re PR target/9703 ([arm] Accessing data through constant pool more times could be...
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59
60 /* Commonly used modes. */
61
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66
67
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71 static GTY(()) int label_num = 1;
72
73 /* Nonzero means do not generate NOTEs for source line numbers. */
74
75 static int no_line_numbers;
76
77 /* Commonly used rtx's, so that we only need space for one copy.
78 These are initialized once for the entire compilation.
79 All of these are unique; no other rtx-object will be equal to any
80 of these. */
81
82 rtx global_rtl[GR_MAX];
83
84 /* Commonly used RTL for hard registers. These objects are not necessarily
85 unique, so we allocate them separately from global_rtl. They are
86 initialized once per compilation unit, then copied into regno_reg_rtx
87 at the beginning of each function. */
88 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
89
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx. */
93
94 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
95
96 rtx const_true_rtx;
97
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconst3;
102 REAL_VALUE_TYPE dconst10;
103 REAL_VALUE_TYPE dconstm1;
104 REAL_VALUE_TYPE dconstm2;
105 REAL_VALUE_TYPE dconsthalf;
106 REAL_VALUE_TYPE dconstthird;
107 REAL_VALUE_TYPE dconstpi;
108 REAL_VALUE_TYPE dconste;
109
110 /* All references to the following fixed hard registers go through
111 these unique rtl objects. On machines where the frame-pointer and
112 arg-pointer are the same register, they use the same unique object.
113
114 After register allocation, other rtl objects which used to be pseudo-regs
115 may be clobbered to refer to the frame-pointer register.
116 But references that were originally to the frame-pointer can be
117 distinguished from the others because they contain frame_pointer_rtx.
118
119 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
120 tricky: until register elimination has taken place hard_frame_pointer_rtx
121 should be used if it is being set, and frame_pointer_rtx otherwise. After
122 register elimination hard_frame_pointer_rtx should always be used.
123 On machines where the two registers are same (most) then these are the
124 same.
125
126 In an inline procedure, the stack and frame pointer rtxs may not be
127 used for anything else. */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
140
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
145
146 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
147 htab_t const_int_htab;
148
149 /* A hash table storing memory attribute structures. */
150 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
151 htab_t mem_attrs_htab;
152
153 /* A hash table storing register attribute structures. */
154 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
155 htab_t reg_attrs_htab;
156
157 /* A hash table storing all CONST_DOUBLEs. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_double_htab;
160
161 #define first_insn (cfun->emit->x_first_insn)
162 #define last_insn (cfun->emit->x_last_insn)
163 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
164 #define last_location (cfun->emit->x_last_location)
165 #define first_label_num (cfun->emit->x_first_label_num)
166
167 static rtx make_call_insn_raw (rtx);
168 static rtx find_line_note (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
188
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (const void *x)
197 {
198 return (hashval_t) INTVAL ((rtx) x);
199 }
200
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
204
205 static int
206 const_int_htab_eq (const void *x, const void *y)
207 {
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
209 }
210
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
214 {
215 rtx value = (rtx) x;
216 hashval_t h;
217
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
221 {
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
225 }
226 return h;
227 }
228
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
233 {
234 rtx a = (rtx)x, b = (rtx)y;
235
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
244 }
245
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
247
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
250 {
251 mem_attrs *p = (mem_attrs *) x;
252
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) iterative_hash_expr (p->expr, 0));
257 }
258
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
262
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
265 {
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
268
269 return (p->alias == q->alias && p->offset == q->offset
270 && p->size == q->size && p->align == q->align
271 && (p->expr == q->expr
272 || (p->expr != NULL_TREE && q->expr != NULL_TREE
273 && operand_equal_p (p->expr, q->expr, 0))));
274 }
275
276 /* Allocate a new mem_attrs structure and insert it into the hash table if
277 one identical to it is not already in the table. We are doing this for
278 MEM of mode MODE. */
279
280 static mem_attrs *
281 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
282 unsigned int align, enum machine_mode mode)
283 {
284 mem_attrs attrs;
285 void **slot;
286
287 /* If everything is the default, we can just return zero.
288 This must match what the corresponding MEM_* macros return when the
289 field is not present. */
290 if (alias == 0 && expr == 0 && offset == 0
291 && (size == 0
292 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
293 && (STRICT_ALIGNMENT && mode != BLKmode
294 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
295 return 0;
296
297 attrs.alias = alias;
298 attrs.expr = expr;
299 attrs.offset = offset;
300 attrs.size = size;
301 attrs.align = align;
302
303 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
304 if (*slot == 0)
305 {
306 *slot = ggc_alloc (sizeof (mem_attrs));
307 memcpy (*slot, &attrs, sizeof (mem_attrs));
308 }
309
310 return *slot;
311 }
312
313 /* Returns a hash code for X (which is a really a reg_attrs *). */
314
315 static hashval_t
316 reg_attrs_htab_hash (const void *x)
317 {
318 reg_attrs *p = (reg_attrs *) x;
319
320 return ((p->offset * 1000) ^ (long) p->decl);
321 }
322
323 /* Returns nonzero if the value represented by X (which is really a
324 reg_attrs *) is the same as that given by Y (which is also really a
325 reg_attrs *). */
326
327 static int
328 reg_attrs_htab_eq (const void *x, const void *y)
329 {
330 reg_attrs *p = (reg_attrs *) x;
331 reg_attrs *q = (reg_attrs *) y;
332
333 return (p->decl == q->decl && p->offset == q->offset);
334 }
335 /* Allocate a new reg_attrs structure and insert it into the hash table if
336 one identical to it is not already in the table. We are doing this for
337 MEM of mode MODE. */
338
339 static reg_attrs *
340 get_reg_attrs (tree decl, int offset)
341 {
342 reg_attrs attrs;
343 void **slot;
344
345 /* If everything is the default, we can just return zero. */
346 if (decl == 0 && offset == 0)
347 return 0;
348
349 attrs.decl = decl;
350 attrs.offset = offset;
351
352 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
353 if (*slot == 0)
354 {
355 *slot = ggc_alloc (sizeof (reg_attrs));
356 memcpy (*slot, &attrs, sizeof (reg_attrs));
357 }
358
359 return *slot;
360 }
361
362 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
363 don't attempt to share with the various global pieces of rtl (such as
364 frame_pointer_rtx). */
365
366 rtx
367 gen_raw_REG (enum machine_mode mode, int regno)
368 {
369 rtx x = gen_rtx_raw_REG (mode, regno);
370 ORIGINAL_REGNO (x) = regno;
371 return x;
372 }
373
374 /* There are some RTL codes that require special attention; the generation
375 functions do the raw handling. If you add to this list, modify
376 special_rtx in gengenrtl.c as well. */
377
378 rtx
379 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
380 {
381 void **slot;
382
383 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
384 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
385
386 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
387 if (const_true_rtx && arg == STORE_FLAG_VALUE)
388 return const_true_rtx;
389 #endif
390
391 /* Look up the CONST_INT in the hash table. */
392 slot = htab_find_slot_with_hash (const_int_htab, &arg,
393 (hashval_t) arg, INSERT);
394 if (*slot == 0)
395 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
396
397 return (rtx) *slot;
398 }
399
400 rtx
401 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
402 {
403 return GEN_INT (trunc_int_for_mode (c, mode));
404 }
405
406 /* CONST_DOUBLEs might be created from pairs of integers, or from
407 REAL_VALUE_TYPEs. Also, their length is known only at run time,
408 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
409
410 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
411 hash table. If so, return its counterpart; otherwise add it
412 to the hash table and return it. */
413 static rtx
414 lookup_const_double (rtx real)
415 {
416 void **slot = htab_find_slot (const_double_htab, real, INSERT);
417 if (*slot == 0)
418 *slot = real;
419
420 return (rtx) *slot;
421 }
422
423 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
424 VALUE in mode MODE. */
425 rtx
426 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
427 {
428 rtx real = rtx_alloc (CONST_DOUBLE);
429 PUT_MODE (real, mode);
430
431 real->u.rv = value;
432
433 return lookup_const_double (real);
434 }
435
436 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
437 of ints: I0 is the low-order word and I1 is the high-order word.
438 Do not use this routine for non-integer modes; convert to
439 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
440
441 rtx
442 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
443 {
444 rtx value;
445 unsigned int i;
446
447 if (mode != VOIDmode)
448 {
449 int width;
450
451 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
452 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
453 /* We can get a 0 for an error mark. */
454 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
455 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
456
457 /* We clear out all bits that don't belong in MODE, unless they and
458 our sign bit are all one. So we get either a reasonable negative
459 value or a reasonable unsigned value for this mode. */
460 width = GET_MODE_BITSIZE (mode);
461 if (width < HOST_BITS_PER_WIDE_INT
462 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
463 != ((HOST_WIDE_INT) (-1) << (width - 1))))
464 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
465 else if (width == HOST_BITS_PER_WIDE_INT
466 && ! (i1 == ~0 && i0 < 0))
467 i1 = 0;
468 else
469 /* We should be able to represent this value as a constant. */
470 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
471
472 /* If this would be an entire word for the target, but is not for
473 the host, then sign-extend on the host so that the number will
474 look the same way on the host that it would on the target.
475
476 For example, when building a 64 bit alpha hosted 32 bit sparc
477 targeted compiler, then we want the 32 bit unsigned value -1 to be
478 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
479 The latter confuses the sparc backend. */
480
481 if (width < HOST_BITS_PER_WIDE_INT
482 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
483 i0 |= ((HOST_WIDE_INT) (-1) << width);
484
485 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
486 CONST_INT.
487
488 ??? Strictly speaking, this is wrong if we create a CONST_INT for
489 a large unsigned constant with the size of MODE being
490 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
491 in a wider mode. In that case we will mis-interpret it as a
492 negative number.
493
494 Unfortunately, the only alternative is to make a CONST_DOUBLE for
495 any constant in any mode if it is an unsigned constant larger
496 than the maximum signed integer in an int on the host. However,
497 doing this will break everyone that always expects to see a
498 CONST_INT for SImode and smaller.
499
500 We have always been making CONST_INTs in this case, so nothing
501 new is being broken. */
502
503 if (width <= HOST_BITS_PER_WIDE_INT)
504 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
505 }
506
507 /* If this integer fits in one word, return a CONST_INT. */
508 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
509 return GEN_INT (i0);
510
511 /* We use VOIDmode for integers. */
512 value = rtx_alloc (CONST_DOUBLE);
513 PUT_MODE (value, VOIDmode);
514
515 CONST_DOUBLE_LOW (value) = i0;
516 CONST_DOUBLE_HIGH (value) = i1;
517
518 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
519 XWINT (value, i) = 0;
520
521 return lookup_const_double (value);
522 }
523
524 rtx
525 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
526 {
527 /* In case the MD file explicitly references the frame pointer, have
528 all such references point to the same frame pointer. This is
529 used during frame pointer elimination to distinguish the explicit
530 references to these registers from pseudos that happened to be
531 assigned to them.
532
533 If we have eliminated the frame pointer or arg pointer, we will
534 be using it as a normal register, for example as a spill
535 register. In such cases, we might be accessing it in a mode that
536 is not Pmode and therefore cannot use the pre-allocated rtx.
537
538 Also don't do this when we are making new REGs in reload, since
539 we don't want to get confused with the real pointers. */
540
541 if (mode == Pmode && !reload_in_progress)
542 {
543 if (regno == FRAME_POINTER_REGNUM
544 && (!reload_completed || frame_pointer_needed))
545 return frame_pointer_rtx;
546 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
547 if (regno == HARD_FRAME_POINTER_REGNUM
548 && (!reload_completed || frame_pointer_needed))
549 return hard_frame_pointer_rtx;
550 #endif
551 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
552 if (regno == ARG_POINTER_REGNUM)
553 return arg_pointer_rtx;
554 #endif
555 #ifdef RETURN_ADDRESS_POINTER_REGNUM
556 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
557 return return_address_pointer_rtx;
558 #endif
559 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
560 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
561 return pic_offset_table_rtx;
562 if (regno == STACK_POINTER_REGNUM)
563 return stack_pointer_rtx;
564 }
565
566 #if 0
567 /* If the per-function register table has been set up, try to re-use
568 an existing entry in that table to avoid useless generation of RTL.
569
570 This code is disabled for now until we can fix the various backends
571 which depend on having non-shared hard registers in some cases. Long
572 term we want to re-enable this code as it can significantly cut down
573 on the amount of useless RTL that gets generated.
574
575 We'll also need to fix some code that runs after reload that wants to
576 set ORIGINAL_REGNO. */
577
578 if (cfun
579 && cfun->emit
580 && regno_reg_rtx
581 && regno < FIRST_PSEUDO_REGISTER
582 && reg_raw_mode[regno] == mode)
583 return regno_reg_rtx[regno];
584 #endif
585
586 return gen_raw_REG (mode, regno);
587 }
588
589 rtx
590 gen_rtx_MEM (enum machine_mode mode, rtx addr)
591 {
592 rtx rt = gen_rtx_raw_MEM (mode, addr);
593
594 /* This field is not cleared by the mere allocation of the rtx, so
595 we clear it here. */
596 MEM_ATTRS (rt) = 0;
597
598 return rt;
599 }
600
601 /* Generate a memory referring to non-trapping constant memory. */
602
603 rtx
604 gen_const_mem (enum machine_mode mode, rtx addr)
605 {
606 rtx mem = gen_rtx_MEM (mode, addr);
607 MEM_READONLY_P (mem) = 1;
608 MEM_NOTRAP_P (mem) = 1;
609 return mem;
610 }
611
612 /* Generate a MEM referring to fixed portions of the frame, e.g., register
613 save areas. */
614
615 rtx
616 gen_frame_mem (enum machine_mode mode, rtx addr)
617 {
618 rtx mem = gen_rtx_MEM (mode, addr);
619 MEM_NOTRAP_P (mem) = 1;
620 set_mem_alias_set (mem, get_frame_alias_set ());
621 return mem;
622 }
623
624 /* Generate a MEM referring to a temporary use of the stack, not part
625 of the fixed stack frame. For example, something which is pushed
626 by a target splitter. */
627 rtx
628 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
629 {
630 rtx mem = gen_rtx_MEM (mode, addr);
631 MEM_NOTRAP_P (mem) = 1;
632 if (!current_function_calls_alloca)
633 set_mem_alias_set (mem, get_frame_alias_set ());
634 return mem;
635 }
636
637 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
638 this construct would be valid, and false otherwise. */
639
640 bool
641 validate_subreg (enum machine_mode omode, enum machine_mode imode,
642 rtx reg, unsigned int offset)
643 {
644 unsigned int isize = GET_MODE_SIZE (imode);
645 unsigned int osize = GET_MODE_SIZE (omode);
646
647 /* All subregs must be aligned. */
648 if (offset % osize != 0)
649 return false;
650
651 /* The subreg offset cannot be outside the inner object. */
652 if (offset >= isize)
653 return false;
654
655 /* ??? This should not be here. Temporarily continue to allow word_mode
656 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
657 Generally, backends are doing something sketchy but it'll take time to
658 fix them all. */
659 if (omode == word_mode)
660 ;
661 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
662 is the culprit here, and not the backends. */
663 else if (osize >= UNITS_PER_WORD && isize >= osize)
664 ;
665 /* Allow component subregs of complex and vector. Though given the below
666 extraction rules, it's not always clear what that means. */
667 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
668 && GET_MODE_INNER (imode) == omode)
669 ;
670 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
671 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
672 represent this. It's questionable if this ought to be represented at
673 all -- why can't this all be hidden in post-reload splitters that make
674 arbitrarily mode changes to the registers themselves. */
675 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
676 ;
677 /* Subregs involving floating point modes are not allowed to
678 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
679 (subreg:SI (reg:DF) 0) isn't. */
680 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
681 {
682 if (isize != osize)
683 return false;
684 }
685
686 /* Paradoxical subregs must have offset zero. */
687 if (osize > isize)
688 return offset == 0;
689
690 /* This is a normal subreg. Verify that the offset is representable. */
691
692 /* For hard registers, we already have most of these rules collected in
693 subreg_offset_representable_p. */
694 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
695 {
696 unsigned int regno = REGNO (reg);
697
698 #ifdef CANNOT_CHANGE_MODE_CLASS
699 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
700 && GET_MODE_INNER (imode) == omode)
701 ;
702 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
703 return false;
704 #endif
705
706 return subreg_offset_representable_p (regno, imode, offset, omode);
707 }
708
709 /* For pseudo registers, we want most of the same checks. Namely:
710 If the register no larger than a word, the subreg must be lowpart.
711 If the register is larger than a word, the subreg must be the lowpart
712 of a subword. A subreg does *not* perform arbitrary bit extraction.
713 Given that we've already checked mode/offset alignment, we only have
714 to check subword subregs here. */
715 if (osize < UNITS_PER_WORD)
716 {
717 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
718 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
719 if (offset % UNITS_PER_WORD != low_off)
720 return false;
721 }
722 return true;
723 }
724
725 rtx
726 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
727 {
728 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
729 return gen_rtx_raw_SUBREG (mode, reg, offset);
730 }
731
732 /* Generate a SUBREG representing the least-significant part of REG if MODE
733 is smaller than mode of REG, otherwise paradoxical SUBREG. */
734
735 rtx
736 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
737 {
738 enum machine_mode inmode;
739
740 inmode = GET_MODE (reg);
741 if (inmode == VOIDmode)
742 inmode = mode;
743 return gen_rtx_SUBREG (mode, reg,
744 subreg_lowpart_offset (mode, inmode));
745 }
746 \f
747 /* gen_rtvec (n, [rt1, ..., rtn])
748 **
749 ** This routine creates an rtvec and stores within it the
750 ** pointers to rtx's which are its arguments.
751 */
752
753 /*VARARGS1*/
754 rtvec
755 gen_rtvec (int n, ...)
756 {
757 int i, save_n;
758 rtx *vector;
759 va_list p;
760
761 va_start (p, n);
762
763 if (n == 0)
764 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
765
766 vector = alloca (n * sizeof (rtx));
767
768 for (i = 0; i < n; i++)
769 vector[i] = va_arg (p, rtx);
770
771 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
772 save_n = n;
773 va_end (p);
774
775 return gen_rtvec_v (save_n, vector);
776 }
777
778 rtvec
779 gen_rtvec_v (int n, rtx *argp)
780 {
781 int i;
782 rtvec rt_val;
783
784 if (n == 0)
785 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
786
787 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
788
789 for (i = 0; i < n; i++)
790 rt_val->elem[i] = *argp++;
791
792 return rt_val;
793 }
794 \f
795 /* Generate a REG rtx for a new pseudo register of mode MODE.
796 This pseudo is assigned the next sequential register number. */
797
798 rtx
799 gen_reg_rtx (enum machine_mode mode)
800 {
801 struct function *f = cfun;
802 rtx val;
803
804 /* Don't let anything called after initial flow analysis create new
805 registers. */
806 gcc_assert (!no_new_pseudos);
807
808 if (generating_concat_p
809 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
810 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
811 {
812 /* For complex modes, don't make a single pseudo.
813 Instead, make a CONCAT of two pseudos.
814 This allows noncontiguous allocation of the real and imaginary parts,
815 which makes much better code. Besides, allocating DCmode
816 pseudos overstrains reload on some machines like the 386. */
817 rtx realpart, imagpart;
818 enum machine_mode partmode = GET_MODE_INNER (mode);
819
820 realpart = gen_reg_rtx (partmode);
821 imagpart = gen_reg_rtx (partmode);
822 return gen_rtx_CONCAT (mode, realpart, imagpart);
823 }
824
825 /* Make sure regno_pointer_align, and regno_reg_rtx are large
826 enough to have an element for this pseudo reg number. */
827
828 if (reg_rtx_no == f->emit->regno_pointer_align_length)
829 {
830 int old_size = f->emit->regno_pointer_align_length;
831 char *new;
832 rtx *new1;
833
834 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
835 memset (new + old_size, 0, old_size);
836 f->emit->regno_pointer_align = (unsigned char *) new;
837
838 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
839 old_size * 2 * sizeof (rtx));
840 memset (new1 + old_size, 0, old_size * sizeof (rtx));
841 regno_reg_rtx = new1;
842
843 f->emit->regno_pointer_align_length = old_size * 2;
844 }
845
846 val = gen_raw_REG (mode, reg_rtx_no);
847 regno_reg_rtx[reg_rtx_no++] = val;
848 return val;
849 }
850
851 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
852 Do the big endian correction if needed. */
853
854 rtx
855 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
856 {
857 rtx new = gen_rtx_REG (mode, regno);
858 tree decl;
859 HOST_WIDE_INT var_size;
860
861 /* PR middle-end/14084
862 The problem appears when a variable is stored in a larger register
863 and later it is used in the original mode or some mode in between
864 or some part of variable is accessed.
865
866 On little endian machines there is no problem because
867 the REG_OFFSET of the start of the variable is the same when
868 accessed in any mode (it is 0).
869
870 However, this is not true on big endian machines.
871 The offset of the start of the variable is different when accessed
872 in different modes.
873 When we are taking a part of the REG we have to change the OFFSET
874 from offset WRT size of mode of REG to offset WRT size of variable.
875
876 If we would not do the big endian correction the resulting REG_OFFSET
877 would be larger than the size of the DECL.
878
879 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
880
881 REG.mode MODE DECL size old offset new offset description
882 DI SI 4 4 0 int32 in SImode
883 DI SI 1 4 0 char in SImode
884 DI QI 1 7 0 char in QImode
885 DI QI 4 5 1 1st element in QImode
886 of char[4]
887 DI HI 4 6 2 1st element in HImode
888 of int16[2]
889
890 If the size of DECL is equal or greater than the size of REG
891 we can't do this correction because the register holds the
892 whole variable or a part of the variable and thus the REG_OFFSET
893 is already correct. */
894
895 decl = REG_EXPR (reg);
896 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
897 && decl != NULL
898 && offset > 0
899 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
900 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
901 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
902 {
903 int offset_le;
904
905 /* Convert machine endian to little endian WRT size of mode of REG. */
906 if (WORDS_BIG_ENDIAN)
907 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
908 / UNITS_PER_WORD) * UNITS_PER_WORD;
909 else
910 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
911
912 if (BYTES_BIG_ENDIAN)
913 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
914 % UNITS_PER_WORD);
915 else
916 offset_le += offset % UNITS_PER_WORD;
917
918 if (offset_le >= var_size)
919 {
920 /* MODE is wider than the variable so the new reg will cover
921 the whole variable so the resulting OFFSET should be 0. */
922 offset = 0;
923 }
924 else
925 {
926 /* Convert little endian to machine endian WRT size of variable. */
927 if (WORDS_BIG_ENDIAN)
928 offset = ((var_size - 1 - offset_le)
929 / UNITS_PER_WORD) * UNITS_PER_WORD;
930 else
931 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
932
933 if (BYTES_BIG_ENDIAN)
934 offset += ((var_size - 1 - offset_le)
935 % UNITS_PER_WORD);
936 else
937 offset += offset_le % UNITS_PER_WORD;
938 }
939 }
940
941 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
942 REG_OFFSET (reg) + offset);
943 return new;
944 }
945
946 /* Set the decl for MEM to DECL. */
947
948 void
949 set_reg_attrs_from_mem (rtx reg, rtx mem)
950 {
951 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
952 REG_ATTRS (reg)
953 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
954 }
955
956 /* Set the register attributes for registers contained in PARM_RTX.
957 Use needed values from memory attributes of MEM. */
958
959 void
960 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
961 {
962 if (REG_P (parm_rtx))
963 set_reg_attrs_from_mem (parm_rtx, mem);
964 else if (GET_CODE (parm_rtx) == PARALLEL)
965 {
966 /* Check for a NULL entry in the first slot, used to indicate that the
967 parameter goes both on the stack and in registers. */
968 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
969 for (; i < XVECLEN (parm_rtx, 0); i++)
970 {
971 rtx x = XVECEXP (parm_rtx, 0, i);
972 if (REG_P (XEXP (x, 0)))
973 REG_ATTRS (XEXP (x, 0))
974 = get_reg_attrs (MEM_EXPR (mem),
975 INTVAL (XEXP (x, 1)));
976 }
977 }
978 }
979
980 /* Assign the RTX X to declaration T. */
981 void
982 set_decl_rtl (tree t, rtx x)
983 {
984 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
985
986 if (!x)
987 return;
988 /* For register, we maintain the reverse information too. */
989 if (REG_P (x))
990 REG_ATTRS (x) = get_reg_attrs (t, 0);
991 else if (GET_CODE (x) == SUBREG)
992 REG_ATTRS (SUBREG_REG (x))
993 = get_reg_attrs (t, -SUBREG_BYTE (x));
994 if (GET_CODE (x) == CONCAT)
995 {
996 if (REG_P (XEXP (x, 0)))
997 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
998 if (REG_P (XEXP (x, 1)))
999 REG_ATTRS (XEXP (x, 1))
1000 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1001 }
1002 if (GET_CODE (x) == PARALLEL)
1003 {
1004 int i;
1005 for (i = 0; i < XVECLEN (x, 0); i++)
1006 {
1007 rtx y = XVECEXP (x, 0, i);
1008 if (REG_P (XEXP (y, 0)))
1009 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1010 }
1011 }
1012 }
1013
1014 /* Assign the RTX X to parameter declaration T. */
1015 void
1016 set_decl_incoming_rtl (tree t, rtx x)
1017 {
1018 DECL_INCOMING_RTL (t) = x;
1019
1020 if (!x)
1021 return;
1022 /* For register, we maintain the reverse information too. */
1023 if (REG_P (x))
1024 REG_ATTRS (x) = get_reg_attrs (t, 0);
1025 else if (GET_CODE (x) == SUBREG)
1026 REG_ATTRS (SUBREG_REG (x))
1027 = get_reg_attrs (t, -SUBREG_BYTE (x));
1028 if (GET_CODE (x) == CONCAT)
1029 {
1030 if (REG_P (XEXP (x, 0)))
1031 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1032 if (REG_P (XEXP (x, 1)))
1033 REG_ATTRS (XEXP (x, 1))
1034 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1035 }
1036 if (GET_CODE (x) == PARALLEL)
1037 {
1038 int i, start;
1039
1040 /* Check for a NULL entry, used to indicate that the parameter goes
1041 both on the stack and in registers. */
1042 if (XEXP (XVECEXP (x, 0, 0), 0))
1043 start = 0;
1044 else
1045 start = 1;
1046
1047 for (i = start; i < XVECLEN (x, 0); i++)
1048 {
1049 rtx y = XVECEXP (x, 0, i);
1050 if (REG_P (XEXP (y, 0)))
1051 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1052 }
1053 }
1054 }
1055
1056 /* Identify REG (which may be a CONCAT) as a user register. */
1057
1058 void
1059 mark_user_reg (rtx reg)
1060 {
1061 if (GET_CODE (reg) == CONCAT)
1062 {
1063 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1064 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1065 }
1066 else
1067 {
1068 gcc_assert (REG_P (reg));
1069 REG_USERVAR_P (reg) = 1;
1070 }
1071 }
1072
1073 /* Identify REG as a probable pointer register and show its alignment
1074 as ALIGN, if nonzero. */
1075
1076 void
1077 mark_reg_pointer (rtx reg, int align)
1078 {
1079 if (! REG_POINTER (reg))
1080 {
1081 REG_POINTER (reg) = 1;
1082
1083 if (align)
1084 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1085 }
1086 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1087 /* We can no-longer be sure just how aligned this pointer is. */
1088 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1089 }
1090
1091 /* Return 1 plus largest pseudo reg number used in the current function. */
1092
1093 int
1094 max_reg_num (void)
1095 {
1096 return reg_rtx_no;
1097 }
1098
1099 /* Return 1 + the largest label number used so far in the current function. */
1100
1101 int
1102 max_label_num (void)
1103 {
1104 return label_num;
1105 }
1106
1107 /* Return first label number used in this function (if any were used). */
1108
1109 int
1110 get_first_label_num (void)
1111 {
1112 return first_label_num;
1113 }
1114
1115 /* If the rtx for label was created during the expansion of a nested
1116 function, then first_label_num won't include this label number.
1117 Fix this now so that array indicies work later. */
1118
1119 void
1120 maybe_set_first_label_num (rtx x)
1121 {
1122 if (CODE_LABEL_NUMBER (x) < first_label_num)
1123 first_label_num = CODE_LABEL_NUMBER (x);
1124 }
1125 \f
1126 /* Return a value representing some low-order bits of X, where the number
1127 of low-order bits is given by MODE. Note that no conversion is done
1128 between floating-point and fixed-point values, rather, the bit
1129 representation is returned.
1130
1131 This function handles the cases in common between gen_lowpart, below,
1132 and two variants in cse.c and combine.c. These are the cases that can
1133 be safely handled at all points in the compilation.
1134
1135 If this is not a case we can handle, return 0. */
1136
1137 rtx
1138 gen_lowpart_common (enum machine_mode mode, rtx x)
1139 {
1140 int msize = GET_MODE_SIZE (mode);
1141 int xsize;
1142 int offset = 0;
1143 enum machine_mode innermode;
1144
1145 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1146 so we have to make one up. Yuk. */
1147 innermode = GET_MODE (x);
1148 if (GET_CODE (x) == CONST_INT
1149 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1150 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1151 else if (innermode == VOIDmode)
1152 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1153
1154 xsize = GET_MODE_SIZE (innermode);
1155
1156 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1157
1158 if (innermode == mode)
1159 return x;
1160
1161 /* MODE must occupy no more words than the mode of X. */
1162 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1163 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1164 return 0;
1165
1166 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1167 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1168 return 0;
1169
1170 offset = subreg_lowpart_offset (mode, innermode);
1171
1172 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1173 && (GET_MODE_CLASS (mode) == MODE_INT
1174 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1175 {
1176 /* If we are getting the low-order part of something that has been
1177 sign- or zero-extended, we can either just use the object being
1178 extended or make a narrower extension. If we want an even smaller
1179 piece than the size of the object being extended, call ourselves
1180 recursively.
1181
1182 This case is used mostly by combine and cse. */
1183
1184 if (GET_MODE (XEXP (x, 0)) == mode)
1185 return XEXP (x, 0);
1186 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1187 return gen_lowpart_common (mode, XEXP (x, 0));
1188 else if (msize < xsize)
1189 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1190 }
1191 else if (GET_CODE (x) == SUBREG || REG_P (x)
1192 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1193 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1194 return simplify_gen_subreg (mode, x, innermode, offset);
1195
1196 /* Otherwise, we can't do this. */
1197 return 0;
1198 }
1199 \f
1200 rtx
1201 gen_highpart (enum machine_mode mode, rtx x)
1202 {
1203 unsigned int msize = GET_MODE_SIZE (mode);
1204 rtx result;
1205
1206 /* This case loses if X is a subreg. To catch bugs early,
1207 complain if an invalid MODE is used even in other cases. */
1208 gcc_assert (msize <= UNITS_PER_WORD
1209 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1210
1211 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1212 subreg_highpart_offset (mode, GET_MODE (x)));
1213 gcc_assert (result);
1214
1215 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1216 the target if we have a MEM. gen_highpart must return a valid operand,
1217 emitting code if necessary to do so. */
1218 if (MEM_P (result))
1219 {
1220 result = validize_mem (result);
1221 gcc_assert (result);
1222 }
1223
1224 return result;
1225 }
1226
1227 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1228 be VOIDmode constant. */
1229 rtx
1230 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1231 {
1232 if (GET_MODE (exp) != VOIDmode)
1233 {
1234 gcc_assert (GET_MODE (exp) == innermode);
1235 return gen_highpart (outermode, exp);
1236 }
1237 return simplify_gen_subreg (outermode, exp, innermode,
1238 subreg_highpart_offset (outermode, innermode));
1239 }
1240
1241 /* Return offset in bytes to get OUTERMODE low part
1242 of the value in mode INNERMODE stored in memory in target format. */
1243
1244 unsigned int
1245 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1246 {
1247 unsigned int offset = 0;
1248 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1249
1250 if (difference > 0)
1251 {
1252 if (WORDS_BIG_ENDIAN)
1253 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1254 if (BYTES_BIG_ENDIAN)
1255 offset += difference % UNITS_PER_WORD;
1256 }
1257
1258 return offset;
1259 }
1260
1261 /* Return offset in bytes to get OUTERMODE high part
1262 of the value in mode INNERMODE stored in memory in target format. */
1263 unsigned int
1264 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1265 {
1266 unsigned int offset = 0;
1267 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1268
1269 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1270
1271 if (difference > 0)
1272 {
1273 if (! WORDS_BIG_ENDIAN)
1274 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1275 if (! BYTES_BIG_ENDIAN)
1276 offset += difference % UNITS_PER_WORD;
1277 }
1278
1279 return offset;
1280 }
1281
1282 /* Return 1 iff X, assumed to be a SUBREG,
1283 refers to the least significant part of its containing reg.
1284 If X is not a SUBREG, always return 1 (it is its own low part!). */
1285
1286 int
1287 subreg_lowpart_p (rtx x)
1288 {
1289 if (GET_CODE (x) != SUBREG)
1290 return 1;
1291 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1292 return 0;
1293
1294 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1295 == SUBREG_BYTE (x));
1296 }
1297 \f
1298 /* Return subword OFFSET of operand OP.
1299 The word number, OFFSET, is interpreted as the word number starting
1300 at the low-order address. OFFSET 0 is the low-order word if not
1301 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1302
1303 If we cannot extract the required word, we return zero. Otherwise,
1304 an rtx corresponding to the requested word will be returned.
1305
1306 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1307 reload has completed, a valid address will always be returned. After
1308 reload, if a valid address cannot be returned, we return zero.
1309
1310 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1311 it is the responsibility of the caller.
1312
1313 MODE is the mode of OP in case it is a CONST_INT.
1314
1315 ??? This is still rather broken for some cases. The problem for the
1316 moment is that all callers of this thing provide no 'goal mode' to
1317 tell us to work with. This exists because all callers were written
1318 in a word based SUBREG world.
1319 Now use of this function can be deprecated by simplify_subreg in most
1320 cases.
1321 */
1322
1323 rtx
1324 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1325 {
1326 if (mode == VOIDmode)
1327 mode = GET_MODE (op);
1328
1329 gcc_assert (mode != VOIDmode);
1330
1331 /* If OP is narrower than a word, fail. */
1332 if (mode != BLKmode
1333 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1334 return 0;
1335
1336 /* If we want a word outside OP, return zero. */
1337 if (mode != BLKmode
1338 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1339 return const0_rtx;
1340
1341 /* Form a new MEM at the requested address. */
1342 if (MEM_P (op))
1343 {
1344 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1345
1346 if (! validate_address)
1347 return new;
1348
1349 else if (reload_completed)
1350 {
1351 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1352 return 0;
1353 }
1354 else
1355 return replace_equiv_address (new, XEXP (new, 0));
1356 }
1357
1358 /* Rest can be handled by simplify_subreg. */
1359 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1360 }
1361
1362 /* Similar to `operand_subword', but never return 0. If we can't
1363 extract the required subword, put OP into a register and try again.
1364 The second attempt must succeed. We always validate the address in
1365 this case.
1366
1367 MODE is the mode of OP, in case it is CONST_INT. */
1368
1369 rtx
1370 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1371 {
1372 rtx result = operand_subword (op, offset, 1, mode);
1373
1374 if (result)
1375 return result;
1376
1377 if (mode != BLKmode && mode != VOIDmode)
1378 {
1379 /* If this is a register which can not be accessed by words, copy it
1380 to a pseudo register. */
1381 if (REG_P (op))
1382 op = copy_to_reg (op);
1383 else
1384 op = force_reg (mode, op);
1385 }
1386
1387 result = operand_subword (op, offset, 1, mode);
1388 gcc_assert (result);
1389
1390 return result;
1391 }
1392 \f
1393 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1394 or (2) a component ref of something variable. Represent the later with
1395 a NULL expression. */
1396
1397 static tree
1398 component_ref_for_mem_expr (tree ref)
1399 {
1400 tree inner = TREE_OPERAND (ref, 0);
1401
1402 if (TREE_CODE (inner) == COMPONENT_REF)
1403 inner = component_ref_for_mem_expr (inner);
1404 else
1405 {
1406 /* Now remove any conversions: they don't change what the underlying
1407 object is. Likewise for SAVE_EXPR. */
1408 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1409 || TREE_CODE (inner) == NON_LVALUE_EXPR
1410 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1411 || TREE_CODE (inner) == SAVE_EXPR)
1412 inner = TREE_OPERAND (inner, 0);
1413
1414 if (! DECL_P (inner))
1415 inner = NULL_TREE;
1416 }
1417
1418 if (inner == TREE_OPERAND (ref, 0))
1419 return ref;
1420 else
1421 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1422 TREE_OPERAND (ref, 1), NULL_TREE);
1423 }
1424
1425 /* Returns 1 if both MEM_EXPR can be considered equal
1426 and 0 otherwise. */
1427
1428 int
1429 mem_expr_equal_p (tree expr1, tree expr2)
1430 {
1431 if (expr1 == expr2)
1432 return 1;
1433
1434 if (! expr1 || ! expr2)
1435 return 0;
1436
1437 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1438 return 0;
1439
1440 if (TREE_CODE (expr1) == COMPONENT_REF)
1441 return
1442 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1443 TREE_OPERAND (expr2, 0))
1444 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1445 TREE_OPERAND (expr2, 1));
1446
1447 if (INDIRECT_REF_P (expr1))
1448 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1449 TREE_OPERAND (expr2, 0));
1450
1451 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1452 have been resolved here. */
1453 gcc_assert (DECL_P (expr1));
1454
1455 /* Decls with different pointers can't be equal. */
1456 return 0;
1457 }
1458
1459 /* Given REF, a MEM, and T, either the type of X or the expression
1460 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1461 if we are making a new object of this type. BITPOS is nonzero if
1462 there is an offset outstanding on T that will be applied later. */
1463
1464 void
1465 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1466 HOST_WIDE_INT bitpos)
1467 {
1468 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1469 tree expr = MEM_EXPR (ref);
1470 rtx offset = MEM_OFFSET (ref);
1471 rtx size = MEM_SIZE (ref);
1472 unsigned int align = MEM_ALIGN (ref);
1473 HOST_WIDE_INT apply_bitpos = 0;
1474 tree type;
1475
1476 /* It can happen that type_for_mode was given a mode for which there
1477 is no language-level type. In which case it returns NULL, which
1478 we can see here. */
1479 if (t == NULL_TREE)
1480 return;
1481
1482 type = TYPE_P (t) ? t : TREE_TYPE (t);
1483 if (type == error_mark_node)
1484 return;
1485
1486 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1487 wrong answer, as it assumes that DECL_RTL already has the right alias
1488 info. Callers should not set DECL_RTL until after the call to
1489 set_mem_attributes. */
1490 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1491
1492 /* Get the alias set from the expression or type (perhaps using a
1493 front-end routine) and use it. */
1494 alias = get_alias_set (t);
1495
1496 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1497 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1498 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1499
1500 /* If we are making an object of this type, or if this is a DECL, we know
1501 that it is a scalar if the type is not an aggregate. */
1502 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1503 MEM_SCALAR_P (ref) = 1;
1504
1505 /* We can set the alignment from the type if we are making an object,
1506 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1507 if (objectp || TREE_CODE (t) == INDIRECT_REF
1508 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1509 || TYPE_ALIGN_OK (type))
1510 align = MAX (align, TYPE_ALIGN (type));
1511 else
1512 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1513 {
1514 if (integer_zerop (TREE_OPERAND (t, 1)))
1515 /* We don't know anything about the alignment. */
1516 align = BITS_PER_UNIT;
1517 else
1518 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1519 }
1520
1521 /* If the size is known, we can set that. */
1522 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1523 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1524
1525 /* If T is not a type, we may be able to deduce some more information about
1526 the expression. */
1527 if (! TYPE_P (t))
1528 {
1529 tree base;
1530
1531 if (TREE_THIS_VOLATILE (t))
1532 MEM_VOLATILE_P (ref) = 1;
1533
1534 /* Now remove any conversions: they don't change what the underlying
1535 object is. Likewise for SAVE_EXPR. */
1536 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1537 || TREE_CODE (t) == NON_LVALUE_EXPR
1538 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1539 || TREE_CODE (t) == SAVE_EXPR)
1540 t = TREE_OPERAND (t, 0);
1541
1542 /* We may look through structure-like accesses for the purposes of
1543 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1544 base = t;
1545 while (TREE_CODE (base) == COMPONENT_REF
1546 || TREE_CODE (base) == REALPART_EXPR
1547 || TREE_CODE (base) == IMAGPART_EXPR
1548 || TREE_CODE (base) == BIT_FIELD_REF)
1549 base = TREE_OPERAND (base, 0);
1550
1551 if (DECL_P (base))
1552 {
1553 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1554 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1555 else
1556 MEM_NOTRAP_P (ref) = 1;
1557 }
1558 else
1559 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1560
1561 base = get_base_address (base);
1562 if (base && DECL_P (base)
1563 && TREE_READONLY (base)
1564 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1565 {
1566 tree base_type = TREE_TYPE (base);
1567 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1568 || DECL_ARTIFICIAL (base));
1569 MEM_READONLY_P (ref) = 1;
1570 }
1571
1572 /* If this expression uses it's parent's alias set, mark it such
1573 that we won't change it. */
1574 if (component_uses_parent_alias_set (t))
1575 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1576
1577 /* If this is a decl, set the attributes of the MEM from it. */
1578 if (DECL_P (t))
1579 {
1580 expr = t;
1581 offset = const0_rtx;
1582 apply_bitpos = bitpos;
1583 size = (DECL_SIZE_UNIT (t)
1584 && host_integerp (DECL_SIZE_UNIT (t), 1)
1585 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1586 align = DECL_ALIGN (t);
1587 }
1588
1589 /* If this is a constant, we know the alignment. */
1590 else if (CONSTANT_CLASS_P (t))
1591 {
1592 align = TYPE_ALIGN (type);
1593 #ifdef CONSTANT_ALIGNMENT
1594 align = CONSTANT_ALIGNMENT (t, align);
1595 #endif
1596 }
1597
1598 /* If this is a field reference and not a bit-field, record it. */
1599 /* ??? There is some information that can be gleened from bit-fields,
1600 such as the word offset in the structure that might be modified.
1601 But skip it for now. */
1602 else if (TREE_CODE (t) == COMPONENT_REF
1603 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1604 {
1605 expr = component_ref_for_mem_expr (t);
1606 offset = const0_rtx;
1607 apply_bitpos = bitpos;
1608 /* ??? Any reason the field size would be different than
1609 the size we got from the type? */
1610 }
1611
1612 /* If this is an array reference, look for an outer field reference. */
1613 else if (TREE_CODE (t) == ARRAY_REF)
1614 {
1615 tree off_tree = size_zero_node;
1616 /* We can't modify t, because we use it at the end of the
1617 function. */
1618 tree t2 = t;
1619
1620 do
1621 {
1622 tree index = TREE_OPERAND (t2, 1);
1623 tree low_bound = array_ref_low_bound (t2);
1624 tree unit_size = array_ref_element_size (t2);
1625
1626 /* We assume all arrays have sizes that are a multiple of a byte.
1627 First subtract the lower bound, if any, in the type of the
1628 index, then convert to sizetype and multiply by the size of
1629 the array element. */
1630 if (! integer_zerop (low_bound))
1631 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1632 index, low_bound);
1633
1634 off_tree = size_binop (PLUS_EXPR,
1635 size_binop (MULT_EXPR, convert (sizetype,
1636 index),
1637 unit_size),
1638 off_tree);
1639 t2 = TREE_OPERAND (t2, 0);
1640 }
1641 while (TREE_CODE (t2) == ARRAY_REF);
1642
1643 if (DECL_P (t2))
1644 {
1645 expr = t2;
1646 offset = NULL;
1647 if (host_integerp (off_tree, 1))
1648 {
1649 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1650 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1651 align = DECL_ALIGN (t2);
1652 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1653 align = aoff;
1654 offset = GEN_INT (ioff);
1655 apply_bitpos = bitpos;
1656 }
1657 }
1658 else if (TREE_CODE (t2) == COMPONENT_REF)
1659 {
1660 expr = component_ref_for_mem_expr (t2);
1661 if (host_integerp (off_tree, 1))
1662 {
1663 offset = GEN_INT (tree_low_cst (off_tree, 1));
1664 apply_bitpos = bitpos;
1665 }
1666 /* ??? Any reason the field size would be different than
1667 the size we got from the type? */
1668 }
1669 else if (flag_argument_noalias > 1
1670 && (INDIRECT_REF_P (t2))
1671 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1672 {
1673 expr = t2;
1674 offset = NULL;
1675 }
1676 }
1677
1678 /* If this is a Fortran indirect argument reference, record the
1679 parameter decl. */
1680 else if (flag_argument_noalias > 1
1681 && (INDIRECT_REF_P (t))
1682 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1683 {
1684 expr = t;
1685 offset = NULL;
1686 }
1687 }
1688
1689 /* If we modified OFFSET based on T, then subtract the outstanding
1690 bit position offset. Similarly, increase the size of the accessed
1691 object to contain the negative offset. */
1692 if (apply_bitpos)
1693 {
1694 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1695 if (size)
1696 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1697 }
1698
1699 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1700 {
1701 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1702 we're overlapping. */
1703 offset = NULL;
1704 expr = NULL;
1705 }
1706
1707 /* Now set the attributes we computed above. */
1708 MEM_ATTRS (ref)
1709 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1710
1711 /* If this is already known to be a scalar or aggregate, we are done. */
1712 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1713 return;
1714
1715 /* If it is a reference into an aggregate, this is part of an aggregate.
1716 Otherwise we don't know. */
1717 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1718 || TREE_CODE (t) == ARRAY_RANGE_REF
1719 || TREE_CODE (t) == BIT_FIELD_REF)
1720 MEM_IN_STRUCT_P (ref) = 1;
1721 }
1722
1723 void
1724 set_mem_attributes (rtx ref, tree t, int objectp)
1725 {
1726 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1727 }
1728
1729 /* Set the decl for MEM to DECL. */
1730
1731 void
1732 set_mem_attrs_from_reg (rtx mem, rtx reg)
1733 {
1734 MEM_ATTRS (mem)
1735 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1736 GEN_INT (REG_OFFSET (reg)),
1737 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1738 }
1739
1740 /* Set the alias set of MEM to SET. */
1741
1742 void
1743 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1744 {
1745 #ifdef ENABLE_CHECKING
1746 /* If the new and old alias sets don't conflict, something is wrong. */
1747 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1748 #endif
1749
1750 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1751 MEM_SIZE (mem), MEM_ALIGN (mem),
1752 GET_MODE (mem));
1753 }
1754
1755 /* Set the alignment of MEM to ALIGN bits. */
1756
1757 void
1758 set_mem_align (rtx mem, unsigned int align)
1759 {
1760 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1761 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1762 GET_MODE (mem));
1763 }
1764
1765 /* Set the expr for MEM to EXPR. */
1766
1767 void
1768 set_mem_expr (rtx mem, tree expr)
1769 {
1770 MEM_ATTRS (mem)
1771 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1772 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1773 }
1774
1775 /* Set the offset of MEM to OFFSET. */
1776
1777 void
1778 set_mem_offset (rtx mem, rtx offset)
1779 {
1780 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1781 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1782 GET_MODE (mem));
1783 }
1784
1785 /* Set the size of MEM to SIZE. */
1786
1787 void
1788 set_mem_size (rtx mem, rtx size)
1789 {
1790 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1791 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1792 GET_MODE (mem));
1793 }
1794 \f
1795 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1796 and its address changed to ADDR. (VOIDmode means don't change the mode.
1797 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1798 returned memory location is required to be valid. The memory
1799 attributes are not changed. */
1800
1801 static rtx
1802 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1803 {
1804 rtx new;
1805
1806 gcc_assert (MEM_P (memref));
1807 if (mode == VOIDmode)
1808 mode = GET_MODE (memref);
1809 if (addr == 0)
1810 addr = XEXP (memref, 0);
1811 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1812 && (!validate || memory_address_p (mode, addr)))
1813 return memref;
1814
1815 if (validate)
1816 {
1817 if (reload_in_progress || reload_completed)
1818 gcc_assert (memory_address_p (mode, addr));
1819 else
1820 addr = memory_address (mode, addr);
1821 }
1822
1823 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1824 return memref;
1825
1826 new = gen_rtx_MEM (mode, addr);
1827 MEM_COPY_ATTRIBUTES (new, memref);
1828 return new;
1829 }
1830
1831 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1832 way we are changing MEMREF, so we only preserve the alias set. */
1833
1834 rtx
1835 change_address (rtx memref, enum machine_mode mode, rtx addr)
1836 {
1837 rtx new = change_address_1 (memref, mode, addr, 1), size;
1838 enum machine_mode mmode = GET_MODE (new);
1839 unsigned int align;
1840
1841 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1842 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1843
1844 /* If there are no changes, just return the original memory reference. */
1845 if (new == memref)
1846 {
1847 if (MEM_ATTRS (memref) == 0
1848 || (MEM_EXPR (memref) == NULL
1849 && MEM_OFFSET (memref) == NULL
1850 && MEM_SIZE (memref) == size
1851 && MEM_ALIGN (memref) == align))
1852 return new;
1853
1854 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1855 MEM_COPY_ATTRIBUTES (new, memref);
1856 }
1857
1858 MEM_ATTRS (new)
1859 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1860
1861 return new;
1862 }
1863
1864 /* Return a memory reference like MEMREF, but with its mode changed
1865 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1866 nonzero, the memory address is forced to be valid.
1867 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1868 and caller is responsible for adjusting MEMREF base register. */
1869
1870 rtx
1871 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1872 int validate, int adjust)
1873 {
1874 rtx addr = XEXP (memref, 0);
1875 rtx new;
1876 rtx memoffset = MEM_OFFSET (memref);
1877 rtx size = 0;
1878 unsigned int memalign = MEM_ALIGN (memref);
1879
1880 /* If there are no changes, just return the original memory reference. */
1881 if (mode == GET_MODE (memref) && !offset
1882 && (!validate || memory_address_p (mode, addr)))
1883 return memref;
1884
1885 /* ??? Prefer to create garbage instead of creating shared rtl.
1886 This may happen even if offset is nonzero -- consider
1887 (plus (plus reg reg) const_int) -- so do this always. */
1888 addr = copy_rtx (addr);
1889
1890 if (adjust)
1891 {
1892 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1893 object, we can merge it into the LO_SUM. */
1894 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1895 && offset >= 0
1896 && (unsigned HOST_WIDE_INT) offset
1897 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1898 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1899 plus_constant (XEXP (addr, 1), offset));
1900 else
1901 addr = plus_constant (addr, offset);
1902 }
1903
1904 new = change_address_1 (memref, mode, addr, validate);
1905
1906 /* Compute the new values of the memory attributes due to this adjustment.
1907 We add the offsets and update the alignment. */
1908 if (memoffset)
1909 memoffset = GEN_INT (offset + INTVAL (memoffset));
1910
1911 /* Compute the new alignment by taking the MIN of the alignment and the
1912 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1913 if zero. */
1914 if (offset != 0)
1915 memalign
1916 = MIN (memalign,
1917 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1918
1919 /* We can compute the size in a number of ways. */
1920 if (GET_MODE (new) != BLKmode)
1921 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1922 else if (MEM_SIZE (memref))
1923 size = plus_constant (MEM_SIZE (memref), -offset);
1924
1925 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1926 memoffset, size, memalign, GET_MODE (new));
1927
1928 /* At some point, we should validate that this offset is within the object,
1929 if all the appropriate values are known. */
1930 return new;
1931 }
1932
1933 /* Return a memory reference like MEMREF, but with its mode changed
1934 to MODE and its address changed to ADDR, which is assumed to be
1935 MEMREF offseted by OFFSET bytes. If VALIDATE is
1936 nonzero, the memory address is forced to be valid. */
1937
1938 rtx
1939 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1940 HOST_WIDE_INT offset, int validate)
1941 {
1942 memref = change_address_1 (memref, VOIDmode, addr, validate);
1943 return adjust_address_1 (memref, mode, offset, validate, 0);
1944 }
1945
1946 /* Return a memory reference like MEMREF, but whose address is changed by
1947 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1948 known to be in OFFSET (possibly 1). */
1949
1950 rtx
1951 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1952 {
1953 rtx new, addr = XEXP (memref, 0);
1954
1955 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1956
1957 /* At this point we don't know _why_ the address is invalid. It
1958 could have secondary memory references, multiplies or anything.
1959
1960 However, if we did go and rearrange things, we can wind up not
1961 being able to recognize the magic around pic_offset_table_rtx.
1962 This stuff is fragile, and is yet another example of why it is
1963 bad to expose PIC machinery too early. */
1964 if (! memory_address_p (GET_MODE (memref), new)
1965 && GET_CODE (addr) == PLUS
1966 && XEXP (addr, 0) == pic_offset_table_rtx)
1967 {
1968 addr = force_reg (GET_MODE (addr), addr);
1969 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1970 }
1971
1972 update_temp_slot_address (XEXP (memref, 0), new);
1973 new = change_address_1 (memref, VOIDmode, new, 1);
1974
1975 /* If there are no changes, just return the original memory reference. */
1976 if (new == memref)
1977 return new;
1978
1979 /* Update the alignment to reflect the offset. Reset the offset, which
1980 we don't know. */
1981 MEM_ATTRS (new)
1982 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1983 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1984 GET_MODE (new));
1985 return new;
1986 }
1987
1988 /* Return a memory reference like MEMREF, but with its address changed to
1989 ADDR. The caller is asserting that the actual piece of memory pointed
1990 to is the same, just the form of the address is being changed, such as
1991 by putting something into a register. */
1992
1993 rtx
1994 replace_equiv_address (rtx memref, rtx addr)
1995 {
1996 /* change_address_1 copies the memory attribute structure without change
1997 and that's exactly what we want here. */
1998 update_temp_slot_address (XEXP (memref, 0), addr);
1999 return change_address_1 (memref, VOIDmode, addr, 1);
2000 }
2001
2002 /* Likewise, but the reference is not required to be valid. */
2003
2004 rtx
2005 replace_equiv_address_nv (rtx memref, rtx addr)
2006 {
2007 return change_address_1 (memref, VOIDmode, addr, 0);
2008 }
2009
2010 /* Return a memory reference like MEMREF, but with its mode widened to
2011 MODE and offset by OFFSET. This would be used by targets that e.g.
2012 cannot issue QImode memory operations and have to use SImode memory
2013 operations plus masking logic. */
2014
2015 rtx
2016 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2017 {
2018 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2019 tree expr = MEM_EXPR (new);
2020 rtx memoffset = MEM_OFFSET (new);
2021 unsigned int size = GET_MODE_SIZE (mode);
2022
2023 /* If there are no changes, just return the original memory reference. */
2024 if (new == memref)
2025 return new;
2026
2027 /* If we don't know what offset we were at within the expression, then
2028 we can't know if we've overstepped the bounds. */
2029 if (! memoffset)
2030 expr = NULL_TREE;
2031
2032 while (expr)
2033 {
2034 if (TREE_CODE (expr) == COMPONENT_REF)
2035 {
2036 tree field = TREE_OPERAND (expr, 1);
2037 tree offset = component_ref_field_offset (expr);
2038
2039 if (! DECL_SIZE_UNIT (field))
2040 {
2041 expr = NULL_TREE;
2042 break;
2043 }
2044
2045 /* Is the field at least as large as the access? If so, ok,
2046 otherwise strip back to the containing structure. */
2047 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2048 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2049 && INTVAL (memoffset) >= 0)
2050 break;
2051
2052 if (! host_integerp (offset, 1))
2053 {
2054 expr = NULL_TREE;
2055 break;
2056 }
2057
2058 expr = TREE_OPERAND (expr, 0);
2059 memoffset
2060 = (GEN_INT (INTVAL (memoffset)
2061 + tree_low_cst (offset, 1)
2062 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2063 / BITS_PER_UNIT)));
2064 }
2065 /* Similarly for the decl. */
2066 else if (DECL_P (expr)
2067 && DECL_SIZE_UNIT (expr)
2068 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2069 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2070 && (! memoffset || INTVAL (memoffset) >= 0))
2071 break;
2072 else
2073 {
2074 /* The widened memory access overflows the expression, which means
2075 that it could alias another expression. Zap it. */
2076 expr = NULL_TREE;
2077 break;
2078 }
2079 }
2080
2081 if (! expr)
2082 memoffset = NULL_RTX;
2083
2084 /* The widened memory may alias other stuff, so zap the alias set. */
2085 /* ??? Maybe use get_alias_set on any remaining expression. */
2086
2087 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2088 MEM_ALIGN (new), mode);
2089
2090 return new;
2091 }
2092 \f
2093 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2094
2095 rtx
2096 gen_label_rtx (void)
2097 {
2098 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2099 NULL, label_num++, NULL);
2100 }
2101 \f
2102 /* For procedure integration. */
2103
2104 /* Install new pointers to the first and last insns in the chain.
2105 Also, set cur_insn_uid to one higher than the last in use.
2106 Used for an inline-procedure after copying the insn chain. */
2107
2108 void
2109 set_new_first_and_last_insn (rtx first, rtx last)
2110 {
2111 rtx insn;
2112
2113 first_insn = first;
2114 last_insn = last;
2115 cur_insn_uid = 0;
2116
2117 for (insn = first; insn; insn = NEXT_INSN (insn))
2118 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2119
2120 cur_insn_uid++;
2121 }
2122 \f
2123 /* Go through all the RTL insn bodies and copy any invalid shared
2124 structure. This routine should only be called once. */
2125
2126 static void
2127 unshare_all_rtl_1 (tree fndecl, rtx insn)
2128 {
2129 tree decl;
2130
2131 /* Make sure that virtual parameters are not shared. */
2132 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2133 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2134
2135 /* Make sure that virtual stack slots are not shared. */
2136 unshare_all_decls (DECL_INITIAL (fndecl));
2137
2138 /* Unshare just about everything else. */
2139 unshare_all_rtl_in_chain (insn);
2140
2141 /* Make sure the addresses of stack slots found outside the insn chain
2142 (such as, in DECL_RTL of a variable) are not shared
2143 with the insn chain.
2144
2145 This special care is necessary when the stack slot MEM does not
2146 actually appear in the insn chain. If it does appear, its address
2147 is unshared from all else at that point. */
2148 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2149 }
2150
2151 /* Go through all the RTL insn bodies and copy any invalid shared
2152 structure, again. This is a fairly expensive thing to do so it
2153 should be done sparingly. */
2154
2155 void
2156 unshare_all_rtl_again (rtx insn)
2157 {
2158 rtx p;
2159 tree decl;
2160
2161 for (p = insn; p; p = NEXT_INSN (p))
2162 if (INSN_P (p))
2163 {
2164 reset_used_flags (PATTERN (p));
2165 reset_used_flags (REG_NOTES (p));
2166 reset_used_flags (LOG_LINKS (p));
2167 }
2168
2169 /* Make sure that virtual stack slots are not shared. */
2170 reset_used_decls (DECL_INITIAL (cfun->decl));
2171
2172 /* Make sure that virtual parameters are not shared. */
2173 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2174 reset_used_flags (DECL_RTL (decl));
2175
2176 reset_used_flags (stack_slot_list);
2177
2178 unshare_all_rtl_1 (cfun->decl, insn);
2179 }
2180
2181 void
2182 unshare_all_rtl (void)
2183 {
2184 unshare_all_rtl_1 (current_function_decl, get_insns ());
2185 }
2186
2187 struct tree_opt_pass pass_unshare_all_rtl =
2188 {
2189 "unshare", /* name */
2190 NULL, /* gate */
2191 unshare_all_rtl, /* execute */
2192 NULL, /* sub */
2193 NULL, /* next */
2194 0, /* static_pass_number */
2195 0, /* tv_id */
2196 0, /* properties_required */
2197 0, /* properties_provided */
2198 0, /* properties_destroyed */
2199 0, /* todo_flags_start */
2200 TODO_dump_func, /* todo_flags_finish */
2201 0 /* letter */
2202 };
2203
2204
2205 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2206 Recursively does the same for subexpressions. */
2207
2208 static void
2209 verify_rtx_sharing (rtx orig, rtx insn)
2210 {
2211 rtx x = orig;
2212 int i;
2213 enum rtx_code code;
2214 const char *format_ptr;
2215
2216 if (x == 0)
2217 return;
2218
2219 code = GET_CODE (x);
2220
2221 /* These types may be freely shared. */
2222
2223 switch (code)
2224 {
2225 case REG:
2226 case CONST_INT:
2227 case CONST_DOUBLE:
2228 case CONST_VECTOR:
2229 case SYMBOL_REF:
2230 case LABEL_REF:
2231 case CODE_LABEL:
2232 case PC:
2233 case CC0:
2234 case SCRATCH:
2235 return;
2236 /* SCRATCH must be shared because they represent distinct values. */
2237 case CLOBBER:
2238 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2239 return;
2240 break;
2241
2242 case CONST:
2243 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2244 a LABEL_REF, it isn't sharable. */
2245 if (GET_CODE (XEXP (x, 0)) == PLUS
2246 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2247 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2248 return;
2249 break;
2250
2251 case MEM:
2252 /* A MEM is allowed to be shared if its address is constant. */
2253 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2254 || reload_completed || reload_in_progress)
2255 return;
2256
2257 break;
2258
2259 default:
2260 break;
2261 }
2262
2263 /* This rtx may not be shared. If it has already been seen,
2264 replace it with a copy of itself. */
2265 #ifdef ENABLE_CHECKING
2266 if (RTX_FLAG (x, used))
2267 {
2268 error ("invalid rtl sharing found in the insn");
2269 debug_rtx (insn);
2270 error ("shared rtx");
2271 debug_rtx (x);
2272 internal_error ("internal consistency failure");
2273 }
2274 #endif
2275 gcc_assert (!RTX_FLAG (x, used));
2276
2277 RTX_FLAG (x, used) = 1;
2278
2279 /* Now scan the subexpressions recursively. */
2280
2281 format_ptr = GET_RTX_FORMAT (code);
2282
2283 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2284 {
2285 switch (*format_ptr++)
2286 {
2287 case 'e':
2288 verify_rtx_sharing (XEXP (x, i), insn);
2289 break;
2290
2291 case 'E':
2292 if (XVEC (x, i) != NULL)
2293 {
2294 int j;
2295 int len = XVECLEN (x, i);
2296
2297 for (j = 0; j < len; j++)
2298 {
2299 /* We allow sharing of ASM_OPERANDS inside single
2300 instruction. */
2301 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2302 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2303 == ASM_OPERANDS))
2304 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2305 else
2306 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2307 }
2308 }
2309 break;
2310 }
2311 }
2312 return;
2313 }
2314
2315 /* Go through all the RTL insn bodies and check that there is no unexpected
2316 sharing in between the subexpressions. */
2317
2318 void
2319 verify_rtl_sharing (void)
2320 {
2321 rtx p;
2322
2323 for (p = get_insns (); p; p = NEXT_INSN (p))
2324 if (INSN_P (p))
2325 {
2326 reset_used_flags (PATTERN (p));
2327 reset_used_flags (REG_NOTES (p));
2328 reset_used_flags (LOG_LINKS (p));
2329 }
2330
2331 for (p = get_insns (); p; p = NEXT_INSN (p))
2332 if (INSN_P (p))
2333 {
2334 verify_rtx_sharing (PATTERN (p), p);
2335 verify_rtx_sharing (REG_NOTES (p), p);
2336 verify_rtx_sharing (LOG_LINKS (p), p);
2337 }
2338 }
2339
2340 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2341 Assumes the mark bits are cleared at entry. */
2342
2343 void
2344 unshare_all_rtl_in_chain (rtx insn)
2345 {
2346 for (; insn; insn = NEXT_INSN (insn))
2347 if (INSN_P (insn))
2348 {
2349 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2350 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2351 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2352 }
2353 }
2354
2355 /* Go through all virtual stack slots of a function and copy any
2356 shared structure. */
2357 static void
2358 unshare_all_decls (tree blk)
2359 {
2360 tree t;
2361
2362 /* Copy shared decls. */
2363 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2364 if (DECL_RTL_SET_P (t))
2365 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2366
2367 /* Now process sub-blocks. */
2368 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2369 unshare_all_decls (t);
2370 }
2371
2372 /* Go through all virtual stack slots of a function and mark them as
2373 not shared. */
2374 static void
2375 reset_used_decls (tree blk)
2376 {
2377 tree t;
2378
2379 /* Mark decls. */
2380 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2381 if (DECL_RTL_SET_P (t))
2382 reset_used_flags (DECL_RTL (t));
2383
2384 /* Now process sub-blocks. */
2385 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2386 reset_used_decls (t);
2387 }
2388
2389 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2390 Recursively does the same for subexpressions. Uses
2391 copy_rtx_if_shared_1 to reduce stack space. */
2392
2393 rtx
2394 copy_rtx_if_shared (rtx orig)
2395 {
2396 copy_rtx_if_shared_1 (&orig);
2397 return orig;
2398 }
2399
2400 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2401 use. Recursively does the same for subexpressions. */
2402
2403 static void
2404 copy_rtx_if_shared_1 (rtx *orig1)
2405 {
2406 rtx x;
2407 int i;
2408 enum rtx_code code;
2409 rtx *last_ptr;
2410 const char *format_ptr;
2411 int copied = 0;
2412 int length;
2413
2414 /* Repeat is used to turn tail-recursion into iteration. */
2415 repeat:
2416 x = *orig1;
2417
2418 if (x == 0)
2419 return;
2420
2421 code = GET_CODE (x);
2422
2423 /* These types may be freely shared. */
2424
2425 switch (code)
2426 {
2427 case REG:
2428 case CONST_INT:
2429 case CONST_DOUBLE:
2430 case CONST_VECTOR:
2431 case SYMBOL_REF:
2432 case LABEL_REF:
2433 case CODE_LABEL:
2434 case PC:
2435 case CC0:
2436 case SCRATCH:
2437 /* SCRATCH must be shared because they represent distinct values. */
2438 return;
2439 case CLOBBER:
2440 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2441 return;
2442 break;
2443
2444 case CONST:
2445 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2446 a LABEL_REF, it isn't sharable. */
2447 if (GET_CODE (XEXP (x, 0)) == PLUS
2448 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2449 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2450 return;
2451 break;
2452
2453 case INSN:
2454 case JUMP_INSN:
2455 case CALL_INSN:
2456 case NOTE:
2457 case BARRIER:
2458 /* The chain of insns is not being copied. */
2459 return;
2460
2461 default:
2462 break;
2463 }
2464
2465 /* This rtx may not be shared. If it has already been seen,
2466 replace it with a copy of itself. */
2467
2468 if (RTX_FLAG (x, used))
2469 {
2470 x = shallow_copy_rtx (x);
2471 copied = 1;
2472 }
2473 RTX_FLAG (x, used) = 1;
2474
2475 /* Now scan the subexpressions recursively.
2476 We can store any replaced subexpressions directly into X
2477 since we know X is not shared! Any vectors in X
2478 must be copied if X was copied. */
2479
2480 format_ptr = GET_RTX_FORMAT (code);
2481 length = GET_RTX_LENGTH (code);
2482 last_ptr = NULL;
2483
2484 for (i = 0; i < length; i++)
2485 {
2486 switch (*format_ptr++)
2487 {
2488 case 'e':
2489 if (last_ptr)
2490 copy_rtx_if_shared_1 (last_ptr);
2491 last_ptr = &XEXP (x, i);
2492 break;
2493
2494 case 'E':
2495 if (XVEC (x, i) != NULL)
2496 {
2497 int j;
2498 int len = XVECLEN (x, i);
2499
2500 /* Copy the vector iff I copied the rtx and the length
2501 is nonzero. */
2502 if (copied && len > 0)
2503 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2504
2505 /* Call recursively on all inside the vector. */
2506 for (j = 0; j < len; j++)
2507 {
2508 if (last_ptr)
2509 copy_rtx_if_shared_1 (last_ptr);
2510 last_ptr = &XVECEXP (x, i, j);
2511 }
2512 }
2513 break;
2514 }
2515 }
2516 *orig1 = x;
2517 if (last_ptr)
2518 {
2519 orig1 = last_ptr;
2520 goto repeat;
2521 }
2522 return;
2523 }
2524
2525 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2526 to look for shared sub-parts. */
2527
2528 void
2529 reset_used_flags (rtx x)
2530 {
2531 int i, j;
2532 enum rtx_code code;
2533 const char *format_ptr;
2534 int length;
2535
2536 /* Repeat is used to turn tail-recursion into iteration. */
2537 repeat:
2538 if (x == 0)
2539 return;
2540
2541 code = GET_CODE (x);
2542
2543 /* These types may be freely shared so we needn't do any resetting
2544 for them. */
2545
2546 switch (code)
2547 {
2548 case REG:
2549 case CONST_INT:
2550 case CONST_DOUBLE:
2551 case CONST_VECTOR:
2552 case SYMBOL_REF:
2553 case CODE_LABEL:
2554 case PC:
2555 case CC0:
2556 return;
2557
2558 case INSN:
2559 case JUMP_INSN:
2560 case CALL_INSN:
2561 case NOTE:
2562 case LABEL_REF:
2563 case BARRIER:
2564 /* The chain of insns is not being copied. */
2565 return;
2566
2567 default:
2568 break;
2569 }
2570
2571 RTX_FLAG (x, used) = 0;
2572
2573 format_ptr = GET_RTX_FORMAT (code);
2574 length = GET_RTX_LENGTH (code);
2575
2576 for (i = 0; i < length; i++)
2577 {
2578 switch (*format_ptr++)
2579 {
2580 case 'e':
2581 if (i == length-1)
2582 {
2583 x = XEXP (x, i);
2584 goto repeat;
2585 }
2586 reset_used_flags (XEXP (x, i));
2587 break;
2588
2589 case 'E':
2590 for (j = 0; j < XVECLEN (x, i); j++)
2591 reset_used_flags (XVECEXP (x, i, j));
2592 break;
2593 }
2594 }
2595 }
2596
2597 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2598 to look for shared sub-parts. */
2599
2600 void
2601 set_used_flags (rtx x)
2602 {
2603 int i, j;
2604 enum rtx_code code;
2605 const char *format_ptr;
2606
2607 if (x == 0)
2608 return;
2609
2610 code = GET_CODE (x);
2611
2612 /* These types may be freely shared so we needn't do any resetting
2613 for them. */
2614
2615 switch (code)
2616 {
2617 case REG:
2618 case CONST_INT:
2619 case CONST_DOUBLE:
2620 case CONST_VECTOR:
2621 case SYMBOL_REF:
2622 case CODE_LABEL:
2623 case PC:
2624 case CC0:
2625 return;
2626
2627 case INSN:
2628 case JUMP_INSN:
2629 case CALL_INSN:
2630 case NOTE:
2631 case LABEL_REF:
2632 case BARRIER:
2633 /* The chain of insns is not being copied. */
2634 return;
2635
2636 default:
2637 break;
2638 }
2639
2640 RTX_FLAG (x, used) = 1;
2641
2642 format_ptr = GET_RTX_FORMAT (code);
2643 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2644 {
2645 switch (*format_ptr++)
2646 {
2647 case 'e':
2648 set_used_flags (XEXP (x, i));
2649 break;
2650
2651 case 'E':
2652 for (j = 0; j < XVECLEN (x, i); j++)
2653 set_used_flags (XVECEXP (x, i, j));
2654 break;
2655 }
2656 }
2657 }
2658 \f
2659 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2660 Return X or the rtx for the pseudo reg the value of X was copied into.
2661 OTHER must be valid as a SET_DEST. */
2662
2663 rtx
2664 make_safe_from (rtx x, rtx other)
2665 {
2666 while (1)
2667 switch (GET_CODE (other))
2668 {
2669 case SUBREG:
2670 other = SUBREG_REG (other);
2671 break;
2672 case STRICT_LOW_PART:
2673 case SIGN_EXTEND:
2674 case ZERO_EXTEND:
2675 other = XEXP (other, 0);
2676 break;
2677 default:
2678 goto done;
2679 }
2680 done:
2681 if ((MEM_P (other)
2682 && ! CONSTANT_P (x)
2683 && !REG_P (x)
2684 && GET_CODE (x) != SUBREG)
2685 || (REG_P (other)
2686 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2687 || reg_mentioned_p (other, x))))
2688 {
2689 rtx temp = gen_reg_rtx (GET_MODE (x));
2690 emit_move_insn (temp, x);
2691 return temp;
2692 }
2693 return x;
2694 }
2695 \f
2696 /* Emission of insns (adding them to the doubly-linked list). */
2697
2698 /* Return the first insn of the current sequence or current function. */
2699
2700 rtx
2701 get_insns (void)
2702 {
2703 return first_insn;
2704 }
2705
2706 /* Specify a new insn as the first in the chain. */
2707
2708 void
2709 set_first_insn (rtx insn)
2710 {
2711 gcc_assert (!PREV_INSN (insn));
2712 first_insn = insn;
2713 }
2714
2715 /* Return the last insn emitted in current sequence or current function. */
2716
2717 rtx
2718 get_last_insn (void)
2719 {
2720 return last_insn;
2721 }
2722
2723 /* Specify a new insn as the last in the chain. */
2724
2725 void
2726 set_last_insn (rtx insn)
2727 {
2728 gcc_assert (!NEXT_INSN (insn));
2729 last_insn = insn;
2730 }
2731
2732 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2733
2734 rtx
2735 get_last_insn_anywhere (void)
2736 {
2737 struct sequence_stack *stack;
2738 if (last_insn)
2739 return last_insn;
2740 for (stack = seq_stack; stack; stack = stack->next)
2741 if (stack->last != 0)
2742 return stack->last;
2743 return 0;
2744 }
2745
2746 /* Return the first nonnote insn emitted in current sequence or current
2747 function. This routine looks inside SEQUENCEs. */
2748
2749 rtx
2750 get_first_nonnote_insn (void)
2751 {
2752 rtx insn = first_insn;
2753
2754 if (insn)
2755 {
2756 if (NOTE_P (insn))
2757 for (insn = next_insn (insn);
2758 insn && NOTE_P (insn);
2759 insn = next_insn (insn))
2760 continue;
2761 else
2762 {
2763 if (NONJUMP_INSN_P (insn)
2764 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2765 insn = XVECEXP (PATTERN (insn), 0, 0);
2766 }
2767 }
2768
2769 return insn;
2770 }
2771
2772 /* Return the last nonnote insn emitted in current sequence or current
2773 function. This routine looks inside SEQUENCEs. */
2774
2775 rtx
2776 get_last_nonnote_insn (void)
2777 {
2778 rtx insn = last_insn;
2779
2780 if (insn)
2781 {
2782 if (NOTE_P (insn))
2783 for (insn = previous_insn (insn);
2784 insn && NOTE_P (insn);
2785 insn = previous_insn (insn))
2786 continue;
2787 else
2788 {
2789 if (NONJUMP_INSN_P (insn)
2790 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2791 insn = XVECEXP (PATTERN (insn), 0,
2792 XVECLEN (PATTERN (insn), 0) - 1);
2793 }
2794 }
2795
2796 return insn;
2797 }
2798
2799 /* Return a number larger than any instruction's uid in this function. */
2800
2801 int
2802 get_max_uid (void)
2803 {
2804 return cur_insn_uid;
2805 }
2806
2807 /* Renumber instructions so that no instruction UIDs are wasted. */
2808
2809 void
2810 renumber_insns (void)
2811 {
2812 rtx insn;
2813
2814 /* If we're not supposed to renumber instructions, don't. */
2815 if (!flag_renumber_insns)
2816 return;
2817
2818 /* If there aren't that many instructions, then it's not really
2819 worth renumbering them. */
2820 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2821 return;
2822
2823 cur_insn_uid = 1;
2824
2825 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2826 {
2827 if (dump_file)
2828 fprintf (dump_file, "Renumbering insn %d to %d\n",
2829 INSN_UID (insn), cur_insn_uid);
2830 INSN_UID (insn) = cur_insn_uid++;
2831 }
2832 }
2833 \f
2834 /* Return the next insn. If it is a SEQUENCE, return the first insn
2835 of the sequence. */
2836
2837 rtx
2838 next_insn (rtx insn)
2839 {
2840 if (insn)
2841 {
2842 insn = NEXT_INSN (insn);
2843 if (insn && NONJUMP_INSN_P (insn)
2844 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2845 insn = XVECEXP (PATTERN (insn), 0, 0);
2846 }
2847
2848 return insn;
2849 }
2850
2851 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2852 of the sequence. */
2853
2854 rtx
2855 previous_insn (rtx insn)
2856 {
2857 if (insn)
2858 {
2859 insn = PREV_INSN (insn);
2860 if (insn && NONJUMP_INSN_P (insn)
2861 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2862 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2863 }
2864
2865 return insn;
2866 }
2867
2868 /* Return the next insn after INSN that is not a NOTE. This routine does not
2869 look inside SEQUENCEs. */
2870
2871 rtx
2872 next_nonnote_insn (rtx insn)
2873 {
2874 while (insn)
2875 {
2876 insn = NEXT_INSN (insn);
2877 if (insn == 0 || !NOTE_P (insn))
2878 break;
2879 }
2880
2881 return insn;
2882 }
2883
2884 /* Return the previous insn before INSN that is not a NOTE. This routine does
2885 not look inside SEQUENCEs. */
2886
2887 rtx
2888 prev_nonnote_insn (rtx insn)
2889 {
2890 while (insn)
2891 {
2892 insn = PREV_INSN (insn);
2893 if (insn == 0 || !NOTE_P (insn))
2894 break;
2895 }
2896
2897 return insn;
2898 }
2899
2900 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2901 or 0, if there is none. This routine does not look inside
2902 SEQUENCEs. */
2903
2904 rtx
2905 next_real_insn (rtx insn)
2906 {
2907 while (insn)
2908 {
2909 insn = NEXT_INSN (insn);
2910 if (insn == 0 || INSN_P (insn))
2911 break;
2912 }
2913
2914 return insn;
2915 }
2916
2917 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2918 or 0, if there is none. This routine does not look inside
2919 SEQUENCEs. */
2920
2921 rtx
2922 prev_real_insn (rtx insn)
2923 {
2924 while (insn)
2925 {
2926 insn = PREV_INSN (insn);
2927 if (insn == 0 || INSN_P (insn))
2928 break;
2929 }
2930
2931 return insn;
2932 }
2933
2934 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2935 This routine does not look inside SEQUENCEs. */
2936
2937 rtx
2938 last_call_insn (void)
2939 {
2940 rtx insn;
2941
2942 for (insn = get_last_insn ();
2943 insn && !CALL_P (insn);
2944 insn = PREV_INSN (insn))
2945 ;
2946
2947 return insn;
2948 }
2949
2950 /* Find the next insn after INSN that really does something. This routine
2951 does not look inside SEQUENCEs. Until reload has completed, this is the
2952 same as next_real_insn. */
2953
2954 int
2955 active_insn_p (rtx insn)
2956 {
2957 return (CALL_P (insn) || JUMP_P (insn)
2958 || (NONJUMP_INSN_P (insn)
2959 && (! reload_completed
2960 || (GET_CODE (PATTERN (insn)) != USE
2961 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2962 }
2963
2964 rtx
2965 next_active_insn (rtx insn)
2966 {
2967 while (insn)
2968 {
2969 insn = NEXT_INSN (insn);
2970 if (insn == 0 || active_insn_p (insn))
2971 break;
2972 }
2973
2974 return insn;
2975 }
2976
2977 /* Find the last insn before INSN that really does something. This routine
2978 does not look inside SEQUENCEs. Until reload has completed, this is the
2979 same as prev_real_insn. */
2980
2981 rtx
2982 prev_active_insn (rtx insn)
2983 {
2984 while (insn)
2985 {
2986 insn = PREV_INSN (insn);
2987 if (insn == 0 || active_insn_p (insn))
2988 break;
2989 }
2990
2991 return insn;
2992 }
2993
2994 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2995
2996 rtx
2997 next_label (rtx insn)
2998 {
2999 while (insn)
3000 {
3001 insn = NEXT_INSN (insn);
3002 if (insn == 0 || LABEL_P (insn))
3003 break;
3004 }
3005
3006 return insn;
3007 }
3008
3009 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3010
3011 rtx
3012 prev_label (rtx insn)
3013 {
3014 while (insn)
3015 {
3016 insn = PREV_INSN (insn);
3017 if (insn == 0 || LABEL_P (insn))
3018 break;
3019 }
3020
3021 return insn;
3022 }
3023
3024 /* Return the last label to mark the same position as LABEL. Return null
3025 if LABEL itself is null. */
3026
3027 rtx
3028 skip_consecutive_labels (rtx label)
3029 {
3030 rtx insn;
3031
3032 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3033 if (LABEL_P (insn))
3034 label = insn;
3035
3036 return label;
3037 }
3038 \f
3039 #ifdef HAVE_cc0
3040 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3041 and REG_CC_USER notes so we can find it. */
3042
3043 void
3044 link_cc0_insns (rtx insn)
3045 {
3046 rtx user = next_nonnote_insn (insn);
3047
3048 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3049 user = XVECEXP (PATTERN (user), 0, 0);
3050
3051 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3052 REG_NOTES (user));
3053 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3054 }
3055
3056 /* Return the next insn that uses CC0 after INSN, which is assumed to
3057 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3058 applied to the result of this function should yield INSN).
3059
3060 Normally, this is simply the next insn. However, if a REG_CC_USER note
3061 is present, it contains the insn that uses CC0.
3062
3063 Return 0 if we can't find the insn. */
3064
3065 rtx
3066 next_cc0_user (rtx insn)
3067 {
3068 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3069
3070 if (note)
3071 return XEXP (note, 0);
3072
3073 insn = next_nonnote_insn (insn);
3074 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3075 insn = XVECEXP (PATTERN (insn), 0, 0);
3076
3077 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3078 return insn;
3079
3080 return 0;
3081 }
3082
3083 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3084 note, it is the previous insn. */
3085
3086 rtx
3087 prev_cc0_setter (rtx insn)
3088 {
3089 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3090
3091 if (note)
3092 return XEXP (note, 0);
3093
3094 insn = prev_nonnote_insn (insn);
3095 gcc_assert (sets_cc0_p (PATTERN (insn)));
3096
3097 return insn;
3098 }
3099 #endif
3100
3101 /* Increment the label uses for all labels present in rtx. */
3102
3103 static void
3104 mark_label_nuses (rtx x)
3105 {
3106 enum rtx_code code;
3107 int i, j;
3108 const char *fmt;
3109
3110 code = GET_CODE (x);
3111 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3112 LABEL_NUSES (XEXP (x, 0))++;
3113
3114 fmt = GET_RTX_FORMAT (code);
3115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3116 {
3117 if (fmt[i] == 'e')
3118 mark_label_nuses (XEXP (x, i));
3119 else if (fmt[i] == 'E')
3120 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3121 mark_label_nuses (XVECEXP (x, i, j));
3122 }
3123 }
3124
3125 \f
3126 /* Try splitting insns that can be split for better scheduling.
3127 PAT is the pattern which might split.
3128 TRIAL is the insn providing PAT.
3129 LAST is nonzero if we should return the last insn of the sequence produced.
3130
3131 If this routine succeeds in splitting, it returns the first or last
3132 replacement insn depending on the value of LAST. Otherwise, it
3133 returns TRIAL. If the insn to be returned can be split, it will be. */
3134
3135 rtx
3136 try_split (rtx pat, rtx trial, int last)
3137 {
3138 rtx before = PREV_INSN (trial);
3139 rtx after = NEXT_INSN (trial);
3140 int has_barrier = 0;
3141 rtx tem;
3142 rtx note, seq;
3143 int probability;
3144 rtx insn_last, insn;
3145 int njumps = 0;
3146
3147 if (any_condjump_p (trial)
3148 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3149 split_branch_probability = INTVAL (XEXP (note, 0));
3150 probability = split_branch_probability;
3151
3152 seq = split_insns (pat, trial);
3153
3154 split_branch_probability = -1;
3155
3156 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3157 We may need to handle this specially. */
3158 if (after && BARRIER_P (after))
3159 {
3160 has_barrier = 1;
3161 after = NEXT_INSN (after);
3162 }
3163
3164 if (!seq)
3165 return trial;
3166
3167 /* Avoid infinite loop if any insn of the result matches
3168 the original pattern. */
3169 insn_last = seq;
3170 while (1)
3171 {
3172 if (INSN_P (insn_last)
3173 && rtx_equal_p (PATTERN (insn_last), pat))
3174 return trial;
3175 if (!NEXT_INSN (insn_last))
3176 break;
3177 insn_last = NEXT_INSN (insn_last);
3178 }
3179
3180 /* Mark labels. */
3181 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3182 {
3183 if (JUMP_P (insn))
3184 {
3185 mark_jump_label (PATTERN (insn), insn, 0);
3186 njumps++;
3187 if (probability != -1
3188 && any_condjump_p (insn)
3189 && !find_reg_note (insn, REG_BR_PROB, 0))
3190 {
3191 /* We can preserve the REG_BR_PROB notes only if exactly
3192 one jump is created, otherwise the machine description
3193 is responsible for this step using
3194 split_branch_probability variable. */
3195 gcc_assert (njumps == 1);
3196 REG_NOTES (insn)
3197 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3198 GEN_INT (probability),
3199 REG_NOTES (insn));
3200 }
3201 }
3202 }
3203
3204 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3205 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3206 if (CALL_P (trial))
3207 {
3208 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3209 if (CALL_P (insn))
3210 {
3211 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3212 while (*p)
3213 p = &XEXP (*p, 1);
3214 *p = CALL_INSN_FUNCTION_USAGE (trial);
3215 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3216 }
3217 }
3218
3219 /* Copy notes, particularly those related to the CFG. */
3220 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3221 {
3222 switch (REG_NOTE_KIND (note))
3223 {
3224 case REG_EH_REGION:
3225 insn = insn_last;
3226 while (insn != NULL_RTX)
3227 {
3228 if (CALL_P (insn)
3229 || (flag_non_call_exceptions && INSN_P (insn)
3230 && may_trap_p (PATTERN (insn))))
3231 REG_NOTES (insn)
3232 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3233 XEXP (note, 0),
3234 REG_NOTES (insn));
3235 insn = PREV_INSN (insn);
3236 }
3237 break;
3238
3239 case REG_NORETURN:
3240 case REG_SETJMP:
3241 insn = insn_last;
3242 while (insn != NULL_RTX)
3243 {
3244 if (CALL_P (insn))
3245 REG_NOTES (insn)
3246 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3247 XEXP (note, 0),
3248 REG_NOTES (insn));
3249 insn = PREV_INSN (insn);
3250 }
3251 break;
3252
3253 case REG_NON_LOCAL_GOTO:
3254 insn = insn_last;
3255 while (insn != NULL_RTX)
3256 {
3257 if (JUMP_P (insn))
3258 REG_NOTES (insn)
3259 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3260 XEXP (note, 0),
3261 REG_NOTES (insn));
3262 insn = PREV_INSN (insn);
3263 }
3264 break;
3265
3266 default:
3267 break;
3268 }
3269 }
3270
3271 /* If there are LABELS inside the split insns increment the
3272 usage count so we don't delete the label. */
3273 if (NONJUMP_INSN_P (trial))
3274 {
3275 insn = insn_last;
3276 while (insn != NULL_RTX)
3277 {
3278 if (NONJUMP_INSN_P (insn))
3279 mark_label_nuses (PATTERN (insn));
3280
3281 insn = PREV_INSN (insn);
3282 }
3283 }
3284
3285 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3286
3287 delete_insn (trial);
3288 if (has_barrier)
3289 emit_barrier_after (tem);
3290
3291 /* Recursively call try_split for each new insn created; by the
3292 time control returns here that insn will be fully split, so
3293 set LAST and continue from the insn after the one returned.
3294 We can't use next_active_insn here since AFTER may be a note.
3295 Ignore deleted insns, which can be occur if not optimizing. */
3296 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3297 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3298 tem = try_split (PATTERN (tem), tem, 1);
3299
3300 /* Return either the first or the last insn, depending on which was
3301 requested. */
3302 return last
3303 ? (after ? PREV_INSN (after) : last_insn)
3304 : NEXT_INSN (before);
3305 }
3306 \f
3307 /* Make and return an INSN rtx, initializing all its slots.
3308 Store PATTERN in the pattern slots. */
3309
3310 rtx
3311 make_insn_raw (rtx pattern)
3312 {
3313 rtx insn;
3314
3315 insn = rtx_alloc (INSN);
3316
3317 INSN_UID (insn) = cur_insn_uid++;
3318 PATTERN (insn) = pattern;
3319 INSN_CODE (insn) = -1;
3320 LOG_LINKS (insn) = NULL;
3321 REG_NOTES (insn) = NULL;
3322 INSN_LOCATOR (insn) = 0;
3323 BLOCK_FOR_INSN (insn) = NULL;
3324
3325 #ifdef ENABLE_RTL_CHECKING
3326 if (insn
3327 && INSN_P (insn)
3328 && (returnjump_p (insn)
3329 || (GET_CODE (insn) == SET
3330 && SET_DEST (insn) == pc_rtx)))
3331 {
3332 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3333 debug_rtx (insn);
3334 }
3335 #endif
3336
3337 return insn;
3338 }
3339
3340 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3341
3342 rtx
3343 make_jump_insn_raw (rtx pattern)
3344 {
3345 rtx insn;
3346
3347 insn = rtx_alloc (JUMP_INSN);
3348 INSN_UID (insn) = cur_insn_uid++;
3349
3350 PATTERN (insn) = pattern;
3351 INSN_CODE (insn) = -1;
3352 LOG_LINKS (insn) = NULL;
3353 REG_NOTES (insn) = NULL;
3354 JUMP_LABEL (insn) = NULL;
3355 INSN_LOCATOR (insn) = 0;
3356 BLOCK_FOR_INSN (insn) = NULL;
3357
3358 return insn;
3359 }
3360
3361 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3362
3363 static rtx
3364 make_call_insn_raw (rtx pattern)
3365 {
3366 rtx insn;
3367
3368 insn = rtx_alloc (CALL_INSN);
3369 INSN_UID (insn) = cur_insn_uid++;
3370
3371 PATTERN (insn) = pattern;
3372 INSN_CODE (insn) = -1;
3373 LOG_LINKS (insn) = NULL;
3374 REG_NOTES (insn) = NULL;
3375 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3376 INSN_LOCATOR (insn) = 0;
3377 BLOCK_FOR_INSN (insn) = NULL;
3378
3379 return insn;
3380 }
3381 \f
3382 /* Add INSN to the end of the doubly-linked list.
3383 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3384
3385 void
3386 add_insn (rtx insn)
3387 {
3388 PREV_INSN (insn) = last_insn;
3389 NEXT_INSN (insn) = 0;
3390
3391 if (NULL != last_insn)
3392 NEXT_INSN (last_insn) = insn;
3393
3394 if (NULL == first_insn)
3395 first_insn = insn;
3396
3397 last_insn = insn;
3398 }
3399
3400 /* Add INSN into the doubly-linked list after insn AFTER. This and
3401 the next should be the only functions called to insert an insn once
3402 delay slots have been filled since only they know how to update a
3403 SEQUENCE. */
3404
3405 void
3406 add_insn_after (rtx insn, rtx after)
3407 {
3408 rtx next = NEXT_INSN (after);
3409 basic_block bb;
3410
3411 gcc_assert (!optimize || !INSN_DELETED_P (after));
3412
3413 NEXT_INSN (insn) = next;
3414 PREV_INSN (insn) = after;
3415
3416 if (next)
3417 {
3418 PREV_INSN (next) = insn;
3419 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3420 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3421 }
3422 else if (last_insn == after)
3423 last_insn = insn;
3424 else
3425 {
3426 struct sequence_stack *stack = seq_stack;
3427 /* Scan all pending sequences too. */
3428 for (; stack; stack = stack->next)
3429 if (after == stack->last)
3430 {
3431 stack->last = insn;
3432 break;
3433 }
3434
3435 gcc_assert (stack);
3436 }
3437
3438 if (!BARRIER_P (after)
3439 && !BARRIER_P (insn)
3440 && (bb = BLOCK_FOR_INSN (after)))
3441 {
3442 set_block_for_insn (insn, bb);
3443 if (INSN_P (insn))
3444 bb->flags |= BB_DIRTY;
3445 /* Should not happen as first in the BB is always
3446 either NOTE or LABEL. */
3447 if (BB_END (bb) == after
3448 /* Avoid clobbering of structure when creating new BB. */
3449 && !BARRIER_P (insn)
3450 && (!NOTE_P (insn)
3451 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3452 BB_END (bb) = insn;
3453 }
3454
3455 NEXT_INSN (after) = insn;
3456 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3457 {
3458 rtx sequence = PATTERN (after);
3459 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3460 }
3461 }
3462
3463 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3464 the previous should be the only functions called to insert an insn once
3465 delay slots have been filled since only they know how to update a
3466 SEQUENCE. */
3467
3468 void
3469 add_insn_before (rtx insn, rtx before)
3470 {
3471 rtx prev = PREV_INSN (before);
3472 basic_block bb;
3473
3474 gcc_assert (!optimize || !INSN_DELETED_P (before));
3475
3476 PREV_INSN (insn) = prev;
3477 NEXT_INSN (insn) = before;
3478
3479 if (prev)
3480 {
3481 NEXT_INSN (prev) = insn;
3482 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3483 {
3484 rtx sequence = PATTERN (prev);
3485 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3486 }
3487 }
3488 else if (first_insn == before)
3489 first_insn = insn;
3490 else
3491 {
3492 struct sequence_stack *stack = seq_stack;
3493 /* Scan all pending sequences too. */
3494 for (; stack; stack = stack->next)
3495 if (before == stack->first)
3496 {
3497 stack->first = insn;
3498 break;
3499 }
3500
3501 gcc_assert (stack);
3502 }
3503
3504 if (!BARRIER_P (before)
3505 && !BARRIER_P (insn)
3506 && (bb = BLOCK_FOR_INSN (before)))
3507 {
3508 set_block_for_insn (insn, bb);
3509 if (INSN_P (insn))
3510 bb->flags |= BB_DIRTY;
3511 /* Should not happen as first in the BB is always either NOTE or
3512 LABEL. */
3513 gcc_assert (BB_HEAD (bb) != insn
3514 /* Avoid clobbering of structure when creating new BB. */
3515 || BARRIER_P (insn)
3516 || (NOTE_P (insn)
3517 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3518 }
3519
3520 PREV_INSN (before) = insn;
3521 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3522 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3523 }
3524
3525 /* Remove an insn from its doubly-linked list. This function knows how
3526 to handle sequences. */
3527 void
3528 remove_insn (rtx insn)
3529 {
3530 rtx next = NEXT_INSN (insn);
3531 rtx prev = PREV_INSN (insn);
3532 basic_block bb;
3533
3534 if (prev)
3535 {
3536 NEXT_INSN (prev) = next;
3537 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3538 {
3539 rtx sequence = PATTERN (prev);
3540 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3541 }
3542 }
3543 else if (first_insn == insn)
3544 first_insn = next;
3545 else
3546 {
3547 struct sequence_stack *stack = seq_stack;
3548 /* Scan all pending sequences too. */
3549 for (; stack; stack = stack->next)
3550 if (insn == stack->first)
3551 {
3552 stack->first = next;
3553 break;
3554 }
3555
3556 gcc_assert (stack);
3557 }
3558
3559 if (next)
3560 {
3561 PREV_INSN (next) = prev;
3562 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3563 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3564 }
3565 else if (last_insn == insn)
3566 last_insn = prev;
3567 else
3568 {
3569 struct sequence_stack *stack = seq_stack;
3570 /* Scan all pending sequences too. */
3571 for (; stack; stack = stack->next)
3572 if (insn == stack->last)
3573 {
3574 stack->last = prev;
3575 break;
3576 }
3577
3578 gcc_assert (stack);
3579 }
3580 if (!BARRIER_P (insn)
3581 && (bb = BLOCK_FOR_INSN (insn)))
3582 {
3583 if (INSN_P (insn))
3584 bb->flags |= BB_DIRTY;
3585 if (BB_HEAD (bb) == insn)
3586 {
3587 /* Never ever delete the basic block note without deleting whole
3588 basic block. */
3589 gcc_assert (!NOTE_P (insn));
3590 BB_HEAD (bb) = next;
3591 }
3592 if (BB_END (bb) == insn)
3593 BB_END (bb) = prev;
3594 }
3595 }
3596
3597 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3598
3599 void
3600 add_function_usage_to (rtx call_insn, rtx call_fusage)
3601 {
3602 gcc_assert (call_insn && CALL_P (call_insn));
3603
3604 /* Put the register usage information on the CALL. If there is already
3605 some usage information, put ours at the end. */
3606 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3607 {
3608 rtx link;
3609
3610 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3611 link = XEXP (link, 1))
3612 ;
3613
3614 XEXP (link, 1) = call_fusage;
3615 }
3616 else
3617 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3618 }
3619
3620 /* Delete all insns made since FROM.
3621 FROM becomes the new last instruction. */
3622
3623 void
3624 delete_insns_since (rtx from)
3625 {
3626 if (from == 0)
3627 first_insn = 0;
3628 else
3629 NEXT_INSN (from) = 0;
3630 last_insn = from;
3631 }
3632
3633 /* This function is deprecated, please use sequences instead.
3634
3635 Move a consecutive bunch of insns to a different place in the chain.
3636 The insns to be moved are those between FROM and TO.
3637 They are moved to a new position after the insn AFTER.
3638 AFTER must not be FROM or TO or any insn in between.
3639
3640 This function does not know about SEQUENCEs and hence should not be
3641 called after delay-slot filling has been done. */
3642
3643 void
3644 reorder_insns_nobb (rtx from, rtx to, rtx after)
3645 {
3646 /* Splice this bunch out of where it is now. */
3647 if (PREV_INSN (from))
3648 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3649 if (NEXT_INSN (to))
3650 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3651 if (last_insn == to)
3652 last_insn = PREV_INSN (from);
3653 if (first_insn == from)
3654 first_insn = NEXT_INSN (to);
3655
3656 /* Make the new neighbors point to it and it to them. */
3657 if (NEXT_INSN (after))
3658 PREV_INSN (NEXT_INSN (after)) = to;
3659
3660 NEXT_INSN (to) = NEXT_INSN (after);
3661 PREV_INSN (from) = after;
3662 NEXT_INSN (after) = from;
3663 if (after == last_insn)
3664 last_insn = to;
3665 }
3666
3667 /* Same as function above, but take care to update BB boundaries. */
3668 void
3669 reorder_insns (rtx from, rtx to, rtx after)
3670 {
3671 rtx prev = PREV_INSN (from);
3672 basic_block bb, bb2;
3673
3674 reorder_insns_nobb (from, to, after);
3675
3676 if (!BARRIER_P (after)
3677 && (bb = BLOCK_FOR_INSN (after)))
3678 {
3679 rtx x;
3680 bb->flags |= BB_DIRTY;
3681
3682 if (!BARRIER_P (from)
3683 && (bb2 = BLOCK_FOR_INSN (from)))
3684 {
3685 if (BB_END (bb2) == to)
3686 BB_END (bb2) = prev;
3687 bb2->flags |= BB_DIRTY;
3688 }
3689
3690 if (BB_END (bb) == after)
3691 BB_END (bb) = to;
3692
3693 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3694 if (!BARRIER_P (x))
3695 set_block_for_insn (x, bb);
3696 }
3697 }
3698
3699 /* Return the line note insn preceding INSN. */
3700
3701 static rtx
3702 find_line_note (rtx insn)
3703 {
3704 if (no_line_numbers)
3705 return 0;
3706
3707 for (; insn; insn = PREV_INSN (insn))
3708 if (NOTE_P (insn)
3709 && NOTE_LINE_NUMBER (insn) >= 0)
3710 break;
3711
3712 return insn;
3713 }
3714
3715 /* Remove unnecessary notes from the instruction stream. */
3716
3717 void
3718 remove_unnecessary_notes (void)
3719 {
3720 rtx eh_stack = NULL_RTX;
3721 rtx insn;
3722 rtx next;
3723 rtx tmp;
3724
3725 /* We must not remove the first instruction in the function because
3726 the compiler depends on the first instruction being a note. */
3727 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3728 {
3729 /* Remember what's next. */
3730 next = NEXT_INSN (insn);
3731
3732 /* We're only interested in notes. */
3733 if (!NOTE_P (insn))
3734 continue;
3735
3736 switch (NOTE_LINE_NUMBER (insn))
3737 {
3738 case NOTE_INSN_DELETED:
3739 remove_insn (insn);
3740 break;
3741
3742 case NOTE_INSN_EH_REGION_BEG:
3743 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3744 break;
3745
3746 case NOTE_INSN_EH_REGION_END:
3747 /* Too many end notes. */
3748 gcc_assert (eh_stack);
3749 /* Mismatched nesting. */
3750 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3751 == NOTE_EH_HANDLER (insn));
3752 tmp = eh_stack;
3753 eh_stack = XEXP (eh_stack, 1);
3754 free_INSN_LIST_node (tmp);
3755 break;
3756
3757 case NOTE_INSN_BLOCK_BEG:
3758 case NOTE_INSN_BLOCK_END:
3759 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3760 gcc_unreachable ();
3761
3762 default:
3763 break;
3764 }
3765 }
3766
3767 /* Too many EH_REGION_BEG notes. */
3768 gcc_assert (!eh_stack);
3769 }
3770
3771 struct tree_opt_pass pass_remove_unnecessary_notes =
3772 {
3773 "eunotes", /* name */
3774 NULL, /* gate */
3775 remove_unnecessary_notes, /* execute */
3776 NULL, /* sub */
3777 NULL, /* next */
3778 0, /* static_pass_number */
3779 0, /* tv_id */
3780 0, /* properties_required */
3781 0, /* properties_provided */
3782 0, /* properties_destroyed */
3783 0, /* todo_flags_start */
3784 TODO_dump_func, /* todo_flags_finish */
3785 0 /* letter */
3786 };
3787
3788 \f
3789 /* Emit insn(s) of given code and pattern
3790 at a specified place within the doubly-linked list.
3791
3792 All of the emit_foo global entry points accept an object
3793 X which is either an insn list or a PATTERN of a single
3794 instruction.
3795
3796 There are thus a few canonical ways to generate code and
3797 emit it at a specific place in the instruction stream. For
3798 example, consider the instruction named SPOT and the fact that
3799 we would like to emit some instructions before SPOT. We might
3800 do it like this:
3801
3802 start_sequence ();
3803 ... emit the new instructions ...
3804 insns_head = get_insns ();
3805 end_sequence ();
3806
3807 emit_insn_before (insns_head, SPOT);
3808
3809 It used to be common to generate SEQUENCE rtl instead, but that
3810 is a relic of the past which no longer occurs. The reason is that
3811 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3812 generated would almost certainly die right after it was created. */
3813
3814 /* Make X be output before the instruction BEFORE. */
3815
3816 rtx
3817 emit_insn_before_noloc (rtx x, rtx before)
3818 {
3819 rtx last = before;
3820 rtx insn;
3821
3822 gcc_assert (before);
3823
3824 if (x == NULL_RTX)
3825 return last;
3826
3827 switch (GET_CODE (x))
3828 {
3829 case INSN:
3830 case JUMP_INSN:
3831 case CALL_INSN:
3832 case CODE_LABEL:
3833 case BARRIER:
3834 case NOTE:
3835 insn = x;
3836 while (insn)
3837 {
3838 rtx next = NEXT_INSN (insn);
3839 add_insn_before (insn, before);
3840 last = insn;
3841 insn = next;
3842 }
3843 break;
3844
3845 #ifdef ENABLE_RTL_CHECKING
3846 case SEQUENCE:
3847 gcc_unreachable ();
3848 break;
3849 #endif
3850
3851 default:
3852 last = make_insn_raw (x);
3853 add_insn_before (last, before);
3854 break;
3855 }
3856
3857 return last;
3858 }
3859
3860 /* Make an instruction with body X and code JUMP_INSN
3861 and output it before the instruction BEFORE. */
3862
3863 rtx
3864 emit_jump_insn_before_noloc (rtx x, rtx before)
3865 {
3866 rtx insn, last = NULL_RTX;
3867
3868 gcc_assert (before);
3869
3870 switch (GET_CODE (x))
3871 {
3872 case INSN:
3873 case JUMP_INSN:
3874 case CALL_INSN:
3875 case CODE_LABEL:
3876 case BARRIER:
3877 case NOTE:
3878 insn = x;
3879 while (insn)
3880 {
3881 rtx next = NEXT_INSN (insn);
3882 add_insn_before (insn, before);
3883 last = insn;
3884 insn = next;
3885 }
3886 break;
3887
3888 #ifdef ENABLE_RTL_CHECKING
3889 case SEQUENCE:
3890 gcc_unreachable ();
3891 break;
3892 #endif
3893
3894 default:
3895 last = make_jump_insn_raw (x);
3896 add_insn_before (last, before);
3897 break;
3898 }
3899
3900 return last;
3901 }
3902
3903 /* Make an instruction with body X and code CALL_INSN
3904 and output it before the instruction BEFORE. */
3905
3906 rtx
3907 emit_call_insn_before_noloc (rtx x, rtx before)
3908 {
3909 rtx last = NULL_RTX, insn;
3910
3911 gcc_assert (before);
3912
3913 switch (GET_CODE (x))
3914 {
3915 case INSN:
3916 case JUMP_INSN:
3917 case CALL_INSN:
3918 case CODE_LABEL:
3919 case BARRIER:
3920 case NOTE:
3921 insn = x;
3922 while (insn)
3923 {
3924 rtx next = NEXT_INSN (insn);
3925 add_insn_before (insn, before);
3926 last = insn;
3927 insn = next;
3928 }
3929 break;
3930
3931 #ifdef ENABLE_RTL_CHECKING
3932 case SEQUENCE:
3933 gcc_unreachable ();
3934 break;
3935 #endif
3936
3937 default:
3938 last = make_call_insn_raw (x);
3939 add_insn_before (last, before);
3940 break;
3941 }
3942
3943 return last;
3944 }
3945
3946 /* Make an insn of code BARRIER
3947 and output it before the insn BEFORE. */
3948
3949 rtx
3950 emit_barrier_before (rtx before)
3951 {
3952 rtx insn = rtx_alloc (BARRIER);
3953
3954 INSN_UID (insn) = cur_insn_uid++;
3955
3956 add_insn_before (insn, before);
3957 return insn;
3958 }
3959
3960 /* Emit the label LABEL before the insn BEFORE. */
3961
3962 rtx
3963 emit_label_before (rtx label, rtx before)
3964 {
3965 /* This can be called twice for the same label as a result of the
3966 confusion that follows a syntax error! So make it harmless. */
3967 if (INSN_UID (label) == 0)
3968 {
3969 INSN_UID (label) = cur_insn_uid++;
3970 add_insn_before (label, before);
3971 }
3972
3973 return label;
3974 }
3975
3976 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3977
3978 rtx
3979 emit_note_before (int subtype, rtx before)
3980 {
3981 rtx note = rtx_alloc (NOTE);
3982 INSN_UID (note) = cur_insn_uid++;
3983 #ifndef USE_MAPPED_LOCATION
3984 NOTE_SOURCE_FILE (note) = 0;
3985 #endif
3986 NOTE_LINE_NUMBER (note) = subtype;
3987 BLOCK_FOR_INSN (note) = NULL;
3988
3989 add_insn_before (note, before);
3990 return note;
3991 }
3992 \f
3993 /* Helper for emit_insn_after, handles lists of instructions
3994 efficiently. */
3995
3996 static rtx emit_insn_after_1 (rtx, rtx);
3997
3998 static rtx
3999 emit_insn_after_1 (rtx first, rtx after)
4000 {
4001 rtx last;
4002 rtx after_after;
4003 basic_block bb;
4004
4005 if (!BARRIER_P (after)
4006 && (bb = BLOCK_FOR_INSN (after)))
4007 {
4008 bb->flags |= BB_DIRTY;
4009 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4010 if (!BARRIER_P (last))
4011 set_block_for_insn (last, bb);
4012 if (!BARRIER_P (last))
4013 set_block_for_insn (last, bb);
4014 if (BB_END (bb) == after)
4015 BB_END (bb) = last;
4016 }
4017 else
4018 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4019 continue;
4020
4021 after_after = NEXT_INSN (after);
4022
4023 NEXT_INSN (after) = first;
4024 PREV_INSN (first) = after;
4025 NEXT_INSN (last) = after_after;
4026 if (after_after)
4027 PREV_INSN (after_after) = last;
4028
4029 if (after == last_insn)
4030 last_insn = last;
4031 return last;
4032 }
4033
4034 /* Make X be output after the insn AFTER. */
4035
4036 rtx
4037 emit_insn_after_noloc (rtx x, rtx after)
4038 {
4039 rtx last = after;
4040
4041 gcc_assert (after);
4042
4043 if (x == NULL_RTX)
4044 return last;
4045
4046 switch (GET_CODE (x))
4047 {
4048 case INSN:
4049 case JUMP_INSN:
4050 case CALL_INSN:
4051 case CODE_LABEL:
4052 case BARRIER:
4053 case NOTE:
4054 last = emit_insn_after_1 (x, after);
4055 break;
4056
4057 #ifdef ENABLE_RTL_CHECKING
4058 case SEQUENCE:
4059 gcc_unreachable ();
4060 break;
4061 #endif
4062
4063 default:
4064 last = make_insn_raw (x);
4065 add_insn_after (last, after);
4066 break;
4067 }
4068
4069 return last;
4070 }
4071
4072 /* Similar to emit_insn_after, except that line notes are to be inserted so
4073 as to act as if this insn were at FROM. */
4074
4075 void
4076 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4077 {
4078 rtx from_line = find_line_note (from);
4079 rtx after_line = find_line_note (after);
4080 rtx insn = emit_insn_after (x, after);
4081
4082 if (from_line)
4083 emit_note_copy_after (from_line, after);
4084
4085 if (after_line)
4086 emit_note_copy_after (after_line, insn);
4087 }
4088
4089 /* Make an insn of code JUMP_INSN with body X
4090 and output it after the insn AFTER. */
4091
4092 rtx
4093 emit_jump_insn_after_noloc (rtx x, rtx after)
4094 {
4095 rtx last;
4096
4097 gcc_assert (after);
4098
4099 switch (GET_CODE (x))
4100 {
4101 case INSN:
4102 case JUMP_INSN:
4103 case CALL_INSN:
4104 case CODE_LABEL:
4105 case BARRIER:
4106 case NOTE:
4107 last = emit_insn_after_1 (x, after);
4108 break;
4109
4110 #ifdef ENABLE_RTL_CHECKING
4111 case SEQUENCE:
4112 gcc_unreachable ();
4113 break;
4114 #endif
4115
4116 default:
4117 last = make_jump_insn_raw (x);
4118 add_insn_after (last, after);
4119 break;
4120 }
4121
4122 return last;
4123 }
4124
4125 /* Make an instruction with body X and code CALL_INSN
4126 and output it after the instruction AFTER. */
4127
4128 rtx
4129 emit_call_insn_after_noloc (rtx x, rtx after)
4130 {
4131 rtx last;
4132
4133 gcc_assert (after);
4134
4135 switch (GET_CODE (x))
4136 {
4137 case INSN:
4138 case JUMP_INSN:
4139 case CALL_INSN:
4140 case CODE_LABEL:
4141 case BARRIER:
4142 case NOTE:
4143 last = emit_insn_after_1 (x, after);
4144 break;
4145
4146 #ifdef ENABLE_RTL_CHECKING
4147 case SEQUENCE:
4148 gcc_unreachable ();
4149 break;
4150 #endif
4151
4152 default:
4153 last = make_call_insn_raw (x);
4154 add_insn_after (last, after);
4155 break;
4156 }
4157
4158 return last;
4159 }
4160
4161 /* Make an insn of code BARRIER
4162 and output it after the insn AFTER. */
4163
4164 rtx
4165 emit_barrier_after (rtx after)
4166 {
4167 rtx insn = rtx_alloc (BARRIER);
4168
4169 INSN_UID (insn) = cur_insn_uid++;
4170
4171 add_insn_after (insn, after);
4172 return insn;
4173 }
4174
4175 /* Emit the label LABEL after the insn AFTER. */
4176
4177 rtx
4178 emit_label_after (rtx label, rtx after)
4179 {
4180 /* This can be called twice for the same label
4181 as a result of the confusion that follows a syntax error!
4182 So make it harmless. */
4183 if (INSN_UID (label) == 0)
4184 {
4185 INSN_UID (label) = cur_insn_uid++;
4186 add_insn_after (label, after);
4187 }
4188
4189 return label;
4190 }
4191
4192 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4193
4194 rtx
4195 emit_note_after (int subtype, rtx after)
4196 {
4197 rtx note = rtx_alloc (NOTE);
4198 INSN_UID (note) = cur_insn_uid++;
4199 #ifndef USE_MAPPED_LOCATION
4200 NOTE_SOURCE_FILE (note) = 0;
4201 #endif
4202 NOTE_LINE_NUMBER (note) = subtype;
4203 BLOCK_FOR_INSN (note) = NULL;
4204 add_insn_after (note, after);
4205 return note;
4206 }
4207
4208 /* Emit a copy of note ORIG after the insn AFTER. */
4209
4210 rtx
4211 emit_note_copy_after (rtx orig, rtx after)
4212 {
4213 rtx note;
4214
4215 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4216 {
4217 cur_insn_uid++;
4218 return 0;
4219 }
4220
4221 note = rtx_alloc (NOTE);
4222 INSN_UID (note) = cur_insn_uid++;
4223 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4224 NOTE_DATA (note) = NOTE_DATA (orig);
4225 BLOCK_FOR_INSN (note) = NULL;
4226 add_insn_after (note, after);
4227 return note;
4228 }
4229 \f
4230 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4231 rtx
4232 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4233 {
4234 rtx last = emit_insn_after_noloc (pattern, after);
4235
4236 if (pattern == NULL_RTX || !loc)
4237 return last;
4238
4239 after = NEXT_INSN (after);
4240 while (1)
4241 {
4242 if (active_insn_p (after) && !INSN_LOCATOR (after))
4243 INSN_LOCATOR (after) = loc;
4244 if (after == last)
4245 break;
4246 after = NEXT_INSN (after);
4247 }
4248 return last;
4249 }
4250
4251 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4252 rtx
4253 emit_insn_after (rtx pattern, rtx after)
4254 {
4255 if (INSN_P (after))
4256 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4257 else
4258 return emit_insn_after_noloc (pattern, after);
4259 }
4260
4261 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4262 rtx
4263 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4264 {
4265 rtx last = emit_jump_insn_after_noloc (pattern, after);
4266
4267 if (pattern == NULL_RTX || !loc)
4268 return last;
4269
4270 after = NEXT_INSN (after);
4271 while (1)
4272 {
4273 if (active_insn_p (after) && !INSN_LOCATOR (after))
4274 INSN_LOCATOR (after) = loc;
4275 if (after == last)
4276 break;
4277 after = NEXT_INSN (after);
4278 }
4279 return last;
4280 }
4281
4282 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4283 rtx
4284 emit_jump_insn_after (rtx pattern, rtx after)
4285 {
4286 if (INSN_P (after))
4287 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4288 else
4289 return emit_jump_insn_after_noloc (pattern, after);
4290 }
4291
4292 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4293 rtx
4294 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4295 {
4296 rtx last = emit_call_insn_after_noloc (pattern, after);
4297
4298 if (pattern == NULL_RTX || !loc)
4299 return last;
4300
4301 after = NEXT_INSN (after);
4302 while (1)
4303 {
4304 if (active_insn_p (after) && !INSN_LOCATOR (after))
4305 INSN_LOCATOR (after) = loc;
4306 if (after == last)
4307 break;
4308 after = NEXT_INSN (after);
4309 }
4310 return last;
4311 }
4312
4313 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4314 rtx
4315 emit_call_insn_after (rtx pattern, rtx after)
4316 {
4317 if (INSN_P (after))
4318 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4319 else
4320 return emit_call_insn_after_noloc (pattern, after);
4321 }
4322
4323 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4324 rtx
4325 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4326 {
4327 rtx first = PREV_INSN (before);
4328 rtx last = emit_insn_before_noloc (pattern, before);
4329
4330 if (pattern == NULL_RTX || !loc)
4331 return last;
4332
4333 first = NEXT_INSN (first);
4334 while (1)
4335 {
4336 if (active_insn_p (first) && !INSN_LOCATOR (first))
4337 INSN_LOCATOR (first) = loc;
4338 if (first == last)
4339 break;
4340 first = NEXT_INSN (first);
4341 }
4342 return last;
4343 }
4344
4345 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4346 rtx
4347 emit_insn_before (rtx pattern, rtx before)
4348 {
4349 if (INSN_P (before))
4350 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4351 else
4352 return emit_insn_before_noloc (pattern, before);
4353 }
4354
4355 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4356 rtx
4357 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4358 {
4359 rtx first = PREV_INSN (before);
4360 rtx last = emit_jump_insn_before_noloc (pattern, before);
4361
4362 if (pattern == NULL_RTX)
4363 return last;
4364
4365 first = NEXT_INSN (first);
4366 while (1)
4367 {
4368 if (active_insn_p (first) && !INSN_LOCATOR (first))
4369 INSN_LOCATOR (first) = loc;
4370 if (first == last)
4371 break;
4372 first = NEXT_INSN (first);
4373 }
4374 return last;
4375 }
4376
4377 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4378 rtx
4379 emit_jump_insn_before (rtx pattern, rtx before)
4380 {
4381 if (INSN_P (before))
4382 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4383 else
4384 return emit_jump_insn_before_noloc (pattern, before);
4385 }
4386
4387 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4388 rtx
4389 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4390 {
4391 rtx first = PREV_INSN (before);
4392 rtx last = emit_call_insn_before_noloc (pattern, before);
4393
4394 if (pattern == NULL_RTX)
4395 return last;
4396
4397 first = NEXT_INSN (first);
4398 while (1)
4399 {
4400 if (active_insn_p (first) && !INSN_LOCATOR (first))
4401 INSN_LOCATOR (first) = loc;
4402 if (first == last)
4403 break;
4404 first = NEXT_INSN (first);
4405 }
4406 return last;
4407 }
4408
4409 /* like emit_call_insn_before_noloc,
4410 but set insn_locator according to before. */
4411 rtx
4412 emit_call_insn_before (rtx pattern, rtx before)
4413 {
4414 if (INSN_P (before))
4415 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4416 else
4417 return emit_call_insn_before_noloc (pattern, before);
4418 }
4419 \f
4420 /* Take X and emit it at the end of the doubly-linked
4421 INSN list.
4422
4423 Returns the last insn emitted. */
4424
4425 rtx
4426 emit_insn (rtx x)
4427 {
4428 rtx last = last_insn;
4429 rtx insn;
4430
4431 if (x == NULL_RTX)
4432 return last;
4433
4434 switch (GET_CODE (x))
4435 {
4436 case INSN:
4437 case JUMP_INSN:
4438 case CALL_INSN:
4439 case CODE_LABEL:
4440 case BARRIER:
4441 case NOTE:
4442 insn = x;
4443 while (insn)
4444 {
4445 rtx next = NEXT_INSN (insn);
4446 add_insn (insn);
4447 last = insn;
4448 insn = next;
4449 }
4450 break;
4451
4452 #ifdef ENABLE_RTL_CHECKING
4453 case SEQUENCE:
4454 gcc_unreachable ();
4455 break;
4456 #endif
4457
4458 default:
4459 last = make_insn_raw (x);
4460 add_insn (last);
4461 break;
4462 }
4463
4464 return last;
4465 }
4466
4467 /* Make an insn of code JUMP_INSN with pattern X
4468 and add it to the end of the doubly-linked list. */
4469
4470 rtx
4471 emit_jump_insn (rtx x)
4472 {
4473 rtx last = NULL_RTX, insn;
4474
4475 switch (GET_CODE (x))
4476 {
4477 case INSN:
4478 case JUMP_INSN:
4479 case CALL_INSN:
4480 case CODE_LABEL:
4481 case BARRIER:
4482 case NOTE:
4483 insn = x;
4484 while (insn)
4485 {
4486 rtx next = NEXT_INSN (insn);
4487 add_insn (insn);
4488 last = insn;
4489 insn = next;
4490 }
4491 break;
4492
4493 #ifdef ENABLE_RTL_CHECKING
4494 case SEQUENCE:
4495 gcc_unreachable ();
4496 break;
4497 #endif
4498
4499 default:
4500 last = make_jump_insn_raw (x);
4501 add_insn (last);
4502 break;
4503 }
4504
4505 return last;
4506 }
4507
4508 /* Make an insn of code CALL_INSN with pattern X
4509 and add it to the end of the doubly-linked list. */
4510
4511 rtx
4512 emit_call_insn (rtx x)
4513 {
4514 rtx insn;
4515
4516 switch (GET_CODE (x))
4517 {
4518 case INSN:
4519 case JUMP_INSN:
4520 case CALL_INSN:
4521 case CODE_LABEL:
4522 case BARRIER:
4523 case NOTE:
4524 insn = emit_insn (x);
4525 break;
4526
4527 #ifdef ENABLE_RTL_CHECKING
4528 case SEQUENCE:
4529 gcc_unreachable ();
4530 break;
4531 #endif
4532
4533 default:
4534 insn = make_call_insn_raw (x);
4535 add_insn (insn);
4536 break;
4537 }
4538
4539 return insn;
4540 }
4541
4542 /* Add the label LABEL to the end of the doubly-linked list. */
4543
4544 rtx
4545 emit_label (rtx label)
4546 {
4547 /* This can be called twice for the same label
4548 as a result of the confusion that follows a syntax error!
4549 So make it harmless. */
4550 if (INSN_UID (label) == 0)
4551 {
4552 INSN_UID (label) = cur_insn_uid++;
4553 add_insn (label);
4554 }
4555 return label;
4556 }
4557
4558 /* Make an insn of code BARRIER
4559 and add it to the end of the doubly-linked list. */
4560
4561 rtx
4562 emit_barrier (void)
4563 {
4564 rtx barrier = rtx_alloc (BARRIER);
4565 INSN_UID (barrier) = cur_insn_uid++;
4566 add_insn (barrier);
4567 return barrier;
4568 }
4569
4570 /* Make line numbering NOTE insn for LOCATION add it to the end
4571 of the doubly-linked list, but only if line-numbers are desired for
4572 debugging info and it doesn't match the previous one. */
4573
4574 rtx
4575 emit_line_note (location_t location)
4576 {
4577 rtx note;
4578
4579 #ifdef USE_MAPPED_LOCATION
4580 if (location == last_location)
4581 return NULL_RTX;
4582 #else
4583 if (location.file && last_location.file
4584 && !strcmp (location.file, last_location.file)
4585 && location.line == last_location.line)
4586 return NULL_RTX;
4587 #endif
4588 last_location = location;
4589
4590 if (no_line_numbers)
4591 {
4592 cur_insn_uid++;
4593 return NULL_RTX;
4594 }
4595
4596 #ifdef USE_MAPPED_LOCATION
4597 note = emit_note ((int) location);
4598 #else
4599 note = emit_note (location.line);
4600 NOTE_SOURCE_FILE (note) = location.file;
4601 #endif
4602
4603 return note;
4604 }
4605
4606 /* Emit a copy of note ORIG. */
4607
4608 rtx
4609 emit_note_copy (rtx orig)
4610 {
4611 rtx note;
4612
4613 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4614 {
4615 cur_insn_uid++;
4616 return NULL_RTX;
4617 }
4618
4619 note = rtx_alloc (NOTE);
4620
4621 INSN_UID (note) = cur_insn_uid++;
4622 NOTE_DATA (note) = NOTE_DATA (orig);
4623 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4624 BLOCK_FOR_INSN (note) = NULL;
4625 add_insn (note);
4626
4627 return note;
4628 }
4629
4630 /* Make an insn of code NOTE or type NOTE_NO
4631 and add it to the end of the doubly-linked list. */
4632
4633 rtx
4634 emit_note (int note_no)
4635 {
4636 rtx note;
4637
4638 note = rtx_alloc (NOTE);
4639 INSN_UID (note) = cur_insn_uid++;
4640 NOTE_LINE_NUMBER (note) = note_no;
4641 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4642 BLOCK_FOR_INSN (note) = NULL;
4643 add_insn (note);
4644 return note;
4645 }
4646
4647 /* Cause next statement to emit a line note even if the line number
4648 has not changed. */
4649
4650 void
4651 force_next_line_note (void)
4652 {
4653 #ifdef USE_MAPPED_LOCATION
4654 last_location = -1;
4655 #else
4656 last_location.line = -1;
4657 #endif
4658 }
4659
4660 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4661 note of this type already exists, remove it first. */
4662
4663 rtx
4664 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4665 {
4666 rtx note = find_reg_note (insn, kind, NULL_RTX);
4667
4668 switch (kind)
4669 {
4670 case REG_EQUAL:
4671 case REG_EQUIV:
4672 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4673 has multiple sets (some callers assume single_set
4674 means the insn only has one set, when in fact it
4675 means the insn only has one * useful * set). */
4676 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4677 {
4678 gcc_assert (!note);
4679 return NULL_RTX;
4680 }
4681
4682 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4683 It serves no useful purpose and breaks eliminate_regs. */
4684 if (GET_CODE (datum) == ASM_OPERANDS)
4685 return NULL_RTX;
4686 break;
4687
4688 default:
4689 break;
4690 }
4691
4692 if (note)
4693 {
4694 XEXP (note, 0) = datum;
4695 return note;
4696 }
4697
4698 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4699 return REG_NOTES (insn);
4700 }
4701 \f
4702 /* Return an indication of which type of insn should have X as a body.
4703 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4704
4705 static enum rtx_code
4706 classify_insn (rtx x)
4707 {
4708 if (LABEL_P (x))
4709 return CODE_LABEL;
4710 if (GET_CODE (x) == CALL)
4711 return CALL_INSN;
4712 if (GET_CODE (x) == RETURN)
4713 return JUMP_INSN;
4714 if (GET_CODE (x) == SET)
4715 {
4716 if (SET_DEST (x) == pc_rtx)
4717 return JUMP_INSN;
4718 else if (GET_CODE (SET_SRC (x)) == CALL)
4719 return CALL_INSN;
4720 else
4721 return INSN;
4722 }
4723 if (GET_CODE (x) == PARALLEL)
4724 {
4725 int j;
4726 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4727 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4728 return CALL_INSN;
4729 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4730 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4731 return JUMP_INSN;
4732 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4733 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4734 return CALL_INSN;
4735 }
4736 return INSN;
4737 }
4738
4739 /* Emit the rtl pattern X as an appropriate kind of insn.
4740 If X is a label, it is simply added into the insn chain. */
4741
4742 rtx
4743 emit (rtx x)
4744 {
4745 enum rtx_code code = classify_insn (x);
4746
4747 switch (code)
4748 {
4749 case CODE_LABEL:
4750 return emit_label (x);
4751 case INSN:
4752 return emit_insn (x);
4753 case JUMP_INSN:
4754 {
4755 rtx insn = emit_jump_insn (x);
4756 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4757 return emit_barrier ();
4758 return insn;
4759 }
4760 case CALL_INSN:
4761 return emit_call_insn (x);
4762 default:
4763 gcc_unreachable ();
4764 }
4765 }
4766 \f
4767 /* Space for free sequence stack entries. */
4768 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4769
4770 /* Begin emitting insns to a sequence. If this sequence will contain
4771 something that might cause the compiler to pop arguments to function
4772 calls (because those pops have previously been deferred; see
4773 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4774 before calling this function. That will ensure that the deferred
4775 pops are not accidentally emitted in the middle of this sequence. */
4776
4777 void
4778 start_sequence (void)
4779 {
4780 struct sequence_stack *tem;
4781
4782 if (free_sequence_stack != NULL)
4783 {
4784 tem = free_sequence_stack;
4785 free_sequence_stack = tem->next;
4786 }
4787 else
4788 tem = ggc_alloc (sizeof (struct sequence_stack));
4789
4790 tem->next = seq_stack;
4791 tem->first = first_insn;
4792 tem->last = last_insn;
4793
4794 seq_stack = tem;
4795
4796 first_insn = 0;
4797 last_insn = 0;
4798 }
4799
4800 /* Set up the insn chain starting with FIRST as the current sequence,
4801 saving the previously current one. See the documentation for
4802 start_sequence for more information about how to use this function. */
4803
4804 void
4805 push_to_sequence (rtx first)
4806 {
4807 rtx last;
4808
4809 start_sequence ();
4810
4811 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4812
4813 first_insn = first;
4814 last_insn = last;
4815 }
4816
4817 /* Set up the outer-level insn chain
4818 as the current sequence, saving the previously current one. */
4819
4820 void
4821 push_topmost_sequence (void)
4822 {
4823 struct sequence_stack *stack, *top = NULL;
4824
4825 start_sequence ();
4826
4827 for (stack = seq_stack; stack; stack = stack->next)
4828 top = stack;
4829
4830 first_insn = top->first;
4831 last_insn = top->last;
4832 }
4833
4834 /* After emitting to the outer-level insn chain, update the outer-level
4835 insn chain, and restore the previous saved state. */
4836
4837 void
4838 pop_topmost_sequence (void)
4839 {
4840 struct sequence_stack *stack, *top = NULL;
4841
4842 for (stack = seq_stack; stack; stack = stack->next)
4843 top = stack;
4844
4845 top->first = first_insn;
4846 top->last = last_insn;
4847
4848 end_sequence ();
4849 }
4850
4851 /* After emitting to a sequence, restore previous saved state.
4852
4853 To get the contents of the sequence just made, you must call
4854 `get_insns' *before* calling here.
4855
4856 If the compiler might have deferred popping arguments while
4857 generating this sequence, and this sequence will not be immediately
4858 inserted into the instruction stream, use do_pending_stack_adjust
4859 before calling get_insns. That will ensure that the deferred
4860 pops are inserted into this sequence, and not into some random
4861 location in the instruction stream. See INHIBIT_DEFER_POP for more
4862 information about deferred popping of arguments. */
4863
4864 void
4865 end_sequence (void)
4866 {
4867 struct sequence_stack *tem = seq_stack;
4868
4869 first_insn = tem->first;
4870 last_insn = tem->last;
4871 seq_stack = tem->next;
4872
4873 memset (tem, 0, sizeof (*tem));
4874 tem->next = free_sequence_stack;
4875 free_sequence_stack = tem;
4876 }
4877
4878 /* Return 1 if currently emitting into a sequence. */
4879
4880 int
4881 in_sequence_p (void)
4882 {
4883 return seq_stack != 0;
4884 }
4885 \f
4886 /* Put the various virtual registers into REGNO_REG_RTX. */
4887
4888 static void
4889 init_virtual_regs (struct emit_status *es)
4890 {
4891 rtx *ptr = es->x_regno_reg_rtx;
4892 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4893 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4894 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4895 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4896 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4897 }
4898
4899 \f
4900 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4901 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4902 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4903 static int copy_insn_n_scratches;
4904
4905 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4906 copied an ASM_OPERANDS.
4907 In that case, it is the original input-operand vector. */
4908 static rtvec orig_asm_operands_vector;
4909
4910 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4911 copied an ASM_OPERANDS.
4912 In that case, it is the copied input-operand vector. */
4913 static rtvec copy_asm_operands_vector;
4914
4915 /* Likewise for the constraints vector. */
4916 static rtvec orig_asm_constraints_vector;
4917 static rtvec copy_asm_constraints_vector;
4918
4919 /* Recursively create a new copy of an rtx for copy_insn.
4920 This function differs from copy_rtx in that it handles SCRATCHes and
4921 ASM_OPERANDs properly.
4922 Normally, this function is not used directly; use copy_insn as front end.
4923 However, you could first copy an insn pattern with copy_insn and then use
4924 this function afterwards to properly copy any REG_NOTEs containing
4925 SCRATCHes. */
4926
4927 rtx
4928 copy_insn_1 (rtx orig)
4929 {
4930 rtx copy;
4931 int i, j;
4932 RTX_CODE code;
4933 const char *format_ptr;
4934
4935 code = GET_CODE (orig);
4936
4937 switch (code)
4938 {
4939 case REG:
4940 case CONST_INT:
4941 case CONST_DOUBLE:
4942 case CONST_VECTOR:
4943 case SYMBOL_REF:
4944 case CODE_LABEL:
4945 case PC:
4946 case CC0:
4947 return orig;
4948 case CLOBBER:
4949 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4950 return orig;
4951 break;
4952
4953 case SCRATCH:
4954 for (i = 0; i < copy_insn_n_scratches; i++)
4955 if (copy_insn_scratch_in[i] == orig)
4956 return copy_insn_scratch_out[i];
4957 break;
4958
4959 case CONST:
4960 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4961 a LABEL_REF, it isn't sharable. */
4962 if (GET_CODE (XEXP (orig, 0)) == PLUS
4963 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4964 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4965 return orig;
4966 break;
4967
4968 /* A MEM with a constant address is not sharable. The problem is that
4969 the constant address may need to be reloaded. If the mem is shared,
4970 then reloading one copy of this mem will cause all copies to appear
4971 to have been reloaded. */
4972
4973 default:
4974 break;
4975 }
4976
4977 /* Copy the various flags, fields, and other information. We assume
4978 that all fields need copying, and then clear the fields that should
4979 not be copied. That is the sensible default behavior, and forces
4980 us to explicitly document why we are *not* copying a flag. */
4981 copy = shallow_copy_rtx (orig);
4982
4983 /* We do not copy the USED flag, which is used as a mark bit during
4984 walks over the RTL. */
4985 RTX_FLAG (copy, used) = 0;
4986
4987 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4988 if (INSN_P (orig))
4989 {
4990 RTX_FLAG (copy, jump) = 0;
4991 RTX_FLAG (copy, call) = 0;
4992 RTX_FLAG (copy, frame_related) = 0;
4993 }
4994
4995 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4996
4997 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4998 switch (*format_ptr++)
4999 {
5000 case 'e':
5001 if (XEXP (orig, i) != NULL)
5002 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5003 break;
5004
5005 case 'E':
5006 case 'V':
5007 if (XVEC (orig, i) == orig_asm_constraints_vector)
5008 XVEC (copy, i) = copy_asm_constraints_vector;
5009 else if (XVEC (orig, i) == orig_asm_operands_vector)
5010 XVEC (copy, i) = copy_asm_operands_vector;
5011 else if (XVEC (orig, i) != NULL)
5012 {
5013 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5014 for (j = 0; j < XVECLEN (copy, i); j++)
5015 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5016 }
5017 break;
5018
5019 case 't':
5020 case 'w':
5021 case 'i':
5022 case 's':
5023 case 'S':
5024 case 'u':
5025 case '0':
5026 /* These are left unchanged. */
5027 break;
5028
5029 default:
5030 gcc_unreachable ();
5031 }
5032
5033 if (code == SCRATCH)
5034 {
5035 i = copy_insn_n_scratches++;
5036 gcc_assert (i < MAX_RECOG_OPERANDS);
5037 copy_insn_scratch_in[i] = orig;
5038 copy_insn_scratch_out[i] = copy;
5039 }
5040 else if (code == ASM_OPERANDS)
5041 {
5042 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5043 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5044 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5045 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5046 }
5047
5048 return copy;
5049 }
5050
5051 /* Create a new copy of an rtx.
5052 This function differs from copy_rtx in that it handles SCRATCHes and
5053 ASM_OPERANDs properly.
5054 INSN doesn't really have to be a full INSN; it could be just the
5055 pattern. */
5056 rtx
5057 copy_insn (rtx insn)
5058 {
5059 copy_insn_n_scratches = 0;
5060 orig_asm_operands_vector = 0;
5061 orig_asm_constraints_vector = 0;
5062 copy_asm_operands_vector = 0;
5063 copy_asm_constraints_vector = 0;
5064 return copy_insn_1 (insn);
5065 }
5066
5067 /* Initialize data structures and variables in this file
5068 before generating rtl for each function. */
5069
5070 void
5071 init_emit (void)
5072 {
5073 struct function *f = cfun;
5074
5075 f->emit = ggc_alloc (sizeof (struct emit_status));
5076 first_insn = NULL;
5077 last_insn = NULL;
5078 cur_insn_uid = 1;
5079 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5080 last_location = UNKNOWN_LOCATION;
5081 first_label_num = label_num;
5082 seq_stack = NULL;
5083
5084 /* Init the tables that describe all the pseudo regs. */
5085
5086 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5087
5088 f->emit->regno_pointer_align
5089 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5090 * sizeof (unsigned char));
5091
5092 regno_reg_rtx
5093 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5094
5095 /* Put copies of all the hard registers into regno_reg_rtx. */
5096 memcpy (regno_reg_rtx,
5097 static_regno_reg_rtx,
5098 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5099
5100 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5101 init_virtual_regs (f->emit);
5102
5103 /* Indicate that the virtual registers and stack locations are
5104 all pointers. */
5105 REG_POINTER (stack_pointer_rtx) = 1;
5106 REG_POINTER (frame_pointer_rtx) = 1;
5107 REG_POINTER (hard_frame_pointer_rtx) = 1;
5108 REG_POINTER (arg_pointer_rtx) = 1;
5109
5110 REG_POINTER (virtual_incoming_args_rtx) = 1;
5111 REG_POINTER (virtual_stack_vars_rtx) = 1;
5112 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5113 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5114 REG_POINTER (virtual_cfa_rtx) = 1;
5115
5116 #ifdef STACK_BOUNDARY
5117 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5118 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5119 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5120 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5121
5122 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5123 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5124 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5125 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5126 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5127 #endif
5128
5129 #ifdef INIT_EXPANDERS
5130 INIT_EXPANDERS;
5131 #endif
5132 }
5133
5134 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5135
5136 static rtx
5137 gen_const_vector (enum machine_mode mode, int constant)
5138 {
5139 rtx tem;
5140 rtvec v;
5141 int units, i;
5142 enum machine_mode inner;
5143
5144 units = GET_MODE_NUNITS (mode);
5145 inner = GET_MODE_INNER (mode);
5146
5147 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5148
5149 v = rtvec_alloc (units);
5150
5151 /* We need to call this function after we set the scalar const_tiny_rtx
5152 entries. */
5153 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5154
5155 for (i = 0; i < units; ++i)
5156 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5157
5158 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5159 return tem;
5160 }
5161
5162 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5163 all elements are zero, and the one vector when all elements are one. */
5164 rtx
5165 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5166 {
5167 enum machine_mode inner = GET_MODE_INNER (mode);
5168 int nunits = GET_MODE_NUNITS (mode);
5169 rtx x;
5170 int i;
5171
5172 /* Check to see if all of the elements have the same value. */
5173 x = RTVEC_ELT (v, nunits - 1);
5174 for (i = nunits - 2; i >= 0; i--)
5175 if (RTVEC_ELT (v, i) != x)
5176 break;
5177
5178 /* If the values are all the same, check to see if we can use one of the
5179 standard constant vectors. */
5180 if (i == -1)
5181 {
5182 if (x == CONST0_RTX (inner))
5183 return CONST0_RTX (mode);
5184 else if (x == CONST1_RTX (inner))
5185 return CONST1_RTX (mode);
5186 }
5187
5188 return gen_rtx_raw_CONST_VECTOR (mode, v);
5189 }
5190
5191 /* Create some permanent unique rtl objects shared between all functions.
5192 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5193
5194 void
5195 init_emit_once (int line_numbers)
5196 {
5197 int i;
5198 enum machine_mode mode;
5199 enum machine_mode double_mode;
5200
5201 /* We need reg_raw_mode, so initialize the modes now. */
5202 init_reg_modes_once ();
5203
5204 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5205 tables. */
5206 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5207 const_int_htab_eq, NULL);
5208
5209 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5210 const_double_htab_eq, NULL);
5211
5212 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5213 mem_attrs_htab_eq, NULL);
5214 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5215 reg_attrs_htab_eq, NULL);
5216
5217 no_line_numbers = ! line_numbers;
5218
5219 /* Compute the word and byte modes. */
5220
5221 byte_mode = VOIDmode;
5222 word_mode = VOIDmode;
5223 double_mode = VOIDmode;
5224
5225 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5226 mode != VOIDmode;
5227 mode = GET_MODE_WIDER_MODE (mode))
5228 {
5229 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5230 && byte_mode == VOIDmode)
5231 byte_mode = mode;
5232
5233 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5234 && word_mode == VOIDmode)
5235 word_mode = mode;
5236 }
5237
5238 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5239 mode != VOIDmode;
5240 mode = GET_MODE_WIDER_MODE (mode))
5241 {
5242 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5243 && double_mode == VOIDmode)
5244 double_mode = mode;
5245 }
5246
5247 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5248
5249 /* Assign register numbers to the globally defined register rtx.
5250 This must be done at runtime because the register number field
5251 is in a union and some compilers can't initialize unions. */
5252
5253 pc_rtx = gen_rtx_PC (VOIDmode);
5254 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5255 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5256 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5257 if (hard_frame_pointer_rtx == 0)
5258 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5259 HARD_FRAME_POINTER_REGNUM);
5260 if (arg_pointer_rtx == 0)
5261 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5262 virtual_incoming_args_rtx =
5263 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5264 virtual_stack_vars_rtx =
5265 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5266 virtual_stack_dynamic_rtx =
5267 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5268 virtual_outgoing_args_rtx =
5269 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5270 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5271
5272 /* Initialize RTL for commonly used hard registers. These are
5273 copied into regno_reg_rtx as we begin to compile each function. */
5274 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5275 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5276
5277 #ifdef INIT_EXPANDERS
5278 /* This is to initialize {init|mark|free}_machine_status before the first
5279 call to push_function_context_to. This is needed by the Chill front
5280 end which calls push_function_context_to before the first call to
5281 init_function_start. */
5282 INIT_EXPANDERS;
5283 #endif
5284
5285 /* Create the unique rtx's for certain rtx codes and operand values. */
5286
5287 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5288 tries to use these variables. */
5289 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5290 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5291 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5292
5293 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5294 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5295 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5296 else
5297 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5298
5299 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5300 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5301 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5302 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5303 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5304 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5305 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5306
5307 dconsthalf = dconst1;
5308 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5309
5310 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5311
5312 /* Initialize mathematical constants for constant folding builtins.
5313 These constants need to be given to at least 160 bits precision. */
5314 real_from_string (&dconstpi,
5315 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5316 real_from_string (&dconste,
5317 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5318
5319 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5320 {
5321 REAL_VALUE_TYPE *r =
5322 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5323
5324 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5325 mode != VOIDmode;
5326 mode = GET_MODE_WIDER_MODE (mode))
5327 const_tiny_rtx[i][(int) mode] =
5328 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5329
5330 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5331 mode != VOIDmode;
5332 mode = GET_MODE_WIDER_MODE (mode))
5333 const_tiny_rtx[i][(int) mode] =
5334 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5335
5336 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5337
5338 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5339 mode != VOIDmode;
5340 mode = GET_MODE_WIDER_MODE (mode))
5341 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5342
5343 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5344 mode != VOIDmode;
5345 mode = GET_MODE_WIDER_MODE (mode))
5346 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5347 }
5348
5349 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5350 mode != VOIDmode;
5351 mode = GET_MODE_WIDER_MODE (mode))
5352 {
5353 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5354 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5355 }
5356
5357 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5358 mode != VOIDmode;
5359 mode = GET_MODE_WIDER_MODE (mode))
5360 {
5361 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5362 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5363 }
5364
5365 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5366 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5367 const_tiny_rtx[0][i] = const0_rtx;
5368
5369 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5370 if (STORE_FLAG_VALUE == 1)
5371 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5372
5373 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5374 return_address_pointer_rtx
5375 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5376 #endif
5377
5378 #ifdef STATIC_CHAIN_REGNUM
5379 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5380
5381 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5382 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5383 static_chain_incoming_rtx
5384 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5385 else
5386 #endif
5387 static_chain_incoming_rtx = static_chain_rtx;
5388 #endif
5389
5390 #ifdef STATIC_CHAIN
5391 static_chain_rtx = STATIC_CHAIN;
5392
5393 #ifdef STATIC_CHAIN_INCOMING
5394 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5395 #else
5396 static_chain_incoming_rtx = static_chain_rtx;
5397 #endif
5398 #endif
5399
5400 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5401 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5402 }
5403 \f
5404 /* Produce exact duplicate of insn INSN after AFTER.
5405 Care updating of libcall regions if present. */
5406
5407 rtx
5408 emit_copy_of_insn_after (rtx insn, rtx after)
5409 {
5410 rtx new;
5411 rtx note1, note2, link;
5412
5413 switch (GET_CODE (insn))
5414 {
5415 case INSN:
5416 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5417 break;
5418
5419 case JUMP_INSN:
5420 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5421 break;
5422
5423 case CALL_INSN:
5424 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5425 if (CALL_INSN_FUNCTION_USAGE (insn))
5426 CALL_INSN_FUNCTION_USAGE (new)
5427 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5428 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5429 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5430 break;
5431
5432 default:
5433 gcc_unreachable ();
5434 }
5435
5436 /* Update LABEL_NUSES. */
5437 mark_jump_label (PATTERN (new), new, 0);
5438
5439 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5440
5441 /* If the old insn is frame related, then so is the new one. This is
5442 primarily needed for IA-64 unwind info which marks epilogue insns,
5443 which may be duplicated by the basic block reordering code. */
5444 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5445
5446 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5447 make them. */
5448 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5449 if (REG_NOTE_KIND (link) != REG_LABEL)
5450 {
5451 if (GET_CODE (link) == EXPR_LIST)
5452 REG_NOTES (new)
5453 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5454 XEXP (link, 0),
5455 REG_NOTES (new)));
5456 else
5457 REG_NOTES (new)
5458 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5459 XEXP (link, 0),
5460 REG_NOTES (new)));
5461 }
5462
5463 /* Fix the libcall sequences. */
5464 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5465 {
5466 rtx p = new;
5467 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5468 p = PREV_INSN (p);
5469 XEXP (note1, 0) = p;
5470 XEXP (note2, 0) = new;
5471 }
5472 INSN_CODE (new) = INSN_CODE (insn);
5473 return new;
5474 }
5475
5476 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5477 rtx
5478 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5479 {
5480 if (hard_reg_clobbers[mode][regno])
5481 return hard_reg_clobbers[mode][regno];
5482 else
5483 return (hard_reg_clobbers[mode][regno] =
5484 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5485 }
5486
5487 #include "gt-emit-rtl.h"