSN_CODE (insn) = -1;
3545 LOG_LINKS (insn) = NULL;
3546 REG_NOTES (insn) = NULL;
3547 INSN_SCOPE (insn) = NULL;
3548 BLOCK_FOR_INSN (insn) = NULL;
3549
3550 #ifdef ENABLE_RTL_CHECKING
3551 if (insn
3552 && INSN_P (insn)
3553 && (returnjump_p (insn)
3554 || (GET_CODE (insn) == SET
3555 && SET_DEST (insn) == pc_rtx)))
3556 {
3557 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3558 debug_rtx (insn);
3559 }
3560 #endif
3561
3562 return insn;
3563 }
3564
3565 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3566
3567 static rtx
3568 make_jump_insn_raw (pattern)
3569 rtx pattern;
3570 {
3571 rtx insn;
3572
3573 insn = rtx_alloc (JUMP_INSN);
3574 INSN_UID (insn) = cur_insn_uid++;
3575
3576 PATTERN (insn) = pattern;
3577 INSN_CODE (insn) = -1;
3578 LOG_LINKS (insn) = NULL;
3579 REG_NOTES (insn) = NULL;
3580 JUMP_LABEL (insn) = NULL;
3581 INSN_SCOPE (insn) = NULL;
3582 BLOCK_FOR_INSN (insn) = NULL;
3583
3584 return insn;
3585 }
3586
3587 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3588
3589 static rtx
3590 make_call_insn_raw (pattern)
3591 rtx pattern;
3592 {
3593 rtx insn;
3594
3595 insn = rtx_alloc (CALL_INSN);
3596 INSN_UID (insn) = cur_insn_uid++;
3597
3598 PATTERN (insn) = pattern;
3599 INSN_CODE (insn) = -1;
3600 LOG_LINKS (insn) = NULL;
3601 REG_NOTES (insn) = NULL;
3602 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3603 INSN_SCOPE (insn) = NULL;
3604 BLOCK_FOR_INSN (insn) = NULL;
3605
3606 return insn;
3607 }
3608 \f
3609 /* Add INSN to the end of the doubly-linked list.
3610 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3611
3612 void
3613 add_insn (insn)
3614 rtx insn;
3615 {
3616 PREV_INSN (insn) = last_insn;
3617 NEXT_INSN (insn) = 0;
3618
3619 if (NULL != last_insn)
3620 NEXT_INSN (last_insn) = insn;
3621
3622 if (NULL == first_insn)
3623 first_insn = insn;
3624
3625 last_insn = insn;
3626 }
3627
3628 /* Add INSN into the doubly-linked list after insn AFTER. This and
3629 the next should be the only functions called to insert an insn once
3630 delay slots have been filled since only they know how to update a
3631 SEQUENCE. */
3632
3633 void
3634 add_insn_after (insn, after)
3635 rtx insn, after;
3636 {
3637 rtx next = NEXT_INSN (after);
3638 basic_block bb;
3639
3640 if (optimize && INSN_DELETED_P (after))
3641 abort ();
3642
3643 NEXT_INSN (insn) = next;
3644 PREV_INSN (insn) = after;
3645
3646 if (next)
3647 {
3648 PREV_INSN (next) = insn;
3649 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3650 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3651 }
3652 else if (last_insn == after)
3653 last_insn = insn;
3654 else
3655 {
3656 struct sequence_stack *stack = seq_stack;
3657 /* Scan all pending sequences too. */
3658 for (; stack; stack = stack->next)
3659 if (after == stack->last)
3660 {
3661 stack->last = insn;
3662 break;
3663 }
3664
3665 if (stack == 0)
3666 abort ();
3667 }
3668
3669 if (GET_CODE (after) != BARRIER
3670 && GET_CODE (insn) != BARRIER
3671 && (bb = BLOCK_FOR_INSN (after)))
3672 {
3673 set_block_for_insn (insn, bb);
3674 if (INSN_P (insn))
3675 bb->flags |= BB_DIRTY;
3676 /* Should not happen as first in the BB is always
3677 either NOTE or LABEL. */
3678 if (bb->end == after
3679 /* Avoid clobbering of structure when creating new BB. */
3680 && GET_CODE (insn) != BARRIER
3681 && (GET_CODE (insn) != NOTE
3682 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3683 bb->end = insn;
3684 }
3685
3686 NEXT_INSN (after) = insn;
3687 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3688 {
3689 rtx sequence = PATTERN (after);
3690 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3691 }
3692 }
3693
3694 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3695 the previous should be the only functions called to insert an insn once
3696 delay slots have been filled since only they know how to update a
3697 SEQUENCE. */
3698
3699 void
3700 add_insn_before (insn, before)
3701 rtx insn, before;
3702 {
3703 rtx prev = PREV_INSN (before);
3704 basic_block bb;
3705
3706 if (optimize && INSN_DELETED_P (before))
3707 abort ();
3708
3709 PREV_INSN (insn) = prev;
3710 NEXT_INSN (insn) = before;
3711
3712 if (prev)
3713 {
3714 NEXT_INSN (prev) = insn;
3715 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3716 {
3717 rtx sequence = PATTERN (prev);
3718 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3719 }
3720 }
3721 else if (first_insn == before)
3722 first_insn = insn;
3723 else
3724 {
3725 struct sequence_stack *stack = seq_stack;
3726 /* Scan all pending sequences too. */
3727 for (; stack; stack = stack->next)
3728 if (before == stack->first)
3729 {
3730 stack->first = insn;
3731 break;
3732 }
3733
3734 if (stack == 0)
3735 abort ();
3736 }
3737
3738 if (GET_CODE (before) != BARRIER
3739 && GET_CODE (insn) != BARRIER
3740 && (bb = BLOCK_FOR_INSN (before)))
3741 {
3742 set_block_for_insn (insn, bb);
3743 if (INSN_P (insn))
3744 bb->flags |= BB_DIRTY;
3745 /* Should not happen as first in the BB is always
3746 either NOTE or LABEl. */
3747 if (bb->head == insn
3748 /* Avoid clobbering of structure when creating new BB. */
3749 && GET_CODE (insn) != BARRIER
3750 && (GET_CODE (insn) != NOTE
3751 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3752 abort ();
3753 }
3754
3755 PREV_INSN (before) = insn;
3756 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3757 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3758 }
3759
3760 /* Remove an insn from its doubly-linked list. This function knows how
3761 to handle sequences. */
3762 void
3763 remove_insn (insn)
3764 rtx insn;
3765 {
3766 rtx next = NEXT_INSN (insn);
3767 rtx prev = PREV_INSN (insn);
3768 basic_block bb;
3769
3770 if (prev)
3771 {
3772 NEXT_INSN (prev) = next;
3773 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3774 {
3775 rtx sequence = PATTERN (prev);
3776 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3777 }
3778 }
3779 else if (first_insn == insn)
3780 first_insn = next;
3781 else
3782 {
3783 struct sequence_stack *stack = seq_stack;
3784 /* Scan all pending sequences too. */
3785 for (; stack; stack = stack->next)
3786 if (insn == stack->first)
3787 {
3788 stack->first = next;
3789 break;
3790 }
3791
3792 if (stack == 0)
3793 abort ();
3794 }
3795
3796 if (next)
3797 {
3798 PREV_INSN (next) = prev;
3799 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3800 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3801 }
3802 else if (last_insn == insn)
3803 last_insn = prev;
3804 else
3805 {
3806 struct sequence_stack *stack = seq_stack;
3807 /* Scan all pending sequences too. */
3808 for (; stack; stack = stack->next)
3809 if (insn == stack->last)
3810 {
3811 stack->last = prev;
3812 break;
3813 }
3814
3815 if (stack == 0)
3816 abort ();
3817 }
3818 if (GET_CODE (insn) != BARRIER
3819 && (bb = BLOCK_FOR_INSN (insn)))
3820 {
3821 if (INSN_P (insn))
3822 bb->flags |= BB_DIRTY;
3823 if (bb->head == insn)
3824 {
3825 /* Never ever delete the basic block note without deleting whole
3826 basic block. */
3827 if (GET_CODE (insn) == NOTE)
3828 abort ();
3829 bb->head = next;
3830 }
3831 if (bb->end == insn)
3832 bb->end = prev;
3833 }
3834 }
3835
3836 /* Delete all insns made since FROM.
3837 FROM becomes the new last instruction. */
3838
3839 void
3840 delete_insns_since (from)
3841 rtx from;
3842 {
3843 if (from == 0)
3844 first_insn = 0;
3845 else
3846 NEXT_INSN (from) = 0;
3847 last_insn = from;
3848 }
3849
3850 /* This function is deprecated, please use sequences instead.
3851
3852 Move a consecutive bunch of insns to a different place in the chain.
3853 The insns to be moved are those between FROM and TO.
3854 They are moved to a new position after the insn AFTER.
3855 AFTER must not be FROM or TO or any insn in between.
3856
3857 This function does not know about SEQUENCEs and hence should not be
3858 called after delay-slot filling has been done. */
3859
3860 void
3861 reorder_insns_nobb (from, to, after)
3862 rtx from, to, after;
3863 {
3864 /* Splice this bunch out of where it is now. */
3865 if (PREV_INSN (from))
3866 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3867 if (NEXT_INSN (to))
3868 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3869 if (last_insn == to)
3870 last_insn = PREV_INSN (from);
3871 if (first_insn == from)
3872 first_insn = NEXT_INSN (to);
3873
3874 /* Make the new neighbors point to it and it to them. */
3875 if (NEXT_INSN (after))
3876 PREV_INSN (NEXT_INSN (after)) = to;
3877
3878 NEXT_INSN (to) = NEXT_INSN (after);
3879 PREV_INSN (from) = after;
3880 NEXT_INSN (after) = from;
3881 if (after == last_insn)
3882 last_insn = to;
3883 }
3884
3885 /* Same as function above, but take care to update BB boundaries. */
3886 void
3887 reorder_insns (from, to, after)
3888 rtx from, to, after;
3889 {
3890 rtx prev = PREV_INSN (from);
3891 basic_block bb, bb2;
3892
3893 reorder_insns_nobb (from, to, after);
3894
3895 if (GET_CODE (after) != BARRIER
3896 && (bb = BLOCK_FOR_INSN (after)))
3897 {
3898 rtx x;
3899 bb->flags |= BB_DIRTY;
3900
3901 if (GET_CODE (from) != BARRIER
3902 && (bb2 = BLOCK_FOR_INSN (from)))
3903 {
3904 if (bb2->end == to)
3905 bb2->end = prev;
3906 bb2->flags |= BB_DIRTY;
3907 }
3908
3909 if (bb->end == after)
3910 bb->end = to;
3911
3912 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3913 set_block_for_insn (x, bb);
3914 }
3915 }
3916
3917 /* Return the line note insn preceding INSN. */
3918
3919 static rtx
3920 find_line_note (insn)
3921 rtx insn;
3922 {
3923 if (no_line_numbers)
3924 return 0;
3925
3926 for (; insn; insn = PREV_INSN (insn))
3927 if (GET_CODE (insn) == NOTE
3928 && NOTE_LINE_NUMBER (insn) >= 0)
3929 break;
3930
3931 return insn;
3932 }
3933
3934 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3935 of the moved insns when debugging. This may insert a note between AFTER
3936 and FROM, and another one after TO. */
3937
3938 void
3939 reorder_insns_with_line_notes (from, to, after)
3940 rtx from, to, after;
3941 {
3942 rtx from_line = find_line_note (from);
3943 rtx after_line = find_line_note (after);
3944
3945 reorder_insns (from, to, after);
3946
3947 if (from_line == after_line)
3948 return;
3949
3950 if (from_line)
3951 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3952 NOTE_LINE_NUMBER (from_line),
3953 after);
3954 if (after_line)
3955 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3956 NOTE_LINE_NUMBER (after_line),
3957 to);
3958 }
3959
3960 /* Remove unnecessary notes from the instruction stream. */
3961
3962 void
3963 remove_unnecessary_notes ()
3964 {
3965 rtx block_stack = NULL_RTX;
3966 rtx eh_stack = NULL_RTX;
3967 rtx insn;
3968 rtx next;
3969 rtx tmp;
3970
3971 /* We must not remove the first instruction in the function because
3972 the compiler depends on the first instruction being a note. */
3973 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3974 {
3975 /* Remember what's next. */
3976 next = NEXT_INSN (insn);
3977
3978 /* We're only interested in notes. */
3979 if (GET_CODE (insn) != NOTE)
3980 continue;
3981
3982 switch (NOTE_LINE_NUMBER (insn))
3983 {
3984 case NOTE_INSN_DELETED:
3985 case NOTE_INSN_LOOP_END_TOP_COND:
3986 remove_insn (insn);
3987 break;
3988
3989 case NOTE_INSN_EH_REGION_BEG:
3990 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3991 break;
3992
3993 case NOTE_INSN_EH_REGION_END:
3994 /* Too many end notes. */
3995 if (eh_stack == NULL_RTX)
3996 abort ();
3997 /* Mismatched nesting. */
3998 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3999 abort ();
4000 tmp = eh_stack;
4001 eh_stack = XEXP (eh_stack, 1);
4002 free_INSN_LIST_node (tmp);
4003 break;
4004
4005 case NOTE_INSN_BLOCK_BEG:
4006 /* By now, all notes indicating lexical blocks should have
4007 NOTE_BLOCK filled in. */
4008 if (NOTE_BLOCK (insn) == NULL_TREE)
4009 abort ();
4010 block_stack = alloc_INSN_LIST (insn, block_stack);
4011 break;
4012
4013 case NOTE_INSN_BLOCK_END:
4014 /* Too many end notes. */
4015 if (block_stack == NULL_RTX)
4016 abort ();
4017 /* Mismatched nesting. */
4018 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
4019 abort ();
4020 tmp = block_stack;
4021 block_stack = XEXP (block_stack, 1);
4022 free_INSN_LIST_node (tmp);
4023
4024 /* Scan back to see if there are any non-note instructions
4025 between INSN and the beginning of this block. If not,
4026 then there is no PC range in the generated code that will
4027 actually be in this block, so there's no point in
4028 remembering the existence of the block. */
4029 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
4030 {
4031 /* This block contains a real instruction. Note that we
4032 don't include labels; if the only thing in the block
4033 is a label, then there are still no PC values that
4034 lie within the block. */
4035 if (INSN_P (tmp))
4036 break;
4037
4038 /* We're only interested in NOTEs. */
4039 if (GET_CODE (tmp) != NOTE)
4040 continue;
4041
4042 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
4043 {
4044 /* We just verified that this BLOCK matches us with
4045 the block_stack check above. Never delete the
4046 BLOCK for the outermost scope of the function; we
4047 can refer to names from that scope even if the
4048 block notes are messed up. */
4049 if (! is_body_block (NOTE_BLOCK (insn))
4050 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
4051 {
4052 remove_insn (tmp);
4053 remove_insn (insn);
4054 }
4055 break;
4056 }
4057 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
4058 /* There's a nested block. We need to leave the
4059 current block in place since otherwise the debugger
4060 wouldn't be able to show symbols from our block in
4061 the nested block. */
4062 break;
4063 }
4064 }
4065 }
4066
4067 /* Too many begin notes. */
4068 if (block_stack || eh_stack)
4069 abort ();
4070 }
4071
4072 \f
4073 /* Emit insn(s) of given code and pattern
4074 at a specified place within the doubly-linked list.
4075
4076 All of the emit_foo global entry points accept an object
4077 X which is either an insn list or a PATTERN of a single
4078 instruction.
4079
4080 There are thus a few canonical ways to generate code and
4081 emit it at a specific place in the instruction stream. For
4082 example, consider the instruction named SPOT and the fact that
4083 we would like to emit some instructions before SPOT. We might
4084 do it like this:
4085
4086 start_sequence ();
4087 ... emit the new instructions ...
4088 insns_head = get_insns ();
4089 end_sequence ();
4090
4091 emit_insn_before (insns_head, SPOT);
4092
4093 It used to be common to generate SEQUENCE rtl instead, but that
4094 is a relic of the past which no longer occurs. The reason is that
4095 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4096 generated would almost certainly die right after it was created. */
4097
4098 /* Make X be output before the instruction BEFORE. */
4099
4100 rtx
4101 emit_insn_before (x, before)
4102 rtx x, before;
4103 {
4104 rtx last = before;
4105 rtx insn;
4106
4107 #ifdef ENABLE_RTL_CHECKING
4108 if (before == NULL_RTX)
4109 abort ();
4110 #endif
4111
4112 if (x == NULL_RTX)
4113 return last;
4114
4115 switch (GET_CODE (x))
4116 {
4117 case INSN:
4118 case JUMP_INSN:
4119 case CALL_INSN:
4120 case CODE_LABEL:
4121 case BARRIER:
4122 case NOTE:
4123 insn = x;
4124 while (insn)
4125 {
4126 rtx next = NEXT_INSN (insn);
4127 add_insn_before (insn, before);
4128 last = insn;
4129 insn = next;
4130 }
4131 break;
4132
4133 #ifdef ENABLE_RTL_CHECKING
4134 case SEQUENCE:
4135 abort ();
4136 break;
4137 #endif
4138
4139 default:
4140 last = make_insn_raw (x);
4141 add_insn_before (last, before);
4142 break;
4143 }
4144
4145 return last;
4146 }
4147
4148 /* Make an instruction with body X and code JUMP_INSN
4149 and output it before the instruction BEFORE. */
4150
4151 rtx
4152 emit_jump_insn_before (x, before)
4153 rtx x, before;
4154 {
4155 rtx insn, last = NULL_RTX;
4156
4157 #ifdef ENABLE_RTL_CHECKING
4158 if (before == NULL_RTX)
4159 abort ();
4160 #endif
4161
4162 switch (GET_CODE (x))
4163 {
4164 case INSN:
4165 case JUMP_INSN:
4166 case CALL_INSN:
4167 case CODE_LABEL:
4168 case BARRIER:
4169 case NOTE:
4170 insn = x;
4171 while (insn)
4172 {
4173 rtx next = NEXT_INSN (insn);
4174 add_insn_before (insn, before);
4175 last = insn;
4176 insn = next;
4177 }
4178 break;
4179
4180 #ifdef ENABLE_RTL_CHECKING
4181 case SEQUENCE:
4182 abort ();
4183 break;
4184 #endif
4185
4186 default:
4187 last = make_jump_insn_raw (x);
4188 add_insn_before (last, before);
4189 break;
4190 }
4191
4192 return last;
4193 }
4194
4195 /* Make an instruction with body X and code CALL_INSN
4196 and output it before the instruction BEFORE. */
4197
4198 rtx
4199 emit_call_insn_before (x, before)
4200 rtx x, before;
4201 {
4202 rtx last = NULL_RTX, insn;
4203
4204 #ifdef ENABLE_RTL_CHECKING
4205 if (before == NULL_RTX)
4206 abort ();
4207 #endif
4208
4209 switch (GET_CODE (x))
4210 {
4211 case INSN:
4212 case JUMP_INSN:
4213 case CALL_INSN:
4214 case CODE_LABEL:
4215 case BARRIER:
4216 case NOTE:
4217 insn = x;
4218 while (insn)
4219 {
4220 rtx next = NEXT_INSN (insn);
4221 add_insn_before (insn, before);
4222 last = insn;
4223 insn = next;
4224 }
4225 break;
4226
4227 #ifdef ENABLE_RTL_CHECKING
4228 case SEQUENCE:
4229 abort ();
4230 break;
4231 #endif
4232
4233 default:
4234 last = make_call_insn_raw (x);
4235 add_insn_before (last, before);
4236 break;
4237 }
4238
4239 return last;
4240 }
4241
4242 /* Make an insn of code BARRIER
4243 and output it before the insn BEFORE. */
4244
4245 rtx
4246 emit_barrier_before (before)
4247 rtx before;
4248 {
4249 rtx insn = rtx_alloc (BARRIER);
4250
4251 INSN_UID (insn) = cur_insn_uid++;
4252
4253 add_insn_before (insn, before);
4254 return insn;
4255 }
4256
4257 /* Emit the label LABEL before the insn BEFORE. */
4258
4259 rtx
4260 emit_label_before (label, before)
4261 rtx label, before;
4262 {
4263 /* This can be called twice for the same label as a result of the
4264 confusion that follows a syntax error! So make it harmless. */
4265 if (INSN_UID (label) == 0)
4266 {
4267 INSN_UID (label) = cur_insn_uid++;
4268 add_insn_before (label, before);
4269 }
4270
4271 return label;
4272 }
4273
4274 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4275
4276 rtx
4277 emit_note_before (subtype, before)
4278 int subtype;
4279 rtx before;
4280 {
4281 rtx note = rtx_alloc (NOTE);
4282 INSN_UID (note) = cur_insn_uid++;
4283 NOTE_SOURCE_FILE (note) = 0;
4284 NOTE_LINE_NUMBER (note) = subtype;
4285 BLOCK_FOR_INSN (note) = NULL;
4286
4287 add_insn_before (note, before);
4288 return note;
4289 }
4290 \f
4291 /* Helper for emit_insn_after, handles lists of instructions
4292 efficiently. */
4293
4294 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4295
4296 static rtx
4297 emit_insn_after_1 (first, after)
4298 rtx first, after;
4299 {
4300 rtx last;
4301 rtx after_after;
4302 basic_block bb;
4303
4304 if (GET_CODE (after) != BARRIER
4305 && (bb = BLOCK_FOR_INSN (after)))
4306 {
4307 bb->flags |= BB_DIRTY;
4308 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4309 if (GET_CODE (last) != BARRIER)
4310 set_block_for_insn (last, bb);
4311 if (GET_CODE (last) != BARRIER)
4312 set_block_for_insn (last, bb);
4313 if (bb->end == after)
4314 bb->end = last;
4315 }
4316 else
4317 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4318 continue;
4319
4320 after_after = NEXT_INSN (after);
4321
4322 NEXT_INSN (after) = first;
4323 PREV_INSN (first) = after;
4324 NEXT_INSN (last) = after_after;
4325 if (after_after)
4326 PREV_INSN (after_after) = last;
4327
4328 if (after == last_insn)
4329 last_insn = last;
4330 return last;
4331 }
4332
4333 /* Make X be output after the insn AFTER. */
4334
4335 rtx
4336 emit_insn_after (x, after)
4337 rtx x, after;
4338 {
4339 rtx last = after;
4340
4341 #ifdef ENABLE_RTL_CHECKING
4342 if (after == NULL_RTX)
4343 abort ();
4344 #endif
4345
4346 if (x == NULL_RTX)
4347 return last;
4348
4349 switch (GET_CODE (x))
4350 {
4351 case INSN:
4352 case JUMP_INSN:
4353 case CALL_INSN:
4354 case CODE_LABEL:
4355 case BARRIER:
4356 case NOTE:
4357 last = emit_insn_after_1 (x, after);
4358 break;
4359
4360 #ifdef ENABLE_RTL_CHECKING
4361 case SEQUENCE:
4362 abort ();
4363 break;
4364 #endif
4365
4366 default:
4367 last = make_insn_raw (x);
4368 add_insn_after (last, after);
4369 break;
4370 }
4371
4372 return last;
4373 }
4374
4375 /* Similar to emit_insn_after, except that line notes are to be inserted so
4376 as to act as if this insn were at FROM. */
4377
4378 void
4379 emit_insn_after_with_line_notes (x, after, from)
4380 rtx x, after, from;
4381 {
4382 rtx from_line = find_line_note (from);
4383 rtx after_line = find_line_note (after);
4384 rtx insn = emit_insn_after (x, after);
4385
4386 if (from_line)
4387 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4388 NOTE_LINE_NUMBER (from_line),
4389 after);
4390
4391 if (after_line)
4392 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4393 NOTE_LINE_NUMBER (after_line),
4394 insn);
4395 }
4396
4397 /* Make an insn of code JUMP_INSN with body X
4398 and output it after the insn AFTER. */
4399
4400 rtx
4401 emit_jump_insn_after (x, after)
4402 rtx x, after;
4403 {
4404 rtx last;
4405
4406 #ifdef ENABLE_RTL_CHECKING
4407 if (after == NULL_RTX)
4408 abort ();
4409 #endif
4410
4411 switch (GET_CODE (x))
4412 {
4413 case INSN:
4414 case JUMP_INSN:
4415 case CALL_INSN:
4416 case CODE_LABEL:
4417 case BARRIER:
4418 case NOTE:
4419 last = emit_insn_after_1 (x, after);
4420 break;
4421
4422 #ifdef ENABLE_RTL_CHECKING
4423 case SEQUENCE:
4424 abort ();
4425 break;
4426 #endif
4427
4428 default:
4429 last = make_jump_insn_raw (x);
4430 add_insn_after (last, after);
4431 break;
4432 }
4433
4434 return last;
4435 }
4436
4437 /* Make an instruction with body X and code CALL_INSN
4438 and output it after the instruction AFTER. */
4439
4440 rtx
4441 emit_call_insn_after (x, after)
4442 rtx x, after;
4443 {
4444 rtx last;
4445
4446 #ifdef ENABLE_RTL_CHECKING
4447 if (after == NULL_RTX)
4448 abort ();
4449 #endif
4450
4451 switch (GET_CODE (x))
4452 {
4453 case INSN:
4454 case JUMP_INSN:
4455 case CALL_INSN:
4456 case CODE_LABEL:
4457 case BARRIER:
4458 case NOTE:
4459 last = emit_insn_after_1 (x, after);
4460 break;
4461
4462 #ifdef ENABLE_RTL_CHECKING
4463 case SEQUENCE:
4464 abort ();
4465 break;
4466 #endif
4467
4468 default:
4469 last = make_call_insn_raw (x);
4470 add_insn_after (last, after);
4471 break;
4472 }
4473
4474 return last;
4475 }
4476
4477 /* Make an insn of code BARRIER
4478 and output it after the insn AFTER. */
4479
4480 rtx
4481 emit_barrier_after (after)
4482 rtx after;
4483 {
4484 rtx insn = rtx_alloc (BARRIER);
4485
4486 INSN_UID (insn) = cur_insn_uid++;
4487
4488 add_insn_after (insn, after);
4489 return insn;
4490 }
4491
4492 /* Emit the label LABEL after the insn AFTER. */
4493
4494 rtx
4495 emit_label_after (label, after)
4496 rtx label, after;
4497 {
4498 /* This can be called twice for the same label
4499 as a result of the confusion that follows a syntax error!
4500 So make it harmless. */
4501 if (INSN_UID (label) == 0)
4502 {
4503 INSN_UID (label) = cur_insn_uid++;
4504 add_insn_after (label, after);
4505 }
4506
4507 return label;
4508 }
4509
4510 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4511
4512 rtx
4513 emit_note_after (subtype, after)
4514 int subtype;
4515 rtx after;
4516 {
4517 rtx note = rtx_alloc (NOTE);
4518 INSN_UID (note) = cur_insn_uid++;
4519 NOTE_SOURCE_FILE (note) = 0;
4520 NOTE_LINE_NUMBER (note) = subtype;
4521 BLOCK_FOR_INSN (note) = NULL;
4522 add_insn_after (note, after);
4523 return note;
4524 }
4525
4526 /* Emit a line note for FILE and LINE after the insn AFTER. */
4527
4528 rtx
4529 emit_line_note_after (file, line, after)
4530 const char *file;
4531 int line;
4532 rtx after;
4533 {
4534 rtx note;
4535
4536 if (no_line_numbers && line > 0)
4537 {
4538 cur_insn_uid++;
4539 return 0;
4540 }
4541
4542 note = rtx_alloc (NOTE);
4543 INSN_UID (note) = cur_insn_uid++;
4544 NOTE_SOURCE_FILE (note) = file;
4545 NOTE_LINE_NUMBER (note) = line;
4546 BLOCK_FOR_INSN (note) = NULL;
4547 add_insn_after (note, after);
4548 return note;
4549 }
4550 \f
4551 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4552 rtx
4553 emit_insn_after_scope (pattern, after, scope)
4554 rtx pattern, after;
4555 tree scope;
4556 {
4557 rtx last = emit_insn_after (pattern, after);
4558
4559 after = NEXT_INSN (after);
4560 while (1)
4561 {
4562 if (active_insn_p (after))
4563 INSN_SCOPE (after) = scope;
4564 if (after == last)
4565 break;
4566 after = NEXT_INSN (after);
4567 }
4568 return last;
4569 }
4570
4571 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4572 rtx
4573 emit_jump_insn_after_scope (pattern, after, scope)
4574 rtx pattern, after;
4575 tree scope;
4576 {
4577 rtx last = emit_jump_insn_after (pattern, after);
4578
4579 after = NEXT_INSN (after);
4580 while (1)
4581 {
4582 if (active_insn_p (after))
4583 INSN_SCOPE (after) = scope;
4584 if (after == last)
4585 break;
4586 after = NEXT_INSN (after);
4587 }
4588 return last;
4589 }
4590
4591 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4592 rtx
4593 emit_call_insn_after_scope (pattern, after, scope)
4594 rtx pattern, after;
4595 tree scope;
4596 {
4597 rtx last = emit_call_insn_after (pattern, after);
4598
4599 after = NEXT_INSN (after);
4600 while (1)
4601 {
4602 if (active_insn_p (after))
4603 INSN_SCOPE (after) = scope;
4604 if (after == last)
4605 break;
4606 after = NEXT_INSN (after);
4607 }
4608 return last;
4609 }
4610
4611 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4612 rtx
4613 emit_insn_before_scope (pattern, before, scope)
4614 rtx pattern, before;
4615 tree scope;
4616 {
4617 rtx first = PREV_INSN (before);
4618 rtx last = emit_insn_before (pattern, before);
4619
4620 first = NEXT_INSN (first);
4621 while (1)
4622 {
4623 if (active_insn_p (first))
4624 INSN_SCOPE (first) = scope;
4625 if (first == last)
4626 break;
4627 first = NEXT_INSN (first);
4628 }
4629 return last;
4630 }
4631 \f
4632 /* Take X and emit it at the end of the doubly-linked
4633 INSN list.
4634
4635 Returns the last insn emitted. */
4636
4637 rtx
4638 emit_insn (x)
4639 rtx x;
4640 {
4641 rtx last = last_insn;
4642 rtx insn;
4643
4644 if (x == NULL_RTX)
4645 return last;
4646
4647 switch (GET_CODE (x))
4648 {
4649 case INSN:
4650 case JUMP_INSN:
4651 case CALL_INSN:
4652 case CODE_LABEL:
4653 case BARRIER:
4654 case NOTE:
4655 insn = x;
4656 while (insn)
4657 {
4658 rtx next = NEXT_INSN (insn);
4659 add_insn (insn);
4660 last = insn;
4661 insn = next;
4662 }
4663 break;
4664
4665 #ifdef ENABLE_RTL_CHECKING
4666 case SEQUENCE:
4667 abort ();
4668 break;
4669 #endif
4670
4671 default:
4672 last = make_insn_raw (x);
4673 add_insn (last);
4674 break;
4675 }
4676
4677 return last;
4678 }
4679
4680 /* Make an insn of code JUMP_INSN with pattern X
4681 and add it to the end of the doubly-linked list. */
4682
4683 rtx
4684 emit_jump_insn (x)
4685 rtx x;
4686 {
4687 rtx last = NULL_RTX, insn;
4688
4689 switch (GET_CODE (x))
4690 {
4691 case INSN:
4692 case JUMP_INSN:
4693 case CALL_INSN:
4694 case CODE_LABEL:
4695 case BARRIER:
4696 case NOTE:
4697 insn = x;
4698 while (insn)
4699 {
4700 rtx next = NEXT_INSN (insn);
4701 add_insn (insn);
4702 last = insn;
4703 insn = next;
4704 }
4705 break;
4706
4707 #ifdef ENABLE_RTL_CHECKING
4708 case SEQUENCE:
4709 abort ();
4710 break;
4711 #endif
4712
4713 default:
4714 last = make_jump_insn_raw (x);
4715 add_insn (last);
4716 break;
4717 }
4718
4719 return last;
4720 }
4721
4722 /* Make an insn of code CALL_INSN with pattern X
4723 and add it to the end of the doubly-linked list. */
4724
4725 rtx
4726 emit_call_insn (x)
4727 rtx x;
4728 {
4729 rtx insn;
4730
4731 switch (GET_CODE (x))
4732 {
4733 case INSN:
4734 case JUMP_INSN:
4735 case CALL_INSN:
4736 case CODE_LABEL:
4737 case BARRIER:
4738 case NOTE:
4739 insn = emit_insn (x);
4740 break;
4741
4742 #ifdef ENABLE_RTL_CHECKING
4743 case SEQUENCE:
4744 abort ();
4745 break;
4746 #endif
4747
4748 default:
4749 insn = make_call_insn_raw (x);
4750 add_insn (insn);
4751 break;
4752 }
4753
4754 return insn;
4755 }
4756
4757 /* Add the label LABEL to the end of the doubly-linked list. */
4758
4759 rtx
4760 emit_label (label)
4761 rtx label;
4762 {
4763 /* This can be called twice for the same label
4764 as a result of the confusion that follows a syntax error!
4765 So make it harmless. */
4766 if (INSN_UID (label) == 0)
4767 {
4768 INSN_UID (label) = cur_insn_uid++;
4769 add_insn (label);
4770 }
4771 return label;
4772 }
4773
4774 /* Make an insn of code BARRIER
4775 and add it to the end of the doubly-linked list. */
4776
4777 rtx
4778 emit_barrier ()
4779 {
4780 rtx barrier = rtx_alloc (BARRIER);
4781 INSN_UID (barrier) = cur_insn_uid++;
4782 add_insn (barrier);
4783 return barrier;
4784 }
4785
4786 /* Make an insn of code NOTE
4787 with data-fields specified by FILE and LINE
4788 and add it to the end of the doubly-linked list,
4789 but only if line-numbers are desired for debugging info. */
4790
4791 rtx
4792 emit_line_note (file, line)
4793 const char *file;
4794 int line;
4795 {
4796 set_file_and_line_for_stmt (file, line);
4797
4798 #if 0
4799 if (no_line_numbers)
4800 return 0;
4801 #endif
4802
4803 return emit_note (file, line);
4804 }
4805
4806 /* Make an insn of code NOTE
4807 with data-fields specified by FILE and LINE
4808 and add it to the end of the doubly-linked list.
4809 If it is a line-number NOTE, omit it if it matches the previous one. */
4810
4811 rtx
4812 emit_note (file, line)
4813 const char *file;
4814 int line;
4815 {
4816 rtx note;
4817
4818 if (line > 0)
4819 {
4820 if (file && last_filename && !strcmp (file, last_filename)
4821 && line == last_linenum)
4822 return 0;
4823 last_filename = file;
4824 last_linenum = line;
4825 }
4826
4827 if (no_line_numbers && line > 0)
4828 {
4829 cur_insn_uid++;
4830 return 0;
4831 }
4832
4833 note = rtx_alloc (NOTE);
4834 INSN_UID (note) = cur_insn_uid++;
4835 NOTE_SOURCE_FILE (note) = file;
4836 NOTE_LINE_NUMBER (note) = line;
4837 BLOCK_FOR_INSN (note) = NULL;
4838 add_insn (note);
4839 return note;
4840 }
4841
4842 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4843
4844 rtx
4845 emit_line_note_force (file, line)
4846 const char *file;
4847 int line;
4848 {
4849 last_linenum = -1;
4850 return emit_line_note (file, line);
4851 }
4852
4853 /* Cause next statement to emit a line note even if the line number
4854 has not changed. This is used at the beginning of a function. */
4855
4856 void
4857 force_next_line_note ()
4858 {
4859 last_linenum = -1;
4860 }
4861
4862 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4863 note of this type already exists, remove it first. */
4864
4865 rtx
4866 set_unique_reg_note (insn, kind, datum)
4867 rtx insn;
4868 enum reg_note kind;
4869 rtx datum;
4870 {
4871 rtx note = find_reg_note (insn, kind, NULL_RTX);
4872
4873 switch (kind)
4874 {
4875 case REG_EQUAL:
4876 case REG_EQUIV:
4877 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4878 has multiple sets (some callers assume single_set
4879 means the insn only has one set, when in fact it
4880 means the insn only has one * useful * set). */
4881 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4882 {
4883 if (note)
4884 abort ();
4885 return NULL_RTX;
4886 }
4887
4888 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4889 It serves no useful purpose and breaks eliminate_regs. */
4890 if (GET_CODE (datum) == ASM_OPERANDS)
4891 return NULL_RTX;
4892 break;
4893
4894 default:
4895 break;
4896 }
4897
4898 if (note)
4899 {
4900 XEXP (note, 0) = datum;
4901 return note;
4902 }
4903
4904 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4905 return REG_NOTES (insn);
4906 }
4907 \f
4908 /* Return an indication of which type of insn should have X as a body.
4909 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4910
4911 enum rtx_code
4912 classify_insn (x)
4913 rtx x;
4914 {
4915 if (GET_CODE (x) == CODE_LABEL)
4916 return CODE_LABEL;
4917 if (GET_CODE (x) == CALL)
4918 return CALL_INSN;
4919 if (GET_CODE (x) == RETURN)
4920 return JUMP_INSN;
4921 if (GET_CODE (x) == SET)
4922 {
4923 if (SET_DEST (x) == pc_rtx)
4924 return JUMP_INSN;
4925 else if (GET_CODE (SET_SRC (x)) == CALL)
4926 return CALL_INSN;
4927 else
4928 return INSN;
4929 }
4930 if (GET_CODE (x) == PARALLEL)
4931 {
4932 int j;
4933 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4934 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4935 return CALL_INSN;
4936 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4937 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4938 return JUMP_INSN;
4939 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4940 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4941 return CALL_INSN;
4942 }
4943 return INSN;
4944 }
4945
4946 /* Emit the rtl pattern X as an appropriate kind of insn.
4947 If X is a label, it is simply added into the insn chain. */
4948
4949 rtx
4950 emit (x)
4951 rtx x;
4952 {
4953 enum rtx_code code = classify_insn (x);
4954
4955 if (code == CODE_LABEL)
4956 return emit_label (x);
4957 else if (code == INSN)
4958 return emit_insn (x);
4959 else if (code == JUMP_INSN)
4960 {
4961 rtx insn = emit_jump_insn (x);
4962 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4963 return emit_barrier ();
4964 return insn;
4965 }
4966 else if (code == CALL_INSN)
4967 return emit_call_insn (x);
4968 else
4969 abort ();
4970 }
4971 \f
4972 /* Space for free sequence stack entries. */
4973 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4974
4975 /* Begin emitting insns to a sequence which can be packaged in an
4976 RTL_EXPR. If this sequence will contain something that might cause
4977 the compiler to pop arguments to function calls (because those
4978 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4979 details), use do_pending_stack_adjust before calling this function.
4980 That will ensure that the deferred pops are not accidentally
4981 emitted in the middle of this sequence. */
4982
4983 void
4984 start_sequence ()
4985 {
4986 struct sequence_stack *tem;
4987
4988 if (free_sequence_stack != NULL)
4989 {
4990 tem = free_sequence_stack;
4991 free_sequence_stack = tem->next;
4992 }
4993 else
4994 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4995
4996 tem->next = seq_stack;
4997 tem->first = first_insn;
4998 tem->last = last_insn;
4999 tem->sequence_rtl_expr = seq_rtl_expr;
5000
5001 seq_stack = tem;
5002
5003 first_insn = 0;
5004 last_insn = 0;
5005 }
5006
5007 /* Similarly, but indicate that this sequence will be placed in T, an
5008 RTL_EXPR. See the documentation for start_sequence for more
5009 information about how to use this function. */
5010
5011 void
5012 start_sequence_for_rtl_expr (t)
5013 tree t;
5014 {
5015 start_sequence ();
5016
5017 seq_rtl_expr = t;
5018 }
5019
5020 /* Set up the insn chain starting with FIRST as the current sequence,
5021 saving the previously current one. See the documentation for
5022 start_sequence for more information about how to use this function. */
5023
5024 void
5025 push_to_sequence (first)
5026 rtx first;
5027 {
5028 rtx last;
5029
5030 start_sequence ();
5031
5032 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5033
5034 first_insn = first;
5035 last_insn = last;
5036 }
5037
5038 /* Set up the insn chain from a chain stort in FIRST to LAST. */
5039
5040 void
5041 push_to_full_sequence (first, last)
5042 rtx first, last;
5043 {
5044 start_sequence ();
5045 first_insn = first;
5046 last_insn = last;
5047 /* We really should have the end of the insn chain here. */
5048 if (last && NEXT_INSN (last))
5049 abort ();
5050 }
5051
5052 /* Set up the outer-level insn chain
5053 as the current sequence, saving the previously current one. */
5054
5055 void
5056 push_topmost_sequence ()
5057 {
5058 struct sequence_stack *stack, *top = NULL;
5059
5060 start_sequence ();
5061
5062 for (stack = seq_stack; stack; stack = stack->next)
5063 top = stack;
5064
5065 first_insn = top->first;
5066 last_insn = top->last;
5067 seq_rtl_expr = top->sequence_rtl_expr;
5068 }
5069
5070 /* After emitting to the outer-level insn chain, update the outer-level
5071 insn chain, and restore the previous saved state. */
5072
5073 void
5074 pop_topmost_sequence ()
5075 {
5076 struct sequence_stack *stack, *top = NULL;
5077
5078 for (stack = seq_stack; stack; stack = stack->next)
5079 top = stack;
5080
5081 top->first = first_insn;
5082 top->last = last_insn;
5083 /* ??? Why don't we save seq_rtl_expr here? */
5084
5085 end_sequence ();
5086 }
5087
5088 /* After emitting to a sequence, restore previous saved state.
5089
5090 To get the contents of the sequence just made, you must call
5091 `get_insns' *before* calling here.
5092
5093 If the compiler might have deferred popping arguments while
5094 generating this sequence, and this sequence will not be immediately
5095 inserted into the instruction stream, use do_pending_stack_adjust
5096 before calling get_insns. That will ensure that the deferred
5097 pops are inserted into this sequence, and not into some random
5098 location in the instruction stream. See INHIBIT_DEFER_POP for more
5099 information about deferred popping of arguments. */
5100
5101 void
5102 end_sequence ()
5103 {
5104 struct sequence_stack *tem = seq_stack;
5105
5106 first_insn = tem->first;
5107 last_insn = tem->last;
5108 seq_rtl_expr = tem->sequence_rtl_expr;
5109 seq_stack = tem->next;
5110
5111 memset (tem, 0, sizeof (*tem));
5112 tem->next = free_sequence_stack;
5113 free_sequence_stack = tem;
5114 }
5115
5116 /* This works like end_sequence, but records the old sequence in FIRST
5117 and LAST. */
5118
5119 void
5120 end_full_sequence (first, last)
5121 rtx *first, *last;
5122 {
5123 *first = first_insn;
5124 *last = last_insn;
5125 end_sequence ();
5126 }
5127
5128 /* Return 1 if currently emitting into a sequence. */
5129
5130 int
5131 in_sequence_p ()
5132 {
5133 return seq_stack != 0;
5134 }
5135 \f
5136 /* Put the various virtual registers into REGNO_REG_RTX. */
5137
5138 void
5139 init_virtual_regs (es)
5140 struct emit_status *es;
5141 {
5142 rtx *ptr = es->x_regno_reg_rtx;
5143 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5144 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5145 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5146 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5147 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5148 }
5149
5150 \f
5151 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5152 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5153 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5154 static int copy_insn_n_scratches;
5155
5156 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5157 copied an ASM_OPERANDS.
5158 In that case, it is the original input-operand vector. */
5159 static rtvec orig_asm_operands_vector;
5160
5161 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5162 copied an ASM_OPERANDS.
5163 In that case, it is the copied input-operand vector. */
5164 static rtvec copy_asm_operands_vector;
5165
5166 /* Likewise for the constraints vector. */
5167 static rtvec orig_asm_constraints_vector;
5168 static rtvec copy_asm_constraints_vector;
5169
5170 /* Recursively create a new copy of an rtx for copy_insn.
5171 This function differs from copy_rtx in that it handles SCRATCHes and
5172 ASM_OPERANDs properly.
5173 Normally, this function is not used directly; use copy_insn as front end.
5174 However, you could first copy an insn pattern with copy_insn and then use
5175 this function afterwards to properly copy any REG_NOTEs containing
5176 SCRATCHes. */
5177
5178 rtx
5179 copy_insn_1 (orig)
5180 rtx orig;
5181 {
5182 rtx copy;
5183 int i, j;
5184 RTX_CODE code;
5185 const char *format_ptr;
5186
5187 code = GET_CODE (orig);
5188
5189 switch (code)
5190 {
5191 case REG:
5192 case QUEUED:
5193 case CONST_INT:
5194 case CONST_DOUBLE:
5195 case CONST_VECTOR:
5196 case SYMBOL_REF:
5197 case CODE_LABEL:
5198 case PC:
5199 case CC0:
5200 case ADDRESSOF:
5201 return orig;
5202
5203 case SCRATCH:
5204 for (i = 0; i < copy_insn_n_scratches; i++)
5205 if (copy_insn_scratch_in[i] == orig)
5206 return copy_insn_scratch_out[i];
5207 break;
5208
5209 case CONST:
5210 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5211 a LABEL_REF, it isn't sharable. */
5212 if (GET_CODE (XEXP (orig, 0)) == PLUS
5213 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5214 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5215 return orig;
5216 break;
5217
5218 /* A MEM with a constant address is not sharable. The problem is that
5219 the constant address may need to be reloaded. If the mem is shared,
5220 then reloading one copy of this mem will cause all copies to appear
5221 to have been reloaded. */
5222
5223 default:
5224 break;
5225 }
5226
5227 copy = rtx_alloc (code);
5228
5229 /* Copy the various flags, and other information. We assume that
5230 all fields need copying, and then clear the fields that should
5231 not be copied. That is the sensible default behavior, and forces
5232 us to explicitly document why we are *not* copying a flag. */
5233 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5234
5235 /* We do not copy the USED flag, which is used as a mark bit during
5236 walks over the RTL. */
5237 RTX_FLAG (copy, used) = 0;
5238
5239 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5240 if (GET_RTX_CLASS (code) == 'i')
5241 {
5242 RTX_FLAG (copy, jump) = 0;
5243 RTX_FLAG (copy, call) = 0;
5244 RTX_FLAG (copy, frame_related) = 0;
5245 }
5246
5247 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5248
5249 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5250 {
5251 copy->fld[i] = orig->fld[i];
5252 switch (*format_ptr++)
5253 {
5254 case 'e':
5255 if (XEXP (orig, i) != NULL)
5256 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5257 break;
5258
5259 case 'E':
5260 case 'V':
5261 if (XVEC (orig, i) == orig_asm_constraints_vector)
5262 XVEC (copy, i) = copy_asm_constraints_vector;
5263 else if (XVEC (orig, i) == orig_asm_operands_vector)
5264 XVEC (copy, i) = copy_asm_operands_vector;
5265 else if (XVEC (orig, i) != NULL)
5266 {
5267 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5268 for (j = 0; j < XVECLEN (copy, i); j++)
5269 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5270 }
5271 break;
5272
5273 case 't':
5274 case 'w':
5275 case 'i':
5276 case 's':
5277 case 'S':
5278 case 'u':
5279 case '0':
5280 /* These are left unchanged. */
5281 break;
5282
5283 default:
5284 abort ();
5285 }
5286 }
5287
5288 if (code == SCRATCH)
5289 {
5290 i = copy_insn_n_scratches++;
5291 if (i >= MAX_RECOG_OPERANDS)
5292 abort ();
5293 copy_insn_scratch_in[i] = orig;
5294 copy_insn_scratch_out[i] = copy;
5295 }
5296 else if (code == ASM_OPERANDS)
5297 {
5298 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5299 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5300 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5301 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5302 }
5303
5304 return copy;
5305 }
5306
5307 /* Create a new copy of an rtx.
5308 This function differs from copy_rtx in that it handles SCRATCHes and
5309 ASM_OPERANDs properly.
5310 INSN doesn't really have to be a full INSN; it could be just the
5311 pattern. */
5312 rtx
5313 copy_insn (insn)
5314 rtx insn;
5315 {
5316 copy_insn_n_scratches = 0;
5317 orig_asm_operands_vector = 0;
5318 orig_asm_constraints_vector = 0;
5319 copy_asm_operands_vector = 0;
5320 copy_asm_constraints_vector = 0;
5321 return copy_insn_1 (insn);
5322 }
5323
5324 /* Initialize data structures and variables in this file
5325 before generating rtl for each function. */
5326
5327 void
5328 init_emit ()
5329 {
5330 struct function *f = cfun;
5331
5332 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5333 first_insn = NULL;
5334 last_insn = NULL;
5335 seq_rtl_expr = NULL;
5336 cur_insn_uid = 1;
5337 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5338 last_linenum = 0;
5339 last_filename = 0;
5340 first_label_num = label_num;
5341 last_label_num = 0;
5342 seq_stack = NULL;
5343
5344 /* Init the tables that describe all the pseudo regs. */
5345
5346 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5347
5348 f->emit->regno_pointer_align
5349 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5350 * sizeof (unsigned char));
5351
5352 regno_reg_rtx
5353 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5354 * sizeof (rtx));
5355
5356 /* Put copies of all the hard registers into regno_reg_rtx. */
5357 memcpy (regno_reg_rtx,
5358 static_regno_reg_rtx,
5359 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5360
5361 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5362 init_virtual_regs (f->emit);
5363
5364 /* Indicate that the virtual registers and stack locations are
5365 all pointers. */
5366 REG_POINTER (stack_pointer_rtx) = 1;
5367 REG_POINTER (frame_pointer_rtx) = 1;
5368 REG_POINTER (hard_frame_pointer_rtx) = 1;
5369 REG_POINTER (arg_pointer_rtx) = 1;
5370
5371 REG_POINTER (virtual_incoming_args_rtx) = 1;
5372 REG_POINTER (virtual_stack_vars_rtx) = 1;
5373 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5374 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5375 REG_POINTER (virtual_cfa_rtx) = 1;
5376
5377 #ifdef STACK_BOUNDARY
5378 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5379 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5380 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5381 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5382
5383 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5384 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5385 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5386 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5387 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5388 #endif
5389
5390 #ifdef INIT_EXPANDERS
5391 INIT_EXPANDERS;
5392 #endif
5393 }
5394
5395 /* Generate the constant 0. */
5396
5397 static rtx
5398 gen_const_vector_0 (mode)
5399 enum machine_mode mode;
5400 {
5401 rtx tem;
5402 rtvec v;
5403 int units, i;
5404 enum machine_mode inner;
5405
5406 units = GET_MODE_NUNITS (mode);
5407 inner = GET_MODE_INNER (mode);
5408
5409 v = rtvec_alloc (units);
5410
5411 /* We need to call this function after we to set CONST0_RTX first. */
5412 if (!CONST0_RTX (inner))
5413 abort ();
5414
5415 for (i = 0; i < units; ++i)
5416 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5417
5418 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5419 return tem;
5420 }
5421
5422 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5423 all elements are zero. */
5424 rtx
5425 gen_rtx_CONST_VECTOR (mode, v)
5426 enum machine_mode mode;
5427 rtvec v;
5428 {
5429 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5430 int i;
5431
5432 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5433 if (RTVEC_ELT (v, i) != inner_zero)
5434 return gen_rtx_raw_CONST_VECTOR (mode, v);
5435 return CONST0_RTX (mode);
5436 }
5437
5438 /* Create some permanent unique rtl objects shared between all functions.
5439 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5440
5441 void
5442 init_emit_once (line_numbers)
5443 int line_numbers;
5444 {
5445 int i;
5446 enum machine_mode mode;
5447 enum machine_mode double_mode;
5448
5449 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5450 tables. */
5451 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5452 const_int_htab_eq, NULL);
5453
5454 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5455 const_double_htab_eq, NULL);
5456
5457 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5458 mem_attrs_htab_eq, NULL);
5459 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5460 reg_attrs_htab_eq, NULL);
5461
5462 no_line_numbers = ! line_numbers;
5463
5464 /* Compute the word and byte modes. */
5465
5466 byte_mode = VOIDmode;
5467 word_mode = VOIDmode;
5468 double_mode = VOIDmode;
5469
5470 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5471 mode = GET_MODE_WIDER_MODE (mode))
5472 {
5473 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5474 && byte_mode == VOIDmode)
5475 byte_mode = mode;
5476
5477 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5478 && word_mode == VOIDmode)
5479 word_mode = mode;
5480 }
5481
5482 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5483 mode = GET_MODE_WIDER_MODE (mode))
5484 {
5485 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5486 && double_mode == VOIDmode)
5487 double_mode = mode;
5488 }
5489
5490 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5491
5492 /* Assign register numbers to the globally defined register rtx.
5493 This must be done at runtime because the register number field
5494 is in a union and some compilers can't initialize unions. */
5495
5496 pc_rtx = gen_rtx (PC, VOIDmode);
5497 cc0_rtx = gen_rtx (CC0, VOIDmode);
5498 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5499 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5500 if (hard_frame_pointer_rtx == 0)
5501 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5502 HARD_FRAME_POINTER_REGNUM);
5503 if (arg_pointer_rtx == 0)
5504 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5505 virtual_incoming_args_rtx =
5506 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5507 virtual_stack_vars_rtx =
5508 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5509 virtual_stack_dynamic_rtx =
5510 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5511 virtual_outgoing_args_rtx =
5512 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5513 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5514
5515 /* Initialize RTL for commonly used hard registers. These are
5516 copied into regno_reg_rtx as we begin to compile each function. */
5517 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5518 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5519
5520 #ifdef INIT_EXPANDERS
5521 /* This is to initialize {init|mark|free}_machine_status before the first
5522 call to push_function_context_to. This is needed by the Chill front
5523 end which calls push_function_context_to before the first call to
5524 init_function_start. */
5525 INIT_EXPANDERS;
5526 #endif
5527
5528 /* Create the unique rtx's for certain rtx codes and operand values. */
5529
5530 /* Don't use gen_rtx here since gen_rtx in this case
5531 tries to use these variables. */
5532 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5533 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5534 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5535
5536 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5537 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5538 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5539 else
5540 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5541
5542 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5543 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5544 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5545 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5546
5547 for (i = 0; i <= 2; i++)
5548 {
5549 REAL_VALUE_TYPE *r =
5550 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5551
5552 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5553 mode = GET_MODE_WIDER_MODE (mode))
5554 const_tiny_rtx[i][(int) mode] =
5555 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5556
5557 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5558
5559 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5560 mode = GET_MODE_WIDER_MODE (mode))
5561 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5562
5563 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5564 mode != VOIDmode;
5565 mode = GET_MODE_WIDER_MODE (mode))
5566 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5567 }
5568
5569 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5570 mode != VOIDmode;
5571 mode = GET_MODE_WIDER_MODE (mode))
5572 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5573
5574 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5575 mode != VOIDmode;
5576 mode = GET_MODE_WIDER_MODE (mode))
5577 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5578
5579 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5580 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5581 const_tiny_rtx[0][i] = const0_rtx;
5582
5583 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5584 if (STORE_FLAG_VALUE == 1)
5585 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5586
5587 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5588 return_address_pointer_rtx
5589 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5590 #endif
5591
5592 #ifdef STRUCT_VALUE
5593 struct_value_rtx = STRUCT_VALUE;
5594 #else
5595 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5596 #endif
5597
5598 #ifdef STRUCT_VALUE_INCOMING
5599 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5600 #else
5601 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5602 struct_value_incoming_rtx
5603 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5604 #else
5605 struct_value_incoming_rtx = struct_value_rtx;
5606 #endif
5607 #endif
5608
5609 #ifdef STATIC_CHAIN_REGNUM
5610 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5611
5612 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5613 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5614 static_chain_incoming_rtx
5615 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5616 else
5617 #endif
5618 static_chain_incoming_rtx = static_chain_rtx;
5619 #endif
5620
5621 #ifdef STATIC_CHAIN
5622 static_chain_rtx = STATIC_CHAIN;
5623
5624 #ifdef STATIC_CHAIN_INCOMING
5625 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5626 #else
5627 static_chain_incoming_rtx = static_chain_rtx;
5628 #endif
5629 #endif
5630
5631 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5632 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5633 }
5634 \f
5635 /* Query and clear/ restore no_line_numbers. This is used by the
5636 switch / case handling in stmt.c to give proper line numbers in
5637 warnings about unreachable code. */
5638
5639 int
5640 force_line_numbers ()
5641 {
5642 int old = no_line_numbers;
5643
5644 no_line_numbers = 0;
5645 if (old)
5646 force_next_line_note ();
5647 return old;
5648 }
5649
5650 void
5651 restore_line_number_status (old_value)
5652 int old_value;
5653 {
5654 no_line_numbers = old_value;
5655 }
5656
5657 /* Produce exact duplicate of insn INSN after AFTER.
5658 Care updating of libcall regions if present. */
5659
5660 rtx
5661 emit_copy_of_insn_after (insn, after)
5662 rtx insn, after;
5663 {
5664 rtx new;
5665 rtx note1, note2, link;
5666
5667 switch (GET_CODE (insn))
5668 {
5669 case INSN:
5670 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5671 break;
5672
5673 case JUMP_INSN:
5674 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5675 break;
5676
5677 case CALL_INSN:
5678 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5679 if (CALL_INSN_FUNCTION_USAGE (insn))
5680 CALL_INSN_FUNCTION_USAGE (new)
5681 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5682 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5683 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5684 break;
5685
5686 default:
5687 abort ();
5688 }
5689
5690 /* Update LABEL_NUSES. */
5691 mark_jump_label (PATTERN (new), new, 0);
5692
5693 INSN_SCOPE (new) = INSN_SCOPE (insn);
5694
5695 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5696 make them. */
5697 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5698 if (REG_NOTE_KIND (link) != REG_LABEL)
5699 {
5700 if (GET_CODE (link) == EXPR_LIST)
5701 REG_NOTES (new)
5702 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5703 XEXP (link, 0),
5704 REG_NOTES (new)));
5705 else
5706 REG_NOTES (new)
5707 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5708 XEXP (link, 0),
5709 REG_NOTES (new)));
5710 }
5711
5712 /* Fix the libcall sequences. */
5713 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5714 {
5715 rtx p = new;
5716 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5717 p = PREV_INSN (p);
5718 XEXP (note1, 0) = p;
5719 XEXP (note2, 0) = new;
5720 }
5721 INSN_CODE (new) = INSN_CODE (insn);
5722 return new;
5723 }
5724
5725 #include "gt-emit-rtl.h"