re PR middle-end/43631 (var-tracking inserts notes with non-NULL BLOCK_FOR_INSN in...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "regs.h"
46 #include "hard-reg-set.h"
47 #include "hashtab.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "bitmap.h"
51 #include "basic-block.h"
52 #include "ggc.h"
53 #include "debug.h"
54 #include "langhooks.h"
55 #include "df.h"
56 #include "params.h"
57 #include "target.h"
58
59 struct target_rtl default_target_rtl;
60 #if SWITCHABLE_TARGET
61 struct target_rtl *this_target_rtl = &default_target_rtl;
62 #endif
63
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
65
66 /* Commonly used modes. */
67
68 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
72
73 /* Datastructures maintained for currently processed function in RTL form. */
74
75 struct rtl_data x_rtl;
76
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
81
82 rtx * regno_reg_rtx;
83
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
86
87 static GTY(()) int label_num = 1;
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
93
94 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
95
96 rtx const_true_rtx;
97
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconstm1;
102 REAL_VALUE_TYPE dconsthalf;
103
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
106 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
107
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
111 integers. */
112
113 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
114
115 /* Standard pieces of rtx, to be substituted directly into things. */
116 rtx pc_rtx;
117 rtx ret_rtx;
118 rtx simple_return_rtx;
119 rtx cc0_rtx;
120
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
123
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
125 htab_t const_int_htab;
126
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
129 htab_t mem_attrs_htab;
130
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
133 htab_t reg_attrs_htab;
134
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
137 htab_t const_double_htab;
138
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
141 htab_t const_fixed_htab;
142
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
146
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs *get_reg_attrs (tree, int);
163 static rtx gen_const_vector (enum machine_mode, int);
164 static void copy_rtx_if_shared_1 (rtx *orig);
165
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability = -1;
169 \f
170 /* Returns a hash code for X (which is a really a CONST_INT). */
171
172 static hashval_t
173 const_int_htab_hash (const void *x)
174 {
175 return (hashval_t) INTVAL ((const_rtx) x);
176 }
177
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
180 HOST_WIDE_INT *). */
181
182 static int
183 const_int_htab_eq (const void *x, const void *y)
184 {
185 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
186 }
187
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
189 static hashval_t
190 const_double_htab_hash (const void *x)
191 {
192 const_rtx const value = (const_rtx) x;
193 hashval_t h;
194
195 if (GET_MODE (value) == VOIDmode)
196 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
197 else
198 {
199 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h ^= GET_MODE (value);
202 }
203 return h;
204 }
205
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
208 static int
209 const_double_htab_eq (const void *x, const void *y)
210 {
211 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
212
213 if (GET_MODE (a) != GET_MODE (b))
214 return 0;
215 if (GET_MODE (a) == VOIDmode)
216 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
217 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
218 else
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
220 CONST_DOUBLE_REAL_VALUE (b));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
224
225 static hashval_t
226 const_fixed_htab_hash (const void *x)
227 {
228 const_rtx const value = (const_rtx) x;
229 hashval_t h;
230
231 h = fixed_hash (CONST_FIXED_VALUE (value));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h ^= GET_MODE (value);
234 return h;
235 }
236
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
239
240 static int
241 const_fixed_htab_eq (const void *x, const void *y)
242 {
243 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
244
245 if (GET_MODE (a) != GET_MODE (b))
246 return 0;
247 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
248 }
249
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
251
252 static hashval_t
253 mem_attrs_htab_hash (const void *x)
254 {
255 const mem_attrs *const p = (const mem_attrs *) x;
256
257 return (p->alias ^ (p->align * 1000)
258 ^ (p->addrspace * 4000)
259 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
260 ^ ((p->size_known_p ? p->size : 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p->expr, 0));
262 }
263
264 /* Return true if the given memory attributes are equal. */
265
266 static bool
267 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
268 {
269 return (p->alias == q->alias
270 && p->offset_known_p == q->offset_known_p
271 && (!p->offset_known_p || p->offset == q->offset)
272 && p->size_known_p == q->size_known_p
273 && (!p->size_known_p || p->size == q->size)
274 && p->align == q->align
275 && p->addrspace == q->addrspace
276 && (p->expr == q->expr
277 || (p->expr != NULL_TREE && q->expr != NULL_TREE
278 && operand_equal_p (p->expr, q->expr, 0))));
279 }
280
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
283 mem_attrs *). */
284
285 static int
286 mem_attrs_htab_eq (const void *x, const void *y)
287 {
288 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
289 }
290
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
292
293 static void
294 set_mem_attrs (rtx mem, mem_attrs *attrs)
295 {
296 void **slot;
297
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
300 {
301 MEM_ATTRS (mem) = 0;
302 return;
303 }
304
305 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
306 if (*slot == 0)
307 {
308 *slot = ggc_alloc_mem_attrs ();
309 memcpy (*slot, attrs, sizeof (mem_attrs));
310 }
311
312 MEM_ATTRS (mem) = (mem_attrs *) *slot;
313 }
314
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
316
317 static hashval_t
318 reg_attrs_htab_hash (const void *x)
319 {
320 const reg_attrs *const p = (const reg_attrs *) x;
321
322 return ((p->offset * 1000) ^ (intptr_t) p->decl);
323 }
324
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
327 reg_attrs *). */
328
329 static int
330 reg_attrs_htab_eq (const void *x, const void *y)
331 {
332 const reg_attrs *const p = (const reg_attrs *) x;
333 const reg_attrs *const q = (const reg_attrs *) y;
334
335 return (p->decl == q->decl && p->offset == q->offset);
336 }
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
339 MEM of mode MODE. */
340
341 static reg_attrs *
342 get_reg_attrs (tree decl, int offset)
343 {
344 reg_attrs attrs;
345 void **slot;
346
347 /* If everything is the default, we can just return zero. */
348 if (decl == 0 && offset == 0)
349 return 0;
350
351 attrs.decl = decl;
352 attrs.offset = offset;
353
354 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
355 if (*slot == 0)
356 {
357 *slot = ggc_alloc_reg_attrs ();
358 memcpy (*slot, &attrs, sizeof (reg_attrs));
359 }
360
361 return (reg_attrs *) *slot;
362 }
363
364
365 #if !HAVE_blockage
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
367 and to block register equivalences to be seen across this insn. */
368
369 rtx
370 gen_blockage (void)
371 {
372 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
373 MEM_VOLATILE_P (x) = true;
374 return x;
375 }
376 #endif
377
378
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
382
383 rtx
384 gen_raw_REG (enum machine_mode mode, int regno)
385 {
386 rtx x = gen_rtx_raw_REG (mode, regno);
387 ORIGINAL_REGNO (x) = regno;
388 return x;
389 }
390
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
394
395 rtx
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
397 {
398 void **slot;
399
400 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
401 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
402
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx && arg == STORE_FLAG_VALUE)
405 return const_true_rtx;
406 #endif
407
408 /* Look up the CONST_INT in the hash table. */
409 slot = htab_find_slot_with_hash (const_int_htab, &arg,
410 (hashval_t) arg, INSERT);
411 if (*slot == 0)
412 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
413
414 return (rtx) *slot;
415 }
416
417 rtx
418 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
419 {
420 return GEN_INT (trunc_int_for_mode (c, mode));
421 }
422
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
426
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
430 static rtx
431 lookup_const_double (rtx real)
432 {
433 void **slot = htab_find_slot (const_double_htab, real, INSERT);
434 if (*slot == 0)
435 *slot = real;
436
437 return (rtx) *slot;
438 }
439
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
442 rtx
443 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
444 {
445 rtx real = rtx_alloc (CONST_DOUBLE);
446 PUT_MODE (real, mode);
447
448 real->u.rv = value;
449
450 return lookup_const_double (real);
451 }
452
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
456
457 static rtx
458 lookup_const_fixed (rtx fixed)
459 {
460 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
461 if (*slot == 0)
462 *slot = fixed;
463
464 return (rtx) *slot;
465 }
466
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
469
470 rtx
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
472 {
473 rtx fixed = rtx_alloc (CONST_FIXED);
474 PUT_MODE (fixed, mode);
475
476 fixed->u.fv = value;
477
478 return lookup_const_fixed (fixed);
479 }
480
481 /* Constructs double_int from rtx CST. */
482
483 double_int
484 rtx_to_double_int (const_rtx cst)
485 {
486 double_int r;
487
488 if (CONST_INT_P (cst))
489 r = double_int::from_shwi (INTVAL (cst));
490 else if (CONST_DOUBLE_AS_INT_P (cst))
491 {
492 r.low = CONST_DOUBLE_LOW (cst);
493 r.high = CONST_DOUBLE_HIGH (cst);
494 }
495 else
496 gcc_unreachable ();
497
498 return r;
499 }
500
501
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
503 a double_int. */
504
505 rtx
506 immed_double_int_const (double_int i, enum machine_mode mode)
507 {
508 return immed_double_const (i.low, i.high, mode);
509 }
510
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
518
519 rtx
520 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
521 {
522 rtx value;
523 unsigned int i;
524
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
527
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
529 gen_int_mode.
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode != VOIDmode)
535 {
536 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
537 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
541
542 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
543 return gen_int_mode (i0, mode);
544 }
545
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
548 return GEN_INT (i0);
549
550 /* We use VOIDmode for integers. */
551 value = rtx_alloc (CONST_DOUBLE);
552 PUT_MODE (value, VOIDmode);
553
554 CONST_DOUBLE_LOW (value) = i0;
555 CONST_DOUBLE_HIGH (value) = i1;
556
557 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
558 XWINT (value, i) = 0;
559
560 return lookup_const_double (value);
561 }
562
563 rtx
564 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
565 {
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
570 assigned to them.
571
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
576
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
579
580 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
581 {
582 if (regno == FRAME_POINTER_REGNUM
583 && (!reload_completed || frame_pointer_needed))
584 return frame_pointer_rtx;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno == HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return hard_frame_pointer_rtx;
589 #endif
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno == ARG_POINTER_REGNUM)
592 return arg_pointer_rtx;
593 #endif
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
596 return return_address_pointer_rtx;
597 #endif
598 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
600 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
601 return pic_offset_table_rtx;
602 if (regno == STACK_POINTER_REGNUM)
603 return stack_pointer_rtx;
604 }
605
606 #if 0
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
609
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
614
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
617
618 if (cfun
619 && cfun->emit
620 && regno_reg_rtx
621 && regno < FIRST_PSEUDO_REGISTER
622 && reg_raw_mode[regno] == mode)
623 return regno_reg_rtx[regno];
624 #endif
625
626 return gen_raw_REG (mode, regno);
627 }
628
629 rtx
630 gen_rtx_MEM (enum machine_mode mode, rtx addr)
631 {
632 rtx rt = gen_rtx_raw_MEM (mode, addr);
633
634 /* This field is not cleared by the mere allocation of the rtx, so
635 we clear it here. */
636 MEM_ATTRS (rt) = 0;
637
638 return rt;
639 }
640
641 /* Generate a memory referring to non-trapping constant memory. */
642
643 rtx
644 gen_const_mem (enum machine_mode mode, rtx addr)
645 {
646 rtx mem = gen_rtx_MEM (mode, addr);
647 MEM_READONLY_P (mem) = 1;
648 MEM_NOTRAP_P (mem) = 1;
649 return mem;
650 }
651
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
653 save areas. */
654
655 rtx
656 gen_frame_mem (enum machine_mode mode, rtx addr)
657 {
658 rtx mem = gen_rtx_MEM (mode, addr);
659 MEM_NOTRAP_P (mem) = 1;
660 set_mem_alias_set (mem, get_frame_alias_set ());
661 return mem;
662 }
663
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
667 rtx
668 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
669 {
670 rtx mem = gen_rtx_MEM (mode, addr);
671 MEM_NOTRAP_P (mem) = 1;
672 if (!cfun->calls_alloca)
673 set_mem_alias_set (mem, get_frame_alias_set ());
674 return mem;
675 }
676
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
679
680 bool
681 validate_subreg (enum machine_mode omode, enum machine_mode imode,
682 const_rtx reg, unsigned int offset)
683 {
684 unsigned int isize = GET_MODE_SIZE (imode);
685 unsigned int osize = GET_MODE_SIZE (omode);
686
687 /* All subregs must be aligned. */
688 if (offset % osize != 0)
689 return false;
690
691 /* The subreg offset cannot be outside the inner object. */
692 if (offset >= isize)
693 return false;
694
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
698 fix them all. */
699 if (omode == word_mode)
700 ;
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize >= UNITS_PER_WORD && isize >= osize)
704 ;
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
708 && GET_MODE_INNER (imode) == omode)
709 ;
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
716 ;
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
721 {
722 if (! (isize == osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
729 || lra_in_progress))
730 return false;
731 }
732
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
736
737 /* This is a normal subreg. Verify that the offset is representable. */
738
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
742 {
743 unsigned int regno = REGNO (reg);
744
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
748 ;
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
752
753 return subreg_offset_representable_p (regno, imode, offset, omode);
754 }
755
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD
763 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
764 {
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
769 }
770 return true;
771 }
772
773 rtx
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 {
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777 return gen_rtx_raw_SUBREG (mode, reg, offset);
778 }
779
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
782
783 rtx
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 {
786 enum machine_mode inmode;
787
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
793 }
794 \f
795
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797
798 rtvec
799 gen_rtvec (int n, ...)
800 {
801 int i;
802 rtvec rt_val;
803 va_list p;
804
805 va_start (p, n);
806
807 /* Don't allocate an empty rtvec... */
808 if (n == 0)
809 {
810 va_end (p);
811 return NULL_RTVEC;
812 }
813
814 rt_val = rtvec_alloc (n);
815
816 for (i = 0; i < n; i++)
817 rt_val->elem[i] = va_arg (p, rtx);
818
819 va_end (p);
820 return rt_val;
821 }
822
823 rtvec
824 gen_rtvec_v (int n, rtx *argp)
825 {
826 int i;
827 rtvec rt_val;
828
829 /* Don't allocate an empty rtvec... */
830 if (n == 0)
831 return NULL_RTVEC;
832
833 rt_val = rtvec_alloc (n);
834
835 for (i = 0; i < n; i++)
836 rt_val->elem[i] = *argp++;
837
838 return rt_val;
839 }
840 \f
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
846
847 int
848 byte_lowpart_offset (enum machine_mode outer_mode,
849 enum machine_mode inner_mode)
850 {
851 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
852 return subreg_lowpart_offset (outer_mode, inner_mode);
853 else
854 return -subreg_lowpart_offset (inner_mode, outer_mode);
855 }
856 \f
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
859
860 rtx
861 gen_reg_rtx (enum machine_mode mode)
862 {
863 rtx val;
864 unsigned int align = GET_MODE_ALIGNMENT (mode);
865
866 gcc_assert (can_create_pseudo_p ());
867
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
870 to stack later. */
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl->stack_alignment_estimated < align
873 && !crtl->stack_realign_processed)
874 {
875 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
876 if (crtl->stack_alignment_estimated < min_align)
877 crtl->stack_alignment_estimated = min_align;
878 }
879
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
883 {
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart, imagpart;
890 enum machine_mode partmode = GET_MODE_INNER (mode);
891
892 realpart = gen_reg_rtx (partmode);
893 imagpart = gen_reg_rtx (partmode);
894 return gen_rtx_CONCAT (mode, realpart, imagpart);
895 }
896
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
899
900 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
901 {
902 int old_size = crtl->emit.regno_pointer_align_length;
903 char *tmp;
904 rtx *new1;
905
906 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
907 memset (tmp + old_size, 0, old_size);
908 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
909
910 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
911 memset (new1 + old_size, 0, old_size * sizeof (rtx));
912 regno_reg_rtx = new1;
913
914 crtl->emit.regno_pointer_align_length = old_size * 2;
915 }
916
917 val = gen_raw_REG (mode, reg_rtx_no);
918 regno_reg_rtx[reg_rtx_no++] = val;
919 return val;
920 }
921
922 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
923
924 bool
925 reg_is_parm_p (rtx reg)
926 {
927 tree decl;
928
929 gcc_assert (REG_P (reg));
930 decl = REG_EXPR (reg);
931 return (decl && TREE_CODE (decl) == PARM_DECL);
932 }
933
934 /* Update NEW with the same attributes as REG, but with OFFSET added
935 to the REG_OFFSET. */
936
937 static void
938 update_reg_offset (rtx new_rtx, rtx reg, int offset)
939 {
940 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
941 REG_OFFSET (reg) + offset);
942 }
943
944 /* Generate a register with same attributes as REG, but with OFFSET
945 added to the REG_OFFSET. */
946
947 rtx
948 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
949 int offset)
950 {
951 rtx new_rtx = gen_rtx_REG (mode, regno);
952
953 update_reg_offset (new_rtx, reg, offset);
954 return new_rtx;
955 }
956
957 /* Generate a new pseudo-register with the same attributes as REG, but
958 with OFFSET added to the REG_OFFSET. */
959
960 rtx
961 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
962 {
963 rtx new_rtx = gen_reg_rtx (mode);
964
965 update_reg_offset (new_rtx, reg, offset);
966 return new_rtx;
967 }
968
969 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
970 new register is a (possibly paradoxical) lowpart of the old one. */
971
972 void
973 adjust_reg_mode (rtx reg, enum machine_mode mode)
974 {
975 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
976 PUT_MODE (reg, mode);
977 }
978
979 /* Copy REG's attributes from X, if X has any attributes. If REG and X
980 have different modes, REG is a (possibly paradoxical) lowpart of X. */
981
982 void
983 set_reg_attrs_from_value (rtx reg, rtx x)
984 {
985 int offset;
986 bool can_be_reg_pointer = true;
987
988 /* Don't call mark_reg_pointer for incompatible pointer sign
989 extension. */
990 while (GET_CODE (x) == SIGN_EXTEND
991 || GET_CODE (x) == ZERO_EXTEND
992 || GET_CODE (x) == TRUNCATE
993 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
994 {
995 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
996 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
997 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
998 can_be_reg_pointer = false;
999 #endif
1000 x = XEXP (x, 0);
1001 }
1002
1003 /* Hard registers can be reused for multiple purposes within the same
1004 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1005 on them is wrong. */
1006 if (HARD_REGISTER_P (reg))
1007 return;
1008
1009 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1010 if (MEM_P (x))
1011 {
1012 if (MEM_OFFSET_KNOWN_P (x))
1013 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1014 MEM_OFFSET (x) + offset);
1015 if (can_be_reg_pointer && MEM_POINTER (x))
1016 mark_reg_pointer (reg, 0);
1017 }
1018 else if (REG_P (x))
1019 {
1020 if (REG_ATTRS (x))
1021 update_reg_offset (reg, x, offset);
1022 if (can_be_reg_pointer && REG_POINTER (x))
1023 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1024 }
1025 }
1026
1027 /* Generate a REG rtx for a new pseudo register, copying the mode
1028 and attributes from X. */
1029
1030 rtx
1031 gen_reg_rtx_and_attrs (rtx x)
1032 {
1033 rtx reg = gen_reg_rtx (GET_MODE (x));
1034 set_reg_attrs_from_value (reg, x);
1035 return reg;
1036 }
1037
1038 /* Set the register attributes for registers contained in PARM_RTX.
1039 Use needed values from memory attributes of MEM. */
1040
1041 void
1042 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1043 {
1044 if (REG_P (parm_rtx))
1045 set_reg_attrs_from_value (parm_rtx, mem);
1046 else if (GET_CODE (parm_rtx) == PARALLEL)
1047 {
1048 /* Check for a NULL entry in the first slot, used to indicate that the
1049 parameter goes both on the stack and in registers. */
1050 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1051 for (; i < XVECLEN (parm_rtx, 0); i++)
1052 {
1053 rtx x = XVECEXP (parm_rtx, 0, i);
1054 if (REG_P (XEXP (x, 0)))
1055 REG_ATTRS (XEXP (x, 0))
1056 = get_reg_attrs (MEM_EXPR (mem),
1057 INTVAL (XEXP (x, 1)));
1058 }
1059 }
1060 }
1061
1062 /* Set the REG_ATTRS for registers in value X, given that X represents
1063 decl T. */
1064
1065 void
1066 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1067 {
1068 if (GET_CODE (x) == SUBREG)
1069 {
1070 gcc_assert (subreg_lowpart_p (x));
1071 x = SUBREG_REG (x);
1072 }
1073 if (REG_P (x))
1074 REG_ATTRS (x)
1075 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1076 DECL_MODE (t)));
1077 if (GET_CODE (x) == CONCAT)
1078 {
1079 if (REG_P (XEXP (x, 0)))
1080 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1081 if (REG_P (XEXP (x, 1)))
1082 REG_ATTRS (XEXP (x, 1))
1083 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1084 }
1085 if (GET_CODE (x) == PARALLEL)
1086 {
1087 int i, start;
1088
1089 /* Check for a NULL entry, used to indicate that the parameter goes
1090 both on the stack and in registers. */
1091 if (XEXP (XVECEXP (x, 0, 0), 0))
1092 start = 0;
1093 else
1094 start = 1;
1095
1096 for (i = start; i < XVECLEN (x, 0); i++)
1097 {
1098 rtx y = XVECEXP (x, 0, i);
1099 if (REG_P (XEXP (y, 0)))
1100 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1101 }
1102 }
1103 }
1104
1105 /* Assign the RTX X to declaration T. */
1106
1107 void
1108 set_decl_rtl (tree t, rtx x)
1109 {
1110 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1111 if (x)
1112 set_reg_attrs_for_decl_rtl (t, x);
1113 }
1114
1115 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1116 if the ABI requires the parameter to be passed by reference. */
1117
1118 void
1119 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1120 {
1121 DECL_INCOMING_RTL (t) = x;
1122 if (x && !by_reference_p)
1123 set_reg_attrs_for_decl_rtl (t, x);
1124 }
1125
1126 /* Identify REG (which may be a CONCAT) as a user register. */
1127
1128 void
1129 mark_user_reg (rtx reg)
1130 {
1131 if (GET_CODE (reg) == CONCAT)
1132 {
1133 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1134 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1135 }
1136 else
1137 {
1138 gcc_assert (REG_P (reg));
1139 REG_USERVAR_P (reg) = 1;
1140 }
1141 }
1142
1143 /* Identify REG as a probable pointer register and show its alignment
1144 as ALIGN, if nonzero. */
1145
1146 void
1147 mark_reg_pointer (rtx reg, int align)
1148 {
1149 if (! REG_POINTER (reg))
1150 {
1151 REG_POINTER (reg) = 1;
1152
1153 if (align)
1154 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1155 }
1156 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1157 /* We can no-longer be sure just how aligned this pointer is. */
1158 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1159 }
1160
1161 /* Return 1 plus largest pseudo reg number used in the current function. */
1162
1163 int
1164 max_reg_num (void)
1165 {
1166 return reg_rtx_no;
1167 }
1168
1169 /* Return 1 + the largest label number used so far in the current function. */
1170
1171 int
1172 max_label_num (void)
1173 {
1174 return label_num;
1175 }
1176
1177 /* Return first label number used in this function (if any were used). */
1178
1179 int
1180 get_first_label_num (void)
1181 {
1182 return first_label_num;
1183 }
1184
1185 /* If the rtx for label was created during the expansion of a nested
1186 function, then first_label_num won't include this label number.
1187 Fix this now so that array indices work later. */
1188
1189 void
1190 maybe_set_first_label_num (rtx x)
1191 {
1192 if (CODE_LABEL_NUMBER (x) < first_label_num)
1193 first_label_num = CODE_LABEL_NUMBER (x);
1194 }
1195 \f
1196 /* Return a value representing some low-order bits of X, where the number
1197 of low-order bits is given by MODE. Note that no conversion is done
1198 between floating-point and fixed-point values, rather, the bit
1199 representation is returned.
1200
1201 This function handles the cases in common between gen_lowpart, below,
1202 and two variants in cse.c and combine.c. These are the cases that can
1203 be safely handled at all points in the compilation.
1204
1205 If this is not a case we can handle, return 0. */
1206
1207 rtx
1208 gen_lowpart_common (enum machine_mode mode, rtx x)
1209 {
1210 int msize = GET_MODE_SIZE (mode);
1211 int xsize;
1212 int offset = 0;
1213 enum machine_mode innermode;
1214
1215 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1216 so we have to make one up. Yuk. */
1217 innermode = GET_MODE (x);
1218 if (CONST_INT_P (x)
1219 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1220 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1221 else if (innermode == VOIDmode)
1222 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1223
1224 xsize = GET_MODE_SIZE (innermode);
1225
1226 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1227
1228 if (innermode == mode)
1229 return x;
1230
1231 /* MODE must occupy no more words than the mode of X. */
1232 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1233 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1234 return 0;
1235
1236 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1237 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1238 return 0;
1239
1240 offset = subreg_lowpart_offset (mode, innermode);
1241
1242 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1243 && (GET_MODE_CLASS (mode) == MODE_INT
1244 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1245 {
1246 /* If we are getting the low-order part of something that has been
1247 sign- or zero-extended, we can either just use the object being
1248 extended or make a narrower extension. If we want an even smaller
1249 piece than the size of the object being extended, call ourselves
1250 recursively.
1251
1252 This case is used mostly by combine and cse. */
1253
1254 if (GET_MODE (XEXP (x, 0)) == mode)
1255 return XEXP (x, 0);
1256 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1257 return gen_lowpart_common (mode, XEXP (x, 0));
1258 else if (msize < xsize)
1259 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1260 }
1261 else if (GET_CODE (x) == SUBREG || REG_P (x)
1262 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1263 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1264 return simplify_gen_subreg (mode, x, innermode, offset);
1265
1266 /* Otherwise, we can't do this. */
1267 return 0;
1268 }
1269 \f
1270 rtx
1271 gen_highpart (enum machine_mode mode, rtx x)
1272 {
1273 unsigned int msize = GET_MODE_SIZE (mode);
1274 rtx result;
1275
1276 /* This case loses if X is a subreg. To catch bugs early,
1277 complain if an invalid MODE is used even in other cases. */
1278 gcc_assert (msize <= UNITS_PER_WORD
1279 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1280
1281 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1282 subreg_highpart_offset (mode, GET_MODE (x)));
1283 gcc_assert (result);
1284
1285 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1286 the target if we have a MEM. gen_highpart must return a valid operand,
1287 emitting code if necessary to do so. */
1288 if (MEM_P (result))
1289 {
1290 result = validize_mem (result);
1291 gcc_assert (result);
1292 }
1293
1294 return result;
1295 }
1296
1297 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1298 be VOIDmode constant. */
1299 rtx
1300 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1301 {
1302 if (GET_MODE (exp) != VOIDmode)
1303 {
1304 gcc_assert (GET_MODE (exp) == innermode);
1305 return gen_highpart (outermode, exp);
1306 }
1307 return simplify_gen_subreg (outermode, exp, innermode,
1308 subreg_highpart_offset (outermode, innermode));
1309 }
1310
1311 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1312
1313 unsigned int
1314 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1315 {
1316 unsigned int offset = 0;
1317 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1318
1319 if (difference > 0)
1320 {
1321 if (WORDS_BIG_ENDIAN)
1322 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1323 if (BYTES_BIG_ENDIAN)
1324 offset += difference % UNITS_PER_WORD;
1325 }
1326
1327 return offset;
1328 }
1329
1330 /* Return offset in bytes to get OUTERMODE high part
1331 of the value in mode INNERMODE stored in memory in target format. */
1332 unsigned int
1333 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1334 {
1335 unsigned int offset = 0;
1336 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1337
1338 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1339
1340 if (difference > 0)
1341 {
1342 if (! WORDS_BIG_ENDIAN)
1343 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1344 if (! BYTES_BIG_ENDIAN)
1345 offset += difference % UNITS_PER_WORD;
1346 }
1347
1348 return offset;
1349 }
1350
1351 /* Return 1 iff X, assumed to be a SUBREG,
1352 refers to the least significant part of its containing reg.
1353 If X is not a SUBREG, always return 1 (it is its own low part!). */
1354
1355 int
1356 subreg_lowpart_p (const_rtx x)
1357 {
1358 if (GET_CODE (x) != SUBREG)
1359 return 1;
1360 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1361 return 0;
1362
1363 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1364 == SUBREG_BYTE (x));
1365 }
1366
1367 /* Return true if X is a paradoxical subreg, false otherwise. */
1368 bool
1369 paradoxical_subreg_p (const_rtx x)
1370 {
1371 if (GET_CODE (x) != SUBREG)
1372 return false;
1373 return (GET_MODE_PRECISION (GET_MODE (x))
1374 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1375 }
1376 \f
1377 /* Return subword OFFSET of operand OP.
1378 The word number, OFFSET, is interpreted as the word number starting
1379 at the low-order address. OFFSET 0 is the low-order word if not
1380 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1381
1382 If we cannot extract the required word, we return zero. Otherwise,
1383 an rtx corresponding to the requested word will be returned.
1384
1385 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1386 reload has completed, a valid address will always be returned. After
1387 reload, if a valid address cannot be returned, we return zero.
1388
1389 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1390 it is the responsibility of the caller.
1391
1392 MODE is the mode of OP in case it is a CONST_INT.
1393
1394 ??? This is still rather broken for some cases. The problem for the
1395 moment is that all callers of this thing provide no 'goal mode' to
1396 tell us to work with. This exists because all callers were written
1397 in a word based SUBREG world.
1398 Now use of this function can be deprecated by simplify_subreg in most
1399 cases.
1400 */
1401
1402 rtx
1403 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1404 {
1405 if (mode == VOIDmode)
1406 mode = GET_MODE (op);
1407
1408 gcc_assert (mode != VOIDmode);
1409
1410 /* If OP is narrower than a word, fail. */
1411 if (mode != BLKmode
1412 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1413 return 0;
1414
1415 /* If we want a word outside OP, return zero. */
1416 if (mode != BLKmode
1417 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1418 return const0_rtx;
1419
1420 /* Form a new MEM at the requested address. */
1421 if (MEM_P (op))
1422 {
1423 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1424
1425 if (! validate_address)
1426 return new_rtx;
1427
1428 else if (reload_completed)
1429 {
1430 if (! strict_memory_address_addr_space_p (word_mode,
1431 XEXP (new_rtx, 0),
1432 MEM_ADDR_SPACE (op)))
1433 return 0;
1434 }
1435 else
1436 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1437 }
1438
1439 /* Rest can be handled by simplify_subreg. */
1440 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1441 }
1442
1443 /* Similar to `operand_subword', but never return 0. If we can't
1444 extract the required subword, put OP into a register and try again.
1445 The second attempt must succeed. We always validate the address in
1446 this case.
1447
1448 MODE is the mode of OP, in case it is CONST_INT. */
1449
1450 rtx
1451 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1452 {
1453 rtx result = operand_subword (op, offset, 1, mode);
1454
1455 if (result)
1456 return result;
1457
1458 if (mode != BLKmode && mode != VOIDmode)
1459 {
1460 /* If this is a register which can not be accessed by words, copy it
1461 to a pseudo register. */
1462 if (REG_P (op))
1463 op = copy_to_reg (op);
1464 else
1465 op = force_reg (mode, op);
1466 }
1467
1468 result = operand_subword (op, offset, 1, mode);
1469 gcc_assert (result);
1470
1471 return result;
1472 }
1473 \f
1474 /* Returns 1 if both MEM_EXPR can be considered equal
1475 and 0 otherwise. */
1476
1477 int
1478 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1479 {
1480 if (expr1 == expr2)
1481 return 1;
1482
1483 if (! expr1 || ! expr2)
1484 return 0;
1485
1486 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1487 return 0;
1488
1489 return operand_equal_p (expr1, expr2, 0);
1490 }
1491
1492 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1493 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1494 -1 if not known. */
1495
1496 int
1497 get_mem_align_offset (rtx mem, unsigned int align)
1498 {
1499 tree expr;
1500 unsigned HOST_WIDE_INT offset;
1501
1502 /* This function can't use
1503 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1504 || (MAX (MEM_ALIGN (mem),
1505 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1506 < align))
1507 return -1;
1508 else
1509 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1510 for two reasons:
1511 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1512 for <variable>. get_inner_reference doesn't handle it and
1513 even if it did, the alignment in that case needs to be determined
1514 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1515 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1516 isn't sufficiently aligned, the object it is in might be. */
1517 gcc_assert (MEM_P (mem));
1518 expr = MEM_EXPR (mem);
1519 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1520 return -1;
1521
1522 offset = MEM_OFFSET (mem);
1523 if (DECL_P (expr))
1524 {
1525 if (DECL_ALIGN (expr) < align)
1526 return -1;
1527 }
1528 else if (INDIRECT_REF_P (expr))
1529 {
1530 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1531 return -1;
1532 }
1533 else if (TREE_CODE (expr) == COMPONENT_REF)
1534 {
1535 while (1)
1536 {
1537 tree inner = TREE_OPERAND (expr, 0);
1538 tree field = TREE_OPERAND (expr, 1);
1539 tree byte_offset = component_ref_field_offset (expr);
1540 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1541
1542 if (!byte_offset
1543 || !host_integerp (byte_offset, 1)
1544 || !host_integerp (bit_offset, 1))
1545 return -1;
1546
1547 offset += tree_low_cst (byte_offset, 1);
1548 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1549
1550 if (inner == NULL_TREE)
1551 {
1552 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1553 < (unsigned int) align)
1554 return -1;
1555 break;
1556 }
1557 else if (DECL_P (inner))
1558 {
1559 if (DECL_ALIGN (inner) < align)
1560 return -1;
1561 break;
1562 }
1563 else if (TREE_CODE (inner) != COMPONENT_REF)
1564 return -1;
1565 expr = inner;
1566 }
1567 }
1568 else
1569 return -1;
1570
1571 return offset & ((align / BITS_PER_UNIT) - 1);
1572 }
1573
1574 /* Given REF (a MEM) and T, either the type of X or the expression
1575 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1576 if we are making a new object of this type. BITPOS is nonzero if
1577 there is an offset outstanding on T that will be applied later. */
1578
1579 void
1580 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1581 HOST_WIDE_INT bitpos)
1582 {
1583 HOST_WIDE_INT apply_bitpos = 0;
1584 tree type;
1585 struct mem_attrs attrs, *defattrs, *refattrs;
1586 addr_space_t as;
1587
1588 /* It can happen that type_for_mode was given a mode for which there
1589 is no language-level type. In which case it returns NULL, which
1590 we can see here. */
1591 if (t == NULL_TREE)
1592 return;
1593
1594 type = TYPE_P (t) ? t : TREE_TYPE (t);
1595 if (type == error_mark_node)
1596 return;
1597
1598 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1599 wrong answer, as it assumes that DECL_RTL already has the right alias
1600 info. Callers should not set DECL_RTL until after the call to
1601 set_mem_attributes. */
1602 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1603
1604 memset (&attrs, 0, sizeof (attrs));
1605
1606 /* Get the alias set from the expression or type (perhaps using a
1607 front-end routine) and use it. */
1608 attrs.alias = get_alias_set (t);
1609
1610 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1611 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1612
1613 /* Default values from pre-existing memory attributes if present. */
1614 refattrs = MEM_ATTRS (ref);
1615 if (refattrs)
1616 {
1617 /* ??? Can this ever happen? Calling this routine on a MEM that
1618 already carries memory attributes should probably be invalid. */
1619 attrs.expr = refattrs->expr;
1620 attrs.offset_known_p = refattrs->offset_known_p;
1621 attrs.offset = refattrs->offset;
1622 attrs.size_known_p = refattrs->size_known_p;
1623 attrs.size = refattrs->size;
1624 attrs.align = refattrs->align;
1625 }
1626
1627 /* Otherwise, default values from the mode of the MEM reference. */
1628 else
1629 {
1630 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1631 gcc_assert (!defattrs->expr);
1632 gcc_assert (!defattrs->offset_known_p);
1633
1634 /* Respect mode size. */
1635 attrs.size_known_p = defattrs->size_known_p;
1636 attrs.size = defattrs->size;
1637 /* ??? Is this really necessary? We probably should always get
1638 the size from the type below. */
1639
1640 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1641 if T is an object, always compute the object alignment below. */
1642 if (TYPE_P (t))
1643 attrs.align = defattrs->align;
1644 else
1645 attrs.align = BITS_PER_UNIT;
1646 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1647 e.g. if the type carries an alignment attribute. Should we be
1648 able to simply always use TYPE_ALIGN? */
1649 }
1650
1651 /* We can set the alignment from the type if we are making an object,
1652 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1653 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1654 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1655
1656 /* If the size is known, we can set that. */
1657 tree new_size = TYPE_SIZE_UNIT (type);
1658
1659 /* The address-space is that of the type. */
1660 as = TYPE_ADDR_SPACE (type);
1661
1662 /* If T is not a type, we may be able to deduce some more information about
1663 the expression. */
1664 if (! TYPE_P (t))
1665 {
1666 tree base;
1667
1668 if (TREE_THIS_VOLATILE (t))
1669 MEM_VOLATILE_P (ref) = 1;
1670
1671 /* Now remove any conversions: they don't change what the underlying
1672 object is. Likewise for SAVE_EXPR. */
1673 while (CONVERT_EXPR_P (t)
1674 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1675 || TREE_CODE (t) == SAVE_EXPR)
1676 t = TREE_OPERAND (t, 0);
1677
1678 /* Note whether this expression can trap. */
1679 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1680
1681 base = get_base_address (t);
1682 if (base)
1683 {
1684 if (DECL_P (base)
1685 && TREE_READONLY (base)
1686 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1687 && !TREE_THIS_VOLATILE (base))
1688 MEM_READONLY_P (ref) = 1;
1689
1690 /* Mark static const strings readonly as well. */
1691 if (TREE_CODE (base) == STRING_CST
1692 && TREE_READONLY (base)
1693 && TREE_STATIC (base))
1694 MEM_READONLY_P (ref) = 1;
1695
1696 /* Address-space information is on the base object. */
1697 if (TREE_CODE (base) == MEM_REF
1698 || TREE_CODE (base) == TARGET_MEM_REF)
1699 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1700 0))));
1701 else
1702 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1703 }
1704
1705 /* If this expression uses it's parent's alias set, mark it such
1706 that we won't change it. */
1707 if (component_uses_parent_alias_set (t))
1708 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1709
1710 /* If this is a decl, set the attributes of the MEM from it. */
1711 if (DECL_P (t))
1712 {
1713 attrs.expr = t;
1714 attrs.offset_known_p = true;
1715 attrs.offset = 0;
1716 apply_bitpos = bitpos;
1717 new_size = DECL_SIZE_UNIT (t);
1718 }
1719
1720 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1721 else if (CONSTANT_CLASS_P (t))
1722 ;
1723
1724 /* If this is a field reference, record it. */
1725 else if (TREE_CODE (t) == COMPONENT_REF)
1726 {
1727 attrs.expr = t;
1728 attrs.offset_known_p = true;
1729 attrs.offset = 0;
1730 apply_bitpos = bitpos;
1731 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1732 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1733 }
1734
1735 /* If this is an array reference, look for an outer field reference. */
1736 else if (TREE_CODE (t) == ARRAY_REF)
1737 {
1738 tree off_tree = size_zero_node;
1739 /* We can't modify t, because we use it at the end of the
1740 function. */
1741 tree t2 = t;
1742
1743 do
1744 {
1745 tree index = TREE_OPERAND (t2, 1);
1746 tree low_bound = array_ref_low_bound (t2);
1747 tree unit_size = array_ref_element_size (t2);
1748
1749 /* We assume all arrays have sizes that are a multiple of a byte.
1750 First subtract the lower bound, if any, in the type of the
1751 index, then convert to sizetype and multiply by the size of
1752 the array element. */
1753 if (! integer_zerop (low_bound))
1754 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1755 index, low_bound);
1756
1757 off_tree = size_binop (PLUS_EXPR,
1758 size_binop (MULT_EXPR,
1759 fold_convert (sizetype,
1760 index),
1761 unit_size),
1762 off_tree);
1763 t2 = TREE_OPERAND (t2, 0);
1764 }
1765 while (TREE_CODE (t2) == ARRAY_REF);
1766
1767 if (DECL_P (t2)
1768 || TREE_CODE (t2) == COMPONENT_REF)
1769 {
1770 attrs.expr = t2;
1771 attrs.offset_known_p = false;
1772 if (host_integerp (off_tree, 1))
1773 {
1774 attrs.offset_known_p = true;
1775 attrs.offset = tree_low_cst (off_tree, 1);
1776 apply_bitpos = bitpos;
1777 }
1778 }
1779 /* Else do not record a MEM_EXPR. */
1780 }
1781
1782 /* If this is an indirect reference, record it. */
1783 else if (TREE_CODE (t) == MEM_REF
1784 || TREE_CODE (t) == TARGET_MEM_REF)
1785 {
1786 attrs.expr = t;
1787 attrs.offset_known_p = true;
1788 attrs.offset = 0;
1789 apply_bitpos = bitpos;
1790 }
1791
1792 /* Compute the alignment. */
1793 unsigned int obj_align;
1794 unsigned HOST_WIDE_INT obj_bitpos;
1795 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1796 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1797 if (obj_bitpos != 0)
1798 obj_align = (obj_bitpos & -obj_bitpos);
1799 attrs.align = MAX (attrs.align, obj_align);
1800 }
1801
1802 if (host_integerp (new_size, 1))
1803 {
1804 attrs.size_known_p = true;
1805 attrs.size = tree_low_cst (new_size, 1);
1806 }
1807
1808 /* If we modified OFFSET based on T, then subtract the outstanding
1809 bit position offset. Similarly, increase the size of the accessed
1810 object to contain the negative offset. */
1811 if (apply_bitpos)
1812 {
1813 gcc_assert (attrs.offset_known_p);
1814 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1815 if (attrs.size_known_p)
1816 attrs.size += apply_bitpos / BITS_PER_UNIT;
1817 }
1818
1819 /* Now set the attributes we computed above. */
1820 attrs.addrspace = as;
1821 set_mem_attrs (ref, &attrs);
1822 }
1823
1824 void
1825 set_mem_attributes (rtx ref, tree t, int objectp)
1826 {
1827 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1828 }
1829
1830 /* Set the alias set of MEM to SET. */
1831
1832 void
1833 set_mem_alias_set (rtx mem, alias_set_type set)
1834 {
1835 struct mem_attrs attrs;
1836
1837 /* If the new and old alias sets don't conflict, something is wrong. */
1838 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1839 attrs = *get_mem_attrs (mem);
1840 attrs.alias = set;
1841 set_mem_attrs (mem, &attrs);
1842 }
1843
1844 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1845
1846 void
1847 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1848 {
1849 struct mem_attrs attrs;
1850
1851 attrs = *get_mem_attrs (mem);
1852 attrs.addrspace = addrspace;
1853 set_mem_attrs (mem, &attrs);
1854 }
1855
1856 /* Set the alignment of MEM to ALIGN bits. */
1857
1858 void
1859 set_mem_align (rtx mem, unsigned int align)
1860 {
1861 struct mem_attrs attrs;
1862
1863 attrs = *get_mem_attrs (mem);
1864 attrs.align = align;
1865 set_mem_attrs (mem, &attrs);
1866 }
1867
1868 /* Set the expr for MEM to EXPR. */
1869
1870 void
1871 set_mem_expr (rtx mem, tree expr)
1872 {
1873 struct mem_attrs attrs;
1874
1875 attrs = *get_mem_attrs (mem);
1876 attrs.expr = expr;
1877 set_mem_attrs (mem, &attrs);
1878 }
1879
1880 /* Set the offset of MEM to OFFSET. */
1881
1882 void
1883 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1884 {
1885 struct mem_attrs attrs;
1886
1887 attrs = *get_mem_attrs (mem);
1888 attrs.offset_known_p = true;
1889 attrs.offset = offset;
1890 set_mem_attrs (mem, &attrs);
1891 }
1892
1893 /* Clear the offset of MEM. */
1894
1895 void
1896 clear_mem_offset (rtx mem)
1897 {
1898 struct mem_attrs attrs;
1899
1900 attrs = *get_mem_attrs (mem);
1901 attrs.offset_known_p = false;
1902 set_mem_attrs (mem, &attrs);
1903 }
1904
1905 /* Set the size of MEM to SIZE. */
1906
1907 void
1908 set_mem_size (rtx mem, HOST_WIDE_INT size)
1909 {
1910 struct mem_attrs attrs;
1911
1912 attrs = *get_mem_attrs (mem);
1913 attrs.size_known_p = true;
1914 attrs.size = size;
1915 set_mem_attrs (mem, &attrs);
1916 }
1917
1918 /* Clear the size of MEM. */
1919
1920 void
1921 clear_mem_size (rtx mem)
1922 {
1923 struct mem_attrs attrs;
1924
1925 attrs = *get_mem_attrs (mem);
1926 attrs.size_known_p = false;
1927 set_mem_attrs (mem, &attrs);
1928 }
1929 \f
1930 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1931 and its address changed to ADDR. (VOIDmode means don't change the mode.
1932 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1933 returned memory location is required to be valid. The memory
1934 attributes are not changed. */
1935
1936 static rtx
1937 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1938 {
1939 addr_space_t as;
1940 rtx new_rtx;
1941
1942 gcc_assert (MEM_P (memref));
1943 as = MEM_ADDR_SPACE (memref);
1944 if (mode == VOIDmode)
1945 mode = GET_MODE (memref);
1946 if (addr == 0)
1947 addr = XEXP (memref, 0);
1948 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1949 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1950 return memref;
1951
1952 if (validate)
1953 {
1954 if (reload_in_progress || reload_completed)
1955 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1956 else
1957 addr = memory_address_addr_space (mode, addr, as);
1958 }
1959
1960 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1961 return memref;
1962
1963 new_rtx = gen_rtx_MEM (mode, addr);
1964 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1965 return new_rtx;
1966 }
1967
1968 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1969 way we are changing MEMREF, so we only preserve the alias set. */
1970
1971 rtx
1972 change_address (rtx memref, enum machine_mode mode, rtx addr)
1973 {
1974 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
1975 enum machine_mode mmode = GET_MODE (new_rtx);
1976 struct mem_attrs attrs, *defattrs;
1977
1978 attrs = *get_mem_attrs (memref);
1979 defattrs = mode_mem_attrs[(int) mmode];
1980 attrs.expr = NULL_TREE;
1981 attrs.offset_known_p = false;
1982 attrs.size_known_p = defattrs->size_known_p;
1983 attrs.size = defattrs->size;
1984 attrs.align = defattrs->align;
1985
1986 /* If there are no changes, just return the original memory reference. */
1987 if (new_rtx == memref)
1988 {
1989 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
1990 return new_rtx;
1991
1992 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1993 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1994 }
1995
1996 set_mem_attrs (new_rtx, &attrs);
1997 return new_rtx;
1998 }
1999
2000 /* Return a memory reference like MEMREF, but with its mode changed
2001 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2002 nonzero, the memory address is forced to be valid.
2003 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2004 and the caller is responsible for adjusting MEMREF base register.
2005 If ADJUST_OBJECT is zero, the underlying object associated with the
2006 memory reference is left unchanged and the caller is responsible for
2007 dealing with it. Otherwise, if the new memory reference is outside
2008 the underlying object, even partially, then the object is dropped.
2009 SIZE, if nonzero, is the size of an access in cases where MODE
2010 has no inherent size. */
2011
2012 rtx
2013 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2014 int validate, int adjust_address, int adjust_object,
2015 HOST_WIDE_INT size)
2016 {
2017 rtx addr = XEXP (memref, 0);
2018 rtx new_rtx;
2019 enum machine_mode address_mode;
2020 int pbits;
2021 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2022 unsigned HOST_WIDE_INT max_align;
2023 #ifdef POINTERS_EXTEND_UNSIGNED
2024 enum machine_mode pointer_mode
2025 = targetm.addr_space.pointer_mode (attrs.addrspace);
2026 #endif
2027
2028 /* VOIDmode means no mode change for change_address_1. */
2029 if (mode == VOIDmode)
2030 mode = GET_MODE (memref);
2031
2032 /* Take the size of non-BLKmode accesses from the mode. */
2033 defattrs = mode_mem_attrs[(int) mode];
2034 if (defattrs->size_known_p)
2035 size = defattrs->size;
2036
2037 /* If there are no changes, just return the original memory reference. */
2038 if (mode == GET_MODE (memref) && !offset
2039 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2040 && (!validate || memory_address_addr_space_p (mode, addr,
2041 attrs.addrspace)))
2042 return memref;
2043
2044 /* ??? Prefer to create garbage instead of creating shared rtl.
2045 This may happen even if offset is nonzero -- consider
2046 (plus (plus reg reg) const_int) -- so do this always. */
2047 addr = copy_rtx (addr);
2048
2049 /* Convert a possibly large offset to a signed value within the
2050 range of the target address space. */
2051 address_mode = get_address_mode (memref);
2052 pbits = GET_MODE_BITSIZE (address_mode);
2053 if (HOST_BITS_PER_WIDE_INT > pbits)
2054 {
2055 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2056 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2057 >> shift);
2058 }
2059
2060 if (adjust_address)
2061 {
2062 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2063 object, we can merge it into the LO_SUM. */
2064 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2065 && offset >= 0
2066 && (unsigned HOST_WIDE_INT) offset
2067 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2068 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2069 plus_constant (address_mode,
2070 XEXP (addr, 1), offset));
2071 #ifdef POINTERS_EXTEND_UNSIGNED
2072 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2073 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2074 the fact that pointers are not allowed to overflow. */
2075 else if (POINTERS_EXTEND_UNSIGNED > 0
2076 && GET_CODE (addr) == ZERO_EXTEND
2077 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2078 && trunc_int_for_mode (offset, pointer_mode) == offset)
2079 addr = gen_rtx_ZERO_EXTEND (address_mode,
2080 plus_constant (pointer_mode,
2081 XEXP (addr, 0), offset));
2082 #endif
2083 else
2084 addr = plus_constant (address_mode, addr, offset);
2085 }
2086
2087 new_rtx = change_address_1 (memref, mode, addr, validate);
2088
2089 /* If the address is a REG, change_address_1 rightfully returns memref,
2090 but this would destroy memref's MEM_ATTRS. */
2091 if (new_rtx == memref && offset != 0)
2092 new_rtx = copy_rtx (new_rtx);
2093
2094 /* Conservatively drop the object if we don't know where we start from. */
2095 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2096 {
2097 attrs.expr = NULL_TREE;
2098 attrs.alias = 0;
2099 }
2100
2101 /* Compute the new values of the memory attributes due to this adjustment.
2102 We add the offsets and update the alignment. */
2103 if (attrs.offset_known_p)
2104 {
2105 attrs.offset += offset;
2106
2107 /* Drop the object if the new left end is not within its bounds. */
2108 if (adjust_object && attrs.offset < 0)
2109 {
2110 attrs.expr = NULL_TREE;
2111 attrs.alias = 0;
2112 }
2113 }
2114
2115 /* Compute the new alignment by taking the MIN of the alignment and the
2116 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2117 if zero. */
2118 if (offset != 0)
2119 {
2120 max_align = (offset & -offset) * BITS_PER_UNIT;
2121 attrs.align = MIN (attrs.align, max_align);
2122 }
2123
2124 if (size)
2125 {
2126 /* Drop the object if the new right end is not within its bounds. */
2127 if (adjust_object && (offset + size) > attrs.size)
2128 {
2129 attrs.expr = NULL_TREE;
2130 attrs.alias = 0;
2131 }
2132 attrs.size_known_p = true;
2133 attrs.size = size;
2134 }
2135 else if (attrs.size_known_p)
2136 {
2137 gcc_assert (!adjust_object);
2138 attrs.size -= offset;
2139 /* ??? The store_by_pieces machinery generates negative sizes,
2140 so don't assert for that here. */
2141 }
2142
2143 set_mem_attrs (new_rtx, &attrs);
2144
2145 return new_rtx;
2146 }
2147
2148 /* Return a memory reference like MEMREF, but with its mode changed
2149 to MODE and its address changed to ADDR, which is assumed to be
2150 MEMREF offset by OFFSET bytes. If VALIDATE is
2151 nonzero, the memory address is forced to be valid. */
2152
2153 rtx
2154 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2155 HOST_WIDE_INT offset, int validate)
2156 {
2157 memref = change_address_1 (memref, VOIDmode, addr, validate);
2158 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2159 }
2160
2161 /* Return a memory reference like MEMREF, but whose address is changed by
2162 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2163 known to be in OFFSET (possibly 1). */
2164
2165 rtx
2166 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2167 {
2168 rtx new_rtx, addr = XEXP (memref, 0);
2169 enum machine_mode address_mode;
2170 struct mem_attrs attrs, *defattrs;
2171
2172 attrs = *get_mem_attrs (memref);
2173 address_mode = get_address_mode (memref);
2174 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2175
2176 /* At this point we don't know _why_ the address is invalid. It
2177 could have secondary memory references, multiplies or anything.
2178
2179 However, if we did go and rearrange things, we can wind up not
2180 being able to recognize the magic around pic_offset_table_rtx.
2181 This stuff is fragile, and is yet another example of why it is
2182 bad to expose PIC machinery too early. */
2183 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2184 attrs.addrspace)
2185 && GET_CODE (addr) == PLUS
2186 && XEXP (addr, 0) == pic_offset_table_rtx)
2187 {
2188 addr = force_reg (GET_MODE (addr), addr);
2189 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2190 }
2191
2192 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2193 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2194
2195 /* If there are no changes, just return the original memory reference. */
2196 if (new_rtx == memref)
2197 return new_rtx;
2198
2199 /* Update the alignment to reflect the offset. Reset the offset, which
2200 we don't know. */
2201 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2202 attrs.offset_known_p = false;
2203 attrs.size_known_p = defattrs->size_known_p;
2204 attrs.size = defattrs->size;
2205 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2206 set_mem_attrs (new_rtx, &attrs);
2207 return new_rtx;
2208 }
2209
2210 /* Return a memory reference like MEMREF, but with its address changed to
2211 ADDR. The caller is asserting that the actual piece of memory pointed
2212 to is the same, just the form of the address is being changed, such as
2213 by putting something into a register. */
2214
2215 rtx
2216 replace_equiv_address (rtx memref, rtx addr)
2217 {
2218 /* change_address_1 copies the memory attribute structure without change
2219 and that's exactly what we want here. */
2220 update_temp_slot_address (XEXP (memref, 0), addr);
2221 return change_address_1 (memref, VOIDmode, addr, 1);
2222 }
2223
2224 /* Likewise, but the reference is not required to be valid. */
2225
2226 rtx
2227 replace_equiv_address_nv (rtx memref, rtx addr)
2228 {
2229 return change_address_1 (memref, VOIDmode, addr, 0);
2230 }
2231
2232 /* Return a memory reference like MEMREF, but with its mode widened to
2233 MODE and offset by OFFSET. This would be used by targets that e.g.
2234 cannot issue QImode memory operations and have to use SImode memory
2235 operations plus masking logic. */
2236
2237 rtx
2238 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2239 {
2240 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2241 struct mem_attrs attrs;
2242 unsigned int size = GET_MODE_SIZE (mode);
2243
2244 /* If there are no changes, just return the original memory reference. */
2245 if (new_rtx == memref)
2246 return new_rtx;
2247
2248 attrs = *get_mem_attrs (new_rtx);
2249
2250 /* If we don't know what offset we were at within the expression, then
2251 we can't know if we've overstepped the bounds. */
2252 if (! attrs.offset_known_p)
2253 attrs.expr = NULL_TREE;
2254
2255 while (attrs.expr)
2256 {
2257 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2258 {
2259 tree field = TREE_OPERAND (attrs.expr, 1);
2260 tree offset = component_ref_field_offset (attrs.expr);
2261
2262 if (! DECL_SIZE_UNIT (field))
2263 {
2264 attrs.expr = NULL_TREE;
2265 break;
2266 }
2267
2268 /* Is the field at least as large as the access? If so, ok,
2269 otherwise strip back to the containing structure. */
2270 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2271 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2272 && attrs.offset >= 0)
2273 break;
2274
2275 if (! host_integerp (offset, 1))
2276 {
2277 attrs.expr = NULL_TREE;
2278 break;
2279 }
2280
2281 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2282 attrs.offset += tree_low_cst (offset, 1);
2283 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2284 / BITS_PER_UNIT);
2285 }
2286 /* Similarly for the decl. */
2287 else if (DECL_P (attrs.expr)
2288 && DECL_SIZE_UNIT (attrs.expr)
2289 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2290 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2291 && (! attrs.offset_known_p || attrs.offset >= 0))
2292 break;
2293 else
2294 {
2295 /* The widened memory access overflows the expression, which means
2296 that it could alias another expression. Zap it. */
2297 attrs.expr = NULL_TREE;
2298 break;
2299 }
2300 }
2301
2302 if (! attrs.expr)
2303 attrs.offset_known_p = false;
2304
2305 /* The widened memory may alias other stuff, so zap the alias set. */
2306 /* ??? Maybe use get_alias_set on any remaining expression. */
2307 attrs.alias = 0;
2308 attrs.size_known_p = true;
2309 attrs.size = size;
2310 set_mem_attrs (new_rtx, &attrs);
2311 return new_rtx;
2312 }
2313 \f
2314 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2315 static GTY(()) tree spill_slot_decl;
2316
2317 tree
2318 get_spill_slot_decl (bool force_build_p)
2319 {
2320 tree d = spill_slot_decl;
2321 rtx rd;
2322 struct mem_attrs attrs;
2323
2324 if (d || !force_build_p)
2325 return d;
2326
2327 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2328 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2329 DECL_ARTIFICIAL (d) = 1;
2330 DECL_IGNORED_P (d) = 1;
2331 TREE_USED (d) = 1;
2332 spill_slot_decl = d;
2333
2334 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2335 MEM_NOTRAP_P (rd) = 1;
2336 attrs = *mode_mem_attrs[(int) BLKmode];
2337 attrs.alias = new_alias_set ();
2338 attrs.expr = d;
2339 set_mem_attrs (rd, &attrs);
2340 SET_DECL_RTL (d, rd);
2341
2342 return d;
2343 }
2344
2345 /* Given MEM, a result from assign_stack_local, fill in the memory
2346 attributes as appropriate for a register allocator spill slot.
2347 These slots are not aliasable by other memory. We arrange for
2348 them all to use a single MEM_EXPR, so that the aliasing code can
2349 work properly in the case of shared spill slots. */
2350
2351 void
2352 set_mem_attrs_for_spill (rtx mem)
2353 {
2354 struct mem_attrs attrs;
2355 rtx addr;
2356
2357 attrs = *get_mem_attrs (mem);
2358 attrs.expr = get_spill_slot_decl (true);
2359 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2360 attrs.addrspace = ADDR_SPACE_GENERIC;
2361
2362 /* We expect the incoming memory to be of the form:
2363 (mem:MODE (plus (reg sfp) (const_int offset)))
2364 with perhaps the plus missing for offset = 0. */
2365 addr = XEXP (mem, 0);
2366 attrs.offset_known_p = true;
2367 attrs.offset = 0;
2368 if (GET_CODE (addr) == PLUS
2369 && CONST_INT_P (XEXP (addr, 1)))
2370 attrs.offset = INTVAL (XEXP (addr, 1));
2371
2372 set_mem_attrs (mem, &attrs);
2373 MEM_NOTRAP_P (mem) = 1;
2374 }
2375 \f
2376 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2377
2378 rtx
2379 gen_label_rtx (void)
2380 {
2381 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2382 NULL, label_num++, NULL);
2383 }
2384 \f
2385 /* For procedure integration. */
2386
2387 /* Install new pointers to the first and last insns in the chain.
2388 Also, set cur_insn_uid to one higher than the last in use.
2389 Used for an inline-procedure after copying the insn chain. */
2390
2391 void
2392 set_new_first_and_last_insn (rtx first, rtx last)
2393 {
2394 rtx insn;
2395
2396 set_first_insn (first);
2397 set_last_insn (last);
2398 cur_insn_uid = 0;
2399
2400 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2401 {
2402 int debug_count = 0;
2403
2404 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2405 cur_debug_insn_uid = 0;
2406
2407 for (insn = first; insn; insn = NEXT_INSN (insn))
2408 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2409 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2410 else
2411 {
2412 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2413 if (DEBUG_INSN_P (insn))
2414 debug_count++;
2415 }
2416
2417 if (debug_count)
2418 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2419 else
2420 cur_debug_insn_uid++;
2421 }
2422 else
2423 for (insn = first; insn; insn = NEXT_INSN (insn))
2424 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2425
2426 cur_insn_uid++;
2427 }
2428 \f
2429 /* Go through all the RTL insn bodies and copy any invalid shared
2430 structure. This routine should only be called once. */
2431
2432 static void
2433 unshare_all_rtl_1 (rtx insn)
2434 {
2435 /* Unshare just about everything else. */
2436 unshare_all_rtl_in_chain (insn);
2437
2438 /* Make sure the addresses of stack slots found outside the insn chain
2439 (such as, in DECL_RTL of a variable) are not shared
2440 with the insn chain.
2441
2442 This special care is necessary when the stack slot MEM does not
2443 actually appear in the insn chain. If it does appear, its address
2444 is unshared from all else at that point. */
2445 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2446 }
2447
2448 /* Go through all the RTL insn bodies and copy any invalid shared
2449 structure, again. This is a fairly expensive thing to do so it
2450 should be done sparingly. */
2451
2452 void
2453 unshare_all_rtl_again (rtx insn)
2454 {
2455 rtx p;
2456 tree decl;
2457
2458 for (p = insn; p; p = NEXT_INSN (p))
2459 if (INSN_P (p))
2460 {
2461 reset_used_flags (PATTERN (p));
2462 reset_used_flags (REG_NOTES (p));
2463 if (CALL_P (p))
2464 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2465 }
2466
2467 /* Make sure that virtual stack slots are not shared. */
2468 set_used_decls (DECL_INITIAL (cfun->decl));
2469
2470 /* Make sure that virtual parameters are not shared. */
2471 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2472 set_used_flags (DECL_RTL (decl));
2473
2474 reset_used_flags (stack_slot_list);
2475
2476 unshare_all_rtl_1 (insn);
2477 }
2478
2479 unsigned int
2480 unshare_all_rtl (void)
2481 {
2482 unshare_all_rtl_1 (get_insns ());
2483 return 0;
2484 }
2485
2486
2487 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2488 Recursively does the same for subexpressions. */
2489
2490 static void
2491 verify_rtx_sharing (rtx orig, rtx insn)
2492 {
2493 rtx x = orig;
2494 int i;
2495 enum rtx_code code;
2496 const char *format_ptr;
2497
2498 if (x == 0)
2499 return;
2500
2501 code = GET_CODE (x);
2502
2503 /* These types may be freely shared. */
2504
2505 switch (code)
2506 {
2507 case REG:
2508 case DEBUG_EXPR:
2509 case VALUE:
2510 CASE_CONST_ANY:
2511 case SYMBOL_REF:
2512 case LABEL_REF:
2513 case CODE_LABEL:
2514 case PC:
2515 case CC0:
2516 case RETURN:
2517 case SIMPLE_RETURN:
2518 case SCRATCH:
2519 /* SCRATCH must be shared because they represent distinct values. */
2520 return;
2521 case CLOBBER:
2522 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2523 clobbers or clobbers of hard registers that originated as pseudos.
2524 This is needed to allow safe register renaming. */
2525 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2526 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2527 return;
2528 break;
2529
2530 case CONST:
2531 if (shared_const_p (orig))
2532 return;
2533 break;
2534
2535 case MEM:
2536 /* A MEM is allowed to be shared if its address is constant. */
2537 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2538 || reload_completed || reload_in_progress)
2539 return;
2540
2541 break;
2542
2543 default:
2544 break;
2545 }
2546
2547 /* This rtx may not be shared. If it has already been seen,
2548 replace it with a copy of itself. */
2549 #ifdef ENABLE_CHECKING
2550 if (RTX_FLAG (x, used))
2551 {
2552 error ("invalid rtl sharing found in the insn");
2553 debug_rtx (insn);
2554 error ("shared rtx");
2555 debug_rtx (x);
2556 internal_error ("internal consistency failure");
2557 }
2558 #endif
2559 gcc_assert (!RTX_FLAG (x, used));
2560
2561 RTX_FLAG (x, used) = 1;
2562
2563 /* Now scan the subexpressions recursively. */
2564
2565 format_ptr = GET_RTX_FORMAT (code);
2566
2567 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2568 {
2569 switch (*format_ptr++)
2570 {
2571 case 'e':
2572 verify_rtx_sharing (XEXP (x, i), insn);
2573 break;
2574
2575 case 'E':
2576 if (XVEC (x, i) != NULL)
2577 {
2578 int j;
2579 int len = XVECLEN (x, i);
2580
2581 for (j = 0; j < len; j++)
2582 {
2583 /* We allow sharing of ASM_OPERANDS inside single
2584 instruction. */
2585 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2586 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2587 == ASM_OPERANDS))
2588 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2589 else
2590 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2591 }
2592 }
2593 break;
2594 }
2595 }
2596 return;
2597 }
2598
2599 /* Go through all the RTL insn bodies and clear all the USED bits. */
2600
2601 static void
2602 reset_all_used_flags (void)
2603 {
2604 rtx p;
2605
2606 for (p = get_insns (); p; p = NEXT_INSN (p))
2607 if (INSN_P (p))
2608 {
2609 reset_used_flags (PATTERN (p));
2610 reset_used_flags (REG_NOTES (p));
2611 if (CALL_P (p))
2612 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2613 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2614 {
2615 int i;
2616 rtx q, sequence = PATTERN (p);
2617
2618 for (i = 0; i < XVECLEN (sequence, 0); i++)
2619 {
2620 q = XVECEXP (sequence, 0, i);
2621 gcc_assert (INSN_P (q));
2622 reset_used_flags (PATTERN (q));
2623 reset_used_flags (REG_NOTES (q));
2624 if (CALL_P (q))
2625 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2626 }
2627 }
2628 }
2629 }
2630
2631 /* Go through all the RTL insn bodies and check that there is no unexpected
2632 sharing in between the subexpressions. */
2633
2634 DEBUG_FUNCTION void
2635 verify_rtl_sharing (void)
2636 {
2637 rtx p;
2638
2639 timevar_push (TV_VERIFY_RTL_SHARING);
2640
2641 reset_all_used_flags ();
2642
2643 for (p = get_insns (); p; p = NEXT_INSN (p))
2644 if (INSN_P (p))
2645 {
2646 verify_rtx_sharing (PATTERN (p), p);
2647 verify_rtx_sharing (REG_NOTES (p), p);
2648 if (CALL_P (p))
2649 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2650 }
2651
2652 reset_all_used_flags ();
2653
2654 timevar_pop (TV_VERIFY_RTL_SHARING);
2655 }
2656
2657 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2658 Assumes the mark bits are cleared at entry. */
2659
2660 void
2661 unshare_all_rtl_in_chain (rtx insn)
2662 {
2663 for (; insn; insn = NEXT_INSN (insn))
2664 if (INSN_P (insn))
2665 {
2666 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2667 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2668 if (CALL_P (insn))
2669 CALL_INSN_FUNCTION_USAGE (insn)
2670 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2671 }
2672 }
2673
2674 /* Go through all virtual stack slots of a function and mark them as
2675 shared. We never replace the DECL_RTLs themselves with a copy,
2676 but expressions mentioned into a DECL_RTL cannot be shared with
2677 expressions in the instruction stream.
2678
2679 Note that reload may convert pseudo registers into memories in-place.
2680 Pseudo registers are always shared, but MEMs never are. Thus if we
2681 reset the used flags on MEMs in the instruction stream, we must set
2682 them again on MEMs that appear in DECL_RTLs. */
2683
2684 static void
2685 set_used_decls (tree blk)
2686 {
2687 tree t;
2688
2689 /* Mark decls. */
2690 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2691 if (DECL_RTL_SET_P (t))
2692 set_used_flags (DECL_RTL (t));
2693
2694 /* Now process sub-blocks. */
2695 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2696 set_used_decls (t);
2697 }
2698
2699 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2700 Recursively does the same for subexpressions. Uses
2701 copy_rtx_if_shared_1 to reduce stack space. */
2702
2703 rtx
2704 copy_rtx_if_shared (rtx orig)
2705 {
2706 copy_rtx_if_shared_1 (&orig);
2707 return orig;
2708 }
2709
2710 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2711 use. Recursively does the same for subexpressions. */
2712
2713 static void
2714 copy_rtx_if_shared_1 (rtx *orig1)
2715 {
2716 rtx x;
2717 int i;
2718 enum rtx_code code;
2719 rtx *last_ptr;
2720 const char *format_ptr;
2721 int copied = 0;
2722 int length;
2723
2724 /* Repeat is used to turn tail-recursion into iteration. */
2725 repeat:
2726 x = *orig1;
2727
2728 if (x == 0)
2729 return;
2730
2731 code = GET_CODE (x);
2732
2733 /* These types may be freely shared. */
2734
2735 switch (code)
2736 {
2737 case REG:
2738 case DEBUG_EXPR:
2739 case VALUE:
2740 CASE_CONST_ANY:
2741 case SYMBOL_REF:
2742 case LABEL_REF:
2743 case CODE_LABEL:
2744 case PC:
2745 case CC0:
2746 case RETURN:
2747 case SIMPLE_RETURN:
2748 case SCRATCH:
2749 /* SCRATCH must be shared because they represent distinct values. */
2750 return;
2751 case CLOBBER:
2752 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2753 clobbers or clobbers of hard registers that originated as pseudos.
2754 This is needed to allow safe register renaming. */
2755 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2756 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2757 return;
2758 break;
2759
2760 case CONST:
2761 if (shared_const_p (x))
2762 return;
2763 break;
2764
2765 case DEBUG_INSN:
2766 case INSN:
2767 case JUMP_INSN:
2768 case CALL_INSN:
2769 case NOTE:
2770 case BARRIER:
2771 /* The chain of insns is not being copied. */
2772 return;
2773
2774 default:
2775 break;
2776 }
2777
2778 /* This rtx may not be shared. If it has already been seen,
2779 replace it with a copy of itself. */
2780
2781 if (RTX_FLAG (x, used))
2782 {
2783 x = shallow_copy_rtx (x);
2784 copied = 1;
2785 }
2786 RTX_FLAG (x, used) = 1;
2787
2788 /* Now scan the subexpressions recursively.
2789 We can store any replaced subexpressions directly into X
2790 since we know X is not shared! Any vectors in X
2791 must be copied if X was copied. */
2792
2793 format_ptr = GET_RTX_FORMAT (code);
2794 length = GET_RTX_LENGTH (code);
2795 last_ptr = NULL;
2796
2797 for (i = 0; i < length; i++)
2798 {
2799 switch (*format_ptr++)
2800 {
2801 case 'e':
2802 if (last_ptr)
2803 copy_rtx_if_shared_1 (last_ptr);
2804 last_ptr = &XEXP (x, i);
2805 break;
2806
2807 case 'E':
2808 if (XVEC (x, i) != NULL)
2809 {
2810 int j;
2811 int len = XVECLEN (x, i);
2812
2813 /* Copy the vector iff I copied the rtx and the length
2814 is nonzero. */
2815 if (copied && len > 0)
2816 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2817
2818 /* Call recursively on all inside the vector. */
2819 for (j = 0; j < len; j++)
2820 {
2821 if (last_ptr)
2822 copy_rtx_if_shared_1 (last_ptr);
2823 last_ptr = &XVECEXP (x, i, j);
2824 }
2825 }
2826 break;
2827 }
2828 }
2829 *orig1 = x;
2830 if (last_ptr)
2831 {
2832 orig1 = last_ptr;
2833 goto repeat;
2834 }
2835 return;
2836 }
2837
2838 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2839
2840 static void
2841 mark_used_flags (rtx x, int flag)
2842 {
2843 int i, j;
2844 enum rtx_code code;
2845 const char *format_ptr;
2846 int length;
2847
2848 /* Repeat is used to turn tail-recursion into iteration. */
2849 repeat:
2850 if (x == 0)
2851 return;
2852
2853 code = GET_CODE (x);
2854
2855 /* These types may be freely shared so we needn't do any resetting
2856 for them. */
2857
2858 switch (code)
2859 {
2860 case REG:
2861 case DEBUG_EXPR:
2862 case VALUE:
2863 CASE_CONST_ANY:
2864 case SYMBOL_REF:
2865 case CODE_LABEL:
2866 case PC:
2867 case CC0:
2868 case RETURN:
2869 case SIMPLE_RETURN:
2870 return;
2871
2872 case DEBUG_INSN:
2873 case INSN:
2874 case JUMP_INSN:
2875 case CALL_INSN:
2876 case NOTE:
2877 case LABEL_REF:
2878 case BARRIER:
2879 /* The chain of insns is not being copied. */
2880 return;
2881
2882 default:
2883 break;
2884 }
2885
2886 RTX_FLAG (x, used) = flag;
2887
2888 format_ptr = GET_RTX_FORMAT (code);
2889 length = GET_RTX_LENGTH (code);
2890
2891 for (i = 0; i < length; i++)
2892 {
2893 switch (*format_ptr++)
2894 {
2895 case 'e':
2896 if (i == length-1)
2897 {
2898 x = XEXP (x, i);
2899 goto repeat;
2900 }
2901 mark_used_flags (XEXP (x, i), flag);
2902 break;
2903
2904 case 'E':
2905 for (j = 0; j < XVECLEN (x, i); j++)
2906 mark_used_flags (XVECEXP (x, i, j), flag);
2907 break;
2908 }
2909 }
2910 }
2911
2912 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2913 to look for shared sub-parts. */
2914
2915 void
2916 reset_used_flags (rtx x)
2917 {
2918 mark_used_flags (x, 0);
2919 }
2920
2921 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2922 to look for shared sub-parts. */
2923
2924 void
2925 set_used_flags (rtx x)
2926 {
2927 mark_used_flags (x, 1);
2928 }
2929 \f
2930 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2931 Return X or the rtx for the pseudo reg the value of X was copied into.
2932 OTHER must be valid as a SET_DEST. */
2933
2934 rtx
2935 make_safe_from (rtx x, rtx other)
2936 {
2937 while (1)
2938 switch (GET_CODE (other))
2939 {
2940 case SUBREG:
2941 other = SUBREG_REG (other);
2942 break;
2943 case STRICT_LOW_PART:
2944 case SIGN_EXTEND:
2945 case ZERO_EXTEND:
2946 other = XEXP (other, 0);
2947 break;
2948 default:
2949 goto done;
2950 }
2951 done:
2952 if ((MEM_P (other)
2953 && ! CONSTANT_P (x)
2954 && !REG_P (x)
2955 && GET_CODE (x) != SUBREG)
2956 || (REG_P (other)
2957 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2958 || reg_mentioned_p (other, x))))
2959 {
2960 rtx temp = gen_reg_rtx (GET_MODE (x));
2961 emit_move_insn (temp, x);
2962 return temp;
2963 }
2964 return x;
2965 }
2966 \f
2967 /* Emission of insns (adding them to the doubly-linked list). */
2968
2969 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2970
2971 rtx
2972 get_last_insn_anywhere (void)
2973 {
2974 struct sequence_stack *stack;
2975 if (get_last_insn ())
2976 return get_last_insn ();
2977 for (stack = seq_stack; stack; stack = stack->next)
2978 if (stack->last != 0)
2979 return stack->last;
2980 return 0;
2981 }
2982
2983 /* Return the first nonnote insn emitted in current sequence or current
2984 function. This routine looks inside SEQUENCEs. */
2985
2986 rtx
2987 get_first_nonnote_insn (void)
2988 {
2989 rtx insn = get_insns ();
2990
2991 if (insn)
2992 {
2993 if (NOTE_P (insn))
2994 for (insn = next_insn (insn);
2995 insn && NOTE_P (insn);
2996 insn = next_insn (insn))
2997 continue;
2998 else
2999 {
3000 if (NONJUMP_INSN_P (insn)
3001 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3002 insn = XVECEXP (PATTERN (insn), 0, 0);
3003 }
3004 }
3005
3006 return insn;
3007 }
3008
3009 /* Return the last nonnote insn emitted in current sequence or current
3010 function. This routine looks inside SEQUENCEs. */
3011
3012 rtx
3013 get_last_nonnote_insn (void)
3014 {
3015 rtx insn = get_last_insn ();
3016
3017 if (insn)
3018 {
3019 if (NOTE_P (insn))
3020 for (insn = previous_insn (insn);
3021 insn && NOTE_P (insn);
3022 insn = previous_insn (insn))
3023 continue;
3024 else
3025 {
3026 if (NONJUMP_INSN_P (insn)
3027 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3028 insn = XVECEXP (PATTERN (insn), 0,
3029 XVECLEN (PATTERN (insn), 0) - 1);
3030 }
3031 }
3032
3033 return insn;
3034 }
3035
3036 /* Return the number of actual (non-debug) insns emitted in this
3037 function. */
3038
3039 int
3040 get_max_insn_count (void)
3041 {
3042 int n = cur_insn_uid;
3043
3044 /* The table size must be stable across -g, to avoid codegen
3045 differences due to debug insns, and not be affected by
3046 -fmin-insn-uid, to avoid excessive table size and to simplify
3047 debugging of -fcompare-debug failures. */
3048 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3049 n -= cur_debug_insn_uid;
3050 else
3051 n -= MIN_NONDEBUG_INSN_UID;
3052
3053 return n;
3054 }
3055
3056 \f
3057 /* Return the next insn. If it is a SEQUENCE, return the first insn
3058 of the sequence. */
3059
3060 rtx
3061 next_insn (rtx insn)
3062 {
3063 if (insn)
3064 {
3065 insn = NEXT_INSN (insn);
3066 if (insn && NONJUMP_INSN_P (insn)
3067 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3068 insn = XVECEXP (PATTERN (insn), 0, 0);
3069 }
3070
3071 return insn;
3072 }
3073
3074 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3075 of the sequence. */
3076
3077 rtx
3078 previous_insn (rtx insn)
3079 {
3080 if (insn)
3081 {
3082 insn = PREV_INSN (insn);
3083 if (insn && NONJUMP_INSN_P (insn)
3084 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3085 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3086 }
3087
3088 return insn;
3089 }
3090
3091 /* Return the next insn after INSN that is not a NOTE. This routine does not
3092 look inside SEQUENCEs. */
3093
3094 rtx
3095 next_nonnote_insn (rtx insn)
3096 {
3097 while (insn)
3098 {
3099 insn = NEXT_INSN (insn);
3100 if (insn == 0 || !NOTE_P (insn))
3101 break;
3102 }
3103
3104 return insn;
3105 }
3106
3107 /* Return the next insn after INSN that is not a NOTE, but stop the
3108 search before we enter another basic block. This routine does not
3109 look inside SEQUENCEs. */
3110
3111 rtx
3112 next_nonnote_insn_bb (rtx insn)
3113 {
3114 while (insn)
3115 {
3116 insn = NEXT_INSN (insn);
3117 if (insn == 0 || !NOTE_P (insn))
3118 break;
3119 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3120 return NULL_RTX;
3121 }
3122
3123 return insn;
3124 }
3125
3126 /* Return the previous insn before INSN that is not a NOTE. This routine does
3127 not look inside SEQUENCEs. */
3128
3129 rtx
3130 prev_nonnote_insn (rtx insn)
3131 {
3132 while (insn)
3133 {
3134 insn = PREV_INSN (insn);
3135 if (insn == 0 || !NOTE_P (insn))
3136 break;
3137 }
3138
3139 return insn;
3140 }
3141
3142 /* Return the previous insn before INSN that is not a NOTE, but stop
3143 the search before we enter another basic block. This routine does
3144 not look inside SEQUENCEs. */
3145
3146 rtx
3147 prev_nonnote_insn_bb (rtx insn)
3148 {
3149 while (insn)
3150 {
3151 insn = PREV_INSN (insn);
3152 if (insn == 0 || !NOTE_P (insn))
3153 break;
3154 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3155 return NULL_RTX;
3156 }
3157
3158 return insn;
3159 }
3160
3161 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3162 routine does not look inside SEQUENCEs. */
3163
3164 rtx
3165 next_nondebug_insn (rtx insn)
3166 {
3167 while (insn)
3168 {
3169 insn = NEXT_INSN (insn);
3170 if (insn == 0 || !DEBUG_INSN_P (insn))
3171 break;
3172 }
3173
3174 return insn;
3175 }
3176
3177 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3178 This routine does not look inside SEQUENCEs. */
3179
3180 rtx
3181 prev_nondebug_insn (rtx insn)
3182 {
3183 while (insn)
3184 {
3185 insn = PREV_INSN (insn);
3186 if (insn == 0 || !DEBUG_INSN_P (insn))
3187 break;
3188 }
3189
3190 return insn;
3191 }
3192
3193 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3194 This routine does not look inside SEQUENCEs. */
3195
3196 rtx
3197 next_nonnote_nondebug_insn (rtx insn)
3198 {
3199 while (insn)
3200 {
3201 insn = NEXT_INSN (insn);
3202 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3203 break;
3204 }
3205
3206 return insn;
3207 }
3208
3209 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3210 This routine does not look inside SEQUENCEs. */
3211
3212 rtx
3213 prev_nonnote_nondebug_insn (rtx insn)
3214 {
3215 while (insn)
3216 {
3217 insn = PREV_INSN (insn);
3218 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3219 break;
3220 }
3221
3222 return insn;
3223 }
3224
3225 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3226 or 0, if there is none. This routine does not look inside
3227 SEQUENCEs. */
3228
3229 rtx
3230 next_real_insn (rtx insn)
3231 {
3232 while (insn)
3233 {
3234 insn = NEXT_INSN (insn);
3235 if (insn == 0 || INSN_P (insn))
3236 break;
3237 }
3238
3239 return insn;
3240 }
3241
3242 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3243 or 0, if there is none. This routine does not look inside
3244 SEQUENCEs. */
3245
3246 rtx
3247 prev_real_insn (rtx insn)
3248 {
3249 while (insn)
3250 {
3251 insn = PREV_INSN (insn);
3252 if (insn == 0 || INSN_P (insn))
3253 break;
3254 }
3255
3256 return insn;
3257 }
3258
3259 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3260 This routine does not look inside SEQUENCEs. */
3261
3262 rtx
3263 last_call_insn (void)
3264 {
3265 rtx insn;
3266
3267 for (insn = get_last_insn ();
3268 insn && !CALL_P (insn);
3269 insn = PREV_INSN (insn))
3270 ;
3271
3272 return insn;
3273 }
3274
3275 /* Find the next insn after INSN that really does something. This routine
3276 does not look inside SEQUENCEs. After reload this also skips over
3277 standalone USE and CLOBBER insn. */
3278
3279 int
3280 active_insn_p (const_rtx insn)
3281 {
3282 return (CALL_P (insn) || JUMP_P (insn)
3283 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3284 || (NONJUMP_INSN_P (insn)
3285 && (! reload_completed
3286 || (GET_CODE (PATTERN (insn)) != USE
3287 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3288 }
3289
3290 rtx
3291 next_active_insn (rtx insn)
3292 {
3293 while (insn)
3294 {
3295 insn = NEXT_INSN (insn);
3296 if (insn == 0 || active_insn_p (insn))
3297 break;
3298 }
3299
3300 return insn;
3301 }
3302
3303 /* Find the last insn before INSN that really does something. This routine
3304 does not look inside SEQUENCEs. After reload this also skips over
3305 standalone USE and CLOBBER insn. */
3306
3307 rtx
3308 prev_active_insn (rtx insn)
3309 {
3310 while (insn)
3311 {
3312 insn = PREV_INSN (insn);
3313 if (insn == 0 || active_insn_p (insn))
3314 break;
3315 }
3316
3317 return insn;
3318 }
3319
3320 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3321
3322 rtx
3323 next_label (rtx insn)
3324 {
3325 while (insn)
3326 {
3327 insn = NEXT_INSN (insn);
3328 if (insn == 0 || LABEL_P (insn))
3329 break;
3330 }
3331
3332 return insn;
3333 }
3334
3335 /* Return the last label to mark the same position as LABEL. Return LABEL
3336 itself if it is null or any return rtx. */
3337
3338 rtx
3339 skip_consecutive_labels (rtx label)
3340 {
3341 rtx insn;
3342
3343 if (label && ANY_RETURN_P (label))
3344 return label;
3345
3346 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3347 if (LABEL_P (insn))
3348 label = insn;
3349
3350 return label;
3351 }
3352 \f
3353 #ifdef HAVE_cc0
3354 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3355 and REG_CC_USER notes so we can find it. */
3356
3357 void
3358 link_cc0_insns (rtx insn)
3359 {
3360 rtx user = next_nonnote_insn (insn);
3361
3362 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3363 user = XVECEXP (PATTERN (user), 0, 0);
3364
3365 add_reg_note (user, REG_CC_SETTER, insn);
3366 add_reg_note (insn, REG_CC_USER, user);
3367 }
3368
3369 /* Return the next insn that uses CC0 after INSN, which is assumed to
3370 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3371 applied to the result of this function should yield INSN).
3372
3373 Normally, this is simply the next insn. However, if a REG_CC_USER note
3374 is present, it contains the insn that uses CC0.
3375
3376 Return 0 if we can't find the insn. */
3377
3378 rtx
3379 next_cc0_user (rtx insn)
3380 {
3381 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3382
3383 if (note)
3384 return XEXP (note, 0);
3385
3386 insn = next_nonnote_insn (insn);
3387 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3388 insn = XVECEXP (PATTERN (insn), 0, 0);
3389
3390 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3391 return insn;
3392
3393 return 0;
3394 }
3395
3396 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3397 note, it is the previous insn. */
3398
3399 rtx
3400 prev_cc0_setter (rtx insn)
3401 {
3402 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3403
3404 if (note)
3405 return XEXP (note, 0);
3406
3407 insn = prev_nonnote_insn (insn);
3408 gcc_assert (sets_cc0_p (PATTERN (insn)));
3409
3410 return insn;
3411 }
3412 #endif
3413
3414 #ifdef AUTO_INC_DEC
3415 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3416
3417 static int
3418 find_auto_inc (rtx *xp, void *data)
3419 {
3420 rtx x = *xp;
3421 rtx reg = (rtx) data;
3422
3423 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3424 return 0;
3425
3426 switch (GET_CODE (x))
3427 {
3428 case PRE_DEC:
3429 case PRE_INC:
3430 case POST_DEC:
3431 case POST_INC:
3432 case PRE_MODIFY:
3433 case POST_MODIFY:
3434 if (rtx_equal_p (reg, XEXP (x, 0)))
3435 return 1;
3436 break;
3437
3438 default:
3439 gcc_unreachable ();
3440 }
3441 return -1;
3442 }
3443 #endif
3444
3445 /* Increment the label uses for all labels present in rtx. */
3446
3447 static void
3448 mark_label_nuses (rtx x)
3449 {
3450 enum rtx_code code;
3451 int i, j;
3452 const char *fmt;
3453
3454 code = GET_CODE (x);
3455 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3456 LABEL_NUSES (XEXP (x, 0))++;
3457
3458 fmt = GET_RTX_FORMAT (code);
3459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3460 {
3461 if (fmt[i] == 'e')
3462 mark_label_nuses (XEXP (x, i));
3463 else if (fmt[i] == 'E')
3464 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3465 mark_label_nuses (XVECEXP (x, i, j));
3466 }
3467 }
3468
3469 \f
3470 /* Try splitting insns that can be split for better scheduling.
3471 PAT is the pattern which might split.
3472 TRIAL is the insn providing PAT.
3473 LAST is nonzero if we should return the last insn of the sequence produced.
3474
3475 If this routine succeeds in splitting, it returns the first or last
3476 replacement insn depending on the value of LAST. Otherwise, it
3477 returns TRIAL. If the insn to be returned can be split, it will be. */
3478
3479 rtx
3480 try_split (rtx pat, rtx trial, int last)
3481 {
3482 rtx before = PREV_INSN (trial);
3483 rtx after = NEXT_INSN (trial);
3484 int has_barrier = 0;
3485 rtx note, seq, tem;
3486 int probability;
3487 rtx insn_last, insn;
3488 int njumps = 0;
3489
3490 /* We're not good at redistributing frame information. */
3491 if (RTX_FRAME_RELATED_P (trial))
3492 return trial;
3493
3494 if (any_condjump_p (trial)
3495 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3496 split_branch_probability = INTVAL (XEXP (note, 0));
3497 probability = split_branch_probability;
3498
3499 seq = split_insns (pat, trial);
3500
3501 split_branch_probability = -1;
3502
3503 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3504 We may need to handle this specially. */
3505 if (after && BARRIER_P (after))
3506 {
3507 has_barrier = 1;
3508 after = NEXT_INSN (after);
3509 }
3510
3511 if (!seq)
3512 return trial;
3513
3514 /* Avoid infinite loop if any insn of the result matches
3515 the original pattern. */
3516 insn_last = seq;
3517 while (1)
3518 {
3519 if (INSN_P (insn_last)
3520 && rtx_equal_p (PATTERN (insn_last), pat))
3521 return trial;
3522 if (!NEXT_INSN (insn_last))
3523 break;
3524 insn_last = NEXT_INSN (insn_last);
3525 }
3526
3527 /* We will be adding the new sequence to the function. The splitters
3528 may have introduced invalid RTL sharing, so unshare the sequence now. */
3529 unshare_all_rtl_in_chain (seq);
3530
3531 /* Mark labels. */
3532 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3533 {
3534 if (JUMP_P (insn))
3535 {
3536 mark_jump_label (PATTERN (insn), insn, 0);
3537 njumps++;
3538 if (probability != -1
3539 && any_condjump_p (insn)
3540 && !find_reg_note (insn, REG_BR_PROB, 0))
3541 {
3542 /* We can preserve the REG_BR_PROB notes only if exactly
3543 one jump is created, otherwise the machine description
3544 is responsible for this step using
3545 split_branch_probability variable. */
3546 gcc_assert (njumps == 1);
3547 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3548 }
3549 }
3550 }
3551
3552 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3553 in SEQ and copy any additional information across. */
3554 if (CALL_P (trial))
3555 {
3556 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3557 if (CALL_P (insn))
3558 {
3559 rtx next, *p;
3560
3561 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3562 target may have explicitly specified. */
3563 p = &CALL_INSN_FUNCTION_USAGE (insn);
3564 while (*p)
3565 p = &XEXP (*p, 1);
3566 *p = CALL_INSN_FUNCTION_USAGE (trial);
3567
3568 /* If the old call was a sibling call, the new one must
3569 be too. */
3570 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3571
3572 /* If the new call is the last instruction in the sequence,
3573 it will effectively replace the old call in-situ. Otherwise
3574 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3575 so that it comes immediately after the new call. */
3576 if (NEXT_INSN (insn))
3577 for (next = NEXT_INSN (trial);
3578 next && NOTE_P (next);
3579 next = NEXT_INSN (next))
3580 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3581 {
3582 remove_insn (next);
3583 add_insn_after (next, insn, NULL);
3584 break;
3585 }
3586 }
3587 }
3588
3589 /* Copy notes, particularly those related to the CFG. */
3590 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3591 {
3592 switch (REG_NOTE_KIND (note))
3593 {
3594 case REG_EH_REGION:
3595 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3596 break;
3597
3598 case REG_NORETURN:
3599 case REG_SETJMP:
3600 case REG_TM:
3601 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3602 {
3603 if (CALL_P (insn))
3604 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3605 }
3606 break;
3607
3608 case REG_NON_LOCAL_GOTO:
3609 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3610 {
3611 if (JUMP_P (insn))
3612 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3613 }
3614 break;
3615
3616 #ifdef AUTO_INC_DEC
3617 case REG_INC:
3618 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3619 {
3620 rtx reg = XEXP (note, 0);
3621 if (!FIND_REG_INC_NOTE (insn, reg)
3622 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3623 add_reg_note (insn, REG_INC, reg);
3624 }
3625 break;
3626 #endif
3627
3628 case REG_ARGS_SIZE:
3629 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3630 break;
3631
3632 default:
3633 break;
3634 }
3635 }
3636
3637 /* If there are LABELS inside the split insns increment the
3638 usage count so we don't delete the label. */
3639 if (INSN_P (trial))
3640 {
3641 insn = insn_last;
3642 while (insn != NULL_RTX)
3643 {
3644 /* JUMP_P insns have already been "marked" above. */
3645 if (NONJUMP_INSN_P (insn))
3646 mark_label_nuses (PATTERN (insn));
3647
3648 insn = PREV_INSN (insn);
3649 }
3650 }
3651
3652 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3653
3654 delete_insn (trial);
3655 if (has_barrier)
3656 emit_barrier_after (tem);
3657
3658 /* Recursively call try_split for each new insn created; by the
3659 time control returns here that insn will be fully split, so
3660 set LAST and continue from the insn after the one returned.
3661 We can't use next_active_insn here since AFTER may be a note.
3662 Ignore deleted insns, which can be occur if not optimizing. */
3663 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3664 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3665 tem = try_split (PATTERN (tem), tem, 1);
3666
3667 /* Return either the first or the last insn, depending on which was
3668 requested. */
3669 return last
3670 ? (after ? PREV_INSN (after) : get_last_insn ())
3671 : NEXT_INSN (before);
3672 }
3673 \f
3674 /* Make and return an INSN rtx, initializing all its slots.
3675 Store PATTERN in the pattern slots. */
3676
3677 rtx
3678 make_insn_raw (rtx pattern)
3679 {
3680 rtx insn;
3681
3682 insn = rtx_alloc (INSN);
3683
3684 INSN_UID (insn) = cur_insn_uid++;
3685 PATTERN (insn) = pattern;
3686 INSN_CODE (insn) = -1;
3687 REG_NOTES (insn) = NULL;
3688 INSN_LOCATION (insn) = curr_insn_location ();
3689 BLOCK_FOR_INSN (insn) = NULL;
3690
3691 #ifdef ENABLE_RTL_CHECKING
3692 if (insn
3693 && INSN_P (insn)
3694 && (returnjump_p (insn)
3695 || (GET_CODE (insn) == SET
3696 && SET_DEST (insn) == pc_rtx)))
3697 {
3698 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3699 debug_rtx (insn);
3700 }
3701 #endif
3702
3703 return insn;
3704 }
3705
3706 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3707
3708 static rtx
3709 make_debug_insn_raw (rtx pattern)
3710 {
3711 rtx insn;
3712
3713 insn = rtx_alloc (DEBUG_INSN);
3714 INSN_UID (insn) = cur_debug_insn_uid++;
3715 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3716 INSN_UID (insn) = cur_insn_uid++;
3717
3718 PATTERN (insn) = pattern;
3719 INSN_CODE (insn) = -1;
3720 REG_NOTES (insn) = NULL;
3721 INSN_LOCATION (insn) = curr_insn_location ();
3722 BLOCK_FOR_INSN (insn) = NULL;
3723
3724 return insn;
3725 }
3726
3727 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3728
3729 static rtx
3730 make_jump_insn_raw (rtx pattern)
3731 {
3732 rtx insn;
3733
3734 insn = rtx_alloc (JUMP_INSN);
3735 INSN_UID (insn) = cur_insn_uid++;
3736
3737 PATTERN (insn) = pattern;
3738 INSN_CODE (insn) = -1;
3739 REG_NOTES (insn) = NULL;
3740 JUMP_LABEL (insn) = NULL;
3741 INSN_LOCATION (insn) = curr_insn_location ();
3742 BLOCK_FOR_INSN (insn) = NULL;
3743
3744 return insn;
3745 }
3746
3747 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3748
3749 static rtx
3750 make_call_insn_raw (rtx pattern)
3751 {
3752 rtx insn;
3753
3754 insn = rtx_alloc (CALL_INSN);
3755 INSN_UID (insn) = cur_insn_uid++;
3756
3757 PATTERN (insn) = pattern;
3758 INSN_CODE (insn) = -1;
3759 REG_NOTES (insn) = NULL;
3760 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3761 INSN_LOCATION (insn) = curr_insn_location ();
3762 BLOCK_FOR_INSN (insn) = NULL;
3763
3764 return insn;
3765 }
3766
3767 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3768
3769 static rtx
3770 make_note_raw (enum insn_note subtype)
3771 {
3772 /* Some notes are never created this way at all. These notes are
3773 only created by patching out insns. */
3774 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3775 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3776
3777 rtx note = rtx_alloc (NOTE);
3778 INSN_UID (note) = cur_insn_uid++;
3779 NOTE_KIND (note) = subtype;
3780 BLOCK_FOR_INSN (note) = NULL;
3781 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3782 return note;
3783 }
3784 \f
3785 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3786 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3787 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3788
3789 static inline void
3790 link_insn_into_chain (rtx insn, rtx prev, rtx next)
3791 {
3792 PREV_INSN (insn) = prev;
3793 NEXT_INSN (insn) = next;
3794 if (prev != NULL)
3795 {
3796 NEXT_INSN (prev) = insn;
3797 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3798 {
3799 rtx sequence = PATTERN (prev);
3800 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3801 }
3802 }
3803 if (next != NULL)
3804 {
3805 PREV_INSN (next) = insn;
3806 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3807 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3808 }
3809 }
3810
3811 /* Add INSN to the end of the doubly-linked list.
3812 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3813
3814 void
3815 add_insn (rtx insn)
3816 {
3817 rtx prev = get_last_insn ();
3818 link_insn_into_chain (insn, prev, NULL);
3819 if (NULL == get_insns ())
3820 set_first_insn (insn);
3821 set_last_insn (insn);
3822 }
3823
3824 /* Add INSN into the doubly-linked list after insn AFTER. */
3825
3826 static void
3827 add_insn_after_nobb (rtx insn, rtx after)
3828 {
3829 rtx next = NEXT_INSN (after);
3830
3831 gcc_assert (!optimize || !INSN_DELETED_P (after));
3832
3833 link_insn_into_chain (insn, after, next);
3834
3835 if (next == NULL)
3836 {
3837 if (get_last_insn () == after)
3838 set_last_insn (insn);
3839 else
3840 {
3841 struct sequence_stack *stack = seq_stack;
3842 /* Scan all pending sequences too. */
3843 for (; stack; stack = stack->next)
3844 if (after == stack->last)
3845 {
3846 stack->last = insn;
3847 break;
3848 }
3849 }
3850 }
3851 }
3852
3853 /* Add INSN into the doubly-linked list before insn BEFORE. */
3854
3855 static void
3856 add_insn_before_nobb (rtx insn, rtx before)
3857 {
3858 rtx prev = PREV_INSN (before);
3859
3860 gcc_assert (!optimize || !INSN_DELETED_P (before));
3861
3862 link_insn_into_chain (insn, prev, before);
3863
3864 if (prev == NULL)
3865 {
3866 if (get_insns () == before)
3867 set_first_insn (insn);
3868 else
3869 {
3870 struct sequence_stack *stack = seq_stack;
3871 /* Scan all pending sequences too. */
3872 for (; stack; stack = stack->next)
3873 if (before == stack->first)
3874 {
3875 stack->first = insn;
3876 break;
3877 }
3878
3879 gcc_assert (stack);
3880 }
3881 }
3882 }
3883
3884 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3885 If BB is NULL, an attempt is made to infer the bb from before.
3886
3887 This and the next function should be the only functions called
3888 to insert an insn once delay slots have been filled since only
3889 they know how to update a SEQUENCE. */
3890
3891 void
3892 add_insn_after (rtx insn, rtx after, basic_block bb)
3893 {
3894 add_insn_after_nobb (insn, after);
3895 if (!BARRIER_P (after)
3896 && !BARRIER_P (insn)
3897 && (bb = BLOCK_FOR_INSN (after)))
3898 {
3899 set_block_for_insn (insn, bb);
3900 if (INSN_P (insn))
3901 df_insn_rescan (insn);
3902 /* Should not happen as first in the BB is always
3903 either NOTE or LABEL. */
3904 if (BB_END (bb) == after
3905 /* Avoid clobbering of structure when creating new BB. */
3906 && !BARRIER_P (insn)
3907 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3908 BB_END (bb) = insn;
3909 }
3910 }
3911
3912 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
3913 If BB is NULL, an attempt is made to infer the bb from before.
3914
3915 This and the previous function should be the only functions called
3916 to insert an insn once delay slots have been filled since only
3917 they know how to update a SEQUENCE. */
3918
3919 void
3920 add_insn_before (rtx insn, rtx before, basic_block bb)
3921 {
3922 add_insn_before_nobb (insn, before);
3923
3924 if (!bb
3925 && !BARRIER_P (before)
3926 && !BARRIER_P (insn))
3927 bb = BLOCK_FOR_INSN (before);
3928
3929 if (bb)
3930 {
3931 set_block_for_insn (insn, bb);
3932 if (INSN_P (insn))
3933 df_insn_rescan (insn);
3934 /* Should not happen as first in the BB is always either NOTE or
3935 LABEL. */
3936 gcc_assert (BB_HEAD (bb) != insn
3937 /* Avoid clobbering of structure when creating new BB. */
3938 || BARRIER_P (insn)
3939 || NOTE_INSN_BASIC_BLOCK_P (insn));
3940 }
3941 }
3942
3943 /* Replace insn with an deleted instruction note. */
3944
3945 void
3946 set_insn_deleted (rtx insn)
3947 {
3948 if (INSN_P (insn))
3949 df_insn_delete (insn);
3950 PUT_CODE (insn, NOTE);
3951 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3952 }
3953
3954
3955 /* Unlink INSN from the insn chain.
3956
3957 This function knows how to handle sequences.
3958
3959 This function does not invalidate data flow information associated with
3960 INSN (i.e. does not call df_insn_delete). That makes this function
3961 usable for only disconnecting an insn from the chain, and re-emit it
3962 elsewhere later.
3963
3964 To later insert INSN elsewhere in the insn chain via add_insn and
3965 similar functions, PREV_INSN and NEXT_INSN must be nullified by
3966 the caller. Nullifying them here breaks many insn chain walks.
3967
3968 To really delete an insn and related DF information, use delete_insn. */
3969
3970 void
3971 remove_insn (rtx insn)
3972 {
3973 rtx next = NEXT_INSN (insn);
3974 rtx prev = PREV_INSN (insn);
3975 basic_block bb;
3976
3977 if (prev)
3978 {
3979 NEXT_INSN (prev) = next;
3980 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3981 {
3982 rtx sequence = PATTERN (prev);
3983 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3984 }
3985 }
3986 else if (get_insns () == insn)
3987 {
3988 if (next)
3989 PREV_INSN (next) = NULL;
3990 set_first_insn (next);
3991 }
3992 else
3993 {
3994 struct sequence_stack *stack = seq_stack;
3995 /* Scan all pending sequences too. */
3996 for (; stack; stack = stack->next)
3997 if (insn == stack->first)
3998 {
3999 stack->first = next;
4000 break;
4001 }
4002
4003 gcc_assert (stack);
4004 }
4005
4006 if (next)
4007 {
4008 PREV_INSN (next) = prev;
4009 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4010 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
4011 }
4012 else if (get_last_insn () == insn)
4013 set_last_insn (prev);
4014 else
4015 {
4016 struct sequence_stack *stack = seq_stack;
4017 /* Scan all pending sequences too. */
4018 for (; stack; stack = stack->next)
4019 if (insn == stack->last)
4020 {
4021 stack->last = prev;
4022 break;
4023 }
4024
4025 gcc_assert (stack);
4026 }
4027
4028 /* Fix up basic block boundaries, if necessary. */
4029 if (!BARRIER_P (insn)
4030 && (bb = BLOCK_FOR_INSN (insn)))
4031 {
4032 if (BB_HEAD (bb) == insn)
4033 {
4034 /* Never ever delete the basic block note without deleting whole
4035 basic block. */
4036 gcc_assert (!NOTE_P (insn));
4037 BB_HEAD (bb) = next;
4038 }
4039 if (BB_END (bb) == insn)
4040 BB_END (bb) = prev;
4041 }
4042 }
4043
4044 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4045
4046 void
4047 add_function_usage_to (rtx call_insn, rtx call_fusage)
4048 {
4049 gcc_assert (call_insn && CALL_P (call_insn));
4050
4051 /* Put the register usage information on the CALL. If there is already
4052 some usage information, put ours at the end. */
4053 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4054 {
4055 rtx link;
4056
4057 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4058 link = XEXP (link, 1))
4059 ;
4060
4061 XEXP (link, 1) = call_fusage;
4062 }
4063 else
4064 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4065 }
4066
4067 /* Delete all insns made since FROM.
4068 FROM becomes the new last instruction. */
4069
4070 void
4071 delete_insns_since (rtx from)
4072 {
4073 if (from == 0)
4074 set_first_insn (0);
4075 else
4076 NEXT_INSN (from) = 0;
4077 set_last_insn (from);
4078 }
4079
4080 /* This function is deprecated, please use sequences instead.
4081
4082 Move a consecutive bunch of insns to a different place in the chain.
4083 The insns to be moved are those between FROM and TO.
4084 They are moved to a new position after the insn AFTER.
4085 AFTER must not be FROM or TO or any insn in between.
4086
4087 This function does not know about SEQUENCEs and hence should not be
4088 called after delay-slot filling has been done. */
4089
4090 void
4091 reorder_insns_nobb (rtx from, rtx to, rtx after)
4092 {
4093 #ifdef ENABLE_CHECKING
4094 rtx x;
4095 for (x = from; x != to; x = NEXT_INSN (x))
4096 gcc_assert (after != x);
4097 gcc_assert (after != to);
4098 #endif
4099
4100 /* Splice this bunch out of where it is now. */
4101 if (PREV_INSN (from))
4102 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4103 if (NEXT_INSN (to))
4104 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4105 if (get_last_insn () == to)
4106 set_last_insn (PREV_INSN (from));
4107 if (get_insns () == from)
4108 set_first_insn (NEXT_INSN (to));
4109
4110 /* Make the new neighbors point to it and it to them. */
4111 if (NEXT_INSN (after))
4112 PREV_INSN (NEXT_INSN (after)) = to;
4113
4114 NEXT_INSN (to) = NEXT_INSN (after);
4115 PREV_INSN (from) = after;
4116 NEXT_INSN (after) = from;
4117 if (after == get_last_insn())
4118 set_last_insn (to);
4119 }
4120
4121 /* Same as function above, but take care to update BB boundaries. */
4122 void
4123 reorder_insns (rtx from, rtx to, rtx after)
4124 {
4125 rtx prev = PREV_INSN (from);
4126 basic_block bb, bb2;
4127
4128 reorder_insns_nobb (from, to, after);
4129
4130 if (!BARRIER_P (after)
4131 && (bb = BLOCK_FOR_INSN (after)))
4132 {
4133 rtx x;
4134 df_set_bb_dirty (bb);
4135
4136 if (!BARRIER_P (from)
4137 && (bb2 = BLOCK_FOR_INSN (from)))
4138 {
4139 if (BB_END (bb2) == to)
4140 BB_END (bb2) = prev;
4141 df_set_bb_dirty (bb2);
4142 }
4143
4144 if (BB_END (bb) == after)
4145 BB_END (bb) = to;
4146
4147 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4148 if (!BARRIER_P (x))
4149 df_insn_change_bb (x, bb);
4150 }
4151 }
4152
4153 \f
4154 /* Emit insn(s) of given code and pattern
4155 at a specified place within the doubly-linked list.
4156
4157 All of the emit_foo global entry points accept an object
4158 X which is either an insn list or a PATTERN of a single
4159 instruction.
4160
4161 There are thus a few canonical ways to generate code and
4162 emit it at a specific place in the instruction stream. For
4163 example, consider the instruction named SPOT and the fact that
4164 we would like to emit some instructions before SPOT. We might
4165 do it like this:
4166
4167 start_sequence ();
4168 ... emit the new instructions ...
4169 insns_head = get_insns ();
4170 end_sequence ();
4171
4172 emit_insn_before (insns_head, SPOT);
4173
4174 It used to be common to generate SEQUENCE rtl instead, but that
4175 is a relic of the past which no longer occurs. The reason is that
4176 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4177 generated would almost certainly die right after it was created. */
4178
4179 static rtx
4180 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4181 rtx (*make_raw) (rtx))
4182 {
4183 rtx insn;
4184
4185 gcc_assert (before);
4186
4187 if (x == NULL_RTX)
4188 return last;
4189
4190 switch (GET_CODE (x))
4191 {
4192 case DEBUG_INSN:
4193 case INSN:
4194 case JUMP_INSN:
4195 case CALL_INSN:
4196 case CODE_LABEL:
4197 case BARRIER:
4198 case NOTE:
4199 insn = x;
4200 while (insn)
4201 {
4202 rtx next = NEXT_INSN (insn);
4203 add_insn_before (insn, before, bb);
4204 last = insn;
4205 insn = next;
4206 }
4207 break;
4208
4209 #ifdef ENABLE_RTL_CHECKING
4210 case SEQUENCE:
4211 gcc_unreachable ();
4212 break;
4213 #endif
4214
4215 default:
4216 last = (*make_raw) (x);
4217 add_insn_before (last, before, bb);
4218 break;
4219 }
4220
4221 return last;
4222 }
4223
4224 /* Make X be output before the instruction BEFORE. */
4225
4226 rtx
4227 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4228 {
4229 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4230 }
4231
4232 /* Make an instruction with body X and code JUMP_INSN
4233 and output it before the instruction BEFORE. */
4234
4235 rtx
4236 emit_jump_insn_before_noloc (rtx x, rtx before)
4237 {
4238 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4239 make_jump_insn_raw);
4240 }
4241
4242 /* Make an instruction with body X and code CALL_INSN
4243 and output it before the instruction BEFORE. */
4244
4245 rtx
4246 emit_call_insn_before_noloc (rtx x, rtx before)
4247 {
4248 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4249 make_call_insn_raw);
4250 }
4251
4252 /* Make an instruction with body X and code DEBUG_INSN
4253 and output it before the instruction BEFORE. */
4254
4255 rtx
4256 emit_debug_insn_before_noloc (rtx x, rtx before)
4257 {
4258 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4259 make_debug_insn_raw);
4260 }
4261
4262 /* Make an insn of code BARRIER
4263 and output it before the insn BEFORE. */
4264
4265 rtx
4266 emit_barrier_before (rtx before)
4267 {
4268 rtx insn = rtx_alloc (BARRIER);
4269
4270 INSN_UID (insn) = cur_insn_uid++;
4271
4272 add_insn_before (insn, before, NULL);
4273 return insn;
4274 }
4275
4276 /* Emit the label LABEL before the insn BEFORE. */
4277
4278 rtx
4279 emit_label_before (rtx label, rtx before)
4280 {
4281 gcc_checking_assert (INSN_UID (label) == 0);
4282 INSN_UID (label) = cur_insn_uid++;
4283 add_insn_before (label, before, NULL);
4284 return label;
4285 }
4286 \f
4287 /* Helper for emit_insn_after, handles lists of instructions
4288 efficiently. */
4289
4290 static rtx
4291 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4292 {
4293 rtx last;
4294 rtx after_after;
4295 if (!bb && !BARRIER_P (after))
4296 bb = BLOCK_FOR_INSN (after);
4297
4298 if (bb)
4299 {
4300 df_set_bb_dirty (bb);
4301 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4302 if (!BARRIER_P (last))
4303 {
4304 set_block_for_insn (last, bb);
4305 df_insn_rescan (last);
4306 }
4307 if (!BARRIER_P (last))
4308 {
4309 set_block_for_insn (last, bb);
4310 df_insn_rescan (last);
4311 }
4312 if (BB_END (bb) == after)
4313 BB_END (bb) = last;
4314 }
4315 else
4316 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4317 continue;
4318
4319 after_after = NEXT_INSN (after);
4320
4321 NEXT_INSN (after) = first;
4322 PREV_INSN (first) = after;
4323 NEXT_INSN (last) = after_after;
4324 if (after_after)
4325 PREV_INSN (after_after) = last;
4326
4327 if (after == get_last_insn())
4328 set_last_insn (last);
4329
4330 return last;
4331 }
4332
4333 static rtx
4334 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4335 rtx (*make_raw)(rtx))
4336 {
4337 rtx last = after;
4338
4339 gcc_assert (after);
4340
4341 if (x == NULL_RTX)
4342 return last;
4343
4344 switch (GET_CODE (x))
4345 {
4346 case DEBUG_INSN:
4347 case INSN:
4348 case JUMP_INSN:
4349 case CALL_INSN:
4350 case CODE_LABEL:
4351 case BARRIER:
4352 case NOTE:
4353 last = emit_insn_after_1 (x, after, bb);
4354 break;
4355
4356 #ifdef ENABLE_RTL_CHECKING
4357 case SEQUENCE:
4358 gcc_unreachable ();
4359 break;
4360 #endif
4361
4362 default:
4363 last = (*make_raw) (x);
4364 add_insn_after (last, after, bb);
4365 break;
4366 }
4367
4368 return last;
4369 }
4370
4371 /* Make X be output after the insn AFTER and set the BB of insn. If
4372 BB is NULL, an attempt is made to infer the BB from AFTER. */
4373
4374 rtx
4375 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4376 {
4377 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4378 }
4379
4380
4381 /* Make an insn of code JUMP_INSN with body X
4382 and output it after the insn AFTER. */
4383
4384 rtx
4385 emit_jump_insn_after_noloc (rtx x, rtx after)
4386 {
4387 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4388 }
4389
4390 /* Make an instruction with body X and code CALL_INSN
4391 and output it after the instruction AFTER. */
4392
4393 rtx
4394 emit_call_insn_after_noloc (rtx x, rtx after)
4395 {
4396 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4397 }
4398
4399 /* Make an instruction with body X and code CALL_INSN
4400 and output it after the instruction AFTER. */
4401
4402 rtx
4403 emit_debug_insn_after_noloc (rtx x, rtx after)
4404 {
4405 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4406 }
4407
4408 /* Make an insn of code BARRIER
4409 and output it after the insn AFTER. */
4410
4411 rtx
4412 emit_barrier_after (rtx after)
4413 {
4414 rtx insn = rtx_alloc (BARRIER);
4415
4416 INSN_UID (insn) = cur_insn_uid++;
4417
4418 add_insn_after (insn, after, NULL);
4419 return insn;
4420 }
4421
4422 /* Emit the label LABEL after the insn AFTER. */
4423
4424 rtx
4425 emit_label_after (rtx label, rtx after)
4426 {
4427 gcc_checking_assert (INSN_UID (label) == 0);
4428 INSN_UID (label) = cur_insn_uid++;
4429 add_insn_after (label, after, NULL);
4430 return label;
4431 }
4432 \f
4433 /* Notes require a bit of special handling: Some notes need to have their
4434 BLOCK_FOR_INSN set, others should never have it set, and some should
4435 have it set or clear depending on the context. */
4436
4437 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4438 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4439 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4440
4441 static bool
4442 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4443 {
4444 switch (subtype)
4445 {
4446 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4447 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4448 return true;
4449
4450 /* Notes for var tracking and EH region markers can appear between or
4451 inside basic blocks. If the caller is emitting on the basic block
4452 boundary, do not set BLOCK_FOR_INSN on the new note. */
4453 case NOTE_INSN_VAR_LOCATION:
4454 case NOTE_INSN_CALL_ARG_LOCATION:
4455 case NOTE_INSN_EH_REGION_BEG:
4456 case NOTE_INSN_EH_REGION_END:
4457 return on_bb_boundary_p;
4458
4459 /* Otherwise, BLOCK_FOR_INSN must be set. */
4460 default:
4461 return false;
4462 }
4463 }
4464
4465 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4466
4467 rtx
4468 emit_note_after (enum insn_note subtype, rtx after)
4469 {
4470 rtx note = make_note_raw (subtype);
4471 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4472 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4473
4474 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4475 add_insn_after_nobb (note, after);
4476 else
4477 add_insn_after (note, after, bb);
4478 return note;
4479 }
4480
4481 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4482
4483 rtx
4484 emit_note_before (enum insn_note subtype, rtx before)
4485 {
4486 rtx note = make_note_raw (subtype);
4487 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4488 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4489
4490 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4491 add_insn_before_nobb (note, before);
4492 else
4493 add_insn_before (note, before, bb);
4494 return note;
4495 }
4496 \f
4497 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4498 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4499
4500 static rtx
4501 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4502 rtx (*make_raw) (rtx))
4503 {
4504 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4505
4506 if (pattern == NULL_RTX || !loc)
4507 return last;
4508
4509 after = NEXT_INSN (after);
4510 while (1)
4511 {
4512 if (active_insn_p (after) && !INSN_LOCATION (after))
4513 INSN_LOCATION (after) = loc;
4514 if (after == last)
4515 break;
4516 after = NEXT_INSN (after);
4517 }
4518 return last;
4519 }
4520
4521 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4522 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4523 any DEBUG_INSNs. */
4524
4525 static rtx
4526 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4527 rtx (*make_raw) (rtx))
4528 {
4529 rtx prev = after;
4530
4531 if (skip_debug_insns)
4532 while (DEBUG_INSN_P (prev))
4533 prev = PREV_INSN (prev);
4534
4535 if (INSN_P (prev))
4536 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4537 make_raw);
4538 else
4539 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4540 }
4541
4542 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4543 rtx
4544 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4545 {
4546 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4547 }
4548
4549 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4550 rtx
4551 emit_insn_after (rtx pattern, rtx after)
4552 {
4553 return emit_pattern_after (pattern, after, true, make_insn_raw);
4554 }
4555
4556 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4557 rtx
4558 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4559 {
4560 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4561 }
4562
4563 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4564 rtx
4565 emit_jump_insn_after (rtx pattern, rtx after)
4566 {
4567 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4568 }
4569
4570 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4571 rtx
4572 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4573 {
4574 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4575 }
4576
4577 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4578 rtx
4579 emit_call_insn_after (rtx pattern, rtx after)
4580 {
4581 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4582 }
4583
4584 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4585 rtx
4586 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4587 {
4588 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4589 }
4590
4591 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4592 rtx
4593 emit_debug_insn_after (rtx pattern, rtx after)
4594 {
4595 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4596 }
4597
4598 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4599 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4600 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4601 CALL_INSN, etc. */
4602
4603 static rtx
4604 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4605 rtx (*make_raw) (rtx))
4606 {
4607 rtx first = PREV_INSN (before);
4608 rtx last = emit_pattern_before_noloc (pattern, before,
4609 insnp ? before : NULL_RTX,
4610 NULL, make_raw);
4611
4612 if (pattern == NULL_RTX || !loc)
4613 return last;
4614
4615 if (!first)
4616 first = get_insns ();
4617 else
4618 first = NEXT_INSN (first);
4619 while (1)
4620 {
4621 if (active_insn_p (first) && !INSN_LOCATION (first))
4622 INSN_LOCATION (first) = loc;
4623 if (first == last)
4624 break;
4625 first = NEXT_INSN (first);
4626 }
4627 return last;
4628 }
4629
4630 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4631 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4632 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4633 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4634
4635 static rtx
4636 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4637 bool insnp, rtx (*make_raw) (rtx))
4638 {
4639 rtx next = before;
4640
4641 if (skip_debug_insns)
4642 while (DEBUG_INSN_P (next))
4643 next = PREV_INSN (next);
4644
4645 if (INSN_P (next))
4646 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4647 insnp, make_raw);
4648 else
4649 return emit_pattern_before_noloc (pattern, before,
4650 insnp ? before : NULL_RTX,
4651 NULL, make_raw);
4652 }
4653
4654 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4655 rtx
4656 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4657 {
4658 return emit_pattern_before_setloc (pattern, before, loc, true,
4659 make_insn_raw);
4660 }
4661
4662 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4663 rtx
4664 emit_insn_before (rtx pattern, rtx before)
4665 {
4666 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4667 }
4668
4669 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4670 rtx
4671 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4672 {
4673 return emit_pattern_before_setloc (pattern, before, loc, false,
4674 make_jump_insn_raw);
4675 }
4676
4677 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4678 rtx
4679 emit_jump_insn_before (rtx pattern, rtx before)
4680 {
4681 return emit_pattern_before (pattern, before, true, false,
4682 make_jump_insn_raw);
4683 }
4684
4685 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4686 rtx
4687 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4688 {
4689 return emit_pattern_before_setloc (pattern, before, loc, false,
4690 make_call_insn_raw);
4691 }
4692
4693 /* Like emit_call_insn_before_noloc,
4694 but set insn_location according to BEFORE. */
4695 rtx
4696 emit_call_insn_before (rtx pattern, rtx before)
4697 {
4698 return emit_pattern_before (pattern, before, true, false,
4699 make_call_insn_raw);
4700 }
4701
4702 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4703 rtx
4704 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4705 {
4706 return emit_pattern_before_setloc (pattern, before, loc, false,
4707 make_debug_insn_raw);
4708 }
4709
4710 /* Like emit_debug_insn_before_noloc,
4711 but set insn_location according to BEFORE. */
4712 rtx
4713 emit_debug_insn_before (rtx pattern, rtx before)
4714 {
4715 return emit_pattern_before (pattern, before, false, false,
4716 make_debug_insn_raw);
4717 }
4718 \f
4719 /* Take X and emit it at the end of the doubly-linked
4720 INSN list.
4721
4722 Returns the last insn emitted. */
4723
4724 rtx
4725 emit_insn (rtx x)
4726 {
4727 rtx last = get_last_insn();
4728 rtx insn;
4729
4730 if (x == NULL_RTX)
4731 return last;
4732
4733 switch (GET_CODE (x))
4734 {
4735 case DEBUG_INSN:
4736 case INSN:
4737 case JUMP_INSN:
4738 case CALL_INSN:
4739 case CODE_LABEL:
4740 case BARRIER:
4741 case NOTE:
4742 insn = x;
4743 while (insn)
4744 {
4745 rtx next = NEXT_INSN (insn);
4746 add_insn (insn);
4747 last = insn;
4748 insn = next;
4749 }
4750 break;
4751
4752 #ifdef ENABLE_RTL_CHECKING
4753 case JUMP_TABLE_DATA:
4754 case SEQUENCE:
4755 gcc_unreachable ();
4756 break;
4757 #endif
4758
4759 default:
4760 last = make_insn_raw (x);
4761 add_insn (last);
4762 break;
4763 }
4764
4765 return last;
4766 }
4767
4768 /* Make an insn of code DEBUG_INSN with pattern X
4769 and add it to the end of the doubly-linked list. */
4770
4771 rtx
4772 emit_debug_insn (rtx x)
4773 {
4774 rtx last = get_last_insn();
4775 rtx insn;
4776
4777 if (x == NULL_RTX)
4778 return last;
4779
4780 switch (GET_CODE (x))
4781 {
4782 case DEBUG_INSN:
4783 case INSN:
4784 case JUMP_INSN:
4785 case CALL_INSN:
4786 case CODE_LABEL:
4787 case BARRIER:
4788 case NOTE:
4789 insn = x;
4790 while (insn)
4791 {
4792 rtx next = NEXT_INSN (insn);
4793 add_insn (insn);
4794 last = insn;
4795 insn = next;
4796 }
4797 break;
4798
4799 #ifdef ENABLE_RTL_CHECKING
4800 case JUMP_TABLE_DATA:
4801 case SEQUENCE:
4802 gcc_unreachable ();
4803 break;
4804 #endif
4805
4806 default:
4807 last = make_debug_insn_raw (x);
4808 add_insn (last);
4809 break;
4810 }
4811
4812 return last;
4813 }
4814
4815 /* Make an insn of code JUMP_INSN with pattern X
4816 and add it to the end of the doubly-linked list. */
4817
4818 rtx
4819 emit_jump_insn (rtx x)
4820 {
4821 rtx last = NULL_RTX, insn;
4822
4823 switch (GET_CODE (x))
4824 {
4825 case DEBUG_INSN:
4826 case INSN:
4827 case JUMP_INSN:
4828 case CALL_INSN:
4829 case CODE_LABEL:
4830 case BARRIER:
4831 case NOTE:
4832 insn = x;
4833 while (insn)
4834 {
4835 rtx next = NEXT_INSN (insn);
4836 add_insn (insn);
4837 last = insn;
4838 insn = next;
4839 }
4840 break;
4841
4842 #ifdef ENABLE_RTL_CHECKING
4843 case JUMP_TABLE_DATA:
4844 case SEQUENCE:
4845 gcc_unreachable ();
4846 break;
4847 #endif
4848
4849 default:
4850 last = make_jump_insn_raw (x);
4851 add_insn (last);
4852 break;
4853 }
4854
4855 return last;
4856 }
4857
4858 /* Make an insn of code CALL_INSN with pattern X
4859 and add it to the end of the doubly-linked list. */
4860
4861 rtx
4862 emit_call_insn (rtx x)
4863 {
4864 rtx insn;
4865
4866 switch (GET_CODE (x))
4867 {
4868 case DEBUG_INSN:
4869 case INSN:
4870 case JUMP_INSN:
4871 case CALL_INSN:
4872 case CODE_LABEL:
4873 case BARRIER:
4874 case NOTE:
4875 insn = emit_insn (x);
4876 break;
4877
4878 #ifdef ENABLE_RTL_CHECKING
4879 case SEQUENCE:
4880 case JUMP_TABLE_DATA:
4881 gcc_unreachable ();
4882 break;
4883 #endif
4884
4885 default:
4886 insn = make_call_insn_raw (x);
4887 add_insn (insn);
4888 break;
4889 }
4890
4891 return insn;
4892 }
4893
4894 /* Add the label LABEL to the end of the doubly-linked list. */
4895
4896 rtx
4897 emit_label (rtx label)
4898 {
4899 gcc_checking_assert (INSN_UID (label) == 0);
4900 INSN_UID (label) = cur_insn_uid++;
4901 add_insn (label);
4902 return label;
4903 }
4904
4905 /* Make an insn of code JUMP_TABLE_DATA
4906 and add it to the end of the doubly-linked list. */
4907
4908 rtx
4909 emit_jump_table_data (rtx table)
4910 {
4911 rtx jump_table_data = rtx_alloc (JUMP_TABLE_DATA);
4912 INSN_UID (jump_table_data) = cur_insn_uid++;
4913 PATTERN (jump_table_data) = table;
4914 BLOCK_FOR_INSN (jump_table_data) = NULL;
4915 add_insn (jump_table_data);
4916 return jump_table_data;
4917 }
4918
4919 /* Make an insn of code BARRIER
4920 and add it to the end of the doubly-linked list. */
4921
4922 rtx
4923 emit_barrier (void)
4924 {
4925 rtx barrier = rtx_alloc (BARRIER);
4926 INSN_UID (barrier) = cur_insn_uid++;
4927 add_insn (barrier);
4928 return barrier;
4929 }
4930
4931 /* Emit a copy of note ORIG. */
4932
4933 rtx
4934 emit_note_copy (rtx orig)
4935 {
4936 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
4937 rtx note = make_note_raw (kind);
4938 NOTE_DATA (note) = NOTE_DATA (orig);
4939 add_insn (note);
4940 return note;
4941 }
4942
4943 /* Make an insn of code NOTE or type NOTE_NO
4944 and add it to the end of the doubly-linked list. */
4945
4946 rtx
4947 emit_note (enum insn_note kind)
4948 {
4949 rtx note = make_note_raw (kind);
4950 add_insn (note);
4951 return note;
4952 }
4953
4954 /* Emit a clobber of lvalue X. */
4955
4956 rtx
4957 emit_clobber (rtx x)
4958 {
4959 /* CONCATs should not appear in the insn stream. */
4960 if (GET_CODE (x) == CONCAT)
4961 {
4962 emit_clobber (XEXP (x, 0));
4963 return emit_clobber (XEXP (x, 1));
4964 }
4965 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4966 }
4967
4968 /* Return a sequence of insns to clobber lvalue X. */
4969
4970 rtx
4971 gen_clobber (rtx x)
4972 {
4973 rtx seq;
4974
4975 start_sequence ();
4976 emit_clobber (x);
4977 seq = get_insns ();
4978 end_sequence ();
4979 return seq;
4980 }
4981
4982 /* Emit a use of rvalue X. */
4983
4984 rtx
4985 emit_use (rtx x)
4986 {
4987 /* CONCATs should not appear in the insn stream. */
4988 if (GET_CODE (x) == CONCAT)
4989 {
4990 emit_use (XEXP (x, 0));
4991 return emit_use (XEXP (x, 1));
4992 }
4993 return emit_insn (gen_rtx_USE (VOIDmode, x));
4994 }
4995
4996 /* Return a sequence of insns to use rvalue X. */
4997
4998 rtx
4999 gen_use (rtx x)
5000 {
5001 rtx seq;
5002
5003 start_sequence ();
5004 emit_use (x);
5005 seq = get_insns ();
5006 end_sequence ();
5007 return seq;
5008 }
5009
5010 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5011 note of this type already exists, remove it first. */
5012
5013 rtx
5014 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5015 {
5016 rtx note = find_reg_note (insn, kind, NULL_RTX);
5017
5018 switch (kind)
5019 {
5020 case REG_EQUAL:
5021 case REG_EQUIV:
5022 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5023 has multiple sets (some callers assume single_set
5024 means the insn only has one set, when in fact it
5025 means the insn only has one * useful * set). */
5026 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5027 {
5028 gcc_assert (!note);
5029 return NULL_RTX;
5030 }
5031
5032 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5033 It serves no useful purpose and breaks eliminate_regs. */
5034 if (GET_CODE (datum) == ASM_OPERANDS)
5035 return NULL_RTX;
5036
5037 if (note)
5038 {
5039 XEXP (note, 0) = datum;
5040 df_notes_rescan (insn);
5041 return note;
5042 }
5043 break;
5044
5045 default:
5046 if (note)
5047 {
5048 XEXP (note, 0) = datum;
5049 return note;
5050 }
5051 break;
5052 }
5053
5054 add_reg_note (insn, kind, datum);
5055
5056 switch (kind)
5057 {
5058 case REG_EQUAL:
5059 case REG_EQUIV:
5060 df_notes_rescan (insn);
5061 break;
5062 default:
5063 break;
5064 }
5065
5066 return REG_NOTES (insn);
5067 }
5068
5069 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5070 rtx
5071 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5072 {
5073 rtx set = single_set (insn);
5074
5075 if (set && SET_DEST (set) == dst)
5076 return set_unique_reg_note (insn, kind, datum);
5077 return NULL_RTX;
5078 }
5079 \f
5080 /* Return an indication of which type of insn should have X as a body.
5081 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5082
5083 static enum rtx_code
5084 classify_insn (rtx x)
5085 {
5086 if (LABEL_P (x))
5087 return CODE_LABEL;
5088 if (GET_CODE (x) == CALL)
5089 return CALL_INSN;
5090 if (ANY_RETURN_P (x))
5091 return JUMP_INSN;
5092 if (GET_CODE (x) == SET)
5093 {
5094 if (SET_DEST (x) == pc_rtx)
5095 return JUMP_INSN;
5096 else if (GET_CODE (SET_SRC (x)) == CALL)
5097 return CALL_INSN;
5098 else
5099 return INSN;
5100 }
5101 if (GET_CODE (x) == PARALLEL)
5102 {
5103 int j;
5104 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5105 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5106 return CALL_INSN;
5107 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5108 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5109 return JUMP_INSN;
5110 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5111 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5112 return CALL_INSN;
5113 }
5114 return INSN;
5115 }
5116
5117 /* Emit the rtl pattern X as an appropriate kind of insn.
5118 If X is a label, it is simply added into the insn chain. */
5119
5120 rtx
5121 emit (rtx x)
5122 {
5123 enum rtx_code code = classify_insn (x);
5124
5125 switch (code)
5126 {
5127 case CODE_LABEL:
5128 return emit_label (x);
5129 case INSN:
5130 return emit_insn (x);
5131 case JUMP_INSN:
5132 {
5133 rtx insn = emit_jump_insn (x);
5134 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5135 return emit_barrier ();
5136 return insn;
5137 }
5138 case CALL_INSN:
5139 return emit_call_insn (x);
5140 case DEBUG_INSN:
5141 return emit_debug_insn (x);
5142 default:
5143 gcc_unreachable ();
5144 }
5145 }
5146 \f
5147 /* Space for free sequence stack entries. */
5148 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5149
5150 /* Begin emitting insns to a sequence. If this sequence will contain
5151 something that might cause the compiler to pop arguments to function
5152 calls (because those pops have previously been deferred; see
5153 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5154 before calling this function. That will ensure that the deferred
5155 pops are not accidentally emitted in the middle of this sequence. */
5156
5157 void
5158 start_sequence (void)
5159 {
5160 struct sequence_stack *tem;
5161
5162 if (free_sequence_stack != NULL)
5163 {
5164 tem = free_sequence_stack;
5165 free_sequence_stack = tem->next;
5166 }
5167 else
5168 tem = ggc_alloc_sequence_stack ();
5169
5170 tem->next = seq_stack;
5171 tem->first = get_insns ();
5172 tem->last = get_last_insn ();
5173
5174 seq_stack = tem;
5175
5176 set_first_insn (0);
5177 set_last_insn (0);
5178 }
5179
5180 /* Set up the insn chain starting with FIRST as the current sequence,
5181 saving the previously current one. See the documentation for
5182 start_sequence for more information about how to use this function. */
5183
5184 void
5185 push_to_sequence (rtx first)
5186 {
5187 rtx last;
5188
5189 start_sequence ();
5190
5191 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5192 ;
5193
5194 set_first_insn (first);
5195 set_last_insn (last);
5196 }
5197
5198 /* Like push_to_sequence, but take the last insn as an argument to avoid
5199 looping through the list. */
5200
5201 void
5202 push_to_sequence2 (rtx first, rtx last)
5203 {
5204 start_sequence ();
5205
5206 set_first_insn (first);
5207 set_last_insn (last);
5208 }
5209
5210 /* Set up the outer-level insn chain
5211 as the current sequence, saving the previously current one. */
5212
5213 void
5214 push_topmost_sequence (void)
5215 {
5216 struct sequence_stack *stack, *top = NULL;
5217
5218 start_sequence ();
5219
5220 for (stack = seq_stack; stack; stack = stack->next)
5221 top = stack;
5222
5223 set_first_insn (top->first);
5224 set_last_insn (top->last);
5225 }
5226
5227 /* After emitting to the outer-level insn chain, update the outer-level
5228 insn chain, and restore the previous saved state. */
5229
5230 void
5231 pop_topmost_sequence (void)
5232 {
5233 struct sequence_stack *stack, *top = NULL;
5234
5235 for (stack = seq_stack; stack; stack = stack->next)
5236 top = stack;
5237
5238 top->first = get_insns ();
5239 top->last = get_last_insn ();
5240
5241 end_sequence ();
5242 }
5243
5244 /* After emitting to a sequence, restore previous saved state.
5245
5246 To get the contents of the sequence just made, you must call
5247 `get_insns' *before* calling here.
5248
5249 If the compiler might have deferred popping arguments while
5250 generating this sequence, and this sequence will not be immediately
5251 inserted into the instruction stream, use do_pending_stack_adjust
5252 before calling get_insns. That will ensure that the deferred
5253 pops are inserted into this sequence, and not into some random
5254 location in the instruction stream. See INHIBIT_DEFER_POP for more
5255 information about deferred popping of arguments. */
5256
5257 void
5258 end_sequence (void)
5259 {
5260 struct sequence_stack *tem = seq_stack;
5261
5262 set_first_insn (tem->first);
5263 set_last_insn (tem->last);
5264 seq_stack = tem->next;
5265
5266 memset (tem, 0, sizeof (*tem));
5267 tem->next = free_sequence_stack;
5268 free_sequence_stack = tem;
5269 }
5270
5271 /* Return 1 if currently emitting into a sequence. */
5272
5273 int
5274 in_sequence_p (void)
5275 {
5276 return seq_stack != 0;
5277 }
5278 \f
5279 /* Put the various virtual registers into REGNO_REG_RTX. */
5280
5281 static void
5282 init_virtual_regs (void)
5283 {
5284 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5285 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5286 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5287 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5288 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5289 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5290 = virtual_preferred_stack_boundary_rtx;
5291 }
5292
5293 \f
5294 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5295 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5296 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5297 static int copy_insn_n_scratches;
5298
5299 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5300 copied an ASM_OPERANDS.
5301 In that case, it is the original input-operand vector. */
5302 static rtvec orig_asm_operands_vector;
5303
5304 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5305 copied an ASM_OPERANDS.
5306 In that case, it is the copied input-operand vector. */
5307 static rtvec copy_asm_operands_vector;
5308
5309 /* Likewise for the constraints vector. */
5310 static rtvec orig_asm_constraints_vector;
5311 static rtvec copy_asm_constraints_vector;
5312
5313 /* Recursively create a new copy of an rtx for copy_insn.
5314 This function differs from copy_rtx in that it handles SCRATCHes and
5315 ASM_OPERANDs properly.
5316 Normally, this function is not used directly; use copy_insn as front end.
5317 However, you could first copy an insn pattern with copy_insn and then use
5318 this function afterwards to properly copy any REG_NOTEs containing
5319 SCRATCHes. */
5320
5321 rtx
5322 copy_insn_1 (rtx orig)
5323 {
5324 rtx copy;
5325 int i, j;
5326 RTX_CODE code;
5327 const char *format_ptr;
5328
5329 if (orig == NULL)
5330 return NULL;
5331
5332 code = GET_CODE (orig);
5333
5334 switch (code)
5335 {
5336 case REG:
5337 case DEBUG_EXPR:
5338 CASE_CONST_ANY:
5339 case SYMBOL_REF:
5340 case CODE_LABEL:
5341 case PC:
5342 case CC0:
5343 case RETURN:
5344 case SIMPLE_RETURN:
5345 return orig;
5346 case CLOBBER:
5347 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5348 clobbers or clobbers of hard registers that originated as pseudos.
5349 This is needed to allow safe register renaming. */
5350 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5351 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5352 return orig;
5353 break;
5354
5355 case SCRATCH:
5356 for (i = 0; i < copy_insn_n_scratches; i++)
5357 if (copy_insn_scratch_in[i] == orig)
5358 return copy_insn_scratch_out[i];
5359 break;
5360
5361 case CONST:
5362 if (shared_const_p (orig))
5363 return orig;
5364 break;
5365
5366 /* A MEM with a constant address is not sharable. The problem is that
5367 the constant address may need to be reloaded. If the mem is shared,
5368 then reloading one copy of this mem will cause all copies to appear
5369 to have been reloaded. */
5370
5371 default:
5372 break;
5373 }
5374
5375 /* Copy the various flags, fields, and other information. We assume
5376 that all fields need copying, and then clear the fields that should
5377 not be copied. That is the sensible default behavior, and forces
5378 us to explicitly document why we are *not* copying a flag. */
5379 copy = shallow_copy_rtx (orig);
5380
5381 /* We do not copy the USED flag, which is used as a mark bit during
5382 walks over the RTL. */
5383 RTX_FLAG (copy, used) = 0;
5384
5385 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5386 if (INSN_P (orig))
5387 {
5388 RTX_FLAG (copy, jump) = 0;
5389 RTX_FLAG (copy, call) = 0;
5390 RTX_FLAG (copy, frame_related) = 0;
5391 }
5392
5393 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5394
5395 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5396 switch (*format_ptr++)
5397 {
5398 case 'e':
5399 if (XEXP (orig, i) != NULL)
5400 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5401 break;
5402
5403 case 'E':
5404 case 'V':
5405 if (XVEC (orig, i) == orig_asm_constraints_vector)
5406 XVEC (copy, i) = copy_asm_constraints_vector;
5407 else if (XVEC (orig, i) == orig_asm_operands_vector)
5408 XVEC (copy, i) = copy_asm_operands_vector;
5409 else if (XVEC (orig, i) != NULL)
5410 {
5411 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5412 for (j = 0; j < XVECLEN (copy, i); j++)
5413 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5414 }
5415 break;
5416
5417 case 't':
5418 case 'w':
5419 case 'i':
5420 case 's':
5421 case 'S':
5422 case 'u':
5423 case '0':
5424 /* These are left unchanged. */
5425 break;
5426
5427 default:
5428 gcc_unreachable ();
5429 }
5430
5431 if (code == SCRATCH)
5432 {
5433 i = copy_insn_n_scratches++;
5434 gcc_assert (i < MAX_RECOG_OPERANDS);
5435 copy_insn_scratch_in[i] = orig;
5436 copy_insn_scratch_out[i] = copy;
5437 }
5438 else if (code == ASM_OPERANDS)
5439 {
5440 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5441 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5442 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5443 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5444 }
5445
5446 return copy;
5447 }
5448
5449 /* Create a new copy of an rtx.
5450 This function differs from copy_rtx in that it handles SCRATCHes and
5451 ASM_OPERANDs properly.
5452 INSN doesn't really have to be a full INSN; it could be just the
5453 pattern. */
5454 rtx
5455 copy_insn (rtx insn)
5456 {
5457 copy_insn_n_scratches = 0;
5458 orig_asm_operands_vector = 0;
5459 orig_asm_constraints_vector = 0;
5460 copy_asm_operands_vector = 0;
5461 copy_asm_constraints_vector = 0;
5462 return copy_insn_1 (insn);
5463 }
5464
5465 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5466 on that assumption that INSN itself remains in its original place. */
5467
5468 rtx
5469 copy_delay_slot_insn (rtx insn)
5470 {
5471 /* Copy INSN with its rtx_code, all its notes, location etc. */
5472 insn = copy_rtx (insn);
5473 INSN_UID (insn) = cur_insn_uid++;
5474 return insn;
5475 }
5476
5477 /* Initialize data structures and variables in this file
5478 before generating rtl for each function. */
5479
5480 void
5481 init_emit (void)
5482 {
5483 set_first_insn (NULL);
5484 set_last_insn (NULL);
5485 if (MIN_NONDEBUG_INSN_UID)
5486 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5487 else
5488 cur_insn_uid = 1;
5489 cur_debug_insn_uid = 1;
5490 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5491 first_label_num = label_num;
5492 seq_stack = NULL;
5493
5494 /* Init the tables that describe all the pseudo regs. */
5495
5496 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5497
5498 crtl->emit.regno_pointer_align
5499 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5500
5501 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5502
5503 /* Put copies of all the hard registers into regno_reg_rtx. */
5504 memcpy (regno_reg_rtx,
5505 initial_regno_reg_rtx,
5506 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5507
5508 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5509 init_virtual_regs ();
5510
5511 /* Indicate that the virtual registers and stack locations are
5512 all pointers. */
5513 REG_POINTER (stack_pointer_rtx) = 1;
5514 REG_POINTER (frame_pointer_rtx) = 1;
5515 REG_POINTER (hard_frame_pointer_rtx) = 1;
5516 REG_POINTER (arg_pointer_rtx) = 1;
5517
5518 REG_POINTER (virtual_incoming_args_rtx) = 1;
5519 REG_POINTER (virtual_stack_vars_rtx) = 1;
5520 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5521 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5522 REG_POINTER (virtual_cfa_rtx) = 1;
5523
5524 #ifdef STACK_BOUNDARY
5525 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5526 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5527 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5528 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5529
5530 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5531 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5532 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5533 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5534 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5535 #endif
5536
5537 #ifdef INIT_EXPANDERS
5538 INIT_EXPANDERS;
5539 #endif
5540 }
5541
5542 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5543
5544 static rtx
5545 gen_const_vector (enum machine_mode mode, int constant)
5546 {
5547 rtx tem;
5548 rtvec v;
5549 int units, i;
5550 enum machine_mode inner;
5551
5552 units = GET_MODE_NUNITS (mode);
5553 inner = GET_MODE_INNER (mode);
5554
5555 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5556
5557 v = rtvec_alloc (units);
5558
5559 /* We need to call this function after we set the scalar const_tiny_rtx
5560 entries. */
5561 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5562
5563 for (i = 0; i < units; ++i)
5564 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5565
5566 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5567 return tem;
5568 }
5569
5570 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5571 all elements are zero, and the one vector when all elements are one. */
5572 rtx
5573 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5574 {
5575 enum machine_mode inner = GET_MODE_INNER (mode);
5576 int nunits = GET_MODE_NUNITS (mode);
5577 rtx x;
5578 int i;
5579
5580 /* Check to see if all of the elements have the same value. */
5581 x = RTVEC_ELT (v, nunits - 1);
5582 for (i = nunits - 2; i >= 0; i--)
5583 if (RTVEC_ELT (v, i) != x)
5584 break;
5585
5586 /* If the values are all the same, check to see if we can use one of the
5587 standard constant vectors. */
5588 if (i == -1)
5589 {
5590 if (x == CONST0_RTX (inner))
5591 return CONST0_RTX (mode);
5592 else if (x == CONST1_RTX (inner))
5593 return CONST1_RTX (mode);
5594 else if (x == CONSTM1_RTX (inner))
5595 return CONSTM1_RTX (mode);
5596 }
5597
5598 return gen_rtx_raw_CONST_VECTOR (mode, v);
5599 }
5600
5601 /* Initialise global register information required by all functions. */
5602
5603 void
5604 init_emit_regs (void)
5605 {
5606 int i;
5607 enum machine_mode mode;
5608 mem_attrs *attrs;
5609
5610 /* Reset register attributes */
5611 htab_empty (reg_attrs_htab);
5612
5613 /* We need reg_raw_mode, so initialize the modes now. */
5614 init_reg_modes_target ();
5615
5616 /* Assign register numbers to the globally defined register rtx. */
5617 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5618 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5619 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5620 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5621 virtual_incoming_args_rtx =
5622 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5623 virtual_stack_vars_rtx =
5624 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5625 virtual_stack_dynamic_rtx =
5626 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5627 virtual_outgoing_args_rtx =
5628 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5629 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5630 virtual_preferred_stack_boundary_rtx =
5631 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5632
5633 /* Initialize RTL for commonly used hard registers. These are
5634 copied into regno_reg_rtx as we begin to compile each function. */
5635 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5636 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5637
5638 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5639 return_address_pointer_rtx
5640 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5641 #endif
5642
5643 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5644 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5645 else
5646 pic_offset_table_rtx = NULL_RTX;
5647
5648 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5649 {
5650 mode = (enum machine_mode) i;
5651 attrs = ggc_alloc_cleared_mem_attrs ();
5652 attrs->align = BITS_PER_UNIT;
5653 attrs->addrspace = ADDR_SPACE_GENERIC;
5654 if (mode != BLKmode)
5655 {
5656 attrs->size_known_p = true;
5657 attrs->size = GET_MODE_SIZE (mode);
5658 if (STRICT_ALIGNMENT)
5659 attrs->align = GET_MODE_ALIGNMENT (mode);
5660 }
5661 mode_mem_attrs[i] = attrs;
5662 }
5663 }
5664
5665 /* Create some permanent unique rtl objects shared between all functions. */
5666
5667 void
5668 init_emit_once (void)
5669 {
5670 int i;
5671 enum machine_mode mode;
5672 enum machine_mode double_mode;
5673
5674 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5675 hash tables. */
5676 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5677 const_int_htab_eq, NULL);
5678
5679 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5680 const_double_htab_eq, NULL);
5681
5682 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5683 const_fixed_htab_eq, NULL);
5684
5685 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5686 mem_attrs_htab_eq, NULL);
5687 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5688 reg_attrs_htab_eq, NULL);
5689
5690 /* Compute the word and byte modes. */
5691
5692 byte_mode = VOIDmode;
5693 word_mode = VOIDmode;
5694 double_mode = VOIDmode;
5695
5696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5697 mode != VOIDmode;
5698 mode = GET_MODE_WIDER_MODE (mode))
5699 {
5700 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5701 && byte_mode == VOIDmode)
5702 byte_mode = mode;
5703
5704 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5705 && word_mode == VOIDmode)
5706 word_mode = mode;
5707 }
5708
5709 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5710 mode != VOIDmode;
5711 mode = GET_MODE_WIDER_MODE (mode))
5712 {
5713 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5714 && double_mode == VOIDmode)
5715 double_mode = mode;
5716 }
5717
5718 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5719
5720 #ifdef INIT_EXPANDERS
5721 /* This is to initialize {init|mark|free}_machine_status before the first
5722 call to push_function_context_to. This is needed by the Chill front
5723 end which calls push_function_context_to before the first call to
5724 init_function_start. */
5725 INIT_EXPANDERS;
5726 #endif
5727
5728 /* Create the unique rtx's for certain rtx codes and operand values. */
5729
5730 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5731 tries to use these variables. */
5732 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5733 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5734 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5735
5736 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5737 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5738 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5739 else
5740 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5741
5742 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5743 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5744 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5745
5746 dconstm1 = dconst1;
5747 dconstm1.sign = 1;
5748
5749 dconsthalf = dconst1;
5750 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5751
5752 for (i = 0; i < 3; i++)
5753 {
5754 const REAL_VALUE_TYPE *const r =
5755 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5756
5757 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5758 mode != VOIDmode;
5759 mode = GET_MODE_WIDER_MODE (mode))
5760 const_tiny_rtx[i][(int) mode] =
5761 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5762
5763 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5764 mode != VOIDmode;
5765 mode = GET_MODE_WIDER_MODE (mode))
5766 const_tiny_rtx[i][(int) mode] =
5767 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5768
5769 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5770
5771 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5772 mode != VOIDmode;
5773 mode = GET_MODE_WIDER_MODE (mode))
5774 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5775
5776 for (mode = MIN_MODE_PARTIAL_INT;
5777 mode <= MAX_MODE_PARTIAL_INT;
5778 mode = (enum machine_mode)((int)(mode) + 1))
5779 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5780 }
5781
5782 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5783
5784 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5785 mode != VOIDmode;
5786 mode = GET_MODE_WIDER_MODE (mode))
5787 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5788
5789 for (mode = MIN_MODE_PARTIAL_INT;
5790 mode <= MAX_MODE_PARTIAL_INT;
5791 mode = (enum machine_mode)((int)(mode) + 1))
5792 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5793
5794 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5795 mode != VOIDmode;
5796 mode = GET_MODE_WIDER_MODE (mode))
5797 {
5798 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5799 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5800 }
5801
5802 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5803 mode != VOIDmode;
5804 mode = GET_MODE_WIDER_MODE (mode))
5805 {
5806 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5807 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5808 }
5809
5810 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5811 mode != VOIDmode;
5812 mode = GET_MODE_WIDER_MODE (mode))
5813 {
5814 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5815 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5816 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5817 }
5818
5819 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5820 mode != VOIDmode;
5821 mode = GET_MODE_WIDER_MODE (mode))
5822 {
5823 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5824 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5825 }
5826
5827 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5828 mode != VOIDmode;
5829 mode = GET_MODE_WIDER_MODE (mode))
5830 {
5831 FCONST0(mode).data.high = 0;
5832 FCONST0(mode).data.low = 0;
5833 FCONST0(mode).mode = mode;
5834 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5835 FCONST0 (mode), mode);
5836 }
5837
5838 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5839 mode != VOIDmode;
5840 mode = GET_MODE_WIDER_MODE (mode))
5841 {
5842 FCONST0(mode).data.high = 0;
5843 FCONST0(mode).data.low = 0;
5844 FCONST0(mode).mode = mode;
5845 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5846 FCONST0 (mode), mode);
5847 }
5848
5849 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5850 mode != VOIDmode;
5851 mode = GET_MODE_WIDER_MODE (mode))
5852 {
5853 FCONST0(mode).data.high = 0;
5854 FCONST0(mode).data.low = 0;
5855 FCONST0(mode).mode = mode;
5856 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5857 FCONST0 (mode), mode);
5858
5859 /* We store the value 1. */
5860 FCONST1(mode).data.high = 0;
5861 FCONST1(mode).data.low = 0;
5862 FCONST1(mode).mode = mode;
5863 FCONST1(mode).data
5864 = double_int_one.lshift (GET_MODE_FBIT (mode),
5865 HOST_BITS_PER_DOUBLE_INT,
5866 SIGNED_FIXED_POINT_MODE_P (mode));
5867 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5868 FCONST1 (mode), mode);
5869 }
5870
5871 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5872 mode != VOIDmode;
5873 mode = GET_MODE_WIDER_MODE (mode))
5874 {
5875 FCONST0(mode).data.high = 0;
5876 FCONST0(mode).data.low = 0;
5877 FCONST0(mode).mode = mode;
5878 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5879 FCONST0 (mode), mode);
5880
5881 /* We store the value 1. */
5882 FCONST1(mode).data.high = 0;
5883 FCONST1(mode).data.low = 0;
5884 FCONST1(mode).mode = mode;
5885 FCONST1(mode).data
5886 = double_int_one.lshift (GET_MODE_FBIT (mode),
5887 HOST_BITS_PER_DOUBLE_INT,
5888 SIGNED_FIXED_POINT_MODE_P (mode));
5889 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5890 FCONST1 (mode), mode);
5891 }
5892
5893 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5894 mode != VOIDmode;
5895 mode = GET_MODE_WIDER_MODE (mode))
5896 {
5897 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5898 }
5899
5900 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5901 mode != VOIDmode;
5902 mode = GET_MODE_WIDER_MODE (mode))
5903 {
5904 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5905 }
5906
5907 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5908 mode != VOIDmode;
5909 mode = GET_MODE_WIDER_MODE (mode))
5910 {
5911 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5912 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5913 }
5914
5915 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5916 mode != VOIDmode;
5917 mode = GET_MODE_WIDER_MODE (mode))
5918 {
5919 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5920 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5921 }
5922
5923 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5924 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5925 const_tiny_rtx[0][i] = const0_rtx;
5926
5927 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5928 if (STORE_FLAG_VALUE == 1)
5929 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5930
5931 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5932 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5933 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5934 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5935 }
5936 \f
5937 /* Produce exact duplicate of insn INSN after AFTER.
5938 Care updating of libcall regions if present. */
5939
5940 rtx
5941 emit_copy_of_insn_after (rtx insn, rtx after)
5942 {
5943 rtx new_rtx, link;
5944
5945 switch (GET_CODE (insn))
5946 {
5947 case INSN:
5948 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5949 break;
5950
5951 case JUMP_INSN:
5952 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5953 break;
5954
5955 case DEBUG_INSN:
5956 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5957 break;
5958
5959 case CALL_INSN:
5960 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5961 if (CALL_INSN_FUNCTION_USAGE (insn))
5962 CALL_INSN_FUNCTION_USAGE (new_rtx)
5963 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5964 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5965 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5966 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5967 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5968 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5969 break;
5970
5971 default:
5972 gcc_unreachable ();
5973 }
5974
5975 /* Update LABEL_NUSES. */
5976 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5977
5978 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
5979
5980 /* If the old insn is frame related, then so is the new one. This is
5981 primarily needed for IA-64 unwind info which marks epilogue insns,
5982 which may be duplicated by the basic block reordering code. */
5983 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5984
5985 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5986 will make them. REG_LABEL_TARGETs are created there too, but are
5987 supposed to be sticky, so we copy them. */
5988 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5989 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5990 {
5991 if (GET_CODE (link) == EXPR_LIST)
5992 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5993 copy_insn_1 (XEXP (link, 0)));
5994 else
5995 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5996 }
5997
5998 INSN_CODE (new_rtx) = INSN_CODE (insn);
5999 return new_rtx;
6000 }
6001
6002 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6003 rtx
6004 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6005 {
6006 if (hard_reg_clobbers[mode][regno])
6007 return hard_reg_clobbers[mode][regno];
6008 else
6009 return (hard_reg_clobbers[mode][regno] =
6010 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6011 }
6012
6013 location_t prologue_location;
6014 location_t epilogue_location;
6015
6016 /* Hold current location information and last location information, so the
6017 datastructures are built lazily only when some instructions in given
6018 place are needed. */
6019 static location_t curr_location;
6020
6021 /* Allocate insn location datastructure. */
6022 void
6023 insn_locations_init (void)
6024 {
6025 prologue_location = epilogue_location = 0;
6026 curr_location = UNKNOWN_LOCATION;
6027 }
6028
6029 /* At the end of emit stage, clear current location. */
6030 void
6031 insn_locations_finalize (void)
6032 {
6033 epilogue_location = curr_location;
6034 curr_location = UNKNOWN_LOCATION;
6035 }
6036
6037 /* Set current location. */
6038 void
6039 set_curr_insn_location (location_t location)
6040 {
6041 curr_location = location;
6042 }
6043
6044 /* Get current location. */
6045 location_t
6046 curr_insn_location (void)
6047 {
6048 return curr_location;
6049 }
6050
6051 /* Return lexical scope block insn belongs to. */
6052 tree
6053 insn_scope (const_rtx insn)
6054 {
6055 return LOCATION_BLOCK (INSN_LOCATION (insn));
6056 }
6057
6058 /* Return line number of the statement that produced this insn. */
6059 int
6060 insn_line (const_rtx insn)
6061 {
6062 return LOCATION_LINE (INSN_LOCATION (insn));
6063 }
6064
6065 /* Return source file of the statement that produced this insn. */
6066 const char *
6067 insn_file (const_rtx insn)
6068 {
6069 return LOCATION_FILE (INSN_LOCATION (insn));
6070 }
6071
6072 /* Return true if memory model MODEL requires a pre-operation (release-style)
6073 barrier or a post-operation (acquire-style) barrier. While not universal,
6074 this function matches behavior of several targets. */
6075
6076 bool
6077 need_atomic_barrier_p (enum memmodel model, bool pre)
6078 {
6079 switch (model & MEMMODEL_MASK)
6080 {
6081 case MEMMODEL_RELAXED:
6082 case MEMMODEL_CONSUME:
6083 return false;
6084 case MEMMODEL_RELEASE:
6085 return pre;
6086 case MEMMODEL_ACQUIRE:
6087 return !pre;
6088 case MEMMODEL_ACQ_REL:
6089 case MEMMODEL_SEQ_CST:
6090 return true;
6091 default:
6092 gcc_unreachable ();
6093 }
6094 }
6095 \f
6096 #include "gt-emit-rtl.h"