Initialize split_branch_probability (PR target/82863).
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62 #include "predict.h"
63
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
68
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
71 /* Commonly used modes. */
72
73 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn *invalid_insn_rtx;
129
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
133 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 {
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139 };
140
141 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
143 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 {
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147 };
148
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 {
154 static hashval_t hash (reg_attrs *x);
155 static bool equal (reg_attrs *a, reg_attrs *b);
156 };
157
158 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
159
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
162 {
163 static hashval_t hash (rtx x);
164 static bool equal (rtx x, rtx y);
165 };
166
167 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
168
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
171 {
172 static hashval_t hash (rtx x);
173 static bool equal (rtx x, rtx y);
174 };
175
176 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
177
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
181
182 static void set_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx lookup_const_wide_int (rtx);
186 #endif
187 static rtx lookup_const_double (rtx);
188 static rtx lookup_const_fixed (rtx);
189 static reg_attrs *get_reg_attrs (tree, int);
190 static rtx gen_const_vector (machine_mode, int);
191 static void copy_rtx_if_shared_1 (rtx *orig);
192
193 /* Probability of the conditional branch currently proceeded by try_split. */
194 profile_probability split_branch_probability;
195 \f
196 /* Returns a hash code for X (which is a really a CONST_INT). */
197
198 hashval_t
199 const_int_hasher::hash (rtx x)
200 {
201 return (hashval_t) INTVAL (x);
202 }
203
204 /* Returns nonzero if the value represented by X (which is really a
205 CONST_INT) is the same as that given by Y (which is really a
206 HOST_WIDE_INT *). */
207
208 bool
209 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
210 {
211 return (INTVAL (x) == y);
212 }
213
214 #if TARGET_SUPPORTS_WIDE_INT
215 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
216
217 hashval_t
218 const_wide_int_hasher::hash (rtx x)
219 {
220 int i;
221 unsigned HOST_WIDE_INT hash = 0;
222 const_rtx xr = x;
223
224 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
225 hash += CONST_WIDE_INT_ELT (xr, i);
226
227 return (hashval_t) hash;
228 }
229
230 /* Returns nonzero if the value represented by X (which is really a
231 CONST_WIDE_INT) is the same as that given by Y (which is really a
232 CONST_WIDE_INT). */
233
234 bool
235 const_wide_int_hasher::equal (rtx x, rtx y)
236 {
237 int i;
238 const_rtx xr = x;
239 const_rtx yr = y;
240 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
241 return false;
242
243 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
244 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
245 return false;
246
247 return true;
248 }
249 #endif
250
251 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
252 hashval_t
253 const_double_hasher::hash (rtx x)
254 {
255 const_rtx const value = x;
256 hashval_t h;
257
258 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
259 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
260 else
261 {
262 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
263 /* MODE is used in the comparison, so it should be in the hash. */
264 h ^= GET_MODE (value);
265 }
266 return h;
267 }
268
269 /* Returns nonzero if the value represented by X (really a ...)
270 is the same as that represented by Y (really a ...) */
271 bool
272 const_double_hasher::equal (rtx x, rtx y)
273 {
274 const_rtx const a = x, b = y;
275
276 if (GET_MODE (a) != GET_MODE (b))
277 return 0;
278 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
279 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
280 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
281 else
282 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
283 CONST_DOUBLE_REAL_VALUE (b));
284 }
285
286 /* Returns a hash code for X (which is really a CONST_FIXED). */
287
288 hashval_t
289 const_fixed_hasher::hash (rtx x)
290 {
291 const_rtx const value = x;
292 hashval_t h;
293
294 h = fixed_hash (CONST_FIXED_VALUE (value));
295 /* MODE is used in the comparison, so it should be in the hash. */
296 h ^= GET_MODE (value);
297 return h;
298 }
299
300 /* Returns nonzero if the value represented by X is the same as that
301 represented by Y. */
302
303 bool
304 const_fixed_hasher::equal (rtx x, rtx y)
305 {
306 const_rtx const a = x, b = y;
307
308 if (GET_MODE (a) != GET_MODE (b))
309 return 0;
310 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
311 }
312
313 /* Return true if the given memory attributes are equal. */
314
315 bool
316 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
317 {
318 if (p == q)
319 return true;
320 if (!p || !q)
321 return false;
322 return (p->alias == q->alias
323 && p->offset_known_p == q->offset_known_p
324 && (!p->offset_known_p || p->offset == q->offset)
325 && p->size_known_p == q->size_known_p
326 && (!p->size_known_p || p->size == q->size)
327 && p->align == q->align
328 && p->addrspace == q->addrspace
329 && (p->expr == q->expr
330 || (p->expr != NULL_TREE && q->expr != NULL_TREE
331 && operand_equal_p (p->expr, q->expr, 0))));
332 }
333
334 /* Set MEM's memory attributes so that they are the same as ATTRS. */
335
336 static void
337 set_mem_attrs (rtx mem, mem_attrs *attrs)
338 {
339 /* If everything is the default, we can just clear the attributes. */
340 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
341 {
342 MEM_ATTRS (mem) = 0;
343 return;
344 }
345
346 if (!MEM_ATTRS (mem)
347 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
348 {
349 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
350 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
351 }
352 }
353
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
355
356 hashval_t
357 reg_attr_hasher::hash (reg_attrs *x)
358 {
359 const reg_attrs *const p = x;
360
361 return ((p->offset * 1000) ^ (intptr_t) p->decl);
362 }
363
364 /* Returns nonzero if the value represented by X is the same as that given by
365 Y. */
366
367 bool
368 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
369 {
370 const reg_attrs *const p = x;
371 const reg_attrs *const q = y;
372
373 return (p->decl == q->decl && p->offset == q->offset);
374 }
375 /* Allocate a new reg_attrs structure and insert it into the hash table if
376 one identical to it is not already in the table. We are doing this for
377 MEM of mode MODE. */
378
379 static reg_attrs *
380 get_reg_attrs (tree decl, int offset)
381 {
382 reg_attrs attrs;
383
384 /* If everything is the default, we can just return zero. */
385 if (decl == 0 && offset == 0)
386 return 0;
387
388 attrs.decl = decl;
389 attrs.offset = offset;
390
391 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
392 if (*slot == 0)
393 {
394 *slot = ggc_alloc<reg_attrs> ();
395 memcpy (*slot, &attrs, sizeof (reg_attrs));
396 }
397
398 return *slot;
399 }
400
401
402 #if !HAVE_blockage
403 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
404 and to block register equivalences to be seen across this insn. */
405
406 rtx
407 gen_blockage (void)
408 {
409 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
410 MEM_VOLATILE_P (x) = true;
411 return x;
412 }
413 #endif
414
415
416 /* Set the mode and register number of X to MODE and REGNO. */
417
418 void
419 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
420 {
421 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
422 ? hard_regno_nregs (regno, mode)
423 : 1);
424 PUT_MODE_RAW (x, mode);
425 set_regno_raw (x, regno, nregs);
426 }
427
428 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
429 don't attempt to share with the various global pieces of rtl (such as
430 frame_pointer_rtx). */
431
432 rtx
433 gen_raw_REG (machine_mode mode, unsigned int regno)
434 {
435 rtx x = rtx_alloc (REG MEM_STAT_INFO);
436 set_mode_and_regno (x, mode, regno);
437 REG_ATTRS (x) = NULL;
438 ORIGINAL_REGNO (x) = regno;
439 return x;
440 }
441
442 /* There are some RTL codes that require special attention; the generation
443 functions do the raw handling. If you add to this list, modify
444 special_rtx in gengenrtl.c as well. */
445
446 rtx_expr_list *
447 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
448 {
449 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
450 expr_list));
451 }
452
453 rtx_insn_list *
454 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
455 {
456 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
457 insn_list));
458 }
459
460 rtx_insn *
461 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
462 basic_block bb, rtx pattern, int location, int code,
463 rtx reg_notes)
464 {
465 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
466 prev_insn, next_insn,
467 bb, pattern, location, code,
468 reg_notes));
469 }
470
471 rtx
472 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
473 {
474 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
475 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
476
477 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
478 if (const_true_rtx && arg == STORE_FLAG_VALUE)
479 return const_true_rtx;
480 #endif
481
482 /* Look up the CONST_INT in the hash table. */
483 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
484 INSERT);
485 if (*slot == 0)
486 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
487
488 return *slot;
489 }
490
491 rtx
492 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
493 {
494 return GEN_INT (trunc_int_for_mode (c, mode));
495 }
496
497 /* CONST_DOUBLEs might be created from pairs of integers, or from
498 REAL_VALUE_TYPEs. Also, their length is known only at run time,
499 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
500
501 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
502 hash table. If so, return its counterpart; otherwise add it
503 to the hash table and return it. */
504 static rtx
505 lookup_const_double (rtx real)
506 {
507 rtx *slot = const_double_htab->find_slot (real, INSERT);
508 if (*slot == 0)
509 *slot = real;
510
511 return *slot;
512 }
513
514 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
515 VALUE in mode MODE. */
516 rtx
517 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
518 {
519 rtx real = rtx_alloc (CONST_DOUBLE);
520 PUT_MODE (real, mode);
521
522 real->u.rv = value;
523
524 return lookup_const_double (real);
525 }
526
527 /* Determine whether FIXED, a CONST_FIXED, already exists in the
528 hash table. If so, return its counterpart; otherwise add it
529 to the hash table and return it. */
530
531 static rtx
532 lookup_const_fixed (rtx fixed)
533 {
534 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
535 if (*slot == 0)
536 *slot = fixed;
537
538 return *slot;
539 }
540
541 /* Return a CONST_FIXED rtx for a fixed-point value specified by
542 VALUE in mode MODE. */
543
544 rtx
545 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
546 {
547 rtx fixed = rtx_alloc (CONST_FIXED);
548 PUT_MODE (fixed, mode);
549
550 fixed->u.fv = value;
551
552 return lookup_const_fixed (fixed);
553 }
554
555 #if TARGET_SUPPORTS_WIDE_INT == 0
556 /* Constructs double_int from rtx CST. */
557
558 double_int
559 rtx_to_double_int (const_rtx cst)
560 {
561 double_int r;
562
563 if (CONST_INT_P (cst))
564 r = double_int::from_shwi (INTVAL (cst));
565 else if (CONST_DOUBLE_AS_INT_P (cst))
566 {
567 r.low = CONST_DOUBLE_LOW (cst);
568 r.high = CONST_DOUBLE_HIGH (cst);
569 }
570 else
571 gcc_unreachable ();
572
573 return r;
574 }
575 #endif
576
577 #if TARGET_SUPPORTS_WIDE_INT
578 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
579 If so, return its counterpart; otherwise add it to the hash table and
580 return it. */
581
582 static rtx
583 lookup_const_wide_int (rtx wint)
584 {
585 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
586 if (*slot == 0)
587 *slot = wint;
588
589 return *slot;
590 }
591 #endif
592
593 /* Return an rtx constant for V, given that the constant has mode MODE.
594 The returned rtx will be a CONST_INT if V fits, otherwise it will be
595 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
596 (if TARGET_SUPPORTS_WIDE_INT). */
597
598 rtx
599 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
600 {
601 unsigned int len = v.get_len ();
602 /* Not scalar_int_mode because we also allow pointer bound modes. */
603 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
604
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec <= v.get_precision ());
608
609 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
610 return gen_int_mode (v.elt (0), mode);
611
612 #if TARGET_SUPPORTS_WIDE_INT
613 {
614 unsigned int i;
615 rtx value;
616 unsigned int blocks_needed
617 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618
619 if (len > blocks_needed)
620 len = blocks_needed;
621
622 value = const_wide_int_alloc (len);
623
624 /* It is so tempting to just put the mode in here. Must control
625 myself ... */
626 PUT_MODE (value, VOIDmode);
627 CWI_PUT_NUM_ELEM (value, len);
628
629 for (i = 0; i < len; i++)
630 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
631
632 return lookup_const_wide_int (value);
633 }
634 #else
635 return immed_double_const (v.elt (0), v.elt (1), mode);
636 #endif
637 }
638
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
647
648 rtx
649 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
650 {
651 rtx value;
652 unsigned int i;
653
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
656
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
658 gen_int_mode.
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
663 scalar_mode smode;
664 if (is_a <scalar_mode> (mode, &smode)
665 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
666 return gen_int_mode (i0, mode);
667
668 /* If this integer fits in one word, return a CONST_INT. */
669 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
670 return GEN_INT (i0);
671
672 /* We use VOIDmode for integers. */
673 value = rtx_alloc (CONST_DOUBLE);
674 PUT_MODE (value, VOIDmode);
675
676 CONST_DOUBLE_LOW (value) = i0;
677 CONST_DOUBLE_HIGH (value) = i1;
678
679 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
680 XWINT (value, i) = 0;
681
682 return lookup_const_double (value);
683 }
684 #endif
685
686 rtx
687 gen_rtx_REG (machine_mode mode, unsigned int regno)
688 {
689 /* In case the MD file explicitly references the frame pointer, have
690 all such references point to the same frame pointer. This is
691 used during frame pointer elimination to distinguish the explicit
692 references to these registers from pseudos that happened to be
693 assigned to them.
694
695 If we have eliminated the frame pointer or arg pointer, we will
696 be using it as a normal register, for example as a spill
697 register. In such cases, we might be accessing it in a mode that
698 is not Pmode and therefore cannot use the pre-allocated rtx.
699
700 Also don't do this when we are making new REGs in reload, since
701 we don't want to get confused with the real pointers. */
702
703 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
704 {
705 if (regno == FRAME_POINTER_REGNUM
706 && (!reload_completed || frame_pointer_needed))
707 return frame_pointer_rtx;
708
709 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
710 && regno == HARD_FRAME_POINTER_REGNUM
711 && (!reload_completed || frame_pointer_needed))
712 return hard_frame_pointer_rtx;
713 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
714 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
715 && regno == ARG_POINTER_REGNUM)
716 return arg_pointer_rtx;
717 #endif
718 #ifdef RETURN_ADDRESS_POINTER_REGNUM
719 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
720 return return_address_pointer_rtx;
721 #endif
722 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
723 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
724 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
725 return pic_offset_table_rtx;
726 if (regno == STACK_POINTER_REGNUM)
727 return stack_pointer_rtx;
728 }
729
730 #if 0
731 /* If the per-function register table has been set up, try to re-use
732 an existing entry in that table to avoid useless generation of RTL.
733
734 This code is disabled for now until we can fix the various backends
735 which depend on having non-shared hard registers in some cases. Long
736 term we want to re-enable this code as it can significantly cut down
737 on the amount of useless RTL that gets generated.
738
739 We'll also need to fix some code that runs after reload that wants to
740 set ORIGINAL_REGNO. */
741
742 if (cfun
743 && cfun->emit
744 && regno_reg_rtx
745 && regno < FIRST_PSEUDO_REGISTER
746 && reg_raw_mode[regno] == mode)
747 return regno_reg_rtx[regno];
748 #endif
749
750 return gen_raw_REG (mode, regno);
751 }
752
753 rtx
754 gen_rtx_MEM (machine_mode mode, rtx addr)
755 {
756 rtx rt = gen_rtx_raw_MEM (mode, addr);
757
758 /* This field is not cleared by the mere allocation of the rtx, so
759 we clear it here. */
760 MEM_ATTRS (rt) = 0;
761
762 return rt;
763 }
764
765 /* Generate a memory referring to non-trapping constant memory. */
766
767 rtx
768 gen_const_mem (machine_mode mode, rtx addr)
769 {
770 rtx mem = gen_rtx_MEM (mode, addr);
771 MEM_READONLY_P (mem) = 1;
772 MEM_NOTRAP_P (mem) = 1;
773 return mem;
774 }
775
776 /* Generate a MEM referring to fixed portions of the frame, e.g., register
777 save areas. */
778
779 rtx
780 gen_frame_mem (machine_mode mode, rtx addr)
781 {
782 rtx mem = gen_rtx_MEM (mode, addr);
783 MEM_NOTRAP_P (mem) = 1;
784 set_mem_alias_set (mem, get_frame_alias_set ());
785 return mem;
786 }
787
788 /* Generate a MEM referring to a temporary use of the stack, not part
789 of the fixed stack frame. For example, something which is pushed
790 by a target splitter. */
791 rtx
792 gen_tmp_stack_mem (machine_mode mode, rtx addr)
793 {
794 rtx mem = gen_rtx_MEM (mode, addr);
795 MEM_NOTRAP_P (mem) = 1;
796 if (!cfun->calls_alloca)
797 set_mem_alias_set (mem, get_frame_alias_set ());
798 return mem;
799 }
800
801 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
802 this construct would be valid, and false otherwise. */
803
804 bool
805 validate_subreg (machine_mode omode, machine_mode imode,
806 const_rtx reg, unsigned int offset)
807 {
808 unsigned int isize = GET_MODE_SIZE (imode);
809 unsigned int osize = GET_MODE_SIZE (omode);
810
811 /* All subregs must be aligned. */
812 if (offset % osize != 0)
813 return false;
814
815 /* The subreg offset cannot be outside the inner object. */
816 if (offset >= isize)
817 return false;
818
819 /* ??? This should not be here. Temporarily continue to allow word_mode
820 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
821 Generally, backends are doing something sketchy but it'll take time to
822 fix them all. */
823 if (omode == word_mode)
824 ;
825 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
826 is the culprit here, and not the backends. */
827 else if (osize >= UNITS_PER_WORD && isize >= osize)
828 ;
829 /* Allow component subregs of complex and vector. Though given the below
830 extraction rules, it's not always clear what that means. */
831 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
832 && GET_MODE_INNER (imode) == omode)
833 ;
834 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
835 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
836 represent this. It's questionable if this ought to be represented at
837 all -- why can't this all be hidden in post-reload splitters that make
838 arbitrarily mode changes to the registers themselves. */
839 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
840 ;
841 /* Subregs involving floating point modes are not allowed to
842 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
843 (subreg:SI (reg:DF) 0) isn't. */
844 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
845 {
846 if (! (isize == osize
847 /* LRA can use subreg to store a floating point value in
848 an integer mode. Although the floating point and the
849 integer modes need the same number of hard registers,
850 the size of floating point mode can be less than the
851 integer mode. LRA also uses subregs for a register
852 should be used in different mode in on insn. */
853 || lra_in_progress))
854 return false;
855 }
856
857 /* Paradoxical subregs must have offset zero. */
858 if (osize > isize)
859 return offset == 0;
860
861 /* This is a normal subreg. Verify that the offset is representable. */
862
863 /* For hard registers, we already have most of these rules collected in
864 subreg_offset_representable_p. */
865 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
866 {
867 unsigned int regno = REGNO (reg);
868
869 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
870 && GET_MODE_INNER (imode) == omode)
871 ;
872 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
873 return false;
874
875 return subreg_offset_representable_p (regno, imode, offset, omode);
876 }
877
878 /* For pseudo registers, we want most of the same checks. Namely:
879 If the register no larger than a word, the subreg must be lowpart.
880 If the register is larger than a word, the subreg must be the lowpart
881 of a subword. A subreg does *not* perform arbitrary bit extraction.
882 Given that we've already checked mode/offset alignment, we only have
883 to check subword subregs here. */
884 if (osize < UNITS_PER_WORD
885 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
886 {
887 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
888 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
889 if (offset % UNITS_PER_WORD != low_off)
890 return false;
891 }
892 return true;
893 }
894
895 rtx
896 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
897 {
898 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
899 return gen_rtx_raw_SUBREG (mode, reg, offset);
900 }
901
902 /* Generate a SUBREG representing the least-significant part of REG if MODE
903 is smaller than mode of REG, otherwise paradoxical SUBREG. */
904
905 rtx
906 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
907 {
908 machine_mode inmode;
909
910 inmode = GET_MODE (reg);
911 if (inmode == VOIDmode)
912 inmode = mode;
913 return gen_rtx_SUBREG (mode, reg,
914 subreg_lowpart_offset (mode, inmode));
915 }
916
917 rtx
918 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
919 enum var_init_status status)
920 {
921 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
922 PAT_VAR_LOCATION_STATUS (x) = status;
923 return x;
924 }
925 \f
926
927 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
928
929 rtvec
930 gen_rtvec (int n, ...)
931 {
932 int i;
933 rtvec rt_val;
934 va_list p;
935
936 va_start (p, n);
937
938 /* Don't allocate an empty rtvec... */
939 if (n == 0)
940 {
941 va_end (p);
942 return NULL_RTVEC;
943 }
944
945 rt_val = rtvec_alloc (n);
946
947 for (i = 0; i < n; i++)
948 rt_val->elem[i] = va_arg (p, rtx);
949
950 va_end (p);
951 return rt_val;
952 }
953
954 rtvec
955 gen_rtvec_v (int n, rtx *argp)
956 {
957 int i;
958 rtvec rt_val;
959
960 /* Don't allocate an empty rtvec... */
961 if (n == 0)
962 return NULL_RTVEC;
963
964 rt_val = rtvec_alloc (n);
965
966 for (i = 0; i < n; i++)
967 rt_val->elem[i] = *argp++;
968
969 return rt_val;
970 }
971
972 rtvec
973 gen_rtvec_v (int n, rtx_insn **argp)
974 {
975 int i;
976 rtvec rt_val;
977
978 /* Don't allocate an empty rtvec... */
979 if (n == 0)
980 return NULL_RTVEC;
981
982 rt_val = rtvec_alloc (n);
983
984 for (i = 0; i < n; i++)
985 rt_val->elem[i] = *argp++;
986
987 return rt_val;
988 }
989
990 \f
991 /* Return the number of bytes between the start of an OUTER_MODE
992 in-memory value and the start of an INNER_MODE in-memory value,
993 given that the former is a lowpart of the latter. It may be a
994 paradoxical lowpart, in which case the offset will be negative
995 on big-endian targets. */
996
997 int
998 byte_lowpart_offset (machine_mode outer_mode,
999 machine_mode inner_mode)
1000 {
1001 if (paradoxical_subreg_p (outer_mode, inner_mode))
1002 return -subreg_lowpart_offset (inner_mode, outer_mode);
1003 else
1004 return subreg_lowpart_offset (outer_mode, inner_mode);
1005 }
1006
1007 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1008 from address X. For paradoxical big-endian subregs this is a
1009 negative value, otherwise it's the same as OFFSET. */
1010
1011 int
1012 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1013 unsigned int offset)
1014 {
1015 if (paradoxical_subreg_p (outer_mode, inner_mode))
1016 {
1017 gcc_assert (offset == 0);
1018 return -subreg_lowpart_offset (inner_mode, outer_mode);
1019 }
1020 return offset;
1021 }
1022
1023 /* As above, but return the offset that existing subreg X would have
1024 if SUBREG_REG (X) were stored in memory. The only significant thing
1025 about the current SUBREG_REG is its mode. */
1026
1027 int
1028 subreg_memory_offset (const_rtx x)
1029 {
1030 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1031 SUBREG_BYTE (x));
1032 }
1033 \f
1034 /* Generate a REG rtx for a new pseudo register of mode MODE.
1035 This pseudo is assigned the next sequential register number. */
1036
1037 rtx
1038 gen_reg_rtx (machine_mode mode)
1039 {
1040 rtx val;
1041 unsigned int align = GET_MODE_ALIGNMENT (mode);
1042
1043 gcc_assert (can_create_pseudo_p ());
1044
1045 /* If a virtual register with bigger mode alignment is generated,
1046 increase stack alignment estimation because it might be spilled
1047 to stack later. */
1048 if (SUPPORTS_STACK_ALIGNMENT
1049 && crtl->stack_alignment_estimated < align
1050 && !crtl->stack_realign_processed)
1051 {
1052 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1053 if (crtl->stack_alignment_estimated < min_align)
1054 crtl->stack_alignment_estimated = min_align;
1055 }
1056
1057 if (generating_concat_p
1058 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1059 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1060 {
1061 /* For complex modes, don't make a single pseudo.
1062 Instead, make a CONCAT of two pseudos.
1063 This allows noncontiguous allocation of the real and imaginary parts,
1064 which makes much better code. Besides, allocating DCmode
1065 pseudos overstrains reload on some machines like the 386. */
1066 rtx realpart, imagpart;
1067 machine_mode partmode = GET_MODE_INNER (mode);
1068
1069 realpart = gen_reg_rtx (partmode);
1070 imagpart = gen_reg_rtx (partmode);
1071 return gen_rtx_CONCAT (mode, realpart, imagpart);
1072 }
1073
1074 /* Do not call gen_reg_rtx with uninitialized crtl. */
1075 gcc_assert (crtl->emit.regno_pointer_align_length);
1076
1077 crtl->emit.ensure_regno_capacity ();
1078 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1079
1080 val = gen_raw_REG (mode, reg_rtx_no);
1081 regno_reg_rtx[reg_rtx_no++] = val;
1082 return val;
1083 }
1084
1085 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1086 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1087
1088 void
1089 emit_status::ensure_regno_capacity ()
1090 {
1091 int old_size = regno_pointer_align_length;
1092
1093 if (reg_rtx_no < old_size)
1094 return;
1095
1096 int new_size = old_size * 2;
1097 while (reg_rtx_no >= new_size)
1098 new_size *= 2;
1099
1100 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1101 memset (tmp + old_size, 0, new_size - old_size);
1102 regno_pointer_align = (unsigned char *) tmp;
1103
1104 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1105 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1106 regno_reg_rtx = new1;
1107
1108 crtl->emit.regno_pointer_align_length = new_size;
1109 }
1110
1111 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1112
1113 bool
1114 reg_is_parm_p (rtx reg)
1115 {
1116 tree decl;
1117
1118 gcc_assert (REG_P (reg));
1119 decl = REG_EXPR (reg);
1120 return (decl && TREE_CODE (decl) == PARM_DECL);
1121 }
1122
1123 /* Update NEW with the same attributes as REG, but with OFFSET added
1124 to the REG_OFFSET. */
1125
1126 static void
1127 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1128 {
1129 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1130 REG_OFFSET (reg) + offset);
1131 }
1132
1133 /* Generate a register with same attributes as REG, but with OFFSET
1134 added to the REG_OFFSET. */
1135
1136 rtx
1137 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1138 int offset)
1139 {
1140 rtx new_rtx = gen_rtx_REG (mode, regno);
1141
1142 update_reg_offset (new_rtx, reg, offset);
1143 return new_rtx;
1144 }
1145
1146 /* Generate a new pseudo-register with the same attributes as REG, but
1147 with OFFSET added to the REG_OFFSET. */
1148
1149 rtx
1150 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1151 {
1152 rtx new_rtx = gen_reg_rtx (mode);
1153
1154 update_reg_offset (new_rtx, reg, offset);
1155 return new_rtx;
1156 }
1157
1158 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1159 new register is a (possibly paradoxical) lowpart of the old one. */
1160
1161 void
1162 adjust_reg_mode (rtx reg, machine_mode mode)
1163 {
1164 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1165 PUT_MODE (reg, mode);
1166 }
1167
1168 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1169 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1170
1171 void
1172 set_reg_attrs_from_value (rtx reg, rtx x)
1173 {
1174 int offset;
1175 bool can_be_reg_pointer = true;
1176
1177 /* Don't call mark_reg_pointer for incompatible pointer sign
1178 extension. */
1179 while (GET_CODE (x) == SIGN_EXTEND
1180 || GET_CODE (x) == ZERO_EXTEND
1181 || GET_CODE (x) == TRUNCATE
1182 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1183 {
1184 #if defined(POINTERS_EXTEND_UNSIGNED)
1185 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1186 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1187 || (paradoxical_subreg_p (x)
1188 && ! (SUBREG_PROMOTED_VAR_P (x)
1189 && SUBREG_CHECK_PROMOTED_SIGN (x,
1190 POINTERS_EXTEND_UNSIGNED))))
1191 && !targetm.have_ptr_extend ())
1192 can_be_reg_pointer = false;
1193 #endif
1194 x = XEXP (x, 0);
1195 }
1196
1197 /* Hard registers can be reused for multiple purposes within the same
1198 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1199 on them is wrong. */
1200 if (HARD_REGISTER_P (reg))
1201 return;
1202
1203 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1204 if (MEM_P (x))
1205 {
1206 if (MEM_OFFSET_KNOWN_P (x))
1207 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1208 MEM_OFFSET (x) + offset);
1209 if (can_be_reg_pointer && MEM_POINTER (x))
1210 mark_reg_pointer (reg, 0);
1211 }
1212 else if (REG_P (x))
1213 {
1214 if (REG_ATTRS (x))
1215 update_reg_offset (reg, x, offset);
1216 if (can_be_reg_pointer && REG_POINTER (x))
1217 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1218 }
1219 }
1220
1221 /* Generate a REG rtx for a new pseudo register, copying the mode
1222 and attributes from X. */
1223
1224 rtx
1225 gen_reg_rtx_and_attrs (rtx x)
1226 {
1227 rtx reg = gen_reg_rtx (GET_MODE (x));
1228 set_reg_attrs_from_value (reg, x);
1229 return reg;
1230 }
1231
1232 /* Set the register attributes for registers contained in PARM_RTX.
1233 Use needed values from memory attributes of MEM. */
1234
1235 void
1236 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1237 {
1238 if (REG_P (parm_rtx))
1239 set_reg_attrs_from_value (parm_rtx, mem);
1240 else if (GET_CODE (parm_rtx) == PARALLEL)
1241 {
1242 /* Check for a NULL entry in the first slot, used to indicate that the
1243 parameter goes both on the stack and in registers. */
1244 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1245 for (; i < XVECLEN (parm_rtx, 0); i++)
1246 {
1247 rtx x = XVECEXP (parm_rtx, 0, i);
1248 if (REG_P (XEXP (x, 0)))
1249 REG_ATTRS (XEXP (x, 0))
1250 = get_reg_attrs (MEM_EXPR (mem),
1251 INTVAL (XEXP (x, 1)));
1252 }
1253 }
1254 }
1255
1256 /* Set the REG_ATTRS for registers in value X, given that X represents
1257 decl T. */
1258
1259 void
1260 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1261 {
1262 if (!t)
1263 return;
1264 tree tdecl = t;
1265 if (GET_CODE (x) == SUBREG)
1266 {
1267 gcc_assert (subreg_lowpart_p (x));
1268 x = SUBREG_REG (x);
1269 }
1270 if (REG_P (x))
1271 REG_ATTRS (x)
1272 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1273 DECL_P (tdecl)
1274 ? DECL_MODE (tdecl)
1275 : TYPE_MODE (TREE_TYPE (tdecl))));
1276 if (GET_CODE (x) == CONCAT)
1277 {
1278 if (REG_P (XEXP (x, 0)))
1279 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1280 if (REG_P (XEXP (x, 1)))
1281 REG_ATTRS (XEXP (x, 1))
1282 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1283 }
1284 if (GET_CODE (x) == PARALLEL)
1285 {
1286 int i, start;
1287
1288 /* Check for a NULL entry, used to indicate that the parameter goes
1289 both on the stack and in registers. */
1290 if (XEXP (XVECEXP (x, 0, 0), 0))
1291 start = 0;
1292 else
1293 start = 1;
1294
1295 for (i = start; i < XVECLEN (x, 0); i++)
1296 {
1297 rtx y = XVECEXP (x, 0, i);
1298 if (REG_P (XEXP (y, 0)))
1299 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1300 }
1301 }
1302 }
1303
1304 /* Assign the RTX X to declaration T. */
1305
1306 void
1307 set_decl_rtl (tree t, rtx x)
1308 {
1309 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1310 if (x)
1311 set_reg_attrs_for_decl_rtl (t, x);
1312 }
1313
1314 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1315 if the ABI requires the parameter to be passed by reference. */
1316
1317 void
1318 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1319 {
1320 DECL_INCOMING_RTL (t) = x;
1321 if (x && !by_reference_p)
1322 set_reg_attrs_for_decl_rtl (t, x);
1323 }
1324
1325 /* Identify REG (which may be a CONCAT) as a user register. */
1326
1327 void
1328 mark_user_reg (rtx reg)
1329 {
1330 if (GET_CODE (reg) == CONCAT)
1331 {
1332 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1333 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1334 }
1335 else
1336 {
1337 gcc_assert (REG_P (reg));
1338 REG_USERVAR_P (reg) = 1;
1339 }
1340 }
1341
1342 /* Identify REG as a probable pointer register and show its alignment
1343 as ALIGN, if nonzero. */
1344
1345 void
1346 mark_reg_pointer (rtx reg, int align)
1347 {
1348 if (! REG_POINTER (reg))
1349 {
1350 REG_POINTER (reg) = 1;
1351
1352 if (align)
1353 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1354 }
1355 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1356 /* We can no-longer be sure just how aligned this pointer is. */
1357 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1358 }
1359
1360 /* Return 1 plus largest pseudo reg number used in the current function. */
1361
1362 int
1363 max_reg_num (void)
1364 {
1365 return reg_rtx_no;
1366 }
1367
1368 /* Return 1 + the largest label number used so far in the current function. */
1369
1370 int
1371 max_label_num (void)
1372 {
1373 return label_num;
1374 }
1375
1376 /* Return first label number used in this function (if any were used). */
1377
1378 int
1379 get_first_label_num (void)
1380 {
1381 return first_label_num;
1382 }
1383
1384 /* If the rtx for label was created during the expansion of a nested
1385 function, then first_label_num won't include this label number.
1386 Fix this now so that array indices work later. */
1387
1388 void
1389 maybe_set_first_label_num (rtx_code_label *x)
1390 {
1391 if (CODE_LABEL_NUMBER (x) < first_label_num)
1392 first_label_num = CODE_LABEL_NUMBER (x);
1393 }
1394
1395 /* For use by the RTL function loader, when mingling with normal
1396 functions.
1397 Ensure that label_num is greater than the label num of X, to avoid
1398 duplicate labels in the generated assembler. */
1399
1400 void
1401 maybe_set_max_label_num (rtx_code_label *x)
1402 {
1403 if (CODE_LABEL_NUMBER (x) >= label_num)
1404 label_num = CODE_LABEL_NUMBER (x) + 1;
1405 }
1406
1407 \f
1408 /* Return a value representing some low-order bits of X, where the number
1409 of low-order bits is given by MODE. Note that no conversion is done
1410 between floating-point and fixed-point values, rather, the bit
1411 representation is returned.
1412
1413 This function handles the cases in common between gen_lowpart, below,
1414 and two variants in cse.c and combine.c. These are the cases that can
1415 be safely handled at all points in the compilation.
1416
1417 If this is not a case we can handle, return 0. */
1418
1419 rtx
1420 gen_lowpart_common (machine_mode mode, rtx x)
1421 {
1422 int msize = GET_MODE_SIZE (mode);
1423 int xsize;
1424 machine_mode innermode;
1425
1426 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1427 so we have to make one up. Yuk. */
1428 innermode = GET_MODE (x);
1429 if (CONST_INT_P (x)
1430 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1431 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1432 else if (innermode == VOIDmode)
1433 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1434
1435 xsize = GET_MODE_SIZE (innermode);
1436
1437 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1438
1439 if (innermode == mode)
1440 return x;
1441
1442 /* MODE must occupy no more words than the mode of X. */
1443 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1444 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1445 return 0;
1446
1447 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1448 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1449 return 0;
1450
1451 scalar_int_mode int_mode, int_innermode, from_mode;
1452 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1453 && is_a <scalar_int_mode> (mode, &int_mode)
1454 && is_a <scalar_int_mode> (innermode, &int_innermode)
1455 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1456 {
1457 /* If we are getting the low-order part of something that has been
1458 sign- or zero-extended, we can either just use the object being
1459 extended or make a narrower extension. If we want an even smaller
1460 piece than the size of the object being extended, call ourselves
1461 recursively.
1462
1463 This case is used mostly by combine and cse. */
1464
1465 if (from_mode == int_mode)
1466 return XEXP (x, 0);
1467 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1468 return gen_lowpart_common (int_mode, XEXP (x, 0));
1469 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1470 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1471 }
1472 else if (GET_CODE (x) == SUBREG || REG_P (x)
1473 || GET_CODE (x) == CONCAT || const_vec_p (x)
1474 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1475 return lowpart_subreg (mode, x, innermode);
1476
1477 /* Otherwise, we can't do this. */
1478 return 0;
1479 }
1480 \f
1481 rtx
1482 gen_highpart (machine_mode mode, rtx x)
1483 {
1484 unsigned int msize = GET_MODE_SIZE (mode);
1485 rtx result;
1486
1487 /* This case loses if X is a subreg. To catch bugs early,
1488 complain if an invalid MODE is used even in other cases. */
1489 gcc_assert (msize <= UNITS_PER_WORD
1490 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1491
1492 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1493 subreg_highpart_offset (mode, GET_MODE (x)));
1494 gcc_assert (result);
1495
1496 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1497 the target if we have a MEM. gen_highpart must return a valid operand,
1498 emitting code if necessary to do so. */
1499 if (MEM_P (result))
1500 {
1501 result = validize_mem (result);
1502 gcc_assert (result);
1503 }
1504
1505 return result;
1506 }
1507
1508 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1509 be VOIDmode constant. */
1510 rtx
1511 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1512 {
1513 if (GET_MODE (exp) != VOIDmode)
1514 {
1515 gcc_assert (GET_MODE (exp) == innermode);
1516 return gen_highpart (outermode, exp);
1517 }
1518 return simplify_gen_subreg (outermode, exp, innermode,
1519 subreg_highpart_offset (outermode, innermode));
1520 }
1521
1522 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1523 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1524
1525 unsigned int
1526 subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes)
1527 {
1528 if (outer_bytes > inner_bytes)
1529 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1530 return 0;
1531
1532 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1533 return inner_bytes - outer_bytes;
1534 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1535 return 0;
1536 else
1537 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1538 }
1539
1540 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1541 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1542
1543 unsigned int
1544 subreg_size_highpart_offset (unsigned int outer_bytes,
1545 unsigned int inner_bytes)
1546 {
1547 gcc_assert (inner_bytes >= outer_bytes);
1548
1549 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1550 return 0;
1551 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1552 return inner_bytes - outer_bytes;
1553 else
1554 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1555 (inner_bytes - outer_bytes)
1556 * BITS_PER_UNIT);
1557 }
1558
1559 /* Return 1 iff X, assumed to be a SUBREG,
1560 refers to the least significant part of its containing reg.
1561 If X is not a SUBREG, always return 1 (it is its own low part!). */
1562
1563 int
1564 subreg_lowpart_p (const_rtx x)
1565 {
1566 if (GET_CODE (x) != SUBREG)
1567 return 1;
1568 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1569 return 0;
1570
1571 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1572 == SUBREG_BYTE (x));
1573 }
1574 \f
1575 /* Return subword OFFSET of operand OP.
1576 The word number, OFFSET, is interpreted as the word number starting
1577 at the low-order address. OFFSET 0 is the low-order word if not
1578 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1579
1580 If we cannot extract the required word, we return zero. Otherwise,
1581 an rtx corresponding to the requested word will be returned.
1582
1583 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1584 reload has completed, a valid address will always be returned. After
1585 reload, if a valid address cannot be returned, we return zero.
1586
1587 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1588 it is the responsibility of the caller.
1589
1590 MODE is the mode of OP in case it is a CONST_INT.
1591
1592 ??? This is still rather broken for some cases. The problem for the
1593 moment is that all callers of this thing provide no 'goal mode' to
1594 tell us to work with. This exists because all callers were written
1595 in a word based SUBREG world.
1596 Now use of this function can be deprecated by simplify_subreg in most
1597 cases.
1598 */
1599
1600 rtx
1601 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1602 {
1603 if (mode == VOIDmode)
1604 mode = GET_MODE (op);
1605
1606 gcc_assert (mode != VOIDmode);
1607
1608 /* If OP is narrower than a word, fail. */
1609 if (mode != BLKmode
1610 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1611 return 0;
1612
1613 /* If we want a word outside OP, return zero. */
1614 if (mode != BLKmode
1615 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1616 return const0_rtx;
1617
1618 /* Form a new MEM at the requested address. */
1619 if (MEM_P (op))
1620 {
1621 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1622
1623 if (! validate_address)
1624 return new_rtx;
1625
1626 else if (reload_completed)
1627 {
1628 if (! strict_memory_address_addr_space_p (word_mode,
1629 XEXP (new_rtx, 0),
1630 MEM_ADDR_SPACE (op)))
1631 return 0;
1632 }
1633 else
1634 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1635 }
1636
1637 /* Rest can be handled by simplify_subreg. */
1638 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1639 }
1640
1641 /* Similar to `operand_subword', but never return 0. If we can't
1642 extract the required subword, put OP into a register and try again.
1643 The second attempt must succeed. We always validate the address in
1644 this case.
1645
1646 MODE is the mode of OP, in case it is CONST_INT. */
1647
1648 rtx
1649 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1650 {
1651 rtx result = operand_subword (op, offset, 1, mode);
1652
1653 if (result)
1654 return result;
1655
1656 if (mode != BLKmode && mode != VOIDmode)
1657 {
1658 /* If this is a register which can not be accessed by words, copy it
1659 to a pseudo register. */
1660 if (REG_P (op))
1661 op = copy_to_reg (op);
1662 else
1663 op = force_reg (mode, op);
1664 }
1665
1666 result = operand_subword (op, offset, 1, mode);
1667 gcc_assert (result);
1668
1669 return result;
1670 }
1671 \f
1672 /* Returns 1 if both MEM_EXPR can be considered equal
1673 and 0 otherwise. */
1674
1675 int
1676 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1677 {
1678 if (expr1 == expr2)
1679 return 1;
1680
1681 if (! expr1 || ! expr2)
1682 return 0;
1683
1684 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1685 return 0;
1686
1687 return operand_equal_p (expr1, expr2, 0);
1688 }
1689
1690 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1691 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1692 -1 if not known. */
1693
1694 int
1695 get_mem_align_offset (rtx mem, unsigned int align)
1696 {
1697 tree expr;
1698 unsigned HOST_WIDE_INT offset;
1699
1700 /* This function can't use
1701 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1702 || (MAX (MEM_ALIGN (mem),
1703 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1704 < align))
1705 return -1;
1706 else
1707 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1708 for two reasons:
1709 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1710 for <variable>. get_inner_reference doesn't handle it and
1711 even if it did, the alignment in that case needs to be determined
1712 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1713 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1714 isn't sufficiently aligned, the object it is in might be. */
1715 gcc_assert (MEM_P (mem));
1716 expr = MEM_EXPR (mem);
1717 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1718 return -1;
1719
1720 offset = MEM_OFFSET (mem);
1721 if (DECL_P (expr))
1722 {
1723 if (DECL_ALIGN (expr) < align)
1724 return -1;
1725 }
1726 else if (INDIRECT_REF_P (expr))
1727 {
1728 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1729 return -1;
1730 }
1731 else if (TREE_CODE (expr) == COMPONENT_REF)
1732 {
1733 while (1)
1734 {
1735 tree inner = TREE_OPERAND (expr, 0);
1736 tree field = TREE_OPERAND (expr, 1);
1737 tree byte_offset = component_ref_field_offset (expr);
1738 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1739
1740 if (!byte_offset
1741 || !tree_fits_uhwi_p (byte_offset)
1742 || !tree_fits_uhwi_p (bit_offset))
1743 return -1;
1744
1745 offset += tree_to_uhwi (byte_offset);
1746 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1747
1748 if (inner == NULL_TREE)
1749 {
1750 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1751 < (unsigned int) align)
1752 return -1;
1753 break;
1754 }
1755 else if (DECL_P (inner))
1756 {
1757 if (DECL_ALIGN (inner) < align)
1758 return -1;
1759 break;
1760 }
1761 else if (TREE_CODE (inner) != COMPONENT_REF)
1762 return -1;
1763 expr = inner;
1764 }
1765 }
1766 else
1767 return -1;
1768
1769 return offset & ((align / BITS_PER_UNIT) - 1);
1770 }
1771
1772 /* Given REF (a MEM) and T, either the type of X or the expression
1773 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1774 if we are making a new object of this type. BITPOS is nonzero if
1775 there is an offset outstanding on T that will be applied later. */
1776
1777 void
1778 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1779 HOST_WIDE_INT bitpos)
1780 {
1781 HOST_WIDE_INT apply_bitpos = 0;
1782 tree type;
1783 struct mem_attrs attrs, *defattrs, *refattrs;
1784 addr_space_t as;
1785
1786 /* It can happen that type_for_mode was given a mode for which there
1787 is no language-level type. In which case it returns NULL, which
1788 we can see here. */
1789 if (t == NULL_TREE)
1790 return;
1791
1792 type = TYPE_P (t) ? t : TREE_TYPE (t);
1793 if (type == error_mark_node)
1794 return;
1795
1796 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1797 wrong answer, as it assumes that DECL_RTL already has the right alias
1798 info. Callers should not set DECL_RTL until after the call to
1799 set_mem_attributes. */
1800 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1801
1802 memset (&attrs, 0, sizeof (attrs));
1803
1804 /* Get the alias set from the expression or type (perhaps using a
1805 front-end routine) and use it. */
1806 attrs.alias = get_alias_set (t);
1807
1808 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1809 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1810
1811 /* Default values from pre-existing memory attributes if present. */
1812 refattrs = MEM_ATTRS (ref);
1813 if (refattrs)
1814 {
1815 /* ??? Can this ever happen? Calling this routine on a MEM that
1816 already carries memory attributes should probably be invalid. */
1817 attrs.expr = refattrs->expr;
1818 attrs.offset_known_p = refattrs->offset_known_p;
1819 attrs.offset = refattrs->offset;
1820 attrs.size_known_p = refattrs->size_known_p;
1821 attrs.size = refattrs->size;
1822 attrs.align = refattrs->align;
1823 }
1824
1825 /* Otherwise, default values from the mode of the MEM reference. */
1826 else
1827 {
1828 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1829 gcc_assert (!defattrs->expr);
1830 gcc_assert (!defattrs->offset_known_p);
1831
1832 /* Respect mode size. */
1833 attrs.size_known_p = defattrs->size_known_p;
1834 attrs.size = defattrs->size;
1835 /* ??? Is this really necessary? We probably should always get
1836 the size from the type below. */
1837
1838 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1839 if T is an object, always compute the object alignment below. */
1840 if (TYPE_P (t))
1841 attrs.align = defattrs->align;
1842 else
1843 attrs.align = BITS_PER_UNIT;
1844 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1845 e.g. if the type carries an alignment attribute. Should we be
1846 able to simply always use TYPE_ALIGN? */
1847 }
1848
1849 /* We can set the alignment from the type if we are making an object or if
1850 this is an INDIRECT_REF. */
1851 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1852 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1853
1854 /* If the size is known, we can set that. */
1855 tree new_size = TYPE_SIZE_UNIT (type);
1856
1857 /* The address-space is that of the type. */
1858 as = TYPE_ADDR_SPACE (type);
1859
1860 /* If T is not a type, we may be able to deduce some more information about
1861 the expression. */
1862 if (! TYPE_P (t))
1863 {
1864 tree base;
1865
1866 if (TREE_THIS_VOLATILE (t))
1867 MEM_VOLATILE_P (ref) = 1;
1868
1869 /* Now remove any conversions: they don't change what the underlying
1870 object is. Likewise for SAVE_EXPR. */
1871 while (CONVERT_EXPR_P (t)
1872 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1873 || TREE_CODE (t) == SAVE_EXPR)
1874 t = TREE_OPERAND (t, 0);
1875
1876 /* Note whether this expression can trap. */
1877 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1878
1879 base = get_base_address (t);
1880 if (base)
1881 {
1882 if (DECL_P (base)
1883 && TREE_READONLY (base)
1884 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1885 && !TREE_THIS_VOLATILE (base))
1886 MEM_READONLY_P (ref) = 1;
1887
1888 /* Mark static const strings readonly as well. */
1889 if (TREE_CODE (base) == STRING_CST
1890 && TREE_READONLY (base)
1891 && TREE_STATIC (base))
1892 MEM_READONLY_P (ref) = 1;
1893
1894 /* Address-space information is on the base object. */
1895 if (TREE_CODE (base) == MEM_REF
1896 || TREE_CODE (base) == TARGET_MEM_REF)
1897 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1898 0))));
1899 else
1900 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1901 }
1902
1903 /* If this expression uses it's parent's alias set, mark it such
1904 that we won't change it. */
1905 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1906 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1907
1908 /* If this is a decl, set the attributes of the MEM from it. */
1909 if (DECL_P (t))
1910 {
1911 attrs.expr = t;
1912 attrs.offset_known_p = true;
1913 attrs.offset = 0;
1914 apply_bitpos = bitpos;
1915 new_size = DECL_SIZE_UNIT (t);
1916 }
1917
1918 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1919 else if (CONSTANT_CLASS_P (t))
1920 ;
1921
1922 /* If this is a field reference, record it. */
1923 else if (TREE_CODE (t) == COMPONENT_REF)
1924 {
1925 attrs.expr = t;
1926 attrs.offset_known_p = true;
1927 attrs.offset = 0;
1928 apply_bitpos = bitpos;
1929 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1930 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1931 }
1932
1933 /* If this is an array reference, look for an outer field reference. */
1934 else if (TREE_CODE (t) == ARRAY_REF)
1935 {
1936 tree off_tree = size_zero_node;
1937 /* We can't modify t, because we use it at the end of the
1938 function. */
1939 tree t2 = t;
1940
1941 do
1942 {
1943 tree index = TREE_OPERAND (t2, 1);
1944 tree low_bound = array_ref_low_bound (t2);
1945 tree unit_size = array_ref_element_size (t2);
1946
1947 /* We assume all arrays have sizes that are a multiple of a byte.
1948 First subtract the lower bound, if any, in the type of the
1949 index, then convert to sizetype and multiply by the size of
1950 the array element. */
1951 if (! integer_zerop (low_bound))
1952 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1953 index, low_bound);
1954
1955 off_tree = size_binop (PLUS_EXPR,
1956 size_binop (MULT_EXPR,
1957 fold_convert (sizetype,
1958 index),
1959 unit_size),
1960 off_tree);
1961 t2 = TREE_OPERAND (t2, 0);
1962 }
1963 while (TREE_CODE (t2) == ARRAY_REF);
1964
1965 if (DECL_P (t2)
1966 || (TREE_CODE (t2) == COMPONENT_REF
1967 /* For trailing arrays t2 doesn't have a size that
1968 covers all valid accesses. */
1969 && ! array_at_struct_end_p (t)))
1970 {
1971 attrs.expr = t2;
1972 attrs.offset_known_p = false;
1973 if (tree_fits_uhwi_p (off_tree))
1974 {
1975 attrs.offset_known_p = true;
1976 attrs.offset = tree_to_uhwi (off_tree);
1977 apply_bitpos = bitpos;
1978 }
1979 }
1980 /* Else do not record a MEM_EXPR. */
1981 }
1982
1983 /* If this is an indirect reference, record it. */
1984 else if (TREE_CODE (t) == MEM_REF
1985 || TREE_CODE (t) == TARGET_MEM_REF)
1986 {
1987 attrs.expr = t;
1988 attrs.offset_known_p = true;
1989 attrs.offset = 0;
1990 apply_bitpos = bitpos;
1991 }
1992
1993 /* Compute the alignment. */
1994 unsigned int obj_align;
1995 unsigned HOST_WIDE_INT obj_bitpos;
1996 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1997 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1998 if (obj_bitpos != 0)
1999 obj_align = least_bit_hwi (obj_bitpos);
2000 attrs.align = MAX (attrs.align, obj_align);
2001 }
2002
2003 if (tree_fits_uhwi_p (new_size))
2004 {
2005 attrs.size_known_p = true;
2006 attrs.size = tree_to_uhwi (new_size);
2007 }
2008
2009 /* If we modified OFFSET based on T, then subtract the outstanding
2010 bit position offset. Similarly, increase the size of the accessed
2011 object to contain the negative offset. */
2012 if (apply_bitpos)
2013 {
2014 gcc_assert (attrs.offset_known_p);
2015 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
2016 if (attrs.size_known_p)
2017 attrs.size += apply_bitpos / BITS_PER_UNIT;
2018 }
2019
2020 /* Now set the attributes we computed above. */
2021 attrs.addrspace = as;
2022 set_mem_attrs (ref, &attrs);
2023 }
2024
2025 void
2026 set_mem_attributes (rtx ref, tree t, int objectp)
2027 {
2028 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2029 }
2030
2031 /* Set the alias set of MEM to SET. */
2032
2033 void
2034 set_mem_alias_set (rtx mem, alias_set_type set)
2035 {
2036 struct mem_attrs attrs;
2037
2038 /* If the new and old alias sets don't conflict, something is wrong. */
2039 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2040 attrs = *get_mem_attrs (mem);
2041 attrs.alias = set;
2042 set_mem_attrs (mem, &attrs);
2043 }
2044
2045 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2046
2047 void
2048 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2049 {
2050 struct mem_attrs attrs;
2051
2052 attrs = *get_mem_attrs (mem);
2053 attrs.addrspace = addrspace;
2054 set_mem_attrs (mem, &attrs);
2055 }
2056
2057 /* Set the alignment of MEM to ALIGN bits. */
2058
2059 void
2060 set_mem_align (rtx mem, unsigned int align)
2061 {
2062 struct mem_attrs attrs;
2063
2064 attrs = *get_mem_attrs (mem);
2065 attrs.align = align;
2066 set_mem_attrs (mem, &attrs);
2067 }
2068
2069 /* Set the expr for MEM to EXPR. */
2070
2071 void
2072 set_mem_expr (rtx mem, tree expr)
2073 {
2074 struct mem_attrs attrs;
2075
2076 attrs = *get_mem_attrs (mem);
2077 attrs.expr = expr;
2078 set_mem_attrs (mem, &attrs);
2079 }
2080
2081 /* Set the offset of MEM to OFFSET. */
2082
2083 void
2084 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2085 {
2086 struct mem_attrs attrs;
2087
2088 attrs = *get_mem_attrs (mem);
2089 attrs.offset_known_p = true;
2090 attrs.offset = offset;
2091 set_mem_attrs (mem, &attrs);
2092 }
2093
2094 /* Clear the offset of MEM. */
2095
2096 void
2097 clear_mem_offset (rtx mem)
2098 {
2099 struct mem_attrs attrs;
2100
2101 attrs = *get_mem_attrs (mem);
2102 attrs.offset_known_p = false;
2103 set_mem_attrs (mem, &attrs);
2104 }
2105
2106 /* Set the size of MEM to SIZE. */
2107
2108 void
2109 set_mem_size (rtx mem, HOST_WIDE_INT size)
2110 {
2111 struct mem_attrs attrs;
2112
2113 attrs = *get_mem_attrs (mem);
2114 attrs.size_known_p = true;
2115 attrs.size = size;
2116 set_mem_attrs (mem, &attrs);
2117 }
2118
2119 /* Clear the size of MEM. */
2120
2121 void
2122 clear_mem_size (rtx mem)
2123 {
2124 struct mem_attrs attrs;
2125
2126 attrs = *get_mem_attrs (mem);
2127 attrs.size_known_p = false;
2128 set_mem_attrs (mem, &attrs);
2129 }
2130 \f
2131 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2132 and its address changed to ADDR. (VOIDmode means don't change the mode.
2133 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2134 returned memory location is required to be valid. INPLACE is true if any
2135 changes can be made directly to MEMREF or false if MEMREF must be treated
2136 as immutable.
2137
2138 The memory attributes are not changed. */
2139
2140 static rtx
2141 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2142 bool inplace)
2143 {
2144 addr_space_t as;
2145 rtx new_rtx;
2146
2147 gcc_assert (MEM_P (memref));
2148 as = MEM_ADDR_SPACE (memref);
2149 if (mode == VOIDmode)
2150 mode = GET_MODE (memref);
2151 if (addr == 0)
2152 addr = XEXP (memref, 0);
2153 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2154 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2155 return memref;
2156
2157 /* Don't validate address for LRA. LRA can make the address valid
2158 by itself in most efficient way. */
2159 if (validate && !lra_in_progress)
2160 {
2161 if (reload_in_progress || reload_completed)
2162 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2163 else
2164 addr = memory_address_addr_space (mode, addr, as);
2165 }
2166
2167 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2168 return memref;
2169
2170 if (inplace)
2171 {
2172 XEXP (memref, 0) = addr;
2173 return memref;
2174 }
2175
2176 new_rtx = gen_rtx_MEM (mode, addr);
2177 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2178 return new_rtx;
2179 }
2180
2181 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2182 way we are changing MEMREF, so we only preserve the alias set. */
2183
2184 rtx
2185 change_address (rtx memref, machine_mode mode, rtx addr)
2186 {
2187 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2188 machine_mode mmode = GET_MODE (new_rtx);
2189 struct mem_attrs attrs, *defattrs;
2190
2191 attrs = *get_mem_attrs (memref);
2192 defattrs = mode_mem_attrs[(int) mmode];
2193 attrs.expr = NULL_TREE;
2194 attrs.offset_known_p = false;
2195 attrs.size_known_p = defattrs->size_known_p;
2196 attrs.size = defattrs->size;
2197 attrs.align = defattrs->align;
2198
2199 /* If there are no changes, just return the original memory reference. */
2200 if (new_rtx == memref)
2201 {
2202 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2203 return new_rtx;
2204
2205 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2206 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2207 }
2208
2209 set_mem_attrs (new_rtx, &attrs);
2210 return new_rtx;
2211 }
2212
2213 /* Return a memory reference like MEMREF, but with its mode changed
2214 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2215 nonzero, the memory address is forced to be valid.
2216 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2217 and the caller is responsible for adjusting MEMREF base register.
2218 If ADJUST_OBJECT is zero, the underlying object associated with the
2219 memory reference is left unchanged and the caller is responsible for
2220 dealing with it. Otherwise, if the new memory reference is outside
2221 the underlying object, even partially, then the object is dropped.
2222 SIZE, if nonzero, is the size of an access in cases where MODE
2223 has no inherent size. */
2224
2225 rtx
2226 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2227 int validate, int adjust_address, int adjust_object,
2228 HOST_WIDE_INT size)
2229 {
2230 rtx addr = XEXP (memref, 0);
2231 rtx new_rtx;
2232 scalar_int_mode address_mode;
2233 int pbits;
2234 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2235 unsigned HOST_WIDE_INT max_align;
2236 #ifdef POINTERS_EXTEND_UNSIGNED
2237 scalar_int_mode pointer_mode
2238 = targetm.addr_space.pointer_mode (attrs.addrspace);
2239 #endif
2240
2241 /* VOIDmode means no mode change for change_address_1. */
2242 if (mode == VOIDmode)
2243 mode = GET_MODE (memref);
2244
2245 /* Take the size of non-BLKmode accesses from the mode. */
2246 defattrs = mode_mem_attrs[(int) mode];
2247 if (defattrs->size_known_p)
2248 size = defattrs->size;
2249
2250 /* If there are no changes, just return the original memory reference. */
2251 if (mode == GET_MODE (memref) && !offset
2252 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2253 && (!validate || memory_address_addr_space_p (mode, addr,
2254 attrs.addrspace)))
2255 return memref;
2256
2257 /* ??? Prefer to create garbage instead of creating shared rtl.
2258 This may happen even if offset is nonzero -- consider
2259 (plus (plus reg reg) const_int) -- so do this always. */
2260 addr = copy_rtx (addr);
2261
2262 /* Convert a possibly large offset to a signed value within the
2263 range of the target address space. */
2264 address_mode = get_address_mode (memref);
2265 pbits = GET_MODE_BITSIZE (address_mode);
2266 if (HOST_BITS_PER_WIDE_INT > pbits)
2267 {
2268 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2269 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2270 >> shift);
2271 }
2272
2273 if (adjust_address)
2274 {
2275 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2276 object, we can merge it into the LO_SUM. */
2277 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2278 && offset >= 0
2279 && (unsigned HOST_WIDE_INT) offset
2280 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2281 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2282 plus_constant (address_mode,
2283 XEXP (addr, 1), offset));
2284 #ifdef POINTERS_EXTEND_UNSIGNED
2285 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2286 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2287 the fact that pointers are not allowed to overflow. */
2288 else if (POINTERS_EXTEND_UNSIGNED > 0
2289 && GET_CODE (addr) == ZERO_EXTEND
2290 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2291 && trunc_int_for_mode (offset, pointer_mode) == offset)
2292 addr = gen_rtx_ZERO_EXTEND (address_mode,
2293 plus_constant (pointer_mode,
2294 XEXP (addr, 0), offset));
2295 #endif
2296 else
2297 addr = plus_constant (address_mode, addr, offset);
2298 }
2299
2300 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2301
2302 /* If the address is a REG, change_address_1 rightfully returns memref,
2303 but this would destroy memref's MEM_ATTRS. */
2304 if (new_rtx == memref && offset != 0)
2305 new_rtx = copy_rtx (new_rtx);
2306
2307 /* Conservatively drop the object if we don't know where we start from. */
2308 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2309 {
2310 attrs.expr = NULL_TREE;
2311 attrs.alias = 0;
2312 }
2313
2314 /* Compute the new values of the memory attributes due to this adjustment.
2315 We add the offsets and update the alignment. */
2316 if (attrs.offset_known_p)
2317 {
2318 attrs.offset += offset;
2319
2320 /* Drop the object if the new left end is not within its bounds. */
2321 if (adjust_object && attrs.offset < 0)
2322 {
2323 attrs.expr = NULL_TREE;
2324 attrs.alias = 0;
2325 }
2326 }
2327
2328 /* Compute the new alignment by taking the MIN of the alignment and the
2329 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2330 if zero. */
2331 if (offset != 0)
2332 {
2333 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
2334 attrs.align = MIN (attrs.align, max_align);
2335 }
2336
2337 if (size)
2338 {
2339 /* Drop the object if the new right end is not within its bounds. */
2340 if (adjust_object && (offset + size) > attrs.size)
2341 {
2342 attrs.expr = NULL_TREE;
2343 attrs.alias = 0;
2344 }
2345 attrs.size_known_p = true;
2346 attrs.size = size;
2347 }
2348 else if (attrs.size_known_p)
2349 {
2350 gcc_assert (!adjust_object);
2351 attrs.size -= offset;
2352 /* ??? The store_by_pieces machinery generates negative sizes,
2353 so don't assert for that here. */
2354 }
2355
2356 set_mem_attrs (new_rtx, &attrs);
2357
2358 return new_rtx;
2359 }
2360
2361 /* Return a memory reference like MEMREF, but with its mode changed
2362 to MODE and its address changed to ADDR, which is assumed to be
2363 MEMREF offset by OFFSET bytes. If VALIDATE is
2364 nonzero, the memory address is forced to be valid. */
2365
2366 rtx
2367 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2368 HOST_WIDE_INT offset, int validate)
2369 {
2370 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2371 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2372 }
2373
2374 /* Return a memory reference like MEMREF, but whose address is changed by
2375 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2376 known to be in OFFSET (possibly 1). */
2377
2378 rtx
2379 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2380 {
2381 rtx new_rtx, addr = XEXP (memref, 0);
2382 machine_mode address_mode;
2383 struct mem_attrs attrs, *defattrs;
2384
2385 attrs = *get_mem_attrs (memref);
2386 address_mode = get_address_mode (memref);
2387 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2388
2389 /* At this point we don't know _why_ the address is invalid. It
2390 could have secondary memory references, multiplies or anything.
2391
2392 However, if we did go and rearrange things, we can wind up not
2393 being able to recognize the magic around pic_offset_table_rtx.
2394 This stuff is fragile, and is yet another example of why it is
2395 bad to expose PIC machinery too early. */
2396 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2397 attrs.addrspace)
2398 && GET_CODE (addr) == PLUS
2399 && XEXP (addr, 0) == pic_offset_table_rtx)
2400 {
2401 addr = force_reg (GET_MODE (addr), addr);
2402 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2403 }
2404
2405 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2406 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2407
2408 /* If there are no changes, just return the original memory reference. */
2409 if (new_rtx == memref)
2410 return new_rtx;
2411
2412 /* Update the alignment to reflect the offset. Reset the offset, which
2413 we don't know. */
2414 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2415 attrs.offset_known_p = false;
2416 attrs.size_known_p = defattrs->size_known_p;
2417 attrs.size = defattrs->size;
2418 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2419 set_mem_attrs (new_rtx, &attrs);
2420 return new_rtx;
2421 }
2422
2423 /* Return a memory reference like MEMREF, but with its address changed to
2424 ADDR. The caller is asserting that the actual piece of memory pointed
2425 to is the same, just the form of the address is being changed, such as
2426 by putting something into a register. INPLACE is true if any changes
2427 can be made directly to MEMREF or false if MEMREF must be treated as
2428 immutable. */
2429
2430 rtx
2431 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2432 {
2433 /* change_address_1 copies the memory attribute structure without change
2434 and that's exactly what we want here. */
2435 update_temp_slot_address (XEXP (memref, 0), addr);
2436 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2437 }
2438
2439 /* Likewise, but the reference is not required to be valid. */
2440
2441 rtx
2442 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2443 {
2444 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2445 }
2446
2447 /* Return a memory reference like MEMREF, but with its mode widened to
2448 MODE and offset by OFFSET. This would be used by targets that e.g.
2449 cannot issue QImode memory operations and have to use SImode memory
2450 operations plus masking logic. */
2451
2452 rtx
2453 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2454 {
2455 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2456 struct mem_attrs attrs;
2457 unsigned int size = GET_MODE_SIZE (mode);
2458
2459 /* If there are no changes, just return the original memory reference. */
2460 if (new_rtx == memref)
2461 return new_rtx;
2462
2463 attrs = *get_mem_attrs (new_rtx);
2464
2465 /* If we don't know what offset we were at within the expression, then
2466 we can't know if we've overstepped the bounds. */
2467 if (! attrs.offset_known_p)
2468 attrs.expr = NULL_TREE;
2469
2470 while (attrs.expr)
2471 {
2472 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2473 {
2474 tree field = TREE_OPERAND (attrs.expr, 1);
2475 tree offset = component_ref_field_offset (attrs.expr);
2476
2477 if (! DECL_SIZE_UNIT (field))
2478 {
2479 attrs.expr = NULL_TREE;
2480 break;
2481 }
2482
2483 /* Is the field at least as large as the access? If so, ok,
2484 otherwise strip back to the containing structure. */
2485 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2486 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2487 && attrs.offset >= 0)
2488 break;
2489
2490 if (! tree_fits_uhwi_p (offset))
2491 {
2492 attrs.expr = NULL_TREE;
2493 break;
2494 }
2495
2496 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2497 attrs.offset += tree_to_uhwi (offset);
2498 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2499 / BITS_PER_UNIT);
2500 }
2501 /* Similarly for the decl. */
2502 else if (DECL_P (attrs.expr)
2503 && DECL_SIZE_UNIT (attrs.expr)
2504 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2505 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2506 && (! attrs.offset_known_p || attrs.offset >= 0))
2507 break;
2508 else
2509 {
2510 /* The widened memory access overflows the expression, which means
2511 that it could alias another expression. Zap it. */
2512 attrs.expr = NULL_TREE;
2513 break;
2514 }
2515 }
2516
2517 if (! attrs.expr)
2518 attrs.offset_known_p = false;
2519
2520 /* The widened memory may alias other stuff, so zap the alias set. */
2521 /* ??? Maybe use get_alias_set on any remaining expression. */
2522 attrs.alias = 0;
2523 attrs.size_known_p = true;
2524 attrs.size = size;
2525 set_mem_attrs (new_rtx, &attrs);
2526 return new_rtx;
2527 }
2528 \f
2529 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2530 static GTY(()) tree spill_slot_decl;
2531
2532 tree
2533 get_spill_slot_decl (bool force_build_p)
2534 {
2535 tree d = spill_slot_decl;
2536 rtx rd;
2537 struct mem_attrs attrs;
2538
2539 if (d || !force_build_p)
2540 return d;
2541
2542 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2543 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2544 DECL_ARTIFICIAL (d) = 1;
2545 DECL_IGNORED_P (d) = 1;
2546 TREE_USED (d) = 1;
2547 spill_slot_decl = d;
2548
2549 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2550 MEM_NOTRAP_P (rd) = 1;
2551 attrs = *mode_mem_attrs[(int) BLKmode];
2552 attrs.alias = new_alias_set ();
2553 attrs.expr = d;
2554 set_mem_attrs (rd, &attrs);
2555 SET_DECL_RTL (d, rd);
2556
2557 return d;
2558 }
2559
2560 /* Given MEM, a result from assign_stack_local, fill in the memory
2561 attributes as appropriate for a register allocator spill slot.
2562 These slots are not aliasable by other memory. We arrange for
2563 them all to use a single MEM_EXPR, so that the aliasing code can
2564 work properly in the case of shared spill slots. */
2565
2566 void
2567 set_mem_attrs_for_spill (rtx mem)
2568 {
2569 struct mem_attrs attrs;
2570 rtx addr;
2571
2572 attrs = *get_mem_attrs (mem);
2573 attrs.expr = get_spill_slot_decl (true);
2574 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2575 attrs.addrspace = ADDR_SPACE_GENERIC;
2576
2577 /* We expect the incoming memory to be of the form:
2578 (mem:MODE (plus (reg sfp) (const_int offset)))
2579 with perhaps the plus missing for offset = 0. */
2580 addr = XEXP (mem, 0);
2581 attrs.offset_known_p = true;
2582 attrs.offset = 0;
2583 if (GET_CODE (addr) == PLUS
2584 && CONST_INT_P (XEXP (addr, 1)))
2585 attrs.offset = INTVAL (XEXP (addr, 1));
2586
2587 set_mem_attrs (mem, &attrs);
2588 MEM_NOTRAP_P (mem) = 1;
2589 }
2590 \f
2591 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2592
2593 rtx_code_label *
2594 gen_label_rtx (void)
2595 {
2596 return as_a <rtx_code_label *> (
2597 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2598 NULL, label_num++, NULL));
2599 }
2600 \f
2601 /* For procedure integration. */
2602
2603 /* Install new pointers to the first and last insns in the chain.
2604 Also, set cur_insn_uid to one higher than the last in use.
2605 Used for an inline-procedure after copying the insn chain. */
2606
2607 void
2608 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2609 {
2610 rtx_insn *insn;
2611
2612 set_first_insn (first);
2613 set_last_insn (last);
2614 cur_insn_uid = 0;
2615
2616 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2617 {
2618 int debug_count = 0;
2619
2620 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2621 cur_debug_insn_uid = 0;
2622
2623 for (insn = first; insn; insn = NEXT_INSN (insn))
2624 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2625 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2626 else
2627 {
2628 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2629 if (DEBUG_INSN_P (insn))
2630 debug_count++;
2631 }
2632
2633 if (debug_count)
2634 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2635 else
2636 cur_debug_insn_uid++;
2637 }
2638 else
2639 for (insn = first; insn; insn = NEXT_INSN (insn))
2640 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2641
2642 cur_insn_uid++;
2643 }
2644 \f
2645 /* Go through all the RTL insn bodies and copy any invalid shared
2646 structure. This routine should only be called once. */
2647
2648 static void
2649 unshare_all_rtl_1 (rtx_insn *insn)
2650 {
2651 /* Unshare just about everything else. */
2652 unshare_all_rtl_in_chain (insn);
2653
2654 /* Make sure the addresses of stack slots found outside the insn chain
2655 (such as, in DECL_RTL of a variable) are not shared
2656 with the insn chain.
2657
2658 This special care is necessary when the stack slot MEM does not
2659 actually appear in the insn chain. If it does appear, its address
2660 is unshared from all else at that point. */
2661 unsigned int i;
2662 rtx temp;
2663 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2664 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2665 }
2666
2667 /* Go through all the RTL insn bodies and copy any invalid shared
2668 structure, again. This is a fairly expensive thing to do so it
2669 should be done sparingly. */
2670
2671 void
2672 unshare_all_rtl_again (rtx_insn *insn)
2673 {
2674 rtx_insn *p;
2675 tree decl;
2676
2677 for (p = insn; p; p = NEXT_INSN (p))
2678 if (INSN_P (p))
2679 {
2680 reset_used_flags (PATTERN (p));
2681 reset_used_flags (REG_NOTES (p));
2682 if (CALL_P (p))
2683 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2684 }
2685
2686 /* Make sure that virtual stack slots are not shared. */
2687 set_used_decls (DECL_INITIAL (cfun->decl));
2688
2689 /* Make sure that virtual parameters are not shared. */
2690 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2691 set_used_flags (DECL_RTL (decl));
2692
2693 rtx temp;
2694 unsigned int i;
2695 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2696 reset_used_flags (temp);
2697
2698 unshare_all_rtl_1 (insn);
2699 }
2700
2701 unsigned int
2702 unshare_all_rtl (void)
2703 {
2704 unshare_all_rtl_1 (get_insns ());
2705
2706 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2707 {
2708 if (DECL_RTL_SET_P (decl))
2709 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2710 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2711 }
2712
2713 return 0;
2714 }
2715
2716
2717 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2718 Recursively does the same for subexpressions. */
2719
2720 static void
2721 verify_rtx_sharing (rtx orig, rtx insn)
2722 {
2723 rtx x = orig;
2724 int i;
2725 enum rtx_code code;
2726 const char *format_ptr;
2727
2728 if (x == 0)
2729 return;
2730
2731 code = GET_CODE (x);
2732
2733 /* These types may be freely shared. */
2734
2735 switch (code)
2736 {
2737 case REG:
2738 case DEBUG_EXPR:
2739 case VALUE:
2740 CASE_CONST_ANY:
2741 case SYMBOL_REF:
2742 case LABEL_REF:
2743 case CODE_LABEL:
2744 case PC:
2745 case CC0:
2746 case RETURN:
2747 case SIMPLE_RETURN:
2748 case SCRATCH:
2749 /* SCRATCH must be shared because they represent distinct values. */
2750 return;
2751 case CLOBBER:
2752 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2753 clobbers or clobbers of hard registers that originated as pseudos.
2754 This is needed to allow safe register renaming. */
2755 if (REG_P (XEXP (x, 0))
2756 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2757 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2758 return;
2759 break;
2760
2761 case CONST:
2762 if (shared_const_p (orig))
2763 return;
2764 break;
2765
2766 case MEM:
2767 /* A MEM is allowed to be shared if its address is constant. */
2768 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2769 || reload_completed || reload_in_progress)
2770 return;
2771
2772 break;
2773
2774 default:
2775 break;
2776 }
2777
2778 /* This rtx may not be shared. If it has already been seen,
2779 replace it with a copy of itself. */
2780 if (flag_checking && RTX_FLAG (x, used))
2781 {
2782 error ("invalid rtl sharing found in the insn");
2783 debug_rtx (insn);
2784 error ("shared rtx");
2785 debug_rtx (x);
2786 internal_error ("internal consistency failure");
2787 }
2788 gcc_assert (!RTX_FLAG (x, used));
2789
2790 RTX_FLAG (x, used) = 1;
2791
2792 /* Now scan the subexpressions recursively. */
2793
2794 format_ptr = GET_RTX_FORMAT (code);
2795
2796 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2797 {
2798 switch (*format_ptr++)
2799 {
2800 case 'e':
2801 verify_rtx_sharing (XEXP (x, i), insn);
2802 break;
2803
2804 case 'E':
2805 if (XVEC (x, i) != NULL)
2806 {
2807 int j;
2808 int len = XVECLEN (x, i);
2809
2810 for (j = 0; j < len; j++)
2811 {
2812 /* We allow sharing of ASM_OPERANDS inside single
2813 instruction. */
2814 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2815 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2816 == ASM_OPERANDS))
2817 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2818 else
2819 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2820 }
2821 }
2822 break;
2823 }
2824 }
2825 return;
2826 }
2827
2828 /* Reset used-flags for INSN. */
2829
2830 static void
2831 reset_insn_used_flags (rtx insn)
2832 {
2833 gcc_assert (INSN_P (insn));
2834 reset_used_flags (PATTERN (insn));
2835 reset_used_flags (REG_NOTES (insn));
2836 if (CALL_P (insn))
2837 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2838 }
2839
2840 /* Go through all the RTL insn bodies and clear all the USED bits. */
2841
2842 static void
2843 reset_all_used_flags (void)
2844 {
2845 rtx_insn *p;
2846
2847 for (p = get_insns (); p; p = NEXT_INSN (p))
2848 if (INSN_P (p))
2849 {
2850 rtx pat = PATTERN (p);
2851 if (GET_CODE (pat) != SEQUENCE)
2852 reset_insn_used_flags (p);
2853 else
2854 {
2855 gcc_assert (REG_NOTES (p) == NULL);
2856 for (int i = 0; i < XVECLEN (pat, 0); i++)
2857 {
2858 rtx insn = XVECEXP (pat, 0, i);
2859 if (INSN_P (insn))
2860 reset_insn_used_flags (insn);
2861 }
2862 }
2863 }
2864 }
2865
2866 /* Verify sharing in INSN. */
2867
2868 static void
2869 verify_insn_sharing (rtx insn)
2870 {
2871 gcc_assert (INSN_P (insn));
2872 verify_rtx_sharing (PATTERN (insn), insn);
2873 verify_rtx_sharing (REG_NOTES (insn), insn);
2874 if (CALL_P (insn))
2875 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2876 }
2877
2878 /* Go through all the RTL insn bodies and check that there is no unexpected
2879 sharing in between the subexpressions. */
2880
2881 DEBUG_FUNCTION void
2882 verify_rtl_sharing (void)
2883 {
2884 rtx_insn *p;
2885
2886 timevar_push (TV_VERIFY_RTL_SHARING);
2887
2888 reset_all_used_flags ();
2889
2890 for (p = get_insns (); p; p = NEXT_INSN (p))
2891 if (INSN_P (p))
2892 {
2893 rtx pat = PATTERN (p);
2894 if (GET_CODE (pat) != SEQUENCE)
2895 verify_insn_sharing (p);
2896 else
2897 for (int i = 0; i < XVECLEN (pat, 0); i++)
2898 {
2899 rtx insn = XVECEXP (pat, 0, i);
2900 if (INSN_P (insn))
2901 verify_insn_sharing (insn);
2902 }
2903 }
2904
2905 reset_all_used_flags ();
2906
2907 timevar_pop (TV_VERIFY_RTL_SHARING);
2908 }
2909
2910 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2911 Assumes the mark bits are cleared at entry. */
2912
2913 void
2914 unshare_all_rtl_in_chain (rtx_insn *insn)
2915 {
2916 for (; insn; insn = NEXT_INSN (insn))
2917 if (INSN_P (insn))
2918 {
2919 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2920 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2921 if (CALL_P (insn))
2922 CALL_INSN_FUNCTION_USAGE (insn)
2923 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2924 }
2925 }
2926
2927 /* Go through all virtual stack slots of a function and mark them as
2928 shared. We never replace the DECL_RTLs themselves with a copy,
2929 but expressions mentioned into a DECL_RTL cannot be shared with
2930 expressions in the instruction stream.
2931
2932 Note that reload may convert pseudo registers into memories in-place.
2933 Pseudo registers are always shared, but MEMs never are. Thus if we
2934 reset the used flags on MEMs in the instruction stream, we must set
2935 them again on MEMs that appear in DECL_RTLs. */
2936
2937 static void
2938 set_used_decls (tree blk)
2939 {
2940 tree t;
2941
2942 /* Mark decls. */
2943 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2944 if (DECL_RTL_SET_P (t))
2945 set_used_flags (DECL_RTL (t));
2946
2947 /* Now process sub-blocks. */
2948 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2949 set_used_decls (t);
2950 }
2951
2952 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2953 Recursively does the same for subexpressions. Uses
2954 copy_rtx_if_shared_1 to reduce stack space. */
2955
2956 rtx
2957 copy_rtx_if_shared (rtx orig)
2958 {
2959 copy_rtx_if_shared_1 (&orig);
2960 return orig;
2961 }
2962
2963 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2964 use. Recursively does the same for subexpressions. */
2965
2966 static void
2967 copy_rtx_if_shared_1 (rtx *orig1)
2968 {
2969 rtx x;
2970 int i;
2971 enum rtx_code code;
2972 rtx *last_ptr;
2973 const char *format_ptr;
2974 int copied = 0;
2975 int length;
2976
2977 /* Repeat is used to turn tail-recursion into iteration. */
2978 repeat:
2979 x = *orig1;
2980
2981 if (x == 0)
2982 return;
2983
2984 code = GET_CODE (x);
2985
2986 /* These types may be freely shared. */
2987
2988 switch (code)
2989 {
2990 case REG:
2991 case DEBUG_EXPR:
2992 case VALUE:
2993 CASE_CONST_ANY:
2994 case SYMBOL_REF:
2995 case LABEL_REF:
2996 case CODE_LABEL:
2997 case PC:
2998 case CC0:
2999 case RETURN:
3000 case SIMPLE_RETURN:
3001 case SCRATCH:
3002 /* SCRATCH must be shared because they represent distinct values. */
3003 return;
3004 case CLOBBER:
3005 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3006 clobbers or clobbers of hard registers that originated as pseudos.
3007 This is needed to allow safe register renaming. */
3008 if (REG_P (XEXP (x, 0))
3009 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3010 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3011 return;
3012 break;
3013
3014 case CONST:
3015 if (shared_const_p (x))
3016 return;
3017 break;
3018
3019 case DEBUG_INSN:
3020 case INSN:
3021 case JUMP_INSN:
3022 case CALL_INSN:
3023 case NOTE:
3024 case BARRIER:
3025 /* The chain of insns is not being copied. */
3026 return;
3027
3028 default:
3029 break;
3030 }
3031
3032 /* This rtx may not be shared. If it has already been seen,
3033 replace it with a copy of itself. */
3034
3035 if (RTX_FLAG (x, used))
3036 {
3037 x = shallow_copy_rtx (x);
3038 copied = 1;
3039 }
3040 RTX_FLAG (x, used) = 1;
3041
3042 /* Now scan the subexpressions recursively.
3043 We can store any replaced subexpressions directly into X
3044 since we know X is not shared! Any vectors in X
3045 must be copied if X was copied. */
3046
3047 format_ptr = GET_RTX_FORMAT (code);
3048 length = GET_RTX_LENGTH (code);
3049 last_ptr = NULL;
3050
3051 for (i = 0; i < length; i++)
3052 {
3053 switch (*format_ptr++)
3054 {
3055 case 'e':
3056 if (last_ptr)
3057 copy_rtx_if_shared_1 (last_ptr);
3058 last_ptr = &XEXP (x, i);
3059 break;
3060
3061 case 'E':
3062 if (XVEC (x, i) != NULL)
3063 {
3064 int j;
3065 int len = XVECLEN (x, i);
3066
3067 /* Copy the vector iff I copied the rtx and the length
3068 is nonzero. */
3069 if (copied && len > 0)
3070 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3071
3072 /* Call recursively on all inside the vector. */
3073 for (j = 0; j < len; j++)
3074 {
3075 if (last_ptr)
3076 copy_rtx_if_shared_1 (last_ptr);
3077 last_ptr = &XVECEXP (x, i, j);
3078 }
3079 }
3080 break;
3081 }
3082 }
3083 *orig1 = x;
3084 if (last_ptr)
3085 {
3086 orig1 = last_ptr;
3087 goto repeat;
3088 }
3089 return;
3090 }
3091
3092 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3093
3094 static void
3095 mark_used_flags (rtx x, int flag)
3096 {
3097 int i, j;
3098 enum rtx_code code;
3099 const char *format_ptr;
3100 int length;
3101
3102 /* Repeat is used to turn tail-recursion into iteration. */
3103 repeat:
3104 if (x == 0)
3105 return;
3106
3107 code = GET_CODE (x);
3108
3109 /* These types may be freely shared so we needn't do any resetting
3110 for them. */
3111
3112 switch (code)
3113 {
3114 case REG:
3115 case DEBUG_EXPR:
3116 case VALUE:
3117 CASE_CONST_ANY:
3118 case SYMBOL_REF:
3119 case CODE_LABEL:
3120 case PC:
3121 case CC0:
3122 case RETURN:
3123 case SIMPLE_RETURN:
3124 return;
3125
3126 case DEBUG_INSN:
3127 case INSN:
3128 case JUMP_INSN:
3129 case CALL_INSN:
3130 case NOTE:
3131 case LABEL_REF:
3132 case BARRIER:
3133 /* The chain of insns is not being copied. */
3134 return;
3135
3136 default:
3137 break;
3138 }
3139
3140 RTX_FLAG (x, used) = flag;
3141
3142 format_ptr = GET_RTX_FORMAT (code);
3143 length = GET_RTX_LENGTH (code);
3144
3145 for (i = 0; i < length; i++)
3146 {
3147 switch (*format_ptr++)
3148 {
3149 case 'e':
3150 if (i == length-1)
3151 {
3152 x = XEXP (x, i);
3153 goto repeat;
3154 }
3155 mark_used_flags (XEXP (x, i), flag);
3156 break;
3157
3158 case 'E':
3159 for (j = 0; j < XVECLEN (x, i); j++)
3160 mark_used_flags (XVECEXP (x, i, j), flag);
3161 break;
3162 }
3163 }
3164 }
3165
3166 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3167 to look for shared sub-parts. */
3168
3169 void
3170 reset_used_flags (rtx x)
3171 {
3172 mark_used_flags (x, 0);
3173 }
3174
3175 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3176 to look for shared sub-parts. */
3177
3178 void
3179 set_used_flags (rtx x)
3180 {
3181 mark_used_flags (x, 1);
3182 }
3183 \f
3184 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3185 Return X or the rtx for the pseudo reg the value of X was copied into.
3186 OTHER must be valid as a SET_DEST. */
3187
3188 rtx
3189 make_safe_from (rtx x, rtx other)
3190 {
3191 while (1)
3192 switch (GET_CODE (other))
3193 {
3194 case SUBREG:
3195 other = SUBREG_REG (other);
3196 break;
3197 case STRICT_LOW_PART:
3198 case SIGN_EXTEND:
3199 case ZERO_EXTEND:
3200 other = XEXP (other, 0);
3201 break;
3202 default:
3203 goto done;
3204 }
3205 done:
3206 if ((MEM_P (other)
3207 && ! CONSTANT_P (x)
3208 && !REG_P (x)
3209 && GET_CODE (x) != SUBREG)
3210 || (REG_P (other)
3211 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3212 || reg_mentioned_p (other, x))))
3213 {
3214 rtx temp = gen_reg_rtx (GET_MODE (x));
3215 emit_move_insn (temp, x);
3216 return temp;
3217 }
3218 return x;
3219 }
3220 \f
3221 /* Emission of insns (adding them to the doubly-linked list). */
3222
3223 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3224
3225 rtx_insn *
3226 get_last_insn_anywhere (void)
3227 {
3228 struct sequence_stack *seq;
3229 for (seq = get_current_sequence (); seq; seq = seq->next)
3230 if (seq->last != 0)
3231 return seq->last;
3232 return 0;
3233 }
3234
3235 /* Return the first nonnote insn emitted in current sequence or current
3236 function. This routine looks inside SEQUENCEs. */
3237
3238 rtx_insn *
3239 get_first_nonnote_insn (void)
3240 {
3241 rtx_insn *insn = get_insns ();
3242
3243 if (insn)
3244 {
3245 if (NOTE_P (insn))
3246 for (insn = next_insn (insn);
3247 insn && NOTE_P (insn);
3248 insn = next_insn (insn))
3249 continue;
3250 else
3251 {
3252 if (NONJUMP_INSN_P (insn)
3253 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3254 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3255 }
3256 }
3257
3258 return insn;
3259 }
3260
3261 /* Return the last nonnote insn emitted in current sequence or current
3262 function. This routine looks inside SEQUENCEs. */
3263
3264 rtx_insn *
3265 get_last_nonnote_insn (void)
3266 {
3267 rtx_insn *insn = get_last_insn ();
3268
3269 if (insn)
3270 {
3271 if (NOTE_P (insn))
3272 for (insn = previous_insn (insn);
3273 insn && NOTE_P (insn);
3274 insn = previous_insn (insn))
3275 continue;
3276 else
3277 {
3278 if (NONJUMP_INSN_P (insn))
3279 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3280 insn = seq->insn (seq->len () - 1);
3281 }
3282 }
3283
3284 return insn;
3285 }
3286
3287 /* Return the number of actual (non-debug) insns emitted in this
3288 function. */
3289
3290 int
3291 get_max_insn_count (void)
3292 {
3293 int n = cur_insn_uid;
3294
3295 /* The table size must be stable across -g, to avoid codegen
3296 differences due to debug insns, and not be affected by
3297 -fmin-insn-uid, to avoid excessive table size and to simplify
3298 debugging of -fcompare-debug failures. */
3299 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3300 n -= cur_debug_insn_uid;
3301 else
3302 n -= MIN_NONDEBUG_INSN_UID;
3303
3304 return n;
3305 }
3306
3307 \f
3308 /* Return the next insn. If it is a SEQUENCE, return the first insn
3309 of the sequence. */
3310
3311 rtx_insn *
3312 next_insn (rtx_insn *insn)
3313 {
3314 if (insn)
3315 {
3316 insn = NEXT_INSN (insn);
3317 if (insn && NONJUMP_INSN_P (insn)
3318 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3319 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3320 }
3321
3322 return insn;
3323 }
3324
3325 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3326 of the sequence. */
3327
3328 rtx_insn *
3329 previous_insn (rtx_insn *insn)
3330 {
3331 if (insn)
3332 {
3333 insn = PREV_INSN (insn);
3334 if (insn && NONJUMP_INSN_P (insn))
3335 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3336 insn = seq->insn (seq->len () - 1);
3337 }
3338
3339 return insn;
3340 }
3341
3342 /* Return the next insn after INSN that is not a NOTE. This routine does not
3343 look inside SEQUENCEs. */
3344
3345 rtx_insn *
3346 next_nonnote_insn (rtx_insn *insn)
3347 {
3348 while (insn)
3349 {
3350 insn = NEXT_INSN (insn);
3351 if (insn == 0 || !NOTE_P (insn))
3352 break;
3353 }
3354
3355 return insn;
3356 }
3357
3358 /* Return the next insn after INSN that is not a NOTE, but stop the
3359 search before we enter another basic block. This routine does not
3360 look inside SEQUENCEs. */
3361
3362 rtx_insn *
3363 next_nonnote_insn_bb (rtx_insn *insn)
3364 {
3365 while (insn)
3366 {
3367 insn = NEXT_INSN (insn);
3368 if (insn == 0 || !NOTE_P (insn))
3369 break;
3370 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3371 return NULL;
3372 }
3373
3374 return insn;
3375 }
3376
3377 /* Return the previous insn before INSN that is not a NOTE. This routine does
3378 not look inside SEQUENCEs. */
3379
3380 rtx_insn *
3381 prev_nonnote_insn (rtx_insn *insn)
3382 {
3383 while (insn)
3384 {
3385 insn = PREV_INSN (insn);
3386 if (insn == 0 || !NOTE_P (insn))
3387 break;
3388 }
3389
3390 return insn;
3391 }
3392
3393 /* Return the previous insn before INSN that is not a NOTE, but stop
3394 the search before we enter another basic block. This routine does
3395 not look inside SEQUENCEs. */
3396
3397 rtx_insn *
3398 prev_nonnote_insn_bb (rtx_insn *insn)
3399 {
3400
3401 while (insn)
3402 {
3403 insn = PREV_INSN (insn);
3404 if (insn == 0 || !NOTE_P (insn))
3405 break;
3406 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3407 return NULL;
3408 }
3409
3410 return insn;
3411 }
3412
3413 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3414 routine does not look inside SEQUENCEs. */
3415
3416 rtx_insn *
3417 next_nondebug_insn (rtx_insn *insn)
3418 {
3419 while (insn)
3420 {
3421 insn = NEXT_INSN (insn);
3422 if (insn == 0 || !DEBUG_INSN_P (insn))
3423 break;
3424 }
3425
3426 return insn;
3427 }
3428
3429 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3430 This routine does not look inside SEQUENCEs. */
3431
3432 rtx_insn *
3433 prev_nondebug_insn (rtx_insn *insn)
3434 {
3435 while (insn)
3436 {
3437 insn = PREV_INSN (insn);
3438 if (insn == 0 || !DEBUG_INSN_P (insn))
3439 break;
3440 }
3441
3442 return insn;
3443 }
3444
3445 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3446 This routine does not look inside SEQUENCEs. */
3447
3448 rtx_insn *
3449 next_nonnote_nondebug_insn (rtx_insn *insn)
3450 {
3451 while (insn)
3452 {
3453 insn = NEXT_INSN (insn);
3454 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3455 break;
3456 }
3457
3458 return insn;
3459 }
3460
3461 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3462 This routine does not look inside SEQUENCEs. */
3463
3464 rtx_insn *
3465 prev_nonnote_nondebug_insn (rtx_insn *insn)
3466 {
3467 while (insn)
3468 {
3469 insn = PREV_INSN (insn);
3470 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3471 break;
3472 }
3473
3474 return insn;
3475 }
3476
3477 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3478 or 0, if there is none. This routine does not look inside
3479 SEQUENCEs. */
3480
3481 rtx_insn *
3482 next_real_insn (rtx uncast_insn)
3483 {
3484 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3485
3486 while (insn)
3487 {
3488 insn = NEXT_INSN (insn);
3489 if (insn == 0 || INSN_P (insn))
3490 break;
3491 }
3492
3493 return insn;
3494 }
3495
3496 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3497 or 0, if there is none. This routine does not look inside
3498 SEQUENCEs. */
3499
3500 rtx_insn *
3501 prev_real_insn (rtx_insn *insn)
3502 {
3503 while (insn)
3504 {
3505 insn = PREV_INSN (insn);
3506 if (insn == 0 || INSN_P (insn))
3507 break;
3508 }
3509
3510 return insn;
3511 }
3512
3513 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3514 This routine does not look inside SEQUENCEs. */
3515
3516 rtx_call_insn *
3517 last_call_insn (void)
3518 {
3519 rtx_insn *insn;
3520
3521 for (insn = get_last_insn ();
3522 insn && !CALL_P (insn);
3523 insn = PREV_INSN (insn))
3524 ;
3525
3526 return safe_as_a <rtx_call_insn *> (insn);
3527 }
3528
3529 /* Find the next insn after INSN that really does something. This routine
3530 does not look inside SEQUENCEs. After reload this also skips over
3531 standalone USE and CLOBBER insn. */
3532
3533 int
3534 active_insn_p (const rtx_insn *insn)
3535 {
3536 return (CALL_P (insn) || JUMP_P (insn)
3537 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3538 || (NONJUMP_INSN_P (insn)
3539 && (! reload_completed
3540 || (GET_CODE (PATTERN (insn)) != USE
3541 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3542 }
3543
3544 rtx_insn *
3545 next_active_insn (rtx_insn *insn)
3546 {
3547 while (insn)
3548 {
3549 insn = NEXT_INSN (insn);
3550 if (insn == 0 || active_insn_p (insn))
3551 break;
3552 }
3553
3554 return insn;
3555 }
3556
3557 /* Find the last insn before INSN that really does something. This routine
3558 does not look inside SEQUENCEs. After reload this also skips over
3559 standalone USE and CLOBBER insn. */
3560
3561 rtx_insn *
3562 prev_active_insn (rtx_insn *insn)
3563 {
3564 while (insn)
3565 {
3566 insn = PREV_INSN (insn);
3567 if (insn == 0 || active_insn_p (insn))
3568 break;
3569 }
3570
3571 return insn;
3572 }
3573 \f
3574 /* Return the next insn that uses CC0 after INSN, which is assumed to
3575 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3576 applied to the result of this function should yield INSN).
3577
3578 Normally, this is simply the next insn. However, if a REG_CC_USER note
3579 is present, it contains the insn that uses CC0.
3580
3581 Return 0 if we can't find the insn. */
3582
3583 rtx_insn *
3584 next_cc0_user (rtx_insn *insn)
3585 {
3586 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3587
3588 if (note)
3589 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3590
3591 insn = next_nonnote_insn (insn);
3592 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3593 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3594
3595 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3596 return insn;
3597
3598 return 0;
3599 }
3600
3601 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3602 note, it is the previous insn. */
3603
3604 rtx_insn *
3605 prev_cc0_setter (rtx_insn *insn)
3606 {
3607 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3608
3609 if (note)
3610 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3611
3612 insn = prev_nonnote_insn (insn);
3613 gcc_assert (sets_cc0_p (PATTERN (insn)));
3614
3615 return insn;
3616 }
3617
3618 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3619
3620 static int
3621 find_auto_inc (const_rtx x, const_rtx reg)
3622 {
3623 subrtx_iterator::array_type array;
3624 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3625 {
3626 const_rtx x = *iter;
3627 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3628 && rtx_equal_p (reg, XEXP (x, 0)))
3629 return true;
3630 }
3631 return false;
3632 }
3633
3634 /* Increment the label uses for all labels present in rtx. */
3635
3636 static void
3637 mark_label_nuses (rtx x)
3638 {
3639 enum rtx_code code;
3640 int i, j;
3641 const char *fmt;
3642
3643 code = GET_CODE (x);
3644 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3645 LABEL_NUSES (label_ref_label (x))++;
3646
3647 fmt = GET_RTX_FORMAT (code);
3648 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3649 {
3650 if (fmt[i] == 'e')
3651 mark_label_nuses (XEXP (x, i));
3652 else if (fmt[i] == 'E')
3653 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3654 mark_label_nuses (XVECEXP (x, i, j));
3655 }
3656 }
3657
3658 \f
3659 /* Try splitting insns that can be split for better scheduling.
3660 PAT is the pattern which might split.
3661 TRIAL is the insn providing PAT.
3662 LAST is nonzero if we should return the last insn of the sequence produced.
3663
3664 If this routine succeeds in splitting, it returns the first or last
3665 replacement insn depending on the value of LAST. Otherwise, it
3666 returns TRIAL. If the insn to be returned can be split, it will be. */
3667
3668 rtx_insn *
3669 try_split (rtx pat, rtx_insn *trial, int last)
3670 {
3671 rtx_insn *before, *after;
3672 rtx note;
3673 rtx_insn *seq, *tem;
3674 profile_probability probability;
3675 rtx_insn *insn_last, *insn;
3676 int njumps = 0;
3677 rtx_insn *call_insn = NULL;
3678
3679 /* We're not good at redistributing frame information. */
3680 if (RTX_FRAME_RELATED_P (trial))
3681 return trial;
3682
3683 if (any_condjump_p (trial)
3684 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3685 split_branch_probability
3686 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3687 else
3688 split_branch_probability = profile_probability::uninitialized ();
3689
3690 probability = split_branch_probability;
3691
3692 seq = split_insns (pat, trial);
3693
3694 split_branch_probability = profile_probability::uninitialized ();
3695
3696 if (!seq)
3697 return trial;
3698
3699 /* Avoid infinite loop if any insn of the result matches
3700 the original pattern. */
3701 insn_last = seq;
3702 while (1)
3703 {
3704 if (INSN_P (insn_last)
3705 && rtx_equal_p (PATTERN (insn_last), pat))
3706 return trial;
3707 if (!NEXT_INSN (insn_last))
3708 break;
3709 insn_last = NEXT_INSN (insn_last);
3710 }
3711
3712 /* We will be adding the new sequence to the function. The splitters
3713 may have introduced invalid RTL sharing, so unshare the sequence now. */
3714 unshare_all_rtl_in_chain (seq);
3715
3716 /* Mark labels and copy flags. */
3717 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3718 {
3719 if (JUMP_P (insn))
3720 {
3721 if (JUMP_P (trial))
3722 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3723 mark_jump_label (PATTERN (insn), insn, 0);
3724 njumps++;
3725 if (probability.initialized_p ()
3726 && any_condjump_p (insn)
3727 && !find_reg_note (insn, REG_BR_PROB, 0))
3728 {
3729 /* We can preserve the REG_BR_PROB notes only if exactly
3730 one jump is created, otherwise the machine description
3731 is responsible for this step using
3732 split_branch_probability variable. */
3733 gcc_assert (njumps == 1);
3734 add_reg_br_prob_note (insn, probability);
3735 }
3736 }
3737 }
3738
3739 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3740 in SEQ and copy any additional information across. */
3741 if (CALL_P (trial))
3742 {
3743 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3744 if (CALL_P (insn))
3745 {
3746 rtx_insn *next;
3747 rtx *p;
3748
3749 gcc_assert (call_insn == NULL_RTX);
3750 call_insn = insn;
3751
3752 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3753 target may have explicitly specified. */
3754 p = &CALL_INSN_FUNCTION_USAGE (insn);
3755 while (*p)
3756 p = &XEXP (*p, 1);
3757 *p = CALL_INSN_FUNCTION_USAGE (trial);
3758
3759 /* If the old call was a sibling call, the new one must
3760 be too. */
3761 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3762
3763 /* If the new call is the last instruction in the sequence,
3764 it will effectively replace the old call in-situ. Otherwise
3765 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3766 so that it comes immediately after the new call. */
3767 if (NEXT_INSN (insn))
3768 for (next = NEXT_INSN (trial);
3769 next && NOTE_P (next);
3770 next = NEXT_INSN (next))
3771 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3772 {
3773 remove_insn (next);
3774 add_insn_after (next, insn, NULL);
3775 break;
3776 }
3777 }
3778 }
3779
3780 /* Copy notes, particularly those related to the CFG. */
3781 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3782 {
3783 switch (REG_NOTE_KIND (note))
3784 {
3785 case REG_EH_REGION:
3786 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3787 break;
3788
3789 case REG_NORETURN:
3790 case REG_SETJMP:
3791 case REG_TM:
3792 case REG_CALL_NOCF_CHECK:
3793 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3794 {
3795 if (CALL_P (insn))
3796 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3797 }
3798 break;
3799
3800 case REG_NON_LOCAL_GOTO:
3801 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3802 {
3803 if (JUMP_P (insn))
3804 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3805 }
3806 break;
3807
3808 case REG_INC:
3809 if (!AUTO_INC_DEC)
3810 break;
3811
3812 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3813 {
3814 rtx reg = XEXP (note, 0);
3815 if (!FIND_REG_INC_NOTE (insn, reg)
3816 && find_auto_inc (PATTERN (insn), reg))
3817 add_reg_note (insn, REG_INC, reg);
3818 }
3819 break;
3820
3821 case REG_ARGS_SIZE:
3822 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3823 break;
3824
3825 case REG_CALL_DECL:
3826 gcc_assert (call_insn != NULL_RTX);
3827 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3828 break;
3829
3830 default:
3831 break;
3832 }
3833 }
3834
3835 /* If there are LABELS inside the split insns increment the
3836 usage count so we don't delete the label. */
3837 if (INSN_P (trial))
3838 {
3839 insn = insn_last;
3840 while (insn != NULL_RTX)
3841 {
3842 /* JUMP_P insns have already been "marked" above. */
3843 if (NONJUMP_INSN_P (insn))
3844 mark_label_nuses (PATTERN (insn));
3845
3846 insn = PREV_INSN (insn);
3847 }
3848 }
3849
3850 before = PREV_INSN (trial);
3851 after = NEXT_INSN (trial);
3852
3853 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3854
3855 delete_insn (trial);
3856
3857 /* Recursively call try_split for each new insn created; by the
3858 time control returns here that insn will be fully split, so
3859 set LAST and continue from the insn after the one returned.
3860 We can't use next_active_insn here since AFTER may be a note.
3861 Ignore deleted insns, which can be occur if not optimizing. */
3862 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3863 if (! tem->deleted () && INSN_P (tem))
3864 tem = try_split (PATTERN (tem), tem, 1);
3865
3866 /* Return either the first or the last insn, depending on which was
3867 requested. */
3868 return last
3869 ? (after ? PREV_INSN (after) : get_last_insn ())
3870 : NEXT_INSN (before);
3871 }
3872 \f
3873 /* Make and return an INSN rtx, initializing all its slots.
3874 Store PATTERN in the pattern slots. */
3875
3876 rtx_insn *
3877 make_insn_raw (rtx pattern)
3878 {
3879 rtx_insn *insn;
3880
3881 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3882
3883 INSN_UID (insn) = cur_insn_uid++;
3884 PATTERN (insn) = pattern;
3885 INSN_CODE (insn) = -1;
3886 REG_NOTES (insn) = NULL;
3887 INSN_LOCATION (insn) = curr_insn_location ();
3888 BLOCK_FOR_INSN (insn) = NULL;
3889
3890 #ifdef ENABLE_RTL_CHECKING
3891 if (insn
3892 && INSN_P (insn)
3893 && (returnjump_p (insn)
3894 || (GET_CODE (insn) == SET
3895 && SET_DEST (insn) == pc_rtx)))
3896 {
3897 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3898 debug_rtx (insn);
3899 }
3900 #endif
3901
3902 return insn;
3903 }
3904
3905 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3906
3907 static rtx_insn *
3908 make_debug_insn_raw (rtx pattern)
3909 {
3910 rtx_debug_insn *insn;
3911
3912 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3913 INSN_UID (insn) = cur_debug_insn_uid++;
3914 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3915 INSN_UID (insn) = cur_insn_uid++;
3916
3917 PATTERN (insn) = pattern;
3918 INSN_CODE (insn) = -1;
3919 REG_NOTES (insn) = NULL;
3920 INSN_LOCATION (insn) = curr_insn_location ();
3921 BLOCK_FOR_INSN (insn) = NULL;
3922
3923 return insn;
3924 }
3925
3926 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3927
3928 static rtx_insn *
3929 make_jump_insn_raw (rtx pattern)
3930 {
3931 rtx_jump_insn *insn;
3932
3933 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3934 INSN_UID (insn) = cur_insn_uid++;
3935
3936 PATTERN (insn) = pattern;
3937 INSN_CODE (insn) = -1;
3938 REG_NOTES (insn) = NULL;
3939 JUMP_LABEL (insn) = NULL;
3940 INSN_LOCATION (insn) = curr_insn_location ();
3941 BLOCK_FOR_INSN (insn) = NULL;
3942
3943 return insn;
3944 }
3945
3946 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3947
3948 static rtx_insn *
3949 make_call_insn_raw (rtx pattern)
3950 {
3951 rtx_call_insn *insn;
3952
3953 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3954 INSN_UID (insn) = cur_insn_uid++;
3955
3956 PATTERN (insn) = pattern;
3957 INSN_CODE (insn) = -1;
3958 REG_NOTES (insn) = NULL;
3959 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3960 INSN_LOCATION (insn) = curr_insn_location ();
3961 BLOCK_FOR_INSN (insn) = NULL;
3962
3963 return insn;
3964 }
3965
3966 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3967
3968 static rtx_note *
3969 make_note_raw (enum insn_note subtype)
3970 {
3971 /* Some notes are never created this way at all. These notes are
3972 only created by patching out insns. */
3973 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3974 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3975
3976 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3977 INSN_UID (note) = cur_insn_uid++;
3978 NOTE_KIND (note) = subtype;
3979 BLOCK_FOR_INSN (note) = NULL;
3980 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3981 return note;
3982 }
3983 \f
3984 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3985 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3986 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3987
3988 static inline void
3989 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3990 {
3991 SET_PREV_INSN (insn) = prev;
3992 SET_NEXT_INSN (insn) = next;
3993 if (prev != NULL)
3994 {
3995 SET_NEXT_INSN (prev) = insn;
3996 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3997 {
3998 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3999 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
4000 }
4001 }
4002 if (next != NULL)
4003 {
4004 SET_PREV_INSN (next) = insn;
4005 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4006 {
4007 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4008 SET_PREV_INSN (sequence->insn (0)) = insn;
4009 }
4010 }
4011
4012 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4013 {
4014 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4015 SET_PREV_INSN (sequence->insn (0)) = prev;
4016 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4017 }
4018 }
4019
4020 /* Add INSN to the end of the doubly-linked list.
4021 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4022
4023 void
4024 add_insn (rtx_insn *insn)
4025 {
4026 rtx_insn *prev = get_last_insn ();
4027 link_insn_into_chain (insn, prev, NULL);
4028 if (NULL == get_insns ())
4029 set_first_insn (insn);
4030 set_last_insn (insn);
4031 }
4032
4033 /* Add INSN into the doubly-linked list after insn AFTER. */
4034
4035 static void
4036 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4037 {
4038 rtx_insn *next = NEXT_INSN (after);
4039
4040 gcc_assert (!optimize || !after->deleted ());
4041
4042 link_insn_into_chain (insn, after, next);
4043
4044 if (next == NULL)
4045 {
4046 struct sequence_stack *seq;
4047
4048 for (seq = get_current_sequence (); seq; seq = seq->next)
4049 if (after == seq->last)
4050 {
4051 seq->last = insn;
4052 break;
4053 }
4054 }
4055 }
4056
4057 /* Add INSN into the doubly-linked list before insn BEFORE. */
4058
4059 static void
4060 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4061 {
4062 rtx_insn *prev = PREV_INSN (before);
4063
4064 gcc_assert (!optimize || !before->deleted ());
4065
4066 link_insn_into_chain (insn, prev, before);
4067
4068 if (prev == NULL)
4069 {
4070 struct sequence_stack *seq;
4071
4072 for (seq = get_current_sequence (); seq; seq = seq->next)
4073 if (before == seq->first)
4074 {
4075 seq->first = insn;
4076 break;
4077 }
4078
4079 gcc_assert (seq);
4080 }
4081 }
4082
4083 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4084 If BB is NULL, an attempt is made to infer the bb from before.
4085
4086 This and the next function should be the only functions called
4087 to insert an insn once delay slots have been filled since only
4088 they know how to update a SEQUENCE. */
4089
4090 void
4091 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4092 {
4093 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4094 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4095 add_insn_after_nobb (insn, after);
4096 if (!BARRIER_P (after)
4097 && !BARRIER_P (insn)
4098 && (bb = BLOCK_FOR_INSN (after)))
4099 {
4100 set_block_for_insn (insn, bb);
4101 if (INSN_P (insn))
4102 df_insn_rescan (insn);
4103 /* Should not happen as first in the BB is always
4104 either NOTE or LABEL. */
4105 if (BB_END (bb) == after
4106 /* Avoid clobbering of structure when creating new BB. */
4107 && !BARRIER_P (insn)
4108 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4109 BB_END (bb) = insn;
4110 }
4111 }
4112
4113 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4114 If BB is NULL, an attempt is made to infer the bb from before.
4115
4116 This and the previous function should be the only functions called
4117 to insert an insn once delay slots have been filled since only
4118 they know how to update a SEQUENCE. */
4119
4120 void
4121 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4122 {
4123 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4124 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4125 add_insn_before_nobb (insn, before);
4126
4127 if (!bb
4128 && !BARRIER_P (before)
4129 && !BARRIER_P (insn))
4130 bb = BLOCK_FOR_INSN (before);
4131
4132 if (bb)
4133 {
4134 set_block_for_insn (insn, bb);
4135 if (INSN_P (insn))
4136 df_insn_rescan (insn);
4137 /* Should not happen as first in the BB is always either NOTE or
4138 LABEL. */
4139 gcc_assert (BB_HEAD (bb) != insn
4140 /* Avoid clobbering of structure when creating new BB. */
4141 || BARRIER_P (insn)
4142 || NOTE_INSN_BASIC_BLOCK_P (insn));
4143 }
4144 }
4145
4146 /* Replace insn with an deleted instruction note. */
4147
4148 void
4149 set_insn_deleted (rtx insn)
4150 {
4151 if (INSN_P (insn))
4152 df_insn_delete (as_a <rtx_insn *> (insn));
4153 PUT_CODE (insn, NOTE);
4154 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4155 }
4156
4157
4158 /* Unlink INSN from the insn chain.
4159
4160 This function knows how to handle sequences.
4161
4162 This function does not invalidate data flow information associated with
4163 INSN (i.e. does not call df_insn_delete). That makes this function
4164 usable for only disconnecting an insn from the chain, and re-emit it
4165 elsewhere later.
4166
4167 To later insert INSN elsewhere in the insn chain via add_insn and
4168 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4169 the caller. Nullifying them here breaks many insn chain walks.
4170
4171 To really delete an insn and related DF information, use delete_insn. */
4172
4173 void
4174 remove_insn (rtx uncast_insn)
4175 {
4176 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4177 rtx_insn *next = NEXT_INSN (insn);
4178 rtx_insn *prev = PREV_INSN (insn);
4179 basic_block bb;
4180
4181 if (prev)
4182 {
4183 SET_NEXT_INSN (prev) = next;
4184 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4185 {
4186 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4187 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4188 }
4189 }
4190 else
4191 {
4192 struct sequence_stack *seq;
4193
4194 for (seq = get_current_sequence (); seq; seq = seq->next)
4195 if (insn == seq->first)
4196 {
4197 seq->first = next;
4198 break;
4199 }
4200
4201 gcc_assert (seq);
4202 }
4203
4204 if (next)
4205 {
4206 SET_PREV_INSN (next) = prev;
4207 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4208 {
4209 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4210 SET_PREV_INSN (sequence->insn (0)) = prev;
4211 }
4212 }
4213 else
4214 {
4215 struct sequence_stack *seq;
4216
4217 for (seq = get_current_sequence (); seq; seq = seq->next)
4218 if (insn == seq->last)
4219 {
4220 seq->last = prev;
4221 break;
4222 }
4223
4224 gcc_assert (seq);
4225 }
4226
4227 /* Fix up basic block boundaries, if necessary. */
4228 if (!BARRIER_P (insn)
4229 && (bb = BLOCK_FOR_INSN (insn)))
4230 {
4231 if (BB_HEAD (bb) == insn)
4232 {
4233 /* Never ever delete the basic block note without deleting whole
4234 basic block. */
4235 gcc_assert (!NOTE_P (insn));
4236 BB_HEAD (bb) = next;
4237 }
4238 if (BB_END (bb) == insn)
4239 BB_END (bb) = prev;
4240 }
4241 }
4242
4243 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4244
4245 void
4246 add_function_usage_to (rtx call_insn, rtx call_fusage)
4247 {
4248 gcc_assert (call_insn && CALL_P (call_insn));
4249
4250 /* Put the register usage information on the CALL. If there is already
4251 some usage information, put ours at the end. */
4252 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4253 {
4254 rtx link;
4255
4256 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4257 link = XEXP (link, 1))
4258 ;
4259
4260 XEXP (link, 1) = call_fusage;
4261 }
4262 else
4263 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4264 }
4265
4266 /* Delete all insns made since FROM.
4267 FROM becomes the new last instruction. */
4268
4269 void
4270 delete_insns_since (rtx_insn *from)
4271 {
4272 if (from == 0)
4273 set_first_insn (0);
4274 else
4275 SET_NEXT_INSN (from) = 0;
4276 set_last_insn (from);
4277 }
4278
4279 /* This function is deprecated, please use sequences instead.
4280
4281 Move a consecutive bunch of insns to a different place in the chain.
4282 The insns to be moved are those between FROM and TO.
4283 They are moved to a new position after the insn AFTER.
4284 AFTER must not be FROM or TO or any insn in between.
4285
4286 This function does not know about SEQUENCEs and hence should not be
4287 called after delay-slot filling has been done. */
4288
4289 void
4290 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4291 {
4292 if (flag_checking)
4293 {
4294 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4295 gcc_assert (after != x);
4296 gcc_assert (after != to);
4297 }
4298
4299 /* Splice this bunch out of where it is now. */
4300 if (PREV_INSN (from))
4301 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4302 if (NEXT_INSN (to))
4303 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4304 if (get_last_insn () == to)
4305 set_last_insn (PREV_INSN (from));
4306 if (get_insns () == from)
4307 set_first_insn (NEXT_INSN (to));
4308
4309 /* Make the new neighbors point to it and it to them. */
4310 if (NEXT_INSN (after))
4311 SET_PREV_INSN (NEXT_INSN (after)) = to;
4312
4313 SET_NEXT_INSN (to) = NEXT_INSN (after);
4314 SET_PREV_INSN (from) = after;
4315 SET_NEXT_INSN (after) = from;
4316 if (after == get_last_insn ())
4317 set_last_insn (to);
4318 }
4319
4320 /* Same as function above, but take care to update BB boundaries. */
4321 void
4322 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4323 {
4324 rtx_insn *prev = PREV_INSN (from);
4325 basic_block bb, bb2;
4326
4327 reorder_insns_nobb (from, to, after);
4328
4329 if (!BARRIER_P (after)
4330 && (bb = BLOCK_FOR_INSN (after)))
4331 {
4332 rtx_insn *x;
4333 df_set_bb_dirty (bb);
4334
4335 if (!BARRIER_P (from)
4336 && (bb2 = BLOCK_FOR_INSN (from)))
4337 {
4338 if (BB_END (bb2) == to)
4339 BB_END (bb2) = prev;
4340 df_set_bb_dirty (bb2);
4341 }
4342
4343 if (BB_END (bb) == after)
4344 BB_END (bb) = to;
4345
4346 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4347 if (!BARRIER_P (x))
4348 df_insn_change_bb (x, bb);
4349 }
4350 }
4351
4352 \f
4353 /* Emit insn(s) of given code and pattern
4354 at a specified place within the doubly-linked list.
4355
4356 All of the emit_foo global entry points accept an object
4357 X which is either an insn list or a PATTERN of a single
4358 instruction.
4359
4360 There are thus a few canonical ways to generate code and
4361 emit it at a specific place in the instruction stream. For
4362 example, consider the instruction named SPOT and the fact that
4363 we would like to emit some instructions before SPOT. We might
4364 do it like this:
4365
4366 start_sequence ();
4367 ... emit the new instructions ...
4368 insns_head = get_insns ();
4369 end_sequence ();
4370
4371 emit_insn_before (insns_head, SPOT);
4372
4373 It used to be common to generate SEQUENCE rtl instead, but that
4374 is a relic of the past which no longer occurs. The reason is that
4375 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4376 generated would almost certainly die right after it was created. */
4377
4378 static rtx_insn *
4379 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4380 rtx_insn *(*make_raw) (rtx))
4381 {
4382 rtx_insn *insn;
4383
4384 gcc_assert (before);
4385
4386 if (x == NULL_RTX)
4387 return safe_as_a <rtx_insn *> (last);
4388
4389 switch (GET_CODE (x))
4390 {
4391 case DEBUG_INSN:
4392 case INSN:
4393 case JUMP_INSN:
4394 case CALL_INSN:
4395 case CODE_LABEL:
4396 case BARRIER:
4397 case NOTE:
4398 insn = as_a <rtx_insn *> (x);
4399 while (insn)
4400 {
4401 rtx_insn *next = NEXT_INSN (insn);
4402 add_insn_before (insn, before, bb);
4403 last = insn;
4404 insn = next;
4405 }
4406 break;
4407
4408 #ifdef ENABLE_RTL_CHECKING
4409 case SEQUENCE:
4410 gcc_unreachable ();
4411 break;
4412 #endif
4413
4414 default:
4415 last = (*make_raw) (x);
4416 add_insn_before (last, before, bb);
4417 break;
4418 }
4419
4420 return safe_as_a <rtx_insn *> (last);
4421 }
4422
4423 /* Make X be output before the instruction BEFORE. */
4424
4425 rtx_insn *
4426 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4427 {
4428 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4429 }
4430
4431 /* Make an instruction with body X and code JUMP_INSN
4432 and output it before the instruction BEFORE. */
4433
4434 rtx_jump_insn *
4435 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4436 {
4437 return as_a <rtx_jump_insn *> (
4438 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4439 make_jump_insn_raw));
4440 }
4441
4442 /* Make an instruction with body X and code CALL_INSN
4443 and output it before the instruction BEFORE. */
4444
4445 rtx_insn *
4446 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4447 {
4448 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4449 make_call_insn_raw);
4450 }
4451
4452 /* Make an instruction with body X and code DEBUG_INSN
4453 and output it before the instruction BEFORE. */
4454
4455 rtx_insn *
4456 emit_debug_insn_before_noloc (rtx x, rtx before)
4457 {
4458 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4459 make_debug_insn_raw);
4460 }
4461
4462 /* Make an insn of code BARRIER
4463 and output it before the insn BEFORE. */
4464
4465 rtx_barrier *
4466 emit_barrier_before (rtx before)
4467 {
4468 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4469
4470 INSN_UID (insn) = cur_insn_uid++;
4471
4472 add_insn_before (insn, before, NULL);
4473 return insn;
4474 }
4475
4476 /* Emit the label LABEL before the insn BEFORE. */
4477
4478 rtx_code_label *
4479 emit_label_before (rtx label, rtx_insn *before)
4480 {
4481 gcc_checking_assert (INSN_UID (label) == 0);
4482 INSN_UID (label) = cur_insn_uid++;
4483 add_insn_before (label, before, NULL);
4484 return as_a <rtx_code_label *> (label);
4485 }
4486 \f
4487 /* Helper for emit_insn_after, handles lists of instructions
4488 efficiently. */
4489
4490 static rtx_insn *
4491 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4492 {
4493 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4494 rtx_insn *last;
4495 rtx_insn *after_after;
4496 if (!bb && !BARRIER_P (after))
4497 bb = BLOCK_FOR_INSN (after);
4498
4499 if (bb)
4500 {
4501 df_set_bb_dirty (bb);
4502 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4503 if (!BARRIER_P (last))
4504 {
4505 set_block_for_insn (last, bb);
4506 df_insn_rescan (last);
4507 }
4508 if (!BARRIER_P (last))
4509 {
4510 set_block_for_insn (last, bb);
4511 df_insn_rescan (last);
4512 }
4513 if (BB_END (bb) == after)
4514 BB_END (bb) = last;
4515 }
4516 else
4517 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4518 continue;
4519
4520 after_after = NEXT_INSN (after);
4521
4522 SET_NEXT_INSN (after) = first;
4523 SET_PREV_INSN (first) = after;
4524 SET_NEXT_INSN (last) = after_after;
4525 if (after_after)
4526 SET_PREV_INSN (after_after) = last;
4527
4528 if (after == get_last_insn ())
4529 set_last_insn (last);
4530
4531 return last;
4532 }
4533
4534 static rtx_insn *
4535 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4536 rtx_insn *(*make_raw)(rtx))
4537 {
4538 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4539 rtx_insn *last = after;
4540
4541 gcc_assert (after);
4542
4543 if (x == NULL_RTX)
4544 return last;
4545
4546 switch (GET_CODE (x))
4547 {
4548 case DEBUG_INSN:
4549 case INSN:
4550 case JUMP_INSN:
4551 case CALL_INSN:
4552 case CODE_LABEL:
4553 case BARRIER:
4554 case NOTE:
4555 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4556 break;
4557
4558 #ifdef ENABLE_RTL_CHECKING
4559 case SEQUENCE:
4560 gcc_unreachable ();
4561 break;
4562 #endif
4563
4564 default:
4565 last = (*make_raw) (x);
4566 add_insn_after (last, after, bb);
4567 break;
4568 }
4569
4570 return last;
4571 }
4572
4573 /* Make X be output after the insn AFTER and set the BB of insn. If
4574 BB is NULL, an attempt is made to infer the BB from AFTER. */
4575
4576 rtx_insn *
4577 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4578 {
4579 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4580 }
4581
4582
4583 /* Make an insn of code JUMP_INSN with body X
4584 and output it after the insn AFTER. */
4585
4586 rtx_jump_insn *
4587 emit_jump_insn_after_noloc (rtx x, rtx after)
4588 {
4589 return as_a <rtx_jump_insn *> (
4590 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4591 }
4592
4593 /* Make an instruction with body X and code CALL_INSN
4594 and output it after the instruction AFTER. */
4595
4596 rtx_insn *
4597 emit_call_insn_after_noloc (rtx x, rtx after)
4598 {
4599 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4600 }
4601
4602 /* Make an instruction with body X and code CALL_INSN
4603 and output it after the instruction AFTER. */
4604
4605 rtx_insn *
4606 emit_debug_insn_after_noloc (rtx x, rtx after)
4607 {
4608 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4609 }
4610
4611 /* Make an insn of code BARRIER
4612 and output it after the insn AFTER. */
4613
4614 rtx_barrier *
4615 emit_barrier_after (rtx after)
4616 {
4617 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4618
4619 INSN_UID (insn) = cur_insn_uid++;
4620
4621 add_insn_after (insn, after, NULL);
4622 return insn;
4623 }
4624
4625 /* Emit the label LABEL after the insn AFTER. */
4626
4627 rtx_insn *
4628 emit_label_after (rtx label, rtx_insn *after)
4629 {
4630 gcc_checking_assert (INSN_UID (label) == 0);
4631 INSN_UID (label) = cur_insn_uid++;
4632 add_insn_after (label, after, NULL);
4633 return as_a <rtx_insn *> (label);
4634 }
4635 \f
4636 /* Notes require a bit of special handling: Some notes need to have their
4637 BLOCK_FOR_INSN set, others should never have it set, and some should
4638 have it set or clear depending on the context. */
4639
4640 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4641 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4642 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4643
4644 static bool
4645 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4646 {
4647 switch (subtype)
4648 {
4649 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4650 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4651 return true;
4652
4653 /* Notes for var tracking and EH region markers can appear between or
4654 inside basic blocks. If the caller is emitting on the basic block
4655 boundary, do not set BLOCK_FOR_INSN on the new note. */
4656 case NOTE_INSN_VAR_LOCATION:
4657 case NOTE_INSN_CALL_ARG_LOCATION:
4658 case NOTE_INSN_EH_REGION_BEG:
4659 case NOTE_INSN_EH_REGION_END:
4660 return on_bb_boundary_p;
4661
4662 /* Otherwise, BLOCK_FOR_INSN must be set. */
4663 default:
4664 return false;
4665 }
4666 }
4667
4668 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4669
4670 rtx_note *
4671 emit_note_after (enum insn_note subtype, rtx_insn *after)
4672 {
4673 rtx_note *note = make_note_raw (subtype);
4674 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4675 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4676
4677 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4678 add_insn_after_nobb (note, after);
4679 else
4680 add_insn_after (note, after, bb);
4681 return note;
4682 }
4683
4684 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4685
4686 rtx_note *
4687 emit_note_before (enum insn_note subtype, rtx_insn *before)
4688 {
4689 rtx_note *note = make_note_raw (subtype);
4690 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4691 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4692
4693 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4694 add_insn_before_nobb (note, before);
4695 else
4696 add_insn_before (note, before, bb);
4697 return note;
4698 }
4699 \f
4700 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4701 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4702
4703 static rtx_insn *
4704 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4705 rtx_insn *(*make_raw) (rtx))
4706 {
4707 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4708 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4709
4710 if (pattern == NULL_RTX || !loc)
4711 return last;
4712
4713 after = NEXT_INSN (after);
4714 while (1)
4715 {
4716 if (active_insn_p (after)
4717 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4718 && !INSN_LOCATION (after))
4719 INSN_LOCATION (after) = loc;
4720 if (after == last)
4721 break;
4722 after = NEXT_INSN (after);
4723 }
4724 return last;
4725 }
4726
4727 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4728 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4729 any DEBUG_INSNs. */
4730
4731 static rtx_insn *
4732 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4733 rtx_insn *(*make_raw) (rtx))
4734 {
4735 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4736 rtx_insn *prev = after;
4737
4738 if (skip_debug_insns)
4739 while (DEBUG_INSN_P (prev))
4740 prev = PREV_INSN (prev);
4741
4742 if (INSN_P (prev))
4743 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4744 make_raw);
4745 else
4746 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4747 }
4748
4749 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4750 rtx_insn *
4751 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4752 {
4753 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4754 }
4755
4756 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4757 rtx_insn *
4758 emit_insn_after (rtx pattern, rtx after)
4759 {
4760 return emit_pattern_after (pattern, after, true, make_insn_raw);
4761 }
4762
4763 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4764 rtx_jump_insn *
4765 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4766 {
4767 return as_a <rtx_jump_insn *> (
4768 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4769 }
4770
4771 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4772 rtx_jump_insn *
4773 emit_jump_insn_after (rtx pattern, rtx after)
4774 {
4775 return as_a <rtx_jump_insn *> (
4776 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4777 }
4778
4779 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4780 rtx_insn *
4781 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4782 {
4783 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4784 }
4785
4786 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4787 rtx_insn *
4788 emit_call_insn_after (rtx pattern, rtx after)
4789 {
4790 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4791 }
4792
4793 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4794 rtx_insn *
4795 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4796 {
4797 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4798 }
4799
4800 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4801 rtx_insn *
4802 emit_debug_insn_after (rtx pattern, rtx after)
4803 {
4804 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4805 }
4806
4807 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4808 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4809 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4810 CALL_INSN, etc. */
4811
4812 static rtx_insn *
4813 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4814 rtx_insn *(*make_raw) (rtx))
4815 {
4816 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4817 rtx_insn *first = PREV_INSN (before);
4818 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4819 insnp ? before : NULL_RTX,
4820 NULL, make_raw);
4821
4822 if (pattern == NULL_RTX || !loc)
4823 return last;
4824
4825 if (!first)
4826 first = get_insns ();
4827 else
4828 first = NEXT_INSN (first);
4829 while (1)
4830 {
4831 if (active_insn_p (first)
4832 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4833 && !INSN_LOCATION (first))
4834 INSN_LOCATION (first) = loc;
4835 if (first == last)
4836 break;
4837 first = NEXT_INSN (first);
4838 }
4839 return last;
4840 }
4841
4842 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4843 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4844 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4845 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4846
4847 static rtx_insn *
4848 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4849 bool insnp, rtx_insn *(*make_raw) (rtx))
4850 {
4851 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4852 rtx_insn *next = before;
4853
4854 if (skip_debug_insns)
4855 while (DEBUG_INSN_P (next))
4856 next = PREV_INSN (next);
4857
4858 if (INSN_P (next))
4859 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4860 insnp, make_raw);
4861 else
4862 return emit_pattern_before_noloc (pattern, before,
4863 insnp ? before : NULL_RTX,
4864 NULL, make_raw);
4865 }
4866
4867 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4868 rtx_insn *
4869 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4870 {
4871 return emit_pattern_before_setloc (pattern, before, loc, true,
4872 make_insn_raw);
4873 }
4874
4875 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4876 rtx_insn *
4877 emit_insn_before (rtx pattern, rtx before)
4878 {
4879 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4880 }
4881
4882 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4883 rtx_jump_insn *
4884 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4885 {
4886 return as_a <rtx_jump_insn *> (
4887 emit_pattern_before_setloc (pattern, before, loc, false,
4888 make_jump_insn_raw));
4889 }
4890
4891 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4892 rtx_jump_insn *
4893 emit_jump_insn_before (rtx pattern, rtx before)
4894 {
4895 return as_a <rtx_jump_insn *> (
4896 emit_pattern_before (pattern, before, true, false,
4897 make_jump_insn_raw));
4898 }
4899
4900 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4901 rtx_insn *
4902 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4903 {
4904 return emit_pattern_before_setloc (pattern, before, loc, false,
4905 make_call_insn_raw);
4906 }
4907
4908 /* Like emit_call_insn_before_noloc,
4909 but set insn_location according to BEFORE. */
4910 rtx_insn *
4911 emit_call_insn_before (rtx pattern, rtx_insn *before)
4912 {
4913 return emit_pattern_before (pattern, before, true, false,
4914 make_call_insn_raw);
4915 }
4916
4917 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4918 rtx_insn *
4919 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4920 {
4921 return emit_pattern_before_setloc (pattern, before, loc, false,
4922 make_debug_insn_raw);
4923 }
4924
4925 /* Like emit_debug_insn_before_noloc,
4926 but set insn_location according to BEFORE. */
4927 rtx_insn *
4928 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4929 {
4930 return emit_pattern_before (pattern, before, false, false,
4931 make_debug_insn_raw);
4932 }
4933 \f
4934 /* Take X and emit it at the end of the doubly-linked
4935 INSN list.
4936
4937 Returns the last insn emitted. */
4938
4939 rtx_insn *
4940 emit_insn (rtx x)
4941 {
4942 rtx_insn *last = get_last_insn ();
4943 rtx_insn *insn;
4944
4945 if (x == NULL_RTX)
4946 return last;
4947
4948 switch (GET_CODE (x))
4949 {
4950 case DEBUG_INSN:
4951 case INSN:
4952 case JUMP_INSN:
4953 case CALL_INSN:
4954 case CODE_LABEL:
4955 case BARRIER:
4956 case NOTE:
4957 insn = as_a <rtx_insn *> (x);
4958 while (insn)
4959 {
4960 rtx_insn *next = NEXT_INSN (insn);
4961 add_insn (insn);
4962 last = insn;
4963 insn = next;
4964 }
4965 break;
4966
4967 #ifdef ENABLE_RTL_CHECKING
4968 case JUMP_TABLE_DATA:
4969 case SEQUENCE:
4970 gcc_unreachable ();
4971 break;
4972 #endif
4973
4974 default:
4975 last = make_insn_raw (x);
4976 add_insn (last);
4977 break;
4978 }
4979
4980 return last;
4981 }
4982
4983 /* Make an insn of code DEBUG_INSN with pattern X
4984 and add it to the end of the doubly-linked list. */
4985
4986 rtx_insn *
4987 emit_debug_insn (rtx x)
4988 {
4989 rtx_insn *last = get_last_insn ();
4990 rtx_insn *insn;
4991
4992 if (x == NULL_RTX)
4993 return last;
4994
4995 switch (GET_CODE (x))
4996 {
4997 case DEBUG_INSN:
4998 case INSN:
4999 case JUMP_INSN:
5000 case CALL_INSN:
5001 case CODE_LABEL:
5002 case BARRIER:
5003 case NOTE:
5004 insn = as_a <rtx_insn *> (x);
5005 while (insn)
5006 {
5007 rtx_insn *next = NEXT_INSN (insn);
5008 add_insn (insn);
5009 last = insn;
5010 insn = next;
5011 }
5012 break;
5013
5014 #ifdef ENABLE_RTL_CHECKING
5015 case JUMP_TABLE_DATA:
5016 case SEQUENCE:
5017 gcc_unreachable ();
5018 break;
5019 #endif
5020
5021 default:
5022 last = make_debug_insn_raw (x);
5023 add_insn (last);
5024 break;
5025 }
5026
5027 return last;
5028 }
5029
5030 /* Make an insn of code JUMP_INSN with pattern X
5031 and add it to the end of the doubly-linked list. */
5032
5033 rtx_insn *
5034 emit_jump_insn (rtx x)
5035 {
5036 rtx_insn *last = NULL;
5037 rtx_insn *insn;
5038
5039 switch (GET_CODE (x))
5040 {
5041 case DEBUG_INSN:
5042 case INSN:
5043 case JUMP_INSN:
5044 case CALL_INSN:
5045 case CODE_LABEL:
5046 case BARRIER:
5047 case NOTE:
5048 insn = as_a <rtx_insn *> (x);
5049 while (insn)
5050 {
5051 rtx_insn *next = NEXT_INSN (insn);
5052 add_insn (insn);
5053 last = insn;
5054 insn = next;
5055 }
5056 break;
5057
5058 #ifdef ENABLE_RTL_CHECKING
5059 case JUMP_TABLE_DATA:
5060 case SEQUENCE:
5061 gcc_unreachable ();
5062 break;
5063 #endif
5064
5065 default:
5066 last = make_jump_insn_raw (x);
5067 add_insn (last);
5068 break;
5069 }
5070
5071 return last;
5072 }
5073
5074 /* Make an insn of code CALL_INSN with pattern X
5075 and add it to the end of the doubly-linked list. */
5076
5077 rtx_insn *
5078 emit_call_insn (rtx x)
5079 {
5080 rtx_insn *insn;
5081
5082 switch (GET_CODE (x))
5083 {
5084 case DEBUG_INSN:
5085 case INSN:
5086 case JUMP_INSN:
5087 case CALL_INSN:
5088 case CODE_LABEL:
5089 case BARRIER:
5090 case NOTE:
5091 insn = emit_insn (x);
5092 break;
5093
5094 #ifdef ENABLE_RTL_CHECKING
5095 case SEQUENCE:
5096 case JUMP_TABLE_DATA:
5097 gcc_unreachable ();
5098 break;
5099 #endif
5100
5101 default:
5102 insn = make_call_insn_raw (x);
5103 add_insn (insn);
5104 break;
5105 }
5106
5107 return insn;
5108 }
5109
5110 /* Add the label LABEL to the end of the doubly-linked list. */
5111
5112 rtx_code_label *
5113 emit_label (rtx uncast_label)
5114 {
5115 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5116
5117 gcc_checking_assert (INSN_UID (label) == 0);
5118 INSN_UID (label) = cur_insn_uid++;
5119 add_insn (label);
5120 return label;
5121 }
5122
5123 /* Make an insn of code JUMP_TABLE_DATA
5124 and add it to the end of the doubly-linked list. */
5125
5126 rtx_jump_table_data *
5127 emit_jump_table_data (rtx table)
5128 {
5129 rtx_jump_table_data *jump_table_data =
5130 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5131 INSN_UID (jump_table_data) = cur_insn_uid++;
5132 PATTERN (jump_table_data) = table;
5133 BLOCK_FOR_INSN (jump_table_data) = NULL;
5134 add_insn (jump_table_data);
5135 return jump_table_data;
5136 }
5137
5138 /* Make an insn of code BARRIER
5139 and add it to the end of the doubly-linked list. */
5140
5141 rtx_barrier *
5142 emit_barrier (void)
5143 {
5144 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5145 INSN_UID (barrier) = cur_insn_uid++;
5146 add_insn (barrier);
5147 return barrier;
5148 }
5149
5150 /* Emit a copy of note ORIG. */
5151
5152 rtx_note *
5153 emit_note_copy (rtx_note *orig)
5154 {
5155 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5156 rtx_note *note = make_note_raw (kind);
5157 NOTE_DATA (note) = NOTE_DATA (orig);
5158 add_insn (note);
5159 return note;
5160 }
5161
5162 /* Make an insn of code NOTE or type NOTE_NO
5163 and add it to the end of the doubly-linked list. */
5164
5165 rtx_note *
5166 emit_note (enum insn_note kind)
5167 {
5168 rtx_note *note = make_note_raw (kind);
5169 add_insn (note);
5170 return note;
5171 }
5172
5173 /* Emit a clobber of lvalue X. */
5174
5175 rtx_insn *
5176 emit_clobber (rtx x)
5177 {
5178 /* CONCATs should not appear in the insn stream. */
5179 if (GET_CODE (x) == CONCAT)
5180 {
5181 emit_clobber (XEXP (x, 0));
5182 return emit_clobber (XEXP (x, 1));
5183 }
5184 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5185 }
5186
5187 /* Return a sequence of insns to clobber lvalue X. */
5188
5189 rtx_insn *
5190 gen_clobber (rtx x)
5191 {
5192 rtx_insn *seq;
5193
5194 start_sequence ();
5195 emit_clobber (x);
5196 seq = get_insns ();
5197 end_sequence ();
5198 return seq;
5199 }
5200
5201 /* Emit a use of rvalue X. */
5202
5203 rtx_insn *
5204 emit_use (rtx x)
5205 {
5206 /* CONCATs should not appear in the insn stream. */
5207 if (GET_CODE (x) == CONCAT)
5208 {
5209 emit_use (XEXP (x, 0));
5210 return emit_use (XEXP (x, 1));
5211 }
5212 return emit_insn (gen_rtx_USE (VOIDmode, x));
5213 }
5214
5215 /* Return a sequence of insns to use rvalue X. */
5216
5217 rtx_insn *
5218 gen_use (rtx x)
5219 {
5220 rtx_insn *seq;
5221
5222 start_sequence ();
5223 emit_use (x);
5224 seq = get_insns ();
5225 end_sequence ();
5226 return seq;
5227 }
5228
5229 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5230 Return the set in INSN that such notes describe, or NULL if the notes
5231 have no meaning for INSN. */
5232
5233 rtx
5234 set_for_reg_notes (rtx insn)
5235 {
5236 rtx pat, reg;
5237
5238 if (!INSN_P (insn))
5239 return NULL_RTX;
5240
5241 pat = PATTERN (insn);
5242 if (GET_CODE (pat) == PARALLEL)
5243 {
5244 /* We do not use single_set because that ignores SETs of unused
5245 registers. REG_EQUAL and REG_EQUIV notes really do require the
5246 PARALLEL to have a single SET. */
5247 if (multiple_sets (insn))
5248 return NULL_RTX;
5249 pat = XVECEXP (pat, 0, 0);
5250 }
5251
5252 if (GET_CODE (pat) != SET)
5253 return NULL_RTX;
5254
5255 reg = SET_DEST (pat);
5256
5257 /* Notes apply to the contents of a STRICT_LOW_PART. */
5258 if (GET_CODE (reg) == STRICT_LOW_PART
5259 || GET_CODE (reg) == ZERO_EXTRACT)
5260 reg = XEXP (reg, 0);
5261
5262 /* Check that we have a register. */
5263 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5264 return NULL_RTX;
5265
5266 return pat;
5267 }
5268
5269 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5270 note of this type already exists, remove it first. */
5271
5272 rtx
5273 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5274 {
5275 rtx note = find_reg_note (insn, kind, NULL_RTX);
5276
5277 switch (kind)
5278 {
5279 case REG_EQUAL:
5280 case REG_EQUIV:
5281 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5282 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5283 return NULL_RTX;
5284
5285 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5286 It serves no useful purpose and breaks eliminate_regs. */
5287 if (GET_CODE (datum) == ASM_OPERANDS)
5288 return NULL_RTX;
5289
5290 /* Notes with side effects are dangerous. Even if the side-effect
5291 initially mirrors one in PATTERN (INSN), later optimizations
5292 might alter the way that the final register value is calculated
5293 and so move or alter the side-effect in some way. The note would
5294 then no longer be a valid substitution for SET_SRC. */
5295 if (side_effects_p (datum))
5296 return NULL_RTX;
5297 break;
5298
5299 default:
5300 break;
5301 }
5302
5303 if (note)
5304 XEXP (note, 0) = datum;
5305 else
5306 {
5307 add_reg_note (insn, kind, datum);
5308 note = REG_NOTES (insn);
5309 }
5310
5311 switch (kind)
5312 {
5313 case REG_EQUAL:
5314 case REG_EQUIV:
5315 df_notes_rescan (as_a <rtx_insn *> (insn));
5316 break;
5317 default:
5318 break;
5319 }
5320
5321 return note;
5322 }
5323
5324 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5325 rtx
5326 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5327 {
5328 rtx set = set_for_reg_notes (insn);
5329
5330 if (set && SET_DEST (set) == dst)
5331 return set_unique_reg_note (insn, kind, datum);
5332 return NULL_RTX;
5333 }
5334 \f
5335 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5336 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5337 is true.
5338
5339 If X is a label, it is simply added into the insn chain. */
5340
5341 rtx_insn *
5342 emit (rtx x, bool allow_barrier_p)
5343 {
5344 enum rtx_code code = classify_insn (x);
5345
5346 switch (code)
5347 {
5348 case CODE_LABEL:
5349 return emit_label (x);
5350 case INSN:
5351 return emit_insn (x);
5352 case JUMP_INSN:
5353 {
5354 rtx_insn *insn = emit_jump_insn (x);
5355 if (allow_barrier_p
5356 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5357 return emit_barrier ();
5358 return insn;
5359 }
5360 case CALL_INSN:
5361 return emit_call_insn (x);
5362 case DEBUG_INSN:
5363 return emit_debug_insn (x);
5364 default:
5365 gcc_unreachable ();
5366 }
5367 }
5368 \f
5369 /* Space for free sequence stack entries. */
5370 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5371
5372 /* Begin emitting insns to a sequence. If this sequence will contain
5373 something that might cause the compiler to pop arguments to function
5374 calls (because those pops have previously been deferred; see
5375 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5376 before calling this function. That will ensure that the deferred
5377 pops are not accidentally emitted in the middle of this sequence. */
5378
5379 void
5380 start_sequence (void)
5381 {
5382 struct sequence_stack *tem;
5383
5384 if (free_sequence_stack != NULL)
5385 {
5386 tem = free_sequence_stack;
5387 free_sequence_stack = tem->next;
5388 }
5389 else
5390 tem = ggc_alloc<sequence_stack> ();
5391
5392 tem->next = get_current_sequence ()->next;
5393 tem->first = get_insns ();
5394 tem->last = get_last_insn ();
5395 get_current_sequence ()->next = tem;
5396
5397 set_first_insn (0);
5398 set_last_insn (0);
5399 }
5400
5401 /* Set up the insn chain starting with FIRST as the current sequence,
5402 saving the previously current one. See the documentation for
5403 start_sequence for more information about how to use this function. */
5404
5405 void
5406 push_to_sequence (rtx_insn *first)
5407 {
5408 rtx_insn *last;
5409
5410 start_sequence ();
5411
5412 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5413 ;
5414
5415 set_first_insn (first);
5416 set_last_insn (last);
5417 }
5418
5419 /* Like push_to_sequence, but take the last insn as an argument to avoid
5420 looping through the list. */
5421
5422 void
5423 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5424 {
5425 start_sequence ();
5426
5427 set_first_insn (first);
5428 set_last_insn (last);
5429 }
5430
5431 /* Set up the outer-level insn chain
5432 as the current sequence, saving the previously current one. */
5433
5434 void
5435 push_topmost_sequence (void)
5436 {
5437 struct sequence_stack *top;
5438
5439 start_sequence ();
5440
5441 top = get_topmost_sequence ();
5442 set_first_insn (top->first);
5443 set_last_insn (top->last);
5444 }
5445
5446 /* After emitting to the outer-level insn chain, update the outer-level
5447 insn chain, and restore the previous saved state. */
5448
5449 void
5450 pop_topmost_sequence (void)
5451 {
5452 struct sequence_stack *top;
5453
5454 top = get_topmost_sequence ();
5455 top->first = get_insns ();
5456 top->last = get_last_insn ();
5457
5458 end_sequence ();
5459 }
5460
5461 /* After emitting to a sequence, restore previous saved state.
5462
5463 To get the contents of the sequence just made, you must call
5464 `get_insns' *before* calling here.
5465
5466 If the compiler might have deferred popping arguments while
5467 generating this sequence, and this sequence will not be immediately
5468 inserted into the instruction stream, use do_pending_stack_adjust
5469 before calling get_insns. That will ensure that the deferred
5470 pops are inserted into this sequence, and not into some random
5471 location in the instruction stream. See INHIBIT_DEFER_POP for more
5472 information about deferred popping of arguments. */
5473
5474 void
5475 end_sequence (void)
5476 {
5477 struct sequence_stack *tem = get_current_sequence ()->next;
5478
5479 set_first_insn (tem->first);
5480 set_last_insn (tem->last);
5481 get_current_sequence ()->next = tem->next;
5482
5483 memset (tem, 0, sizeof (*tem));
5484 tem->next = free_sequence_stack;
5485 free_sequence_stack = tem;
5486 }
5487
5488 /* Return 1 if currently emitting into a sequence. */
5489
5490 int
5491 in_sequence_p (void)
5492 {
5493 return get_current_sequence ()->next != 0;
5494 }
5495 \f
5496 /* Put the various virtual registers into REGNO_REG_RTX. */
5497
5498 static void
5499 init_virtual_regs (void)
5500 {
5501 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5502 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5503 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5504 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5505 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5506 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5507 = virtual_preferred_stack_boundary_rtx;
5508 }
5509
5510 \f
5511 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5512 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5513 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5514 static int copy_insn_n_scratches;
5515
5516 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5517 copied an ASM_OPERANDS.
5518 In that case, it is the original input-operand vector. */
5519 static rtvec orig_asm_operands_vector;
5520
5521 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5522 copied an ASM_OPERANDS.
5523 In that case, it is the copied input-operand vector. */
5524 static rtvec copy_asm_operands_vector;
5525
5526 /* Likewise for the constraints vector. */
5527 static rtvec orig_asm_constraints_vector;
5528 static rtvec copy_asm_constraints_vector;
5529
5530 /* Recursively create a new copy of an rtx for copy_insn.
5531 This function differs from copy_rtx in that it handles SCRATCHes and
5532 ASM_OPERANDs properly.
5533 Normally, this function is not used directly; use copy_insn as front end.
5534 However, you could first copy an insn pattern with copy_insn and then use
5535 this function afterwards to properly copy any REG_NOTEs containing
5536 SCRATCHes. */
5537
5538 rtx
5539 copy_insn_1 (rtx orig)
5540 {
5541 rtx copy;
5542 int i, j;
5543 RTX_CODE code;
5544 const char *format_ptr;
5545
5546 if (orig == NULL)
5547 return NULL;
5548
5549 code = GET_CODE (orig);
5550
5551 switch (code)
5552 {
5553 case REG:
5554 case DEBUG_EXPR:
5555 CASE_CONST_ANY:
5556 case SYMBOL_REF:
5557 case CODE_LABEL:
5558 case PC:
5559 case CC0:
5560 case RETURN:
5561 case SIMPLE_RETURN:
5562 return orig;
5563 case CLOBBER:
5564 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5565 clobbers or clobbers of hard registers that originated as pseudos.
5566 This is needed to allow safe register renaming. */
5567 if (REG_P (XEXP (orig, 0))
5568 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5569 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5570 return orig;
5571 break;
5572
5573 case SCRATCH:
5574 for (i = 0; i < copy_insn_n_scratches; i++)
5575 if (copy_insn_scratch_in[i] == orig)
5576 return copy_insn_scratch_out[i];
5577 break;
5578
5579 case CONST:
5580 if (shared_const_p (orig))
5581 return orig;
5582 break;
5583
5584 /* A MEM with a constant address is not sharable. The problem is that
5585 the constant address may need to be reloaded. If the mem is shared,
5586 then reloading one copy of this mem will cause all copies to appear
5587 to have been reloaded. */
5588
5589 default:
5590 break;
5591 }
5592
5593 /* Copy the various flags, fields, and other information. We assume
5594 that all fields need copying, and then clear the fields that should
5595 not be copied. That is the sensible default behavior, and forces
5596 us to explicitly document why we are *not* copying a flag. */
5597 copy = shallow_copy_rtx (orig);
5598
5599 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5600 if (INSN_P (orig))
5601 {
5602 RTX_FLAG (copy, jump) = 0;
5603 RTX_FLAG (copy, call) = 0;
5604 RTX_FLAG (copy, frame_related) = 0;
5605 }
5606
5607 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5608
5609 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5610 switch (*format_ptr++)
5611 {
5612 case 'e':
5613 if (XEXP (orig, i) != NULL)
5614 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5615 break;
5616
5617 case 'E':
5618 case 'V':
5619 if (XVEC (orig, i) == orig_asm_constraints_vector)
5620 XVEC (copy, i) = copy_asm_constraints_vector;
5621 else if (XVEC (orig, i) == orig_asm_operands_vector)
5622 XVEC (copy, i) = copy_asm_operands_vector;
5623 else if (XVEC (orig, i) != NULL)
5624 {
5625 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5626 for (j = 0; j < XVECLEN (copy, i); j++)
5627 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5628 }
5629 break;
5630
5631 case 't':
5632 case 'w':
5633 case 'i':
5634 case 's':
5635 case 'S':
5636 case 'u':
5637 case '0':
5638 /* These are left unchanged. */
5639 break;
5640
5641 default:
5642 gcc_unreachable ();
5643 }
5644
5645 if (code == SCRATCH)
5646 {
5647 i = copy_insn_n_scratches++;
5648 gcc_assert (i < MAX_RECOG_OPERANDS);
5649 copy_insn_scratch_in[i] = orig;
5650 copy_insn_scratch_out[i] = copy;
5651 }
5652 else if (code == ASM_OPERANDS)
5653 {
5654 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5655 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5656 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5657 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5658 }
5659
5660 return copy;
5661 }
5662
5663 /* Create a new copy of an rtx.
5664 This function differs from copy_rtx in that it handles SCRATCHes and
5665 ASM_OPERANDs properly.
5666 INSN doesn't really have to be a full INSN; it could be just the
5667 pattern. */
5668 rtx
5669 copy_insn (rtx insn)
5670 {
5671 copy_insn_n_scratches = 0;
5672 orig_asm_operands_vector = 0;
5673 orig_asm_constraints_vector = 0;
5674 copy_asm_operands_vector = 0;
5675 copy_asm_constraints_vector = 0;
5676 return copy_insn_1 (insn);
5677 }
5678
5679 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5680 on that assumption that INSN itself remains in its original place. */
5681
5682 rtx_insn *
5683 copy_delay_slot_insn (rtx_insn *insn)
5684 {
5685 /* Copy INSN with its rtx_code, all its notes, location etc. */
5686 insn = as_a <rtx_insn *> (copy_rtx (insn));
5687 INSN_UID (insn) = cur_insn_uid++;
5688 return insn;
5689 }
5690
5691 /* Initialize data structures and variables in this file
5692 before generating rtl for each function. */
5693
5694 void
5695 init_emit (void)
5696 {
5697 set_first_insn (NULL);
5698 set_last_insn (NULL);
5699 if (MIN_NONDEBUG_INSN_UID)
5700 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5701 else
5702 cur_insn_uid = 1;
5703 cur_debug_insn_uid = 1;
5704 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5705 first_label_num = label_num;
5706 get_current_sequence ()->next = NULL;
5707
5708 /* Init the tables that describe all the pseudo regs. */
5709
5710 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5711
5712 crtl->emit.regno_pointer_align
5713 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5714
5715 regno_reg_rtx
5716 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5717
5718 /* Put copies of all the hard registers into regno_reg_rtx. */
5719 memcpy (regno_reg_rtx,
5720 initial_regno_reg_rtx,
5721 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5722
5723 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5724 init_virtual_regs ();
5725
5726 /* Indicate that the virtual registers and stack locations are
5727 all pointers. */
5728 REG_POINTER (stack_pointer_rtx) = 1;
5729 REG_POINTER (frame_pointer_rtx) = 1;
5730 REG_POINTER (hard_frame_pointer_rtx) = 1;
5731 REG_POINTER (arg_pointer_rtx) = 1;
5732
5733 REG_POINTER (virtual_incoming_args_rtx) = 1;
5734 REG_POINTER (virtual_stack_vars_rtx) = 1;
5735 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5736 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5737 REG_POINTER (virtual_cfa_rtx) = 1;
5738
5739 #ifdef STACK_BOUNDARY
5740 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5741 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5742 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5743 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5744
5745 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5746 32-bit SPARC and cannot be all fixed because of the ABI). */
5747 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5748 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5749 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5750 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5751
5752 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5753 #endif
5754
5755 #ifdef INIT_EXPANDERS
5756 INIT_EXPANDERS;
5757 #endif
5758 }
5759
5760 /* Like gen_const_vec_duplicate, but ignore const_tiny_rtx. */
5761
5762 static rtx
5763 gen_const_vec_duplicate_1 (machine_mode mode, rtx el)
5764 {
5765 int nunits = GET_MODE_NUNITS (mode);
5766 rtvec v = rtvec_alloc (nunits);
5767 for (int i = 0; i < nunits; ++i)
5768 RTVEC_ELT (v, i) = el;
5769 return gen_rtx_raw_CONST_VECTOR (mode, v);
5770 }
5771
5772 /* Generate a vector constant of mode MODE in which every element has
5773 value ELT. */
5774
5775 rtx
5776 gen_const_vec_duplicate (machine_mode mode, rtx elt)
5777 {
5778 scalar_mode inner_mode = GET_MODE_INNER (mode);
5779 if (elt == CONST0_RTX (inner_mode))
5780 return CONST0_RTX (mode);
5781 else if (elt == CONST1_RTX (inner_mode))
5782 return CONST1_RTX (mode);
5783 else if (elt == CONSTM1_RTX (inner_mode))
5784 return CONSTM1_RTX (mode);
5785
5786 return gen_const_vec_duplicate_1 (mode, elt);
5787 }
5788
5789 /* Return a vector rtx of mode MODE in which every element has value X.
5790 The result will be a constant if X is constant. */
5791
5792 rtx
5793 gen_vec_duplicate (machine_mode mode, rtx x)
5794 {
5795 if (CONSTANT_P (x))
5796 return gen_const_vec_duplicate (mode, x);
5797 return gen_rtx_VEC_DUPLICATE (mode, x);
5798 }
5799
5800 /* A subroutine of const_vec_series_p that handles the case in which
5801 X is known to be an integer CONST_VECTOR. */
5802
5803 bool
5804 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5805 {
5806 unsigned int nelts = CONST_VECTOR_NUNITS (x);
5807 if (nelts < 2)
5808 return false;
5809
5810 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5811 rtx base = CONST_VECTOR_ELT (x, 0);
5812 rtx step = simplify_binary_operation (MINUS, inner,
5813 CONST_VECTOR_ELT (x, 1), base);
5814 if (rtx_equal_p (step, CONST0_RTX (inner)))
5815 return false;
5816
5817 for (unsigned int i = 2; i < nelts; ++i)
5818 {
5819 rtx diff = simplify_binary_operation (MINUS, inner,
5820 CONST_VECTOR_ELT (x, i),
5821 CONST_VECTOR_ELT (x, i - 1));
5822 if (!rtx_equal_p (step, diff))
5823 return false;
5824 }
5825
5826 *base_out = base;
5827 *step_out = step;
5828 return true;
5829 }
5830
5831 /* Generate a vector constant of mode MODE in which element I has
5832 the value BASE + I * STEP. */
5833
5834 rtx
5835 gen_const_vec_series (machine_mode mode, rtx base, rtx step)
5836 {
5837 gcc_assert (CONSTANT_P (base) && CONSTANT_P (step));
5838
5839 int nunits = GET_MODE_NUNITS (mode);
5840 rtvec v = rtvec_alloc (nunits);
5841 scalar_mode inner_mode = GET_MODE_INNER (mode);
5842 RTVEC_ELT (v, 0) = base;
5843 for (int i = 1; i < nunits; ++i)
5844 RTVEC_ELT (v, i) = simplify_gen_binary (PLUS, inner_mode,
5845 RTVEC_ELT (v, i - 1), step);
5846 return gen_rtx_raw_CONST_VECTOR (mode, v);
5847 }
5848
5849 /* Generate a vector of mode MODE in which element I has the value
5850 BASE + I * STEP. The result will be a constant if BASE and STEP
5851 are both constants. */
5852
5853 rtx
5854 gen_vec_series (machine_mode mode, rtx base, rtx step)
5855 {
5856 if (step == const0_rtx)
5857 return gen_vec_duplicate (mode, base);
5858 if (CONSTANT_P (base) && CONSTANT_P (step))
5859 return gen_const_vec_series (mode, base, step);
5860 return gen_rtx_VEC_SERIES (mode, base, step);
5861 }
5862
5863 /* Generate a new vector constant for mode MODE and constant value
5864 CONSTANT. */
5865
5866 static rtx
5867 gen_const_vector (machine_mode mode, int constant)
5868 {
5869 machine_mode inner = GET_MODE_INNER (mode);
5870
5871 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5872
5873 rtx el = const_tiny_rtx[constant][(int) inner];
5874 gcc_assert (el);
5875
5876 return gen_const_vec_duplicate_1 (mode, el);
5877 }
5878
5879 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5880 all elements are zero, and the one vector when all elements are one. */
5881 rtx
5882 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5883 {
5884 gcc_assert (GET_MODE_NUNITS (mode) == GET_NUM_ELEM (v));
5885
5886 /* If the values are all the same, check to see if we can use one of the
5887 standard constant vectors. */
5888 if (rtvec_all_equal_p (v))
5889 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
5890
5891 return gen_rtx_raw_CONST_VECTOR (mode, v);
5892 }
5893
5894 /* Initialise global register information required by all functions. */
5895
5896 void
5897 init_emit_regs (void)
5898 {
5899 int i;
5900 machine_mode mode;
5901 mem_attrs *attrs;
5902
5903 /* Reset register attributes */
5904 reg_attrs_htab->empty ();
5905
5906 /* We need reg_raw_mode, so initialize the modes now. */
5907 init_reg_modes_target ();
5908
5909 /* Assign register numbers to the globally defined register rtx. */
5910 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5911 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5912 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5913 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5914 virtual_incoming_args_rtx =
5915 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5916 virtual_stack_vars_rtx =
5917 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5918 virtual_stack_dynamic_rtx =
5919 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5920 virtual_outgoing_args_rtx =
5921 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5922 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5923 virtual_preferred_stack_boundary_rtx =
5924 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5925
5926 /* Initialize RTL for commonly used hard registers. These are
5927 copied into regno_reg_rtx as we begin to compile each function. */
5928 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5929 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5930
5931 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5932 return_address_pointer_rtx
5933 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5934 #endif
5935
5936 pic_offset_table_rtx = NULL_RTX;
5937 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5938 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5939
5940 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5941 {
5942 mode = (machine_mode) i;
5943 attrs = ggc_cleared_alloc<mem_attrs> ();
5944 attrs->align = BITS_PER_UNIT;
5945 attrs->addrspace = ADDR_SPACE_GENERIC;
5946 if (mode != BLKmode)
5947 {
5948 attrs->size_known_p = true;
5949 attrs->size = GET_MODE_SIZE (mode);
5950 if (STRICT_ALIGNMENT)
5951 attrs->align = GET_MODE_ALIGNMENT (mode);
5952 }
5953 mode_mem_attrs[i] = attrs;
5954 }
5955
5956 split_branch_probability = profile_probability::uninitialized ();
5957 }
5958
5959 /* Initialize global machine_mode variables. */
5960
5961 void
5962 init_derived_machine_modes (void)
5963 {
5964 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
5965 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
5966 {
5967 scalar_int_mode mode = mode_iter.require ();
5968
5969 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5970 && !opt_byte_mode.exists ())
5971 opt_byte_mode = mode;
5972
5973 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5974 && !opt_word_mode.exists ())
5975 opt_word_mode = mode;
5976 }
5977
5978 byte_mode = opt_byte_mode.require ();
5979 word_mode = opt_word_mode.require ();
5980 ptr_mode = int_mode_for_size (POINTER_SIZE, 0).require ();
5981 }
5982
5983 /* Create some permanent unique rtl objects shared between all functions. */
5984
5985 void
5986 init_emit_once (void)
5987 {
5988 int i;
5989 machine_mode mode;
5990 scalar_float_mode double_mode;
5991 opt_scalar_mode smode_iter;
5992
5993 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5994 CONST_FIXED, and memory attribute hash tables. */
5995 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5996
5997 #if TARGET_SUPPORTS_WIDE_INT
5998 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5999 #endif
6000 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
6001
6002 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
6003
6004 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
6005
6006 #ifdef INIT_EXPANDERS
6007 /* This is to initialize {init|mark|free}_machine_status before the first
6008 call to push_function_context_to. This is needed by the Chill front
6009 end which calls push_function_context_to before the first call to
6010 init_function_start. */
6011 INIT_EXPANDERS;
6012 #endif
6013
6014 /* Create the unique rtx's for certain rtx codes and operand values. */
6015
6016 /* Process stack-limiting command-line options. */
6017 if (opt_fstack_limit_symbol_arg != NULL)
6018 stack_limit_rtx
6019 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6020 if (opt_fstack_limit_register_no >= 0)
6021 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6022
6023 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6024 tries to use these variables. */
6025 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
6026 const_int_rtx[i + MAX_SAVED_CONST_INT] =
6027 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
6028
6029 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6030 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
6031 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
6032 else
6033 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
6034
6035 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
6036
6037 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6038 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6039 real_from_integer (&dconst2, double_mode, 2, SIGNED);
6040
6041 dconstm1 = dconst1;
6042 dconstm1.sign = 1;
6043
6044 dconsthalf = dconst1;
6045 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
6046
6047 for (i = 0; i < 3; i++)
6048 {
6049 const REAL_VALUE_TYPE *const r =
6050 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6051
6052 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
6053 const_tiny_rtx[i][(int) mode] =
6054 const_double_from_real_value (*r, mode);
6055
6056 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
6057 const_tiny_rtx[i][(int) mode] =
6058 const_double_from_real_value (*r, mode);
6059
6060 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
6061
6062 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6063 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6064
6065 for (mode = MIN_MODE_PARTIAL_INT;
6066 mode <= MAX_MODE_PARTIAL_INT;
6067 mode = (machine_mode)((int)(mode) + 1))
6068 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6069 }
6070
6071 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6072
6073 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6074 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6075
6076 for (mode = MIN_MODE_PARTIAL_INT;
6077 mode <= MAX_MODE_PARTIAL_INT;
6078 mode = (machine_mode)((int)(mode) + 1))
6079 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6080
6081 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6082 {
6083 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6084 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6085 }
6086
6087 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6088 {
6089 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6090 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6091 }
6092
6093 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6094 {
6095 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6096 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6097 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6098 }
6099
6100 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6101 {
6102 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6103 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6104 }
6105
6106 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6107 {
6108 scalar_mode smode = smode_iter.require ();
6109 FCONST0 (smode).data.high = 0;
6110 FCONST0 (smode).data.low = 0;
6111 FCONST0 (smode).mode = smode;
6112 const_tiny_rtx[0][(int) smode]
6113 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6114 }
6115
6116 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6117 {
6118 scalar_mode smode = smode_iter.require ();
6119 FCONST0 (smode).data.high = 0;
6120 FCONST0 (smode).data.low = 0;
6121 FCONST0 (smode).mode = smode;
6122 const_tiny_rtx[0][(int) smode]
6123 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6124 }
6125
6126 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6127 {
6128 scalar_mode smode = smode_iter.require ();
6129 FCONST0 (smode).data.high = 0;
6130 FCONST0 (smode).data.low = 0;
6131 FCONST0 (smode).mode = smode;
6132 const_tiny_rtx[0][(int) smode]
6133 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6134
6135 /* We store the value 1. */
6136 FCONST1 (smode).data.high = 0;
6137 FCONST1 (smode).data.low = 0;
6138 FCONST1 (smode).mode = smode;
6139 FCONST1 (smode).data
6140 = double_int_one.lshift (GET_MODE_FBIT (smode),
6141 HOST_BITS_PER_DOUBLE_INT,
6142 SIGNED_FIXED_POINT_MODE_P (smode));
6143 const_tiny_rtx[1][(int) smode]
6144 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6145 }
6146
6147 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6148 {
6149 scalar_mode smode = smode_iter.require ();
6150 FCONST0 (smode).data.high = 0;
6151 FCONST0 (smode).data.low = 0;
6152 FCONST0 (smode).mode = smode;
6153 const_tiny_rtx[0][(int) smode]
6154 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6155
6156 /* We store the value 1. */
6157 FCONST1 (smode).data.high = 0;
6158 FCONST1 (smode).data.low = 0;
6159 FCONST1 (smode).mode = smode;
6160 FCONST1 (smode).data
6161 = double_int_one.lshift (GET_MODE_FBIT (smode),
6162 HOST_BITS_PER_DOUBLE_INT,
6163 SIGNED_FIXED_POINT_MODE_P (smode));
6164 const_tiny_rtx[1][(int) smode]
6165 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6166 }
6167
6168 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6169 {
6170 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6171 }
6172
6173 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6174 {
6175 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6176 }
6177
6178 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6179 {
6180 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6181 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6182 }
6183
6184 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6185 {
6186 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6187 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6188 }
6189
6190 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6191 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6192 const_tiny_rtx[0][i] = const0_rtx;
6193
6194 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6195 if (STORE_FLAG_VALUE == 1)
6196 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6197
6198 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_POINTER_BOUNDS)
6199 {
6200 scalar_mode smode = smode_iter.require ();
6201 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (smode));
6202 const_tiny_rtx[0][smode] = immed_wide_int_const (wi_zero, smode);
6203 }
6204
6205 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6206 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6207 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6208 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6209 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6210 /*prev_insn=*/NULL,
6211 /*next_insn=*/NULL,
6212 /*bb=*/NULL,
6213 /*pattern=*/NULL_RTX,
6214 /*location=*/-1,
6215 CODE_FOR_nothing,
6216 /*reg_notes=*/NULL_RTX);
6217 }
6218 \f
6219 /* Produce exact duplicate of insn INSN after AFTER.
6220 Care updating of libcall regions if present. */
6221
6222 rtx_insn *
6223 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6224 {
6225 rtx_insn *new_rtx;
6226 rtx link;
6227
6228 switch (GET_CODE (insn))
6229 {
6230 case INSN:
6231 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6232 break;
6233
6234 case JUMP_INSN:
6235 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6236 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6237 break;
6238
6239 case DEBUG_INSN:
6240 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6241 break;
6242
6243 case CALL_INSN:
6244 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6245 if (CALL_INSN_FUNCTION_USAGE (insn))
6246 CALL_INSN_FUNCTION_USAGE (new_rtx)
6247 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6248 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6249 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6250 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6251 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6252 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6253 break;
6254
6255 default:
6256 gcc_unreachable ();
6257 }
6258
6259 /* Update LABEL_NUSES. */
6260 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6261
6262 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6263
6264 /* If the old insn is frame related, then so is the new one. This is
6265 primarily needed for IA-64 unwind info which marks epilogue insns,
6266 which may be duplicated by the basic block reordering code. */
6267 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6268
6269 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6270 rtx *ptail = &REG_NOTES (new_rtx);
6271 while (*ptail != NULL_RTX)
6272 ptail = &XEXP (*ptail, 1);
6273
6274 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6275 will make them. REG_LABEL_TARGETs are created there too, but are
6276 supposed to be sticky, so we copy them. */
6277 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6278 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6279 {
6280 *ptail = duplicate_reg_note (link);
6281 ptail = &XEXP (*ptail, 1);
6282 }
6283
6284 INSN_CODE (new_rtx) = INSN_CODE (insn);
6285 return new_rtx;
6286 }
6287
6288 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6289 rtx
6290 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6291 {
6292 if (hard_reg_clobbers[mode][regno])
6293 return hard_reg_clobbers[mode][regno];
6294 else
6295 return (hard_reg_clobbers[mode][regno] =
6296 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6297 }
6298
6299 location_t prologue_location;
6300 location_t epilogue_location;
6301
6302 /* Hold current location information and last location information, so the
6303 datastructures are built lazily only when some instructions in given
6304 place are needed. */
6305 static location_t curr_location;
6306
6307 /* Allocate insn location datastructure. */
6308 void
6309 insn_locations_init (void)
6310 {
6311 prologue_location = epilogue_location = 0;
6312 curr_location = UNKNOWN_LOCATION;
6313 }
6314
6315 /* At the end of emit stage, clear current location. */
6316 void
6317 insn_locations_finalize (void)
6318 {
6319 epilogue_location = curr_location;
6320 curr_location = UNKNOWN_LOCATION;
6321 }
6322
6323 /* Set current location. */
6324 void
6325 set_curr_insn_location (location_t location)
6326 {
6327 curr_location = location;
6328 }
6329
6330 /* Get current location. */
6331 location_t
6332 curr_insn_location (void)
6333 {
6334 return curr_location;
6335 }
6336
6337 /* Return lexical scope block insn belongs to. */
6338 tree
6339 insn_scope (const rtx_insn *insn)
6340 {
6341 return LOCATION_BLOCK (INSN_LOCATION (insn));
6342 }
6343
6344 /* Return line number of the statement that produced this insn. */
6345 int
6346 insn_line (const rtx_insn *insn)
6347 {
6348 return LOCATION_LINE (INSN_LOCATION (insn));
6349 }
6350
6351 /* Return source file of the statement that produced this insn. */
6352 const char *
6353 insn_file (const rtx_insn *insn)
6354 {
6355 return LOCATION_FILE (INSN_LOCATION (insn));
6356 }
6357
6358 /* Return expanded location of the statement that produced this insn. */
6359 expanded_location
6360 insn_location (const rtx_insn *insn)
6361 {
6362 return expand_location (INSN_LOCATION (insn));
6363 }
6364
6365 /* Return true if memory model MODEL requires a pre-operation (release-style)
6366 barrier or a post-operation (acquire-style) barrier. While not universal,
6367 this function matches behavior of several targets. */
6368
6369 bool
6370 need_atomic_barrier_p (enum memmodel model, bool pre)
6371 {
6372 switch (model & MEMMODEL_BASE_MASK)
6373 {
6374 case MEMMODEL_RELAXED:
6375 case MEMMODEL_CONSUME:
6376 return false;
6377 case MEMMODEL_RELEASE:
6378 return pre;
6379 case MEMMODEL_ACQUIRE:
6380 return !pre;
6381 case MEMMODEL_ACQ_REL:
6382 case MEMMODEL_SEQ_CST:
6383 return true;
6384 default:
6385 gcc_unreachable ();
6386 }
6387 }
6388
6389 /* Initialize fields of rtl_data related to stack alignment. */
6390
6391 void
6392 rtl_data::init_stack_alignment ()
6393 {
6394 stack_alignment_needed = STACK_BOUNDARY;
6395 max_used_stack_slot_alignment = STACK_BOUNDARY;
6396 stack_alignment_estimated = 0;
6397 preferred_stack_boundary = STACK_BOUNDARY;
6398 }
6399
6400 \f
6401 #include "gt-emit-rtl.h"