expr.c (expand_assignment): Don't set MEM_KEEP_ALIAS_SET_P here.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992-2012 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "regs.h"
46 #include "hard-reg-set.h"
47 #include "hashtab.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "bitmap.h"
51 #include "basic-block.h"
52 #include "ggc.h"
53 #include "debug.h"
54 #include "langhooks.h"
55 #include "df.h"
56 #include "params.h"
57 #include "target.h"
58
59 struct target_rtl default_target_rtl;
60 #if SWITCHABLE_TARGET
61 struct target_rtl *this_target_rtl = &default_target_rtl;
62 #endif
63
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
65
66 /* Commonly used modes. */
67
68 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
72
73 /* Datastructures maintained for currently processed function in RTL form. */
74
75 struct rtl_data x_rtl;
76
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
81
82 rtx * regno_reg_rtx;
83
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
86
87 static GTY(()) int label_num = 1;
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
93
94 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
95
96 rtx const_true_rtx;
97
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconstm1;
102 REAL_VALUE_TYPE dconsthalf;
103
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
106 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
107
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
111 integers. */
112
113 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
114
115 /* Standard pieces of rtx, to be substituted directly into things. */
116 rtx pc_rtx;
117 rtx ret_rtx;
118 rtx simple_return_rtx;
119 rtx cc0_rtx;
120
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
123
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
125 htab_t const_int_htab;
126
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
129 htab_t mem_attrs_htab;
130
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
133 htab_t reg_attrs_htab;
134
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
137 htab_t const_double_htab;
138
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
141 htab_t const_fixed_htab;
142
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
146
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs *get_reg_attrs (tree, int);
163 static rtx gen_const_vector (enum machine_mode, int);
164 static void copy_rtx_if_shared_1 (rtx *orig);
165
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability = -1;
169 \f
170 /* Returns a hash code for X (which is a really a CONST_INT). */
171
172 static hashval_t
173 const_int_htab_hash (const void *x)
174 {
175 return (hashval_t) INTVAL ((const_rtx) x);
176 }
177
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
180 HOST_WIDE_INT *). */
181
182 static int
183 const_int_htab_eq (const void *x, const void *y)
184 {
185 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
186 }
187
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
189 static hashval_t
190 const_double_htab_hash (const void *x)
191 {
192 const_rtx const value = (const_rtx) x;
193 hashval_t h;
194
195 if (GET_MODE (value) == VOIDmode)
196 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
197 else
198 {
199 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h ^= GET_MODE (value);
202 }
203 return h;
204 }
205
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
208 static int
209 const_double_htab_eq (const void *x, const void *y)
210 {
211 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
212
213 if (GET_MODE (a) != GET_MODE (b))
214 return 0;
215 if (GET_MODE (a) == VOIDmode)
216 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
217 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
218 else
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
220 CONST_DOUBLE_REAL_VALUE (b));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
224
225 static hashval_t
226 const_fixed_htab_hash (const void *x)
227 {
228 const_rtx const value = (const_rtx) x;
229 hashval_t h;
230
231 h = fixed_hash (CONST_FIXED_VALUE (value));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h ^= GET_MODE (value);
234 return h;
235 }
236
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
239
240 static int
241 const_fixed_htab_eq (const void *x, const void *y)
242 {
243 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
244
245 if (GET_MODE (a) != GET_MODE (b))
246 return 0;
247 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
248 }
249
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
251
252 static hashval_t
253 mem_attrs_htab_hash (const void *x)
254 {
255 const mem_attrs *const p = (const mem_attrs *) x;
256
257 return (p->alias ^ (p->align * 1000)
258 ^ (p->addrspace * 4000)
259 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
260 ^ ((p->size_known_p ? p->size : 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p->expr, 0));
262 }
263
264 /* Return true if the given memory attributes are equal. */
265
266 static bool
267 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
268 {
269 return (p->alias == q->alias
270 && p->offset_known_p == q->offset_known_p
271 && (!p->offset_known_p || p->offset == q->offset)
272 && p->size_known_p == q->size_known_p
273 && (!p->size_known_p || p->size == q->size)
274 && p->align == q->align
275 && p->addrspace == q->addrspace
276 && (p->expr == q->expr
277 || (p->expr != NULL_TREE && q->expr != NULL_TREE
278 && operand_equal_p (p->expr, q->expr, 0))));
279 }
280
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
283 mem_attrs *). */
284
285 static int
286 mem_attrs_htab_eq (const void *x, const void *y)
287 {
288 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
289 }
290
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
292
293 static void
294 set_mem_attrs (rtx mem, mem_attrs *attrs)
295 {
296 void **slot;
297
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
300 {
301 MEM_ATTRS (mem) = 0;
302 return;
303 }
304
305 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
306 if (*slot == 0)
307 {
308 *slot = ggc_alloc_mem_attrs ();
309 memcpy (*slot, attrs, sizeof (mem_attrs));
310 }
311
312 MEM_ATTRS (mem) = (mem_attrs *) *slot;
313 }
314
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
316
317 static hashval_t
318 reg_attrs_htab_hash (const void *x)
319 {
320 const reg_attrs *const p = (const reg_attrs *) x;
321
322 return ((p->offset * 1000) ^ (intptr_t) p->decl);
323 }
324
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
327 reg_attrs *). */
328
329 static int
330 reg_attrs_htab_eq (const void *x, const void *y)
331 {
332 const reg_attrs *const p = (const reg_attrs *) x;
333 const reg_attrs *const q = (const reg_attrs *) y;
334
335 return (p->decl == q->decl && p->offset == q->offset);
336 }
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
339 MEM of mode MODE. */
340
341 static reg_attrs *
342 get_reg_attrs (tree decl, int offset)
343 {
344 reg_attrs attrs;
345 void **slot;
346
347 /* If everything is the default, we can just return zero. */
348 if (decl == 0 && offset == 0)
349 return 0;
350
351 attrs.decl = decl;
352 attrs.offset = offset;
353
354 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
355 if (*slot == 0)
356 {
357 *slot = ggc_alloc_reg_attrs ();
358 memcpy (*slot, &attrs, sizeof (reg_attrs));
359 }
360
361 return (reg_attrs *) *slot;
362 }
363
364
365 #if !HAVE_blockage
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
367 across this insn. */
368
369 rtx
370 gen_blockage (void)
371 {
372 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
373 MEM_VOLATILE_P (x) = true;
374 return x;
375 }
376 #endif
377
378
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
382
383 rtx
384 gen_raw_REG (enum machine_mode mode, int regno)
385 {
386 rtx x = gen_rtx_raw_REG (mode, regno);
387 ORIGINAL_REGNO (x) = regno;
388 return x;
389 }
390
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
394
395 rtx
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
397 {
398 void **slot;
399
400 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
401 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
402
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx && arg == STORE_FLAG_VALUE)
405 return const_true_rtx;
406 #endif
407
408 /* Look up the CONST_INT in the hash table. */
409 slot = htab_find_slot_with_hash (const_int_htab, &arg,
410 (hashval_t) arg, INSERT);
411 if (*slot == 0)
412 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
413
414 return (rtx) *slot;
415 }
416
417 rtx
418 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
419 {
420 return GEN_INT (trunc_int_for_mode (c, mode));
421 }
422
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
426
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
430 static rtx
431 lookup_const_double (rtx real)
432 {
433 void **slot = htab_find_slot (const_double_htab, real, INSERT);
434 if (*slot == 0)
435 *slot = real;
436
437 return (rtx) *slot;
438 }
439
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
442 rtx
443 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
444 {
445 rtx real = rtx_alloc (CONST_DOUBLE);
446 PUT_MODE (real, mode);
447
448 real->u.rv = value;
449
450 return lookup_const_double (real);
451 }
452
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
456
457 static rtx
458 lookup_const_fixed (rtx fixed)
459 {
460 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
461 if (*slot == 0)
462 *slot = fixed;
463
464 return (rtx) *slot;
465 }
466
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
469
470 rtx
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
472 {
473 rtx fixed = rtx_alloc (CONST_FIXED);
474 PUT_MODE (fixed, mode);
475
476 fixed->u.fv = value;
477
478 return lookup_const_fixed (fixed);
479 }
480
481 /* Constructs double_int from rtx CST. */
482
483 double_int
484 rtx_to_double_int (const_rtx cst)
485 {
486 double_int r;
487
488 if (CONST_INT_P (cst))
489 r = double_int::from_shwi (INTVAL (cst));
490 else if (CONST_DOUBLE_AS_INT_P (cst))
491 {
492 r.low = CONST_DOUBLE_LOW (cst);
493 r.high = CONST_DOUBLE_HIGH (cst);
494 }
495 else
496 gcc_unreachable ();
497
498 return r;
499 }
500
501
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
503 a double_int. */
504
505 rtx
506 immed_double_int_const (double_int i, enum machine_mode mode)
507 {
508 return immed_double_const (i.low, i.high, mode);
509 }
510
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
518
519 rtx
520 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
521 {
522 rtx value;
523 unsigned int i;
524
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
527
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
529 gen_int_mode.
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode != VOIDmode)
535 {
536 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
537 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
541
542 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
543 return gen_int_mode (i0, mode);
544 }
545
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
548 return GEN_INT (i0);
549
550 /* We use VOIDmode for integers. */
551 value = rtx_alloc (CONST_DOUBLE);
552 PUT_MODE (value, VOIDmode);
553
554 CONST_DOUBLE_LOW (value) = i0;
555 CONST_DOUBLE_HIGH (value) = i1;
556
557 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
558 XWINT (value, i) = 0;
559
560 return lookup_const_double (value);
561 }
562
563 rtx
564 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
565 {
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
570 assigned to them.
571
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
576
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
579
580 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
581 {
582 if (regno == FRAME_POINTER_REGNUM
583 && (!reload_completed || frame_pointer_needed))
584 return frame_pointer_rtx;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno == HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return hard_frame_pointer_rtx;
589 #endif
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno == ARG_POINTER_REGNUM)
592 return arg_pointer_rtx;
593 #endif
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
596 return return_address_pointer_rtx;
597 #endif
598 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
600 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
601 return pic_offset_table_rtx;
602 if (regno == STACK_POINTER_REGNUM)
603 return stack_pointer_rtx;
604 }
605
606 #if 0
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
609
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
614
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
617
618 if (cfun
619 && cfun->emit
620 && regno_reg_rtx
621 && regno < FIRST_PSEUDO_REGISTER
622 && reg_raw_mode[regno] == mode)
623 return regno_reg_rtx[regno];
624 #endif
625
626 return gen_raw_REG (mode, regno);
627 }
628
629 rtx
630 gen_rtx_MEM (enum machine_mode mode, rtx addr)
631 {
632 rtx rt = gen_rtx_raw_MEM (mode, addr);
633
634 /* This field is not cleared by the mere allocation of the rtx, so
635 we clear it here. */
636 MEM_ATTRS (rt) = 0;
637
638 return rt;
639 }
640
641 /* Generate a memory referring to non-trapping constant memory. */
642
643 rtx
644 gen_const_mem (enum machine_mode mode, rtx addr)
645 {
646 rtx mem = gen_rtx_MEM (mode, addr);
647 MEM_READONLY_P (mem) = 1;
648 MEM_NOTRAP_P (mem) = 1;
649 return mem;
650 }
651
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
653 save areas. */
654
655 rtx
656 gen_frame_mem (enum machine_mode mode, rtx addr)
657 {
658 rtx mem = gen_rtx_MEM (mode, addr);
659 MEM_NOTRAP_P (mem) = 1;
660 set_mem_alias_set (mem, get_frame_alias_set ());
661 return mem;
662 }
663
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
667 rtx
668 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
669 {
670 rtx mem = gen_rtx_MEM (mode, addr);
671 MEM_NOTRAP_P (mem) = 1;
672 if (!cfun->calls_alloca)
673 set_mem_alias_set (mem, get_frame_alias_set ());
674 return mem;
675 }
676
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
679
680 bool
681 validate_subreg (enum machine_mode omode, enum machine_mode imode,
682 const_rtx reg, unsigned int offset)
683 {
684 unsigned int isize = GET_MODE_SIZE (imode);
685 unsigned int osize = GET_MODE_SIZE (omode);
686
687 /* All subregs must be aligned. */
688 if (offset % osize != 0)
689 return false;
690
691 /* The subreg offset cannot be outside the inner object. */
692 if (offset >= isize)
693 return false;
694
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
698 fix them all. */
699 if (omode == word_mode)
700 ;
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize >= UNITS_PER_WORD && isize >= osize)
704 ;
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
708 && GET_MODE_INNER (imode) == omode)
709 ;
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
716 ;
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
721 {
722 if (! (isize == osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
729 || lra_in_progress))
730 return false;
731 }
732
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
736
737 /* This is a normal subreg. Verify that the offset is representable. */
738
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
742 {
743 unsigned int regno = REGNO (reg);
744
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
748 ;
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
752
753 return subreg_offset_representable_p (regno, imode, offset, omode);
754 }
755
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD
763 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
764 {
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
769 }
770 return true;
771 }
772
773 rtx
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 {
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777 return gen_rtx_raw_SUBREG (mode, reg, offset);
778 }
779
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
782
783 rtx
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 {
786 enum machine_mode inmode;
787
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
793 }
794 \f
795
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797
798 rtvec
799 gen_rtvec (int n, ...)
800 {
801 int i;
802 rtvec rt_val;
803 va_list p;
804
805 va_start (p, n);
806
807 /* Don't allocate an empty rtvec... */
808 if (n == 0)
809 {
810 va_end (p);
811 return NULL_RTVEC;
812 }
813
814 rt_val = rtvec_alloc (n);
815
816 for (i = 0; i < n; i++)
817 rt_val->elem[i] = va_arg (p, rtx);
818
819 va_end (p);
820 return rt_val;
821 }
822
823 rtvec
824 gen_rtvec_v (int n, rtx *argp)
825 {
826 int i;
827 rtvec rt_val;
828
829 /* Don't allocate an empty rtvec... */
830 if (n == 0)
831 return NULL_RTVEC;
832
833 rt_val = rtvec_alloc (n);
834
835 for (i = 0; i < n; i++)
836 rt_val->elem[i] = *argp++;
837
838 return rt_val;
839 }
840 \f
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
846
847 int
848 byte_lowpart_offset (enum machine_mode outer_mode,
849 enum machine_mode inner_mode)
850 {
851 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
852 return subreg_lowpart_offset (outer_mode, inner_mode);
853 else
854 return -subreg_lowpart_offset (inner_mode, outer_mode);
855 }
856 \f
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
859
860 rtx
861 gen_reg_rtx (enum machine_mode mode)
862 {
863 rtx val;
864 unsigned int align = GET_MODE_ALIGNMENT (mode);
865
866 gcc_assert (can_create_pseudo_p ());
867
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
870 to stack later. */
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl->stack_alignment_estimated < align
873 && !crtl->stack_realign_processed)
874 {
875 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
876 if (crtl->stack_alignment_estimated < min_align)
877 crtl->stack_alignment_estimated = min_align;
878 }
879
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
883 {
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart, imagpart;
890 enum machine_mode partmode = GET_MODE_INNER (mode);
891
892 realpart = gen_reg_rtx (partmode);
893 imagpart = gen_reg_rtx (partmode);
894 return gen_rtx_CONCAT (mode, realpart, imagpart);
895 }
896
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
899
900 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
901 {
902 int old_size = crtl->emit.regno_pointer_align_length;
903 char *tmp;
904 rtx *new1;
905
906 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
907 memset (tmp + old_size, 0, old_size);
908 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
909
910 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
911 memset (new1 + old_size, 0, old_size * sizeof (rtx));
912 regno_reg_rtx = new1;
913
914 crtl->emit.regno_pointer_align_length = old_size * 2;
915 }
916
917 val = gen_raw_REG (mode, reg_rtx_no);
918 regno_reg_rtx[reg_rtx_no++] = val;
919 return val;
920 }
921
922 /* Update NEW with the same attributes as REG, but with OFFSET added
923 to the REG_OFFSET. */
924
925 static void
926 update_reg_offset (rtx new_rtx, rtx reg, int offset)
927 {
928 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
929 REG_OFFSET (reg) + offset);
930 }
931
932 /* Generate a register with same attributes as REG, but with OFFSET
933 added to the REG_OFFSET. */
934
935 rtx
936 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
937 int offset)
938 {
939 rtx new_rtx = gen_rtx_REG (mode, regno);
940
941 update_reg_offset (new_rtx, reg, offset);
942 return new_rtx;
943 }
944
945 /* Generate a new pseudo-register with the same attributes as REG, but
946 with OFFSET added to the REG_OFFSET. */
947
948 rtx
949 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
950 {
951 rtx new_rtx = gen_reg_rtx (mode);
952
953 update_reg_offset (new_rtx, reg, offset);
954 return new_rtx;
955 }
956
957 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
958 new register is a (possibly paradoxical) lowpart of the old one. */
959
960 void
961 adjust_reg_mode (rtx reg, enum machine_mode mode)
962 {
963 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
964 PUT_MODE (reg, mode);
965 }
966
967 /* Copy REG's attributes from X, if X has any attributes. If REG and X
968 have different modes, REG is a (possibly paradoxical) lowpart of X. */
969
970 void
971 set_reg_attrs_from_value (rtx reg, rtx x)
972 {
973 int offset;
974 bool can_be_reg_pointer = true;
975
976 /* Don't call mark_reg_pointer for incompatible pointer sign
977 extension. */
978 while (GET_CODE (x) == SIGN_EXTEND
979 || GET_CODE (x) == ZERO_EXTEND
980 || GET_CODE (x) == TRUNCATE
981 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
982 {
983 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
984 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
985 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
986 can_be_reg_pointer = false;
987 #endif
988 x = XEXP (x, 0);
989 }
990
991 /* Hard registers can be reused for multiple purposes within the same
992 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
993 on them is wrong. */
994 if (HARD_REGISTER_P (reg))
995 return;
996
997 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
998 if (MEM_P (x))
999 {
1000 if (MEM_OFFSET_KNOWN_P (x))
1001 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1002 MEM_OFFSET (x) + offset);
1003 if (can_be_reg_pointer && MEM_POINTER (x))
1004 mark_reg_pointer (reg, 0);
1005 }
1006 else if (REG_P (x))
1007 {
1008 if (REG_ATTRS (x))
1009 update_reg_offset (reg, x, offset);
1010 if (can_be_reg_pointer && REG_POINTER (x))
1011 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1012 }
1013 }
1014
1015 /* Generate a REG rtx for a new pseudo register, copying the mode
1016 and attributes from X. */
1017
1018 rtx
1019 gen_reg_rtx_and_attrs (rtx x)
1020 {
1021 rtx reg = gen_reg_rtx (GET_MODE (x));
1022 set_reg_attrs_from_value (reg, x);
1023 return reg;
1024 }
1025
1026 /* Set the register attributes for registers contained in PARM_RTX.
1027 Use needed values from memory attributes of MEM. */
1028
1029 void
1030 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1031 {
1032 if (REG_P (parm_rtx))
1033 set_reg_attrs_from_value (parm_rtx, mem);
1034 else if (GET_CODE (parm_rtx) == PARALLEL)
1035 {
1036 /* Check for a NULL entry in the first slot, used to indicate that the
1037 parameter goes both on the stack and in registers. */
1038 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1039 for (; i < XVECLEN (parm_rtx, 0); i++)
1040 {
1041 rtx x = XVECEXP (parm_rtx, 0, i);
1042 if (REG_P (XEXP (x, 0)))
1043 REG_ATTRS (XEXP (x, 0))
1044 = get_reg_attrs (MEM_EXPR (mem),
1045 INTVAL (XEXP (x, 1)));
1046 }
1047 }
1048 }
1049
1050 /* Set the REG_ATTRS for registers in value X, given that X represents
1051 decl T. */
1052
1053 void
1054 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1055 {
1056 if (GET_CODE (x) == SUBREG)
1057 {
1058 gcc_assert (subreg_lowpart_p (x));
1059 x = SUBREG_REG (x);
1060 }
1061 if (REG_P (x))
1062 REG_ATTRS (x)
1063 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1064 DECL_MODE (t)));
1065 if (GET_CODE (x) == CONCAT)
1066 {
1067 if (REG_P (XEXP (x, 0)))
1068 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1069 if (REG_P (XEXP (x, 1)))
1070 REG_ATTRS (XEXP (x, 1))
1071 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1072 }
1073 if (GET_CODE (x) == PARALLEL)
1074 {
1075 int i, start;
1076
1077 /* Check for a NULL entry, used to indicate that the parameter goes
1078 both on the stack and in registers. */
1079 if (XEXP (XVECEXP (x, 0, 0), 0))
1080 start = 0;
1081 else
1082 start = 1;
1083
1084 for (i = start; i < XVECLEN (x, 0); i++)
1085 {
1086 rtx y = XVECEXP (x, 0, i);
1087 if (REG_P (XEXP (y, 0)))
1088 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1089 }
1090 }
1091 }
1092
1093 /* Assign the RTX X to declaration T. */
1094
1095 void
1096 set_decl_rtl (tree t, rtx x)
1097 {
1098 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1099 if (x)
1100 set_reg_attrs_for_decl_rtl (t, x);
1101 }
1102
1103 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1104 if the ABI requires the parameter to be passed by reference. */
1105
1106 void
1107 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1108 {
1109 DECL_INCOMING_RTL (t) = x;
1110 if (x && !by_reference_p)
1111 set_reg_attrs_for_decl_rtl (t, x);
1112 }
1113
1114 /* Identify REG (which may be a CONCAT) as a user register. */
1115
1116 void
1117 mark_user_reg (rtx reg)
1118 {
1119 if (GET_CODE (reg) == CONCAT)
1120 {
1121 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1122 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1123 }
1124 else
1125 {
1126 gcc_assert (REG_P (reg));
1127 REG_USERVAR_P (reg) = 1;
1128 }
1129 }
1130
1131 /* Identify REG as a probable pointer register and show its alignment
1132 as ALIGN, if nonzero. */
1133
1134 void
1135 mark_reg_pointer (rtx reg, int align)
1136 {
1137 if (! REG_POINTER (reg))
1138 {
1139 REG_POINTER (reg) = 1;
1140
1141 if (align)
1142 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1143 }
1144 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1145 /* We can no-longer be sure just how aligned this pointer is. */
1146 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1147 }
1148
1149 /* Return 1 plus largest pseudo reg number used in the current function. */
1150
1151 int
1152 max_reg_num (void)
1153 {
1154 return reg_rtx_no;
1155 }
1156
1157 /* Return 1 + the largest label number used so far in the current function. */
1158
1159 int
1160 max_label_num (void)
1161 {
1162 return label_num;
1163 }
1164
1165 /* Return first label number used in this function (if any were used). */
1166
1167 int
1168 get_first_label_num (void)
1169 {
1170 return first_label_num;
1171 }
1172
1173 /* If the rtx for label was created during the expansion of a nested
1174 function, then first_label_num won't include this label number.
1175 Fix this now so that array indices work later. */
1176
1177 void
1178 maybe_set_first_label_num (rtx x)
1179 {
1180 if (CODE_LABEL_NUMBER (x) < first_label_num)
1181 first_label_num = CODE_LABEL_NUMBER (x);
1182 }
1183 \f
1184 /* Return a value representing some low-order bits of X, where the number
1185 of low-order bits is given by MODE. Note that no conversion is done
1186 between floating-point and fixed-point values, rather, the bit
1187 representation is returned.
1188
1189 This function handles the cases in common between gen_lowpart, below,
1190 and two variants in cse.c and combine.c. These are the cases that can
1191 be safely handled at all points in the compilation.
1192
1193 If this is not a case we can handle, return 0. */
1194
1195 rtx
1196 gen_lowpart_common (enum machine_mode mode, rtx x)
1197 {
1198 int msize = GET_MODE_SIZE (mode);
1199 int xsize;
1200 int offset = 0;
1201 enum machine_mode innermode;
1202
1203 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1204 so we have to make one up. Yuk. */
1205 innermode = GET_MODE (x);
1206 if (CONST_INT_P (x)
1207 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1208 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1209 else if (innermode == VOIDmode)
1210 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1211
1212 xsize = GET_MODE_SIZE (innermode);
1213
1214 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1215
1216 if (innermode == mode)
1217 return x;
1218
1219 /* MODE must occupy no more words than the mode of X. */
1220 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1221 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1222 return 0;
1223
1224 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1225 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1226 return 0;
1227
1228 offset = subreg_lowpart_offset (mode, innermode);
1229
1230 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1231 && (GET_MODE_CLASS (mode) == MODE_INT
1232 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1233 {
1234 /* If we are getting the low-order part of something that has been
1235 sign- or zero-extended, we can either just use the object being
1236 extended or make a narrower extension. If we want an even smaller
1237 piece than the size of the object being extended, call ourselves
1238 recursively.
1239
1240 This case is used mostly by combine and cse. */
1241
1242 if (GET_MODE (XEXP (x, 0)) == mode)
1243 return XEXP (x, 0);
1244 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1245 return gen_lowpart_common (mode, XEXP (x, 0));
1246 else if (msize < xsize)
1247 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1248 }
1249 else if (GET_CODE (x) == SUBREG || REG_P (x)
1250 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1251 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1252 return simplify_gen_subreg (mode, x, innermode, offset);
1253
1254 /* Otherwise, we can't do this. */
1255 return 0;
1256 }
1257 \f
1258 rtx
1259 gen_highpart (enum machine_mode mode, rtx x)
1260 {
1261 unsigned int msize = GET_MODE_SIZE (mode);
1262 rtx result;
1263
1264 /* This case loses if X is a subreg. To catch bugs early,
1265 complain if an invalid MODE is used even in other cases. */
1266 gcc_assert (msize <= UNITS_PER_WORD
1267 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1268
1269 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1270 subreg_highpart_offset (mode, GET_MODE (x)));
1271 gcc_assert (result);
1272
1273 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1274 the target if we have a MEM. gen_highpart must return a valid operand,
1275 emitting code if necessary to do so. */
1276 if (MEM_P (result))
1277 {
1278 result = validize_mem (result);
1279 gcc_assert (result);
1280 }
1281
1282 return result;
1283 }
1284
1285 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1286 be VOIDmode constant. */
1287 rtx
1288 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1289 {
1290 if (GET_MODE (exp) != VOIDmode)
1291 {
1292 gcc_assert (GET_MODE (exp) == innermode);
1293 return gen_highpart (outermode, exp);
1294 }
1295 return simplify_gen_subreg (outermode, exp, innermode,
1296 subreg_highpart_offset (outermode, innermode));
1297 }
1298
1299 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1300
1301 unsigned int
1302 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303 {
1304 unsigned int offset = 0;
1305 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306
1307 if (difference > 0)
1308 {
1309 if (WORDS_BIG_ENDIAN)
1310 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1311 if (BYTES_BIG_ENDIAN)
1312 offset += difference % UNITS_PER_WORD;
1313 }
1314
1315 return offset;
1316 }
1317
1318 /* Return offset in bytes to get OUTERMODE high part
1319 of the value in mode INNERMODE stored in memory in target format. */
1320 unsigned int
1321 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1322 {
1323 unsigned int offset = 0;
1324 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1325
1326 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1327
1328 if (difference > 0)
1329 {
1330 if (! WORDS_BIG_ENDIAN)
1331 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1332 if (! BYTES_BIG_ENDIAN)
1333 offset += difference % UNITS_PER_WORD;
1334 }
1335
1336 return offset;
1337 }
1338
1339 /* Return 1 iff X, assumed to be a SUBREG,
1340 refers to the least significant part of its containing reg.
1341 If X is not a SUBREG, always return 1 (it is its own low part!). */
1342
1343 int
1344 subreg_lowpart_p (const_rtx x)
1345 {
1346 if (GET_CODE (x) != SUBREG)
1347 return 1;
1348 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1349 return 0;
1350
1351 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1352 == SUBREG_BYTE (x));
1353 }
1354
1355 /* Return true if X is a paradoxical subreg, false otherwise. */
1356 bool
1357 paradoxical_subreg_p (const_rtx x)
1358 {
1359 if (GET_CODE (x) != SUBREG)
1360 return false;
1361 return (GET_MODE_PRECISION (GET_MODE (x))
1362 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1363 }
1364 \f
1365 /* Return subword OFFSET of operand OP.
1366 The word number, OFFSET, is interpreted as the word number starting
1367 at the low-order address. OFFSET 0 is the low-order word if not
1368 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1369
1370 If we cannot extract the required word, we return zero. Otherwise,
1371 an rtx corresponding to the requested word will be returned.
1372
1373 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1374 reload has completed, a valid address will always be returned. After
1375 reload, if a valid address cannot be returned, we return zero.
1376
1377 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1378 it is the responsibility of the caller.
1379
1380 MODE is the mode of OP in case it is a CONST_INT.
1381
1382 ??? This is still rather broken for some cases. The problem for the
1383 moment is that all callers of this thing provide no 'goal mode' to
1384 tell us to work with. This exists because all callers were written
1385 in a word based SUBREG world.
1386 Now use of this function can be deprecated by simplify_subreg in most
1387 cases.
1388 */
1389
1390 rtx
1391 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1392 {
1393 if (mode == VOIDmode)
1394 mode = GET_MODE (op);
1395
1396 gcc_assert (mode != VOIDmode);
1397
1398 /* If OP is narrower than a word, fail. */
1399 if (mode != BLKmode
1400 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1401 return 0;
1402
1403 /* If we want a word outside OP, return zero. */
1404 if (mode != BLKmode
1405 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1406 return const0_rtx;
1407
1408 /* Form a new MEM at the requested address. */
1409 if (MEM_P (op))
1410 {
1411 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1412
1413 if (! validate_address)
1414 return new_rtx;
1415
1416 else if (reload_completed)
1417 {
1418 if (! strict_memory_address_addr_space_p (word_mode,
1419 XEXP (new_rtx, 0),
1420 MEM_ADDR_SPACE (op)))
1421 return 0;
1422 }
1423 else
1424 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1425 }
1426
1427 /* Rest can be handled by simplify_subreg. */
1428 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1429 }
1430
1431 /* Similar to `operand_subword', but never return 0. If we can't
1432 extract the required subword, put OP into a register and try again.
1433 The second attempt must succeed. We always validate the address in
1434 this case.
1435
1436 MODE is the mode of OP, in case it is CONST_INT. */
1437
1438 rtx
1439 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1440 {
1441 rtx result = operand_subword (op, offset, 1, mode);
1442
1443 if (result)
1444 return result;
1445
1446 if (mode != BLKmode && mode != VOIDmode)
1447 {
1448 /* If this is a register which can not be accessed by words, copy it
1449 to a pseudo register. */
1450 if (REG_P (op))
1451 op = copy_to_reg (op);
1452 else
1453 op = force_reg (mode, op);
1454 }
1455
1456 result = operand_subword (op, offset, 1, mode);
1457 gcc_assert (result);
1458
1459 return result;
1460 }
1461 \f
1462 /* Returns 1 if both MEM_EXPR can be considered equal
1463 and 0 otherwise. */
1464
1465 int
1466 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1467 {
1468 if (expr1 == expr2)
1469 return 1;
1470
1471 if (! expr1 || ! expr2)
1472 return 0;
1473
1474 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1475 return 0;
1476
1477 return operand_equal_p (expr1, expr2, 0);
1478 }
1479
1480 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1481 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1482 -1 if not known. */
1483
1484 int
1485 get_mem_align_offset (rtx mem, unsigned int align)
1486 {
1487 tree expr;
1488 unsigned HOST_WIDE_INT offset;
1489
1490 /* This function can't use
1491 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1492 || (MAX (MEM_ALIGN (mem),
1493 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1494 < align))
1495 return -1;
1496 else
1497 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1498 for two reasons:
1499 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1500 for <variable>. get_inner_reference doesn't handle it and
1501 even if it did, the alignment in that case needs to be determined
1502 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1503 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1504 isn't sufficiently aligned, the object it is in might be. */
1505 gcc_assert (MEM_P (mem));
1506 expr = MEM_EXPR (mem);
1507 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1508 return -1;
1509
1510 offset = MEM_OFFSET (mem);
1511 if (DECL_P (expr))
1512 {
1513 if (DECL_ALIGN (expr) < align)
1514 return -1;
1515 }
1516 else if (INDIRECT_REF_P (expr))
1517 {
1518 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1519 return -1;
1520 }
1521 else if (TREE_CODE (expr) == COMPONENT_REF)
1522 {
1523 while (1)
1524 {
1525 tree inner = TREE_OPERAND (expr, 0);
1526 tree field = TREE_OPERAND (expr, 1);
1527 tree byte_offset = component_ref_field_offset (expr);
1528 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1529
1530 if (!byte_offset
1531 || !host_integerp (byte_offset, 1)
1532 || !host_integerp (bit_offset, 1))
1533 return -1;
1534
1535 offset += tree_low_cst (byte_offset, 1);
1536 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1537
1538 if (inner == NULL_TREE)
1539 {
1540 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1541 < (unsigned int) align)
1542 return -1;
1543 break;
1544 }
1545 else if (DECL_P (inner))
1546 {
1547 if (DECL_ALIGN (inner) < align)
1548 return -1;
1549 break;
1550 }
1551 else if (TREE_CODE (inner) != COMPONENT_REF)
1552 return -1;
1553 expr = inner;
1554 }
1555 }
1556 else
1557 return -1;
1558
1559 return offset & ((align / BITS_PER_UNIT) - 1);
1560 }
1561
1562 /* Given REF (a MEM) and T, either the type of X or the expression
1563 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1564 if we are making a new object of this type. BITPOS is nonzero if
1565 there is an offset outstanding on T that will be applied later. */
1566
1567 void
1568 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1569 HOST_WIDE_INT bitpos)
1570 {
1571 HOST_WIDE_INT apply_bitpos = 0;
1572 tree type;
1573 struct mem_attrs attrs, *defattrs, *refattrs;
1574 addr_space_t as;
1575
1576 /* It can happen that type_for_mode was given a mode for which there
1577 is no language-level type. In which case it returns NULL, which
1578 we can see here. */
1579 if (t == NULL_TREE)
1580 return;
1581
1582 type = TYPE_P (t) ? t : TREE_TYPE (t);
1583 if (type == error_mark_node)
1584 return;
1585
1586 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1587 wrong answer, as it assumes that DECL_RTL already has the right alias
1588 info. Callers should not set DECL_RTL until after the call to
1589 set_mem_attributes. */
1590 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1591
1592 memset (&attrs, 0, sizeof (attrs));
1593
1594 /* Get the alias set from the expression or type (perhaps using a
1595 front-end routine) and use it. */
1596 attrs.alias = get_alias_set (t);
1597
1598 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1599 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1600
1601 /* Default values from pre-existing memory attributes if present. */
1602 refattrs = MEM_ATTRS (ref);
1603 if (refattrs)
1604 {
1605 /* ??? Can this ever happen? Calling this routine on a MEM that
1606 already carries memory attributes should probably be invalid. */
1607 attrs.expr = refattrs->expr;
1608 attrs.offset_known_p = refattrs->offset_known_p;
1609 attrs.offset = refattrs->offset;
1610 attrs.size_known_p = refattrs->size_known_p;
1611 attrs.size = refattrs->size;
1612 attrs.align = refattrs->align;
1613 }
1614
1615 /* Otherwise, default values from the mode of the MEM reference. */
1616 else
1617 {
1618 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1619 gcc_assert (!defattrs->expr);
1620 gcc_assert (!defattrs->offset_known_p);
1621
1622 /* Respect mode size. */
1623 attrs.size_known_p = defattrs->size_known_p;
1624 attrs.size = defattrs->size;
1625 /* ??? Is this really necessary? We probably should always get
1626 the size from the type below. */
1627
1628 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1629 if T is an object, always compute the object alignment below. */
1630 if (TYPE_P (t))
1631 attrs.align = defattrs->align;
1632 else
1633 attrs.align = BITS_PER_UNIT;
1634 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1635 e.g. if the type carries an alignment attribute. Should we be
1636 able to simply always use TYPE_ALIGN? */
1637 }
1638
1639 /* We can set the alignment from the type if we are making an object,
1640 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1641 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1642 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1643
1644 else if (TREE_CODE (t) == MEM_REF)
1645 {
1646 tree op0 = TREE_OPERAND (t, 0);
1647 if (TREE_CODE (op0) == ADDR_EXPR
1648 && (DECL_P (TREE_OPERAND (op0, 0))
1649 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1650 {
1651 if (DECL_P (TREE_OPERAND (op0, 0)))
1652 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1653 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1654 {
1655 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1656 #ifdef CONSTANT_ALIGNMENT
1657 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1658 attrs.align);
1659 #endif
1660 }
1661 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1662 {
1663 unsigned HOST_WIDE_INT ioff
1664 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1665 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1666 attrs.align = MIN (aoff, attrs.align);
1667 }
1668 }
1669 else
1670 /* ??? This isn't fully correct, we can't set the alignment from the
1671 type in all cases. */
1672 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1673 }
1674
1675 else if (TREE_CODE (t) == TARGET_MEM_REF)
1676 /* ??? This isn't fully correct, we can't set the alignment from the
1677 type in all cases. */
1678 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1679
1680 /* If the size is known, we can set that. */
1681 tree new_size = TYPE_SIZE_UNIT (type);
1682
1683 /* If T is not a type, we may be able to deduce some more information about
1684 the expression. */
1685 if (! TYPE_P (t))
1686 {
1687 tree base;
1688 bool align_computed = false;
1689
1690 if (TREE_THIS_VOLATILE (t))
1691 MEM_VOLATILE_P (ref) = 1;
1692
1693 /* Now remove any conversions: they don't change what the underlying
1694 object is. Likewise for SAVE_EXPR. */
1695 while (CONVERT_EXPR_P (t)
1696 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1697 || TREE_CODE (t) == SAVE_EXPR)
1698 t = TREE_OPERAND (t, 0);
1699
1700 /* Note whether this expression can trap. */
1701 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1702
1703 base = get_base_address (t);
1704 if (base)
1705 {
1706 if (DECL_P (base)
1707 && TREE_READONLY (base)
1708 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1709 && !TREE_THIS_VOLATILE (base))
1710 MEM_READONLY_P (ref) = 1;
1711
1712 /* Mark static const strings readonly as well. */
1713 if (TREE_CODE (base) == STRING_CST
1714 && TREE_READONLY (base)
1715 && TREE_STATIC (base))
1716 MEM_READONLY_P (ref) = 1;
1717
1718 if (TREE_CODE (base) == MEM_REF
1719 || TREE_CODE (base) == TARGET_MEM_REF)
1720 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1721 0))));
1722 else
1723 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1724 }
1725 else
1726 as = TYPE_ADDR_SPACE (type);
1727
1728 /* If this expression uses it's parent's alias set, mark it such
1729 that we won't change it. */
1730 if (component_uses_parent_alias_set (t))
1731 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1732
1733 /* If this is a decl, set the attributes of the MEM from it. */
1734 if (DECL_P (t))
1735 {
1736 attrs.expr = t;
1737 attrs.offset_known_p = true;
1738 attrs.offset = 0;
1739 apply_bitpos = bitpos;
1740 new_size = DECL_SIZE_UNIT (t);
1741 attrs.align = DECL_ALIGN (t);
1742 align_computed = true;
1743 }
1744
1745 /* If this is a constant, we know the alignment. */
1746 else if (CONSTANT_CLASS_P (t))
1747 {
1748 attrs.align = TYPE_ALIGN (type);
1749 #ifdef CONSTANT_ALIGNMENT
1750 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1751 #endif
1752 align_computed = true;
1753 }
1754
1755 /* If this is a field reference, record it. */
1756 else if (TREE_CODE (t) == COMPONENT_REF)
1757 {
1758 attrs.expr = t;
1759 attrs.offset_known_p = true;
1760 attrs.offset = 0;
1761 apply_bitpos = bitpos;
1762 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1763 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1764 }
1765
1766 /* If this is an array reference, look for an outer field reference. */
1767 else if (TREE_CODE (t) == ARRAY_REF)
1768 {
1769 tree off_tree = size_zero_node;
1770 /* We can't modify t, because we use it at the end of the
1771 function. */
1772 tree t2 = t;
1773
1774 do
1775 {
1776 tree index = TREE_OPERAND (t2, 1);
1777 tree low_bound = array_ref_low_bound (t2);
1778 tree unit_size = array_ref_element_size (t2);
1779
1780 /* We assume all arrays have sizes that are a multiple of a byte.
1781 First subtract the lower bound, if any, in the type of the
1782 index, then convert to sizetype and multiply by the size of
1783 the array element. */
1784 if (! integer_zerop (low_bound))
1785 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1786 index, low_bound);
1787
1788 off_tree = size_binop (PLUS_EXPR,
1789 size_binop (MULT_EXPR,
1790 fold_convert (sizetype,
1791 index),
1792 unit_size),
1793 off_tree);
1794 t2 = TREE_OPERAND (t2, 0);
1795 }
1796 while (TREE_CODE (t2) == ARRAY_REF);
1797
1798 if (DECL_P (t2))
1799 {
1800 attrs.expr = t2;
1801 attrs.offset_known_p = false;
1802 if (host_integerp (off_tree, 1))
1803 {
1804 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1805 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1806 attrs.align = DECL_ALIGN (t2);
1807 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1808 attrs.align = aoff;
1809 align_computed = true;
1810 attrs.offset_known_p = true;
1811 attrs.offset = ioff;
1812 apply_bitpos = bitpos;
1813 }
1814 }
1815 else if (TREE_CODE (t2) == COMPONENT_REF)
1816 {
1817 attrs.expr = t2;
1818 attrs.offset_known_p = false;
1819 if (host_integerp (off_tree, 1))
1820 {
1821 attrs.offset_known_p = true;
1822 attrs.offset = tree_low_cst (off_tree, 1);
1823 apply_bitpos = bitpos;
1824 }
1825 /* ??? Any reason the field size would be different than
1826 the size we got from the type? */
1827 }
1828 }
1829
1830 /* If this is an indirect reference, record it. */
1831 else if (TREE_CODE (t) == MEM_REF
1832 || TREE_CODE (t) == TARGET_MEM_REF)
1833 {
1834 attrs.expr = t;
1835 attrs.offset_known_p = true;
1836 attrs.offset = 0;
1837 apply_bitpos = bitpos;
1838 }
1839
1840 if (!align_computed)
1841 {
1842 unsigned int obj_align = get_object_alignment (t);
1843 attrs.align = MAX (attrs.align, obj_align);
1844 }
1845 }
1846 else
1847 as = TYPE_ADDR_SPACE (type);
1848
1849 if (host_integerp (new_size, 1))
1850 {
1851 attrs.size_known_p = true;
1852 attrs.size = tree_low_cst (new_size, 1);
1853 }
1854
1855 /* If we modified OFFSET based on T, then subtract the outstanding
1856 bit position offset. Similarly, increase the size of the accessed
1857 object to contain the negative offset. */
1858 if (apply_bitpos)
1859 {
1860 gcc_assert (attrs.offset_known_p);
1861 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1862 if (attrs.size_known_p)
1863 attrs.size += apply_bitpos / BITS_PER_UNIT;
1864 }
1865
1866 /* Now set the attributes we computed above. */
1867 attrs.addrspace = as;
1868 set_mem_attrs (ref, &attrs);
1869 }
1870
1871 void
1872 set_mem_attributes (rtx ref, tree t, int objectp)
1873 {
1874 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1875 }
1876
1877 /* Set the alias set of MEM to SET. */
1878
1879 void
1880 set_mem_alias_set (rtx mem, alias_set_type set)
1881 {
1882 struct mem_attrs attrs;
1883
1884 /* If the new and old alias sets don't conflict, something is wrong. */
1885 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1886 attrs = *get_mem_attrs (mem);
1887 attrs.alias = set;
1888 set_mem_attrs (mem, &attrs);
1889 }
1890
1891 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1892
1893 void
1894 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1895 {
1896 struct mem_attrs attrs;
1897
1898 attrs = *get_mem_attrs (mem);
1899 attrs.addrspace = addrspace;
1900 set_mem_attrs (mem, &attrs);
1901 }
1902
1903 /* Set the alignment of MEM to ALIGN bits. */
1904
1905 void
1906 set_mem_align (rtx mem, unsigned int align)
1907 {
1908 struct mem_attrs attrs;
1909
1910 attrs = *get_mem_attrs (mem);
1911 attrs.align = align;
1912 set_mem_attrs (mem, &attrs);
1913 }
1914
1915 /* Set the expr for MEM to EXPR. */
1916
1917 void
1918 set_mem_expr (rtx mem, tree expr)
1919 {
1920 struct mem_attrs attrs;
1921
1922 attrs = *get_mem_attrs (mem);
1923 attrs.expr = expr;
1924 set_mem_attrs (mem, &attrs);
1925 }
1926
1927 /* Set the offset of MEM to OFFSET. */
1928
1929 void
1930 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1931 {
1932 struct mem_attrs attrs;
1933
1934 attrs = *get_mem_attrs (mem);
1935 attrs.offset_known_p = true;
1936 attrs.offset = offset;
1937 set_mem_attrs (mem, &attrs);
1938 }
1939
1940 /* Clear the offset of MEM. */
1941
1942 void
1943 clear_mem_offset (rtx mem)
1944 {
1945 struct mem_attrs attrs;
1946
1947 attrs = *get_mem_attrs (mem);
1948 attrs.offset_known_p = false;
1949 set_mem_attrs (mem, &attrs);
1950 }
1951
1952 /* Set the size of MEM to SIZE. */
1953
1954 void
1955 set_mem_size (rtx mem, HOST_WIDE_INT size)
1956 {
1957 struct mem_attrs attrs;
1958
1959 attrs = *get_mem_attrs (mem);
1960 attrs.size_known_p = true;
1961 attrs.size = size;
1962 set_mem_attrs (mem, &attrs);
1963 }
1964
1965 /* Clear the size of MEM. */
1966
1967 void
1968 clear_mem_size (rtx mem)
1969 {
1970 struct mem_attrs attrs;
1971
1972 attrs = *get_mem_attrs (mem);
1973 attrs.size_known_p = false;
1974 set_mem_attrs (mem, &attrs);
1975 }
1976 \f
1977 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1978 and its address changed to ADDR. (VOIDmode means don't change the mode.
1979 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1980 returned memory location is required to be valid. The memory
1981 attributes are not changed. */
1982
1983 static rtx
1984 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1985 {
1986 addr_space_t as;
1987 rtx new_rtx;
1988
1989 gcc_assert (MEM_P (memref));
1990 as = MEM_ADDR_SPACE (memref);
1991 if (mode == VOIDmode)
1992 mode = GET_MODE (memref);
1993 if (addr == 0)
1994 addr = XEXP (memref, 0);
1995 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1996 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1997 return memref;
1998
1999 if (validate)
2000 {
2001 if (reload_in_progress || reload_completed)
2002 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2003 else
2004 addr = memory_address_addr_space (mode, addr, as);
2005 }
2006
2007 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2008 return memref;
2009
2010 new_rtx = gen_rtx_MEM (mode, addr);
2011 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2012 return new_rtx;
2013 }
2014
2015 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2016 way we are changing MEMREF, so we only preserve the alias set. */
2017
2018 rtx
2019 change_address (rtx memref, enum machine_mode mode, rtx addr)
2020 {
2021 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2022 enum machine_mode mmode = GET_MODE (new_rtx);
2023 struct mem_attrs attrs, *defattrs;
2024
2025 attrs = *get_mem_attrs (memref);
2026 defattrs = mode_mem_attrs[(int) mmode];
2027 attrs.expr = NULL_TREE;
2028 attrs.offset_known_p = false;
2029 attrs.size_known_p = defattrs->size_known_p;
2030 attrs.size = defattrs->size;
2031 attrs.align = defattrs->align;
2032
2033 /* If there are no changes, just return the original memory reference. */
2034 if (new_rtx == memref)
2035 {
2036 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2037 return new_rtx;
2038
2039 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2040 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2041 }
2042
2043 set_mem_attrs (new_rtx, &attrs);
2044 return new_rtx;
2045 }
2046
2047 /* Return a memory reference like MEMREF, but with its mode changed
2048 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2049 nonzero, the memory address is forced to be valid.
2050 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2051 and the caller is responsible for adjusting MEMREF base register.
2052 If ADJUST_OBJECT is zero, the underlying object associated with the
2053 memory reference is left unchanged and the caller is responsible for
2054 dealing with it. Otherwise, if the new memory reference is outside
2055 the underlying object, even partially, then the object is dropped. */
2056
2057 rtx
2058 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2059 int validate, int adjust_address, int adjust_object)
2060 {
2061 rtx addr = XEXP (memref, 0);
2062 rtx new_rtx;
2063 enum machine_mode address_mode;
2064 int pbits;
2065 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2066 unsigned HOST_WIDE_INT max_align;
2067 #ifdef POINTERS_EXTEND_UNSIGNED
2068 enum machine_mode pointer_mode
2069 = targetm.addr_space.pointer_mode (attrs.addrspace);
2070 #endif
2071
2072 /* If there are no changes, just return the original memory reference. */
2073 if (mode == GET_MODE (memref) && !offset
2074 && (!validate || memory_address_addr_space_p (mode, addr,
2075 attrs.addrspace)))
2076 return memref;
2077
2078 /* ??? Prefer to create garbage instead of creating shared rtl.
2079 This may happen even if offset is nonzero -- consider
2080 (plus (plus reg reg) const_int) -- so do this always. */
2081 addr = copy_rtx (addr);
2082
2083 /* Convert a possibly large offset to a signed value within the
2084 range of the target address space. */
2085 address_mode = get_address_mode (memref);
2086 pbits = GET_MODE_BITSIZE (address_mode);
2087 if (HOST_BITS_PER_WIDE_INT > pbits)
2088 {
2089 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2090 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2091 >> shift);
2092 }
2093
2094 if (adjust_address)
2095 {
2096 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2097 object, we can merge it into the LO_SUM. */
2098 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2099 && offset >= 0
2100 && (unsigned HOST_WIDE_INT) offset
2101 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2102 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2103 plus_constant (address_mode,
2104 XEXP (addr, 1), offset));
2105 #ifdef POINTERS_EXTEND_UNSIGNED
2106 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2107 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2108 the fact that pointers are not allowed to overflow. */
2109 else if (POINTERS_EXTEND_UNSIGNED > 0
2110 && GET_CODE (addr) == ZERO_EXTEND
2111 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2112 && trunc_int_for_mode (offset, pointer_mode) == offset)
2113 addr = gen_rtx_ZERO_EXTEND (address_mode,
2114 plus_constant (pointer_mode,
2115 XEXP (addr, 0), offset));
2116 #endif
2117 else
2118 addr = plus_constant (address_mode, addr, offset);
2119 }
2120
2121 new_rtx = change_address_1 (memref, mode, addr, validate);
2122
2123 /* If the address is a REG, change_address_1 rightfully returns memref,
2124 but this would destroy memref's MEM_ATTRS. */
2125 if (new_rtx == memref && offset != 0)
2126 new_rtx = copy_rtx (new_rtx);
2127
2128 /* Conservatively drop the object if we don't know where we start from. */
2129 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2130 {
2131 attrs.expr = NULL_TREE;
2132 attrs.alias = 0;
2133 }
2134
2135 /* Compute the new values of the memory attributes due to this adjustment.
2136 We add the offsets and update the alignment. */
2137 if (attrs.offset_known_p)
2138 {
2139 attrs.offset += offset;
2140
2141 /* Drop the object if the new left end is not within its bounds. */
2142 if (adjust_object && attrs.offset < 0)
2143 {
2144 attrs.expr = NULL_TREE;
2145 attrs.alias = 0;
2146 }
2147 }
2148
2149 /* Compute the new alignment by taking the MIN of the alignment and the
2150 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2151 if zero. */
2152 if (offset != 0)
2153 {
2154 max_align = (offset & -offset) * BITS_PER_UNIT;
2155 attrs.align = MIN (attrs.align, max_align);
2156 }
2157
2158 /* We can compute the size in a number of ways. */
2159 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2160 if (defattrs->size_known_p)
2161 {
2162 /* Drop the object if the new right end is not within its bounds. */
2163 if (adjust_object && (offset + defattrs->size) > attrs.size)
2164 {
2165 attrs.expr = NULL_TREE;
2166 attrs.alias = 0;
2167 }
2168 attrs.size_known_p = true;
2169 attrs.size = defattrs->size;
2170 }
2171 else if (attrs.size_known_p)
2172 {
2173 attrs.size -= offset;
2174 /* ??? The store_by_pieces machinery generates negative sizes. */
2175 gcc_assert (!(adjust_object && attrs.size < 0));
2176 }
2177
2178 set_mem_attrs (new_rtx, &attrs);
2179
2180 return new_rtx;
2181 }
2182
2183 /* Return a memory reference like MEMREF, but with its mode changed
2184 to MODE and its address changed to ADDR, which is assumed to be
2185 MEMREF offset by OFFSET bytes. If VALIDATE is
2186 nonzero, the memory address is forced to be valid. */
2187
2188 rtx
2189 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2190 HOST_WIDE_INT offset, int validate)
2191 {
2192 memref = change_address_1 (memref, VOIDmode, addr, validate);
2193 return adjust_address_1 (memref, mode, offset, validate, 0, 0);
2194 }
2195
2196 /* Return a memory reference like MEMREF, but whose address is changed by
2197 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2198 known to be in OFFSET (possibly 1). */
2199
2200 rtx
2201 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2202 {
2203 rtx new_rtx, addr = XEXP (memref, 0);
2204 enum machine_mode address_mode;
2205 struct mem_attrs attrs, *defattrs;
2206
2207 attrs = *get_mem_attrs (memref);
2208 address_mode = get_address_mode (memref);
2209 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2210
2211 /* At this point we don't know _why_ the address is invalid. It
2212 could have secondary memory references, multiplies or anything.
2213
2214 However, if we did go and rearrange things, we can wind up not
2215 being able to recognize the magic around pic_offset_table_rtx.
2216 This stuff is fragile, and is yet another example of why it is
2217 bad to expose PIC machinery too early. */
2218 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2219 attrs.addrspace)
2220 && GET_CODE (addr) == PLUS
2221 && XEXP (addr, 0) == pic_offset_table_rtx)
2222 {
2223 addr = force_reg (GET_MODE (addr), addr);
2224 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2225 }
2226
2227 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2228 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2229
2230 /* If there are no changes, just return the original memory reference. */
2231 if (new_rtx == memref)
2232 return new_rtx;
2233
2234 /* Update the alignment to reflect the offset. Reset the offset, which
2235 we don't know. */
2236 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2237 attrs.offset_known_p = false;
2238 attrs.size_known_p = defattrs->size_known_p;
2239 attrs.size = defattrs->size;
2240 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2241 set_mem_attrs (new_rtx, &attrs);
2242 return new_rtx;
2243 }
2244
2245 /* Return a memory reference like MEMREF, but with its address changed to
2246 ADDR. The caller is asserting that the actual piece of memory pointed
2247 to is the same, just the form of the address is being changed, such as
2248 by putting something into a register. */
2249
2250 rtx
2251 replace_equiv_address (rtx memref, rtx addr)
2252 {
2253 /* change_address_1 copies the memory attribute structure without change
2254 and that's exactly what we want here. */
2255 update_temp_slot_address (XEXP (memref, 0), addr);
2256 return change_address_1 (memref, VOIDmode, addr, 1);
2257 }
2258
2259 /* Likewise, but the reference is not required to be valid. */
2260
2261 rtx
2262 replace_equiv_address_nv (rtx memref, rtx addr)
2263 {
2264 return change_address_1 (memref, VOIDmode, addr, 0);
2265 }
2266
2267 /* Return a memory reference like MEMREF, but with its mode widened to
2268 MODE and offset by OFFSET. This would be used by targets that e.g.
2269 cannot issue QImode memory operations and have to use SImode memory
2270 operations plus masking logic. */
2271
2272 rtx
2273 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2274 {
2275 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0);
2276 struct mem_attrs attrs;
2277 unsigned int size = GET_MODE_SIZE (mode);
2278
2279 /* If there are no changes, just return the original memory reference. */
2280 if (new_rtx == memref)
2281 return new_rtx;
2282
2283 attrs = *get_mem_attrs (new_rtx);
2284
2285 /* If we don't know what offset we were at within the expression, then
2286 we can't know if we've overstepped the bounds. */
2287 if (! attrs.offset_known_p)
2288 attrs.expr = NULL_TREE;
2289
2290 while (attrs.expr)
2291 {
2292 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2293 {
2294 tree field = TREE_OPERAND (attrs.expr, 1);
2295 tree offset = component_ref_field_offset (attrs.expr);
2296
2297 if (! DECL_SIZE_UNIT (field))
2298 {
2299 attrs.expr = NULL_TREE;
2300 break;
2301 }
2302
2303 /* Is the field at least as large as the access? If so, ok,
2304 otherwise strip back to the containing structure. */
2305 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2306 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2307 && attrs.offset >= 0)
2308 break;
2309
2310 if (! host_integerp (offset, 1))
2311 {
2312 attrs.expr = NULL_TREE;
2313 break;
2314 }
2315
2316 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2317 attrs.offset += tree_low_cst (offset, 1);
2318 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2319 / BITS_PER_UNIT);
2320 }
2321 /* Similarly for the decl. */
2322 else if (DECL_P (attrs.expr)
2323 && DECL_SIZE_UNIT (attrs.expr)
2324 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2325 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2326 && (! attrs.offset_known_p || attrs.offset >= 0))
2327 break;
2328 else
2329 {
2330 /* The widened memory access overflows the expression, which means
2331 that it could alias another expression. Zap it. */
2332 attrs.expr = NULL_TREE;
2333 break;
2334 }
2335 }
2336
2337 if (! attrs.expr)
2338 attrs.offset_known_p = false;
2339
2340 /* The widened memory may alias other stuff, so zap the alias set. */
2341 /* ??? Maybe use get_alias_set on any remaining expression. */
2342 attrs.alias = 0;
2343 attrs.size_known_p = true;
2344 attrs.size = size;
2345 set_mem_attrs (new_rtx, &attrs);
2346 return new_rtx;
2347 }
2348 \f
2349 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2350 static GTY(()) tree spill_slot_decl;
2351
2352 tree
2353 get_spill_slot_decl (bool force_build_p)
2354 {
2355 tree d = spill_slot_decl;
2356 rtx rd;
2357 struct mem_attrs attrs;
2358
2359 if (d || !force_build_p)
2360 return d;
2361
2362 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2363 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2364 DECL_ARTIFICIAL (d) = 1;
2365 DECL_IGNORED_P (d) = 1;
2366 TREE_USED (d) = 1;
2367 spill_slot_decl = d;
2368
2369 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2370 MEM_NOTRAP_P (rd) = 1;
2371 attrs = *mode_mem_attrs[(int) BLKmode];
2372 attrs.alias = new_alias_set ();
2373 attrs.expr = d;
2374 set_mem_attrs (rd, &attrs);
2375 SET_DECL_RTL (d, rd);
2376
2377 return d;
2378 }
2379
2380 /* Given MEM, a result from assign_stack_local, fill in the memory
2381 attributes as appropriate for a register allocator spill slot.
2382 These slots are not aliasable by other memory. We arrange for
2383 them all to use a single MEM_EXPR, so that the aliasing code can
2384 work properly in the case of shared spill slots. */
2385
2386 void
2387 set_mem_attrs_for_spill (rtx mem)
2388 {
2389 struct mem_attrs attrs;
2390 rtx addr;
2391
2392 attrs = *get_mem_attrs (mem);
2393 attrs.expr = get_spill_slot_decl (true);
2394 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2395 attrs.addrspace = ADDR_SPACE_GENERIC;
2396
2397 /* We expect the incoming memory to be of the form:
2398 (mem:MODE (plus (reg sfp) (const_int offset)))
2399 with perhaps the plus missing for offset = 0. */
2400 addr = XEXP (mem, 0);
2401 attrs.offset_known_p = true;
2402 attrs.offset = 0;
2403 if (GET_CODE (addr) == PLUS
2404 && CONST_INT_P (XEXP (addr, 1)))
2405 attrs.offset = INTVAL (XEXP (addr, 1));
2406
2407 set_mem_attrs (mem, &attrs);
2408 MEM_NOTRAP_P (mem) = 1;
2409 }
2410 \f
2411 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2412
2413 rtx
2414 gen_label_rtx (void)
2415 {
2416 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2417 NULL, label_num++, NULL);
2418 }
2419 \f
2420 /* For procedure integration. */
2421
2422 /* Install new pointers to the first and last insns in the chain.
2423 Also, set cur_insn_uid to one higher than the last in use.
2424 Used for an inline-procedure after copying the insn chain. */
2425
2426 void
2427 set_new_first_and_last_insn (rtx first, rtx last)
2428 {
2429 rtx insn;
2430
2431 set_first_insn (first);
2432 set_last_insn (last);
2433 cur_insn_uid = 0;
2434
2435 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2436 {
2437 int debug_count = 0;
2438
2439 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2440 cur_debug_insn_uid = 0;
2441
2442 for (insn = first; insn; insn = NEXT_INSN (insn))
2443 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2444 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2445 else
2446 {
2447 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2448 if (DEBUG_INSN_P (insn))
2449 debug_count++;
2450 }
2451
2452 if (debug_count)
2453 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2454 else
2455 cur_debug_insn_uid++;
2456 }
2457 else
2458 for (insn = first; insn; insn = NEXT_INSN (insn))
2459 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2460
2461 cur_insn_uid++;
2462 }
2463 \f
2464 /* Go through all the RTL insn bodies and copy any invalid shared
2465 structure. This routine should only be called once. */
2466
2467 static void
2468 unshare_all_rtl_1 (rtx insn)
2469 {
2470 /* Unshare just about everything else. */
2471 unshare_all_rtl_in_chain (insn);
2472
2473 /* Make sure the addresses of stack slots found outside the insn chain
2474 (such as, in DECL_RTL of a variable) are not shared
2475 with the insn chain.
2476
2477 This special care is necessary when the stack slot MEM does not
2478 actually appear in the insn chain. If it does appear, its address
2479 is unshared from all else at that point. */
2480 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2481 }
2482
2483 /* Go through all the RTL insn bodies and copy any invalid shared
2484 structure, again. This is a fairly expensive thing to do so it
2485 should be done sparingly. */
2486
2487 void
2488 unshare_all_rtl_again (rtx insn)
2489 {
2490 rtx p;
2491 tree decl;
2492
2493 for (p = insn; p; p = NEXT_INSN (p))
2494 if (INSN_P (p))
2495 {
2496 reset_used_flags (PATTERN (p));
2497 reset_used_flags (REG_NOTES (p));
2498 if (CALL_P (p))
2499 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2500 }
2501
2502 /* Make sure that virtual stack slots are not shared. */
2503 set_used_decls (DECL_INITIAL (cfun->decl));
2504
2505 /* Make sure that virtual parameters are not shared. */
2506 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2507 set_used_flags (DECL_RTL (decl));
2508
2509 reset_used_flags (stack_slot_list);
2510
2511 unshare_all_rtl_1 (insn);
2512 }
2513
2514 unsigned int
2515 unshare_all_rtl (void)
2516 {
2517 unshare_all_rtl_1 (get_insns ());
2518 return 0;
2519 }
2520
2521
2522 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2523 Recursively does the same for subexpressions. */
2524
2525 static void
2526 verify_rtx_sharing (rtx orig, rtx insn)
2527 {
2528 rtx x = orig;
2529 int i;
2530 enum rtx_code code;
2531 const char *format_ptr;
2532
2533 if (x == 0)
2534 return;
2535
2536 code = GET_CODE (x);
2537
2538 /* These types may be freely shared. */
2539
2540 switch (code)
2541 {
2542 case REG:
2543 case DEBUG_EXPR:
2544 case VALUE:
2545 CASE_CONST_ANY:
2546 case SYMBOL_REF:
2547 case LABEL_REF:
2548 case CODE_LABEL:
2549 case PC:
2550 case CC0:
2551 case RETURN:
2552 case SIMPLE_RETURN:
2553 case SCRATCH:
2554 return;
2555 /* SCRATCH must be shared because they represent distinct values. */
2556 case CLOBBER:
2557 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2558 return;
2559 break;
2560
2561 case CONST:
2562 if (shared_const_p (orig))
2563 return;
2564 break;
2565
2566 case MEM:
2567 /* A MEM is allowed to be shared if its address is constant. */
2568 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2569 || reload_completed || reload_in_progress)
2570 return;
2571
2572 break;
2573
2574 default:
2575 break;
2576 }
2577
2578 /* This rtx may not be shared. If it has already been seen,
2579 replace it with a copy of itself. */
2580 #ifdef ENABLE_CHECKING
2581 if (RTX_FLAG (x, used))
2582 {
2583 error ("invalid rtl sharing found in the insn");
2584 debug_rtx (insn);
2585 error ("shared rtx");
2586 debug_rtx (x);
2587 internal_error ("internal consistency failure");
2588 }
2589 #endif
2590 gcc_assert (!RTX_FLAG (x, used));
2591
2592 RTX_FLAG (x, used) = 1;
2593
2594 /* Now scan the subexpressions recursively. */
2595
2596 format_ptr = GET_RTX_FORMAT (code);
2597
2598 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2599 {
2600 switch (*format_ptr++)
2601 {
2602 case 'e':
2603 verify_rtx_sharing (XEXP (x, i), insn);
2604 break;
2605
2606 case 'E':
2607 if (XVEC (x, i) != NULL)
2608 {
2609 int j;
2610 int len = XVECLEN (x, i);
2611
2612 for (j = 0; j < len; j++)
2613 {
2614 /* We allow sharing of ASM_OPERANDS inside single
2615 instruction. */
2616 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2617 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2618 == ASM_OPERANDS))
2619 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2620 else
2621 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2622 }
2623 }
2624 break;
2625 }
2626 }
2627 return;
2628 }
2629
2630 /* Go through all the RTL insn bodies and check that there is no unexpected
2631 sharing in between the subexpressions. */
2632
2633 DEBUG_FUNCTION void
2634 verify_rtl_sharing (void)
2635 {
2636 rtx p;
2637
2638 timevar_push (TV_VERIFY_RTL_SHARING);
2639
2640 for (p = get_insns (); p; p = NEXT_INSN (p))
2641 if (INSN_P (p))
2642 {
2643 reset_used_flags (PATTERN (p));
2644 reset_used_flags (REG_NOTES (p));
2645 if (CALL_P (p))
2646 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2647 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2648 {
2649 int i;
2650 rtx q, sequence = PATTERN (p);
2651
2652 for (i = 0; i < XVECLEN (sequence, 0); i++)
2653 {
2654 q = XVECEXP (sequence, 0, i);
2655 gcc_assert (INSN_P (q));
2656 reset_used_flags (PATTERN (q));
2657 reset_used_flags (REG_NOTES (q));
2658 if (CALL_P (q))
2659 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2660 }
2661 }
2662 }
2663
2664 for (p = get_insns (); p; p = NEXT_INSN (p))
2665 if (INSN_P (p))
2666 {
2667 verify_rtx_sharing (PATTERN (p), p);
2668 verify_rtx_sharing (REG_NOTES (p), p);
2669 if (CALL_P (p))
2670 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2671 }
2672
2673 timevar_pop (TV_VERIFY_RTL_SHARING);
2674 }
2675
2676 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2677 Assumes the mark bits are cleared at entry. */
2678
2679 void
2680 unshare_all_rtl_in_chain (rtx insn)
2681 {
2682 for (; insn; insn = NEXT_INSN (insn))
2683 if (INSN_P (insn))
2684 {
2685 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2686 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2687 if (CALL_P (insn))
2688 CALL_INSN_FUNCTION_USAGE (insn)
2689 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2690 }
2691 }
2692
2693 /* Go through all virtual stack slots of a function and mark them as
2694 shared. We never replace the DECL_RTLs themselves with a copy,
2695 but expressions mentioned into a DECL_RTL cannot be shared with
2696 expressions in the instruction stream.
2697
2698 Note that reload may convert pseudo registers into memories in-place.
2699 Pseudo registers are always shared, but MEMs never are. Thus if we
2700 reset the used flags on MEMs in the instruction stream, we must set
2701 them again on MEMs that appear in DECL_RTLs. */
2702
2703 static void
2704 set_used_decls (tree blk)
2705 {
2706 tree t;
2707
2708 /* Mark decls. */
2709 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2710 if (DECL_RTL_SET_P (t))
2711 set_used_flags (DECL_RTL (t));
2712
2713 /* Now process sub-blocks. */
2714 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2715 set_used_decls (t);
2716 }
2717
2718 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2719 Recursively does the same for subexpressions. Uses
2720 copy_rtx_if_shared_1 to reduce stack space. */
2721
2722 rtx
2723 copy_rtx_if_shared (rtx orig)
2724 {
2725 copy_rtx_if_shared_1 (&orig);
2726 return orig;
2727 }
2728
2729 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2730 use. Recursively does the same for subexpressions. */
2731
2732 static void
2733 copy_rtx_if_shared_1 (rtx *orig1)
2734 {
2735 rtx x;
2736 int i;
2737 enum rtx_code code;
2738 rtx *last_ptr;
2739 const char *format_ptr;
2740 int copied = 0;
2741 int length;
2742
2743 /* Repeat is used to turn tail-recursion into iteration. */
2744 repeat:
2745 x = *orig1;
2746
2747 if (x == 0)
2748 return;
2749
2750 code = GET_CODE (x);
2751
2752 /* These types may be freely shared. */
2753
2754 switch (code)
2755 {
2756 case REG:
2757 case DEBUG_EXPR:
2758 case VALUE:
2759 CASE_CONST_ANY:
2760 case SYMBOL_REF:
2761 case LABEL_REF:
2762 case CODE_LABEL:
2763 case PC:
2764 case CC0:
2765 case RETURN:
2766 case SIMPLE_RETURN:
2767 case SCRATCH:
2768 /* SCRATCH must be shared because they represent distinct values. */
2769 return;
2770 case CLOBBER:
2771 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2772 return;
2773 break;
2774
2775 case CONST:
2776 if (shared_const_p (x))
2777 return;
2778 break;
2779
2780 case DEBUG_INSN:
2781 case INSN:
2782 case JUMP_INSN:
2783 case CALL_INSN:
2784 case NOTE:
2785 case BARRIER:
2786 /* The chain of insns is not being copied. */
2787 return;
2788
2789 default:
2790 break;
2791 }
2792
2793 /* This rtx may not be shared. If it has already been seen,
2794 replace it with a copy of itself. */
2795
2796 if (RTX_FLAG (x, used))
2797 {
2798 x = shallow_copy_rtx (x);
2799 copied = 1;
2800 }
2801 RTX_FLAG (x, used) = 1;
2802
2803 /* Now scan the subexpressions recursively.
2804 We can store any replaced subexpressions directly into X
2805 since we know X is not shared! Any vectors in X
2806 must be copied if X was copied. */
2807
2808 format_ptr = GET_RTX_FORMAT (code);
2809 length = GET_RTX_LENGTH (code);
2810 last_ptr = NULL;
2811
2812 for (i = 0; i < length; i++)
2813 {
2814 switch (*format_ptr++)
2815 {
2816 case 'e':
2817 if (last_ptr)
2818 copy_rtx_if_shared_1 (last_ptr);
2819 last_ptr = &XEXP (x, i);
2820 break;
2821
2822 case 'E':
2823 if (XVEC (x, i) != NULL)
2824 {
2825 int j;
2826 int len = XVECLEN (x, i);
2827
2828 /* Copy the vector iff I copied the rtx and the length
2829 is nonzero. */
2830 if (copied && len > 0)
2831 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2832
2833 /* Call recursively on all inside the vector. */
2834 for (j = 0; j < len; j++)
2835 {
2836 if (last_ptr)
2837 copy_rtx_if_shared_1 (last_ptr);
2838 last_ptr = &XVECEXP (x, i, j);
2839 }
2840 }
2841 break;
2842 }
2843 }
2844 *orig1 = x;
2845 if (last_ptr)
2846 {
2847 orig1 = last_ptr;
2848 goto repeat;
2849 }
2850 return;
2851 }
2852
2853 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2854
2855 static void
2856 mark_used_flags (rtx x, int flag)
2857 {
2858 int i, j;
2859 enum rtx_code code;
2860 const char *format_ptr;
2861 int length;
2862
2863 /* Repeat is used to turn tail-recursion into iteration. */
2864 repeat:
2865 if (x == 0)
2866 return;
2867
2868 code = GET_CODE (x);
2869
2870 /* These types may be freely shared so we needn't do any resetting
2871 for them. */
2872
2873 switch (code)
2874 {
2875 case REG:
2876 case DEBUG_EXPR:
2877 case VALUE:
2878 CASE_CONST_ANY:
2879 case SYMBOL_REF:
2880 case CODE_LABEL:
2881 case PC:
2882 case CC0:
2883 case RETURN:
2884 case SIMPLE_RETURN:
2885 return;
2886
2887 case DEBUG_INSN:
2888 case INSN:
2889 case JUMP_INSN:
2890 case CALL_INSN:
2891 case NOTE:
2892 case LABEL_REF:
2893 case BARRIER:
2894 /* The chain of insns is not being copied. */
2895 return;
2896
2897 default:
2898 break;
2899 }
2900
2901 RTX_FLAG (x, used) = flag;
2902
2903 format_ptr = GET_RTX_FORMAT (code);
2904 length = GET_RTX_LENGTH (code);
2905
2906 for (i = 0; i < length; i++)
2907 {
2908 switch (*format_ptr++)
2909 {
2910 case 'e':
2911 if (i == length-1)
2912 {
2913 x = XEXP (x, i);
2914 goto repeat;
2915 }
2916 mark_used_flags (XEXP (x, i), flag);
2917 break;
2918
2919 case 'E':
2920 for (j = 0; j < XVECLEN (x, i); j++)
2921 mark_used_flags (XVECEXP (x, i, j), flag);
2922 break;
2923 }
2924 }
2925 }
2926
2927 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2928 to look for shared sub-parts. */
2929
2930 void
2931 reset_used_flags (rtx x)
2932 {
2933 mark_used_flags (x, 0);
2934 }
2935
2936 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2937 to look for shared sub-parts. */
2938
2939 void
2940 set_used_flags (rtx x)
2941 {
2942 mark_used_flags (x, 1);
2943 }
2944 \f
2945 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2946 Return X or the rtx for the pseudo reg the value of X was copied into.
2947 OTHER must be valid as a SET_DEST. */
2948
2949 rtx
2950 make_safe_from (rtx x, rtx other)
2951 {
2952 while (1)
2953 switch (GET_CODE (other))
2954 {
2955 case SUBREG:
2956 other = SUBREG_REG (other);
2957 break;
2958 case STRICT_LOW_PART:
2959 case SIGN_EXTEND:
2960 case ZERO_EXTEND:
2961 other = XEXP (other, 0);
2962 break;
2963 default:
2964 goto done;
2965 }
2966 done:
2967 if ((MEM_P (other)
2968 && ! CONSTANT_P (x)
2969 && !REG_P (x)
2970 && GET_CODE (x) != SUBREG)
2971 || (REG_P (other)
2972 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2973 || reg_mentioned_p (other, x))))
2974 {
2975 rtx temp = gen_reg_rtx (GET_MODE (x));
2976 emit_move_insn (temp, x);
2977 return temp;
2978 }
2979 return x;
2980 }
2981 \f
2982 /* Emission of insns (adding them to the doubly-linked list). */
2983
2984 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2985
2986 rtx
2987 get_last_insn_anywhere (void)
2988 {
2989 struct sequence_stack *stack;
2990 if (get_last_insn ())
2991 return get_last_insn ();
2992 for (stack = seq_stack; stack; stack = stack->next)
2993 if (stack->last != 0)
2994 return stack->last;
2995 return 0;
2996 }
2997
2998 /* Return the first nonnote insn emitted in current sequence or current
2999 function. This routine looks inside SEQUENCEs. */
3000
3001 rtx
3002 get_first_nonnote_insn (void)
3003 {
3004 rtx insn = get_insns ();
3005
3006 if (insn)
3007 {
3008 if (NOTE_P (insn))
3009 for (insn = next_insn (insn);
3010 insn && NOTE_P (insn);
3011 insn = next_insn (insn))
3012 continue;
3013 else
3014 {
3015 if (NONJUMP_INSN_P (insn)
3016 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3017 insn = XVECEXP (PATTERN (insn), 0, 0);
3018 }
3019 }
3020
3021 return insn;
3022 }
3023
3024 /* Return the last nonnote insn emitted in current sequence or current
3025 function. This routine looks inside SEQUENCEs. */
3026
3027 rtx
3028 get_last_nonnote_insn (void)
3029 {
3030 rtx insn = get_last_insn ();
3031
3032 if (insn)
3033 {
3034 if (NOTE_P (insn))
3035 for (insn = previous_insn (insn);
3036 insn && NOTE_P (insn);
3037 insn = previous_insn (insn))
3038 continue;
3039 else
3040 {
3041 if (NONJUMP_INSN_P (insn)
3042 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3043 insn = XVECEXP (PATTERN (insn), 0,
3044 XVECLEN (PATTERN (insn), 0) - 1);
3045 }
3046 }
3047
3048 return insn;
3049 }
3050
3051 /* Return the number of actual (non-debug) insns emitted in this
3052 function. */
3053
3054 int
3055 get_max_insn_count (void)
3056 {
3057 int n = cur_insn_uid;
3058
3059 /* The table size must be stable across -g, to avoid codegen
3060 differences due to debug insns, and not be affected by
3061 -fmin-insn-uid, to avoid excessive table size and to simplify
3062 debugging of -fcompare-debug failures. */
3063 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3064 n -= cur_debug_insn_uid;
3065 else
3066 n -= MIN_NONDEBUG_INSN_UID;
3067
3068 return n;
3069 }
3070
3071 \f
3072 /* Return the next insn. If it is a SEQUENCE, return the first insn
3073 of the sequence. */
3074
3075 rtx
3076 next_insn (rtx insn)
3077 {
3078 if (insn)
3079 {
3080 insn = NEXT_INSN (insn);
3081 if (insn && NONJUMP_INSN_P (insn)
3082 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3083 insn = XVECEXP (PATTERN (insn), 0, 0);
3084 }
3085
3086 return insn;
3087 }
3088
3089 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3090 of the sequence. */
3091
3092 rtx
3093 previous_insn (rtx insn)
3094 {
3095 if (insn)
3096 {
3097 insn = PREV_INSN (insn);
3098 if (insn && NONJUMP_INSN_P (insn)
3099 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3100 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3101 }
3102
3103 return insn;
3104 }
3105
3106 /* Return the next insn after INSN that is not a NOTE. This routine does not
3107 look inside SEQUENCEs. */
3108
3109 rtx
3110 next_nonnote_insn (rtx insn)
3111 {
3112 while (insn)
3113 {
3114 insn = NEXT_INSN (insn);
3115 if (insn == 0 || !NOTE_P (insn))
3116 break;
3117 }
3118
3119 return insn;
3120 }
3121
3122 /* Return the next insn after INSN that is not a NOTE, but stop the
3123 search before we enter another basic block. This routine does not
3124 look inside SEQUENCEs. */
3125
3126 rtx
3127 next_nonnote_insn_bb (rtx insn)
3128 {
3129 while (insn)
3130 {
3131 insn = NEXT_INSN (insn);
3132 if (insn == 0 || !NOTE_P (insn))
3133 break;
3134 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3135 return NULL_RTX;
3136 }
3137
3138 return insn;
3139 }
3140
3141 /* Return the previous insn before INSN that is not a NOTE. This routine does
3142 not look inside SEQUENCEs. */
3143
3144 rtx
3145 prev_nonnote_insn (rtx insn)
3146 {
3147 while (insn)
3148 {
3149 insn = PREV_INSN (insn);
3150 if (insn == 0 || !NOTE_P (insn))
3151 break;
3152 }
3153
3154 return insn;
3155 }
3156
3157 /* Return the previous insn before INSN that is not a NOTE, but stop
3158 the search before we enter another basic block. This routine does
3159 not look inside SEQUENCEs. */
3160
3161 rtx
3162 prev_nonnote_insn_bb (rtx insn)
3163 {
3164 while (insn)
3165 {
3166 insn = PREV_INSN (insn);
3167 if (insn == 0 || !NOTE_P (insn))
3168 break;
3169 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3170 return NULL_RTX;
3171 }
3172
3173 return insn;
3174 }
3175
3176 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3177 routine does not look inside SEQUENCEs. */
3178
3179 rtx
3180 next_nondebug_insn (rtx insn)
3181 {
3182 while (insn)
3183 {
3184 insn = NEXT_INSN (insn);
3185 if (insn == 0 || !DEBUG_INSN_P (insn))
3186 break;
3187 }
3188
3189 return insn;
3190 }
3191
3192 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3193 This routine does not look inside SEQUENCEs. */
3194
3195 rtx
3196 prev_nondebug_insn (rtx insn)
3197 {
3198 while (insn)
3199 {
3200 insn = PREV_INSN (insn);
3201 if (insn == 0 || !DEBUG_INSN_P (insn))
3202 break;
3203 }
3204
3205 return insn;
3206 }
3207
3208 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3209 This routine does not look inside SEQUENCEs. */
3210
3211 rtx
3212 next_nonnote_nondebug_insn (rtx insn)
3213 {
3214 while (insn)
3215 {
3216 insn = NEXT_INSN (insn);
3217 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3218 break;
3219 }
3220
3221 return insn;
3222 }
3223
3224 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3225 This routine does not look inside SEQUENCEs. */
3226
3227 rtx
3228 prev_nonnote_nondebug_insn (rtx insn)
3229 {
3230 while (insn)
3231 {
3232 insn = PREV_INSN (insn);
3233 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3234 break;
3235 }
3236
3237 return insn;
3238 }
3239
3240 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3241 or 0, if there is none. This routine does not look inside
3242 SEQUENCEs. */
3243
3244 rtx
3245 next_real_insn (rtx insn)
3246 {
3247 while (insn)
3248 {
3249 insn = NEXT_INSN (insn);
3250 if (insn == 0 || INSN_P (insn))
3251 break;
3252 }
3253
3254 return insn;
3255 }
3256
3257 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3258 or 0, if there is none. This routine does not look inside
3259 SEQUENCEs. */
3260
3261 rtx
3262 prev_real_insn (rtx insn)
3263 {
3264 while (insn)
3265 {
3266 insn = PREV_INSN (insn);
3267 if (insn == 0 || INSN_P (insn))
3268 break;
3269 }
3270
3271 return insn;
3272 }
3273
3274 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3275 This routine does not look inside SEQUENCEs. */
3276
3277 rtx
3278 last_call_insn (void)
3279 {
3280 rtx insn;
3281
3282 for (insn = get_last_insn ();
3283 insn && !CALL_P (insn);
3284 insn = PREV_INSN (insn))
3285 ;
3286
3287 return insn;
3288 }
3289
3290 /* Find the next insn after INSN that really does something. This routine
3291 does not look inside SEQUENCEs. After reload this also skips over
3292 standalone USE and CLOBBER insn. */
3293
3294 int
3295 active_insn_p (const_rtx insn)
3296 {
3297 return (CALL_P (insn) || JUMP_P (insn)
3298 || (NONJUMP_INSN_P (insn)
3299 && (! reload_completed
3300 || (GET_CODE (PATTERN (insn)) != USE
3301 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3302 }
3303
3304 rtx
3305 next_active_insn (rtx insn)
3306 {
3307 while (insn)
3308 {
3309 insn = NEXT_INSN (insn);
3310 if (insn == 0 || active_insn_p (insn))
3311 break;
3312 }
3313
3314 return insn;
3315 }
3316
3317 /* Find the last insn before INSN that really does something. This routine
3318 does not look inside SEQUENCEs. After reload this also skips over
3319 standalone USE and CLOBBER insn. */
3320
3321 rtx
3322 prev_active_insn (rtx insn)
3323 {
3324 while (insn)
3325 {
3326 insn = PREV_INSN (insn);
3327 if (insn == 0 || active_insn_p (insn))
3328 break;
3329 }
3330
3331 return insn;
3332 }
3333
3334 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3335
3336 rtx
3337 next_label (rtx insn)
3338 {
3339 while (insn)
3340 {
3341 insn = NEXT_INSN (insn);
3342 if (insn == 0 || LABEL_P (insn))
3343 break;
3344 }
3345
3346 return insn;
3347 }
3348
3349 /* Return the last label to mark the same position as LABEL. Return LABEL
3350 itself if it is null or any return rtx. */
3351
3352 rtx
3353 skip_consecutive_labels (rtx label)
3354 {
3355 rtx insn;
3356
3357 if (label && ANY_RETURN_P (label))
3358 return label;
3359
3360 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3361 if (LABEL_P (insn))
3362 label = insn;
3363
3364 return label;
3365 }
3366 \f
3367 #ifdef HAVE_cc0
3368 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3369 and REG_CC_USER notes so we can find it. */
3370
3371 void
3372 link_cc0_insns (rtx insn)
3373 {
3374 rtx user = next_nonnote_insn (insn);
3375
3376 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3377 user = XVECEXP (PATTERN (user), 0, 0);
3378
3379 add_reg_note (user, REG_CC_SETTER, insn);
3380 add_reg_note (insn, REG_CC_USER, user);
3381 }
3382
3383 /* Return the next insn that uses CC0 after INSN, which is assumed to
3384 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3385 applied to the result of this function should yield INSN).
3386
3387 Normally, this is simply the next insn. However, if a REG_CC_USER note
3388 is present, it contains the insn that uses CC0.
3389
3390 Return 0 if we can't find the insn. */
3391
3392 rtx
3393 next_cc0_user (rtx insn)
3394 {
3395 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3396
3397 if (note)
3398 return XEXP (note, 0);
3399
3400 insn = next_nonnote_insn (insn);
3401 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3402 insn = XVECEXP (PATTERN (insn), 0, 0);
3403
3404 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3405 return insn;
3406
3407 return 0;
3408 }
3409
3410 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3411 note, it is the previous insn. */
3412
3413 rtx
3414 prev_cc0_setter (rtx insn)
3415 {
3416 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3417
3418 if (note)
3419 return XEXP (note, 0);
3420
3421 insn = prev_nonnote_insn (insn);
3422 gcc_assert (sets_cc0_p (PATTERN (insn)));
3423
3424 return insn;
3425 }
3426 #endif
3427
3428 #ifdef AUTO_INC_DEC
3429 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3430
3431 static int
3432 find_auto_inc (rtx *xp, void *data)
3433 {
3434 rtx x = *xp;
3435 rtx reg = (rtx) data;
3436
3437 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3438 return 0;
3439
3440 switch (GET_CODE (x))
3441 {
3442 case PRE_DEC:
3443 case PRE_INC:
3444 case POST_DEC:
3445 case POST_INC:
3446 case PRE_MODIFY:
3447 case POST_MODIFY:
3448 if (rtx_equal_p (reg, XEXP (x, 0)))
3449 return 1;
3450 break;
3451
3452 default:
3453 gcc_unreachable ();
3454 }
3455 return -1;
3456 }
3457 #endif
3458
3459 /* Increment the label uses for all labels present in rtx. */
3460
3461 static void
3462 mark_label_nuses (rtx x)
3463 {
3464 enum rtx_code code;
3465 int i, j;
3466 const char *fmt;
3467
3468 code = GET_CODE (x);
3469 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3470 LABEL_NUSES (XEXP (x, 0))++;
3471
3472 fmt = GET_RTX_FORMAT (code);
3473 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3474 {
3475 if (fmt[i] == 'e')
3476 mark_label_nuses (XEXP (x, i));
3477 else if (fmt[i] == 'E')
3478 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3479 mark_label_nuses (XVECEXP (x, i, j));
3480 }
3481 }
3482
3483 \f
3484 /* Try splitting insns that can be split for better scheduling.
3485 PAT is the pattern which might split.
3486 TRIAL is the insn providing PAT.
3487 LAST is nonzero if we should return the last insn of the sequence produced.
3488
3489 If this routine succeeds in splitting, it returns the first or last
3490 replacement insn depending on the value of LAST. Otherwise, it
3491 returns TRIAL. If the insn to be returned can be split, it will be. */
3492
3493 rtx
3494 try_split (rtx pat, rtx trial, int last)
3495 {
3496 rtx before = PREV_INSN (trial);
3497 rtx after = NEXT_INSN (trial);
3498 int has_barrier = 0;
3499 rtx note, seq, tem;
3500 int probability;
3501 rtx insn_last, insn;
3502 int njumps = 0;
3503
3504 /* We're not good at redistributing frame information. */
3505 if (RTX_FRAME_RELATED_P (trial))
3506 return trial;
3507
3508 if (any_condjump_p (trial)
3509 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3510 split_branch_probability = INTVAL (XEXP (note, 0));
3511 probability = split_branch_probability;
3512
3513 seq = split_insns (pat, trial);
3514
3515 split_branch_probability = -1;
3516
3517 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3518 We may need to handle this specially. */
3519 if (after && BARRIER_P (after))
3520 {
3521 has_barrier = 1;
3522 after = NEXT_INSN (after);
3523 }
3524
3525 if (!seq)
3526 return trial;
3527
3528 /* Avoid infinite loop if any insn of the result matches
3529 the original pattern. */
3530 insn_last = seq;
3531 while (1)
3532 {
3533 if (INSN_P (insn_last)
3534 && rtx_equal_p (PATTERN (insn_last), pat))
3535 return trial;
3536 if (!NEXT_INSN (insn_last))
3537 break;
3538 insn_last = NEXT_INSN (insn_last);
3539 }
3540
3541 /* We will be adding the new sequence to the function. The splitters
3542 may have introduced invalid RTL sharing, so unshare the sequence now. */
3543 unshare_all_rtl_in_chain (seq);
3544
3545 /* Mark labels. */
3546 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3547 {
3548 if (JUMP_P (insn))
3549 {
3550 mark_jump_label (PATTERN (insn), insn, 0);
3551 njumps++;
3552 if (probability != -1
3553 && any_condjump_p (insn)
3554 && !find_reg_note (insn, REG_BR_PROB, 0))
3555 {
3556 /* We can preserve the REG_BR_PROB notes only if exactly
3557 one jump is created, otherwise the machine description
3558 is responsible for this step using
3559 split_branch_probability variable. */
3560 gcc_assert (njumps == 1);
3561 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3562 }
3563 }
3564 }
3565
3566 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3567 in SEQ and copy any additional information across. */
3568 if (CALL_P (trial))
3569 {
3570 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3571 if (CALL_P (insn))
3572 {
3573 rtx next, *p;
3574
3575 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3576 target may have explicitly specified. */
3577 p = &CALL_INSN_FUNCTION_USAGE (insn);
3578 while (*p)
3579 p = &XEXP (*p, 1);
3580 *p = CALL_INSN_FUNCTION_USAGE (trial);
3581
3582 /* If the old call was a sibling call, the new one must
3583 be too. */
3584 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3585
3586 /* If the new call is the last instruction in the sequence,
3587 it will effectively replace the old call in-situ. Otherwise
3588 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3589 so that it comes immediately after the new call. */
3590 if (NEXT_INSN (insn))
3591 for (next = NEXT_INSN (trial);
3592 next && NOTE_P (next);
3593 next = NEXT_INSN (next))
3594 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3595 {
3596 remove_insn (next);
3597 add_insn_after (next, insn, NULL);
3598 break;
3599 }
3600 }
3601 }
3602
3603 /* Copy notes, particularly those related to the CFG. */
3604 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3605 {
3606 switch (REG_NOTE_KIND (note))
3607 {
3608 case REG_EH_REGION:
3609 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3610 break;
3611
3612 case REG_NORETURN:
3613 case REG_SETJMP:
3614 case REG_TM:
3615 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3616 {
3617 if (CALL_P (insn))
3618 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3619 }
3620 break;
3621
3622 case REG_NON_LOCAL_GOTO:
3623 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3624 {
3625 if (JUMP_P (insn))
3626 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3627 }
3628 break;
3629
3630 #ifdef AUTO_INC_DEC
3631 case REG_INC:
3632 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3633 {
3634 rtx reg = XEXP (note, 0);
3635 if (!FIND_REG_INC_NOTE (insn, reg)
3636 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3637 add_reg_note (insn, REG_INC, reg);
3638 }
3639 break;
3640 #endif
3641
3642 case REG_ARGS_SIZE:
3643 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3644 break;
3645
3646 default:
3647 break;
3648 }
3649 }
3650
3651 /* If there are LABELS inside the split insns increment the
3652 usage count so we don't delete the label. */
3653 if (INSN_P (trial))
3654 {
3655 insn = insn_last;
3656 while (insn != NULL_RTX)
3657 {
3658 /* JUMP_P insns have already been "marked" above. */
3659 if (NONJUMP_INSN_P (insn))
3660 mark_label_nuses (PATTERN (insn));
3661
3662 insn = PREV_INSN (insn);
3663 }
3664 }
3665
3666 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3667
3668 delete_insn (trial);
3669 if (has_barrier)
3670 emit_barrier_after (tem);
3671
3672 /* Recursively call try_split for each new insn created; by the
3673 time control returns here that insn will be fully split, so
3674 set LAST and continue from the insn after the one returned.
3675 We can't use next_active_insn here since AFTER may be a note.
3676 Ignore deleted insns, which can be occur if not optimizing. */
3677 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3678 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3679 tem = try_split (PATTERN (tem), tem, 1);
3680
3681 /* Return either the first or the last insn, depending on which was
3682 requested. */
3683 return last
3684 ? (after ? PREV_INSN (after) : get_last_insn ())
3685 : NEXT_INSN (before);
3686 }
3687 \f
3688 /* Make and return an INSN rtx, initializing all its slots.
3689 Store PATTERN in the pattern slots. */
3690
3691 rtx
3692 make_insn_raw (rtx pattern)
3693 {
3694 rtx insn;
3695
3696 insn = rtx_alloc (INSN);
3697
3698 INSN_UID (insn) = cur_insn_uid++;
3699 PATTERN (insn) = pattern;
3700 INSN_CODE (insn) = -1;
3701 REG_NOTES (insn) = NULL;
3702 INSN_LOCATION (insn) = curr_insn_location ();
3703 BLOCK_FOR_INSN (insn) = NULL;
3704
3705 #ifdef ENABLE_RTL_CHECKING
3706 if (insn
3707 && INSN_P (insn)
3708 && (returnjump_p (insn)
3709 || (GET_CODE (insn) == SET
3710 && SET_DEST (insn) == pc_rtx)))
3711 {
3712 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3713 debug_rtx (insn);
3714 }
3715 #endif
3716
3717 return insn;
3718 }
3719
3720 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3721
3722 static rtx
3723 make_debug_insn_raw (rtx pattern)
3724 {
3725 rtx insn;
3726
3727 insn = rtx_alloc (DEBUG_INSN);
3728 INSN_UID (insn) = cur_debug_insn_uid++;
3729 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3730 INSN_UID (insn) = cur_insn_uid++;
3731
3732 PATTERN (insn) = pattern;
3733 INSN_CODE (insn) = -1;
3734 REG_NOTES (insn) = NULL;
3735 INSN_LOCATION (insn) = curr_insn_location ();
3736 BLOCK_FOR_INSN (insn) = NULL;
3737
3738 return insn;
3739 }
3740
3741 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3742
3743 static rtx
3744 make_jump_insn_raw (rtx pattern)
3745 {
3746 rtx insn;
3747
3748 insn = rtx_alloc (JUMP_INSN);
3749 INSN_UID (insn) = cur_insn_uid++;
3750
3751 PATTERN (insn) = pattern;
3752 INSN_CODE (insn) = -1;
3753 REG_NOTES (insn) = NULL;
3754 JUMP_LABEL (insn) = NULL;
3755 INSN_LOCATION (insn) = curr_insn_location ();
3756 BLOCK_FOR_INSN (insn) = NULL;
3757
3758 return insn;
3759 }
3760
3761 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3762
3763 static rtx
3764 make_call_insn_raw (rtx pattern)
3765 {
3766 rtx insn;
3767
3768 insn = rtx_alloc (CALL_INSN);
3769 INSN_UID (insn) = cur_insn_uid++;
3770
3771 PATTERN (insn) = pattern;
3772 INSN_CODE (insn) = -1;
3773 REG_NOTES (insn) = NULL;
3774 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3775 INSN_LOCATION (insn) = curr_insn_location ();
3776 BLOCK_FOR_INSN (insn) = NULL;
3777
3778 return insn;
3779 }
3780 \f
3781 /* Add INSN to the end of the doubly-linked list.
3782 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3783
3784 void
3785 add_insn (rtx insn)
3786 {
3787 PREV_INSN (insn) = get_last_insn();
3788 NEXT_INSN (insn) = 0;
3789
3790 if (NULL != get_last_insn())
3791 NEXT_INSN (get_last_insn ()) = insn;
3792
3793 if (NULL == get_insns ())
3794 set_first_insn (insn);
3795
3796 set_last_insn (insn);
3797 }
3798
3799 /* Add INSN into the doubly-linked list after insn AFTER. This and
3800 the next should be the only functions called to insert an insn once
3801 delay slots have been filled since only they know how to update a
3802 SEQUENCE. */
3803
3804 void
3805 add_insn_after (rtx insn, rtx after, basic_block bb)
3806 {
3807 rtx next = NEXT_INSN (after);
3808
3809 gcc_assert (!optimize || !INSN_DELETED_P (after));
3810
3811 NEXT_INSN (insn) = next;
3812 PREV_INSN (insn) = after;
3813
3814 if (next)
3815 {
3816 PREV_INSN (next) = insn;
3817 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3818 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3819 }
3820 else if (get_last_insn () == after)
3821 set_last_insn (insn);
3822 else
3823 {
3824 struct sequence_stack *stack = seq_stack;
3825 /* Scan all pending sequences too. */
3826 for (; stack; stack = stack->next)
3827 if (after == stack->last)
3828 {
3829 stack->last = insn;
3830 break;
3831 }
3832
3833 gcc_assert (stack);
3834 }
3835
3836 if (!BARRIER_P (after)
3837 && !BARRIER_P (insn)
3838 && (bb = BLOCK_FOR_INSN (after)))
3839 {
3840 set_block_for_insn (insn, bb);
3841 if (INSN_P (insn))
3842 df_insn_rescan (insn);
3843 /* Should not happen as first in the BB is always
3844 either NOTE or LABEL. */
3845 if (BB_END (bb) == after
3846 /* Avoid clobbering of structure when creating new BB. */
3847 && !BARRIER_P (insn)
3848 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3849 BB_END (bb) = insn;
3850 }
3851
3852 NEXT_INSN (after) = insn;
3853 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3854 {
3855 rtx sequence = PATTERN (after);
3856 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3857 }
3858 }
3859
3860 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3861 the previous should be the only functions called to insert an insn
3862 once delay slots have been filled since only they know how to
3863 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3864 bb from before. */
3865
3866 void
3867 add_insn_before (rtx insn, rtx before, basic_block bb)
3868 {
3869 rtx prev = PREV_INSN (before);
3870
3871 gcc_assert (!optimize || !INSN_DELETED_P (before));
3872
3873 PREV_INSN (insn) = prev;
3874 NEXT_INSN (insn) = before;
3875
3876 if (prev)
3877 {
3878 NEXT_INSN (prev) = insn;
3879 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3880 {
3881 rtx sequence = PATTERN (prev);
3882 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3883 }
3884 }
3885 else if (get_insns () == before)
3886 set_first_insn (insn);
3887 else
3888 {
3889 struct sequence_stack *stack = seq_stack;
3890 /* Scan all pending sequences too. */
3891 for (; stack; stack = stack->next)
3892 if (before == stack->first)
3893 {
3894 stack->first = insn;
3895 break;
3896 }
3897
3898 gcc_assert (stack);
3899 }
3900
3901 if (!bb
3902 && !BARRIER_P (before)
3903 && !BARRIER_P (insn))
3904 bb = BLOCK_FOR_INSN (before);
3905
3906 if (bb)
3907 {
3908 set_block_for_insn (insn, bb);
3909 if (INSN_P (insn))
3910 df_insn_rescan (insn);
3911 /* Should not happen as first in the BB is always either NOTE or
3912 LABEL. */
3913 gcc_assert (BB_HEAD (bb) != insn
3914 /* Avoid clobbering of structure when creating new BB. */
3915 || BARRIER_P (insn)
3916 || NOTE_INSN_BASIC_BLOCK_P (insn));
3917 }
3918
3919 PREV_INSN (before) = insn;
3920 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3921 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3922 }
3923
3924
3925 /* Replace insn with an deleted instruction note. */
3926
3927 void
3928 set_insn_deleted (rtx insn)
3929 {
3930 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3931 PUT_CODE (insn, NOTE);
3932 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3933 }
3934
3935
3936 /* Remove an insn from its doubly-linked list. This function knows how
3937 to handle sequences. */
3938 void
3939 remove_insn (rtx insn)
3940 {
3941 rtx next = NEXT_INSN (insn);
3942 rtx prev = PREV_INSN (insn);
3943 basic_block bb;
3944
3945 /* Later in the code, the block will be marked dirty. */
3946 df_insn_delete (NULL, INSN_UID (insn));
3947
3948 if (prev)
3949 {
3950 NEXT_INSN (prev) = next;
3951 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3952 {
3953 rtx sequence = PATTERN (prev);
3954 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3955 }
3956 }
3957 else if (get_insns () == insn)
3958 {
3959 if (next)
3960 PREV_INSN (next) = NULL;
3961 set_first_insn (next);
3962 }
3963 else
3964 {
3965 struct sequence_stack *stack = seq_stack;
3966 /* Scan all pending sequences too. */
3967 for (; stack; stack = stack->next)
3968 if (insn == stack->first)
3969 {
3970 stack->first = next;
3971 break;
3972 }
3973
3974 gcc_assert (stack);
3975 }
3976
3977 if (next)
3978 {
3979 PREV_INSN (next) = prev;
3980 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3981 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3982 }
3983 else if (get_last_insn () == insn)
3984 set_last_insn (prev);
3985 else
3986 {
3987 struct sequence_stack *stack = seq_stack;
3988 /* Scan all pending sequences too. */
3989 for (; stack; stack = stack->next)
3990 if (insn == stack->last)
3991 {
3992 stack->last = prev;
3993 break;
3994 }
3995
3996 gcc_assert (stack);
3997 }
3998 if (!BARRIER_P (insn)
3999 && (bb = BLOCK_FOR_INSN (insn)))
4000 {
4001 if (NONDEBUG_INSN_P (insn))
4002 df_set_bb_dirty (bb);
4003 if (BB_HEAD (bb) == insn)
4004 {
4005 /* Never ever delete the basic block note without deleting whole
4006 basic block. */
4007 gcc_assert (!NOTE_P (insn));
4008 BB_HEAD (bb) = next;
4009 }
4010 if (BB_END (bb) == insn)
4011 BB_END (bb) = prev;
4012 }
4013 }
4014
4015 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4016
4017 void
4018 add_function_usage_to (rtx call_insn, rtx call_fusage)
4019 {
4020 gcc_assert (call_insn && CALL_P (call_insn));
4021
4022 /* Put the register usage information on the CALL. If there is already
4023 some usage information, put ours at the end. */
4024 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4025 {
4026 rtx link;
4027
4028 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4029 link = XEXP (link, 1))
4030 ;
4031
4032 XEXP (link, 1) = call_fusage;
4033 }
4034 else
4035 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4036 }
4037
4038 /* Delete all insns made since FROM.
4039 FROM becomes the new last instruction. */
4040
4041 void
4042 delete_insns_since (rtx from)
4043 {
4044 if (from == 0)
4045 set_first_insn (0);
4046 else
4047 NEXT_INSN (from) = 0;
4048 set_last_insn (from);
4049 }
4050
4051 /* This function is deprecated, please use sequences instead.
4052
4053 Move a consecutive bunch of insns to a different place in the chain.
4054 The insns to be moved are those between FROM and TO.
4055 They are moved to a new position after the insn AFTER.
4056 AFTER must not be FROM or TO or any insn in between.
4057
4058 This function does not know about SEQUENCEs and hence should not be
4059 called after delay-slot filling has been done. */
4060
4061 void
4062 reorder_insns_nobb (rtx from, rtx to, rtx after)
4063 {
4064 #ifdef ENABLE_CHECKING
4065 rtx x;
4066 for (x = from; x != to; x = NEXT_INSN (x))
4067 gcc_assert (after != x);
4068 gcc_assert (after != to);
4069 #endif
4070
4071 /* Splice this bunch out of where it is now. */
4072 if (PREV_INSN (from))
4073 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4074 if (NEXT_INSN (to))
4075 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4076 if (get_last_insn () == to)
4077 set_last_insn (PREV_INSN (from));
4078 if (get_insns () == from)
4079 set_first_insn (NEXT_INSN (to));
4080
4081 /* Make the new neighbors point to it and it to them. */
4082 if (NEXT_INSN (after))
4083 PREV_INSN (NEXT_INSN (after)) = to;
4084
4085 NEXT_INSN (to) = NEXT_INSN (after);
4086 PREV_INSN (from) = after;
4087 NEXT_INSN (after) = from;
4088 if (after == get_last_insn())
4089 set_last_insn (to);
4090 }
4091
4092 /* Same as function above, but take care to update BB boundaries. */
4093 void
4094 reorder_insns (rtx from, rtx to, rtx after)
4095 {
4096 rtx prev = PREV_INSN (from);
4097 basic_block bb, bb2;
4098
4099 reorder_insns_nobb (from, to, after);
4100
4101 if (!BARRIER_P (after)
4102 && (bb = BLOCK_FOR_INSN (after)))
4103 {
4104 rtx x;
4105 df_set_bb_dirty (bb);
4106
4107 if (!BARRIER_P (from)
4108 && (bb2 = BLOCK_FOR_INSN (from)))
4109 {
4110 if (BB_END (bb2) == to)
4111 BB_END (bb2) = prev;
4112 df_set_bb_dirty (bb2);
4113 }
4114
4115 if (BB_END (bb) == after)
4116 BB_END (bb) = to;
4117
4118 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4119 if (!BARRIER_P (x))
4120 df_insn_change_bb (x, bb);
4121 }
4122 }
4123
4124 \f
4125 /* Emit insn(s) of given code and pattern
4126 at a specified place within the doubly-linked list.
4127
4128 All of the emit_foo global entry points accept an object
4129 X which is either an insn list or a PATTERN of a single
4130 instruction.
4131
4132 There are thus a few canonical ways to generate code and
4133 emit it at a specific place in the instruction stream. For
4134 example, consider the instruction named SPOT and the fact that
4135 we would like to emit some instructions before SPOT. We might
4136 do it like this:
4137
4138 start_sequence ();
4139 ... emit the new instructions ...
4140 insns_head = get_insns ();
4141 end_sequence ();
4142
4143 emit_insn_before (insns_head, SPOT);
4144
4145 It used to be common to generate SEQUENCE rtl instead, but that
4146 is a relic of the past which no longer occurs. The reason is that
4147 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4148 generated would almost certainly die right after it was created. */
4149
4150 static rtx
4151 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4152 rtx (*make_raw) (rtx))
4153 {
4154 rtx insn;
4155
4156 gcc_assert (before);
4157
4158 if (x == NULL_RTX)
4159 return last;
4160
4161 switch (GET_CODE (x))
4162 {
4163 case DEBUG_INSN:
4164 case INSN:
4165 case JUMP_INSN:
4166 case CALL_INSN:
4167 case CODE_LABEL:
4168 case BARRIER:
4169 case NOTE:
4170 insn = x;
4171 while (insn)
4172 {
4173 rtx next = NEXT_INSN (insn);
4174 add_insn_before (insn, before, bb);
4175 last = insn;
4176 insn = next;
4177 }
4178 break;
4179
4180 #ifdef ENABLE_RTL_CHECKING
4181 case SEQUENCE:
4182 gcc_unreachable ();
4183 break;
4184 #endif
4185
4186 default:
4187 last = (*make_raw) (x);
4188 add_insn_before (last, before, bb);
4189 break;
4190 }
4191
4192 return last;
4193 }
4194
4195 /* Make X be output before the instruction BEFORE. */
4196
4197 rtx
4198 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4199 {
4200 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4201 }
4202
4203 /* Make an instruction with body X and code JUMP_INSN
4204 and output it before the instruction BEFORE. */
4205
4206 rtx
4207 emit_jump_insn_before_noloc (rtx x, rtx before)
4208 {
4209 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4210 make_jump_insn_raw);
4211 }
4212
4213 /* Make an instruction with body X and code CALL_INSN
4214 and output it before the instruction BEFORE. */
4215
4216 rtx
4217 emit_call_insn_before_noloc (rtx x, rtx before)
4218 {
4219 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4220 make_call_insn_raw);
4221 }
4222
4223 /* Make an instruction with body X and code DEBUG_INSN
4224 and output it before the instruction BEFORE. */
4225
4226 rtx
4227 emit_debug_insn_before_noloc (rtx x, rtx before)
4228 {
4229 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4230 make_debug_insn_raw);
4231 }
4232
4233 /* Make an insn of code BARRIER
4234 and output it before the insn BEFORE. */
4235
4236 rtx
4237 emit_barrier_before (rtx before)
4238 {
4239 rtx insn = rtx_alloc (BARRIER);
4240
4241 INSN_UID (insn) = cur_insn_uid++;
4242
4243 add_insn_before (insn, before, NULL);
4244 return insn;
4245 }
4246
4247 /* Emit the label LABEL before the insn BEFORE. */
4248
4249 rtx
4250 emit_label_before (rtx label, rtx before)
4251 {
4252 gcc_checking_assert (INSN_UID (label) == 0);
4253 INSN_UID (label) = cur_insn_uid++;
4254 add_insn_before (label, before, NULL);
4255 return label;
4256 }
4257
4258 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4259
4260 rtx
4261 emit_note_before (enum insn_note subtype, rtx before)
4262 {
4263 rtx note = rtx_alloc (NOTE);
4264 INSN_UID (note) = cur_insn_uid++;
4265 NOTE_KIND (note) = subtype;
4266 BLOCK_FOR_INSN (note) = NULL;
4267 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4268
4269 add_insn_before (note, before, NULL);
4270 return note;
4271 }
4272 \f
4273 /* Helper for emit_insn_after, handles lists of instructions
4274 efficiently. */
4275
4276 static rtx
4277 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4278 {
4279 rtx last;
4280 rtx after_after;
4281 if (!bb && !BARRIER_P (after))
4282 bb = BLOCK_FOR_INSN (after);
4283
4284 if (bb)
4285 {
4286 df_set_bb_dirty (bb);
4287 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4288 if (!BARRIER_P (last))
4289 {
4290 set_block_for_insn (last, bb);
4291 df_insn_rescan (last);
4292 }
4293 if (!BARRIER_P (last))
4294 {
4295 set_block_for_insn (last, bb);
4296 df_insn_rescan (last);
4297 }
4298 if (BB_END (bb) == after)
4299 BB_END (bb) = last;
4300 }
4301 else
4302 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4303 continue;
4304
4305 after_after = NEXT_INSN (after);
4306
4307 NEXT_INSN (after) = first;
4308 PREV_INSN (first) = after;
4309 NEXT_INSN (last) = after_after;
4310 if (after_after)
4311 PREV_INSN (after_after) = last;
4312
4313 if (after == get_last_insn())
4314 set_last_insn (last);
4315
4316 return last;
4317 }
4318
4319 static rtx
4320 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4321 rtx (*make_raw)(rtx))
4322 {
4323 rtx last = after;
4324
4325 gcc_assert (after);
4326
4327 if (x == NULL_RTX)
4328 return last;
4329
4330 switch (GET_CODE (x))
4331 {
4332 case DEBUG_INSN:
4333 case INSN:
4334 case JUMP_INSN:
4335 case CALL_INSN:
4336 case CODE_LABEL:
4337 case BARRIER:
4338 case NOTE:
4339 last = emit_insn_after_1 (x, after, bb);
4340 break;
4341
4342 #ifdef ENABLE_RTL_CHECKING
4343 case SEQUENCE:
4344 gcc_unreachable ();
4345 break;
4346 #endif
4347
4348 default:
4349 last = (*make_raw) (x);
4350 add_insn_after (last, after, bb);
4351 break;
4352 }
4353
4354 return last;
4355 }
4356
4357 /* Make X be output after the insn AFTER and set the BB of insn. If
4358 BB is NULL, an attempt is made to infer the BB from AFTER. */
4359
4360 rtx
4361 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4362 {
4363 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4364 }
4365
4366
4367 /* Make an insn of code JUMP_INSN with body X
4368 and output it after the insn AFTER. */
4369
4370 rtx
4371 emit_jump_insn_after_noloc (rtx x, rtx after)
4372 {
4373 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4374 }
4375
4376 /* Make an instruction with body X and code CALL_INSN
4377 and output it after the instruction AFTER. */
4378
4379 rtx
4380 emit_call_insn_after_noloc (rtx x, rtx after)
4381 {
4382 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4383 }
4384
4385 /* Make an instruction with body X and code CALL_INSN
4386 and output it after the instruction AFTER. */
4387
4388 rtx
4389 emit_debug_insn_after_noloc (rtx x, rtx after)
4390 {
4391 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4392 }
4393
4394 /* Make an insn of code BARRIER
4395 and output it after the insn AFTER. */
4396
4397 rtx
4398 emit_barrier_after (rtx after)
4399 {
4400 rtx insn = rtx_alloc (BARRIER);
4401
4402 INSN_UID (insn) = cur_insn_uid++;
4403
4404 add_insn_after (insn, after, NULL);
4405 return insn;
4406 }
4407
4408 /* Emit the label LABEL after the insn AFTER. */
4409
4410 rtx
4411 emit_label_after (rtx label, rtx after)
4412 {
4413 gcc_checking_assert (INSN_UID (label) == 0);
4414 INSN_UID (label) = cur_insn_uid++;
4415 add_insn_after (label, after, NULL);
4416 return label;
4417 }
4418
4419 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4420
4421 rtx
4422 emit_note_after (enum insn_note subtype, rtx after)
4423 {
4424 rtx note = rtx_alloc (NOTE);
4425 INSN_UID (note) = cur_insn_uid++;
4426 NOTE_KIND (note) = subtype;
4427 BLOCK_FOR_INSN (note) = NULL;
4428 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4429 add_insn_after (note, after, NULL);
4430 return note;
4431 }
4432 \f
4433 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4434 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4435
4436 static rtx
4437 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4438 rtx (*make_raw) (rtx))
4439 {
4440 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4441
4442 if (pattern == NULL_RTX || !loc)
4443 return last;
4444
4445 after = NEXT_INSN (after);
4446 while (1)
4447 {
4448 if (active_insn_p (after) && !INSN_LOCATION (after))
4449 INSN_LOCATION (after) = loc;
4450 if (after == last)
4451 break;
4452 after = NEXT_INSN (after);
4453 }
4454 return last;
4455 }
4456
4457 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4458 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4459 any DEBUG_INSNs. */
4460
4461 static rtx
4462 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4463 rtx (*make_raw) (rtx))
4464 {
4465 rtx prev = after;
4466
4467 if (skip_debug_insns)
4468 while (DEBUG_INSN_P (prev))
4469 prev = PREV_INSN (prev);
4470
4471 if (INSN_P (prev))
4472 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4473 make_raw);
4474 else
4475 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4476 }
4477
4478 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4479 rtx
4480 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4481 {
4482 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4483 }
4484
4485 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4486 rtx
4487 emit_insn_after (rtx pattern, rtx after)
4488 {
4489 return emit_pattern_after (pattern, after, true, make_insn_raw);
4490 }
4491
4492 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4493 rtx
4494 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4495 {
4496 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4497 }
4498
4499 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4500 rtx
4501 emit_jump_insn_after (rtx pattern, rtx after)
4502 {
4503 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4504 }
4505
4506 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4507 rtx
4508 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4509 {
4510 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4511 }
4512
4513 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4514 rtx
4515 emit_call_insn_after (rtx pattern, rtx after)
4516 {
4517 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4518 }
4519
4520 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4521 rtx
4522 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4523 {
4524 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4525 }
4526
4527 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4528 rtx
4529 emit_debug_insn_after (rtx pattern, rtx after)
4530 {
4531 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4532 }
4533
4534 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4535 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4536 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4537 CALL_INSN, etc. */
4538
4539 static rtx
4540 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4541 rtx (*make_raw) (rtx))
4542 {
4543 rtx first = PREV_INSN (before);
4544 rtx last = emit_pattern_before_noloc (pattern, before,
4545 insnp ? before : NULL_RTX,
4546 NULL, make_raw);
4547
4548 if (pattern == NULL_RTX || !loc)
4549 return last;
4550
4551 if (!first)
4552 first = get_insns ();
4553 else
4554 first = NEXT_INSN (first);
4555 while (1)
4556 {
4557 if (active_insn_p (first) && !INSN_LOCATION (first))
4558 INSN_LOCATION (first) = loc;
4559 if (first == last)
4560 break;
4561 first = NEXT_INSN (first);
4562 }
4563 return last;
4564 }
4565
4566 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4567 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4568 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4569 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4570
4571 static rtx
4572 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4573 bool insnp, rtx (*make_raw) (rtx))
4574 {
4575 rtx next = before;
4576
4577 if (skip_debug_insns)
4578 while (DEBUG_INSN_P (next))
4579 next = PREV_INSN (next);
4580
4581 if (INSN_P (next))
4582 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4583 insnp, make_raw);
4584 else
4585 return emit_pattern_before_noloc (pattern, before,
4586 insnp ? before : NULL_RTX,
4587 NULL, make_raw);
4588 }
4589
4590 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4591 rtx
4592 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4593 {
4594 return emit_pattern_before_setloc (pattern, before, loc, true,
4595 make_insn_raw);
4596 }
4597
4598 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4599 rtx
4600 emit_insn_before (rtx pattern, rtx before)
4601 {
4602 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4603 }
4604
4605 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4606 rtx
4607 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4608 {
4609 return emit_pattern_before_setloc (pattern, before, loc, false,
4610 make_jump_insn_raw);
4611 }
4612
4613 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4614 rtx
4615 emit_jump_insn_before (rtx pattern, rtx before)
4616 {
4617 return emit_pattern_before (pattern, before, true, false,
4618 make_jump_insn_raw);
4619 }
4620
4621 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4622 rtx
4623 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4624 {
4625 return emit_pattern_before_setloc (pattern, before, loc, false,
4626 make_call_insn_raw);
4627 }
4628
4629 /* Like emit_call_insn_before_noloc,
4630 but set insn_location according to BEFORE. */
4631 rtx
4632 emit_call_insn_before (rtx pattern, rtx before)
4633 {
4634 return emit_pattern_before (pattern, before, true, false,
4635 make_call_insn_raw);
4636 }
4637
4638 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4639 rtx
4640 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4641 {
4642 return emit_pattern_before_setloc (pattern, before, loc, false,
4643 make_debug_insn_raw);
4644 }
4645
4646 /* Like emit_debug_insn_before_noloc,
4647 but set insn_location according to BEFORE. */
4648 rtx
4649 emit_debug_insn_before (rtx pattern, rtx before)
4650 {
4651 return emit_pattern_before (pattern, before, false, false,
4652 make_debug_insn_raw);
4653 }
4654 \f
4655 /* Take X and emit it at the end of the doubly-linked
4656 INSN list.
4657
4658 Returns the last insn emitted. */
4659
4660 rtx
4661 emit_insn (rtx x)
4662 {
4663 rtx last = get_last_insn();
4664 rtx insn;
4665
4666 if (x == NULL_RTX)
4667 return last;
4668
4669 switch (GET_CODE (x))
4670 {
4671 case DEBUG_INSN:
4672 case INSN:
4673 case JUMP_INSN:
4674 case CALL_INSN:
4675 case CODE_LABEL:
4676 case BARRIER:
4677 case NOTE:
4678 insn = x;
4679 while (insn)
4680 {
4681 rtx next = NEXT_INSN (insn);
4682 add_insn (insn);
4683 last = insn;
4684 insn = next;
4685 }
4686 break;
4687
4688 #ifdef ENABLE_RTL_CHECKING
4689 case SEQUENCE:
4690 gcc_unreachable ();
4691 break;
4692 #endif
4693
4694 default:
4695 last = make_insn_raw (x);
4696 add_insn (last);
4697 break;
4698 }
4699
4700 return last;
4701 }
4702
4703 /* Make an insn of code DEBUG_INSN with pattern X
4704 and add it to the end of the doubly-linked list. */
4705
4706 rtx
4707 emit_debug_insn (rtx x)
4708 {
4709 rtx last = get_last_insn();
4710 rtx insn;
4711
4712 if (x == NULL_RTX)
4713 return last;
4714
4715 switch (GET_CODE (x))
4716 {
4717 case DEBUG_INSN:
4718 case INSN:
4719 case JUMP_INSN:
4720 case CALL_INSN:
4721 case CODE_LABEL:
4722 case BARRIER:
4723 case NOTE:
4724 insn = x;
4725 while (insn)
4726 {
4727 rtx next = NEXT_INSN (insn);
4728 add_insn (insn);
4729 last = insn;
4730 insn = next;
4731 }
4732 break;
4733
4734 #ifdef ENABLE_RTL_CHECKING
4735 case SEQUENCE:
4736 gcc_unreachable ();
4737 break;
4738 #endif
4739
4740 default:
4741 last = make_debug_insn_raw (x);
4742 add_insn (last);
4743 break;
4744 }
4745
4746 return last;
4747 }
4748
4749 /* Make an insn of code JUMP_INSN with pattern X
4750 and add it to the end of the doubly-linked list. */
4751
4752 rtx
4753 emit_jump_insn (rtx x)
4754 {
4755 rtx last = NULL_RTX, insn;
4756
4757 switch (GET_CODE (x))
4758 {
4759 case DEBUG_INSN:
4760 case INSN:
4761 case JUMP_INSN:
4762 case CALL_INSN:
4763 case CODE_LABEL:
4764 case BARRIER:
4765 case NOTE:
4766 insn = x;
4767 while (insn)
4768 {
4769 rtx next = NEXT_INSN (insn);
4770 add_insn (insn);
4771 last = insn;
4772 insn = next;
4773 }
4774 break;
4775
4776 #ifdef ENABLE_RTL_CHECKING
4777 case SEQUENCE:
4778 gcc_unreachable ();
4779 break;
4780 #endif
4781
4782 default:
4783 last = make_jump_insn_raw (x);
4784 add_insn (last);
4785 break;
4786 }
4787
4788 return last;
4789 }
4790
4791 /* Make an insn of code CALL_INSN with pattern X
4792 and add it to the end of the doubly-linked list. */
4793
4794 rtx
4795 emit_call_insn (rtx x)
4796 {
4797 rtx insn;
4798
4799 switch (GET_CODE (x))
4800 {
4801 case DEBUG_INSN:
4802 case INSN:
4803 case JUMP_INSN:
4804 case CALL_INSN:
4805 case CODE_LABEL:
4806 case BARRIER:
4807 case NOTE:
4808 insn = emit_insn (x);
4809 break;
4810
4811 #ifdef ENABLE_RTL_CHECKING
4812 case SEQUENCE:
4813 gcc_unreachable ();
4814 break;
4815 #endif
4816
4817 default:
4818 insn = make_call_insn_raw (x);
4819 add_insn (insn);
4820 break;
4821 }
4822
4823 return insn;
4824 }
4825
4826 /* Add the label LABEL to the end of the doubly-linked list. */
4827
4828 rtx
4829 emit_label (rtx label)
4830 {
4831 gcc_checking_assert (INSN_UID (label) == 0);
4832 INSN_UID (label) = cur_insn_uid++;
4833 add_insn (label);
4834 return label;
4835 }
4836
4837 /* Make an insn of code BARRIER
4838 and add it to the end of the doubly-linked list. */
4839
4840 rtx
4841 emit_barrier (void)
4842 {
4843 rtx barrier = rtx_alloc (BARRIER);
4844 INSN_UID (barrier) = cur_insn_uid++;
4845 add_insn (barrier);
4846 return barrier;
4847 }
4848
4849 /* Emit a copy of note ORIG. */
4850
4851 rtx
4852 emit_note_copy (rtx orig)
4853 {
4854 rtx note;
4855
4856 note = rtx_alloc (NOTE);
4857
4858 INSN_UID (note) = cur_insn_uid++;
4859 NOTE_DATA (note) = NOTE_DATA (orig);
4860 NOTE_KIND (note) = NOTE_KIND (orig);
4861 BLOCK_FOR_INSN (note) = NULL;
4862 add_insn (note);
4863
4864 return note;
4865 }
4866
4867 /* Make an insn of code NOTE or type NOTE_NO
4868 and add it to the end of the doubly-linked list. */
4869
4870 rtx
4871 emit_note (enum insn_note kind)
4872 {
4873 rtx note;
4874
4875 note = rtx_alloc (NOTE);
4876 INSN_UID (note) = cur_insn_uid++;
4877 NOTE_KIND (note) = kind;
4878 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4879 BLOCK_FOR_INSN (note) = NULL;
4880 add_insn (note);
4881 return note;
4882 }
4883
4884 /* Emit a clobber of lvalue X. */
4885
4886 rtx
4887 emit_clobber (rtx x)
4888 {
4889 /* CONCATs should not appear in the insn stream. */
4890 if (GET_CODE (x) == CONCAT)
4891 {
4892 emit_clobber (XEXP (x, 0));
4893 return emit_clobber (XEXP (x, 1));
4894 }
4895 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4896 }
4897
4898 /* Return a sequence of insns to clobber lvalue X. */
4899
4900 rtx
4901 gen_clobber (rtx x)
4902 {
4903 rtx seq;
4904
4905 start_sequence ();
4906 emit_clobber (x);
4907 seq = get_insns ();
4908 end_sequence ();
4909 return seq;
4910 }
4911
4912 /* Emit a use of rvalue X. */
4913
4914 rtx
4915 emit_use (rtx x)
4916 {
4917 /* CONCATs should not appear in the insn stream. */
4918 if (GET_CODE (x) == CONCAT)
4919 {
4920 emit_use (XEXP (x, 0));
4921 return emit_use (XEXP (x, 1));
4922 }
4923 return emit_insn (gen_rtx_USE (VOIDmode, x));
4924 }
4925
4926 /* Return a sequence of insns to use rvalue X. */
4927
4928 rtx
4929 gen_use (rtx x)
4930 {
4931 rtx seq;
4932
4933 start_sequence ();
4934 emit_use (x);
4935 seq = get_insns ();
4936 end_sequence ();
4937 return seq;
4938 }
4939
4940 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4941 note of this type already exists, remove it first. */
4942
4943 rtx
4944 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4945 {
4946 rtx note = find_reg_note (insn, kind, NULL_RTX);
4947
4948 switch (kind)
4949 {
4950 case REG_EQUAL:
4951 case REG_EQUIV:
4952 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4953 has multiple sets (some callers assume single_set
4954 means the insn only has one set, when in fact it
4955 means the insn only has one * useful * set). */
4956 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4957 {
4958 gcc_assert (!note);
4959 return NULL_RTX;
4960 }
4961
4962 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4963 It serves no useful purpose and breaks eliminate_regs. */
4964 if (GET_CODE (datum) == ASM_OPERANDS)
4965 return NULL_RTX;
4966
4967 if (note)
4968 {
4969 XEXP (note, 0) = datum;
4970 df_notes_rescan (insn);
4971 return note;
4972 }
4973 break;
4974
4975 default:
4976 if (note)
4977 {
4978 XEXP (note, 0) = datum;
4979 return note;
4980 }
4981 break;
4982 }
4983
4984 add_reg_note (insn, kind, datum);
4985
4986 switch (kind)
4987 {
4988 case REG_EQUAL:
4989 case REG_EQUIV:
4990 df_notes_rescan (insn);
4991 break;
4992 default:
4993 break;
4994 }
4995
4996 return REG_NOTES (insn);
4997 }
4998
4999 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5000 rtx
5001 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5002 {
5003 rtx set = single_set (insn);
5004
5005 if (set && SET_DEST (set) == dst)
5006 return set_unique_reg_note (insn, kind, datum);
5007 return NULL_RTX;
5008 }
5009 \f
5010 /* Return an indication of which type of insn should have X as a body.
5011 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5012
5013 static enum rtx_code
5014 classify_insn (rtx x)
5015 {
5016 if (LABEL_P (x))
5017 return CODE_LABEL;
5018 if (GET_CODE (x) == CALL)
5019 return CALL_INSN;
5020 if (ANY_RETURN_P (x))
5021 return JUMP_INSN;
5022 if (GET_CODE (x) == SET)
5023 {
5024 if (SET_DEST (x) == pc_rtx)
5025 return JUMP_INSN;
5026 else if (GET_CODE (SET_SRC (x)) == CALL)
5027 return CALL_INSN;
5028 else
5029 return INSN;
5030 }
5031 if (GET_CODE (x) == PARALLEL)
5032 {
5033 int j;
5034 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5035 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5036 return CALL_INSN;
5037 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5038 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5039 return JUMP_INSN;
5040 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5041 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5042 return CALL_INSN;
5043 }
5044 return INSN;
5045 }
5046
5047 /* Emit the rtl pattern X as an appropriate kind of insn.
5048 If X is a label, it is simply added into the insn chain. */
5049
5050 rtx
5051 emit (rtx x)
5052 {
5053 enum rtx_code code = classify_insn (x);
5054
5055 switch (code)
5056 {
5057 case CODE_LABEL:
5058 return emit_label (x);
5059 case INSN:
5060 return emit_insn (x);
5061 case JUMP_INSN:
5062 {
5063 rtx insn = emit_jump_insn (x);
5064 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5065 return emit_barrier ();
5066 return insn;
5067 }
5068 case CALL_INSN:
5069 return emit_call_insn (x);
5070 case DEBUG_INSN:
5071 return emit_debug_insn (x);
5072 default:
5073 gcc_unreachable ();
5074 }
5075 }
5076 \f
5077 /* Space for free sequence stack entries. */
5078 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5079
5080 /* Begin emitting insns to a sequence. If this sequence will contain
5081 something that might cause the compiler to pop arguments to function
5082 calls (because those pops have previously been deferred; see
5083 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5084 before calling this function. That will ensure that the deferred
5085 pops are not accidentally emitted in the middle of this sequence. */
5086
5087 void
5088 start_sequence (void)
5089 {
5090 struct sequence_stack *tem;
5091
5092 if (free_sequence_stack != NULL)
5093 {
5094 tem = free_sequence_stack;
5095 free_sequence_stack = tem->next;
5096 }
5097 else
5098 tem = ggc_alloc_sequence_stack ();
5099
5100 tem->next = seq_stack;
5101 tem->first = get_insns ();
5102 tem->last = get_last_insn ();
5103
5104 seq_stack = tem;
5105
5106 set_first_insn (0);
5107 set_last_insn (0);
5108 }
5109
5110 /* Set up the insn chain starting with FIRST as the current sequence,
5111 saving the previously current one. See the documentation for
5112 start_sequence for more information about how to use this function. */
5113
5114 void
5115 push_to_sequence (rtx first)
5116 {
5117 rtx last;
5118
5119 start_sequence ();
5120
5121 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5122 ;
5123
5124 set_first_insn (first);
5125 set_last_insn (last);
5126 }
5127
5128 /* Like push_to_sequence, but take the last insn as an argument to avoid
5129 looping through the list. */
5130
5131 void
5132 push_to_sequence2 (rtx first, rtx last)
5133 {
5134 start_sequence ();
5135
5136 set_first_insn (first);
5137 set_last_insn (last);
5138 }
5139
5140 /* Set up the outer-level insn chain
5141 as the current sequence, saving the previously current one. */
5142
5143 void
5144 push_topmost_sequence (void)
5145 {
5146 struct sequence_stack *stack, *top = NULL;
5147
5148 start_sequence ();
5149
5150 for (stack = seq_stack; stack; stack = stack->next)
5151 top = stack;
5152
5153 set_first_insn (top->first);
5154 set_last_insn (top->last);
5155 }
5156
5157 /* After emitting to the outer-level insn chain, update the outer-level
5158 insn chain, and restore the previous saved state. */
5159
5160 void
5161 pop_topmost_sequence (void)
5162 {
5163 struct sequence_stack *stack, *top = NULL;
5164
5165 for (stack = seq_stack; stack; stack = stack->next)
5166 top = stack;
5167
5168 top->first = get_insns ();
5169 top->last = get_last_insn ();
5170
5171 end_sequence ();
5172 }
5173
5174 /* After emitting to a sequence, restore previous saved state.
5175
5176 To get the contents of the sequence just made, you must call
5177 `get_insns' *before* calling here.
5178
5179 If the compiler might have deferred popping arguments while
5180 generating this sequence, and this sequence will not be immediately
5181 inserted into the instruction stream, use do_pending_stack_adjust
5182 before calling get_insns. That will ensure that the deferred
5183 pops are inserted into this sequence, and not into some random
5184 location in the instruction stream. See INHIBIT_DEFER_POP for more
5185 information about deferred popping of arguments. */
5186
5187 void
5188 end_sequence (void)
5189 {
5190 struct sequence_stack *tem = seq_stack;
5191
5192 set_first_insn (tem->first);
5193 set_last_insn (tem->last);
5194 seq_stack = tem->next;
5195
5196 memset (tem, 0, sizeof (*tem));
5197 tem->next = free_sequence_stack;
5198 free_sequence_stack = tem;
5199 }
5200
5201 /* Return 1 if currently emitting into a sequence. */
5202
5203 int
5204 in_sequence_p (void)
5205 {
5206 return seq_stack != 0;
5207 }
5208 \f
5209 /* Put the various virtual registers into REGNO_REG_RTX. */
5210
5211 static void
5212 init_virtual_regs (void)
5213 {
5214 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5215 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5216 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5217 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5218 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5219 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5220 = virtual_preferred_stack_boundary_rtx;
5221 }
5222
5223 \f
5224 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5225 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5226 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5227 static int copy_insn_n_scratches;
5228
5229 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5230 copied an ASM_OPERANDS.
5231 In that case, it is the original input-operand vector. */
5232 static rtvec orig_asm_operands_vector;
5233
5234 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5235 copied an ASM_OPERANDS.
5236 In that case, it is the copied input-operand vector. */
5237 static rtvec copy_asm_operands_vector;
5238
5239 /* Likewise for the constraints vector. */
5240 static rtvec orig_asm_constraints_vector;
5241 static rtvec copy_asm_constraints_vector;
5242
5243 /* Recursively create a new copy of an rtx for copy_insn.
5244 This function differs from copy_rtx in that it handles SCRATCHes and
5245 ASM_OPERANDs properly.
5246 Normally, this function is not used directly; use copy_insn as front end.
5247 However, you could first copy an insn pattern with copy_insn and then use
5248 this function afterwards to properly copy any REG_NOTEs containing
5249 SCRATCHes. */
5250
5251 rtx
5252 copy_insn_1 (rtx orig)
5253 {
5254 rtx copy;
5255 int i, j;
5256 RTX_CODE code;
5257 const char *format_ptr;
5258
5259 if (orig == NULL)
5260 return NULL;
5261
5262 code = GET_CODE (orig);
5263
5264 switch (code)
5265 {
5266 case REG:
5267 case DEBUG_EXPR:
5268 CASE_CONST_ANY:
5269 case SYMBOL_REF:
5270 case CODE_LABEL:
5271 case PC:
5272 case CC0:
5273 case RETURN:
5274 case SIMPLE_RETURN:
5275 return orig;
5276 case CLOBBER:
5277 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5278 return orig;
5279 break;
5280
5281 case SCRATCH:
5282 for (i = 0; i < copy_insn_n_scratches; i++)
5283 if (copy_insn_scratch_in[i] == orig)
5284 return copy_insn_scratch_out[i];
5285 break;
5286
5287 case CONST:
5288 if (shared_const_p (orig))
5289 return orig;
5290 break;
5291
5292 /* A MEM with a constant address is not sharable. The problem is that
5293 the constant address may need to be reloaded. If the mem is shared,
5294 then reloading one copy of this mem will cause all copies to appear
5295 to have been reloaded. */
5296
5297 default:
5298 break;
5299 }
5300
5301 /* Copy the various flags, fields, and other information. We assume
5302 that all fields need copying, and then clear the fields that should
5303 not be copied. That is the sensible default behavior, and forces
5304 us to explicitly document why we are *not* copying a flag. */
5305 copy = shallow_copy_rtx (orig);
5306
5307 /* We do not copy the USED flag, which is used as a mark bit during
5308 walks over the RTL. */
5309 RTX_FLAG (copy, used) = 0;
5310
5311 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5312 if (INSN_P (orig))
5313 {
5314 RTX_FLAG (copy, jump) = 0;
5315 RTX_FLAG (copy, call) = 0;
5316 RTX_FLAG (copy, frame_related) = 0;
5317 }
5318
5319 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5320
5321 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5322 switch (*format_ptr++)
5323 {
5324 case 'e':
5325 if (XEXP (orig, i) != NULL)
5326 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5327 break;
5328
5329 case 'E':
5330 case 'V':
5331 if (XVEC (orig, i) == orig_asm_constraints_vector)
5332 XVEC (copy, i) = copy_asm_constraints_vector;
5333 else if (XVEC (orig, i) == orig_asm_operands_vector)
5334 XVEC (copy, i) = copy_asm_operands_vector;
5335 else if (XVEC (orig, i) != NULL)
5336 {
5337 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5338 for (j = 0; j < XVECLEN (copy, i); j++)
5339 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5340 }
5341 break;
5342
5343 case 't':
5344 case 'w':
5345 case 'i':
5346 case 's':
5347 case 'S':
5348 case 'u':
5349 case '0':
5350 /* These are left unchanged. */
5351 break;
5352
5353 default:
5354 gcc_unreachable ();
5355 }
5356
5357 if (code == SCRATCH)
5358 {
5359 i = copy_insn_n_scratches++;
5360 gcc_assert (i < MAX_RECOG_OPERANDS);
5361 copy_insn_scratch_in[i] = orig;
5362 copy_insn_scratch_out[i] = copy;
5363 }
5364 else if (code == ASM_OPERANDS)
5365 {
5366 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5367 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5368 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5369 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5370 }
5371
5372 return copy;
5373 }
5374
5375 /* Create a new copy of an rtx.
5376 This function differs from copy_rtx in that it handles SCRATCHes and
5377 ASM_OPERANDs properly.
5378 INSN doesn't really have to be a full INSN; it could be just the
5379 pattern. */
5380 rtx
5381 copy_insn (rtx insn)
5382 {
5383 copy_insn_n_scratches = 0;
5384 orig_asm_operands_vector = 0;
5385 orig_asm_constraints_vector = 0;
5386 copy_asm_operands_vector = 0;
5387 copy_asm_constraints_vector = 0;
5388 return copy_insn_1 (insn);
5389 }
5390
5391 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5392 on that assumption that INSN itself remains in its original place. */
5393
5394 rtx
5395 copy_delay_slot_insn (rtx insn)
5396 {
5397 /* Copy INSN with its rtx_code, all its notes, location etc. */
5398 insn = copy_rtx (insn);
5399 INSN_UID (insn) = cur_insn_uid++;
5400 return insn;
5401 }
5402
5403 /* Initialize data structures and variables in this file
5404 before generating rtl for each function. */
5405
5406 void
5407 init_emit (void)
5408 {
5409 set_first_insn (NULL);
5410 set_last_insn (NULL);
5411 if (MIN_NONDEBUG_INSN_UID)
5412 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5413 else
5414 cur_insn_uid = 1;
5415 cur_debug_insn_uid = 1;
5416 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5417 first_label_num = label_num;
5418 seq_stack = NULL;
5419
5420 /* Init the tables that describe all the pseudo regs. */
5421
5422 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5423
5424 crtl->emit.regno_pointer_align
5425 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5426
5427 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5428
5429 /* Put copies of all the hard registers into regno_reg_rtx. */
5430 memcpy (regno_reg_rtx,
5431 initial_regno_reg_rtx,
5432 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5433
5434 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5435 init_virtual_regs ();
5436
5437 /* Indicate that the virtual registers and stack locations are
5438 all pointers. */
5439 REG_POINTER (stack_pointer_rtx) = 1;
5440 REG_POINTER (frame_pointer_rtx) = 1;
5441 REG_POINTER (hard_frame_pointer_rtx) = 1;
5442 REG_POINTER (arg_pointer_rtx) = 1;
5443
5444 REG_POINTER (virtual_incoming_args_rtx) = 1;
5445 REG_POINTER (virtual_stack_vars_rtx) = 1;
5446 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5447 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5448 REG_POINTER (virtual_cfa_rtx) = 1;
5449
5450 #ifdef STACK_BOUNDARY
5451 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5452 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5453 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5454 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5455
5456 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5457 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5458 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5459 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5460 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5461 #endif
5462
5463 #ifdef INIT_EXPANDERS
5464 INIT_EXPANDERS;
5465 #endif
5466 }
5467
5468 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5469
5470 static rtx
5471 gen_const_vector (enum machine_mode mode, int constant)
5472 {
5473 rtx tem;
5474 rtvec v;
5475 int units, i;
5476 enum machine_mode inner;
5477
5478 units = GET_MODE_NUNITS (mode);
5479 inner = GET_MODE_INNER (mode);
5480
5481 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5482
5483 v = rtvec_alloc (units);
5484
5485 /* We need to call this function after we set the scalar const_tiny_rtx
5486 entries. */
5487 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5488
5489 for (i = 0; i < units; ++i)
5490 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5491
5492 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5493 return tem;
5494 }
5495
5496 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5497 all elements are zero, and the one vector when all elements are one. */
5498 rtx
5499 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5500 {
5501 enum machine_mode inner = GET_MODE_INNER (mode);
5502 int nunits = GET_MODE_NUNITS (mode);
5503 rtx x;
5504 int i;
5505
5506 /* Check to see if all of the elements have the same value. */
5507 x = RTVEC_ELT (v, nunits - 1);
5508 for (i = nunits - 2; i >= 0; i--)
5509 if (RTVEC_ELT (v, i) != x)
5510 break;
5511
5512 /* If the values are all the same, check to see if we can use one of the
5513 standard constant vectors. */
5514 if (i == -1)
5515 {
5516 if (x == CONST0_RTX (inner))
5517 return CONST0_RTX (mode);
5518 else if (x == CONST1_RTX (inner))
5519 return CONST1_RTX (mode);
5520 else if (x == CONSTM1_RTX (inner))
5521 return CONSTM1_RTX (mode);
5522 }
5523
5524 return gen_rtx_raw_CONST_VECTOR (mode, v);
5525 }
5526
5527 /* Initialise global register information required by all functions. */
5528
5529 void
5530 init_emit_regs (void)
5531 {
5532 int i;
5533 enum machine_mode mode;
5534 mem_attrs *attrs;
5535
5536 /* Reset register attributes */
5537 htab_empty (reg_attrs_htab);
5538
5539 /* We need reg_raw_mode, so initialize the modes now. */
5540 init_reg_modes_target ();
5541
5542 /* Assign register numbers to the globally defined register rtx. */
5543 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5544 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5545 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5546 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5547 virtual_incoming_args_rtx =
5548 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5549 virtual_stack_vars_rtx =
5550 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5551 virtual_stack_dynamic_rtx =
5552 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5553 virtual_outgoing_args_rtx =
5554 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5555 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5556 virtual_preferred_stack_boundary_rtx =
5557 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5558
5559 /* Initialize RTL for commonly used hard registers. These are
5560 copied into regno_reg_rtx as we begin to compile each function. */
5561 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5562 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5563
5564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5565 return_address_pointer_rtx
5566 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5567 #endif
5568
5569 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5570 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5571 else
5572 pic_offset_table_rtx = NULL_RTX;
5573
5574 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5575 {
5576 mode = (enum machine_mode) i;
5577 attrs = ggc_alloc_cleared_mem_attrs ();
5578 attrs->align = BITS_PER_UNIT;
5579 attrs->addrspace = ADDR_SPACE_GENERIC;
5580 if (mode != BLKmode)
5581 {
5582 attrs->size_known_p = true;
5583 attrs->size = GET_MODE_SIZE (mode);
5584 if (STRICT_ALIGNMENT)
5585 attrs->align = GET_MODE_ALIGNMENT (mode);
5586 }
5587 mode_mem_attrs[i] = attrs;
5588 }
5589 }
5590
5591 /* Create some permanent unique rtl objects shared between all functions. */
5592
5593 void
5594 init_emit_once (void)
5595 {
5596 int i;
5597 enum machine_mode mode;
5598 enum machine_mode double_mode;
5599
5600 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5601 hash tables. */
5602 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5603 const_int_htab_eq, NULL);
5604
5605 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5606 const_double_htab_eq, NULL);
5607
5608 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5609 const_fixed_htab_eq, NULL);
5610
5611 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5612 mem_attrs_htab_eq, NULL);
5613 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5614 reg_attrs_htab_eq, NULL);
5615
5616 /* Compute the word and byte modes. */
5617
5618 byte_mode = VOIDmode;
5619 word_mode = VOIDmode;
5620 double_mode = VOIDmode;
5621
5622 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5623 mode != VOIDmode;
5624 mode = GET_MODE_WIDER_MODE (mode))
5625 {
5626 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5627 && byte_mode == VOIDmode)
5628 byte_mode = mode;
5629
5630 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5631 && word_mode == VOIDmode)
5632 word_mode = mode;
5633 }
5634
5635 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5636 mode != VOIDmode;
5637 mode = GET_MODE_WIDER_MODE (mode))
5638 {
5639 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5640 && double_mode == VOIDmode)
5641 double_mode = mode;
5642 }
5643
5644 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5645
5646 #ifdef INIT_EXPANDERS
5647 /* This is to initialize {init|mark|free}_machine_status before the first
5648 call to push_function_context_to. This is needed by the Chill front
5649 end which calls push_function_context_to before the first call to
5650 init_function_start. */
5651 INIT_EXPANDERS;
5652 #endif
5653
5654 /* Create the unique rtx's for certain rtx codes and operand values. */
5655
5656 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5657 tries to use these variables. */
5658 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5659 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5660 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5661
5662 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5663 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5664 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5665 else
5666 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5667
5668 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5669 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5670 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5671
5672 dconstm1 = dconst1;
5673 dconstm1.sign = 1;
5674
5675 dconsthalf = dconst1;
5676 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5677
5678 for (i = 0; i < 3; i++)
5679 {
5680 const REAL_VALUE_TYPE *const r =
5681 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5682
5683 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5684 mode != VOIDmode;
5685 mode = GET_MODE_WIDER_MODE (mode))
5686 const_tiny_rtx[i][(int) mode] =
5687 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5688
5689 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5690 mode != VOIDmode;
5691 mode = GET_MODE_WIDER_MODE (mode))
5692 const_tiny_rtx[i][(int) mode] =
5693 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5694
5695 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5696
5697 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5698 mode != VOIDmode;
5699 mode = GET_MODE_WIDER_MODE (mode))
5700 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5701
5702 for (mode = MIN_MODE_PARTIAL_INT;
5703 mode <= MAX_MODE_PARTIAL_INT;
5704 mode = (enum machine_mode)((int)(mode) + 1))
5705 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5706 }
5707
5708 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5709
5710 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5711 mode != VOIDmode;
5712 mode = GET_MODE_WIDER_MODE (mode))
5713 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5714
5715 for (mode = MIN_MODE_PARTIAL_INT;
5716 mode <= MAX_MODE_PARTIAL_INT;
5717 mode = (enum machine_mode)((int)(mode) + 1))
5718 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5719
5720 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5721 mode != VOIDmode;
5722 mode = GET_MODE_WIDER_MODE (mode))
5723 {
5724 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5725 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5726 }
5727
5728 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5729 mode != VOIDmode;
5730 mode = GET_MODE_WIDER_MODE (mode))
5731 {
5732 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5733 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5734 }
5735
5736 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5737 mode != VOIDmode;
5738 mode = GET_MODE_WIDER_MODE (mode))
5739 {
5740 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5741 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5742 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5743 }
5744
5745 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5746 mode != VOIDmode;
5747 mode = GET_MODE_WIDER_MODE (mode))
5748 {
5749 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5750 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5751 }
5752
5753 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5754 mode != VOIDmode;
5755 mode = GET_MODE_WIDER_MODE (mode))
5756 {
5757 FCONST0(mode).data.high = 0;
5758 FCONST0(mode).data.low = 0;
5759 FCONST0(mode).mode = mode;
5760 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5761 FCONST0 (mode), mode);
5762 }
5763
5764 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5765 mode != VOIDmode;
5766 mode = GET_MODE_WIDER_MODE (mode))
5767 {
5768 FCONST0(mode).data.high = 0;
5769 FCONST0(mode).data.low = 0;
5770 FCONST0(mode).mode = mode;
5771 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5772 FCONST0 (mode), mode);
5773 }
5774
5775 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5776 mode != VOIDmode;
5777 mode = GET_MODE_WIDER_MODE (mode))
5778 {
5779 FCONST0(mode).data.high = 0;
5780 FCONST0(mode).data.low = 0;
5781 FCONST0(mode).mode = mode;
5782 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5783 FCONST0 (mode), mode);
5784
5785 /* We store the value 1. */
5786 FCONST1(mode).data.high = 0;
5787 FCONST1(mode).data.low = 0;
5788 FCONST1(mode).mode = mode;
5789 FCONST1(mode).data
5790 = double_int_one.lshift (GET_MODE_FBIT (mode),
5791 HOST_BITS_PER_DOUBLE_INT,
5792 SIGNED_FIXED_POINT_MODE_P (mode));
5793 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5794 FCONST1 (mode), mode);
5795 }
5796
5797 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5798 mode != VOIDmode;
5799 mode = GET_MODE_WIDER_MODE (mode))
5800 {
5801 FCONST0(mode).data.high = 0;
5802 FCONST0(mode).data.low = 0;
5803 FCONST0(mode).mode = mode;
5804 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5805 FCONST0 (mode), mode);
5806
5807 /* We store the value 1. */
5808 FCONST1(mode).data.high = 0;
5809 FCONST1(mode).data.low = 0;
5810 FCONST1(mode).mode = mode;
5811 FCONST1(mode).data
5812 = double_int_one.lshift (GET_MODE_FBIT (mode),
5813 HOST_BITS_PER_DOUBLE_INT,
5814 SIGNED_FIXED_POINT_MODE_P (mode));
5815 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5816 FCONST1 (mode), mode);
5817 }
5818
5819 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5820 mode != VOIDmode;
5821 mode = GET_MODE_WIDER_MODE (mode))
5822 {
5823 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5824 }
5825
5826 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5827 mode != VOIDmode;
5828 mode = GET_MODE_WIDER_MODE (mode))
5829 {
5830 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5831 }
5832
5833 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5834 mode != VOIDmode;
5835 mode = GET_MODE_WIDER_MODE (mode))
5836 {
5837 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5838 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5839 }
5840
5841 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5842 mode != VOIDmode;
5843 mode = GET_MODE_WIDER_MODE (mode))
5844 {
5845 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5846 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5847 }
5848
5849 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5850 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5851 const_tiny_rtx[0][i] = const0_rtx;
5852
5853 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5854 if (STORE_FLAG_VALUE == 1)
5855 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5856
5857 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5858 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5859 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5860 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5861 }
5862 \f
5863 /* Produce exact duplicate of insn INSN after AFTER.
5864 Care updating of libcall regions if present. */
5865
5866 rtx
5867 emit_copy_of_insn_after (rtx insn, rtx after)
5868 {
5869 rtx new_rtx, link;
5870
5871 switch (GET_CODE (insn))
5872 {
5873 case INSN:
5874 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5875 break;
5876
5877 case JUMP_INSN:
5878 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5879 break;
5880
5881 case DEBUG_INSN:
5882 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5883 break;
5884
5885 case CALL_INSN:
5886 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5887 if (CALL_INSN_FUNCTION_USAGE (insn))
5888 CALL_INSN_FUNCTION_USAGE (new_rtx)
5889 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5890 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5891 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5892 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5893 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5894 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5895 break;
5896
5897 default:
5898 gcc_unreachable ();
5899 }
5900
5901 /* Update LABEL_NUSES. */
5902 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5903
5904 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
5905
5906 /* If the old insn is frame related, then so is the new one. This is
5907 primarily needed for IA-64 unwind info which marks epilogue insns,
5908 which may be duplicated by the basic block reordering code. */
5909 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5910
5911 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5912 will make them. REG_LABEL_TARGETs are created there too, but are
5913 supposed to be sticky, so we copy them. */
5914 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5915 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5916 {
5917 if (GET_CODE (link) == EXPR_LIST)
5918 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5919 copy_insn_1 (XEXP (link, 0)));
5920 else
5921 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5922 }
5923
5924 INSN_CODE (new_rtx) = INSN_CODE (insn);
5925 return new_rtx;
5926 }
5927
5928 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5929 rtx
5930 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5931 {
5932 if (hard_reg_clobbers[mode][regno])
5933 return hard_reg_clobbers[mode][regno];
5934 else
5935 return (hard_reg_clobbers[mode][regno] =
5936 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5937 }
5938
5939 location_t prologue_location;
5940 location_t epilogue_location;
5941
5942 /* Hold current location information and last location information, so the
5943 datastructures are built lazily only when some instructions in given
5944 place are needed. */
5945 static location_t curr_location, last_location;
5946
5947 /* Allocate insn location datastructure. */
5948 void
5949 insn_locations_init (void)
5950 {
5951 prologue_location = epilogue_location = 0;
5952 curr_location = UNKNOWN_LOCATION;
5953 last_location = UNKNOWN_LOCATION;
5954 }
5955
5956 /* At the end of emit stage, clear current location. */
5957 void
5958 insn_locations_finalize (void)
5959 {
5960 epilogue_location = curr_location;
5961 curr_location = UNKNOWN_LOCATION;
5962 }
5963
5964 /* Set current location. */
5965 void
5966 set_curr_insn_location (location_t location)
5967 {
5968 curr_location = location;
5969 }
5970
5971 /* Get current location. */
5972 location_t
5973 curr_insn_location (void)
5974 {
5975 return curr_location;
5976 }
5977
5978 /* Return lexical scope block insn belongs to. */
5979 tree
5980 insn_scope (const_rtx insn)
5981 {
5982 return LOCATION_BLOCK (INSN_LOCATION (insn));
5983 }
5984
5985 /* Return line number of the statement that produced this insn. */
5986 int
5987 insn_line (const_rtx insn)
5988 {
5989 return LOCATION_LINE (INSN_LOCATION (insn));
5990 }
5991
5992 /* Return source file of the statement that produced this insn. */
5993 const char *
5994 insn_file (const_rtx insn)
5995 {
5996 return LOCATION_FILE (INSN_LOCATION (insn));
5997 }
5998
5999 /* Return true if memory model MODEL requires a pre-operation (release-style)
6000 barrier or a post-operation (acquire-style) barrier. While not universal,
6001 this function matches behavior of several targets. */
6002
6003 bool
6004 need_atomic_barrier_p (enum memmodel model, bool pre)
6005 {
6006 switch (model)
6007 {
6008 case MEMMODEL_RELAXED:
6009 case MEMMODEL_CONSUME:
6010 return false;
6011 case MEMMODEL_RELEASE:
6012 return pre;
6013 case MEMMODEL_ACQUIRE:
6014 return !pre;
6015 case MEMMODEL_ACQ_REL:
6016 case MEMMODEL_SEQ_CST:
6017 return true;
6018 default:
6019 gcc_unreachable ();
6020 }
6021 }
6022 \f
6023 #include "gt-emit-rtl.h"