rtl.h (reg_info): Add an nregs field.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "hash-set.h"
41 #include "machmode.h"
42 #include "vec.h"
43 #include "double-int.h"
44 #include "input.h"
45 #include "alias.h"
46 #include "symtab.h"
47 #include "wide-int.h"
48 #include "inchash.h"
49 #include "real.h"
50 #include "tree.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "predict.h"
54 #include "hard-reg-set.h"
55 #include "function.h"
56 #include "cfgrtl.h"
57 #include "basic-block.h"
58 #include "tree-eh.h"
59 #include "tm_p.h"
60 #include "flags.h"
61 #include "stringpool.h"
62 #include "hashtab.h"
63 #include "statistics.h"
64 #include "fixed-value.h"
65 #include "insn-config.h"
66 #include "expmed.h"
67 #include "dojump.h"
68 #include "explow.h"
69 #include "calls.h"
70 #include "emit-rtl.h"
71 #include "stmt.h"
72 #include "expr.h"
73 #include "regs.h"
74 #include "recog.h"
75 #include "bitmap.h"
76 #include "debug.h"
77 #include "langhooks.h"
78 #include "df.h"
79 #include "params.h"
80 #include "target.h"
81 #include "builtins.h"
82 #include "rtl-iter.h"
83
84 struct target_rtl default_target_rtl;
85 #if SWITCHABLE_TARGET
86 struct target_rtl *this_target_rtl = &default_target_rtl;
87 #endif
88
89 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
90
91 /* Commonly used modes. */
92
93 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
94 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
95 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
96 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
97
98 /* Datastructures maintained for currently processed function in RTL form. */
99
100 struct rtl_data x_rtl;
101
102 /* Indexed by pseudo register number, gives the rtx for that pseudo.
103 Allocated in parallel with regno_pointer_align.
104 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
105 with length attribute nested in top level structures. */
106
107 rtx * regno_reg_rtx;
108
109 /* This is *not* reset after each function. It gives each CODE_LABEL
110 in the entire compilation a unique label number. */
111
112 static GTY(()) int label_num = 1;
113
114 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
115 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
116 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
117 is set only for MODE_INT and MODE_VECTOR_INT modes. */
118
119 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
120
121 rtx const_true_rtx;
122
123 REAL_VALUE_TYPE dconst0;
124 REAL_VALUE_TYPE dconst1;
125 REAL_VALUE_TYPE dconst2;
126 REAL_VALUE_TYPE dconstm1;
127 REAL_VALUE_TYPE dconsthalf;
128
129 /* Record fixed-point constant 0 and 1. */
130 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
131 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
132
133 /* We make one copy of (const_int C) where C is in
134 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
135 to save space during the compilation and simplify comparisons of
136 integers. */
137
138 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
139
140 /* Standard pieces of rtx, to be substituted directly into things. */
141 rtx pc_rtx;
142 rtx ret_rtx;
143 rtx simple_return_rtx;
144 rtx cc0_rtx;
145
146 /* A hash table storing CONST_INTs whose absolute value is greater
147 than MAX_SAVED_CONST_INT. */
148
149 struct const_int_hasher : ggc_cache_hasher<rtx>
150 {
151 typedef HOST_WIDE_INT compare_type;
152
153 static hashval_t hash (rtx i);
154 static bool equal (rtx i, HOST_WIDE_INT h);
155 };
156
157 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
158
159 struct const_wide_int_hasher : ggc_cache_hasher<rtx>
160 {
161 static hashval_t hash (rtx x);
162 static bool equal (rtx x, rtx y);
163 };
164
165 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
166
167 /* A hash table storing register attribute structures. */
168 struct reg_attr_hasher : ggc_cache_hasher<reg_attrs *>
169 {
170 static hashval_t hash (reg_attrs *x);
171 static bool equal (reg_attrs *a, reg_attrs *b);
172 };
173
174 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
175
176 /* A hash table storing all CONST_DOUBLEs. */
177 struct const_double_hasher : ggc_cache_hasher<rtx>
178 {
179 static hashval_t hash (rtx x);
180 static bool equal (rtx x, rtx y);
181 };
182
183 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
184
185 /* A hash table storing all CONST_FIXEDs. */
186 struct const_fixed_hasher : ggc_cache_hasher<rtx>
187 {
188 static hashval_t hash (rtx x);
189 static bool equal (rtx x, rtx y);
190 };
191
192 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
193
194 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
195 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
196 #define first_label_num (crtl->emit.x_first_label_num)
197
198 static void set_used_decls (tree);
199 static void mark_label_nuses (rtx);
200 #if TARGET_SUPPORTS_WIDE_INT
201 static rtx lookup_const_wide_int (rtx);
202 #endif
203 static rtx lookup_const_double (rtx);
204 static rtx lookup_const_fixed (rtx);
205 static reg_attrs *get_reg_attrs (tree, int);
206 static rtx gen_const_vector (machine_mode, int);
207 static void copy_rtx_if_shared_1 (rtx *orig);
208
209 /* Probability of the conditional branch currently proceeded by try_split.
210 Set to -1 otherwise. */
211 int split_branch_probability = -1;
212 \f
213 /* Returns a hash code for X (which is a really a CONST_INT). */
214
215 hashval_t
216 const_int_hasher::hash (rtx x)
217 {
218 return (hashval_t) INTVAL (x);
219 }
220
221 /* Returns nonzero if the value represented by X (which is really a
222 CONST_INT) is the same as that given by Y (which is really a
223 HOST_WIDE_INT *). */
224
225 bool
226 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
227 {
228 return (INTVAL (x) == y);
229 }
230
231 #if TARGET_SUPPORTS_WIDE_INT
232 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
233
234 hashval_t
235 const_wide_int_hasher::hash (rtx x)
236 {
237 int i;
238 unsigned HOST_WIDE_INT hash = 0;
239 const_rtx xr = x;
240
241 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
242 hash += CONST_WIDE_INT_ELT (xr, i);
243
244 return (hashval_t) hash;
245 }
246
247 /* Returns nonzero if the value represented by X (which is really a
248 CONST_WIDE_INT) is the same as that given by Y (which is really a
249 CONST_WIDE_INT). */
250
251 bool
252 const_wide_int_hasher::equal (rtx x, rtx y)
253 {
254 int i;
255 const_rtx xr = x;
256 const_rtx yr = y;
257 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
258 return false;
259
260 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
261 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
262 return false;
263
264 return true;
265 }
266 #endif
267
268 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
269 hashval_t
270 const_double_hasher::hash (rtx x)
271 {
272 const_rtx const value = x;
273 hashval_t h;
274
275 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
276 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
277 else
278 {
279 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
280 /* MODE is used in the comparison, so it should be in the hash. */
281 h ^= GET_MODE (value);
282 }
283 return h;
284 }
285
286 /* Returns nonzero if the value represented by X (really a ...)
287 is the same as that represented by Y (really a ...) */
288 bool
289 const_double_hasher::equal (rtx x, rtx y)
290 {
291 const_rtx const a = x, b = y;
292
293 if (GET_MODE (a) != GET_MODE (b))
294 return 0;
295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
296 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
297 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
298 else
299 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
300 CONST_DOUBLE_REAL_VALUE (b));
301 }
302
303 /* Returns a hash code for X (which is really a CONST_FIXED). */
304
305 hashval_t
306 const_fixed_hasher::hash (rtx x)
307 {
308 const_rtx const value = x;
309 hashval_t h;
310
311 h = fixed_hash (CONST_FIXED_VALUE (value));
312 /* MODE is used in the comparison, so it should be in the hash. */
313 h ^= GET_MODE (value);
314 return h;
315 }
316
317 /* Returns nonzero if the value represented by X is the same as that
318 represented by Y. */
319
320 bool
321 const_fixed_hasher::equal (rtx x, rtx y)
322 {
323 const_rtx const a = x, b = y;
324
325 if (GET_MODE (a) != GET_MODE (b))
326 return 0;
327 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
328 }
329
330 /* Return true if the given memory attributes are equal. */
331
332 bool
333 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
334 {
335 if (p == q)
336 return true;
337 if (!p || !q)
338 return false;
339 return (p->alias == q->alias
340 && p->offset_known_p == q->offset_known_p
341 && (!p->offset_known_p || p->offset == q->offset)
342 && p->size_known_p == q->size_known_p
343 && (!p->size_known_p || p->size == q->size)
344 && p->align == q->align
345 && p->addrspace == q->addrspace
346 && (p->expr == q->expr
347 || (p->expr != NULL_TREE && q->expr != NULL_TREE
348 && operand_equal_p (p->expr, q->expr, 0))));
349 }
350
351 /* Set MEM's memory attributes so that they are the same as ATTRS. */
352
353 static void
354 set_mem_attrs (rtx mem, mem_attrs *attrs)
355 {
356 /* If everything is the default, we can just clear the attributes. */
357 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
358 {
359 MEM_ATTRS (mem) = 0;
360 return;
361 }
362
363 if (!MEM_ATTRS (mem)
364 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
365 {
366 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
367 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
368 }
369 }
370
371 /* Returns a hash code for X (which is a really a reg_attrs *). */
372
373 hashval_t
374 reg_attr_hasher::hash (reg_attrs *x)
375 {
376 const reg_attrs *const p = x;
377
378 return ((p->offset * 1000) ^ (intptr_t) p->decl);
379 }
380
381 /* Returns nonzero if the value represented by X is the same as that given by
382 Y. */
383
384 bool
385 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
386 {
387 const reg_attrs *const p = x;
388 const reg_attrs *const q = y;
389
390 return (p->decl == q->decl && p->offset == q->offset);
391 }
392 /* Allocate a new reg_attrs structure and insert it into the hash table if
393 one identical to it is not already in the table. We are doing this for
394 MEM of mode MODE. */
395
396 static reg_attrs *
397 get_reg_attrs (tree decl, int offset)
398 {
399 reg_attrs attrs;
400
401 /* If everything is the default, we can just return zero. */
402 if (decl == 0 && offset == 0)
403 return 0;
404
405 attrs.decl = decl;
406 attrs.offset = offset;
407
408 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
409 if (*slot == 0)
410 {
411 *slot = ggc_alloc<reg_attrs> ();
412 memcpy (*slot, &attrs, sizeof (reg_attrs));
413 }
414
415 return *slot;
416 }
417
418
419 #if !HAVE_blockage
420 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
421 and to block register equivalences to be seen across this insn. */
422
423 rtx
424 gen_blockage (void)
425 {
426 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
427 MEM_VOLATILE_P (x) = true;
428 return x;
429 }
430 #endif
431
432
433 /* Set the mode and register number of X to MODE and REGNO. */
434
435 void
436 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
437 {
438 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
439 ? hard_regno_nregs[regno][mode]
440 : 1);
441 PUT_MODE_RAW (x, mode);
442 set_regno_raw (x, regno, nregs);
443 }
444
445 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
446 don't attempt to share with the various global pieces of rtl (such as
447 frame_pointer_rtx). */
448
449 rtx
450 gen_raw_REG (machine_mode mode, unsigned int regno)
451 {
452 rtx x = rtx_alloc_stat (REG PASS_MEM_STAT);
453 set_mode_and_regno (x, mode, regno);
454 REG_ATTRS (x) = NULL;
455 ORIGINAL_REGNO (x) = regno;
456 return x;
457 }
458
459 /* There are some RTL codes that require special attention; the generation
460 functions do the raw handling. If you add to this list, modify
461 special_rtx in gengenrtl.c as well. */
462
463 rtx_expr_list *
464 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
465 {
466 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
467 expr_list));
468 }
469
470 rtx_insn_list *
471 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
472 {
473 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
474 insn_list));
475 }
476
477 rtx_insn *
478 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
479 basic_block bb, rtx pattern, int location, int code,
480 rtx reg_notes)
481 {
482 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
483 prev_insn, next_insn,
484 bb, pattern, location, code,
485 reg_notes));
486 }
487
488 rtx
489 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
490 {
491 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
492 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
493
494 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
495 if (const_true_rtx && arg == STORE_FLAG_VALUE)
496 return const_true_rtx;
497 #endif
498
499 /* Look up the CONST_INT in the hash table. */
500 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
501 INSERT);
502 if (*slot == 0)
503 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
504
505 return *slot;
506 }
507
508 rtx
509 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
510 {
511 return GEN_INT (trunc_int_for_mode (c, mode));
512 }
513
514 /* CONST_DOUBLEs might be created from pairs of integers, or from
515 REAL_VALUE_TYPEs. Also, their length is known only at run time,
516 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
517
518 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
519 hash table. If so, return its counterpart; otherwise add it
520 to the hash table and return it. */
521 static rtx
522 lookup_const_double (rtx real)
523 {
524 rtx *slot = const_double_htab->find_slot (real, INSERT);
525 if (*slot == 0)
526 *slot = real;
527
528 return *slot;
529 }
530
531 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
532 VALUE in mode MODE. */
533 rtx
534 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
535 {
536 rtx real = rtx_alloc (CONST_DOUBLE);
537 PUT_MODE (real, mode);
538
539 real->u.rv = value;
540
541 return lookup_const_double (real);
542 }
543
544 /* Determine whether FIXED, a CONST_FIXED, already exists in the
545 hash table. If so, return its counterpart; otherwise add it
546 to the hash table and return it. */
547
548 static rtx
549 lookup_const_fixed (rtx fixed)
550 {
551 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
552 if (*slot == 0)
553 *slot = fixed;
554
555 return *slot;
556 }
557
558 /* Return a CONST_FIXED rtx for a fixed-point value specified by
559 VALUE in mode MODE. */
560
561 rtx
562 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
563 {
564 rtx fixed = rtx_alloc (CONST_FIXED);
565 PUT_MODE (fixed, mode);
566
567 fixed->u.fv = value;
568
569 return lookup_const_fixed (fixed);
570 }
571
572 #if TARGET_SUPPORTS_WIDE_INT == 0
573 /* Constructs double_int from rtx CST. */
574
575 double_int
576 rtx_to_double_int (const_rtx cst)
577 {
578 double_int r;
579
580 if (CONST_INT_P (cst))
581 r = double_int::from_shwi (INTVAL (cst));
582 else if (CONST_DOUBLE_AS_INT_P (cst))
583 {
584 r.low = CONST_DOUBLE_LOW (cst);
585 r.high = CONST_DOUBLE_HIGH (cst);
586 }
587 else
588 gcc_unreachable ();
589
590 return r;
591 }
592 #endif
593
594 #if TARGET_SUPPORTS_WIDE_INT
595 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
596 If so, return its counterpart; otherwise add it to the hash table and
597 return it. */
598
599 static rtx
600 lookup_const_wide_int (rtx wint)
601 {
602 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
603 if (*slot == 0)
604 *slot = wint;
605
606 return *slot;
607 }
608 #endif
609
610 /* Return an rtx constant for V, given that the constant has mode MODE.
611 The returned rtx will be a CONST_INT if V fits, otherwise it will be
612 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
613 (if TARGET_SUPPORTS_WIDE_INT). */
614
615 rtx
616 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
617 {
618 unsigned int len = v.get_len ();
619 unsigned int prec = GET_MODE_PRECISION (mode);
620
621 /* Allow truncation but not extension since we do not know if the
622 number is signed or unsigned. */
623 gcc_assert (prec <= v.get_precision ());
624
625 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
626 return gen_int_mode (v.elt (0), mode);
627
628 #if TARGET_SUPPORTS_WIDE_INT
629 {
630 unsigned int i;
631 rtx value;
632 unsigned int blocks_needed
633 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
634
635 if (len > blocks_needed)
636 len = blocks_needed;
637
638 value = const_wide_int_alloc (len);
639
640 /* It is so tempting to just put the mode in here. Must control
641 myself ... */
642 PUT_MODE (value, VOIDmode);
643 CWI_PUT_NUM_ELEM (value, len);
644
645 for (i = 0; i < len; i++)
646 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
647
648 return lookup_const_wide_int (value);
649 }
650 #else
651 return immed_double_const (v.elt (0), v.elt (1), mode);
652 #endif
653 }
654
655 #if TARGET_SUPPORTS_WIDE_INT == 0
656 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
657 of ints: I0 is the low-order word and I1 is the high-order word.
658 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
659 implied upper bits are copies of the high bit of i1. The value
660 itself is neither signed nor unsigned. Do not use this routine for
661 non-integer modes; convert to REAL_VALUE_TYPE and use
662 CONST_DOUBLE_FROM_REAL_VALUE. */
663
664 rtx
665 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
666 {
667 rtx value;
668 unsigned int i;
669
670 /* There are the following cases (note that there are no modes with
671 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
672
673 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
674 gen_int_mode.
675 2) If the value of the integer fits into HOST_WIDE_INT anyway
676 (i.e., i1 consists only from copies of the sign bit, and sign
677 of i0 and i1 are the same), then we return a CONST_INT for i0.
678 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
679 if (mode != VOIDmode)
680 {
681 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
682 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
683 /* We can get a 0 for an error mark. */
684 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
685 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
686 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
687
688 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
689 return gen_int_mode (i0, mode);
690 }
691
692 /* If this integer fits in one word, return a CONST_INT. */
693 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
694 return GEN_INT (i0);
695
696 /* We use VOIDmode for integers. */
697 value = rtx_alloc (CONST_DOUBLE);
698 PUT_MODE (value, VOIDmode);
699
700 CONST_DOUBLE_LOW (value) = i0;
701 CONST_DOUBLE_HIGH (value) = i1;
702
703 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
704 XWINT (value, i) = 0;
705
706 return lookup_const_double (value);
707 }
708 #endif
709
710 rtx
711 gen_rtx_REG (machine_mode mode, unsigned int regno)
712 {
713 /* In case the MD file explicitly references the frame pointer, have
714 all such references point to the same frame pointer. This is
715 used during frame pointer elimination to distinguish the explicit
716 references to these registers from pseudos that happened to be
717 assigned to them.
718
719 If we have eliminated the frame pointer or arg pointer, we will
720 be using it as a normal register, for example as a spill
721 register. In such cases, we might be accessing it in a mode that
722 is not Pmode and therefore cannot use the pre-allocated rtx.
723
724 Also don't do this when we are making new REGs in reload, since
725 we don't want to get confused with the real pointers. */
726
727 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
728 {
729 if (regno == FRAME_POINTER_REGNUM
730 && (!reload_completed || frame_pointer_needed))
731 return frame_pointer_rtx;
732
733 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
734 && regno == HARD_FRAME_POINTER_REGNUM
735 && (!reload_completed || frame_pointer_needed))
736 return hard_frame_pointer_rtx;
737 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
738 if (regno == ARG_POINTER_REGNUM)
739 return arg_pointer_rtx;
740 #endif
741 #ifdef RETURN_ADDRESS_POINTER_REGNUM
742 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
743 return return_address_pointer_rtx;
744 #endif
745 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
746 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
747 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
748 return pic_offset_table_rtx;
749 if (regno == STACK_POINTER_REGNUM)
750 return stack_pointer_rtx;
751 }
752
753 #if 0
754 /* If the per-function register table has been set up, try to re-use
755 an existing entry in that table to avoid useless generation of RTL.
756
757 This code is disabled for now until we can fix the various backends
758 which depend on having non-shared hard registers in some cases. Long
759 term we want to re-enable this code as it can significantly cut down
760 on the amount of useless RTL that gets generated.
761
762 We'll also need to fix some code that runs after reload that wants to
763 set ORIGINAL_REGNO. */
764
765 if (cfun
766 && cfun->emit
767 && regno_reg_rtx
768 && regno < FIRST_PSEUDO_REGISTER
769 && reg_raw_mode[regno] == mode)
770 return regno_reg_rtx[regno];
771 #endif
772
773 return gen_raw_REG (mode, regno);
774 }
775
776 rtx
777 gen_rtx_MEM (machine_mode mode, rtx addr)
778 {
779 rtx rt = gen_rtx_raw_MEM (mode, addr);
780
781 /* This field is not cleared by the mere allocation of the rtx, so
782 we clear it here. */
783 MEM_ATTRS (rt) = 0;
784
785 return rt;
786 }
787
788 /* Generate a memory referring to non-trapping constant memory. */
789
790 rtx
791 gen_const_mem (machine_mode mode, rtx addr)
792 {
793 rtx mem = gen_rtx_MEM (mode, addr);
794 MEM_READONLY_P (mem) = 1;
795 MEM_NOTRAP_P (mem) = 1;
796 return mem;
797 }
798
799 /* Generate a MEM referring to fixed portions of the frame, e.g., register
800 save areas. */
801
802 rtx
803 gen_frame_mem (machine_mode mode, rtx addr)
804 {
805 rtx mem = gen_rtx_MEM (mode, addr);
806 MEM_NOTRAP_P (mem) = 1;
807 set_mem_alias_set (mem, get_frame_alias_set ());
808 return mem;
809 }
810
811 /* Generate a MEM referring to a temporary use of the stack, not part
812 of the fixed stack frame. For example, something which is pushed
813 by a target splitter. */
814 rtx
815 gen_tmp_stack_mem (machine_mode mode, rtx addr)
816 {
817 rtx mem = gen_rtx_MEM (mode, addr);
818 MEM_NOTRAP_P (mem) = 1;
819 if (!cfun->calls_alloca)
820 set_mem_alias_set (mem, get_frame_alias_set ());
821 return mem;
822 }
823
824 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
825 this construct would be valid, and false otherwise. */
826
827 bool
828 validate_subreg (machine_mode omode, machine_mode imode,
829 const_rtx reg, unsigned int offset)
830 {
831 unsigned int isize = GET_MODE_SIZE (imode);
832 unsigned int osize = GET_MODE_SIZE (omode);
833
834 /* All subregs must be aligned. */
835 if (offset % osize != 0)
836 return false;
837
838 /* The subreg offset cannot be outside the inner object. */
839 if (offset >= isize)
840 return false;
841
842 /* ??? This should not be here. Temporarily continue to allow word_mode
843 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
844 Generally, backends are doing something sketchy but it'll take time to
845 fix them all. */
846 if (omode == word_mode)
847 ;
848 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
849 is the culprit here, and not the backends. */
850 else if (osize >= UNITS_PER_WORD && isize >= osize)
851 ;
852 /* Allow component subregs of complex and vector. Though given the below
853 extraction rules, it's not always clear what that means. */
854 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
855 && GET_MODE_INNER (imode) == omode)
856 ;
857 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
858 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
859 represent this. It's questionable if this ought to be represented at
860 all -- why can't this all be hidden in post-reload splitters that make
861 arbitrarily mode changes to the registers themselves. */
862 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
863 ;
864 /* Subregs involving floating point modes are not allowed to
865 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
866 (subreg:SI (reg:DF) 0) isn't. */
867 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
868 {
869 if (! (isize == osize
870 /* LRA can use subreg to store a floating point value in
871 an integer mode. Although the floating point and the
872 integer modes need the same number of hard registers,
873 the size of floating point mode can be less than the
874 integer mode. LRA also uses subregs for a register
875 should be used in different mode in on insn. */
876 || lra_in_progress))
877 return false;
878 }
879
880 /* Paradoxical subregs must have offset zero. */
881 if (osize > isize)
882 return offset == 0;
883
884 /* This is a normal subreg. Verify that the offset is representable. */
885
886 /* For hard registers, we already have most of these rules collected in
887 subreg_offset_representable_p. */
888 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
889 {
890 unsigned int regno = REGNO (reg);
891
892 #ifdef CANNOT_CHANGE_MODE_CLASS
893 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
894 && GET_MODE_INNER (imode) == omode)
895 ;
896 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
897 return false;
898 #endif
899
900 return subreg_offset_representable_p (regno, imode, offset, omode);
901 }
902
903 /* For pseudo registers, we want most of the same checks. Namely:
904 If the register no larger than a word, the subreg must be lowpart.
905 If the register is larger than a word, the subreg must be the lowpart
906 of a subword. A subreg does *not* perform arbitrary bit extraction.
907 Given that we've already checked mode/offset alignment, we only have
908 to check subword subregs here. */
909 if (osize < UNITS_PER_WORD
910 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
911 {
912 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
913 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
914 if (offset % UNITS_PER_WORD != low_off)
915 return false;
916 }
917 return true;
918 }
919
920 rtx
921 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
922 {
923 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
924 return gen_rtx_raw_SUBREG (mode, reg, offset);
925 }
926
927 /* Generate a SUBREG representing the least-significant part of REG if MODE
928 is smaller than mode of REG, otherwise paradoxical SUBREG. */
929
930 rtx
931 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
932 {
933 machine_mode inmode;
934
935 inmode = GET_MODE (reg);
936 if (inmode == VOIDmode)
937 inmode = mode;
938 return gen_rtx_SUBREG (mode, reg,
939 subreg_lowpart_offset (mode, inmode));
940 }
941
942 rtx
943 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
944 enum var_init_status status)
945 {
946 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
947 PAT_VAR_LOCATION_STATUS (x) = status;
948 return x;
949 }
950 \f
951
952 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
953
954 rtvec
955 gen_rtvec (int n, ...)
956 {
957 int i;
958 rtvec rt_val;
959 va_list p;
960
961 va_start (p, n);
962
963 /* Don't allocate an empty rtvec... */
964 if (n == 0)
965 {
966 va_end (p);
967 return NULL_RTVEC;
968 }
969
970 rt_val = rtvec_alloc (n);
971
972 for (i = 0; i < n; i++)
973 rt_val->elem[i] = va_arg (p, rtx);
974
975 va_end (p);
976 return rt_val;
977 }
978
979 rtvec
980 gen_rtvec_v (int n, rtx *argp)
981 {
982 int i;
983 rtvec rt_val;
984
985 /* Don't allocate an empty rtvec... */
986 if (n == 0)
987 return NULL_RTVEC;
988
989 rt_val = rtvec_alloc (n);
990
991 for (i = 0; i < n; i++)
992 rt_val->elem[i] = *argp++;
993
994 return rt_val;
995 }
996
997 rtvec
998 gen_rtvec_v (int n, rtx_insn **argp)
999 {
1000 int i;
1001 rtvec rt_val;
1002
1003 /* Don't allocate an empty rtvec... */
1004 if (n == 0)
1005 return NULL_RTVEC;
1006
1007 rt_val = rtvec_alloc (n);
1008
1009 for (i = 0; i < n; i++)
1010 rt_val->elem[i] = *argp++;
1011
1012 return rt_val;
1013 }
1014
1015 \f
1016 /* Return the number of bytes between the start of an OUTER_MODE
1017 in-memory value and the start of an INNER_MODE in-memory value,
1018 given that the former is a lowpart of the latter. It may be a
1019 paradoxical lowpart, in which case the offset will be negative
1020 on big-endian targets. */
1021
1022 int
1023 byte_lowpart_offset (machine_mode outer_mode,
1024 machine_mode inner_mode)
1025 {
1026 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1027 return subreg_lowpart_offset (outer_mode, inner_mode);
1028 else
1029 return -subreg_lowpart_offset (inner_mode, outer_mode);
1030 }
1031 \f
1032 /* Generate a REG rtx for a new pseudo register of mode MODE.
1033 This pseudo is assigned the next sequential register number. */
1034
1035 rtx
1036 gen_reg_rtx (machine_mode mode)
1037 {
1038 rtx val;
1039 unsigned int align = GET_MODE_ALIGNMENT (mode);
1040
1041 gcc_assert (can_create_pseudo_p ());
1042
1043 /* If a virtual register with bigger mode alignment is generated,
1044 increase stack alignment estimation because it might be spilled
1045 to stack later. */
1046 if (SUPPORTS_STACK_ALIGNMENT
1047 && crtl->stack_alignment_estimated < align
1048 && !crtl->stack_realign_processed)
1049 {
1050 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1051 if (crtl->stack_alignment_estimated < min_align)
1052 crtl->stack_alignment_estimated = min_align;
1053 }
1054
1055 if (generating_concat_p
1056 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1057 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1058 {
1059 /* For complex modes, don't make a single pseudo.
1060 Instead, make a CONCAT of two pseudos.
1061 This allows noncontiguous allocation of the real and imaginary parts,
1062 which makes much better code. Besides, allocating DCmode
1063 pseudos overstrains reload on some machines like the 386. */
1064 rtx realpart, imagpart;
1065 machine_mode partmode = GET_MODE_INNER (mode);
1066
1067 realpart = gen_reg_rtx (partmode);
1068 imagpart = gen_reg_rtx (partmode);
1069 return gen_rtx_CONCAT (mode, realpart, imagpart);
1070 }
1071
1072 /* Do not call gen_reg_rtx with uninitialized crtl. */
1073 gcc_assert (crtl->emit.regno_pointer_align_length);
1074
1075 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1076 enough to have an element for this pseudo reg number. */
1077
1078 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1079 {
1080 int old_size = crtl->emit.regno_pointer_align_length;
1081 char *tmp;
1082 rtx *new1;
1083
1084 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1085 memset (tmp + old_size, 0, old_size);
1086 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1087
1088 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1089 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1090 regno_reg_rtx = new1;
1091
1092 crtl->emit.regno_pointer_align_length = old_size * 2;
1093 }
1094
1095 val = gen_raw_REG (mode, reg_rtx_no);
1096 regno_reg_rtx[reg_rtx_no++] = val;
1097 return val;
1098 }
1099
1100 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1101
1102 bool
1103 reg_is_parm_p (rtx reg)
1104 {
1105 tree decl;
1106
1107 gcc_assert (REG_P (reg));
1108 decl = REG_EXPR (reg);
1109 return (decl && TREE_CODE (decl) == PARM_DECL);
1110 }
1111
1112 /* Update NEW with the same attributes as REG, but with OFFSET added
1113 to the REG_OFFSET. */
1114
1115 static void
1116 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1117 {
1118 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1119 REG_OFFSET (reg) + offset);
1120 }
1121
1122 /* Generate a register with same attributes as REG, but with OFFSET
1123 added to the REG_OFFSET. */
1124
1125 rtx
1126 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1127 int offset)
1128 {
1129 rtx new_rtx = gen_rtx_REG (mode, regno);
1130
1131 update_reg_offset (new_rtx, reg, offset);
1132 return new_rtx;
1133 }
1134
1135 /* Generate a new pseudo-register with the same attributes as REG, but
1136 with OFFSET added to the REG_OFFSET. */
1137
1138 rtx
1139 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1140 {
1141 rtx new_rtx = gen_reg_rtx (mode);
1142
1143 update_reg_offset (new_rtx, reg, offset);
1144 return new_rtx;
1145 }
1146
1147 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1148 new register is a (possibly paradoxical) lowpart of the old one. */
1149
1150 void
1151 adjust_reg_mode (rtx reg, machine_mode mode)
1152 {
1153 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1154 PUT_MODE (reg, mode);
1155 }
1156
1157 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1158 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1159
1160 void
1161 set_reg_attrs_from_value (rtx reg, rtx x)
1162 {
1163 int offset;
1164 bool can_be_reg_pointer = true;
1165
1166 /* Don't call mark_reg_pointer for incompatible pointer sign
1167 extension. */
1168 while (GET_CODE (x) == SIGN_EXTEND
1169 || GET_CODE (x) == ZERO_EXTEND
1170 || GET_CODE (x) == TRUNCATE
1171 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1172 {
1173 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1174 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1175 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1176 can_be_reg_pointer = false;
1177 #endif
1178 x = XEXP (x, 0);
1179 }
1180
1181 /* Hard registers can be reused for multiple purposes within the same
1182 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1183 on them is wrong. */
1184 if (HARD_REGISTER_P (reg))
1185 return;
1186
1187 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1188 if (MEM_P (x))
1189 {
1190 if (MEM_OFFSET_KNOWN_P (x))
1191 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1192 MEM_OFFSET (x) + offset);
1193 if (can_be_reg_pointer && MEM_POINTER (x))
1194 mark_reg_pointer (reg, 0);
1195 }
1196 else if (REG_P (x))
1197 {
1198 if (REG_ATTRS (x))
1199 update_reg_offset (reg, x, offset);
1200 if (can_be_reg_pointer && REG_POINTER (x))
1201 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1202 }
1203 }
1204
1205 /* Generate a REG rtx for a new pseudo register, copying the mode
1206 and attributes from X. */
1207
1208 rtx
1209 gen_reg_rtx_and_attrs (rtx x)
1210 {
1211 rtx reg = gen_reg_rtx (GET_MODE (x));
1212 set_reg_attrs_from_value (reg, x);
1213 return reg;
1214 }
1215
1216 /* Set the register attributes for registers contained in PARM_RTX.
1217 Use needed values from memory attributes of MEM. */
1218
1219 void
1220 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1221 {
1222 if (REG_P (parm_rtx))
1223 set_reg_attrs_from_value (parm_rtx, mem);
1224 else if (GET_CODE (parm_rtx) == PARALLEL)
1225 {
1226 /* Check for a NULL entry in the first slot, used to indicate that the
1227 parameter goes both on the stack and in registers. */
1228 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1229 for (; i < XVECLEN (parm_rtx, 0); i++)
1230 {
1231 rtx x = XVECEXP (parm_rtx, 0, i);
1232 if (REG_P (XEXP (x, 0)))
1233 REG_ATTRS (XEXP (x, 0))
1234 = get_reg_attrs (MEM_EXPR (mem),
1235 INTVAL (XEXP (x, 1)));
1236 }
1237 }
1238 }
1239
1240 /* Set the REG_ATTRS for registers in value X, given that X represents
1241 decl T. */
1242
1243 void
1244 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1245 {
1246 if (GET_CODE (x) == SUBREG)
1247 {
1248 gcc_assert (subreg_lowpart_p (x));
1249 x = SUBREG_REG (x);
1250 }
1251 if (REG_P (x))
1252 REG_ATTRS (x)
1253 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1254 DECL_MODE (t)));
1255 if (GET_CODE (x) == CONCAT)
1256 {
1257 if (REG_P (XEXP (x, 0)))
1258 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1259 if (REG_P (XEXP (x, 1)))
1260 REG_ATTRS (XEXP (x, 1))
1261 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1262 }
1263 if (GET_CODE (x) == PARALLEL)
1264 {
1265 int i, start;
1266
1267 /* Check for a NULL entry, used to indicate that the parameter goes
1268 both on the stack and in registers. */
1269 if (XEXP (XVECEXP (x, 0, 0), 0))
1270 start = 0;
1271 else
1272 start = 1;
1273
1274 for (i = start; i < XVECLEN (x, 0); i++)
1275 {
1276 rtx y = XVECEXP (x, 0, i);
1277 if (REG_P (XEXP (y, 0)))
1278 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1279 }
1280 }
1281 }
1282
1283 /* Assign the RTX X to declaration T. */
1284
1285 void
1286 set_decl_rtl (tree t, rtx x)
1287 {
1288 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1289 if (x)
1290 set_reg_attrs_for_decl_rtl (t, x);
1291 }
1292
1293 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1294 if the ABI requires the parameter to be passed by reference. */
1295
1296 void
1297 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1298 {
1299 DECL_INCOMING_RTL (t) = x;
1300 if (x && !by_reference_p)
1301 set_reg_attrs_for_decl_rtl (t, x);
1302 }
1303
1304 /* Identify REG (which may be a CONCAT) as a user register. */
1305
1306 void
1307 mark_user_reg (rtx reg)
1308 {
1309 if (GET_CODE (reg) == CONCAT)
1310 {
1311 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1312 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1313 }
1314 else
1315 {
1316 gcc_assert (REG_P (reg));
1317 REG_USERVAR_P (reg) = 1;
1318 }
1319 }
1320
1321 /* Identify REG as a probable pointer register and show its alignment
1322 as ALIGN, if nonzero. */
1323
1324 void
1325 mark_reg_pointer (rtx reg, int align)
1326 {
1327 if (! REG_POINTER (reg))
1328 {
1329 REG_POINTER (reg) = 1;
1330
1331 if (align)
1332 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1333 }
1334 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1335 /* We can no-longer be sure just how aligned this pointer is. */
1336 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1337 }
1338
1339 /* Return 1 plus largest pseudo reg number used in the current function. */
1340
1341 int
1342 max_reg_num (void)
1343 {
1344 return reg_rtx_no;
1345 }
1346
1347 /* Return 1 + the largest label number used so far in the current function. */
1348
1349 int
1350 max_label_num (void)
1351 {
1352 return label_num;
1353 }
1354
1355 /* Return first label number used in this function (if any were used). */
1356
1357 int
1358 get_first_label_num (void)
1359 {
1360 return first_label_num;
1361 }
1362
1363 /* If the rtx for label was created during the expansion of a nested
1364 function, then first_label_num won't include this label number.
1365 Fix this now so that array indices work later. */
1366
1367 void
1368 maybe_set_first_label_num (rtx x)
1369 {
1370 if (CODE_LABEL_NUMBER (x) < first_label_num)
1371 first_label_num = CODE_LABEL_NUMBER (x);
1372 }
1373 \f
1374 /* Return a value representing some low-order bits of X, where the number
1375 of low-order bits is given by MODE. Note that no conversion is done
1376 between floating-point and fixed-point values, rather, the bit
1377 representation is returned.
1378
1379 This function handles the cases in common between gen_lowpart, below,
1380 and two variants in cse.c and combine.c. These are the cases that can
1381 be safely handled at all points in the compilation.
1382
1383 If this is not a case we can handle, return 0. */
1384
1385 rtx
1386 gen_lowpart_common (machine_mode mode, rtx x)
1387 {
1388 int msize = GET_MODE_SIZE (mode);
1389 int xsize;
1390 int offset = 0;
1391 machine_mode innermode;
1392
1393 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1394 so we have to make one up. Yuk. */
1395 innermode = GET_MODE (x);
1396 if (CONST_INT_P (x)
1397 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1398 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1399 else if (innermode == VOIDmode)
1400 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1401
1402 xsize = GET_MODE_SIZE (innermode);
1403
1404 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1405
1406 if (innermode == mode)
1407 return x;
1408
1409 /* MODE must occupy no more words than the mode of X. */
1410 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1411 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1412 return 0;
1413
1414 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1415 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1416 return 0;
1417
1418 offset = subreg_lowpart_offset (mode, innermode);
1419
1420 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1421 && (GET_MODE_CLASS (mode) == MODE_INT
1422 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1423 {
1424 /* If we are getting the low-order part of something that has been
1425 sign- or zero-extended, we can either just use the object being
1426 extended or make a narrower extension. If we want an even smaller
1427 piece than the size of the object being extended, call ourselves
1428 recursively.
1429
1430 This case is used mostly by combine and cse. */
1431
1432 if (GET_MODE (XEXP (x, 0)) == mode)
1433 return XEXP (x, 0);
1434 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1435 return gen_lowpart_common (mode, XEXP (x, 0));
1436 else if (msize < xsize)
1437 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1438 }
1439 else if (GET_CODE (x) == SUBREG || REG_P (x)
1440 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1441 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1442 return simplify_gen_subreg (mode, x, innermode, offset);
1443
1444 /* Otherwise, we can't do this. */
1445 return 0;
1446 }
1447 \f
1448 rtx
1449 gen_highpart (machine_mode mode, rtx x)
1450 {
1451 unsigned int msize = GET_MODE_SIZE (mode);
1452 rtx result;
1453
1454 /* This case loses if X is a subreg. To catch bugs early,
1455 complain if an invalid MODE is used even in other cases. */
1456 gcc_assert (msize <= UNITS_PER_WORD
1457 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1458
1459 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1460 subreg_highpart_offset (mode, GET_MODE (x)));
1461 gcc_assert (result);
1462
1463 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1464 the target if we have a MEM. gen_highpart must return a valid operand,
1465 emitting code if necessary to do so. */
1466 if (MEM_P (result))
1467 {
1468 result = validize_mem (result);
1469 gcc_assert (result);
1470 }
1471
1472 return result;
1473 }
1474
1475 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1476 be VOIDmode constant. */
1477 rtx
1478 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1479 {
1480 if (GET_MODE (exp) != VOIDmode)
1481 {
1482 gcc_assert (GET_MODE (exp) == innermode);
1483 return gen_highpart (outermode, exp);
1484 }
1485 return simplify_gen_subreg (outermode, exp, innermode,
1486 subreg_highpart_offset (outermode, innermode));
1487 }
1488
1489 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1490
1491 unsigned int
1492 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1493 {
1494 unsigned int offset = 0;
1495 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1496
1497 if (difference > 0)
1498 {
1499 if (WORDS_BIG_ENDIAN)
1500 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1501 if (BYTES_BIG_ENDIAN)
1502 offset += difference % UNITS_PER_WORD;
1503 }
1504
1505 return offset;
1506 }
1507
1508 /* Return offset in bytes to get OUTERMODE high part
1509 of the value in mode INNERMODE stored in memory in target format. */
1510 unsigned int
1511 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1512 {
1513 unsigned int offset = 0;
1514 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1515
1516 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1517
1518 if (difference > 0)
1519 {
1520 if (! WORDS_BIG_ENDIAN)
1521 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1522 if (! BYTES_BIG_ENDIAN)
1523 offset += difference % UNITS_PER_WORD;
1524 }
1525
1526 return offset;
1527 }
1528
1529 /* Return 1 iff X, assumed to be a SUBREG,
1530 refers to the least significant part of its containing reg.
1531 If X is not a SUBREG, always return 1 (it is its own low part!). */
1532
1533 int
1534 subreg_lowpart_p (const_rtx x)
1535 {
1536 if (GET_CODE (x) != SUBREG)
1537 return 1;
1538 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1539 return 0;
1540
1541 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1542 == SUBREG_BYTE (x));
1543 }
1544
1545 /* Return true if X is a paradoxical subreg, false otherwise. */
1546 bool
1547 paradoxical_subreg_p (const_rtx x)
1548 {
1549 if (GET_CODE (x) != SUBREG)
1550 return false;
1551 return (GET_MODE_PRECISION (GET_MODE (x))
1552 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1553 }
1554 \f
1555 /* Return subword OFFSET of operand OP.
1556 The word number, OFFSET, is interpreted as the word number starting
1557 at the low-order address. OFFSET 0 is the low-order word if not
1558 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1559
1560 If we cannot extract the required word, we return zero. Otherwise,
1561 an rtx corresponding to the requested word will be returned.
1562
1563 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1564 reload has completed, a valid address will always be returned. After
1565 reload, if a valid address cannot be returned, we return zero.
1566
1567 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1568 it is the responsibility of the caller.
1569
1570 MODE is the mode of OP in case it is a CONST_INT.
1571
1572 ??? This is still rather broken for some cases. The problem for the
1573 moment is that all callers of this thing provide no 'goal mode' to
1574 tell us to work with. This exists because all callers were written
1575 in a word based SUBREG world.
1576 Now use of this function can be deprecated by simplify_subreg in most
1577 cases.
1578 */
1579
1580 rtx
1581 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1582 {
1583 if (mode == VOIDmode)
1584 mode = GET_MODE (op);
1585
1586 gcc_assert (mode != VOIDmode);
1587
1588 /* If OP is narrower than a word, fail. */
1589 if (mode != BLKmode
1590 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1591 return 0;
1592
1593 /* If we want a word outside OP, return zero. */
1594 if (mode != BLKmode
1595 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1596 return const0_rtx;
1597
1598 /* Form a new MEM at the requested address. */
1599 if (MEM_P (op))
1600 {
1601 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1602
1603 if (! validate_address)
1604 return new_rtx;
1605
1606 else if (reload_completed)
1607 {
1608 if (! strict_memory_address_addr_space_p (word_mode,
1609 XEXP (new_rtx, 0),
1610 MEM_ADDR_SPACE (op)))
1611 return 0;
1612 }
1613 else
1614 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1615 }
1616
1617 /* Rest can be handled by simplify_subreg. */
1618 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1619 }
1620
1621 /* Similar to `operand_subword', but never return 0. If we can't
1622 extract the required subword, put OP into a register and try again.
1623 The second attempt must succeed. We always validate the address in
1624 this case.
1625
1626 MODE is the mode of OP, in case it is CONST_INT. */
1627
1628 rtx
1629 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1630 {
1631 rtx result = operand_subword (op, offset, 1, mode);
1632
1633 if (result)
1634 return result;
1635
1636 if (mode != BLKmode && mode != VOIDmode)
1637 {
1638 /* If this is a register which can not be accessed by words, copy it
1639 to a pseudo register. */
1640 if (REG_P (op))
1641 op = copy_to_reg (op);
1642 else
1643 op = force_reg (mode, op);
1644 }
1645
1646 result = operand_subword (op, offset, 1, mode);
1647 gcc_assert (result);
1648
1649 return result;
1650 }
1651 \f
1652 /* Returns 1 if both MEM_EXPR can be considered equal
1653 and 0 otherwise. */
1654
1655 int
1656 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1657 {
1658 if (expr1 == expr2)
1659 return 1;
1660
1661 if (! expr1 || ! expr2)
1662 return 0;
1663
1664 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1665 return 0;
1666
1667 return operand_equal_p (expr1, expr2, 0);
1668 }
1669
1670 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1671 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1672 -1 if not known. */
1673
1674 int
1675 get_mem_align_offset (rtx mem, unsigned int align)
1676 {
1677 tree expr;
1678 unsigned HOST_WIDE_INT offset;
1679
1680 /* This function can't use
1681 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1682 || (MAX (MEM_ALIGN (mem),
1683 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1684 < align))
1685 return -1;
1686 else
1687 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1688 for two reasons:
1689 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1690 for <variable>. get_inner_reference doesn't handle it and
1691 even if it did, the alignment in that case needs to be determined
1692 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1693 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1694 isn't sufficiently aligned, the object it is in might be. */
1695 gcc_assert (MEM_P (mem));
1696 expr = MEM_EXPR (mem);
1697 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1698 return -1;
1699
1700 offset = MEM_OFFSET (mem);
1701 if (DECL_P (expr))
1702 {
1703 if (DECL_ALIGN (expr) < align)
1704 return -1;
1705 }
1706 else if (INDIRECT_REF_P (expr))
1707 {
1708 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1709 return -1;
1710 }
1711 else if (TREE_CODE (expr) == COMPONENT_REF)
1712 {
1713 while (1)
1714 {
1715 tree inner = TREE_OPERAND (expr, 0);
1716 tree field = TREE_OPERAND (expr, 1);
1717 tree byte_offset = component_ref_field_offset (expr);
1718 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1719
1720 if (!byte_offset
1721 || !tree_fits_uhwi_p (byte_offset)
1722 || !tree_fits_uhwi_p (bit_offset))
1723 return -1;
1724
1725 offset += tree_to_uhwi (byte_offset);
1726 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1727
1728 if (inner == NULL_TREE)
1729 {
1730 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1731 < (unsigned int) align)
1732 return -1;
1733 break;
1734 }
1735 else if (DECL_P (inner))
1736 {
1737 if (DECL_ALIGN (inner) < align)
1738 return -1;
1739 break;
1740 }
1741 else if (TREE_CODE (inner) != COMPONENT_REF)
1742 return -1;
1743 expr = inner;
1744 }
1745 }
1746 else
1747 return -1;
1748
1749 return offset & ((align / BITS_PER_UNIT) - 1);
1750 }
1751
1752 /* Given REF (a MEM) and T, either the type of X or the expression
1753 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1754 if we are making a new object of this type. BITPOS is nonzero if
1755 there is an offset outstanding on T that will be applied later. */
1756
1757 void
1758 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1759 HOST_WIDE_INT bitpos)
1760 {
1761 HOST_WIDE_INT apply_bitpos = 0;
1762 tree type;
1763 struct mem_attrs attrs, *defattrs, *refattrs;
1764 addr_space_t as;
1765
1766 /* It can happen that type_for_mode was given a mode for which there
1767 is no language-level type. In which case it returns NULL, which
1768 we can see here. */
1769 if (t == NULL_TREE)
1770 return;
1771
1772 type = TYPE_P (t) ? t : TREE_TYPE (t);
1773 if (type == error_mark_node)
1774 return;
1775
1776 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1777 wrong answer, as it assumes that DECL_RTL already has the right alias
1778 info. Callers should not set DECL_RTL until after the call to
1779 set_mem_attributes. */
1780 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1781
1782 memset (&attrs, 0, sizeof (attrs));
1783
1784 /* Get the alias set from the expression or type (perhaps using a
1785 front-end routine) and use it. */
1786 attrs.alias = get_alias_set (t);
1787
1788 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1789 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1790
1791 /* Default values from pre-existing memory attributes if present. */
1792 refattrs = MEM_ATTRS (ref);
1793 if (refattrs)
1794 {
1795 /* ??? Can this ever happen? Calling this routine on a MEM that
1796 already carries memory attributes should probably be invalid. */
1797 attrs.expr = refattrs->expr;
1798 attrs.offset_known_p = refattrs->offset_known_p;
1799 attrs.offset = refattrs->offset;
1800 attrs.size_known_p = refattrs->size_known_p;
1801 attrs.size = refattrs->size;
1802 attrs.align = refattrs->align;
1803 }
1804
1805 /* Otherwise, default values from the mode of the MEM reference. */
1806 else
1807 {
1808 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1809 gcc_assert (!defattrs->expr);
1810 gcc_assert (!defattrs->offset_known_p);
1811
1812 /* Respect mode size. */
1813 attrs.size_known_p = defattrs->size_known_p;
1814 attrs.size = defattrs->size;
1815 /* ??? Is this really necessary? We probably should always get
1816 the size from the type below. */
1817
1818 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1819 if T is an object, always compute the object alignment below. */
1820 if (TYPE_P (t))
1821 attrs.align = defattrs->align;
1822 else
1823 attrs.align = BITS_PER_UNIT;
1824 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1825 e.g. if the type carries an alignment attribute. Should we be
1826 able to simply always use TYPE_ALIGN? */
1827 }
1828
1829 /* We can set the alignment from the type if we are making an object,
1830 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1831 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1832 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1833
1834 /* If the size is known, we can set that. */
1835 tree new_size = TYPE_SIZE_UNIT (type);
1836
1837 /* The address-space is that of the type. */
1838 as = TYPE_ADDR_SPACE (type);
1839
1840 /* If T is not a type, we may be able to deduce some more information about
1841 the expression. */
1842 if (! TYPE_P (t))
1843 {
1844 tree base;
1845
1846 if (TREE_THIS_VOLATILE (t))
1847 MEM_VOLATILE_P (ref) = 1;
1848
1849 /* Now remove any conversions: they don't change what the underlying
1850 object is. Likewise for SAVE_EXPR. */
1851 while (CONVERT_EXPR_P (t)
1852 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1853 || TREE_CODE (t) == SAVE_EXPR)
1854 t = TREE_OPERAND (t, 0);
1855
1856 /* Note whether this expression can trap. */
1857 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1858
1859 base = get_base_address (t);
1860 if (base)
1861 {
1862 if (DECL_P (base)
1863 && TREE_READONLY (base)
1864 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1865 && !TREE_THIS_VOLATILE (base))
1866 MEM_READONLY_P (ref) = 1;
1867
1868 /* Mark static const strings readonly as well. */
1869 if (TREE_CODE (base) == STRING_CST
1870 && TREE_READONLY (base)
1871 && TREE_STATIC (base))
1872 MEM_READONLY_P (ref) = 1;
1873
1874 /* Address-space information is on the base object. */
1875 if (TREE_CODE (base) == MEM_REF
1876 || TREE_CODE (base) == TARGET_MEM_REF)
1877 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1878 0))));
1879 else
1880 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1881 }
1882
1883 /* If this expression uses it's parent's alias set, mark it such
1884 that we won't change it. */
1885 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1886 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1887
1888 /* If this is a decl, set the attributes of the MEM from it. */
1889 if (DECL_P (t))
1890 {
1891 attrs.expr = t;
1892 attrs.offset_known_p = true;
1893 attrs.offset = 0;
1894 apply_bitpos = bitpos;
1895 new_size = DECL_SIZE_UNIT (t);
1896 }
1897
1898 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1899 else if (CONSTANT_CLASS_P (t))
1900 ;
1901
1902 /* If this is a field reference, record it. */
1903 else if (TREE_CODE (t) == COMPONENT_REF)
1904 {
1905 attrs.expr = t;
1906 attrs.offset_known_p = true;
1907 attrs.offset = 0;
1908 apply_bitpos = bitpos;
1909 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1910 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1911 }
1912
1913 /* If this is an array reference, look for an outer field reference. */
1914 else if (TREE_CODE (t) == ARRAY_REF)
1915 {
1916 tree off_tree = size_zero_node;
1917 /* We can't modify t, because we use it at the end of the
1918 function. */
1919 tree t2 = t;
1920
1921 do
1922 {
1923 tree index = TREE_OPERAND (t2, 1);
1924 tree low_bound = array_ref_low_bound (t2);
1925 tree unit_size = array_ref_element_size (t2);
1926
1927 /* We assume all arrays have sizes that are a multiple of a byte.
1928 First subtract the lower bound, if any, in the type of the
1929 index, then convert to sizetype and multiply by the size of
1930 the array element. */
1931 if (! integer_zerop (low_bound))
1932 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1933 index, low_bound);
1934
1935 off_tree = size_binop (PLUS_EXPR,
1936 size_binop (MULT_EXPR,
1937 fold_convert (sizetype,
1938 index),
1939 unit_size),
1940 off_tree);
1941 t2 = TREE_OPERAND (t2, 0);
1942 }
1943 while (TREE_CODE (t2) == ARRAY_REF);
1944
1945 if (DECL_P (t2)
1946 || TREE_CODE (t2) == COMPONENT_REF)
1947 {
1948 attrs.expr = t2;
1949 attrs.offset_known_p = false;
1950 if (tree_fits_uhwi_p (off_tree))
1951 {
1952 attrs.offset_known_p = true;
1953 attrs.offset = tree_to_uhwi (off_tree);
1954 apply_bitpos = bitpos;
1955 }
1956 }
1957 /* Else do not record a MEM_EXPR. */
1958 }
1959
1960 /* If this is an indirect reference, record it. */
1961 else if (TREE_CODE (t) == MEM_REF
1962 || TREE_CODE (t) == TARGET_MEM_REF)
1963 {
1964 attrs.expr = t;
1965 attrs.offset_known_p = true;
1966 attrs.offset = 0;
1967 apply_bitpos = bitpos;
1968 }
1969
1970 /* Compute the alignment. */
1971 unsigned int obj_align;
1972 unsigned HOST_WIDE_INT obj_bitpos;
1973 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1974 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1975 if (obj_bitpos != 0)
1976 obj_align = (obj_bitpos & -obj_bitpos);
1977 attrs.align = MAX (attrs.align, obj_align);
1978 }
1979
1980 if (tree_fits_uhwi_p (new_size))
1981 {
1982 attrs.size_known_p = true;
1983 attrs.size = tree_to_uhwi (new_size);
1984 }
1985
1986 /* If we modified OFFSET based on T, then subtract the outstanding
1987 bit position offset. Similarly, increase the size of the accessed
1988 object to contain the negative offset. */
1989 if (apply_bitpos)
1990 {
1991 gcc_assert (attrs.offset_known_p);
1992 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1993 if (attrs.size_known_p)
1994 attrs.size += apply_bitpos / BITS_PER_UNIT;
1995 }
1996
1997 /* Now set the attributes we computed above. */
1998 attrs.addrspace = as;
1999 set_mem_attrs (ref, &attrs);
2000 }
2001
2002 void
2003 set_mem_attributes (rtx ref, tree t, int objectp)
2004 {
2005 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2006 }
2007
2008 /* Set the alias set of MEM to SET. */
2009
2010 void
2011 set_mem_alias_set (rtx mem, alias_set_type set)
2012 {
2013 struct mem_attrs attrs;
2014
2015 /* If the new and old alias sets don't conflict, something is wrong. */
2016 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2017 attrs = *get_mem_attrs (mem);
2018 attrs.alias = set;
2019 set_mem_attrs (mem, &attrs);
2020 }
2021
2022 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2023
2024 void
2025 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2026 {
2027 struct mem_attrs attrs;
2028
2029 attrs = *get_mem_attrs (mem);
2030 attrs.addrspace = addrspace;
2031 set_mem_attrs (mem, &attrs);
2032 }
2033
2034 /* Set the alignment of MEM to ALIGN bits. */
2035
2036 void
2037 set_mem_align (rtx mem, unsigned int align)
2038 {
2039 struct mem_attrs attrs;
2040
2041 attrs = *get_mem_attrs (mem);
2042 attrs.align = align;
2043 set_mem_attrs (mem, &attrs);
2044 }
2045
2046 /* Set the expr for MEM to EXPR. */
2047
2048 void
2049 set_mem_expr (rtx mem, tree expr)
2050 {
2051 struct mem_attrs attrs;
2052
2053 attrs = *get_mem_attrs (mem);
2054 attrs.expr = expr;
2055 set_mem_attrs (mem, &attrs);
2056 }
2057
2058 /* Set the offset of MEM to OFFSET. */
2059
2060 void
2061 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2062 {
2063 struct mem_attrs attrs;
2064
2065 attrs = *get_mem_attrs (mem);
2066 attrs.offset_known_p = true;
2067 attrs.offset = offset;
2068 set_mem_attrs (mem, &attrs);
2069 }
2070
2071 /* Clear the offset of MEM. */
2072
2073 void
2074 clear_mem_offset (rtx mem)
2075 {
2076 struct mem_attrs attrs;
2077
2078 attrs = *get_mem_attrs (mem);
2079 attrs.offset_known_p = false;
2080 set_mem_attrs (mem, &attrs);
2081 }
2082
2083 /* Set the size of MEM to SIZE. */
2084
2085 void
2086 set_mem_size (rtx mem, HOST_WIDE_INT size)
2087 {
2088 struct mem_attrs attrs;
2089
2090 attrs = *get_mem_attrs (mem);
2091 attrs.size_known_p = true;
2092 attrs.size = size;
2093 set_mem_attrs (mem, &attrs);
2094 }
2095
2096 /* Clear the size of MEM. */
2097
2098 void
2099 clear_mem_size (rtx mem)
2100 {
2101 struct mem_attrs attrs;
2102
2103 attrs = *get_mem_attrs (mem);
2104 attrs.size_known_p = false;
2105 set_mem_attrs (mem, &attrs);
2106 }
2107 \f
2108 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2109 and its address changed to ADDR. (VOIDmode means don't change the mode.
2110 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2111 returned memory location is required to be valid. INPLACE is true if any
2112 changes can be made directly to MEMREF or false if MEMREF must be treated
2113 as immutable.
2114
2115 The memory attributes are not changed. */
2116
2117 static rtx
2118 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2119 bool inplace)
2120 {
2121 addr_space_t as;
2122 rtx new_rtx;
2123
2124 gcc_assert (MEM_P (memref));
2125 as = MEM_ADDR_SPACE (memref);
2126 if (mode == VOIDmode)
2127 mode = GET_MODE (memref);
2128 if (addr == 0)
2129 addr = XEXP (memref, 0);
2130 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2131 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2132 return memref;
2133
2134 /* Don't validate address for LRA. LRA can make the address valid
2135 by itself in most efficient way. */
2136 if (validate && !lra_in_progress)
2137 {
2138 if (reload_in_progress || reload_completed)
2139 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2140 else
2141 addr = memory_address_addr_space (mode, addr, as);
2142 }
2143
2144 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2145 return memref;
2146
2147 if (inplace)
2148 {
2149 XEXP (memref, 0) = addr;
2150 return memref;
2151 }
2152
2153 new_rtx = gen_rtx_MEM (mode, addr);
2154 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2155 return new_rtx;
2156 }
2157
2158 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2159 way we are changing MEMREF, so we only preserve the alias set. */
2160
2161 rtx
2162 change_address (rtx memref, machine_mode mode, rtx addr)
2163 {
2164 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2165 machine_mode mmode = GET_MODE (new_rtx);
2166 struct mem_attrs attrs, *defattrs;
2167
2168 attrs = *get_mem_attrs (memref);
2169 defattrs = mode_mem_attrs[(int) mmode];
2170 attrs.expr = NULL_TREE;
2171 attrs.offset_known_p = false;
2172 attrs.size_known_p = defattrs->size_known_p;
2173 attrs.size = defattrs->size;
2174 attrs.align = defattrs->align;
2175
2176 /* If there are no changes, just return the original memory reference. */
2177 if (new_rtx == memref)
2178 {
2179 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2180 return new_rtx;
2181
2182 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2183 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2184 }
2185
2186 set_mem_attrs (new_rtx, &attrs);
2187 return new_rtx;
2188 }
2189
2190 /* Return a memory reference like MEMREF, but with its mode changed
2191 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2192 nonzero, the memory address is forced to be valid.
2193 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2194 and the caller is responsible for adjusting MEMREF base register.
2195 If ADJUST_OBJECT is zero, the underlying object associated with the
2196 memory reference is left unchanged and the caller is responsible for
2197 dealing with it. Otherwise, if the new memory reference is outside
2198 the underlying object, even partially, then the object is dropped.
2199 SIZE, if nonzero, is the size of an access in cases where MODE
2200 has no inherent size. */
2201
2202 rtx
2203 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2204 int validate, int adjust_address, int adjust_object,
2205 HOST_WIDE_INT size)
2206 {
2207 rtx addr = XEXP (memref, 0);
2208 rtx new_rtx;
2209 machine_mode address_mode;
2210 int pbits;
2211 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2212 unsigned HOST_WIDE_INT max_align;
2213 #ifdef POINTERS_EXTEND_UNSIGNED
2214 machine_mode pointer_mode
2215 = targetm.addr_space.pointer_mode (attrs.addrspace);
2216 #endif
2217
2218 /* VOIDmode means no mode change for change_address_1. */
2219 if (mode == VOIDmode)
2220 mode = GET_MODE (memref);
2221
2222 /* Take the size of non-BLKmode accesses from the mode. */
2223 defattrs = mode_mem_attrs[(int) mode];
2224 if (defattrs->size_known_p)
2225 size = defattrs->size;
2226
2227 /* If there are no changes, just return the original memory reference. */
2228 if (mode == GET_MODE (memref) && !offset
2229 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2230 && (!validate || memory_address_addr_space_p (mode, addr,
2231 attrs.addrspace)))
2232 return memref;
2233
2234 /* ??? Prefer to create garbage instead of creating shared rtl.
2235 This may happen even if offset is nonzero -- consider
2236 (plus (plus reg reg) const_int) -- so do this always. */
2237 addr = copy_rtx (addr);
2238
2239 /* Convert a possibly large offset to a signed value within the
2240 range of the target address space. */
2241 address_mode = get_address_mode (memref);
2242 pbits = GET_MODE_BITSIZE (address_mode);
2243 if (HOST_BITS_PER_WIDE_INT > pbits)
2244 {
2245 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2246 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2247 >> shift);
2248 }
2249
2250 if (adjust_address)
2251 {
2252 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2253 object, we can merge it into the LO_SUM. */
2254 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2255 && offset >= 0
2256 && (unsigned HOST_WIDE_INT) offset
2257 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2258 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2259 plus_constant (address_mode,
2260 XEXP (addr, 1), offset));
2261 #ifdef POINTERS_EXTEND_UNSIGNED
2262 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2263 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2264 the fact that pointers are not allowed to overflow. */
2265 else if (POINTERS_EXTEND_UNSIGNED > 0
2266 && GET_CODE (addr) == ZERO_EXTEND
2267 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2268 && trunc_int_for_mode (offset, pointer_mode) == offset)
2269 addr = gen_rtx_ZERO_EXTEND (address_mode,
2270 plus_constant (pointer_mode,
2271 XEXP (addr, 0), offset));
2272 #endif
2273 else
2274 addr = plus_constant (address_mode, addr, offset);
2275 }
2276
2277 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2278
2279 /* If the address is a REG, change_address_1 rightfully returns memref,
2280 but this would destroy memref's MEM_ATTRS. */
2281 if (new_rtx == memref && offset != 0)
2282 new_rtx = copy_rtx (new_rtx);
2283
2284 /* Conservatively drop the object if we don't know where we start from. */
2285 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2286 {
2287 attrs.expr = NULL_TREE;
2288 attrs.alias = 0;
2289 }
2290
2291 /* Compute the new values of the memory attributes due to this adjustment.
2292 We add the offsets and update the alignment. */
2293 if (attrs.offset_known_p)
2294 {
2295 attrs.offset += offset;
2296
2297 /* Drop the object if the new left end is not within its bounds. */
2298 if (adjust_object && attrs.offset < 0)
2299 {
2300 attrs.expr = NULL_TREE;
2301 attrs.alias = 0;
2302 }
2303 }
2304
2305 /* Compute the new alignment by taking the MIN of the alignment and the
2306 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2307 if zero. */
2308 if (offset != 0)
2309 {
2310 max_align = (offset & -offset) * BITS_PER_UNIT;
2311 attrs.align = MIN (attrs.align, max_align);
2312 }
2313
2314 if (size)
2315 {
2316 /* Drop the object if the new right end is not within its bounds. */
2317 if (adjust_object && (offset + size) > attrs.size)
2318 {
2319 attrs.expr = NULL_TREE;
2320 attrs.alias = 0;
2321 }
2322 attrs.size_known_p = true;
2323 attrs.size = size;
2324 }
2325 else if (attrs.size_known_p)
2326 {
2327 gcc_assert (!adjust_object);
2328 attrs.size -= offset;
2329 /* ??? The store_by_pieces machinery generates negative sizes,
2330 so don't assert for that here. */
2331 }
2332
2333 set_mem_attrs (new_rtx, &attrs);
2334
2335 return new_rtx;
2336 }
2337
2338 /* Return a memory reference like MEMREF, but with its mode changed
2339 to MODE and its address changed to ADDR, which is assumed to be
2340 MEMREF offset by OFFSET bytes. If VALIDATE is
2341 nonzero, the memory address is forced to be valid. */
2342
2343 rtx
2344 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2345 HOST_WIDE_INT offset, int validate)
2346 {
2347 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2348 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2349 }
2350
2351 /* Return a memory reference like MEMREF, but whose address is changed by
2352 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2353 known to be in OFFSET (possibly 1). */
2354
2355 rtx
2356 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2357 {
2358 rtx new_rtx, addr = XEXP (memref, 0);
2359 machine_mode address_mode;
2360 struct mem_attrs attrs, *defattrs;
2361
2362 attrs = *get_mem_attrs (memref);
2363 address_mode = get_address_mode (memref);
2364 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2365
2366 /* At this point we don't know _why_ the address is invalid. It
2367 could have secondary memory references, multiplies or anything.
2368
2369 However, if we did go and rearrange things, we can wind up not
2370 being able to recognize the magic around pic_offset_table_rtx.
2371 This stuff is fragile, and is yet another example of why it is
2372 bad to expose PIC machinery too early. */
2373 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2374 attrs.addrspace)
2375 && GET_CODE (addr) == PLUS
2376 && XEXP (addr, 0) == pic_offset_table_rtx)
2377 {
2378 addr = force_reg (GET_MODE (addr), addr);
2379 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2380 }
2381
2382 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2383 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2384
2385 /* If there are no changes, just return the original memory reference. */
2386 if (new_rtx == memref)
2387 return new_rtx;
2388
2389 /* Update the alignment to reflect the offset. Reset the offset, which
2390 we don't know. */
2391 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2392 attrs.offset_known_p = false;
2393 attrs.size_known_p = defattrs->size_known_p;
2394 attrs.size = defattrs->size;
2395 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2396 set_mem_attrs (new_rtx, &attrs);
2397 return new_rtx;
2398 }
2399
2400 /* Return a memory reference like MEMREF, but with its address changed to
2401 ADDR. The caller is asserting that the actual piece of memory pointed
2402 to is the same, just the form of the address is being changed, such as
2403 by putting something into a register. INPLACE is true if any changes
2404 can be made directly to MEMREF or false if MEMREF must be treated as
2405 immutable. */
2406
2407 rtx
2408 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2409 {
2410 /* change_address_1 copies the memory attribute structure without change
2411 and that's exactly what we want here. */
2412 update_temp_slot_address (XEXP (memref, 0), addr);
2413 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2414 }
2415
2416 /* Likewise, but the reference is not required to be valid. */
2417
2418 rtx
2419 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2420 {
2421 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2422 }
2423
2424 /* Return a memory reference like MEMREF, but with its mode widened to
2425 MODE and offset by OFFSET. This would be used by targets that e.g.
2426 cannot issue QImode memory operations and have to use SImode memory
2427 operations plus masking logic. */
2428
2429 rtx
2430 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2431 {
2432 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2433 struct mem_attrs attrs;
2434 unsigned int size = GET_MODE_SIZE (mode);
2435
2436 /* If there are no changes, just return the original memory reference. */
2437 if (new_rtx == memref)
2438 return new_rtx;
2439
2440 attrs = *get_mem_attrs (new_rtx);
2441
2442 /* If we don't know what offset we were at within the expression, then
2443 we can't know if we've overstepped the bounds. */
2444 if (! attrs.offset_known_p)
2445 attrs.expr = NULL_TREE;
2446
2447 while (attrs.expr)
2448 {
2449 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2450 {
2451 tree field = TREE_OPERAND (attrs.expr, 1);
2452 tree offset = component_ref_field_offset (attrs.expr);
2453
2454 if (! DECL_SIZE_UNIT (field))
2455 {
2456 attrs.expr = NULL_TREE;
2457 break;
2458 }
2459
2460 /* Is the field at least as large as the access? If so, ok,
2461 otherwise strip back to the containing structure. */
2462 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2463 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2464 && attrs.offset >= 0)
2465 break;
2466
2467 if (! tree_fits_uhwi_p (offset))
2468 {
2469 attrs.expr = NULL_TREE;
2470 break;
2471 }
2472
2473 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2474 attrs.offset += tree_to_uhwi (offset);
2475 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2476 / BITS_PER_UNIT);
2477 }
2478 /* Similarly for the decl. */
2479 else if (DECL_P (attrs.expr)
2480 && DECL_SIZE_UNIT (attrs.expr)
2481 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2482 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2483 && (! attrs.offset_known_p || attrs.offset >= 0))
2484 break;
2485 else
2486 {
2487 /* The widened memory access overflows the expression, which means
2488 that it could alias another expression. Zap it. */
2489 attrs.expr = NULL_TREE;
2490 break;
2491 }
2492 }
2493
2494 if (! attrs.expr)
2495 attrs.offset_known_p = false;
2496
2497 /* The widened memory may alias other stuff, so zap the alias set. */
2498 /* ??? Maybe use get_alias_set on any remaining expression. */
2499 attrs.alias = 0;
2500 attrs.size_known_p = true;
2501 attrs.size = size;
2502 set_mem_attrs (new_rtx, &attrs);
2503 return new_rtx;
2504 }
2505 \f
2506 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2507 static GTY(()) tree spill_slot_decl;
2508
2509 tree
2510 get_spill_slot_decl (bool force_build_p)
2511 {
2512 tree d = spill_slot_decl;
2513 rtx rd;
2514 struct mem_attrs attrs;
2515
2516 if (d || !force_build_p)
2517 return d;
2518
2519 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2520 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2521 DECL_ARTIFICIAL (d) = 1;
2522 DECL_IGNORED_P (d) = 1;
2523 TREE_USED (d) = 1;
2524 spill_slot_decl = d;
2525
2526 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2527 MEM_NOTRAP_P (rd) = 1;
2528 attrs = *mode_mem_attrs[(int) BLKmode];
2529 attrs.alias = new_alias_set ();
2530 attrs.expr = d;
2531 set_mem_attrs (rd, &attrs);
2532 SET_DECL_RTL (d, rd);
2533
2534 return d;
2535 }
2536
2537 /* Given MEM, a result from assign_stack_local, fill in the memory
2538 attributes as appropriate for a register allocator spill slot.
2539 These slots are not aliasable by other memory. We arrange for
2540 them all to use a single MEM_EXPR, so that the aliasing code can
2541 work properly in the case of shared spill slots. */
2542
2543 void
2544 set_mem_attrs_for_spill (rtx mem)
2545 {
2546 struct mem_attrs attrs;
2547 rtx addr;
2548
2549 attrs = *get_mem_attrs (mem);
2550 attrs.expr = get_spill_slot_decl (true);
2551 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2552 attrs.addrspace = ADDR_SPACE_GENERIC;
2553
2554 /* We expect the incoming memory to be of the form:
2555 (mem:MODE (plus (reg sfp) (const_int offset)))
2556 with perhaps the plus missing for offset = 0. */
2557 addr = XEXP (mem, 0);
2558 attrs.offset_known_p = true;
2559 attrs.offset = 0;
2560 if (GET_CODE (addr) == PLUS
2561 && CONST_INT_P (XEXP (addr, 1)))
2562 attrs.offset = INTVAL (XEXP (addr, 1));
2563
2564 set_mem_attrs (mem, &attrs);
2565 MEM_NOTRAP_P (mem) = 1;
2566 }
2567 \f
2568 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2569
2570 rtx_code_label *
2571 gen_label_rtx (void)
2572 {
2573 return as_a <rtx_code_label *> (
2574 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2575 NULL, label_num++, NULL));
2576 }
2577 \f
2578 /* For procedure integration. */
2579
2580 /* Install new pointers to the first and last insns in the chain.
2581 Also, set cur_insn_uid to one higher than the last in use.
2582 Used for an inline-procedure after copying the insn chain. */
2583
2584 void
2585 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2586 {
2587 rtx_insn *insn;
2588
2589 set_first_insn (first);
2590 set_last_insn (last);
2591 cur_insn_uid = 0;
2592
2593 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2594 {
2595 int debug_count = 0;
2596
2597 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2598 cur_debug_insn_uid = 0;
2599
2600 for (insn = first; insn; insn = NEXT_INSN (insn))
2601 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2602 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2603 else
2604 {
2605 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2606 if (DEBUG_INSN_P (insn))
2607 debug_count++;
2608 }
2609
2610 if (debug_count)
2611 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2612 else
2613 cur_debug_insn_uid++;
2614 }
2615 else
2616 for (insn = first; insn; insn = NEXT_INSN (insn))
2617 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2618
2619 cur_insn_uid++;
2620 }
2621 \f
2622 /* Go through all the RTL insn bodies and copy any invalid shared
2623 structure. This routine should only be called once. */
2624
2625 static void
2626 unshare_all_rtl_1 (rtx_insn *insn)
2627 {
2628 /* Unshare just about everything else. */
2629 unshare_all_rtl_in_chain (insn);
2630
2631 /* Make sure the addresses of stack slots found outside the insn chain
2632 (such as, in DECL_RTL of a variable) are not shared
2633 with the insn chain.
2634
2635 This special care is necessary when the stack slot MEM does not
2636 actually appear in the insn chain. If it does appear, its address
2637 is unshared from all else at that point. */
2638 stack_slot_list = safe_as_a <rtx_expr_list *> (
2639 copy_rtx_if_shared (stack_slot_list));
2640 }
2641
2642 /* Go through all the RTL insn bodies and copy any invalid shared
2643 structure, again. This is a fairly expensive thing to do so it
2644 should be done sparingly. */
2645
2646 void
2647 unshare_all_rtl_again (rtx_insn *insn)
2648 {
2649 rtx_insn *p;
2650 tree decl;
2651
2652 for (p = insn; p; p = NEXT_INSN (p))
2653 if (INSN_P (p))
2654 {
2655 reset_used_flags (PATTERN (p));
2656 reset_used_flags (REG_NOTES (p));
2657 if (CALL_P (p))
2658 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2659 }
2660
2661 /* Make sure that virtual stack slots are not shared. */
2662 set_used_decls (DECL_INITIAL (cfun->decl));
2663
2664 /* Make sure that virtual parameters are not shared. */
2665 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2666 set_used_flags (DECL_RTL (decl));
2667
2668 reset_used_flags (stack_slot_list);
2669
2670 unshare_all_rtl_1 (insn);
2671 }
2672
2673 unsigned int
2674 unshare_all_rtl (void)
2675 {
2676 unshare_all_rtl_1 (get_insns ());
2677 return 0;
2678 }
2679
2680
2681 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2682 Recursively does the same for subexpressions. */
2683
2684 static void
2685 verify_rtx_sharing (rtx orig, rtx insn)
2686 {
2687 rtx x = orig;
2688 int i;
2689 enum rtx_code code;
2690 const char *format_ptr;
2691
2692 if (x == 0)
2693 return;
2694
2695 code = GET_CODE (x);
2696
2697 /* These types may be freely shared. */
2698
2699 switch (code)
2700 {
2701 case REG:
2702 case DEBUG_EXPR:
2703 case VALUE:
2704 CASE_CONST_ANY:
2705 case SYMBOL_REF:
2706 case LABEL_REF:
2707 case CODE_LABEL:
2708 case PC:
2709 case CC0:
2710 case RETURN:
2711 case SIMPLE_RETURN:
2712 case SCRATCH:
2713 /* SCRATCH must be shared because they represent distinct values. */
2714 return;
2715 case CLOBBER:
2716 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2717 clobbers or clobbers of hard registers that originated as pseudos.
2718 This is needed to allow safe register renaming. */
2719 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2720 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2721 return;
2722 break;
2723
2724 case CONST:
2725 if (shared_const_p (orig))
2726 return;
2727 break;
2728
2729 case MEM:
2730 /* A MEM is allowed to be shared if its address is constant. */
2731 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2732 || reload_completed || reload_in_progress)
2733 return;
2734
2735 break;
2736
2737 default:
2738 break;
2739 }
2740
2741 /* This rtx may not be shared. If it has already been seen,
2742 replace it with a copy of itself. */
2743 #ifdef ENABLE_CHECKING
2744 if (RTX_FLAG (x, used))
2745 {
2746 error ("invalid rtl sharing found in the insn");
2747 debug_rtx (insn);
2748 error ("shared rtx");
2749 debug_rtx (x);
2750 internal_error ("internal consistency failure");
2751 }
2752 #endif
2753 gcc_assert (!RTX_FLAG (x, used));
2754
2755 RTX_FLAG (x, used) = 1;
2756
2757 /* Now scan the subexpressions recursively. */
2758
2759 format_ptr = GET_RTX_FORMAT (code);
2760
2761 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2762 {
2763 switch (*format_ptr++)
2764 {
2765 case 'e':
2766 verify_rtx_sharing (XEXP (x, i), insn);
2767 break;
2768
2769 case 'E':
2770 if (XVEC (x, i) != NULL)
2771 {
2772 int j;
2773 int len = XVECLEN (x, i);
2774
2775 for (j = 0; j < len; j++)
2776 {
2777 /* We allow sharing of ASM_OPERANDS inside single
2778 instruction. */
2779 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2780 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2781 == ASM_OPERANDS))
2782 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2783 else
2784 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2785 }
2786 }
2787 break;
2788 }
2789 }
2790 return;
2791 }
2792
2793 /* Reset used-flags for INSN. */
2794
2795 static void
2796 reset_insn_used_flags (rtx insn)
2797 {
2798 gcc_assert (INSN_P (insn));
2799 reset_used_flags (PATTERN (insn));
2800 reset_used_flags (REG_NOTES (insn));
2801 if (CALL_P (insn))
2802 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2803 }
2804
2805 /* Go through all the RTL insn bodies and clear all the USED bits. */
2806
2807 static void
2808 reset_all_used_flags (void)
2809 {
2810 rtx_insn *p;
2811
2812 for (p = get_insns (); p; p = NEXT_INSN (p))
2813 if (INSN_P (p))
2814 {
2815 rtx pat = PATTERN (p);
2816 if (GET_CODE (pat) != SEQUENCE)
2817 reset_insn_used_flags (p);
2818 else
2819 {
2820 gcc_assert (REG_NOTES (p) == NULL);
2821 for (int i = 0; i < XVECLEN (pat, 0); i++)
2822 {
2823 rtx insn = XVECEXP (pat, 0, i);
2824 if (INSN_P (insn))
2825 reset_insn_used_flags (insn);
2826 }
2827 }
2828 }
2829 }
2830
2831 /* Verify sharing in INSN. */
2832
2833 static void
2834 verify_insn_sharing (rtx insn)
2835 {
2836 gcc_assert (INSN_P (insn));
2837 reset_used_flags (PATTERN (insn));
2838 reset_used_flags (REG_NOTES (insn));
2839 if (CALL_P (insn))
2840 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2841 }
2842
2843 /* Go through all the RTL insn bodies and check that there is no unexpected
2844 sharing in between the subexpressions. */
2845
2846 DEBUG_FUNCTION void
2847 verify_rtl_sharing (void)
2848 {
2849 rtx_insn *p;
2850
2851 timevar_push (TV_VERIFY_RTL_SHARING);
2852
2853 reset_all_used_flags ();
2854
2855 for (p = get_insns (); p; p = NEXT_INSN (p))
2856 if (INSN_P (p))
2857 {
2858 rtx pat = PATTERN (p);
2859 if (GET_CODE (pat) != SEQUENCE)
2860 verify_insn_sharing (p);
2861 else
2862 for (int i = 0; i < XVECLEN (pat, 0); i++)
2863 {
2864 rtx insn = XVECEXP (pat, 0, i);
2865 if (INSN_P (insn))
2866 verify_insn_sharing (insn);
2867 }
2868 }
2869
2870 reset_all_used_flags ();
2871
2872 timevar_pop (TV_VERIFY_RTL_SHARING);
2873 }
2874
2875 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2876 Assumes the mark bits are cleared at entry. */
2877
2878 void
2879 unshare_all_rtl_in_chain (rtx_insn *insn)
2880 {
2881 for (; insn; insn = NEXT_INSN (insn))
2882 if (INSN_P (insn))
2883 {
2884 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2885 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2886 if (CALL_P (insn))
2887 CALL_INSN_FUNCTION_USAGE (insn)
2888 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2889 }
2890 }
2891
2892 /* Go through all virtual stack slots of a function and mark them as
2893 shared. We never replace the DECL_RTLs themselves with a copy,
2894 but expressions mentioned into a DECL_RTL cannot be shared with
2895 expressions in the instruction stream.
2896
2897 Note that reload may convert pseudo registers into memories in-place.
2898 Pseudo registers are always shared, but MEMs never are. Thus if we
2899 reset the used flags on MEMs in the instruction stream, we must set
2900 them again on MEMs that appear in DECL_RTLs. */
2901
2902 static void
2903 set_used_decls (tree blk)
2904 {
2905 tree t;
2906
2907 /* Mark decls. */
2908 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2909 if (DECL_RTL_SET_P (t))
2910 set_used_flags (DECL_RTL (t));
2911
2912 /* Now process sub-blocks. */
2913 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2914 set_used_decls (t);
2915 }
2916
2917 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2918 Recursively does the same for subexpressions. Uses
2919 copy_rtx_if_shared_1 to reduce stack space. */
2920
2921 rtx
2922 copy_rtx_if_shared (rtx orig)
2923 {
2924 copy_rtx_if_shared_1 (&orig);
2925 return orig;
2926 }
2927
2928 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2929 use. Recursively does the same for subexpressions. */
2930
2931 static void
2932 copy_rtx_if_shared_1 (rtx *orig1)
2933 {
2934 rtx x;
2935 int i;
2936 enum rtx_code code;
2937 rtx *last_ptr;
2938 const char *format_ptr;
2939 int copied = 0;
2940 int length;
2941
2942 /* Repeat is used to turn tail-recursion into iteration. */
2943 repeat:
2944 x = *orig1;
2945
2946 if (x == 0)
2947 return;
2948
2949 code = GET_CODE (x);
2950
2951 /* These types may be freely shared. */
2952
2953 switch (code)
2954 {
2955 case REG:
2956 case DEBUG_EXPR:
2957 case VALUE:
2958 CASE_CONST_ANY:
2959 case SYMBOL_REF:
2960 case LABEL_REF:
2961 case CODE_LABEL:
2962 case PC:
2963 case CC0:
2964 case RETURN:
2965 case SIMPLE_RETURN:
2966 case SCRATCH:
2967 /* SCRATCH must be shared because they represent distinct values. */
2968 return;
2969 case CLOBBER:
2970 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2971 clobbers or clobbers of hard registers that originated as pseudos.
2972 This is needed to allow safe register renaming. */
2973 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2974 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2975 return;
2976 break;
2977
2978 case CONST:
2979 if (shared_const_p (x))
2980 return;
2981 break;
2982
2983 case DEBUG_INSN:
2984 case INSN:
2985 case JUMP_INSN:
2986 case CALL_INSN:
2987 case NOTE:
2988 case BARRIER:
2989 /* The chain of insns is not being copied. */
2990 return;
2991
2992 default:
2993 break;
2994 }
2995
2996 /* This rtx may not be shared. If it has already been seen,
2997 replace it with a copy of itself. */
2998
2999 if (RTX_FLAG (x, used))
3000 {
3001 x = shallow_copy_rtx (x);
3002 copied = 1;
3003 }
3004 RTX_FLAG (x, used) = 1;
3005
3006 /* Now scan the subexpressions recursively.
3007 We can store any replaced subexpressions directly into X
3008 since we know X is not shared! Any vectors in X
3009 must be copied if X was copied. */
3010
3011 format_ptr = GET_RTX_FORMAT (code);
3012 length = GET_RTX_LENGTH (code);
3013 last_ptr = NULL;
3014
3015 for (i = 0; i < length; i++)
3016 {
3017 switch (*format_ptr++)
3018 {
3019 case 'e':
3020 if (last_ptr)
3021 copy_rtx_if_shared_1 (last_ptr);
3022 last_ptr = &XEXP (x, i);
3023 break;
3024
3025 case 'E':
3026 if (XVEC (x, i) != NULL)
3027 {
3028 int j;
3029 int len = XVECLEN (x, i);
3030
3031 /* Copy the vector iff I copied the rtx and the length
3032 is nonzero. */
3033 if (copied && len > 0)
3034 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3035
3036 /* Call recursively on all inside the vector. */
3037 for (j = 0; j < len; j++)
3038 {
3039 if (last_ptr)
3040 copy_rtx_if_shared_1 (last_ptr);
3041 last_ptr = &XVECEXP (x, i, j);
3042 }
3043 }
3044 break;
3045 }
3046 }
3047 *orig1 = x;
3048 if (last_ptr)
3049 {
3050 orig1 = last_ptr;
3051 goto repeat;
3052 }
3053 return;
3054 }
3055
3056 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3057
3058 static void
3059 mark_used_flags (rtx x, int flag)
3060 {
3061 int i, j;
3062 enum rtx_code code;
3063 const char *format_ptr;
3064 int length;
3065
3066 /* Repeat is used to turn tail-recursion into iteration. */
3067 repeat:
3068 if (x == 0)
3069 return;
3070
3071 code = GET_CODE (x);
3072
3073 /* These types may be freely shared so we needn't do any resetting
3074 for them. */
3075
3076 switch (code)
3077 {
3078 case REG:
3079 case DEBUG_EXPR:
3080 case VALUE:
3081 CASE_CONST_ANY:
3082 case SYMBOL_REF:
3083 case CODE_LABEL:
3084 case PC:
3085 case CC0:
3086 case RETURN:
3087 case SIMPLE_RETURN:
3088 return;
3089
3090 case DEBUG_INSN:
3091 case INSN:
3092 case JUMP_INSN:
3093 case CALL_INSN:
3094 case NOTE:
3095 case LABEL_REF:
3096 case BARRIER:
3097 /* The chain of insns is not being copied. */
3098 return;
3099
3100 default:
3101 break;
3102 }
3103
3104 RTX_FLAG (x, used) = flag;
3105
3106 format_ptr = GET_RTX_FORMAT (code);
3107 length = GET_RTX_LENGTH (code);
3108
3109 for (i = 0; i < length; i++)
3110 {
3111 switch (*format_ptr++)
3112 {
3113 case 'e':
3114 if (i == length-1)
3115 {
3116 x = XEXP (x, i);
3117 goto repeat;
3118 }
3119 mark_used_flags (XEXP (x, i), flag);
3120 break;
3121
3122 case 'E':
3123 for (j = 0; j < XVECLEN (x, i); j++)
3124 mark_used_flags (XVECEXP (x, i, j), flag);
3125 break;
3126 }
3127 }
3128 }
3129
3130 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3131 to look for shared sub-parts. */
3132
3133 void
3134 reset_used_flags (rtx x)
3135 {
3136 mark_used_flags (x, 0);
3137 }
3138
3139 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3140 to look for shared sub-parts. */
3141
3142 void
3143 set_used_flags (rtx x)
3144 {
3145 mark_used_flags (x, 1);
3146 }
3147 \f
3148 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3149 Return X or the rtx for the pseudo reg the value of X was copied into.
3150 OTHER must be valid as a SET_DEST. */
3151
3152 rtx
3153 make_safe_from (rtx x, rtx other)
3154 {
3155 while (1)
3156 switch (GET_CODE (other))
3157 {
3158 case SUBREG:
3159 other = SUBREG_REG (other);
3160 break;
3161 case STRICT_LOW_PART:
3162 case SIGN_EXTEND:
3163 case ZERO_EXTEND:
3164 other = XEXP (other, 0);
3165 break;
3166 default:
3167 goto done;
3168 }
3169 done:
3170 if ((MEM_P (other)
3171 && ! CONSTANT_P (x)
3172 && !REG_P (x)
3173 && GET_CODE (x) != SUBREG)
3174 || (REG_P (other)
3175 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3176 || reg_mentioned_p (other, x))))
3177 {
3178 rtx temp = gen_reg_rtx (GET_MODE (x));
3179 emit_move_insn (temp, x);
3180 return temp;
3181 }
3182 return x;
3183 }
3184 \f
3185 /* Emission of insns (adding them to the doubly-linked list). */
3186
3187 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3188
3189 rtx_insn *
3190 get_last_insn_anywhere (void)
3191 {
3192 struct sequence_stack *seq;
3193 for (seq = get_current_sequence (); seq; seq = seq->next)
3194 if (seq->last != 0)
3195 return seq->last;
3196 return 0;
3197 }
3198
3199 /* Return the first nonnote insn emitted in current sequence or current
3200 function. This routine looks inside SEQUENCEs. */
3201
3202 rtx_insn *
3203 get_first_nonnote_insn (void)
3204 {
3205 rtx_insn *insn = get_insns ();
3206
3207 if (insn)
3208 {
3209 if (NOTE_P (insn))
3210 for (insn = next_insn (insn);
3211 insn && NOTE_P (insn);
3212 insn = next_insn (insn))
3213 continue;
3214 else
3215 {
3216 if (NONJUMP_INSN_P (insn)
3217 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3218 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3219 }
3220 }
3221
3222 return insn;
3223 }
3224
3225 /* Return the last nonnote insn emitted in current sequence or current
3226 function. This routine looks inside SEQUENCEs. */
3227
3228 rtx_insn *
3229 get_last_nonnote_insn (void)
3230 {
3231 rtx_insn *insn = get_last_insn ();
3232
3233 if (insn)
3234 {
3235 if (NOTE_P (insn))
3236 for (insn = previous_insn (insn);
3237 insn && NOTE_P (insn);
3238 insn = previous_insn (insn))
3239 continue;
3240 else
3241 {
3242 if (NONJUMP_INSN_P (insn))
3243 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3244 insn = seq->insn (seq->len () - 1);
3245 }
3246 }
3247
3248 return insn;
3249 }
3250
3251 /* Return the number of actual (non-debug) insns emitted in this
3252 function. */
3253
3254 int
3255 get_max_insn_count (void)
3256 {
3257 int n = cur_insn_uid;
3258
3259 /* The table size must be stable across -g, to avoid codegen
3260 differences due to debug insns, and not be affected by
3261 -fmin-insn-uid, to avoid excessive table size and to simplify
3262 debugging of -fcompare-debug failures. */
3263 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3264 n -= cur_debug_insn_uid;
3265 else
3266 n -= MIN_NONDEBUG_INSN_UID;
3267
3268 return n;
3269 }
3270
3271 \f
3272 /* Return the next insn. If it is a SEQUENCE, return the first insn
3273 of the sequence. */
3274
3275 rtx_insn *
3276 next_insn (rtx_insn *insn)
3277 {
3278 if (insn)
3279 {
3280 insn = NEXT_INSN (insn);
3281 if (insn && NONJUMP_INSN_P (insn)
3282 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3283 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3284 }
3285
3286 return insn;
3287 }
3288
3289 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3290 of the sequence. */
3291
3292 rtx_insn *
3293 previous_insn (rtx_insn *insn)
3294 {
3295 if (insn)
3296 {
3297 insn = PREV_INSN (insn);
3298 if (insn && NONJUMP_INSN_P (insn))
3299 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3300 insn = seq->insn (seq->len () - 1);
3301 }
3302
3303 return insn;
3304 }
3305
3306 /* Return the next insn after INSN that is not a NOTE. This routine does not
3307 look inside SEQUENCEs. */
3308
3309 rtx_insn *
3310 next_nonnote_insn (rtx uncast_insn)
3311 {
3312 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3313 while (insn)
3314 {
3315 insn = NEXT_INSN (insn);
3316 if (insn == 0 || !NOTE_P (insn))
3317 break;
3318 }
3319
3320 return insn;
3321 }
3322
3323 /* Return the next insn after INSN that is not a NOTE, but stop the
3324 search before we enter another basic block. This routine does not
3325 look inside SEQUENCEs. */
3326
3327 rtx_insn *
3328 next_nonnote_insn_bb (rtx_insn *insn)
3329 {
3330 while (insn)
3331 {
3332 insn = NEXT_INSN (insn);
3333 if (insn == 0 || !NOTE_P (insn))
3334 break;
3335 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3336 return NULL;
3337 }
3338
3339 return insn;
3340 }
3341
3342 /* Return the previous insn before INSN that is not a NOTE. This routine does
3343 not look inside SEQUENCEs. */
3344
3345 rtx_insn *
3346 prev_nonnote_insn (rtx uncast_insn)
3347 {
3348 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3349
3350 while (insn)
3351 {
3352 insn = PREV_INSN (insn);
3353 if (insn == 0 || !NOTE_P (insn))
3354 break;
3355 }
3356
3357 return insn;
3358 }
3359
3360 /* Return the previous insn before INSN that is not a NOTE, but stop
3361 the search before we enter another basic block. This routine does
3362 not look inside SEQUENCEs. */
3363
3364 rtx_insn *
3365 prev_nonnote_insn_bb (rtx uncast_insn)
3366 {
3367 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3368
3369 while (insn)
3370 {
3371 insn = PREV_INSN (insn);
3372 if (insn == 0 || !NOTE_P (insn))
3373 break;
3374 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3375 return NULL;
3376 }
3377
3378 return insn;
3379 }
3380
3381 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3382 routine does not look inside SEQUENCEs. */
3383
3384 rtx_insn *
3385 next_nondebug_insn (rtx uncast_insn)
3386 {
3387 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3388
3389 while (insn)
3390 {
3391 insn = NEXT_INSN (insn);
3392 if (insn == 0 || !DEBUG_INSN_P (insn))
3393 break;
3394 }
3395
3396 return insn;
3397 }
3398
3399 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3400 This routine does not look inside SEQUENCEs. */
3401
3402 rtx_insn *
3403 prev_nondebug_insn (rtx uncast_insn)
3404 {
3405 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3406
3407 while (insn)
3408 {
3409 insn = PREV_INSN (insn);
3410 if (insn == 0 || !DEBUG_INSN_P (insn))
3411 break;
3412 }
3413
3414 return insn;
3415 }
3416
3417 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3418 This routine does not look inside SEQUENCEs. */
3419
3420 rtx_insn *
3421 next_nonnote_nondebug_insn (rtx uncast_insn)
3422 {
3423 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3424
3425 while (insn)
3426 {
3427 insn = NEXT_INSN (insn);
3428 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3429 break;
3430 }
3431
3432 return insn;
3433 }
3434
3435 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3436 This routine does not look inside SEQUENCEs. */
3437
3438 rtx_insn *
3439 prev_nonnote_nondebug_insn (rtx uncast_insn)
3440 {
3441 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3442
3443 while (insn)
3444 {
3445 insn = PREV_INSN (insn);
3446 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3447 break;
3448 }
3449
3450 return insn;
3451 }
3452
3453 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3454 or 0, if there is none. This routine does not look inside
3455 SEQUENCEs. */
3456
3457 rtx_insn *
3458 next_real_insn (rtx uncast_insn)
3459 {
3460 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3461
3462 while (insn)
3463 {
3464 insn = NEXT_INSN (insn);
3465 if (insn == 0 || INSN_P (insn))
3466 break;
3467 }
3468
3469 return insn;
3470 }
3471
3472 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3473 or 0, if there is none. This routine does not look inside
3474 SEQUENCEs. */
3475
3476 rtx_insn *
3477 prev_real_insn (rtx uncast_insn)
3478 {
3479 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3480
3481 while (insn)
3482 {
3483 insn = PREV_INSN (insn);
3484 if (insn == 0 || INSN_P (insn))
3485 break;
3486 }
3487
3488 return insn;
3489 }
3490
3491 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3492 This routine does not look inside SEQUENCEs. */
3493
3494 rtx_call_insn *
3495 last_call_insn (void)
3496 {
3497 rtx_insn *insn;
3498
3499 for (insn = get_last_insn ();
3500 insn && !CALL_P (insn);
3501 insn = PREV_INSN (insn))
3502 ;
3503
3504 return safe_as_a <rtx_call_insn *> (insn);
3505 }
3506
3507 /* Find the next insn after INSN that really does something. This routine
3508 does not look inside SEQUENCEs. After reload this also skips over
3509 standalone USE and CLOBBER insn. */
3510
3511 int
3512 active_insn_p (const_rtx insn)
3513 {
3514 return (CALL_P (insn) || JUMP_P (insn)
3515 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3516 || (NONJUMP_INSN_P (insn)
3517 && (! reload_completed
3518 || (GET_CODE (PATTERN (insn)) != USE
3519 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3520 }
3521
3522 rtx_insn *
3523 next_active_insn (rtx uncast_insn)
3524 {
3525 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3526
3527 while (insn)
3528 {
3529 insn = NEXT_INSN (insn);
3530 if (insn == 0 || active_insn_p (insn))
3531 break;
3532 }
3533
3534 return insn;
3535 }
3536
3537 /* Find the last insn before INSN that really does something. This routine
3538 does not look inside SEQUENCEs. After reload this also skips over
3539 standalone USE and CLOBBER insn. */
3540
3541 rtx_insn *
3542 prev_active_insn (rtx uncast_insn)
3543 {
3544 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3545
3546 while (insn)
3547 {
3548 insn = PREV_INSN (insn);
3549 if (insn == 0 || active_insn_p (insn))
3550 break;
3551 }
3552
3553 return insn;
3554 }
3555 \f
3556 /* Return the next insn that uses CC0 after INSN, which is assumed to
3557 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3558 applied to the result of this function should yield INSN).
3559
3560 Normally, this is simply the next insn. However, if a REG_CC_USER note
3561 is present, it contains the insn that uses CC0.
3562
3563 Return 0 if we can't find the insn. */
3564
3565 rtx_insn *
3566 next_cc0_user (rtx uncast_insn)
3567 {
3568 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3569
3570 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3571
3572 if (note)
3573 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3574
3575 insn = next_nonnote_insn (insn);
3576 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3577 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3578
3579 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3580 return insn;
3581
3582 return 0;
3583 }
3584
3585 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3586 note, it is the previous insn. */
3587
3588 rtx_insn *
3589 prev_cc0_setter (rtx_insn *insn)
3590 {
3591 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3592
3593 if (note)
3594 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3595
3596 insn = prev_nonnote_insn (insn);
3597 gcc_assert (sets_cc0_p (PATTERN (insn)));
3598
3599 return insn;
3600 }
3601
3602 #ifdef AUTO_INC_DEC
3603 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3604
3605 static int
3606 find_auto_inc (const_rtx x, const_rtx reg)
3607 {
3608 subrtx_iterator::array_type array;
3609 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3610 {
3611 const_rtx x = *iter;
3612 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3613 && rtx_equal_p (reg, XEXP (x, 0)))
3614 return true;
3615 }
3616 return false;
3617 }
3618 #endif
3619
3620 /* Increment the label uses for all labels present in rtx. */
3621
3622 static void
3623 mark_label_nuses (rtx x)
3624 {
3625 enum rtx_code code;
3626 int i, j;
3627 const char *fmt;
3628
3629 code = GET_CODE (x);
3630 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3631 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3632
3633 fmt = GET_RTX_FORMAT (code);
3634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3635 {
3636 if (fmt[i] == 'e')
3637 mark_label_nuses (XEXP (x, i));
3638 else if (fmt[i] == 'E')
3639 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3640 mark_label_nuses (XVECEXP (x, i, j));
3641 }
3642 }
3643
3644 \f
3645 /* Try splitting insns that can be split for better scheduling.
3646 PAT is the pattern which might split.
3647 TRIAL is the insn providing PAT.
3648 LAST is nonzero if we should return the last insn of the sequence produced.
3649
3650 If this routine succeeds in splitting, it returns the first or last
3651 replacement insn depending on the value of LAST. Otherwise, it
3652 returns TRIAL. If the insn to be returned can be split, it will be. */
3653
3654 rtx_insn *
3655 try_split (rtx pat, rtx uncast_trial, int last)
3656 {
3657 rtx_insn *trial = as_a <rtx_insn *> (uncast_trial);
3658 rtx_insn *before = PREV_INSN (trial);
3659 rtx_insn *after = NEXT_INSN (trial);
3660 rtx note;
3661 rtx_insn *seq, *tem;
3662 int probability;
3663 rtx_insn *insn_last, *insn;
3664 int njumps = 0;
3665 rtx call_insn = NULL_RTX;
3666
3667 /* We're not good at redistributing frame information. */
3668 if (RTX_FRAME_RELATED_P (trial))
3669 return trial;
3670
3671 if (any_condjump_p (trial)
3672 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3673 split_branch_probability = XINT (note, 0);
3674 probability = split_branch_probability;
3675
3676 seq = safe_as_a <rtx_insn *> (split_insns (pat, trial));
3677
3678 split_branch_probability = -1;
3679
3680 if (!seq)
3681 return trial;
3682
3683 /* Avoid infinite loop if any insn of the result matches
3684 the original pattern. */
3685 insn_last = seq;
3686 while (1)
3687 {
3688 if (INSN_P (insn_last)
3689 && rtx_equal_p (PATTERN (insn_last), pat))
3690 return trial;
3691 if (!NEXT_INSN (insn_last))
3692 break;
3693 insn_last = NEXT_INSN (insn_last);
3694 }
3695
3696 /* We will be adding the new sequence to the function. The splitters
3697 may have introduced invalid RTL sharing, so unshare the sequence now. */
3698 unshare_all_rtl_in_chain (seq);
3699
3700 /* Mark labels and copy flags. */
3701 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3702 {
3703 if (JUMP_P (insn))
3704 {
3705 if (JUMP_P (trial))
3706 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3707 mark_jump_label (PATTERN (insn), insn, 0);
3708 njumps++;
3709 if (probability != -1
3710 && any_condjump_p (insn)
3711 && !find_reg_note (insn, REG_BR_PROB, 0))
3712 {
3713 /* We can preserve the REG_BR_PROB notes only if exactly
3714 one jump is created, otherwise the machine description
3715 is responsible for this step using
3716 split_branch_probability variable. */
3717 gcc_assert (njumps == 1);
3718 add_int_reg_note (insn, REG_BR_PROB, probability);
3719 }
3720 }
3721 }
3722
3723 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3724 in SEQ and copy any additional information across. */
3725 if (CALL_P (trial))
3726 {
3727 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3728 if (CALL_P (insn))
3729 {
3730 rtx_insn *next;
3731 rtx *p;
3732
3733 gcc_assert (call_insn == NULL_RTX);
3734 call_insn = insn;
3735
3736 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3737 target may have explicitly specified. */
3738 p = &CALL_INSN_FUNCTION_USAGE (insn);
3739 while (*p)
3740 p = &XEXP (*p, 1);
3741 *p = CALL_INSN_FUNCTION_USAGE (trial);
3742
3743 /* If the old call was a sibling call, the new one must
3744 be too. */
3745 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3746
3747 /* If the new call is the last instruction in the sequence,
3748 it will effectively replace the old call in-situ. Otherwise
3749 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3750 so that it comes immediately after the new call. */
3751 if (NEXT_INSN (insn))
3752 for (next = NEXT_INSN (trial);
3753 next && NOTE_P (next);
3754 next = NEXT_INSN (next))
3755 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3756 {
3757 remove_insn (next);
3758 add_insn_after (next, insn, NULL);
3759 break;
3760 }
3761 }
3762 }
3763
3764 /* Copy notes, particularly those related to the CFG. */
3765 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3766 {
3767 switch (REG_NOTE_KIND (note))
3768 {
3769 case REG_EH_REGION:
3770 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3771 break;
3772
3773 case REG_NORETURN:
3774 case REG_SETJMP:
3775 case REG_TM:
3776 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3777 {
3778 if (CALL_P (insn))
3779 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3780 }
3781 break;
3782
3783 case REG_NON_LOCAL_GOTO:
3784 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3785 {
3786 if (JUMP_P (insn))
3787 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3788 }
3789 break;
3790
3791 #ifdef AUTO_INC_DEC
3792 case REG_INC:
3793 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3794 {
3795 rtx reg = XEXP (note, 0);
3796 if (!FIND_REG_INC_NOTE (insn, reg)
3797 && find_auto_inc (PATTERN (insn), reg))
3798 add_reg_note (insn, REG_INC, reg);
3799 }
3800 break;
3801 #endif
3802
3803 case REG_ARGS_SIZE:
3804 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3805 break;
3806
3807 case REG_CALL_DECL:
3808 gcc_assert (call_insn != NULL_RTX);
3809 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3810 break;
3811
3812 default:
3813 break;
3814 }
3815 }
3816
3817 /* If there are LABELS inside the split insns increment the
3818 usage count so we don't delete the label. */
3819 if (INSN_P (trial))
3820 {
3821 insn = insn_last;
3822 while (insn != NULL_RTX)
3823 {
3824 /* JUMP_P insns have already been "marked" above. */
3825 if (NONJUMP_INSN_P (insn))
3826 mark_label_nuses (PATTERN (insn));
3827
3828 insn = PREV_INSN (insn);
3829 }
3830 }
3831
3832 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3833
3834 delete_insn (trial);
3835
3836 /* Recursively call try_split for each new insn created; by the
3837 time control returns here that insn will be fully split, so
3838 set LAST and continue from the insn after the one returned.
3839 We can't use next_active_insn here since AFTER may be a note.
3840 Ignore deleted insns, which can be occur if not optimizing. */
3841 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3842 if (! tem->deleted () && INSN_P (tem))
3843 tem = try_split (PATTERN (tem), tem, 1);
3844
3845 /* Return either the first or the last insn, depending on which was
3846 requested. */
3847 return last
3848 ? (after ? PREV_INSN (after) : get_last_insn ())
3849 : NEXT_INSN (before);
3850 }
3851 \f
3852 /* Make and return an INSN rtx, initializing all its slots.
3853 Store PATTERN in the pattern slots. */
3854
3855 rtx_insn *
3856 make_insn_raw (rtx pattern)
3857 {
3858 rtx_insn *insn;
3859
3860 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3861
3862 INSN_UID (insn) = cur_insn_uid++;
3863 PATTERN (insn) = pattern;
3864 INSN_CODE (insn) = -1;
3865 REG_NOTES (insn) = NULL;
3866 INSN_LOCATION (insn) = curr_insn_location ();
3867 BLOCK_FOR_INSN (insn) = NULL;
3868
3869 #ifdef ENABLE_RTL_CHECKING
3870 if (insn
3871 && INSN_P (insn)
3872 && (returnjump_p (insn)
3873 || (GET_CODE (insn) == SET
3874 && SET_DEST (insn) == pc_rtx)))
3875 {
3876 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3877 debug_rtx (insn);
3878 }
3879 #endif
3880
3881 return insn;
3882 }
3883
3884 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3885
3886 static rtx_insn *
3887 make_debug_insn_raw (rtx pattern)
3888 {
3889 rtx_debug_insn *insn;
3890
3891 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3892 INSN_UID (insn) = cur_debug_insn_uid++;
3893 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3894 INSN_UID (insn) = cur_insn_uid++;
3895
3896 PATTERN (insn) = pattern;
3897 INSN_CODE (insn) = -1;
3898 REG_NOTES (insn) = NULL;
3899 INSN_LOCATION (insn) = curr_insn_location ();
3900 BLOCK_FOR_INSN (insn) = NULL;
3901
3902 return insn;
3903 }
3904
3905 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3906
3907 static rtx_insn *
3908 make_jump_insn_raw (rtx pattern)
3909 {
3910 rtx_jump_insn *insn;
3911
3912 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3913 INSN_UID (insn) = cur_insn_uid++;
3914
3915 PATTERN (insn) = pattern;
3916 INSN_CODE (insn) = -1;
3917 REG_NOTES (insn) = NULL;
3918 JUMP_LABEL (insn) = NULL;
3919 INSN_LOCATION (insn) = curr_insn_location ();
3920 BLOCK_FOR_INSN (insn) = NULL;
3921
3922 return insn;
3923 }
3924
3925 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3926
3927 static rtx_insn *
3928 make_call_insn_raw (rtx pattern)
3929 {
3930 rtx_call_insn *insn;
3931
3932 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3933 INSN_UID (insn) = cur_insn_uid++;
3934
3935 PATTERN (insn) = pattern;
3936 INSN_CODE (insn) = -1;
3937 REG_NOTES (insn) = NULL;
3938 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3939 INSN_LOCATION (insn) = curr_insn_location ();
3940 BLOCK_FOR_INSN (insn) = NULL;
3941
3942 return insn;
3943 }
3944
3945 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3946
3947 static rtx_note *
3948 make_note_raw (enum insn_note subtype)
3949 {
3950 /* Some notes are never created this way at all. These notes are
3951 only created by patching out insns. */
3952 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3953 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3954
3955 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3956 INSN_UID (note) = cur_insn_uid++;
3957 NOTE_KIND (note) = subtype;
3958 BLOCK_FOR_INSN (note) = NULL;
3959 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3960 return note;
3961 }
3962 \f
3963 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3964 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3965 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3966
3967 static inline void
3968 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3969 {
3970 SET_PREV_INSN (insn) = prev;
3971 SET_NEXT_INSN (insn) = next;
3972 if (prev != NULL)
3973 {
3974 SET_NEXT_INSN (prev) = insn;
3975 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3976 {
3977 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3978 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3979 }
3980 }
3981 if (next != NULL)
3982 {
3983 SET_PREV_INSN (next) = insn;
3984 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3985 {
3986 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3987 SET_PREV_INSN (sequence->insn (0)) = insn;
3988 }
3989 }
3990
3991 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3992 {
3993 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3994 SET_PREV_INSN (sequence->insn (0)) = prev;
3995 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3996 }
3997 }
3998
3999 /* Add INSN to the end of the doubly-linked list.
4000 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4001
4002 void
4003 add_insn (rtx_insn *insn)
4004 {
4005 rtx_insn *prev = get_last_insn ();
4006 link_insn_into_chain (insn, prev, NULL);
4007 if (NULL == get_insns ())
4008 set_first_insn (insn);
4009 set_last_insn (insn);
4010 }
4011
4012 /* Add INSN into the doubly-linked list after insn AFTER. */
4013
4014 static void
4015 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4016 {
4017 rtx_insn *next = NEXT_INSN (after);
4018
4019 gcc_assert (!optimize || !after->deleted ());
4020
4021 link_insn_into_chain (insn, after, next);
4022
4023 if (next == NULL)
4024 {
4025 struct sequence_stack *seq;
4026
4027 for (seq = get_current_sequence (); seq; seq = seq->next)
4028 if (after == seq->last)
4029 {
4030 seq->last = insn;
4031 break;
4032 }
4033 }
4034 }
4035
4036 /* Add INSN into the doubly-linked list before insn BEFORE. */
4037
4038 static void
4039 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4040 {
4041 rtx_insn *prev = PREV_INSN (before);
4042
4043 gcc_assert (!optimize || !before->deleted ());
4044
4045 link_insn_into_chain (insn, prev, before);
4046
4047 if (prev == NULL)
4048 {
4049 struct sequence_stack *seq;
4050
4051 for (seq = get_current_sequence (); seq; seq = seq->next)
4052 if (before == seq->first)
4053 {
4054 seq->first = insn;
4055 break;
4056 }
4057
4058 gcc_assert (seq);
4059 }
4060 }
4061
4062 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4063 If BB is NULL, an attempt is made to infer the bb from before.
4064
4065 This and the next function should be the only functions called
4066 to insert an insn once delay slots have been filled since only
4067 they know how to update a SEQUENCE. */
4068
4069 void
4070 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4071 {
4072 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4073 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4074 add_insn_after_nobb (insn, after);
4075 if (!BARRIER_P (after)
4076 && !BARRIER_P (insn)
4077 && (bb = BLOCK_FOR_INSN (after)))
4078 {
4079 set_block_for_insn (insn, bb);
4080 if (INSN_P (insn))
4081 df_insn_rescan (insn);
4082 /* Should not happen as first in the BB is always
4083 either NOTE or LABEL. */
4084 if (BB_END (bb) == after
4085 /* Avoid clobbering of structure when creating new BB. */
4086 && !BARRIER_P (insn)
4087 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4088 BB_END (bb) = insn;
4089 }
4090 }
4091
4092 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4093 If BB is NULL, an attempt is made to infer the bb from before.
4094
4095 This and the previous function should be the only functions called
4096 to insert an insn once delay slots have been filled since only
4097 they know how to update a SEQUENCE. */
4098
4099 void
4100 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4101 {
4102 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4103 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4104 add_insn_before_nobb (insn, before);
4105
4106 if (!bb
4107 && !BARRIER_P (before)
4108 && !BARRIER_P (insn))
4109 bb = BLOCK_FOR_INSN (before);
4110
4111 if (bb)
4112 {
4113 set_block_for_insn (insn, bb);
4114 if (INSN_P (insn))
4115 df_insn_rescan (insn);
4116 /* Should not happen as first in the BB is always either NOTE or
4117 LABEL. */
4118 gcc_assert (BB_HEAD (bb) != insn
4119 /* Avoid clobbering of structure when creating new BB. */
4120 || BARRIER_P (insn)
4121 || NOTE_INSN_BASIC_BLOCK_P (insn));
4122 }
4123 }
4124
4125 /* Replace insn with an deleted instruction note. */
4126
4127 void
4128 set_insn_deleted (rtx insn)
4129 {
4130 if (INSN_P (insn))
4131 df_insn_delete (as_a <rtx_insn *> (insn));
4132 PUT_CODE (insn, NOTE);
4133 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4134 }
4135
4136
4137 /* Unlink INSN from the insn chain.
4138
4139 This function knows how to handle sequences.
4140
4141 This function does not invalidate data flow information associated with
4142 INSN (i.e. does not call df_insn_delete). That makes this function
4143 usable for only disconnecting an insn from the chain, and re-emit it
4144 elsewhere later.
4145
4146 To later insert INSN elsewhere in the insn chain via add_insn and
4147 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4148 the caller. Nullifying them here breaks many insn chain walks.
4149
4150 To really delete an insn and related DF information, use delete_insn. */
4151
4152 void
4153 remove_insn (rtx uncast_insn)
4154 {
4155 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4156 rtx_insn *next = NEXT_INSN (insn);
4157 rtx_insn *prev = PREV_INSN (insn);
4158 basic_block bb;
4159
4160 if (prev)
4161 {
4162 SET_NEXT_INSN (prev) = next;
4163 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4164 {
4165 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4166 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4167 }
4168 }
4169 else
4170 {
4171 struct sequence_stack *seq;
4172
4173 for (seq = get_current_sequence (); seq; seq = seq->next)
4174 if (insn == seq->first)
4175 {
4176 seq->first = next;
4177 break;
4178 }
4179
4180 gcc_assert (seq);
4181 }
4182
4183 if (next)
4184 {
4185 SET_PREV_INSN (next) = prev;
4186 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4187 {
4188 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4189 SET_PREV_INSN (sequence->insn (0)) = prev;
4190 }
4191 }
4192 else
4193 {
4194 struct sequence_stack *seq;
4195
4196 for (seq = get_current_sequence (); seq; seq = seq->next)
4197 if (insn == seq->last)
4198 {
4199 seq->last = prev;
4200 break;
4201 }
4202
4203 gcc_assert (seq);
4204 }
4205
4206 /* Fix up basic block boundaries, if necessary. */
4207 if (!BARRIER_P (insn)
4208 && (bb = BLOCK_FOR_INSN (insn)))
4209 {
4210 if (BB_HEAD (bb) == insn)
4211 {
4212 /* Never ever delete the basic block note without deleting whole
4213 basic block. */
4214 gcc_assert (!NOTE_P (insn));
4215 BB_HEAD (bb) = next;
4216 }
4217 if (BB_END (bb) == insn)
4218 BB_END (bb) = prev;
4219 }
4220 }
4221
4222 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4223
4224 void
4225 add_function_usage_to (rtx call_insn, rtx call_fusage)
4226 {
4227 gcc_assert (call_insn && CALL_P (call_insn));
4228
4229 /* Put the register usage information on the CALL. If there is already
4230 some usage information, put ours at the end. */
4231 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4232 {
4233 rtx link;
4234
4235 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4236 link = XEXP (link, 1))
4237 ;
4238
4239 XEXP (link, 1) = call_fusage;
4240 }
4241 else
4242 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4243 }
4244
4245 /* Delete all insns made since FROM.
4246 FROM becomes the new last instruction. */
4247
4248 void
4249 delete_insns_since (rtx_insn *from)
4250 {
4251 if (from == 0)
4252 set_first_insn (0);
4253 else
4254 SET_NEXT_INSN (from) = 0;
4255 set_last_insn (from);
4256 }
4257
4258 /* This function is deprecated, please use sequences instead.
4259
4260 Move a consecutive bunch of insns to a different place in the chain.
4261 The insns to be moved are those between FROM and TO.
4262 They are moved to a new position after the insn AFTER.
4263 AFTER must not be FROM or TO or any insn in between.
4264
4265 This function does not know about SEQUENCEs and hence should not be
4266 called after delay-slot filling has been done. */
4267
4268 void
4269 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4270 {
4271 #ifdef ENABLE_CHECKING
4272 rtx_insn *x;
4273 for (x = from; x != to; x = NEXT_INSN (x))
4274 gcc_assert (after != x);
4275 gcc_assert (after != to);
4276 #endif
4277
4278 /* Splice this bunch out of where it is now. */
4279 if (PREV_INSN (from))
4280 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4281 if (NEXT_INSN (to))
4282 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4283 if (get_last_insn () == to)
4284 set_last_insn (PREV_INSN (from));
4285 if (get_insns () == from)
4286 set_first_insn (NEXT_INSN (to));
4287
4288 /* Make the new neighbors point to it and it to them. */
4289 if (NEXT_INSN (after))
4290 SET_PREV_INSN (NEXT_INSN (after)) = to;
4291
4292 SET_NEXT_INSN (to) = NEXT_INSN (after);
4293 SET_PREV_INSN (from) = after;
4294 SET_NEXT_INSN (after) = from;
4295 if (after == get_last_insn ())
4296 set_last_insn (to);
4297 }
4298
4299 /* Same as function above, but take care to update BB boundaries. */
4300 void
4301 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4302 {
4303 rtx_insn *prev = PREV_INSN (from);
4304 basic_block bb, bb2;
4305
4306 reorder_insns_nobb (from, to, after);
4307
4308 if (!BARRIER_P (after)
4309 && (bb = BLOCK_FOR_INSN (after)))
4310 {
4311 rtx_insn *x;
4312 df_set_bb_dirty (bb);
4313
4314 if (!BARRIER_P (from)
4315 && (bb2 = BLOCK_FOR_INSN (from)))
4316 {
4317 if (BB_END (bb2) == to)
4318 BB_END (bb2) = prev;
4319 df_set_bb_dirty (bb2);
4320 }
4321
4322 if (BB_END (bb) == after)
4323 BB_END (bb) = to;
4324
4325 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4326 if (!BARRIER_P (x))
4327 df_insn_change_bb (x, bb);
4328 }
4329 }
4330
4331 \f
4332 /* Emit insn(s) of given code and pattern
4333 at a specified place within the doubly-linked list.
4334
4335 All of the emit_foo global entry points accept an object
4336 X which is either an insn list or a PATTERN of a single
4337 instruction.
4338
4339 There are thus a few canonical ways to generate code and
4340 emit it at a specific place in the instruction stream. For
4341 example, consider the instruction named SPOT and the fact that
4342 we would like to emit some instructions before SPOT. We might
4343 do it like this:
4344
4345 start_sequence ();
4346 ... emit the new instructions ...
4347 insns_head = get_insns ();
4348 end_sequence ();
4349
4350 emit_insn_before (insns_head, SPOT);
4351
4352 It used to be common to generate SEQUENCE rtl instead, but that
4353 is a relic of the past which no longer occurs. The reason is that
4354 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4355 generated would almost certainly die right after it was created. */
4356
4357 static rtx_insn *
4358 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4359 rtx_insn *(*make_raw) (rtx))
4360 {
4361 rtx_insn *insn;
4362
4363 gcc_assert (before);
4364
4365 if (x == NULL_RTX)
4366 return safe_as_a <rtx_insn *> (last);
4367
4368 switch (GET_CODE (x))
4369 {
4370 case DEBUG_INSN:
4371 case INSN:
4372 case JUMP_INSN:
4373 case CALL_INSN:
4374 case CODE_LABEL:
4375 case BARRIER:
4376 case NOTE:
4377 insn = as_a <rtx_insn *> (x);
4378 while (insn)
4379 {
4380 rtx_insn *next = NEXT_INSN (insn);
4381 add_insn_before (insn, before, bb);
4382 last = insn;
4383 insn = next;
4384 }
4385 break;
4386
4387 #ifdef ENABLE_RTL_CHECKING
4388 case SEQUENCE:
4389 gcc_unreachable ();
4390 break;
4391 #endif
4392
4393 default:
4394 last = (*make_raw) (x);
4395 add_insn_before (last, before, bb);
4396 break;
4397 }
4398
4399 return safe_as_a <rtx_insn *> (last);
4400 }
4401
4402 /* Make X be output before the instruction BEFORE. */
4403
4404 rtx_insn *
4405 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4406 {
4407 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4408 }
4409
4410 /* Make an instruction with body X and code JUMP_INSN
4411 and output it before the instruction BEFORE. */
4412
4413 rtx_insn *
4414 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4415 {
4416 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4417 make_jump_insn_raw);
4418 }
4419
4420 /* Make an instruction with body X and code CALL_INSN
4421 and output it before the instruction BEFORE. */
4422
4423 rtx_insn *
4424 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4425 {
4426 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4427 make_call_insn_raw);
4428 }
4429
4430 /* Make an instruction with body X and code DEBUG_INSN
4431 and output it before the instruction BEFORE. */
4432
4433 rtx_insn *
4434 emit_debug_insn_before_noloc (rtx x, rtx before)
4435 {
4436 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4437 make_debug_insn_raw);
4438 }
4439
4440 /* Make an insn of code BARRIER
4441 and output it before the insn BEFORE. */
4442
4443 rtx_barrier *
4444 emit_barrier_before (rtx before)
4445 {
4446 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4447
4448 INSN_UID (insn) = cur_insn_uid++;
4449
4450 add_insn_before (insn, before, NULL);
4451 return insn;
4452 }
4453
4454 /* Emit the label LABEL before the insn BEFORE. */
4455
4456 rtx_insn *
4457 emit_label_before (rtx label, rtx_insn *before)
4458 {
4459 gcc_checking_assert (INSN_UID (label) == 0);
4460 INSN_UID (label) = cur_insn_uid++;
4461 add_insn_before (label, before, NULL);
4462 return as_a <rtx_insn *> (label);
4463 }
4464 \f
4465 /* Helper for emit_insn_after, handles lists of instructions
4466 efficiently. */
4467
4468 static rtx_insn *
4469 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4470 {
4471 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4472 rtx_insn *last;
4473 rtx_insn *after_after;
4474 if (!bb && !BARRIER_P (after))
4475 bb = BLOCK_FOR_INSN (after);
4476
4477 if (bb)
4478 {
4479 df_set_bb_dirty (bb);
4480 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4481 if (!BARRIER_P (last))
4482 {
4483 set_block_for_insn (last, bb);
4484 df_insn_rescan (last);
4485 }
4486 if (!BARRIER_P (last))
4487 {
4488 set_block_for_insn (last, bb);
4489 df_insn_rescan (last);
4490 }
4491 if (BB_END (bb) == after)
4492 BB_END (bb) = last;
4493 }
4494 else
4495 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4496 continue;
4497
4498 after_after = NEXT_INSN (after);
4499
4500 SET_NEXT_INSN (after) = first;
4501 SET_PREV_INSN (first) = after;
4502 SET_NEXT_INSN (last) = after_after;
4503 if (after_after)
4504 SET_PREV_INSN (after_after) = last;
4505
4506 if (after == get_last_insn ())
4507 set_last_insn (last);
4508
4509 return last;
4510 }
4511
4512 static rtx_insn *
4513 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4514 rtx_insn *(*make_raw)(rtx))
4515 {
4516 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4517 rtx_insn *last = after;
4518
4519 gcc_assert (after);
4520
4521 if (x == NULL_RTX)
4522 return last;
4523
4524 switch (GET_CODE (x))
4525 {
4526 case DEBUG_INSN:
4527 case INSN:
4528 case JUMP_INSN:
4529 case CALL_INSN:
4530 case CODE_LABEL:
4531 case BARRIER:
4532 case NOTE:
4533 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4534 break;
4535
4536 #ifdef ENABLE_RTL_CHECKING
4537 case SEQUENCE:
4538 gcc_unreachable ();
4539 break;
4540 #endif
4541
4542 default:
4543 last = (*make_raw) (x);
4544 add_insn_after (last, after, bb);
4545 break;
4546 }
4547
4548 return last;
4549 }
4550
4551 /* Make X be output after the insn AFTER and set the BB of insn. If
4552 BB is NULL, an attempt is made to infer the BB from AFTER. */
4553
4554 rtx_insn *
4555 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4556 {
4557 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4558 }
4559
4560
4561 /* Make an insn of code JUMP_INSN with body X
4562 and output it after the insn AFTER. */
4563
4564 rtx_insn *
4565 emit_jump_insn_after_noloc (rtx x, rtx after)
4566 {
4567 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4568 }
4569
4570 /* Make an instruction with body X and code CALL_INSN
4571 and output it after the instruction AFTER. */
4572
4573 rtx_insn *
4574 emit_call_insn_after_noloc (rtx x, rtx after)
4575 {
4576 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4577 }
4578
4579 /* Make an instruction with body X and code CALL_INSN
4580 and output it after the instruction AFTER. */
4581
4582 rtx_insn *
4583 emit_debug_insn_after_noloc (rtx x, rtx after)
4584 {
4585 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4586 }
4587
4588 /* Make an insn of code BARRIER
4589 and output it after the insn AFTER. */
4590
4591 rtx_barrier *
4592 emit_barrier_after (rtx after)
4593 {
4594 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4595
4596 INSN_UID (insn) = cur_insn_uid++;
4597
4598 add_insn_after (insn, after, NULL);
4599 return insn;
4600 }
4601
4602 /* Emit the label LABEL after the insn AFTER. */
4603
4604 rtx_insn *
4605 emit_label_after (rtx label, rtx_insn *after)
4606 {
4607 gcc_checking_assert (INSN_UID (label) == 0);
4608 INSN_UID (label) = cur_insn_uid++;
4609 add_insn_after (label, after, NULL);
4610 return as_a <rtx_insn *> (label);
4611 }
4612 \f
4613 /* Notes require a bit of special handling: Some notes need to have their
4614 BLOCK_FOR_INSN set, others should never have it set, and some should
4615 have it set or clear depending on the context. */
4616
4617 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4618 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4619 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4620
4621 static bool
4622 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4623 {
4624 switch (subtype)
4625 {
4626 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4627 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4628 return true;
4629
4630 /* Notes for var tracking and EH region markers can appear between or
4631 inside basic blocks. If the caller is emitting on the basic block
4632 boundary, do not set BLOCK_FOR_INSN on the new note. */
4633 case NOTE_INSN_VAR_LOCATION:
4634 case NOTE_INSN_CALL_ARG_LOCATION:
4635 case NOTE_INSN_EH_REGION_BEG:
4636 case NOTE_INSN_EH_REGION_END:
4637 return on_bb_boundary_p;
4638
4639 /* Otherwise, BLOCK_FOR_INSN must be set. */
4640 default:
4641 return false;
4642 }
4643 }
4644
4645 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4646
4647 rtx_note *
4648 emit_note_after (enum insn_note subtype, rtx_insn *after)
4649 {
4650 rtx_note *note = make_note_raw (subtype);
4651 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4652 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4653
4654 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4655 add_insn_after_nobb (note, after);
4656 else
4657 add_insn_after (note, after, bb);
4658 return note;
4659 }
4660
4661 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4662
4663 rtx_note *
4664 emit_note_before (enum insn_note subtype, rtx_insn *before)
4665 {
4666 rtx_note *note = make_note_raw (subtype);
4667 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4668 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4669
4670 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4671 add_insn_before_nobb (note, before);
4672 else
4673 add_insn_before (note, before, bb);
4674 return note;
4675 }
4676 \f
4677 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4678 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4679
4680 static rtx_insn *
4681 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4682 rtx_insn *(*make_raw) (rtx))
4683 {
4684 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4685 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4686
4687 if (pattern == NULL_RTX || !loc)
4688 return safe_as_a <rtx_insn *> (last);
4689
4690 after = NEXT_INSN (after);
4691 while (1)
4692 {
4693 if (active_insn_p (after)
4694 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4695 && !INSN_LOCATION (after))
4696 INSN_LOCATION (after) = loc;
4697 if (after == last)
4698 break;
4699 after = NEXT_INSN (after);
4700 }
4701 return safe_as_a <rtx_insn *> (last);
4702 }
4703
4704 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4705 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4706 any DEBUG_INSNs. */
4707
4708 static rtx_insn *
4709 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4710 rtx_insn *(*make_raw) (rtx))
4711 {
4712 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4713 rtx_insn *prev = after;
4714
4715 if (skip_debug_insns)
4716 while (DEBUG_INSN_P (prev))
4717 prev = PREV_INSN (prev);
4718
4719 if (INSN_P (prev))
4720 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4721 make_raw);
4722 else
4723 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4724 }
4725
4726 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4727 rtx_insn *
4728 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4729 {
4730 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4731 }
4732
4733 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4734 rtx_insn *
4735 emit_insn_after (rtx pattern, rtx after)
4736 {
4737 return emit_pattern_after (pattern, after, true, make_insn_raw);
4738 }
4739
4740 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4741 rtx_insn *
4742 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4743 {
4744 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4745 }
4746
4747 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4748 rtx_insn *
4749 emit_jump_insn_after (rtx pattern, rtx after)
4750 {
4751 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4752 }
4753
4754 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4755 rtx_insn *
4756 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4757 {
4758 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4759 }
4760
4761 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4762 rtx_insn *
4763 emit_call_insn_after (rtx pattern, rtx after)
4764 {
4765 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4766 }
4767
4768 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4769 rtx_insn *
4770 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4771 {
4772 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4773 }
4774
4775 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4776 rtx_insn *
4777 emit_debug_insn_after (rtx pattern, rtx after)
4778 {
4779 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4780 }
4781
4782 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4783 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4784 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4785 CALL_INSN, etc. */
4786
4787 static rtx_insn *
4788 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4789 rtx_insn *(*make_raw) (rtx))
4790 {
4791 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4792 rtx_insn *first = PREV_INSN (before);
4793 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4794 insnp ? before : NULL_RTX,
4795 NULL, make_raw);
4796
4797 if (pattern == NULL_RTX || !loc)
4798 return last;
4799
4800 if (!first)
4801 first = get_insns ();
4802 else
4803 first = NEXT_INSN (first);
4804 while (1)
4805 {
4806 if (active_insn_p (first)
4807 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4808 && !INSN_LOCATION (first))
4809 INSN_LOCATION (first) = loc;
4810 if (first == last)
4811 break;
4812 first = NEXT_INSN (first);
4813 }
4814 return last;
4815 }
4816
4817 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4818 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4819 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4820 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4821
4822 static rtx_insn *
4823 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4824 bool insnp, rtx_insn *(*make_raw) (rtx))
4825 {
4826 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4827 rtx_insn *next = before;
4828
4829 if (skip_debug_insns)
4830 while (DEBUG_INSN_P (next))
4831 next = PREV_INSN (next);
4832
4833 if (INSN_P (next))
4834 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4835 insnp, make_raw);
4836 else
4837 return emit_pattern_before_noloc (pattern, before,
4838 insnp ? before : NULL_RTX,
4839 NULL, make_raw);
4840 }
4841
4842 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4843 rtx_insn *
4844 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4845 {
4846 return emit_pattern_before_setloc (pattern, before, loc, true,
4847 make_insn_raw);
4848 }
4849
4850 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4851 rtx_insn *
4852 emit_insn_before (rtx pattern, rtx before)
4853 {
4854 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4855 }
4856
4857 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4858 rtx_insn *
4859 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4860 {
4861 return emit_pattern_before_setloc (pattern, before, loc, false,
4862 make_jump_insn_raw);
4863 }
4864
4865 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4866 rtx_insn *
4867 emit_jump_insn_before (rtx pattern, rtx before)
4868 {
4869 return emit_pattern_before (pattern, before, true, false,
4870 make_jump_insn_raw);
4871 }
4872
4873 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4874 rtx_insn *
4875 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4876 {
4877 return emit_pattern_before_setloc (pattern, before, loc, false,
4878 make_call_insn_raw);
4879 }
4880
4881 /* Like emit_call_insn_before_noloc,
4882 but set insn_location according to BEFORE. */
4883 rtx_insn *
4884 emit_call_insn_before (rtx pattern, rtx_insn *before)
4885 {
4886 return emit_pattern_before (pattern, before, true, false,
4887 make_call_insn_raw);
4888 }
4889
4890 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4891 rtx_insn *
4892 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4893 {
4894 return emit_pattern_before_setloc (pattern, before, loc, false,
4895 make_debug_insn_raw);
4896 }
4897
4898 /* Like emit_debug_insn_before_noloc,
4899 but set insn_location according to BEFORE. */
4900 rtx_insn *
4901 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4902 {
4903 return emit_pattern_before (pattern, before, false, false,
4904 make_debug_insn_raw);
4905 }
4906 \f
4907 /* Take X and emit it at the end of the doubly-linked
4908 INSN list.
4909
4910 Returns the last insn emitted. */
4911
4912 rtx_insn *
4913 emit_insn (rtx x)
4914 {
4915 rtx_insn *last = get_last_insn ();
4916 rtx_insn *insn;
4917
4918 if (x == NULL_RTX)
4919 return last;
4920
4921 switch (GET_CODE (x))
4922 {
4923 case DEBUG_INSN:
4924 case INSN:
4925 case JUMP_INSN:
4926 case CALL_INSN:
4927 case CODE_LABEL:
4928 case BARRIER:
4929 case NOTE:
4930 insn = as_a <rtx_insn *> (x);
4931 while (insn)
4932 {
4933 rtx_insn *next = NEXT_INSN (insn);
4934 add_insn (insn);
4935 last = insn;
4936 insn = next;
4937 }
4938 break;
4939
4940 #ifdef ENABLE_RTL_CHECKING
4941 case JUMP_TABLE_DATA:
4942 case SEQUENCE:
4943 gcc_unreachable ();
4944 break;
4945 #endif
4946
4947 default:
4948 last = make_insn_raw (x);
4949 add_insn (last);
4950 break;
4951 }
4952
4953 return last;
4954 }
4955
4956 /* Make an insn of code DEBUG_INSN with pattern X
4957 and add it to the end of the doubly-linked list. */
4958
4959 rtx_insn *
4960 emit_debug_insn (rtx x)
4961 {
4962 rtx_insn *last = get_last_insn ();
4963 rtx_insn *insn;
4964
4965 if (x == NULL_RTX)
4966 return last;
4967
4968 switch (GET_CODE (x))
4969 {
4970 case DEBUG_INSN:
4971 case INSN:
4972 case JUMP_INSN:
4973 case CALL_INSN:
4974 case CODE_LABEL:
4975 case BARRIER:
4976 case NOTE:
4977 insn = as_a <rtx_insn *> (x);
4978 while (insn)
4979 {
4980 rtx_insn *next = NEXT_INSN (insn);
4981 add_insn (insn);
4982 last = insn;
4983 insn = next;
4984 }
4985 break;
4986
4987 #ifdef ENABLE_RTL_CHECKING
4988 case JUMP_TABLE_DATA:
4989 case SEQUENCE:
4990 gcc_unreachable ();
4991 break;
4992 #endif
4993
4994 default:
4995 last = make_debug_insn_raw (x);
4996 add_insn (last);
4997 break;
4998 }
4999
5000 return last;
5001 }
5002
5003 /* Make an insn of code JUMP_INSN with pattern X
5004 and add it to the end of the doubly-linked list. */
5005
5006 rtx_insn *
5007 emit_jump_insn (rtx x)
5008 {
5009 rtx_insn *last = NULL;
5010 rtx_insn *insn;
5011
5012 switch (GET_CODE (x))
5013 {
5014 case DEBUG_INSN:
5015 case INSN:
5016 case JUMP_INSN:
5017 case CALL_INSN:
5018 case CODE_LABEL:
5019 case BARRIER:
5020 case NOTE:
5021 insn = as_a <rtx_insn *> (x);
5022 while (insn)
5023 {
5024 rtx_insn *next = NEXT_INSN (insn);
5025 add_insn (insn);
5026 last = insn;
5027 insn = next;
5028 }
5029 break;
5030
5031 #ifdef ENABLE_RTL_CHECKING
5032 case JUMP_TABLE_DATA:
5033 case SEQUENCE:
5034 gcc_unreachable ();
5035 break;
5036 #endif
5037
5038 default:
5039 last = make_jump_insn_raw (x);
5040 add_insn (last);
5041 break;
5042 }
5043
5044 return last;
5045 }
5046
5047 /* Make an insn of code CALL_INSN with pattern X
5048 and add it to the end of the doubly-linked list. */
5049
5050 rtx_insn *
5051 emit_call_insn (rtx x)
5052 {
5053 rtx_insn *insn;
5054
5055 switch (GET_CODE (x))
5056 {
5057 case DEBUG_INSN:
5058 case INSN:
5059 case JUMP_INSN:
5060 case CALL_INSN:
5061 case CODE_LABEL:
5062 case BARRIER:
5063 case NOTE:
5064 insn = emit_insn (x);
5065 break;
5066
5067 #ifdef ENABLE_RTL_CHECKING
5068 case SEQUENCE:
5069 case JUMP_TABLE_DATA:
5070 gcc_unreachable ();
5071 break;
5072 #endif
5073
5074 default:
5075 insn = make_call_insn_raw (x);
5076 add_insn (insn);
5077 break;
5078 }
5079
5080 return insn;
5081 }
5082
5083 /* Add the label LABEL to the end of the doubly-linked list. */
5084
5085 rtx_insn *
5086 emit_label (rtx label)
5087 {
5088 gcc_checking_assert (INSN_UID (label) == 0);
5089 INSN_UID (label) = cur_insn_uid++;
5090 add_insn (as_a <rtx_insn *> (label));
5091 return as_a <rtx_insn *> (label);
5092 }
5093
5094 /* Make an insn of code JUMP_TABLE_DATA
5095 and add it to the end of the doubly-linked list. */
5096
5097 rtx_jump_table_data *
5098 emit_jump_table_data (rtx table)
5099 {
5100 rtx_jump_table_data *jump_table_data =
5101 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5102 INSN_UID (jump_table_data) = cur_insn_uid++;
5103 PATTERN (jump_table_data) = table;
5104 BLOCK_FOR_INSN (jump_table_data) = NULL;
5105 add_insn (jump_table_data);
5106 return jump_table_data;
5107 }
5108
5109 /* Make an insn of code BARRIER
5110 and add it to the end of the doubly-linked list. */
5111
5112 rtx_barrier *
5113 emit_barrier (void)
5114 {
5115 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5116 INSN_UID (barrier) = cur_insn_uid++;
5117 add_insn (barrier);
5118 return barrier;
5119 }
5120
5121 /* Emit a copy of note ORIG. */
5122
5123 rtx_note *
5124 emit_note_copy (rtx_note *orig)
5125 {
5126 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5127 rtx_note *note = make_note_raw (kind);
5128 NOTE_DATA (note) = NOTE_DATA (orig);
5129 add_insn (note);
5130 return note;
5131 }
5132
5133 /* Make an insn of code NOTE or type NOTE_NO
5134 and add it to the end of the doubly-linked list. */
5135
5136 rtx_note *
5137 emit_note (enum insn_note kind)
5138 {
5139 rtx_note *note = make_note_raw (kind);
5140 add_insn (note);
5141 return note;
5142 }
5143
5144 /* Emit a clobber of lvalue X. */
5145
5146 rtx_insn *
5147 emit_clobber (rtx x)
5148 {
5149 /* CONCATs should not appear in the insn stream. */
5150 if (GET_CODE (x) == CONCAT)
5151 {
5152 emit_clobber (XEXP (x, 0));
5153 return emit_clobber (XEXP (x, 1));
5154 }
5155 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5156 }
5157
5158 /* Return a sequence of insns to clobber lvalue X. */
5159
5160 rtx_insn *
5161 gen_clobber (rtx x)
5162 {
5163 rtx_insn *seq;
5164
5165 start_sequence ();
5166 emit_clobber (x);
5167 seq = get_insns ();
5168 end_sequence ();
5169 return seq;
5170 }
5171
5172 /* Emit a use of rvalue X. */
5173
5174 rtx_insn *
5175 emit_use (rtx x)
5176 {
5177 /* CONCATs should not appear in the insn stream. */
5178 if (GET_CODE (x) == CONCAT)
5179 {
5180 emit_use (XEXP (x, 0));
5181 return emit_use (XEXP (x, 1));
5182 }
5183 return emit_insn (gen_rtx_USE (VOIDmode, x));
5184 }
5185
5186 /* Return a sequence of insns to use rvalue X. */
5187
5188 rtx_insn *
5189 gen_use (rtx x)
5190 {
5191 rtx_insn *seq;
5192
5193 start_sequence ();
5194 emit_use (x);
5195 seq = get_insns ();
5196 end_sequence ();
5197 return seq;
5198 }
5199
5200 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5201 Return the set in INSN that such notes describe, or NULL if the notes
5202 have no meaning for INSN. */
5203
5204 rtx
5205 set_for_reg_notes (rtx insn)
5206 {
5207 rtx pat, reg;
5208
5209 if (!INSN_P (insn))
5210 return NULL_RTX;
5211
5212 pat = PATTERN (insn);
5213 if (GET_CODE (pat) == PARALLEL)
5214 {
5215 /* We do not use single_set because that ignores SETs of unused
5216 registers. REG_EQUAL and REG_EQUIV notes really do require the
5217 PARALLEL to have a single SET. */
5218 if (multiple_sets (insn))
5219 return NULL_RTX;
5220 pat = XVECEXP (pat, 0, 0);
5221 }
5222
5223 if (GET_CODE (pat) != SET)
5224 return NULL_RTX;
5225
5226 reg = SET_DEST (pat);
5227
5228 /* Notes apply to the contents of a STRICT_LOW_PART. */
5229 if (GET_CODE (reg) == STRICT_LOW_PART)
5230 reg = XEXP (reg, 0);
5231
5232 /* Check that we have a register. */
5233 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5234 return NULL_RTX;
5235
5236 return pat;
5237 }
5238
5239 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5240 note of this type already exists, remove it first. */
5241
5242 rtx
5243 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5244 {
5245 rtx note = find_reg_note (insn, kind, NULL_RTX);
5246
5247 switch (kind)
5248 {
5249 case REG_EQUAL:
5250 case REG_EQUIV:
5251 if (!set_for_reg_notes (insn))
5252 return NULL_RTX;
5253
5254 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5255 It serves no useful purpose and breaks eliminate_regs. */
5256 if (GET_CODE (datum) == ASM_OPERANDS)
5257 return NULL_RTX;
5258
5259 /* Notes with side effects are dangerous. Even if the side-effect
5260 initially mirrors one in PATTERN (INSN), later optimizations
5261 might alter the way that the final register value is calculated
5262 and so move or alter the side-effect in some way. The note would
5263 then no longer be a valid substitution for SET_SRC. */
5264 if (side_effects_p (datum))
5265 return NULL_RTX;
5266 break;
5267
5268 default:
5269 break;
5270 }
5271
5272 if (note)
5273 XEXP (note, 0) = datum;
5274 else
5275 {
5276 add_reg_note (insn, kind, datum);
5277 note = REG_NOTES (insn);
5278 }
5279
5280 switch (kind)
5281 {
5282 case REG_EQUAL:
5283 case REG_EQUIV:
5284 df_notes_rescan (as_a <rtx_insn *> (insn));
5285 break;
5286 default:
5287 break;
5288 }
5289
5290 return note;
5291 }
5292
5293 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5294 rtx
5295 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5296 {
5297 rtx set = set_for_reg_notes (insn);
5298
5299 if (set && SET_DEST (set) == dst)
5300 return set_unique_reg_note (insn, kind, datum);
5301 return NULL_RTX;
5302 }
5303 \f
5304 /* Return an indication of which type of insn should have X as a body.
5305 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5306
5307 static enum rtx_code
5308 classify_insn (rtx x)
5309 {
5310 if (LABEL_P (x))
5311 return CODE_LABEL;
5312 if (GET_CODE (x) == CALL)
5313 return CALL_INSN;
5314 if (ANY_RETURN_P (x))
5315 return JUMP_INSN;
5316 if (GET_CODE (x) == SET)
5317 {
5318 if (SET_DEST (x) == pc_rtx)
5319 return JUMP_INSN;
5320 else if (GET_CODE (SET_SRC (x)) == CALL)
5321 return CALL_INSN;
5322 else
5323 return INSN;
5324 }
5325 if (GET_CODE (x) == PARALLEL)
5326 {
5327 int j;
5328 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5329 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5330 return CALL_INSN;
5331 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5332 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5333 return JUMP_INSN;
5334 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5335 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5336 return CALL_INSN;
5337 }
5338 return INSN;
5339 }
5340
5341 /* Emit the rtl pattern X as an appropriate kind of insn.
5342 If X is a label, it is simply added into the insn chain. */
5343
5344 rtx_insn *
5345 emit (rtx x)
5346 {
5347 enum rtx_code code = classify_insn (x);
5348
5349 switch (code)
5350 {
5351 case CODE_LABEL:
5352 return emit_label (x);
5353 case INSN:
5354 return emit_insn (x);
5355 case JUMP_INSN:
5356 {
5357 rtx_insn *insn = emit_jump_insn (x);
5358 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5359 return emit_barrier ();
5360 return insn;
5361 }
5362 case CALL_INSN:
5363 return emit_call_insn (x);
5364 case DEBUG_INSN:
5365 return emit_debug_insn (x);
5366 default:
5367 gcc_unreachable ();
5368 }
5369 }
5370 \f
5371 /* Space for free sequence stack entries. */
5372 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5373
5374 /* Begin emitting insns to a sequence. If this sequence will contain
5375 something that might cause the compiler to pop arguments to function
5376 calls (because those pops have previously been deferred; see
5377 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5378 before calling this function. That will ensure that the deferred
5379 pops are not accidentally emitted in the middle of this sequence. */
5380
5381 void
5382 start_sequence (void)
5383 {
5384 struct sequence_stack *tem;
5385
5386 if (free_sequence_stack != NULL)
5387 {
5388 tem = free_sequence_stack;
5389 free_sequence_stack = tem->next;
5390 }
5391 else
5392 tem = ggc_alloc<sequence_stack> ();
5393
5394 tem->next = get_current_sequence ()->next;
5395 tem->first = get_insns ();
5396 tem->last = get_last_insn ();
5397 get_current_sequence ()->next = tem;
5398
5399 set_first_insn (0);
5400 set_last_insn (0);
5401 }
5402
5403 /* Set up the insn chain starting with FIRST as the current sequence,
5404 saving the previously current one. See the documentation for
5405 start_sequence for more information about how to use this function. */
5406
5407 void
5408 push_to_sequence (rtx_insn *first)
5409 {
5410 rtx_insn *last;
5411
5412 start_sequence ();
5413
5414 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5415 ;
5416
5417 set_first_insn (first);
5418 set_last_insn (last);
5419 }
5420
5421 /* Like push_to_sequence, but take the last insn as an argument to avoid
5422 looping through the list. */
5423
5424 void
5425 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5426 {
5427 start_sequence ();
5428
5429 set_first_insn (first);
5430 set_last_insn (last);
5431 }
5432
5433 /* Set up the outer-level insn chain
5434 as the current sequence, saving the previously current one. */
5435
5436 void
5437 push_topmost_sequence (void)
5438 {
5439 struct sequence_stack *top;
5440
5441 start_sequence ();
5442
5443 top = get_topmost_sequence ();
5444 set_first_insn (top->first);
5445 set_last_insn (top->last);
5446 }
5447
5448 /* After emitting to the outer-level insn chain, update the outer-level
5449 insn chain, and restore the previous saved state. */
5450
5451 void
5452 pop_topmost_sequence (void)
5453 {
5454 struct sequence_stack *top;
5455
5456 top = get_topmost_sequence ();
5457 top->first = get_insns ();
5458 top->last = get_last_insn ();
5459
5460 end_sequence ();
5461 }
5462
5463 /* After emitting to a sequence, restore previous saved state.
5464
5465 To get the contents of the sequence just made, you must call
5466 `get_insns' *before* calling here.
5467
5468 If the compiler might have deferred popping arguments while
5469 generating this sequence, and this sequence will not be immediately
5470 inserted into the instruction stream, use do_pending_stack_adjust
5471 before calling get_insns. That will ensure that the deferred
5472 pops are inserted into this sequence, and not into some random
5473 location in the instruction stream. See INHIBIT_DEFER_POP for more
5474 information about deferred popping of arguments. */
5475
5476 void
5477 end_sequence (void)
5478 {
5479 struct sequence_stack *tem = get_current_sequence ()->next;
5480
5481 set_first_insn (tem->first);
5482 set_last_insn (tem->last);
5483 get_current_sequence ()->next = tem->next;
5484
5485 memset (tem, 0, sizeof (*tem));
5486 tem->next = free_sequence_stack;
5487 free_sequence_stack = tem;
5488 }
5489
5490 /* Return 1 if currently emitting into a sequence. */
5491
5492 int
5493 in_sequence_p (void)
5494 {
5495 return get_current_sequence ()->next != 0;
5496 }
5497 \f
5498 /* Put the various virtual registers into REGNO_REG_RTX. */
5499
5500 static void
5501 init_virtual_regs (void)
5502 {
5503 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5504 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5505 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5506 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5507 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5508 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5509 = virtual_preferred_stack_boundary_rtx;
5510 }
5511
5512 \f
5513 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5514 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5515 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5516 static int copy_insn_n_scratches;
5517
5518 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5519 copied an ASM_OPERANDS.
5520 In that case, it is the original input-operand vector. */
5521 static rtvec orig_asm_operands_vector;
5522
5523 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5524 copied an ASM_OPERANDS.
5525 In that case, it is the copied input-operand vector. */
5526 static rtvec copy_asm_operands_vector;
5527
5528 /* Likewise for the constraints vector. */
5529 static rtvec orig_asm_constraints_vector;
5530 static rtvec copy_asm_constraints_vector;
5531
5532 /* Recursively create a new copy of an rtx for copy_insn.
5533 This function differs from copy_rtx in that it handles SCRATCHes and
5534 ASM_OPERANDs properly.
5535 Normally, this function is not used directly; use copy_insn as front end.
5536 However, you could first copy an insn pattern with copy_insn and then use
5537 this function afterwards to properly copy any REG_NOTEs containing
5538 SCRATCHes. */
5539
5540 rtx
5541 copy_insn_1 (rtx orig)
5542 {
5543 rtx copy;
5544 int i, j;
5545 RTX_CODE code;
5546 const char *format_ptr;
5547
5548 if (orig == NULL)
5549 return NULL;
5550
5551 code = GET_CODE (orig);
5552
5553 switch (code)
5554 {
5555 case REG:
5556 case DEBUG_EXPR:
5557 CASE_CONST_ANY:
5558 case SYMBOL_REF:
5559 case CODE_LABEL:
5560 case PC:
5561 case CC0:
5562 case RETURN:
5563 case SIMPLE_RETURN:
5564 return orig;
5565 case CLOBBER:
5566 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5567 clobbers or clobbers of hard registers that originated as pseudos.
5568 This is needed to allow safe register renaming. */
5569 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5570 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5571 return orig;
5572 break;
5573
5574 case SCRATCH:
5575 for (i = 0; i < copy_insn_n_scratches; i++)
5576 if (copy_insn_scratch_in[i] == orig)
5577 return copy_insn_scratch_out[i];
5578 break;
5579
5580 case CONST:
5581 if (shared_const_p (orig))
5582 return orig;
5583 break;
5584
5585 /* A MEM with a constant address is not sharable. The problem is that
5586 the constant address may need to be reloaded. If the mem is shared,
5587 then reloading one copy of this mem will cause all copies to appear
5588 to have been reloaded. */
5589
5590 default:
5591 break;
5592 }
5593
5594 /* Copy the various flags, fields, and other information. We assume
5595 that all fields need copying, and then clear the fields that should
5596 not be copied. That is the sensible default behavior, and forces
5597 us to explicitly document why we are *not* copying a flag. */
5598 copy = shallow_copy_rtx (orig);
5599
5600 /* We do not copy the USED flag, which is used as a mark bit during
5601 walks over the RTL. */
5602 RTX_FLAG (copy, used) = 0;
5603
5604 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5605 if (INSN_P (orig))
5606 {
5607 RTX_FLAG (copy, jump) = 0;
5608 RTX_FLAG (copy, call) = 0;
5609 RTX_FLAG (copy, frame_related) = 0;
5610 }
5611
5612 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5613
5614 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5615 switch (*format_ptr++)
5616 {
5617 case 'e':
5618 if (XEXP (orig, i) != NULL)
5619 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5620 break;
5621
5622 case 'E':
5623 case 'V':
5624 if (XVEC (orig, i) == orig_asm_constraints_vector)
5625 XVEC (copy, i) = copy_asm_constraints_vector;
5626 else if (XVEC (orig, i) == orig_asm_operands_vector)
5627 XVEC (copy, i) = copy_asm_operands_vector;
5628 else if (XVEC (orig, i) != NULL)
5629 {
5630 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5631 for (j = 0; j < XVECLEN (copy, i); j++)
5632 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5633 }
5634 break;
5635
5636 case 't':
5637 case 'w':
5638 case 'i':
5639 case 's':
5640 case 'S':
5641 case 'u':
5642 case '0':
5643 /* These are left unchanged. */
5644 break;
5645
5646 default:
5647 gcc_unreachable ();
5648 }
5649
5650 if (code == SCRATCH)
5651 {
5652 i = copy_insn_n_scratches++;
5653 gcc_assert (i < MAX_RECOG_OPERANDS);
5654 copy_insn_scratch_in[i] = orig;
5655 copy_insn_scratch_out[i] = copy;
5656 }
5657 else if (code == ASM_OPERANDS)
5658 {
5659 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5660 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5661 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5662 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5663 }
5664
5665 return copy;
5666 }
5667
5668 /* Create a new copy of an rtx.
5669 This function differs from copy_rtx in that it handles SCRATCHes and
5670 ASM_OPERANDs properly.
5671 INSN doesn't really have to be a full INSN; it could be just the
5672 pattern. */
5673 rtx
5674 copy_insn (rtx insn)
5675 {
5676 copy_insn_n_scratches = 0;
5677 orig_asm_operands_vector = 0;
5678 orig_asm_constraints_vector = 0;
5679 copy_asm_operands_vector = 0;
5680 copy_asm_constraints_vector = 0;
5681 return copy_insn_1 (insn);
5682 }
5683
5684 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5685 on that assumption that INSN itself remains in its original place. */
5686
5687 rtx_insn *
5688 copy_delay_slot_insn (rtx_insn *insn)
5689 {
5690 /* Copy INSN with its rtx_code, all its notes, location etc. */
5691 insn = as_a <rtx_insn *> (copy_rtx (insn));
5692 INSN_UID (insn) = cur_insn_uid++;
5693 return insn;
5694 }
5695
5696 /* Initialize data structures and variables in this file
5697 before generating rtl for each function. */
5698
5699 void
5700 init_emit (void)
5701 {
5702 set_first_insn (NULL);
5703 set_last_insn (NULL);
5704 if (MIN_NONDEBUG_INSN_UID)
5705 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5706 else
5707 cur_insn_uid = 1;
5708 cur_debug_insn_uid = 1;
5709 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5710 first_label_num = label_num;
5711 get_current_sequence ()->next = NULL;
5712
5713 /* Init the tables that describe all the pseudo regs. */
5714
5715 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5716
5717 crtl->emit.regno_pointer_align
5718 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5719
5720 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5721
5722 /* Put copies of all the hard registers into regno_reg_rtx. */
5723 memcpy (regno_reg_rtx,
5724 initial_regno_reg_rtx,
5725 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5726
5727 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5728 init_virtual_regs ();
5729
5730 /* Indicate that the virtual registers and stack locations are
5731 all pointers. */
5732 REG_POINTER (stack_pointer_rtx) = 1;
5733 REG_POINTER (frame_pointer_rtx) = 1;
5734 REG_POINTER (hard_frame_pointer_rtx) = 1;
5735 REG_POINTER (arg_pointer_rtx) = 1;
5736
5737 REG_POINTER (virtual_incoming_args_rtx) = 1;
5738 REG_POINTER (virtual_stack_vars_rtx) = 1;
5739 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5740 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5741 REG_POINTER (virtual_cfa_rtx) = 1;
5742
5743 #ifdef STACK_BOUNDARY
5744 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5745 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5746 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5747 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5748
5749 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5750 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5751 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5752 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5753 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5754 #endif
5755
5756 #ifdef INIT_EXPANDERS
5757 INIT_EXPANDERS;
5758 #endif
5759 }
5760
5761 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5762
5763 static rtx
5764 gen_const_vector (machine_mode mode, int constant)
5765 {
5766 rtx tem;
5767 rtvec v;
5768 int units, i;
5769 machine_mode inner;
5770
5771 units = GET_MODE_NUNITS (mode);
5772 inner = GET_MODE_INNER (mode);
5773
5774 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5775
5776 v = rtvec_alloc (units);
5777
5778 /* We need to call this function after we set the scalar const_tiny_rtx
5779 entries. */
5780 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5781
5782 for (i = 0; i < units; ++i)
5783 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5784
5785 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5786 return tem;
5787 }
5788
5789 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5790 all elements are zero, and the one vector when all elements are one. */
5791 rtx
5792 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5793 {
5794 machine_mode inner = GET_MODE_INNER (mode);
5795 int nunits = GET_MODE_NUNITS (mode);
5796 rtx x;
5797 int i;
5798
5799 /* Check to see if all of the elements have the same value. */
5800 x = RTVEC_ELT (v, nunits - 1);
5801 for (i = nunits - 2; i >= 0; i--)
5802 if (RTVEC_ELT (v, i) != x)
5803 break;
5804
5805 /* If the values are all the same, check to see if we can use one of the
5806 standard constant vectors. */
5807 if (i == -1)
5808 {
5809 if (x == CONST0_RTX (inner))
5810 return CONST0_RTX (mode);
5811 else if (x == CONST1_RTX (inner))
5812 return CONST1_RTX (mode);
5813 else if (x == CONSTM1_RTX (inner))
5814 return CONSTM1_RTX (mode);
5815 }
5816
5817 return gen_rtx_raw_CONST_VECTOR (mode, v);
5818 }
5819
5820 /* Initialise global register information required by all functions. */
5821
5822 void
5823 init_emit_regs (void)
5824 {
5825 int i;
5826 machine_mode mode;
5827 mem_attrs *attrs;
5828
5829 /* Reset register attributes */
5830 reg_attrs_htab->empty ();
5831
5832 /* We need reg_raw_mode, so initialize the modes now. */
5833 init_reg_modes_target ();
5834
5835 /* Assign register numbers to the globally defined register rtx. */
5836 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5837 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5838 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5839 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5840 virtual_incoming_args_rtx =
5841 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5842 virtual_stack_vars_rtx =
5843 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5844 virtual_stack_dynamic_rtx =
5845 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5846 virtual_outgoing_args_rtx =
5847 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5848 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5849 virtual_preferred_stack_boundary_rtx =
5850 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5851
5852 /* Initialize RTL for commonly used hard registers. These are
5853 copied into regno_reg_rtx as we begin to compile each function. */
5854 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5855 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5856
5857 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5858 return_address_pointer_rtx
5859 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5860 #endif
5861
5862 pic_offset_table_rtx = NULL_RTX;
5863 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5864 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5865
5866 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5867 {
5868 mode = (machine_mode) i;
5869 attrs = ggc_cleared_alloc<mem_attrs> ();
5870 attrs->align = BITS_PER_UNIT;
5871 attrs->addrspace = ADDR_SPACE_GENERIC;
5872 if (mode != BLKmode)
5873 {
5874 attrs->size_known_p = true;
5875 attrs->size = GET_MODE_SIZE (mode);
5876 if (STRICT_ALIGNMENT)
5877 attrs->align = GET_MODE_ALIGNMENT (mode);
5878 }
5879 mode_mem_attrs[i] = attrs;
5880 }
5881 }
5882
5883 /* Initialize global machine_mode variables. */
5884
5885 void
5886 init_derived_machine_modes (void)
5887 {
5888 byte_mode = VOIDmode;
5889 word_mode = VOIDmode;
5890
5891 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5892 mode != VOIDmode;
5893 mode = GET_MODE_WIDER_MODE (mode))
5894 {
5895 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5896 && byte_mode == VOIDmode)
5897 byte_mode = mode;
5898
5899 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5900 && word_mode == VOIDmode)
5901 word_mode = mode;
5902 }
5903
5904 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5905 }
5906
5907 /* Create some permanent unique rtl objects shared between all functions. */
5908
5909 void
5910 init_emit_once (void)
5911 {
5912 int i;
5913 machine_mode mode;
5914 machine_mode double_mode;
5915
5916 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5917 CONST_FIXED, and memory attribute hash tables. */
5918 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5919
5920 #if TARGET_SUPPORTS_WIDE_INT
5921 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5922 #endif
5923 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5924
5925 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5926
5927 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5928
5929 #ifdef INIT_EXPANDERS
5930 /* This is to initialize {init|mark|free}_machine_status before the first
5931 call to push_function_context_to. This is needed by the Chill front
5932 end which calls push_function_context_to before the first call to
5933 init_function_start. */
5934 INIT_EXPANDERS;
5935 #endif
5936
5937 /* Create the unique rtx's for certain rtx codes and operand values. */
5938
5939 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5940 tries to use these variables. */
5941 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5942 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5943 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5944
5945 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5946 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5947 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5948 else
5949 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5950
5951 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5952
5953 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5954 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5955 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5956
5957 dconstm1 = dconst1;
5958 dconstm1.sign = 1;
5959
5960 dconsthalf = dconst1;
5961 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5962
5963 for (i = 0; i < 3; i++)
5964 {
5965 const REAL_VALUE_TYPE *const r =
5966 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5967
5968 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5969 mode != VOIDmode;
5970 mode = GET_MODE_WIDER_MODE (mode))
5971 const_tiny_rtx[i][(int) mode] =
5972 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5973
5974 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5975 mode != VOIDmode;
5976 mode = GET_MODE_WIDER_MODE (mode))
5977 const_tiny_rtx[i][(int) mode] =
5978 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5979
5980 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5981
5982 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5983 mode != VOIDmode;
5984 mode = GET_MODE_WIDER_MODE (mode))
5985 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5986
5987 for (mode = MIN_MODE_PARTIAL_INT;
5988 mode <= MAX_MODE_PARTIAL_INT;
5989 mode = (machine_mode)((int)(mode) + 1))
5990 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5991 }
5992
5993 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5994
5995 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5996 mode != VOIDmode;
5997 mode = GET_MODE_WIDER_MODE (mode))
5998 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5999
6000 for (mode = MIN_MODE_PARTIAL_INT;
6001 mode <= MAX_MODE_PARTIAL_INT;
6002 mode = (machine_mode)((int)(mode) + 1))
6003 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6004
6005 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
6006 mode != VOIDmode;
6007 mode = GET_MODE_WIDER_MODE (mode))
6008 {
6009 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6010 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6011 }
6012
6013 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
6014 mode != VOIDmode;
6015 mode = GET_MODE_WIDER_MODE (mode))
6016 {
6017 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6018 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6019 }
6020
6021 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
6022 mode != VOIDmode;
6023 mode = GET_MODE_WIDER_MODE (mode))
6024 {
6025 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6026 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6027 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6028 }
6029
6030 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6031 mode != VOIDmode;
6032 mode = GET_MODE_WIDER_MODE (mode))
6033 {
6034 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6035 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6036 }
6037
6038 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6039 mode != VOIDmode;
6040 mode = GET_MODE_WIDER_MODE (mode))
6041 {
6042 FCONST0 (mode).data.high = 0;
6043 FCONST0 (mode).data.low = 0;
6044 FCONST0 (mode).mode = mode;
6045 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6046 FCONST0 (mode), mode);
6047 }
6048
6049 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6050 mode != VOIDmode;
6051 mode = GET_MODE_WIDER_MODE (mode))
6052 {
6053 FCONST0 (mode).data.high = 0;
6054 FCONST0 (mode).data.low = 0;
6055 FCONST0 (mode).mode = mode;
6056 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6057 FCONST0 (mode), mode);
6058 }
6059
6060 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6061 mode != VOIDmode;
6062 mode = GET_MODE_WIDER_MODE (mode))
6063 {
6064 FCONST0 (mode).data.high = 0;
6065 FCONST0 (mode).data.low = 0;
6066 FCONST0 (mode).mode = mode;
6067 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6068 FCONST0 (mode), mode);
6069
6070 /* We store the value 1. */
6071 FCONST1 (mode).data.high = 0;
6072 FCONST1 (mode).data.low = 0;
6073 FCONST1 (mode).mode = mode;
6074 FCONST1 (mode).data
6075 = double_int_one.lshift (GET_MODE_FBIT (mode),
6076 HOST_BITS_PER_DOUBLE_INT,
6077 SIGNED_FIXED_POINT_MODE_P (mode));
6078 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6079 FCONST1 (mode), mode);
6080 }
6081
6082 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6083 mode != VOIDmode;
6084 mode = GET_MODE_WIDER_MODE (mode))
6085 {
6086 FCONST0 (mode).data.high = 0;
6087 FCONST0 (mode).data.low = 0;
6088 FCONST0 (mode).mode = mode;
6089 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6090 FCONST0 (mode), mode);
6091
6092 /* We store the value 1. */
6093 FCONST1 (mode).data.high = 0;
6094 FCONST1 (mode).data.low = 0;
6095 FCONST1 (mode).mode = mode;
6096 FCONST1 (mode).data
6097 = double_int_one.lshift (GET_MODE_FBIT (mode),
6098 HOST_BITS_PER_DOUBLE_INT,
6099 SIGNED_FIXED_POINT_MODE_P (mode));
6100 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6101 FCONST1 (mode), mode);
6102 }
6103
6104 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6105 mode != VOIDmode;
6106 mode = GET_MODE_WIDER_MODE (mode))
6107 {
6108 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6109 }
6110
6111 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6112 mode != VOIDmode;
6113 mode = GET_MODE_WIDER_MODE (mode))
6114 {
6115 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6116 }
6117
6118 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6119 mode != VOIDmode;
6120 mode = GET_MODE_WIDER_MODE (mode))
6121 {
6122 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6123 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6124 }
6125
6126 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6127 mode != VOIDmode;
6128 mode = GET_MODE_WIDER_MODE (mode))
6129 {
6130 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6131 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6132 }
6133
6134 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6135 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6136 const_tiny_rtx[0][i] = const0_rtx;
6137
6138 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6139 if (STORE_FLAG_VALUE == 1)
6140 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6141
6142 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6143 mode != VOIDmode;
6144 mode = GET_MODE_WIDER_MODE (mode))
6145 {
6146 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6147 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6148 }
6149
6150 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6151 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6152 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6153 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6154 }
6155 \f
6156 /* Produce exact duplicate of insn INSN after AFTER.
6157 Care updating of libcall regions if present. */
6158
6159 rtx_insn *
6160 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6161 {
6162 rtx_insn *new_rtx;
6163 rtx link;
6164
6165 switch (GET_CODE (insn))
6166 {
6167 case INSN:
6168 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6169 break;
6170
6171 case JUMP_INSN:
6172 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6173 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6174 break;
6175
6176 case DEBUG_INSN:
6177 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6178 break;
6179
6180 case CALL_INSN:
6181 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6182 if (CALL_INSN_FUNCTION_USAGE (insn))
6183 CALL_INSN_FUNCTION_USAGE (new_rtx)
6184 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6185 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6186 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6187 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6188 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6189 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6190 break;
6191
6192 default:
6193 gcc_unreachable ();
6194 }
6195
6196 /* Update LABEL_NUSES. */
6197 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6198
6199 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6200
6201 /* If the old insn is frame related, then so is the new one. This is
6202 primarily needed for IA-64 unwind info which marks epilogue insns,
6203 which may be duplicated by the basic block reordering code. */
6204 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6205
6206 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6207 will make them. REG_LABEL_TARGETs are created there too, but are
6208 supposed to be sticky, so we copy them. */
6209 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6210 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6211 {
6212 if (GET_CODE (link) == EXPR_LIST)
6213 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6214 copy_insn_1 (XEXP (link, 0)));
6215 else
6216 add_shallow_copy_of_reg_note (new_rtx, link);
6217 }
6218
6219 INSN_CODE (new_rtx) = INSN_CODE (insn);
6220 return new_rtx;
6221 }
6222
6223 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6224 rtx
6225 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6226 {
6227 if (hard_reg_clobbers[mode][regno])
6228 return hard_reg_clobbers[mode][regno];
6229 else
6230 return (hard_reg_clobbers[mode][regno] =
6231 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6232 }
6233
6234 location_t prologue_location;
6235 location_t epilogue_location;
6236
6237 /* Hold current location information and last location information, so the
6238 datastructures are built lazily only when some instructions in given
6239 place are needed. */
6240 static location_t curr_location;
6241
6242 /* Allocate insn location datastructure. */
6243 void
6244 insn_locations_init (void)
6245 {
6246 prologue_location = epilogue_location = 0;
6247 curr_location = UNKNOWN_LOCATION;
6248 }
6249
6250 /* At the end of emit stage, clear current location. */
6251 void
6252 insn_locations_finalize (void)
6253 {
6254 epilogue_location = curr_location;
6255 curr_location = UNKNOWN_LOCATION;
6256 }
6257
6258 /* Set current location. */
6259 void
6260 set_curr_insn_location (location_t location)
6261 {
6262 curr_location = location;
6263 }
6264
6265 /* Get current location. */
6266 location_t
6267 curr_insn_location (void)
6268 {
6269 return curr_location;
6270 }
6271
6272 /* Return lexical scope block insn belongs to. */
6273 tree
6274 insn_scope (const rtx_insn *insn)
6275 {
6276 return LOCATION_BLOCK (INSN_LOCATION (insn));
6277 }
6278
6279 /* Return line number of the statement that produced this insn. */
6280 int
6281 insn_line (const rtx_insn *insn)
6282 {
6283 return LOCATION_LINE (INSN_LOCATION (insn));
6284 }
6285
6286 /* Return source file of the statement that produced this insn. */
6287 const char *
6288 insn_file (const rtx_insn *insn)
6289 {
6290 return LOCATION_FILE (INSN_LOCATION (insn));
6291 }
6292
6293 /* Return expanded location of the statement that produced this insn. */
6294 expanded_location
6295 insn_location (const rtx_insn *insn)
6296 {
6297 return expand_location (INSN_LOCATION (insn));
6298 }
6299
6300 /* Return true if memory model MODEL requires a pre-operation (release-style)
6301 barrier or a post-operation (acquire-style) barrier. While not universal,
6302 this function matches behavior of several targets. */
6303
6304 bool
6305 need_atomic_barrier_p (enum memmodel model, bool pre)
6306 {
6307 switch (model & MEMMODEL_MASK)
6308 {
6309 case MEMMODEL_RELAXED:
6310 case MEMMODEL_CONSUME:
6311 return false;
6312 case MEMMODEL_RELEASE:
6313 case MEMMODEL_SYNC_RELEASE:
6314 return pre;
6315 case MEMMODEL_ACQUIRE:
6316 case MEMMODEL_SYNC_ACQUIRE:
6317 return !pre;
6318 case MEMMODEL_ACQ_REL:
6319 case MEMMODEL_SEQ_CST:
6320 case MEMMODEL_SYNC_SEQ_CST:
6321 return true;
6322 default:
6323 gcc_unreachable ();
6324 }
6325 }
6326 \f
6327 #include "gt-emit-rtl.h"