rtl.def (REG): Change format to "r".
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "hash-set.h"
41 #include "machmode.h"
42 #include "vec.h"
43 #include "double-int.h"
44 #include "input.h"
45 #include "alias.h"
46 #include "symtab.h"
47 #include "wide-int.h"
48 #include "inchash.h"
49 #include "real.h"
50 #include "tree.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "predict.h"
54 #include "hard-reg-set.h"
55 #include "function.h"
56 #include "cfgrtl.h"
57 #include "basic-block.h"
58 #include "tree-eh.h"
59 #include "tm_p.h"
60 #include "flags.h"
61 #include "stringpool.h"
62 #include "hashtab.h"
63 #include "statistics.h"
64 #include "fixed-value.h"
65 #include "insn-config.h"
66 #include "expmed.h"
67 #include "dojump.h"
68 #include "explow.h"
69 #include "calls.h"
70 #include "emit-rtl.h"
71 #include "stmt.h"
72 #include "expr.h"
73 #include "regs.h"
74 #include "recog.h"
75 #include "bitmap.h"
76 #include "debug.h"
77 #include "langhooks.h"
78 #include "df.h"
79 #include "params.h"
80 #include "target.h"
81 #include "builtins.h"
82 #include "rtl-iter.h"
83
84 struct target_rtl default_target_rtl;
85 #if SWITCHABLE_TARGET
86 struct target_rtl *this_target_rtl = &default_target_rtl;
87 #endif
88
89 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
90
91 /* Commonly used modes. */
92
93 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
94 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
95 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
96 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
97
98 /* Datastructures maintained for currently processed function in RTL form. */
99
100 struct rtl_data x_rtl;
101
102 /* Indexed by pseudo register number, gives the rtx for that pseudo.
103 Allocated in parallel with regno_pointer_align.
104 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
105 with length attribute nested in top level structures. */
106
107 rtx * regno_reg_rtx;
108
109 /* This is *not* reset after each function. It gives each CODE_LABEL
110 in the entire compilation a unique label number. */
111
112 static GTY(()) int label_num = 1;
113
114 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
115 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
116 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
117 is set only for MODE_INT and MODE_VECTOR_INT modes. */
118
119 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
120
121 rtx const_true_rtx;
122
123 REAL_VALUE_TYPE dconst0;
124 REAL_VALUE_TYPE dconst1;
125 REAL_VALUE_TYPE dconst2;
126 REAL_VALUE_TYPE dconstm1;
127 REAL_VALUE_TYPE dconsthalf;
128
129 /* Record fixed-point constant 0 and 1. */
130 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
131 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
132
133 /* We make one copy of (const_int C) where C is in
134 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
135 to save space during the compilation and simplify comparisons of
136 integers. */
137
138 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
139
140 /* Standard pieces of rtx, to be substituted directly into things. */
141 rtx pc_rtx;
142 rtx ret_rtx;
143 rtx simple_return_rtx;
144 rtx cc0_rtx;
145
146 /* A hash table storing CONST_INTs whose absolute value is greater
147 than MAX_SAVED_CONST_INT. */
148
149 struct const_int_hasher : ggc_cache_hasher<rtx>
150 {
151 typedef HOST_WIDE_INT compare_type;
152
153 static hashval_t hash (rtx i);
154 static bool equal (rtx i, HOST_WIDE_INT h);
155 };
156
157 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
158
159 struct const_wide_int_hasher : ggc_cache_hasher<rtx>
160 {
161 static hashval_t hash (rtx x);
162 static bool equal (rtx x, rtx y);
163 };
164
165 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
166
167 /* A hash table storing register attribute structures. */
168 struct reg_attr_hasher : ggc_cache_hasher<reg_attrs *>
169 {
170 static hashval_t hash (reg_attrs *x);
171 static bool equal (reg_attrs *a, reg_attrs *b);
172 };
173
174 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
175
176 /* A hash table storing all CONST_DOUBLEs. */
177 struct const_double_hasher : ggc_cache_hasher<rtx>
178 {
179 static hashval_t hash (rtx x);
180 static bool equal (rtx x, rtx y);
181 };
182
183 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
184
185 /* A hash table storing all CONST_FIXEDs. */
186 struct const_fixed_hasher : ggc_cache_hasher<rtx>
187 {
188 static hashval_t hash (rtx x);
189 static bool equal (rtx x, rtx y);
190 };
191
192 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
193
194 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
195 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
196 #define first_label_num (crtl->emit.x_first_label_num)
197
198 static void set_used_decls (tree);
199 static void mark_label_nuses (rtx);
200 #if TARGET_SUPPORTS_WIDE_INT
201 static rtx lookup_const_wide_int (rtx);
202 #endif
203 static rtx lookup_const_double (rtx);
204 static rtx lookup_const_fixed (rtx);
205 static reg_attrs *get_reg_attrs (tree, int);
206 static rtx gen_const_vector (machine_mode, int);
207 static void copy_rtx_if_shared_1 (rtx *orig);
208
209 /* Probability of the conditional branch currently proceeded by try_split.
210 Set to -1 otherwise. */
211 int split_branch_probability = -1;
212 \f
213 /* Returns a hash code for X (which is a really a CONST_INT). */
214
215 hashval_t
216 const_int_hasher::hash (rtx x)
217 {
218 return (hashval_t) INTVAL (x);
219 }
220
221 /* Returns nonzero if the value represented by X (which is really a
222 CONST_INT) is the same as that given by Y (which is really a
223 HOST_WIDE_INT *). */
224
225 bool
226 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
227 {
228 return (INTVAL (x) == y);
229 }
230
231 #if TARGET_SUPPORTS_WIDE_INT
232 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
233
234 hashval_t
235 const_wide_int_hasher::hash (rtx x)
236 {
237 int i;
238 unsigned HOST_WIDE_INT hash = 0;
239 const_rtx xr = x;
240
241 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
242 hash += CONST_WIDE_INT_ELT (xr, i);
243
244 return (hashval_t) hash;
245 }
246
247 /* Returns nonzero if the value represented by X (which is really a
248 CONST_WIDE_INT) is the same as that given by Y (which is really a
249 CONST_WIDE_INT). */
250
251 bool
252 const_wide_int_hasher::equal (rtx x, rtx y)
253 {
254 int i;
255 const_rtx xr = x;
256 const_rtx yr = y;
257 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
258 return false;
259
260 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
261 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
262 return false;
263
264 return true;
265 }
266 #endif
267
268 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
269 hashval_t
270 const_double_hasher::hash (rtx x)
271 {
272 const_rtx const value = x;
273 hashval_t h;
274
275 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
276 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
277 else
278 {
279 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
280 /* MODE is used in the comparison, so it should be in the hash. */
281 h ^= GET_MODE (value);
282 }
283 return h;
284 }
285
286 /* Returns nonzero if the value represented by X (really a ...)
287 is the same as that represented by Y (really a ...) */
288 bool
289 const_double_hasher::equal (rtx x, rtx y)
290 {
291 const_rtx const a = x, b = y;
292
293 if (GET_MODE (a) != GET_MODE (b))
294 return 0;
295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
296 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
297 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
298 else
299 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
300 CONST_DOUBLE_REAL_VALUE (b));
301 }
302
303 /* Returns a hash code for X (which is really a CONST_FIXED). */
304
305 hashval_t
306 const_fixed_hasher::hash (rtx x)
307 {
308 const_rtx const value = x;
309 hashval_t h;
310
311 h = fixed_hash (CONST_FIXED_VALUE (value));
312 /* MODE is used in the comparison, so it should be in the hash. */
313 h ^= GET_MODE (value);
314 return h;
315 }
316
317 /* Returns nonzero if the value represented by X is the same as that
318 represented by Y. */
319
320 bool
321 const_fixed_hasher::equal (rtx x, rtx y)
322 {
323 const_rtx const a = x, b = y;
324
325 if (GET_MODE (a) != GET_MODE (b))
326 return 0;
327 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
328 }
329
330 /* Return true if the given memory attributes are equal. */
331
332 bool
333 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
334 {
335 if (p == q)
336 return true;
337 if (!p || !q)
338 return false;
339 return (p->alias == q->alias
340 && p->offset_known_p == q->offset_known_p
341 && (!p->offset_known_p || p->offset == q->offset)
342 && p->size_known_p == q->size_known_p
343 && (!p->size_known_p || p->size == q->size)
344 && p->align == q->align
345 && p->addrspace == q->addrspace
346 && (p->expr == q->expr
347 || (p->expr != NULL_TREE && q->expr != NULL_TREE
348 && operand_equal_p (p->expr, q->expr, 0))));
349 }
350
351 /* Set MEM's memory attributes so that they are the same as ATTRS. */
352
353 static void
354 set_mem_attrs (rtx mem, mem_attrs *attrs)
355 {
356 /* If everything is the default, we can just clear the attributes. */
357 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
358 {
359 MEM_ATTRS (mem) = 0;
360 return;
361 }
362
363 if (!MEM_ATTRS (mem)
364 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
365 {
366 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
367 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
368 }
369 }
370
371 /* Returns a hash code for X (which is a really a reg_attrs *). */
372
373 hashval_t
374 reg_attr_hasher::hash (reg_attrs *x)
375 {
376 const reg_attrs *const p = x;
377
378 return ((p->offset * 1000) ^ (intptr_t) p->decl);
379 }
380
381 /* Returns nonzero if the value represented by X is the same as that given by
382 Y. */
383
384 bool
385 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
386 {
387 const reg_attrs *const p = x;
388 const reg_attrs *const q = y;
389
390 return (p->decl == q->decl && p->offset == q->offset);
391 }
392 /* Allocate a new reg_attrs structure and insert it into the hash table if
393 one identical to it is not already in the table. We are doing this for
394 MEM of mode MODE. */
395
396 static reg_attrs *
397 get_reg_attrs (tree decl, int offset)
398 {
399 reg_attrs attrs;
400
401 /* If everything is the default, we can just return zero. */
402 if (decl == 0 && offset == 0)
403 return 0;
404
405 attrs.decl = decl;
406 attrs.offset = offset;
407
408 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
409 if (*slot == 0)
410 {
411 *slot = ggc_alloc<reg_attrs> ();
412 memcpy (*slot, &attrs, sizeof (reg_attrs));
413 }
414
415 return *slot;
416 }
417
418
419 #if !HAVE_blockage
420 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
421 and to block register equivalences to be seen across this insn. */
422
423 rtx
424 gen_blockage (void)
425 {
426 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
427 MEM_VOLATILE_P (x) = true;
428 return x;
429 }
430 #endif
431
432
433 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
434 don't attempt to share with the various global pieces of rtl (such as
435 frame_pointer_rtx). */
436
437 rtx
438 gen_raw_REG (machine_mode mode, int regno)
439 {
440 rtx x = rtx_alloc_stat (REG PASS_MEM_STAT);
441 PUT_MODE (x, mode);
442 SET_REGNO_RAW (x, regno);
443 REG_ATTRS (x) = NULL;
444 ORIGINAL_REGNO (x) = regno;
445 return x;
446 }
447
448 /* There are some RTL codes that require special attention; the generation
449 functions do the raw handling. If you add to this list, modify
450 special_rtx in gengenrtl.c as well. */
451
452 rtx_expr_list *
453 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
454 {
455 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
456 expr_list));
457 }
458
459 rtx_insn_list *
460 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
461 {
462 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
463 insn_list));
464 }
465
466 rtx_insn *
467 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
468 basic_block bb, rtx pattern, int location, int code,
469 rtx reg_notes)
470 {
471 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
472 prev_insn, next_insn,
473 bb, pattern, location, code,
474 reg_notes));
475 }
476
477 rtx
478 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
479 {
480 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
481 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
482
483 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
484 if (const_true_rtx && arg == STORE_FLAG_VALUE)
485 return const_true_rtx;
486 #endif
487
488 /* Look up the CONST_INT in the hash table. */
489 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
490 INSERT);
491 if (*slot == 0)
492 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
493
494 return *slot;
495 }
496
497 rtx
498 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
499 {
500 return GEN_INT (trunc_int_for_mode (c, mode));
501 }
502
503 /* CONST_DOUBLEs might be created from pairs of integers, or from
504 REAL_VALUE_TYPEs. Also, their length is known only at run time,
505 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
506
507 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
508 hash table. If so, return its counterpart; otherwise add it
509 to the hash table and return it. */
510 static rtx
511 lookup_const_double (rtx real)
512 {
513 rtx *slot = const_double_htab->find_slot (real, INSERT);
514 if (*slot == 0)
515 *slot = real;
516
517 return *slot;
518 }
519
520 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
521 VALUE in mode MODE. */
522 rtx
523 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
524 {
525 rtx real = rtx_alloc (CONST_DOUBLE);
526 PUT_MODE (real, mode);
527
528 real->u.rv = value;
529
530 return lookup_const_double (real);
531 }
532
533 /* Determine whether FIXED, a CONST_FIXED, already exists in the
534 hash table. If so, return its counterpart; otherwise add it
535 to the hash table and return it. */
536
537 static rtx
538 lookup_const_fixed (rtx fixed)
539 {
540 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
541 if (*slot == 0)
542 *slot = fixed;
543
544 return *slot;
545 }
546
547 /* Return a CONST_FIXED rtx for a fixed-point value specified by
548 VALUE in mode MODE. */
549
550 rtx
551 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
552 {
553 rtx fixed = rtx_alloc (CONST_FIXED);
554 PUT_MODE (fixed, mode);
555
556 fixed->u.fv = value;
557
558 return lookup_const_fixed (fixed);
559 }
560
561 #if TARGET_SUPPORTS_WIDE_INT == 0
562 /* Constructs double_int from rtx CST. */
563
564 double_int
565 rtx_to_double_int (const_rtx cst)
566 {
567 double_int r;
568
569 if (CONST_INT_P (cst))
570 r = double_int::from_shwi (INTVAL (cst));
571 else if (CONST_DOUBLE_AS_INT_P (cst))
572 {
573 r.low = CONST_DOUBLE_LOW (cst);
574 r.high = CONST_DOUBLE_HIGH (cst);
575 }
576 else
577 gcc_unreachable ();
578
579 return r;
580 }
581 #endif
582
583 #if TARGET_SUPPORTS_WIDE_INT
584 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
585 If so, return its counterpart; otherwise add it to the hash table and
586 return it. */
587
588 static rtx
589 lookup_const_wide_int (rtx wint)
590 {
591 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
592 if (*slot == 0)
593 *slot = wint;
594
595 return *slot;
596 }
597 #endif
598
599 /* Return an rtx constant for V, given that the constant has mode MODE.
600 The returned rtx will be a CONST_INT if V fits, otherwise it will be
601 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
602 (if TARGET_SUPPORTS_WIDE_INT). */
603
604 rtx
605 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
606 {
607 unsigned int len = v.get_len ();
608 unsigned int prec = GET_MODE_PRECISION (mode);
609
610 /* Allow truncation but not extension since we do not know if the
611 number is signed or unsigned. */
612 gcc_assert (prec <= v.get_precision ());
613
614 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
615 return gen_int_mode (v.elt (0), mode);
616
617 #if TARGET_SUPPORTS_WIDE_INT
618 {
619 unsigned int i;
620 rtx value;
621 unsigned int blocks_needed
622 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
623
624 if (len > blocks_needed)
625 len = blocks_needed;
626
627 value = const_wide_int_alloc (len);
628
629 /* It is so tempting to just put the mode in here. Must control
630 myself ... */
631 PUT_MODE (value, VOIDmode);
632 CWI_PUT_NUM_ELEM (value, len);
633
634 for (i = 0; i < len; i++)
635 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
636
637 return lookup_const_wide_int (value);
638 }
639 #else
640 return immed_double_const (v.elt (0), v.elt (1), mode);
641 #endif
642 }
643
644 #if TARGET_SUPPORTS_WIDE_INT == 0
645 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
646 of ints: I0 is the low-order word and I1 is the high-order word.
647 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
648 implied upper bits are copies of the high bit of i1. The value
649 itself is neither signed nor unsigned. Do not use this routine for
650 non-integer modes; convert to REAL_VALUE_TYPE and use
651 CONST_DOUBLE_FROM_REAL_VALUE. */
652
653 rtx
654 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
655 {
656 rtx value;
657 unsigned int i;
658
659 /* There are the following cases (note that there are no modes with
660 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
661
662 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
663 gen_int_mode.
664 2) If the value of the integer fits into HOST_WIDE_INT anyway
665 (i.e., i1 consists only from copies of the sign bit, and sign
666 of i0 and i1 are the same), then we return a CONST_INT for i0.
667 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
668 if (mode != VOIDmode)
669 {
670 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
671 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
672 /* We can get a 0 for an error mark. */
673 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
674 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
675 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
676
677 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
678 return gen_int_mode (i0, mode);
679 }
680
681 /* If this integer fits in one word, return a CONST_INT. */
682 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
683 return GEN_INT (i0);
684
685 /* We use VOIDmode for integers. */
686 value = rtx_alloc (CONST_DOUBLE);
687 PUT_MODE (value, VOIDmode);
688
689 CONST_DOUBLE_LOW (value) = i0;
690 CONST_DOUBLE_HIGH (value) = i1;
691
692 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
693 XWINT (value, i) = 0;
694
695 return lookup_const_double (value);
696 }
697 #endif
698
699 rtx
700 gen_rtx_REG (machine_mode mode, unsigned int regno)
701 {
702 /* In case the MD file explicitly references the frame pointer, have
703 all such references point to the same frame pointer. This is
704 used during frame pointer elimination to distinguish the explicit
705 references to these registers from pseudos that happened to be
706 assigned to them.
707
708 If we have eliminated the frame pointer or arg pointer, we will
709 be using it as a normal register, for example as a spill
710 register. In such cases, we might be accessing it in a mode that
711 is not Pmode and therefore cannot use the pre-allocated rtx.
712
713 Also don't do this when we are making new REGs in reload, since
714 we don't want to get confused with the real pointers. */
715
716 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
717 {
718 if (regno == FRAME_POINTER_REGNUM
719 && (!reload_completed || frame_pointer_needed))
720 return frame_pointer_rtx;
721
722 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
723 && regno == HARD_FRAME_POINTER_REGNUM
724 && (!reload_completed || frame_pointer_needed))
725 return hard_frame_pointer_rtx;
726 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
727 if (regno == ARG_POINTER_REGNUM)
728 return arg_pointer_rtx;
729 #endif
730 #ifdef RETURN_ADDRESS_POINTER_REGNUM
731 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
732 return return_address_pointer_rtx;
733 #endif
734 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
735 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
736 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
737 return pic_offset_table_rtx;
738 if (regno == STACK_POINTER_REGNUM)
739 return stack_pointer_rtx;
740 }
741
742 #if 0
743 /* If the per-function register table has been set up, try to re-use
744 an existing entry in that table to avoid useless generation of RTL.
745
746 This code is disabled for now until we can fix the various backends
747 which depend on having non-shared hard registers in some cases. Long
748 term we want to re-enable this code as it can significantly cut down
749 on the amount of useless RTL that gets generated.
750
751 We'll also need to fix some code that runs after reload that wants to
752 set ORIGINAL_REGNO. */
753
754 if (cfun
755 && cfun->emit
756 && regno_reg_rtx
757 && regno < FIRST_PSEUDO_REGISTER
758 && reg_raw_mode[regno] == mode)
759 return regno_reg_rtx[regno];
760 #endif
761
762 return gen_raw_REG (mode, regno);
763 }
764
765 rtx
766 gen_rtx_MEM (machine_mode mode, rtx addr)
767 {
768 rtx rt = gen_rtx_raw_MEM (mode, addr);
769
770 /* This field is not cleared by the mere allocation of the rtx, so
771 we clear it here. */
772 MEM_ATTRS (rt) = 0;
773
774 return rt;
775 }
776
777 /* Generate a memory referring to non-trapping constant memory. */
778
779 rtx
780 gen_const_mem (machine_mode mode, rtx addr)
781 {
782 rtx mem = gen_rtx_MEM (mode, addr);
783 MEM_READONLY_P (mem) = 1;
784 MEM_NOTRAP_P (mem) = 1;
785 return mem;
786 }
787
788 /* Generate a MEM referring to fixed portions of the frame, e.g., register
789 save areas. */
790
791 rtx
792 gen_frame_mem (machine_mode mode, rtx addr)
793 {
794 rtx mem = gen_rtx_MEM (mode, addr);
795 MEM_NOTRAP_P (mem) = 1;
796 set_mem_alias_set (mem, get_frame_alias_set ());
797 return mem;
798 }
799
800 /* Generate a MEM referring to a temporary use of the stack, not part
801 of the fixed stack frame. For example, something which is pushed
802 by a target splitter. */
803 rtx
804 gen_tmp_stack_mem (machine_mode mode, rtx addr)
805 {
806 rtx mem = gen_rtx_MEM (mode, addr);
807 MEM_NOTRAP_P (mem) = 1;
808 if (!cfun->calls_alloca)
809 set_mem_alias_set (mem, get_frame_alias_set ());
810 return mem;
811 }
812
813 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
814 this construct would be valid, and false otherwise. */
815
816 bool
817 validate_subreg (machine_mode omode, machine_mode imode,
818 const_rtx reg, unsigned int offset)
819 {
820 unsigned int isize = GET_MODE_SIZE (imode);
821 unsigned int osize = GET_MODE_SIZE (omode);
822
823 /* All subregs must be aligned. */
824 if (offset % osize != 0)
825 return false;
826
827 /* The subreg offset cannot be outside the inner object. */
828 if (offset >= isize)
829 return false;
830
831 /* ??? This should not be here. Temporarily continue to allow word_mode
832 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
833 Generally, backends are doing something sketchy but it'll take time to
834 fix them all. */
835 if (omode == word_mode)
836 ;
837 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
838 is the culprit here, and not the backends. */
839 else if (osize >= UNITS_PER_WORD && isize >= osize)
840 ;
841 /* Allow component subregs of complex and vector. Though given the below
842 extraction rules, it's not always clear what that means. */
843 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
844 && GET_MODE_INNER (imode) == omode)
845 ;
846 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
847 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
848 represent this. It's questionable if this ought to be represented at
849 all -- why can't this all be hidden in post-reload splitters that make
850 arbitrarily mode changes to the registers themselves. */
851 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
852 ;
853 /* Subregs involving floating point modes are not allowed to
854 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
855 (subreg:SI (reg:DF) 0) isn't. */
856 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
857 {
858 if (! (isize == osize
859 /* LRA can use subreg to store a floating point value in
860 an integer mode. Although the floating point and the
861 integer modes need the same number of hard registers,
862 the size of floating point mode can be less than the
863 integer mode. LRA also uses subregs for a register
864 should be used in different mode in on insn. */
865 || lra_in_progress))
866 return false;
867 }
868
869 /* Paradoxical subregs must have offset zero. */
870 if (osize > isize)
871 return offset == 0;
872
873 /* This is a normal subreg. Verify that the offset is representable. */
874
875 /* For hard registers, we already have most of these rules collected in
876 subreg_offset_representable_p. */
877 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
878 {
879 unsigned int regno = REGNO (reg);
880
881 #ifdef CANNOT_CHANGE_MODE_CLASS
882 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
883 && GET_MODE_INNER (imode) == omode)
884 ;
885 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
886 return false;
887 #endif
888
889 return subreg_offset_representable_p (regno, imode, offset, omode);
890 }
891
892 /* For pseudo registers, we want most of the same checks. Namely:
893 If the register no larger than a word, the subreg must be lowpart.
894 If the register is larger than a word, the subreg must be the lowpart
895 of a subword. A subreg does *not* perform arbitrary bit extraction.
896 Given that we've already checked mode/offset alignment, we only have
897 to check subword subregs here. */
898 if (osize < UNITS_PER_WORD
899 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
900 {
901 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
902 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
903 if (offset % UNITS_PER_WORD != low_off)
904 return false;
905 }
906 return true;
907 }
908
909 rtx
910 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
911 {
912 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
913 return gen_rtx_raw_SUBREG (mode, reg, offset);
914 }
915
916 /* Generate a SUBREG representing the least-significant part of REG if MODE
917 is smaller than mode of REG, otherwise paradoxical SUBREG. */
918
919 rtx
920 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
921 {
922 machine_mode inmode;
923
924 inmode = GET_MODE (reg);
925 if (inmode == VOIDmode)
926 inmode = mode;
927 return gen_rtx_SUBREG (mode, reg,
928 subreg_lowpart_offset (mode, inmode));
929 }
930
931 rtx
932 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
933 enum var_init_status status)
934 {
935 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
936 PAT_VAR_LOCATION_STATUS (x) = status;
937 return x;
938 }
939 \f
940
941 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
942
943 rtvec
944 gen_rtvec (int n, ...)
945 {
946 int i;
947 rtvec rt_val;
948 va_list p;
949
950 va_start (p, n);
951
952 /* Don't allocate an empty rtvec... */
953 if (n == 0)
954 {
955 va_end (p);
956 return NULL_RTVEC;
957 }
958
959 rt_val = rtvec_alloc (n);
960
961 for (i = 0; i < n; i++)
962 rt_val->elem[i] = va_arg (p, rtx);
963
964 va_end (p);
965 return rt_val;
966 }
967
968 rtvec
969 gen_rtvec_v (int n, rtx *argp)
970 {
971 int i;
972 rtvec rt_val;
973
974 /* Don't allocate an empty rtvec... */
975 if (n == 0)
976 return NULL_RTVEC;
977
978 rt_val = rtvec_alloc (n);
979
980 for (i = 0; i < n; i++)
981 rt_val->elem[i] = *argp++;
982
983 return rt_val;
984 }
985
986 rtvec
987 gen_rtvec_v (int n, rtx_insn **argp)
988 {
989 int i;
990 rtvec rt_val;
991
992 /* Don't allocate an empty rtvec... */
993 if (n == 0)
994 return NULL_RTVEC;
995
996 rt_val = rtvec_alloc (n);
997
998 for (i = 0; i < n; i++)
999 rt_val->elem[i] = *argp++;
1000
1001 return rt_val;
1002 }
1003
1004 \f
1005 /* Return the number of bytes between the start of an OUTER_MODE
1006 in-memory value and the start of an INNER_MODE in-memory value,
1007 given that the former is a lowpart of the latter. It may be a
1008 paradoxical lowpart, in which case the offset will be negative
1009 on big-endian targets. */
1010
1011 int
1012 byte_lowpart_offset (machine_mode outer_mode,
1013 machine_mode inner_mode)
1014 {
1015 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1016 return subreg_lowpart_offset (outer_mode, inner_mode);
1017 else
1018 return -subreg_lowpart_offset (inner_mode, outer_mode);
1019 }
1020 \f
1021 /* Generate a REG rtx for a new pseudo register of mode MODE.
1022 This pseudo is assigned the next sequential register number. */
1023
1024 rtx
1025 gen_reg_rtx (machine_mode mode)
1026 {
1027 rtx val;
1028 unsigned int align = GET_MODE_ALIGNMENT (mode);
1029
1030 gcc_assert (can_create_pseudo_p ());
1031
1032 /* If a virtual register with bigger mode alignment is generated,
1033 increase stack alignment estimation because it might be spilled
1034 to stack later. */
1035 if (SUPPORTS_STACK_ALIGNMENT
1036 && crtl->stack_alignment_estimated < align
1037 && !crtl->stack_realign_processed)
1038 {
1039 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1040 if (crtl->stack_alignment_estimated < min_align)
1041 crtl->stack_alignment_estimated = min_align;
1042 }
1043
1044 if (generating_concat_p
1045 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1046 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1047 {
1048 /* For complex modes, don't make a single pseudo.
1049 Instead, make a CONCAT of two pseudos.
1050 This allows noncontiguous allocation of the real and imaginary parts,
1051 which makes much better code. Besides, allocating DCmode
1052 pseudos overstrains reload on some machines like the 386. */
1053 rtx realpart, imagpart;
1054 machine_mode partmode = GET_MODE_INNER (mode);
1055
1056 realpart = gen_reg_rtx (partmode);
1057 imagpart = gen_reg_rtx (partmode);
1058 return gen_rtx_CONCAT (mode, realpart, imagpart);
1059 }
1060
1061 /* Do not call gen_reg_rtx with uninitialized crtl. */
1062 gcc_assert (crtl->emit.regno_pointer_align_length);
1063
1064 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1065 enough to have an element for this pseudo reg number. */
1066
1067 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1068 {
1069 int old_size = crtl->emit.regno_pointer_align_length;
1070 char *tmp;
1071 rtx *new1;
1072
1073 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1074 memset (tmp + old_size, 0, old_size);
1075 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1076
1077 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1078 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1079 regno_reg_rtx = new1;
1080
1081 crtl->emit.regno_pointer_align_length = old_size * 2;
1082 }
1083
1084 val = gen_raw_REG (mode, reg_rtx_no);
1085 regno_reg_rtx[reg_rtx_no++] = val;
1086 return val;
1087 }
1088
1089 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1090
1091 bool
1092 reg_is_parm_p (rtx reg)
1093 {
1094 tree decl;
1095
1096 gcc_assert (REG_P (reg));
1097 decl = REG_EXPR (reg);
1098 return (decl && TREE_CODE (decl) == PARM_DECL);
1099 }
1100
1101 /* Update NEW with the same attributes as REG, but with OFFSET added
1102 to the REG_OFFSET. */
1103
1104 static void
1105 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1106 {
1107 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1108 REG_OFFSET (reg) + offset);
1109 }
1110
1111 /* Generate a register with same attributes as REG, but with OFFSET
1112 added to the REG_OFFSET. */
1113
1114 rtx
1115 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1116 int offset)
1117 {
1118 rtx new_rtx = gen_rtx_REG (mode, regno);
1119
1120 update_reg_offset (new_rtx, reg, offset);
1121 return new_rtx;
1122 }
1123
1124 /* Generate a new pseudo-register with the same attributes as REG, but
1125 with OFFSET added to the REG_OFFSET. */
1126
1127 rtx
1128 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1129 {
1130 rtx new_rtx = gen_reg_rtx (mode);
1131
1132 update_reg_offset (new_rtx, reg, offset);
1133 return new_rtx;
1134 }
1135
1136 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1137 new register is a (possibly paradoxical) lowpart of the old one. */
1138
1139 void
1140 adjust_reg_mode (rtx reg, machine_mode mode)
1141 {
1142 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1143 PUT_MODE (reg, mode);
1144 }
1145
1146 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1147 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1148
1149 void
1150 set_reg_attrs_from_value (rtx reg, rtx x)
1151 {
1152 int offset;
1153 bool can_be_reg_pointer = true;
1154
1155 /* Don't call mark_reg_pointer for incompatible pointer sign
1156 extension. */
1157 while (GET_CODE (x) == SIGN_EXTEND
1158 || GET_CODE (x) == ZERO_EXTEND
1159 || GET_CODE (x) == TRUNCATE
1160 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1161 {
1162 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1163 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1164 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1165 can_be_reg_pointer = false;
1166 #endif
1167 x = XEXP (x, 0);
1168 }
1169
1170 /* Hard registers can be reused for multiple purposes within the same
1171 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1172 on them is wrong. */
1173 if (HARD_REGISTER_P (reg))
1174 return;
1175
1176 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1177 if (MEM_P (x))
1178 {
1179 if (MEM_OFFSET_KNOWN_P (x))
1180 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1181 MEM_OFFSET (x) + offset);
1182 if (can_be_reg_pointer && MEM_POINTER (x))
1183 mark_reg_pointer (reg, 0);
1184 }
1185 else if (REG_P (x))
1186 {
1187 if (REG_ATTRS (x))
1188 update_reg_offset (reg, x, offset);
1189 if (can_be_reg_pointer && REG_POINTER (x))
1190 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1191 }
1192 }
1193
1194 /* Generate a REG rtx for a new pseudo register, copying the mode
1195 and attributes from X. */
1196
1197 rtx
1198 gen_reg_rtx_and_attrs (rtx x)
1199 {
1200 rtx reg = gen_reg_rtx (GET_MODE (x));
1201 set_reg_attrs_from_value (reg, x);
1202 return reg;
1203 }
1204
1205 /* Set the register attributes for registers contained in PARM_RTX.
1206 Use needed values from memory attributes of MEM. */
1207
1208 void
1209 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1210 {
1211 if (REG_P (parm_rtx))
1212 set_reg_attrs_from_value (parm_rtx, mem);
1213 else if (GET_CODE (parm_rtx) == PARALLEL)
1214 {
1215 /* Check for a NULL entry in the first slot, used to indicate that the
1216 parameter goes both on the stack and in registers. */
1217 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1218 for (; i < XVECLEN (parm_rtx, 0); i++)
1219 {
1220 rtx x = XVECEXP (parm_rtx, 0, i);
1221 if (REG_P (XEXP (x, 0)))
1222 REG_ATTRS (XEXP (x, 0))
1223 = get_reg_attrs (MEM_EXPR (mem),
1224 INTVAL (XEXP (x, 1)));
1225 }
1226 }
1227 }
1228
1229 /* Set the REG_ATTRS for registers in value X, given that X represents
1230 decl T. */
1231
1232 void
1233 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1234 {
1235 if (GET_CODE (x) == SUBREG)
1236 {
1237 gcc_assert (subreg_lowpart_p (x));
1238 x = SUBREG_REG (x);
1239 }
1240 if (REG_P (x))
1241 REG_ATTRS (x)
1242 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1243 DECL_MODE (t)));
1244 if (GET_CODE (x) == CONCAT)
1245 {
1246 if (REG_P (XEXP (x, 0)))
1247 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1248 if (REG_P (XEXP (x, 1)))
1249 REG_ATTRS (XEXP (x, 1))
1250 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1251 }
1252 if (GET_CODE (x) == PARALLEL)
1253 {
1254 int i, start;
1255
1256 /* Check for a NULL entry, used to indicate that the parameter goes
1257 both on the stack and in registers. */
1258 if (XEXP (XVECEXP (x, 0, 0), 0))
1259 start = 0;
1260 else
1261 start = 1;
1262
1263 for (i = start; i < XVECLEN (x, 0); i++)
1264 {
1265 rtx y = XVECEXP (x, 0, i);
1266 if (REG_P (XEXP (y, 0)))
1267 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1268 }
1269 }
1270 }
1271
1272 /* Assign the RTX X to declaration T. */
1273
1274 void
1275 set_decl_rtl (tree t, rtx x)
1276 {
1277 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1278 if (x)
1279 set_reg_attrs_for_decl_rtl (t, x);
1280 }
1281
1282 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1283 if the ABI requires the parameter to be passed by reference. */
1284
1285 void
1286 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1287 {
1288 DECL_INCOMING_RTL (t) = x;
1289 if (x && !by_reference_p)
1290 set_reg_attrs_for_decl_rtl (t, x);
1291 }
1292
1293 /* Identify REG (which may be a CONCAT) as a user register. */
1294
1295 void
1296 mark_user_reg (rtx reg)
1297 {
1298 if (GET_CODE (reg) == CONCAT)
1299 {
1300 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1301 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1302 }
1303 else
1304 {
1305 gcc_assert (REG_P (reg));
1306 REG_USERVAR_P (reg) = 1;
1307 }
1308 }
1309
1310 /* Identify REG as a probable pointer register and show its alignment
1311 as ALIGN, if nonzero. */
1312
1313 void
1314 mark_reg_pointer (rtx reg, int align)
1315 {
1316 if (! REG_POINTER (reg))
1317 {
1318 REG_POINTER (reg) = 1;
1319
1320 if (align)
1321 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1322 }
1323 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1324 /* We can no-longer be sure just how aligned this pointer is. */
1325 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1326 }
1327
1328 /* Return 1 plus largest pseudo reg number used in the current function. */
1329
1330 int
1331 max_reg_num (void)
1332 {
1333 return reg_rtx_no;
1334 }
1335
1336 /* Return 1 + the largest label number used so far in the current function. */
1337
1338 int
1339 max_label_num (void)
1340 {
1341 return label_num;
1342 }
1343
1344 /* Return first label number used in this function (if any were used). */
1345
1346 int
1347 get_first_label_num (void)
1348 {
1349 return first_label_num;
1350 }
1351
1352 /* If the rtx for label was created during the expansion of a nested
1353 function, then first_label_num won't include this label number.
1354 Fix this now so that array indices work later. */
1355
1356 void
1357 maybe_set_first_label_num (rtx x)
1358 {
1359 if (CODE_LABEL_NUMBER (x) < first_label_num)
1360 first_label_num = CODE_LABEL_NUMBER (x);
1361 }
1362 \f
1363 /* Return a value representing some low-order bits of X, where the number
1364 of low-order bits is given by MODE. Note that no conversion is done
1365 between floating-point and fixed-point values, rather, the bit
1366 representation is returned.
1367
1368 This function handles the cases in common between gen_lowpart, below,
1369 and two variants in cse.c and combine.c. These are the cases that can
1370 be safely handled at all points in the compilation.
1371
1372 If this is not a case we can handle, return 0. */
1373
1374 rtx
1375 gen_lowpart_common (machine_mode mode, rtx x)
1376 {
1377 int msize = GET_MODE_SIZE (mode);
1378 int xsize;
1379 int offset = 0;
1380 machine_mode innermode;
1381
1382 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1383 so we have to make one up. Yuk. */
1384 innermode = GET_MODE (x);
1385 if (CONST_INT_P (x)
1386 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1387 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1388 else if (innermode == VOIDmode)
1389 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1390
1391 xsize = GET_MODE_SIZE (innermode);
1392
1393 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1394
1395 if (innermode == mode)
1396 return x;
1397
1398 /* MODE must occupy no more words than the mode of X. */
1399 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1400 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1401 return 0;
1402
1403 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1404 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1405 return 0;
1406
1407 offset = subreg_lowpart_offset (mode, innermode);
1408
1409 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1410 && (GET_MODE_CLASS (mode) == MODE_INT
1411 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1412 {
1413 /* If we are getting the low-order part of something that has been
1414 sign- or zero-extended, we can either just use the object being
1415 extended or make a narrower extension. If we want an even smaller
1416 piece than the size of the object being extended, call ourselves
1417 recursively.
1418
1419 This case is used mostly by combine and cse. */
1420
1421 if (GET_MODE (XEXP (x, 0)) == mode)
1422 return XEXP (x, 0);
1423 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1424 return gen_lowpart_common (mode, XEXP (x, 0));
1425 else if (msize < xsize)
1426 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1427 }
1428 else if (GET_CODE (x) == SUBREG || REG_P (x)
1429 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1430 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1431 return simplify_gen_subreg (mode, x, innermode, offset);
1432
1433 /* Otherwise, we can't do this. */
1434 return 0;
1435 }
1436 \f
1437 rtx
1438 gen_highpart (machine_mode mode, rtx x)
1439 {
1440 unsigned int msize = GET_MODE_SIZE (mode);
1441 rtx result;
1442
1443 /* This case loses if X is a subreg. To catch bugs early,
1444 complain if an invalid MODE is used even in other cases. */
1445 gcc_assert (msize <= UNITS_PER_WORD
1446 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1447
1448 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1449 subreg_highpart_offset (mode, GET_MODE (x)));
1450 gcc_assert (result);
1451
1452 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1453 the target if we have a MEM. gen_highpart must return a valid operand,
1454 emitting code if necessary to do so. */
1455 if (MEM_P (result))
1456 {
1457 result = validize_mem (result);
1458 gcc_assert (result);
1459 }
1460
1461 return result;
1462 }
1463
1464 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1465 be VOIDmode constant. */
1466 rtx
1467 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1468 {
1469 if (GET_MODE (exp) != VOIDmode)
1470 {
1471 gcc_assert (GET_MODE (exp) == innermode);
1472 return gen_highpart (outermode, exp);
1473 }
1474 return simplify_gen_subreg (outermode, exp, innermode,
1475 subreg_highpart_offset (outermode, innermode));
1476 }
1477
1478 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1479
1480 unsigned int
1481 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1482 {
1483 unsigned int offset = 0;
1484 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1485
1486 if (difference > 0)
1487 {
1488 if (WORDS_BIG_ENDIAN)
1489 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1490 if (BYTES_BIG_ENDIAN)
1491 offset += difference % UNITS_PER_WORD;
1492 }
1493
1494 return offset;
1495 }
1496
1497 /* Return offset in bytes to get OUTERMODE high part
1498 of the value in mode INNERMODE stored in memory in target format. */
1499 unsigned int
1500 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1501 {
1502 unsigned int offset = 0;
1503 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1504
1505 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1506
1507 if (difference > 0)
1508 {
1509 if (! WORDS_BIG_ENDIAN)
1510 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1511 if (! BYTES_BIG_ENDIAN)
1512 offset += difference % UNITS_PER_WORD;
1513 }
1514
1515 return offset;
1516 }
1517
1518 /* Return 1 iff X, assumed to be a SUBREG,
1519 refers to the least significant part of its containing reg.
1520 If X is not a SUBREG, always return 1 (it is its own low part!). */
1521
1522 int
1523 subreg_lowpart_p (const_rtx x)
1524 {
1525 if (GET_CODE (x) != SUBREG)
1526 return 1;
1527 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1528 return 0;
1529
1530 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1531 == SUBREG_BYTE (x));
1532 }
1533
1534 /* Return true if X is a paradoxical subreg, false otherwise. */
1535 bool
1536 paradoxical_subreg_p (const_rtx x)
1537 {
1538 if (GET_CODE (x) != SUBREG)
1539 return false;
1540 return (GET_MODE_PRECISION (GET_MODE (x))
1541 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1542 }
1543 \f
1544 /* Return subword OFFSET of operand OP.
1545 The word number, OFFSET, is interpreted as the word number starting
1546 at the low-order address. OFFSET 0 is the low-order word if not
1547 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1548
1549 If we cannot extract the required word, we return zero. Otherwise,
1550 an rtx corresponding to the requested word will be returned.
1551
1552 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1553 reload has completed, a valid address will always be returned. After
1554 reload, if a valid address cannot be returned, we return zero.
1555
1556 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1557 it is the responsibility of the caller.
1558
1559 MODE is the mode of OP in case it is a CONST_INT.
1560
1561 ??? This is still rather broken for some cases. The problem for the
1562 moment is that all callers of this thing provide no 'goal mode' to
1563 tell us to work with. This exists because all callers were written
1564 in a word based SUBREG world.
1565 Now use of this function can be deprecated by simplify_subreg in most
1566 cases.
1567 */
1568
1569 rtx
1570 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1571 {
1572 if (mode == VOIDmode)
1573 mode = GET_MODE (op);
1574
1575 gcc_assert (mode != VOIDmode);
1576
1577 /* If OP is narrower than a word, fail. */
1578 if (mode != BLKmode
1579 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1580 return 0;
1581
1582 /* If we want a word outside OP, return zero. */
1583 if (mode != BLKmode
1584 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1585 return const0_rtx;
1586
1587 /* Form a new MEM at the requested address. */
1588 if (MEM_P (op))
1589 {
1590 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1591
1592 if (! validate_address)
1593 return new_rtx;
1594
1595 else if (reload_completed)
1596 {
1597 if (! strict_memory_address_addr_space_p (word_mode,
1598 XEXP (new_rtx, 0),
1599 MEM_ADDR_SPACE (op)))
1600 return 0;
1601 }
1602 else
1603 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1604 }
1605
1606 /* Rest can be handled by simplify_subreg. */
1607 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1608 }
1609
1610 /* Similar to `operand_subword', but never return 0. If we can't
1611 extract the required subword, put OP into a register and try again.
1612 The second attempt must succeed. We always validate the address in
1613 this case.
1614
1615 MODE is the mode of OP, in case it is CONST_INT. */
1616
1617 rtx
1618 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1619 {
1620 rtx result = operand_subword (op, offset, 1, mode);
1621
1622 if (result)
1623 return result;
1624
1625 if (mode != BLKmode && mode != VOIDmode)
1626 {
1627 /* If this is a register which can not be accessed by words, copy it
1628 to a pseudo register. */
1629 if (REG_P (op))
1630 op = copy_to_reg (op);
1631 else
1632 op = force_reg (mode, op);
1633 }
1634
1635 result = operand_subword (op, offset, 1, mode);
1636 gcc_assert (result);
1637
1638 return result;
1639 }
1640 \f
1641 /* Returns 1 if both MEM_EXPR can be considered equal
1642 and 0 otherwise. */
1643
1644 int
1645 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1646 {
1647 if (expr1 == expr2)
1648 return 1;
1649
1650 if (! expr1 || ! expr2)
1651 return 0;
1652
1653 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1654 return 0;
1655
1656 return operand_equal_p (expr1, expr2, 0);
1657 }
1658
1659 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1660 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1661 -1 if not known. */
1662
1663 int
1664 get_mem_align_offset (rtx mem, unsigned int align)
1665 {
1666 tree expr;
1667 unsigned HOST_WIDE_INT offset;
1668
1669 /* This function can't use
1670 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1671 || (MAX (MEM_ALIGN (mem),
1672 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1673 < align))
1674 return -1;
1675 else
1676 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1677 for two reasons:
1678 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1679 for <variable>. get_inner_reference doesn't handle it and
1680 even if it did, the alignment in that case needs to be determined
1681 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1682 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1683 isn't sufficiently aligned, the object it is in might be. */
1684 gcc_assert (MEM_P (mem));
1685 expr = MEM_EXPR (mem);
1686 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1687 return -1;
1688
1689 offset = MEM_OFFSET (mem);
1690 if (DECL_P (expr))
1691 {
1692 if (DECL_ALIGN (expr) < align)
1693 return -1;
1694 }
1695 else if (INDIRECT_REF_P (expr))
1696 {
1697 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1698 return -1;
1699 }
1700 else if (TREE_CODE (expr) == COMPONENT_REF)
1701 {
1702 while (1)
1703 {
1704 tree inner = TREE_OPERAND (expr, 0);
1705 tree field = TREE_OPERAND (expr, 1);
1706 tree byte_offset = component_ref_field_offset (expr);
1707 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1708
1709 if (!byte_offset
1710 || !tree_fits_uhwi_p (byte_offset)
1711 || !tree_fits_uhwi_p (bit_offset))
1712 return -1;
1713
1714 offset += tree_to_uhwi (byte_offset);
1715 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1716
1717 if (inner == NULL_TREE)
1718 {
1719 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1720 < (unsigned int) align)
1721 return -1;
1722 break;
1723 }
1724 else if (DECL_P (inner))
1725 {
1726 if (DECL_ALIGN (inner) < align)
1727 return -1;
1728 break;
1729 }
1730 else if (TREE_CODE (inner) != COMPONENT_REF)
1731 return -1;
1732 expr = inner;
1733 }
1734 }
1735 else
1736 return -1;
1737
1738 return offset & ((align / BITS_PER_UNIT) - 1);
1739 }
1740
1741 /* Given REF (a MEM) and T, either the type of X or the expression
1742 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1743 if we are making a new object of this type. BITPOS is nonzero if
1744 there is an offset outstanding on T that will be applied later. */
1745
1746 void
1747 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1748 HOST_WIDE_INT bitpos)
1749 {
1750 HOST_WIDE_INT apply_bitpos = 0;
1751 tree type;
1752 struct mem_attrs attrs, *defattrs, *refattrs;
1753 addr_space_t as;
1754
1755 /* It can happen that type_for_mode was given a mode for which there
1756 is no language-level type. In which case it returns NULL, which
1757 we can see here. */
1758 if (t == NULL_TREE)
1759 return;
1760
1761 type = TYPE_P (t) ? t : TREE_TYPE (t);
1762 if (type == error_mark_node)
1763 return;
1764
1765 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1766 wrong answer, as it assumes that DECL_RTL already has the right alias
1767 info. Callers should not set DECL_RTL until after the call to
1768 set_mem_attributes. */
1769 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1770
1771 memset (&attrs, 0, sizeof (attrs));
1772
1773 /* Get the alias set from the expression or type (perhaps using a
1774 front-end routine) and use it. */
1775 attrs.alias = get_alias_set (t);
1776
1777 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1778 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1779
1780 /* Default values from pre-existing memory attributes if present. */
1781 refattrs = MEM_ATTRS (ref);
1782 if (refattrs)
1783 {
1784 /* ??? Can this ever happen? Calling this routine on a MEM that
1785 already carries memory attributes should probably be invalid. */
1786 attrs.expr = refattrs->expr;
1787 attrs.offset_known_p = refattrs->offset_known_p;
1788 attrs.offset = refattrs->offset;
1789 attrs.size_known_p = refattrs->size_known_p;
1790 attrs.size = refattrs->size;
1791 attrs.align = refattrs->align;
1792 }
1793
1794 /* Otherwise, default values from the mode of the MEM reference. */
1795 else
1796 {
1797 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1798 gcc_assert (!defattrs->expr);
1799 gcc_assert (!defattrs->offset_known_p);
1800
1801 /* Respect mode size. */
1802 attrs.size_known_p = defattrs->size_known_p;
1803 attrs.size = defattrs->size;
1804 /* ??? Is this really necessary? We probably should always get
1805 the size from the type below. */
1806
1807 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1808 if T is an object, always compute the object alignment below. */
1809 if (TYPE_P (t))
1810 attrs.align = defattrs->align;
1811 else
1812 attrs.align = BITS_PER_UNIT;
1813 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1814 e.g. if the type carries an alignment attribute. Should we be
1815 able to simply always use TYPE_ALIGN? */
1816 }
1817
1818 /* We can set the alignment from the type if we are making an object,
1819 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1820 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1821 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1822
1823 /* If the size is known, we can set that. */
1824 tree new_size = TYPE_SIZE_UNIT (type);
1825
1826 /* The address-space is that of the type. */
1827 as = TYPE_ADDR_SPACE (type);
1828
1829 /* If T is not a type, we may be able to deduce some more information about
1830 the expression. */
1831 if (! TYPE_P (t))
1832 {
1833 tree base;
1834
1835 if (TREE_THIS_VOLATILE (t))
1836 MEM_VOLATILE_P (ref) = 1;
1837
1838 /* Now remove any conversions: they don't change what the underlying
1839 object is. Likewise for SAVE_EXPR. */
1840 while (CONVERT_EXPR_P (t)
1841 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1842 || TREE_CODE (t) == SAVE_EXPR)
1843 t = TREE_OPERAND (t, 0);
1844
1845 /* Note whether this expression can trap. */
1846 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1847
1848 base = get_base_address (t);
1849 if (base)
1850 {
1851 if (DECL_P (base)
1852 && TREE_READONLY (base)
1853 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1854 && !TREE_THIS_VOLATILE (base))
1855 MEM_READONLY_P (ref) = 1;
1856
1857 /* Mark static const strings readonly as well. */
1858 if (TREE_CODE (base) == STRING_CST
1859 && TREE_READONLY (base)
1860 && TREE_STATIC (base))
1861 MEM_READONLY_P (ref) = 1;
1862
1863 /* Address-space information is on the base object. */
1864 if (TREE_CODE (base) == MEM_REF
1865 || TREE_CODE (base) == TARGET_MEM_REF)
1866 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1867 0))));
1868 else
1869 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1870 }
1871
1872 /* If this expression uses it's parent's alias set, mark it such
1873 that we won't change it. */
1874 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1875 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1876
1877 /* If this is a decl, set the attributes of the MEM from it. */
1878 if (DECL_P (t))
1879 {
1880 attrs.expr = t;
1881 attrs.offset_known_p = true;
1882 attrs.offset = 0;
1883 apply_bitpos = bitpos;
1884 new_size = DECL_SIZE_UNIT (t);
1885 }
1886
1887 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1888 else if (CONSTANT_CLASS_P (t))
1889 ;
1890
1891 /* If this is a field reference, record it. */
1892 else if (TREE_CODE (t) == COMPONENT_REF)
1893 {
1894 attrs.expr = t;
1895 attrs.offset_known_p = true;
1896 attrs.offset = 0;
1897 apply_bitpos = bitpos;
1898 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1899 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1900 }
1901
1902 /* If this is an array reference, look for an outer field reference. */
1903 else if (TREE_CODE (t) == ARRAY_REF)
1904 {
1905 tree off_tree = size_zero_node;
1906 /* We can't modify t, because we use it at the end of the
1907 function. */
1908 tree t2 = t;
1909
1910 do
1911 {
1912 tree index = TREE_OPERAND (t2, 1);
1913 tree low_bound = array_ref_low_bound (t2);
1914 tree unit_size = array_ref_element_size (t2);
1915
1916 /* We assume all arrays have sizes that are a multiple of a byte.
1917 First subtract the lower bound, if any, in the type of the
1918 index, then convert to sizetype and multiply by the size of
1919 the array element. */
1920 if (! integer_zerop (low_bound))
1921 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1922 index, low_bound);
1923
1924 off_tree = size_binop (PLUS_EXPR,
1925 size_binop (MULT_EXPR,
1926 fold_convert (sizetype,
1927 index),
1928 unit_size),
1929 off_tree);
1930 t2 = TREE_OPERAND (t2, 0);
1931 }
1932 while (TREE_CODE (t2) == ARRAY_REF);
1933
1934 if (DECL_P (t2)
1935 || TREE_CODE (t2) == COMPONENT_REF)
1936 {
1937 attrs.expr = t2;
1938 attrs.offset_known_p = false;
1939 if (tree_fits_uhwi_p (off_tree))
1940 {
1941 attrs.offset_known_p = true;
1942 attrs.offset = tree_to_uhwi (off_tree);
1943 apply_bitpos = bitpos;
1944 }
1945 }
1946 /* Else do not record a MEM_EXPR. */
1947 }
1948
1949 /* If this is an indirect reference, record it. */
1950 else if (TREE_CODE (t) == MEM_REF
1951 || TREE_CODE (t) == TARGET_MEM_REF)
1952 {
1953 attrs.expr = t;
1954 attrs.offset_known_p = true;
1955 attrs.offset = 0;
1956 apply_bitpos = bitpos;
1957 }
1958
1959 /* Compute the alignment. */
1960 unsigned int obj_align;
1961 unsigned HOST_WIDE_INT obj_bitpos;
1962 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1963 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1964 if (obj_bitpos != 0)
1965 obj_align = (obj_bitpos & -obj_bitpos);
1966 attrs.align = MAX (attrs.align, obj_align);
1967 }
1968
1969 if (tree_fits_uhwi_p (new_size))
1970 {
1971 attrs.size_known_p = true;
1972 attrs.size = tree_to_uhwi (new_size);
1973 }
1974
1975 /* If we modified OFFSET based on T, then subtract the outstanding
1976 bit position offset. Similarly, increase the size of the accessed
1977 object to contain the negative offset. */
1978 if (apply_bitpos)
1979 {
1980 gcc_assert (attrs.offset_known_p);
1981 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1982 if (attrs.size_known_p)
1983 attrs.size += apply_bitpos / BITS_PER_UNIT;
1984 }
1985
1986 /* Now set the attributes we computed above. */
1987 attrs.addrspace = as;
1988 set_mem_attrs (ref, &attrs);
1989 }
1990
1991 void
1992 set_mem_attributes (rtx ref, tree t, int objectp)
1993 {
1994 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1995 }
1996
1997 /* Set the alias set of MEM to SET. */
1998
1999 void
2000 set_mem_alias_set (rtx mem, alias_set_type set)
2001 {
2002 struct mem_attrs attrs;
2003
2004 /* If the new and old alias sets don't conflict, something is wrong. */
2005 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2006 attrs = *get_mem_attrs (mem);
2007 attrs.alias = set;
2008 set_mem_attrs (mem, &attrs);
2009 }
2010
2011 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2012
2013 void
2014 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2015 {
2016 struct mem_attrs attrs;
2017
2018 attrs = *get_mem_attrs (mem);
2019 attrs.addrspace = addrspace;
2020 set_mem_attrs (mem, &attrs);
2021 }
2022
2023 /* Set the alignment of MEM to ALIGN bits. */
2024
2025 void
2026 set_mem_align (rtx mem, unsigned int align)
2027 {
2028 struct mem_attrs attrs;
2029
2030 attrs = *get_mem_attrs (mem);
2031 attrs.align = align;
2032 set_mem_attrs (mem, &attrs);
2033 }
2034
2035 /* Set the expr for MEM to EXPR. */
2036
2037 void
2038 set_mem_expr (rtx mem, tree expr)
2039 {
2040 struct mem_attrs attrs;
2041
2042 attrs = *get_mem_attrs (mem);
2043 attrs.expr = expr;
2044 set_mem_attrs (mem, &attrs);
2045 }
2046
2047 /* Set the offset of MEM to OFFSET. */
2048
2049 void
2050 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2051 {
2052 struct mem_attrs attrs;
2053
2054 attrs = *get_mem_attrs (mem);
2055 attrs.offset_known_p = true;
2056 attrs.offset = offset;
2057 set_mem_attrs (mem, &attrs);
2058 }
2059
2060 /* Clear the offset of MEM. */
2061
2062 void
2063 clear_mem_offset (rtx mem)
2064 {
2065 struct mem_attrs attrs;
2066
2067 attrs = *get_mem_attrs (mem);
2068 attrs.offset_known_p = false;
2069 set_mem_attrs (mem, &attrs);
2070 }
2071
2072 /* Set the size of MEM to SIZE. */
2073
2074 void
2075 set_mem_size (rtx mem, HOST_WIDE_INT size)
2076 {
2077 struct mem_attrs attrs;
2078
2079 attrs = *get_mem_attrs (mem);
2080 attrs.size_known_p = true;
2081 attrs.size = size;
2082 set_mem_attrs (mem, &attrs);
2083 }
2084
2085 /* Clear the size of MEM. */
2086
2087 void
2088 clear_mem_size (rtx mem)
2089 {
2090 struct mem_attrs attrs;
2091
2092 attrs = *get_mem_attrs (mem);
2093 attrs.size_known_p = false;
2094 set_mem_attrs (mem, &attrs);
2095 }
2096 \f
2097 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2098 and its address changed to ADDR. (VOIDmode means don't change the mode.
2099 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2100 returned memory location is required to be valid. INPLACE is true if any
2101 changes can be made directly to MEMREF or false if MEMREF must be treated
2102 as immutable.
2103
2104 The memory attributes are not changed. */
2105
2106 static rtx
2107 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2108 bool inplace)
2109 {
2110 addr_space_t as;
2111 rtx new_rtx;
2112
2113 gcc_assert (MEM_P (memref));
2114 as = MEM_ADDR_SPACE (memref);
2115 if (mode == VOIDmode)
2116 mode = GET_MODE (memref);
2117 if (addr == 0)
2118 addr = XEXP (memref, 0);
2119 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2120 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2121 return memref;
2122
2123 /* Don't validate address for LRA. LRA can make the address valid
2124 by itself in most efficient way. */
2125 if (validate && !lra_in_progress)
2126 {
2127 if (reload_in_progress || reload_completed)
2128 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2129 else
2130 addr = memory_address_addr_space (mode, addr, as);
2131 }
2132
2133 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2134 return memref;
2135
2136 if (inplace)
2137 {
2138 XEXP (memref, 0) = addr;
2139 return memref;
2140 }
2141
2142 new_rtx = gen_rtx_MEM (mode, addr);
2143 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2144 return new_rtx;
2145 }
2146
2147 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2148 way we are changing MEMREF, so we only preserve the alias set. */
2149
2150 rtx
2151 change_address (rtx memref, machine_mode mode, rtx addr)
2152 {
2153 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2154 machine_mode mmode = GET_MODE (new_rtx);
2155 struct mem_attrs attrs, *defattrs;
2156
2157 attrs = *get_mem_attrs (memref);
2158 defattrs = mode_mem_attrs[(int) mmode];
2159 attrs.expr = NULL_TREE;
2160 attrs.offset_known_p = false;
2161 attrs.size_known_p = defattrs->size_known_p;
2162 attrs.size = defattrs->size;
2163 attrs.align = defattrs->align;
2164
2165 /* If there are no changes, just return the original memory reference. */
2166 if (new_rtx == memref)
2167 {
2168 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2169 return new_rtx;
2170
2171 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2172 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2173 }
2174
2175 set_mem_attrs (new_rtx, &attrs);
2176 return new_rtx;
2177 }
2178
2179 /* Return a memory reference like MEMREF, but with its mode changed
2180 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2181 nonzero, the memory address is forced to be valid.
2182 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2183 and the caller is responsible for adjusting MEMREF base register.
2184 If ADJUST_OBJECT is zero, the underlying object associated with the
2185 memory reference is left unchanged and the caller is responsible for
2186 dealing with it. Otherwise, if the new memory reference is outside
2187 the underlying object, even partially, then the object is dropped.
2188 SIZE, if nonzero, is the size of an access in cases where MODE
2189 has no inherent size. */
2190
2191 rtx
2192 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2193 int validate, int adjust_address, int adjust_object,
2194 HOST_WIDE_INT size)
2195 {
2196 rtx addr = XEXP (memref, 0);
2197 rtx new_rtx;
2198 machine_mode address_mode;
2199 int pbits;
2200 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2201 unsigned HOST_WIDE_INT max_align;
2202 #ifdef POINTERS_EXTEND_UNSIGNED
2203 machine_mode pointer_mode
2204 = targetm.addr_space.pointer_mode (attrs.addrspace);
2205 #endif
2206
2207 /* VOIDmode means no mode change for change_address_1. */
2208 if (mode == VOIDmode)
2209 mode = GET_MODE (memref);
2210
2211 /* Take the size of non-BLKmode accesses from the mode. */
2212 defattrs = mode_mem_attrs[(int) mode];
2213 if (defattrs->size_known_p)
2214 size = defattrs->size;
2215
2216 /* If there are no changes, just return the original memory reference. */
2217 if (mode == GET_MODE (memref) && !offset
2218 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2219 && (!validate || memory_address_addr_space_p (mode, addr,
2220 attrs.addrspace)))
2221 return memref;
2222
2223 /* ??? Prefer to create garbage instead of creating shared rtl.
2224 This may happen even if offset is nonzero -- consider
2225 (plus (plus reg reg) const_int) -- so do this always. */
2226 addr = copy_rtx (addr);
2227
2228 /* Convert a possibly large offset to a signed value within the
2229 range of the target address space. */
2230 address_mode = get_address_mode (memref);
2231 pbits = GET_MODE_BITSIZE (address_mode);
2232 if (HOST_BITS_PER_WIDE_INT > pbits)
2233 {
2234 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2235 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2236 >> shift);
2237 }
2238
2239 if (adjust_address)
2240 {
2241 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2242 object, we can merge it into the LO_SUM. */
2243 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2244 && offset >= 0
2245 && (unsigned HOST_WIDE_INT) offset
2246 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2247 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2248 plus_constant (address_mode,
2249 XEXP (addr, 1), offset));
2250 #ifdef POINTERS_EXTEND_UNSIGNED
2251 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2252 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2253 the fact that pointers are not allowed to overflow. */
2254 else if (POINTERS_EXTEND_UNSIGNED > 0
2255 && GET_CODE (addr) == ZERO_EXTEND
2256 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2257 && trunc_int_for_mode (offset, pointer_mode) == offset)
2258 addr = gen_rtx_ZERO_EXTEND (address_mode,
2259 plus_constant (pointer_mode,
2260 XEXP (addr, 0), offset));
2261 #endif
2262 else
2263 addr = plus_constant (address_mode, addr, offset);
2264 }
2265
2266 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2267
2268 /* If the address is a REG, change_address_1 rightfully returns memref,
2269 but this would destroy memref's MEM_ATTRS. */
2270 if (new_rtx == memref && offset != 0)
2271 new_rtx = copy_rtx (new_rtx);
2272
2273 /* Conservatively drop the object if we don't know where we start from. */
2274 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2275 {
2276 attrs.expr = NULL_TREE;
2277 attrs.alias = 0;
2278 }
2279
2280 /* Compute the new values of the memory attributes due to this adjustment.
2281 We add the offsets and update the alignment. */
2282 if (attrs.offset_known_p)
2283 {
2284 attrs.offset += offset;
2285
2286 /* Drop the object if the new left end is not within its bounds. */
2287 if (adjust_object && attrs.offset < 0)
2288 {
2289 attrs.expr = NULL_TREE;
2290 attrs.alias = 0;
2291 }
2292 }
2293
2294 /* Compute the new alignment by taking the MIN of the alignment and the
2295 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2296 if zero. */
2297 if (offset != 0)
2298 {
2299 max_align = (offset & -offset) * BITS_PER_UNIT;
2300 attrs.align = MIN (attrs.align, max_align);
2301 }
2302
2303 if (size)
2304 {
2305 /* Drop the object if the new right end is not within its bounds. */
2306 if (adjust_object && (offset + size) > attrs.size)
2307 {
2308 attrs.expr = NULL_TREE;
2309 attrs.alias = 0;
2310 }
2311 attrs.size_known_p = true;
2312 attrs.size = size;
2313 }
2314 else if (attrs.size_known_p)
2315 {
2316 gcc_assert (!adjust_object);
2317 attrs.size -= offset;
2318 /* ??? The store_by_pieces machinery generates negative sizes,
2319 so don't assert for that here. */
2320 }
2321
2322 set_mem_attrs (new_rtx, &attrs);
2323
2324 return new_rtx;
2325 }
2326
2327 /* Return a memory reference like MEMREF, but with its mode changed
2328 to MODE and its address changed to ADDR, which is assumed to be
2329 MEMREF offset by OFFSET bytes. If VALIDATE is
2330 nonzero, the memory address is forced to be valid. */
2331
2332 rtx
2333 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2334 HOST_WIDE_INT offset, int validate)
2335 {
2336 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2337 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2338 }
2339
2340 /* Return a memory reference like MEMREF, but whose address is changed by
2341 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2342 known to be in OFFSET (possibly 1). */
2343
2344 rtx
2345 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2346 {
2347 rtx new_rtx, addr = XEXP (memref, 0);
2348 machine_mode address_mode;
2349 struct mem_attrs attrs, *defattrs;
2350
2351 attrs = *get_mem_attrs (memref);
2352 address_mode = get_address_mode (memref);
2353 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2354
2355 /* At this point we don't know _why_ the address is invalid. It
2356 could have secondary memory references, multiplies or anything.
2357
2358 However, if we did go and rearrange things, we can wind up not
2359 being able to recognize the magic around pic_offset_table_rtx.
2360 This stuff is fragile, and is yet another example of why it is
2361 bad to expose PIC machinery too early. */
2362 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2363 attrs.addrspace)
2364 && GET_CODE (addr) == PLUS
2365 && XEXP (addr, 0) == pic_offset_table_rtx)
2366 {
2367 addr = force_reg (GET_MODE (addr), addr);
2368 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2369 }
2370
2371 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2372 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2373
2374 /* If there are no changes, just return the original memory reference. */
2375 if (new_rtx == memref)
2376 return new_rtx;
2377
2378 /* Update the alignment to reflect the offset. Reset the offset, which
2379 we don't know. */
2380 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2381 attrs.offset_known_p = false;
2382 attrs.size_known_p = defattrs->size_known_p;
2383 attrs.size = defattrs->size;
2384 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2385 set_mem_attrs (new_rtx, &attrs);
2386 return new_rtx;
2387 }
2388
2389 /* Return a memory reference like MEMREF, but with its address changed to
2390 ADDR. The caller is asserting that the actual piece of memory pointed
2391 to is the same, just the form of the address is being changed, such as
2392 by putting something into a register. INPLACE is true if any changes
2393 can be made directly to MEMREF or false if MEMREF must be treated as
2394 immutable. */
2395
2396 rtx
2397 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2398 {
2399 /* change_address_1 copies the memory attribute structure without change
2400 and that's exactly what we want here. */
2401 update_temp_slot_address (XEXP (memref, 0), addr);
2402 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2403 }
2404
2405 /* Likewise, but the reference is not required to be valid. */
2406
2407 rtx
2408 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2409 {
2410 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2411 }
2412
2413 /* Return a memory reference like MEMREF, but with its mode widened to
2414 MODE and offset by OFFSET. This would be used by targets that e.g.
2415 cannot issue QImode memory operations and have to use SImode memory
2416 operations plus masking logic. */
2417
2418 rtx
2419 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2420 {
2421 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2422 struct mem_attrs attrs;
2423 unsigned int size = GET_MODE_SIZE (mode);
2424
2425 /* If there are no changes, just return the original memory reference. */
2426 if (new_rtx == memref)
2427 return new_rtx;
2428
2429 attrs = *get_mem_attrs (new_rtx);
2430
2431 /* If we don't know what offset we were at within the expression, then
2432 we can't know if we've overstepped the bounds. */
2433 if (! attrs.offset_known_p)
2434 attrs.expr = NULL_TREE;
2435
2436 while (attrs.expr)
2437 {
2438 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2439 {
2440 tree field = TREE_OPERAND (attrs.expr, 1);
2441 tree offset = component_ref_field_offset (attrs.expr);
2442
2443 if (! DECL_SIZE_UNIT (field))
2444 {
2445 attrs.expr = NULL_TREE;
2446 break;
2447 }
2448
2449 /* Is the field at least as large as the access? If so, ok,
2450 otherwise strip back to the containing structure. */
2451 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2452 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2453 && attrs.offset >= 0)
2454 break;
2455
2456 if (! tree_fits_uhwi_p (offset))
2457 {
2458 attrs.expr = NULL_TREE;
2459 break;
2460 }
2461
2462 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2463 attrs.offset += tree_to_uhwi (offset);
2464 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2465 / BITS_PER_UNIT);
2466 }
2467 /* Similarly for the decl. */
2468 else if (DECL_P (attrs.expr)
2469 && DECL_SIZE_UNIT (attrs.expr)
2470 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2471 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2472 && (! attrs.offset_known_p || attrs.offset >= 0))
2473 break;
2474 else
2475 {
2476 /* The widened memory access overflows the expression, which means
2477 that it could alias another expression. Zap it. */
2478 attrs.expr = NULL_TREE;
2479 break;
2480 }
2481 }
2482
2483 if (! attrs.expr)
2484 attrs.offset_known_p = false;
2485
2486 /* The widened memory may alias other stuff, so zap the alias set. */
2487 /* ??? Maybe use get_alias_set on any remaining expression. */
2488 attrs.alias = 0;
2489 attrs.size_known_p = true;
2490 attrs.size = size;
2491 set_mem_attrs (new_rtx, &attrs);
2492 return new_rtx;
2493 }
2494 \f
2495 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2496 static GTY(()) tree spill_slot_decl;
2497
2498 tree
2499 get_spill_slot_decl (bool force_build_p)
2500 {
2501 tree d = spill_slot_decl;
2502 rtx rd;
2503 struct mem_attrs attrs;
2504
2505 if (d || !force_build_p)
2506 return d;
2507
2508 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2509 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2510 DECL_ARTIFICIAL (d) = 1;
2511 DECL_IGNORED_P (d) = 1;
2512 TREE_USED (d) = 1;
2513 spill_slot_decl = d;
2514
2515 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2516 MEM_NOTRAP_P (rd) = 1;
2517 attrs = *mode_mem_attrs[(int) BLKmode];
2518 attrs.alias = new_alias_set ();
2519 attrs.expr = d;
2520 set_mem_attrs (rd, &attrs);
2521 SET_DECL_RTL (d, rd);
2522
2523 return d;
2524 }
2525
2526 /* Given MEM, a result from assign_stack_local, fill in the memory
2527 attributes as appropriate for a register allocator spill slot.
2528 These slots are not aliasable by other memory. We arrange for
2529 them all to use a single MEM_EXPR, so that the aliasing code can
2530 work properly in the case of shared spill slots. */
2531
2532 void
2533 set_mem_attrs_for_spill (rtx mem)
2534 {
2535 struct mem_attrs attrs;
2536 rtx addr;
2537
2538 attrs = *get_mem_attrs (mem);
2539 attrs.expr = get_spill_slot_decl (true);
2540 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2541 attrs.addrspace = ADDR_SPACE_GENERIC;
2542
2543 /* We expect the incoming memory to be of the form:
2544 (mem:MODE (plus (reg sfp) (const_int offset)))
2545 with perhaps the plus missing for offset = 0. */
2546 addr = XEXP (mem, 0);
2547 attrs.offset_known_p = true;
2548 attrs.offset = 0;
2549 if (GET_CODE (addr) == PLUS
2550 && CONST_INT_P (XEXP (addr, 1)))
2551 attrs.offset = INTVAL (XEXP (addr, 1));
2552
2553 set_mem_attrs (mem, &attrs);
2554 MEM_NOTRAP_P (mem) = 1;
2555 }
2556 \f
2557 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2558
2559 rtx_code_label *
2560 gen_label_rtx (void)
2561 {
2562 return as_a <rtx_code_label *> (
2563 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2564 NULL, label_num++, NULL));
2565 }
2566 \f
2567 /* For procedure integration. */
2568
2569 /* Install new pointers to the first and last insns in the chain.
2570 Also, set cur_insn_uid to one higher than the last in use.
2571 Used for an inline-procedure after copying the insn chain. */
2572
2573 void
2574 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2575 {
2576 rtx_insn *insn;
2577
2578 set_first_insn (first);
2579 set_last_insn (last);
2580 cur_insn_uid = 0;
2581
2582 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2583 {
2584 int debug_count = 0;
2585
2586 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2587 cur_debug_insn_uid = 0;
2588
2589 for (insn = first; insn; insn = NEXT_INSN (insn))
2590 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2591 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2592 else
2593 {
2594 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2595 if (DEBUG_INSN_P (insn))
2596 debug_count++;
2597 }
2598
2599 if (debug_count)
2600 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2601 else
2602 cur_debug_insn_uid++;
2603 }
2604 else
2605 for (insn = first; insn; insn = NEXT_INSN (insn))
2606 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2607
2608 cur_insn_uid++;
2609 }
2610 \f
2611 /* Go through all the RTL insn bodies and copy any invalid shared
2612 structure. This routine should only be called once. */
2613
2614 static void
2615 unshare_all_rtl_1 (rtx_insn *insn)
2616 {
2617 /* Unshare just about everything else. */
2618 unshare_all_rtl_in_chain (insn);
2619
2620 /* Make sure the addresses of stack slots found outside the insn chain
2621 (such as, in DECL_RTL of a variable) are not shared
2622 with the insn chain.
2623
2624 This special care is necessary when the stack slot MEM does not
2625 actually appear in the insn chain. If it does appear, its address
2626 is unshared from all else at that point. */
2627 stack_slot_list = safe_as_a <rtx_expr_list *> (
2628 copy_rtx_if_shared (stack_slot_list));
2629 }
2630
2631 /* Go through all the RTL insn bodies and copy any invalid shared
2632 structure, again. This is a fairly expensive thing to do so it
2633 should be done sparingly. */
2634
2635 void
2636 unshare_all_rtl_again (rtx_insn *insn)
2637 {
2638 rtx_insn *p;
2639 tree decl;
2640
2641 for (p = insn; p; p = NEXT_INSN (p))
2642 if (INSN_P (p))
2643 {
2644 reset_used_flags (PATTERN (p));
2645 reset_used_flags (REG_NOTES (p));
2646 if (CALL_P (p))
2647 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2648 }
2649
2650 /* Make sure that virtual stack slots are not shared. */
2651 set_used_decls (DECL_INITIAL (cfun->decl));
2652
2653 /* Make sure that virtual parameters are not shared. */
2654 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2655 set_used_flags (DECL_RTL (decl));
2656
2657 reset_used_flags (stack_slot_list);
2658
2659 unshare_all_rtl_1 (insn);
2660 }
2661
2662 unsigned int
2663 unshare_all_rtl (void)
2664 {
2665 unshare_all_rtl_1 (get_insns ());
2666 return 0;
2667 }
2668
2669
2670 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2671 Recursively does the same for subexpressions. */
2672
2673 static void
2674 verify_rtx_sharing (rtx orig, rtx insn)
2675 {
2676 rtx x = orig;
2677 int i;
2678 enum rtx_code code;
2679 const char *format_ptr;
2680
2681 if (x == 0)
2682 return;
2683
2684 code = GET_CODE (x);
2685
2686 /* These types may be freely shared. */
2687
2688 switch (code)
2689 {
2690 case REG:
2691 case DEBUG_EXPR:
2692 case VALUE:
2693 CASE_CONST_ANY:
2694 case SYMBOL_REF:
2695 case LABEL_REF:
2696 case CODE_LABEL:
2697 case PC:
2698 case CC0:
2699 case RETURN:
2700 case SIMPLE_RETURN:
2701 case SCRATCH:
2702 /* SCRATCH must be shared because they represent distinct values. */
2703 return;
2704 case CLOBBER:
2705 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2706 clobbers or clobbers of hard registers that originated as pseudos.
2707 This is needed to allow safe register renaming. */
2708 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2709 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2710 return;
2711 break;
2712
2713 case CONST:
2714 if (shared_const_p (orig))
2715 return;
2716 break;
2717
2718 case MEM:
2719 /* A MEM is allowed to be shared if its address is constant. */
2720 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2721 || reload_completed || reload_in_progress)
2722 return;
2723
2724 break;
2725
2726 default:
2727 break;
2728 }
2729
2730 /* This rtx may not be shared. If it has already been seen,
2731 replace it with a copy of itself. */
2732 #ifdef ENABLE_CHECKING
2733 if (RTX_FLAG (x, used))
2734 {
2735 error ("invalid rtl sharing found in the insn");
2736 debug_rtx (insn);
2737 error ("shared rtx");
2738 debug_rtx (x);
2739 internal_error ("internal consistency failure");
2740 }
2741 #endif
2742 gcc_assert (!RTX_FLAG (x, used));
2743
2744 RTX_FLAG (x, used) = 1;
2745
2746 /* Now scan the subexpressions recursively. */
2747
2748 format_ptr = GET_RTX_FORMAT (code);
2749
2750 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2751 {
2752 switch (*format_ptr++)
2753 {
2754 case 'e':
2755 verify_rtx_sharing (XEXP (x, i), insn);
2756 break;
2757
2758 case 'E':
2759 if (XVEC (x, i) != NULL)
2760 {
2761 int j;
2762 int len = XVECLEN (x, i);
2763
2764 for (j = 0; j < len; j++)
2765 {
2766 /* We allow sharing of ASM_OPERANDS inside single
2767 instruction. */
2768 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2769 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2770 == ASM_OPERANDS))
2771 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2772 else
2773 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2774 }
2775 }
2776 break;
2777 }
2778 }
2779 return;
2780 }
2781
2782 /* Reset used-flags for INSN. */
2783
2784 static void
2785 reset_insn_used_flags (rtx insn)
2786 {
2787 gcc_assert (INSN_P (insn));
2788 reset_used_flags (PATTERN (insn));
2789 reset_used_flags (REG_NOTES (insn));
2790 if (CALL_P (insn))
2791 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2792 }
2793
2794 /* Go through all the RTL insn bodies and clear all the USED bits. */
2795
2796 static void
2797 reset_all_used_flags (void)
2798 {
2799 rtx_insn *p;
2800
2801 for (p = get_insns (); p; p = NEXT_INSN (p))
2802 if (INSN_P (p))
2803 {
2804 rtx pat = PATTERN (p);
2805 if (GET_CODE (pat) != SEQUENCE)
2806 reset_insn_used_flags (p);
2807 else
2808 {
2809 gcc_assert (REG_NOTES (p) == NULL);
2810 for (int i = 0; i < XVECLEN (pat, 0); i++)
2811 {
2812 rtx insn = XVECEXP (pat, 0, i);
2813 if (INSN_P (insn))
2814 reset_insn_used_flags (insn);
2815 }
2816 }
2817 }
2818 }
2819
2820 /* Verify sharing in INSN. */
2821
2822 static void
2823 verify_insn_sharing (rtx insn)
2824 {
2825 gcc_assert (INSN_P (insn));
2826 reset_used_flags (PATTERN (insn));
2827 reset_used_flags (REG_NOTES (insn));
2828 if (CALL_P (insn))
2829 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2830 }
2831
2832 /* Go through all the RTL insn bodies and check that there is no unexpected
2833 sharing in between the subexpressions. */
2834
2835 DEBUG_FUNCTION void
2836 verify_rtl_sharing (void)
2837 {
2838 rtx_insn *p;
2839
2840 timevar_push (TV_VERIFY_RTL_SHARING);
2841
2842 reset_all_used_flags ();
2843
2844 for (p = get_insns (); p; p = NEXT_INSN (p))
2845 if (INSN_P (p))
2846 {
2847 rtx pat = PATTERN (p);
2848 if (GET_CODE (pat) != SEQUENCE)
2849 verify_insn_sharing (p);
2850 else
2851 for (int i = 0; i < XVECLEN (pat, 0); i++)
2852 {
2853 rtx insn = XVECEXP (pat, 0, i);
2854 if (INSN_P (insn))
2855 verify_insn_sharing (insn);
2856 }
2857 }
2858
2859 reset_all_used_flags ();
2860
2861 timevar_pop (TV_VERIFY_RTL_SHARING);
2862 }
2863
2864 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2865 Assumes the mark bits are cleared at entry. */
2866
2867 void
2868 unshare_all_rtl_in_chain (rtx_insn *insn)
2869 {
2870 for (; insn; insn = NEXT_INSN (insn))
2871 if (INSN_P (insn))
2872 {
2873 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2874 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2875 if (CALL_P (insn))
2876 CALL_INSN_FUNCTION_USAGE (insn)
2877 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2878 }
2879 }
2880
2881 /* Go through all virtual stack slots of a function and mark them as
2882 shared. We never replace the DECL_RTLs themselves with a copy,
2883 but expressions mentioned into a DECL_RTL cannot be shared with
2884 expressions in the instruction stream.
2885
2886 Note that reload may convert pseudo registers into memories in-place.
2887 Pseudo registers are always shared, but MEMs never are. Thus if we
2888 reset the used flags on MEMs in the instruction stream, we must set
2889 them again on MEMs that appear in DECL_RTLs. */
2890
2891 static void
2892 set_used_decls (tree blk)
2893 {
2894 tree t;
2895
2896 /* Mark decls. */
2897 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2898 if (DECL_RTL_SET_P (t))
2899 set_used_flags (DECL_RTL (t));
2900
2901 /* Now process sub-blocks. */
2902 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2903 set_used_decls (t);
2904 }
2905
2906 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2907 Recursively does the same for subexpressions. Uses
2908 copy_rtx_if_shared_1 to reduce stack space. */
2909
2910 rtx
2911 copy_rtx_if_shared (rtx orig)
2912 {
2913 copy_rtx_if_shared_1 (&orig);
2914 return orig;
2915 }
2916
2917 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2918 use. Recursively does the same for subexpressions. */
2919
2920 static void
2921 copy_rtx_if_shared_1 (rtx *orig1)
2922 {
2923 rtx x;
2924 int i;
2925 enum rtx_code code;
2926 rtx *last_ptr;
2927 const char *format_ptr;
2928 int copied = 0;
2929 int length;
2930
2931 /* Repeat is used to turn tail-recursion into iteration. */
2932 repeat:
2933 x = *orig1;
2934
2935 if (x == 0)
2936 return;
2937
2938 code = GET_CODE (x);
2939
2940 /* These types may be freely shared. */
2941
2942 switch (code)
2943 {
2944 case REG:
2945 case DEBUG_EXPR:
2946 case VALUE:
2947 CASE_CONST_ANY:
2948 case SYMBOL_REF:
2949 case LABEL_REF:
2950 case CODE_LABEL:
2951 case PC:
2952 case CC0:
2953 case RETURN:
2954 case SIMPLE_RETURN:
2955 case SCRATCH:
2956 /* SCRATCH must be shared because they represent distinct values. */
2957 return;
2958 case CLOBBER:
2959 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2960 clobbers or clobbers of hard registers that originated as pseudos.
2961 This is needed to allow safe register renaming. */
2962 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2963 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2964 return;
2965 break;
2966
2967 case CONST:
2968 if (shared_const_p (x))
2969 return;
2970 break;
2971
2972 case DEBUG_INSN:
2973 case INSN:
2974 case JUMP_INSN:
2975 case CALL_INSN:
2976 case NOTE:
2977 case BARRIER:
2978 /* The chain of insns is not being copied. */
2979 return;
2980
2981 default:
2982 break;
2983 }
2984
2985 /* This rtx may not be shared. If it has already been seen,
2986 replace it with a copy of itself. */
2987
2988 if (RTX_FLAG (x, used))
2989 {
2990 x = shallow_copy_rtx (x);
2991 copied = 1;
2992 }
2993 RTX_FLAG (x, used) = 1;
2994
2995 /* Now scan the subexpressions recursively.
2996 We can store any replaced subexpressions directly into X
2997 since we know X is not shared! Any vectors in X
2998 must be copied if X was copied. */
2999
3000 format_ptr = GET_RTX_FORMAT (code);
3001 length = GET_RTX_LENGTH (code);
3002 last_ptr = NULL;
3003
3004 for (i = 0; i < length; i++)
3005 {
3006 switch (*format_ptr++)
3007 {
3008 case 'e':
3009 if (last_ptr)
3010 copy_rtx_if_shared_1 (last_ptr);
3011 last_ptr = &XEXP (x, i);
3012 break;
3013
3014 case 'E':
3015 if (XVEC (x, i) != NULL)
3016 {
3017 int j;
3018 int len = XVECLEN (x, i);
3019
3020 /* Copy the vector iff I copied the rtx and the length
3021 is nonzero. */
3022 if (copied && len > 0)
3023 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3024
3025 /* Call recursively on all inside the vector. */
3026 for (j = 0; j < len; j++)
3027 {
3028 if (last_ptr)
3029 copy_rtx_if_shared_1 (last_ptr);
3030 last_ptr = &XVECEXP (x, i, j);
3031 }
3032 }
3033 break;
3034 }
3035 }
3036 *orig1 = x;
3037 if (last_ptr)
3038 {
3039 orig1 = last_ptr;
3040 goto repeat;
3041 }
3042 return;
3043 }
3044
3045 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3046
3047 static void
3048 mark_used_flags (rtx x, int flag)
3049 {
3050 int i, j;
3051 enum rtx_code code;
3052 const char *format_ptr;
3053 int length;
3054
3055 /* Repeat is used to turn tail-recursion into iteration. */
3056 repeat:
3057 if (x == 0)
3058 return;
3059
3060 code = GET_CODE (x);
3061
3062 /* These types may be freely shared so we needn't do any resetting
3063 for them. */
3064
3065 switch (code)
3066 {
3067 case REG:
3068 case DEBUG_EXPR:
3069 case VALUE:
3070 CASE_CONST_ANY:
3071 case SYMBOL_REF:
3072 case CODE_LABEL:
3073 case PC:
3074 case CC0:
3075 case RETURN:
3076 case SIMPLE_RETURN:
3077 return;
3078
3079 case DEBUG_INSN:
3080 case INSN:
3081 case JUMP_INSN:
3082 case CALL_INSN:
3083 case NOTE:
3084 case LABEL_REF:
3085 case BARRIER:
3086 /* The chain of insns is not being copied. */
3087 return;
3088
3089 default:
3090 break;
3091 }
3092
3093 RTX_FLAG (x, used) = flag;
3094
3095 format_ptr = GET_RTX_FORMAT (code);
3096 length = GET_RTX_LENGTH (code);
3097
3098 for (i = 0; i < length; i++)
3099 {
3100 switch (*format_ptr++)
3101 {
3102 case 'e':
3103 if (i == length-1)
3104 {
3105 x = XEXP (x, i);
3106 goto repeat;
3107 }
3108 mark_used_flags (XEXP (x, i), flag);
3109 break;
3110
3111 case 'E':
3112 for (j = 0; j < XVECLEN (x, i); j++)
3113 mark_used_flags (XVECEXP (x, i, j), flag);
3114 break;
3115 }
3116 }
3117 }
3118
3119 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3120 to look for shared sub-parts. */
3121
3122 void
3123 reset_used_flags (rtx x)
3124 {
3125 mark_used_flags (x, 0);
3126 }
3127
3128 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3129 to look for shared sub-parts. */
3130
3131 void
3132 set_used_flags (rtx x)
3133 {
3134 mark_used_flags (x, 1);
3135 }
3136 \f
3137 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3138 Return X or the rtx for the pseudo reg the value of X was copied into.
3139 OTHER must be valid as a SET_DEST. */
3140
3141 rtx
3142 make_safe_from (rtx x, rtx other)
3143 {
3144 while (1)
3145 switch (GET_CODE (other))
3146 {
3147 case SUBREG:
3148 other = SUBREG_REG (other);
3149 break;
3150 case STRICT_LOW_PART:
3151 case SIGN_EXTEND:
3152 case ZERO_EXTEND:
3153 other = XEXP (other, 0);
3154 break;
3155 default:
3156 goto done;
3157 }
3158 done:
3159 if ((MEM_P (other)
3160 && ! CONSTANT_P (x)
3161 && !REG_P (x)
3162 && GET_CODE (x) != SUBREG)
3163 || (REG_P (other)
3164 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3165 || reg_mentioned_p (other, x))))
3166 {
3167 rtx temp = gen_reg_rtx (GET_MODE (x));
3168 emit_move_insn (temp, x);
3169 return temp;
3170 }
3171 return x;
3172 }
3173 \f
3174 /* Emission of insns (adding them to the doubly-linked list). */
3175
3176 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3177
3178 rtx_insn *
3179 get_last_insn_anywhere (void)
3180 {
3181 struct sequence_stack *seq;
3182 for (seq = get_current_sequence (); seq; seq = seq->next)
3183 if (seq->last != 0)
3184 return seq->last;
3185 return 0;
3186 }
3187
3188 /* Return the first nonnote insn emitted in current sequence or current
3189 function. This routine looks inside SEQUENCEs. */
3190
3191 rtx_insn *
3192 get_first_nonnote_insn (void)
3193 {
3194 rtx_insn *insn = get_insns ();
3195
3196 if (insn)
3197 {
3198 if (NOTE_P (insn))
3199 for (insn = next_insn (insn);
3200 insn && NOTE_P (insn);
3201 insn = next_insn (insn))
3202 continue;
3203 else
3204 {
3205 if (NONJUMP_INSN_P (insn)
3206 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3207 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3208 }
3209 }
3210
3211 return insn;
3212 }
3213
3214 /* Return the last nonnote insn emitted in current sequence or current
3215 function. This routine looks inside SEQUENCEs. */
3216
3217 rtx_insn *
3218 get_last_nonnote_insn (void)
3219 {
3220 rtx_insn *insn = get_last_insn ();
3221
3222 if (insn)
3223 {
3224 if (NOTE_P (insn))
3225 for (insn = previous_insn (insn);
3226 insn && NOTE_P (insn);
3227 insn = previous_insn (insn))
3228 continue;
3229 else
3230 {
3231 if (NONJUMP_INSN_P (insn))
3232 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3233 insn = seq->insn (seq->len () - 1);
3234 }
3235 }
3236
3237 return insn;
3238 }
3239
3240 /* Return the number of actual (non-debug) insns emitted in this
3241 function. */
3242
3243 int
3244 get_max_insn_count (void)
3245 {
3246 int n = cur_insn_uid;
3247
3248 /* The table size must be stable across -g, to avoid codegen
3249 differences due to debug insns, and not be affected by
3250 -fmin-insn-uid, to avoid excessive table size and to simplify
3251 debugging of -fcompare-debug failures. */
3252 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3253 n -= cur_debug_insn_uid;
3254 else
3255 n -= MIN_NONDEBUG_INSN_UID;
3256
3257 return n;
3258 }
3259
3260 \f
3261 /* Return the next insn. If it is a SEQUENCE, return the first insn
3262 of the sequence. */
3263
3264 rtx_insn *
3265 next_insn (rtx_insn *insn)
3266 {
3267 if (insn)
3268 {
3269 insn = NEXT_INSN (insn);
3270 if (insn && NONJUMP_INSN_P (insn)
3271 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3272 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3273 }
3274
3275 return insn;
3276 }
3277
3278 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3279 of the sequence. */
3280
3281 rtx_insn *
3282 previous_insn (rtx_insn *insn)
3283 {
3284 if (insn)
3285 {
3286 insn = PREV_INSN (insn);
3287 if (insn && NONJUMP_INSN_P (insn))
3288 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3289 insn = seq->insn (seq->len () - 1);
3290 }
3291
3292 return insn;
3293 }
3294
3295 /* Return the next insn after INSN that is not a NOTE. This routine does not
3296 look inside SEQUENCEs. */
3297
3298 rtx_insn *
3299 next_nonnote_insn (rtx uncast_insn)
3300 {
3301 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3302 while (insn)
3303 {
3304 insn = NEXT_INSN (insn);
3305 if (insn == 0 || !NOTE_P (insn))
3306 break;
3307 }
3308
3309 return insn;
3310 }
3311
3312 /* Return the next insn after INSN that is not a NOTE, but stop the
3313 search before we enter another basic block. This routine does not
3314 look inside SEQUENCEs. */
3315
3316 rtx_insn *
3317 next_nonnote_insn_bb (rtx_insn *insn)
3318 {
3319 while (insn)
3320 {
3321 insn = NEXT_INSN (insn);
3322 if (insn == 0 || !NOTE_P (insn))
3323 break;
3324 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3325 return NULL;
3326 }
3327
3328 return insn;
3329 }
3330
3331 /* Return the previous insn before INSN that is not a NOTE. This routine does
3332 not look inside SEQUENCEs. */
3333
3334 rtx_insn *
3335 prev_nonnote_insn (rtx uncast_insn)
3336 {
3337 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3338
3339 while (insn)
3340 {
3341 insn = PREV_INSN (insn);
3342 if (insn == 0 || !NOTE_P (insn))
3343 break;
3344 }
3345
3346 return insn;
3347 }
3348
3349 /* Return the previous insn before INSN that is not a NOTE, but stop
3350 the search before we enter another basic block. This routine does
3351 not look inside SEQUENCEs. */
3352
3353 rtx_insn *
3354 prev_nonnote_insn_bb (rtx uncast_insn)
3355 {
3356 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3357
3358 while (insn)
3359 {
3360 insn = PREV_INSN (insn);
3361 if (insn == 0 || !NOTE_P (insn))
3362 break;
3363 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3364 return NULL;
3365 }
3366
3367 return insn;
3368 }
3369
3370 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3371 routine does not look inside SEQUENCEs. */
3372
3373 rtx_insn *
3374 next_nondebug_insn (rtx uncast_insn)
3375 {
3376 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3377
3378 while (insn)
3379 {
3380 insn = NEXT_INSN (insn);
3381 if (insn == 0 || !DEBUG_INSN_P (insn))
3382 break;
3383 }
3384
3385 return insn;
3386 }
3387
3388 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3389 This routine does not look inside SEQUENCEs. */
3390
3391 rtx_insn *
3392 prev_nondebug_insn (rtx uncast_insn)
3393 {
3394 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3395
3396 while (insn)
3397 {
3398 insn = PREV_INSN (insn);
3399 if (insn == 0 || !DEBUG_INSN_P (insn))
3400 break;
3401 }
3402
3403 return insn;
3404 }
3405
3406 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3407 This routine does not look inside SEQUENCEs. */
3408
3409 rtx_insn *
3410 next_nonnote_nondebug_insn (rtx uncast_insn)
3411 {
3412 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3413
3414 while (insn)
3415 {
3416 insn = NEXT_INSN (insn);
3417 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3418 break;
3419 }
3420
3421 return insn;
3422 }
3423
3424 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3425 This routine does not look inside SEQUENCEs. */
3426
3427 rtx_insn *
3428 prev_nonnote_nondebug_insn (rtx uncast_insn)
3429 {
3430 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3431
3432 while (insn)
3433 {
3434 insn = PREV_INSN (insn);
3435 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3436 break;
3437 }
3438
3439 return insn;
3440 }
3441
3442 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3443 or 0, if there is none. This routine does not look inside
3444 SEQUENCEs. */
3445
3446 rtx_insn *
3447 next_real_insn (rtx uncast_insn)
3448 {
3449 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3450
3451 while (insn)
3452 {
3453 insn = NEXT_INSN (insn);
3454 if (insn == 0 || INSN_P (insn))
3455 break;
3456 }
3457
3458 return insn;
3459 }
3460
3461 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3462 or 0, if there is none. This routine does not look inside
3463 SEQUENCEs. */
3464
3465 rtx_insn *
3466 prev_real_insn (rtx uncast_insn)
3467 {
3468 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3469
3470 while (insn)
3471 {
3472 insn = PREV_INSN (insn);
3473 if (insn == 0 || INSN_P (insn))
3474 break;
3475 }
3476
3477 return insn;
3478 }
3479
3480 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3481 This routine does not look inside SEQUENCEs. */
3482
3483 rtx_call_insn *
3484 last_call_insn (void)
3485 {
3486 rtx_insn *insn;
3487
3488 for (insn = get_last_insn ();
3489 insn && !CALL_P (insn);
3490 insn = PREV_INSN (insn))
3491 ;
3492
3493 return safe_as_a <rtx_call_insn *> (insn);
3494 }
3495
3496 /* Find the next insn after INSN that really does something. This routine
3497 does not look inside SEQUENCEs. After reload this also skips over
3498 standalone USE and CLOBBER insn. */
3499
3500 int
3501 active_insn_p (const_rtx insn)
3502 {
3503 return (CALL_P (insn) || JUMP_P (insn)
3504 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3505 || (NONJUMP_INSN_P (insn)
3506 && (! reload_completed
3507 || (GET_CODE (PATTERN (insn)) != USE
3508 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3509 }
3510
3511 rtx_insn *
3512 next_active_insn (rtx uncast_insn)
3513 {
3514 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3515
3516 while (insn)
3517 {
3518 insn = NEXT_INSN (insn);
3519 if (insn == 0 || active_insn_p (insn))
3520 break;
3521 }
3522
3523 return insn;
3524 }
3525
3526 /* Find the last insn before INSN that really does something. This routine
3527 does not look inside SEQUENCEs. After reload this also skips over
3528 standalone USE and CLOBBER insn. */
3529
3530 rtx_insn *
3531 prev_active_insn (rtx uncast_insn)
3532 {
3533 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3534
3535 while (insn)
3536 {
3537 insn = PREV_INSN (insn);
3538 if (insn == 0 || active_insn_p (insn))
3539 break;
3540 }
3541
3542 return insn;
3543 }
3544 \f
3545 /* Return the next insn that uses CC0 after INSN, which is assumed to
3546 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3547 applied to the result of this function should yield INSN).
3548
3549 Normally, this is simply the next insn. However, if a REG_CC_USER note
3550 is present, it contains the insn that uses CC0.
3551
3552 Return 0 if we can't find the insn. */
3553
3554 rtx_insn *
3555 next_cc0_user (rtx uncast_insn)
3556 {
3557 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3558
3559 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3560
3561 if (note)
3562 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3563
3564 insn = next_nonnote_insn (insn);
3565 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3566 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3567
3568 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3569 return insn;
3570
3571 return 0;
3572 }
3573
3574 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3575 note, it is the previous insn. */
3576
3577 rtx_insn *
3578 prev_cc0_setter (rtx_insn *insn)
3579 {
3580 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3581
3582 if (note)
3583 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3584
3585 insn = prev_nonnote_insn (insn);
3586 gcc_assert (sets_cc0_p (PATTERN (insn)));
3587
3588 return insn;
3589 }
3590
3591 #ifdef AUTO_INC_DEC
3592 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3593
3594 static int
3595 find_auto_inc (const_rtx x, const_rtx reg)
3596 {
3597 subrtx_iterator::array_type array;
3598 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3599 {
3600 const_rtx x = *iter;
3601 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3602 && rtx_equal_p (reg, XEXP (x, 0)))
3603 return true;
3604 }
3605 return false;
3606 }
3607 #endif
3608
3609 /* Increment the label uses for all labels present in rtx. */
3610
3611 static void
3612 mark_label_nuses (rtx x)
3613 {
3614 enum rtx_code code;
3615 int i, j;
3616 const char *fmt;
3617
3618 code = GET_CODE (x);
3619 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3620 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3621
3622 fmt = GET_RTX_FORMAT (code);
3623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3624 {
3625 if (fmt[i] == 'e')
3626 mark_label_nuses (XEXP (x, i));
3627 else if (fmt[i] == 'E')
3628 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3629 mark_label_nuses (XVECEXP (x, i, j));
3630 }
3631 }
3632
3633 \f
3634 /* Try splitting insns that can be split for better scheduling.
3635 PAT is the pattern which might split.
3636 TRIAL is the insn providing PAT.
3637 LAST is nonzero if we should return the last insn of the sequence produced.
3638
3639 If this routine succeeds in splitting, it returns the first or last
3640 replacement insn depending on the value of LAST. Otherwise, it
3641 returns TRIAL. If the insn to be returned can be split, it will be. */
3642
3643 rtx_insn *
3644 try_split (rtx pat, rtx uncast_trial, int last)
3645 {
3646 rtx_insn *trial = as_a <rtx_insn *> (uncast_trial);
3647 rtx_insn *before = PREV_INSN (trial);
3648 rtx_insn *after = NEXT_INSN (trial);
3649 rtx note;
3650 rtx_insn *seq, *tem;
3651 int probability;
3652 rtx_insn *insn_last, *insn;
3653 int njumps = 0;
3654 rtx call_insn = NULL_RTX;
3655
3656 /* We're not good at redistributing frame information. */
3657 if (RTX_FRAME_RELATED_P (trial))
3658 return trial;
3659
3660 if (any_condjump_p (trial)
3661 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3662 split_branch_probability = XINT (note, 0);
3663 probability = split_branch_probability;
3664
3665 seq = safe_as_a <rtx_insn *> (split_insns (pat, trial));
3666
3667 split_branch_probability = -1;
3668
3669 if (!seq)
3670 return trial;
3671
3672 /* Avoid infinite loop if any insn of the result matches
3673 the original pattern. */
3674 insn_last = seq;
3675 while (1)
3676 {
3677 if (INSN_P (insn_last)
3678 && rtx_equal_p (PATTERN (insn_last), pat))
3679 return trial;
3680 if (!NEXT_INSN (insn_last))
3681 break;
3682 insn_last = NEXT_INSN (insn_last);
3683 }
3684
3685 /* We will be adding the new sequence to the function. The splitters
3686 may have introduced invalid RTL sharing, so unshare the sequence now. */
3687 unshare_all_rtl_in_chain (seq);
3688
3689 /* Mark labels and copy flags. */
3690 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3691 {
3692 if (JUMP_P (insn))
3693 {
3694 if (JUMP_P (trial))
3695 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3696 mark_jump_label (PATTERN (insn), insn, 0);
3697 njumps++;
3698 if (probability != -1
3699 && any_condjump_p (insn)
3700 && !find_reg_note (insn, REG_BR_PROB, 0))
3701 {
3702 /* We can preserve the REG_BR_PROB notes only if exactly
3703 one jump is created, otherwise the machine description
3704 is responsible for this step using
3705 split_branch_probability variable. */
3706 gcc_assert (njumps == 1);
3707 add_int_reg_note (insn, REG_BR_PROB, probability);
3708 }
3709 }
3710 }
3711
3712 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3713 in SEQ and copy any additional information across. */
3714 if (CALL_P (trial))
3715 {
3716 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3717 if (CALL_P (insn))
3718 {
3719 rtx_insn *next;
3720 rtx *p;
3721
3722 gcc_assert (call_insn == NULL_RTX);
3723 call_insn = insn;
3724
3725 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3726 target may have explicitly specified. */
3727 p = &CALL_INSN_FUNCTION_USAGE (insn);
3728 while (*p)
3729 p = &XEXP (*p, 1);
3730 *p = CALL_INSN_FUNCTION_USAGE (trial);
3731
3732 /* If the old call was a sibling call, the new one must
3733 be too. */
3734 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3735
3736 /* If the new call is the last instruction in the sequence,
3737 it will effectively replace the old call in-situ. Otherwise
3738 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3739 so that it comes immediately after the new call. */
3740 if (NEXT_INSN (insn))
3741 for (next = NEXT_INSN (trial);
3742 next && NOTE_P (next);
3743 next = NEXT_INSN (next))
3744 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3745 {
3746 remove_insn (next);
3747 add_insn_after (next, insn, NULL);
3748 break;
3749 }
3750 }
3751 }
3752
3753 /* Copy notes, particularly those related to the CFG. */
3754 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3755 {
3756 switch (REG_NOTE_KIND (note))
3757 {
3758 case REG_EH_REGION:
3759 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3760 break;
3761
3762 case REG_NORETURN:
3763 case REG_SETJMP:
3764 case REG_TM:
3765 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3766 {
3767 if (CALL_P (insn))
3768 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3769 }
3770 break;
3771
3772 case REG_NON_LOCAL_GOTO:
3773 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3774 {
3775 if (JUMP_P (insn))
3776 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3777 }
3778 break;
3779
3780 #ifdef AUTO_INC_DEC
3781 case REG_INC:
3782 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3783 {
3784 rtx reg = XEXP (note, 0);
3785 if (!FIND_REG_INC_NOTE (insn, reg)
3786 && find_auto_inc (PATTERN (insn), reg))
3787 add_reg_note (insn, REG_INC, reg);
3788 }
3789 break;
3790 #endif
3791
3792 case REG_ARGS_SIZE:
3793 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3794 break;
3795
3796 case REG_CALL_DECL:
3797 gcc_assert (call_insn != NULL_RTX);
3798 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3799 break;
3800
3801 default:
3802 break;
3803 }
3804 }
3805
3806 /* If there are LABELS inside the split insns increment the
3807 usage count so we don't delete the label. */
3808 if (INSN_P (trial))
3809 {
3810 insn = insn_last;
3811 while (insn != NULL_RTX)
3812 {
3813 /* JUMP_P insns have already been "marked" above. */
3814 if (NONJUMP_INSN_P (insn))
3815 mark_label_nuses (PATTERN (insn));
3816
3817 insn = PREV_INSN (insn);
3818 }
3819 }
3820
3821 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3822
3823 delete_insn (trial);
3824
3825 /* Recursively call try_split for each new insn created; by the
3826 time control returns here that insn will be fully split, so
3827 set LAST and continue from the insn after the one returned.
3828 We can't use next_active_insn here since AFTER may be a note.
3829 Ignore deleted insns, which can be occur if not optimizing. */
3830 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3831 if (! tem->deleted () && INSN_P (tem))
3832 tem = try_split (PATTERN (tem), tem, 1);
3833
3834 /* Return either the first or the last insn, depending on which was
3835 requested. */
3836 return last
3837 ? (after ? PREV_INSN (after) : get_last_insn ())
3838 : NEXT_INSN (before);
3839 }
3840 \f
3841 /* Make and return an INSN rtx, initializing all its slots.
3842 Store PATTERN in the pattern slots. */
3843
3844 rtx_insn *
3845 make_insn_raw (rtx pattern)
3846 {
3847 rtx_insn *insn;
3848
3849 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3850
3851 INSN_UID (insn) = cur_insn_uid++;
3852 PATTERN (insn) = pattern;
3853 INSN_CODE (insn) = -1;
3854 REG_NOTES (insn) = NULL;
3855 INSN_LOCATION (insn) = curr_insn_location ();
3856 BLOCK_FOR_INSN (insn) = NULL;
3857
3858 #ifdef ENABLE_RTL_CHECKING
3859 if (insn
3860 && INSN_P (insn)
3861 && (returnjump_p (insn)
3862 || (GET_CODE (insn) == SET
3863 && SET_DEST (insn) == pc_rtx)))
3864 {
3865 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3866 debug_rtx (insn);
3867 }
3868 #endif
3869
3870 return insn;
3871 }
3872
3873 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3874
3875 static rtx_insn *
3876 make_debug_insn_raw (rtx pattern)
3877 {
3878 rtx_debug_insn *insn;
3879
3880 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3881 INSN_UID (insn) = cur_debug_insn_uid++;
3882 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3883 INSN_UID (insn) = cur_insn_uid++;
3884
3885 PATTERN (insn) = pattern;
3886 INSN_CODE (insn) = -1;
3887 REG_NOTES (insn) = NULL;
3888 INSN_LOCATION (insn) = curr_insn_location ();
3889 BLOCK_FOR_INSN (insn) = NULL;
3890
3891 return insn;
3892 }
3893
3894 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3895
3896 static rtx_insn *
3897 make_jump_insn_raw (rtx pattern)
3898 {
3899 rtx_jump_insn *insn;
3900
3901 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3902 INSN_UID (insn) = cur_insn_uid++;
3903
3904 PATTERN (insn) = pattern;
3905 INSN_CODE (insn) = -1;
3906 REG_NOTES (insn) = NULL;
3907 JUMP_LABEL (insn) = NULL;
3908 INSN_LOCATION (insn) = curr_insn_location ();
3909 BLOCK_FOR_INSN (insn) = NULL;
3910
3911 return insn;
3912 }
3913
3914 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3915
3916 static rtx_insn *
3917 make_call_insn_raw (rtx pattern)
3918 {
3919 rtx_call_insn *insn;
3920
3921 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3922 INSN_UID (insn) = cur_insn_uid++;
3923
3924 PATTERN (insn) = pattern;
3925 INSN_CODE (insn) = -1;
3926 REG_NOTES (insn) = NULL;
3927 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3928 INSN_LOCATION (insn) = curr_insn_location ();
3929 BLOCK_FOR_INSN (insn) = NULL;
3930
3931 return insn;
3932 }
3933
3934 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3935
3936 static rtx_note *
3937 make_note_raw (enum insn_note subtype)
3938 {
3939 /* Some notes are never created this way at all. These notes are
3940 only created by patching out insns. */
3941 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3942 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3943
3944 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3945 INSN_UID (note) = cur_insn_uid++;
3946 NOTE_KIND (note) = subtype;
3947 BLOCK_FOR_INSN (note) = NULL;
3948 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3949 return note;
3950 }
3951 \f
3952 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3953 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3954 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3955
3956 static inline void
3957 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3958 {
3959 SET_PREV_INSN (insn) = prev;
3960 SET_NEXT_INSN (insn) = next;
3961 if (prev != NULL)
3962 {
3963 SET_NEXT_INSN (prev) = insn;
3964 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3965 {
3966 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3967 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3968 }
3969 }
3970 if (next != NULL)
3971 {
3972 SET_PREV_INSN (next) = insn;
3973 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3974 {
3975 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3976 SET_PREV_INSN (sequence->insn (0)) = insn;
3977 }
3978 }
3979
3980 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3981 {
3982 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3983 SET_PREV_INSN (sequence->insn (0)) = prev;
3984 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3985 }
3986 }
3987
3988 /* Add INSN to the end of the doubly-linked list.
3989 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3990
3991 void
3992 add_insn (rtx_insn *insn)
3993 {
3994 rtx_insn *prev = get_last_insn ();
3995 link_insn_into_chain (insn, prev, NULL);
3996 if (NULL == get_insns ())
3997 set_first_insn (insn);
3998 set_last_insn (insn);
3999 }
4000
4001 /* Add INSN into the doubly-linked list after insn AFTER. */
4002
4003 static void
4004 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4005 {
4006 rtx_insn *next = NEXT_INSN (after);
4007
4008 gcc_assert (!optimize || !after->deleted ());
4009
4010 link_insn_into_chain (insn, after, next);
4011
4012 if (next == NULL)
4013 {
4014 struct sequence_stack *seq;
4015
4016 for (seq = get_current_sequence (); seq; seq = seq->next)
4017 if (after == seq->last)
4018 {
4019 seq->last = insn;
4020 break;
4021 }
4022 }
4023 }
4024
4025 /* Add INSN into the doubly-linked list before insn BEFORE. */
4026
4027 static void
4028 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4029 {
4030 rtx_insn *prev = PREV_INSN (before);
4031
4032 gcc_assert (!optimize || !before->deleted ());
4033
4034 link_insn_into_chain (insn, prev, before);
4035
4036 if (prev == NULL)
4037 {
4038 struct sequence_stack *seq;
4039
4040 for (seq = get_current_sequence (); seq; seq = seq->next)
4041 if (before == seq->first)
4042 {
4043 seq->first = insn;
4044 break;
4045 }
4046
4047 gcc_assert (seq);
4048 }
4049 }
4050
4051 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4052 If BB is NULL, an attempt is made to infer the bb from before.
4053
4054 This and the next function should be the only functions called
4055 to insert an insn once delay slots have been filled since only
4056 they know how to update a SEQUENCE. */
4057
4058 void
4059 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4060 {
4061 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4062 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4063 add_insn_after_nobb (insn, after);
4064 if (!BARRIER_P (after)
4065 && !BARRIER_P (insn)
4066 && (bb = BLOCK_FOR_INSN (after)))
4067 {
4068 set_block_for_insn (insn, bb);
4069 if (INSN_P (insn))
4070 df_insn_rescan (insn);
4071 /* Should not happen as first in the BB is always
4072 either NOTE or LABEL. */
4073 if (BB_END (bb) == after
4074 /* Avoid clobbering of structure when creating new BB. */
4075 && !BARRIER_P (insn)
4076 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4077 BB_END (bb) = insn;
4078 }
4079 }
4080
4081 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4082 If BB is NULL, an attempt is made to infer the bb from before.
4083
4084 This and the previous function should be the only functions called
4085 to insert an insn once delay slots have been filled since only
4086 they know how to update a SEQUENCE. */
4087
4088 void
4089 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4090 {
4091 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4092 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4093 add_insn_before_nobb (insn, before);
4094
4095 if (!bb
4096 && !BARRIER_P (before)
4097 && !BARRIER_P (insn))
4098 bb = BLOCK_FOR_INSN (before);
4099
4100 if (bb)
4101 {
4102 set_block_for_insn (insn, bb);
4103 if (INSN_P (insn))
4104 df_insn_rescan (insn);
4105 /* Should not happen as first in the BB is always either NOTE or
4106 LABEL. */
4107 gcc_assert (BB_HEAD (bb) != insn
4108 /* Avoid clobbering of structure when creating new BB. */
4109 || BARRIER_P (insn)
4110 || NOTE_INSN_BASIC_BLOCK_P (insn));
4111 }
4112 }
4113
4114 /* Replace insn with an deleted instruction note. */
4115
4116 void
4117 set_insn_deleted (rtx insn)
4118 {
4119 if (INSN_P (insn))
4120 df_insn_delete (as_a <rtx_insn *> (insn));
4121 PUT_CODE (insn, NOTE);
4122 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4123 }
4124
4125
4126 /* Unlink INSN from the insn chain.
4127
4128 This function knows how to handle sequences.
4129
4130 This function does not invalidate data flow information associated with
4131 INSN (i.e. does not call df_insn_delete). That makes this function
4132 usable for only disconnecting an insn from the chain, and re-emit it
4133 elsewhere later.
4134
4135 To later insert INSN elsewhere in the insn chain via add_insn and
4136 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4137 the caller. Nullifying them here breaks many insn chain walks.
4138
4139 To really delete an insn and related DF information, use delete_insn. */
4140
4141 void
4142 remove_insn (rtx uncast_insn)
4143 {
4144 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4145 rtx_insn *next = NEXT_INSN (insn);
4146 rtx_insn *prev = PREV_INSN (insn);
4147 basic_block bb;
4148
4149 if (prev)
4150 {
4151 SET_NEXT_INSN (prev) = next;
4152 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4153 {
4154 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4155 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4156 }
4157 }
4158 else
4159 {
4160 struct sequence_stack *seq;
4161
4162 for (seq = get_current_sequence (); seq; seq = seq->next)
4163 if (insn == seq->first)
4164 {
4165 seq->first = next;
4166 break;
4167 }
4168
4169 gcc_assert (seq);
4170 }
4171
4172 if (next)
4173 {
4174 SET_PREV_INSN (next) = prev;
4175 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4176 {
4177 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4178 SET_PREV_INSN (sequence->insn (0)) = prev;
4179 }
4180 }
4181 else
4182 {
4183 struct sequence_stack *seq;
4184
4185 for (seq = get_current_sequence (); seq; seq = seq->next)
4186 if (insn == seq->last)
4187 {
4188 seq->last = prev;
4189 break;
4190 }
4191
4192 gcc_assert (seq);
4193 }
4194
4195 /* Fix up basic block boundaries, if necessary. */
4196 if (!BARRIER_P (insn)
4197 && (bb = BLOCK_FOR_INSN (insn)))
4198 {
4199 if (BB_HEAD (bb) == insn)
4200 {
4201 /* Never ever delete the basic block note without deleting whole
4202 basic block. */
4203 gcc_assert (!NOTE_P (insn));
4204 BB_HEAD (bb) = next;
4205 }
4206 if (BB_END (bb) == insn)
4207 BB_END (bb) = prev;
4208 }
4209 }
4210
4211 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4212
4213 void
4214 add_function_usage_to (rtx call_insn, rtx call_fusage)
4215 {
4216 gcc_assert (call_insn && CALL_P (call_insn));
4217
4218 /* Put the register usage information on the CALL. If there is already
4219 some usage information, put ours at the end. */
4220 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4221 {
4222 rtx link;
4223
4224 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4225 link = XEXP (link, 1))
4226 ;
4227
4228 XEXP (link, 1) = call_fusage;
4229 }
4230 else
4231 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4232 }
4233
4234 /* Delete all insns made since FROM.
4235 FROM becomes the new last instruction. */
4236
4237 void
4238 delete_insns_since (rtx_insn *from)
4239 {
4240 if (from == 0)
4241 set_first_insn (0);
4242 else
4243 SET_NEXT_INSN (from) = 0;
4244 set_last_insn (from);
4245 }
4246
4247 /* This function is deprecated, please use sequences instead.
4248
4249 Move a consecutive bunch of insns to a different place in the chain.
4250 The insns to be moved are those between FROM and TO.
4251 They are moved to a new position after the insn AFTER.
4252 AFTER must not be FROM or TO or any insn in between.
4253
4254 This function does not know about SEQUENCEs and hence should not be
4255 called after delay-slot filling has been done. */
4256
4257 void
4258 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4259 {
4260 #ifdef ENABLE_CHECKING
4261 rtx_insn *x;
4262 for (x = from; x != to; x = NEXT_INSN (x))
4263 gcc_assert (after != x);
4264 gcc_assert (after != to);
4265 #endif
4266
4267 /* Splice this bunch out of where it is now. */
4268 if (PREV_INSN (from))
4269 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4270 if (NEXT_INSN (to))
4271 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4272 if (get_last_insn () == to)
4273 set_last_insn (PREV_INSN (from));
4274 if (get_insns () == from)
4275 set_first_insn (NEXT_INSN (to));
4276
4277 /* Make the new neighbors point to it and it to them. */
4278 if (NEXT_INSN (after))
4279 SET_PREV_INSN (NEXT_INSN (after)) = to;
4280
4281 SET_NEXT_INSN (to) = NEXT_INSN (after);
4282 SET_PREV_INSN (from) = after;
4283 SET_NEXT_INSN (after) = from;
4284 if (after == get_last_insn ())
4285 set_last_insn (to);
4286 }
4287
4288 /* Same as function above, but take care to update BB boundaries. */
4289 void
4290 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4291 {
4292 rtx_insn *prev = PREV_INSN (from);
4293 basic_block bb, bb2;
4294
4295 reorder_insns_nobb (from, to, after);
4296
4297 if (!BARRIER_P (after)
4298 && (bb = BLOCK_FOR_INSN (after)))
4299 {
4300 rtx_insn *x;
4301 df_set_bb_dirty (bb);
4302
4303 if (!BARRIER_P (from)
4304 && (bb2 = BLOCK_FOR_INSN (from)))
4305 {
4306 if (BB_END (bb2) == to)
4307 BB_END (bb2) = prev;
4308 df_set_bb_dirty (bb2);
4309 }
4310
4311 if (BB_END (bb) == after)
4312 BB_END (bb) = to;
4313
4314 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4315 if (!BARRIER_P (x))
4316 df_insn_change_bb (x, bb);
4317 }
4318 }
4319
4320 \f
4321 /* Emit insn(s) of given code and pattern
4322 at a specified place within the doubly-linked list.
4323
4324 All of the emit_foo global entry points accept an object
4325 X which is either an insn list or a PATTERN of a single
4326 instruction.
4327
4328 There are thus a few canonical ways to generate code and
4329 emit it at a specific place in the instruction stream. For
4330 example, consider the instruction named SPOT and the fact that
4331 we would like to emit some instructions before SPOT. We might
4332 do it like this:
4333
4334 start_sequence ();
4335 ... emit the new instructions ...
4336 insns_head = get_insns ();
4337 end_sequence ();
4338
4339 emit_insn_before (insns_head, SPOT);
4340
4341 It used to be common to generate SEQUENCE rtl instead, but that
4342 is a relic of the past which no longer occurs. The reason is that
4343 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4344 generated would almost certainly die right after it was created. */
4345
4346 static rtx_insn *
4347 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4348 rtx_insn *(*make_raw) (rtx))
4349 {
4350 rtx_insn *insn;
4351
4352 gcc_assert (before);
4353
4354 if (x == NULL_RTX)
4355 return safe_as_a <rtx_insn *> (last);
4356
4357 switch (GET_CODE (x))
4358 {
4359 case DEBUG_INSN:
4360 case INSN:
4361 case JUMP_INSN:
4362 case CALL_INSN:
4363 case CODE_LABEL:
4364 case BARRIER:
4365 case NOTE:
4366 insn = as_a <rtx_insn *> (x);
4367 while (insn)
4368 {
4369 rtx_insn *next = NEXT_INSN (insn);
4370 add_insn_before (insn, before, bb);
4371 last = insn;
4372 insn = next;
4373 }
4374 break;
4375
4376 #ifdef ENABLE_RTL_CHECKING
4377 case SEQUENCE:
4378 gcc_unreachable ();
4379 break;
4380 #endif
4381
4382 default:
4383 last = (*make_raw) (x);
4384 add_insn_before (last, before, bb);
4385 break;
4386 }
4387
4388 return safe_as_a <rtx_insn *> (last);
4389 }
4390
4391 /* Make X be output before the instruction BEFORE. */
4392
4393 rtx_insn *
4394 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4395 {
4396 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4397 }
4398
4399 /* Make an instruction with body X and code JUMP_INSN
4400 and output it before the instruction BEFORE. */
4401
4402 rtx_insn *
4403 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4404 {
4405 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4406 make_jump_insn_raw);
4407 }
4408
4409 /* Make an instruction with body X and code CALL_INSN
4410 and output it before the instruction BEFORE. */
4411
4412 rtx_insn *
4413 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4414 {
4415 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4416 make_call_insn_raw);
4417 }
4418
4419 /* Make an instruction with body X and code DEBUG_INSN
4420 and output it before the instruction BEFORE. */
4421
4422 rtx_insn *
4423 emit_debug_insn_before_noloc (rtx x, rtx before)
4424 {
4425 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4426 make_debug_insn_raw);
4427 }
4428
4429 /* Make an insn of code BARRIER
4430 and output it before the insn BEFORE. */
4431
4432 rtx_barrier *
4433 emit_barrier_before (rtx before)
4434 {
4435 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4436
4437 INSN_UID (insn) = cur_insn_uid++;
4438
4439 add_insn_before (insn, before, NULL);
4440 return insn;
4441 }
4442
4443 /* Emit the label LABEL before the insn BEFORE. */
4444
4445 rtx_insn *
4446 emit_label_before (rtx label, rtx_insn *before)
4447 {
4448 gcc_checking_assert (INSN_UID (label) == 0);
4449 INSN_UID (label) = cur_insn_uid++;
4450 add_insn_before (label, before, NULL);
4451 return as_a <rtx_insn *> (label);
4452 }
4453 \f
4454 /* Helper for emit_insn_after, handles lists of instructions
4455 efficiently. */
4456
4457 static rtx_insn *
4458 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4459 {
4460 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4461 rtx_insn *last;
4462 rtx_insn *after_after;
4463 if (!bb && !BARRIER_P (after))
4464 bb = BLOCK_FOR_INSN (after);
4465
4466 if (bb)
4467 {
4468 df_set_bb_dirty (bb);
4469 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4470 if (!BARRIER_P (last))
4471 {
4472 set_block_for_insn (last, bb);
4473 df_insn_rescan (last);
4474 }
4475 if (!BARRIER_P (last))
4476 {
4477 set_block_for_insn (last, bb);
4478 df_insn_rescan (last);
4479 }
4480 if (BB_END (bb) == after)
4481 BB_END (bb) = last;
4482 }
4483 else
4484 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4485 continue;
4486
4487 after_after = NEXT_INSN (after);
4488
4489 SET_NEXT_INSN (after) = first;
4490 SET_PREV_INSN (first) = after;
4491 SET_NEXT_INSN (last) = after_after;
4492 if (after_after)
4493 SET_PREV_INSN (after_after) = last;
4494
4495 if (after == get_last_insn ())
4496 set_last_insn (last);
4497
4498 return last;
4499 }
4500
4501 static rtx_insn *
4502 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4503 rtx_insn *(*make_raw)(rtx))
4504 {
4505 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4506 rtx_insn *last = after;
4507
4508 gcc_assert (after);
4509
4510 if (x == NULL_RTX)
4511 return last;
4512
4513 switch (GET_CODE (x))
4514 {
4515 case DEBUG_INSN:
4516 case INSN:
4517 case JUMP_INSN:
4518 case CALL_INSN:
4519 case CODE_LABEL:
4520 case BARRIER:
4521 case NOTE:
4522 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4523 break;
4524
4525 #ifdef ENABLE_RTL_CHECKING
4526 case SEQUENCE:
4527 gcc_unreachable ();
4528 break;
4529 #endif
4530
4531 default:
4532 last = (*make_raw) (x);
4533 add_insn_after (last, after, bb);
4534 break;
4535 }
4536
4537 return last;
4538 }
4539
4540 /* Make X be output after the insn AFTER and set the BB of insn. If
4541 BB is NULL, an attempt is made to infer the BB from AFTER. */
4542
4543 rtx_insn *
4544 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4545 {
4546 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4547 }
4548
4549
4550 /* Make an insn of code JUMP_INSN with body X
4551 and output it after the insn AFTER. */
4552
4553 rtx_insn *
4554 emit_jump_insn_after_noloc (rtx x, rtx after)
4555 {
4556 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4557 }
4558
4559 /* Make an instruction with body X and code CALL_INSN
4560 and output it after the instruction AFTER. */
4561
4562 rtx_insn *
4563 emit_call_insn_after_noloc (rtx x, rtx after)
4564 {
4565 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4566 }
4567
4568 /* Make an instruction with body X and code CALL_INSN
4569 and output it after the instruction AFTER. */
4570
4571 rtx_insn *
4572 emit_debug_insn_after_noloc (rtx x, rtx after)
4573 {
4574 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4575 }
4576
4577 /* Make an insn of code BARRIER
4578 and output it after the insn AFTER. */
4579
4580 rtx_barrier *
4581 emit_barrier_after (rtx after)
4582 {
4583 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4584
4585 INSN_UID (insn) = cur_insn_uid++;
4586
4587 add_insn_after (insn, after, NULL);
4588 return insn;
4589 }
4590
4591 /* Emit the label LABEL after the insn AFTER. */
4592
4593 rtx_insn *
4594 emit_label_after (rtx label, rtx_insn *after)
4595 {
4596 gcc_checking_assert (INSN_UID (label) == 0);
4597 INSN_UID (label) = cur_insn_uid++;
4598 add_insn_after (label, after, NULL);
4599 return as_a <rtx_insn *> (label);
4600 }
4601 \f
4602 /* Notes require a bit of special handling: Some notes need to have their
4603 BLOCK_FOR_INSN set, others should never have it set, and some should
4604 have it set or clear depending on the context. */
4605
4606 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4607 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4608 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4609
4610 static bool
4611 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4612 {
4613 switch (subtype)
4614 {
4615 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4616 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4617 return true;
4618
4619 /* Notes for var tracking and EH region markers can appear between or
4620 inside basic blocks. If the caller is emitting on the basic block
4621 boundary, do not set BLOCK_FOR_INSN on the new note. */
4622 case NOTE_INSN_VAR_LOCATION:
4623 case NOTE_INSN_CALL_ARG_LOCATION:
4624 case NOTE_INSN_EH_REGION_BEG:
4625 case NOTE_INSN_EH_REGION_END:
4626 return on_bb_boundary_p;
4627
4628 /* Otherwise, BLOCK_FOR_INSN must be set. */
4629 default:
4630 return false;
4631 }
4632 }
4633
4634 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4635
4636 rtx_note *
4637 emit_note_after (enum insn_note subtype, rtx_insn *after)
4638 {
4639 rtx_note *note = make_note_raw (subtype);
4640 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4641 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4642
4643 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4644 add_insn_after_nobb (note, after);
4645 else
4646 add_insn_after (note, after, bb);
4647 return note;
4648 }
4649
4650 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4651
4652 rtx_note *
4653 emit_note_before (enum insn_note subtype, rtx_insn *before)
4654 {
4655 rtx_note *note = make_note_raw (subtype);
4656 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4657 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4658
4659 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4660 add_insn_before_nobb (note, before);
4661 else
4662 add_insn_before (note, before, bb);
4663 return note;
4664 }
4665 \f
4666 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4667 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4668
4669 static rtx_insn *
4670 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4671 rtx_insn *(*make_raw) (rtx))
4672 {
4673 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4674 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4675
4676 if (pattern == NULL_RTX || !loc)
4677 return safe_as_a <rtx_insn *> (last);
4678
4679 after = NEXT_INSN (after);
4680 while (1)
4681 {
4682 if (active_insn_p (after)
4683 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4684 && !INSN_LOCATION (after))
4685 INSN_LOCATION (after) = loc;
4686 if (after == last)
4687 break;
4688 after = NEXT_INSN (after);
4689 }
4690 return safe_as_a <rtx_insn *> (last);
4691 }
4692
4693 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4694 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4695 any DEBUG_INSNs. */
4696
4697 static rtx_insn *
4698 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4699 rtx_insn *(*make_raw) (rtx))
4700 {
4701 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4702 rtx_insn *prev = after;
4703
4704 if (skip_debug_insns)
4705 while (DEBUG_INSN_P (prev))
4706 prev = PREV_INSN (prev);
4707
4708 if (INSN_P (prev))
4709 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4710 make_raw);
4711 else
4712 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4713 }
4714
4715 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4716 rtx_insn *
4717 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4718 {
4719 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4720 }
4721
4722 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4723 rtx_insn *
4724 emit_insn_after (rtx pattern, rtx after)
4725 {
4726 return emit_pattern_after (pattern, after, true, make_insn_raw);
4727 }
4728
4729 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4730 rtx_insn *
4731 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4732 {
4733 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4734 }
4735
4736 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4737 rtx_insn *
4738 emit_jump_insn_after (rtx pattern, rtx after)
4739 {
4740 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4741 }
4742
4743 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4744 rtx_insn *
4745 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4746 {
4747 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4748 }
4749
4750 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4751 rtx_insn *
4752 emit_call_insn_after (rtx pattern, rtx after)
4753 {
4754 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4755 }
4756
4757 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4758 rtx_insn *
4759 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4760 {
4761 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4762 }
4763
4764 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4765 rtx_insn *
4766 emit_debug_insn_after (rtx pattern, rtx after)
4767 {
4768 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4769 }
4770
4771 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4772 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4773 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4774 CALL_INSN, etc. */
4775
4776 static rtx_insn *
4777 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4778 rtx_insn *(*make_raw) (rtx))
4779 {
4780 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4781 rtx_insn *first = PREV_INSN (before);
4782 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4783 insnp ? before : NULL_RTX,
4784 NULL, make_raw);
4785
4786 if (pattern == NULL_RTX || !loc)
4787 return last;
4788
4789 if (!first)
4790 first = get_insns ();
4791 else
4792 first = NEXT_INSN (first);
4793 while (1)
4794 {
4795 if (active_insn_p (first)
4796 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4797 && !INSN_LOCATION (first))
4798 INSN_LOCATION (first) = loc;
4799 if (first == last)
4800 break;
4801 first = NEXT_INSN (first);
4802 }
4803 return last;
4804 }
4805
4806 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4807 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4808 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4809 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4810
4811 static rtx_insn *
4812 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4813 bool insnp, rtx_insn *(*make_raw) (rtx))
4814 {
4815 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4816 rtx_insn *next = before;
4817
4818 if (skip_debug_insns)
4819 while (DEBUG_INSN_P (next))
4820 next = PREV_INSN (next);
4821
4822 if (INSN_P (next))
4823 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4824 insnp, make_raw);
4825 else
4826 return emit_pattern_before_noloc (pattern, before,
4827 insnp ? before : NULL_RTX,
4828 NULL, make_raw);
4829 }
4830
4831 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4832 rtx_insn *
4833 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4834 {
4835 return emit_pattern_before_setloc (pattern, before, loc, true,
4836 make_insn_raw);
4837 }
4838
4839 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4840 rtx_insn *
4841 emit_insn_before (rtx pattern, rtx before)
4842 {
4843 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4844 }
4845
4846 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4847 rtx_insn *
4848 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4849 {
4850 return emit_pattern_before_setloc (pattern, before, loc, false,
4851 make_jump_insn_raw);
4852 }
4853
4854 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4855 rtx_insn *
4856 emit_jump_insn_before (rtx pattern, rtx before)
4857 {
4858 return emit_pattern_before (pattern, before, true, false,
4859 make_jump_insn_raw);
4860 }
4861
4862 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4863 rtx_insn *
4864 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4865 {
4866 return emit_pattern_before_setloc (pattern, before, loc, false,
4867 make_call_insn_raw);
4868 }
4869
4870 /* Like emit_call_insn_before_noloc,
4871 but set insn_location according to BEFORE. */
4872 rtx_insn *
4873 emit_call_insn_before (rtx pattern, rtx_insn *before)
4874 {
4875 return emit_pattern_before (pattern, before, true, false,
4876 make_call_insn_raw);
4877 }
4878
4879 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4880 rtx_insn *
4881 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4882 {
4883 return emit_pattern_before_setloc (pattern, before, loc, false,
4884 make_debug_insn_raw);
4885 }
4886
4887 /* Like emit_debug_insn_before_noloc,
4888 but set insn_location according to BEFORE. */
4889 rtx_insn *
4890 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4891 {
4892 return emit_pattern_before (pattern, before, false, false,
4893 make_debug_insn_raw);
4894 }
4895 \f
4896 /* Take X and emit it at the end of the doubly-linked
4897 INSN list.
4898
4899 Returns the last insn emitted. */
4900
4901 rtx_insn *
4902 emit_insn (rtx x)
4903 {
4904 rtx_insn *last = get_last_insn ();
4905 rtx_insn *insn;
4906
4907 if (x == NULL_RTX)
4908 return last;
4909
4910 switch (GET_CODE (x))
4911 {
4912 case DEBUG_INSN:
4913 case INSN:
4914 case JUMP_INSN:
4915 case CALL_INSN:
4916 case CODE_LABEL:
4917 case BARRIER:
4918 case NOTE:
4919 insn = as_a <rtx_insn *> (x);
4920 while (insn)
4921 {
4922 rtx_insn *next = NEXT_INSN (insn);
4923 add_insn (insn);
4924 last = insn;
4925 insn = next;
4926 }
4927 break;
4928
4929 #ifdef ENABLE_RTL_CHECKING
4930 case JUMP_TABLE_DATA:
4931 case SEQUENCE:
4932 gcc_unreachable ();
4933 break;
4934 #endif
4935
4936 default:
4937 last = make_insn_raw (x);
4938 add_insn (last);
4939 break;
4940 }
4941
4942 return last;
4943 }
4944
4945 /* Make an insn of code DEBUG_INSN with pattern X
4946 and add it to the end of the doubly-linked list. */
4947
4948 rtx_insn *
4949 emit_debug_insn (rtx x)
4950 {
4951 rtx_insn *last = get_last_insn ();
4952 rtx_insn *insn;
4953
4954 if (x == NULL_RTX)
4955 return last;
4956
4957 switch (GET_CODE (x))
4958 {
4959 case DEBUG_INSN:
4960 case INSN:
4961 case JUMP_INSN:
4962 case CALL_INSN:
4963 case CODE_LABEL:
4964 case BARRIER:
4965 case NOTE:
4966 insn = as_a <rtx_insn *> (x);
4967 while (insn)
4968 {
4969 rtx_insn *next = NEXT_INSN (insn);
4970 add_insn (insn);
4971 last = insn;
4972 insn = next;
4973 }
4974 break;
4975
4976 #ifdef ENABLE_RTL_CHECKING
4977 case JUMP_TABLE_DATA:
4978 case SEQUENCE:
4979 gcc_unreachable ();
4980 break;
4981 #endif
4982
4983 default:
4984 last = make_debug_insn_raw (x);
4985 add_insn (last);
4986 break;
4987 }
4988
4989 return last;
4990 }
4991
4992 /* Make an insn of code JUMP_INSN with pattern X
4993 and add it to the end of the doubly-linked list. */
4994
4995 rtx_insn *
4996 emit_jump_insn (rtx x)
4997 {
4998 rtx_insn *last = NULL;
4999 rtx_insn *insn;
5000
5001 switch (GET_CODE (x))
5002 {
5003 case DEBUG_INSN:
5004 case INSN:
5005 case JUMP_INSN:
5006 case CALL_INSN:
5007 case CODE_LABEL:
5008 case BARRIER:
5009 case NOTE:
5010 insn = as_a <rtx_insn *> (x);
5011 while (insn)
5012 {
5013 rtx_insn *next = NEXT_INSN (insn);
5014 add_insn (insn);
5015 last = insn;
5016 insn = next;
5017 }
5018 break;
5019
5020 #ifdef ENABLE_RTL_CHECKING
5021 case JUMP_TABLE_DATA:
5022 case SEQUENCE:
5023 gcc_unreachable ();
5024 break;
5025 #endif
5026
5027 default:
5028 last = make_jump_insn_raw (x);
5029 add_insn (last);
5030 break;
5031 }
5032
5033 return last;
5034 }
5035
5036 /* Make an insn of code CALL_INSN with pattern X
5037 and add it to the end of the doubly-linked list. */
5038
5039 rtx_insn *
5040 emit_call_insn (rtx x)
5041 {
5042 rtx_insn *insn;
5043
5044 switch (GET_CODE (x))
5045 {
5046 case DEBUG_INSN:
5047 case INSN:
5048 case JUMP_INSN:
5049 case CALL_INSN:
5050 case CODE_LABEL:
5051 case BARRIER:
5052 case NOTE:
5053 insn = emit_insn (x);
5054 break;
5055
5056 #ifdef ENABLE_RTL_CHECKING
5057 case SEQUENCE:
5058 case JUMP_TABLE_DATA:
5059 gcc_unreachable ();
5060 break;
5061 #endif
5062
5063 default:
5064 insn = make_call_insn_raw (x);
5065 add_insn (insn);
5066 break;
5067 }
5068
5069 return insn;
5070 }
5071
5072 /* Add the label LABEL to the end of the doubly-linked list. */
5073
5074 rtx_insn *
5075 emit_label (rtx label)
5076 {
5077 gcc_checking_assert (INSN_UID (label) == 0);
5078 INSN_UID (label) = cur_insn_uid++;
5079 add_insn (as_a <rtx_insn *> (label));
5080 return as_a <rtx_insn *> (label);
5081 }
5082
5083 /* Make an insn of code JUMP_TABLE_DATA
5084 and add it to the end of the doubly-linked list. */
5085
5086 rtx_jump_table_data *
5087 emit_jump_table_data (rtx table)
5088 {
5089 rtx_jump_table_data *jump_table_data =
5090 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5091 INSN_UID (jump_table_data) = cur_insn_uid++;
5092 PATTERN (jump_table_data) = table;
5093 BLOCK_FOR_INSN (jump_table_data) = NULL;
5094 add_insn (jump_table_data);
5095 return jump_table_data;
5096 }
5097
5098 /* Make an insn of code BARRIER
5099 and add it to the end of the doubly-linked list. */
5100
5101 rtx_barrier *
5102 emit_barrier (void)
5103 {
5104 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5105 INSN_UID (barrier) = cur_insn_uid++;
5106 add_insn (barrier);
5107 return barrier;
5108 }
5109
5110 /* Emit a copy of note ORIG. */
5111
5112 rtx_note *
5113 emit_note_copy (rtx_note *orig)
5114 {
5115 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5116 rtx_note *note = make_note_raw (kind);
5117 NOTE_DATA (note) = NOTE_DATA (orig);
5118 add_insn (note);
5119 return note;
5120 }
5121
5122 /* Make an insn of code NOTE or type NOTE_NO
5123 and add it to the end of the doubly-linked list. */
5124
5125 rtx_note *
5126 emit_note (enum insn_note kind)
5127 {
5128 rtx_note *note = make_note_raw (kind);
5129 add_insn (note);
5130 return note;
5131 }
5132
5133 /* Emit a clobber of lvalue X. */
5134
5135 rtx_insn *
5136 emit_clobber (rtx x)
5137 {
5138 /* CONCATs should not appear in the insn stream. */
5139 if (GET_CODE (x) == CONCAT)
5140 {
5141 emit_clobber (XEXP (x, 0));
5142 return emit_clobber (XEXP (x, 1));
5143 }
5144 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5145 }
5146
5147 /* Return a sequence of insns to clobber lvalue X. */
5148
5149 rtx_insn *
5150 gen_clobber (rtx x)
5151 {
5152 rtx_insn *seq;
5153
5154 start_sequence ();
5155 emit_clobber (x);
5156 seq = get_insns ();
5157 end_sequence ();
5158 return seq;
5159 }
5160
5161 /* Emit a use of rvalue X. */
5162
5163 rtx_insn *
5164 emit_use (rtx x)
5165 {
5166 /* CONCATs should not appear in the insn stream. */
5167 if (GET_CODE (x) == CONCAT)
5168 {
5169 emit_use (XEXP (x, 0));
5170 return emit_use (XEXP (x, 1));
5171 }
5172 return emit_insn (gen_rtx_USE (VOIDmode, x));
5173 }
5174
5175 /* Return a sequence of insns to use rvalue X. */
5176
5177 rtx_insn *
5178 gen_use (rtx x)
5179 {
5180 rtx_insn *seq;
5181
5182 start_sequence ();
5183 emit_use (x);
5184 seq = get_insns ();
5185 end_sequence ();
5186 return seq;
5187 }
5188
5189 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5190 Return the set in INSN that such notes describe, or NULL if the notes
5191 have no meaning for INSN. */
5192
5193 rtx
5194 set_for_reg_notes (rtx insn)
5195 {
5196 rtx pat, reg;
5197
5198 if (!INSN_P (insn))
5199 return NULL_RTX;
5200
5201 pat = PATTERN (insn);
5202 if (GET_CODE (pat) == PARALLEL)
5203 {
5204 /* We do not use single_set because that ignores SETs of unused
5205 registers. REG_EQUAL and REG_EQUIV notes really do require the
5206 PARALLEL to have a single SET. */
5207 if (multiple_sets (insn))
5208 return NULL_RTX;
5209 pat = XVECEXP (pat, 0, 0);
5210 }
5211
5212 if (GET_CODE (pat) != SET)
5213 return NULL_RTX;
5214
5215 reg = SET_DEST (pat);
5216
5217 /* Notes apply to the contents of a STRICT_LOW_PART. */
5218 if (GET_CODE (reg) == STRICT_LOW_PART)
5219 reg = XEXP (reg, 0);
5220
5221 /* Check that we have a register. */
5222 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5223 return NULL_RTX;
5224
5225 return pat;
5226 }
5227
5228 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5229 note of this type already exists, remove it first. */
5230
5231 rtx
5232 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5233 {
5234 rtx note = find_reg_note (insn, kind, NULL_RTX);
5235
5236 switch (kind)
5237 {
5238 case REG_EQUAL:
5239 case REG_EQUIV:
5240 if (!set_for_reg_notes (insn))
5241 return NULL_RTX;
5242
5243 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5244 It serves no useful purpose and breaks eliminate_regs. */
5245 if (GET_CODE (datum) == ASM_OPERANDS)
5246 return NULL_RTX;
5247
5248 /* Notes with side effects are dangerous. Even if the side-effect
5249 initially mirrors one in PATTERN (INSN), later optimizations
5250 might alter the way that the final register value is calculated
5251 and so move or alter the side-effect in some way. The note would
5252 then no longer be a valid substitution for SET_SRC. */
5253 if (side_effects_p (datum))
5254 return NULL_RTX;
5255 break;
5256
5257 default:
5258 break;
5259 }
5260
5261 if (note)
5262 XEXP (note, 0) = datum;
5263 else
5264 {
5265 add_reg_note (insn, kind, datum);
5266 note = REG_NOTES (insn);
5267 }
5268
5269 switch (kind)
5270 {
5271 case REG_EQUAL:
5272 case REG_EQUIV:
5273 df_notes_rescan (as_a <rtx_insn *> (insn));
5274 break;
5275 default:
5276 break;
5277 }
5278
5279 return note;
5280 }
5281
5282 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5283 rtx
5284 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5285 {
5286 rtx set = set_for_reg_notes (insn);
5287
5288 if (set && SET_DEST (set) == dst)
5289 return set_unique_reg_note (insn, kind, datum);
5290 return NULL_RTX;
5291 }
5292 \f
5293 /* Return an indication of which type of insn should have X as a body.
5294 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5295
5296 static enum rtx_code
5297 classify_insn (rtx x)
5298 {
5299 if (LABEL_P (x))
5300 return CODE_LABEL;
5301 if (GET_CODE (x) == CALL)
5302 return CALL_INSN;
5303 if (ANY_RETURN_P (x))
5304 return JUMP_INSN;
5305 if (GET_CODE (x) == SET)
5306 {
5307 if (SET_DEST (x) == pc_rtx)
5308 return JUMP_INSN;
5309 else if (GET_CODE (SET_SRC (x)) == CALL)
5310 return CALL_INSN;
5311 else
5312 return INSN;
5313 }
5314 if (GET_CODE (x) == PARALLEL)
5315 {
5316 int j;
5317 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5318 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5319 return CALL_INSN;
5320 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5321 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5322 return JUMP_INSN;
5323 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5324 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5325 return CALL_INSN;
5326 }
5327 return INSN;
5328 }
5329
5330 /* Emit the rtl pattern X as an appropriate kind of insn.
5331 If X is a label, it is simply added into the insn chain. */
5332
5333 rtx_insn *
5334 emit (rtx x)
5335 {
5336 enum rtx_code code = classify_insn (x);
5337
5338 switch (code)
5339 {
5340 case CODE_LABEL:
5341 return emit_label (x);
5342 case INSN:
5343 return emit_insn (x);
5344 case JUMP_INSN:
5345 {
5346 rtx_insn *insn = emit_jump_insn (x);
5347 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5348 return emit_barrier ();
5349 return insn;
5350 }
5351 case CALL_INSN:
5352 return emit_call_insn (x);
5353 case DEBUG_INSN:
5354 return emit_debug_insn (x);
5355 default:
5356 gcc_unreachable ();
5357 }
5358 }
5359 \f
5360 /* Space for free sequence stack entries. */
5361 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5362
5363 /* Begin emitting insns to a sequence. If this sequence will contain
5364 something that might cause the compiler to pop arguments to function
5365 calls (because those pops have previously been deferred; see
5366 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5367 before calling this function. That will ensure that the deferred
5368 pops are not accidentally emitted in the middle of this sequence. */
5369
5370 void
5371 start_sequence (void)
5372 {
5373 struct sequence_stack *tem;
5374
5375 if (free_sequence_stack != NULL)
5376 {
5377 tem = free_sequence_stack;
5378 free_sequence_stack = tem->next;
5379 }
5380 else
5381 tem = ggc_alloc<sequence_stack> ();
5382
5383 tem->next = get_current_sequence ()->next;
5384 tem->first = get_insns ();
5385 tem->last = get_last_insn ();
5386 get_current_sequence ()->next = tem;
5387
5388 set_first_insn (0);
5389 set_last_insn (0);
5390 }
5391
5392 /* Set up the insn chain starting with FIRST as the current sequence,
5393 saving the previously current one. See the documentation for
5394 start_sequence for more information about how to use this function. */
5395
5396 void
5397 push_to_sequence (rtx_insn *first)
5398 {
5399 rtx_insn *last;
5400
5401 start_sequence ();
5402
5403 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5404 ;
5405
5406 set_first_insn (first);
5407 set_last_insn (last);
5408 }
5409
5410 /* Like push_to_sequence, but take the last insn as an argument to avoid
5411 looping through the list. */
5412
5413 void
5414 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5415 {
5416 start_sequence ();
5417
5418 set_first_insn (first);
5419 set_last_insn (last);
5420 }
5421
5422 /* Set up the outer-level insn chain
5423 as the current sequence, saving the previously current one. */
5424
5425 void
5426 push_topmost_sequence (void)
5427 {
5428 struct sequence_stack *top;
5429
5430 start_sequence ();
5431
5432 top = get_topmost_sequence ();
5433 set_first_insn (top->first);
5434 set_last_insn (top->last);
5435 }
5436
5437 /* After emitting to the outer-level insn chain, update the outer-level
5438 insn chain, and restore the previous saved state. */
5439
5440 void
5441 pop_topmost_sequence (void)
5442 {
5443 struct sequence_stack *top;
5444
5445 top = get_topmost_sequence ();
5446 top->first = get_insns ();
5447 top->last = get_last_insn ();
5448
5449 end_sequence ();
5450 }
5451
5452 /* After emitting to a sequence, restore previous saved state.
5453
5454 To get the contents of the sequence just made, you must call
5455 `get_insns' *before* calling here.
5456
5457 If the compiler might have deferred popping arguments while
5458 generating this sequence, and this sequence will not be immediately
5459 inserted into the instruction stream, use do_pending_stack_adjust
5460 before calling get_insns. That will ensure that the deferred
5461 pops are inserted into this sequence, and not into some random
5462 location in the instruction stream. See INHIBIT_DEFER_POP for more
5463 information about deferred popping of arguments. */
5464
5465 void
5466 end_sequence (void)
5467 {
5468 struct sequence_stack *tem = get_current_sequence ()->next;
5469
5470 set_first_insn (tem->first);
5471 set_last_insn (tem->last);
5472 get_current_sequence ()->next = tem->next;
5473
5474 memset (tem, 0, sizeof (*tem));
5475 tem->next = free_sequence_stack;
5476 free_sequence_stack = tem;
5477 }
5478
5479 /* Return 1 if currently emitting into a sequence. */
5480
5481 int
5482 in_sequence_p (void)
5483 {
5484 return get_current_sequence ()->next != 0;
5485 }
5486 \f
5487 /* Put the various virtual registers into REGNO_REG_RTX. */
5488
5489 static void
5490 init_virtual_regs (void)
5491 {
5492 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5493 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5494 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5495 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5496 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5497 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5498 = virtual_preferred_stack_boundary_rtx;
5499 }
5500
5501 \f
5502 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5503 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5504 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5505 static int copy_insn_n_scratches;
5506
5507 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5508 copied an ASM_OPERANDS.
5509 In that case, it is the original input-operand vector. */
5510 static rtvec orig_asm_operands_vector;
5511
5512 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5513 copied an ASM_OPERANDS.
5514 In that case, it is the copied input-operand vector. */
5515 static rtvec copy_asm_operands_vector;
5516
5517 /* Likewise for the constraints vector. */
5518 static rtvec orig_asm_constraints_vector;
5519 static rtvec copy_asm_constraints_vector;
5520
5521 /* Recursively create a new copy of an rtx for copy_insn.
5522 This function differs from copy_rtx in that it handles SCRATCHes and
5523 ASM_OPERANDs properly.
5524 Normally, this function is not used directly; use copy_insn as front end.
5525 However, you could first copy an insn pattern with copy_insn and then use
5526 this function afterwards to properly copy any REG_NOTEs containing
5527 SCRATCHes. */
5528
5529 rtx
5530 copy_insn_1 (rtx orig)
5531 {
5532 rtx copy;
5533 int i, j;
5534 RTX_CODE code;
5535 const char *format_ptr;
5536
5537 if (orig == NULL)
5538 return NULL;
5539
5540 code = GET_CODE (orig);
5541
5542 switch (code)
5543 {
5544 case REG:
5545 case DEBUG_EXPR:
5546 CASE_CONST_ANY:
5547 case SYMBOL_REF:
5548 case CODE_LABEL:
5549 case PC:
5550 case CC0:
5551 case RETURN:
5552 case SIMPLE_RETURN:
5553 return orig;
5554 case CLOBBER:
5555 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5556 clobbers or clobbers of hard registers that originated as pseudos.
5557 This is needed to allow safe register renaming. */
5558 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5559 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5560 return orig;
5561 break;
5562
5563 case SCRATCH:
5564 for (i = 0; i < copy_insn_n_scratches; i++)
5565 if (copy_insn_scratch_in[i] == orig)
5566 return copy_insn_scratch_out[i];
5567 break;
5568
5569 case CONST:
5570 if (shared_const_p (orig))
5571 return orig;
5572 break;
5573
5574 /* A MEM with a constant address is not sharable. The problem is that
5575 the constant address may need to be reloaded. If the mem is shared,
5576 then reloading one copy of this mem will cause all copies to appear
5577 to have been reloaded. */
5578
5579 default:
5580 break;
5581 }
5582
5583 /* Copy the various flags, fields, and other information. We assume
5584 that all fields need copying, and then clear the fields that should
5585 not be copied. That is the sensible default behavior, and forces
5586 us to explicitly document why we are *not* copying a flag. */
5587 copy = shallow_copy_rtx (orig);
5588
5589 /* We do not copy the USED flag, which is used as a mark bit during
5590 walks over the RTL. */
5591 RTX_FLAG (copy, used) = 0;
5592
5593 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5594 if (INSN_P (orig))
5595 {
5596 RTX_FLAG (copy, jump) = 0;
5597 RTX_FLAG (copy, call) = 0;
5598 RTX_FLAG (copy, frame_related) = 0;
5599 }
5600
5601 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5602
5603 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5604 switch (*format_ptr++)
5605 {
5606 case 'e':
5607 if (XEXP (orig, i) != NULL)
5608 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5609 break;
5610
5611 case 'E':
5612 case 'V':
5613 if (XVEC (orig, i) == orig_asm_constraints_vector)
5614 XVEC (copy, i) = copy_asm_constraints_vector;
5615 else if (XVEC (orig, i) == orig_asm_operands_vector)
5616 XVEC (copy, i) = copy_asm_operands_vector;
5617 else if (XVEC (orig, i) != NULL)
5618 {
5619 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5620 for (j = 0; j < XVECLEN (copy, i); j++)
5621 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5622 }
5623 break;
5624
5625 case 't':
5626 case 'w':
5627 case 'i':
5628 case 's':
5629 case 'S':
5630 case 'u':
5631 case '0':
5632 /* These are left unchanged. */
5633 break;
5634
5635 default:
5636 gcc_unreachable ();
5637 }
5638
5639 if (code == SCRATCH)
5640 {
5641 i = copy_insn_n_scratches++;
5642 gcc_assert (i < MAX_RECOG_OPERANDS);
5643 copy_insn_scratch_in[i] = orig;
5644 copy_insn_scratch_out[i] = copy;
5645 }
5646 else if (code == ASM_OPERANDS)
5647 {
5648 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5649 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5650 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5651 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5652 }
5653
5654 return copy;
5655 }
5656
5657 /* Create a new copy of an rtx.
5658 This function differs from copy_rtx in that it handles SCRATCHes and
5659 ASM_OPERANDs properly.
5660 INSN doesn't really have to be a full INSN; it could be just the
5661 pattern. */
5662 rtx
5663 copy_insn (rtx insn)
5664 {
5665 copy_insn_n_scratches = 0;
5666 orig_asm_operands_vector = 0;
5667 orig_asm_constraints_vector = 0;
5668 copy_asm_operands_vector = 0;
5669 copy_asm_constraints_vector = 0;
5670 return copy_insn_1 (insn);
5671 }
5672
5673 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5674 on that assumption that INSN itself remains in its original place. */
5675
5676 rtx_insn *
5677 copy_delay_slot_insn (rtx_insn *insn)
5678 {
5679 /* Copy INSN with its rtx_code, all its notes, location etc. */
5680 insn = as_a <rtx_insn *> (copy_rtx (insn));
5681 INSN_UID (insn) = cur_insn_uid++;
5682 return insn;
5683 }
5684
5685 /* Initialize data structures and variables in this file
5686 before generating rtl for each function. */
5687
5688 void
5689 init_emit (void)
5690 {
5691 set_first_insn (NULL);
5692 set_last_insn (NULL);
5693 if (MIN_NONDEBUG_INSN_UID)
5694 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5695 else
5696 cur_insn_uid = 1;
5697 cur_debug_insn_uid = 1;
5698 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5699 first_label_num = label_num;
5700 get_current_sequence ()->next = NULL;
5701
5702 /* Init the tables that describe all the pseudo regs. */
5703
5704 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5705
5706 crtl->emit.regno_pointer_align
5707 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5708
5709 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5710
5711 /* Put copies of all the hard registers into regno_reg_rtx. */
5712 memcpy (regno_reg_rtx,
5713 initial_regno_reg_rtx,
5714 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5715
5716 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5717 init_virtual_regs ();
5718
5719 /* Indicate that the virtual registers and stack locations are
5720 all pointers. */
5721 REG_POINTER (stack_pointer_rtx) = 1;
5722 REG_POINTER (frame_pointer_rtx) = 1;
5723 REG_POINTER (hard_frame_pointer_rtx) = 1;
5724 REG_POINTER (arg_pointer_rtx) = 1;
5725
5726 REG_POINTER (virtual_incoming_args_rtx) = 1;
5727 REG_POINTER (virtual_stack_vars_rtx) = 1;
5728 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5729 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5730 REG_POINTER (virtual_cfa_rtx) = 1;
5731
5732 #ifdef STACK_BOUNDARY
5733 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5734 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5735 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5736 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5737
5738 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5739 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5740 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5741 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5742 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5743 #endif
5744
5745 #ifdef INIT_EXPANDERS
5746 INIT_EXPANDERS;
5747 #endif
5748 }
5749
5750 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5751
5752 static rtx
5753 gen_const_vector (machine_mode mode, int constant)
5754 {
5755 rtx tem;
5756 rtvec v;
5757 int units, i;
5758 machine_mode inner;
5759
5760 units = GET_MODE_NUNITS (mode);
5761 inner = GET_MODE_INNER (mode);
5762
5763 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5764
5765 v = rtvec_alloc (units);
5766
5767 /* We need to call this function after we set the scalar const_tiny_rtx
5768 entries. */
5769 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5770
5771 for (i = 0; i < units; ++i)
5772 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5773
5774 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5775 return tem;
5776 }
5777
5778 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5779 all elements are zero, and the one vector when all elements are one. */
5780 rtx
5781 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5782 {
5783 machine_mode inner = GET_MODE_INNER (mode);
5784 int nunits = GET_MODE_NUNITS (mode);
5785 rtx x;
5786 int i;
5787
5788 /* Check to see if all of the elements have the same value. */
5789 x = RTVEC_ELT (v, nunits - 1);
5790 for (i = nunits - 2; i >= 0; i--)
5791 if (RTVEC_ELT (v, i) != x)
5792 break;
5793
5794 /* If the values are all the same, check to see if we can use one of the
5795 standard constant vectors. */
5796 if (i == -1)
5797 {
5798 if (x == CONST0_RTX (inner))
5799 return CONST0_RTX (mode);
5800 else if (x == CONST1_RTX (inner))
5801 return CONST1_RTX (mode);
5802 else if (x == CONSTM1_RTX (inner))
5803 return CONSTM1_RTX (mode);
5804 }
5805
5806 return gen_rtx_raw_CONST_VECTOR (mode, v);
5807 }
5808
5809 /* Initialise global register information required by all functions. */
5810
5811 void
5812 init_emit_regs (void)
5813 {
5814 int i;
5815 machine_mode mode;
5816 mem_attrs *attrs;
5817
5818 /* Reset register attributes */
5819 reg_attrs_htab->empty ();
5820
5821 /* We need reg_raw_mode, so initialize the modes now. */
5822 init_reg_modes_target ();
5823
5824 /* Assign register numbers to the globally defined register rtx. */
5825 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5826 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5827 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5828 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5829 virtual_incoming_args_rtx =
5830 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5831 virtual_stack_vars_rtx =
5832 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5833 virtual_stack_dynamic_rtx =
5834 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5835 virtual_outgoing_args_rtx =
5836 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5837 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5838 virtual_preferred_stack_boundary_rtx =
5839 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5840
5841 /* Initialize RTL for commonly used hard registers. These are
5842 copied into regno_reg_rtx as we begin to compile each function. */
5843 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5844 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5845
5846 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5847 return_address_pointer_rtx
5848 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5849 #endif
5850
5851 pic_offset_table_rtx = NULL_RTX;
5852 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5853 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5854
5855 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5856 {
5857 mode = (machine_mode) i;
5858 attrs = ggc_cleared_alloc<mem_attrs> ();
5859 attrs->align = BITS_PER_UNIT;
5860 attrs->addrspace = ADDR_SPACE_GENERIC;
5861 if (mode != BLKmode)
5862 {
5863 attrs->size_known_p = true;
5864 attrs->size = GET_MODE_SIZE (mode);
5865 if (STRICT_ALIGNMENT)
5866 attrs->align = GET_MODE_ALIGNMENT (mode);
5867 }
5868 mode_mem_attrs[i] = attrs;
5869 }
5870 }
5871
5872 /* Initialize global machine_mode variables. */
5873
5874 void
5875 init_derived_machine_modes (void)
5876 {
5877 byte_mode = VOIDmode;
5878 word_mode = VOIDmode;
5879
5880 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5881 mode != VOIDmode;
5882 mode = GET_MODE_WIDER_MODE (mode))
5883 {
5884 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5885 && byte_mode == VOIDmode)
5886 byte_mode = mode;
5887
5888 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5889 && word_mode == VOIDmode)
5890 word_mode = mode;
5891 }
5892
5893 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5894 }
5895
5896 /* Create some permanent unique rtl objects shared between all functions. */
5897
5898 void
5899 init_emit_once (void)
5900 {
5901 int i;
5902 machine_mode mode;
5903 machine_mode double_mode;
5904
5905 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5906 CONST_FIXED, and memory attribute hash tables. */
5907 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5908
5909 #if TARGET_SUPPORTS_WIDE_INT
5910 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5911 #endif
5912 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5913
5914 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5915
5916 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5917
5918 #ifdef INIT_EXPANDERS
5919 /* This is to initialize {init|mark|free}_machine_status before the first
5920 call to push_function_context_to. This is needed by the Chill front
5921 end which calls push_function_context_to before the first call to
5922 init_function_start. */
5923 INIT_EXPANDERS;
5924 #endif
5925
5926 /* Create the unique rtx's for certain rtx codes and operand values. */
5927
5928 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5929 tries to use these variables. */
5930 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5931 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5932 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5933
5934 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5935 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5936 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5937 else
5938 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5939
5940 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5941
5942 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5943 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5944 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5945
5946 dconstm1 = dconst1;
5947 dconstm1.sign = 1;
5948
5949 dconsthalf = dconst1;
5950 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5951
5952 for (i = 0; i < 3; i++)
5953 {
5954 const REAL_VALUE_TYPE *const r =
5955 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5956
5957 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5958 mode != VOIDmode;
5959 mode = GET_MODE_WIDER_MODE (mode))
5960 const_tiny_rtx[i][(int) mode] =
5961 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5962
5963 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5964 mode != VOIDmode;
5965 mode = GET_MODE_WIDER_MODE (mode))
5966 const_tiny_rtx[i][(int) mode] =
5967 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5968
5969 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5970
5971 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5972 mode != VOIDmode;
5973 mode = GET_MODE_WIDER_MODE (mode))
5974 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5975
5976 for (mode = MIN_MODE_PARTIAL_INT;
5977 mode <= MAX_MODE_PARTIAL_INT;
5978 mode = (machine_mode)((int)(mode) + 1))
5979 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5980 }
5981
5982 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5983
5984 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5985 mode != VOIDmode;
5986 mode = GET_MODE_WIDER_MODE (mode))
5987 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5988
5989 for (mode = MIN_MODE_PARTIAL_INT;
5990 mode <= MAX_MODE_PARTIAL_INT;
5991 mode = (machine_mode)((int)(mode) + 1))
5992 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5993
5994 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5995 mode != VOIDmode;
5996 mode = GET_MODE_WIDER_MODE (mode))
5997 {
5998 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5999 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6000 }
6001
6002 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
6003 mode != VOIDmode;
6004 mode = GET_MODE_WIDER_MODE (mode))
6005 {
6006 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6007 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6008 }
6009
6010 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
6011 mode != VOIDmode;
6012 mode = GET_MODE_WIDER_MODE (mode))
6013 {
6014 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6015 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6016 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6017 }
6018
6019 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6020 mode != VOIDmode;
6021 mode = GET_MODE_WIDER_MODE (mode))
6022 {
6023 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6024 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6025 }
6026
6027 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6028 mode != VOIDmode;
6029 mode = GET_MODE_WIDER_MODE (mode))
6030 {
6031 FCONST0 (mode).data.high = 0;
6032 FCONST0 (mode).data.low = 0;
6033 FCONST0 (mode).mode = mode;
6034 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6035 FCONST0 (mode), mode);
6036 }
6037
6038 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6039 mode != VOIDmode;
6040 mode = GET_MODE_WIDER_MODE (mode))
6041 {
6042 FCONST0 (mode).data.high = 0;
6043 FCONST0 (mode).data.low = 0;
6044 FCONST0 (mode).mode = mode;
6045 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6046 FCONST0 (mode), mode);
6047 }
6048
6049 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6050 mode != VOIDmode;
6051 mode = GET_MODE_WIDER_MODE (mode))
6052 {
6053 FCONST0 (mode).data.high = 0;
6054 FCONST0 (mode).data.low = 0;
6055 FCONST0 (mode).mode = mode;
6056 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6057 FCONST0 (mode), mode);
6058
6059 /* We store the value 1. */
6060 FCONST1 (mode).data.high = 0;
6061 FCONST1 (mode).data.low = 0;
6062 FCONST1 (mode).mode = mode;
6063 FCONST1 (mode).data
6064 = double_int_one.lshift (GET_MODE_FBIT (mode),
6065 HOST_BITS_PER_DOUBLE_INT,
6066 SIGNED_FIXED_POINT_MODE_P (mode));
6067 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6068 FCONST1 (mode), mode);
6069 }
6070
6071 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6072 mode != VOIDmode;
6073 mode = GET_MODE_WIDER_MODE (mode))
6074 {
6075 FCONST0 (mode).data.high = 0;
6076 FCONST0 (mode).data.low = 0;
6077 FCONST0 (mode).mode = mode;
6078 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6079 FCONST0 (mode), mode);
6080
6081 /* We store the value 1. */
6082 FCONST1 (mode).data.high = 0;
6083 FCONST1 (mode).data.low = 0;
6084 FCONST1 (mode).mode = mode;
6085 FCONST1 (mode).data
6086 = double_int_one.lshift (GET_MODE_FBIT (mode),
6087 HOST_BITS_PER_DOUBLE_INT,
6088 SIGNED_FIXED_POINT_MODE_P (mode));
6089 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6090 FCONST1 (mode), mode);
6091 }
6092
6093 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6094 mode != VOIDmode;
6095 mode = GET_MODE_WIDER_MODE (mode))
6096 {
6097 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6098 }
6099
6100 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6101 mode != VOIDmode;
6102 mode = GET_MODE_WIDER_MODE (mode))
6103 {
6104 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6105 }
6106
6107 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6108 mode != VOIDmode;
6109 mode = GET_MODE_WIDER_MODE (mode))
6110 {
6111 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6112 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6113 }
6114
6115 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6116 mode != VOIDmode;
6117 mode = GET_MODE_WIDER_MODE (mode))
6118 {
6119 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6120 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6121 }
6122
6123 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6124 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6125 const_tiny_rtx[0][i] = const0_rtx;
6126
6127 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6128 if (STORE_FLAG_VALUE == 1)
6129 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6130
6131 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6132 mode != VOIDmode;
6133 mode = GET_MODE_WIDER_MODE (mode))
6134 {
6135 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6136 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6137 }
6138
6139 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6140 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6141 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6142 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6143 }
6144 \f
6145 /* Produce exact duplicate of insn INSN after AFTER.
6146 Care updating of libcall regions if present. */
6147
6148 rtx_insn *
6149 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6150 {
6151 rtx_insn *new_rtx;
6152 rtx link;
6153
6154 switch (GET_CODE (insn))
6155 {
6156 case INSN:
6157 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6158 break;
6159
6160 case JUMP_INSN:
6161 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6162 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6163 break;
6164
6165 case DEBUG_INSN:
6166 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6167 break;
6168
6169 case CALL_INSN:
6170 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6171 if (CALL_INSN_FUNCTION_USAGE (insn))
6172 CALL_INSN_FUNCTION_USAGE (new_rtx)
6173 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6174 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6175 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6176 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6177 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6178 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6179 break;
6180
6181 default:
6182 gcc_unreachable ();
6183 }
6184
6185 /* Update LABEL_NUSES. */
6186 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6187
6188 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6189
6190 /* If the old insn is frame related, then so is the new one. This is
6191 primarily needed for IA-64 unwind info which marks epilogue insns,
6192 which may be duplicated by the basic block reordering code. */
6193 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6194
6195 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6196 will make them. REG_LABEL_TARGETs are created there too, but are
6197 supposed to be sticky, so we copy them. */
6198 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6199 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6200 {
6201 if (GET_CODE (link) == EXPR_LIST)
6202 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6203 copy_insn_1 (XEXP (link, 0)));
6204 else
6205 add_shallow_copy_of_reg_note (new_rtx, link);
6206 }
6207
6208 INSN_CODE (new_rtx) = INSN_CODE (insn);
6209 return new_rtx;
6210 }
6211
6212 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6213 rtx
6214 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6215 {
6216 if (hard_reg_clobbers[mode][regno])
6217 return hard_reg_clobbers[mode][regno];
6218 else
6219 return (hard_reg_clobbers[mode][regno] =
6220 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6221 }
6222
6223 location_t prologue_location;
6224 location_t epilogue_location;
6225
6226 /* Hold current location information and last location information, so the
6227 datastructures are built lazily only when some instructions in given
6228 place are needed. */
6229 static location_t curr_location;
6230
6231 /* Allocate insn location datastructure. */
6232 void
6233 insn_locations_init (void)
6234 {
6235 prologue_location = epilogue_location = 0;
6236 curr_location = UNKNOWN_LOCATION;
6237 }
6238
6239 /* At the end of emit stage, clear current location. */
6240 void
6241 insn_locations_finalize (void)
6242 {
6243 epilogue_location = curr_location;
6244 curr_location = UNKNOWN_LOCATION;
6245 }
6246
6247 /* Set current location. */
6248 void
6249 set_curr_insn_location (location_t location)
6250 {
6251 curr_location = location;
6252 }
6253
6254 /* Get current location. */
6255 location_t
6256 curr_insn_location (void)
6257 {
6258 return curr_location;
6259 }
6260
6261 /* Return lexical scope block insn belongs to. */
6262 tree
6263 insn_scope (const rtx_insn *insn)
6264 {
6265 return LOCATION_BLOCK (INSN_LOCATION (insn));
6266 }
6267
6268 /* Return line number of the statement that produced this insn. */
6269 int
6270 insn_line (const rtx_insn *insn)
6271 {
6272 return LOCATION_LINE (INSN_LOCATION (insn));
6273 }
6274
6275 /* Return source file of the statement that produced this insn. */
6276 const char *
6277 insn_file (const rtx_insn *insn)
6278 {
6279 return LOCATION_FILE (INSN_LOCATION (insn));
6280 }
6281
6282 /* Return expanded location of the statement that produced this insn. */
6283 expanded_location
6284 insn_location (const rtx_insn *insn)
6285 {
6286 return expand_location (INSN_LOCATION (insn));
6287 }
6288
6289 /* Return true if memory model MODEL requires a pre-operation (release-style)
6290 barrier or a post-operation (acquire-style) barrier. While not universal,
6291 this function matches behavior of several targets. */
6292
6293 bool
6294 need_atomic_barrier_p (enum memmodel model, bool pre)
6295 {
6296 switch (model & MEMMODEL_MASK)
6297 {
6298 case MEMMODEL_RELAXED:
6299 case MEMMODEL_CONSUME:
6300 return false;
6301 case MEMMODEL_RELEASE:
6302 case MEMMODEL_SYNC_RELEASE:
6303 return pre;
6304 case MEMMODEL_ACQUIRE:
6305 case MEMMODEL_SYNC_ACQUIRE:
6306 return !pre;
6307 case MEMMODEL_ACQ_REL:
6308 case MEMMODEL_SEQ_CST:
6309 case MEMMODEL_SYNC_SEQ_CST:
6310 return true;
6311 default:
6312 gcc_unreachable ();
6313 }
6314 }
6315 \f
6316 #include "gt-emit-rtl.h"