emit-rtl.c (gen_rtx): Remove.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_reg_rtx' and `gen_label_rtx'
26 that are the usual ways of creating rtl expressions for most
27 purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx_fmt_ee' and
35 others to make the individual rtx's of the pattern; what is machine
36 dependent is the kind of rtx's they make and what arguments they
37 use. */
38
39 #include "config.h"
40 #include "system.h"
41 #include "coretypes.h"
42 #include "tm.h"
43 #include "toplev.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "tm_p.h"
47 #include "flags.h"
48 #include "function.h"
49 #include "expr.h"
50 #include "regs.h"
51 #include "hard-reg-set.h"
52 #include "hashtab.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "real.h"
56 #include "bitmap.h"
57 #include "basic-block.h"
58 #include "ggc.h"
59 #include "debug.h"
60 #include "langhooks.h"
61
62 /* Commonly used modes. */
63
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68
69
70 /* This is *not* reset after each function. It gives each CODE_LABEL
71 in the entire compilation a unique label number. */
72
73 static GTY(()) int label_num = 1;
74
75 /* Highest label number in current function.
76 Zero means use the value of label_num instead.
77 This is nonzero only when belatedly compiling an inline function. */
78
79 static int last_label_num;
80
81 /* Value label_num had when set_new_last_label_num was called.
82 If label_num has not changed since then, last_label_num is valid. */
83
84 static int base_label_num;
85
86 /* Nonzero means do not generate NOTEs for source line numbers. */
87
88 static int no_line_numbers;
89
90 /* Commonly used rtx's, so that we only need space for one copy.
91 These are initialized once for the entire compilation.
92 All of these are unique; no other rtx-object will be equal to any
93 of these. */
94
95 rtx global_rtl[GR_MAX];
96
97 /* Commonly used RTL for hard registers. These objects are not necessarily
98 unique, so we allocate them separately from global_rtl. They are
99 initialized once per compilation unit, then copied into regno_reg_rtx
100 at the beginning of each function. */
101 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102
103 rtx (*gen_lowpart) (enum machine_mode mode, rtx x) = gen_lowpart_general;
104
105 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
106 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
107 record a copy of const[012]_rtx. */
108
109 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
110
111 rtx const_true_rtx;
112
113 REAL_VALUE_TYPE dconst0;
114 REAL_VALUE_TYPE dconst1;
115 REAL_VALUE_TYPE dconst2;
116 REAL_VALUE_TYPE dconst3;
117 REAL_VALUE_TYPE dconst10;
118 REAL_VALUE_TYPE dconstm1;
119 REAL_VALUE_TYPE dconstm2;
120 REAL_VALUE_TYPE dconsthalf;
121 REAL_VALUE_TYPE dconstthird;
122 REAL_VALUE_TYPE dconstpi;
123 REAL_VALUE_TYPE dconste;
124
125 /* All references to the following fixed hard registers go through
126 these unique rtl objects. On machines where the frame-pointer and
127 arg-pointer are the same register, they use the same unique object.
128
129 After register allocation, other rtl objects which used to be pseudo-regs
130 may be clobbered to refer to the frame-pointer register.
131 But references that were originally to the frame-pointer can be
132 distinguished from the others because they contain frame_pointer_rtx.
133
134 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
135 tricky: until register elimination has taken place hard_frame_pointer_rtx
136 should be used if it is being set, and frame_pointer_rtx otherwise. After
137 register elimination hard_frame_pointer_rtx should always be used.
138 On machines where the two registers are same (most) then these are the
139 same.
140
141 In an inline procedure, the stack and frame pointer rtxs may not be
142 used for anything else. */
143 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
144 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
145 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
146
147 /* This is used to implement __builtin_return_address for some machines.
148 See for instance the MIPS port. */
149 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
150
151 /* We make one copy of (const_int C) where C is in
152 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
153 to save space during the compilation and simplify comparisons of
154 integers. */
155
156 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
157
158 /* A hash table storing CONST_INTs whose absolute value is greater
159 than MAX_SAVED_CONST_INT. */
160
161 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
162 htab_t const_int_htab;
163
164 /* A hash table storing memory attribute structures. */
165 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
166 htab_t mem_attrs_htab;
167
168 /* A hash table storing register attribute structures. */
169 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
170 htab_t reg_attrs_htab;
171
172 /* A hash table storing all CONST_DOUBLEs. */
173 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
174 htab_t const_double_htab;
175
176 #define first_insn (cfun->emit->x_first_insn)
177 #define last_insn (cfun->emit->x_last_insn)
178 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
179 #define last_location (cfun->emit->x_last_location)
180 #define first_label_num (cfun->emit->x_first_label_num)
181
182 static rtx make_jump_insn_raw (rtx);
183 static rtx make_call_insn_raw (rtx);
184 static rtx find_line_note (rtx);
185 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
186 static void unshare_all_decls (tree);
187 static void reset_used_decls (tree);
188 static void mark_label_nuses (rtx);
189 static hashval_t const_int_htab_hash (const void *);
190 static int const_int_htab_eq (const void *, const void *);
191 static hashval_t const_double_htab_hash (const void *);
192 static int const_double_htab_eq (const void *, const void *);
193 static rtx lookup_const_double (rtx);
194 static hashval_t mem_attrs_htab_hash (const void *);
195 static int mem_attrs_htab_eq (const void *, const void *);
196 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
197 enum machine_mode);
198 static hashval_t reg_attrs_htab_hash (const void *);
199 static int reg_attrs_htab_eq (const void *, const void *);
200 static reg_attrs *get_reg_attrs (tree, int);
201 static tree component_ref_for_mem_expr (tree);
202 static rtx gen_const_vector_0 (enum machine_mode);
203 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
204 static void copy_rtx_if_shared_1 (rtx *orig);
205
206 /* Probability of the conditional branch currently proceeded by try_split.
207 Set to -1 otherwise. */
208 int split_branch_probability = -1;
209 \f
210 /* Returns a hash code for X (which is a really a CONST_INT). */
211
212 static hashval_t
213 const_int_htab_hash (const void *x)
214 {
215 return (hashval_t) INTVAL ((rtx) x);
216 }
217
218 /* Returns nonzero if the value represented by X (which is really a
219 CONST_INT) is the same as that given by Y (which is really a
220 HOST_WIDE_INT *). */
221
222 static int
223 const_int_htab_eq (const void *x, const void *y)
224 {
225 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
226 }
227
228 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
229 static hashval_t
230 const_double_htab_hash (const void *x)
231 {
232 rtx value = (rtx) x;
233 hashval_t h;
234
235 if (GET_MODE (value) == VOIDmode)
236 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
237 else
238 {
239 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
240 /* MODE is used in the comparison, so it should be in the hash. */
241 h ^= GET_MODE (value);
242 }
243 return h;
244 }
245
246 /* Returns nonzero if the value represented by X (really a ...)
247 is the same as that represented by Y (really a ...) */
248 static int
249 const_double_htab_eq (const void *x, const void *y)
250 {
251 rtx a = (rtx)x, b = (rtx)y;
252
253 if (GET_MODE (a) != GET_MODE (b))
254 return 0;
255 if (GET_MODE (a) == VOIDmode)
256 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
257 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
258 else
259 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
260 CONST_DOUBLE_REAL_VALUE (b));
261 }
262
263 /* Returns a hash code for X (which is a really a mem_attrs *). */
264
265 static hashval_t
266 mem_attrs_htab_hash (const void *x)
267 {
268 mem_attrs *p = (mem_attrs *) x;
269
270 return (p->alias ^ (p->align * 1000)
271 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
272 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
273 ^ (size_t) p->expr);
274 }
275
276 /* Returns nonzero if the value represented by X (which is really a
277 mem_attrs *) is the same as that given by Y (which is also really a
278 mem_attrs *). */
279
280 static int
281 mem_attrs_htab_eq (const void *x, const void *y)
282 {
283 mem_attrs *p = (mem_attrs *) x;
284 mem_attrs *q = (mem_attrs *) y;
285
286 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
287 && p->size == q->size && p->align == q->align);
288 }
289
290 /* Allocate a new mem_attrs structure and insert it into the hash table if
291 one identical to it is not already in the table. We are doing this for
292 MEM of mode MODE. */
293
294 static mem_attrs *
295 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
296 unsigned int align, enum machine_mode mode)
297 {
298 mem_attrs attrs;
299 void **slot;
300
301 /* If everything is the default, we can just return zero.
302 This must match what the corresponding MEM_* macros return when the
303 field is not present. */
304 if (alias == 0 && expr == 0 && offset == 0
305 && (size == 0
306 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
307 && (STRICT_ALIGNMENT && mode != BLKmode
308 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
309 return 0;
310
311 attrs.alias = alias;
312 attrs.expr = expr;
313 attrs.offset = offset;
314 attrs.size = size;
315 attrs.align = align;
316
317 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
318 if (*slot == 0)
319 {
320 *slot = ggc_alloc (sizeof (mem_attrs));
321 memcpy (*slot, &attrs, sizeof (mem_attrs));
322 }
323
324 return *slot;
325 }
326
327 /* Returns a hash code for X (which is a really a reg_attrs *). */
328
329 static hashval_t
330 reg_attrs_htab_hash (const void *x)
331 {
332 reg_attrs *p = (reg_attrs *) x;
333
334 return ((p->offset * 1000) ^ (long) p->decl);
335 }
336
337 /* Returns nonzero if the value represented by X (which is really a
338 reg_attrs *) is the same as that given by Y (which is also really a
339 reg_attrs *). */
340
341 static int
342 reg_attrs_htab_eq (const void *x, const void *y)
343 {
344 reg_attrs *p = (reg_attrs *) x;
345 reg_attrs *q = (reg_attrs *) y;
346
347 return (p->decl == q->decl && p->offset == q->offset);
348 }
349 /* Allocate a new reg_attrs structure and insert it into the hash table if
350 one identical to it is not already in the table. We are doing this for
351 MEM of mode MODE. */
352
353 static reg_attrs *
354 get_reg_attrs (tree decl, int offset)
355 {
356 reg_attrs attrs;
357 void **slot;
358
359 /* If everything is the default, we can just return zero. */
360 if (decl == 0 && offset == 0)
361 return 0;
362
363 attrs.decl = decl;
364 attrs.offset = offset;
365
366 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
367 if (*slot == 0)
368 {
369 *slot = ggc_alloc (sizeof (reg_attrs));
370 memcpy (*slot, &attrs, sizeof (reg_attrs));
371 }
372
373 return *slot;
374 }
375
376 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
377 don't attempt to share with the various global pieces of rtl (such as
378 frame_pointer_rtx). */
379
380 rtx
381 gen_raw_REG (enum machine_mode mode, int regno)
382 {
383 rtx x = gen_rtx_raw_REG (mode, regno);
384 ORIGINAL_REGNO (x) = regno;
385 return x;
386 }
387
388 /* There are some RTL codes that require special attention; the generation
389 functions do the raw handling. If you add to this list, modify
390 special_rtx in gengenrtl.c as well. */
391
392 rtx
393 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
394 {
395 void **slot;
396
397 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
398 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
399
400 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
401 if (const_true_rtx && arg == STORE_FLAG_VALUE)
402 return const_true_rtx;
403 #endif
404
405 /* Look up the CONST_INT in the hash table. */
406 slot = htab_find_slot_with_hash (const_int_htab, &arg,
407 (hashval_t) arg, INSERT);
408 if (*slot == 0)
409 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
410
411 return (rtx) *slot;
412 }
413
414 rtx
415 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
416 {
417 return GEN_INT (trunc_int_for_mode (c, mode));
418 }
419
420 /* CONST_DOUBLEs might be created from pairs of integers, or from
421 REAL_VALUE_TYPEs. Also, their length is known only at run time,
422 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
423
424 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
425 hash table. If so, return its counterpart; otherwise add it
426 to the hash table and return it. */
427 static rtx
428 lookup_const_double (rtx real)
429 {
430 void **slot = htab_find_slot (const_double_htab, real, INSERT);
431 if (*slot == 0)
432 *slot = real;
433
434 return (rtx) *slot;
435 }
436
437 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
438 VALUE in mode MODE. */
439 rtx
440 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
441 {
442 rtx real = rtx_alloc (CONST_DOUBLE);
443 PUT_MODE (real, mode);
444
445 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
446
447 return lookup_const_double (real);
448 }
449
450 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
451 of ints: I0 is the low-order word and I1 is the high-order word.
452 Do not use this routine for non-integer modes; convert to
453 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
454
455 rtx
456 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
457 {
458 rtx value;
459 unsigned int i;
460
461 if (mode != VOIDmode)
462 {
463 int width;
464 if (GET_MODE_CLASS (mode) != MODE_INT
465 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
466 /* We can get a 0 for an error mark. */
467 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
468 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
469 abort ();
470
471 /* We clear out all bits that don't belong in MODE, unless they and
472 our sign bit are all one. So we get either a reasonable negative
473 value or a reasonable unsigned value for this mode. */
474 width = GET_MODE_BITSIZE (mode);
475 if (width < HOST_BITS_PER_WIDE_INT
476 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
477 != ((HOST_WIDE_INT) (-1) << (width - 1))))
478 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
479 else if (width == HOST_BITS_PER_WIDE_INT
480 && ! (i1 == ~0 && i0 < 0))
481 i1 = 0;
482 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
483 /* We cannot represent this value as a constant. */
484 abort ();
485
486 /* If this would be an entire word for the target, but is not for
487 the host, then sign-extend on the host so that the number will
488 look the same way on the host that it would on the target.
489
490 For example, when building a 64 bit alpha hosted 32 bit sparc
491 targeted compiler, then we want the 32 bit unsigned value -1 to be
492 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
493 The latter confuses the sparc backend. */
494
495 if (width < HOST_BITS_PER_WIDE_INT
496 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
497 i0 |= ((HOST_WIDE_INT) (-1) << width);
498
499 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
500 CONST_INT.
501
502 ??? Strictly speaking, this is wrong if we create a CONST_INT for
503 a large unsigned constant with the size of MODE being
504 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
505 in a wider mode. In that case we will mis-interpret it as a
506 negative number.
507
508 Unfortunately, the only alternative is to make a CONST_DOUBLE for
509 any constant in any mode if it is an unsigned constant larger
510 than the maximum signed integer in an int on the host. However,
511 doing this will break everyone that always expects to see a
512 CONST_INT for SImode and smaller.
513
514 We have always been making CONST_INTs in this case, so nothing
515 new is being broken. */
516
517 if (width <= HOST_BITS_PER_WIDE_INT)
518 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
519 }
520
521 /* If this integer fits in one word, return a CONST_INT. */
522 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
523 return GEN_INT (i0);
524
525 /* We use VOIDmode for integers. */
526 value = rtx_alloc (CONST_DOUBLE);
527 PUT_MODE (value, VOIDmode);
528
529 CONST_DOUBLE_LOW (value) = i0;
530 CONST_DOUBLE_HIGH (value) = i1;
531
532 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
533 XWINT (value, i) = 0;
534
535 return lookup_const_double (value);
536 }
537
538 rtx
539 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
540 {
541 /* In case the MD file explicitly references the frame pointer, have
542 all such references point to the same frame pointer. This is
543 used during frame pointer elimination to distinguish the explicit
544 references to these registers from pseudos that happened to be
545 assigned to them.
546
547 If we have eliminated the frame pointer or arg pointer, we will
548 be using it as a normal register, for example as a spill
549 register. In such cases, we might be accessing it in a mode that
550 is not Pmode and therefore cannot use the pre-allocated rtx.
551
552 Also don't do this when we are making new REGs in reload, since
553 we don't want to get confused with the real pointers. */
554
555 if (mode == Pmode && !reload_in_progress)
556 {
557 if (regno == FRAME_POINTER_REGNUM
558 && (!reload_completed || frame_pointer_needed))
559 return frame_pointer_rtx;
560 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
561 if (regno == HARD_FRAME_POINTER_REGNUM
562 && (!reload_completed || frame_pointer_needed))
563 return hard_frame_pointer_rtx;
564 #endif
565 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
566 if (regno == ARG_POINTER_REGNUM)
567 return arg_pointer_rtx;
568 #endif
569 #ifdef RETURN_ADDRESS_POINTER_REGNUM
570 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
571 return return_address_pointer_rtx;
572 #endif
573 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
574 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
575 return pic_offset_table_rtx;
576 if (regno == STACK_POINTER_REGNUM)
577 return stack_pointer_rtx;
578 }
579
580 #if 0
581 /* If the per-function register table has been set up, try to re-use
582 an existing entry in that table to avoid useless generation of RTL.
583
584 This code is disabled for now until we can fix the various backends
585 which depend on having non-shared hard registers in some cases. Long
586 term we want to re-enable this code as it can significantly cut down
587 on the amount of useless RTL that gets generated.
588
589 We'll also need to fix some code that runs after reload that wants to
590 set ORIGINAL_REGNO. */
591
592 if (cfun
593 && cfun->emit
594 && regno_reg_rtx
595 && regno < FIRST_PSEUDO_REGISTER
596 && reg_raw_mode[regno] == mode)
597 return regno_reg_rtx[regno];
598 #endif
599
600 return gen_raw_REG (mode, regno);
601 }
602
603 rtx
604 gen_rtx_MEM (enum machine_mode mode, rtx addr)
605 {
606 rtx rt = gen_rtx_raw_MEM (mode, addr);
607
608 /* This field is not cleared by the mere allocation of the rtx, so
609 we clear it here. */
610 MEM_ATTRS (rt) = 0;
611
612 return rt;
613 }
614
615 rtx
616 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
617 {
618 /* This is the most common failure type.
619 Catch it early so we can see who does it. */
620 if ((offset % GET_MODE_SIZE (mode)) != 0)
621 abort ();
622
623 /* This check isn't usable right now because combine will
624 throw arbitrary crap like a CALL into a SUBREG in
625 gen_lowpart_for_combine so we must just eat it. */
626 #if 0
627 /* Check for this too. */
628 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
629 abort ();
630 #endif
631 return gen_rtx_raw_SUBREG (mode, reg, offset);
632 }
633
634 /* Generate a SUBREG representing the least-significant part of REG if MODE
635 is smaller than mode of REG, otherwise paradoxical SUBREG. */
636
637 rtx
638 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
639 {
640 enum machine_mode inmode;
641
642 inmode = GET_MODE (reg);
643 if (inmode == VOIDmode)
644 inmode = mode;
645 return gen_rtx_SUBREG (mode, reg,
646 subreg_lowpart_offset (mode, inmode));
647 }
648 \f
649 /* gen_rtvec (n, [rt1, ..., rtn])
650 **
651 ** This routine creates an rtvec and stores within it the
652 ** pointers to rtx's which are its arguments.
653 */
654
655 /*VARARGS1*/
656 rtvec
657 gen_rtvec (int n, ...)
658 {
659 int i, save_n;
660 rtx *vector;
661 va_list p;
662
663 va_start (p, n);
664
665 if (n == 0)
666 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
667
668 vector = alloca (n * sizeof (rtx));
669
670 for (i = 0; i < n; i++)
671 vector[i] = va_arg (p, rtx);
672
673 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
674 save_n = n;
675 va_end (p);
676
677 return gen_rtvec_v (save_n, vector);
678 }
679
680 rtvec
681 gen_rtvec_v (int n, rtx *argp)
682 {
683 int i;
684 rtvec rt_val;
685
686 if (n == 0)
687 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
688
689 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
690
691 for (i = 0; i < n; i++)
692 rt_val->elem[i] = *argp++;
693
694 return rt_val;
695 }
696 \f
697 /* Generate a REG rtx for a new pseudo register of mode MODE.
698 This pseudo is assigned the next sequential register number. */
699
700 rtx
701 gen_reg_rtx (enum machine_mode mode)
702 {
703 struct function *f = cfun;
704 rtx val;
705
706 /* Don't let anything called after initial flow analysis create new
707 registers. */
708 if (no_new_pseudos)
709 abort ();
710
711 if (generating_concat_p
712 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
713 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
714 {
715 /* For complex modes, don't make a single pseudo.
716 Instead, make a CONCAT of two pseudos.
717 This allows noncontiguous allocation of the real and imaginary parts,
718 which makes much better code. Besides, allocating DCmode
719 pseudos overstrains reload on some machines like the 386. */
720 rtx realpart, imagpart;
721 enum machine_mode partmode = GET_MODE_INNER (mode);
722
723 realpart = gen_reg_rtx (partmode);
724 imagpart = gen_reg_rtx (partmode);
725 return gen_rtx_CONCAT (mode, realpart, imagpart);
726 }
727
728 /* Make sure regno_pointer_align, and regno_reg_rtx are large
729 enough to have an element for this pseudo reg number. */
730
731 if (reg_rtx_no == f->emit->regno_pointer_align_length)
732 {
733 int old_size = f->emit->regno_pointer_align_length;
734 char *new;
735 rtx *new1;
736
737 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
738 memset (new + old_size, 0, old_size);
739 f->emit->regno_pointer_align = (unsigned char *) new;
740
741 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
742 old_size * 2 * sizeof (rtx));
743 memset (new1 + old_size, 0, old_size * sizeof (rtx));
744 regno_reg_rtx = new1;
745
746 f->emit->regno_pointer_align_length = old_size * 2;
747 }
748
749 val = gen_raw_REG (mode, reg_rtx_no);
750 regno_reg_rtx[reg_rtx_no++] = val;
751 return val;
752 }
753
754 /* Generate a register with same attributes as REG,
755 but offsetted by OFFSET. */
756
757 rtx
758 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
759 {
760 rtx new = gen_rtx_REG (mode, regno);
761 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
762 REG_OFFSET (reg) + offset);
763 return new;
764 }
765
766 /* Set the decl for MEM to DECL. */
767
768 void
769 set_reg_attrs_from_mem (rtx reg, rtx mem)
770 {
771 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
772 REG_ATTRS (reg)
773 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
774 }
775
776 /* Set the register attributes for registers contained in PARM_RTX.
777 Use needed values from memory attributes of MEM. */
778
779 void
780 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
781 {
782 if (GET_CODE (parm_rtx) == REG)
783 set_reg_attrs_from_mem (parm_rtx, mem);
784 else if (GET_CODE (parm_rtx) == PARALLEL)
785 {
786 /* Check for a NULL entry in the first slot, used to indicate that the
787 parameter goes both on the stack and in registers. */
788 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
789 for (; i < XVECLEN (parm_rtx, 0); i++)
790 {
791 rtx x = XVECEXP (parm_rtx, 0, i);
792 if (GET_CODE (XEXP (x, 0)) == REG)
793 REG_ATTRS (XEXP (x, 0))
794 = get_reg_attrs (MEM_EXPR (mem),
795 INTVAL (XEXP (x, 1)));
796 }
797 }
798 }
799
800 /* Assign the RTX X to declaration T. */
801 void
802 set_decl_rtl (tree t, rtx x)
803 {
804 DECL_CHECK (t)->decl.rtl = x;
805
806 if (!x)
807 return;
808 /* For register, we maintain the reverse information too. */
809 if (GET_CODE (x) == REG)
810 REG_ATTRS (x) = get_reg_attrs (t, 0);
811 else if (GET_CODE (x) == SUBREG)
812 REG_ATTRS (SUBREG_REG (x))
813 = get_reg_attrs (t, -SUBREG_BYTE (x));
814 if (GET_CODE (x) == CONCAT)
815 {
816 if (REG_P (XEXP (x, 0)))
817 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
818 if (REG_P (XEXP (x, 1)))
819 REG_ATTRS (XEXP (x, 1))
820 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
821 }
822 if (GET_CODE (x) == PARALLEL)
823 {
824 int i;
825 for (i = 0; i < XVECLEN (x, 0); i++)
826 {
827 rtx y = XVECEXP (x, 0, i);
828 if (REG_P (XEXP (y, 0)))
829 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
830 }
831 }
832 }
833
834 /* Identify REG (which may be a CONCAT) as a user register. */
835
836 void
837 mark_user_reg (rtx reg)
838 {
839 if (GET_CODE (reg) == CONCAT)
840 {
841 REG_USERVAR_P (XEXP (reg, 0)) = 1;
842 REG_USERVAR_P (XEXP (reg, 1)) = 1;
843 }
844 else if (GET_CODE (reg) == REG)
845 REG_USERVAR_P (reg) = 1;
846 else
847 abort ();
848 }
849
850 /* Identify REG as a probable pointer register and show its alignment
851 as ALIGN, if nonzero. */
852
853 void
854 mark_reg_pointer (rtx reg, int align)
855 {
856 if (! REG_POINTER (reg))
857 {
858 REG_POINTER (reg) = 1;
859
860 if (align)
861 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
862 }
863 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
864 /* We can no-longer be sure just how aligned this pointer is. */
865 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
866 }
867
868 /* Return 1 plus largest pseudo reg number used in the current function. */
869
870 int
871 max_reg_num (void)
872 {
873 return reg_rtx_no;
874 }
875
876 /* Return 1 + the largest label number used so far in the current function. */
877
878 int
879 max_label_num (void)
880 {
881 if (last_label_num && label_num == base_label_num)
882 return last_label_num;
883 return label_num;
884 }
885
886 /* Return first label number used in this function (if any were used). */
887
888 int
889 get_first_label_num (void)
890 {
891 return first_label_num;
892 }
893 \f
894 /* Return the final regno of X, which is a SUBREG of a hard
895 register. */
896 int
897 subreg_hard_regno (rtx x, int check_mode)
898 {
899 enum machine_mode mode = GET_MODE (x);
900 unsigned int byte_offset, base_regno, final_regno;
901 rtx reg = SUBREG_REG (x);
902
903 /* This is where we attempt to catch illegal subregs
904 created by the compiler. */
905 if (GET_CODE (x) != SUBREG
906 || GET_CODE (reg) != REG)
907 abort ();
908 base_regno = REGNO (reg);
909 if (base_regno >= FIRST_PSEUDO_REGISTER)
910 abort ();
911 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
912 abort ();
913 #ifdef ENABLE_CHECKING
914 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
915 SUBREG_BYTE (x), mode))
916 abort ();
917 #endif
918 /* Catch non-congruent offsets too. */
919 byte_offset = SUBREG_BYTE (x);
920 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
921 abort ();
922
923 final_regno = subreg_regno (x);
924
925 return final_regno;
926 }
927
928 /* Return a value representing some low-order bits of X, where the number
929 of low-order bits is given by MODE. Note that no conversion is done
930 between floating-point and fixed-point values, rather, the bit
931 representation is returned.
932
933 This function handles the cases in common between gen_lowpart, below,
934 and two variants in cse.c and combine.c. These are the cases that can
935 be safely handled at all points in the compilation.
936
937 If this is not a case we can handle, return 0. */
938
939 rtx
940 gen_lowpart_common (enum machine_mode mode, rtx x)
941 {
942 int msize = GET_MODE_SIZE (mode);
943 int xsize;
944 int offset = 0;
945 enum machine_mode innermode;
946
947 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
948 so we have to make one up. Yuk. */
949 innermode = GET_MODE (x);
950 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
951 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
952 else if (innermode == VOIDmode)
953 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
954
955 xsize = GET_MODE_SIZE (innermode);
956
957 if (innermode == VOIDmode || innermode == BLKmode)
958 abort ();
959
960 if (innermode == mode)
961 return x;
962
963 /* MODE must occupy no more words than the mode of X. */
964 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
965 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
966 return 0;
967
968 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
969 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
970 return 0;
971
972 offset = subreg_lowpart_offset (mode, innermode);
973
974 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
975 && (GET_MODE_CLASS (mode) == MODE_INT
976 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
977 {
978 /* If we are getting the low-order part of something that has been
979 sign- or zero-extended, we can either just use the object being
980 extended or make a narrower extension. If we want an even smaller
981 piece than the size of the object being extended, call ourselves
982 recursively.
983
984 This case is used mostly by combine and cse. */
985
986 if (GET_MODE (XEXP (x, 0)) == mode)
987 return XEXP (x, 0);
988 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
989 return gen_lowpart_common (mode, XEXP (x, 0));
990 else if (msize < xsize)
991 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
992 }
993 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
994 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
995 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
996 return simplify_gen_subreg (mode, x, innermode, offset);
997
998 /* Otherwise, we can't do this. */
999 return 0;
1000 }
1001 \f
1002 /* Return the constant real or imaginary part (which has mode MODE)
1003 of a complex value X. The IMAGPART_P argument determines whether
1004 the real or complex component should be returned. This function
1005 returns NULL_RTX if the component isn't a constant. */
1006
1007 static rtx
1008 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1009 {
1010 tree decl, part;
1011
1012 if (GET_CODE (x) == MEM
1013 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1014 {
1015 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1016 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1017 {
1018 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1019 if (TREE_CODE (part) == REAL_CST
1020 || TREE_CODE (part) == INTEGER_CST)
1021 return expand_expr (part, NULL_RTX, mode, 0);
1022 }
1023 }
1024 return NULL_RTX;
1025 }
1026
1027 /* Return the real part (which has mode MODE) of a complex value X.
1028 This always comes at the low address in memory. */
1029
1030 rtx
1031 gen_realpart (enum machine_mode mode, rtx x)
1032 {
1033 rtx part;
1034
1035 /* Handle complex constants. */
1036 part = gen_complex_constant_part (mode, x, 0);
1037 if (part != NULL_RTX)
1038 return part;
1039
1040 if (WORDS_BIG_ENDIAN
1041 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1042 && REG_P (x)
1043 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1044 internal_error
1045 ("can't access real part of complex value in hard register");
1046 else if (WORDS_BIG_ENDIAN)
1047 return gen_highpart (mode, x);
1048 else
1049 return gen_lowpart (mode, x);
1050 }
1051
1052 /* Return the imaginary part (which has mode MODE) of a complex value X.
1053 This always comes at the high address in memory. */
1054
1055 rtx
1056 gen_imagpart (enum machine_mode mode, rtx x)
1057 {
1058 rtx part;
1059
1060 /* Handle complex constants. */
1061 part = gen_complex_constant_part (mode, x, 1);
1062 if (part != NULL_RTX)
1063 return part;
1064
1065 if (WORDS_BIG_ENDIAN)
1066 return gen_lowpart (mode, x);
1067 else if (! WORDS_BIG_ENDIAN
1068 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1069 && REG_P (x)
1070 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1071 internal_error
1072 ("can't access imaginary part of complex value in hard register");
1073 else
1074 return gen_highpart (mode, x);
1075 }
1076
1077 /* Return 1 iff X, assumed to be a SUBREG,
1078 refers to the real part of the complex value in its containing reg.
1079 Complex values are always stored with the real part in the first word,
1080 regardless of WORDS_BIG_ENDIAN. */
1081
1082 int
1083 subreg_realpart_p (rtx x)
1084 {
1085 if (GET_CODE (x) != SUBREG)
1086 abort ();
1087
1088 return ((unsigned int) SUBREG_BYTE (x)
1089 < (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1090 }
1091 \f
1092 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1093 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1094 least-significant part of X.
1095 MODE specifies how big a part of X to return;
1096 it usually should not be larger than a word.
1097 If X is a MEM whose address is a QUEUED, the value may be so also. */
1098
1099 rtx
1100 gen_lowpart_general (enum machine_mode mode, rtx x)
1101 {
1102 rtx result = gen_lowpart_common (mode, x);
1103
1104 if (result)
1105 return result;
1106 else if (GET_CODE (x) == REG)
1107 {
1108 /* Must be a hard reg that's not valid in MODE. */
1109 result = gen_lowpart_common (mode, copy_to_reg (x));
1110 if (result == 0)
1111 abort ();
1112 return result;
1113 }
1114 else if (GET_CODE (x) == MEM)
1115 {
1116 /* The only additional case we can do is MEM. */
1117 int offset = 0;
1118
1119 /* The following exposes the use of "x" to CSE. */
1120 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1121 && SCALAR_INT_MODE_P (GET_MODE (x))
1122 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1123 GET_MODE_BITSIZE (GET_MODE (x)))
1124 && ! no_new_pseudos)
1125 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1126
1127 if (WORDS_BIG_ENDIAN)
1128 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1129 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1130
1131 if (BYTES_BIG_ENDIAN)
1132 /* Adjust the address so that the address-after-the-data
1133 is unchanged. */
1134 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1135 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1136
1137 return adjust_address (x, mode, offset);
1138 }
1139 else if (GET_CODE (x) == ADDRESSOF)
1140 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1141 else
1142 abort ();
1143 }
1144
1145 /* Like `gen_lowpart', but refer to the most significant part.
1146 This is used to access the imaginary part of a complex number. */
1147
1148 rtx
1149 gen_highpart (enum machine_mode mode, rtx x)
1150 {
1151 unsigned int msize = GET_MODE_SIZE (mode);
1152 rtx result;
1153
1154 /* This case loses if X is a subreg. To catch bugs early,
1155 complain if an invalid MODE is used even in other cases. */
1156 if (msize > UNITS_PER_WORD
1157 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1158 abort ();
1159
1160 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1161 subreg_highpart_offset (mode, GET_MODE (x)));
1162
1163 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1164 the target if we have a MEM. gen_highpart must return a valid operand,
1165 emitting code if necessary to do so. */
1166 if (result != NULL_RTX && GET_CODE (result) == MEM)
1167 result = validize_mem (result);
1168
1169 if (!result)
1170 abort ();
1171 return result;
1172 }
1173
1174 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1175 be VOIDmode constant. */
1176 rtx
1177 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1178 {
1179 if (GET_MODE (exp) != VOIDmode)
1180 {
1181 if (GET_MODE (exp) != innermode)
1182 abort ();
1183 return gen_highpart (outermode, exp);
1184 }
1185 return simplify_gen_subreg (outermode, exp, innermode,
1186 subreg_highpart_offset (outermode, innermode));
1187 }
1188
1189 /* Return offset in bytes to get OUTERMODE low part
1190 of the value in mode INNERMODE stored in memory in target format. */
1191
1192 unsigned int
1193 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1194 {
1195 unsigned int offset = 0;
1196 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1197
1198 if (difference > 0)
1199 {
1200 if (WORDS_BIG_ENDIAN)
1201 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1202 if (BYTES_BIG_ENDIAN)
1203 offset += difference % UNITS_PER_WORD;
1204 }
1205
1206 return offset;
1207 }
1208
1209 /* Return offset in bytes to get OUTERMODE high part
1210 of the value in mode INNERMODE stored in memory in target format. */
1211 unsigned int
1212 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1213 {
1214 unsigned int offset = 0;
1215 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1216
1217 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1218 abort ();
1219
1220 if (difference > 0)
1221 {
1222 if (! WORDS_BIG_ENDIAN)
1223 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1224 if (! BYTES_BIG_ENDIAN)
1225 offset += difference % UNITS_PER_WORD;
1226 }
1227
1228 return offset;
1229 }
1230
1231 /* Return 1 iff X, assumed to be a SUBREG,
1232 refers to the least significant part of its containing reg.
1233 If X is not a SUBREG, always return 1 (it is its own low part!). */
1234
1235 int
1236 subreg_lowpart_p (rtx x)
1237 {
1238 if (GET_CODE (x) != SUBREG)
1239 return 1;
1240 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1241 return 0;
1242
1243 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1244 == SUBREG_BYTE (x));
1245 }
1246 \f
1247 /* Return subword OFFSET of operand OP.
1248 The word number, OFFSET, is interpreted as the word number starting
1249 at the low-order address. OFFSET 0 is the low-order word if not
1250 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1251
1252 If we cannot extract the required word, we return zero. Otherwise,
1253 an rtx corresponding to the requested word will be returned.
1254
1255 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1256 reload has completed, a valid address will always be returned. After
1257 reload, if a valid address cannot be returned, we return zero.
1258
1259 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1260 it is the responsibility of the caller.
1261
1262 MODE is the mode of OP in case it is a CONST_INT.
1263
1264 ??? This is still rather broken for some cases. The problem for the
1265 moment is that all callers of this thing provide no 'goal mode' to
1266 tell us to work with. This exists because all callers were written
1267 in a word based SUBREG world.
1268 Now use of this function can be deprecated by simplify_subreg in most
1269 cases.
1270 */
1271
1272 rtx
1273 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1274 {
1275 if (mode == VOIDmode)
1276 mode = GET_MODE (op);
1277
1278 if (mode == VOIDmode)
1279 abort ();
1280
1281 /* If OP is narrower than a word, fail. */
1282 if (mode != BLKmode
1283 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1284 return 0;
1285
1286 /* If we want a word outside OP, return zero. */
1287 if (mode != BLKmode
1288 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1289 return const0_rtx;
1290
1291 /* Form a new MEM at the requested address. */
1292 if (GET_CODE (op) == MEM)
1293 {
1294 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1295
1296 if (! validate_address)
1297 return new;
1298
1299 else if (reload_completed)
1300 {
1301 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1302 return 0;
1303 }
1304 else
1305 return replace_equiv_address (new, XEXP (new, 0));
1306 }
1307
1308 /* Rest can be handled by simplify_subreg. */
1309 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1310 }
1311
1312 /* Similar to `operand_subword', but never return 0. If we can't extract
1313 the required subword, put OP into a register and try again. If that fails,
1314 abort. We always validate the address in this case.
1315
1316 MODE is the mode of OP, in case it is CONST_INT. */
1317
1318 rtx
1319 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1320 {
1321 rtx result = operand_subword (op, offset, 1, mode);
1322
1323 if (result)
1324 return result;
1325
1326 if (mode != BLKmode && mode != VOIDmode)
1327 {
1328 /* If this is a register which can not be accessed by words, copy it
1329 to a pseudo register. */
1330 if (GET_CODE (op) == REG)
1331 op = copy_to_reg (op);
1332 else
1333 op = force_reg (mode, op);
1334 }
1335
1336 result = operand_subword (op, offset, 1, mode);
1337 if (result == 0)
1338 abort ();
1339
1340 return result;
1341 }
1342 \f
1343 /* Given a compare instruction, swap the operands.
1344 A test instruction is changed into a compare of 0 against the operand. */
1345
1346 void
1347 reverse_comparison (rtx insn)
1348 {
1349 rtx body = PATTERN (insn);
1350 rtx comp;
1351
1352 if (GET_CODE (body) == SET)
1353 comp = SET_SRC (body);
1354 else
1355 comp = SET_SRC (XVECEXP (body, 0, 0));
1356
1357 if (GET_CODE (comp) == COMPARE)
1358 {
1359 rtx op0 = XEXP (comp, 0);
1360 rtx op1 = XEXP (comp, 1);
1361 XEXP (comp, 0) = op1;
1362 XEXP (comp, 1) = op0;
1363 }
1364 else
1365 {
1366 rtx new = gen_rtx_COMPARE (VOIDmode,
1367 CONST0_RTX (GET_MODE (comp)), comp);
1368 if (GET_CODE (body) == SET)
1369 SET_SRC (body) = new;
1370 else
1371 SET_SRC (XVECEXP (body, 0, 0)) = new;
1372 }
1373 }
1374 \f
1375 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1376 or (2) a component ref of something variable. Represent the later with
1377 a NULL expression. */
1378
1379 static tree
1380 component_ref_for_mem_expr (tree ref)
1381 {
1382 tree inner = TREE_OPERAND (ref, 0);
1383
1384 if (TREE_CODE (inner) == COMPONENT_REF)
1385 inner = component_ref_for_mem_expr (inner);
1386 else
1387 {
1388 tree placeholder_ptr = 0;
1389
1390 /* Now remove any conversions: they don't change what the underlying
1391 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1392 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1393 || TREE_CODE (inner) == NON_LVALUE_EXPR
1394 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1395 || TREE_CODE (inner) == SAVE_EXPR
1396 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1397 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1398 inner = find_placeholder (inner, &placeholder_ptr);
1399 else
1400 inner = TREE_OPERAND (inner, 0);
1401
1402 if (! DECL_P (inner))
1403 inner = NULL_TREE;
1404 }
1405
1406 if (inner == TREE_OPERAND (ref, 0))
1407 return ref;
1408 else
1409 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1410 TREE_OPERAND (ref, 1));
1411 }
1412
1413 /* Given REF, a MEM, and T, either the type of X or the expression
1414 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1415 if we are making a new object of this type. BITPOS is nonzero if
1416 there is an offset outstanding on T that will be applied later. */
1417
1418 void
1419 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1420 HOST_WIDE_INT bitpos)
1421 {
1422 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1423 tree expr = MEM_EXPR (ref);
1424 rtx offset = MEM_OFFSET (ref);
1425 rtx size = MEM_SIZE (ref);
1426 unsigned int align = MEM_ALIGN (ref);
1427 HOST_WIDE_INT apply_bitpos = 0;
1428 tree type;
1429
1430 /* It can happen that type_for_mode was given a mode for which there
1431 is no language-level type. In which case it returns NULL, which
1432 we can see here. */
1433 if (t == NULL_TREE)
1434 return;
1435
1436 type = TYPE_P (t) ? t : TREE_TYPE (t);
1437 if (type == error_mark_node)
1438 return;
1439
1440 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1441 wrong answer, as it assumes that DECL_RTL already has the right alias
1442 info. Callers should not set DECL_RTL until after the call to
1443 set_mem_attributes. */
1444 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1445 abort ();
1446
1447 /* Get the alias set from the expression or type (perhaps using a
1448 front-end routine) and use it. */
1449 alias = get_alias_set (t);
1450
1451 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1452 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1453 RTX_UNCHANGING_P (ref)
1454 |= ((lang_hooks.honor_readonly
1455 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1456 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1457
1458 /* If we are making an object of this type, or if this is a DECL, we know
1459 that it is a scalar if the type is not an aggregate. */
1460 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1461 MEM_SCALAR_P (ref) = 1;
1462
1463 /* We can set the alignment from the type if we are making an object,
1464 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1465 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1466 align = MAX (align, TYPE_ALIGN (type));
1467
1468 /* If the size is known, we can set that. */
1469 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1470 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1471
1472 /* If T is not a type, we may be able to deduce some more information about
1473 the expression. */
1474 if (! TYPE_P (t))
1475 {
1476 maybe_set_unchanging (ref, t);
1477 if (TREE_THIS_VOLATILE (t))
1478 MEM_VOLATILE_P (ref) = 1;
1479
1480 /* Now remove any conversions: they don't change what the underlying
1481 object is. Likewise for SAVE_EXPR. */
1482 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1483 || TREE_CODE (t) == NON_LVALUE_EXPR
1484 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1485 || TREE_CODE (t) == SAVE_EXPR)
1486 t = TREE_OPERAND (t, 0);
1487
1488 /* If this expression can't be addressed (e.g., it contains a reference
1489 to a non-addressable field), show we don't change its alias set. */
1490 if (! can_address_p (t))
1491 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1492
1493 /* If this is a decl, set the attributes of the MEM from it. */
1494 if (DECL_P (t))
1495 {
1496 expr = t;
1497 offset = const0_rtx;
1498 apply_bitpos = bitpos;
1499 size = (DECL_SIZE_UNIT (t)
1500 && host_integerp (DECL_SIZE_UNIT (t), 1)
1501 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1502 align = DECL_ALIGN (t);
1503 }
1504
1505 /* If this is a constant, we know the alignment. */
1506 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1507 {
1508 align = TYPE_ALIGN (type);
1509 #ifdef CONSTANT_ALIGNMENT
1510 align = CONSTANT_ALIGNMENT (t, align);
1511 #endif
1512 }
1513
1514 /* If this is a field reference and not a bit-field, record it. */
1515 /* ??? There is some information that can be gleened from bit-fields,
1516 such as the word offset in the structure that might be modified.
1517 But skip it for now. */
1518 else if (TREE_CODE (t) == COMPONENT_REF
1519 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1520 {
1521 expr = component_ref_for_mem_expr (t);
1522 offset = const0_rtx;
1523 apply_bitpos = bitpos;
1524 /* ??? Any reason the field size would be different than
1525 the size we got from the type? */
1526 }
1527
1528 /* If this is an array reference, look for an outer field reference. */
1529 else if (TREE_CODE (t) == ARRAY_REF)
1530 {
1531 tree off_tree = size_zero_node;
1532 /* We can't modify t, because we use it at the end of the
1533 function. */
1534 tree t2 = t;
1535
1536 do
1537 {
1538 tree index = TREE_OPERAND (t2, 1);
1539 tree array = TREE_OPERAND (t2, 0);
1540 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1541 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1542 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1543
1544 /* We assume all arrays have sizes that are a multiple of a byte.
1545 First subtract the lower bound, if any, in the type of the
1546 index, then convert to sizetype and multiply by the size of the
1547 array element. */
1548 if (low_bound != 0 && ! integer_zerop (low_bound))
1549 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1550 index, low_bound));
1551
1552 /* If the index has a self-referential type, pass it to a
1553 WITH_RECORD_EXPR; if the component size is, pass our
1554 component to one. */
1555 if (CONTAINS_PLACEHOLDER_P (index))
1556 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1557 if (CONTAINS_PLACEHOLDER_P (unit_size))
1558 unit_size = build (WITH_RECORD_EXPR, sizetype,
1559 unit_size, array);
1560
1561 off_tree
1562 = fold (build (PLUS_EXPR, sizetype,
1563 fold (build (MULT_EXPR, sizetype,
1564 index,
1565 unit_size)),
1566 off_tree));
1567 t2 = TREE_OPERAND (t2, 0);
1568 }
1569 while (TREE_CODE (t2) == ARRAY_REF);
1570
1571 if (DECL_P (t2))
1572 {
1573 expr = t2;
1574 offset = NULL;
1575 if (host_integerp (off_tree, 1))
1576 {
1577 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1578 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1579 align = DECL_ALIGN (t2);
1580 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1581 align = aoff;
1582 offset = GEN_INT (ioff);
1583 apply_bitpos = bitpos;
1584 }
1585 }
1586 else if (TREE_CODE (t2) == COMPONENT_REF)
1587 {
1588 expr = component_ref_for_mem_expr (t2);
1589 if (host_integerp (off_tree, 1))
1590 {
1591 offset = GEN_INT (tree_low_cst (off_tree, 1));
1592 apply_bitpos = bitpos;
1593 }
1594 /* ??? Any reason the field size would be different than
1595 the size we got from the type? */
1596 }
1597 else if (flag_argument_noalias > 1
1598 && TREE_CODE (t2) == INDIRECT_REF
1599 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1600 {
1601 expr = t2;
1602 offset = NULL;
1603 }
1604 }
1605
1606 /* If this is a Fortran indirect argument reference, record the
1607 parameter decl. */
1608 else if (flag_argument_noalias > 1
1609 && TREE_CODE (t) == INDIRECT_REF
1610 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1611 {
1612 expr = t;
1613 offset = NULL;
1614 }
1615 }
1616
1617 /* If we modified OFFSET based on T, then subtract the outstanding
1618 bit position offset. Similarly, increase the size of the accessed
1619 object to contain the negative offset. */
1620 if (apply_bitpos)
1621 {
1622 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1623 if (size)
1624 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1625 }
1626
1627 /* Now set the attributes we computed above. */
1628 MEM_ATTRS (ref)
1629 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1630
1631 /* If this is already known to be a scalar or aggregate, we are done. */
1632 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1633 return;
1634
1635 /* If it is a reference into an aggregate, this is part of an aggregate.
1636 Otherwise we don't know. */
1637 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1638 || TREE_CODE (t) == ARRAY_RANGE_REF
1639 || TREE_CODE (t) == BIT_FIELD_REF)
1640 MEM_IN_STRUCT_P (ref) = 1;
1641 }
1642
1643 void
1644 set_mem_attributes (rtx ref, tree t, int objectp)
1645 {
1646 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1647 }
1648
1649 /* Set the decl for MEM to DECL. */
1650
1651 void
1652 set_mem_attrs_from_reg (rtx mem, rtx reg)
1653 {
1654 MEM_ATTRS (mem)
1655 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1656 GEN_INT (REG_OFFSET (reg)),
1657 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1658 }
1659
1660 /* Set the alias set of MEM to SET. */
1661
1662 void
1663 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1664 {
1665 #ifdef ENABLE_CHECKING
1666 /* If the new and old alias sets don't conflict, something is wrong. */
1667 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1668 abort ();
1669 #endif
1670
1671 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1672 MEM_SIZE (mem), MEM_ALIGN (mem),
1673 GET_MODE (mem));
1674 }
1675
1676 /* Set the alignment of MEM to ALIGN bits. */
1677
1678 void
1679 set_mem_align (rtx mem, unsigned int align)
1680 {
1681 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1682 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1683 GET_MODE (mem));
1684 }
1685
1686 /* Set the expr for MEM to EXPR. */
1687
1688 void
1689 set_mem_expr (rtx mem, tree expr)
1690 {
1691 MEM_ATTRS (mem)
1692 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1693 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1694 }
1695
1696 /* Set the offset of MEM to OFFSET. */
1697
1698 void
1699 set_mem_offset (rtx mem, rtx offset)
1700 {
1701 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1702 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1703 GET_MODE (mem));
1704 }
1705
1706 /* Set the size of MEM to SIZE. */
1707
1708 void
1709 set_mem_size (rtx mem, rtx size)
1710 {
1711 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1712 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1713 GET_MODE (mem));
1714 }
1715 \f
1716 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1717 and its address changed to ADDR. (VOIDmode means don't change the mode.
1718 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1719 returned memory location is required to be valid. The memory
1720 attributes are not changed. */
1721
1722 static rtx
1723 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1724 {
1725 rtx new;
1726
1727 if (GET_CODE (memref) != MEM)
1728 abort ();
1729 if (mode == VOIDmode)
1730 mode = GET_MODE (memref);
1731 if (addr == 0)
1732 addr = XEXP (memref, 0);
1733 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1734 && (!validate || memory_address_p (mode, addr)))
1735 return memref;
1736
1737 if (validate)
1738 {
1739 if (reload_in_progress || reload_completed)
1740 {
1741 if (! memory_address_p (mode, addr))
1742 abort ();
1743 }
1744 else
1745 addr = memory_address (mode, addr);
1746 }
1747
1748 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1749 return memref;
1750
1751 new = gen_rtx_MEM (mode, addr);
1752 MEM_COPY_ATTRIBUTES (new, memref);
1753 return new;
1754 }
1755
1756 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1757 way we are changing MEMREF, so we only preserve the alias set. */
1758
1759 rtx
1760 change_address (rtx memref, enum machine_mode mode, rtx addr)
1761 {
1762 rtx new = change_address_1 (memref, mode, addr, 1), size;
1763 enum machine_mode mmode = GET_MODE (new);
1764 unsigned int align;
1765
1766 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1767 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1768
1769 /* If there are no changes, just return the original memory reference. */
1770 if (new == memref)
1771 {
1772 if (MEM_ATTRS (memref) == 0
1773 || (MEM_EXPR (memref) == NULL
1774 && MEM_OFFSET (memref) == NULL
1775 && MEM_SIZE (memref) == size
1776 && MEM_ALIGN (memref) == align))
1777 return new;
1778
1779 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1780 MEM_COPY_ATTRIBUTES (new, memref);
1781 }
1782
1783 MEM_ATTRS (new)
1784 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1785
1786 return new;
1787 }
1788
1789 /* Return a memory reference like MEMREF, but with its mode changed
1790 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1791 nonzero, the memory address is forced to be valid.
1792 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1793 and caller is responsible for adjusting MEMREF base register. */
1794
1795 rtx
1796 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1797 int validate, int adjust)
1798 {
1799 rtx addr = XEXP (memref, 0);
1800 rtx new;
1801 rtx memoffset = MEM_OFFSET (memref);
1802 rtx size = 0;
1803 unsigned int memalign = MEM_ALIGN (memref);
1804
1805 /* If there are no changes, just return the original memory reference. */
1806 if (mode == GET_MODE (memref) && !offset
1807 && (!validate || memory_address_p (mode, addr)))
1808 return memref;
1809
1810 /* ??? Prefer to create garbage instead of creating shared rtl.
1811 This may happen even if offset is nonzero -- consider
1812 (plus (plus reg reg) const_int) -- so do this always. */
1813 addr = copy_rtx (addr);
1814
1815 if (adjust)
1816 {
1817 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1818 object, we can merge it into the LO_SUM. */
1819 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1820 && offset >= 0
1821 && (unsigned HOST_WIDE_INT) offset
1822 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1823 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1824 plus_constant (XEXP (addr, 1), offset));
1825 else
1826 addr = plus_constant (addr, offset);
1827 }
1828
1829 new = change_address_1 (memref, mode, addr, validate);
1830
1831 /* Compute the new values of the memory attributes due to this adjustment.
1832 We add the offsets and update the alignment. */
1833 if (memoffset)
1834 memoffset = GEN_INT (offset + INTVAL (memoffset));
1835
1836 /* Compute the new alignment by taking the MIN of the alignment and the
1837 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1838 if zero. */
1839 if (offset != 0)
1840 memalign
1841 = MIN (memalign,
1842 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1843
1844 /* We can compute the size in a number of ways. */
1845 if (GET_MODE (new) != BLKmode)
1846 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1847 else if (MEM_SIZE (memref))
1848 size = plus_constant (MEM_SIZE (memref), -offset);
1849
1850 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1851 memoffset, size, memalign, GET_MODE (new));
1852
1853 /* At some point, we should validate that this offset is within the object,
1854 if all the appropriate values are known. */
1855 return new;
1856 }
1857
1858 /* Return a memory reference like MEMREF, but with its mode changed
1859 to MODE and its address changed to ADDR, which is assumed to be
1860 MEMREF offseted by OFFSET bytes. If VALIDATE is
1861 nonzero, the memory address is forced to be valid. */
1862
1863 rtx
1864 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1865 HOST_WIDE_INT offset, int validate)
1866 {
1867 memref = change_address_1 (memref, VOIDmode, addr, validate);
1868 return adjust_address_1 (memref, mode, offset, validate, 0);
1869 }
1870
1871 /* Return a memory reference like MEMREF, but whose address is changed by
1872 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1873 known to be in OFFSET (possibly 1). */
1874
1875 rtx
1876 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1877 {
1878 rtx new, addr = XEXP (memref, 0);
1879
1880 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1881
1882 /* At this point we don't know _why_ the address is invalid. It
1883 could have secondary memory references, multiplies or anything.
1884
1885 However, if we did go and rearrange things, we can wind up not
1886 being able to recognize the magic around pic_offset_table_rtx.
1887 This stuff is fragile, and is yet another example of why it is
1888 bad to expose PIC machinery too early. */
1889 if (! memory_address_p (GET_MODE (memref), new)
1890 && GET_CODE (addr) == PLUS
1891 && XEXP (addr, 0) == pic_offset_table_rtx)
1892 {
1893 addr = force_reg (GET_MODE (addr), addr);
1894 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1895 }
1896
1897 update_temp_slot_address (XEXP (memref, 0), new);
1898 new = change_address_1 (memref, VOIDmode, new, 1);
1899
1900 /* If there are no changes, just return the original memory reference. */
1901 if (new == memref)
1902 return new;
1903
1904 /* Update the alignment to reflect the offset. Reset the offset, which
1905 we don't know. */
1906 MEM_ATTRS (new)
1907 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1908 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1909 GET_MODE (new));
1910 return new;
1911 }
1912
1913 /* Return a memory reference like MEMREF, but with its address changed to
1914 ADDR. The caller is asserting that the actual piece of memory pointed
1915 to is the same, just the form of the address is being changed, such as
1916 by putting something into a register. */
1917
1918 rtx
1919 replace_equiv_address (rtx memref, rtx addr)
1920 {
1921 /* change_address_1 copies the memory attribute structure without change
1922 and that's exactly what we want here. */
1923 update_temp_slot_address (XEXP (memref, 0), addr);
1924 return change_address_1 (memref, VOIDmode, addr, 1);
1925 }
1926
1927 /* Likewise, but the reference is not required to be valid. */
1928
1929 rtx
1930 replace_equiv_address_nv (rtx memref, rtx addr)
1931 {
1932 return change_address_1 (memref, VOIDmode, addr, 0);
1933 }
1934
1935 /* Return a memory reference like MEMREF, but with its mode widened to
1936 MODE and offset by OFFSET. This would be used by targets that e.g.
1937 cannot issue QImode memory operations and have to use SImode memory
1938 operations plus masking logic. */
1939
1940 rtx
1941 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1942 {
1943 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1944 tree expr = MEM_EXPR (new);
1945 rtx memoffset = MEM_OFFSET (new);
1946 unsigned int size = GET_MODE_SIZE (mode);
1947
1948 /* If there are no changes, just return the original memory reference. */
1949 if (new == memref)
1950 return new;
1951
1952 /* If we don't know what offset we were at within the expression, then
1953 we can't know if we've overstepped the bounds. */
1954 if (! memoffset)
1955 expr = NULL_TREE;
1956
1957 while (expr)
1958 {
1959 if (TREE_CODE (expr) == COMPONENT_REF)
1960 {
1961 tree field = TREE_OPERAND (expr, 1);
1962
1963 if (! DECL_SIZE_UNIT (field))
1964 {
1965 expr = NULL_TREE;
1966 break;
1967 }
1968
1969 /* Is the field at least as large as the access? If so, ok,
1970 otherwise strip back to the containing structure. */
1971 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
1972 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
1973 && INTVAL (memoffset) >= 0)
1974 break;
1975
1976 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1977 {
1978 expr = NULL_TREE;
1979 break;
1980 }
1981
1982 expr = TREE_OPERAND (expr, 0);
1983 memoffset = (GEN_INT (INTVAL (memoffset)
1984 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1985 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1986 / BITS_PER_UNIT)));
1987 }
1988 /* Similarly for the decl. */
1989 else if (DECL_P (expr)
1990 && DECL_SIZE_UNIT (expr)
1991 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
1992 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
1993 && (! memoffset || INTVAL (memoffset) >= 0))
1994 break;
1995 else
1996 {
1997 /* The widened memory access overflows the expression, which means
1998 that it could alias another expression. Zap it. */
1999 expr = NULL_TREE;
2000 break;
2001 }
2002 }
2003
2004 if (! expr)
2005 memoffset = NULL_RTX;
2006
2007 /* The widened memory may alias other stuff, so zap the alias set. */
2008 /* ??? Maybe use get_alias_set on any remaining expression. */
2009
2010 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2011 MEM_ALIGN (new), mode);
2012
2013 return new;
2014 }
2015 \f
2016 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2017
2018 rtx
2019 gen_label_rtx (void)
2020 {
2021 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2022 NULL, label_num++, NULL);
2023 }
2024 \f
2025 /* For procedure integration. */
2026
2027 /* Install new pointers to the first and last insns in the chain.
2028 Also, set cur_insn_uid to one higher than the last in use.
2029 Used for an inline-procedure after copying the insn chain. */
2030
2031 void
2032 set_new_first_and_last_insn (rtx first, rtx last)
2033 {
2034 rtx insn;
2035
2036 first_insn = first;
2037 last_insn = last;
2038 cur_insn_uid = 0;
2039
2040 for (insn = first; insn; insn = NEXT_INSN (insn))
2041 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2042
2043 cur_insn_uid++;
2044 }
2045
2046 /* Set the last label number found in the current function.
2047 This is used when belatedly compiling an inline function. */
2048
2049 void
2050 set_new_last_label_num (int last)
2051 {
2052 base_label_num = label_num;
2053 last_label_num = last;
2054 }
2055 \f
2056 /* Restore all variables describing the current status from the structure *P.
2057 This is used after a nested function. */
2058
2059 void
2060 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2061 {
2062 last_label_num = 0;
2063 }
2064 \f
2065 /* Go through all the RTL insn bodies and copy any invalid shared
2066 structure. This routine should only be called once. */
2067
2068 void
2069 unshare_all_rtl (tree fndecl, rtx insn)
2070 {
2071 tree decl;
2072
2073 /* Make sure that virtual parameters are not shared. */
2074 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2075 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2076
2077 /* Make sure that virtual stack slots are not shared. */
2078 unshare_all_decls (DECL_INITIAL (fndecl));
2079
2080 /* Unshare just about everything else. */
2081 unshare_all_rtl_in_chain (insn);
2082
2083 /* Make sure the addresses of stack slots found outside the insn chain
2084 (such as, in DECL_RTL of a variable) are not shared
2085 with the insn chain.
2086
2087 This special care is necessary when the stack slot MEM does not
2088 actually appear in the insn chain. If it does appear, its address
2089 is unshared from all else at that point. */
2090 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2091 }
2092
2093 /* Go through all the RTL insn bodies and copy any invalid shared
2094 structure, again. This is a fairly expensive thing to do so it
2095 should be done sparingly. */
2096
2097 void
2098 unshare_all_rtl_again (rtx insn)
2099 {
2100 rtx p;
2101 tree decl;
2102
2103 for (p = insn; p; p = NEXT_INSN (p))
2104 if (INSN_P (p))
2105 {
2106 reset_used_flags (PATTERN (p));
2107 reset_used_flags (REG_NOTES (p));
2108 reset_used_flags (LOG_LINKS (p));
2109 }
2110
2111 /* Make sure that virtual stack slots are not shared. */
2112 reset_used_decls (DECL_INITIAL (cfun->decl));
2113
2114 /* Make sure that virtual parameters are not shared. */
2115 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2116 reset_used_flags (DECL_RTL (decl));
2117
2118 reset_used_flags (stack_slot_list);
2119
2120 unshare_all_rtl (cfun->decl, insn);
2121 }
2122
2123 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2124 Recursively does the same for subexpressions. */
2125
2126 static void
2127 verify_rtx_sharing (rtx orig, rtx insn)
2128 {
2129 rtx x = orig;
2130 int i;
2131 enum rtx_code code;
2132 const char *format_ptr;
2133
2134 if (x == 0)
2135 return;
2136
2137 code = GET_CODE (x);
2138
2139 /* These types may be freely shared. */
2140
2141 switch (code)
2142 {
2143 case REG:
2144 case QUEUED:
2145 case CONST_INT:
2146 case CONST_DOUBLE:
2147 case CONST_VECTOR:
2148 case SYMBOL_REF:
2149 case LABEL_REF:
2150 case CODE_LABEL:
2151 case PC:
2152 case CC0:
2153 case SCRATCH:
2154 return;
2155 /* SCRATCH must be shared because they represent distinct values. */
2156 case CLOBBER:
2157 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2158 return;
2159 break;
2160
2161 case CONST:
2162 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2163 a LABEL_REF, it isn't sharable. */
2164 if (GET_CODE (XEXP (x, 0)) == PLUS
2165 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2166 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2167 return;
2168 break;
2169
2170 case MEM:
2171 /* A MEM is allowed to be shared if its address is constant. */
2172 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2173 || reload_completed || reload_in_progress)
2174 return;
2175
2176 break;
2177
2178 default:
2179 break;
2180 }
2181
2182 /* This rtx may not be shared. If it has already been seen,
2183 replace it with a copy of itself. */
2184
2185 if (RTX_FLAG (x, used))
2186 {
2187 error ("Invalid rtl sharing found in the insn");
2188 debug_rtx (insn);
2189 error ("Shared rtx");
2190 debug_rtx (x);
2191 abort ();
2192 }
2193 RTX_FLAG (x, used) = 1;
2194
2195 /* Now scan the subexpressions recursively. */
2196
2197 format_ptr = GET_RTX_FORMAT (code);
2198
2199 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2200 {
2201 switch (*format_ptr++)
2202 {
2203 case 'e':
2204 verify_rtx_sharing (XEXP (x, i), insn);
2205 break;
2206
2207 case 'E':
2208 if (XVEC (x, i) != NULL)
2209 {
2210 int j;
2211 int len = XVECLEN (x, i);
2212
2213 for (j = 0; j < len; j++)
2214 {
2215 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2216 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2217 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2218 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2219 else
2220 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2221 }
2222 }
2223 break;
2224 }
2225 }
2226 return;
2227 }
2228
2229 /* Go through all the RTL insn bodies and check that there is no unexpected
2230 sharing in between the subexpressions. */
2231
2232 void
2233 verify_rtl_sharing (void)
2234 {
2235 rtx p;
2236
2237 for (p = get_insns (); p; p = NEXT_INSN (p))
2238 if (INSN_P (p))
2239 {
2240 reset_used_flags (PATTERN (p));
2241 reset_used_flags (REG_NOTES (p));
2242 reset_used_flags (LOG_LINKS (p));
2243 }
2244
2245 for (p = get_insns (); p; p = NEXT_INSN (p))
2246 if (INSN_P (p))
2247 {
2248 verify_rtx_sharing (PATTERN (p), p);
2249 verify_rtx_sharing (REG_NOTES (p), p);
2250 verify_rtx_sharing (LOG_LINKS (p), p);
2251 }
2252 }
2253
2254 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2255 Assumes the mark bits are cleared at entry. */
2256
2257 void
2258 unshare_all_rtl_in_chain (rtx insn)
2259 {
2260 for (; insn; insn = NEXT_INSN (insn))
2261 if (INSN_P (insn))
2262 {
2263 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2264 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2265 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2266 }
2267 }
2268
2269 /* Go through all virtual stack slots of a function and copy any
2270 shared structure. */
2271 static void
2272 unshare_all_decls (tree blk)
2273 {
2274 tree t;
2275
2276 /* Copy shared decls. */
2277 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2278 if (DECL_RTL_SET_P (t))
2279 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2280
2281 /* Now process sub-blocks. */
2282 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2283 unshare_all_decls (t);
2284 }
2285
2286 /* Go through all virtual stack slots of a function and mark them as
2287 not shared. */
2288 static void
2289 reset_used_decls (tree blk)
2290 {
2291 tree t;
2292
2293 /* Mark decls. */
2294 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2295 if (DECL_RTL_SET_P (t))
2296 reset_used_flags (DECL_RTL (t));
2297
2298 /* Now process sub-blocks. */
2299 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2300 reset_used_decls (t);
2301 }
2302
2303 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2304 placed in the result directly, rather than being copied. MAY_SHARE is
2305 either a MEM of an EXPR_LIST of MEMs. */
2306
2307 rtx
2308 copy_most_rtx (rtx orig, rtx may_share)
2309 {
2310 rtx copy;
2311 int i, j;
2312 RTX_CODE code;
2313 const char *format_ptr;
2314
2315 if (orig == may_share
2316 || (GET_CODE (may_share) == EXPR_LIST
2317 && in_expr_list_p (may_share, orig)))
2318 return orig;
2319
2320 code = GET_CODE (orig);
2321
2322 switch (code)
2323 {
2324 case REG:
2325 case QUEUED:
2326 case CONST_INT:
2327 case CONST_DOUBLE:
2328 case CONST_VECTOR:
2329 case SYMBOL_REF:
2330 case CODE_LABEL:
2331 case PC:
2332 case CC0:
2333 return orig;
2334 default:
2335 break;
2336 }
2337
2338 copy = rtx_alloc (code);
2339 PUT_MODE (copy, GET_MODE (orig));
2340 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2341 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2342 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2343 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2344 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2345
2346 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2347
2348 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2349 {
2350 switch (*format_ptr++)
2351 {
2352 case 'e':
2353 XEXP (copy, i) = XEXP (orig, i);
2354 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2355 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2356 break;
2357
2358 case 'u':
2359 XEXP (copy, i) = XEXP (orig, i);
2360 break;
2361
2362 case 'E':
2363 case 'V':
2364 XVEC (copy, i) = XVEC (orig, i);
2365 if (XVEC (orig, i) != NULL)
2366 {
2367 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2368 for (j = 0; j < XVECLEN (copy, i); j++)
2369 XVECEXP (copy, i, j)
2370 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2371 }
2372 break;
2373
2374 case 'w':
2375 XWINT (copy, i) = XWINT (orig, i);
2376 break;
2377
2378 case 'n':
2379 case 'i':
2380 XINT (copy, i) = XINT (orig, i);
2381 break;
2382
2383 case 't':
2384 XTREE (copy, i) = XTREE (orig, i);
2385 break;
2386
2387 case 's':
2388 case 'S':
2389 XSTR (copy, i) = XSTR (orig, i);
2390 break;
2391
2392 case '0':
2393 X0ANY (copy, i) = X0ANY (orig, i);
2394 break;
2395
2396 default:
2397 abort ();
2398 }
2399 }
2400 return copy;
2401 }
2402
2403 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2404 Recursively does the same for subexpressions. Uses
2405 copy_rtx_if_shared_1 to reduce stack space. */
2406
2407 rtx
2408 copy_rtx_if_shared (rtx orig)
2409 {
2410 copy_rtx_if_shared_1 (&orig);
2411 return orig;
2412 }
2413
2414 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2415 use. Recursively does the same for subexpressions. */
2416
2417 static void
2418 copy_rtx_if_shared_1 (rtx *orig1)
2419 {
2420 rtx x;
2421 int i;
2422 enum rtx_code code;
2423 rtx *last_ptr;
2424 const char *format_ptr;
2425 int copied = 0;
2426 int length;
2427
2428 /* Repeat is used to turn tail-recursion into iteration. */
2429 repeat:
2430 x = *orig1;
2431
2432 if (x == 0)
2433 return;
2434
2435 code = GET_CODE (x);
2436
2437 /* These types may be freely shared. */
2438
2439 switch (code)
2440 {
2441 case REG:
2442 case QUEUED:
2443 case CONST_INT:
2444 case CONST_DOUBLE:
2445 case CONST_VECTOR:
2446 case SYMBOL_REF:
2447 case LABEL_REF:
2448 case CODE_LABEL:
2449 case PC:
2450 case CC0:
2451 case SCRATCH:
2452 /* SCRATCH must be shared because they represent distinct values. */
2453 return;
2454 case CLOBBER:
2455 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2456 return;
2457 break;
2458
2459 case CONST:
2460 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2461 a LABEL_REF, it isn't sharable. */
2462 if (GET_CODE (XEXP (x, 0)) == PLUS
2463 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2464 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2465 return;
2466 break;
2467
2468 case INSN:
2469 case JUMP_INSN:
2470 case CALL_INSN:
2471 case NOTE:
2472 case BARRIER:
2473 /* The chain of insns is not being copied. */
2474 return;
2475
2476 default:
2477 break;
2478 }
2479
2480 /* This rtx may not be shared. If it has already been seen,
2481 replace it with a copy of itself. */
2482
2483 if (RTX_FLAG (x, used))
2484 {
2485 rtx copy;
2486
2487 copy = rtx_alloc (code);
2488 memcpy (copy, x, RTX_SIZE (code));
2489 x = copy;
2490 copied = 1;
2491 }
2492 RTX_FLAG (x, used) = 1;
2493
2494 /* Now scan the subexpressions recursively.
2495 We can store any replaced subexpressions directly into X
2496 since we know X is not shared! Any vectors in X
2497 must be copied if X was copied. */
2498
2499 format_ptr = GET_RTX_FORMAT (code);
2500 length = GET_RTX_LENGTH (code);
2501 last_ptr = NULL;
2502
2503 for (i = 0; i < length; i++)
2504 {
2505 switch (*format_ptr++)
2506 {
2507 case 'e':
2508 if (last_ptr)
2509 copy_rtx_if_shared_1 (last_ptr);
2510 last_ptr = &XEXP (x, i);
2511 break;
2512
2513 case 'E':
2514 if (XVEC (x, i) != NULL)
2515 {
2516 int j;
2517 int len = XVECLEN (x, i);
2518
2519 /* Copy the vector iff I copied the rtx and the length
2520 is nonzero. */
2521 if (copied && len > 0)
2522 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2523
2524 /* Call recursively on all inside the vector. */
2525 for (j = 0; j < len; j++)
2526 {
2527 if (last_ptr)
2528 copy_rtx_if_shared_1 (last_ptr);
2529 last_ptr = &XVECEXP (x, i, j);
2530 }
2531 }
2532 break;
2533 }
2534 }
2535 *orig1 = x;
2536 if (last_ptr)
2537 {
2538 orig1 = last_ptr;
2539 goto repeat;
2540 }
2541 return;
2542 }
2543
2544 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2545 to look for shared sub-parts. */
2546
2547 void
2548 reset_used_flags (rtx x)
2549 {
2550 int i, j;
2551 enum rtx_code code;
2552 const char *format_ptr;
2553 int length;
2554
2555 /* Repeat is used to turn tail-recursion into iteration. */
2556 repeat:
2557 if (x == 0)
2558 return;
2559
2560 code = GET_CODE (x);
2561
2562 /* These types may be freely shared so we needn't do any resetting
2563 for them. */
2564
2565 switch (code)
2566 {
2567 case REG:
2568 case QUEUED:
2569 case CONST_INT:
2570 case CONST_DOUBLE:
2571 case CONST_VECTOR:
2572 case SYMBOL_REF:
2573 case CODE_LABEL:
2574 case PC:
2575 case CC0:
2576 return;
2577
2578 case INSN:
2579 case JUMP_INSN:
2580 case CALL_INSN:
2581 case NOTE:
2582 case LABEL_REF:
2583 case BARRIER:
2584 /* The chain of insns is not being copied. */
2585 return;
2586
2587 default:
2588 break;
2589 }
2590
2591 RTX_FLAG (x, used) = 0;
2592
2593 format_ptr = GET_RTX_FORMAT (code);
2594 length = GET_RTX_LENGTH (code);
2595
2596 for (i = 0; i < length; i++)
2597 {
2598 switch (*format_ptr++)
2599 {
2600 case 'e':
2601 if (i == length-1)
2602 {
2603 x = XEXP (x, i);
2604 goto repeat;
2605 }
2606 reset_used_flags (XEXP (x, i));
2607 break;
2608
2609 case 'E':
2610 for (j = 0; j < XVECLEN (x, i); j++)
2611 reset_used_flags (XVECEXP (x, i, j));
2612 break;
2613 }
2614 }
2615 }
2616
2617 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2618 to look for shared sub-parts. */
2619
2620 void
2621 set_used_flags (rtx x)
2622 {
2623 int i, j;
2624 enum rtx_code code;
2625 const char *format_ptr;
2626
2627 if (x == 0)
2628 return;
2629
2630 code = GET_CODE (x);
2631
2632 /* These types may be freely shared so we needn't do any resetting
2633 for them. */
2634
2635 switch (code)
2636 {
2637 case REG:
2638 case QUEUED:
2639 case CONST_INT:
2640 case CONST_DOUBLE:
2641 case CONST_VECTOR:
2642 case SYMBOL_REF:
2643 case CODE_LABEL:
2644 case PC:
2645 case CC0:
2646 return;
2647
2648 case INSN:
2649 case JUMP_INSN:
2650 case CALL_INSN:
2651 case NOTE:
2652 case LABEL_REF:
2653 case BARRIER:
2654 /* The chain of insns is not being copied. */
2655 return;
2656
2657 default:
2658 break;
2659 }
2660
2661 RTX_FLAG (x, used) = 1;
2662
2663 format_ptr = GET_RTX_FORMAT (code);
2664 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2665 {
2666 switch (*format_ptr++)
2667 {
2668 case 'e':
2669 set_used_flags (XEXP (x, i));
2670 break;
2671
2672 case 'E':
2673 for (j = 0; j < XVECLEN (x, i); j++)
2674 set_used_flags (XVECEXP (x, i, j));
2675 break;
2676 }
2677 }
2678 }
2679 \f
2680 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2681 Return X or the rtx for the pseudo reg the value of X was copied into.
2682 OTHER must be valid as a SET_DEST. */
2683
2684 rtx
2685 make_safe_from (rtx x, rtx other)
2686 {
2687 while (1)
2688 switch (GET_CODE (other))
2689 {
2690 case SUBREG:
2691 other = SUBREG_REG (other);
2692 break;
2693 case STRICT_LOW_PART:
2694 case SIGN_EXTEND:
2695 case ZERO_EXTEND:
2696 other = XEXP (other, 0);
2697 break;
2698 default:
2699 goto done;
2700 }
2701 done:
2702 if ((GET_CODE (other) == MEM
2703 && ! CONSTANT_P (x)
2704 && GET_CODE (x) != REG
2705 && GET_CODE (x) != SUBREG)
2706 || (GET_CODE (other) == REG
2707 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2708 || reg_mentioned_p (other, x))))
2709 {
2710 rtx temp = gen_reg_rtx (GET_MODE (x));
2711 emit_move_insn (temp, x);
2712 return temp;
2713 }
2714 return x;
2715 }
2716 \f
2717 /* Emission of insns (adding them to the doubly-linked list). */
2718
2719 /* Return the first insn of the current sequence or current function. */
2720
2721 rtx
2722 get_insns (void)
2723 {
2724 return first_insn;
2725 }
2726
2727 /* Specify a new insn as the first in the chain. */
2728
2729 void
2730 set_first_insn (rtx insn)
2731 {
2732 if (PREV_INSN (insn) != 0)
2733 abort ();
2734 first_insn = insn;
2735 }
2736
2737 /* Return the last insn emitted in current sequence or current function. */
2738
2739 rtx
2740 get_last_insn (void)
2741 {
2742 return last_insn;
2743 }
2744
2745 /* Specify a new insn as the last in the chain. */
2746
2747 void
2748 set_last_insn (rtx insn)
2749 {
2750 if (NEXT_INSN (insn) != 0)
2751 abort ();
2752 last_insn = insn;
2753 }
2754
2755 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2756
2757 rtx
2758 get_last_insn_anywhere (void)
2759 {
2760 struct sequence_stack *stack;
2761 if (last_insn)
2762 return last_insn;
2763 for (stack = seq_stack; stack; stack = stack->next)
2764 if (stack->last != 0)
2765 return stack->last;
2766 return 0;
2767 }
2768
2769 /* Return the first nonnote insn emitted in current sequence or current
2770 function. This routine looks inside SEQUENCEs. */
2771
2772 rtx
2773 get_first_nonnote_insn (void)
2774 {
2775 rtx insn = first_insn;
2776
2777 while (insn)
2778 {
2779 insn = next_insn (insn);
2780 if (insn == 0 || GET_CODE (insn) != NOTE)
2781 break;
2782 }
2783
2784 return insn;
2785 }
2786
2787 /* Return the last nonnote insn emitted in current sequence or current
2788 function. This routine looks inside SEQUENCEs. */
2789
2790 rtx
2791 get_last_nonnote_insn (void)
2792 {
2793 rtx insn = last_insn;
2794
2795 while (insn)
2796 {
2797 insn = previous_insn (insn);
2798 if (insn == 0 || GET_CODE (insn) != NOTE)
2799 break;
2800 }
2801
2802 return insn;
2803 }
2804
2805 /* Return a number larger than any instruction's uid in this function. */
2806
2807 int
2808 get_max_uid (void)
2809 {
2810 return cur_insn_uid;
2811 }
2812
2813 /* Renumber instructions so that no instruction UIDs are wasted. */
2814
2815 void
2816 renumber_insns (FILE *stream)
2817 {
2818 rtx insn;
2819
2820 /* If we're not supposed to renumber instructions, don't. */
2821 if (!flag_renumber_insns)
2822 return;
2823
2824 /* If there aren't that many instructions, then it's not really
2825 worth renumbering them. */
2826 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2827 return;
2828
2829 cur_insn_uid = 1;
2830
2831 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2832 {
2833 if (stream)
2834 fprintf (stream, "Renumbering insn %d to %d\n",
2835 INSN_UID (insn), cur_insn_uid);
2836 INSN_UID (insn) = cur_insn_uid++;
2837 }
2838 }
2839 \f
2840 /* Return the next insn. If it is a SEQUENCE, return the first insn
2841 of the sequence. */
2842
2843 rtx
2844 next_insn (rtx insn)
2845 {
2846 if (insn)
2847 {
2848 insn = NEXT_INSN (insn);
2849 if (insn && GET_CODE (insn) == INSN
2850 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2851 insn = XVECEXP (PATTERN (insn), 0, 0);
2852 }
2853
2854 return insn;
2855 }
2856
2857 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2858 of the sequence. */
2859
2860 rtx
2861 previous_insn (rtx insn)
2862 {
2863 if (insn)
2864 {
2865 insn = PREV_INSN (insn);
2866 if (insn && GET_CODE (insn) == INSN
2867 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2868 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2869 }
2870
2871 return insn;
2872 }
2873
2874 /* Return the next insn after INSN that is not a NOTE. This routine does not
2875 look inside SEQUENCEs. */
2876
2877 rtx
2878 next_nonnote_insn (rtx insn)
2879 {
2880 while (insn)
2881 {
2882 insn = NEXT_INSN (insn);
2883 if (insn == 0 || GET_CODE (insn) != NOTE)
2884 break;
2885 }
2886
2887 return insn;
2888 }
2889
2890 /* Return the previous insn before INSN that is not a NOTE. This routine does
2891 not look inside SEQUENCEs. */
2892
2893 rtx
2894 prev_nonnote_insn (rtx insn)
2895 {
2896 while (insn)
2897 {
2898 insn = PREV_INSN (insn);
2899 if (insn == 0 || GET_CODE (insn) != NOTE)
2900 break;
2901 }
2902
2903 return insn;
2904 }
2905
2906 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2907 or 0, if there is none. This routine does not look inside
2908 SEQUENCEs. */
2909
2910 rtx
2911 next_real_insn (rtx insn)
2912 {
2913 while (insn)
2914 {
2915 insn = NEXT_INSN (insn);
2916 if (insn == 0 || GET_CODE (insn) == INSN
2917 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2918 break;
2919 }
2920
2921 return insn;
2922 }
2923
2924 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2925 or 0, if there is none. This routine does not look inside
2926 SEQUENCEs. */
2927
2928 rtx
2929 prev_real_insn (rtx insn)
2930 {
2931 while (insn)
2932 {
2933 insn = PREV_INSN (insn);
2934 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2935 || GET_CODE (insn) == JUMP_INSN)
2936 break;
2937 }
2938
2939 return insn;
2940 }
2941
2942 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2943 This routine does not look inside SEQUENCEs. */
2944
2945 rtx
2946 last_call_insn (void)
2947 {
2948 rtx insn;
2949
2950 for (insn = get_last_insn ();
2951 insn && GET_CODE (insn) != CALL_INSN;
2952 insn = PREV_INSN (insn))
2953 ;
2954
2955 return insn;
2956 }
2957
2958 /* Find the next insn after INSN that really does something. This routine
2959 does not look inside SEQUENCEs. Until reload has completed, this is the
2960 same as next_real_insn. */
2961
2962 int
2963 active_insn_p (rtx insn)
2964 {
2965 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2966 || (GET_CODE (insn) == INSN
2967 && (! reload_completed
2968 || (GET_CODE (PATTERN (insn)) != USE
2969 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2970 }
2971
2972 rtx
2973 next_active_insn (rtx insn)
2974 {
2975 while (insn)
2976 {
2977 insn = NEXT_INSN (insn);
2978 if (insn == 0 || active_insn_p (insn))
2979 break;
2980 }
2981
2982 return insn;
2983 }
2984
2985 /* Find the last insn before INSN that really does something. This routine
2986 does not look inside SEQUENCEs. Until reload has completed, this is the
2987 same as prev_real_insn. */
2988
2989 rtx
2990 prev_active_insn (rtx insn)
2991 {
2992 while (insn)
2993 {
2994 insn = PREV_INSN (insn);
2995 if (insn == 0 || active_insn_p (insn))
2996 break;
2997 }
2998
2999 return insn;
3000 }
3001
3002 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3003
3004 rtx
3005 next_label (rtx insn)
3006 {
3007 while (insn)
3008 {
3009 insn = NEXT_INSN (insn);
3010 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3011 break;
3012 }
3013
3014 return insn;
3015 }
3016
3017 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3018
3019 rtx
3020 prev_label (rtx insn)
3021 {
3022 while (insn)
3023 {
3024 insn = PREV_INSN (insn);
3025 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3026 break;
3027 }
3028
3029 return insn;
3030 }
3031 \f
3032 #ifdef HAVE_cc0
3033 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3034 and REG_CC_USER notes so we can find it. */
3035
3036 void
3037 link_cc0_insns (rtx insn)
3038 {
3039 rtx user = next_nonnote_insn (insn);
3040
3041 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3042 user = XVECEXP (PATTERN (user), 0, 0);
3043
3044 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3045 REG_NOTES (user));
3046 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3047 }
3048
3049 /* Return the next insn that uses CC0 after INSN, which is assumed to
3050 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3051 applied to the result of this function should yield INSN).
3052
3053 Normally, this is simply the next insn. However, if a REG_CC_USER note
3054 is present, it contains the insn that uses CC0.
3055
3056 Return 0 if we can't find the insn. */
3057
3058 rtx
3059 next_cc0_user (rtx insn)
3060 {
3061 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3062
3063 if (note)
3064 return XEXP (note, 0);
3065
3066 insn = next_nonnote_insn (insn);
3067 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3068 insn = XVECEXP (PATTERN (insn), 0, 0);
3069
3070 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3071 return insn;
3072
3073 return 0;
3074 }
3075
3076 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3077 note, it is the previous insn. */
3078
3079 rtx
3080 prev_cc0_setter (rtx insn)
3081 {
3082 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3083
3084 if (note)
3085 return XEXP (note, 0);
3086
3087 insn = prev_nonnote_insn (insn);
3088 if (! sets_cc0_p (PATTERN (insn)))
3089 abort ();
3090
3091 return insn;
3092 }
3093 #endif
3094
3095 /* Increment the label uses for all labels present in rtx. */
3096
3097 static void
3098 mark_label_nuses (rtx x)
3099 {
3100 enum rtx_code code;
3101 int i, j;
3102 const char *fmt;
3103
3104 code = GET_CODE (x);
3105 if (code == LABEL_REF)
3106 LABEL_NUSES (XEXP (x, 0))++;
3107
3108 fmt = GET_RTX_FORMAT (code);
3109 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3110 {
3111 if (fmt[i] == 'e')
3112 mark_label_nuses (XEXP (x, i));
3113 else if (fmt[i] == 'E')
3114 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3115 mark_label_nuses (XVECEXP (x, i, j));
3116 }
3117 }
3118
3119 \f
3120 /* Try splitting insns that can be split for better scheduling.
3121 PAT is the pattern which might split.
3122 TRIAL is the insn providing PAT.
3123 LAST is nonzero if we should return the last insn of the sequence produced.
3124
3125 If this routine succeeds in splitting, it returns the first or last
3126 replacement insn depending on the value of LAST. Otherwise, it
3127 returns TRIAL. If the insn to be returned can be split, it will be. */
3128
3129 rtx
3130 try_split (rtx pat, rtx trial, int last)
3131 {
3132 rtx before = PREV_INSN (trial);
3133 rtx after = NEXT_INSN (trial);
3134 int has_barrier = 0;
3135 rtx tem;
3136 rtx note, seq;
3137 int probability;
3138 rtx insn_last, insn;
3139 int njumps = 0;
3140
3141 if (any_condjump_p (trial)
3142 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3143 split_branch_probability = INTVAL (XEXP (note, 0));
3144 probability = split_branch_probability;
3145
3146 seq = split_insns (pat, trial);
3147
3148 split_branch_probability = -1;
3149
3150 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3151 We may need to handle this specially. */
3152 if (after && GET_CODE (after) == BARRIER)
3153 {
3154 has_barrier = 1;
3155 after = NEXT_INSN (after);
3156 }
3157
3158 if (!seq)
3159 return trial;
3160
3161 /* Avoid infinite loop if any insn of the result matches
3162 the original pattern. */
3163 insn_last = seq;
3164 while (1)
3165 {
3166 if (INSN_P (insn_last)
3167 && rtx_equal_p (PATTERN (insn_last), pat))
3168 return trial;
3169 if (!NEXT_INSN (insn_last))
3170 break;
3171 insn_last = NEXT_INSN (insn_last);
3172 }
3173
3174 /* Mark labels. */
3175 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3176 {
3177 if (GET_CODE (insn) == JUMP_INSN)
3178 {
3179 mark_jump_label (PATTERN (insn), insn, 0);
3180 njumps++;
3181 if (probability != -1
3182 && any_condjump_p (insn)
3183 && !find_reg_note (insn, REG_BR_PROB, 0))
3184 {
3185 /* We can preserve the REG_BR_PROB notes only if exactly
3186 one jump is created, otherwise the machine description
3187 is responsible for this step using
3188 split_branch_probability variable. */
3189 if (njumps != 1)
3190 abort ();
3191 REG_NOTES (insn)
3192 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3193 GEN_INT (probability),
3194 REG_NOTES (insn));
3195 }
3196 }
3197 }
3198
3199 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3200 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3201 if (GET_CODE (trial) == CALL_INSN)
3202 {
3203 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3204 if (GET_CODE (insn) == CALL_INSN)
3205 {
3206 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3207 while (*p)
3208 p = &XEXP (*p, 1);
3209 *p = CALL_INSN_FUNCTION_USAGE (trial);
3210 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3211 }
3212 }
3213
3214 /* Copy notes, particularly those related to the CFG. */
3215 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3216 {
3217 switch (REG_NOTE_KIND (note))
3218 {
3219 case REG_EH_REGION:
3220 insn = insn_last;
3221 while (insn != NULL_RTX)
3222 {
3223 if (GET_CODE (insn) == CALL_INSN
3224 || (flag_non_call_exceptions
3225 && may_trap_p (PATTERN (insn))))
3226 REG_NOTES (insn)
3227 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3228 XEXP (note, 0),
3229 REG_NOTES (insn));
3230 insn = PREV_INSN (insn);
3231 }
3232 break;
3233
3234 case REG_NORETURN:
3235 case REG_SETJMP:
3236 case REG_ALWAYS_RETURN:
3237 insn = insn_last;
3238 while (insn != NULL_RTX)
3239 {
3240 if (GET_CODE (insn) == CALL_INSN)
3241 REG_NOTES (insn)
3242 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3243 XEXP (note, 0),
3244 REG_NOTES (insn));
3245 insn = PREV_INSN (insn);
3246 }
3247 break;
3248
3249 case REG_NON_LOCAL_GOTO:
3250 insn = insn_last;
3251 while (insn != NULL_RTX)
3252 {
3253 if (GET_CODE (insn) == JUMP_INSN)
3254 REG_NOTES (insn)
3255 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3256 XEXP (note, 0),
3257 REG_NOTES (insn));
3258 insn = PREV_INSN (insn);
3259 }
3260 break;
3261
3262 default:
3263 break;
3264 }
3265 }
3266
3267 /* If there are LABELS inside the split insns increment the
3268 usage count so we don't delete the label. */
3269 if (GET_CODE (trial) == INSN)
3270 {
3271 insn = insn_last;
3272 while (insn != NULL_RTX)
3273 {
3274 if (GET_CODE (insn) == INSN)
3275 mark_label_nuses (PATTERN (insn));
3276
3277 insn = PREV_INSN (insn);
3278 }
3279 }
3280
3281 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3282
3283 delete_insn (trial);
3284 if (has_barrier)
3285 emit_barrier_after (tem);
3286
3287 /* Recursively call try_split for each new insn created; by the
3288 time control returns here that insn will be fully split, so
3289 set LAST and continue from the insn after the one returned.
3290 We can't use next_active_insn here since AFTER may be a note.
3291 Ignore deleted insns, which can be occur if not optimizing. */
3292 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3293 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3294 tem = try_split (PATTERN (tem), tem, 1);
3295
3296 /* Return either the first or the last insn, depending on which was
3297 requested. */
3298 return last
3299 ? (after ? PREV_INSN (after) : last_insn)
3300 : NEXT_INSN (before);
3301 }
3302 \f
3303 /* Make and return an INSN rtx, initializing all its slots.
3304 Store PATTERN in the pattern slots. */
3305
3306 rtx
3307 make_insn_raw (rtx pattern)
3308 {
3309 rtx insn;
3310
3311 insn = rtx_alloc (INSN);
3312
3313 INSN_UID (insn) = cur_insn_uid++;
3314 PATTERN (insn) = pattern;
3315 INSN_CODE (insn) = -1;
3316 LOG_LINKS (insn) = NULL;
3317 REG_NOTES (insn) = NULL;
3318 INSN_LOCATOR (insn) = 0;
3319 BLOCK_FOR_INSN (insn) = NULL;
3320
3321 #ifdef ENABLE_RTL_CHECKING
3322 if (insn
3323 && INSN_P (insn)
3324 && (returnjump_p (insn)
3325 || (GET_CODE (insn) == SET
3326 && SET_DEST (insn) == pc_rtx)))
3327 {
3328 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3329 debug_rtx (insn);
3330 }
3331 #endif
3332
3333 return insn;
3334 }
3335
3336 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3337
3338 static rtx
3339 make_jump_insn_raw (rtx pattern)
3340 {
3341 rtx insn;
3342
3343 insn = rtx_alloc (JUMP_INSN);
3344 INSN_UID (insn) = cur_insn_uid++;
3345
3346 PATTERN (insn) = pattern;
3347 INSN_CODE (insn) = -1;
3348 LOG_LINKS (insn) = NULL;
3349 REG_NOTES (insn) = NULL;
3350 JUMP_LABEL (insn) = NULL;
3351 INSN_LOCATOR (insn) = 0;
3352 BLOCK_FOR_INSN (insn) = NULL;
3353
3354 return insn;
3355 }
3356
3357 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3358
3359 static rtx
3360 make_call_insn_raw (rtx pattern)
3361 {
3362 rtx insn;
3363
3364 insn = rtx_alloc (CALL_INSN);
3365 INSN_UID (insn) = cur_insn_uid++;
3366
3367 PATTERN (insn) = pattern;
3368 INSN_CODE (insn) = -1;
3369 LOG_LINKS (insn) = NULL;
3370 REG_NOTES (insn) = NULL;
3371 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3372 INSN_LOCATOR (insn) = 0;
3373 BLOCK_FOR_INSN (insn) = NULL;
3374
3375 return insn;
3376 }
3377 \f
3378 /* Add INSN to the end of the doubly-linked list.
3379 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3380
3381 void
3382 add_insn (rtx insn)
3383 {
3384 PREV_INSN (insn) = last_insn;
3385 NEXT_INSN (insn) = 0;
3386
3387 if (NULL != last_insn)
3388 NEXT_INSN (last_insn) = insn;
3389
3390 if (NULL == first_insn)
3391 first_insn = insn;
3392
3393 last_insn = insn;
3394 }
3395
3396 /* Add INSN into the doubly-linked list after insn AFTER. This and
3397 the next should be the only functions called to insert an insn once
3398 delay slots have been filled since only they know how to update a
3399 SEQUENCE. */
3400
3401 void
3402 add_insn_after (rtx insn, rtx after)
3403 {
3404 rtx next = NEXT_INSN (after);
3405 basic_block bb;
3406
3407 if (optimize && INSN_DELETED_P (after))
3408 abort ();
3409
3410 NEXT_INSN (insn) = next;
3411 PREV_INSN (insn) = after;
3412
3413 if (next)
3414 {
3415 PREV_INSN (next) = insn;
3416 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3417 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3418 }
3419 else if (last_insn == after)
3420 last_insn = insn;
3421 else
3422 {
3423 struct sequence_stack *stack = seq_stack;
3424 /* Scan all pending sequences too. */
3425 for (; stack; stack = stack->next)
3426 if (after == stack->last)
3427 {
3428 stack->last = insn;
3429 break;
3430 }
3431
3432 if (stack == 0)
3433 abort ();
3434 }
3435
3436 if (GET_CODE (after) != BARRIER
3437 && GET_CODE (insn) != BARRIER
3438 && (bb = BLOCK_FOR_INSN (after)))
3439 {
3440 set_block_for_insn (insn, bb);
3441 if (INSN_P (insn))
3442 bb->flags |= BB_DIRTY;
3443 /* Should not happen as first in the BB is always
3444 either NOTE or LABEL. */
3445 if (BB_END (bb) == after
3446 /* Avoid clobbering of structure when creating new BB. */
3447 && GET_CODE (insn) != BARRIER
3448 && (GET_CODE (insn) != NOTE
3449 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3450 BB_END (bb) = insn;
3451 }
3452
3453 NEXT_INSN (after) = insn;
3454 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3455 {
3456 rtx sequence = PATTERN (after);
3457 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3458 }
3459 }
3460
3461 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3462 the previous should be the only functions called to insert an insn once
3463 delay slots have been filled since only they know how to update a
3464 SEQUENCE. */
3465
3466 void
3467 add_insn_before (rtx insn, rtx before)
3468 {
3469 rtx prev = PREV_INSN (before);
3470 basic_block bb;
3471
3472 if (optimize && INSN_DELETED_P (before))
3473 abort ();
3474
3475 PREV_INSN (insn) = prev;
3476 NEXT_INSN (insn) = before;
3477
3478 if (prev)
3479 {
3480 NEXT_INSN (prev) = insn;
3481 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3482 {
3483 rtx sequence = PATTERN (prev);
3484 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3485 }
3486 }
3487 else if (first_insn == before)
3488 first_insn = insn;
3489 else
3490 {
3491 struct sequence_stack *stack = seq_stack;
3492 /* Scan all pending sequences too. */
3493 for (; stack; stack = stack->next)
3494 if (before == stack->first)
3495 {
3496 stack->first = insn;
3497 break;
3498 }
3499
3500 if (stack == 0)
3501 abort ();
3502 }
3503
3504 if (GET_CODE (before) != BARRIER
3505 && GET_CODE (insn) != BARRIER
3506 && (bb = BLOCK_FOR_INSN (before)))
3507 {
3508 set_block_for_insn (insn, bb);
3509 if (INSN_P (insn))
3510 bb->flags |= BB_DIRTY;
3511 /* Should not happen as first in the BB is always
3512 either NOTE or LABEl. */
3513 if (BB_HEAD (bb) == insn
3514 /* Avoid clobbering of structure when creating new BB. */
3515 && GET_CODE (insn) != BARRIER
3516 && (GET_CODE (insn) != NOTE
3517 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3518 abort ();
3519 }
3520
3521 PREV_INSN (before) = insn;
3522 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3523 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3524 }
3525
3526 /* Remove an insn from its doubly-linked list. This function knows how
3527 to handle sequences. */
3528 void
3529 remove_insn (rtx insn)
3530 {
3531 rtx next = NEXT_INSN (insn);
3532 rtx prev = PREV_INSN (insn);
3533 basic_block bb;
3534
3535 if (prev)
3536 {
3537 NEXT_INSN (prev) = next;
3538 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3539 {
3540 rtx sequence = PATTERN (prev);
3541 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3542 }
3543 }
3544 else if (first_insn == insn)
3545 first_insn = next;
3546 else
3547 {
3548 struct sequence_stack *stack = seq_stack;
3549 /* Scan all pending sequences too. */
3550 for (; stack; stack = stack->next)
3551 if (insn == stack->first)
3552 {
3553 stack->first = next;
3554 break;
3555 }
3556
3557 if (stack == 0)
3558 abort ();
3559 }
3560
3561 if (next)
3562 {
3563 PREV_INSN (next) = prev;
3564 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3565 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3566 }
3567 else if (last_insn == insn)
3568 last_insn = prev;
3569 else
3570 {
3571 struct sequence_stack *stack = seq_stack;
3572 /* Scan all pending sequences too. */
3573 for (; stack; stack = stack->next)
3574 if (insn == stack->last)
3575 {
3576 stack->last = prev;
3577 break;
3578 }
3579
3580 if (stack == 0)
3581 abort ();
3582 }
3583 if (GET_CODE (insn) != BARRIER
3584 && (bb = BLOCK_FOR_INSN (insn)))
3585 {
3586 if (INSN_P (insn))
3587 bb->flags |= BB_DIRTY;
3588 if (BB_HEAD (bb) == insn)
3589 {
3590 /* Never ever delete the basic block note without deleting whole
3591 basic block. */
3592 if (GET_CODE (insn) == NOTE)
3593 abort ();
3594 BB_HEAD (bb) = next;
3595 }
3596 if (BB_END (bb) == insn)
3597 BB_END (bb) = prev;
3598 }
3599 }
3600
3601 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3602
3603 void
3604 add_function_usage_to (rtx call_insn, rtx call_fusage)
3605 {
3606 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3607 abort ();
3608
3609 /* Put the register usage information on the CALL. If there is already
3610 some usage information, put ours at the end. */
3611 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3612 {
3613 rtx link;
3614
3615 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3616 link = XEXP (link, 1))
3617 ;
3618
3619 XEXP (link, 1) = call_fusage;
3620 }
3621 else
3622 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3623 }
3624
3625 /* Delete all insns made since FROM.
3626 FROM becomes the new last instruction. */
3627
3628 void
3629 delete_insns_since (rtx from)
3630 {
3631 if (from == 0)
3632 first_insn = 0;
3633 else
3634 NEXT_INSN (from) = 0;
3635 last_insn = from;
3636 }
3637
3638 /* This function is deprecated, please use sequences instead.
3639
3640 Move a consecutive bunch of insns to a different place in the chain.
3641 The insns to be moved are those between FROM and TO.
3642 They are moved to a new position after the insn AFTER.
3643 AFTER must not be FROM or TO or any insn in between.
3644
3645 This function does not know about SEQUENCEs and hence should not be
3646 called after delay-slot filling has been done. */
3647
3648 void
3649 reorder_insns_nobb (rtx from, rtx to, rtx after)
3650 {
3651 /* Splice this bunch out of where it is now. */
3652 if (PREV_INSN (from))
3653 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3654 if (NEXT_INSN (to))
3655 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3656 if (last_insn == to)
3657 last_insn = PREV_INSN (from);
3658 if (first_insn == from)
3659 first_insn = NEXT_INSN (to);
3660
3661 /* Make the new neighbors point to it and it to them. */
3662 if (NEXT_INSN (after))
3663 PREV_INSN (NEXT_INSN (after)) = to;
3664
3665 NEXT_INSN (to) = NEXT_INSN (after);
3666 PREV_INSN (from) = after;
3667 NEXT_INSN (after) = from;
3668 if (after == last_insn)
3669 last_insn = to;
3670 }
3671
3672 /* Same as function above, but take care to update BB boundaries. */
3673 void
3674 reorder_insns (rtx from, rtx to, rtx after)
3675 {
3676 rtx prev = PREV_INSN (from);
3677 basic_block bb, bb2;
3678
3679 reorder_insns_nobb (from, to, after);
3680
3681 if (GET_CODE (after) != BARRIER
3682 && (bb = BLOCK_FOR_INSN (after)))
3683 {
3684 rtx x;
3685 bb->flags |= BB_DIRTY;
3686
3687 if (GET_CODE (from) != BARRIER
3688 && (bb2 = BLOCK_FOR_INSN (from)))
3689 {
3690 if (BB_END (bb2) == to)
3691 BB_END (bb2) = prev;
3692 bb2->flags |= BB_DIRTY;
3693 }
3694
3695 if (BB_END (bb) == after)
3696 BB_END (bb) = to;
3697
3698 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3699 set_block_for_insn (x, bb);
3700 }
3701 }
3702
3703 /* Return the line note insn preceding INSN. */
3704
3705 static rtx
3706 find_line_note (rtx insn)
3707 {
3708 if (no_line_numbers)
3709 return 0;
3710
3711 for (; insn; insn = PREV_INSN (insn))
3712 if (GET_CODE (insn) == NOTE
3713 && NOTE_LINE_NUMBER (insn) >= 0)
3714 break;
3715
3716 return insn;
3717 }
3718
3719 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3720 of the moved insns when debugging. This may insert a note between AFTER
3721 and FROM, and another one after TO. */
3722
3723 void
3724 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
3725 {
3726 rtx from_line = find_line_note (from);
3727 rtx after_line = find_line_note (after);
3728
3729 reorder_insns (from, to, after);
3730
3731 if (from_line == after_line)
3732 return;
3733
3734 if (from_line)
3735 emit_note_copy_after (from_line, after);
3736 if (after_line)
3737 emit_note_copy_after (after_line, to);
3738 }
3739
3740 /* Remove unnecessary notes from the instruction stream. */
3741
3742 void
3743 remove_unnecessary_notes (void)
3744 {
3745 rtx block_stack = NULL_RTX;
3746 rtx eh_stack = NULL_RTX;
3747 rtx insn;
3748 rtx next;
3749 rtx tmp;
3750
3751 /* We must not remove the first instruction in the function because
3752 the compiler depends on the first instruction being a note. */
3753 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3754 {
3755 /* Remember what's next. */
3756 next = NEXT_INSN (insn);
3757
3758 /* We're only interested in notes. */
3759 if (GET_CODE (insn) != NOTE)
3760 continue;
3761
3762 switch (NOTE_LINE_NUMBER (insn))
3763 {
3764 case NOTE_INSN_DELETED:
3765 case NOTE_INSN_LOOP_END_TOP_COND:
3766 remove_insn (insn);
3767 break;
3768
3769 case NOTE_INSN_EH_REGION_BEG:
3770 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3771 break;
3772
3773 case NOTE_INSN_EH_REGION_END:
3774 /* Too many end notes. */
3775 if (eh_stack == NULL_RTX)
3776 abort ();
3777 /* Mismatched nesting. */
3778 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3779 abort ();
3780 tmp = eh_stack;
3781 eh_stack = XEXP (eh_stack, 1);
3782 free_INSN_LIST_node (tmp);
3783 break;
3784
3785 case NOTE_INSN_BLOCK_BEG:
3786 /* By now, all notes indicating lexical blocks should have
3787 NOTE_BLOCK filled in. */
3788 if (NOTE_BLOCK (insn) == NULL_TREE)
3789 abort ();
3790 block_stack = alloc_INSN_LIST (insn, block_stack);
3791 break;
3792
3793 case NOTE_INSN_BLOCK_END:
3794 /* Too many end notes. */
3795 if (block_stack == NULL_RTX)
3796 abort ();
3797 /* Mismatched nesting. */
3798 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3799 abort ();
3800 tmp = block_stack;
3801 block_stack = XEXP (block_stack, 1);
3802 free_INSN_LIST_node (tmp);
3803
3804 /* Scan back to see if there are any non-note instructions
3805 between INSN and the beginning of this block. If not,
3806 then there is no PC range in the generated code that will
3807 actually be in this block, so there's no point in
3808 remembering the existence of the block. */
3809 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3810 {
3811 /* This block contains a real instruction. Note that we
3812 don't include labels; if the only thing in the block
3813 is a label, then there are still no PC values that
3814 lie within the block. */
3815 if (INSN_P (tmp))
3816 break;
3817
3818 /* We're only interested in NOTEs. */
3819 if (GET_CODE (tmp) != NOTE)
3820 continue;
3821
3822 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3823 {
3824 /* We just verified that this BLOCK matches us with
3825 the block_stack check above. Never delete the
3826 BLOCK for the outermost scope of the function; we
3827 can refer to names from that scope even if the
3828 block notes are messed up. */
3829 if (! is_body_block (NOTE_BLOCK (insn))
3830 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3831 {
3832 remove_insn (tmp);
3833 remove_insn (insn);
3834 }
3835 break;
3836 }
3837 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3838 /* There's a nested block. We need to leave the
3839 current block in place since otherwise the debugger
3840 wouldn't be able to show symbols from our block in
3841 the nested block. */
3842 break;
3843 }
3844 }
3845 }
3846
3847 /* Too many begin notes. */
3848 if (block_stack || eh_stack)
3849 abort ();
3850 }
3851
3852 \f
3853 /* Emit insn(s) of given code and pattern
3854 at a specified place within the doubly-linked list.
3855
3856 All of the emit_foo global entry points accept an object
3857 X which is either an insn list or a PATTERN of a single
3858 instruction.
3859
3860 There are thus a few canonical ways to generate code and
3861 emit it at a specific place in the instruction stream. For
3862 example, consider the instruction named SPOT and the fact that
3863 we would like to emit some instructions before SPOT. We might
3864 do it like this:
3865
3866 start_sequence ();
3867 ... emit the new instructions ...
3868 insns_head = get_insns ();
3869 end_sequence ();
3870
3871 emit_insn_before (insns_head, SPOT);
3872
3873 It used to be common to generate SEQUENCE rtl instead, but that
3874 is a relic of the past which no longer occurs. The reason is that
3875 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3876 generated would almost certainly die right after it was created. */
3877
3878 /* Make X be output before the instruction BEFORE. */
3879
3880 rtx
3881 emit_insn_before (rtx x, rtx before)
3882 {
3883 rtx last = before;
3884 rtx insn;
3885
3886 #ifdef ENABLE_RTL_CHECKING
3887 if (before == NULL_RTX)
3888 abort ();
3889 #endif
3890
3891 if (x == NULL_RTX)
3892 return last;
3893
3894 switch (GET_CODE (x))
3895 {
3896 case INSN:
3897 case JUMP_INSN:
3898 case CALL_INSN:
3899 case CODE_LABEL:
3900 case BARRIER:
3901 case NOTE:
3902 insn = x;
3903 while (insn)
3904 {
3905 rtx next = NEXT_INSN (insn);
3906 add_insn_before (insn, before);
3907 last = insn;
3908 insn = next;
3909 }
3910 break;
3911
3912 #ifdef ENABLE_RTL_CHECKING
3913 case SEQUENCE:
3914 abort ();
3915 break;
3916 #endif
3917
3918 default:
3919 last = make_insn_raw (x);
3920 add_insn_before (last, before);
3921 break;
3922 }
3923
3924 return last;
3925 }
3926
3927 /* Make an instruction with body X and code JUMP_INSN
3928 and output it before the instruction BEFORE. */
3929
3930 rtx
3931 emit_jump_insn_before (rtx x, rtx before)
3932 {
3933 rtx insn, last = NULL_RTX;
3934
3935 #ifdef ENABLE_RTL_CHECKING
3936 if (before == NULL_RTX)
3937 abort ();
3938 #endif
3939
3940 switch (GET_CODE (x))
3941 {
3942 case INSN:
3943 case JUMP_INSN:
3944 case CALL_INSN:
3945 case CODE_LABEL:
3946 case BARRIER:
3947 case NOTE:
3948 insn = x;
3949 while (insn)
3950 {
3951 rtx next = NEXT_INSN (insn);
3952 add_insn_before (insn, before);
3953 last = insn;
3954 insn = next;
3955 }
3956 break;
3957
3958 #ifdef ENABLE_RTL_CHECKING
3959 case SEQUENCE:
3960 abort ();
3961 break;
3962 #endif
3963
3964 default:
3965 last = make_jump_insn_raw (x);
3966 add_insn_before (last, before);
3967 break;
3968 }
3969
3970 return last;
3971 }
3972
3973 /* Make an instruction with body X and code CALL_INSN
3974 and output it before the instruction BEFORE. */
3975
3976 rtx
3977 emit_call_insn_before (rtx x, rtx before)
3978 {
3979 rtx last = NULL_RTX, insn;
3980
3981 #ifdef ENABLE_RTL_CHECKING
3982 if (before == NULL_RTX)
3983 abort ();
3984 #endif
3985
3986 switch (GET_CODE (x))
3987 {
3988 case INSN:
3989 case JUMP_INSN:
3990 case CALL_INSN:
3991 case CODE_LABEL:
3992 case BARRIER:
3993 case NOTE:
3994 insn = x;
3995 while (insn)
3996 {
3997 rtx next = NEXT_INSN (insn);
3998 add_insn_before (insn, before);
3999 last = insn;
4000 insn = next;
4001 }
4002 break;
4003
4004 #ifdef ENABLE_RTL_CHECKING
4005 case SEQUENCE:
4006 abort ();
4007 break;
4008 #endif
4009
4010 default:
4011 last = make_call_insn_raw (x);
4012 add_insn_before (last, before);
4013 break;
4014 }
4015
4016 return last;
4017 }
4018
4019 /* Make an insn of code BARRIER
4020 and output it before the insn BEFORE. */
4021
4022 rtx
4023 emit_barrier_before (rtx before)
4024 {
4025 rtx insn = rtx_alloc (BARRIER);
4026
4027 INSN_UID (insn) = cur_insn_uid++;
4028
4029 add_insn_before (insn, before);
4030 return insn;
4031 }
4032
4033 /* Emit the label LABEL before the insn BEFORE. */
4034
4035 rtx
4036 emit_label_before (rtx label, rtx before)
4037 {
4038 /* This can be called twice for the same label as a result of the
4039 confusion that follows a syntax error! So make it harmless. */
4040 if (INSN_UID (label) == 0)
4041 {
4042 INSN_UID (label) = cur_insn_uid++;
4043 add_insn_before (label, before);
4044 }
4045
4046 return label;
4047 }
4048
4049 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4050
4051 rtx
4052 emit_note_before (int subtype, rtx before)
4053 {
4054 rtx note = rtx_alloc (NOTE);
4055 INSN_UID (note) = cur_insn_uid++;
4056 NOTE_SOURCE_FILE (note) = 0;
4057 NOTE_LINE_NUMBER (note) = subtype;
4058 BLOCK_FOR_INSN (note) = NULL;
4059
4060 add_insn_before (note, before);
4061 return note;
4062 }
4063 \f
4064 /* Helper for emit_insn_after, handles lists of instructions
4065 efficiently. */
4066
4067 static rtx emit_insn_after_1 (rtx, rtx);
4068
4069 static rtx
4070 emit_insn_after_1 (rtx first, rtx after)
4071 {
4072 rtx last;
4073 rtx after_after;
4074 basic_block bb;
4075
4076 if (GET_CODE (after) != BARRIER
4077 && (bb = BLOCK_FOR_INSN (after)))
4078 {
4079 bb->flags |= BB_DIRTY;
4080 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4081 if (GET_CODE (last) != BARRIER)
4082 set_block_for_insn (last, bb);
4083 if (GET_CODE (last) != BARRIER)
4084 set_block_for_insn (last, bb);
4085 if (BB_END (bb) == after)
4086 BB_END (bb) = last;
4087 }
4088 else
4089 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4090 continue;
4091
4092 after_after = NEXT_INSN (after);
4093
4094 NEXT_INSN (after) = first;
4095 PREV_INSN (first) = after;
4096 NEXT_INSN (last) = after_after;
4097 if (after_after)
4098 PREV_INSN (after_after) = last;
4099
4100 if (after == last_insn)
4101 last_insn = last;
4102 return last;
4103 }
4104
4105 /* Make X be output after the insn AFTER. */
4106
4107 rtx
4108 emit_insn_after (rtx x, rtx after)
4109 {
4110 rtx last = after;
4111
4112 #ifdef ENABLE_RTL_CHECKING
4113 if (after == NULL_RTX)
4114 abort ();
4115 #endif
4116
4117 if (x == NULL_RTX)
4118 return last;
4119
4120 switch (GET_CODE (x))
4121 {
4122 case INSN:
4123 case JUMP_INSN:
4124 case CALL_INSN:
4125 case CODE_LABEL:
4126 case BARRIER:
4127 case NOTE:
4128 last = emit_insn_after_1 (x, after);
4129 break;
4130
4131 #ifdef ENABLE_RTL_CHECKING
4132 case SEQUENCE:
4133 abort ();
4134 break;
4135 #endif
4136
4137 default:
4138 last = make_insn_raw (x);
4139 add_insn_after (last, after);
4140 break;
4141 }
4142
4143 return last;
4144 }
4145
4146 /* Similar to emit_insn_after, except that line notes are to be inserted so
4147 as to act as if this insn were at FROM. */
4148
4149 void
4150 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4151 {
4152 rtx from_line = find_line_note (from);
4153 rtx after_line = find_line_note (after);
4154 rtx insn = emit_insn_after (x, after);
4155
4156 if (from_line)
4157 emit_note_copy_after (from_line, after);
4158
4159 if (after_line)
4160 emit_note_copy_after (after_line, insn);
4161 }
4162
4163 /* Make an insn of code JUMP_INSN with body X
4164 and output it after the insn AFTER. */
4165
4166 rtx
4167 emit_jump_insn_after (rtx x, rtx after)
4168 {
4169 rtx last;
4170
4171 #ifdef ENABLE_RTL_CHECKING
4172 if (after == NULL_RTX)
4173 abort ();
4174 #endif
4175
4176 switch (GET_CODE (x))
4177 {
4178 case INSN:
4179 case JUMP_INSN:
4180 case CALL_INSN:
4181 case CODE_LABEL:
4182 case BARRIER:
4183 case NOTE:
4184 last = emit_insn_after_1 (x, after);
4185 break;
4186
4187 #ifdef ENABLE_RTL_CHECKING
4188 case SEQUENCE:
4189 abort ();
4190 break;
4191 #endif
4192
4193 default:
4194 last = make_jump_insn_raw (x);
4195 add_insn_after (last, after);
4196 break;
4197 }
4198
4199 return last;
4200 }
4201
4202 /* Make an instruction with body X and code CALL_INSN
4203 and output it after the instruction AFTER. */
4204
4205 rtx
4206 emit_call_insn_after (rtx x, rtx after)
4207 {
4208 rtx last;
4209
4210 #ifdef ENABLE_RTL_CHECKING
4211 if (after == NULL_RTX)
4212 abort ();
4213 #endif
4214
4215 switch (GET_CODE (x))
4216 {
4217 case INSN:
4218 case JUMP_INSN:
4219 case CALL_INSN:
4220 case CODE_LABEL:
4221 case BARRIER:
4222 case NOTE:
4223 last = emit_insn_after_1 (x, after);
4224 break;
4225
4226 #ifdef ENABLE_RTL_CHECKING
4227 case SEQUENCE:
4228 abort ();
4229 break;
4230 #endif
4231
4232 default:
4233 last = make_call_insn_raw (x);
4234 add_insn_after (last, after);
4235 break;
4236 }
4237
4238 return last;
4239 }
4240
4241 /* Make an insn of code BARRIER
4242 and output it after the insn AFTER. */
4243
4244 rtx
4245 emit_barrier_after (rtx after)
4246 {
4247 rtx insn = rtx_alloc (BARRIER);
4248
4249 INSN_UID (insn) = cur_insn_uid++;
4250
4251 add_insn_after (insn, after);
4252 return insn;
4253 }
4254
4255 /* Emit the label LABEL after the insn AFTER. */
4256
4257 rtx
4258 emit_label_after (rtx label, rtx after)
4259 {
4260 /* This can be called twice for the same label
4261 as a result of the confusion that follows a syntax error!
4262 So make it harmless. */
4263 if (INSN_UID (label) == 0)
4264 {
4265 INSN_UID (label) = cur_insn_uid++;
4266 add_insn_after (label, after);
4267 }
4268
4269 return label;
4270 }
4271
4272 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4273
4274 rtx
4275 emit_note_after (int subtype, rtx after)
4276 {
4277 rtx note = rtx_alloc (NOTE);
4278 INSN_UID (note) = cur_insn_uid++;
4279 NOTE_SOURCE_FILE (note) = 0;
4280 NOTE_LINE_NUMBER (note) = subtype;
4281 BLOCK_FOR_INSN (note) = NULL;
4282 add_insn_after (note, after);
4283 return note;
4284 }
4285
4286 /* Emit a copy of note ORIG after the insn AFTER. */
4287
4288 rtx
4289 emit_note_copy_after (rtx orig, rtx after)
4290 {
4291 rtx note;
4292
4293 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4294 {
4295 cur_insn_uid++;
4296 return 0;
4297 }
4298
4299 note = rtx_alloc (NOTE);
4300 INSN_UID (note) = cur_insn_uid++;
4301 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4302 NOTE_DATA (note) = NOTE_DATA (orig);
4303 BLOCK_FOR_INSN (note) = NULL;
4304 add_insn_after (note, after);
4305 return note;
4306 }
4307 \f
4308 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4309 rtx
4310 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4311 {
4312 rtx last = emit_insn_after (pattern, after);
4313
4314 if (pattern == NULL_RTX)
4315 return last;
4316
4317 after = NEXT_INSN (after);
4318 while (1)
4319 {
4320 if (active_insn_p (after))
4321 INSN_LOCATOR (after) = loc;
4322 if (after == last)
4323 break;
4324 after = NEXT_INSN (after);
4325 }
4326 return last;
4327 }
4328
4329 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4330 rtx
4331 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4332 {
4333 rtx last = emit_jump_insn_after (pattern, after);
4334
4335 if (pattern == NULL_RTX)
4336 return last;
4337
4338 after = NEXT_INSN (after);
4339 while (1)
4340 {
4341 if (active_insn_p (after))
4342 INSN_LOCATOR (after) = loc;
4343 if (after == last)
4344 break;
4345 after = NEXT_INSN (after);
4346 }
4347 return last;
4348 }
4349
4350 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4351 rtx
4352 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4353 {
4354 rtx last = emit_call_insn_after (pattern, after);
4355
4356 if (pattern == NULL_RTX)
4357 return last;
4358
4359 after = NEXT_INSN (after);
4360 while (1)
4361 {
4362 if (active_insn_p (after))
4363 INSN_LOCATOR (after) = loc;
4364 if (after == last)
4365 break;
4366 after = NEXT_INSN (after);
4367 }
4368 return last;
4369 }
4370
4371 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4372 rtx
4373 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4374 {
4375 rtx first = PREV_INSN (before);
4376 rtx last = emit_insn_before (pattern, before);
4377
4378 if (pattern == NULL_RTX)
4379 return last;
4380
4381 first = NEXT_INSN (first);
4382 while (1)
4383 {
4384 if (active_insn_p (first))
4385 INSN_LOCATOR (first) = loc;
4386 if (first == last)
4387 break;
4388 first = NEXT_INSN (first);
4389 }
4390 return last;
4391 }
4392 \f
4393 /* Take X and emit it at the end of the doubly-linked
4394 INSN list.
4395
4396 Returns the last insn emitted. */
4397
4398 rtx
4399 emit_insn (rtx x)
4400 {
4401 rtx last = last_insn;
4402 rtx insn;
4403
4404 if (x == NULL_RTX)
4405 return last;
4406
4407 switch (GET_CODE (x))
4408 {
4409 case INSN:
4410 case JUMP_INSN:
4411 case CALL_INSN:
4412 case CODE_LABEL:
4413 case BARRIER:
4414 case NOTE:
4415 insn = x;
4416 while (insn)
4417 {
4418 rtx next = NEXT_INSN (insn);
4419 add_insn (insn);
4420 last = insn;
4421 insn = next;
4422 }
4423 break;
4424
4425 #ifdef ENABLE_RTL_CHECKING
4426 case SEQUENCE:
4427 abort ();
4428 break;
4429 #endif
4430
4431 default:
4432 last = make_insn_raw (x);
4433 add_insn (last);
4434 break;
4435 }
4436
4437 return last;
4438 }
4439
4440 /* Make an insn of code JUMP_INSN with pattern X
4441 and add it to the end of the doubly-linked list. */
4442
4443 rtx
4444 emit_jump_insn (rtx x)
4445 {
4446 rtx last = NULL_RTX, insn;
4447
4448 switch (GET_CODE (x))
4449 {
4450 case INSN:
4451 case JUMP_INSN:
4452 case CALL_INSN:
4453 case CODE_LABEL:
4454 case BARRIER:
4455 case NOTE:
4456 insn = x;
4457 while (insn)
4458 {
4459 rtx next = NEXT_INSN (insn);
4460 add_insn (insn);
4461 last = insn;
4462 insn = next;
4463 }
4464 break;
4465
4466 #ifdef ENABLE_RTL_CHECKING
4467 case SEQUENCE:
4468 abort ();
4469 break;
4470 #endif
4471
4472 default:
4473 last = make_jump_insn_raw (x);
4474 add_insn (last);
4475 break;
4476 }
4477
4478 return last;
4479 }
4480
4481 /* Make an insn of code CALL_INSN with pattern X
4482 and add it to the end of the doubly-linked list. */
4483
4484 rtx
4485 emit_call_insn (rtx x)
4486 {
4487 rtx insn;
4488
4489 switch (GET_CODE (x))
4490 {
4491 case INSN:
4492 case JUMP_INSN:
4493 case CALL_INSN:
4494 case CODE_LABEL:
4495 case BARRIER:
4496 case NOTE:
4497 insn = emit_insn (x);
4498 break;
4499
4500 #ifdef ENABLE_RTL_CHECKING
4501 case SEQUENCE:
4502 abort ();
4503 break;
4504 #endif
4505
4506 default:
4507 insn = make_call_insn_raw (x);
4508 add_insn (insn);
4509 break;
4510 }
4511
4512 return insn;
4513 }
4514
4515 /* Add the label LABEL to the end of the doubly-linked list. */
4516
4517 rtx
4518 emit_label (rtx label)
4519 {
4520 /* This can be called twice for the same label
4521 as a result of the confusion that follows a syntax error!
4522 So make it harmless. */
4523 if (INSN_UID (label) == 0)
4524 {
4525 INSN_UID (label) = cur_insn_uid++;
4526 add_insn (label);
4527 }
4528 return label;
4529 }
4530
4531 /* Make an insn of code BARRIER
4532 and add it to the end of the doubly-linked list. */
4533
4534 rtx
4535 emit_barrier (void)
4536 {
4537 rtx barrier = rtx_alloc (BARRIER);
4538 INSN_UID (barrier) = cur_insn_uid++;
4539 add_insn (barrier);
4540 return barrier;
4541 }
4542
4543 /* Make line numbering NOTE insn for LOCATION add it to the end
4544 of the doubly-linked list, but only if line-numbers are desired for
4545 debugging info and it doesn't match the previous one. */
4546
4547 rtx
4548 emit_line_note (location_t location)
4549 {
4550 rtx note;
4551
4552 set_file_and_line_for_stmt (location);
4553
4554 if (location.file && last_location.file
4555 && !strcmp (location.file, last_location.file)
4556 && location.line == last_location.line)
4557 return NULL_RTX;
4558 last_location = location;
4559
4560 if (no_line_numbers)
4561 {
4562 cur_insn_uid++;
4563 return NULL_RTX;
4564 }
4565
4566 note = emit_note (location.line);
4567 NOTE_SOURCE_FILE (note) = location.file;
4568
4569 return note;
4570 }
4571
4572 /* Emit a copy of note ORIG. */
4573
4574 rtx
4575 emit_note_copy (rtx orig)
4576 {
4577 rtx note;
4578
4579 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4580 {
4581 cur_insn_uid++;
4582 return NULL_RTX;
4583 }
4584
4585 note = rtx_alloc (NOTE);
4586
4587 INSN_UID (note) = cur_insn_uid++;
4588 NOTE_DATA (note) = NOTE_DATA (orig);
4589 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4590 BLOCK_FOR_INSN (note) = NULL;
4591 add_insn (note);
4592
4593 return note;
4594 }
4595
4596 /* Make an insn of code NOTE or type NOTE_NO
4597 and add it to the end of the doubly-linked list. */
4598
4599 rtx
4600 emit_note (int note_no)
4601 {
4602 rtx note;
4603
4604 note = rtx_alloc (NOTE);
4605 INSN_UID (note) = cur_insn_uid++;
4606 NOTE_LINE_NUMBER (note) = note_no;
4607 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4608 BLOCK_FOR_INSN (note) = NULL;
4609 add_insn (note);
4610 return note;
4611 }
4612
4613 /* Cause next statement to emit a line note even if the line number
4614 has not changed. */
4615
4616 void
4617 force_next_line_note (void)
4618 {
4619 last_location.line = -1;
4620 }
4621
4622 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4623 note of this type already exists, remove it first. */
4624
4625 rtx
4626 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4627 {
4628 rtx note = find_reg_note (insn, kind, NULL_RTX);
4629
4630 switch (kind)
4631 {
4632 case REG_EQUAL:
4633 case REG_EQUIV:
4634 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4635 has multiple sets (some callers assume single_set
4636 means the insn only has one set, when in fact it
4637 means the insn only has one * useful * set). */
4638 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4639 {
4640 if (note)
4641 abort ();
4642 return NULL_RTX;
4643 }
4644
4645 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4646 It serves no useful purpose and breaks eliminate_regs. */
4647 if (GET_CODE (datum) == ASM_OPERANDS)
4648 return NULL_RTX;
4649 break;
4650
4651 default:
4652 break;
4653 }
4654
4655 if (note)
4656 {
4657 XEXP (note, 0) = datum;
4658 return note;
4659 }
4660
4661 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4662 return REG_NOTES (insn);
4663 }
4664 \f
4665 /* Return an indication of which type of insn should have X as a body.
4666 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4667
4668 enum rtx_code
4669 classify_insn (rtx x)
4670 {
4671 if (GET_CODE (x) == CODE_LABEL)
4672 return CODE_LABEL;
4673 if (GET_CODE (x) == CALL)
4674 return CALL_INSN;
4675 if (GET_CODE (x) == RETURN)
4676 return JUMP_INSN;
4677 if (GET_CODE (x) == SET)
4678 {
4679 if (SET_DEST (x) == pc_rtx)
4680 return JUMP_INSN;
4681 else if (GET_CODE (SET_SRC (x)) == CALL)
4682 return CALL_INSN;
4683 else
4684 return INSN;
4685 }
4686 if (GET_CODE (x) == PARALLEL)
4687 {
4688 int j;
4689 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4690 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4691 return CALL_INSN;
4692 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4693 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4694 return JUMP_INSN;
4695 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4696 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4697 return CALL_INSN;
4698 }
4699 return INSN;
4700 }
4701
4702 /* Emit the rtl pattern X as an appropriate kind of insn.
4703 If X is a label, it is simply added into the insn chain. */
4704
4705 rtx
4706 emit (rtx x)
4707 {
4708 enum rtx_code code = classify_insn (x);
4709
4710 if (code == CODE_LABEL)
4711 return emit_label (x);
4712 else if (code == INSN)
4713 return emit_insn (x);
4714 else if (code == JUMP_INSN)
4715 {
4716 rtx insn = emit_jump_insn (x);
4717 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4718 return emit_barrier ();
4719 return insn;
4720 }
4721 else if (code == CALL_INSN)
4722 return emit_call_insn (x);
4723 else
4724 abort ();
4725 }
4726 \f
4727 /* Space for free sequence stack entries. */
4728 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4729
4730 /* Begin emitting insns to a sequence which can be packaged in an
4731 RTL_EXPR. If this sequence will contain something that might cause
4732 the compiler to pop arguments to function calls (because those
4733 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4734 details), use do_pending_stack_adjust before calling this function.
4735 That will ensure that the deferred pops are not accidentally
4736 emitted in the middle of this sequence. */
4737
4738 void
4739 start_sequence (void)
4740 {
4741 struct sequence_stack *tem;
4742
4743 if (free_sequence_stack != NULL)
4744 {
4745 tem = free_sequence_stack;
4746 free_sequence_stack = tem->next;
4747 }
4748 else
4749 tem = ggc_alloc (sizeof (struct sequence_stack));
4750
4751 tem->next = seq_stack;
4752 tem->first = first_insn;
4753 tem->last = last_insn;
4754 tem->sequence_rtl_expr = seq_rtl_expr;
4755
4756 seq_stack = tem;
4757
4758 first_insn = 0;
4759 last_insn = 0;
4760 }
4761
4762 /* Similarly, but indicate that this sequence will be placed in T, an
4763 RTL_EXPR. See the documentation for start_sequence for more
4764 information about how to use this function. */
4765
4766 void
4767 start_sequence_for_rtl_expr (tree t)
4768 {
4769 start_sequence ();
4770
4771 seq_rtl_expr = t;
4772 }
4773
4774 /* Set up the insn chain starting with FIRST as the current sequence,
4775 saving the previously current one. See the documentation for
4776 start_sequence for more information about how to use this function. */
4777
4778 void
4779 push_to_sequence (rtx first)
4780 {
4781 rtx last;
4782
4783 start_sequence ();
4784
4785 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4786
4787 first_insn = first;
4788 last_insn = last;
4789 }
4790
4791 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4792
4793 void
4794 push_to_full_sequence (rtx first, rtx last)
4795 {
4796 start_sequence ();
4797 first_insn = first;
4798 last_insn = last;
4799 /* We really should have the end of the insn chain here. */
4800 if (last && NEXT_INSN (last))
4801 abort ();
4802 }
4803
4804 /* Set up the outer-level insn chain
4805 as the current sequence, saving the previously current one. */
4806
4807 void
4808 push_topmost_sequence (void)
4809 {
4810 struct sequence_stack *stack, *top = NULL;
4811
4812 start_sequence ();
4813
4814 for (stack = seq_stack; stack; stack = stack->next)
4815 top = stack;
4816
4817 first_insn = top->first;
4818 last_insn = top->last;
4819 seq_rtl_expr = top->sequence_rtl_expr;
4820 }
4821
4822 /* After emitting to the outer-level insn chain, update the outer-level
4823 insn chain, and restore the previous saved state. */
4824
4825 void
4826 pop_topmost_sequence (void)
4827 {
4828 struct sequence_stack *stack, *top = NULL;
4829
4830 for (stack = seq_stack; stack; stack = stack->next)
4831 top = stack;
4832
4833 top->first = first_insn;
4834 top->last = last_insn;
4835 /* ??? Why don't we save seq_rtl_expr here? */
4836
4837 end_sequence ();
4838 }
4839
4840 /* After emitting to a sequence, restore previous saved state.
4841
4842 To get the contents of the sequence just made, you must call
4843 `get_insns' *before* calling here.
4844
4845 If the compiler might have deferred popping arguments while
4846 generating this sequence, and this sequence will not be immediately
4847 inserted into the instruction stream, use do_pending_stack_adjust
4848 before calling get_insns. That will ensure that the deferred
4849 pops are inserted into this sequence, and not into some random
4850 location in the instruction stream. See INHIBIT_DEFER_POP for more
4851 information about deferred popping of arguments. */
4852
4853 void
4854 end_sequence (void)
4855 {
4856 struct sequence_stack *tem = seq_stack;
4857
4858 first_insn = tem->first;
4859 last_insn = tem->last;
4860 seq_rtl_expr = tem->sequence_rtl_expr;
4861 seq_stack = tem->next;
4862
4863 memset (tem, 0, sizeof (*tem));
4864 tem->next = free_sequence_stack;
4865 free_sequence_stack = tem;
4866 }
4867
4868 /* This works like end_sequence, but records the old sequence in FIRST
4869 and LAST. */
4870
4871 void
4872 end_full_sequence (rtx *first, rtx *last)
4873 {
4874 *first = first_insn;
4875 *last = last_insn;
4876 end_sequence ();
4877 }
4878
4879 /* Return 1 if currently emitting into a sequence. */
4880
4881 int
4882 in_sequence_p (void)
4883 {
4884 return seq_stack != 0;
4885 }
4886 \f
4887 /* Put the various virtual registers into REGNO_REG_RTX. */
4888
4889 void
4890 init_virtual_regs (struct emit_status *es)
4891 {
4892 rtx *ptr = es->x_regno_reg_rtx;
4893 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4894 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4895 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4896 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4897 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4898 }
4899
4900 \f
4901 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4902 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4903 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4904 static int copy_insn_n_scratches;
4905
4906 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4907 copied an ASM_OPERANDS.
4908 In that case, it is the original input-operand vector. */
4909 static rtvec orig_asm_operands_vector;
4910
4911 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4912 copied an ASM_OPERANDS.
4913 In that case, it is the copied input-operand vector. */
4914 static rtvec copy_asm_operands_vector;
4915
4916 /* Likewise for the constraints vector. */
4917 static rtvec orig_asm_constraints_vector;
4918 static rtvec copy_asm_constraints_vector;
4919
4920 /* Recursively create a new copy of an rtx for copy_insn.
4921 This function differs from copy_rtx in that it handles SCRATCHes and
4922 ASM_OPERANDs properly.
4923 Normally, this function is not used directly; use copy_insn as front end.
4924 However, you could first copy an insn pattern with copy_insn and then use
4925 this function afterwards to properly copy any REG_NOTEs containing
4926 SCRATCHes. */
4927
4928 rtx
4929 copy_insn_1 (rtx orig)
4930 {
4931 rtx copy;
4932 int i, j;
4933 RTX_CODE code;
4934 const char *format_ptr;
4935
4936 code = GET_CODE (orig);
4937
4938 switch (code)
4939 {
4940 case REG:
4941 case QUEUED:
4942 case CONST_INT:
4943 case CONST_DOUBLE:
4944 case CONST_VECTOR:
4945 case SYMBOL_REF:
4946 case CODE_LABEL:
4947 case PC:
4948 case CC0:
4949 case ADDRESSOF:
4950 return orig;
4951 case CLOBBER:
4952 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4953 return orig;
4954 break;
4955
4956 case SCRATCH:
4957 for (i = 0; i < copy_insn_n_scratches; i++)
4958 if (copy_insn_scratch_in[i] == orig)
4959 return copy_insn_scratch_out[i];
4960 break;
4961
4962 case CONST:
4963 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4964 a LABEL_REF, it isn't sharable. */
4965 if (GET_CODE (XEXP (orig, 0)) == PLUS
4966 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4967 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4968 return orig;
4969 break;
4970
4971 /* A MEM with a constant address is not sharable. The problem is that
4972 the constant address may need to be reloaded. If the mem is shared,
4973 then reloading one copy of this mem will cause all copies to appear
4974 to have been reloaded. */
4975
4976 default:
4977 break;
4978 }
4979
4980 copy = rtx_alloc (code);
4981
4982 /* Copy the various flags, and other information. We assume that
4983 all fields need copying, and then clear the fields that should
4984 not be copied. That is the sensible default behavior, and forces
4985 us to explicitly document why we are *not* copying a flag. */
4986 memcpy (copy, orig, RTX_HDR_SIZE);
4987
4988 /* We do not copy the USED flag, which is used as a mark bit during
4989 walks over the RTL. */
4990 RTX_FLAG (copy, used) = 0;
4991
4992 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4993 if (GET_RTX_CLASS (code) == 'i')
4994 {
4995 RTX_FLAG (copy, jump) = 0;
4996 RTX_FLAG (copy, call) = 0;
4997 RTX_FLAG (copy, frame_related) = 0;
4998 }
4999
5000 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5001
5002 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5003 {
5004 copy->u.fld[i] = orig->u.fld[i];
5005 switch (*format_ptr++)
5006 {
5007 case 'e':
5008 if (XEXP (orig, i) != NULL)
5009 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5010 break;
5011
5012 case 'E':
5013 case 'V':
5014 if (XVEC (orig, i) == orig_asm_constraints_vector)
5015 XVEC (copy, i) = copy_asm_constraints_vector;
5016 else if (XVEC (orig, i) == orig_asm_operands_vector)
5017 XVEC (copy, i) = copy_asm_operands_vector;
5018 else if (XVEC (orig, i) != NULL)
5019 {
5020 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5021 for (j = 0; j < XVECLEN (copy, i); j++)
5022 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5023 }
5024 break;
5025
5026 case 't':
5027 case 'w':
5028 case 'i':
5029 case 's':
5030 case 'S':
5031 case 'u':
5032 case '0':
5033 /* These are left unchanged. */
5034 break;
5035
5036 default:
5037 abort ();
5038 }
5039 }
5040
5041 if (code == SCRATCH)
5042 {
5043 i = copy_insn_n_scratches++;
5044 if (i >= MAX_RECOG_OPERANDS)
5045 abort ();
5046 copy_insn_scratch_in[i] = orig;
5047 copy_insn_scratch_out[i] = copy;
5048 }
5049 else if (code == ASM_OPERANDS)
5050 {
5051 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5052 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5053 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5054 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5055 }
5056
5057 return copy;
5058 }
5059
5060 /* Create a new copy of an rtx.
5061 This function differs from copy_rtx in that it handles SCRATCHes and
5062 ASM_OPERANDs properly.
5063 INSN doesn't really have to be a full INSN; it could be just the
5064 pattern. */
5065 rtx
5066 copy_insn (rtx insn)
5067 {
5068 copy_insn_n_scratches = 0;
5069 orig_asm_operands_vector = 0;
5070 orig_asm_constraints_vector = 0;
5071 copy_asm_operands_vector = 0;
5072 copy_asm_constraints_vector = 0;
5073 return copy_insn_1 (insn);
5074 }
5075
5076 /* Initialize data structures and variables in this file
5077 before generating rtl for each function. */
5078
5079 void
5080 init_emit (void)
5081 {
5082 struct function *f = cfun;
5083
5084 f->emit = ggc_alloc (sizeof (struct emit_status));
5085 first_insn = NULL;
5086 last_insn = NULL;
5087 seq_rtl_expr = NULL;
5088 cur_insn_uid = 1;
5089 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5090 last_location.line = 0;
5091 last_location.file = 0;
5092 first_label_num = label_num;
5093 last_label_num = 0;
5094 seq_stack = NULL;
5095
5096 /* Init the tables that describe all the pseudo regs. */
5097
5098 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5099
5100 f->emit->regno_pointer_align
5101 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5102 * sizeof (unsigned char));
5103
5104 regno_reg_rtx
5105 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5106
5107 /* Put copies of all the hard registers into regno_reg_rtx. */
5108 memcpy (regno_reg_rtx,
5109 static_regno_reg_rtx,
5110 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5111
5112 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5113 init_virtual_regs (f->emit);
5114
5115 /* Indicate that the virtual registers and stack locations are
5116 all pointers. */
5117 REG_POINTER (stack_pointer_rtx) = 1;
5118 REG_POINTER (frame_pointer_rtx) = 1;
5119 REG_POINTER (hard_frame_pointer_rtx) = 1;
5120 REG_POINTER (arg_pointer_rtx) = 1;
5121
5122 REG_POINTER (virtual_incoming_args_rtx) = 1;
5123 REG_POINTER (virtual_stack_vars_rtx) = 1;
5124 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5125 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5126 REG_POINTER (virtual_cfa_rtx) = 1;
5127
5128 #ifdef STACK_BOUNDARY
5129 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5130 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5131 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5132 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5133
5134 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5135 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5136 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5137 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5138 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5139 #endif
5140
5141 #ifdef INIT_EXPANDERS
5142 INIT_EXPANDERS;
5143 #endif
5144 }
5145
5146 /* Generate the constant 0. */
5147
5148 static rtx
5149 gen_const_vector_0 (enum machine_mode mode)
5150 {
5151 rtx tem;
5152 rtvec v;
5153 int units, i;
5154 enum machine_mode inner;
5155
5156 units = GET_MODE_NUNITS (mode);
5157 inner = GET_MODE_INNER (mode);
5158
5159 v = rtvec_alloc (units);
5160
5161 /* We need to call this function after we to set CONST0_RTX first. */
5162 if (!CONST0_RTX (inner))
5163 abort ();
5164
5165 for (i = 0; i < units; ++i)
5166 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5167
5168 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5169 return tem;
5170 }
5171
5172 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5173 all elements are zero. */
5174 rtx
5175 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5176 {
5177 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5178 int i;
5179
5180 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5181 if (RTVEC_ELT (v, i) != inner_zero)
5182 return gen_rtx_raw_CONST_VECTOR (mode, v);
5183 return CONST0_RTX (mode);
5184 }
5185
5186 /* Create some permanent unique rtl objects shared between all functions.
5187 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5188
5189 void
5190 init_emit_once (int line_numbers)
5191 {
5192 int i;
5193 enum machine_mode mode;
5194 enum machine_mode double_mode;
5195
5196 /* We need reg_raw_mode, so initialize the modes now. */
5197 init_reg_modes_once ();
5198
5199 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5200 tables. */
5201 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5202 const_int_htab_eq, NULL);
5203
5204 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5205 const_double_htab_eq, NULL);
5206
5207 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5208 mem_attrs_htab_eq, NULL);
5209 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5210 reg_attrs_htab_eq, NULL);
5211
5212 no_line_numbers = ! line_numbers;
5213
5214 /* Compute the word and byte modes. */
5215
5216 byte_mode = VOIDmode;
5217 word_mode = VOIDmode;
5218 double_mode = VOIDmode;
5219
5220 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5221 mode = GET_MODE_WIDER_MODE (mode))
5222 {
5223 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5224 && byte_mode == VOIDmode)
5225 byte_mode = mode;
5226
5227 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5228 && word_mode == VOIDmode)
5229 word_mode = mode;
5230 }
5231
5232 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5233 mode = GET_MODE_WIDER_MODE (mode))
5234 {
5235 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5236 && double_mode == VOIDmode)
5237 double_mode = mode;
5238 }
5239
5240 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5241
5242 /* Assign register numbers to the globally defined register rtx.
5243 This must be done at runtime because the register number field
5244 is in a union and some compilers can't initialize unions. */
5245
5246 pc_rtx = gen_rtx_PC (VOIDmode);
5247 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5248 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5249 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5250 if (hard_frame_pointer_rtx == 0)
5251 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5252 HARD_FRAME_POINTER_REGNUM);
5253 if (arg_pointer_rtx == 0)
5254 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5255 virtual_incoming_args_rtx =
5256 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5257 virtual_stack_vars_rtx =
5258 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5259 virtual_stack_dynamic_rtx =
5260 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5261 virtual_outgoing_args_rtx =
5262 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5263 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5264
5265 /* Initialize RTL for commonly used hard registers. These are
5266 copied into regno_reg_rtx as we begin to compile each function. */
5267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5268 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5269
5270 #ifdef INIT_EXPANDERS
5271 /* This is to initialize {init|mark|free}_machine_status before the first
5272 call to push_function_context_to. This is needed by the Chill front
5273 end which calls push_function_context_to before the first call to
5274 init_function_start. */
5275 INIT_EXPANDERS;
5276 #endif
5277
5278 /* Create the unique rtx's for certain rtx codes and operand values. */
5279
5280 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5281 tries to use these variables. */
5282 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5283 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5284 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5285
5286 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5287 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5288 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5289 else
5290 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5291
5292 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5293 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5294 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5295 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5296 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5297 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5298 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5299
5300 dconsthalf = dconst1;
5301 dconsthalf.exp--;
5302
5303 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5304
5305 /* Initialize mathematical constants for constant folding builtins.
5306 These constants need to be given to at least 160 bits precision. */
5307 real_from_string (&dconstpi,
5308 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5309 real_from_string (&dconste,
5310 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5311
5312 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5313 {
5314 REAL_VALUE_TYPE *r =
5315 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5316
5317 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5318 mode = GET_MODE_WIDER_MODE (mode))
5319 const_tiny_rtx[i][(int) mode] =
5320 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5321
5322 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5323
5324 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5325 mode = GET_MODE_WIDER_MODE (mode))
5326 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5327
5328 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5329 mode != VOIDmode;
5330 mode = GET_MODE_WIDER_MODE (mode))
5331 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5332 }
5333
5334 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5335 mode != VOIDmode;
5336 mode = GET_MODE_WIDER_MODE (mode))
5337 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5338
5339 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5340 mode != VOIDmode;
5341 mode = GET_MODE_WIDER_MODE (mode))
5342 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5343
5344 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5345 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5346 const_tiny_rtx[0][i] = const0_rtx;
5347
5348 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5349 if (STORE_FLAG_VALUE == 1)
5350 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5351
5352 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5353 return_address_pointer_rtx
5354 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5355 #endif
5356
5357 #ifdef STATIC_CHAIN_REGNUM
5358 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5359
5360 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5361 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5362 static_chain_incoming_rtx
5363 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5364 else
5365 #endif
5366 static_chain_incoming_rtx = static_chain_rtx;
5367 #endif
5368
5369 #ifdef STATIC_CHAIN
5370 static_chain_rtx = STATIC_CHAIN;
5371
5372 #ifdef STATIC_CHAIN_INCOMING
5373 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5374 #else
5375 static_chain_incoming_rtx = static_chain_rtx;
5376 #endif
5377 #endif
5378
5379 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5380 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5381 }
5382 \f
5383 /* Query and clear/ restore no_line_numbers. This is used by the
5384 switch / case handling in stmt.c to give proper line numbers in
5385 warnings about unreachable code. */
5386
5387 int
5388 force_line_numbers (void)
5389 {
5390 int old = no_line_numbers;
5391
5392 no_line_numbers = 0;
5393 if (old)
5394 force_next_line_note ();
5395 return old;
5396 }
5397
5398 void
5399 restore_line_number_status (int old_value)
5400 {
5401 no_line_numbers = old_value;
5402 }
5403
5404 /* Produce exact duplicate of insn INSN after AFTER.
5405 Care updating of libcall regions if present. */
5406
5407 rtx
5408 emit_copy_of_insn_after (rtx insn, rtx after)
5409 {
5410 rtx new;
5411 rtx note1, note2, link;
5412
5413 switch (GET_CODE (insn))
5414 {
5415 case INSN:
5416 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5417 break;
5418
5419 case JUMP_INSN:
5420 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5421 break;
5422
5423 case CALL_INSN:
5424 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5425 if (CALL_INSN_FUNCTION_USAGE (insn))
5426 CALL_INSN_FUNCTION_USAGE (new)
5427 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5428 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5429 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5430 break;
5431
5432 default:
5433 abort ();
5434 }
5435
5436 /* Update LABEL_NUSES. */
5437 mark_jump_label (PATTERN (new), new, 0);
5438
5439 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5440
5441 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5442 make them. */
5443 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5444 if (REG_NOTE_KIND (link) != REG_LABEL)
5445 {
5446 if (GET_CODE (link) == EXPR_LIST)
5447 REG_NOTES (new)
5448 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5449 XEXP (link, 0),
5450 REG_NOTES (new)));
5451 else
5452 REG_NOTES (new)
5453 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5454 XEXP (link, 0),
5455 REG_NOTES (new)));
5456 }
5457
5458 /* Fix the libcall sequences. */
5459 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5460 {
5461 rtx p = new;
5462 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5463 p = PREV_INSN (p);
5464 XEXP (note1, 0) = p;
5465 XEXP (note2, 0) = new;
5466 }
5467 INSN_CODE (new) = INSN_CODE (insn);
5468 return new;
5469 }
5470
5471 static GTY((deletable(""))) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5472 rtx
5473 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5474 {
5475 if (hard_reg_clobbers[mode][regno])
5476 return hard_reg_clobbers[mode][regno];
5477 else
5478 return (hard_reg_clobbers[mode][regno] =
5479 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5480 }
5481
5482 #include "gt-emit-rtl.h"