Introduce rtl_data::init_stack_alignment
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62
63 struct target_rtl default_target_rtl;
64 #if SWITCHABLE_TARGET
65 struct target_rtl *this_target_rtl = &default_target_rtl;
66 #endif
67
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69
70 /* Commonly used modes. */
71
72 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
73 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
74 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn *invalid_insn_rtx;
129
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
133 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 {
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139 };
140
141 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
143 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 {
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147 };
148
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 {
154 static hashval_t hash (reg_attrs *x);
155 static bool equal (reg_attrs *a, reg_attrs *b);
156 };
157
158 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
159
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
162 {
163 static hashval_t hash (rtx x);
164 static bool equal (rtx x, rtx y);
165 };
166
167 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
168
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
171 {
172 static hashval_t hash (rtx x);
173 static bool equal (rtx x, rtx y);
174 };
175
176 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
177
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
181
182 static void set_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx lookup_const_wide_int (rtx);
186 #endif
187 static rtx lookup_const_double (rtx);
188 static rtx lookup_const_fixed (rtx);
189 static reg_attrs *get_reg_attrs (tree, int);
190 static rtx gen_const_vector (machine_mode, int);
191 static void copy_rtx_if_shared_1 (rtx *orig);
192
193 /* Probability of the conditional branch currently proceeded by try_split.
194 Set to -1 otherwise. */
195 int split_branch_probability = -1;
196 \f
197 /* Returns a hash code for X (which is a really a CONST_INT). */
198
199 hashval_t
200 const_int_hasher::hash (rtx x)
201 {
202 return (hashval_t) INTVAL (x);
203 }
204
205 /* Returns nonzero if the value represented by X (which is really a
206 CONST_INT) is the same as that given by Y (which is really a
207 HOST_WIDE_INT *). */
208
209 bool
210 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
211 {
212 return (INTVAL (x) == y);
213 }
214
215 #if TARGET_SUPPORTS_WIDE_INT
216 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
217
218 hashval_t
219 const_wide_int_hasher::hash (rtx x)
220 {
221 int i;
222 unsigned HOST_WIDE_INT hash = 0;
223 const_rtx xr = x;
224
225 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
226 hash += CONST_WIDE_INT_ELT (xr, i);
227
228 return (hashval_t) hash;
229 }
230
231 /* Returns nonzero if the value represented by X (which is really a
232 CONST_WIDE_INT) is the same as that given by Y (which is really a
233 CONST_WIDE_INT). */
234
235 bool
236 const_wide_int_hasher::equal (rtx x, rtx y)
237 {
238 int i;
239 const_rtx xr = x;
240 const_rtx yr = y;
241 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
242 return false;
243
244 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
245 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
246 return false;
247
248 return true;
249 }
250 #endif
251
252 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
253 hashval_t
254 const_double_hasher::hash (rtx x)
255 {
256 const_rtx const value = x;
257 hashval_t h;
258
259 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
260 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
261 else
262 {
263 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
264 /* MODE is used in the comparison, so it should be in the hash. */
265 h ^= GET_MODE (value);
266 }
267 return h;
268 }
269
270 /* Returns nonzero if the value represented by X (really a ...)
271 is the same as that represented by Y (really a ...) */
272 bool
273 const_double_hasher::equal (rtx x, rtx y)
274 {
275 const_rtx const a = x, b = y;
276
277 if (GET_MODE (a) != GET_MODE (b))
278 return 0;
279 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
280 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
281 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
282 else
283 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
284 CONST_DOUBLE_REAL_VALUE (b));
285 }
286
287 /* Returns a hash code for X (which is really a CONST_FIXED). */
288
289 hashval_t
290 const_fixed_hasher::hash (rtx x)
291 {
292 const_rtx const value = x;
293 hashval_t h;
294
295 h = fixed_hash (CONST_FIXED_VALUE (value));
296 /* MODE is used in the comparison, so it should be in the hash. */
297 h ^= GET_MODE (value);
298 return h;
299 }
300
301 /* Returns nonzero if the value represented by X is the same as that
302 represented by Y. */
303
304 bool
305 const_fixed_hasher::equal (rtx x, rtx y)
306 {
307 const_rtx const a = x, b = y;
308
309 if (GET_MODE (a) != GET_MODE (b))
310 return 0;
311 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
312 }
313
314 /* Return true if the given memory attributes are equal. */
315
316 bool
317 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
318 {
319 if (p == q)
320 return true;
321 if (!p || !q)
322 return false;
323 return (p->alias == q->alias
324 && p->offset_known_p == q->offset_known_p
325 && (!p->offset_known_p || p->offset == q->offset)
326 && p->size_known_p == q->size_known_p
327 && (!p->size_known_p || p->size == q->size)
328 && p->align == q->align
329 && p->addrspace == q->addrspace
330 && (p->expr == q->expr
331 || (p->expr != NULL_TREE && q->expr != NULL_TREE
332 && operand_equal_p (p->expr, q->expr, 0))));
333 }
334
335 /* Set MEM's memory attributes so that they are the same as ATTRS. */
336
337 static void
338 set_mem_attrs (rtx mem, mem_attrs *attrs)
339 {
340 /* If everything is the default, we can just clear the attributes. */
341 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
342 {
343 MEM_ATTRS (mem) = 0;
344 return;
345 }
346
347 if (!MEM_ATTRS (mem)
348 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
349 {
350 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
351 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
352 }
353 }
354
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
356
357 hashval_t
358 reg_attr_hasher::hash (reg_attrs *x)
359 {
360 const reg_attrs *const p = x;
361
362 return ((p->offset * 1000) ^ (intptr_t) p->decl);
363 }
364
365 /* Returns nonzero if the value represented by X is the same as that given by
366 Y. */
367
368 bool
369 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
370 {
371 const reg_attrs *const p = x;
372 const reg_attrs *const q = y;
373
374 return (p->decl == q->decl && p->offset == q->offset);
375 }
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
378 MEM of mode MODE. */
379
380 static reg_attrs *
381 get_reg_attrs (tree decl, int offset)
382 {
383 reg_attrs attrs;
384
385 /* If everything is the default, we can just return zero. */
386 if (decl == 0 && offset == 0)
387 return 0;
388
389 attrs.decl = decl;
390 attrs.offset = offset;
391
392 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
393 if (*slot == 0)
394 {
395 *slot = ggc_alloc<reg_attrs> ();
396 memcpy (*slot, &attrs, sizeof (reg_attrs));
397 }
398
399 return *slot;
400 }
401
402
403 #if !HAVE_blockage
404 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
405 and to block register equivalences to be seen across this insn. */
406
407 rtx
408 gen_blockage (void)
409 {
410 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
411 MEM_VOLATILE_P (x) = true;
412 return x;
413 }
414 #endif
415
416
417 /* Set the mode and register number of X to MODE and REGNO. */
418
419 void
420 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
421 {
422 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
423 ? hard_regno_nregs[regno][mode]
424 : 1);
425 PUT_MODE_RAW (x, mode);
426 set_regno_raw (x, regno, nregs);
427 }
428
429 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
430 don't attempt to share with the various global pieces of rtl (such as
431 frame_pointer_rtx). */
432
433 rtx
434 gen_raw_REG (machine_mode mode, unsigned int regno)
435 {
436 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
437 set_mode_and_regno (x, mode, regno);
438 REG_ATTRS (x) = NULL;
439 ORIGINAL_REGNO (x) = regno;
440 return x;
441 }
442
443 /* There are some RTL codes that require special attention; the generation
444 functions do the raw handling. If you add to this list, modify
445 special_rtx in gengenrtl.c as well. */
446
447 rtx_expr_list *
448 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
449 {
450 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
451 expr_list));
452 }
453
454 rtx_insn_list *
455 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
456 {
457 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
458 insn_list));
459 }
460
461 rtx_insn *
462 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
463 basic_block bb, rtx pattern, int location, int code,
464 rtx reg_notes)
465 {
466 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
467 prev_insn, next_insn,
468 bb, pattern, location, code,
469 reg_notes));
470 }
471
472 rtx
473 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
474 {
475 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
476 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
477
478 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
479 if (const_true_rtx && arg == STORE_FLAG_VALUE)
480 return const_true_rtx;
481 #endif
482
483 /* Look up the CONST_INT in the hash table. */
484 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
485 INSERT);
486 if (*slot == 0)
487 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
488
489 return *slot;
490 }
491
492 rtx
493 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
494 {
495 return GEN_INT (trunc_int_for_mode (c, mode));
496 }
497
498 /* CONST_DOUBLEs might be created from pairs of integers, or from
499 REAL_VALUE_TYPEs. Also, their length is known only at run time,
500 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
501
502 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
503 hash table. If so, return its counterpart; otherwise add it
504 to the hash table and return it. */
505 static rtx
506 lookup_const_double (rtx real)
507 {
508 rtx *slot = const_double_htab->find_slot (real, INSERT);
509 if (*slot == 0)
510 *slot = real;
511
512 return *slot;
513 }
514
515 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
516 VALUE in mode MODE. */
517 rtx
518 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
519 {
520 rtx real = rtx_alloc (CONST_DOUBLE);
521 PUT_MODE (real, mode);
522
523 real->u.rv = value;
524
525 return lookup_const_double (real);
526 }
527
528 /* Determine whether FIXED, a CONST_FIXED, already exists in the
529 hash table. If so, return its counterpart; otherwise add it
530 to the hash table and return it. */
531
532 static rtx
533 lookup_const_fixed (rtx fixed)
534 {
535 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
536 if (*slot == 0)
537 *slot = fixed;
538
539 return *slot;
540 }
541
542 /* Return a CONST_FIXED rtx for a fixed-point value specified by
543 VALUE in mode MODE. */
544
545 rtx
546 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
547 {
548 rtx fixed = rtx_alloc (CONST_FIXED);
549 PUT_MODE (fixed, mode);
550
551 fixed->u.fv = value;
552
553 return lookup_const_fixed (fixed);
554 }
555
556 #if TARGET_SUPPORTS_WIDE_INT == 0
557 /* Constructs double_int from rtx CST. */
558
559 double_int
560 rtx_to_double_int (const_rtx cst)
561 {
562 double_int r;
563
564 if (CONST_INT_P (cst))
565 r = double_int::from_shwi (INTVAL (cst));
566 else if (CONST_DOUBLE_AS_INT_P (cst))
567 {
568 r.low = CONST_DOUBLE_LOW (cst);
569 r.high = CONST_DOUBLE_HIGH (cst);
570 }
571 else
572 gcc_unreachable ();
573
574 return r;
575 }
576 #endif
577
578 #if TARGET_SUPPORTS_WIDE_INT
579 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
580 If so, return its counterpart; otherwise add it to the hash table and
581 return it. */
582
583 static rtx
584 lookup_const_wide_int (rtx wint)
585 {
586 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
587 if (*slot == 0)
588 *slot = wint;
589
590 return *slot;
591 }
592 #endif
593
594 /* Return an rtx constant for V, given that the constant has mode MODE.
595 The returned rtx will be a CONST_INT if V fits, otherwise it will be
596 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
597 (if TARGET_SUPPORTS_WIDE_INT). */
598
599 rtx
600 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
601 {
602 unsigned int len = v.get_len ();
603 unsigned int prec = GET_MODE_PRECISION (mode);
604
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec <= v.get_precision ());
608
609 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
610 return gen_int_mode (v.elt (0), mode);
611
612 #if TARGET_SUPPORTS_WIDE_INT
613 {
614 unsigned int i;
615 rtx value;
616 unsigned int blocks_needed
617 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618
619 if (len > blocks_needed)
620 len = blocks_needed;
621
622 value = const_wide_int_alloc (len);
623
624 /* It is so tempting to just put the mode in here. Must control
625 myself ... */
626 PUT_MODE (value, VOIDmode);
627 CWI_PUT_NUM_ELEM (value, len);
628
629 for (i = 0; i < len; i++)
630 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
631
632 return lookup_const_wide_int (value);
633 }
634 #else
635 return immed_double_const (v.elt (0), v.elt (1), mode);
636 #endif
637 }
638
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
647
648 rtx
649 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
650 {
651 rtx value;
652 unsigned int i;
653
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
656
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
658 gen_int_mode.
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
663 if (mode != VOIDmode)
664 {
665 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
666 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
667 /* We can get a 0 for an error mark. */
668 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
669 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
670 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
671
672 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
673 return gen_int_mode (i0, mode);
674 }
675
676 /* If this integer fits in one word, return a CONST_INT. */
677 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
678 return GEN_INT (i0);
679
680 /* We use VOIDmode for integers. */
681 value = rtx_alloc (CONST_DOUBLE);
682 PUT_MODE (value, VOIDmode);
683
684 CONST_DOUBLE_LOW (value) = i0;
685 CONST_DOUBLE_HIGH (value) = i1;
686
687 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
688 XWINT (value, i) = 0;
689
690 return lookup_const_double (value);
691 }
692 #endif
693
694 rtx
695 gen_rtx_REG (machine_mode mode, unsigned int regno)
696 {
697 /* In case the MD file explicitly references the frame pointer, have
698 all such references point to the same frame pointer. This is
699 used during frame pointer elimination to distinguish the explicit
700 references to these registers from pseudos that happened to be
701 assigned to them.
702
703 If we have eliminated the frame pointer or arg pointer, we will
704 be using it as a normal register, for example as a spill
705 register. In such cases, we might be accessing it in a mode that
706 is not Pmode and therefore cannot use the pre-allocated rtx.
707
708 Also don't do this when we are making new REGs in reload, since
709 we don't want to get confused with the real pointers. */
710
711 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
712 {
713 if (regno == FRAME_POINTER_REGNUM
714 && (!reload_completed || frame_pointer_needed))
715 return frame_pointer_rtx;
716
717 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
718 && regno == HARD_FRAME_POINTER_REGNUM
719 && (!reload_completed || frame_pointer_needed))
720 return hard_frame_pointer_rtx;
721 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
722 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
723 && regno == ARG_POINTER_REGNUM)
724 return arg_pointer_rtx;
725 #endif
726 #ifdef RETURN_ADDRESS_POINTER_REGNUM
727 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
728 return return_address_pointer_rtx;
729 #endif
730 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
731 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
732 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
733 return pic_offset_table_rtx;
734 if (regno == STACK_POINTER_REGNUM)
735 return stack_pointer_rtx;
736 }
737
738 #if 0
739 /* If the per-function register table has been set up, try to re-use
740 an existing entry in that table to avoid useless generation of RTL.
741
742 This code is disabled for now until we can fix the various backends
743 which depend on having non-shared hard registers in some cases. Long
744 term we want to re-enable this code as it can significantly cut down
745 on the amount of useless RTL that gets generated.
746
747 We'll also need to fix some code that runs after reload that wants to
748 set ORIGINAL_REGNO. */
749
750 if (cfun
751 && cfun->emit
752 && regno_reg_rtx
753 && regno < FIRST_PSEUDO_REGISTER
754 && reg_raw_mode[regno] == mode)
755 return regno_reg_rtx[regno];
756 #endif
757
758 return gen_raw_REG (mode, regno);
759 }
760
761 rtx
762 gen_rtx_MEM (machine_mode mode, rtx addr)
763 {
764 rtx rt = gen_rtx_raw_MEM (mode, addr);
765
766 /* This field is not cleared by the mere allocation of the rtx, so
767 we clear it here. */
768 MEM_ATTRS (rt) = 0;
769
770 return rt;
771 }
772
773 /* Generate a memory referring to non-trapping constant memory. */
774
775 rtx
776 gen_const_mem (machine_mode mode, rtx addr)
777 {
778 rtx mem = gen_rtx_MEM (mode, addr);
779 MEM_READONLY_P (mem) = 1;
780 MEM_NOTRAP_P (mem) = 1;
781 return mem;
782 }
783
784 /* Generate a MEM referring to fixed portions of the frame, e.g., register
785 save areas. */
786
787 rtx
788 gen_frame_mem (machine_mode mode, rtx addr)
789 {
790 rtx mem = gen_rtx_MEM (mode, addr);
791 MEM_NOTRAP_P (mem) = 1;
792 set_mem_alias_set (mem, get_frame_alias_set ());
793 return mem;
794 }
795
796 /* Generate a MEM referring to a temporary use of the stack, not part
797 of the fixed stack frame. For example, something which is pushed
798 by a target splitter. */
799 rtx
800 gen_tmp_stack_mem (machine_mode mode, rtx addr)
801 {
802 rtx mem = gen_rtx_MEM (mode, addr);
803 MEM_NOTRAP_P (mem) = 1;
804 if (!cfun->calls_alloca)
805 set_mem_alias_set (mem, get_frame_alias_set ());
806 return mem;
807 }
808
809 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
810 this construct would be valid, and false otherwise. */
811
812 bool
813 validate_subreg (machine_mode omode, machine_mode imode,
814 const_rtx reg, unsigned int offset)
815 {
816 unsigned int isize = GET_MODE_SIZE (imode);
817 unsigned int osize = GET_MODE_SIZE (omode);
818
819 /* All subregs must be aligned. */
820 if (offset % osize != 0)
821 return false;
822
823 /* The subreg offset cannot be outside the inner object. */
824 if (offset >= isize)
825 return false;
826
827 /* ??? This should not be here. Temporarily continue to allow word_mode
828 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
829 Generally, backends are doing something sketchy but it'll take time to
830 fix them all. */
831 if (omode == word_mode)
832 ;
833 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
834 is the culprit here, and not the backends. */
835 else if (osize >= UNITS_PER_WORD && isize >= osize)
836 ;
837 /* Allow component subregs of complex and vector. Though given the below
838 extraction rules, it's not always clear what that means. */
839 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
840 && GET_MODE_INNER (imode) == omode)
841 ;
842 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
843 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
844 represent this. It's questionable if this ought to be represented at
845 all -- why can't this all be hidden in post-reload splitters that make
846 arbitrarily mode changes to the registers themselves. */
847 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
848 ;
849 /* Subregs involving floating point modes are not allowed to
850 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
851 (subreg:SI (reg:DF) 0) isn't. */
852 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
853 {
854 if (! (isize == osize
855 /* LRA can use subreg to store a floating point value in
856 an integer mode. Although the floating point and the
857 integer modes need the same number of hard registers,
858 the size of floating point mode can be less than the
859 integer mode. LRA also uses subregs for a register
860 should be used in different mode in on insn. */
861 || lra_in_progress))
862 return false;
863 }
864
865 /* Paradoxical subregs must have offset zero. */
866 if (osize > isize)
867 return offset == 0;
868
869 /* This is a normal subreg. Verify that the offset is representable. */
870
871 /* For hard registers, we already have most of these rules collected in
872 subreg_offset_representable_p. */
873 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
874 {
875 unsigned int regno = REGNO (reg);
876
877 #ifdef CANNOT_CHANGE_MODE_CLASS
878 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
879 && GET_MODE_INNER (imode) == omode)
880 ;
881 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
882 return false;
883 #endif
884
885 return subreg_offset_representable_p (regno, imode, offset, omode);
886 }
887
888 /* For pseudo registers, we want most of the same checks. Namely:
889 If the register no larger than a word, the subreg must be lowpart.
890 If the register is larger than a word, the subreg must be the lowpart
891 of a subword. A subreg does *not* perform arbitrary bit extraction.
892 Given that we've already checked mode/offset alignment, we only have
893 to check subword subregs here. */
894 if (osize < UNITS_PER_WORD
895 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
896 {
897 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
898 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
899 if (offset % UNITS_PER_WORD != low_off)
900 return false;
901 }
902 return true;
903 }
904
905 rtx
906 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
907 {
908 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
909 return gen_rtx_raw_SUBREG (mode, reg, offset);
910 }
911
912 /* Generate a SUBREG representing the least-significant part of REG if MODE
913 is smaller than mode of REG, otherwise paradoxical SUBREG. */
914
915 rtx
916 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
917 {
918 machine_mode inmode;
919
920 inmode = GET_MODE (reg);
921 if (inmode == VOIDmode)
922 inmode = mode;
923 return gen_rtx_SUBREG (mode, reg,
924 subreg_lowpart_offset (mode, inmode));
925 }
926
927 rtx
928 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
929 enum var_init_status status)
930 {
931 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
932 PAT_VAR_LOCATION_STATUS (x) = status;
933 return x;
934 }
935 \f
936
937 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
938
939 rtvec
940 gen_rtvec (int n, ...)
941 {
942 int i;
943 rtvec rt_val;
944 va_list p;
945
946 va_start (p, n);
947
948 /* Don't allocate an empty rtvec... */
949 if (n == 0)
950 {
951 va_end (p);
952 return NULL_RTVEC;
953 }
954
955 rt_val = rtvec_alloc (n);
956
957 for (i = 0; i < n; i++)
958 rt_val->elem[i] = va_arg (p, rtx);
959
960 va_end (p);
961 return rt_val;
962 }
963
964 rtvec
965 gen_rtvec_v (int n, rtx *argp)
966 {
967 int i;
968 rtvec rt_val;
969
970 /* Don't allocate an empty rtvec... */
971 if (n == 0)
972 return NULL_RTVEC;
973
974 rt_val = rtvec_alloc (n);
975
976 for (i = 0; i < n; i++)
977 rt_val->elem[i] = *argp++;
978
979 return rt_val;
980 }
981
982 rtvec
983 gen_rtvec_v (int n, rtx_insn **argp)
984 {
985 int i;
986 rtvec rt_val;
987
988 /* Don't allocate an empty rtvec... */
989 if (n == 0)
990 return NULL_RTVEC;
991
992 rt_val = rtvec_alloc (n);
993
994 for (i = 0; i < n; i++)
995 rt_val->elem[i] = *argp++;
996
997 return rt_val;
998 }
999
1000 \f
1001 /* Return the number of bytes between the start of an OUTER_MODE
1002 in-memory value and the start of an INNER_MODE in-memory value,
1003 given that the former is a lowpart of the latter. It may be a
1004 paradoxical lowpart, in which case the offset will be negative
1005 on big-endian targets. */
1006
1007 int
1008 byte_lowpart_offset (machine_mode outer_mode,
1009 machine_mode inner_mode)
1010 {
1011 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1012 return subreg_lowpart_offset (outer_mode, inner_mode);
1013 else
1014 return -subreg_lowpart_offset (inner_mode, outer_mode);
1015 }
1016 \f
1017 /* Generate a REG rtx for a new pseudo register of mode MODE.
1018 This pseudo is assigned the next sequential register number. */
1019
1020 rtx
1021 gen_reg_rtx (machine_mode mode)
1022 {
1023 rtx val;
1024 unsigned int align = GET_MODE_ALIGNMENT (mode);
1025
1026 gcc_assert (can_create_pseudo_p ());
1027
1028 /* If a virtual register with bigger mode alignment is generated,
1029 increase stack alignment estimation because it might be spilled
1030 to stack later. */
1031 if (SUPPORTS_STACK_ALIGNMENT
1032 && crtl->stack_alignment_estimated < align
1033 && !crtl->stack_realign_processed)
1034 {
1035 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1036 if (crtl->stack_alignment_estimated < min_align)
1037 crtl->stack_alignment_estimated = min_align;
1038 }
1039
1040 if (generating_concat_p
1041 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1042 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1043 {
1044 /* For complex modes, don't make a single pseudo.
1045 Instead, make a CONCAT of two pseudos.
1046 This allows noncontiguous allocation of the real and imaginary parts,
1047 which makes much better code. Besides, allocating DCmode
1048 pseudos overstrains reload on some machines like the 386. */
1049 rtx realpart, imagpart;
1050 machine_mode partmode = GET_MODE_INNER (mode);
1051
1052 realpart = gen_reg_rtx (partmode);
1053 imagpart = gen_reg_rtx (partmode);
1054 return gen_rtx_CONCAT (mode, realpart, imagpart);
1055 }
1056
1057 /* Do not call gen_reg_rtx with uninitialized crtl. */
1058 gcc_assert (crtl->emit.regno_pointer_align_length);
1059
1060 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1061 enough to have an element for this pseudo reg number. */
1062
1063 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1064 {
1065 int old_size = crtl->emit.regno_pointer_align_length;
1066 char *tmp;
1067 rtx *new1;
1068
1069 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1070 memset (tmp + old_size, 0, old_size);
1071 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1072
1073 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1074 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1075 regno_reg_rtx = new1;
1076
1077 crtl->emit.regno_pointer_align_length = old_size * 2;
1078 }
1079
1080 val = gen_raw_REG (mode, reg_rtx_no);
1081 regno_reg_rtx[reg_rtx_no++] = val;
1082 return val;
1083 }
1084
1085 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1086
1087 bool
1088 reg_is_parm_p (rtx reg)
1089 {
1090 tree decl;
1091
1092 gcc_assert (REG_P (reg));
1093 decl = REG_EXPR (reg);
1094 return (decl && TREE_CODE (decl) == PARM_DECL);
1095 }
1096
1097 /* Update NEW with the same attributes as REG, but with OFFSET added
1098 to the REG_OFFSET. */
1099
1100 static void
1101 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1102 {
1103 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1104 REG_OFFSET (reg) + offset);
1105 }
1106
1107 /* Generate a register with same attributes as REG, but with OFFSET
1108 added to the REG_OFFSET. */
1109
1110 rtx
1111 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1112 int offset)
1113 {
1114 rtx new_rtx = gen_rtx_REG (mode, regno);
1115
1116 update_reg_offset (new_rtx, reg, offset);
1117 return new_rtx;
1118 }
1119
1120 /* Generate a new pseudo-register with the same attributes as REG, but
1121 with OFFSET added to the REG_OFFSET. */
1122
1123 rtx
1124 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1125 {
1126 rtx new_rtx = gen_reg_rtx (mode);
1127
1128 update_reg_offset (new_rtx, reg, offset);
1129 return new_rtx;
1130 }
1131
1132 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1133 new register is a (possibly paradoxical) lowpart of the old one. */
1134
1135 void
1136 adjust_reg_mode (rtx reg, machine_mode mode)
1137 {
1138 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1139 PUT_MODE (reg, mode);
1140 }
1141
1142 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1143 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1144
1145 void
1146 set_reg_attrs_from_value (rtx reg, rtx x)
1147 {
1148 int offset;
1149 bool can_be_reg_pointer = true;
1150
1151 /* Don't call mark_reg_pointer for incompatible pointer sign
1152 extension. */
1153 while (GET_CODE (x) == SIGN_EXTEND
1154 || GET_CODE (x) == ZERO_EXTEND
1155 || GET_CODE (x) == TRUNCATE
1156 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1157 {
1158 #if defined(POINTERS_EXTEND_UNSIGNED)
1159 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1160 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1161 || (paradoxical_subreg_p (x)
1162 && ! (SUBREG_PROMOTED_VAR_P (x)
1163 && SUBREG_CHECK_PROMOTED_SIGN (x,
1164 POINTERS_EXTEND_UNSIGNED))))
1165 && !targetm.have_ptr_extend ())
1166 can_be_reg_pointer = false;
1167 #endif
1168 x = XEXP (x, 0);
1169 }
1170
1171 /* Hard registers can be reused for multiple purposes within the same
1172 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1173 on them is wrong. */
1174 if (HARD_REGISTER_P (reg))
1175 return;
1176
1177 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1178 if (MEM_P (x))
1179 {
1180 if (MEM_OFFSET_KNOWN_P (x))
1181 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1182 MEM_OFFSET (x) + offset);
1183 if (can_be_reg_pointer && MEM_POINTER (x))
1184 mark_reg_pointer (reg, 0);
1185 }
1186 else if (REG_P (x))
1187 {
1188 if (REG_ATTRS (x))
1189 update_reg_offset (reg, x, offset);
1190 if (can_be_reg_pointer && REG_POINTER (x))
1191 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1192 }
1193 }
1194
1195 /* Generate a REG rtx for a new pseudo register, copying the mode
1196 and attributes from X. */
1197
1198 rtx
1199 gen_reg_rtx_and_attrs (rtx x)
1200 {
1201 rtx reg = gen_reg_rtx (GET_MODE (x));
1202 set_reg_attrs_from_value (reg, x);
1203 return reg;
1204 }
1205
1206 /* Set the register attributes for registers contained in PARM_RTX.
1207 Use needed values from memory attributes of MEM. */
1208
1209 void
1210 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1211 {
1212 if (REG_P (parm_rtx))
1213 set_reg_attrs_from_value (parm_rtx, mem);
1214 else if (GET_CODE (parm_rtx) == PARALLEL)
1215 {
1216 /* Check for a NULL entry in the first slot, used to indicate that the
1217 parameter goes both on the stack and in registers. */
1218 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1219 for (; i < XVECLEN (parm_rtx, 0); i++)
1220 {
1221 rtx x = XVECEXP (parm_rtx, 0, i);
1222 if (REG_P (XEXP (x, 0)))
1223 REG_ATTRS (XEXP (x, 0))
1224 = get_reg_attrs (MEM_EXPR (mem),
1225 INTVAL (XEXP (x, 1)));
1226 }
1227 }
1228 }
1229
1230 /* Set the REG_ATTRS for registers in value X, given that X represents
1231 decl T. */
1232
1233 void
1234 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1235 {
1236 if (!t)
1237 return;
1238 tree tdecl = t;
1239 if (GET_CODE (x) == SUBREG)
1240 {
1241 gcc_assert (subreg_lowpart_p (x));
1242 x = SUBREG_REG (x);
1243 }
1244 if (REG_P (x))
1245 REG_ATTRS (x)
1246 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1247 DECL_P (tdecl)
1248 ? DECL_MODE (tdecl)
1249 : TYPE_MODE (TREE_TYPE (tdecl))));
1250 if (GET_CODE (x) == CONCAT)
1251 {
1252 if (REG_P (XEXP (x, 0)))
1253 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1254 if (REG_P (XEXP (x, 1)))
1255 REG_ATTRS (XEXP (x, 1))
1256 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1257 }
1258 if (GET_CODE (x) == PARALLEL)
1259 {
1260 int i, start;
1261
1262 /* Check for a NULL entry, used to indicate that the parameter goes
1263 both on the stack and in registers. */
1264 if (XEXP (XVECEXP (x, 0, 0), 0))
1265 start = 0;
1266 else
1267 start = 1;
1268
1269 for (i = start; i < XVECLEN (x, 0); i++)
1270 {
1271 rtx y = XVECEXP (x, 0, i);
1272 if (REG_P (XEXP (y, 0)))
1273 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1274 }
1275 }
1276 }
1277
1278 /* Assign the RTX X to declaration T. */
1279
1280 void
1281 set_decl_rtl (tree t, rtx x)
1282 {
1283 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1284 if (x)
1285 set_reg_attrs_for_decl_rtl (t, x);
1286 }
1287
1288 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1289 if the ABI requires the parameter to be passed by reference. */
1290
1291 void
1292 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1293 {
1294 DECL_INCOMING_RTL (t) = x;
1295 if (x && !by_reference_p)
1296 set_reg_attrs_for_decl_rtl (t, x);
1297 }
1298
1299 /* Identify REG (which may be a CONCAT) as a user register. */
1300
1301 void
1302 mark_user_reg (rtx reg)
1303 {
1304 if (GET_CODE (reg) == CONCAT)
1305 {
1306 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1307 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1308 }
1309 else
1310 {
1311 gcc_assert (REG_P (reg));
1312 REG_USERVAR_P (reg) = 1;
1313 }
1314 }
1315
1316 /* Identify REG as a probable pointer register and show its alignment
1317 as ALIGN, if nonzero. */
1318
1319 void
1320 mark_reg_pointer (rtx reg, int align)
1321 {
1322 if (! REG_POINTER (reg))
1323 {
1324 REG_POINTER (reg) = 1;
1325
1326 if (align)
1327 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1328 }
1329 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1330 /* We can no-longer be sure just how aligned this pointer is. */
1331 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1332 }
1333
1334 /* Return 1 plus largest pseudo reg number used in the current function. */
1335
1336 int
1337 max_reg_num (void)
1338 {
1339 return reg_rtx_no;
1340 }
1341
1342 /* Return 1 + the largest label number used so far in the current function. */
1343
1344 int
1345 max_label_num (void)
1346 {
1347 return label_num;
1348 }
1349
1350 /* Return first label number used in this function (if any were used). */
1351
1352 int
1353 get_first_label_num (void)
1354 {
1355 return first_label_num;
1356 }
1357
1358 /* If the rtx for label was created during the expansion of a nested
1359 function, then first_label_num won't include this label number.
1360 Fix this now so that array indices work later. */
1361
1362 void
1363 maybe_set_first_label_num (rtx_code_label *x)
1364 {
1365 if (CODE_LABEL_NUMBER (x) < first_label_num)
1366 first_label_num = CODE_LABEL_NUMBER (x);
1367 }
1368 \f
1369 /* Return a value representing some low-order bits of X, where the number
1370 of low-order bits is given by MODE. Note that no conversion is done
1371 between floating-point and fixed-point values, rather, the bit
1372 representation is returned.
1373
1374 This function handles the cases in common between gen_lowpart, below,
1375 and two variants in cse.c and combine.c. These are the cases that can
1376 be safely handled at all points in the compilation.
1377
1378 If this is not a case we can handle, return 0. */
1379
1380 rtx
1381 gen_lowpart_common (machine_mode mode, rtx x)
1382 {
1383 int msize = GET_MODE_SIZE (mode);
1384 int xsize;
1385 machine_mode innermode;
1386
1387 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1388 so we have to make one up. Yuk. */
1389 innermode = GET_MODE (x);
1390 if (CONST_INT_P (x)
1391 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1392 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1393 else if (innermode == VOIDmode)
1394 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1395
1396 xsize = GET_MODE_SIZE (innermode);
1397
1398 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1399
1400 if (innermode == mode)
1401 return x;
1402
1403 /* MODE must occupy no more words than the mode of X. */
1404 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1405 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1406 return 0;
1407
1408 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1409 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1410 return 0;
1411
1412 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1413 && (GET_MODE_CLASS (mode) == MODE_INT
1414 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1415 {
1416 /* If we are getting the low-order part of something that has been
1417 sign- or zero-extended, we can either just use the object being
1418 extended or make a narrower extension. If we want an even smaller
1419 piece than the size of the object being extended, call ourselves
1420 recursively.
1421
1422 This case is used mostly by combine and cse. */
1423
1424 if (GET_MODE (XEXP (x, 0)) == mode)
1425 return XEXP (x, 0);
1426 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1427 return gen_lowpart_common (mode, XEXP (x, 0));
1428 else if (msize < xsize)
1429 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1430 }
1431 else if (GET_CODE (x) == SUBREG || REG_P (x)
1432 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1433 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1434 return lowpart_subreg (mode, x, innermode);
1435
1436 /* Otherwise, we can't do this. */
1437 return 0;
1438 }
1439 \f
1440 rtx
1441 gen_highpart (machine_mode mode, rtx x)
1442 {
1443 unsigned int msize = GET_MODE_SIZE (mode);
1444 rtx result;
1445
1446 /* This case loses if X is a subreg. To catch bugs early,
1447 complain if an invalid MODE is used even in other cases. */
1448 gcc_assert (msize <= UNITS_PER_WORD
1449 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1450
1451 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1452 subreg_highpart_offset (mode, GET_MODE (x)));
1453 gcc_assert (result);
1454
1455 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1456 the target if we have a MEM. gen_highpart must return a valid operand,
1457 emitting code if necessary to do so. */
1458 if (MEM_P (result))
1459 {
1460 result = validize_mem (result);
1461 gcc_assert (result);
1462 }
1463
1464 return result;
1465 }
1466
1467 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1468 be VOIDmode constant. */
1469 rtx
1470 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1471 {
1472 if (GET_MODE (exp) != VOIDmode)
1473 {
1474 gcc_assert (GET_MODE (exp) == innermode);
1475 return gen_highpart (outermode, exp);
1476 }
1477 return simplify_gen_subreg (outermode, exp, innermode,
1478 subreg_highpart_offset (outermode, innermode));
1479 }
1480
1481 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1482 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1483
1484 unsigned int
1485 subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes)
1486 {
1487 if (outer_bytes > inner_bytes)
1488 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1489 return 0;
1490
1491 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1492 return inner_bytes - outer_bytes;
1493 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1494 return 0;
1495 else
1496 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1497 }
1498
1499 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1500 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1501
1502 unsigned int
1503 subreg_size_highpart_offset (unsigned int outer_bytes,
1504 unsigned int inner_bytes)
1505 {
1506 gcc_assert (inner_bytes >= outer_bytes);
1507
1508 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1509 return 0;
1510 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1511 return inner_bytes - outer_bytes;
1512 else
1513 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1514 (inner_bytes - outer_bytes)
1515 * BITS_PER_UNIT);
1516 }
1517
1518 /* Return 1 iff X, assumed to be a SUBREG,
1519 refers to the least significant part of its containing reg.
1520 If X is not a SUBREG, always return 1 (it is its own low part!). */
1521
1522 int
1523 subreg_lowpart_p (const_rtx x)
1524 {
1525 if (GET_CODE (x) != SUBREG)
1526 return 1;
1527 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1528 return 0;
1529
1530 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1531 == SUBREG_BYTE (x));
1532 }
1533
1534 /* Return true if X is a paradoxical subreg, false otherwise. */
1535 bool
1536 paradoxical_subreg_p (const_rtx x)
1537 {
1538 if (GET_CODE (x) != SUBREG)
1539 return false;
1540 return (GET_MODE_PRECISION (GET_MODE (x))
1541 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1542 }
1543 \f
1544 /* Return subword OFFSET of operand OP.
1545 The word number, OFFSET, is interpreted as the word number starting
1546 at the low-order address. OFFSET 0 is the low-order word if not
1547 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1548
1549 If we cannot extract the required word, we return zero. Otherwise,
1550 an rtx corresponding to the requested word will be returned.
1551
1552 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1553 reload has completed, a valid address will always be returned. After
1554 reload, if a valid address cannot be returned, we return zero.
1555
1556 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1557 it is the responsibility of the caller.
1558
1559 MODE is the mode of OP in case it is a CONST_INT.
1560
1561 ??? This is still rather broken for some cases. The problem for the
1562 moment is that all callers of this thing provide no 'goal mode' to
1563 tell us to work with. This exists because all callers were written
1564 in a word based SUBREG world.
1565 Now use of this function can be deprecated by simplify_subreg in most
1566 cases.
1567 */
1568
1569 rtx
1570 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1571 {
1572 if (mode == VOIDmode)
1573 mode = GET_MODE (op);
1574
1575 gcc_assert (mode != VOIDmode);
1576
1577 /* If OP is narrower than a word, fail. */
1578 if (mode != BLKmode
1579 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1580 return 0;
1581
1582 /* If we want a word outside OP, return zero. */
1583 if (mode != BLKmode
1584 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1585 return const0_rtx;
1586
1587 /* Form a new MEM at the requested address. */
1588 if (MEM_P (op))
1589 {
1590 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1591
1592 if (! validate_address)
1593 return new_rtx;
1594
1595 else if (reload_completed)
1596 {
1597 if (! strict_memory_address_addr_space_p (word_mode,
1598 XEXP (new_rtx, 0),
1599 MEM_ADDR_SPACE (op)))
1600 return 0;
1601 }
1602 else
1603 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1604 }
1605
1606 /* Rest can be handled by simplify_subreg. */
1607 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1608 }
1609
1610 /* Similar to `operand_subword', but never return 0. If we can't
1611 extract the required subword, put OP into a register and try again.
1612 The second attempt must succeed. We always validate the address in
1613 this case.
1614
1615 MODE is the mode of OP, in case it is CONST_INT. */
1616
1617 rtx
1618 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1619 {
1620 rtx result = operand_subword (op, offset, 1, mode);
1621
1622 if (result)
1623 return result;
1624
1625 if (mode != BLKmode && mode != VOIDmode)
1626 {
1627 /* If this is a register which can not be accessed by words, copy it
1628 to a pseudo register. */
1629 if (REG_P (op))
1630 op = copy_to_reg (op);
1631 else
1632 op = force_reg (mode, op);
1633 }
1634
1635 result = operand_subword (op, offset, 1, mode);
1636 gcc_assert (result);
1637
1638 return result;
1639 }
1640 \f
1641 /* Returns 1 if both MEM_EXPR can be considered equal
1642 and 0 otherwise. */
1643
1644 int
1645 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1646 {
1647 if (expr1 == expr2)
1648 return 1;
1649
1650 if (! expr1 || ! expr2)
1651 return 0;
1652
1653 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1654 return 0;
1655
1656 return operand_equal_p (expr1, expr2, 0);
1657 }
1658
1659 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1660 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1661 -1 if not known. */
1662
1663 int
1664 get_mem_align_offset (rtx mem, unsigned int align)
1665 {
1666 tree expr;
1667 unsigned HOST_WIDE_INT offset;
1668
1669 /* This function can't use
1670 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1671 || (MAX (MEM_ALIGN (mem),
1672 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1673 < align))
1674 return -1;
1675 else
1676 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1677 for two reasons:
1678 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1679 for <variable>. get_inner_reference doesn't handle it and
1680 even if it did, the alignment in that case needs to be determined
1681 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1682 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1683 isn't sufficiently aligned, the object it is in might be. */
1684 gcc_assert (MEM_P (mem));
1685 expr = MEM_EXPR (mem);
1686 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1687 return -1;
1688
1689 offset = MEM_OFFSET (mem);
1690 if (DECL_P (expr))
1691 {
1692 if (DECL_ALIGN (expr) < align)
1693 return -1;
1694 }
1695 else if (INDIRECT_REF_P (expr))
1696 {
1697 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1698 return -1;
1699 }
1700 else if (TREE_CODE (expr) == COMPONENT_REF)
1701 {
1702 while (1)
1703 {
1704 tree inner = TREE_OPERAND (expr, 0);
1705 tree field = TREE_OPERAND (expr, 1);
1706 tree byte_offset = component_ref_field_offset (expr);
1707 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1708
1709 if (!byte_offset
1710 || !tree_fits_uhwi_p (byte_offset)
1711 || !tree_fits_uhwi_p (bit_offset))
1712 return -1;
1713
1714 offset += tree_to_uhwi (byte_offset);
1715 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1716
1717 if (inner == NULL_TREE)
1718 {
1719 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1720 < (unsigned int) align)
1721 return -1;
1722 break;
1723 }
1724 else if (DECL_P (inner))
1725 {
1726 if (DECL_ALIGN (inner) < align)
1727 return -1;
1728 break;
1729 }
1730 else if (TREE_CODE (inner) != COMPONENT_REF)
1731 return -1;
1732 expr = inner;
1733 }
1734 }
1735 else
1736 return -1;
1737
1738 return offset & ((align / BITS_PER_UNIT) - 1);
1739 }
1740
1741 /* Given REF (a MEM) and T, either the type of X or the expression
1742 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1743 if we are making a new object of this type. BITPOS is nonzero if
1744 there is an offset outstanding on T that will be applied later. */
1745
1746 void
1747 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1748 HOST_WIDE_INT bitpos)
1749 {
1750 HOST_WIDE_INT apply_bitpos = 0;
1751 tree type;
1752 struct mem_attrs attrs, *defattrs, *refattrs;
1753 addr_space_t as;
1754
1755 /* It can happen that type_for_mode was given a mode for which there
1756 is no language-level type. In which case it returns NULL, which
1757 we can see here. */
1758 if (t == NULL_TREE)
1759 return;
1760
1761 type = TYPE_P (t) ? t : TREE_TYPE (t);
1762 if (type == error_mark_node)
1763 return;
1764
1765 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1766 wrong answer, as it assumes that DECL_RTL already has the right alias
1767 info. Callers should not set DECL_RTL until after the call to
1768 set_mem_attributes. */
1769 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1770
1771 memset (&attrs, 0, sizeof (attrs));
1772
1773 /* Get the alias set from the expression or type (perhaps using a
1774 front-end routine) and use it. */
1775 attrs.alias = get_alias_set (t);
1776
1777 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1778 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1779
1780 /* Default values from pre-existing memory attributes if present. */
1781 refattrs = MEM_ATTRS (ref);
1782 if (refattrs)
1783 {
1784 /* ??? Can this ever happen? Calling this routine on a MEM that
1785 already carries memory attributes should probably be invalid. */
1786 attrs.expr = refattrs->expr;
1787 attrs.offset_known_p = refattrs->offset_known_p;
1788 attrs.offset = refattrs->offset;
1789 attrs.size_known_p = refattrs->size_known_p;
1790 attrs.size = refattrs->size;
1791 attrs.align = refattrs->align;
1792 }
1793
1794 /* Otherwise, default values from the mode of the MEM reference. */
1795 else
1796 {
1797 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1798 gcc_assert (!defattrs->expr);
1799 gcc_assert (!defattrs->offset_known_p);
1800
1801 /* Respect mode size. */
1802 attrs.size_known_p = defattrs->size_known_p;
1803 attrs.size = defattrs->size;
1804 /* ??? Is this really necessary? We probably should always get
1805 the size from the type below. */
1806
1807 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1808 if T is an object, always compute the object alignment below. */
1809 if (TYPE_P (t))
1810 attrs.align = defattrs->align;
1811 else
1812 attrs.align = BITS_PER_UNIT;
1813 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1814 e.g. if the type carries an alignment attribute. Should we be
1815 able to simply always use TYPE_ALIGN? */
1816 }
1817
1818 /* We can set the alignment from the type if we are making an object or if
1819 this is an INDIRECT_REF. */
1820 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1821 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1822
1823 /* If the size is known, we can set that. */
1824 tree new_size = TYPE_SIZE_UNIT (type);
1825
1826 /* The address-space is that of the type. */
1827 as = TYPE_ADDR_SPACE (type);
1828
1829 /* If T is not a type, we may be able to deduce some more information about
1830 the expression. */
1831 if (! TYPE_P (t))
1832 {
1833 tree base;
1834
1835 if (TREE_THIS_VOLATILE (t))
1836 MEM_VOLATILE_P (ref) = 1;
1837
1838 /* Now remove any conversions: they don't change what the underlying
1839 object is. Likewise for SAVE_EXPR. */
1840 while (CONVERT_EXPR_P (t)
1841 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1842 || TREE_CODE (t) == SAVE_EXPR)
1843 t = TREE_OPERAND (t, 0);
1844
1845 /* Note whether this expression can trap. */
1846 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1847
1848 base = get_base_address (t);
1849 if (base)
1850 {
1851 if (DECL_P (base)
1852 && TREE_READONLY (base)
1853 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1854 && !TREE_THIS_VOLATILE (base))
1855 MEM_READONLY_P (ref) = 1;
1856
1857 /* Mark static const strings readonly as well. */
1858 if (TREE_CODE (base) == STRING_CST
1859 && TREE_READONLY (base)
1860 && TREE_STATIC (base))
1861 MEM_READONLY_P (ref) = 1;
1862
1863 /* Address-space information is on the base object. */
1864 if (TREE_CODE (base) == MEM_REF
1865 || TREE_CODE (base) == TARGET_MEM_REF)
1866 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1867 0))));
1868 else
1869 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1870 }
1871
1872 /* If this expression uses it's parent's alias set, mark it such
1873 that we won't change it. */
1874 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1875 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1876
1877 /* If this is a decl, set the attributes of the MEM from it. */
1878 if (DECL_P (t))
1879 {
1880 attrs.expr = t;
1881 attrs.offset_known_p = true;
1882 attrs.offset = 0;
1883 apply_bitpos = bitpos;
1884 new_size = DECL_SIZE_UNIT (t);
1885 }
1886
1887 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1888 else if (CONSTANT_CLASS_P (t))
1889 ;
1890
1891 /* If this is a field reference, record it. */
1892 else if (TREE_CODE (t) == COMPONENT_REF)
1893 {
1894 attrs.expr = t;
1895 attrs.offset_known_p = true;
1896 attrs.offset = 0;
1897 apply_bitpos = bitpos;
1898 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1899 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1900 }
1901
1902 /* If this is an array reference, look for an outer field reference. */
1903 else if (TREE_CODE (t) == ARRAY_REF)
1904 {
1905 tree off_tree = size_zero_node;
1906 /* We can't modify t, because we use it at the end of the
1907 function. */
1908 tree t2 = t;
1909
1910 do
1911 {
1912 tree index = TREE_OPERAND (t2, 1);
1913 tree low_bound = array_ref_low_bound (t2);
1914 tree unit_size = array_ref_element_size (t2);
1915
1916 /* We assume all arrays have sizes that are a multiple of a byte.
1917 First subtract the lower bound, if any, in the type of the
1918 index, then convert to sizetype and multiply by the size of
1919 the array element. */
1920 if (! integer_zerop (low_bound))
1921 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1922 index, low_bound);
1923
1924 off_tree = size_binop (PLUS_EXPR,
1925 size_binop (MULT_EXPR,
1926 fold_convert (sizetype,
1927 index),
1928 unit_size),
1929 off_tree);
1930 t2 = TREE_OPERAND (t2, 0);
1931 }
1932 while (TREE_CODE (t2) == ARRAY_REF);
1933
1934 if (DECL_P (t2)
1935 || TREE_CODE (t2) == COMPONENT_REF)
1936 {
1937 attrs.expr = t2;
1938 attrs.offset_known_p = false;
1939 if (tree_fits_uhwi_p (off_tree))
1940 {
1941 attrs.offset_known_p = true;
1942 attrs.offset = tree_to_uhwi (off_tree);
1943 apply_bitpos = bitpos;
1944 }
1945 }
1946 /* Else do not record a MEM_EXPR. */
1947 }
1948
1949 /* If this is an indirect reference, record it. */
1950 else if (TREE_CODE (t) == MEM_REF
1951 || TREE_CODE (t) == TARGET_MEM_REF)
1952 {
1953 attrs.expr = t;
1954 attrs.offset_known_p = true;
1955 attrs.offset = 0;
1956 apply_bitpos = bitpos;
1957 }
1958
1959 /* Compute the alignment. */
1960 unsigned int obj_align;
1961 unsigned HOST_WIDE_INT obj_bitpos;
1962 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1963 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1964 if (obj_bitpos != 0)
1965 obj_align = least_bit_hwi (obj_bitpos);
1966 attrs.align = MAX (attrs.align, obj_align);
1967 }
1968
1969 if (tree_fits_uhwi_p (new_size))
1970 {
1971 attrs.size_known_p = true;
1972 attrs.size = tree_to_uhwi (new_size);
1973 }
1974
1975 /* If we modified OFFSET based on T, then subtract the outstanding
1976 bit position offset. Similarly, increase the size of the accessed
1977 object to contain the negative offset. */
1978 if (apply_bitpos)
1979 {
1980 gcc_assert (attrs.offset_known_p);
1981 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1982 if (attrs.size_known_p)
1983 attrs.size += apply_bitpos / BITS_PER_UNIT;
1984 }
1985
1986 /* Now set the attributes we computed above. */
1987 attrs.addrspace = as;
1988 set_mem_attrs (ref, &attrs);
1989 }
1990
1991 void
1992 set_mem_attributes (rtx ref, tree t, int objectp)
1993 {
1994 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1995 }
1996
1997 /* Set the alias set of MEM to SET. */
1998
1999 void
2000 set_mem_alias_set (rtx mem, alias_set_type set)
2001 {
2002 struct mem_attrs attrs;
2003
2004 /* If the new and old alias sets don't conflict, something is wrong. */
2005 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2006 attrs = *get_mem_attrs (mem);
2007 attrs.alias = set;
2008 set_mem_attrs (mem, &attrs);
2009 }
2010
2011 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2012
2013 void
2014 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2015 {
2016 struct mem_attrs attrs;
2017
2018 attrs = *get_mem_attrs (mem);
2019 attrs.addrspace = addrspace;
2020 set_mem_attrs (mem, &attrs);
2021 }
2022
2023 /* Set the alignment of MEM to ALIGN bits. */
2024
2025 void
2026 set_mem_align (rtx mem, unsigned int align)
2027 {
2028 struct mem_attrs attrs;
2029
2030 attrs = *get_mem_attrs (mem);
2031 attrs.align = align;
2032 set_mem_attrs (mem, &attrs);
2033 }
2034
2035 /* Set the expr for MEM to EXPR. */
2036
2037 void
2038 set_mem_expr (rtx mem, tree expr)
2039 {
2040 struct mem_attrs attrs;
2041
2042 attrs = *get_mem_attrs (mem);
2043 attrs.expr = expr;
2044 set_mem_attrs (mem, &attrs);
2045 }
2046
2047 /* Set the offset of MEM to OFFSET. */
2048
2049 void
2050 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2051 {
2052 struct mem_attrs attrs;
2053
2054 attrs = *get_mem_attrs (mem);
2055 attrs.offset_known_p = true;
2056 attrs.offset = offset;
2057 set_mem_attrs (mem, &attrs);
2058 }
2059
2060 /* Clear the offset of MEM. */
2061
2062 void
2063 clear_mem_offset (rtx mem)
2064 {
2065 struct mem_attrs attrs;
2066
2067 attrs = *get_mem_attrs (mem);
2068 attrs.offset_known_p = false;
2069 set_mem_attrs (mem, &attrs);
2070 }
2071
2072 /* Set the size of MEM to SIZE. */
2073
2074 void
2075 set_mem_size (rtx mem, HOST_WIDE_INT size)
2076 {
2077 struct mem_attrs attrs;
2078
2079 attrs = *get_mem_attrs (mem);
2080 attrs.size_known_p = true;
2081 attrs.size = size;
2082 set_mem_attrs (mem, &attrs);
2083 }
2084
2085 /* Clear the size of MEM. */
2086
2087 void
2088 clear_mem_size (rtx mem)
2089 {
2090 struct mem_attrs attrs;
2091
2092 attrs = *get_mem_attrs (mem);
2093 attrs.size_known_p = false;
2094 set_mem_attrs (mem, &attrs);
2095 }
2096 \f
2097 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2098 and its address changed to ADDR. (VOIDmode means don't change the mode.
2099 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2100 returned memory location is required to be valid. INPLACE is true if any
2101 changes can be made directly to MEMREF or false if MEMREF must be treated
2102 as immutable.
2103
2104 The memory attributes are not changed. */
2105
2106 static rtx
2107 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2108 bool inplace)
2109 {
2110 addr_space_t as;
2111 rtx new_rtx;
2112
2113 gcc_assert (MEM_P (memref));
2114 as = MEM_ADDR_SPACE (memref);
2115 if (mode == VOIDmode)
2116 mode = GET_MODE (memref);
2117 if (addr == 0)
2118 addr = XEXP (memref, 0);
2119 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2120 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2121 return memref;
2122
2123 /* Don't validate address for LRA. LRA can make the address valid
2124 by itself in most efficient way. */
2125 if (validate && !lra_in_progress)
2126 {
2127 if (reload_in_progress || reload_completed)
2128 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2129 else
2130 addr = memory_address_addr_space (mode, addr, as);
2131 }
2132
2133 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2134 return memref;
2135
2136 if (inplace)
2137 {
2138 XEXP (memref, 0) = addr;
2139 return memref;
2140 }
2141
2142 new_rtx = gen_rtx_MEM (mode, addr);
2143 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2144 return new_rtx;
2145 }
2146
2147 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2148 way we are changing MEMREF, so we only preserve the alias set. */
2149
2150 rtx
2151 change_address (rtx memref, machine_mode mode, rtx addr)
2152 {
2153 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2154 machine_mode mmode = GET_MODE (new_rtx);
2155 struct mem_attrs attrs, *defattrs;
2156
2157 attrs = *get_mem_attrs (memref);
2158 defattrs = mode_mem_attrs[(int) mmode];
2159 attrs.expr = NULL_TREE;
2160 attrs.offset_known_p = false;
2161 attrs.size_known_p = defattrs->size_known_p;
2162 attrs.size = defattrs->size;
2163 attrs.align = defattrs->align;
2164
2165 /* If there are no changes, just return the original memory reference. */
2166 if (new_rtx == memref)
2167 {
2168 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2169 return new_rtx;
2170
2171 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2172 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2173 }
2174
2175 set_mem_attrs (new_rtx, &attrs);
2176 return new_rtx;
2177 }
2178
2179 /* Return a memory reference like MEMREF, but with its mode changed
2180 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2181 nonzero, the memory address is forced to be valid.
2182 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2183 and the caller is responsible for adjusting MEMREF base register.
2184 If ADJUST_OBJECT is zero, the underlying object associated with the
2185 memory reference is left unchanged and the caller is responsible for
2186 dealing with it. Otherwise, if the new memory reference is outside
2187 the underlying object, even partially, then the object is dropped.
2188 SIZE, if nonzero, is the size of an access in cases where MODE
2189 has no inherent size. */
2190
2191 rtx
2192 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2193 int validate, int adjust_address, int adjust_object,
2194 HOST_WIDE_INT size)
2195 {
2196 rtx addr = XEXP (memref, 0);
2197 rtx new_rtx;
2198 machine_mode address_mode;
2199 int pbits;
2200 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2201 unsigned HOST_WIDE_INT max_align;
2202 #ifdef POINTERS_EXTEND_UNSIGNED
2203 machine_mode pointer_mode
2204 = targetm.addr_space.pointer_mode (attrs.addrspace);
2205 #endif
2206
2207 /* VOIDmode means no mode change for change_address_1. */
2208 if (mode == VOIDmode)
2209 mode = GET_MODE (memref);
2210
2211 /* Take the size of non-BLKmode accesses from the mode. */
2212 defattrs = mode_mem_attrs[(int) mode];
2213 if (defattrs->size_known_p)
2214 size = defattrs->size;
2215
2216 /* If there are no changes, just return the original memory reference. */
2217 if (mode == GET_MODE (memref) && !offset
2218 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2219 && (!validate || memory_address_addr_space_p (mode, addr,
2220 attrs.addrspace)))
2221 return memref;
2222
2223 /* ??? Prefer to create garbage instead of creating shared rtl.
2224 This may happen even if offset is nonzero -- consider
2225 (plus (plus reg reg) const_int) -- so do this always. */
2226 addr = copy_rtx (addr);
2227
2228 /* Convert a possibly large offset to a signed value within the
2229 range of the target address space. */
2230 address_mode = get_address_mode (memref);
2231 pbits = GET_MODE_BITSIZE (address_mode);
2232 if (HOST_BITS_PER_WIDE_INT > pbits)
2233 {
2234 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2235 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2236 >> shift);
2237 }
2238
2239 if (adjust_address)
2240 {
2241 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2242 object, we can merge it into the LO_SUM. */
2243 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2244 && offset >= 0
2245 && (unsigned HOST_WIDE_INT) offset
2246 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2247 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2248 plus_constant (address_mode,
2249 XEXP (addr, 1), offset));
2250 #ifdef POINTERS_EXTEND_UNSIGNED
2251 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2252 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2253 the fact that pointers are not allowed to overflow. */
2254 else if (POINTERS_EXTEND_UNSIGNED > 0
2255 && GET_CODE (addr) == ZERO_EXTEND
2256 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2257 && trunc_int_for_mode (offset, pointer_mode) == offset)
2258 addr = gen_rtx_ZERO_EXTEND (address_mode,
2259 plus_constant (pointer_mode,
2260 XEXP (addr, 0), offset));
2261 #endif
2262 else
2263 addr = plus_constant (address_mode, addr, offset);
2264 }
2265
2266 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2267
2268 /* If the address is a REG, change_address_1 rightfully returns memref,
2269 but this would destroy memref's MEM_ATTRS. */
2270 if (new_rtx == memref && offset != 0)
2271 new_rtx = copy_rtx (new_rtx);
2272
2273 /* Conservatively drop the object if we don't know where we start from. */
2274 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2275 {
2276 attrs.expr = NULL_TREE;
2277 attrs.alias = 0;
2278 }
2279
2280 /* Compute the new values of the memory attributes due to this adjustment.
2281 We add the offsets and update the alignment. */
2282 if (attrs.offset_known_p)
2283 {
2284 attrs.offset += offset;
2285
2286 /* Drop the object if the new left end is not within its bounds. */
2287 if (adjust_object && attrs.offset < 0)
2288 {
2289 attrs.expr = NULL_TREE;
2290 attrs.alias = 0;
2291 }
2292 }
2293
2294 /* Compute the new alignment by taking the MIN of the alignment and the
2295 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2296 if zero. */
2297 if (offset != 0)
2298 {
2299 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
2300 attrs.align = MIN (attrs.align, max_align);
2301 }
2302
2303 if (size)
2304 {
2305 /* Drop the object if the new right end is not within its bounds. */
2306 if (adjust_object && (offset + size) > attrs.size)
2307 {
2308 attrs.expr = NULL_TREE;
2309 attrs.alias = 0;
2310 }
2311 attrs.size_known_p = true;
2312 attrs.size = size;
2313 }
2314 else if (attrs.size_known_p)
2315 {
2316 gcc_assert (!adjust_object);
2317 attrs.size -= offset;
2318 /* ??? The store_by_pieces machinery generates negative sizes,
2319 so don't assert for that here. */
2320 }
2321
2322 set_mem_attrs (new_rtx, &attrs);
2323
2324 return new_rtx;
2325 }
2326
2327 /* Return a memory reference like MEMREF, but with its mode changed
2328 to MODE and its address changed to ADDR, which is assumed to be
2329 MEMREF offset by OFFSET bytes. If VALIDATE is
2330 nonzero, the memory address is forced to be valid. */
2331
2332 rtx
2333 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2334 HOST_WIDE_INT offset, int validate)
2335 {
2336 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2337 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2338 }
2339
2340 /* Return a memory reference like MEMREF, but whose address is changed by
2341 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2342 known to be in OFFSET (possibly 1). */
2343
2344 rtx
2345 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2346 {
2347 rtx new_rtx, addr = XEXP (memref, 0);
2348 machine_mode address_mode;
2349 struct mem_attrs attrs, *defattrs;
2350
2351 attrs = *get_mem_attrs (memref);
2352 address_mode = get_address_mode (memref);
2353 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2354
2355 /* At this point we don't know _why_ the address is invalid. It
2356 could have secondary memory references, multiplies or anything.
2357
2358 However, if we did go and rearrange things, we can wind up not
2359 being able to recognize the magic around pic_offset_table_rtx.
2360 This stuff is fragile, and is yet another example of why it is
2361 bad to expose PIC machinery too early. */
2362 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2363 attrs.addrspace)
2364 && GET_CODE (addr) == PLUS
2365 && XEXP (addr, 0) == pic_offset_table_rtx)
2366 {
2367 addr = force_reg (GET_MODE (addr), addr);
2368 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2369 }
2370
2371 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2372 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2373
2374 /* If there are no changes, just return the original memory reference. */
2375 if (new_rtx == memref)
2376 return new_rtx;
2377
2378 /* Update the alignment to reflect the offset. Reset the offset, which
2379 we don't know. */
2380 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2381 attrs.offset_known_p = false;
2382 attrs.size_known_p = defattrs->size_known_p;
2383 attrs.size = defattrs->size;
2384 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2385 set_mem_attrs (new_rtx, &attrs);
2386 return new_rtx;
2387 }
2388
2389 /* Return a memory reference like MEMREF, but with its address changed to
2390 ADDR. The caller is asserting that the actual piece of memory pointed
2391 to is the same, just the form of the address is being changed, such as
2392 by putting something into a register. INPLACE is true if any changes
2393 can be made directly to MEMREF or false if MEMREF must be treated as
2394 immutable. */
2395
2396 rtx
2397 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2398 {
2399 /* change_address_1 copies the memory attribute structure without change
2400 and that's exactly what we want here. */
2401 update_temp_slot_address (XEXP (memref, 0), addr);
2402 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2403 }
2404
2405 /* Likewise, but the reference is not required to be valid. */
2406
2407 rtx
2408 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2409 {
2410 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2411 }
2412
2413 /* Return a memory reference like MEMREF, but with its mode widened to
2414 MODE and offset by OFFSET. This would be used by targets that e.g.
2415 cannot issue QImode memory operations and have to use SImode memory
2416 operations plus masking logic. */
2417
2418 rtx
2419 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2420 {
2421 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2422 struct mem_attrs attrs;
2423 unsigned int size = GET_MODE_SIZE (mode);
2424
2425 /* If there are no changes, just return the original memory reference. */
2426 if (new_rtx == memref)
2427 return new_rtx;
2428
2429 attrs = *get_mem_attrs (new_rtx);
2430
2431 /* If we don't know what offset we were at within the expression, then
2432 we can't know if we've overstepped the bounds. */
2433 if (! attrs.offset_known_p)
2434 attrs.expr = NULL_TREE;
2435
2436 while (attrs.expr)
2437 {
2438 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2439 {
2440 tree field = TREE_OPERAND (attrs.expr, 1);
2441 tree offset = component_ref_field_offset (attrs.expr);
2442
2443 if (! DECL_SIZE_UNIT (field))
2444 {
2445 attrs.expr = NULL_TREE;
2446 break;
2447 }
2448
2449 /* Is the field at least as large as the access? If so, ok,
2450 otherwise strip back to the containing structure. */
2451 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2452 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2453 && attrs.offset >= 0)
2454 break;
2455
2456 if (! tree_fits_uhwi_p (offset))
2457 {
2458 attrs.expr = NULL_TREE;
2459 break;
2460 }
2461
2462 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2463 attrs.offset += tree_to_uhwi (offset);
2464 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2465 / BITS_PER_UNIT);
2466 }
2467 /* Similarly for the decl. */
2468 else if (DECL_P (attrs.expr)
2469 && DECL_SIZE_UNIT (attrs.expr)
2470 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2471 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2472 && (! attrs.offset_known_p || attrs.offset >= 0))
2473 break;
2474 else
2475 {
2476 /* The widened memory access overflows the expression, which means
2477 that it could alias another expression. Zap it. */
2478 attrs.expr = NULL_TREE;
2479 break;
2480 }
2481 }
2482
2483 if (! attrs.expr)
2484 attrs.offset_known_p = false;
2485
2486 /* The widened memory may alias other stuff, so zap the alias set. */
2487 /* ??? Maybe use get_alias_set on any remaining expression. */
2488 attrs.alias = 0;
2489 attrs.size_known_p = true;
2490 attrs.size = size;
2491 set_mem_attrs (new_rtx, &attrs);
2492 return new_rtx;
2493 }
2494 \f
2495 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2496 static GTY(()) tree spill_slot_decl;
2497
2498 tree
2499 get_spill_slot_decl (bool force_build_p)
2500 {
2501 tree d = spill_slot_decl;
2502 rtx rd;
2503 struct mem_attrs attrs;
2504
2505 if (d || !force_build_p)
2506 return d;
2507
2508 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2509 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2510 DECL_ARTIFICIAL (d) = 1;
2511 DECL_IGNORED_P (d) = 1;
2512 TREE_USED (d) = 1;
2513 spill_slot_decl = d;
2514
2515 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2516 MEM_NOTRAP_P (rd) = 1;
2517 attrs = *mode_mem_attrs[(int) BLKmode];
2518 attrs.alias = new_alias_set ();
2519 attrs.expr = d;
2520 set_mem_attrs (rd, &attrs);
2521 SET_DECL_RTL (d, rd);
2522
2523 return d;
2524 }
2525
2526 /* Given MEM, a result from assign_stack_local, fill in the memory
2527 attributes as appropriate for a register allocator spill slot.
2528 These slots are not aliasable by other memory. We arrange for
2529 them all to use a single MEM_EXPR, so that the aliasing code can
2530 work properly in the case of shared spill slots. */
2531
2532 void
2533 set_mem_attrs_for_spill (rtx mem)
2534 {
2535 struct mem_attrs attrs;
2536 rtx addr;
2537
2538 attrs = *get_mem_attrs (mem);
2539 attrs.expr = get_spill_slot_decl (true);
2540 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2541 attrs.addrspace = ADDR_SPACE_GENERIC;
2542
2543 /* We expect the incoming memory to be of the form:
2544 (mem:MODE (plus (reg sfp) (const_int offset)))
2545 with perhaps the plus missing for offset = 0. */
2546 addr = XEXP (mem, 0);
2547 attrs.offset_known_p = true;
2548 attrs.offset = 0;
2549 if (GET_CODE (addr) == PLUS
2550 && CONST_INT_P (XEXP (addr, 1)))
2551 attrs.offset = INTVAL (XEXP (addr, 1));
2552
2553 set_mem_attrs (mem, &attrs);
2554 MEM_NOTRAP_P (mem) = 1;
2555 }
2556 \f
2557 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2558
2559 rtx_code_label *
2560 gen_label_rtx (void)
2561 {
2562 return as_a <rtx_code_label *> (
2563 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2564 NULL, label_num++, NULL));
2565 }
2566 \f
2567 /* For procedure integration. */
2568
2569 /* Install new pointers to the first and last insns in the chain.
2570 Also, set cur_insn_uid to one higher than the last in use.
2571 Used for an inline-procedure after copying the insn chain. */
2572
2573 void
2574 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2575 {
2576 rtx_insn *insn;
2577
2578 set_first_insn (first);
2579 set_last_insn (last);
2580 cur_insn_uid = 0;
2581
2582 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2583 {
2584 int debug_count = 0;
2585
2586 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2587 cur_debug_insn_uid = 0;
2588
2589 for (insn = first; insn; insn = NEXT_INSN (insn))
2590 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2591 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2592 else
2593 {
2594 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2595 if (DEBUG_INSN_P (insn))
2596 debug_count++;
2597 }
2598
2599 if (debug_count)
2600 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2601 else
2602 cur_debug_insn_uid++;
2603 }
2604 else
2605 for (insn = first; insn; insn = NEXT_INSN (insn))
2606 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2607
2608 cur_insn_uid++;
2609 }
2610 \f
2611 /* Go through all the RTL insn bodies and copy any invalid shared
2612 structure. This routine should only be called once. */
2613
2614 static void
2615 unshare_all_rtl_1 (rtx_insn *insn)
2616 {
2617 /* Unshare just about everything else. */
2618 unshare_all_rtl_in_chain (insn);
2619
2620 /* Make sure the addresses of stack slots found outside the insn chain
2621 (such as, in DECL_RTL of a variable) are not shared
2622 with the insn chain.
2623
2624 This special care is necessary when the stack slot MEM does not
2625 actually appear in the insn chain. If it does appear, its address
2626 is unshared from all else at that point. */
2627 unsigned int i;
2628 rtx temp;
2629 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2630 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2631 }
2632
2633 /* Go through all the RTL insn bodies and copy any invalid shared
2634 structure, again. This is a fairly expensive thing to do so it
2635 should be done sparingly. */
2636
2637 void
2638 unshare_all_rtl_again (rtx_insn *insn)
2639 {
2640 rtx_insn *p;
2641 tree decl;
2642
2643 for (p = insn; p; p = NEXT_INSN (p))
2644 if (INSN_P (p))
2645 {
2646 reset_used_flags (PATTERN (p));
2647 reset_used_flags (REG_NOTES (p));
2648 if (CALL_P (p))
2649 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2650 }
2651
2652 /* Make sure that virtual stack slots are not shared. */
2653 set_used_decls (DECL_INITIAL (cfun->decl));
2654
2655 /* Make sure that virtual parameters are not shared. */
2656 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2657 set_used_flags (DECL_RTL (decl));
2658
2659 rtx temp;
2660 unsigned int i;
2661 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2662 reset_used_flags (temp);
2663
2664 unshare_all_rtl_1 (insn);
2665 }
2666
2667 unsigned int
2668 unshare_all_rtl (void)
2669 {
2670 unshare_all_rtl_1 (get_insns ());
2671
2672 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2673 {
2674 if (DECL_RTL_SET_P (decl))
2675 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2676 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2677 }
2678
2679 return 0;
2680 }
2681
2682
2683 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2684 Recursively does the same for subexpressions. */
2685
2686 static void
2687 verify_rtx_sharing (rtx orig, rtx insn)
2688 {
2689 rtx x = orig;
2690 int i;
2691 enum rtx_code code;
2692 const char *format_ptr;
2693
2694 if (x == 0)
2695 return;
2696
2697 code = GET_CODE (x);
2698
2699 /* These types may be freely shared. */
2700
2701 switch (code)
2702 {
2703 case REG:
2704 case DEBUG_EXPR:
2705 case VALUE:
2706 CASE_CONST_ANY:
2707 case SYMBOL_REF:
2708 case LABEL_REF:
2709 case CODE_LABEL:
2710 case PC:
2711 case CC0:
2712 case RETURN:
2713 case SIMPLE_RETURN:
2714 case SCRATCH:
2715 /* SCRATCH must be shared because they represent distinct values. */
2716 return;
2717 case CLOBBER:
2718 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2719 clobbers or clobbers of hard registers that originated as pseudos.
2720 This is needed to allow safe register renaming. */
2721 if (REG_P (XEXP (x, 0))
2722 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2723 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2724 return;
2725 break;
2726
2727 case CONST:
2728 if (shared_const_p (orig))
2729 return;
2730 break;
2731
2732 case MEM:
2733 /* A MEM is allowed to be shared if its address is constant. */
2734 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2735 || reload_completed || reload_in_progress)
2736 return;
2737
2738 break;
2739
2740 default:
2741 break;
2742 }
2743
2744 /* This rtx may not be shared. If it has already been seen,
2745 replace it with a copy of itself. */
2746 if (flag_checking && RTX_FLAG (x, used))
2747 {
2748 error ("invalid rtl sharing found in the insn");
2749 debug_rtx (insn);
2750 error ("shared rtx");
2751 debug_rtx (x);
2752 internal_error ("internal consistency failure");
2753 }
2754 gcc_assert (!RTX_FLAG (x, used));
2755
2756 RTX_FLAG (x, used) = 1;
2757
2758 /* Now scan the subexpressions recursively. */
2759
2760 format_ptr = GET_RTX_FORMAT (code);
2761
2762 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2763 {
2764 switch (*format_ptr++)
2765 {
2766 case 'e':
2767 verify_rtx_sharing (XEXP (x, i), insn);
2768 break;
2769
2770 case 'E':
2771 if (XVEC (x, i) != NULL)
2772 {
2773 int j;
2774 int len = XVECLEN (x, i);
2775
2776 for (j = 0; j < len; j++)
2777 {
2778 /* We allow sharing of ASM_OPERANDS inside single
2779 instruction. */
2780 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2781 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2782 == ASM_OPERANDS))
2783 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2784 else
2785 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2786 }
2787 }
2788 break;
2789 }
2790 }
2791 return;
2792 }
2793
2794 /* Reset used-flags for INSN. */
2795
2796 static void
2797 reset_insn_used_flags (rtx insn)
2798 {
2799 gcc_assert (INSN_P (insn));
2800 reset_used_flags (PATTERN (insn));
2801 reset_used_flags (REG_NOTES (insn));
2802 if (CALL_P (insn))
2803 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2804 }
2805
2806 /* Go through all the RTL insn bodies and clear all the USED bits. */
2807
2808 static void
2809 reset_all_used_flags (void)
2810 {
2811 rtx_insn *p;
2812
2813 for (p = get_insns (); p; p = NEXT_INSN (p))
2814 if (INSN_P (p))
2815 {
2816 rtx pat = PATTERN (p);
2817 if (GET_CODE (pat) != SEQUENCE)
2818 reset_insn_used_flags (p);
2819 else
2820 {
2821 gcc_assert (REG_NOTES (p) == NULL);
2822 for (int i = 0; i < XVECLEN (pat, 0); i++)
2823 {
2824 rtx insn = XVECEXP (pat, 0, i);
2825 if (INSN_P (insn))
2826 reset_insn_used_flags (insn);
2827 }
2828 }
2829 }
2830 }
2831
2832 /* Verify sharing in INSN. */
2833
2834 static void
2835 verify_insn_sharing (rtx insn)
2836 {
2837 gcc_assert (INSN_P (insn));
2838 verify_rtx_sharing (PATTERN (insn), insn);
2839 verify_rtx_sharing (REG_NOTES (insn), insn);
2840 if (CALL_P (insn))
2841 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2842 }
2843
2844 /* Go through all the RTL insn bodies and check that there is no unexpected
2845 sharing in between the subexpressions. */
2846
2847 DEBUG_FUNCTION void
2848 verify_rtl_sharing (void)
2849 {
2850 rtx_insn *p;
2851
2852 timevar_push (TV_VERIFY_RTL_SHARING);
2853
2854 reset_all_used_flags ();
2855
2856 for (p = get_insns (); p; p = NEXT_INSN (p))
2857 if (INSN_P (p))
2858 {
2859 rtx pat = PATTERN (p);
2860 if (GET_CODE (pat) != SEQUENCE)
2861 verify_insn_sharing (p);
2862 else
2863 for (int i = 0; i < XVECLEN (pat, 0); i++)
2864 {
2865 rtx insn = XVECEXP (pat, 0, i);
2866 if (INSN_P (insn))
2867 verify_insn_sharing (insn);
2868 }
2869 }
2870
2871 reset_all_used_flags ();
2872
2873 timevar_pop (TV_VERIFY_RTL_SHARING);
2874 }
2875
2876 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2877 Assumes the mark bits are cleared at entry. */
2878
2879 void
2880 unshare_all_rtl_in_chain (rtx_insn *insn)
2881 {
2882 for (; insn; insn = NEXT_INSN (insn))
2883 if (INSN_P (insn))
2884 {
2885 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2886 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2887 if (CALL_P (insn))
2888 CALL_INSN_FUNCTION_USAGE (insn)
2889 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2890 }
2891 }
2892
2893 /* Go through all virtual stack slots of a function and mark them as
2894 shared. We never replace the DECL_RTLs themselves with a copy,
2895 but expressions mentioned into a DECL_RTL cannot be shared with
2896 expressions in the instruction stream.
2897
2898 Note that reload may convert pseudo registers into memories in-place.
2899 Pseudo registers are always shared, but MEMs never are. Thus if we
2900 reset the used flags on MEMs in the instruction stream, we must set
2901 them again on MEMs that appear in DECL_RTLs. */
2902
2903 static void
2904 set_used_decls (tree blk)
2905 {
2906 tree t;
2907
2908 /* Mark decls. */
2909 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2910 if (DECL_RTL_SET_P (t))
2911 set_used_flags (DECL_RTL (t));
2912
2913 /* Now process sub-blocks. */
2914 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2915 set_used_decls (t);
2916 }
2917
2918 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2919 Recursively does the same for subexpressions. Uses
2920 copy_rtx_if_shared_1 to reduce stack space. */
2921
2922 rtx
2923 copy_rtx_if_shared (rtx orig)
2924 {
2925 copy_rtx_if_shared_1 (&orig);
2926 return orig;
2927 }
2928
2929 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2930 use. Recursively does the same for subexpressions. */
2931
2932 static void
2933 copy_rtx_if_shared_1 (rtx *orig1)
2934 {
2935 rtx x;
2936 int i;
2937 enum rtx_code code;
2938 rtx *last_ptr;
2939 const char *format_ptr;
2940 int copied = 0;
2941 int length;
2942
2943 /* Repeat is used to turn tail-recursion into iteration. */
2944 repeat:
2945 x = *orig1;
2946
2947 if (x == 0)
2948 return;
2949
2950 code = GET_CODE (x);
2951
2952 /* These types may be freely shared. */
2953
2954 switch (code)
2955 {
2956 case REG:
2957 case DEBUG_EXPR:
2958 case VALUE:
2959 CASE_CONST_ANY:
2960 case SYMBOL_REF:
2961 case LABEL_REF:
2962 case CODE_LABEL:
2963 case PC:
2964 case CC0:
2965 case RETURN:
2966 case SIMPLE_RETURN:
2967 case SCRATCH:
2968 /* SCRATCH must be shared because they represent distinct values. */
2969 return;
2970 case CLOBBER:
2971 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2972 clobbers or clobbers of hard registers that originated as pseudos.
2973 This is needed to allow safe register renaming. */
2974 if (REG_P (XEXP (x, 0))
2975 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2976 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2977 return;
2978 break;
2979
2980 case CONST:
2981 if (shared_const_p (x))
2982 return;
2983 break;
2984
2985 case DEBUG_INSN:
2986 case INSN:
2987 case JUMP_INSN:
2988 case CALL_INSN:
2989 case NOTE:
2990 case BARRIER:
2991 /* The chain of insns is not being copied. */
2992 return;
2993
2994 default:
2995 break;
2996 }
2997
2998 /* This rtx may not be shared. If it has already been seen,
2999 replace it with a copy of itself. */
3000
3001 if (RTX_FLAG (x, used))
3002 {
3003 x = shallow_copy_rtx (x);
3004 copied = 1;
3005 }
3006 RTX_FLAG (x, used) = 1;
3007
3008 /* Now scan the subexpressions recursively.
3009 We can store any replaced subexpressions directly into X
3010 since we know X is not shared! Any vectors in X
3011 must be copied if X was copied. */
3012
3013 format_ptr = GET_RTX_FORMAT (code);
3014 length = GET_RTX_LENGTH (code);
3015 last_ptr = NULL;
3016
3017 for (i = 0; i < length; i++)
3018 {
3019 switch (*format_ptr++)
3020 {
3021 case 'e':
3022 if (last_ptr)
3023 copy_rtx_if_shared_1 (last_ptr);
3024 last_ptr = &XEXP (x, i);
3025 break;
3026
3027 case 'E':
3028 if (XVEC (x, i) != NULL)
3029 {
3030 int j;
3031 int len = XVECLEN (x, i);
3032
3033 /* Copy the vector iff I copied the rtx and the length
3034 is nonzero. */
3035 if (copied && len > 0)
3036 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3037
3038 /* Call recursively on all inside the vector. */
3039 for (j = 0; j < len; j++)
3040 {
3041 if (last_ptr)
3042 copy_rtx_if_shared_1 (last_ptr);
3043 last_ptr = &XVECEXP (x, i, j);
3044 }
3045 }
3046 break;
3047 }
3048 }
3049 *orig1 = x;
3050 if (last_ptr)
3051 {
3052 orig1 = last_ptr;
3053 goto repeat;
3054 }
3055 return;
3056 }
3057
3058 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3059
3060 static void
3061 mark_used_flags (rtx x, int flag)
3062 {
3063 int i, j;
3064 enum rtx_code code;
3065 const char *format_ptr;
3066 int length;
3067
3068 /* Repeat is used to turn tail-recursion into iteration. */
3069 repeat:
3070 if (x == 0)
3071 return;
3072
3073 code = GET_CODE (x);
3074
3075 /* These types may be freely shared so we needn't do any resetting
3076 for them. */
3077
3078 switch (code)
3079 {
3080 case REG:
3081 case DEBUG_EXPR:
3082 case VALUE:
3083 CASE_CONST_ANY:
3084 case SYMBOL_REF:
3085 case CODE_LABEL:
3086 case PC:
3087 case CC0:
3088 case RETURN:
3089 case SIMPLE_RETURN:
3090 return;
3091
3092 case DEBUG_INSN:
3093 case INSN:
3094 case JUMP_INSN:
3095 case CALL_INSN:
3096 case NOTE:
3097 case LABEL_REF:
3098 case BARRIER:
3099 /* The chain of insns is not being copied. */
3100 return;
3101
3102 default:
3103 break;
3104 }
3105
3106 RTX_FLAG (x, used) = flag;
3107
3108 format_ptr = GET_RTX_FORMAT (code);
3109 length = GET_RTX_LENGTH (code);
3110
3111 for (i = 0; i < length; i++)
3112 {
3113 switch (*format_ptr++)
3114 {
3115 case 'e':
3116 if (i == length-1)
3117 {
3118 x = XEXP (x, i);
3119 goto repeat;
3120 }
3121 mark_used_flags (XEXP (x, i), flag);
3122 break;
3123
3124 case 'E':
3125 for (j = 0; j < XVECLEN (x, i); j++)
3126 mark_used_flags (XVECEXP (x, i, j), flag);
3127 break;
3128 }
3129 }
3130 }
3131
3132 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3133 to look for shared sub-parts. */
3134
3135 void
3136 reset_used_flags (rtx x)
3137 {
3138 mark_used_flags (x, 0);
3139 }
3140
3141 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3142 to look for shared sub-parts. */
3143
3144 void
3145 set_used_flags (rtx x)
3146 {
3147 mark_used_flags (x, 1);
3148 }
3149 \f
3150 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3151 Return X or the rtx for the pseudo reg the value of X was copied into.
3152 OTHER must be valid as a SET_DEST. */
3153
3154 rtx
3155 make_safe_from (rtx x, rtx other)
3156 {
3157 while (1)
3158 switch (GET_CODE (other))
3159 {
3160 case SUBREG:
3161 other = SUBREG_REG (other);
3162 break;
3163 case STRICT_LOW_PART:
3164 case SIGN_EXTEND:
3165 case ZERO_EXTEND:
3166 other = XEXP (other, 0);
3167 break;
3168 default:
3169 goto done;
3170 }
3171 done:
3172 if ((MEM_P (other)
3173 && ! CONSTANT_P (x)
3174 && !REG_P (x)
3175 && GET_CODE (x) != SUBREG)
3176 || (REG_P (other)
3177 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3178 || reg_mentioned_p (other, x))))
3179 {
3180 rtx temp = gen_reg_rtx (GET_MODE (x));
3181 emit_move_insn (temp, x);
3182 return temp;
3183 }
3184 return x;
3185 }
3186 \f
3187 /* Emission of insns (adding them to the doubly-linked list). */
3188
3189 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3190
3191 rtx_insn *
3192 get_last_insn_anywhere (void)
3193 {
3194 struct sequence_stack *seq;
3195 for (seq = get_current_sequence (); seq; seq = seq->next)
3196 if (seq->last != 0)
3197 return seq->last;
3198 return 0;
3199 }
3200
3201 /* Return the first nonnote insn emitted in current sequence or current
3202 function. This routine looks inside SEQUENCEs. */
3203
3204 rtx_insn *
3205 get_first_nonnote_insn (void)
3206 {
3207 rtx_insn *insn = get_insns ();
3208
3209 if (insn)
3210 {
3211 if (NOTE_P (insn))
3212 for (insn = next_insn (insn);
3213 insn && NOTE_P (insn);
3214 insn = next_insn (insn))
3215 continue;
3216 else
3217 {
3218 if (NONJUMP_INSN_P (insn)
3219 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3220 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3221 }
3222 }
3223
3224 return insn;
3225 }
3226
3227 /* Return the last nonnote insn emitted in current sequence or current
3228 function. This routine looks inside SEQUENCEs. */
3229
3230 rtx_insn *
3231 get_last_nonnote_insn (void)
3232 {
3233 rtx_insn *insn = get_last_insn ();
3234
3235 if (insn)
3236 {
3237 if (NOTE_P (insn))
3238 for (insn = previous_insn (insn);
3239 insn && NOTE_P (insn);
3240 insn = previous_insn (insn))
3241 continue;
3242 else
3243 {
3244 if (NONJUMP_INSN_P (insn))
3245 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3246 insn = seq->insn (seq->len () - 1);
3247 }
3248 }
3249
3250 return insn;
3251 }
3252
3253 /* Return the number of actual (non-debug) insns emitted in this
3254 function. */
3255
3256 int
3257 get_max_insn_count (void)
3258 {
3259 int n = cur_insn_uid;
3260
3261 /* The table size must be stable across -g, to avoid codegen
3262 differences due to debug insns, and not be affected by
3263 -fmin-insn-uid, to avoid excessive table size and to simplify
3264 debugging of -fcompare-debug failures. */
3265 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3266 n -= cur_debug_insn_uid;
3267 else
3268 n -= MIN_NONDEBUG_INSN_UID;
3269
3270 return n;
3271 }
3272
3273 \f
3274 /* Return the next insn. If it is a SEQUENCE, return the first insn
3275 of the sequence. */
3276
3277 rtx_insn *
3278 next_insn (rtx_insn *insn)
3279 {
3280 if (insn)
3281 {
3282 insn = NEXT_INSN (insn);
3283 if (insn && NONJUMP_INSN_P (insn)
3284 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3285 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3286 }
3287
3288 return insn;
3289 }
3290
3291 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3292 of the sequence. */
3293
3294 rtx_insn *
3295 previous_insn (rtx_insn *insn)
3296 {
3297 if (insn)
3298 {
3299 insn = PREV_INSN (insn);
3300 if (insn && NONJUMP_INSN_P (insn))
3301 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3302 insn = seq->insn (seq->len () - 1);
3303 }
3304
3305 return insn;
3306 }
3307
3308 /* Return the next insn after INSN that is not a NOTE. This routine does not
3309 look inside SEQUENCEs. */
3310
3311 rtx_insn *
3312 next_nonnote_insn (rtx_insn *insn)
3313 {
3314 while (insn)
3315 {
3316 insn = NEXT_INSN (insn);
3317 if (insn == 0 || !NOTE_P (insn))
3318 break;
3319 }
3320
3321 return insn;
3322 }
3323
3324 /* Return the next insn after INSN that is not a NOTE, but stop the
3325 search before we enter another basic block. This routine does not
3326 look inside SEQUENCEs. */
3327
3328 rtx_insn *
3329 next_nonnote_insn_bb (rtx_insn *insn)
3330 {
3331 while (insn)
3332 {
3333 insn = NEXT_INSN (insn);
3334 if (insn == 0 || !NOTE_P (insn))
3335 break;
3336 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3337 return NULL;
3338 }
3339
3340 return insn;
3341 }
3342
3343 /* Return the previous insn before INSN that is not a NOTE. This routine does
3344 not look inside SEQUENCEs. */
3345
3346 rtx_insn *
3347 prev_nonnote_insn (rtx_insn *insn)
3348 {
3349 while (insn)
3350 {
3351 insn = PREV_INSN (insn);
3352 if (insn == 0 || !NOTE_P (insn))
3353 break;
3354 }
3355
3356 return insn;
3357 }
3358
3359 /* Return the previous insn before INSN that is not a NOTE, but stop
3360 the search before we enter another basic block. This routine does
3361 not look inside SEQUENCEs. */
3362
3363 rtx_insn *
3364 prev_nonnote_insn_bb (rtx_insn *insn)
3365 {
3366
3367 while (insn)
3368 {
3369 insn = PREV_INSN (insn);
3370 if (insn == 0 || !NOTE_P (insn))
3371 break;
3372 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3373 return NULL;
3374 }
3375
3376 return insn;
3377 }
3378
3379 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3380 routine does not look inside SEQUENCEs. */
3381
3382 rtx_insn *
3383 next_nondebug_insn (rtx_insn *insn)
3384 {
3385 while (insn)
3386 {
3387 insn = NEXT_INSN (insn);
3388 if (insn == 0 || !DEBUG_INSN_P (insn))
3389 break;
3390 }
3391
3392 return insn;
3393 }
3394
3395 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3396 This routine does not look inside SEQUENCEs. */
3397
3398 rtx_insn *
3399 prev_nondebug_insn (rtx_insn *insn)
3400 {
3401 while (insn)
3402 {
3403 insn = PREV_INSN (insn);
3404 if (insn == 0 || !DEBUG_INSN_P (insn))
3405 break;
3406 }
3407
3408 return insn;
3409 }
3410
3411 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3412 This routine does not look inside SEQUENCEs. */
3413
3414 rtx_insn *
3415 next_nonnote_nondebug_insn (rtx_insn *insn)
3416 {
3417 while (insn)
3418 {
3419 insn = NEXT_INSN (insn);
3420 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3421 break;
3422 }
3423
3424 return insn;
3425 }
3426
3427 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3428 This routine does not look inside SEQUENCEs. */
3429
3430 rtx_insn *
3431 prev_nonnote_nondebug_insn (rtx_insn *insn)
3432 {
3433 while (insn)
3434 {
3435 insn = PREV_INSN (insn);
3436 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3437 break;
3438 }
3439
3440 return insn;
3441 }
3442
3443 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3444 or 0, if there is none. This routine does not look inside
3445 SEQUENCEs. */
3446
3447 rtx_insn *
3448 next_real_insn (rtx uncast_insn)
3449 {
3450 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3451
3452 while (insn)
3453 {
3454 insn = NEXT_INSN (insn);
3455 if (insn == 0 || INSN_P (insn))
3456 break;
3457 }
3458
3459 return insn;
3460 }
3461
3462 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3463 or 0, if there is none. This routine does not look inside
3464 SEQUENCEs. */
3465
3466 rtx_insn *
3467 prev_real_insn (rtx_insn *insn)
3468 {
3469 while (insn)
3470 {
3471 insn = PREV_INSN (insn);
3472 if (insn == 0 || INSN_P (insn))
3473 break;
3474 }
3475
3476 return insn;
3477 }
3478
3479 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3480 This routine does not look inside SEQUENCEs. */
3481
3482 rtx_call_insn *
3483 last_call_insn (void)
3484 {
3485 rtx_insn *insn;
3486
3487 for (insn = get_last_insn ();
3488 insn && !CALL_P (insn);
3489 insn = PREV_INSN (insn))
3490 ;
3491
3492 return safe_as_a <rtx_call_insn *> (insn);
3493 }
3494
3495 /* Find the next insn after INSN that really does something. This routine
3496 does not look inside SEQUENCEs. After reload this also skips over
3497 standalone USE and CLOBBER insn. */
3498
3499 int
3500 active_insn_p (const rtx_insn *insn)
3501 {
3502 return (CALL_P (insn) || JUMP_P (insn)
3503 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3504 || (NONJUMP_INSN_P (insn)
3505 && (! reload_completed
3506 || (GET_CODE (PATTERN (insn)) != USE
3507 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3508 }
3509
3510 rtx_insn *
3511 next_active_insn (rtx_insn *insn)
3512 {
3513 while (insn)
3514 {
3515 insn = NEXT_INSN (insn);
3516 if (insn == 0 || active_insn_p (insn))
3517 break;
3518 }
3519
3520 return insn;
3521 }
3522
3523 /* Find the last insn before INSN that really does something. This routine
3524 does not look inside SEQUENCEs. After reload this also skips over
3525 standalone USE and CLOBBER insn. */
3526
3527 rtx_insn *
3528 prev_active_insn (rtx_insn *insn)
3529 {
3530 while (insn)
3531 {
3532 insn = PREV_INSN (insn);
3533 if (insn == 0 || active_insn_p (insn))
3534 break;
3535 }
3536
3537 return insn;
3538 }
3539 \f
3540 /* Return the next insn that uses CC0 after INSN, which is assumed to
3541 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3542 applied to the result of this function should yield INSN).
3543
3544 Normally, this is simply the next insn. However, if a REG_CC_USER note
3545 is present, it contains the insn that uses CC0.
3546
3547 Return 0 if we can't find the insn. */
3548
3549 rtx_insn *
3550 next_cc0_user (rtx_insn *insn)
3551 {
3552 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3553
3554 if (note)
3555 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3556
3557 insn = next_nonnote_insn (insn);
3558 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3559 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3560
3561 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3562 return insn;
3563
3564 return 0;
3565 }
3566
3567 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3568 note, it is the previous insn. */
3569
3570 rtx_insn *
3571 prev_cc0_setter (rtx_insn *insn)
3572 {
3573 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3574
3575 if (note)
3576 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3577
3578 insn = prev_nonnote_insn (insn);
3579 gcc_assert (sets_cc0_p (PATTERN (insn)));
3580
3581 return insn;
3582 }
3583
3584 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3585
3586 static int
3587 find_auto_inc (const_rtx x, const_rtx reg)
3588 {
3589 subrtx_iterator::array_type array;
3590 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3591 {
3592 const_rtx x = *iter;
3593 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3594 && rtx_equal_p (reg, XEXP (x, 0)))
3595 return true;
3596 }
3597 return false;
3598 }
3599
3600 /* Increment the label uses for all labels present in rtx. */
3601
3602 static void
3603 mark_label_nuses (rtx x)
3604 {
3605 enum rtx_code code;
3606 int i, j;
3607 const char *fmt;
3608
3609 code = GET_CODE (x);
3610 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3611 LABEL_NUSES (label_ref_label (x))++;
3612
3613 fmt = GET_RTX_FORMAT (code);
3614 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3615 {
3616 if (fmt[i] == 'e')
3617 mark_label_nuses (XEXP (x, i));
3618 else if (fmt[i] == 'E')
3619 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3620 mark_label_nuses (XVECEXP (x, i, j));
3621 }
3622 }
3623
3624 \f
3625 /* Try splitting insns that can be split for better scheduling.
3626 PAT is the pattern which might split.
3627 TRIAL is the insn providing PAT.
3628 LAST is nonzero if we should return the last insn of the sequence produced.
3629
3630 If this routine succeeds in splitting, it returns the first or last
3631 replacement insn depending on the value of LAST. Otherwise, it
3632 returns TRIAL. If the insn to be returned can be split, it will be. */
3633
3634 rtx_insn *
3635 try_split (rtx pat, rtx_insn *trial, int last)
3636 {
3637 rtx_insn *before = PREV_INSN (trial);
3638 rtx_insn *after = NEXT_INSN (trial);
3639 rtx note;
3640 rtx_insn *seq, *tem;
3641 int probability;
3642 rtx_insn *insn_last, *insn;
3643 int njumps = 0;
3644 rtx_insn *call_insn = NULL;
3645
3646 /* We're not good at redistributing frame information. */
3647 if (RTX_FRAME_RELATED_P (trial))
3648 return trial;
3649
3650 if (any_condjump_p (trial)
3651 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3652 split_branch_probability = XINT (note, 0);
3653 probability = split_branch_probability;
3654
3655 seq = split_insns (pat, trial);
3656
3657 split_branch_probability = -1;
3658
3659 if (!seq)
3660 return trial;
3661
3662 /* Avoid infinite loop if any insn of the result matches
3663 the original pattern. */
3664 insn_last = seq;
3665 while (1)
3666 {
3667 if (INSN_P (insn_last)
3668 && rtx_equal_p (PATTERN (insn_last), pat))
3669 return trial;
3670 if (!NEXT_INSN (insn_last))
3671 break;
3672 insn_last = NEXT_INSN (insn_last);
3673 }
3674
3675 /* We will be adding the new sequence to the function. The splitters
3676 may have introduced invalid RTL sharing, so unshare the sequence now. */
3677 unshare_all_rtl_in_chain (seq);
3678
3679 /* Mark labels and copy flags. */
3680 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3681 {
3682 if (JUMP_P (insn))
3683 {
3684 if (JUMP_P (trial))
3685 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3686 mark_jump_label (PATTERN (insn), insn, 0);
3687 njumps++;
3688 if (probability != -1
3689 && any_condjump_p (insn)
3690 && !find_reg_note (insn, REG_BR_PROB, 0))
3691 {
3692 /* We can preserve the REG_BR_PROB notes only if exactly
3693 one jump is created, otherwise the machine description
3694 is responsible for this step using
3695 split_branch_probability variable. */
3696 gcc_assert (njumps == 1);
3697 add_int_reg_note (insn, REG_BR_PROB, probability);
3698 }
3699 }
3700 }
3701
3702 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3703 in SEQ and copy any additional information across. */
3704 if (CALL_P (trial))
3705 {
3706 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3707 if (CALL_P (insn))
3708 {
3709 rtx_insn *next;
3710 rtx *p;
3711
3712 gcc_assert (call_insn == NULL_RTX);
3713 call_insn = insn;
3714
3715 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3716 target may have explicitly specified. */
3717 p = &CALL_INSN_FUNCTION_USAGE (insn);
3718 while (*p)
3719 p = &XEXP (*p, 1);
3720 *p = CALL_INSN_FUNCTION_USAGE (trial);
3721
3722 /* If the old call was a sibling call, the new one must
3723 be too. */
3724 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3725
3726 /* If the new call is the last instruction in the sequence,
3727 it will effectively replace the old call in-situ. Otherwise
3728 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3729 so that it comes immediately after the new call. */
3730 if (NEXT_INSN (insn))
3731 for (next = NEXT_INSN (trial);
3732 next && NOTE_P (next);
3733 next = NEXT_INSN (next))
3734 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3735 {
3736 remove_insn (next);
3737 add_insn_after (next, insn, NULL);
3738 break;
3739 }
3740 }
3741 }
3742
3743 /* Copy notes, particularly those related to the CFG. */
3744 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3745 {
3746 switch (REG_NOTE_KIND (note))
3747 {
3748 case REG_EH_REGION:
3749 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3750 break;
3751
3752 case REG_NORETURN:
3753 case REG_SETJMP:
3754 case REG_TM:
3755 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3756 {
3757 if (CALL_P (insn))
3758 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3759 }
3760 break;
3761
3762 case REG_NON_LOCAL_GOTO:
3763 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3764 {
3765 if (JUMP_P (insn))
3766 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3767 }
3768 break;
3769
3770 case REG_INC:
3771 if (!AUTO_INC_DEC)
3772 break;
3773
3774 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3775 {
3776 rtx reg = XEXP (note, 0);
3777 if (!FIND_REG_INC_NOTE (insn, reg)
3778 && find_auto_inc (PATTERN (insn), reg))
3779 add_reg_note (insn, REG_INC, reg);
3780 }
3781 break;
3782
3783 case REG_ARGS_SIZE:
3784 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3785 break;
3786
3787 case REG_CALL_DECL:
3788 gcc_assert (call_insn != NULL_RTX);
3789 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3790 break;
3791
3792 default:
3793 break;
3794 }
3795 }
3796
3797 /* If there are LABELS inside the split insns increment the
3798 usage count so we don't delete the label. */
3799 if (INSN_P (trial))
3800 {
3801 insn = insn_last;
3802 while (insn != NULL_RTX)
3803 {
3804 /* JUMP_P insns have already been "marked" above. */
3805 if (NONJUMP_INSN_P (insn))
3806 mark_label_nuses (PATTERN (insn));
3807
3808 insn = PREV_INSN (insn);
3809 }
3810 }
3811
3812 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3813
3814 delete_insn (trial);
3815
3816 /* Recursively call try_split for each new insn created; by the
3817 time control returns here that insn will be fully split, so
3818 set LAST and continue from the insn after the one returned.
3819 We can't use next_active_insn here since AFTER may be a note.
3820 Ignore deleted insns, which can be occur if not optimizing. */
3821 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3822 if (! tem->deleted () && INSN_P (tem))
3823 tem = try_split (PATTERN (tem), tem, 1);
3824
3825 /* Return either the first or the last insn, depending on which was
3826 requested. */
3827 return last
3828 ? (after ? PREV_INSN (after) : get_last_insn ())
3829 : NEXT_INSN (before);
3830 }
3831 \f
3832 /* Make and return an INSN rtx, initializing all its slots.
3833 Store PATTERN in the pattern slots. */
3834
3835 rtx_insn *
3836 make_insn_raw (rtx pattern)
3837 {
3838 rtx_insn *insn;
3839
3840 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3841
3842 INSN_UID (insn) = cur_insn_uid++;
3843 PATTERN (insn) = pattern;
3844 INSN_CODE (insn) = -1;
3845 REG_NOTES (insn) = NULL;
3846 INSN_LOCATION (insn) = curr_insn_location ();
3847 BLOCK_FOR_INSN (insn) = NULL;
3848
3849 #ifdef ENABLE_RTL_CHECKING
3850 if (insn
3851 && INSN_P (insn)
3852 && (returnjump_p (insn)
3853 || (GET_CODE (insn) == SET
3854 && SET_DEST (insn) == pc_rtx)))
3855 {
3856 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3857 debug_rtx (insn);
3858 }
3859 #endif
3860
3861 return insn;
3862 }
3863
3864 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3865
3866 static rtx_insn *
3867 make_debug_insn_raw (rtx pattern)
3868 {
3869 rtx_debug_insn *insn;
3870
3871 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3872 INSN_UID (insn) = cur_debug_insn_uid++;
3873 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3874 INSN_UID (insn) = cur_insn_uid++;
3875
3876 PATTERN (insn) = pattern;
3877 INSN_CODE (insn) = -1;
3878 REG_NOTES (insn) = NULL;
3879 INSN_LOCATION (insn) = curr_insn_location ();
3880 BLOCK_FOR_INSN (insn) = NULL;
3881
3882 return insn;
3883 }
3884
3885 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3886
3887 static rtx_insn *
3888 make_jump_insn_raw (rtx pattern)
3889 {
3890 rtx_jump_insn *insn;
3891
3892 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3893 INSN_UID (insn) = cur_insn_uid++;
3894
3895 PATTERN (insn) = pattern;
3896 INSN_CODE (insn) = -1;
3897 REG_NOTES (insn) = NULL;
3898 JUMP_LABEL (insn) = NULL;
3899 INSN_LOCATION (insn) = curr_insn_location ();
3900 BLOCK_FOR_INSN (insn) = NULL;
3901
3902 return insn;
3903 }
3904
3905 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3906
3907 static rtx_insn *
3908 make_call_insn_raw (rtx pattern)
3909 {
3910 rtx_call_insn *insn;
3911
3912 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3913 INSN_UID (insn) = cur_insn_uid++;
3914
3915 PATTERN (insn) = pattern;
3916 INSN_CODE (insn) = -1;
3917 REG_NOTES (insn) = NULL;
3918 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3919 INSN_LOCATION (insn) = curr_insn_location ();
3920 BLOCK_FOR_INSN (insn) = NULL;
3921
3922 return insn;
3923 }
3924
3925 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3926
3927 static rtx_note *
3928 make_note_raw (enum insn_note subtype)
3929 {
3930 /* Some notes are never created this way at all. These notes are
3931 only created by patching out insns. */
3932 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3933 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3934
3935 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3936 INSN_UID (note) = cur_insn_uid++;
3937 NOTE_KIND (note) = subtype;
3938 BLOCK_FOR_INSN (note) = NULL;
3939 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3940 return note;
3941 }
3942 \f
3943 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3944 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3945 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3946
3947 static inline void
3948 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3949 {
3950 SET_PREV_INSN (insn) = prev;
3951 SET_NEXT_INSN (insn) = next;
3952 if (prev != NULL)
3953 {
3954 SET_NEXT_INSN (prev) = insn;
3955 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3956 {
3957 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3958 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3959 }
3960 }
3961 if (next != NULL)
3962 {
3963 SET_PREV_INSN (next) = insn;
3964 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3965 {
3966 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3967 SET_PREV_INSN (sequence->insn (0)) = insn;
3968 }
3969 }
3970
3971 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3972 {
3973 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3974 SET_PREV_INSN (sequence->insn (0)) = prev;
3975 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3976 }
3977 }
3978
3979 /* Add INSN to the end of the doubly-linked list.
3980 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3981
3982 void
3983 add_insn (rtx_insn *insn)
3984 {
3985 rtx_insn *prev = get_last_insn ();
3986 link_insn_into_chain (insn, prev, NULL);
3987 if (NULL == get_insns ())
3988 set_first_insn (insn);
3989 set_last_insn (insn);
3990 }
3991
3992 /* Add INSN into the doubly-linked list after insn AFTER. */
3993
3994 static void
3995 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
3996 {
3997 rtx_insn *next = NEXT_INSN (after);
3998
3999 gcc_assert (!optimize || !after->deleted ());
4000
4001 link_insn_into_chain (insn, after, next);
4002
4003 if (next == NULL)
4004 {
4005 struct sequence_stack *seq;
4006
4007 for (seq = get_current_sequence (); seq; seq = seq->next)
4008 if (after == seq->last)
4009 {
4010 seq->last = insn;
4011 break;
4012 }
4013 }
4014 }
4015
4016 /* Add INSN into the doubly-linked list before insn BEFORE. */
4017
4018 static void
4019 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4020 {
4021 rtx_insn *prev = PREV_INSN (before);
4022
4023 gcc_assert (!optimize || !before->deleted ());
4024
4025 link_insn_into_chain (insn, prev, before);
4026
4027 if (prev == NULL)
4028 {
4029 struct sequence_stack *seq;
4030
4031 for (seq = get_current_sequence (); seq; seq = seq->next)
4032 if (before == seq->first)
4033 {
4034 seq->first = insn;
4035 break;
4036 }
4037
4038 gcc_assert (seq);
4039 }
4040 }
4041
4042 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4043 If BB is NULL, an attempt is made to infer the bb from before.
4044
4045 This and the next function should be the only functions called
4046 to insert an insn once delay slots have been filled since only
4047 they know how to update a SEQUENCE. */
4048
4049 void
4050 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4051 {
4052 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4053 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4054 add_insn_after_nobb (insn, after);
4055 if (!BARRIER_P (after)
4056 && !BARRIER_P (insn)
4057 && (bb = BLOCK_FOR_INSN (after)))
4058 {
4059 set_block_for_insn (insn, bb);
4060 if (INSN_P (insn))
4061 df_insn_rescan (insn);
4062 /* Should not happen as first in the BB is always
4063 either NOTE or LABEL. */
4064 if (BB_END (bb) == after
4065 /* Avoid clobbering of structure when creating new BB. */
4066 && !BARRIER_P (insn)
4067 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4068 BB_END (bb) = insn;
4069 }
4070 }
4071
4072 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4073 If BB is NULL, an attempt is made to infer the bb from before.
4074
4075 This and the previous function should be the only functions called
4076 to insert an insn once delay slots have been filled since only
4077 they know how to update a SEQUENCE. */
4078
4079 void
4080 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4081 {
4082 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4083 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4084 add_insn_before_nobb (insn, before);
4085
4086 if (!bb
4087 && !BARRIER_P (before)
4088 && !BARRIER_P (insn))
4089 bb = BLOCK_FOR_INSN (before);
4090
4091 if (bb)
4092 {
4093 set_block_for_insn (insn, bb);
4094 if (INSN_P (insn))
4095 df_insn_rescan (insn);
4096 /* Should not happen as first in the BB is always either NOTE or
4097 LABEL. */
4098 gcc_assert (BB_HEAD (bb) != insn
4099 /* Avoid clobbering of structure when creating new BB. */
4100 || BARRIER_P (insn)
4101 || NOTE_INSN_BASIC_BLOCK_P (insn));
4102 }
4103 }
4104
4105 /* Replace insn with an deleted instruction note. */
4106
4107 void
4108 set_insn_deleted (rtx insn)
4109 {
4110 if (INSN_P (insn))
4111 df_insn_delete (as_a <rtx_insn *> (insn));
4112 PUT_CODE (insn, NOTE);
4113 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4114 }
4115
4116
4117 /* Unlink INSN from the insn chain.
4118
4119 This function knows how to handle sequences.
4120
4121 This function does not invalidate data flow information associated with
4122 INSN (i.e. does not call df_insn_delete). That makes this function
4123 usable for only disconnecting an insn from the chain, and re-emit it
4124 elsewhere later.
4125
4126 To later insert INSN elsewhere in the insn chain via add_insn and
4127 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4128 the caller. Nullifying them here breaks many insn chain walks.
4129
4130 To really delete an insn and related DF information, use delete_insn. */
4131
4132 void
4133 remove_insn (rtx uncast_insn)
4134 {
4135 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4136 rtx_insn *next = NEXT_INSN (insn);
4137 rtx_insn *prev = PREV_INSN (insn);
4138 basic_block bb;
4139
4140 if (prev)
4141 {
4142 SET_NEXT_INSN (prev) = next;
4143 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4144 {
4145 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4146 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4147 }
4148 }
4149 else
4150 {
4151 struct sequence_stack *seq;
4152
4153 for (seq = get_current_sequence (); seq; seq = seq->next)
4154 if (insn == seq->first)
4155 {
4156 seq->first = next;
4157 break;
4158 }
4159
4160 gcc_assert (seq);
4161 }
4162
4163 if (next)
4164 {
4165 SET_PREV_INSN (next) = prev;
4166 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4167 {
4168 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4169 SET_PREV_INSN (sequence->insn (0)) = prev;
4170 }
4171 }
4172 else
4173 {
4174 struct sequence_stack *seq;
4175
4176 for (seq = get_current_sequence (); seq; seq = seq->next)
4177 if (insn == seq->last)
4178 {
4179 seq->last = prev;
4180 break;
4181 }
4182
4183 gcc_assert (seq);
4184 }
4185
4186 /* Fix up basic block boundaries, if necessary. */
4187 if (!BARRIER_P (insn)
4188 && (bb = BLOCK_FOR_INSN (insn)))
4189 {
4190 if (BB_HEAD (bb) == insn)
4191 {
4192 /* Never ever delete the basic block note without deleting whole
4193 basic block. */
4194 gcc_assert (!NOTE_P (insn));
4195 BB_HEAD (bb) = next;
4196 }
4197 if (BB_END (bb) == insn)
4198 BB_END (bb) = prev;
4199 }
4200 }
4201
4202 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4203
4204 void
4205 add_function_usage_to (rtx call_insn, rtx call_fusage)
4206 {
4207 gcc_assert (call_insn && CALL_P (call_insn));
4208
4209 /* Put the register usage information on the CALL. If there is already
4210 some usage information, put ours at the end. */
4211 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4212 {
4213 rtx link;
4214
4215 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4216 link = XEXP (link, 1))
4217 ;
4218
4219 XEXP (link, 1) = call_fusage;
4220 }
4221 else
4222 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4223 }
4224
4225 /* Delete all insns made since FROM.
4226 FROM becomes the new last instruction. */
4227
4228 void
4229 delete_insns_since (rtx_insn *from)
4230 {
4231 if (from == 0)
4232 set_first_insn (0);
4233 else
4234 SET_NEXT_INSN (from) = 0;
4235 set_last_insn (from);
4236 }
4237
4238 /* This function is deprecated, please use sequences instead.
4239
4240 Move a consecutive bunch of insns to a different place in the chain.
4241 The insns to be moved are those between FROM and TO.
4242 They are moved to a new position after the insn AFTER.
4243 AFTER must not be FROM or TO or any insn in between.
4244
4245 This function does not know about SEQUENCEs and hence should not be
4246 called after delay-slot filling has been done. */
4247
4248 void
4249 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4250 {
4251 if (flag_checking)
4252 {
4253 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4254 gcc_assert (after != x);
4255 gcc_assert (after != to);
4256 }
4257
4258 /* Splice this bunch out of where it is now. */
4259 if (PREV_INSN (from))
4260 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4261 if (NEXT_INSN (to))
4262 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4263 if (get_last_insn () == to)
4264 set_last_insn (PREV_INSN (from));
4265 if (get_insns () == from)
4266 set_first_insn (NEXT_INSN (to));
4267
4268 /* Make the new neighbors point to it and it to them. */
4269 if (NEXT_INSN (after))
4270 SET_PREV_INSN (NEXT_INSN (after)) = to;
4271
4272 SET_NEXT_INSN (to) = NEXT_INSN (after);
4273 SET_PREV_INSN (from) = after;
4274 SET_NEXT_INSN (after) = from;
4275 if (after == get_last_insn ())
4276 set_last_insn (to);
4277 }
4278
4279 /* Same as function above, but take care to update BB boundaries. */
4280 void
4281 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4282 {
4283 rtx_insn *prev = PREV_INSN (from);
4284 basic_block bb, bb2;
4285
4286 reorder_insns_nobb (from, to, after);
4287
4288 if (!BARRIER_P (after)
4289 && (bb = BLOCK_FOR_INSN (after)))
4290 {
4291 rtx_insn *x;
4292 df_set_bb_dirty (bb);
4293
4294 if (!BARRIER_P (from)
4295 && (bb2 = BLOCK_FOR_INSN (from)))
4296 {
4297 if (BB_END (bb2) == to)
4298 BB_END (bb2) = prev;
4299 df_set_bb_dirty (bb2);
4300 }
4301
4302 if (BB_END (bb) == after)
4303 BB_END (bb) = to;
4304
4305 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4306 if (!BARRIER_P (x))
4307 df_insn_change_bb (x, bb);
4308 }
4309 }
4310
4311 \f
4312 /* Emit insn(s) of given code and pattern
4313 at a specified place within the doubly-linked list.
4314
4315 All of the emit_foo global entry points accept an object
4316 X which is either an insn list or a PATTERN of a single
4317 instruction.
4318
4319 There are thus a few canonical ways to generate code and
4320 emit it at a specific place in the instruction stream. For
4321 example, consider the instruction named SPOT and the fact that
4322 we would like to emit some instructions before SPOT. We might
4323 do it like this:
4324
4325 start_sequence ();
4326 ... emit the new instructions ...
4327 insns_head = get_insns ();
4328 end_sequence ();
4329
4330 emit_insn_before (insns_head, SPOT);
4331
4332 It used to be common to generate SEQUENCE rtl instead, but that
4333 is a relic of the past which no longer occurs. The reason is that
4334 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4335 generated would almost certainly die right after it was created. */
4336
4337 static rtx_insn *
4338 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4339 rtx_insn *(*make_raw) (rtx))
4340 {
4341 rtx_insn *insn;
4342
4343 gcc_assert (before);
4344
4345 if (x == NULL_RTX)
4346 return safe_as_a <rtx_insn *> (last);
4347
4348 switch (GET_CODE (x))
4349 {
4350 case DEBUG_INSN:
4351 case INSN:
4352 case JUMP_INSN:
4353 case CALL_INSN:
4354 case CODE_LABEL:
4355 case BARRIER:
4356 case NOTE:
4357 insn = as_a <rtx_insn *> (x);
4358 while (insn)
4359 {
4360 rtx_insn *next = NEXT_INSN (insn);
4361 add_insn_before (insn, before, bb);
4362 last = insn;
4363 insn = next;
4364 }
4365 break;
4366
4367 #ifdef ENABLE_RTL_CHECKING
4368 case SEQUENCE:
4369 gcc_unreachable ();
4370 break;
4371 #endif
4372
4373 default:
4374 last = (*make_raw) (x);
4375 add_insn_before (last, before, bb);
4376 break;
4377 }
4378
4379 return safe_as_a <rtx_insn *> (last);
4380 }
4381
4382 /* Make X be output before the instruction BEFORE. */
4383
4384 rtx_insn *
4385 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4386 {
4387 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4388 }
4389
4390 /* Make an instruction with body X and code JUMP_INSN
4391 and output it before the instruction BEFORE. */
4392
4393 rtx_jump_insn *
4394 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4395 {
4396 return as_a <rtx_jump_insn *> (
4397 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4398 make_jump_insn_raw));
4399 }
4400
4401 /* Make an instruction with body X and code CALL_INSN
4402 and output it before the instruction BEFORE. */
4403
4404 rtx_insn *
4405 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4406 {
4407 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4408 make_call_insn_raw);
4409 }
4410
4411 /* Make an instruction with body X and code DEBUG_INSN
4412 and output it before the instruction BEFORE. */
4413
4414 rtx_insn *
4415 emit_debug_insn_before_noloc (rtx x, rtx before)
4416 {
4417 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4418 make_debug_insn_raw);
4419 }
4420
4421 /* Make an insn of code BARRIER
4422 and output it before the insn BEFORE. */
4423
4424 rtx_barrier *
4425 emit_barrier_before (rtx before)
4426 {
4427 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4428
4429 INSN_UID (insn) = cur_insn_uid++;
4430
4431 add_insn_before (insn, before, NULL);
4432 return insn;
4433 }
4434
4435 /* Emit the label LABEL before the insn BEFORE. */
4436
4437 rtx_code_label *
4438 emit_label_before (rtx label, rtx_insn *before)
4439 {
4440 gcc_checking_assert (INSN_UID (label) == 0);
4441 INSN_UID (label) = cur_insn_uid++;
4442 add_insn_before (label, before, NULL);
4443 return as_a <rtx_code_label *> (label);
4444 }
4445 \f
4446 /* Helper for emit_insn_after, handles lists of instructions
4447 efficiently. */
4448
4449 static rtx_insn *
4450 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4451 {
4452 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4453 rtx_insn *last;
4454 rtx_insn *after_after;
4455 if (!bb && !BARRIER_P (after))
4456 bb = BLOCK_FOR_INSN (after);
4457
4458 if (bb)
4459 {
4460 df_set_bb_dirty (bb);
4461 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4462 if (!BARRIER_P (last))
4463 {
4464 set_block_for_insn (last, bb);
4465 df_insn_rescan (last);
4466 }
4467 if (!BARRIER_P (last))
4468 {
4469 set_block_for_insn (last, bb);
4470 df_insn_rescan (last);
4471 }
4472 if (BB_END (bb) == after)
4473 BB_END (bb) = last;
4474 }
4475 else
4476 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4477 continue;
4478
4479 after_after = NEXT_INSN (after);
4480
4481 SET_NEXT_INSN (after) = first;
4482 SET_PREV_INSN (first) = after;
4483 SET_NEXT_INSN (last) = after_after;
4484 if (after_after)
4485 SET_PREV_INSN (after_after) = last;
4486
4487 if (after == get_last_insn ())
4488 set_last_insn (last);
4489
4490 return last;
4491 }
4492
4493 static rtx_insn *
4494 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4495 rtx_insn *(*make_raw)(rtx))
4496 {
4497 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4498 rtx_insn *last = after;
4499
4500 gcc_assert (after);
4501
4502 if (x == NULL_RTX)
4503 return last;
4504
4505 switch (GET_CODE (x))
4506 {
4507 case DEBUG_INSN:
4508 case INSN:
4509 case JUMP_INSN:
4510 case CALL_INSN:
4511 case CODE_LABEL:
4512 case BARRIER:
4513 case NOTE:
4514 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4515 break;
4516
4517 #ifdef ENABLE_RTL_CHECKING
4518 case SEQUENCE:
4519 gcc_unreachable ();
4520 break;
4521 #endif
4522
4523 default:
4524 last = (*make_raw) (x);
4525 add_insn_after (last, after, bb);
4526 break;
4527 }
4528
4529 return last;
4530 }
4531
4532 /* Make X be output after the insn AFTER and set the BB of insn. If
4533 BB is NULL, an attempt is made to infer the BB from AFTER. */
4534
4535 rtx_insn *
4536 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4537 {
4538 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4539 }
4540
4541
4542 /* Make an insn of code JUMP_INSN with body X
4543 and output it after the insn AFTER. */
4544
4545 rtx_jump_insn *
4546 emit_jump_insn_after_noloc (rtx x, rtx after)
4547 {
4548 return as_a <rtx_jump_insn *> (
4549 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4550 }
4551
4552 /* Make an instruction with body X and code CALL_INSN
4553 and output it after the instruction AFTER. */
4554
4555 rtx_insn *
4556 emit_call_insn_after_noloc (rtx x, rtx after)
4557 {
4558 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4559 }
4560
4561 /* Make an instruction with body X and code CALL_INSN
4562 and output it after the instruction AFTER. */
4563
4564 rtx_insn *
4565 emit_debug_insn_after_noloc (rtx x, rtx after)
4566 {
4567 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4568 }
4569
4570 /* Make an insn of code BARRIER
4571 and output it after the insn AFTER. */
4572
4573 rtx_barrier *
4574 emit_barrier_after (rtx after)
4575 {
4576 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4577
4578 INSN_UID (insn) = cur_insn_uid++;
4579
4580 add_insn_after (insn, after, NULL);
4581 return insn;
4582 }
4583
4584 /* Emit the label LABEL after the insn AFTER. */
4585
4586 rtx_insn *
4587 emit_label_after (rtx label, rtx_insn *after)
4588 {
4589 gcc_checking_assert (INSN_UID (label) == 0);
4590 INSN_UID (label) = cur_insn_uid++;
4591 add_insn_after (label, after, NULL);
4592 return as_a <rtx_insn *> (label);
4593 }
4594 \f
4595 /* Notes require a bit of special handling: Some notes need to have their
4596 BLOCK_FOR_INSN set, others should never have it set, and some should
4597 have it set or clear depending on the context. */
4598
4599 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4600 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4601 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4602
4603 static bool
4604 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4605 {
4606 switch (subtype)
4607 {
4608 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4609 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4610 return true;
4611
4612 /* Notes for var tracking and EH region markers can appear between or
4613 inside basic blocks. If the caller is emitting on the basic block
4614 boundary, do not set BLOCK_FOR_INSN on the new note. */
4615 case NOTE_INSN_VAR_LOCATION:
4616 case NOTE_INSN_CALL_ARG_LOCATION:
4617 case NOTE_INSN_EH_REGION_BEG:
4618 case NOTE_INSN_EH_REGION_END:
4619 return on_bb_boundary_p;
4620
4621 /* Otherwise, BLOCK_FOR_INSN must be set. */
4622 default:
4623 return false;
4624 }
4625 }
4626
4627 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4628
4629 rtx_note *
4630 emit_note_after (enum insn_note subtype, rtx_insn *after)
4631 {
4632 rtx_note *note = make_note_raw (subtype);
4633 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4634 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4635
4636 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4637 add_insn_after_nobb (note, after);
4638 else
4639 add_insn_after (note, after, bb);
4640 return note;
4641 }
4642
4643 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4644
4645 rtx_note *
4646 emit_note_before (enum insn_note subtype, rtx_insn *before)
4647 {
4648 rtx_note *note = make_note_raw (subtype);
4649 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4650 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4651
4652 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4653 add_insn_before_nobb (note, before);
4654 else
4655 add_insn_before (note, before, bb);
4656 return note;
4657 }
4658 \f
4659 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4660 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4661
4662 static rtx_insn *
4663 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4664 rtx_insn *(*make_raw) (rtx))
4665 {
4666 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4667 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4668
4669 if (pattern == NULL_RTX || !loc)
4670 return last;
4671
4672 after = NEXT_INSN (after);
4673 while (1)
4674 {
4675 if (active_insn_p (after)
4676 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4677 && !INSN_LOCATION (after))
4678 INSN_LOCATION (after) = loc;
4679 if (after == last)
4680 break;
4681 after = NEXT_INSN (after);
4682 }
4683 return last;
4684 }
4685
4686 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4687 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4688 any DEBUG_INSNs. */
4689
4690 static rtx_insn *
4691 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4692 rtx_insn *(*make_raw) (rtx))
4693 {
4694 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4695 rtx_insn *prev = after;
4696
4697 if (skip_debug_insns)
4698 while (DEBUG_INSN_P (prev))
4699 prev = PREV_INSN (prev);
4700
4701 if (INSN_P (prev))
4702 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4703 make_raw);
4704 else
4705 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4706 }
4707
4708 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4709 rtx_insn *
4710 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4711 {
4712 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4713 }
4714
4715 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4716 rtx_insn *
4717 emit_insn_after (rtx pattern, rtx after)
4718 {
4719 return emit_pattern_after (pattern, after, true, make_insn_raw);
4720 }
4721
4722 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4723 rtx_jump_insn *
4724 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4725 {
4726 return as_a <rtx_jump_insn *> (
4727 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4728 }
4729
4730 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4731 rtx_jump_insn *
4732 emit_jump_insn_after (rtx pattern, rtx after)
4733 {
4734 return as_a <rtx_jump_insn *> (
4735 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4736 }
4737
4738 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4739 rtx_insn *
4740 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4741 {
4742 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4743 }
4744
4745 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4746 rtx_insn *
4747 emit_call_insn_after (rtx pattern, rtx after)
4748 {
4749 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4750 }
4751
4752 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4753 rtx_insn *
4754 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4755 {
4756 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4757 }
4758
4759 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4760 rtx_insn *
4761 emit_debug_insn_after (rtx pattern, rtx after)
4762 {
4763 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4764 }
4765
4766 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4767 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4768 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4769 CALL_INSN, etc. */
4770
4771 static rtx_insn *
4772 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4773 rtx_insn *(*make_raw) (rtx))
4774 {
4775 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4776 rtx_insn *first = PREV_INSN (before);
4777 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4778 insnp ? before : NULL_RTX,
4779 NULL, make_raw);
4780
4781 if (pattern == NULL_RTX || !loc)
4782 return last;
4783
4784 if (!first)
4785 first = get_insns ();
4786 else
4787 first = NEXT_INSN (first);
4788 while (1)
4789 {
4790 if (active_insn_p (first)
4791 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4792 && !INSN_LOCATION (first))
4793 INSN_LOCATION (first) = loc;
4794 if (first == last)
4795 break;
4796 first = NEXT_INSN (first);
4797 }
4798 return last;
4799 }
4800
4801 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4802 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4803 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4804 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4805
4806 static rtx_insn *
4807 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4808 bool insnp, rtx_insn *(*make_raw) (rtx))
4809 {
4810 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4811 rtx_insn *next = before;
4812
4813 if (skip_debug_insns)
4814 while (DEBUG_INSN_P (next))
4815 next = PREV_INSN (next);
4816
4817 if (INSN_P (next))
4818 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4819 insnp, make_raw);
4820 else
4821 return emit_pattern_before_noloc (pattern, before,
4822 insnp ? before : NULL_RTX,
4823 NULL, make_raw);
4824 }
4825
4826 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4827 rtx_insn *
4828 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4829 {
4830 return emit_pattern_before_setloc (pattern, before, loc, true,
4831 make_insn_raw);
4832 }
4833
4834 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4835 rtx_insn *
4836 emit_insn_before (rtx pattern, rtx before)
4837 {
4838 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4839 }
4840
4841 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4842 rtx_jump_insn *
4843 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4844 {
4845 return as_a <rtx_jump_insn *> (
4846 emit_pattern_before_setloc (pattern, before, loc, false,
4847 make_jump_insn_raw));
4848 }
4849
4850 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4851 rtx_jump_insn *
4852 emit_jump_insn_before (rtx pattern, rtx before)
4853 {
4854 return as_a <rtx_jump_insn *> (
4855 emit_pattern_before (pattern, before, true, false,
4856 make_jump_insn_raw));
4857 }
4858
4859 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4860 rtx_insn *
4861 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4862 {
4863 return emit_pattern_before_setloc (pattern, before, loc, false,
4864 make_call_insn_raw);
4865 }
4866
4867 /* Like emit_call_insn_before_noloc,
4868 but set insn_location according to BEFORE. */
4869 rtx_insn *
4870 emit_call_insn_before (rtx pattern, rtx_insn *before)
4871 {
4872 return emit_pattern_before (pattern, before, true, false,
4873 make_call_insn_raw);
4874 }
4875
4876 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4877 rtx_insn *
4878 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4879 {
4880 return emit_pattern_before_setloc (pattern, before, loc, false,
4881 make_debug_insn_raw);
4882 }
4883
4884 /* Like emit_debug_insn_before_noloc,
4885 but set insn_location according to BEFORE. */
4886 rtx_insn *
4887 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4888 {
4889 return emit_pattern_before (pattern, before, false, false,
4890 make_debug_insn_raw);
4891 }
4892 \f
4893 /* Take X and emit it at the end of the doubly-linked
4894 INSN list.
4895
4896 Returns the last insn emitted. */
4897
4898 rtx_insn *
4899 emit_insn (rtx x)
4900 {
4901 rtx_insn *last = get_last_insn ();
4902 rtx_insn *insn;
4903
4904 if (x == NULL_RTX)
4905 return last;
4906
4907 switch (GET_CODE (x))
4908 {
4909 case DEBUG_INSN:
4910 case INSN:
4911 case JUMP_INSN:
4912 case CALL_INSN:
4913 case CODE_LABEL:
4914 case BARRIER:
4915 case NOTE:
4916 insn = as_a <rtx_insn *> (x);
4917 while (insn)
4918 {
4919 rtx_insn *next = NEXT_INSN (insn);
4920 add_insn (insn);
4921 last = insn;
4922 insn = next;
4923 }
4924 break;
4925
4926 #ifdef ENABLE_RTL_CHECKING
4927 case JUMP_TABLE_DATA:
4928 case SEQUENCE:
4929 gcc_unreachable ();
4930 break;
4931 #endif
4932
4933 default:
4934 last = make_insn_raw (x);
4935 add_insn (last);
4936 break;
4937 }
4938
4939 return last;
4940 }
4941
4942 /* Make an insn of code DEBUG_INSN with pattern X
4943 and add it to the end of the doubly-linked list. */
4944
4945 rtx_insn *
4946 emit_debug_insn (rtx x)
4947 {
4948 rtx_insn *last = get_last_insn ();
4949 rtx_insn *insn;
4950
4951 if (x == NULL_RTX)
4952 return last;
4953
4954 switch (GET_CODE (x))
4955 {
4956 case DEBUG_INSN:
4957 case INSN:
4958 case JUMP_INSN:
4959 case CALL_INSN:
4960 case CODE_LABEL:
4961 case BARRIER:
4962 case NOTE:
4963 insn = as_a <rtx_insn *> (x);
4964 while (insn)
4965 {
4966 rtx_insn *next = NEXT_INSN (insn);
4967 add_insn (insn);
4968 last = insn;
4969 insn = next;
4970 }
4971 break;
4972
4973 #ifdef ENABLE_RTL_CHECKING
4974 case JUMP_TABLE_DATA:
4975 case SEQUENCE:
4976 gcc_unreachable ();
4977 break;
4978 #endif
4979
4980 default:
4981 last = make_debug_insn_raw (x);
4982 add_insn (last);
4983 break;
4984 }
4985
4986 return last;
4987 }
4988
4989 /* Make an insn of code JUMP_INSN with pattern X
4990 and add it to the end of the doubly-linked list. */
4991
4992 rtx_insn *
4993 emit_jump_insn (rtx x)
4994 {
4995 rtx_insn *last = NULL;
4996 rtx_insn *insn;
4997
4998 switch (GET_CODE (x))
4999 {
5000 case DEBUG_INSN:
5001 case INSN:
5002 case JUMP_INSN:
5003 case CALL_INSN:
5004 case CODE_LABEL:
5005 case BARRIER:
5006 case NOTE:
5007 insn = as_a <rtx_insn *> (x);
5008 while (insn)
5009 {
5010 rtx_insn *next = NEXT_INSN (insn);
5011 add_insn (insn);
5012 last = insn;
5013 insn = next;
5014 }
5015 break;
5016
5017 #ifdef ENABLE_RTL_CHECKING
5018 case JUMP_TABLE_DATA:
5019 case SEQUENCE:
5020 gcc_unreachable ();
5021 break;
5022 #endif
5023
5024 default:
5025 last = make_jump_insn_raw (x);
5026 add_insn (last);
5027 break;
5028 }
5029
5030 return last;
5031 }
5032
5033 /* Make an insn of code CALL_INSN with pattern X
5034 and add it to the end of the doubly-linked list. */
5035
5036 rtx_insn *
5037 emit_call_insn (rtx x)
5038 {
5039 rtx_insn *insn;
5040
5041 switch (GET_CODE (x))
5042 {
5043 case DEBUG_INSN:
5044 case INSN:
5045 case JUMP_INSN:
5046 case CALL_INSN:
5047 case CODE_LABEL:
5048 case BARRIER:
5049 case NOTE:
5050 insn = emit_insn (x);
5051 break;
5052
5053 #ifdef ENABLE_RTL_CHECKING
5054 case SEQUENCE:
5055 case JUMP_TABLE_DATA:
5056 gcc_unreachable ();
5057 break;
5058 #endif
5059
5060 default:
5061 insn = make_call_insn_raw (x);
5062 add_insn (insn);
5063 break;
5064 }
5065
5066 return insn;
5067 }
5068
5069 /* Add the label LABEL to the end of the doubly-linked list. */
5070
5071 rtx_code_label *
5072 emit_label (rtx uncast_label)
5073 {
5074 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5075
5076 gcc_checking_assert (INSN_UID (label) == 0);
5077 INSN_UID (label) = cur_insn_uid++;
5078 add_insn (label);
5079 return label;
5080 }
5081
5082 /* Make an insn of code JUMP_TABLE_DATA
5083 and add it to the end of the doubly-linked list. */
5084
5085 rtx_jump_table_data *
5086 emit_jump_table_data (rtx table)
5087 {
5088 rtx_jump_table_data *jump_table_data =
5089 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5090 INSN_UID (jump_table_data) = cur_insn_uid++;
5091 PATTERN (jump_table_data) = table;
5092 BLOCK_FOR_INSN (jump_table_data) = NULL;
5093 add_insn (jump_table_data);
5094 return jump_table_data;
5095 }
5096
5097 /* Make an insn of code BARRIER
5098 and add it to the end of the doubly-linked list. */
5099
5100 rtx_barrier *
5101 emit_barrier (void)
5102 {
5103 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5104 INSN_UID (barrier) = cur_insn_uid++;
5105 add_insn (barrier);
5106 return barrier;
5107 }
5108
5109 /* Emit a copy of note ORIG. */
5110
5111 rtx_note *
5112 emit_note_copy (rtx_note *orig)
5113 {
5114 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5115 rtx_note *note = make_note_raw (kind);
5116 NOTE_DATA (note) = NOTE_DATA (orig);
5117 add_insn (note);
5118 return note;
5119 }
5120
5121 /* Make an insn of code NOTE or type NOTE_NO
5122 and add it to the end of the doubly-linked list. */
5123
5124 rtx_note *
5125 emit_note (enum insn_note kind)
5126 {
5127 rtx_note *note = make_note_raw (kind);
5128 add_insn (note);
5129 return note;
5130 }
5131
5132 /* Emit a clobber of lvalue X. */
5133
5134 rtx_insn *
5135 emit_clobber (rtx x)
5136 {
5137 /* CONCATs should not appear in the insn stream. */
5138 if (GET_CODE (x) == CONCAT)
5139 {
5140 emit_clobber (XEXP (x, 0));
5141 return emit_clobber (XEXP (x, 1));
5142 }
5143 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5144 }
5145
5146 /* Return a sequence of insns to clobber lvalue X. */
5147
5148 rtx_insn *
5149 gen_clobber (rtx x)
5150 {
5151 rtx_insn *seq;
5152
5153 start_sequence ();
5154 emit_clobber (x);
5155 seq = get_insns ();
5156 end_sequence ();
5157 return seq;
5158 }
5159
5160 /* Emit a use of rvalue X. */
5161
5162 rtx_insn *
5163 emit_use (rtx x)
5164 {
5165 /* CONCATs should not appear in the insn stream. */
5166 if (GET_CODE (x) == CONCAT)
5167 {
5168 emit_use (XEXP (x, 0));
5169 return emit_use (XEXP (x, 1));
5170 }
5171 return emit_insn (gen_rtx_USE (VOIDmode, x));
5172 }
5173
5174 /* Return a sequence of insns to use rvalue X. */
5175
5176 rtx_insn *
5177 gen_use (rtx x)
5178 {
5179 rtx_insn *seq;
5180
5181 start_sequence ();
5182 emit_use (x);
5183 seq = get_insns ();
5184 end_sequence ();
5185 return seq;
5186 }
5187
5188 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5189 Return the set in INSN that such notes describe, or NULL if the notes
5190 have no meaning for INSN. */
5191
5192 rtx
5193 set_for_reg_notes (rtx insn)
5194 {
5195 rtx pat, reg;
5196
5197 if (!INSN_P (insn))
5198 return NULL_RTX;
5199
5200 pat = PATTERN (insn);
5201 if (GET_CODE (pat) == PARALLEL)
5202 {
5203 /* We do not use single_set because that ignores SETs of unused
5204 registers. REG_EQUAL and REG_EQUIV notes really do require the
5205 PARALLEL to have a single SET. */
5206 if (multiple_sets (insn))
5207 return NULL_RTX;
5208 pat = XVECEXP (pat, 0, 0);
5209 }
5210
5211 if (GET_CODE (pat) != SET)
5212 return NULL_RTX;
5213
5214 reg = SET_DEST (pat);
5215
5216 /* Notes apply to the contents of a STRICT_LOW_PART. */
5217 if (GET_CODE (reg) == STRICT_LOW_PART
5218 || GET_CODE (reg) == ZERO_EXTRACT)
5219 reg = XEXP (reg, 0);
5220
5221 /* Check that we have a register. */
5222 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5223 return NULL_RTX;
5224
5225 return pat;
5226 }
5227
5228 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5229 note of this type already exists, remove it first. */
5230
5231 rtx
5232 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5233 {
5234 rtx note = find_reg_note (insn, kind, NULL_RTX);
5235
5236 switch (kind)
5237 {
5238 case REG_EQUAL:
5239 case REG_EQUIV:
5240 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5241 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5242 return NULL_RTX;
5243
5244 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5245 It serves no useful purpose and breaks eliminate_regs. */
5246 if (GET_CODE (datum) == ASM_OPERANDS)
5247 return NULL_RTX;
5248
5249 /* Notes with side effects are dangerous. Even if the side-effect
5250 initially mirrors one in PATTERN (INSN), later optimizations
5251 might alter the way that the final register value is calculated
5252 and so move or alter the side-effect in some way. The note would
5253 then no longer be a valid substitution for SET_SRC. */
5254 if (side_effects_p (datum))
5255 return NULL_RTX;
5256 break;
5257
5258 default:
5259 break;
5260 }
5261
5262 if (note)
5263 XEXP (note, 0) = datum;
5264 else
5265 {
5266 add_reg_note (insn, kind, datum);
5267 note = REG_NOTES (insn);
5268 }
5269
5270 switch (kind)
5271 {
5272 case REG_EQUAL:
5273 case REG_EQUIV:
5274 df_notes_rescan (as_a <rtx_insn *> (insn));
5275 break;
5276 default:
5277 break;
5278 }
5279
5280 return note;
5281 }
5282
5283 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5284 rtx
5285 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5286 {
5287 rtx set = set_for_reg_notes (insn);
5288
5289 if (set && SET_DEST (set) == dst)
5290 return set_unique_reg_note (insn, kind, datum);
5291 return NULL_RTX;
5292 }
5293 \f
5294 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5295 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5296 is true.
5297
5298 If X is a label, it is simply added into the insn chain. */
5299
5300 rtx_insn *
5301 emit (rtx x, bool allow_barrier_p)
5302 {
5303 enum rtx_code code = classify_insn (x);
5304
5305 switch (code)
5306 {
5307 case CODE_LABEL:
5308 return emit_label (x);
5309 case INSN:
5310 return emit_insn (x);
5311 case JUMP_INSN:
5312 {
5313 rtx_insn *insn = emit_jump_insn (x);
5314 if (allow_barrier_p
5315 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5316 return emit_barrier ();
5317 return insn;
5318 }
5319 case CALL_INSN:
5320 return emit_call_insn (x);
5321 case DEBUG_INSN:
5322 return emit_debug_insn (x);
5323 default:
5324 gcc_unreachable ();
5325 }
5326 }
5327 \f
5328 /* Space for free sequence stack entries. */
5329 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5330
5331 /* Begin emitting insns to a sequence. If this sequence will contain
5332 something that might cause the compiler to pop arguments to function
5333 calls (because those pops have previously been deferred; see
5334 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5335 before calling this function. That will ensure that the deferred
5336 pops are not accidentally emitted in the middle of this sequence. */
5337
5338 void
5339 start_sequence (void)
5340 {
5341 struct sequence_stack *tem;
5342
5343 if (free_sequence_stack != NULL)
5344 {
5345 tem = free_sequence_stack;
5346 free_sequence_stack = tem->next;
5347 }
5348 else
5349 tem = ggc_alloc<sequence_stack> ();
5350
5351 tem->next = get_current_sequence ()->next;
5352 tem->first = get_insns ();
5353 tem->last = get_last_insn ();
5354 get_current_sequence ()->next = tem;
5355
5356 set_first_insn (0);
5357 set_last_insn (0);
5358 }
5359
5360 /* Set up the insn chain starting with FIRST as the current sequence,
5361 saving the previously current one. See the documentation for
5362 start_sequence for more information about how to use this function. */
5363
5364 void
5365 push_to_sequence (rtx_insn *first)
5366 {
5367 rtx_insn *last;
5368
5369 start_sequence ();
5370
5371 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5372 ;
5373
5374 set_first_insn (first);
5375 set_last_insn (last);
5376 }
5377
5378 /* Like push_to_sequence, but take the last insn as an argument to avoid
5379 looping through the list. */
5380
5381 void
5382 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5383 {
5384 start_sequence ();
5385
5386 set_first_insn (first);
5387 set_last_insn (last);
5388 }
5389
5390 /* Set up the outer-level insn chain
5391 as the current sequence, saving the previously current one. */
5392
5393 void
5394 push_topmost_sequence (void)
5395 {
5396 struct sequence_stack *top;
5397
5398 start_sequence ();
5399
5400 top = get_topmost_sequence ();
5401 set_first_insn (top->first);
5402 set_last_insn (top->last);
5403 }
5404
5405 /* After emitting to the outer-level insn chain, update the outer-level
5406 insn chain, and restore the previous saved state. */
5407
5408 void
5409 pop_topmost_sequence (void)
5410 {
5411 struct sequence_stack *top;
5412
5413 top = get_topmost_sequence ();
5414 top->first = get_insns ();
5415 top->last = get_last_insn ();
5416
5417 end_sequence ();
5418 }
5419
5420 /* After emitting to a sequence, restore previous saved state.
5421
5422 To get the contents of the sequence just made, you must call
5423 `get_insns' *before* calling here.
5424
5425 If the compiler might have deferred popping arguments while
5426 generating this sequence, and this sequence will not be immediately
5427 inserted into the instruction stream, use do_pending_stack_adjust
5428 before calling get_insns. That will ensure that the deferred
5429 pops are inserted into this sequence, and not into some random
5430 location in the instruction stream. See INHIBIT_DEFER_POP for more
5431 information about deferred popping of arguments. */
5432
5433 void
5434 end_sequence (void)
5435 {
5436 struct sequence_stack *tem = get_current_sequence ()->next;
5437
5438 set_first_insn (tem->first);
5439 set_last_insn (tem->last);
5440 get_current_sequence ()->next = tem->next;
5441
5442 memset (tem, 0, sizeof (*tem));
5443 tem->next = free_sequence_stack;
5444 free_sequence_stack = tem;
5445 }
5446
5447 /* Return 1 if currently emitting into a sequence. */
5448
5449 int
5450 in_sequence_p (void)
5451 {
5452 return get_current_sequence ()->next != 0;
5453 }
5454 \f
5455 /* Put the various virtual registers into REGNO_REG_RTX. */
5456
5457 static void
5458 init_virtual_regs (void)
5459 {
5460 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5461 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5462 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5463 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5464 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5465 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5466 = virtual_preferred_stack_boundary_rtx;
5467 }
5468
5469 \f
5470 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5471 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5472 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5473 static int copy_insn_n_scratches;
5474
5475 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5476 copied an ASM_OPERANDS.
5477 In that case, it is the original input-operand vector. */
5478 static rtvec orig_asm_operands_vector;
5479
5480 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5481 copied an ASM_OPERANDS.
5482 In that case, it is the copied input-operand vector. */
5483 static rtvec copy_asm_operands_vector;
5484
5485 /* Likewise for the constraints vector. */
5486 static rtvec orig_asm_constraints_vector;
5487 static rtvec copy_asm_constraints_vector;
5488
5489 /* Recursively create a new copy of an rtx for copy_insn.
5490 This function differs from copy_rtx in that it handles SCRATCHes and
5491 ASM_OPERANDs properly.
5492 Normally, this function is not used directly; use copy_insn as front end.
5493 However, you could first copy an insn pattern with copy_insn and then use
5494 this function afterwards to properly copy any REG_NOTEs containing
5495 SCRATCHes. */
5496
5497 rtx
5498 copy_insn_1 (rtx orig)
5499 {
5500 rtx copy;
5501 int i, j;
5502 RTX_CODE code;
5503 const char *format_ptr;
5504
5505 if (orig == NULL)
5506 return NULL;
5507
5508 code = GET_CODE (orig);
5509
5510 switch (code)
5511 {
5512 case REG:
5513 case DEBUG_EXPR:
5514 CASE_CONST_ANY:
5515 case SYMBOL_REF:
5516 case CODE_LABEL:
5517 case PC:
5518 case CC0:
5519 case RETURN:
5520 case SIMPLE_RETURN:
5521 return orig;
5522 case CLOBBER:
5523 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5524 clobbers or clobbers of hard registers that originated as pseudos.
5525 This is needed to allow safe register renaming. */
5526 if (REG_P (XEXP (orig, 0))
5527 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5528 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5529 return orig;
5530 break;
5531
5532 case SCRATCH:
5533 for (i = 0; i < copy_insn_n_scratches; i++)
5534 if (copy_insn_scratch_in[i] == orig)
5535 return copy_insn_scratch_out[i];
5536 break;
5537
5538 case CONST:
5539 if (shared_const_p (orig))
5540 return orig;
5541 break;
5542
5543 /* A MEM with a constant address is not sharable. The problem is that
5544 the constant address may need to be reloaded. If the mem is shared,
5545 then reloading one copy of this mem will cause all copies to appear
5546 to have been reloaded. */
5547
5548 default:
5549 break;
5550 }
5551
5552 /* Copy the various flags, fields, and other information. We assume
5553 that all fields need copying, and then clear the fields that should
5554 not be copied. That is the sensible default behavior, and forces
5555 us to explicitly document why we are *not* copying a flag. */
5556 copy = shallow_copy_rtx (orig);
5557
5558 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5559 if (INSN_P (orig))
5560 {
5561 RTX_FLAG (copy, jump) = 0;
5562 RTX_FLAG (copy, call) = 0;
5563 RTX_FLAG (copy, frame_related) = 0;
5564 }
5565
5566 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5567
5568 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5569 switch (*format_ptr++)
5570 {
5571 case 'e':
5572 if (XEXP (orig, i) != NULL)
5573 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5574 break;
5575
5576 case 'E':
5577 case 'V':
5578 if (XVEC (orig, i) == orig_asm_constraints_vector)
5579 XVEC (copy, i) = copy_asm_constraints_vector;
5580 else if (XVEC (orig, i) == orig_asm_operands_vector)
5581 XVEC (copy, i) = copy_asm_operands_vector;
5582 else if (XVEC (orig, i) != NULL)
5583 {
5584 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5585 for (j = 0; j < XVECLEN (copy, i); j++)
5586 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5587 }
5588 break;
5589
5590 case 't':
5591 case 'w':
5592 case 'i':
5593 case 's':
5594 case 'S':
5595 case 'u':
5596 case '0':
5597 /* These are left unchanged. */
5598 break;
5599
5600 default:
5601 gcc_unreachable ();
5602 }
5603
5604 if (code == SCRATCH)
5605 {
5606 i = copy_insn_n_scratches++;
5607 gcc_assert (i < MAX_RECOG_OPERANDS);
5608 copy_insn_scratch_in[i] = orig;
5609 copy_insn_scratch_out[i] = copy;
5610 }
5611 else if (code == ASM_OPERANDS)
5612 {
5613 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5614 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5615 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5616 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5617 }
5618
5619 return copy;
5620 }
5621
5622 /* Create a new copy of an rtx.
5623 This function differs from copy_rtx in that it handles SCRATCHes and
5624 ASM_OPERANDs properly.
5625 INSN doesn't really have to be a full INSN; it could be just the
5626 pattern. */
5627 rtx
5628 copy_insn (rtx insn)
5629 {
5630 copy_insn_n_scratches = 0;
5631 orig_asm_operands_vector = 0;
5632 orig_asm_constraints_vector = 0;
5633 copy_asm_operands_vector = 0;
5634 copy_asm_constraints_vector = 0;
5635 return copy_insn_1 (insn);
5636 }
5637
5638 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5639 on that assumption that INSN itself remains in its original place. */
5640
5641 rtx_insn *
5642 copy_delay_slot_insn (rtx_insn *insn)
5643 {
5644 /* Copy INSN with its rtx_code, all its notes, location etc. */
5645 insn = as_a <rtx_insn *> (copy_rtx (insn));
5646 INSN_UID (insn) = cur_insn_uid++;
5647 return insn;
5648 }
5649
5650 /* Initialize data structures and variables in this file
5651 before generating rtl for each function. */
5652
5653 void
5654 init_emit (void)
5655 {
5656 set_first_insn (NULL);
5657 set_last_insn (NULL);
5658 if (MIN_NONDEBUG_INSN_UID)
5659 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5660 else
5661 cur_insn_uid = 1;
5662 cur_debug_insn_uid = 1;
5663 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5664 first_label_num = label_num;
5665 get_current_sequence ()->next = NULL;
5666
5667 /* Init the tables that describe all the pseudo regs. */
5668
5669 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5670
5671 crtl->emit.regno_pointer_align
5672 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5673
5674 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5675
5676 /* Put copies of all the hard registers into regno_reg_rtx. */
5677 memcpy (regno_reg_rtx,
5678 initial_regno_reg_rtx,
5679 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5680
5681 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5682 init_virtual_regs ();
5683
5684 /* Indicate that the virtual registers and stack locations are
5685 all pointers. */
5686 REG_POINTER (stack_pointer_rtx) = 1;
5687 REG_POINTER (frame_pointer_rtx) = 1;
5688 REG_POINTER (hard_frame_pointer_rtx) = 1;
5689 REG_POINTER (arg_pointer_rtx) = 1;
5690
5691 REG_POINTER (virtual_incoming_args_rtx) = 1;
5692 REG_POINTER (virtual_stack_vars_rtx) = 1;
5693 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5694 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5695 REG_POINTER (virtual_cfa_rtx) = 1;
5696
5697 #ifdef STACK_BOUNDARY
5698 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5699 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5700 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5701 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5702
5703 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5704 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5705 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5706 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5707 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5708 #endif
5709
5710 #ifdef INIT_EXPANDERS
5711 INIT_EXPANDERS;
5712 #endif
5713 }
5714
5715 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5716
5717 static rtx
5718 gen_const_vector (machine_mode mode, int constant)
5719 {
5720 rtx tem;
5721 rtvec v;
5722 int units, i;
5723 machine_mode inner;
5724
5725 units = GET_MODE_NUNITS (mode);
5726 inner = GET_MODE_INNER (mode);
5727
5728 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5729
5730 v = rtvec_alloc (units);
5731
5732 /* We need to call this function after we set the scalar const_tiny_rtx
5733 entries. */
5734 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5735
5736 for (i = 0; i < units; ++i)
5737 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5738
5739 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5740 return tem;
5741 }
5742
5743 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5744 all elements are zero, and the one vector when all elements are one. */
5745 rtx
5746 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5747 {
5748 machine_mode inner = GET_MODE_INNER (mode);
5749 int nunits = GET_MODE_NUNITS (mode);
5750 rtx x;
5751 int i;
5752
5753 /* Check to see if all of the elements have the same value. */
5754 x = RTVEC_ELT (v, nunits - 1);
5755 for (i = nunits - 2; i >= 0; i--)
5756 if (RTVEC_ELT (v, i) != x)
5757 break;
5758
5759 /* If the values are all the same, check to see if we can use one of the
5760 standard constant vectors. */
5761 if (i == -1)
5762 {
5763 if (x == CONST0_RTX (inner))
5764 return CONST0_RTX (mode);
5765 else if (x == CONST1_RTX (inner))
5766 return CONST1_RTX (mode);
5767 else if (x == CONSTM1_RTX (inner))
5768 return CONSTM1_RTX (mode);
5769 }
5770
5771 return gen_rtx_raw_CONST_VECTOR (mode, v);
5772 }
5773
5774 /* Initialise global register information required by all functions. */
5775
5776 void
5777 init_emit_regs (void)
5778 {
5779 int i;
5780 machine_mode mode;
5781 mem_attrs *attrs;
5782
5783 /* Reset register attributes */
5784 reg_attrs_htab->empty ();
5785
5786 /* We need reg_raw_mode, so initialize the modes now. */
5787 init_reg_modes_target ();
5788
5789 /* Assign register numbers to the globally defined register rtx. */
5790 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5791 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5792 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5793 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5794 virtual_incoming_args_rtx =
5795 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5796 virtual_stack_vars_rtx =
5797 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5798 virtual_stack_dynamic_rtx =
5799 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5800 virtual_outgoing_args_rtx =
5801 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5802 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5803 virtual_preferred_stack_boundary_rtx =
5804 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5805
5806 /* Initialize RTL for commonly used hard registers. These are
5807 copied into regno_reg_rtx as we begin to compile each function. */
5808 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5809 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5810
5811 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5812 return_address_pointer_rtx
5813 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5814 #endif
5815
5816 pic_offset_table_rtx = NULL_RTX;
5817 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5818 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5819
5820 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5821 {
5822 mode = (machine_mode) i;
5823 attrs = ggc_cleared_alloc<mem_attrs> ();
5824 attrs->align = BITS_PER_UNIT;
5825 attrs->addrspace = ADDR_SPACE_GENERIC;
5826 if (mode != BLKmode)
5827 {
5828 attrs->size_known_p = true;
5829 attrs->size = GET_MODE_SIZE (mode);
5830 if (STRICT_ALIGNMENT)
5831 attrs->align = GET_MODE_ALIGNMENT (mode);
5832 }
5833 mode_mem_attrs[i] = attrs;
5834 }
5835 }
5836
5837 /* Initialize global machine_mode variables. */
5838
5839 void
5840 init_derived_machine_modes (void)
5841 {
5842 byte_mode = VOIDmode;
5843 word_mode = VOIDmode;
5844
5845 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5846 mode != VOIDmode;
5847 mode = GET_MODE_WIDER_MODE (mode))
5848 {
5849 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5850 && byte_mode == VOIDmode)
5851 byte_mode = mode;
5852
5853 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5854 && word_mode == VOIDmode)
5855 word_mode = mode;
5856 }
5857
5858 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5859 }
5860
5861 /* Create some permanent unique rtl objects shared between all functions. */
5862
5863 void
5864 init_emit_once (void)
5865 {
5866 int i;
5867 machine_mode mode;
5868 machine_mode double_mode;
5869
5870 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5871 CONST_FIXED, and memory attribute hash tables. */
5872 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5873
5874 #if TARGET_SUPPORTS_WIDE_INT
5875 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5876 #endif
5877 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5878
5879 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5880
5881 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5882
5883 #ifdef INIT_EXPANDERS
5884 /* This is to initialize {init|mark|free}_machine_status before the first
5885 call to push_function_context_to. This is needed by the Chill front
5886 end which calls push_function_context_to before the first call to
5887 init_function_start. */
5888 INIT_EXPANDERS;
5889 #endif
5890
5891 /* Create the unique rtx's for certain rtx codes and operand values. */
5892
5893 /* Process stack-limiting command-line options. */
5894 if (opt_fstack_limit_symbol_arg != NULL)
5895 stack_limit_rtx
5896 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
5897 if (opt_fstack_limit_register_no >= 0)
5898 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
5899
5900 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5901 tries to use these variables. */
5902 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5903 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5904 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5905
5906 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5907 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5908 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5909 else
5910 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5911
5912 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5913
5914 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5915 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5916 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5917
5918 dconstm1 = dconst1;
5919 dconstm1.sign = 1;
5920
5921 dconsthalf = dconst1;
5922 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5923
5924 for (i = 0; i < 3; i++)
5925 {
5926 const REAL_VALUE_TYPE *const r =
5927 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5928
5929 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5930 mode != VOIDmode;
5931 mode = GET_MODE_WIDER_MODE (mode))
5932 const_tiny_rtx[i][(int) mode] =
5933 const_double_from_real_value (*r, mode);
5934
5935 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5936 mode != VOIDmode;
5937 mode = GET_MODE_WIDER_MODE (mode))
5938 const_tiny_rtx[i][(int) mode] =
5939 const_double_from_real_value (*r, mode);
5940
5941 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5942
5943 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5944 mode != VOIDmode;
5945 mode = GET_MODE_WIDER_MODE (mode))
5946 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5947
5948 for (mode = MIN_MODE_PARTIAL_INT;
5949 mode <= MAX_MODE_PARTIAL_INT;
5950 mode = (machine_mode)((int)(mode) + 1))
5951 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5952 }
5953
5954 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5955
5956 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5957 mode != VOIDmode;
5958 mode = GET_MODE_WIDER_MODE (mode))
5959 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5960
5961 for (mode = MIN_MODE_PARTIAL_INT;
5962 mode <= MAX_MODE_PARTIAL_INT;
5963 mode = (machine_mode)((int)(mode) + 1))
5964 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5965
5966 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5967 mode != VOIDmode;
5968 mode = GET_MODE_WIDER_MODE (mode))
5969 {
5970 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5971 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5972 }
5973
5974 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5975 mode != VOIDmode;
5976 mode = GET_MODE_WIDER_MODE (mode))
5977 {
5978 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5979 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5980 }
5981
5982 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5983 mode != VOIDmode;
5984 mode = GET_MODE_WIDER_MODE (mode))
5985 {
5986 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5987 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5988 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5989 }
5990
5991 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5992 mode != VOIDmode;
5993 mode = GET_MODE_WIDER_MODE (mode))
5994 {
5995 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5996 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5997 }
5998
5999 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6000 mode != VOIDmode;
6001 mode = GET_MODE_WIDER_MODE (mode))
6002 {
6003 FCONST0 (mode).data.high = 0;
6004 FCONST0 (mode).data.low = 0;
6005 FCONST0 (mode).mode = mode;
6006 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6007 FCONST0 (mode), mode);
6008 }
6009
6010 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6011 mode != VOIDmode;
6012 mode = GET_MODE_WIDER_MODE (mode))
6013 {
6014 FCONST0 (mode).data.high = 0;
6015 FCONST0 (mode).data.low = 0;
6016 FCONST0 (mode).mode = mode;
6017 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6018 FCONST0 (mode), mode);
6019 }
6020
6021 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6022 mode != VOIDmode;
6023 mode = GET_MODE_WIDER_MODE (mode))
6024 {
6025 FCONST0 (mode).data.high = 0;
6026 FCONST0 (mode).data.low = 0;
6027 FCONST0 (mode).mode = mode;
6028 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6029 FCONST0 (mode), mode);
6030
6031 /* We store the value 1. */
6032 FCONST1 (mode).data.high = 0;
6033 FCONST1 (mode).data.low = 0;
6034 FCONST1 (mode).mode = mode;
6035 FCONST1 (mode).data
6036 = double_int_one.lshift (GET_MODE_FBIT (mode),
6037 HOST_BITS_PER_DOUBLE_INT,
6038 SIGNED_FIXED_POINT_MODE_P (mode));
6039 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6040 FCONST1 (mode), mode);
6041 }
6042
6043 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6044 mode != VOIDmode;
6045 mode = GET_MODE_WIDER_MODE (mode))
6046 {
6047 FCONST0 (mode).data.high = 0;
6048 FCONST0 (mode).data.low = 0;
6049 FCONST0 (mode).mode = mode;
6050 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6051 FCONST0 (mode), mode);
6052
6053 /* We store the value 1. */
6054 FCONST1 (mode).data.high = 0;
6055 FCONST1 (mode).data.low = 0;
6056 FCONST1 (mode).mode = mode;
6057 FCONST1 (mode).data
6058 = double_int_one.lshift (GET_MODE_FBIT (mode),
6059 HOST_BITS_PER_DOUBLE_INT,
6060 SIGNED_FIXED_POINT_MODE_P (mode));
6061 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6062 FCONST1 (mode), mode);
6063 }
6064
6065 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6066 mode != VOIDmode;
6067 mode = GET_MODE_WIDER_MODE (mode))
6068 {
6069 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6070 }
6071
6072 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6073 mode != VOIDmode;
6074 mode = GET_MODE_WIDER_MODE (mode))
6075 {
6076 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6077 }
6078
6079 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6080 mode != VOIDmode;
6081 mode = GET_MODE_WIDER_MODE (mode))
6082 {
6083 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6084 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6085 }
6086
6087 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6088 mode != VOIDmode;
6089 mode = GET_MODE_WIDER_MODE (mode))
6090 {
6091 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6092 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6093 }
6094
6095 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6096 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6097 const_tiny_rtx[0][i] = const0_rtx;
6098
6099 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6100 if (STORE_FLAG_VALUE == 1)
6101 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6102
6103 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6104 mode != VOIDmode;
6105 mode = GET_MODE_WIDER_MODE (mode))
6106 {
6107 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6108 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6109 }
6110
6111 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6112 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6113 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6114 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6115 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6116 /*prev_insn=*/NULL,
6117 /*next_insn=*/NULL,
6118 /*bb=*/NULL,
6119 /*pattern=*/NULL_RTX,
6120 /*location=*/-1,
6121 CODE_FOR_nothing,
6122 /*reg_notes=*/NULL_RTX);
6123 }
6124 \f
6125 /* Produce exact duplicate of insn INSN after AFTER.
6126 Care updating of libcall regions if present. */
6127
6128 rtx_insn *
6129 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6130 {
6131 rtx_insn *new_rtx;
6132 rtx link;
6133
6134 switch (GET_CODE (insn))
6135 {
6136 case INSN:
6137 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6138 break;
6139
6140 case JUMP_INSN:
6141 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6142 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6143 break;
6144
6145 case DEBUG_INSN:
6146 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6147 break;
6148
6149 case CALL_INSN:
6150 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6151 if (CALL_INSN_FUNCTION_USAGE (insn))
6152 CALL_INSN_FUNCTION_USAGE (new_rtx)
6153 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6154 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6155 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6156 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6157 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6158 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6159 break;
6160
6161 default:
6162 gcc_unreachable ();
6163 }
6164
6165 /* Update LABEL_NUSES. */
6166 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6167
6168 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6169
6170 /* If the old insn is frame related, then so is the new one. This is
6171 primarily needed for IA-64 unwind info which marks epilogue insns,
6172 which may be duplicated by the basic block reordering code. */
6173 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6174
6175 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6176 rtx *ptail = &REG_NOTES (new_rtx);
6177 while (*ptail != NULL_RTX)
6178 ptail = &XEXP (*ptail, 1);
6179
6180 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6181 will make them. REG_LABEL_TARGETs are created there too, but are
6182 supposed to be sticky, so we copy them. */
6183 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6184 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6185 {
6186 *ptail = duplicate_reg_note (link);
6187 ptail = &XEXP (*ptail, 1);
6188 }
6189
6190 INSN_CODE (new_rtx) = INSN_CODE (insn);
6191 return new_rtx;
6192 }
6193
6194 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6195 rtx
6196 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6197 {
6198 if (hard_reg_clobbers[mode][regno])
6199 return hard_reg_clobbers[mode][regno];
6200 else
6201 return (hard_reg_clobbers[mode][regno] =
6202 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6203 }
6204
6205 location_t prologue_location;
6206 location_t epilogue_location;
6207
6208 /* Hold current location information and last location information, so the
6209 datastructures are built lazily only when some instructions in given
6210 place are needed. */
6211 static location_t curr_location;
6212
6213 /* Allocate insn location datastructure. */
6214 void
6215 insn_locations_init (void)
6216 {
6217 prologue_location = epilogue_location = 0;
6218 curr_location = UNKNOWN_LOCATION;
6219 }
6220
6221 /* At the end of emit stage, clear current location. */
6222 void
6223 insn_locations_finalize (void)
6224 {
6225 epilogue_location = curr_location;
6226 curr_location = UNKNOWN_LOCATION;
6227 }
6228
6229 /* Set current location. */
6230 void
6231 set_curr_insn_location (location_t location)
6232 {
6233 curr_location = location;
6234 }
6235
6236 /* Get current location. */
6237 location_t
6238 curr_insn_location (void)
6239 {
6240 return curr_location;
6241 }
6242
6243 /* Return lexical scope block insn belongs to. */
6244 tree
6245 insn_scope (const rtx_insn *insn)
6246 {
6247 return LOCATION_BLOCK (INSN_LOCATION (insn));
6248 }
6249
6250 /* Return line number of the statement that produced this insn. */
6251 int
6252 insn_line (const rtx_insn *insn)
6253 {
6254 return LOCATION_LINE (INSN_LOCATION (insn));
6255 }
6256
6257 /* Return source file of the statement that produced this insn. */
6258 const char *
6259 insn_file (const rtx_insn *insn)
6260 {
6261 return LOCATION_FILE (INSN_LOCATION (insn));
6262 }
6263
6264 /* Return expanded location of the statement that produced this insn. */
6265 expanded_location
6266 insn_location (const rtx_insn *insn)
6267 {
6268 return expand_location (INSN_LOCATION (insn));
6269 }
6270
6271 /* Return true if memory model MODEL requires a pre-operation (release-style)
6272 barrier or a post-operation (acquire-style) barrier. While not universal,
6273 this function matches behavior of several targets. */
6274
6275 bool
6276 need_atomic_barrier_p (enum memmodel model, bool pre)
6277 {
6278 switch (model & MEMMODEL_BASE_MASK)
6279 {
6280 case MEMMODEL_RELAXED:
6281 case MEMMODEL_CONSUME:
6282 return false;
6283 case MEMMODEL_RELEASE:
6284 return pre;
6285 case MEMMODEL_ACQUIRE:
6286 return !pre;
6287 case MEMMODEL_ACQ_REL:
6288 case MEMMODEL_SEQ_CST:
6289 return true;
6290 default:
6291 gcc_unreachable ();
6292 }
6293 }
6294
6295 /* Initialize fields of rtl_data related to stack alignment. */
6296
6297 void
6298 rtl_data::init_stack_alignment ()
6299 {
6300 stack_alignment_needed = STACK_BOUNDARY;
6301 max_used_stack_slot_alignment = STACK_BOUNDARY;
6302 stack_alignment_estimated = 0;
6303 preferred_stack_boundary = STACK_BOUNDARY;
6304 }
6305
6306 \f
6307 #include "gt-emit-rtl.h"