remove cast from prev_nonnote_insn_bb
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62
63 struct target_rtl default_target_rtl;
64 #if SWITCHABLE_TARGET
65 struct target_rtl *this_target_rtl = &default_target_rtl;
66 #endif
67
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69
70 /* Commonly used modes. */
71
72 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
73 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
74 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn *invalid_insn_rtx;
129
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
133 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 {
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139 };
140
141 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
143 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 {
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147 };
148
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 {
154 static hashval_t hash (reg_attrs *x);
155 static bool equal (reg_attrs *a, reg_attrs *b);
156 };
157
158 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
159
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
162 {
163 static hashval_t hash (rtx x);
164 static bool equal (rtx x, rtx y);
165 };
166
167 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
168
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
171 {
172 static hashval_t hash (rtx x);
173 static bool equal (rtx x, rtx y);
174 };
175
176 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
177
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
181
182 static void set_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx lookup_const_wide_int (rtx);
186 #endif
187 static rtx lookup_const_double (rtx);
188 static rtx lookup_const_fixed (rtx);
189 static reg_attrs *get_reg_attrs (tree, int);
190 static rtx gen_const_vector (machine_mode, int);
191 static void copy_rtx_if_shared_1 (rtx *orig);
192
193 /* Probability of the conditional branch currently proceeded by try_split.
194 Set to -1 otherwise. */
195 int split_branch_probability = -1;
196 \f
197 /* Returns a hash code for X (which is a really a CONST_INT). */
198
199 hashval_t
200 const_int_hasher::hash (rtx x)
201 {
202 return (hashval_t) INTVAL (x);
203 }
204
205 /* Returns nonzero if the value represented by X (which is really a
206 CONST_INT) is the same as that given by Y (which is really a
207 HOST_WIDE_INT *). */
208
209 bool
210 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
211 {
212 return (INTVAL (x) == y);
213 }
214
215 #if TARGET_SUPPORTS_WIDE_INT
216 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
217
218 hashval_t
219 const_wide_int_hasher::hash (rtx x)
220 {
221 int i;
222 unsigned HOST_WIDE_INT hash = 0;
223 const_rtx xr = x;
224
225 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
226 hash += CONST_WIDE_INT_ELT (xr, i);
227
228 return (hashval_t) hash;
229 }
230
231 /* Returns nonzero if the value represented by X (which is really a
232 CONST_WIDE_INT) is the same as that given by Y (which is really a
233 CONST_WIDE_INT). */
234
235 bool
236 const_wide_int_hasher::equal (rtx x, rtx y)
237 {
238 int i;
239 const_rtx xr = x;
240 const_rtx yr = y;
241 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
242 return false;
243
244 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
245 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
246 return false;
247
248 return true;
249 }
250 #endif
251
252 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
253 hashval_t
254 const_double_hasher::hash (rtx x)
255 {
256 const_rtx const value = x;
257 hashval_t h;
258
259 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
260 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
261 else
262 {
263 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
264 /* MODE is used in the comparison, so it should be in the hash. */
265 h ^= GET_MODE (value);
266 }
267 return h;
268 }
269
270 /* Returns nonzero if the value represented by X (really a ...)
271 is the same as that represented by Y (really a ...) */
272 bool
273 const_double_hasher::equal (rtx x, rtx y)
274 {
275 const_rtx const a = x, b = y;
276
277 if (GET_MODE (a) != GET_MODE (b))
278 return 0;
279 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
280 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
281 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
282 else
283 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
284 CONST_DOUBLE_REAL_VALUE (b));
285 }
286
287 /* Returns a hash code for X (which is really a CONST_FIXED). */
288
289 hashval_t
290 const_fixed_hasher::hash (rtx x)
291 {
292 const_rtx const value = x;
293 hashval_t h;
294
295 h = fixed_hash (CONST_FIXED_VALUE (value));
296 /* MODE is used in the comparison, so it should be in the hash. */
297 h ^= GET_MODE (value);
298 return h;
299 }
300
301 /* Returns nonzero if the value represented by X is the same as that
302 represented by Y. */
303
304 bool
305 const_fixed_hasher::equal (rtx x, rtx y)
306 {
307 const_rtx const a = x, b = y;
308
309 if (GET_MODE (a) != GET_MODE (b))
310 return 0;
311 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
312 }
313
314 /* Return true if the given memory attributes are equal. */
315
316 bool
317 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
318 {
319 if (p == q)
320 return true;
321 if (!p || !q)
322 return false;
323 return (p->alias == q->alias
324 && p->offset_known_p == q->offset_known_p
325 && (!p->offset_known_p || p->offset == q->offset)
326 && p->size_known_p == q->size_known_p
327 && (!p->size_known_p || p->size == q->size)
328 && p->align == q->align
329 && p->addrspace == q->addrspace
330 && (p->expr == q->expr
331 || (p->expr != NULL_TREE && q->expr != NULL_TREE
332 && operand_equal_p (p->expr, q->expr, 0))));
333 }
334
335 /* Set MEM's memory attributes so that they are the same as ATTRS. */
336
337 static void
338 set_mem_attrs (rtx mem, mem_attrs *attrs)
339 {
340 /* If everything is the default, we can just clear the attributes. */
341 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
342 {
343 MEM_ATTRS (mem) = 0;
344 return;
345 }
346
347 if (!MEM_ATTRS (mem)
348 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
349 {
350 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
351 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
352 }
353 }
354
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
356
357 hashval_t
358 reg_attr_hasher::hash (reg_attrs *x)
359 {
360 const reg_attrs *const p = x;
361
362 return ((p->offset * 1000) ^ (intptr_t) p->decl);
363 }
364
365 /* Returns nonzero if the value represented by X is the same as that given by
366 Y. */
367
368 bool
369 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
370 {
371 const reg_attrs *const p = x;
372 const reg_attrs *const q = y;
373
374 return (p->decl == q->decl && p->offset == q->offset);
375 }
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
378 MEM of mode MODE. */
379
380 static reg_attrs *
381 get_reg_attrs (tree decl, int offset)
382 {
383 reg_attrs attrs;
384
385 /* If everything is the default, we can just return zero. */
386 if (decl == 0 && offset == 0)
387 return 0;
388
389 attrs.decl = decl;
390 attrs.offset = offset;
391
392 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
393 if (*slot == 0)
394 {
395 *slot = ggc_alloc<reg_attrs> ();
396 memcpy (*slot, &attrs, sizeof (reg_attrs));
397 }
398
399 return *slot;
400 }
401
402
403 #if !HAVE_blockage
404 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
405 and to block register equivalences to be seen across this insn. */
406
407 rtx
408 gen_blockage (void)
409 {
410 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
411 MEM_VOLATILE_P (x) = true;
412 return x;
413 }
414 #endif
415
416
417 /* Set the mode and register number of X to MODE and REGNO. */
418
419 void
420 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
421 {
422 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
423 ? hard_regno_nregs[regno][mode]
424 : 1);
425 PUT_MODE_RAW (x, mode);
426 set_regno_raw (x, regno, nregs);
427 }
428
429 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
430 don't attempt to share with the various global pieces of rtl (such as
431 frame_pointer_rtx). */
432
433 rtx
434 gen_raw_REG (machine_mode mode, unsigned int regno)
435 {
436 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
437 set_mode_and_regno (x, mode, regno);
438 REG_ATTRS (x) = NULL;
439 ORIGINAL_REGNO (x) = regno;
440 return x;
441 }
442
443 /* There are some RTL codes that require special attention; the generation
444 functions do the raw handling. If you add to this list, modify
445 special_rtx in gengenrtl.c as well. */
446
447 rtx_expr_list *
448 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
449 {
450 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
451 expr_list));
452 }
453
454 rtx_insn_list *
455 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
456 {
457 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
458 insn_list));
459 }
460
461 rtx_insn *
462 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
463 basic_block bb, rtx pattern, int location, int code,
464 rtx reg_notes)
465 {
466 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
467 prev_insn, next_insn,
468 bb, pattern, location, code,
469 reg_notes));
470 }
471
472 rtx
473 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
474 {
475 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
476 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
477
478 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
479 if (const_true_rtx && arg == STORE_FLAG_VALUE)
480 return const_true_rtx;
481 #endif
482
483 /* Look up the CONST_INT in the hash table. */
484 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
485 INSERT);
486 if (*slot == 0)
487 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
488
489 return *slot;
490 }
491
492 rtx
493 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
494 {
495 return GEN_INT (trunc_int_for_mode (c, mode));
496 }
497
498 /* CONST_DOUBLEs might be created from pairs of integers, or from
499 REAL_VALUE_TYPEs. Also, their length is known only at run time,
500 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
501
502 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
503 hash table. If so, return its counterpart; otherwise add it
504 to the hash table and return it. */
505 static rtx
506 lookup_const_double (rtx real)
507 {
508 rtx *slot = const_double_htab->find_slot (real, INSERT);
509 if (*slot == 0)
510 *slot = real;
511
512 return *slot;
513 }
514
515 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
516 VALUE in mode MODE. */
517 rtx
518 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
519 {
520 rtx real = rtx_alloc (CONST_DOUBLE);
521 PUT_MODE (real, mode);
522
523 real->u.rv = value;
524
525 return lookup_const_double (real);
526 }
527
528 /* Determine whether FIXED, a CONST_FIXED, already exists in the
529 hash table. If so, return its counterpart; otherwise add it
530 to the hash table and return it. */
531
532 static rtx
533 lookup_const_fixed (rtx fixed)
534 {
535 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
536 if (*slot == 0)
537 *slot = fixed;
538
539 return *slot;
540 }
541
542 /* Return a CONST_FIXED rtx for a fixed-point value specified by
543 VALUE in mode MODE. */
544
545 rtx
546 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
547 {
548 rtx fixed = rtx_alloc (CONST_FIXED);
549 PUT_MODE (fixed, mode);
550
551 fixed->u.fv = value;
552
553 return lookup_const_fixed (fixed);
554 }
555
556 #if TARGET_SUPPORTS_WIDE_INT == 0
557 /* Constructs double_int from rtx CST. */
558
559 double_int
560 rtx_to_double_int (const_rtx cst)
561 {
562 double_int r;
563
564 if (CONST_INT_P (cst))
565 r = double_int::from_shwi (INTVAL (cst));
566 else if (CONST_DOUBLE_AS_INT_P (cst))
567 {
568 r.low = CONST_DOUBLE_LOW (cst);
569 r.high = CONST_DOUBLE_HIGH (cst);
570 }
571 else
572 gcc_unreachable ();
573
574 return r;
575 }
576 #endif
577
578 #if TARGET_SUPPORTS_WIDE_INT
579 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
580 If so, return its counterpart; otherwise add it to the hash table and
581 return it. */
582
583 static rtx
584 lookup_const_wide_int (rtx wint)
585 {
586 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
587 if (*slot == 0)
588 *slot = wint;
589
590 return *slot;
591 }
592 #endif
593
594 /* Return an rtx constant for V, given that the constant has mode MODE.
595 The returned rtx will be a CONST_INT if V fits, otherwise it will be
596 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
597 (if TARGET_SUPPORTS_WIDE_INT). */
598
599 rtx
600 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
601 {
602 unsigned int len = v.get_len ();
603 unsigned int prec = GET_MODE_PRECISION (mode);
604
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec <= v.get_precision ());
608
609 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
610 return gen_int_mode (v.elt (0), mode);
611
612 #if TARGET_SUPPORTS_WIDE_INT
613 {
614 unsigned int i;
615 rtx value;
616 unsigned int blocks_needed
617 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618
619 if (len > blocks_needed)
620 len = blocks_needed;
621
622 value = const_wide_int_alloc (len);
623
624 /* It is so tempting to just put the mode in here. Must control
625 myself ... */
626 PUT_MODE (value, VOIDmode);
627 CWI_PUT_NUM_ELEM (value, len);
628
629 for (i = 0; i < len; i++)
630 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
631
632 return lookup_const_wide_int (value);
633 }
634 #else
635 return immed_double_const (v.elt (0), v.elt (1), mode);
636 #endif
637 }
638
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
647
648 rtx
649 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
650 {
651 rtx value;
652 unsigned int i;
653
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
656
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
658 gen_int_mode.
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
663 if (mode != VOIDmode)
664 {
665 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
666 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
667 /* We can get a 0 for an error mark. */
668 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
669 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
670 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
671
672 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
673 return gen_int_mode (i0, mode);
674 }
675
676 /* If this integer fits in one word, return a CONST_INT. */
677 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
678 return GEN_INT (i0);
679
680 /* We use VOIDmode for integers. */
681 value = rtx_alloc (CONST_DOUBLE);
682 PUT_MODE (value, VOIDmode);
683
684 CONST_DOUBLE_LOW (value) = i0;
685 CONST_DOUBLE_HIGH (value) = i1;
686
687 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
688 XWINT (value, i) = 0;
689
690 return lookup_const_double (value);
691 }
692 #endif
693
694 rtx
695 gen_rtx_REG (machine_mode mode, unsigned int regno)
696 {
697 /* In case the MD file explicitly references the frame pointer, have
698 all such references point to the same frame pointer. This is
699 used during frame pointer elimination to distinguish the explicit
700 references to these registers from pseudos that happened to be
701 assigned to them.
702
703 If we have eliminated the frame pointer or arg pointer, we will
704 be using it as a normal register, for example as a spill
705 register. In such cases, we might be accessing it in a mode that
706 is not Pmode and therefore cannot use the pre-allocated rtx.
707
708 Also don't do this when we are making new REGs in reload, since
709 we don't want to get confused with the real pointers. */
710
711 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
712 {
713 if (regno == FRAME_POINTER_REGNUM
714 && (!reload_completed || frame_pointer_needed))
715 return frame_pointer_rtx;
716
717 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
718 && regno == HARD_FRAME_POINTER_REGNUM
719 && (!reload_completed || frame_pointer_needed))
720 return hard_frame_pointer_rtx;
721 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
722 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
723 && regno == ARG_POINTER_REGNUM)
724 return arg_pointer_rtx;
725 #endif
726 #ifdef RETURN_ADDRESS_POINTER_REGNUM
727 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
728 return return_address_pointer_rtx;
729 #endif
730 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
731 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
732 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
733 return pic_offset_table_rtx;
734 if (regno == STACK_POINTER_REGNUM)
735 return stack_pointer_rtx;
736 }
737
738 #if 0
739 /* If the per-function register table has been set up, try to re-use
740 an existing entry in that table to avoid useless generation of RTL.
741
742 This code is disabled for now until we can fix the various backends
743 which depend on having non-shared hard registers in some cases. Long
744 term we want to re-enable this code as it can significantly cut down
745 on the amount of useless RTL that gets generated.
746
747 We'll also need to fix some code that runs after reload that wants to
748 set ORIGINAL_REGNO. */
749
750 if (cfun
751 && cfun->emit
752 && regno_reg_rtx
753 && regno < FIRST_PSEUDO_REGISTER
754 && reg_raw_mode[regno] == mode)
755 return regno_reg_rtx[regno];
756 #endif
757
758 return gen_raw_REG (mode, regno);
759 }
760
761 rtx
762 gen_rtx_MEM (machine_mode mode, rtx addr)
763 {
764 rtx rt = gen_rtx_raw_MEM (mode, addr);
765
766 /* This field is not cleared by the mere allocation of the rtx, so
767 we clear it here. */
768 MEM_ATTRS (rt) = 0;
769
770 return rt;
771 }
772
773 /* Generate a memory referring to non-trapping constant memory. */
774
775 rtx
776 gen_const_mem (machine_mode mode, rtx addr)
777 {
778 rtx mem = gen_rtx_MEM (mode, addr);
779 MEM_READONLY_P (mem) = 1;
780 MEM_NOTRAP_P (mem) = 1;
781 return mem;
782 }
783
784 /* Generate a MEM referring to fixed portions of the frame, e.g., register
785 save areas. */
786
787 rtx
788 gen_frame_mem (machine_mode mode, rtx addr)
789 {
790 rtx mem = gen_rtx_MEM (mode, addr);
791 MEM_NOTRAP_P (mem) = 1;
792 set_mem_alias_set (mem, get_frame_alias_set ());
793 return mem;
794 }
795
796 /* Generate a MEM referring to a temporary use of the stack, not part
797 of the fixed stack frame. For example, something which is pushed
798 by a target splitter. */
799 rtx
800 gen_tmp_stack_mem (machine_mode mode, rtx addr)
801 {
802 rtx mem = gen_rtx_MEM (mode, addr);
803 MEM_NOTRAP_P (mem) = 1;
804 if (!cfun->calls_alloca)
805 set_mem_alias_set (mem, get_frame_alias_set ());
806 return mem;
807 }
808
809 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
810 this construct would be valid, and false otherwise. */
811
812 bool
813 validate_subreg (machine_mode omode, machine_mode imode,
814 const_rtx reg, unsigned int offset)
815 {
816 unsigned int isize = GET_MODE_SIZE (imode);
817 unsigned int osize = GET_MODE_SIZE (omode);
818
819 /* All subregs must be aligned. */
820 if (offset % osize != 0)
821 return false;
822
823 /* The subreg offset cannot be outside the inner object. */
824 if (offset >= isize)
825 return false;
826
827 /* ??? This should not be here. Temporarily continue to allow word_mode
828 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
829 Generally, backends are doing something sketchy but it'll take time to
830 fix them all. */
831 if (omode == word_mode)
832 ;
833 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
834 is the culprit here, and not the backends. */
835 else if (osize >= UNITS_PER_WORD && isize >= osize)
836 ;
837 /* Allow component subregs of complex and vector. Though given the below
838 extraction rules, it's not always clear what that means. */
839 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
840 && GET_MODE_INNER (imode) == omode)
841 ;
842 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
843 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
844 represent this. It's questionable if this ought to be represented at
845 all -- why can't this all be hidden in post-reload splitters that make
846 arbitrarily mode changes to the registers themselves. */
847 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
848 ;
849 /* Subregs involving floating point modes are not allowed to
850 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
851 (subreg:SI (reg:DF) 0) isn't. */
852 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
853 {
854 if (! (isize == osize
855 /* LRA can use subreg to store a floating point value in
856 an integer mode. Although the floating point and the
857 integer modes need the same number of hard registers,
858 the size of floating point mode can be less than the
859 integer mode. LRA also uses subregs for a register
860 should be used in different mode in on insn. */
861 || lra_in_progress))
862 return false;
863 }
864
865 /* Paradoxical subregs must have offset zero. */
866 if (osize > isize)
867 return offset == 0;
868
869 /* This is a normal subreg. Verify that the offset is representable. */
870
871 /* For hard registers, we already have most of these rules collected in
872 subreg_offset_representable_p. */
873 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
874 {
875 unsigned int regno = REGNO (reg);
876
877 #ifdef CANNOT_CHANGE_MODE_CLASS
878 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
879 && GET_MODE_INNER (imode) == omode)
880 ;
881 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
882 return false;
883 #endif
884
885 return subreg_offset_representable_p (regno, imode, offset, omode);
886 }
887
888 /* For pseudo registers, we want most of the same checks. Namely:
889 If the register no larger than a word, the subreg must be lowpart.
890 If the register is larger than a word, the subreg must be the lowpart
891 of a subword. A subreg does *not* perform arbitrary bit extraction.
892 Given that we've already checked mode/offset alignment, we only have
893 to check subword subregs here. */
894 if (osize < UNITS_PER_WORD
895 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
896 {
897 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
898 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
899 if (offset % UNITS_PER_WORD != low_off)
900 return false;
901 }
902 return true;
903 }
904
905 rtx
906 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
907 {
908 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
909 return gen_rtx_raw_SUBREG (mode, reg, offset);
910 }
911
912 /* Generate a SUBREG representing the least-significant part of REG if MODE
913 is smaller than mode of REG, otherwise paradoxical SUBREG. */
914
915 rtx
916 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
917 {
918 machine_mode inmode;
919
920 inmode = GET_MODE (reg);
921 if (inmode == VOIDmode)
922 inmode = mode;
923 return gen_rtx_SUBREG (mode, reg,
924 subreg_lowpart_offset (mode, inmode));
925 }
926
927 rtx
928 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
929 enum var_init_status status)
930 {
931 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
932 PAT_VAR_LOCATION_STATUS (x) = status;
933 return x;
934 }
935 \f
936
937 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
938
939 rtvec
940 gen_rtvec (int n, ...)
941 {
942 int i;
943 rtvec rt_val;
944 va_list p;
945
946 va_start (p, n);
947
948 /* Don't allocate an empty rtvec... */
949 if (n == 0)
950 {
951 va_end (p);
952 return NULL_RTVEC;
953 }
954
955 rt_val = rtvec_alloc (n);
956
957 for (i = 0; i < n; i++)
958 rt_val->elem[i] = va_arg (p, rtx);
959
960 va_end (p);
961 return rt_val;
962 }
963
964 rtvec
965 gen_rtvec_v (int n, rtx *argp)
966 {
967 int i;
968 rtvec rt_val;
969
970 /* Don't allocate an empty rtvec... */
971 if (n == 0)
972 return NULL_RTVEC;
973
974 rt_val = rtvec_alloc (n);
975
976 for (i = 0; i < n; i++)
977 rt_val->elem[i] = *argp++;
978
979 return rt_val;
980 }
981
982 rtvec
983 gen_rtvec_v (int n, rtx_insn **argp)
984 {
985 int i;
986 rtvec rt_val;
987
988 /* Don't allocate an empty rtvec... */
989 if (n == 0)
990 return NULL_RTVEC;
991
992 rt_val = rtvec_alloc (n);
993
994 for (i = 0; i < n; i++)
995 rt_val->elem[i] = *argp++;
996
997 return rt_val;
998 }
999
1000 \f
1001 /* Return the number of bytes between the start of an OUTER_MODE
1002 in-memory value and the start of an INNER_MODE in-memory value,
1003 given that the former is a lowpart of the latter. It may be a
1004 paradoxical lowpart, in which case the offset will be negative
1005 on big-endian targets. */
1006
1007 int
1008 byte_lowpart_offset (machine_mode outer_mode,
1009 machine_mode inner_mode)
1010 {
1011 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1012 return subreg_lowpart_offset (outer_mode, inner_mode);
1013 else
1014 return -subreg_lowpart_offset (inner_mode, outer_mode);
1015 }
1016 \f
1017 /* Generate a REG rtx for a new pseudo register of mode MODE.
1018 This pseudo is assigned the next sequential register number. */
1019
1020 rtx
1021 gen_reg_rtx (machine_mode mode)
1022 {
1023 rtx val;
1024 unsigned int align = GET_MODE_ALIGNMENT (mode);
1025
1026 gcc_assert (can_create_pseudo_p ());
1027
1028 /* If a virtual register with bigger mode alignment is generated,
1029 increase stack alignment estimation because it might be spilled
1030 to stack later. */
1031 if (SUPPORTS_STACK_ALIGNMENT
1032 && crtl->stack_alignment_estimated < align
1033 && !crtl->stack_realign_processed)
1034 {
1035 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1036 if (crtl->stack_alignment_estimated < min_align)
1037 crtl->stack_alignment_estimated = min_align;
1038 }
1039
1040 if (generating_concat_p
1041 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1042 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1043 {
1044 /* For complex modes, don't make a single pseudo.
1045 Instead, make a CONCAT of two pseudos.
1046 This allows noncontiguous allocation of the real and imaginary parts,
1047 which makes much better code. Besides, allocating DCmode
1048 pseudos overstrains reload on some machines like the 386. */
1049 rtx realpart, imagpart;
1050 machine_mode partmode = GET_MODE_INNER (mode);
1051
1052 realpart = gen_reg_rtx (partmode);
1053 imagpart = gen_reg_rtx (partmode);
1054 return gen_rtx_CONCAT (mode, realpart, imagpart);
1055 }
1056
1057 /* Do not call gen_reg_rtx with uninitialized crtl. */
1058 gcc_assert (crtl->emit.regno_pointer_align_length);
1059
1060 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1061 enough to have an element for this pseudo reg number. */
1062
1063 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1064 {
1065 int old_size = crtl->emit.regno_pointer_align_length;
1066 char *tmp;
1067 rtx *new1;
1068
1069 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1070 memset (tmp + old_size, 0, old_size);
1071 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1072
1073 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1074 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1075 regno_reg_rtx = new1;
1076
1077 crtl->emit.regno_pointer_align_length = old_size * 2;
1078 }
1079
1080 val = gen_raw_REG (mode, reg_rtx_no);
1081 regno_reg_rtx[reg_rtx_no++] = val;
1082 return val;
1083 }
1084
1085 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1086
1087 bool
1088 reg_is_parm_p (rtx reg)
1089 {
1090 tree decl;
1091
1092 gcc_assert (REG_P (reg));
1093 decl = REG_EXPR (reg);
1094 return (decl && TREE_CODE (decl) == PARM_DECL);
1095 }
1096
1097 /* Update NEW with the same attributes as REG, but with OFFSET added
1098 to the REG_OFFSET. */
1099
1100 static void
1101 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1102 {
1103 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1104 REG_OFFSET (reg) + offset);
1105 }
1106
1107 /* Generate a register with same attributes as REG, but with OFFSET
1108 added to the REG_OFFSET. */
1109
1110 rtx
1111 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1112 int offset)
1113 {
1114 rtx new_rtx = gen_rtx_REG (mode, regno);
1115
1116 update_reg_offset (new_rtx, reg, offset);
1117 return new_rtx;
1118 }
1119
1120 /* Generate a new pseudo-register with the same attributes as REG, but
1121 with OFFSET added to the REG_OFFSET. */
1122
1123 rtx
1124 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1125 {
1126 rtx new_rtx = gen_reg_rtx (mode);
1127
1128 update_reg_offset (new_rtx, reg, offset);
1129 return new_rtx;
1130 }
1131
1132 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1133 new register is a (possibly paradoxical) lowpart of the old one. */
1134
1135 void
1136 adjust_reg_mode (rtx reg, machine_mode mode)
1137 {
1138 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1139 PUT_MODE (reg, mode);
1140 }
1141
1142 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1143 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1144
1145 void
1146 set_reg_attrs_from_value (rtx reg, rtx x)
1147 {
1148 int offset;
1149 bool can_be_reg_pointer = true;
1150
1151 /* Don't call mark_reg_pointer for incompatible pointer sign
1152 extension. */
1153 while (GET_CODE (x) == SIGN_EXTEND
1154 || GET_CODE (x) == ZERO_EXTEND
1155 || GET_CODE (x) == TRUNCATE
1156 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1157 {
1158 #if defined(POINTERS_EXTEND_UNSIGNED)
1159 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1160 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1161 || (paradoxical_subreg_p (x)
1162 && ! (SUBREG_PROMOTED_VAR_P (x)
1163 && SUBREG_CHECK_PROMOTED_SIGN (x,
1164 POINTERS_EXTEND_UNSIGNED))))
1165 && !targetm.have_ptr_extend ())
1166 can_be_reg_pointer = false;
1167 #endif
1168 x = XEXP (x, 0);
1169 }
1170
1171 /* Hard registers can be reused for multiple purposes within the same
1172 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1173 on them is wrong. */
1174 if (HARD_REGISTER_P (reg))
1175 return;
1176
1177 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1178 if (MEM_P (x))
1179 {
1180 if (MEM_OFFSET_KNOWN_P (x))
1181 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1182 MEM_OFFSET (x) + offset);
1183 if (can_be_reg_pointer && MEM_POINTER (x))
1184 mark_reg_pointer (reg, 0);
1185 }
1186 else if (REG_P (x))
1187 {
1188 if (REG_ATTRS (x))
1189 update_reg_offset (reg, x, offset);
1190 if (can_be_reg_pointer && REG_POINTER (x))
1191 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1192 }
1193 }
1194
1195 /* Generate a REG rtx for a new pseudo register, copying the mode
1196 and attributes from X. */
1197
1198 rtx
1199 gen_reg_rtx_and_attrs (rtx x)
1200 {
1201 rtx reg = gen_reg_rtx (GET_MODE (x));
1202 set_reg_attrs_from_value (reg, x);
1203 return reg;
1204 }
1205
1206 /* Set the register attributes for registers contained in PARM_RTX.
1207 Use needed values from memory attributes of MEM. */
1208
1209 void
1210 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1211 {
1212 if (REG_P (parm_rtx))
1213 set_reg_attrs_from_value (parm_rtx, mem);
1214 else if (GET_CODE (parm_rtx) == PARALLEL)
1215 {
1216 /* Check for a NULL entry in the first slot, used to indicate that the
1217 parameter goes both on the stack and in registers. */
1218 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1219 for (; i < XVECLEN (parm_rtx, 0); i++)
1220 {
1221 rtx x = XVECEXP (parm_rtx, 0, i);
1222 if (REG_P (XEXP (x, 0)))
1223 REG_ATTRS (XEXP (x, 0))
1224 = get_reg_attrs (MEM_EXPR (mem),
1225 INTVAL (XEXP (x, 1)));
1226 }
1227 }
1228 }
1229
1230 /* Set the REG_ATTRS for registers in value X, given that X represents
1231 decl T. */
1232
1233 void
1234 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1235 {
1236 if (!t)
1237 return;
1238 tree tdecl = t;
1239 if (GET_CODE (x) == SUBREG)
1240 {
1241 gcc_assert (subreg_lowpart_p (x));
1242 x = SUBREG_REG (x);
1243 }
1244 if (REG_P (x))
1245 REG_ATTRS (x)
1246 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1247 DECL_P (tdecl)
1248 ? DECL_MODE (tdecl)
1249 : TYPE_MODE (TREE_TYPE (tdecl))));
1250 if (GET_CODE (x) == CONCAT)
1251 {
1252 if (REG_P (XEXP (x, 0)))
1253 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1254 if (REG_P (XEXP (x, 1)))
1255 REG_ATTRS (XEXP (x, 1))
1256 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1257 }
1258 if (GET_CODE (x) == PARALLEL)
1259 {
1260 int i, start;
1261
1262 /* Check for a NULL entry, used to indicate that the parameter goes
1263 both on the stack and in registers. */
1264 if (XEXP (XVECEXP (x, 0, 0), 0))
1265 start = 0;
1266 else
1267 start = 1;
1268
1269 for (i = start; i < XVECLEN (x, 0); i++)
1270 {
1271 rtx y = XVECEXP (x, 0, i);
1272 if (REG_P (XEXP (y, 0)))
1273 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1274 }
1275 }
1276 }
1277
1278 /* Assign the RTX X to declaration T. */
1279
1280 void
1281 set_decl_rtl (tree t, rtx x)
1282 {
1283 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1284 if (x)
1285 set_reg_attrs_for_decl_rtl (t, x);
1286 }
1287
1288 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1289 if the ABI requires the parameter to be passed by reference. */
1290
1291 void
1292 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1293 {
1294 DECL_INCOMING_RTL (t) = x;
1295 if (x && !by_reference_p)
1296 set_reg_attrs_for_decl_rtl (t, x);
1297 }
1298
1299 /* Identify REG (which may be a CONCAT) as a user register. */
1300
1301 void
1302 mark_user_reg (rtx reg)
1303 {
1304 if (GET_CODE (reg) == CONCAT)
1305 {
1306 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1307 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1308 }
1309 else
1310 {
1311 gcc_assert (REG_P (reg));
1312 REG_USERVAR_P (reg) = 1;
1313 }
1314 }
1315
1316 /* Identify REG as a probable pointer register and show its alignment
1317 as ALIGN, if nonzero. */
1318
1319 void
1320 mark_reg_pointer (rtx reg, int align)
1321 {
1322 if (! REG_POINTER (reg))
1323 {
1324 REG_POINTER (reg) = 1;
1325
1326 if (align)
1327 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1328 }
1329 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1330 /* We can no-longer be sure just how aligned this pointer is. */
1331 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1332 }
1333
1334 /* Return 1 plus largest pseudo reg number used in the current function. */
1335
1336 int
1337 max_reg_num (void)
1338 {
1339 return reg_rtx_no;
1340 }
1341
1342 /* Return 1 + the largest label number used so far in the current function. */
1343
1344 int
1345 max_label_num (void)
1346 {
1347 return label_num;
1348 }
1349
1350 /* Return first label number used in this function (if any were used). */
1351
1352 int
1353 get_first_label_num (void)
1354 {
1355 return first_label_num;
1356 }
1357
1358 /* If the rtx for label was created during the expansion of a nested
1359 function, then first_label_num won't include this label number.
1360 Fix this now so that array indices work later. */
1361
1362 void
1363 maybe_set_first_label_num (rtx_code_label *x)
1364 {
1365 if (CODE_LABEL_NUMBER (x) < first_label_num)
1366 first_label_num = CODE_LABEL_NUMBER (x);
1367 }
1368 \f
1369 /* Return a value representing some low-order bits of X, where the number
1370 of low-order bits is given by MODE. Note that no conversion is done
1371 between floating-point and fixed-point values, rather, the bit
1372 representation is returned.
1373
1374 This function handles the cases in common between gen_lowpart, below,
1375 and two variants in cse.c and combine.c. These are the cases that can
1376 be safely handled at all points in the compilation.
1377
1378 If this is not a case we can handle, return 0. */
1379
1380 rtx
1381 gen_lowpart_common (machine_mode mode, rtx x)
1382 {
1383 int msize = GET_MODE_SIZE (mode);
1384 int xsize;
1385 machine_mode innermode;
1386
1387 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1388 so we have to make one up. Yuk. */
1389 innermode = GET_MODE (x);
1390 if (CONST_INT_P (x)
1391 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1392 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1393 else if (innermode == VOIDmode)
1394 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1395
1396 xsize = GET_MODE_SIZE (innermode);
1397
1398 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1399
1400 if (innermode == mode)
1401 return x;
1402
1403 /* MODE must occupy no more words than the mode of X. */
1404 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1405 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1406 return 0;
1407
1408 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1409 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1410 return 0;
1411
1412 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1413 && (GET_MODE_CLASS (mode) == MODE_INT
1414 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1415 {
1416 /* If we are getting the low-order part of something that has been
1417 sign- or zero-extended, we can either just use the object being
1418 extended or make a narrower extension. If we want an even smaller
1419 piece than the size of the object being extended, call ourselves
1420 recursively.
1421
1422 This case is used mostly by combine and cse. */
1423
1424 if (GET_MODE (XEXP (x, 0)) == mode)
1425 return XEXP (x, 0);
1426 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1427 return gen_lowpart_common (mode, XEXP (x, 0));
1428 else if (msize < xsize)
1429 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1430 }
1431 else if (GET_CODE (x) == SUBREG || REG_P (x)
1432 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1433 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1434 return lowpart_subreg (mode, x, innermode);
1435
1436 /* Otherwise, we can't do this. */
1437 return 0;
1438 }
1439 \f
1440 rtx
1441 gen_highpart (machine_mode mode, rtx x)
1442 {
1443 unsigned int msize = GET_MODE_SIZE (mode);
1444 rtx result;
1445
1446 /* This case loses if X is a subreg. To catch bugs early,
1447 complain if an invalid MODE is used even in other cases. */
1448 gcc_assert (msize <= UNITS_PER_WORD
1449 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1450
1451 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1452 subreg_highpart_offset (mode, GET_MODE (x)));
1453 gcc_assert (result);
1454
1455 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1456 the target if we have a MEM. gen_highpart must return a valid operand,
1457 emitting code if necessary to do so. */
1458 if (MEM_P (result))
1459 {
1460 result = validize_mem (result);
1461 gcc_assert (result);
1462 }
1463
1464 return result;
1465 }
1466
1467 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1468 be VOIDmode constant. */
1469 rtx
1470 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1471 {
1472 if (GET_MODE (exp) != VOIDmode)
1473 {
1474 gcc_assert (GET_MODE (exp) == innermode);
1475 return gen_highpart (outermode, exp);
1476 }
1477 return simplify_gen_subreg (outermode, exp, innermode,
1478 subreg_highpart_offset (outermode, innermode));
1479 }
1480
1481 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1482
1483 unsigned int
1484 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1485 {
1486 unsigned int offset = 0;
1487 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1488
1489 if (difference > 0)
1490 {
1491 if (WORDS_BIG_ENDIAN)
1492 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1493 if (BYTES_BIG_ENDIAN)
1494 offset += difference % UNITS_PER_WORD;
1495 }
1496
1497 return offset;
1498 }
1499
1500 /* Return offset in bytes to get OUTERMODE high part
1501 of the value in mode INNERMODE stored in memory in target format. */
1502 unsigned int
1503 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1504 {
1505 unsigned int offset = 0;
1506 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1507
1508 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1509
1510 if (difference > 0)
1511 {
1512 if (! WORDS_BIG_ENDIAN)
1513 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1514 if (! BYTES_BIG_ENDIAN)
1515 offset += difference % UNITS_PER_WORD;
1516 }
1517
1518 return offset;
1519 }
1520
1521 /* Return 1 iff X, assumed to be a SUBREG,
1522 refers to the least significant part of its containing reg.
1523 If X is not a SUBREG, always return 1 (it is its own low part!). */
1524
1525 int
1526 subreg_lowpart_p (const_rtx x)
1527 {
1528 if (GET_CODE (x) != SUBREG)
1529 return 1;
1530 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1531 return 0;
1532
1533 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1534 == SUBREG_BYTE (x));
1535 }
1536
1537 /* Return true if X is a paradoxical subreg, false otherwise. */
1538 bool
1539 paradoxical_subreg_p (const_rtx x)
1540 {
1541 if (GET_CODE (x) != SUBREG)
1542 return false;
1543 return (GET_MODE_PRECISION (GET_MODE (x))
1544 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1545 }
1546 \f
1547 /* Return subword OFFSET of operand OP.
1548 The word number, OFFSET, is interpreted as the word number starting
1549 at the low-order address. OFFSET 0 is the low-order word if not
1550 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1551
1552 If we cannot extract the required word, we return zero. Otherwise,
1553 an rtx corresponding to the requested word will be returned.
1554
1555 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1556 reload has completed, a valid address will always be returned. After
1557 reload, if a valid address cannot be returned, we return zero.
1558
1559 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1560 it is the responsibility of the caller.
1561
1562 MODE is the mode of OP in case it is a CONST_INT.
1563
1564 ??? This is still rather broken for some cases. The problem for the
1565 moment is that all callers of this thing provide no 'goal mode' to
1566 tell us to work with. This exists because all callers were written
1567 in a word based SUBREG world.
1568 Now use of this function can be deprecated by simplify_subreg in most
1569 cases.
1570 */
1571
1572 rtx
1573 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1574 {
1575 if (mode == VOIDmode)
1576 mode = GET_MODE (op);
1577
1578 gcc_assert (mode != VOIDmode);
1579
1580 /* If OP is narrower than a word, fail. */
1581 if (mode != BLKmode
1582 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1583 return 0;
1584
1585 /* If we want a word outside OP, return zero. */
1586 if (mode != BLKmode
1587 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1588 return const0_rtx;
1589
1590 /* Form a new MEM at the requested address. */
1591 if (MEM_P (op))
1592 {
1593 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1594
1595 if (! validate_address)
1596 return new_rtx;
1597
1598 else if (reload_completed)
1599 {
1600 if (! strict_memory_address_addr_space_p (word_mode,
1601 XEXP (new_rtx, 0),
1602 MEM_ADDR_SPACE (op)))
1603 return 0;
1604 }
1605 else
1606 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1607 }
1608
1609 /* Rest can be handled by simplify_subreg. */
1610 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1611 }
1612
1613 /* Similar to `operand_subword', but never return 0. If we can't
1614 extract the required subword, put OP into a register and try again.
1615 The second attempt must succeed. We always validate the address in
1616 this case.
1617
1618 MODE is the mode of OP, in case it is CONST_INT. */
1619
1620 rtx
1621 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1622 {
1623 rtx result = operand_subword (op, offset, 1, mode);
1624
1625 if (result)
1626 return result;
1627
1628 if (mode != BLKmode && mode != VOIDmode)
1629 {
1630 /* If this is a register which can not be accessed by words, copy it
1631 to a pseudo register. */
1632 if (REG_P (op))
1633 op = copy_to_reg (op);
1634 else
1635 op = force_reg (mode, op);
1636 }
1637
1638 result = operand_subword (op, offset, 1, mode);
1639 gcc_assert (result);
1640
1641 return result;
1642 }
1643 \f
1644 /* Returns 1 if both MEM_EXPR can be considered equal
1645 and 0 otherwise. */
1646
1647 int
1648 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1649 {
1650 if (expr1 == expr2)
1651 return 1;
1652
1653 if (! expr1 || ! expr2)
1654 return 0;
1655
1656 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1657 return 0;
1658
1659 return operand_equal_p (expr1, expr2, 0);
1660 }
1661
1662 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1663 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1664 -1 if not known. */
1665
1666 int
1667 get_mem_align_offset (rtx mem, unsigned int align)
1668 {
1669 tree expr;
1670 unsigned HOST_WIDE_INT offset;
1671
1672 /* This function can't use
1673 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1674 || (MAX (MEM_ALIGN (mem),
1675 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1676 < align))
1677 return -1;
1678 else
1679 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1680 for two reasons:
1681 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1682 for <variable>. get_inner_reference doesn't handle it and
1683 even if it did, the alignment in that case needs to be determined
1684 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1685 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1686 isn't sufficiently aligned, the object it is in might be. */
1687 gcc_assert (MEM_P (mem));
1688 expr = MEM_EXPR (mem);
1689 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1690 return -1;
1691
1692 offset = MEM_OFFSET (mem);
1693 if (DECL_P (expr))
1694 {
1695 if (DECL_ALIGN (expr) < align)
1696 return -1;
1697 }
1698 else if (INDIRECT_REF_P (expr))
1699 {
1700 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1701 return -1;
1702 }
1703 else if (TREE_CODE (expr) == COMPONENT_REF)
1704 {
1705 while (1)
1706 {
1707 tree inner = TREE_OPERAND (expr, 0);
1708 tree field = TREE_OPERAND (expr, 1);
1709 tree byte_offset = component_ref_field_offset (expr);
1710 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1711
1712 if (!byte_offset
1713 || !tree_fits_uhwi_p (byte_offset)
1714 || !tree_fits_uhwi_p (bit_offset))
1715 return -1;
1716
1717 offset += tree_to_uhwi (byte_offset);
1718 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1719
1720 if (inner == NULL_TREE)
1721 {
1722 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1723 < (unsigned int) align)
1724 return -1;
1725 break;
1726 }
1727 else if (DECL_P (inner))
1728 {
1729 if (DECL_ALIGN (inner) < align)
1730 return -1;
1731 break;
1732 }
1733 else if (TREE_CODE (inner) != COMPONENT_REF)
1734 return -1;
1735 expr = inner;
1736 }
1737 }
1738 else
1739 return -1;
1740
1741 return offset & ((align / BITS_PER_UNIT) - 1);
1742 }
1743
1744 /* Given REF (a MEM) and T, either the type of X or the expression
1745 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1746 if we are making a new object of this type. BITPOS is nonzero if
1747 there is an offset outstanding on T that will be applied later. */
1748
1749 void
1750 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1751 HOST_WIDE_INT bitpos)
1752 {
1753 HOST_WIDE_INT apply_bitpos = 0;
1754 tree type;
1755 struct mem_attrs attrs, *defattrs, *refattrs;
1756 addr_space_t as;
1757
1758 /* It can happen that type_for_mode was given a mode for which there
1759 is no language-level type. In which case it returns NULL, which
1760 we can see here. */
1761 if (t == NULL_TREE)
1762 return;
1763
1764 type = TYPE_P (t) ? t : TREE_TYPE (t);
1765 if (type == error_mark_node)
1766 return;
1767
1768 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1769 wrong answer, as it assumes that DECL_RTL already has the right alias
1770 info. Callers should not set DECL_RTL until after the call to
1771 set_mem_attributes. */
1772 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1773
1774 memset (&attrs, 0, sizeof (attrs));
1775
1776 /* Get the alias set from the expression or type (perhaps using a
1777 front-end routine) and use it. */
1778 attrs.alias = get_alias_set (t);
1779
1780 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1781 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1782
1783 /* Default values from pre-existing memory attributes if present. */
1784 refattrs = MEM_ATTRS (ref);
1785 if (refattrs)
1786 {
1787 /* ??? Can this ever happen? Calling this routine on a MEM that
1788 already carries memory attributes should probably be invalid. */
1789 attrs.expr = refattrs->expr;
1790 attrs.offset_known_p = refattrs->offset_known_p;
1791 attrs.offset = refattrs->offset;
1792 attrs.size_known_p = refattrs->size_known_p;
1793 attrs.size = refattrs->size;
1794 attrs.align = refattrs->align;
1795 }
1796
1797 /* Otherwise, default values from the mode of the MEM reference. */
1798 else
1799 {
1800 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1801 gcc_assert (!defattrs->expr);
1802 gcc_assert (!defattrs->offset_known_p);
1803
1804 /* Respect mode size. */
1805 attrs.size_known_p = defattrs->size_known_p;
1806 attrs.size = defattrs->size;
1807 /* ??? Is this really necessary? We probably should always get
1808 the size from the type below. */
1809
1810 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1811 if T is an object, always compute the object alignment below. */
1812 if (TYPE_P (t))
1813 attrs.align = defattrs->align;
1814 else
1815 attrs.align = BITS_PER_UNIT;
1816 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1817 e.g. if the type carries an alignment attribute. Should we be
1818 able to simply always use TYPE_ALIGN? */
1819 }
1820
1821 /* We can set the alignment from the type if we are making an object or if
1822 this is an INDIRECT_REF. */
1823 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1824 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1825
1826 /* If the size is known, we can set that. */
1827 tree new_size = TYPE_SIZE_UNIT (type);
1828
1829 /* The address-space is that of the type. */
1830 as = TYPE_ADDR_SPACE (type);
1831
1832 /* If T is not a type, we may be able to deduce some more information about
1833 the expression. */
1834 if (! TYPE_P (t))
1835 {
1836 tree base;
1837
1838 if (TREE_THIS_VOLATILE (t))
1839 MEM_VOLATILE_P (ref) = 1;
1840
1841 /* Now remove any conversions: they don't change what the underlying
1842 object is. Likewise for SAVE_EXPR. */
1843 while (CONVERT_EXPR_P (t)
1844 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1845 || TREE_CODE (t) == SAVE_EXPR)
1846 t = TREE_OPERAND (t, 0);
1847
1848 /* Note whether this expression can trap. */
1849 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1850
1851 base = get_base_address (t);
1852 if (base)
1853 {
1854 if (DECL_P (base)
1855 && TREE_READONLY (base)
1856 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1857 && !TREE_THIS_VOLATILE (base))
1858 MEM_READONLY_P (ref) = 1;
1859
1860 /* Mark static const strings readonly as well. */
1861 if (TREE_CODE (base) == STRING_CST
1862 && TREE_READONLY (base)
1863 && TREE_STATIC (base))
1864 MEM_READONLY_P (ref) = 1;
1865
1866 /* Address-space information is on the base object. */
1867 if (TREE_CODE (base) == MEM_REF
1868 || TREE_CODE (base) == TARGET_MEM_REF)
1869 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1870 0))));
1871 else
1872 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1873 }
1874
1875 /* If this expression uses it's parent's alias set, mark it such
1876 that we won't change it. */
1877 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1878 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1879
1880 /* If this is a decl, set the attributes of the MEM from it. */
1881 if (DECL_P (t))
1882 {
1883 attrs.expr = t;
1884 attrs.offset_known_p = true;
1885 attrs.offset = 0;
1886 apply_bitpos = bitpos;
1887 new_size = DECL_SIZE_UNIT (t);
1888 }
1889
1890 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1891 else if (CONSTANT_CLASS_P (t))
1892 ;
1893
1894 /* If this is a field reference, record it. */
1895 else if (TREE_CODE (t) == COMPONENT_REF)
1896 {
1897 attrs.expr = t;
1898 attrs.offset_known_p = true;
1899 attrs.offset = 0;
1900 apply_bitpos = bitpos;
1901 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1902 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1903 }
1904
1905 /* If this is an array reference, look for an outer field reference. */
1906 else if (TREE_CODE (t) == ARRAY_REF)
1907 {
1908 tree off_tree = size_zero_node;
1909 /* We can't modify t, because we use it at the end of the
1910 function. */
1911 tree t2 = t;
1912
1913 do
1914 {
1915 tree index = TREE_OPERAND (t2, 1);
1916 tree low_bound = array_ref_low_bound (t2);
1917 tree unit_size = array_ref_element_size (t2);
1918
1919 /* We assume all arrays have sizes that are a multiple of a byte.
1920 First subtract the lower bound, if any, in the type of the
1921 index, then convert to sizetype and multiply by the size of
1922 the array element. */
1923 if (! integer_zerop (low_bound))
1924 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1925 index, low_bound);
1926
1927 off_tree = size_binop (PLUS_EXPR,
1928 size_binop (MULT_EXPR,
1929 fold_convert (sizetype,
1930 index),
1931 unit_size),
1932 off_tree);
1933 t2 = TREE_OPERAND (t2, 0);
1934 }
1935 while (TREE_CODE (t2) == ARRAY_REF);
1936
1937 if (DECL_P (t2)
1938 || TREE_CODE (t2) == COMPONENT_REF)
1939 {
1940 attrs.expr = t2;
1941 attrs.offset_known_p = false;
1942 if (tree_fits_uhwi_p (off_tree))
1943 {
1944 attrs.offset_known_p = true;
1945 attrs.offset = tree_to_uhwi (off_tree);
1946 apply_bitpos = bitpos;
1947 }
1948 }
1949 /* Else do not record a MEM_EXPR. */
1950 }
1951
1952 /* If this is an indirect reference, record it. */
1953 else if (TREE_CODE (t) == MEM_REF
1954 || TREE_CODE (t) == TARGET_MEM_REF)
1955 {
1956 attrs.expr = t;
1957 attrs.offset_known_p = true;
1958 attrs.offset = 0;
1959 apply_bitpos = bitpos;
1960 }
1961
1962 /* Compute the alignment. */
1963 unsigned int obj_align;
1964 unsigned HOST_WIDE_INT obj_bitpos;
1965 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1966 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1967 if (obj_bitpos != 0)
1968 obj_align = least_bit_hwi (obj_bitpos);
1969 attrs.align = MAX (attrs.align, obj_align);
1970 }
1971
1972 if (tree_fits_uhwi_p (new_size))
1973 {
1974 attrs.size_known_p = true;
1975 attrs.size = tree_to_uhwi (new_size);
1976 }
1977
1978 /* If we modified OFFSET based on T, then subtract the outstanding
1979 bit position offset. Similarly, increase the size of the accessed
1980 object to contain the negative offset. */
1981 if (apply_bitpos)
1982 {
1983 gcc_assert (attrs.offset_known_p);
1984 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1985 if (attrs.size_known_p)
1986 attrs.size += apply_bitpos / BITS_PER_UNIT;
1987 }
1988
1989 /* Now set the attributes we computed above. */
1990 attrs.addrspace = as;
1991 set_mem_attrs (ref, &attrs);
1992 }
1993
1994 void
1995 set_mem_attributes (rtx ref, tree t, int objectp)
1996 {
1997 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1998 }
1999
2000 /* Set the alias set of MEM to SET. */
2001
2002 void
2003 set_mem_alias_set (rtx mem, alias_set_type set)
2004 {
2005 struct mem_attrs attrs;
2006
2007 /* If the new and old alias sets don't conflict, something is wrong. */
2008 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2009 attrs = *get_mem_attrs (mem);
2010 attrs.alias = set;
2011 set_mem_attrs (mem, &attrs);
2012 }
2013
2014 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2015
2016 void
2017 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2018 {
2019 struct mem_attrs attrs;
2020
2021 attrs = *get_mem_attrs (mem);
2022 attrs.addrspace = addrspace;
2023 set_mem_attrs (mem, &attrs);
2024 }
2025
2026 /* Set the alignment of MEM to ALIGN bits. */
2027
2028 void
2029 set_mem_align (rtx mem, unsigned int align)
2030 {
2031 struct mem_attrs attrs;
2032
2033 attrs = *get_mem_attrs (mem);
2034 attrs.align = align;
2035 set_mem_attrs (mem, &attrs);
2036 }
2037
2038 /* Set the expr for MEM to EXPR. */
2039
2040 void
2041 set_mem_expr (rtx mem, tree expr)
2042 {
2043 struct mem_attrs attrs;
2044
2045 attrs = *get_mem_attrs (mem);
2046 attrs.expr = expr;
2047 set_mem_attrs (mem, &attrs);
2048 }
2049
2050 /* Set the offset of MEM to OFFSET. */
2051
2052 void
2053 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2054 {
2055 struct mem_attrs attrs;
2056
2057 attrs = *get_mem_attrs (mem);
2058 attrs.offset_known_p = true;
2059 attrs.offset = offset;
2060 set_mem_attrs (mem, &attrs);
2061 }
2062
2063 /* Clear the offset of MEM. */
2064
2065 void
2066 clear_mem_offset (rtx mem)
2067 {
2068 struct mem_attrs attrs;
2069
2070 attrs = *get_mem_attrs (mem);
2071 attrs.offset_known_p = false;
2072 set_mem_attrs (mem, &attrs);
2073 }
2074
2075 /* Set the size of MEM to SIZE. */
2076
2077 void
2078 set_mem_size (rtx mem, HOST_WIDE_INT size)
2079 {
2080 struct mem_attrs attrs;
2081
2082 attrs = *get_mem_attrs (mem);
2083 attrs.size_known_p = true;
2084 attrs.size = size;
2085 set_mem_attrs (mem, &attrs);
2086 }
2087
2088 /* Clear the size of MEM. */
2089
2090 void
2091 clear_mem_size (rtx mem)
2092 {
2093 struct mem_attrs attrs;
2094
2095 attrs = *get_mem_attrs (mem);
2096 attrs.size_known_p = false;
2097 set_mem_attrs (mem, &attrs);
2098 }
2099 \f
2100 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2101 and its address changed to ADDR. (VOIDmode means don't change the mode.
2102 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2103 returned memory location is required to be valid. INPLACE is true if any
2104 changes can be made directly to MEMREF or false if MEMREF must be treated
2105 as immutable.
2106
2107 The memory attributes are not changed. */
2108
2109 static rtx
2110 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2111 bool inplace)
2112 {
2113 addr_space_t as;
2114 rtx new_rtx;
2115
2116 gcc_assert (MEM_P (memref));
2117 as = MEM_ADDR_SPACE (memref);
2118 if (mode == VOIDmode)
2119 mode = GET_MODE (memref);
2120 if (addr == 0)
2121 addr = XEXP (memref, 0);
2122 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2123 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2124 return memref;
2125
2126 /* Don't validate address for LRA. LRA can make the address valid
2127 by itself in most efficient way. */
2128 if (validate && !lra_in_progress)
2129 {
2130 if (reload_in_progress || reload_completed)
2131 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2132 else
2133 addr = memory_address_addr_space (mode, addr, as);
2134 }
2135
2136 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2137 return memref;
2138
2139 if (inplace)
2140 {
2141 XEXP (memref, 0) = addr;
2142 return memref;
2143 }
2144
2145 new_rtx = gen_rtx_MEM (mode, addr);
2146 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2147 return new_rtx;
2148 }
2149
2150 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2151 way we are changing MEMREF, so we only preserve the alias set. */
2152
2153 rtx
2154 change_address (rtx memref, machine_mode mode, rtx addr)
2155 {
2156 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2157 machine_mode mmode = GET_MODE (new_rtx);
2158 struct mem_attrs attrs, *defattrs;
2159
2160 attrs = *get_mem_attrs (memref);
2161 defattrs = mode_mem_attrs[(int) mmode];
2162 attrs.expr = NULL_TREE;
2163 attrs.offset_known_p = false;
2164 attrs.size_known_p = defattrs->size_known_p;
2165 attrs.size = defattrs->size;
2166 attrs.align = defattrs->align;
2167
2168 /* If there are no changes, just return the original memory reference. */
2169 if (new_rtx == memref)
2170 {
2171 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2172 return new_rtx;
2173
2174 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2175 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2176 }
2177
2178 set_mem_attrs (new_rtx, &attrs);
2179 return new_rtx;
2180 }
2181
2182 /* Return a memory reference like MEMREF, but with its mode changed
2183 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2184 nonzero, the memory address is forced to be valid.
2185 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2186 and the caller is responsible for adjusting MEMREF base register.
2187 If ADJUST_OBJECT is zero, the underlying object associated with the
2188 memory reference is left unchanged and the caller is responsible for
2189 dealing with it. Otherwise, if the new memory reference is outside
2190 the underlying object, even partially, then the object is dropped.
2191 SIZE, if nonzero, is the size of an access in cases where MODE
2192 has no inherent size. */
2193
2194 rtx
2195 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2196 int validate, int adjust_address, int adjust_object,
2197 HOST_WIDE_INT size)
2198 {
2199 rtx addr = XEXP (memref, 0);
2200 rtx new_rtx;
2201 machine_mode address_mode;
2202 int pbits;
2203 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2204 unsigned HOST_WIDE_INT max_align;
2205 #ifdef POINTERS_EXTEND_UNSIGNED
2206 machine_mode pointer_mode
2207 = targetm.addr_space.pointer_mode (attrs.addrspace);
2208 #endif
2209
2210 /* VOIDmode means no mode change for change_address_1. */
2211 if (mode == VOIDmode)
2212 mode = GET_MODE (memref);
2213
2214 /* Take the size of non-BLKmode accesses from the mode. */
2215 defattrs = mode_mem_attrs[(int) mode];
2216 if (defattrs->size_known_p)
2217 size = defattrs->size;
2218
2219 /* If there are no changes, just return the original memory reference. */
2220 if (mode == GET_MODE (memref) && !offset
2221 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2222 && (!validate || memory_address_addr_space_p (mode, addr,
2223 attrs.addrspace)))
2224 return memref;
2225
2226 /* ??? Prefer to create garbage instead of creating shared rtl.
2227 This may happen even if offset is nonzero -- consider
2228 (plus (plus reg reg) const_int) -- so do this always. */
2229 addr = copy_rtx (addr);
2230
2231 /* Convert a possibly large offset to a signed value within the
2232 range of the target address space. */
2233 address_mode = get_address_mode (memref);
2234 pbits = GET_MODE_BITSIZE (address_mode);
2235 if (HOST_BITS_PER_WIDE_INT > pbits)
2236 {
2237 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2238 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2239 >> shift);
2240 }
2241
2242 if (adjust_address)
2243 {
2244 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2245 object, we can merge it into the LO_SUM. */
2246 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2247 && offset >= 0
2248 && (unsigned HOST_WIDE_INT) offset
2249 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2250 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2251 plus_constant (address_mode,
2252 XEXP (addr, 1), offset));
2253 #ifdef POINTERS_EXTEND_UNSIGNED
2254 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2255 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2256 the fact that pointers are not allowed to overflow. */
2257 else if (POINTERS_EXTEND_UNSIGNED > 0
2258 && GET_CODE (addr) == ZERO_EXTEND
2259 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2260 && trunc_int_for_mode (offset, pointer_mode) == offset)
2261 addr = gen_rtx_ZERO_EXTEND (address_mode,
2262 plus_constant (pointer_mode,
2263 XEXP (addr, 0), offset));
2264 #endif
2265 else
2266 addr = plus_constant (address_mode, addr, offset);
2267 }
2268
2269 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2270
2271 /* If the address is a REG, change_address_1 rightfully returns memref,
2272 but this would destroy memref's MEM_ATTRS. */
2273 if (new_rtx == memref && offset != 0)
2274 new_rtx = copy_rtx (new_rtx);
2275
2276 /* Conservatively drop the object if we don't know where we start from. */
2277 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2278 {
2279 attrs.expr = NULL_TREE;
2280 attrs.alias = 0;
2281 }
2282
2283 /* Compute the new values of the memory attributes due to this adjustment.
2284 We add the offsets and update the alignment. */
2285 if (attrs.offset_known_p)
2286 {
2287 attrs.offset += offset;
2288
2289 /* Drop the object if the new left end is not within its bounds. */
2290 if (adjust_object && attrs.offset < 0)
2291 {
2292 attrs.expr = NULL_TREE;
2293 attrs.alias = 0;
2294 }
2295 }
2296
2297 /* Compute the new alignment by taking the MIN of the alignment and the
2298 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2299 if zero. */
2300 if (offset != 0)
2301 {
2302 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
2303 attrs.align = MIN (attrs.align, max_align);
2304 }
2305
2306 if (size)
2307 {
2308 /* Drop the object if the new right end is not within its bounds. */
2309 if (adjust_object && (offset + size) > attrs.size)
2310 {
2311 attrs.expr = NULL_TREE;
2312 attrs.alias = 0;
2313 }
2314 attrs.size_known_p = true;
2315 attrs.size = size;
2316 }
2317 else if (attrs.size_known_p)
2318 {
2319 gcc_assert (!adjust_object);
2320 attrs.size -= offset;
2321 /* ??? The store_by_pieces machinery generates negative sizes,
2322 so don't assert for that here. */
2323 }
2324
2325 set_mem_attrs (new_rtx, &attrs);
2326
2327 return new_rtx;
2328 }
2329
2330 /* Return a memory reference like MEMREF, but with its mode changed
2331 to MODE and its address changed to ADDR, which is assumed to be
2332 MEMREF offset by OFFSET bytes. If VALIDATE is
2333 nonzero, the memory address is forced to be valid. */
2334
2335 rtx
2336 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2337 HOST_WIDE_INT offset, int validate)
2338 {
2339 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2340 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2341 }
2342
2343 /* Return a memory reference like MEMREF, but whose address is changed by
2344 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2345 known to be in OFFSET (possibly 1). */
2346
2347 rtx
2348 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2349 {
2350 rtx new_rtx, addr = XEXP (memref, 0);
2351 machine_mode address_mode;
2352 struct mem_attrs attrs, *defattrs;
2353
2354 attrs = *get_mem_attrs (memref);
2355 address_mode = get_address_mode (memref);
2356 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2357
2358 /* At this point we don't know _why_ the address is invalid. It
2359 could have secondary memory references, multiplies or anything.
2360
2361 However, if we did go and rearrange things, we can wind up not
2362 being able to recognize the magic around pic_offset_table_rtx.
2363 This stuff is fragile, and is yet another example of why it is
2364 bad to expose PIC machinery too early. */
2365 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2366 attrs.addrspace)
2367 && GET_CODE (addr) == PLUS
2368 && XEXP (addr, 0) == pic_offset_table_rtx)
2369 {
2370 addr = force_reg (GET_MODE (addr), addr);
2371 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2372 }
2373
2374 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2375 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2376
2377 /* If there are no changes, just return the original memory reference. */
2378 if (new_rtx == memref)
2379 return new_rtx;
2380
2381 /* Update the alignment to reflect the offset. Reset the offset, which
2382 we don't know. */
2383 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2384 attrs.offset_known_p = false;
2385 attrs.size_known_p = defattrs->size_known_p;
2386 attrs.size = defattrs->size;
2387 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2388 set_mem_attrs (new_rtx, &attrs);
2389 return new_rtx;
2390 }
2391
2392 /* Return a memory reference like MEMREF, but with its address changed to
2393 ADDR. The caller is asserting that the actual piece of memory pointed
2394 to is the same, just the form of the address is being changed, such as
2395 by putting something into a register. INPLACE is true if any changes
2396 can be made directly to MEMREF or false if MEMREF must be treated as
2397 immutable. */
2398
2399 rtx
2400 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2401 {
2402 /* change_address_1 copies the memory attribute structure without change
2403 and that's exactly what we want here. */
2404 update_temp_slot_address (XEXP (memref, 0), addr);
2405 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2406 }
2407
2408 /* Likewise, but the reference is not required to be valid. */
2409
2410 rtx
2411 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2412 {
2413 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2414 }
2415
2416 /* Return a memory reference like MEMREF, but with its mode widened to
2417 MODE and offset by OFFSET. This would be used by targets that e.g.
2418 cannot issue QImode memory operations and have to use SImode memory
2419 operations plus masking logic. */
2420
2421 rtx
2422 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2423 {
2424 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2425 struct mem_attrs attrs;
2426 unsigned int size = GET_MODE_SIZE (mode);
2427
2428 /* If there are no changes, just return the original memory reference. */
2429 if (new_rtx == memref)
2430 return new_rtx;
2431
2432 attrs = *get_mem_attrs (new_rtx);
2433
2434 /* If we don't know what offset we were at within the expression, then
2435 we can't know if we've overstepped the bounds. */
2436 if (! attrs.offset_known_p)
2437 attrs.expr = NULL_TREE;
2438
2439 while (attrs.expr)
2440 {
2441 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2442 {
2443 tree field = TREE_OPERAND (attrs.expr, 1);
2444 tree offset = component_ref_field_offset (attrs.expr);
2445
2446 if (! DECL_SIZE_UNIT (field))
2447 {
2448 attrs.expr = NULL_TREE;
2449 break;
2450 }
2451
2452 /* Is the field at least as large as the access? If so, ok,
2453 otherwise strip back to the containing structure. */
2454 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2455 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2456 && attrs.offset >= 0)
2457 break;
2458
2459 if (! tree_fits_uhwi_p (offset))
2460 {
2461 attrs.expr = NULL_TREE;
2462 break;
2463 }
2464
2465 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2466 attrs.offset += tree_to_uhwi (offset);
2467 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2468 / BITS_PER_UNIT);
2469 }
2470 /* Similarly for the decl. */
2471 else if (DECL_P (attrs.expr)
2472 && DECL_SIZE_UNIT (attrs.expr)
2473 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2474 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2475 && (! attrs.offset_known_p || attrs.offset >= 0))
2476 break;
2477 else
2478 {
2479 /* The widened memory access overflows the expression, which means
2480 that it could alias another expression. Zap it. */
2481 attrs.expr = NULL_TREE;
2482 break;
2483 }
2484 }
2485
2486 if (! attrs.expr)
2487 attrs.offset_known_p = false;
2488
2489 /* The widened memory may alias other stuff, so zap the alias set. */
2490 /* ??? Maybe use get_alias_set on any remaining expression. */
2491 attrs.alias = 0;
2492 attrs.size_known_p = true;
2493 attrs.size = size;
2494 set_mem_attrs (new_rtx, &attrs);
2495 return new_rtx;
2496 }
2497 \f
2498 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2499 static GTY(()) tree spill_slot_decl;
2500
2501 tree
2502 get_spill_slot_decl (bool force_build_p)
2503 {
2504 tree d = spill_slot_decl;
2505 rtx rd;
2506 struct mem_attrs attrs;
2507
2508 if (d || !force_build_p)
2509 return d;
2510
2511 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2512 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2513 DECL_ARTIFICIAL (d) = 1;
2514 DECL_IGNORED_P (d) = 1;
2515 TREE_USED (d) = 1;
2516 spill_slot_decl = d;
2517
2518 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2519 MEM_NOTRAP_P (rd) = 1;
2520 attrs = *mode_mem_attrs[(int) BLKmode];
2521 attrs.alias = new_alias_set ();
2522 attrs.expr = d;
2523 set_mem_attrs (rd, &attrs);
2524 SET_DECL_RTL (d, rd);
2525
2526 return d;
2527 }
2528
2529 /* Given MEM, a result from assign_stack_local, fill in the memory
2530 attributes as appropriate for a register allocator spill slot.
2531 These slots are not aliasable by other memory. We arrange for
2532 them all to use a single MEM_EXPR, so that the aliasing code can
2533 work properly in the case of shared spill slots. */
2534
2535 void
2536 set_mem_attrs_for_spill (rtx mem)
2537 {
2538 struct mem_attrs attrs;
2539 rtx addr;
2540
2541 attrs = *get_mem_attrs (mem);
2542 attrs.expr = get_spill_slot_decl (true);
2543 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2544 attrs.addrspace = ADDR_SPACE_GENERIC;
2545
2546 /* We expect the incoming memory to be of the form:
2547 (mem:MODE (plus (reg sfp) (const_int offset)))
2548 with perhaps the plus missing for offset = 0. */
2549 addr = XEXP (mem, 0);
2550 attrs.offset_known_p = true;
2551 attrs.offset = 0;
2552 if (GET_CODE (addr) == PLUS
2553 && CONST_INT_P (XEXP (addr, 1)))
2554 attrs.offset = INTVAL (XEXP (addr, 1));
2555
2556 set_mem_attrs (mem, &attrs);
2557 MEM_NOTRAP_P (mem) = 1;
2558 }
2559 \f
2560 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2561
2562 rtx_code_label *
2563 gen_label_rtx (void)
2564 {
2565 return as_a <rtx_code_label *> (
2566 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2567 NULL, label_num++, NULL));
2568 }
2569 \f
2570 /* For procedure integration. */
2571
2572 /* Install new pointers to the first and last insns in the chain.
2573 Also, set cur_insn_uid to one higher than the last in use.
2574 Used for an inline-procedure after copying the insn chain. */
2575
2576 void
2577 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2578 {
2579 rtx_insn *insn;
2580
2581 set_first_insn (first);
2582 set_last_insn (last);
2583 cur_insn_uid = 0;
2584
2585 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2586 {
2587 int debug_count = 0;
2588
2589 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2590 cur_debug_insn_uid = 0;
2591
2592 for (insn = first; insn; insn = NEXT_INSN (insn))
2593 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2594 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2595 else
2596 {
2597 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2598 if (DEBUG_INSN_P (insn))
2599 debug_count++;
2600 }
2601
2602 if (debug_count)
2603 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2604 else
2605 cur_debug_insn_uid++;
2606 }
2607 else
2608 for (insn = first; insn; insn = NEXT_INSN (insn))
2609 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2610
2611 cur_insn_uid++;
2612 }
2613 \f
2614 /* Go through all the RTL insn bodies and copy any invalid shared
2615 structure. This routine should only be called once. */
2616
2617 static void
2618 unshare_all_rtl_1 (rtx_insn *insn)
2619 {
2620 /* Unshare just about everything else. */
2621 unshare_all_rtl_in_chain (insn);
2622
2623 /* Make sure the addresses of stack slots found outside the insn chain
2624 (such as, in DECL_RTL of a variable) are not shared
2625 with the insn chain.
2626
2627 This special care is necessary when the stack slot MEM does not
2628 actually appear in the insn chain. If it does appear, its address
2629 is unshared from all else at that point. */
2630 unsigned int i;
2631 rtx temp;
2632 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2633 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2634 }
2635
2636 /* Go through all the RTL insn bodies and copy any invalid shared
2637 structure, again. This is a fairly expensive thing to do so it
2638 should be done sparingly. */
2639
2640 void
2641 unshare_all_rtl_again (rtx_insn *insn)
2642 {
2643 rtx_insn *p;
2644 tree decl;
2645
2646 for (p = insn; p; p = NEXT_INSN (p))
2647 if (INSN_P (p))
2648 {
2649 reset_used_flags (PATTERN (p));
2650 reset_used_flags (REG_NOTES (p));
2651 if (CALL_P (p))
2652 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2653 }
2654
2655 /* Make sure that virtual stack slots are not shared. */
2656 set_used_decls (DECL_INITIAL (cfun->decl));
2657
2658 /* Make sure that virtual parameters are not shared. */
2659 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2660 set_used_flags (DECL_RTL (decl));
2661
2662 rtx temp;
2663 unsigned int i;
2664 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2665 reset_used_flags (temp);
2666
2667 unshare_all_rtl_1 (insn);
2668 }
2669
2670 unsigned int
2671 unshare_all_rtl (void)
2672 {
2673 unshare_all_rtl_1 (get_insns ());
2674 return 0;
2675 }
2676
2677
2678 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2679 Recursively does the same for subexpressions. */
2680
2681 static void
2682 verify_rtx_sharing (rtx orig, rtx insn)
2683 {
2684 rtx x = orig;
2685 int i;
2686 enum rtx_code code;
2687 const char *format_ptr;
2688
2689 if (x == 0)
2690 return;
2691
2692 code = GET_CODE (x);
2693
2694 /* These types may be freely shared. */
2695
2696 switch (code)
2697 {
2698 case REG:
2699 case DEBUG_EXPR:
2700 case VALUE:
2701 CASE_CONST_ANY:
2702 case SYMBOL_REF:
2703 case LABEL_REF:
2704 case CODE_LABEL:
2705 case PC:
2706 case CC0:
2707 case RETURN:
2708 case SIMPLE_RETURN:
2709 case SCRATCH:
2710 /* SCRATCH must be shared because they represent distinct values. */
2711 return;
2712 case CLOBBER:
2713 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2714 clobbers or clobbers of hard registers that originated as pseudos.
2715 This is needed to allow safe register renaming. */
2716 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2717 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2718 return;
2719 break;
2720
2721 case CONST:
2722 if (shared_const_p (orig))
2723 return;
2724 break;
2725
2726 case MEM:
2727 /* A MEM is allowed to be shared if its address is constant. */
2728 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2729 || reload_completed || reload_in_progress)
2730 return;
2731
2732 break;
2733
2734 default:
2735 break;
2736 }
2737
2738 /* This rtx may not be shared. If it has already been seen,
2739 replace it with a copy of itself. */
2740 if (flag_checking && RTX_FLAG (x, used))
2741 {
2742 error ("invalid rtl sharing found in the insn");
2743 debug_rtx (insn);
2744 error ("shared rtx");
2745 debug_rtx (x);
2746 internal_error ("internal consistency failure");
2747 }
2748 gcc_assert (!RTX_FLAG (x, used));
2749
2750 RTX_FLAG (x, used) = 1;
2751
2752 /* Now scan the subexpressions recursively. */
2753
2754 format_ptr = GET_RTX_FORMAT (code);
2755
2756 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2757 {
2758 switch (*format_ptr++)
2759 {
2760 case 'e':
2761 verify_rtx_sharing (XEXP (x, i), insn);
2762 break;
2763
2764 case 'E':
2765 if (XVEC (x, i) != NULL)
2766 {
2767 int j;
2768 int len = XVECLEN (x, i);
2769
2770 for (j = 0; j < len; j++)
2771 {
2772 /* We allow sharing of ASM_OPERANDS inside single
2773 instruction. */
2774 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2775 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2776 == ASM_OPERANDS))
2777 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2778 else
2779 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2780 }
2781 }
2782 break;
2783 }
2784 }
2785 return;
2786 }
2787
2788 /* Reset used-flags for INSN. */
2789
2790 static void
2791 reset_insn_used_flags (rtx insn)
2792 {
2793 gcc_assert (INSN_P (insn));
2794 reset_used_flags (PATTERN (insn));
2795 reset_used_flags (REG_NOTES (insn));
2796 if (CALL_P (insn))
2797 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2798 }
2799
2800 /* Go through all the RTL insn bodies and clear all the USED bits. */
2801
2802 static void
2803 reset_all_used_flags (void)
2804 {
2805 rtx_insn *p;
2806
2807 for (p = get_insns (); p; p = NEXT_INSN (p))
2808 if (INSN_P (p))
2809 {
2810 rtx pat = PATTERN (p);
2811 if (GET_CODE (pat) != SEQUENCE)
2812 reset_insn_used_flags (p);
2813 else
2814 {
2815 gcc_assert (REG_NOTES (p) == NULL);
2816 for (int i = 0; i < XVECLEN (pat, 0); i++)
2817 {
2818 rtx insn = XVECEXP (pat, 0, i);
2819 if (INSN_P (insn))
2820 reset_insn_used_flags (insn);
2821 }
2822 }
2823 }
2824 }
2825
2826 /* Verify sharing in INSN. */
2827
2828 static void
2829 verify_insn_sharing (rtx insn)
2830 {
2831 gcc_assert (INSN_P (insn));
2832 reset_used_flags (PATTERN (insn));
2833 reset_used_flags (REG_NOTES (insn));
2834 if (CALL_P (insn))
2835 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2836 }
2837
2838 /* Go through all the RTL insn bodies and check that there is no unexpected
2839 sharing in between the subexpressions. */
2840
2841 DEBUG_FUNCTION void
2842 verify_rtl_sharing (void)
2843 {
2844 rtx_insn *p;
2845
2846 timevar_push (TV_VERIFY_RTL_SHARING);
2847
2848 reset_all_used_flags ();
2849
2850 for (p = get_insns (); p; p = NEXT_INSN (p))
2851 if (INSN_P (p))
2852 {
2853 rtx pat = PATTERN (p);
2854 if (GET_CODE (pat) != SEQUENCE)
2855 verify_insn_sharing (p);
2856 else
2857 for (int i = 0; i < XVECLEN (pat, 0); i++)
2858 {
2859 rtx insn = XVECEXP (pat, 0, i);
2860 if (INSN_P (insn))
2861 verify_insn_sharing (insn);
2862 }
2863 }
2864
2865 reset_all_used_flags ();
2866
2867 timevar_pop (TV_VERIFY_RTL_SHARING);
2868 }
2869
2870 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2871 Assumes the mark bits are cleared at entry. */
2872
2873 void
2874 unshare_all_rtl_in_chain (rtx_insn *insn)
2875 {
2876 for (; insn; insn = NEXT_INSN (insn))
2877 if (INSN_P (insn))
2878 {
2879 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2880 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2881 if (CALL_P (insn))
2882 CALL_INSN_FUNCTION_USAGE (insn)
2883 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2884 }
2885 }
2886
2887 /* Go through all virtual stack slots of a function and mark them as
2888 shared. We never replace the DECL_RTLs themselves with a copy,
2889 but expressions mentioned into a DECL_RTL cannot be shared with
2890 expressions in the instruction stream.
2891
2892 Note that reload may convert pseudo registers into memories in-place.
2893 Pseudo registers are always shared, but MEMs never are. Thus if we
2894 reset the used flags on MEMs in the instruction stream, we must set
2895 them again on MEMs that appear in DECL_RTLs. */
2896
2897 static void
2898 set_used_decls (tree blk)
2899 {
2900 tree t;
2901
2902 /* Mark decls. */
2903 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2904 if (DECL_RTL_SET_P (t))
2905 set_used_flags (DECL_RTL (t));
2906
2907 /* Now process sub-blocks. */
2908 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2909 set_used_decls (t);
2910 }
2911
2912 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2913 Recursively does the same for subexpressions. Uses
2914 copy_rtx_if_shared_1 to reduce stack space. */
2915
2916 rtx
2917 copy_rtx_if_shared (rtx orig)
2918 {
2919 copy_rtx_if_shared_1 (&orig);
2920 return orig;
2921 }
2922
2923 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2924 use. Recursively does the same for subexpressions. */
2925
2926 static void
2927 copy_rtx_if_shared_1 (rtx *orig1)
2928 {
2929 rtx x;
2930 int i;
2931 enum rtx_code code;
2932 rtx *last_ptr;
2933 const char *format_ptr;
2934 int copied = 0;
2935 int length;
2936
2937 /* Repeat is used to turn tail-recursion into iteration. */
2938 repeat:
2939 x = *orig1;
2940
2941 if (x == 0)
2942 return;
2943
2944 code = GET_CODE (x);
2945
2946 /* These types may be freely shared. */
2947
2948 switch (code)
2949 {
2950 case REG:
2951 case DEBUG_EXPR:
2952 case VALUE:
2953 CASE_CONST_ANY:
2954 case SYMBOL_REF:
2955 case LABEL_REF:
2956 case CODE_LABEL:
2957 case PC:
2958 case CC0:
2959 case RETURN:
2960 case SIMPLE_RETURN:
2961 case SCRATCH:
2962 /* SCRATCH must be shared because they represent distinct values. */
2963 return;
2964 case CLOBBER:
2965 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2966 clobbers or clobbers of hard registers that originated as pseudos.
2967 This is needed to allow safe register renaming. */
2968 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2969 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2970 return;
2971 break;
2972
2973 case CONST:
2974 if (shared_const_p (x))
2975 return;
2976 break;
2977
2978 case DEBUG_INSN:
2979 case INSN:
2980 case JUMP_INSN:
2981 case CALL_INSN:
2982 case NOTE:
2983 case BARRIER:
2984 /* The chain of insns is not being copied. */
2985 return;
2986
2987 default:
2988 break;
2989 }
2990
2991 /* This rtx may not be shared. If it has already been seen,
2992 replace it with a copy of itself. */
2993
2994 if (RTX_FLAG (x, used))
2995 {
2996 x = shallow_copy_rtx (x);
2997 copied = 1;
2998 }
2999 RTX_FLAG (x, used) = 1;
3000
3001 /* Now scan the subexpressions recursively.
3002 We can store any replaced subexpressions directly into X
3003 since we know X is not shared! Any vectors in X
3004 must be copied if X was copied. */
3005
3006 format_ptr = GET_RTX_FORMAT (code);
3007 length = GET_RTX_LENGTH (code);
3008 last_ptr = NULL;
3009
3010 for (i = 0; i < length; i++)
3011 {
3012 switch (*format_ptr++)
3013 {
3014 case 'e':
3015 if (last_ptr)
3016 copy_rtx_if_shared_1 (last_ptr);
3017 last_ptr = &XEXP (x, i);
3018 break;
3019
3020 case 'E':
3021 if (XVEC (x, i) != NULL)
3022 {
3023 int j;
3024 int len = XVECLEN (x, i);
3025
3026 /* Copy the vector iff I copied the rtx and the length
3027 is nonzero. */
3028 if (copied && len > 0)
3029 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3030
3031 /* Call recursively on all inside the vector. */
3032 for (j = 0; j < len; j++)
3033 {
3034 if (last_ptr)
3035 copy_rtx_if_shared_1 (last_ptr);
3036 last_ptr = &XVECEXP (x, i, j);
3037 }
3038 }
3039 break;
3040 }
3041 }
3042 *orig1 = x;
3043 if (last_ptr)
3044 {
3045 orig1 = last_ptr;
3046 goto repeat;
3047 }
3048 return;
3049 }
3050
3051 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3052
3053 static void
3054 mark_used_flags (rtx x, int flag)
3055 {
3056 int i, j;
3057 enum rtx_code code;
3058 const char *format_ptr;
3059 int length;
3060
3061 /* Repeat is used to turn tail-recursion into iteration. */
3062 repeat:
3063 if (x == 0)
3064 return;
3065
3066 code = GET_CODE (x);
3067
3068 /* These types may be freely shared so we needn't do any resetting
3069 for them. */
3070
3071 switch (code)
3072 {
3073 case REG:
3074 case DEBUG_EXPR:
3075 case VALUE:
3076 CASE_CONST_ANY:
3077 case SYMBOL_REF:
3078 case CODE_LABEL:
3079 case PC:
3080 case CC0:
3081 case RETURN:
3082 case SIMPLE_RETURN:
3083 return;
3084
3085 case DEBUG_INSN:
3086 case INSN:
3087 case JUMP_INSN:
3088 case CALL_INSN:
3089 case NOTE:
3090 case LABEL_REF:
3091 case BARRIER:
3092 /* The chain of insns is not being copied. */
3093 return;
3094
3095 default:
3096 break;
3097 }
3098
3099 RTX_FLAG (x, used) = flag;
3100
3101 format_ptr = GET_RTX_FORMAT (code);
3102 length = GET_RTX_LENGTH (code);
3103
3104 for (i = 0; i < length; i++)
3105 {
3106 switch (*format_ptr++)
3107 {
3108 case 'e':
3109 if (i == length-1)
3110 {
3111 x = XEXP (x, i);
3112 goto repeat;
3113 }
3114 mark_used_flags (XEXP (x, i), flag);
3115 break;
3116
3117 case 'E':
3118 for (j = 0; j < XVECLEN (x, i); j++)
3119 mark_used_flags (XVECEXP (x, i, j), flag);
3120 break;
3121 }
3122 }
3123 }
3124
3125 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3126 to look for shared sub-parts. */
3127
3128 void
3129 reset_used_flags (rtx x)
3130 {
3131 mark_used_flags (x, 0);
3132 }
3133
3134 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3135 to look for shared sub-parts. */
3136
3137 void
3138 set_used_flags (rtx x)
3139 {
3140 mark_used_flags (x, 1);
3141 }
3142 \f
3143 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3144 Return X or the rtx for the pseudo reg the value of X was copied into.
3145 OTHER must be valid as a SET_DEST. */
3146
3147 rtx
3148 make_safe_from (rtx x, rtx other)
3149 {
3150 while (1)
3151 switch (GET_CODE (other))
3152 {
3153 case SUBREG:
3154 other = SUBREG_REG (other);
3155 break;
3156 case STRICT_LOW_PART:
3157 case SIGN_EXTEND:
3158 case ZERO_EXTEND:
3159 other = XEXP (other, 0);
3160 break;
3161 default:
3162 goto done;
3163 }
3164 done:
3165 if ((MEM_P (other)
3166 && ! CONSTANT_P (x)
3167 && !REG_P (x)
3168 && GET_CODE (x) != SUBREG)
3169 || (REG_P (other)
3170 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3171 || reg_mentioned_p (other, x))))
3172 {
3173 rtx temp = gen_reg_rtx (GET_MODE (x));
3174 emit_move_insn (temp, x);
3175 return temp;
3176 }
3177 return x;
3178 }
3179 \f
3180 /* Emission of insns (adding them to the doubly-linked list). */
3181
3182 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3183
3184 rtx_insn *
3185 get_last_insn_anywhere (void)
3186 {
3187 struct sequence_stack *seq;
3188 for (seq = get_current_sequence (); seq; seq = seq->next)
3189 if (seq->last != 0)
3190 return seq->last;
3191 return 0;
3192 }
3193
3194 /* Return the first nonnote insn emitted in current sequence or current
3195 function. This routine looks inside SEQUENCEs. */
3196
3197 rtx_insn *
3198 get_first_nonnote_insn (void)
3199 {
3200 rtx_insn *insn = get_insns ();
3201
3202 if (insn)
3203 {
3204 if (NOTE_P (insn))
3205 for (insn = next_insn (insn);
3206 insn && NOTE_P (insn);
3207 insn = next_insn (insn))
3208 continue;
3209 else
3210 {
3211 if (NONJUMP_INSN_P (insn)
3212 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3213 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3214 }
3215 }
3216
3217 return insn;
3218 }
3219
3220 /* Return the last nonnote insn emitted in current sequence or current
3221 function. This routine looks inside SEQUENCEs. */
3222
3223 rtx_insn *
3224 get_last_nonnote_insn (void)
3225 {
3226 rtx_insn *insn = get_last_insn ();
3227
3228 if (insn)
3229 {
3230 if (NOTE_P (insn))
3231 for (insn = previous_insn (insn);
3232 insn && NOTE_P (insn);
3233 insn = previous_insn (insn))
3234 continue;
3235 else
3236 {
3237 if (NONJUMP_INSN_P (insn))
3238 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3239 insn = seq->insn (seq->len () - 1);
3240 }
3241 }
3242
3243 return insn;
3244 }
3245
3246 /* Return the number of actual (non-debug) insns emitted in this
3247 function. */
3248
3249 int
3250 get_max_insn_count (void)
3251 {
3252 int n = cur_insn_uid;
3253
3254 /* The table size must be stable across -g, to avoid codegen
3255 differences due to debug insns, and not be affected by
3256 -fmin-insn-uid, to avoid excessive table size and to simplify
3257 debugging of -fcompare-debug failures. */
3258 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3259 n -= cur_debug_insn_uid;
3260 else
3261 n -= MIN_NONDEBUG_INSN_UID;
3262
3263 return n;
3264 }
3265
3266 \f
3267 /* Return the next insn. If it is a SEQUENCE, return the first insn
3268 of the sequence. */
3269
3270 rtx_insn *
3271 next_insn (rtx_insn *insn)
3272 {
3273 if (insn)
3274 {
3275 insn = NEXT_INSN (insn);
3276 if (insn && NONJUMP_INSN_P (insn)
3277 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3278 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3279 }
3280
3281 return insn;
3282 }
3283
3284 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3285 of the sequence. */
3286
3287 rtx_insn *
3288 previous_insn (rtx_insn *insn)
3289 {
3290 if (insn)
3291 {
3292 insn = PREV_INSN (insn);
3293 if (insn && NONJUMP_INSN_P (insn))
3294 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3295 insn = seq->insn (seq->len () - 1);
3296 }
3297
3298 return insn;
3299 }
3300
3301 /* Return the next insn after INSN that is not a NOTE. This routine does not
3302 look inside SEQUENCEs. */
3303
3304 rtx_insn *
3305 next_nonnote_insn (rtx_insn *insn)
3306 {
3307 while (insn)
3308 {
3309 insn = NEXT_INSN (insn);
3310 if (insn == 0 || !NOTE_P (insn))
3311 break;
3312 }
3313
3314 return insn;
3315 }
3316
3317 /* Return the next insn after INSN that is not a NOTE, but stop the
3318 search before we enter another basic block. This routine does not
3319 look inside SEQUENCEs. */
3320
3321 rtx_insn *
3322 next_nonnote_insn_bb (rtx_insn *insn)
3323 {
3324 while (insn)
3325 {
3326 insn = NEXT_INSN (insn);
3327 if (insn == 0 || !NOTE_P (insn))
3328 break;
3329 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3330 return NULL;
3331 }
3332
3333 return insn;
3334 }
3335
3336 /* Return the previous insn before INSN that is not a NOTE. This routine does
3337 not look inside SEQUENCEs. */
3338
3339 rtx_insn *
3340 prev_nonnote_insn (rtx_insn *insn)
3341 {
3342 while (insn)
3343 {
3344 insn = PREV_INSN (insn);
3345 if (insn == 0 || !NOTE_P (insn))
3346 break;
3347 }
3348
3349 return insn;
3350 }
3351
3352 /* Return the previous insn before INSN that is not a NOTE, but stop
3353 the search before we enter another basic block. This routine does
3354 not look inside SEQUENCEs. */
3355
3356 rtx_insn *
3357 prev_nonnote_insn_bb (rtx_insn *insn)
3358 {
3359
3360 while (insn)
3361 {
3362 insn = PREV_INSN (insn);
3363 if (insn == 0 || !NOTE_P (insn))
3364 break;
3365 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3366 return NULL;
3367 }
3368
3369 return insn;
3370 }
3371
3372 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3373 routine does not look inside SEQUENCEs. */
3374
3375 rtx_insn *
3376 next_nondebug_insn (rtx_insn *insn)
3377 {
3378 while (insn)
3379 {
3380 insn = NEXT_INSN (insn);
3381 if (insn == 0 || !DEBUG_INSN_P (insn))
3382 break;
3383 }
3384
3385 return insn;
3386 }
3387
3388 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3389 This routine does not look inside SEQUENCEs. */
3390
3391 rtx_insn *
3392 prev_nondebug_insn (rtx_insn *insn)
3393 {
3394 while (insn)
3395 {
3396 insn = PREV_INSN (insn);
3397 if (insn == 0 || !DEBUG_INSN_P (insn))
3398 break;
3399 }
3400
3401 return insn;
3402 }
3403
3404 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3405 This routine does not look inside SEQUENCEs. */
3406
3407 rtx_insn *
3408 next_nonnote_nondebug_insn (rtx_insn *insn)
3409 {
3410 while (insn)
3411 {
3412 insn = NEXT_INSN (insn);
3413 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3414 break;
3415 }
3416
3417 return insn;
3418 }
3419
3420 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3421 This routine does not look inside SEQUENCEs. */
3422
3423 rtx_insn *
3424 prev_nonnote_nondebug_insn (rtx_insn *insn)
3425 {
3426 while (insn)
3427 {
3428 insn = PREV_INSN (insn);
3429 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3430 break;
3431 }
3432
3433 return insn;
3434 }
3435
3436 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3437 or 0, if there is none. This routine does not look inside
3438 SEQUENCEs. */
3439
3440 rtx_insn *
3441 next_real_insn (rtx uncast_insn)
3442 {
3443 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3444
3445 while (insn)
3446 {
3447 insn = NEXT_INSN (insn);
3448 if (insn == 0 || INSN_P (insn))
3449 break;
3450 }
3451
3452 return insn;
3453 }
3454
3455 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3456 or 0, if there is none. This routine does not look inside
3457 SEQUENCEs. */
3458
3459 rtx_insn *
3460 prev_real_insn (rtx_insn *insn)
3461 {
3462 while (insn)
3463 {
3464 insn = PREV_INSN (insn);
3465 if (insn == 0 || INSN_P (insn))
3466 break;
3467 }
3468
3469 return insn;
3470 }
3471
3472 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3473 This routine does not look inside SEQUENCEs. */
3474
3475 rtx_call_insn *
3476 last_call_insn (void)
3477 {
3478 rtx_insn *insn;
3479
3480 for (insn = get_last_insn ();
3481 insn && !CALL_P (insn);
3482 insn = PREV_INSN (insn))
3483 ;
3484
3485 return safe_as_a <rtx_call_insn *> (insn);
3486 }
3487
3488 /* Find the next insn after INSN that really does something. This routine
3489 does not look inside SEQUENCEs. After reload this also skips over
3490 standalone USE and CLOBBER insn. */
3491
3492 int
3493 active_insn_p (const rtx_insn *insn)
3494 {
3495 return (CALL_P (insn) || JUMP_P (insn)
3496 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3497 || (NONJUMP_INSN_P (insn)
3498 && (! reload_completed
3499 || (GET_CODE (PATTERN (insn)) != USE
3500 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3501 }
3502
3503 rtx_insn *
3504 next_active_insn (rtx_insn *insn)
3505 {
3506 while (insn)
3507 {
3508 insn = NEXT_INSN (insn);
3509 if (insn == 0 || active_insn_p (insn))
3510 break;
3511 }
3512
3513 return insn;
3514 }
3515
3516 /* Find the last insn before INSN that really does something. This routine
3517 does not look inside SEQUENCEs. After reload this also skips over
3518 standalone USE and CLOBBER insn. */
3519
3520 rtx_insn *
3521 prev_active_insn (rtx_insn *insn)
3522 {
3523 while (insn)
3524 {
3525 insn = PREV_INSN (insn);
3526 if (insn == 0 || active_insn_p (insn))
3527 break;
3528 }
3529
3530 return insn;
3531 }
3532 \f
3533 /* Return the next insn that uses CC0 after INSN, which is assumed to
3534 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3535 applied to the result of this function should yield INSN).
3536
3537 Normally, this is simply the next insn. However, if a REG_CC_USER note
3538 is present, it contains the insn that uses CC0.
3539
3540 Return 0 if we can't find the insn. */
3541
3542 rtx_insn *
3543 next_cc0_user (rtx_insn *insn)
3544 {
3545 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3546
3547 if (note)
3548 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3549
3550 insn = next_nonnote_insn (insn);
3551 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3552 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3553
3554 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3555 return insn;
3556
3557 return 0;
3558 }
3559
3560 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3561 note, it is the previous insn. */
3562
3563 rtx_insn *
3564 prev_cc0_setter (rtx_insn *insn)
3565 {
3566 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3567
3568 if (note)
3569 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3570
3571 insn = prev_nonnote_insn (insn);
3572 gcc_assert (sets_cc0_p (PATTERN (insn)));
3573
3574 return insn;
3575 }
3576
3577 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3578
3579 static int
3580 find_auto_inc (const_rtx x, const_rtx reg)
3581 {
3582 subrtx_iterator::array_type array;
3583 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3584 {
3585 const_rtx x = *iter;
3586 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3587 && rtx_equal_p (reg, XEXP (x, 0)))
3588 return true;
3589 }
3590 return false;
3591 }
3592
3593 /* Increment the label uses for all labels present in rtx. */
3594
3595 static void
3596 mark_label_nuses (rtx x)
3597 {
3598 enum rtx_code code;
3599 int i, j;
3600 const char *fmt;
3601
3602 code = GET_CODE (x);
3603 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3604 LABEL_NUSES (label_ref_label (x))++;
3605
3606 fmt = GET_RTX_FORMAT (code);
3607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3608 {
3609 if (fmt[i] == 'e')
3610 mark_label_nuses (XEXP (x, i));
3611 else if (fmt[i] == 'E')
3612 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3613 mark_label_nuses (XVECEXP (x, i, j));
3614 }
3615 }
3616
3617 \f
3618 /* Try splitting insns that can be split for better scheduling.
3619 PAT is the pattern which might split.
3620 TRIAL is the insn providing PAT.
3621 LAST is nonzero if we should return the last insn of the sequence produced.
3622
3623 If this routine succeeds in splitting, it returns the first or last
3624 replacement insn depending on the value of LAST. Otherwise, it
3625 returns TRIAL. If the insn to be returned can be split, it will be. */
3626
3627 rtx_insn *
3628 try_split (rtx pat, rtx_insn *trial, int last)
3629 {
3630 rtx_insn *before = PREV_INSN (trial);
3631 rtx_insn *after = NEXT_INSN (trial);
3632 rtx note;
3633 rtx_insn *seq, *tem;
3634 int probability;
3635 rtx_insn *insn_last, *insn;
3636 int njumps = 0;
3637 rtx_insn *call_insn = NULL;
3638
3639 /* We're not good at redistributing frame information. */
3640 if (RTX_FRAME_RELATED_P (trial))
3641 return trial;
3642
3643 if (any_condjump_p (trial)
3644 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3645 split_branch_probability = XINT (note, 0);
3646 probability = split_branch_probability;
3647
3648 seq = split_insns (pat, trial);
3649
3650 split_branch_probability = -1;
3651
3652 if (!seq)
3653 return trial;
3654
3655 /* Avoid infinite loop if any insn of the result matches
3656 the original pattern. */
3657 insn_last = seq;
3658 while (1)
3659 {
3660 if (INSN_P (insn_last)
3661 && rtx_equal_p (PATTERN (insn_last), pat))
3662 return trial;
3663 if (!NEXT_INSN (insn_last))
3664 break;
3665 insn_last = NEXT_INSN (insn_last);
3666 }
3667
3668 /* We will be adding the new sequence to the function. The splitters
3669 may have introduced invalid RTL sharing, so unshare the sequence now. */
3670 unshare_all_rtl_in_chain (seq);
3671
3672 /* Mark labels and copy flags. */
3673 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3674 {
3675 if (JUMP_P (insn))
3676 {
3677 if (JUMP_P (trial))
3678 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3679 mark_jump_label (PATTERN (insn), insn, 0);
3680 njumps++;
3681 if (probability != -1
3682 && any_condjump_p (insn)
3683 && !find_reg_note (insn, REG_BR_PROB, 0))
3684 {
3685 /* We can preserve the REG_BR_PROB notes only if exactly
3686 one jump is created, otherwise the machine description
3687 is responsible for this step using
3688 split_branch_probability variable. */
3689 gcc_assert (njumps == 1);
3690 add_int_reg_note (insn, REG_BR_PROB, probability);
3691 }
3692 }
3693 }
3694
3695 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3696 in SEQ and copy any additional information across. */
3697 if (CALL_P (trial))
3698 {
3699 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3700 if (CALL_P (insn))
3701 {
3702 rtx_insn *next;
3703 rtx *p;
3704
3705 gcc_assert (call_insn == NULL_RTX);
3706 call_insn = insn;
3707
3708 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3709 target may have explicitly specified. */
3710 p = &CALL_INSN_FUNCTION_USAGE (insn);
3711 while (*p)
3712 p = &XEXP (*p, 1);
3713 *p = CALL_INSN_FUNCTION_USAGE (trial);
3714
3715 /* If the old call was a sibling call, the new one must
3716 be too. */
3717 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3718
3719 /* If the new call is the last instruction in the sequence,
3720 it will effectively replace the old call in-situ. Otherwise
3721 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3722 so that it comes immediately after the new call. */
3723 if (NEXT_INSN (insn))
3724 for (next = NEXT_INSN (trial);
3725 next && NOTE_P (next);
3726 next = NEXT_INSN (next))
3727 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3728 {
3729 remove_insn (next);
3730 add_insn_after (next, insn, NULL);
3731 break;
3732 }
3733 }
3734 }
3735
3736 /* Copy notes, particularly those related to the CFG. */
3737 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3738 {
3739 switch (REG_NOTE_KIND (note))
3740 {
3741 case REG_EH_REGION:
3742 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3743 break;
3744
3745 case REG_NORETURN:
3746 case REG_SETJMP:
3747 case REG_TM:
3748 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3749 {
3750 if (CALL_P (insn))
3751 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3752 }
3753 break;
3754
3755 case REG_NON_LOCAL_GOTO:
3756 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3757 {
3758 if (JUMP_P (insn))
3759 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3760 }
3761 break;
3762
3763 case REG_INC:
3764 if (!AUTO_INC_DEC)
3765 break;
3766
3767 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3768 {
3769 rtx reg = XEXP (note, 0);
3770 if (!FIND_REG_INC_NOTE (insn, reg)
3771 && find_auto_inc (PATTERN (insn), reg))
3772 add_reg_note (insn, REG_INC, reg);
3773 }
3774 break;
3775
3776 case REG_ARGS_SIZE:
3777 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3778 break;
3779
3780 case REG_CALL_DECL:
3781 gcc_assert (call_insn != NULL_RTX);
3782 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3783 break;
3784
3785 default:
3786 break;
3787 }
3788 }
3789
3790 /* If there are LABELS inside the split insns increment the
3791 usage count so we don't delete the label. */
3792 if (INSN_P (trial))
3793 {
3794 insn = insn_last;
3795 while (insn != NULL_RTX)
3796 {
3797 /* JUMP_P insns have already been "marked" above. */
3798 if (NONJUMP_INSN_P (insn))
3799 mark_label_nuses (PATTERN (insn));
3800
3801 insn = PREV_INSN (insn);
3802 }
3803 }
3804
3805 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3806
3807 delete_insn (trial);
3808
3809 /* Recursively call try_split for each new insn created; by the
3810 time control returns here that insn will be fully split, so
3811 set LAST and continue from the insn after the one returned.
3812 We can't use next_active_insn here since AFTER may be a note.
3813 Ignore deleted insns, which can be occur if not optimizing. */
3814 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3815 if (! tem->deleted () && INSN_P (tem))
3816 tem = try_split (PATTERN (tem), tem, 1);
3817
3818 /* Return either the first or the last insn, depending on which was
3819 requested. */
3820 return last
3821 ? (after ? PREV_INSN (after) : get_last_insn ())
3822 : NEXT_INSN (before);
3823 }
3824 \f
3825 /* Make and return an INSN rtx, initializing all its slots.
3826 Store PATTERN in the pattern slots. */
3827
3828 rtx_insn *
3829 make_insn_raw (rtx pattern)
3830 {
3831 rtx_insn *insn;
3832
3833 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3834
3835 INSN_UID (insn) = cur_insn_uid++;
3836 PATTERN (insn) = pattern;
3837 INSN_CODE (insn) = -1;
3838 REG_NOTES (insn) = NULL;
3839 INSN_LOCATION (insn) = curr_insn_location ();
3840 BLOCK_FOR_INSN (insn) = NULL;
3841
3842 #ifdef ENABLE_RTL_CHECKING
3843 if (insn
3844 && INSN_P (insn)
3845 && (returnjump_p (insn)
3846 || (GET_CODE (insn) == SET
3847 && SET_DEST (insn) == pc_rtx)))
3848 {
3849 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3850 debug_rtx (insn);
3851 }
3852 #endif
3853
3854 return insn;
3855 }
3856
3857 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3858
3859 static rtx_insn *
3860 make_debug_insn_raw (rtx pattern)
3861 {
3862 rtx_debug_insn *insn;
3863
3864 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3865 INSN_UID (insn) = cur_debug_insn_uid++;
3866 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3867 INSN_UID (insn) = cur_insn_uid++;
3868
3869 PATTERN (insn) = pattern;
3870 INSN_CODE (insn) = -1;
3871 REG_NOTES (insn) = NULL;
3872 INSN_LOCATION (insn) = curr_insn_location ();
3873 BLOCK_FOR_INSN (insn) = NULL;
3874
3875 return insn;
3876 }
3877
3878 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3879
3880 static rtx_insn *
3881 make_jump_insn_raw (rtx pattern)
3882 {
3883 rtx_jump_insn *insn;
3884
3885 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3886 INSN_UID (insn) = cur_insn_uid++;
3887
3888 PATTERN (insn) = pattern;
3889 INSN_CODE (insn) = -1;
3890 REG_NOTES (insn) = NULL;
3891 JUMP_LABEL (insn) = NULL;
3892 INSN_LOCATION (insn) = curr_insn_location ();
3893 BLOCK_FOR_INSN (insn) = NULL;
3894
3895 return insn;
3896 }
3897
3898 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3899
3900 static rtx_insn *
3901 make_call_insn_raw (rtx pattern)
3902 {
3903 rtx_call_insn *insn;
3904
3905 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3906 INSN_UID (insn) = cur_insn_uid++;
3907
3908 PATTERN (insn) = pattern;
3909 INSN_CODE (insn) = -1;
3910 REG_NOTES (insn) = NULL;
3911 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3912 INSN_LOCATION (insn) = curr_insn_location ();
3913 BLOCK_FOR_INSN (insn) = NULL;
3914
3915 return insn;
3916 }
3917
3918 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3919
3920 static rtx_note *
3921 make_note_raw (enum insn_note subtype)
3922 {
3923 /* Some notes are never created this way at all. These notes are
3924 only created by patching out insns. */
3925 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3926 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3927
3928 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3929 INSN_UID (note) = cur_insn_uid++;
3930 NOTE_KIND (note) = subtype;
3931 BLOCK_FOR_INSN (note) = NULL;
3932 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3933 return note;
3934 }
3935 \f
3936 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3937 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3938 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3939
3940 static inline void
3941 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3942 {
3943 SET_PREV_INSN (insn) = prev;
3944 SET_NEXT_INSN (insn) = next;
3945 if (prev != NULL)
3946 {
3947 SET_NEXT_INSN (prev) = insn;
3948 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3949 {
3950 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3951 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3952 }
3953 }
3954 if (next != NULL)
3955 {
3956 SET_PREV_INSN (next) = insn;
3957 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3958 {
3959 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3960 SET_PREV_INSN (sequence->insn (0)) = insn;
3961 }
3962 }
3963
3964 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3965 {
3966 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3967 SET_PREV_INSN (sequence->insn (0)) = prev;
3968 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3969 }
3970 }
3971
3972 /* Add INSN to the end of the doubly-linked list.
3973 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3974
3975 void
3976 add_insn (rtx_insn *insn)
3977 {
3978 rtx_insn *prev = get_last_insn ();
3979 link_insn_into_chain (insn, prev, NULL);
3980 if (NULL == get_insns ())
3981 set_first_insn (insn);
3982 set_last_insn (insn);
3983 }
3984
3985 /* Add INSN into the doubly-linked list after insn AFTER. */
3986
3987 static void
3988 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
3989 {
3990 rtx_insn *next = NEXT_INSN (after);
3991
3992 gcc_assert (!optimize || !after->deleted ());
3993
3994 link_insn_into_chain (insn, after, next);
3995
3996 if (next == NULL)
3997 {
3998 struct sequence_stack *seq;
3999
4000 for (seq = get_current_sequence (); seq; seq = seq->next)
4001 if (after == seq->last)
4002 {
4003 seq->last = insn;
4004 break;
4005 }
4006 }
4007 }
4008
4009 /* Add INSN into the doubly-linked list before insn BEFORE. */
4010
4011 static void
4012 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4013 {
4014 rtx_insn *prev = PREV_INSN (before);
4015
4016 gcc_assert (!optimize || !before->deleted ());
4017
4018 link_insn_into_chain (insn, prev, before);
4019
4020 if (prev == NULL)
4021 {
4022 struct sequence_stack *seq;
4023
4024 for (seq = get_current_sequence (); seq; seq = seq->next)
4025 if (before == seq->first)
4026 {
4027 seq->first = insn;
4028 break;
4029 }
4030
4031 gcc_assert (seq);
4032 }
4033 }
4034
4035 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4036 If BB is NULL, an attempt is made to infer the bb from before.
4037
4038 This and the next function should be the only functions called
4039 to insert an insn once delay slots have been filled since only
4040 they know how to update a SEQUENCE. */
4041
4042 void
4043 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4044 {
4045 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4046 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4047 add_insn_after_nobb (insn, after);
4048 if (!BARRIER_P (after)
4049 && !BARRIER_P (insn)
4050 && (bb = BLOCK_FOR_INSN (after)))
4051 {
4052 set_block_for_insn (insn, bb);
4053 if (INSN_P (insn))
4054 df_insn_rescan (insn);
4055 /* Should not happen as first in the BB is always
4056 either NOTE or LABEL. */
4057 if (BB_END (bb) == after
4058 /* Avoid clobbering of structure when creating new BB. */
4059 && !BARRIER_P (insn)
4060 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4061 BB_END (bb) = insn;
4062 }
4063 }
4064
4065 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4066 If BB is NULL, an attempt is made to infer the bb from before.
4067
4068 This and the previous function should be the only functions called
4069 to insert an insn once delay slots have been filled since only
4070 they know how to update a SEQUENCE. */
4071
4072 void
4073 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4074 {
4075 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4076 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4077 add_insn_before_nobb (insn, before);
4078
4079 if (!bb
4080 && !BARRIER_P (before)
4081 && !BARRIER_P (insn))
4082 bb = BLOCK_FOR_INSN (before);
4083
4084 if (bb)
4085 {
4086 set_block_for_insn (insn, bb);
4087 if (INSN_P (insn))
4088 df_insn_rescan (insn);
4089 /* Should not happen as first in the BB is always either NOTE or
4090 LABEL. */
4091 gcc_assert (BB_HEAD (bb) != insn
4092 /* Avoid clobbering of structure when creating new BB. */
4093 || BARRIER_P (insn)
4094 || NOTE_INSN_BASIC_BLOCK_P (insn));
4095 }
4096 }
4097
4098 /* Replace insn with an deleted instruction note. */
4099
4100 void
4101 set_insn_deleted (rtx insn)
4102 {
4103 if (INSN_P (insn))
4104 df_insn_delete (as_a <rtx_insn *> (insn));
4105 PUT_CODE (insn, NOTE);
4106 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4107 }
4108
4109
4110 /* Unlink INSN from the insn chain.
4111
4112 This function knows how to handle sequences.
4113
4114 This function does not invalidate data flow information associated with
4115 INSN (i.e. does not call df_insn_delete). That makes this function
4116 usable for only disconnecting an insn from the chain, and re-emit it
4117 elsewhere later.
4118
4119 To later insert INSN elsewhere in the insn chain via add_insn and
4120 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4121 the caller. Nullifying them here breaks many insn chain walks.
4122
4123 To really delete an insn and related DF information, use delete_insn. */
4124
4125 void
4126 remove_insn (rtx uncast_insn)
4127 {
4128 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4129 rtx_insn *next = NEXT_INSN (insn);
4130 rtx_insn *prev = PREV_INSN (insn);
4131 basic_block bb;
4132
4133 if (prev)
4134 {
4135 SET_NEXT_INSN (prev) = next;
4136 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4137 {
4138 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4139 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4140 }
4141 }
4142 else
4143 {
4144 struct sequence_stack *seq;
4145
4146 for (seq = get_current_sequence (); seq; seq = seq->next)
4147 if (insn == seq->first)
4148 {
4149 seq->first = next;
4150 break;
4151 }
4152
4153 gcc_assert (seq);
4154 }
4155
4156 if (next)
4157 {
4158 SET_PREV_INSN (next) = prev;
4159 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4160 {
4161 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4162 SET_PREV_INSN (sequence->insn (0)) = prev;
4163 }
4164 }
4165 else
4166 {
4167 struct sequence_stack *seq;
4168
4169 for (seq = get_current_sequence (); seq; seq = seq->next)
4170 if (insn == seq->last)
4171 {
4172 seq->last = prev;
4173 break;
4174 }
4175
4176 gcc_assert (seq);
4177 }
4178
4179 /* Fix up basic block boundaries, if necessary. */
4180 if (!BARRIER_P (insn)
4181 && (bb = BLOCK_FOR_INSN (insn)))
4182 {
4183 if (BB_HEAD (bb) == insn)
4184 {
4185 /* Never ever delete the basic block note without deleting whole
4186 basic block. */
4187 gcc_assert (!NOTE_P (insn));
4188 BB_HEAD (bb) = next;
4189 }
4190 if (BB_END (bb) == insn)
4191 BB_END (bb) = prev;
4192 }
4193 }
4194
4195 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4196
4197 void
4198 add_function_usage_to (rtx call_insn, rtx call_fusage)
4199 {
4200 gcc_assert (call_insn && CALL_P (call_insn));
4201
4202 /* Put the register usage information on the CALL. If there is already
4203 some usage information, put ours at the end. */
4204 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4205 {
4206 rtx link;
4207
4208 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4209 link = XEXP (link, 1))
4210 ;
4211
4212 XEXP (link, 1) = call_fusage;
4213 }
4214 else
4215 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4216 }
4217
4218 /* Delete all insns made since FROM.
4219 FROM becomes the new last instruction. */
4220
4221 void
4222 delete_insns_since (rtx_insn *from)
4223 {
4224 if (from == 0)
4225 set_first_insn (0);
4226 else
4227 SET_NEXT_INSN (from) = 0;
4228 set_last_insn (from);
4229 }
4230
4231 /* This function is deprecated, please use sequences instead.
4232
4233 Move a consecutive bunch of insns to a different place in the chain.
4234 The insns to be moved are those between FROM and TO.
4235 They are moved to a new position after the insn AFTER.
4236 AFTER must not be FROM or TO or any insn in between.
4237
4238 This function does not know about SEQUENCEs and hence should not be
4239 called after delay-slot filling has been done. */
4240
4241 void
4242 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4243 {
4244 if (flag_checking)
4245 {
4246 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4247 gcc_assert (after != x);
4248 gcc_assert (after != to);
4249 }
4250
4251 /* Splice this bunch out of where it is now. */
4252 if (PREV_INSN (from))
4253 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4254 if (NEXT_INSN (to))
4255 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4256 if (get_last_insn () == to)
4257 set_last_insn (PREV_INSN (from));
4258 if (get_insns () == from)
4259 set_first_insn (NEXT_INSN (to));
4260
4261 /* Make the new neighbors point to it and it to them. */
4262 if (NEXT_INSN (after))
4263 SET_PREV_INSN (NEXT_INSN (after)) = to;
4264
4265 SET_NEXT_INSN (to) = NEXT_INSN (after);
4266 SET_PREV_INSN (from) = after;
4267 SET_NEXT_INSN (after) = from;
4268 if (after == get_last_insn ())
4269 set_last_insn (to);
4270 }
4271
4272 /* Same as function above, but take care to update BB boundaries. */
4273 void
4274 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4275 {
4276 rtx_insn *prev = PREV_INSN (from);
4277 basic_block bb, bb2;
4278
4279 reorder_insns_nobb (from, to, after);
4280
4281 if (!BARRIER_P (after)
4282 && (bb = BLOCK_FOR_INSN (after)))
4283 {
4284 rtx_insn *x;
4285 df_set_bb_dirty (bb);
4286
4287 if (!BARRIER_P (from)
4288 && (bb2 = BLOCK_FOR_INSN (from)))
4289 {
4290 if (BB_END (bb2) == to)
4291 BB_END (bb2) = prev;
4292 df_set_bb_dirty (bb2);
4293 }
4294
4295 if (BB_END (bb) == after)
4296 BB_END (bb) = to;
4297
4298 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4299 if (!BARRIER_P (x))
4300 df_insn_change_bb (x, bb);
4301 }
4302 }
4303
4304 \f
4305 /* Emit insn(s) of given code and pattern
4306 at a specified place within the doubly-linked list.
4307
4308 All of the emit_foo global entry points accept an object
4309 X which is either an insn list or a PATTERN of a single
4310 instruction.
4311
4312 There are thus a few canonical ways to generate code and
4313 emit it at a specific place in the instruction stream. For
4314 example, consider the instruction named SPOT and the fact that
4315 we would like to emit some instructions before SPOT. We might
4316 do it like this:
4317
4318 start_sequence ();
4319 ... emit the new instructions ...
4320 insns_head = get_insns ();
4321 end_sequence ();
4322
4323 emit_insn_before (insns_head, SPOT);
4324
4325 It used to be common to generate SEQUENCE rtl instead, but that
4326 is a relic of the past which no longer occurs. The reason is that
4327 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4328 generated would almost certainly die right after it was created. */
4329
4330 static rtx_insn *
4331 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4332 rtx_insn *(*make_raw) (rtx))
4333 {
4334 rtx_insn *insn;
4335
4336 gcc_assert (before);
4337
4338 if (x == NULL_RTX)
4339 return safe_as_a <rtx_insn *> (last);
4340
4341 switch (GET_CODE (x))
4342 {
4343 case DEBUG_INSN:
4344 case INSN:
4345 case JUMP_INSN:
4346 case CALL_INSN:
4347 case CODE_LABEL:
4348 case BARRIER:
4349 case NOTE:
4350 insn = as_a <rtx_insn *> (x);
4351 while (insn)
4352 {
4353 rtx_insn *next = NEXT_INSN (insn);
4354 add_insn_before (insn, before, bb);
4355 last = insn;
4356 insn = next;
4357 }
4358 break;
4359
4360 #ifdef ENABLE_RTL_CHECKING
4361 case SEQUENCE:
4362 gcc_unreachable ();
4363 break;
4364 #endif
4365
4366 default:
4367 last = (*make_raw) (x);
4368 add_insn_before (last, before, bb);
4369 break;
4370 }
4371
4372 return safe_as_a <rtx_insn *> (last);
4373 }
4374
4375 /* Make X be output before the instruction BEFORE. */
4376
4377 rtx_insn *
4378 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4379 {
4380 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4381 }
4382
4383 /* Make an instruction with body X and code JUMP_INSN
4384 and output it before the instruction BEFORE. */
4385
4386 rtx_jump_insn *
4387 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4388 {
4389 return as_a <rtx_jump_insn *> (
4390 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4391 make_jump_insn_raw));
4392 }
4393
4394 /* Make an instruction with body X and code CALL_INSN
4395 and output it before the instruction BEFORE. */
4396
4397 rtx_insn *
4398 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4399 {
4400 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4401 make_call_insn_raw);
4402 }
4403
4404 /* Make an instruction with body X and code DEBUG_INSN
4405 and output it before the instruction BEFORE. */
4406
4407 rtx_insn *
4408 emit_debug_insn_before_noloc (rtx x, rtx before)
4409 {
4410 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4411 make_debug_insn_raw);
4412 }
4413
4414 /* Make an insn of code BARRIER
4415 and output it before the insn BEFORE. */
4416
4417 rtx_barrier *
4418 emit_barrier_before (rtx before)
4419 {
4420 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4421
4422 INSN_UID (insn) = cur_insn_uid++;
4423
4424 add_insn_before (insn, before, NULL);
4425 return insn;
4426 }
4427
4428 /* Emit the label LABEL before the insn BEFORE. */
4429
4430 rtx_code_label *
4431 emit_label_before (rtx label, rtx_insn *before)
4432 {
4433 gcc_checking_assert (INSN_UID (label) == 0);
4434 INSN_UID (label) = cur_insn_uid++;
4435 add_insn_before (label, before, NULL);
4436 return as_a <rtx_code_label *> (label);
4437 }
4438 \f
4439 /* Helper for emit_insn_after, handles lists of instructions
4440 efficiently. */
4441
4442 static rtx_insn *
4443 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4444 {
4445 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4446 rtx_insn *last;
4447 rtx_insn *after_after;
4448 if (!bb && !BARRIER_P (after))
4449 bb = BLOCK_FOR_INSN (after);
4450
4451 if (bb)
4452 {
4453 df_set_bb_dirty (bb);
4454 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4455 if (!BARRIER_P (last))
4456 {
4457 set_block_for_insn (last, bb);
4458 df_insn_rescan (last);
4459 }
4460 if (!BARRIER_P (last))
4461 {
4462 set_block_for_insn (last, bb);
4463 df_insn_rescan (last);
4464 }
4465 if (BB_END (bb) == after)
4466 BB_END (bb) = last;
4467 }
4468 else
4469 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4470 continue;
4471
4472 after_after = NEXT_INSN (after);
4473
4474 SET_NEXT_INSN (after) = first;
4475 SET_PREV_INSN (first) = after;
4476 SET_NEXT_INSN (last) = after_after;
4477 if (after_after)
4478 SET_PREV_INSN (after_after) = last;
4479
4480 if (after == get_last_insn ())
4481 set_last_insn (last);
4482
4483 return last;
4484 }
4485
4486 static rtx_insn *
4487 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4488 rtx_insn *(*make_raw)(rtx))
4489 {
4490 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4491 rtx_insn *last = after;
4492
4493 gcc_assert (after);
4494
4495 if (x == NULL_RTX)
4496 return last;
4497
4498 switch (GET_CODE (x))
4499 {
4500 case DEBUG_INSN:
4501 case INSN:
4502 case JUMP_INSN:
4503 case CALL_INSN:
4504 case CODE_LABEL:
4505 case BARRIER:
4506 case NOTE:
4507 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4508 break;
4509
4510 #ifdef ENABLE_RTL_CHECKING
4511 case SEQUENCE:
4512 gcc_unreachable ();
4513 break;
4514 #endif
4515
4516 default:
4517 last = (*make_raw) (x);
4518 add_insn_after (last, after, bb);
4519 break;
4520 }
4521
4522 return last;
4523 }
4524
4525 /* Make X be output after the insn AFTER and set the BB of insn. If
4526 BB is NULL, an attempt is made to infer the BB from AFTER. */
4527
4528 rtx_insn *
4529 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4530 {
4531 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4532 }
4533
4534
4535 /* Make an insn of code JUMP_INSN with body X
4536 and output it after the insn AFTER. */
4537
4538 rtx_jump_insn *
4539 emit_jump_insn_after_noloc (rtx x, rtx after)
4540 {
4541 return as_a <rtx_jump_insn *> (
4542 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4543 }
4544
4545 /* Make an instruction with body X and code CALL_INSN
4546 and output it after the instruction AFTER. */
4547
4548 rtx_insn *
4549 emit_call_insn_after_noloc (rtx x, rtx after)
4550 {
4551 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4552 }
4553
4554 /* Make an instruction with body X and code CALL_INSN
4555 and output it after the instruction AFTER. */
4556
4557 rtx_insn *
4558 emit_debug_insn_after_noloc (rtx x, rtx after)
4559 {
4560 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4561 }
4562
4563 /* Make an insn of code BARRIER
4564 and output it after the insn AFTER. */
4565
4566 rtx_barrier *
4567 emit_barrier_after (rtx after)
4568 {
4569 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4570
4571 INSN_UID (insn) = cur_insn_uid++;
4572
4573 add_insn_after (insn, after, NULL);
4574 return insn;
4575 }
4576
4577 /* Emit the label LABEL after the insn AFTER. */
4578
4579 rtx_insn *
4580 emit_label_after (rtx label, rtx_insn *after)
4581 {
4582 gcc_checking_assert (INSN_UID (label) == 0);
4583 INSN_UID (label) = cur_insn_uid++;
4584 add_insn_after (label, after, NULL);
4585 return as_a <rtx_insn *> (label);
4586 }
4587 \f
4588 /* Notes require a bit of special handling: Some notes need to have their
4589 BLOCK_FOR_INSN set, others should never have it set, and some should
4590 have it set or clear depending on the context. */
4591
4592 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4593 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4594 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4595
4596 static bool
4597 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4598 {
4599 switch (subtype)
4600 {
4601 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4602 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4603 return true;
4604
4605 /* Notes for var tracking and EH region markers can appear between or
4606 inside basic blocks. If the caller is emitting on the basic block
4607 boundary, do not set BLOCK_FOR_INSN on the new note. */
4608 case NOTE_INSN_VAR_LOCATION:
4609 case NOTE_INSN_CALL_ARG_LOCATION:
4610 case NOTE_INSN_EH_REGION_BEG:
4611 case NOTE_INSN_EH_REGION_END:
4612 return on_bb_boundary_p;
4613
4614 /* Otherwise, BLOCK_FOR_INSN must be set. */
4615 default:
4616 return false;
4617 }
4618 }
4619
4620 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4621
4622 rtx_note *
4623 emit_note_after (enum insn_note subtype, rtx_insn *after)
4624 {
4625 rtx_note *note = make_note_raw (subtype);
4626 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4627 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4628
4629 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4630 add_insn_after_nobb (note, after);
4631 else
4632 add_insn_after (note, after, bb);
4633 return note;
4634 }
4635
4636 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4637
4638 rtx_note *
4639 emit_note_before (enum insn_note subtype, rtx_insn *before)
4640 {
4641 rtx_note *note = make_note_raw (subtype);
4642 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4643 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4644
4645 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4646 add_insn_before_nobb (note, before);
4647 else
4648 add_insn_before (note, before, bb);
4649 return note;
4650 }
4651 \f
4652 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4653 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4654
4655 static rtx_insn *
4656 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4657 rtx_insn *(*make_raw) (rtx))
4658 {
4659 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4660 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4661
4662 if (pattern == NULL_RTX || !loc)
4663 return last;
4664
4665 after = NEXT_INSN (after);
4666 while (1)
4667 {
4668 if (active_insn_p (after)
4669 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4670 && !INSN_LOCATION (after))
4671 INSN_LOCATION (after) = loc;
4672 if (after == last)
4673 break;
4674 after = NEXT_INSN (after);
4675 }
4676 return last;
4677 }
4678
4679 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4680 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4681 any DEBUG_INSNs. */
4682
4683 static rtx_insn *
4684 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4685 rtx_insn *(*make_raw) (rtx))
4686 {
4687 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4688 rtx_insn *prev = after;
4689
4690 if (skip_debug_insns)
4691 while (DEBUG_INSN_P (prev))
4692 prev = PREV_INSN (prev);
4693
4694 if (INSN_P (prev))
4695 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4696 make_raw);
4697 else
4698 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4699 }
4700
4701 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4702 rtx_insn *
4703 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4704 {
4705 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4706 }
4707
4708 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4709 rtx_insn *
4710 emit_insn_after (rtx pattern, rtx after)
4711 {
4712 return emit_pattern_after (pattern, after, true, make_insn_raw);
4713 }
4714
4715 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4716 rtx_jump_insn *
4717 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4718 {
4719 return as_a <rtx_jump_insn *> (
4720 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4721 }
4722
4723 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4724 rtx_jump_insn *
4725 emit_jump_insn_after (rtx pattern, rtx after)
4726 {
4727 return as_a <rtx_jump_insn *> (
4728 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4729 }
4730
4731 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4732 rtx_insn *
4733 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4734 {
4735 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4736 }
4737
4738 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4739 rtx_insn *
4740 emit_call_insn_after (rtx pattern, rtx after)
4741 {
4742 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4743 }
4744
4745 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4746 rtx_insn *
4747 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4748 {
4749 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4750 }
4751
4752 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4753 rtx_insn *
4754 emit_debug_insn_after (rtx pattern, rtx after)
4755 {
4756 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4757 }
4758
4759 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4760 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4761 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4762 CALL_INSN, etc. */
4763
4764 static rtx_insn *
4765 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4766 rtx_insn *(*make_raw) (rtx))
4767 {
4768 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4769 rtx_insn *first = PREV_INSN (before);
4770 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4771 insnp ? before : NULL_RTX,
4772 NULL, make_raw);
4773
4774 if (pattern == NULL_RTX || !loc)
4775 return last;
4776
4777 if (!first)
4778 first = get_insns ();
4779 else
4780 first = NEXT_INSN (first);
4781 while (1)
4782 {
4783 if (active_insn_p (first)
4784 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4785 && !INSN_LOCATION (first))
4786 INSN_LOCATION (first) = loc;
4787 if (first == last)
4788 break;
4789 first = NEXT_INSN (first);
4790 }
4791 return last;
4792 }
4793
4794 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4795 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4796 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4797 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4798
4799 static rtx_insn *
4800 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4801 bool insnp, rtx_insn *(*make_raw) (rtx))
4802 {
4803 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4804 rtx_insn *next = before;
4805
4806 if (skip_debug_insns)
4807 while (DEBUG_INSN_P (next))
4808 next = PREV_INSN (next);
4809
4810 if (INSN_P (next))
4811 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4812 insnp, make_raw);
4813 else
4814 return emit_pattern_before_noloc (pattern, before,
4815 insnp ? before : NULL_RTX,
4816 NULL, make_raw);
4817 }
4818
4819 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4820 rtx_insn *
4821 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4822 {
4823 return emit_pattern_before_setloc (pattern, before, loc, true,
4824 make_insn_raw);
4825 }
4826
4827 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4828 rtx_insn *
4829 emit_insn_before (rtx pattern, rtx before)
4830 {
4831 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4832 }
4833
4834 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4835 rtx_jump_insn *
4836 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4837 {
4838 return as_a <rtx_jump_insn *> (
4839 emit_pattern_before_setloc (pattern, before, loc, false,
4840 make_jump_insn_raw));
4841 }
4842
4843 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4844 rtx_jump_insn *
4845 emit_jump_insn_before (rtx pattern, rtx before)
4846 {
4847 return as_a <rtx_jump_insn *> (
4848 emit_pattern_before (pattern, before, true, false,
4849 make_jump_insn_raw));
4850 }
4851
4852 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4853 rtx_insn *
4854 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4855 {
4856 return emit_pattern_before_setloc (pattern, before, loc, false,
4857 make_call_insn_raw);
4858 }
4859
4860 /* Like emit_call_insn_before_noloc,
4861 but set insn_location according to BEFORE. */
4862 rtx_insn *
4863 emit_call_insn_before (rtx pattern, rtx_insn *before)
4864 {
4865 return emit_pattern_before (pattern, before, true, false,
4866 make_call_insn_raw);
4867 }
4868
4869 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4870 rtx_insn *
4871 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4872 {
4873 return emit_pattern_before_setloc (pattern, before, loc, false,
4874 make_debug_insn_raw);
4875 }
4876
4877 /* Like emit_debug_insn_before_noloc,
4878 but set insn_location according to BEFORE. */
4879 rtx_insn *
4880 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4881 {
4882 return emit_pattern_before (pattern, before, false, false,
4883 make_debug_insn_raw);
4884 }
4885 \f
4886 /* Take X and emit it at the end of the doubly-linked
4887 INSN list.
4888
4889 Returns the last insn emitted. */
4890
4891 rtx_insn *
4892 emit_insn (rtx x)
4893 {
4894 rtx_insn *last = get_last_insn ();
4895 rtx_insn *insn;
4896
4897 if (x == NULL_RTX)
4898 return last;
4899
4900 switch (GET_CODE (x))
4901 {
4902 case DEBUG_INSN:
4903 case INSN:
4904 case JUMP_INSN:
4905 case CALL_INSN:
4906 case CODE_LABEL:
4907 case BARRIER:
4908 case NOTE:
4909 insn = as_a <rtx_insn *> (x);
4910 while (insn)
4911 {
4912 rtx_insn *next = NEXT_INSN (insn);
4913 add_insn (insn);
4914 last = insn;
4915 insn = next;
4916 }
4917 break;
4918
4919 #ifdef ENABLE_RTL_CHECKING
4920 case JUMP_TABLE_DATA:
4921 case SEQUENCE:
4922 gcc_unreachable ();
4923 break;
4924 #endif
4925
4926 default:
4927 last = make_insn_raw (x);
4928 add_insn (last);
4929 break;
4930 }
4931
4932 return last;
4933 }
4934
4935 /* Make an insn of code DEBUG_INSN with pattern X
4936 and add it to the end of the doubly-linked list. */
4937
4938 rtx_insn *
4939 emit_debug_insn (rtx x)
4940 {
4941 rtx_insn *last = get_last_insn ();
4942 rtx_insn *insn;
4943
4944 if (x == NULL_RTX)
4945 return last;
4946
4947 switch (GET_CODE (x))
4948 {
4949 case DEBUG_INSN:
4950 case INSN:
4951 case JUMP_INSN:
4952 case CALL_INSN:
4953 case CODE_LABEL:
4954 case BARRIER:
4955 case NOTE:
4956 insn = as_a <rtx_insn *> (x);
4957 while (insn)
4958 {
4959 rtx_insn *next = NEXT_INSN (insn);
4960 add_insn (insn);
4961 last = insn;
4962 insn = next;
4963 }
4964 break;
4965
4966 #ifdef ENABLE_RTL_CHECKING
4967 case JUMP_TABLE_DATA:
4968 case SEQUENCE:
4969 gcc_unreachable ();
4970 break;
4971 #endif
4972
4973 default:
4974 last = make_debug_insn_raw (x);
4975 add_insn (last);
4976 break;
4977 }
4978
4979 return last;
4980 }
4981
4982 /* Make an insn of code JUMP_INSN with pattern X
4983 and add it to the end of the doubly-linked list. */
4984
4985 rtx_insn *
4986 emit_jump_insn (rtx x)
4987 {
4988 rtx_insn *last = NULL;
4989 rtx_insn *insn;
4990
4991 switch (GET_CODE (x))
4992 {
4993 case DEBUG_INSN:
4994 case INSN:
4995 case JUMP_INSN:
4996 case CALL_INSN:
4997 case CODE_LABEL:
4998 case BARRIER:
4999 case NOTE:
5000 insn = as_a <rtx_insn *> (x);
5001 while (insn)
5002 {
5003 rtx_insn *next = NEXT_INSN (insn);
5004 add_insn (insn);
5005 last = insn;
5006 insn = next;
5007 }
5008 break;
5009
5010 #ifdef ENABLE_RTL_CHECKING
5011 case JUMP_TABLE_DATA:
5012 case SEQUENCE:
5013 gcc_unreachable ();
5014 break;
5015 #endif
5016
5017 default:
5018 last = make_jump_insn_raw (x);
5019 add_insn (last);
5020 break;
5021 }
5022
5023 return last;
5024 }
5025
5026 /* Make an insn of code CALL_INSN with pattern X
5027 and add it to the end of the doubly-linked list. */
5028
5029 rtx_insn *
5030 emit_call_insn (rtx x)
5031 {
5032 rtx_insn *insn;
5033
5034 switch (GET_CODE (x))
5035 {
5036 case DEBUG_INSN:
5037 case INSN:
5038 case JUMP_INSN:
5039 case CALL_INSN:
5040 case CODE_LABEL:
5041 case BARRIER:
5042 case NOTE:
5043 insn = emit_insn (x);
5044 break;
5045
5046 #ifdef ENABLE_RTL_CHECKING
5047 case SEQUENCE:
5048 case JUMP_TABLE_DATA:
5049 gcc_unreachable ();
5050 break;
5051 #endif
5052
5053 default:
5054 insn = make_call_insn_raw (x);
5055 add_insn (insn);
5056 break;
5057 }
5058
5059 return insn;
5060 }
5061
5062 /* Add the label LABEL to the end of the doubly-linked list. */
5063
5064 rtx_code_label *
5065 emit_label (rtx uncast_label)
5066 {
5067 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5068
5069 gcc_checking_assert (INSN_UID (label) == 0);
5070 INSN_UID (label) = cur_insn_uid++;
5071 add_insn (label);
5072 return label;
5073 }
5074
5075 /* Make an insn of code JUMP_TABLE_DATA
5076 and add it to the end of the doubly-linked list. */
5077
5078 rtx_jump_table_data *
5079 emit_jump_table_data (rtx table)
5080 {
5081 rtx_jump_table_data *jump_table_data =
5082 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5083 INSN_UID (jump_table_data) = cur_insn_uid++;
5084 PATTERN (jump_table_data) = table;
5085 BLOCK_FOR_INSN (jump_table_data) = NULL;
5086 add_insn (jump_table_data);
5087 return jump_table_data;
5088 }
5089
5090 /* Make an insn of code BARRIER
5091 and add it to the end of the doubly-linked list. */
5092
5093 rtx_barrier *
5094 emit_barrier (void)
5095 {
5096 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5097 INSN_UID (barrier) = cur_insn_uid++;
5098 add_insn (barrier);
5099 return barrier;
5100 }
5101
5102 /* Emit a copy of note ORIG. */
5103
5104 rtx_note *
5105 emit_note_copy (rtx_note *orig)
5106 {
5107 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5108 rtx_note *note = make_note_raw (kind);
5109 NOTE_DATA (note) = NOTE_DATA (orig);
5110 add_insn (note);
5111 return note;
5112 }
5113
5114 /* Make an insn of code NOTE or type NOTE_NO
5115 and add it to the end of the doubly-linked list. */
5116
5117 rtx_note *
5118 emit_note (enum insn_note kind)
5119 {
5120 rtx_note *note = make_note_raw (kind);
5121 add_insn (note);
5122 return note;
5123 }
5124
5125 /* Emit a clobber of lvalue X. */
5126
5127 rtx_insn *
5128 emit_clobber (rtx x)
5129 {
5130 /* CONCATs should not appear in the insn stream. */
5131 if (GET_CODE (x) == CONCAT)
5132 {
5133 emit_clobber (XEXP (x, 0));
5134 return emit_clobber (XEXP (x, 1));
5135 }
5136 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5137 }
5138
5139 /* Return a sequence of insns to clobber lvalue X. */
5140
5141 rtx_insn *
5142 gen_clobber (rtx x)
5143 {
5144 rtx_insn *seq;
5145
5146 start_sequence ();
5147 emit_clobber (x);
5148 seq = get_insns ();
5149 end_sequence ();
5150 return seq;
5151 }
5152
5153 /* Emit a use of rvalue X. */
5154
5155 rtx_insn *
5156 emit_use (rtx x)
5157 {
5158 /* CONCATs should not appear in the insn stream. */
5159 if (GET_CODE (x) == CONCAT)
5160 {
5161 emit_use (XEXP (x, 0));
5162 return emit_use (XEXP (x, 1));
5163 }
5164 return emit_insn (gen_rtx_USE (VOIDmode, x));
5165 }
5166
5167 /* Return a sequence of insns to use rvalue X. */
5168
5169 rtx_insn *
5170 gen_use (rtx x)
5171 {
5172 rtx_insn *seq;
5173
5174 start_sequence ();
5175 emit_use (x);
5176 seq = get_insns ();
5177 end_sequence ();
5178 return seq;
5179 }
5180
5181 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5182 Return the set in INSN that such notes describe, or NULL if the notes
5183 have no meaning for INSN. */
5184
5185 rtx
5186 set_for_reg_notes (rtx insn)
5187 {
5188 rtx pat, reg;
5189
5190 if (!INSN_P (insn))
5191 return NULL_RTX;
5192
5193 pat = PATTERN (insn);
5194 if (GET_CODE (pat) == PARALLEL)
5195 {
5196 /* We do not use single_set because that ignores SETs of unused
5197 registers. REG_EQUAL and REG_EQUIV notes really do require the
5198 PARALLEL to have a single SET. */
5199 if (multiple_sets (insn))
5200 return NULL_RTX;
5201 pat = XVECEXP (pat, 0, 0);
5202 }
5203
5204 if (GET_CODE (pat) != SET)
5205 return NULL_RTX;
5206
5207 reg = SET_DEST (pat);
5208
5209 /* Notes apply to the contents of a STRICT_LOW_PART. */
5210 if (GET_CODE (reg) == STRICT_LOW_PART
5211 || GET_CODE (reg) == ZERO_EXTRACT)
5212 reg = XEXP (reg, 0);
5213
5214 /* Check that we have a register. */
5215 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5216 return NULL_RTX;
5217
5218 return pat;
5219 }
5220
5221 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5222 note of this type already exists, remove it first. */
5223
5224 rtx
5225 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5226 {
5227 rtx note = find_reg_note (insn, kind, NULL_RTX);
5228
5229 switch (kind)
5230 {
5231 case REG_EQUAL:
5232 case REG_EQUIV:
5233 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5234 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5235 return NULL_RTX;
5236
5237 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5238 It serves no useful purpose and breaks eliminate_regs. */
5239 if (GET_CODE (datum) == ASM_OPERANDS)
5240 return NULL_RTX;
5241
5242 /* Notes with side effects are dangerous. Even if the side-effect
5243 initially mirrors one in PATTERN (INSN), later optimizations
5244 might alter the way that the final register value is calculated
5245 and so move or alter the side-effect in some way. The note would
5246 then no longer be a valid substitution for SET_SRC. */
5247 if (side_effects_p (datum))
5248 return NULL_RTX;
5249 break;
5250
5251 default:
5252 break;
5253 }
5254
5255 if (note)
5256 XEXP (note, 0) = datum;
5257 else
5258 {
5259 add_reg_note (insn, kind, datum);
5260 note = REG_NOTES (insn);
5261 }
5262
5263 switch (kind)
5264 {
5265 case REG_EQUAL:
5266 case REG_EQUIV:
5267 df_notes_rescan (as_a <rtx_insn *> (insn));
5268 break;
5269 default:
5270 break;
5271 }
5272
5273 return note;
5274 }
5275
5276 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5277 rtx
5278 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5279 {
5280 rtx set = set_for_reg_notes (insn);
5281
5282 if (set && SET_DEST (set) == dst)
5283 return set_unique_reg_note (insn, kind, datum);
5284 return NULL_RTX;
5285 }
5286 \f
5287 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5288 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5289 is true.
5290
5291 If X is a label, it is simply added into the insn chain. */
5292
5293 rtx_insn *
5294 emit (rtx x, bool allow_barrier_p)
5295 {
5296 enum rtx_code code = classify_insn (x);
5297
5298 switch (code)
5299 {
5300 case CODE_LABEL:
5301 return emit_label (x);
5302 case INSN:
5303 return emit_insn (x);
5304 case JUMP_INSN:
5305 {
5306 rtx_insn *insn = emit_jump_insn (x);
5307 if (allow_barrier_p
5308 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5309 return emit_barrier ();
5310 return insn;
5311 }
5312 case CALL_INSN:
5313 return emit_call_insn (x);
5314 case DEBUG_INSN:
5315 return emit_debug_insn (x);
5316 default:
5317 gcc_unreachable ();
5318 }
5319 }
5320 \f
5321 /* Space for free sequence stack entries. */
5322 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5323
5324 /* Begin emitting insns to a sequence. If this sequence will contain
5325 something that might cause the compiler to pop arguments to function
5326 calls (because those pops have previously been deferred; see
5327 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5328 before calling this function. That will ensure that the deferred
5329 pops are not accidentally emitted in the middle of this sequence. */
5330
5331 void
5332 start_sequence (void)
5333 {
5334 struct sequence_stack *tem;
5335
5336 if (free_sequence_stack != NULL)
5337 {
5338 tem = free_sequence_stack;
5339 free_sequence_stack = tem->next;
5340 }
5341 else
5342 tem = ggc_alloc<sequence_stack> ();
5343
5344 tem->next = get_current_sequence ()->next;
5345 tem->first = get_insns ();
5346 tem->last = get_last_insn ();
5347 get_current_sequence ()->next = tem;
5348
5349 set_first_insn (0);
5350 set_last_insn (0);
5351 }
5352
5353 /* Set up the insn chain starting with FIRST as the current sequence,
5354 saving the previously current one. See the documentation for
5355 start_sequence for more information about how to use this function. */
5356
5357 void
5358 push_to_sequence (rtx_insn *first)
5359 {
5360 rtx_insn *last;
5361
5362 start_sequence ();
5363
5364 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5365 ;
5366
5367 set_first_insn (first);
5368 set_last_insn (last);
5369 }
5370
5371 /* Like push_to_sequence, but take the last insn as an argument to avoid
5372 looping through the list. */
5373
5374 void
5375 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5376 {
5377 start_sequence ();
5378
5379 set_first_insn (first);
5380 set_last_insn (last);
5381 }
5382
5383 /* Set up the outer-level insn chain
5384 as the current sequence, saving the previously current one. */
5385
5386 void
5387 push_topmost_sequence (void)
5388 {
5389 struct sequence_stack *top;
5390
5391 start_sequence ();
5392
5393 top = get_topmost_sequence ();
5394 set_first_insn (top->first);
5395 set_last_insn (top->last);
5396 }
5397
5398 /* After emitting to the outer-level insn chain, update the outer-level
5399 insn chain, and restore the previous saved state. */
5400
5401 void
5402 pop_topmost_sequence (void)
5403 {
5404 struct sequence_stack *top;
5405
5406 top = get_topmost_sequence ();
5407 top->first = get_insns ();
5408 top->last = get_last_insn ();
5409
5410 end_sequence ();
5411 }
5412
5413 /* After emitting to a sequence, restore previous saved state.
5414
5415 To get the contents of the sequence just made, you must call
5416 `get_insns' *before* calling here.
5417
5418 If the compiler might have deferred popping arguments while
5419 generating this sequence, and this sequence will not be immediately
5420 inserted into the instruction stream, use do_pending_stack_adjust
5421 before calling get_insns. That will ensure that the deferred
5422 pops are inserted into this sequence, and not into some random
5423 location in the instruction stream. See INHIBIT_DEFER_POP for more
5424 information about deferred popping of arguments. */
5425
5426 void
5427 end_sequence (void)
5428 {
5429 struct sequence_stack *tem = get_current_sequence ()->next;
5430
5431 set_first_insn (tem->first);
5432 set_last_insn (tem->last);
5433 get_current_sequence ()->next = tem->next;
5434
5435 memset (tem, 0, sizeof (*tem));
5436 tem->next = free_sequence_stack;
5437 free_sequence_stack = tem;
5438 }
5439
5440 /* Return 1 if currently emitting into a sequence. */
5441
5442 int
5443 in_sequence_p (void)
5444 {
5445 return get_current_sequence ()->next != 0;
5446 }
5447 \f
5448 /* Put the various virtual registers into REGNO_REG_RTX. */
5449
5450 static void
5451 init_virtual_regs (void)
5452 {
5453 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5454 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5455 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5456 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5457 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5458 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5459 = virtual_preferred_stack_boundary_rtx;
5460 }
5461
5462 \f
5463 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5464 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5465 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5466 static int copy_insn_n_scratches;
5467
5468 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5469 copied an ASM_OPERANDS.
5470 In that case, it is the original input-operand vector. */
5471 static rtvec orig_asm_operands_vector;
5472
5473 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5474 copied an ASM_OPERANDS.
5475 In that case, it is the copied input-operand vector. */
5476 static rtvec copy_asm_operands_vector;
5477
5478 /* Likewise for the constraints vector. */
5479 static rtvec orig_asm_constraints_vector;
5480 static rtvec copy_asm_constraints_vector;
5481
5482 /* Recursively create a new copy of an rtx for copy_insn.
5483 This function differs from copy_rtx in that it handles SCRATCHes and
5484 ASM_OPERANDs properly.
5485 Normally, this function is not used directly; use copy_insn as front end.
5486 However, you could first copy an insn pattern with copy_insn and then use
5487 this function afterwards to properly copy any REG_NOTEs containing
5488 SCRATCHes. */
5489
5490 rtx
5491 copy_insn_1 (rtx orig)
5492 {
5493 rtx copy;
5494 int i, j;
5495 RTX_CODE code;
5496 const char *format_ptr;
5497
5498 if (orig == NULL)
5499 return NULL;
5500
5501 code = GET_CODE (orig);
5502
5503 switch (code)
5504 {
5505 case REG:
5506 case DEBUG_EXPR:
5507 CASE_CONST_ANY:
5508 case SYMBOL_REF:
5509 case CODE_LABEL:
5510 case PC:
5511 case CC0:
5512 case RETURN:
5513 case SIMPLE_RETURN:
5514 return orig;
5515 case CLOBBER:
5516 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5517 clobbers or clobbers of hard registers that originated as pseudos.
5518 This is needed to allow safe register renaming. */
5519 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5520 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5521 return orig;
5522 break;
5523
5524 case SCRATCH:
5525 for (i = 0; i < copy_insn_n_scratches; i++)
5526 if (copy_insn_scratch_in[i] == orig)
5527 return copy_insn_scratch_out[i];
5528 break;
5529
5530 case CONST:
5531 if (shared_const_p (orig))
5532 return orig;
5533 break;
5534
5535 /* A MEM with a constant address is not sharable. The problem is that
5536 the constant address may need to be reloaded. If the mem is shared,
5537 then reloading one copy of this mem will cause all copies to appear
5538 to have been reloaded. */
5539
5540 default:
5541 break;
5542 }
5543
5544 /* Copy the various flags, fields, and other information. We assume
5545 that all fields need copying, and then clear the fields that should
5546 not be copied. That is the sensible default behavior, and forces
5547 us to explicitly document why we are *not* copying a flag. */
5548 copy = shallow_copy_rtx (orig);
5549
5550 /* We do not copy the USED flag, which is used as a mark bit during
5551 walks over the RTL. */
5552 RTX_FLAG (copy, used) = 0;
5553
5554 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5555 if (INSN_P (orig))
5556 {
5557 RTX_FLAG (copy, jump) = 0;
5558 RTX_FLAG (copy, call) = 0;
5559 RTX_FLAG (copy, frame_related) = 0;
5560 }
5561
5562 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5563
5564 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5565 switch (*format_ptr++)
5566 {
5567 case 'e':
5568 if (XEXP (orig, i) != NULL)
5569 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5570 break;
5571
5572 case 'E':
5573 case 'V':
5574 if (XVEC (orig, i) == orig_asm_constraints_vector)
5575 XVEC (copy, i) = copy_asm_constraints_vector;
5576 else if (XVEC (orig, i) == orig_asm_operands_vector)
5577 XVEC (copy, i) = copy_asm_operands_vector;
5578 else if (XVEC (orig, i) != NULL)
5579 {
5580 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5581 for (j = 0; j < XVECLEN (copy, i); j++)
5582 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5583 }
5584 break;
5585
5586 case 't':
5587 case 'w':
5588 case 'i':
5589 case 's':
5590 case 'S':
5591 case 'u':
5592 case '0':
5593 /* These are left unchanged. */
5594 break;
5595
5596 default:
5597 gcc_unreachable ();
5598 }
5599
5600 if (code == SCRATCH)
5601 {
5602 i = copy_insn_n_scratches++;
5603 gcc_assert (i < MAX_RECOG_OPERANDS);
5604 copy_insn_scratch_in[i] = orig;
5605 copy_insn_scratch_out[i] = copy;
5606 }
5607 else if (code == ASM_OPERANDS)
5608 {
5609 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5610 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5611 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5612 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5613 }
5614
5615 return copy;
5616 }
5617
5618 /* Create a new copy of an rtx.
5619 This function differs from copy_rtx in that it handles SCRATCHes and
5620 ASM_OPERANDs properly.
5621 INSN doesn't really have to be a full INSN; it could be just the
5622 pattern. */
5623 rtx
5624 copy_insn (rtx insn)
5625 {
5626 copy_insn_n_scratches = 0;
5627 orig_asm_operands_vector = 0;
5628 orig_asm_constraints_vector = 0;
5629 copy_asm_operands_vector = 0;
5630 copy_asm_constraints_vector = 0;
5631 return copy_insn_1 (insn);
5632 }
5633
5634 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5635 on that assumption that INSN itself remains in its original place. */
5636
5637 rtx_insn *
5638 copy_delay_slot_insn (rtx_insn *insn)
5639 {
5640 /* Copy INSN with its rtx_code, all its notes, location etc. */
5641 insn = as_a <rtx_insn *> (copy_rtx (insn));
5642 INSN_UID (insn) = cur_insn_uid++;
5643 return insn;
5644 }
5645
5646 /* Initialize data structures and variables in this file
5647 before generating rtl for each function. */
5648
5649 void
5650 init_emit (void)
5651 {
5652 set_first_insn (NULL);
5653 set_last_insn (NULL);
5654 if (MIN_NONDEBUG_INSN_UID)
5655 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5656 else
5657 cur_insn_uid = 1;
5658 cur_debug_insn_uid = 1;
5659 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5660 first_label_num = label_num;
5661 get_current_sequence ()->next = NULL;
5662
5663 /* Init the tables that describe all the pseudo regs. */
5664
5665 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5666
5667 crtl->emit.regno_pointer_align
5668 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5669
5670 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5671
5672 /* Put copies of all the hard registers into regno_reg_rtx. */
5673 memcpy (regno_reg_rtx,
5674 initial_regno_reg_rtx,
5675 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5676
5677 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5678 init_virtual_regs ();
5679
5680 /* Indicate that the virtual registers and stack locations are
5681 all pointers. */
5682 REG_POINTER (stack_pointer_rtx) = 1;
5683 REG_POINTER (frame_pointer_rtx) = 1;
5684 REG_POINTER (hard_frame_pointer_rtx) = 1;
5685 REG_POINTER (arg_pointer_rtx) = 1;
5686
5687 REG_POINTER (virtual_incoming_args_rtx) = 1;
5688 REG_POINTER (virtual_stack_vars_rtx) = 1;
5689 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5690 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5691 REG_POINTER (virtual_cfa_rtx) = 1;
5692
5693 #ifdef STACK_BOUNDARY
5694 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5695 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5696 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5697 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5698
5699 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5700 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5701 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5702 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5703 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5704 #endif
5705
5706 #ifdef INIT_EXPANDERS
5707 INIT_EXPANDERS;
5708 #endif
5709 }
5710
5711 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5712
5713 static rtx
5714 gen_const_vector (machine_mode mode, int constant)
5715 {
5716 rtx tem;
5717 rtvec v;
5718 int units, i;
5719 machine_mode inner;
5720
5721 units = GET_MODE_NUNITS (mode);
5722 inner = GET_MODE_INNER (mode);
5723
5724 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5725
5726 v = rtvec_alloc (units);
5727
5728 /* We need to call this function after we set the scalar const_tiny_rtx
5729 entries. */
5730 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5731
5732 for (i = 0; i < units; ++i)
5733 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5734
5735 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5736 return tem;
5737 }
5738
5739 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5740 all elements are zero, and the one vector when all elements are one. */
5741 rtx
5742 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5743 {
5744 machine_mode inner = GET_MODE_INNER (mode);
5745 int nunits = GET_MODE_NUNITS (mode);
5746 rtx x;
5747 int i;
5748
5749 /* Check to see if all of the elements have the same value. */
5750 x = RTVEC_ELT (v, nunits - 1);
5751 for (i = nunits - 2; i >= 0; i--)
5752 if (RTVEC_ELT (v, i) != x)
5753 break;
5754
5755 /* If the values are all the same, check to see if we can use one of the
5756 standard constant vectors. */
5757 if (i == -1)
5758 {
5759 if (x == CONST0_RTX (inner))
5760 return CONST0_RTX (mode);
5761 else if (x == CONST1_RTX (inner))
5762 return CONST1_RTX (mode);
5763 else if (x == CONSTM1_RTX (inner))
5764 return CONSTM1_RTX (mode);
5765 }
5766
5767 return gen_rtx_raw_CONST_VECTOR (mode, v);
5768 }
5769
5770 /* Initialise global register information required by all functions. */
5771
5772 void
5773 init_emit_regs (void)
5774 {
5775 int i;
5776 machine_mode mode;
5777 mem_attrs *attrs;
5778
5779 /* Reset register attributes */
5780 reg_attrs_htab->empty ();
5781
5782 /* We need reg_raw_mode, so initialize the modes now. */
5783 init_reg_modes_target ();
5784
5785 /* Assign register numbers to the globally defined register rtx. */
5786 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5787 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5788 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5789 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5790 virtual_incoming_args_rtx =
5791 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5792 virtual_stack_vars_rtx =
5793 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5794 virtual_stack_dynamic_rtx =
5795 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5796 virtual_outgoing_args_rtx =
5797 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5798 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5799 virtual_preferred_stack_boundary_rtx =
5800 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5801
5802 /* Initialize RTL for commonly used hard registers. These are
5803 copied into regno_reg_rtx as we begin to compile each function. */
5804 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5805 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5806
5807 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5808 return_address_pointer_rtx
5809 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5810 #endif
5811
5812 pic_offset_table_rtx = NULL_RTX;
5813 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5814 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5815
5816 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5817 {
5818 mode = (machine_mode) i;
5819 attrs = ggc_cleared_alloc<mem_attrs> ();
5820 attrs->align = BITS_PER_UNIT;
5821 attrs->addrspace = ADDR_SPACE_GENERIC;
5822 if (mode != BLKmode)
5823 {
5824 attrs->size_known_p = true;
5825 attrs->size = GET_MODE_SIZE (mode);
5826 if (STRICT_ALIGNMENT)
5827 attrs->align = GET_MODE_ALIGNMENT (mode);
5828 }
5829 mode_mem_attrs[i] = attrs;
5830 }
5831 }
5832
5833 /* Initialize global machine_mode variables. */
5834
5835 void
5836 init_derived_machine_modes (void)
5837 {
5838 byte_mode = VOIDmode;
5839 word_mode = VOIDmode;
5840
5841 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5842 mode != VOIDmode;
5843 mode = GET_MODE_WIDER_MODE (mode))
5844 {
5845 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5846 && byte_mode == VOIDmode)
5847 byte_mode = mode;
5848
5849 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5850 && word_mode == VOIDmode)
5851 word_mode = mode;
5852 }
5853
5854 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5855 }
5856
5857 /* Create some permanent unique rtl objects shared between all functions. */
5858
5859 void
5860 init_emit_once (void)
5861 {
5862 int i;
5863 machine_mode mode;
5864 machine_mode double_mode;
5865
5866 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5867 CONST_FIXED, and memory attribute hash tables. */
5868 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5869
5870 #if TARGET_SUPPORTS_WIDE_INT
5871 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5872 #endif
5873 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5874
5875 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5876
5877 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5878
5879 #ifdef INIT_EXPANDERS
5880 /* This is to initialize {init|mark|free}_machine_status before the first
5881 call to push_function_context_to. This is needed by the Chill front
5882 end which calls push_function_context_to before the first call to
5883 init_function_start. */
5884 INIT_EXPANDERS;
5885 #endif
5886
5887 /* Create the unique rtx's for certain rtx codes and operand values. */
5888
5889 /* Process stack-limiting command-line options. */
5890 if (opt_fstack_limit_symbol_arg != NULL)
5891 stack_limit_rtx
5892 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
5893 if (opt_fstack_limit_register_no >= 0)
5894 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
5895
5896 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5897 tries to use these variables. */
5898 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5899 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5900 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5901
5902 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5903 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5904 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5905 else
5906 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5907
5908 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5909
5910 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5911 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5912 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5913
5914 dconstm1 = dconst1;
5915 dconstm1.sign = 1;
5916
5917 dconsthalf = dconst1;
5918 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5919
5920 for (i = 0; i < 3; i++)
5921 {
5922 const REAL_VALUE_TYPE *const r =
5923 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5924
5925 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5926 mode != VOIDmode;
5927 mode = GET_MODE_WIDER_MODE (mode))
5928 const_tiny_rtx[i][(int) mode] =
5929 const_double_from_real_value (*r, mode);
5930
5931 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5932 mode != VOIDmode;
5933 mode = GET_MODE_WIDER_MODE (mode))
5934 const_tiny_rtx[i][(int) mode] =
5935 const_double_from_real_value (*r, mode);
5936
5937 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5938
5939 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5940 mode != VOIDmode;
5941 mode = GET_MODE_WIDER_MODE (mode))
5942 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5943
5944 for (mode = MIN_MODE_PARTIAL_INT;
5945 mode <= MAX_MODE_PARTIAL_INT;
5946 mode = (machine_mode)((int)(mode) + 1))
5947 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5948 }
5949
5950 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5951
5952 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5953 mode != VOIDmode;
5954 mode = GET_MODE_WIDER_MODE (mode))
5955 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5956
5957 for (mode = MIN_MODE_PARTIAL_INT;
5958 mode <= MAX_MODE_PARTIAL_INT;
5959 mode = (machine_mode)((int)(mode) + 1))
5960 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5961
5962 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5963 mode != VOIDmode;
5964 mode = GET_MODE_WIDER_MODE (mode))
5965 {
5966 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5967 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5968 }
5969
5970 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5971 mode != VOIDmode;
5972 mode = GET_MODE_WIDER_MODE (mode))
5973 {
5974 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5975 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5976 }
5977
5978 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5979 mode != VOIDmode;
5980 mode = GET_MODE_WIDER_MODE (mode))
5981 {
5982 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5983 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5984 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5985 }
5986
5987 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5988 mode != VOIDmode;
5989 mode = GET_MODE_WIDER_MODE (mode))
5990 {
5991 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5992 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5993 }
5994
5995 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5996 mode != VOIDmode;
5997 mode = GET_MODE_WIDER_MODE (mode))
5998 {
5999 FCONST0 (mode).data.high = 0;
6000 FCONST0 (mode).data.low = 0;
6001 FCONST0 (mode).mode = mode;
6002 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6003 FCONST0 (mode), mode);
6004 }
6005
6006 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6007 mode != VOIDmode;
6008 mode = GET_MODE_WIDER_MODE (mode))
6009 {
6010 FCONST0 (mode).data.high = 0;
6011 FCONST0 (mode).data.low = 0;
6012 FCONST0 (mode).mode = mode;
6013 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6014 FCONST0 (mode), mode);
6015 }
6016
6017 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6018 mode != VOIDmode;
6019 mode = GET_MODE_WIDER_MODE (mode))
6020 {
6021 FCONST0 (mode).data.high = 0;
6022 FCONST0 (mode).data.low = 0;
6023 FCONST0 (mode).mode = mode;
6024 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6025 FCONST0 (mode), mode);
6026
6027 /* We store the value 1. */
6028 FCONST1 (mode).data.high = 0;
6029 FCONST1 (mode).data.low = 0;
6030 FCONST1 (mode).mode = mode;
6031 FCONST1 (mode).data
6032 = double_int_one.lshift (GET_MODE_FBIT (mode),
6033 HOST_BITS_PER_DOUBLE_INT,
6034 SIGNED_FIXED_POINT_MODE_P (mode));
6035 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6036 FCONST1 (mode), mode);
6037 }
6038
6039 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6040 mode != VOIDmode;
6041 mode = GET_MODE_WIDER_MODE (mode))
6042 {
6043 FCONST0 (mode).data.high = 0;
6044 FCONST0 (mode).data.low = 0;
6045 FCONST0 (mode).mode = mode;
6046 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6047 FCONST0 (mode), mode);
6048
6049 /* We store the value 1. */
6050 FCONST1 (mode).data.high = 0;
6051 FCONST1 (mode).data.low = 0;
6052 FCONST1 (mode).mode = mode;
6053 FCONST1 (mode).data
6054 = double_int_one.lshift (GET_MODE_FBIT (mode),
6055 HOST_BITS_PER_DOUBLE_INT,
6056 SIGNED_FIXED_POINT_MODE_P (mode));
6057 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6058 FCONST1 (mode), mode);
6059 }
6060
6061 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6062 mode != VOIDmode;
6063 mode = GET_MODE_WIDER_MODE (mode))
6064 {
6065 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6066 }
6067
6068 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6069 mode != VOIDmode;
6070 mode = GET_MODE_WIDER_MODE (mode))
6071 {
6072 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6073 }
6074
6075 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6076 mode != VOIDmode;
6077 mode = GET_MODE_WIDER_MODE (mode))
6078 {
6079 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6080 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6081 }
6082
6083 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6084 mode != VOIDmode;
6085 mode = GET_MODE_WIDER_MODE (mode))
6086 {
6087 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6088 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6089 }
6090
6091 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6092 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6093 const_tiny_rtx[0][i] = const0_rtx;
6094
6095 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6096 if (STORE_FLAG_VALUE == 1)
6097 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6098
6099 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6100 mode != VOIDmode;
6101 mode = GET_MODE_WIDER_MODE (mode))
6102 {
6103 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6104 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6105 }
6106
6107 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6108 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6109 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6110 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6111 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6112 /*prev_insn=*/NULL,
6113 /*next_insn=*/NULL,
6114 /*bb=*/NULL,
6115 /*pattern=*/NULL_RTX,
6116 /*location=*/-1,
6117 CODE_FOR_nothing,
6118 /*reg_notes=*/NULL_RTX);
6119 }
6120 \f
6121 /* Produce exact duplicate of insn INSN after AFTER.
6122 Care updating of libcall regions if present. */
6123
6124 rtx_insn *
6125 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6126 {
6127 rtx_insn *new_rtx;
6128 rtx link;
6129
6130 switch (GET_CODE (insn))
6131 {
6132 case INSN:
6133 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6134 break;
6135
6136 case JUMP_INSN:
6137 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6138 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6139 break;
6140
6141 case DEBUG_INSN:
6142 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6143 break;
6144
6145 case CALL_INSN:
6146 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6147 if (CALL_INSN_FUNCTION_USAGE (insn))
6148 CALL_INSN_FUNCTION_USAGE (new_rtx)
6149 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6150 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6151 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6152 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6153 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6154 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6155 break;
6156
6157 default:
6158 gcc_unreachable ();
6159 }
6160
6161 /* Update LABEL_NUSES. */
6162 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6163
6164 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6165
6166 /* If the old insn is frame related, then so is the new one. This is
6167 primarily needed for IA-64 unwind info which marks epilogue insns,
6168 which may be duplicated by the basic block reordering code. */
6169 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6170
6171 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6172 will make them. REG_LABEL_TARGETs are created there too, but are
6173 supposed to be sticky, so we copy them. */
6174 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6175 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6176 {
6177 if (GET_CODE (link) == EXPR_LIST)
6178 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6179 copy_insn_1 (XEXP (link, 0)));
6180 else
6181 add_shallow_copy_of_reg_note (new_rtx, link);
6182 }
6183
6184 INSN_CODE (new_rtx) = INSN_CODE (insn);
6185 return new_rtx;
6186 }
6187
6188 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6189 rtx
6190 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6191 {
6192 if (hard_reg_clobbers[mode][regno])
6193 return hard_reg_clobbers[mode][regno];
6194 else
6195 return (hard_reg_clobbers[mode][regno] =
6196 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6197 }
6198
6199 location_t prologue_location;
6200 location_t epilogue_location;
6201
6202 /* Hold current location information and last location information, so the
6203 datastructures are built lazily only when some instructions in given
6204 place are needed. */
6205 static location_t curr_location;
6206
6207 /* Allocate insn location datastructure. */
6208 void
6209 insn_locations_init (void)
6210 {
6211 prologue_location = epilogue_location = 0;
6212 curr_location = UNKNOWN_LOCATION;
6213 }
6214
6215 /* At the end of emit stage, clear current location. */
6216 void
6217 insn_locations_finalize (void)
6218 {
6219 epilogue_location = curr_location;
6220 curr_location = UNKNOWN_LOCATION;
6221 }
6222
6223 /* Set current location. */
6224 void
6225 set_curr_insn_location (location_t location)
6226 {
6227 curr_location = location;
6228 }
6229
6230 /* Get current location. */
6231 location_t
6232 curr_insn_location (void)
6233 {
6234 return curr_location;
6235 }
6236
6237 /* Return lexical scope block insn belongs to. */
6238 tree
6239 insn_scope (const rtx_insn *insn)
6240 {
6241 return LOCATION_BLOCK (INSN_LOCATION (insn));
6242 }
6243
6244 /* Return line number of the statement that produced this insn. */
6245 int
6246 insn_line (const rtx_insn *insn)
6247 {
6248 return LOCATION_LINE (INSN_LOCATION (insn));
6249 }
6250
6251 /* Return source file of the statement that produced this insn. */
6252 const char *
6253 insn_file (const rtx_insn *insn)
6254 {
6255 return LOCATION_FILE (INSN_LOCATION (insn));
6256 }
6257
6258 /* Return expanded location of the statement that produced this insn. */
6259 expanded_location
6260 insn_location (const rtx_insn *insn)
6261 {
6262 return expand_location (INSN_LOCATION (insn));
6263 }
6264
6265 /* Return true if memory model MODEL requires a pre-operation (release-style)
6266 barrier or a post-operation (acquire-style) barrier. While not universal,
6267 this function matches behavior of several targets. */
6268
6269 bool
6270 need_atomic_barrier_p (enum memmodel model, bool pre)
6271 {
6272 switch (model & MEMMODEL_BASE_MASK)
6273 {
6274 case MEMMODEL_RELAXED:
6275 case MEMMODEL_CONSUME:
6276 return false;
6277 case MEMMODEL_RELEASE:
6278 return pre;
6279 case MEMMODEL_ACQUIRE:
6280 return !pre;
6281 case MEMMODEL_ACQ_REL:
6282 case MEMMODEL_SEQ_CST:
6283 return true;
6284 default:
6285 gcc_unreachable ();
6286 }
6287 }
6288 \f
6289 #include "gt-emit-rtl.h"