tree-core.h: Include symtab.h.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "tree.h"
39 #include "rtl.h"
40 #include "df.h"
41 #include "diagnostic-core.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "varasm.h"
45 #include "cfgrtl.h"
46 #include "tree-eh.h"
47 #include "tm_p.h"
48 #include "flags.h"
49 #include "stringpool.h"
50 #include "insn-config.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "stmt.h"
57 #include "expr.h"
58 #include "regs.h"
59 #include "recog.h"
60 #include "debug.h"
61 #include "langhooks.h"
62 #include "params.h"
63 #include "target.h"
64 #include "builtins.h"
65 #include "rtl-iter.h"
66
67 struct target_rtl default_target_rtl;
68 #if SWITCHABLE_TARGET
69 struct target_rtl *this_target_rtl = &default_target_rtl;
70 #endif
71
72 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
73
74 /* Commonly used modes. */
75
76 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
79 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
80
81 /* Datastructures maintained for currently processed function in RTL form. */
82
83 struct rtl_data x_rtl;
84
85 /* Indexed by pseudo register number, gives the rtx for that pseudo.
86 Allocated in parallel with regno_pointer_align.
87 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
88 with length attribute nested in top level structures. */
89
90 rtx * regno_reg_rtx;
91
92 /* This is *not* reset after each function. It gives each CODE_LABEL
93 in the entire compilation a unique label number. */
94
95 static GTY(()) int label_num = 1;
96
97 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
98 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
99 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
100 is set only for MODE_INT and MODE_VECTOR_INT modes. */
101
102 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
103
104 rtx const_true_rtx;
105
106 REAL_VALUE_TYPE dconst0;
107 REAL_VALUE_TYPE dconst1;
108 REAL_VALUE_TYPE dconst2;
109 REAL_VALUE_TYPE dconstm1;
110 REAL_VALUE_TYPE dconsthalf;
111
112 /* Record fixed-point constant 0 and 1. */
113 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
114 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
115
116 /* We make one copy of (const_int C) where C is in
117 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
118 to save space during the compilation and simplify comparisons of
119 integers. */
120
121 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
122
123 /* Standard pieces of rtx, to be substituted directly into things. */
124 rtx pc_rtx;
125 rtx ret_rtx;
126 rtx simple_return_rtx;
127 rtx cc0_rtx;
128
129 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
130 this pointer should normally never be dereferenced), but is required to be
131 distinct from NULL_RTX. Currently used by peephole2 pass. */
132 rtx_insn *invalid_insn_rtx;
133
134 /* A hash table storing CONST_INTs whose absolute value is greater
135 than MAX_SAVED_CONST_INT. */
136
137 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
138 {
139 typedef HOST_WIDE_INT compare_type;
140
141 static hashval_t hash (rtx i);
142 static bool equal (rtx i, HOST_WIDE_INT h);
143 };
144
145 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
146
147 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
148 {
149 static hashval_t hash (rtx x);
150 static bool equal (rtx x, rtx y);
151 };
152
153 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
154
155 /* A hash table storing register attribute structures. */
156 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
157 {
158 static hashval_t hash (reg_attrs *x);
159 static bool equal (reg_attrs *a, reg_attrs *b);
160 };
161
162 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
163
164 /* A hash table storing all CONST_DOUBLEs. */
165 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
166 {
167 static hashval_t hash (rtx x);
168 static bool equal (rtx x, rtx y);
169 };
170
171 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
172
173 /* A hash table storing all CONST_FIXEDs. */
174 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
175 {
176 static hashval_t hash (rtx x);
177 static bool equal (rtx x, rtx y);
178 };
179
180 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
181
182 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
183 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
184 #define first_label_num (crtl->emit.x_first_label_num)
185
186 static void set_used_decls (tree);
187 static void mark_label_nuses (rtx);
188 #if TARGET_SUPPORTS_WIDE_INT
189 static rtx lookup_const_wide_int (rtx);
190 #endif
191 static rtx lookup_const_double (rtx);
192 static rtx lookup_const_fixed (rtx);
193 static reg_attrs *get_reg_attrs (tree, int);
194 static rtx gen_const_vector (machine_mode, int);
195 static void copy_rtx_if_shared_1 (rtx *orig);
196
197 /* Probability of the conditional branch currently proceeded by try_split.
198 Set to -1 otherwise. */
199 int split_branch_probability = -1;
200 \f
201 /* Returns a hash code for X (which is a really a CONST_INT). */
202
203 hashval_t
204 const_int_hasher::hash (rtx x)
205 {
206 return (hashval_t) INTVAL (x);
207 }
208
209 /* Returns nonzero if the value represented by X (which is really a
210 CONST_INT) is the same as that given by Y (which is really a
211 HOST_WIDE_INT *). */
212
213 bool
214 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
215 {
216 return (INTVAL (x) == y);
217 }
218
219 #if TARGET_SUPPORTS_WIDE_INT
220 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
221
222 hashval_t
223 const_wide_int_hasher::hash (rtx x)
224 {
225 int i;
226 unsigned HOST_WIDE_INT hash = 0;
227 const_rtx xr = x;
228
229 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
230 hash += CONST_WIDE_INT_ELT (xr, i);
231
232 return (hashval_t) hash;
233 }
234
235 /* Returns nonzero if the value represented by X (which is really a
236 CONST_WIDE_INT) is the same as that given by Y (which is really a
237 CONST_WIDE_INT). */
238
239 bool
240 const_wide_int_hasher::equal (rtx x, rtx y)
241 {
242 int i;
243 const_rtx xr = x;
244 const_rtx yr = y;
245 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
246 return false;
247
248 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
249 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
250 return false;
251
252 return true;
253 }
254 #endif
255
256 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
257 hashval_t
258 const_double_hasher::hash (rtx x)
259 {
260 const_rtx const value = x;
261 hashval_t h;
262
263 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
264 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
265 else
266 {
267 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
268 /* MODE is used in the comparison, so it should be in the hash. */
269 h ^= GET_MODE (value);
270 }
271 return h;
272 }
273
274 /* Returns nonzero if the value represented by X (really a ...)
275 is the same as that represented by Y (really a ...) */
276 bool
277 const_double_hasher::equal (rtx x, rtx y)
278 {
279 const_rtx const a = x, b = y;
280
281 if (GET_MODE (a) != GET_MODE (b))
282 return 0;
283 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
284 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
285 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
286 else
287 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
288 CONST_DOUBLE_REAL_VALUE (b));
289 }
290
291 /* Returns a hash code for X (which is really a CONST_FIXED). */
292
293 hashval_t
294 const_fixed_hasher::hash (rtx x)
295 {
296 const_rtx const value = x;
297 hashval_t h;
298
299 h = fixed_hash (CONST_FIXED_VALUE (value));
300 /* MODE is used in the comparison, so it should be in the hash. */
301 h ^= GET_MODE (value);
302 return h;
303 }
304
305 /* Returns nonzero if the value represented by X is the same as that
306 represented by Y. */
307
308 bool
309 const_fixed_hasher::equal (rtx x, rtx y)
310 {
311 const_rtx const a = x, b = y;
312
313 if (GET_MODE (a) != GET_MODE (b))
314 return 0;
315 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
316 }
317
318 /* Return true if the given memory attributes are equal. */
319
320 bool
321 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
322 {
323 if (p == q)
324 return true;
325 if (!p || !q)
326 return false;
327 return (p->alias == q->alias
328 && p->offset_known_p == q->offset_known_p
329 && (!p->offset_known_p || p->offset == q->offset)
330 && p->size_known_p == q->size_known_p
331 && (!p->size_known_p || p->size == q->size)
332 && p->align == q->align
333 && p->addrspace == q->addrspace
334 && (p->expr == q->expr
335 || (p->expr != NULL_TREE && q->expr != NULL_TREE
336 && operand_equal_p (p->expr, q->expr, 0))));
337 }
338
339 /* Set MEM's memory attributes so that they are the same as ATTRS. */
340
341 static void
342 set_mem_attrs (rtx mem, mem_attrs *attrs)
343 {
344 /* If everything is the default, we can just clear the attributes. */
345 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
346 {
347 MEM_ATTRS (mem) = 0;
348 return;
349 }
350
351 if (!MEM_ATTRS (mem)
352 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
353 {
354 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
355 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
356 }
357 }
358
359 /* Returns a hash code for X (which is a really a reg_attrs *). */
360
361 hashval_t
362 reg_attr_hasher::hash (reg_attrs *x)
363 {
364 const reg_attrs *const p = x;
365
366 return ((p->offset * 1000) ^ (intptr_t) p->decl);
367 }
368
369 /* Returns nonzero if the value represented by X is the same as that given by
370 Y. */
371
372 bool
373 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
374 {
375 const reg_attrs *const p = x;
376 const reg_attrs *const q = y;
377
378 return (p->decl == q->decl && p->offset == q->offset);
379 }
380 /* Allocate a new reg_attrs structure and insert it into the hash table if
381 one identical to it is not already in the table. We are doing this for
382 MEM of mode MODE. */
383
384 static reg_attrs *
385 get_reg_attrs (tree decl, int offset)
386 {
387 reg_attrs attrs;
388
389 /* If everything is the default, we can just return zero. */
390 if (decl == 0 && offset == 0)
391 return 0;
392
393 attrs.decl = decl;
394 attrs.offset = offset;
395
396 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
397 if (*slot == 0)
398 {
399 *slot = ggc_alloc<reg_attrs> ();
400 memcpy (*slot, &attrs, sizeof (reg_attrs));
401 }
402
403 return *slot;
404 }
405
406
407 #if !HAVE_blockage
408 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
409 and to block register equivalences to be seen across this insn. */
410
411 rtx
412 gen_blockage (void)
413 {
414 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
415 MEM_VOLATILE_P (x) = true;
416 return x;
417 }
418 #endif
419
420
421 /* Set the mode and register number of X to MODE and REGNO. */
422
423 void
424 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
425 {
426 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
427 ? hard_regno_nregs[regno][mode]
428 : 1);
429 PUT_MODE_RAW (x, mode);
430 set_regno_raw (x, regno, nregs);
431 }
432
433 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
434 don't attempt to share with the various global pieces of rtl (such as
435 frame_pointer_rtx). */
436
437 rtx
438 gen_raw_REG (machine_mode mode, unsigned int regno)
439 {
440 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
441 set_mode_and_regno (x, mode, regno);
442 REG_ATTRS (x) = NULL;
443 ORIGINAL_REGNO (x) = regno;
444 return x;
445 }
446
447 /* There are some RTL codes that require special attention; the generation
448 functions do the raw handling. If you add to this list, modify
449 special_rtx in gengenrtl.c as well. */
450
451 rtx_expr_list *
452 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
453 {
454 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
455 expr_list));
456 }
457
458 rtx_insn_list *
459 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
460 {
461 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
462 insn_list));
463 }
464
465 rtx_insn *
466 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
467 basic_block bb, rtx pattern, int location, int code,
468 rtx reg_notes)
469 {
470 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
471 prev_insn, next_insn,
472 bb, pattern, location, code,
473 reg_notes));
474 }
475
476 rtx
477 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
478 {
479 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
480 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
481
482 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
483 if (const_true_rtx && arg == STORE_FLAG_VALUE)
484 return const_true_rtx;
485 #endif
486
487 /* Look up the CONST_INT in the hash table. */
488 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
489 INSERT);
490 if (*slot == 0)
491 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
492
493 return *slot;
494 }
495
496 rtx
497 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
498 {
499 return GEN_INT (trunc_int_for_mode (c, mode));
500 }
501
502 /* CONST_DOUBLEs might be created from pairs of integers, or from
503 REAL_VALUE_TYPEs. Also, their length is known only at run time,
504 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
505
506 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
507 hash table. If so, return its counterpart; otherwise add it
508 to the hash table and return it. */
509 static rtx
510 lookup_const_double (rtx real)
511 {
512 rtx *slot = const_double_htab->find_slot (real, INSERT);
513 if (*slot == 0)
514 *slot = real;
515
516 return *slot;
517 }
518
519 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
520 VALUE in mode MODE. */
521 rtx
522 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
523 {
524 rtx real = rtx_alloc (CONST_DOUBLE);
525 PUT_MODE (real, mode);
526
527 real->u.rv = value;
528
529 return lookup_const_double (real);
530 }
531
532 /* Determine whether FIXED, a CONST_FIXED, already exists in the
533 hash table. If so, return its counterpart; otherwise add it
534 to the hash table and return it. */
535
536 static rtx
537 lookup_const_fixed (rtx fixed)
538 {
539 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
540 if (*slot == 0)
541 *slot = fixed;
542
543 return *slot;
544 }
545
546 /* Return a CONST_FIXED rtx for a fixed-point value specified by
547 VALUE in mode MODE. */
548
549 rtx
550 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
551 {
552 rtx fixed = rtx_alloc (CONST_FIXED);
553 PUT_MODE (fixed, mode);
554
555 fixed->u.fv = value;
556
557 return lookup_const_fixed (fixed);
558 }
559
560 #if TARGET_SUPPORTS_WIDE_INT == 0
561 /* Constructs double_int from rtx CST. */
562
563 double_int
564 rtx_to_double_int (const_rtx cst)
565 {
566 double_int r;
567
568 if (CONST_INT_P (cst))
569 r = double_int::from_shwi (INTVAL (cst));
570 else if (CONST_DOUBLE_AS_INT_P (cst))
571 {
572 r.low = CONST_DOUBLE_LOW (cst);
573 r.high = CONST_DOUBLE_HIGH (cst);
574 }
575 else
576 gcc_unreachable ();
577
578 return r;
579 }
580 #endif
581
582 #if TARGET_SUPPORTS_WIDE_INT
583 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
584 If so, return its counterpart; otherwise add it to the hash table and
585 return it. */
586
587 static rtx
588 lookup_const_wide_int (rtx wint)
589 {
590 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
591 if (*slot == 0)
592 *slot = wint;
593
594 return *slot;
595 }
596 #endif
597
598 /* Return an rtx constant for V, given that the constant has mode MODE.
599 The returned rtx will be a CONST_INT if V fits, otherwise it will be
600 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
601 (if TARGET_SUPPORTS_WIDE_INT). */
602
603 rtx
604 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
605 {
606 unsigned int len = v.get_len ();
607 unsigned int prec = GET_MODE_PRECISION (mode);
608
609 /* Allow truncation but not extension since we do not know if the
610 number is signed or unsigned. */
611 gcc_assert (prec <= v.get_precision ());
612
613 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
614 return gen_int_mode (v.elt (0), mode);
615
616 #if TARGET_SUPPORTS_WIDE_INT
617 {
618 unsigned int i;
619 rtx value;
620 unsigned int blocks_needed
621 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
622
623 if (len > blocks_needed)
624 len = blocks_needed;
625
626 value = const_wide_int_alloc (len);
627
628 /* It is so tempting to just put the mode in here. Must control
629 myself ... */
630 PUT_MODE (value, VOIDmode);
631 CWI_PUT_NUM_ELEM (value, len);
632
633 for (i = 0; i < len; i++)
634 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
635
636 return lookup_const_wide_int (value);
637 }
638 #else
639 return immed_double_const (v.elt (0), v.elt (1), mode);
640 #endif
641 }
642
643 #if TARGET_SUPPORTS_WIDE_INT == 0
644 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
645 of ints: I0 is the low-order word and I1 is the high-order word.
646 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
647 implied upper bits are copies of the high bit of i1. The value
648 itself is neither signed nor unsigned. Do not use this routine for
649 non-integer modes; convert to REAL_VALUE_TYPE and use
650 CONST_DOUBLE_FROM_REAL_VALUE. */
651
652 rtx
653 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
654 {
655 rtx value;
656 unsigned int i;
657
658 /* There are the following cases (note that there are no modes with
659 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
660
661 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
662 gen_int_mode.
663 2) If the value of the integer fits into HOST_WIDE_INT anyway
664 (i.e., i1 consists only from copies of the sign bit, and sign
665 of i0 and i1 are the same), then we return a CONST_INT for i0.
666 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
667 if (mode != VOIDmode)
668 {
669 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
670 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
671 /* We can get a 0 for an error mark. */
672 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
673 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
674 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
675
676 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
677 return gen_int_mode (i0, mode);
678 }
679
680 /* If this integer fits in one word, return a CONST_INT. */
681 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
682 return GEN_INT (i0);
683
684 /* We use VOIDmode for integers. */
685 value = rtx_alloc (CONST_DOUBLE);
686 PUT_MODE (value, VOIDmode);
687
688 CONST_DOUBLE_LOW (value) = i0;
689 CONST_DOUBLE_HIGH (value) = i1;
690
691 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
692 XWINT (value, i) = 0;
693
694 return lookup_const_double (value);
695 }
696 #endif
697
698 rtx
699 gen_rtx_REG (machine_mode mode, unsigned int regno)
700 {
701 /* In case the MD file explicitly references the frame pointer, have
702 all such references point to the same frame pointer. This is
703 used during frame pointer elimination to distinguish the explicit
704 references to these registers from pseudos that happened to be
705 assigned to them.
706
707 If we have eliminated the frame pointer or arg pointer, we will
708 be using it as a normal register, for example as a spill
709 register. In such cases, we might be accessing it in a mode that
710 is not Pmode and therefore cannot use the pre-allocated rtx.
711
712 Also don't do this when we are making new REGs in reload, since
713 we don't want to get confused with the real pointers. */
714
715 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
716 {
717 if (regno == FRAME_POINTER_REGNUM
718 && (!reload_completed || frame_pointer_needed))
719 return frame_pointer_rtx;
720
721 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
722 && regno == HARD_FRAME_POINTER_REGNUM
723 && (!reload_completed || frame_pointer_needed))
724 return hard_frame_pointer_rtx;
725 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
726 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
727 && regno == ARG_POINTER_REGNUM)
728 return arg_pointer_rtx;
729 #endif
730 #ifdef RETURN_ADDRESS_POINTER_REGNUM
731 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
732 return return_address_pointer_rtx;
733 #endif
734 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
735 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
736 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
737 return pic_offset_table_rtx;
738 if (regno == STACK_POINTER_REGNUM)
739 return stack_pointer_rtx;
740 }
741
742 #if 0
743 /* If the per-function register table has been set up, try to re-use
744 an existing entry in that table to avoid useless generation of RTL.
745
746 This code is disabled for now until we can fix the various backends
747 which depend on having non-shared hard registers in some cases. Long
748 term we want to re-enable this code as it can significantly cut down
749 on the amount of useless RTL that gets generated.
750
751 We'll also need to fix some code that runs after reload that wants to
752 set ORIGINAL_REGNO. */
753
754 if (cfun
755 && cfun->emit
756 && regno_reg_rtx
757 && regno < FIRST_PSEUDO_REGISTER
758 && reg_raw_mode[regno] == mode)
759 return regno_reg_rtx[regno];
760 #endif
761
762 return gen_raw_REG (mode, regno);
763 }
764
765 rtx
766 gen_rtx_MEM (machine_mode mode, rtx addr)
767 {
768 rtx rt = gen_rtx_raw_MEM (mode, addr);
769
770 /* This field is not cleared by the mere allocation of the rtx, so
771 we clear it here. */
772 MEM_ATTRS (rt) = 0;
773
774 return rt;
775 }
776
777 /* Generate a memory referring to non-trapping constant memory. */
778
779 rtx
780 gen_const_mem (machine_mode mode, rtx addr)
781 {
782 rtx mem = gen_rtx_MEM (mode, addr);
783 MEM_READONLY_P (mem) = 1;
784 MEM_NOTRAP_P (mem) = 1;
785 return mem;
786 }
787
788 /* Generate a MEM referring to fixed portions of the frame, e.g., register
789 save areas. */
790
791 rtx
792 gen_frame_mem (machine_mode mode, rtx addr)
793 {
794 rtx mem = gen_rtx_MEM (mode, addr);
795 MEM_NOTRAP_P (mem) = 1;
796 set_mem_alias_set (mem, get_frame_alias_set ());
797 return mem;
798 }
799
800 /* Generate a MEM referring to a temporary use of the stack, not part
801 of the fixed stack frame. For example, something which is pushed
802 by a target splitter. */
803 rtx
804 gen_tmp_stack_mem (machine_mode mode, rtx addr)
805 {
806 rtx mem = gen_rtx_MEM (mode, addr);
807 MEM_NOTRAP_P (mem) = 1;
808 if (!cfun->calls_alloca)
809 set_mem_alias_set (mem, get_frame_alias_set ());
810 return mem;
811 }
812
813 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
814 this construct would be valid, and false otherwise. */
815
816 bool
817 validate_subreg (machine_mode omode, machine_mode imode,
818 const_rtx reg, unsigned int offset)
819 {
820 unsigned int isize = GET_MODE_SIZE (imode);
821 unsigned int osize = GET_MODE_SIZE (omode);
822
823 /* All subregs must be aligned. */
824 if (offset % osize != 0)
825 return false;
826
827 /* The subreg offset cannot be outside the inner object. */
828 if (offset >= isize)
829 return false;
830
831 /* ??? This should not be here. Temporarily continue to allow word_mode
832 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
833 Generally, backends are doing something sketchy but it'll take time to
834 fix them all. */
835 if (omode == word_mode)
836 ;
837 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
838 is the culprit here, and not the backends. */
839 else if (osize >= UNITS_PER_WORD && isize >= osize)
840 ;
841 /* Allow component subregs of complex and vector. Though given the below
842 extraction rules, it's not always clear what that means. */
843 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
844 && GET_MODE_INNER (imode) == omode)
845 ;
846 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
847 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
848 represent this. It's questionable if this ought to be represented at
849 all -- why can't this all be hidden in post-reload splitters that make
850 arbitrarily mode changes to the registers themselves. */
851 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
852 ;
853 /* Subregs involving floating point modes are not allowed to
854 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
855 (subreg:SI (reg:DF) 0) isn't. */
856 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
857 {
858 if (! (isize == osize
859 /* LRA can use subreg to store a floating point value in
860 an integer mode. Although the floating point and the
861 integer modes need the same number of hard registers,
862 the size of floating point mode can be less than the
863 integer mode. LRA also uses subregs for a register
864 should be used in different mode in on insn. */
865 || lra_in_progress))
866 return false;
867 }
868
869 /* Paradoxical subregs must have offset zero. */
870 if (osize > isize)
871 return offset == 0;
872
873 /* This is a normal subreg. Verify that the offset is representable. */
874
875 /* For hard registers, we already have most of these rules collected in
876 subreg_offset_representable_p. */
877 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
878 {
879 unsigned int regno = REGNO (reg);
880
881 #ifdef CANNOT_CHANGE_MODE_CLASS
882 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
883 && GET_MODE_INNER (imode) == omode)
884 ;
885 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
886 return false;
887 #endif
888
889 return subreg_offset_representable_p (regno, imode, offset, omode);
890 }
891
892 /* For pseudo registers, we want most of the same checks. Namely:
893 If the register no larger than a word, the subreg must be lowpart.
894 If the register is larger than a word, the subreg must be the lowpart
895 of a subword. A subreg does *not* perform arbitrary bit extraction.
896 Given that we've already checked mode/offset alignment, we only have
897 to check subword subregs here. */
898 if (osize < UNITS_PER_WORD
899 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
900 {
901 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
902 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
903 if (offset % UNITS_PER_WORD != low_off)
904 return false;
905 }
906 return true;
907 }
908
909 rtx
910 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
911 {
912 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
913 return gen_rtx_raw_SUBREG (mode, reg, offset);
914 }
915
916 /* Generate a SUBREG representing the least-significant part of REG if MODE
917 is smaller than mode of REG, otherwise paradoxical SUBREG. */
918
919 rtx
920 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
921 {
922 machine_mode inmode;
923
924 inmode = GET_MODE (reg);
925 if (inmode == VOIDmode)
926 inmode = mode;
927 return gen_rtx_SUBREG (mode, reg,
928 subreg_lowpart_offset (mode, inmode));
929 }
930
931 rtx
932 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
933 enum var_init_status status)
934 {
935 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
936 PAT_VAR_LOCATION_STATUS (x) = status;
937 return x;
938 }
939 \f
940
941 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
942
943 rtvec
944 gen_rtvec (int n, ...)
945 {
946 int i;
947 rtvec rt_val;
948 va_list p;
949
950 va_start (p, n);
951
952 /* Don't allocate an empty rtvec... */
953 if (n == 0)
954 {
955 va_end (p);
956 return NULL_RTVEC;
957 }
958
959 rt_val = rtvec_alloc (n);
960
961 for (i = 0; i < n; i++)
962 rt_val->elem[i] = va_arg (p, rtx);
963
964 va_end (p);
965 return rt_val;
966 }
967
968 rtvec
969 gen_rtvec_v (int n, rtx *argp)
970 {
971 int i;
972 rtvec rt_val;
973
974 /* Don't allocate an empty rtvec... */
975 if (n == 0)
976 return NULL_RTVEC;
977
978 rt_val = rtvec_alloc (n);
979
980 for (i = 0; i < n; i++)
981 rt_val->elem[i] = *argp++;
982
983 return rt_val;
984 }
985
986 rtvec
987 gen_rtvec_v (int n, rtx_insn **argp)
988 {
989 int i;
990 rtvec rt_val;
991
992 /* Don't allocate an empty rtvec... */
993 if (n == 0)
994 return NULL_RTVEC;
995
996 rt_val = rtvec_alloc (n);
997
998 for (i = 0; i < n; i++)
999 rt_val->elem[i] = *argp++;
1000
1001 return rt_val;
1002 }
1003
1004 \f
1005 /* Return the number of bytes between the start of an OUTER_MODE
1006 in-memory value and the start of an INNER_MODE in-memory value,
1007 given that the former is a lowpart of the latter. It may be a
1008 paradoxical lowpart, in which case the offset will be negative
1009 on big-endian targets. */
1010
1011 int
1012 byte_lowpart_offset (machine_mode outer_mode,
1013 machine_mode inner_mode)
1014 {
1015 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1016 return subreg_lowpart_offset (outer_mode, inner_mode);
1017 else
1018 return -subreg_lowpart_offset (inner_mode, outer_mode);
1019 }
1020 \f
1021 /* Generate a REG rtx for a new pseudo register of mode MODE.
1022 This pseudo is assigned the next sequential register number. */
1023
1024 rtx
1025 gen_reg_rtx (machine_mode mode)
1026 {
1027 rtx val;
1028 unsigned int align = GET_MODE_ALIGNMENT (mode);
1029
1030 gcc_assert (can_create_pseudo_p ());
1031
1032 /* If a virtual register with bigger mode alignment is generated,
1033 increase stack alignment estimation because it might be spilled
1034 to stack later. */
1035 if (SUPPORTS_STACK_ALIGNMENT
1036 && crtl->stack_alignment_estimated < align
1037 && !crtl->stack_realign_processed)
1038 {
1039 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1040 if (crtl->stack_alignment_estimated < min_align)
1041 crtl->stack_alignment_estimated = min_align;
1042 }
1043
1044 if (generating_concat_p
1045 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1046 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1047 {
1048 /* For complex modes, don't make a single pseudo.
1049 Instead, make a CONCAT of two pseudos.
1050 This allows noncontiguous allocation of the real and imaginary parts,
1051 which makes much better code. Besides, allocating DCmode
1052 pseudos overstrains reload on some machines like the 386. */
1053 rtx realpart, imagpart;
1054 machine_mode partmode = GET_MODE_INNER (mode);
1055
1056 realpart = gen_reg_rtx (partmode);
1057 imagpart = gen_reg_rtx (partmode);
1058 return gen_rtx_CONCAT (mode, realpart, imagpart);
1059 }
1060
1061 /* Do not call gen_reg_rtx with uninitialized crtl. */
1062 gcc_assert (crtl->emit.regno_pointer_align_length);
1063
1064 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1065 enough to have an element for this pseudo reg number. */
1066
1067 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1068 {
1069 int old_size = crtl->emit.regno_pointer_align_length;
1070 char *tmp;
1071 rtx *new1;
1072
1073 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1074 memset (tmp + old_size, 0, old_size);
1075 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1076
1077 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1078 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1079 regno_reg_rtx = new1;
1080
1081 crtl->emit.regno_pointer_align_length = old_size * 2;
1082 }
1083
1084 val = gen_raw_REG (mode, reg_rtx_no);
1085 regno_reg_rtx[reg_rtx_no++] = val;
1086 return val;
1087 }
1088
1089 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1090
1091 bool
1092 reg_is_parm_p (rtx reg)
1093 {
1094 tree decl;
1095
1096 gcc_assert (REG_P (reg));
1097 decl = REG_EXPR (reg);
1098 return (decl && TREE_CODE (decl) == PARM_DECL);
1099 }
1100
1101 /* Update NEW with the same attributes as REG, but with OFFSET added
1102 to the REG_OFFSET. */
1103
1104 static void
1105 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1106 {
1107 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1108 REG_OFFSET (reg) + offset);
1109 }
1110
1111 /* Generate a register with same attributes as REG, but with OFFSET
1112 added to the REG_OFFSET. */
1113
1114 rtx
1115 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1116 int offset)
1117 {
1118 rtx new_rtx = gen_rtx_REG (mode, regno);
1119
1120 update_reg_offset (new_rtx, reg, offset);
1121 return new_rtx;
1122 }
1123
1124 /* Generate a new pseudo-register with the same attributes as REG, but
1125 with OFFSET added to the REG_OFFSET. */
1126
1127 rtx
1128 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1129 {
1130 rtx new_rtx = gen_reg_rtx (mode);
1131
1132 update_reg_offset (new_rtx, reg, offset);
1133 return new_rtx;
1134 }
1135
1136 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1137 new register is a (possibly paradoxical) lowpart of the old one. */
1138
1139 void
1140 adjust_reg_mode (rtx reg, machine_mode mode)
1141 {
1142 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1143 PUT_MODE (reg, mode);
1144 }
1145
1146 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1147 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1148
1149 void
1150 set_reg_attrs_from_value (rtx reg, rtx x)
1151 {
1152 int offset;
1153 bool can_be_reg_pointer = true;
1154
1155 /* Don't call mark_reg_pointer for incompatible pointer sign
1156 extension. */
1157 while (GET_CODE (x) == SIGN_EXTEND
1158 || GET_CODE (x) == ZERO_EXTEND
1159 || GET_CODE (x) == TRUNCATE
1160 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1161 {
1162 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1163 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1164 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1165 can_be_reg_pointer = false;
1166 #endif
1167 x = XEXP (x, 0);
1168 }
1169
1170 /* Hard registers can be reused for multiple purposes within the same
1171 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1172 on them is wrong. */
1173 if (HARD_REGISTER_P (reg))
1174 return;
1175
1176 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1177 if (MEM_P (x))
1178 {
1179 if (MEM_OFFSET_KNOWN_P (x))
1180 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1181 MEM_OFFSET (x) + offset);
1182 if (can_be_reg_pointer && MEM_POINTER (x))
1183 mark_reg_pointer (reg, 0);
1184 }
1185 else if (REG_P (x))
1186 {
1187 if (REG_ATTRS (x))
1188 update_reg_offset (reg, x, offset);
1189 if (can_be_reg_pointer && REG_POINTER (x))
1190 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1191 }
1192 }
1193
1194 /* Generate a REG rtx for a new pseudo register, copying the mode
1195 and attributes from X. */
1196
1197 rtx
1198 gen_reg_rtx_and_attrs (rtx x)
1199 {
1200 rtx reg = gen_reg_rtx (GET_MODE (x));
1201 set_reg_attrs_from_value (reg, x);
1202 return reg;
1203 }
1204
1205 /* Set the register attributes for registers contained in PARM_RTX.
1206 Use needed values from memory attributes of MEM. */
1207
1208 void
1209 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1210 {
1211 if (REG_P (parm_rtx))
1212 set_reg_attrs_from_value (parm_rtx, mem);
1213 else if (GET_CODE (parm_rtx) == PARALLEL)
1214 {
1215 /* Check for a NULL entry in the first slot, used to indicate that the
1216 parameter goes both on the stack and in registers. */
1217 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1218 for (; i < XVECLEN (parm_rtx, 0); i++)
1219 {
1220 rtx x = XVECEXP (parm_rtx, 0, i);
1221 if (REG_P (XEXP (x, 0)))
1222 REG_ATTRS (XEXP (x, 0))
1223 = get_reg_attrs (MEM_EXPR (mem),
1224 INTVAL (XEXP (x, 1)));
1225 }
1226 }
1227 }
1228
1229 /* Set the REG_ATTRS for registers in value X, given that X represents
1230 decl T. */
1231
1232 void
1233 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1234 {
1235 if (GET_CODE (x) == SUBREG)
1236 {
1237 gcc_assert (subreg_lowpart_p (x));
1238 x = SUBREG_REG (x);
1239 }
1240 if (REG_P (x))
1241 REG_ATTRS (x)
1242 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1243 DECL_MODE (t)));
1244 if (GET_CODE (x) == CONCAT)
1245 {
1246 if (REG_P (XEXP (x, 0)))
1247 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1248 if (REG_P (XEXP (x, 1)))
1249 REG_ATTRS (XEXP (x, 1))
1250 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1251 }
1252 if (GET_CODE (x) == PARALLEL)
1253 {
1254 int i, start;
1255
1256 /* Check for a NULL entry, used to indicate that the parameter goes
1257 both on the stack and in registers. */
1258 if (XEXP (XVECEXP (x, 0, 0), 0))
1259 start = 0;
1260 else
1261 start = 1;
1262
1263 for (i = start; i < XVECLEN (x, 0); i++)
1264 {
1265 rtx y = XVECEXP (x, 0, i);
1266 if (REG_P (XEXP (y, 0)))
1267 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1268 }
1269 }
1270 }
1271
1272 /* Assign the RTX X to declaration T. */
1273
1274 void
1275 set_decl_rtl (tree t, rtx x)
1276 {
1277 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1278 if (x)
1279 set_reg_attrs_for_decl_rtl (t, x);
1280 }
1281
1282 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1283 if the ABI requires the parameter to be passed by reference. */
1284
1285 void
1286 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1287 {
1288 DECL_INCOMING_RTL (t) = x;
1289 if (x && !by_reference_p)
1290 set_reg_attrs_for_decl_rtl (t, x);
1291 }
1292
1293 /* Identify REG (which may be a CONCAT) as a user register. */
1294
1295 void
1296 mark_user_reg (rtx reg)
1297 {
1298 if (GET_CODE (reg) == CONCAT)
1299 {
1300 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1301 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1302 }
1303 else
1304 {
1305 gcc_assert (REG_P (reg));
1306 REG_USERVAR_P (reg) = 1;
1307 }
1308 }
1309
1310 /* Identify REG as a probable pointer register and show its alignment
1311 as ALIGN, if nonzero. */
1312
1313 void
1314 mark_reg_pointer (rtx reg, int align)
1315 {
1316 if (! REG_POINTER (reg))
1317 {
1318 REG_POINTER (reg) = 1;
1319
1320 if (align)
1321 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1322 }
1323 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1324 /* We can no-longer be sure just how aligned this pointer is. */
1325 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1326 }
1327
1328 /* Return 1 plus largest pseudo reg number used in the current function. */
1329
1330 int
1331 max_reg_num (void)
1332 {
1333 return reg_rtx_no;
1334 }
1335
1336 /* Return 1 + the largest label number used so far in the current function. */
1337
1338 int
1339 max_label_num (void)
1340 {
1341 return label_num;
1342 }
1343
1344 /* Return first label number used in this function (if any were used). */
1345
1346 int
1347 get_first_label_num (void)
1348 {
1349 return first_label_num;
1350 }
1351
1352 /* If the rtx for label was created during the expansion of a nested
1353 function, then first_label_num won't include this label number.
1354 Fix this now so that array indices work later. */
1355
1356 void
1357 maybe_set_first_label_num (rtx x)
1358 {
1359 if (CODE_LABEL_NUMBER (x) < first_label_num)
1360 first_label_num = CODE_LABEL_NUMBER (x);
1361 }
1362 \f
1363 /* Return a value representing some low-order bits of X, where the number
1364 of low-order bits is given by MODE. Note that no conversion is done
1365 between floating-point and fixed-point values, rather, the bit
1366 representation is returned.
1367
1368 This function handles the cases in common between gen_lowpart, below,
1369 and two variants in cse.c and combine.c. These are the cases that can
1370 be safely handled at all points in the compilation.
1371
1372 If this is not a case we can handle, return 0. */
1373
1374 rtx
1375 gen_lowpart_common (machine_mode mode, rtx x)
1376 {
1377 int msize = GET_MODE_SIZE (mode);
1378 int xsize;
1379 int offset = 0;
1380 machine_mode innermode;
1381
1382 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1383 so we have to make one up. Yuk. */
1384 innermode = GET_MODE (x);
1385 if (CONST_INT_P (x)
1386 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1387 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1388 else if (innermode == VOIDmode)
1389 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1390
1391 xsize = GET_MODE_SIZE (innermode);
1392
1393 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1394
1395 if (innermode == mode)
1396 return x;
1397
1398 /* MODE must occupy no more words than the mode of X. */
1399 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1400 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1401 return 0;
1402
1403 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1404 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1405 return 0;
1406
1407 offset = subreg_lowpart_offset (mode, innermode);
1408
1409 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1410 && (GET_MODE_CLASS (mode) == MODE_INT
1411 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1412 {
1413 /* If we are getting the low-order part of something that has been
1414 sign- or zero-extended, we can either just use the object being
1415 extended or make a narrower extension. If we want an even smaller
1416 piece than the size of the object being extended, call ourselves
1417 recursively.
1418
1419 This case is used mostly by combine and cse. */
1420
1421 if (GET_MODE (XEXP (x, 0)) == mode)
1422 return XEXP (x, 0);
1423 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1424 return gen_lowpart_common (mode, XEXP (x, 0));
1425 else if (msize < xsize)
1426 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1427 }
1428 else if (GET_CODE (x) == SUBREG || REG_P (x)
1429 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1430 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1431 return simplify_gen_subreg (mode, x, innermode, offset);
1432
1433 /* Otherwise, we can't do this. */
1434 return 0;
1435 }
1436 \f
1437 rtx
1438 gen_highpart (machine_mode mode, rtx x)
1439 {
1440 unsigned int msize = GET_MODE_SIZE (mode);
1441 rtx result;
1442
1443 /* This case loses if X is a subreg. To catch bugs early,
1444 complain if an invalid MODE is used even in other cases. */
1445 gcc_assert (msize <= UNITS_PER_WORD
1446 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1447
1448 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1449 subreg_highpart_offset (mode, GET_MODE (x)));
1450 gcc_assert (result);
1451
1452 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1453 the target if we have a MEM. gen_highpart must return a valid operand,
1454 emitting code if necessary to do so. */
1455 if (MEM_P (result))
1456 {
1457 result = validize_mem (result);
1458 gcc_assert (result);
1459 }
1460
1461 return result;
1462 }
1463
1464 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1465 be VOIDmode constant. */
1466 rtx
1467 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1468 {
1469 if (GET_MODE (exp) != VOIDmode)
1470 {
1471 gcc_assert (GET_MODE (exp) == innermode);
1472 return gen_highpart (outermode, exp);
1473 }
1474 return simplify_gen_subreg (outermode, exp, innermode,
1475 subreg_highpart_offset (outermode, innermode));
1476 }
1477
1478 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1479
1480 unsigned int
1481 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1482 {
1483 unsigned int offset = 0;
1484 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1485
1486 if (difference > 0)
1487 {
1488 if (WORDS_BIG_ENDIAN)
1489 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1490 if (BYTES_BIG_ENDIAN)
1491 offset += difference % UNITS_PER_WORD;
1492 }
1493
1494 return offset;
1495 }
1496
1497 /* Return offset in bytes to get OUTERMODE high part
1498 of the value in mode INNERMODE stored in memory in target format. */
1499 unsigned int
1500 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1501 {
1502 unsigned int offset = 0;
1503 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1504
1505 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1506
1507 if (difference > 0)
1508 {
1509 if (! WORDS_BIG_ENDIAN)
1510 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1511 if (! BYTES_BIG_ENDIAN)
1512 offset += difference % UNITS_PER_WORD;
1513 }
1514
1515 return offset;
1516 }
1517
1518 /* Return 1 iff X, assumed to be a SUBREG,
1519 refers to the least significant part of its containing reg.
1520 If X is not a SUBREG, always return 1 (it is its own low part!). */
1521
1522 int
1523 subreg_lowpart_p (const_rtx x)
1524 {
1525 if (GET_CODE (x) != SUBREG)
1526 return 1;
1527 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1528 return 0;
1529
1530 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1531 == SUBREG_BYTE (x));
1532 }
1533
1534 /* Return true if X is a paradoxical subreg, false otherwise. */
1535 bool
1536 paradoxical_subreg_p (const_rtx x)
1537 {
1538 if (GET_CODE (x) != SUBREG)
1539 return false;
1540 return (GET_MODE_PRECISION (GET_MODE (x))
1541 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1542 }
1543 \f
1544 /* Return subword OFFSET of operand OP.
1545 The word number, OFFSET, is interpreted as the word number starting
1546 at the low-order address. OFFSET 0 is the low-order word if not
1547 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1548
1549 If we cannot extract the required word, we return zero. Otherwise,
1550 an rtx corresponding to the requested word will be returned.
1551
1552 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1553 reload has completed, a valid address will always be returned. After
1554 reload, if a valid address cannot be returned, we return zero.
1555
1556 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1557 it is the responsibility of the caller.
1558
1559 MODE is the mode of OP in case it is a CONST_INT.
1560
1561 ??? This is still rather broken for some cases. The problem for the
1562 moment is that all callers of this thing provide no 'goal mode' to
1563 tell us to work with. This exists because all callers were written
1564 in a word based SUBREG world.
1565 Now use of this function can be deprecated by simplify_subreg in most
1566 cases.
1567 */
1568
1569 rtx
1570 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1571 {
1572 if (mode == VOIDmode)
1573 mode = GET_MODE (op);
1574
1575 gcc_assert (mode != VOIDmode);
1576
1577 /* If OP is narrower than a word, fail. */
1578 if (mode != BLKmode
1579 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1580 return 0;
1581
1582 /* If we want a word outside OP, return zero. */
1583 if (mode != BLKmode
1584 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1585 return const0_rtx;
1586
1587 /* Form a new MEM at the requested address. */
1588 if (MEM_P (op))
1589 {
1590 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1591
1592 if (! validate_address)
1593 return new_rtx;
1594
1595 else if (reload_completed)
1596 {
1597 if (! strict_memory_address_addr_space_p (word_mode,
1598 XEXP (new_rtx, 0),
1599 MEM_ADDR_SPACE (op)))
1600 return 0;
1601 }
1602 else
1603 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1604 }
1605
1606 /* Rest can be handled by simplify_subreg. */
1607 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1608 }
1609
1610 /* Similar to `operand_subword', but never return 0. If we can't
1611 extract the required subword, put OP into a register and try again.
1612 The second attempt must succeed. We always validate the address in
1613 this case.
1614
1615 MODE is the mode of OP, in case it is CONST_INT. */
1616
1617 rtx
1618 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1619 {
1620 rtx result = operand_subword (op, offset, 1, mode);
1621
1622 if (result)
1623 return result;
1624
1625 if (mode != BLKmode && mode != VOIDmode)
1626 {
1627 /* If this is a register which can not be accessed by words, copy it
1628 to a pseudo register. */
1629 if (REG_P (op))
1630 op = copy_to_reg (op);
1631 else
1632 op = force_reg (mode, op);
1633 }
1634
1635 result = operand_subword (op, offset, 1, mode);
1636 gcc_assert (result);
1637
1638 return result;
1639 }
1640 \f
1641 /* Returns 1 if both MEM_EXPR can be considered equal
1642 and 0 otherwise. */
1643
1644 int
1645 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1646 {
1647 if (expr1 == expr2)
1648 return 1;
1649
1650 if (! expr1 || ! expr2)
1651 return 0;
1652
1653 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1654 return 0;
1655
1656 return operand_equal_p (expr1, expr2, 0);
1657 }
1658
1659 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1660 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1661 -1 if not known. */
1662
1663 int
1664 get_mem_align_offset (rtx mem, unsigned int align)
1665 {
1666 tree expr;
1667 unsigned HOST_WIDE_INT offset;
1668
1669 /* This function can't use
1670 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1671 || (MAX (MEM_ALIGN (mem),
1672 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1673 < align))
1674 return -1;
1675 else
1676 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1677 for two reasons:
1678 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1679 for <variable>. get_inner_reference doesn't handle it and
1680 even if it did, the alignment in that case needs to be determined
1681 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1682 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1683 isn't sufficiently aligned, the object it is in might be. */
1684 gcc_assert (MEM_P (mem));
1685 expr = MEM_EXPR (mem);
1686 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1687 return -1;
1688
1689 offset = MEM_OFFSET (mem);
1690 if (DECL_P (expr))
1691 {
1692 if (DECL_ALIGN (expr) < align)
1693 return -1;
1694 }
1695 else if (INDIRECT_REF_P (expr))
1696 {
1697 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1698 return -1;
1699 }
1700 else if (TREE_CODE (expr) == COMPONENT_REF)
1701 {
1702 while (1)
1703 {
1704 tree inner = TREE_OPERAND (expr, 0);
1705 tree field = TREE_OPERAND (expr, 1);
1706 tree byte_offset = component_ref_field_offset (expr);
1707 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1708
1709 if (!byte_offset
1710 || !tree_fits_uhwi_p (byte_offset)
1711 || !tree_fits_uhwi_p (bit_offset))
1712 return -1;
1713
1714 offset += tree_to_uhwi (byte_offset);
1715 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1716
1717 if (inner == NULL_TREE)
1718 {
1719 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1720 < (unsigned int) align)
1721 return -1;
1722 break;
1723 }
1724 else if (DECL_P (inner))
1725 {
1726 if (DECL_ALIGN (inner) < align)
1727 return -1;
1728 break;
1729 }
1730 else if (TREE_CODE (inner) != COMPONENT_REF)
1731 return -1;
1732 expr = inner;
1733 }
1734 }
1735 else
1736 return -1;
1737
1738 return offset & ((align / BITS_PER_UNIT) - 1);
1739 }
1740
1741 /* Given REF (a MEM) and T, either the type of X or the expression
1742 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1743 if we are making a new object of this type. BITPOS is nonzero if
1744 there is an offset outstanding on T that will be applied later. */
1745
1746 void
1747 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1748 HOST_WIDE_INT bitpos)
1749 {
1750 HOST_WIDE_INT apply_bitpos = 0;
1751 tree type;
1752 struct mem_attrs attrs, *defattrs, *refattrs;
1753 addr_space_t as;
1754
1755 /* It can happen that type_for_mode was given a mode for which there
1756 is no language-level type. In which case it returns NULL, which
1757 we can see here. */
1758 if (t == NULL_TREE)
1759 return;
1760
1761 type = TYPE_P (t) ? t : TREE_TYPE (t);
1762 if (type == error_mark_node)
1763 return;
1764
1765 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1766 wrong answer, as it assumes that DECL_RTL already has the right alias
1767 info. Callers should not set DECL_RTL until after the call to
1768 set_mem_attributes. */
1769 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1770
1771 memset (&attrs, 0, sizeof (attrs));
1772
1773 /* Get the alias set from the expression or type (perhaps using a
1774 front-end routine) and use it. */
1775 attrs.alias = get_alias_set (t);
1776
1777 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1778 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1779
1780 /* Default values from pre-existing memory attributes if present. */
1781 refattrs = MEM_ATTRS (ref);
1782 if (refattrs)
1783 {
1784 /* ??? Can this ever happen? Calling this routine on a MEM that
1785 already carries memory attributes should probably be invalid. */
1786 attrs.expr = refattrs->expr;
1787 attrs.offset_known_p = refattrs->offset_known_p;
1788 attrs.offset = refattrs->offset;
1789 attrs.size_known_p = refattrs->size_known_p;
1790 attrs.size = refattrs->size;
1791 attrs.align = refattrs->align;
1792 }
1793
1794 /* Otherwise, default values from the mode of the MEM reference. */
1795 else
1796 {
1797 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1798 gcc_assert (!defattrs->expr);
1799 gcc_assert (!defattrs->offset_known_p);
1800
1801 /* Respect mode size. */
1802 attrs.size_known_p = defattrs->size_known_p;
1803 attrs.size = defattrs->size;
1804 /* ??? Is this really necessary? We probably should always get
1805 the size from the type below. */
1806
1807 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1808 if T is an object, always compute the object alignment below. */
1809 if (TYPE_P (t))
1810 attrs.align = defattrs->align;
1811 else
1812 attrs.align = BITS_PER_UNIT;
1813 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1814 e.g. if the type carries an alignment attribute. Should we be
1815 able to simply always use TYPE_ALIGN? */
1816 }
1817
1818 /* We can set the alignment from the type if we are making an object,
1819 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1820 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1821 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1822
1823 /* If the size is known, we can set that. */
1824 tree new_size = TYPE_SIZE_UNIT (type);
1825
1826 /* The address-space is that of the type. */
1827 as = TYPE_ADDR_SPACE (type);
1828
1829 /* If T is not a type, we may be able to deduce some more information about
1830 the expression. */
1831 if (! TYPE_P (t))
1832 {
1833 tree base;
1834
1835 if (TREE_THIS_VOLATILE (t))
1836 MEM_VOLATILE_P (ref) = 1;
1837
1838 /* Now remove any conversions: they don't change what the underlying
1839 object is. Likewise for SAVE_EXPR. */
1840 while (CONVERT_EXPR_P (t)
1841 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1842 || TREE_CODE (t) == SAVE_EXPR)
1843 t = TREE_OPERAND (t, 0);
1844
1845 /* Note whether this expression can trap. */
1846 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1847
1848 base = get_base_address (t);
1849 if (base)
1850 {
1851 if (DECL_P (base)
1852 && TREE_READONLY (base)
1853 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1854 && !TREE_THIS_VOLATILE (base))
1855 MEM_READONLY_P (ref) = 1;
1856
1857 /* Mark static const strings readonly as well. */
1858 if (TREE_CODE (base) == STRING_CST
1859 && TREE_READONLY (base)
1860 && TREE_STATIC (base))
1861 MEM_READONLY_P (ref) = 1;
1862
1863 /* Address-space information is on the base object. */
1864 if (TREE_CODE (base) == MEM_REF
1865 || TREE_CODE (base) == TARGET_MEM_REF)
1866 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1867 0))));
1868 else
1869 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1870 }
1871
1872 /* If this expression uses it's parent's alias set, mark it such
1873 that we won't change it. */
1874 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1875 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1876
1877 /* If this is a decl, set the attributes of the MEM from it. */
1878 if (DECL_P (t))
1879 {
1880 attrs.expr = t;
1881 attrs.offset_known_p = true;
1882 attrs.offset = 0;
1883 apply_bitpos = bitpos;
1884 new_size = DECL_SIZE_UNIT (t);
1885 }
1886
1887 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1888 else if (CONSTANT_CLASS_P (t))
1889 ;
1890
1891 /* If this is a field reference, record it. */
1892 else if (TREE_CODE (t) == COMPONENT_REF)
1893 {
1894 attrs.expr = t;
1895 attrs.offset_known_p = true;
1896 attrs.offset = 0;
1897 apply_bitpos = bitpos;
1898 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1899 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1900 }
1901
1902 /* If this is an array reference, look for an outer field reference. */
1903 else if (TREE_CODE (t) == ARRAY_REF)
1904 {
1905 tree off_tree = size_zero_node;
1906 /* We can't modify t, because we use it at the end of the
1907 function. */
1908 tree t2 = t;
1909
1910 do
1911 {
1912 tree index = TREE_OPERAND (t2, 1);
1913 tree low_bound = array_ref_low_bound (t2);
1914 tree unit_size = array_ref_element_size (t2);
1915
1916 /* We assume all arrays have sizes that are a multiple of a byte.
1917 First subtract the lower bound, if any, in the type of the
1918 index, then convert to sizetype and multiply by the size of
1919 the array element. */
1920 if (! integer_zerop (low_bound))
1921 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1922 index, low_bound);
1923
1924 off_tree = size_binop (PLUS_EXPR,
1925 size_binop (MULT_EXPR,
1926 fold_convert (sizetype,
1927 index),
1928 unit_size),
1929 off_tree);
1930 t2 = TREE_OPERAND (t2, 0);
1931 }
1932 while (TREE_CODE (t2) == ARRAY_REF);
1933
1934 if (DECL_P (t2)
1935 || TREE_CODE (t2) == COMPONENT_REF)
1936 {
1937 attrs.expr = t2;
1938 attrs.offset_known_p = false;
1939 if (tree_fits_uhwi_p (off_tree))
1940 {
1941 attrs.offset_known_p = true;
1942 attrs.offset = tree_to_uhwi (off_tree);
1943 apply_bitpos = bitpos;
1944 }
1945 }
1946 /* Else do not record a MEM_EXPR. */
1947 }
1948
1949 /* If this is an indirect reference, record it. */
1950 else if (TREE_CODE (t) == MEM_REF
1951 || TREE_CODE (t) == TARGET_MEM_REF)
1952 {
1953 attrs.expr = t;
1954 attrs.offset_known_p = true;
1955 attrs.offset = 0;
1956 apply_bitpos = bitpos;
1957 }
1958
1959 /* Compute the alignment. */
1960 unsigned int obj_align;
1961 unsigned HOST_WIDE_INT obj_bitpos;
1962 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1963 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1964 if (obj_bitpos != 0)
1965 obj_align = (obj_bitpos & -obj_bitpos);
1966 attrs.align = MAX (attrs.align, obj_align);
1967 }
1968
1969 if (tree_fits_uhwi_p (new_size))
1970 {
1971 attrs.size_known_p = true;
1972 attrs.size = tree_to_uhwi (new_size);
1973 }
1974
1975 /* If we modified OFFSET based on T, then subtract the outstanding
1976 bit position offset. Similarly, increase the size of the accessed
1977 object to contain the negative offset. */
1978 if (apply_bitpos)
1979 {
1980 gcc_assert (attrs.offset_known_p);
1981 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1982 if (attrs.size_known_p)
1983 attrs.size += apply_bitpos / BITS_PER_UNIT;
1984 }
1985
1986 /* Now set the attributes we computed above. */
1987 attrs.addrspace = as;
1988 set_mem_attrs (ref, &attrs);
1989 }
1990
1991 void
1992 set_mem_attributes (rtx ref, tree t, int objectp)
1993 {
1994 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1995 }
1996
1997 /* Set the alias set of MEM to SET. */
1998
1999 void
2000 set_mem_alias_set (rtx mem, alias_set_type set)
2001 {
2002 struct mem_attrs attrs;
2003
2004 /* If the new and old alias sets don't conflict, something is wrong. */
2005 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2006 attrs = *get_mem_attrs (mem);
2007 attrs.alias = set;
2008 set_mem_attrs (mem, &attrs);
2009 }
2010
2011 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2012
2013 void
2014 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2015 {
2016 struct mem_attrs attrs;
2017
2018 attrs = *get_mem_attrs (mem);
2019 attrs.addrspace = addrspace;
2020 set_mem_attrs (mem, &attrs);
2021 }
2022
2023 /* Set the alignment of MEM to ALIGN bits. */
2024
2025 void
2026 set_mem_align (rtx mem, unsigned int align)
2027 {
2028 struct mem_attrs attrs;
2029
2030 attrs = *get_mem_attrs (mem);
2031 attrs.align = align;
2032 set_mem_attrs (mem, &attrs);
2033 }
2034
2035 /* Set the expr for MEM to EXPR. */
2036
2037 void
2038 set_mem_expr (rtx mem, tree expr)
2039 {
2040 struct mem_attrs attrs;
2041
2042 attrs = *get_mem_attrs (mem);
2043 attrs.expr = expr;
2044 set_mem_attrs (mem, &attrs);
2045 }
2046
2047 /* Set the offset of MEM to OFFSET. */
2048
2049 void
2050 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2051 {
2052 struct mem_attrs attrs;
2053
2054 attrs = *get_mem_attrs (mem);
2055 attrs.offset_known_p = true;
2056 attrs.offset = offset;
2057 set_mem_attrs (mem, &attrs);
2058 }
2059
2060 /* Clear the offset of MEM. */
2061
2062 void
2063 clear_mem_offset (rtx mem)
2064 {
2065 struct mem_attrs attrs;
2066
2067 attrs = *get_mem_attrs (mem);
2068 attrs.offset_known_p = false;
2069 set_mem_attrs (mem, &attrs);
2070 }
2071
2072 /* Set the size of MEM to SIZE. */
2073
2074 void
2075 set_mem_size (rtx mem, HOST_WIDE_INT size)
2076 {
2077 struct mem_attrs attrs;
2078
2079 attrs = *get_mem_attrs (mem);
2080 attrs.size_known_p = true;
2081 attrs.size = size;
2082 set_mem_attrs (mem, &attrs);
2083 }
2084
2085 /* Clear the size of MEM. */
2086
2087 void
2088 clear_mem_size (rtx mem)
2089 {
2090 struct mem_attrs attrs;
2091
2092 attrs = *get_mem_attrs (mem);
2093 attrs.size_known_p = false;
2094 set_mem_attrs (mem, &attrs);
2095 }
2096 \f
2097 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2098 and its address changed to ADDR. (VOIDmode means don't change the mode.
2099 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2100 returned memory location is required to be valid. INPLACE is true if any
2101 changes can be made directly to MEMREF or false if MEMREF must be treated
2102 as immutable.
2103
2104 The memory attributes are not changed. */
2105
2106 static rtx
2107 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2108 bool inplace)
2109 {
2110 addr_space_t as;
2111 rtx new_rtx;
2112
2113 gcc_assert (MEM_P (memref));
2114 as = MEM_ADDR_SPACE (memref);
2115 if (mode == VOIDmode)
2116 mode = GET_MODE (memref);
2117 if (addr == 0)
2118 addr = XEXP (memref, 0);
2119 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2120 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2121 return memref;
2122
2123 /* Don't validate address for LRA. LRA can make the address valid
2124 by itself in most efficient way. */
2125 if (validate && !lra_in_progress)
2126 {
2127 if (reload_in_progress || reload_completed)
2128 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2129 else
2130 addr = memory_address_addr_space (mode, addr, as);
2131 }
2132
2133 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2134 return memref;
2135
2136 if (inplace)
2137 {
2138 XEXP (memref, 0) = addr;
2139 return memref;
2140 }
2141
2142 new_rtx = gen_rtx_MEM (mode, addr);
2143 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2144 return new_rtx;
2145 }
2146
2147 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2148 way we are changing MEMREF, so we only preserve the alias set. */
2149
2150 rtx
2151 change_address (rtx memref, machine_mode mode, rtx addr)
2152 {
2153 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2154 machine_mode mmode = GET_MODE (new_rtx);
2155 struct mem_attrs attrs, *defattrs;
2156
2157 attrs = *get_mem_attrs (memref);
2158 defattrs = mode_mem_attrs[(int) mmode];
2159 attrs.expr = NULL_TREE;
2160 attrs.offset_known_p = false;
2161 attrs.size_known_p = defattrs->size_known_p;
2162 attrs.size = defattrs->size;
2163 attrs.align = defattrs->align;
2164
2165 /* If there are no changes, just return the original memory reference. */
2166 if (new_rtx == memref)
2167 {
2168 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2169 return new_rtx;
2170
2171 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2172 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2173 }
2174
2175 set_mem_attrs (new_rtx, &attrs);
2176 return new_rtx;
2177 }
2178
2179 /* Return a memory reference like MEMREF, but with its mode changed
2180 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2181 nonzero, the memory address is forced to be valid.
2182 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2183 and the caller is responsible for adjusting MEMREF base register.
2184 If ADJUST_OBJECT is zero, the underlying object associated with the
2185 memory reference is left unchanged and the caller is responsible for
2186 dealing with it. Otherwise, if the new memory reference is outside
2187 the underlying object, even partially, then the object is dropped.
2188 SIZE, if nonzero, is the size of an access in cases where MODE
2189 has no inherent size. */
2190
2191 rtx
2192 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2193 int validate, int adjust_address, int adjust_object,
2194 HOST_WIDE_INT size)
2195 {
2196 rtx addr = XEXP (memref, 0);
2197 rtx new_rtx;
2198 machine_mode address_mode;
2199 int pbits;
2200 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2201 unsigned HOST_WIDE_INT max_align;
2202 #ifdef POINTERS_EXTEND_UNSIGNED
2203 machine_mode pointer_mode
2204 = targetm.addr_space.pointer_mode (attrs.addrspace);
2205 #endif
2206
2207 /* VOIDmode means no mode change for change_address_1. */
2208 if (mode == VOIDmode)
2209 mode = GET_MODE (memref);
2210
2211 /* Take the size of non-BLKmode accesses from the mode. */
2212 defattrs = mode_mem_attrs[(int) mode];
2213 if (defattrs->size_known_p)
2214 size = defattrs->size;
2215
2216 /* If there are no changes, just return the original memory reference. */
2217 if (mode == GET_MODE (memref) && !offset
2218 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2219 && (!validate || memory_address_addr_space_p (mode, addr,
2220 attrs.addrspace)))
2221 return memref;
2222
2223 /* ??? Prefer to create garbage instead of creating shared rtl.
2224 This may happen even if offset is nonzero -- consider
2225 (plus (plus reg reg) const_int) -- so do this always. */
2226 addr = copy_rtx (addr);
2227
2228 /* Convert a possibly large offset to a signed value within the
2229 range of the target address space. */
2230 address_mode = get_address_mode (memref);
2231 pbits = GET_MODE_BITSIZE (address_mode);
2232 if (HOST_BITS_PER_WIDE_INT > pbits)
2233 {
2234 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2235 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2236 >> shift);
2237 }
2238
2239 if (adjust_address)
2240 {
2241 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2242 object, we can merge it into the LO_SUM. */
2243 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2244 && offset >= 0
2245 && (unsigned HOST_WIDE_INT) offset
2246 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2247 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2248 plus_constant (address_mode,
2249 XEXP (addr, 1), offset));
2250 #ifdef POINTERS_EXTEND_UNSIGNED
2251 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2252 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2253 the fact that pointers are not allowed to overflow. */
2254 else if (POINTERS_EXTEND_UNSIGNED > 0
2255 && GET_CODE (addr) == ZERO_EXTEND
2256 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2257 && trunc_int_for_mode (offset, pointer_mode) == offset)
2258 addr = gen_rtx_ZERO_EXTEND (address_mode,
2259 plus_constant (pointer_mode,
2260 XEXP (addr, 0), offset));
2261 #endif
2262 else
2263 addr = plus_constant (address_mode, addr, offset);
2264 }
2265
2266 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2267
2268 /* If the address is a REG, change_address_1 rightfully returns memref,
2269 but this would destroy memref's MEM_ATTRS. */
2270 if (new_rtx == memref && offset != 0)
2271 new_rtx = copy_rtx (new_rtx);
2272
2273 /* Conservatively drop the object if we don't know where we start from. */
2274 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2275 {
2276 attrs.expr = NULL_TREE;
2277 attrs.alias = 0;
2278 }
2279
2280 /* Compute the new values of the memory attributes due to this adjustment.
2281 We add the offsets and update the alignment. */
2282 if (attrs.offset_known_p)
2283 {
2284 attrs.offset += offset;
2285
2286 /* Drop the object if the new left end is not within its bounds. */
2287 if (adjust_object && attrs.offset < 0)
2288 {
2289 attrs.expr = NULL_TREE;
2290 attrs.alias = 0;
2291 }
2292 }
2293
2294 /* Compute the new alignment by taking the MIN of the alignment and the
2295 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2296 if zero. */
2297 if (offset != 0)
2298 {
2299 max_align = (offset & -offset) * BITS_PER_UNIT;
2300 attrs.align = MIN (attrs.align, max_align);
2301 }
2302
2303 if (size)
2304 {
2305 /* Drop the object if the new right end is not within its bounds. */
2306 if (adjust_object && (offset + size) > attrs.size)
2307 {
2308 attrs.expr = NULL_TREE;
2309 attrs.alias = 0;
2310 }
2311 attrs.size_known_p = true;
2312 attrs.size = size;
2313 }
2314 else if (attrs.size_known_p)
2315 {
2316 gcc_assert (!adjust_object);
2317 attrs.size -= offset;
2318 /* ??? The store_by_pieces machinery generates negative sizes,
2319 so don't assert for that here. */
2320 }
2321
2322 set_mem_attrs (new_rtx, &attrs);
2323
2324 return new_rtx;
2325 }
2326
2327 /* Return a memory reference like MEMREF, but with its mode changed
2328 to MODE and its address changed to ADDR, which is assumed to be
2329 MEMREF offset by OFFSET bytes. If VALIDATE is
2330 nonzero, the memory address is forced to be valid. */
2331
2332 rtx
2333 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2334 HOST_WIDE_INT offset, int validate)
2335 {
2336 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2337 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2338 }
2339
2340 /* Return a memory reference like MEMREF, but whose address is changed by
2341 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2342 known to be in OFFSET (possibly 1). */
2343
2344 rtx
2345 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2346 {
2347 rtx new_rtx, addr = XEXP (memref, 0);
2348 machine_mode address_mode;
2349 struct mem_attrs attrs, *defattrs;
2350
2351 attrs = *get_mem_attrs (memref);
2352 address_mode = get_address_mode (memref);
2353 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2354
2355 /* At this point we don't know _why_ the address is invalid. It
2356 could have secondary memory references, multiplies or anything.
2357
2358 However, if we did go and rearrange things, we can wind up not
2359 being able to recognize the magic around pic_offset_table_rtx.
2360 This stuff is fragile, and is yet another example of why it is
2361 bad to expose PIC machinery too early. */
2362 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2363 attrs.addrspace)
2364 && GET_CODE (addr) == PLUS
2365 && XEXP (addr, 0) == pic_offset_table_rtx)
2366 {
2367 addr = force_reg (GET_MODE (addr), addr);
2368 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2369 }
2370
2371 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2372 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2373
2374 /* If there are no changes, just return the original memory reference. */
2375 if (new_rtx == memref)
2376 return new_rtx;
2377
2378 /* Update the alignment to reflect the offset. Reset the offset, which
2379 we don't know. */
2380 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2381 attrs.offset_known_p = false;
2382 attrs.size_known_p = defattrs->size_known_p;
2383 attrs.size = defattrs->size;
2384 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2385 set_mem_attrs (new_rtx, &attrs);
2386 return new_rtx;
2387 }
2388
2389 /* Return a memory reference like MEMREF, but with its address changed to
2390 ADDR. The caller is asserting that the actual piece of memory pointed
2391 to is the same, just the form of the address is being changed, such as
2392 by putting something into a register. INPLACE is true if any changes
2393 can be made directly to MEMREF or false if MEMREF must be treated as
2394 immutable. */
2395
2396 rtx
2397 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2398 {
2399 /* change_address_1 copies the memory attribute structure without change
2400 and that's exactly what we want here. */
2401 update_temp_slot_address (XEXP (memref, 0), addr);
2402 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2403 }
2404
2405 /* Likewise, but the reference is not required to be valid. */
2406
2407 rtx
2408 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2409 {
2410 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2411 }
2412
2413 /* Return a memory reference like MEMREF, but with its mode widened to
2414 MODE and offset by OFFSET. This would be used by targets that e.g.
2415 cannot issue QImode memory operations and have to use SImode memory
2416 operations plus masking logic. */
2417
2418 rtx
2419 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2420 {
2421 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2422 struct mem_attrs attrs;
2423 unsigned int size = GET_MODE_SIZE (mode);
2424
2425 /* If there are no changes, just return the original memory reference. */
2426 if (new_rtx == memref)
2427 return new_rtx;
2428
2429 attrs = *get_mem_attrs (new_rtx);
2430
2431 /* If we don't know what offset we were at within the expression, then
2432 we can't know if we've overstepped the bounds. */
2433 if (! attrs.offset_known_p)
2434 attrs.expr = NULL_TREE;
2435
2436 while (attrs.expr)
2437 {
2438 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2439 {
2440 tree field = TREE_OPERAND (attrs.expr, 1);
2441 tree offset = component_ref_field_offset (attrs.expr);
2442
2443 if (! DECL_SIZE_UNIT (field))
2444 {
2445 attrs.expr = NULL_TREE;
2446 break;
2447 }
2448
2449 /* Is the field at least as large as the access? If so, ok,
2450 otherwise strip back to the containing structure. */
2451 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2452 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2453 && attrs.offset >= 0)
2454 break;
2455
2456 if (! tree_fits_uhwi_p (offset))
2457 {
2458 attrs.expr = NULL_TREE;
2459 break;
2460 }
2461
2462 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2463 attrs.offset += tree_to_uhwi (offset);
2464 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2465 / BITS_PER_UNIT);
2466 }
2467 /* Similarly for the decl. */
2468 else if (DECL_P (attrs.expr)
2469 && DECL_SIZE_UNIT (attrs.expr)
2470 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2471 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2472 && (! attrs.offset_known_p || attrs.offset >= 0))
2473 break;
2474 else
2475 {
2476 /* The widened memory access overflows the expression, which means
2477 that it could alias another expression. Zap it. */
2478 attrs.expr = NULL_TREE;
2479 break;
2480 }
2481 }
2482
2483 if (! attrs.expr)
2484 attrs.offset_known_p = false;
2485
2486 /* The widened memory may alias other stuff, so zap the alias set. */
2487 /* ??? Maybe use get_alias_set on any remaining expression. */
2488 attrs.alias = 0;
2489 attrs.size_known_p = true;
2490 attrs.size = size;
2491 set_mem_attrs (new_rtx, &attrs);
2492 return new_rtx;
2493 }
2494 \f
2495 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2496 static GTY(()) tree spill_slot_decl;
2497
2498 tree
2499 get_spill_slot_decl (bool force_build_p)
2500 {
2501 tree d = spill_slot_decl;
2502 rtx rd;
2503 struct mem_attrs attrs;
2504
2505 if (d || !force_build_p)
2506 return d;
2507
2508 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2509 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2510 DECL_ARTIFICIAL (d) = 1;
2511 DECL_IGNORED_P (d) = 1;
2512 TREE_USED (d) = 1;
2513 spill_slot_decl = d;
2514
2515 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2516 MEM_NOTRAP_P (rd) = 1;
2517 attrs = *mode_mem_attrs[(int) BLKmode];
2518 attrs.alias = new_alias_set ();
2519 attrs.expr = d;
2520 set_mem_attrs (rd, &attrs);
2521 SET_DECL_RTL (d, rd);
2522
2523 return d;
2524 }
2525
2526 /* Given MEM, a result from assign_stack_local, fill in the memory
2527 attributes as appropriate for a register allocator spill slot.
2528 These slots are not aliasable by other memory. We arrange for
2529 them all to use a single MEM_EXPR, so that the aliasing code can
2530 work properly in the case of shared spill slots. */
2531
2532 void
2533 set_mem_attrs_for_spill (rtx mem)
2534 {
2535 struct mem_attrs attrs;
2536 rtx addr;
2537
2538 attrs = *get_mem_attrs (mem);
2539 attrs.expr = get_spill_slot_decl (true);
2540 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2541 attrs.addrspace = ADDR_SPACE_GENERIC;
2542
2543 /* We expect the incoming memory to be of the form:
2544 (mem:MODE (plus (reg sfp) (const_int offset)))
2545 with perhaps the plus missing for offset = 0. */
2546 addr = XEXP (mem, 0);
2547 attrs.offset_known_p = true;
2548 attrs.offset = 0;
2549 if (GET_CODE (addr) == PLUS
2550 && CONST_INT_P (XEXP (addr, 1)))
2551 attrs.offset = INTVAL (XEXP (addr, 1));
2552
2553 set_mem_attrs (mem, &attrs);
2554 MEM_NOTRAP_P (mem) = 1;
2555 }
2556 \f
2557 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2558
2559 rtx_code_label *
2560 gen_label_rtx (void)
2561 {
2562 return as_a <rtx_code_label *> (
2563 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2564 NULL, label_num++, NULL));
2565 }
2566 \f
2567 /* For procedure integration. */
2568
2569 /* Install new pointers to the first and last insns in the chain.
2570 Also, set cur_insn_uid to one higher than the last in use.
2571 Used for an inline-procedure after copying the insn chain. */
2572
2573 void
2574 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2575 {
2576 rtx_insn *insn;
2577
2578 set_first_insn (first);
2579 set_last_insn (last);
2580 cur_insn_uid = 0;
2581
2582 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2583 {
2584 int debug_count = 0;
2585
2586 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2587 cur_debug_insn_uid = 0;
2588
2589 for (insn = first; insn; insn = NEXT_INSN (insn))
2590 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2591 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2592 else
2593 {
2594 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2595 if (DEBUG_INSN_P (insn))
2596 debug_count++;
2597 }
2598
2599 if (debug_count)
2600 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2601 else
2602 cur_debug_insn_uid++;
2603 }
2604 else
2605 for (insn = first; insn; insn = NEXT_INSN (insn))
2606 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2607
2608 cur_insn_uid++;
2609 }
2610 \f
2611 /* Go through all the RTL insn bodies and copy any invalid shared
2612 structure. This routine should only be called once. */
2613
2614 static void
2615 unshare_all_rtl_1 (rtx_insn *insn)
2616 {
2617 /* Unshare just about everything else. */
2618 unshare_all_rtl_in_chain (insn);
2619
2620 /* Make sure the addresses of stack slots found outside the insn chain
2621 (such as, in DECL_RTL of a variable) are not shared
2622 with the insn chain.
2623
2624 This special care is necessary when the stack slot MEM does not
2625 actually appear in the insn chain. If it does appear, its address
2626 is unshared from all else at that point. */
2627 stack_slot_list = safe_as_a <rtx_expr_list *> (
2628 copy_rtx_if_shared (stack_slot_list));
2629 }
2630
2631 /* Go through all the RTL insn bodies and copy any invalid shared
2632 structure, again. This is a fairly expensive thing to do so it
2633 should be done sparingly. */
2634
2635 void
2636 unshare_all_rtl_again (rtx_insn *insn)
2637 {
2638 rtx_insn *p;
2639 tree decl;
2640
2641 for (p = insn; p; p = NEXT_INSN (p))
2642 if (INSN_P (p))
2643 {
2644 reset_used_flags (PATTERN (p));
2645 reset_used_flags (REG_NOTES (p));
2646 if (CALL_P (p))
2647 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2648 }
2649
2650 /* Make sure that virtual stack slots are not shared. */
2651 set_used_decls (DECL_INITIAL (cfun->decl));
2652
2653 /* Make sure that virtual parameters are not shared. */
2654 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2655 set_used_flags (DECL_RTL (decl));
2656
2657 reset_used_flags (stack_slot_list);
2658
2659 unshare_all_rtl_1 (insn);
2660 }
2661
2662 unsigned int
2663 unshare_all_rtl (void)
2664 {
2665 unshare_all_rtl_1 (get_insns ());
2666 return 0;
2667 }
2668
2669
2670 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2671 Recursively does the same for subexpressions. */
2672
2673 static void
2674 verify_rtx_sharing (rtx orig, rtx insn)
2675 {
2676 rtx x = orig;
2677 int i;
2678 enum rtx_code code;
2679 const char *format_ptr;
2680
2681 if (x == 0)
2682 return;
2683
2684 code = GET_CODE (x);
2685
2686 /* These types may be freely shared. */
2687
2688 switch (code)
2689 {
2690 case REG:
2691 case DEBUG_EXPR:
2692 case VALUE:
2693 CASE_CONST_ANY:
2694 case SYMBOL_REF:
2695 case LABEL_REF:
2696 case CODE_LABEL:
2697 case PC:
2698 case CC0:
2699 case RETURN:
2700 case SIMPLE_RETURN:
2701 case SCRATCH:
2702 /* SCRATCH must be shared because they represent distinct values. */
2703 return;
2704 case CLOBBER:
2705 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2706 clobbers or clobbers of hard registers that originated as pseudos.
2707 This is needed to allow safe register renaming. */
2708 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2709 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2710 return;
2711 break;
2712
2713 case CONST:
2714 if (shared_const_p (orig))
2715 return;
2716 break;
2717
2718 case MEM:
2719 /* A MEM is allowed to be shared if its address is constant. */
2720 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2721 || reload_completed || reload_in_progress)
2722 return;
2723
2724 break;
2725
2726 default:
2727 break;
2728 }
2729
2730 /* This rtx may not be shared. If it has already been seen,
2731 replace it with a copy of itself. */
2732 #ifdef ENABLE_CHECKING
2733 if (RTX_FLAG (x, used))
2734 {
2735 error ("invalid rtl sharing found in the insn");
2736 debug_rtx (insn);
2737 error ("shared rtx");
2738 debug_rtx (x);
2739 internal_error ("internal consistency failure");
2740 }
2741 #endif
2742 gcc_assert (!RTX_FLAG (x, used));
2743
2744 RTX_FLAG (x, used) = 1;
2745
2746 /* Now scan the subexpressions recursively. */
2747
2748 format_ptr = GET_RTX_FORMAT (code);
2749
2750 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2751 {
2752 switch (*format_ptr++)
2753 {
2754 case 'e':
2755 verify_rtx_sharing (XEXP (x, i), insn);
2756 break;
2757
2758 case 'E':
2759 if (XVEC (x, i) != NULL)
2760 {
2761 int j;
2762 int len = XVECLEN (x, i);
2763
2764 for (j = 0; j < len; j++)
2765 {
2766 /* We allow sharing of ASM_OPERANDS inside single
2767 instruction. */
2768 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2769 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2770 == ASM_OPERANDS))
2771 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2772 else
2773 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2774 }
2775 }
2776 break;
2777 }
2778 }
2779 return;
2780 }
2781
2782 /* Reset used-flags for INSN. */
2783
2784 static void
2785 reset_insn_used_flags (rtx insn)
2786 {
2787 gcc_assert (INSN_P (insn));
2788 reset_used_flags (PATTERN (insn));
2789 reset_used_flags (REG_NOTES (insn));
2790 if (CALL_P (insn))
2791 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2792 }
2793
2794 /* Go through all the RTL insn bodies and clear all the USED bits. */
2795
2796 static void
2797 reset_all_used_flags (void)
2798 {
2799 rtx_insn *p;
2800
2801 for (p = get_insns (); p; p = NEXT_INSN (p))
2802 if (INSN_P (p))
2803 {
2804 rtx pat = PATTERN (p);
2805 if (GET_CODE (pat) != SEQUENCE)
2806 reset_insn_used_flags (p);
2807 else
2808 {
2809 gcc_assert (REG_NOTES (p) == NULL);
2810 for (int i = 0; i < XVECLEN (pat, 0); i++)
2811 {
2812 rtx insn = XVECEXP (pat, 0, i);
2813 if (INSN_P (insn))
2814 reset_insn_used_flags (insn);
2815 }
2816 }
2817 }
2818 }
2819
2820 /* Verify sharing in INSN. */
2821
2822 static void
2823 verify_insn_sharing (rtx insn)
2824 {
2825 gcc_assert (INSN_P (insn));
2826 reset_used_flags (PATTERN (insn));
2827 reset_used_flags (REG_NOTES (insn));
2828 if (CALL_P (insn))
2829 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2830 }
2831
2832 /* Go through all the RTL insn bodies and check that there is no unexpected
2833 sharing in between the subexpressions. */
2834
2835 DEBUG_FUNCTION void
2836 verify_rtl_sharing (void)
2837 {
2838 rtx_insn *p;
2839
2840 timevar_push (TV_VERIFY_RTL_SHARING);
2841
2842 reset_all_used_flags ();
2843
2844 for (p = get_insns (); p; p = NEXT_INSN (p))
2845 if (INSN_P (p))
2846 {
2847 rtx pat = PATTERN (p);
2848 if (GET_CODE (pat) != SEQUENCE)
2849 verify_insn_sharing (p);
2850 else
2851 for (int i = 0; i < XVECLEN (pat, 0); i++)
2852 {
2853 rtx insn = XVECEXP (pat, 0, i);
2854 if (INSN_P (insn))
2855 verify_insn_sharing (insn);
2856 }
2857 }
2858
2859 reset_all_used_flags ();
2860
2861 timevar_pop (TV_VERIFY_RTL_SHARING);
2862 }
2863
2864 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2865 Assumes the mark bits are cleared at entry. */
2866
2867 void
2868 unshare_all_rtl_in_chain (rtx_insn *insn)
2869 {
2870 for (; insn; insn = NEXT_INSN (insn))
2871 if (INSN_P (insn))
2872 {
2873 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2874 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2875 if (CALL_P (insn))
2876 CALL_INSN_FUNCTION_USAGE (insn)
2877 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2878 }
2879 }
2880
2881 /* Go through all virtual stack slots of a function and mark them as
2882 shared. We never replace the DECL_RTLs themselves with a copy,
2883 but expressions mentioned into a DECL_RTL cannot be shared with
2884 expressions in the instruction stream.
2885
2886 Note that reload may convert pseudo registers into memories in-place.
2887 Pseudo registers are always shared, but MEMs never are. Thus if we
2888 reset the used flags on MEMs in the instruction stream, we must set
2889 them again on MEMs that appear in DECL_RTLs. */
2890
2891 static void
2892 set_used_decls (tree blk)
2893 {
2894 tree t;
2895
2896 /* Mark decls. */
2897 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2898 if (DECL_RTL_SET_P (t))
2899 set_used_flags (DECL_RTL (t));
2900
2901 /* Now process sub-blocks. */
2902 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2903 set_used_decls (t);
2904 }
2905
2906 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2907 Recursively does the same for subexpressions. Uses
2908 copy_rtx_if_shared_1 to reduce stack space. */
2909
2910 rtx
2911 copy_rtx_if_shared (rtx orig)
2912 {
2913 copy_rtx_if_shared_1 (&orig);
2914 return orig;
2915 }
2916
2917 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2918 use. Recursively does the same for subexpressions. */
2919
2920 static void
2921 copy_rtx_if_shared_1 (rtx *orig1)
2922 {
2923 rtx x;
2924 int i;
2925 enum rtx_code code;
2926 rtx *last_ptr;
2927 const char *format_ptr;
2928 int copied = 0;
2929 int length;
2930
2931 /* Repeat is used to turn tail-recursion into iteration. */
2932 repeat:
2933 x = *orig1;
2934
2935 if (x == 0)
2936 return;
2937
2938 code = GET_CODE (x);
2939
2940 /* These types may be freely shared. */
2941
2942 switch (code)
2943 {
2944 case REG:
2945 case DEBUG_EXPR:
2946 case VALUE:
2947 CASE_CONST_ANY:
2948 case SYMBOL_REF:
2949 case LABEL_REF:
2950 case CODE_LABEL:
2951 case PC:
2952 case CC0:
2953 case RETURN:
2954 case SIMPLE_RETURN:
2955 case SCRATCH:
2956 /* SCRATCH must be shared because they represent distinct values. */
2957 return;
2958 case CLOBBER:
2959 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2960 clobbers or clobbers of hard registers that originated as pseudos.
2961 This is needed to allow safe register renaming. */
2962 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2963 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2964 return;
2965 break;
2966
2967 case CONST:
2968 if (shared_const_p (x))
2969 return;
2970 break;
2971
2972 case DEBUG_INSN:
2973 case INSN:
2974 case JUMP_INSN:
2975 case CALL_INSN:
2976 case NOTE:
2977 case BARRIER:
2978 /* The chain of insns is not being copied. */
2979 return;
2980
2981 default:
2982 break;
2983 }
2984
2985 /* This rtx may not be shared. If it has already been seen,
2986 replace it with a copy of itself. */
2987
2988 if (RTX_FLAG (x, used))
2989 {
2990 x = shallow_copy_rtx (x);
2991 copied = 1;
2992 }
2993 RTX_FLAG (x, used) = 1;
2994
2995 /* Now scan the subexpressions recursively.
2996 We can store any replaced subexpressions directly into X
2997 since we know X is not shared! Any vectors in X
2998 must be copied if X was copied. */
2999
3000 format_ptr = GET_RTX_FORMAT (code);
3001 length = GET_RTX_LENGTH (code);
3002 last_ptr = NULL;
3003
3004 for (i = 0; i < length; i++)
3005 {
3006 switch (*format_ptr++)
3007 {
3008 case 'e':
3009 if (last_ptr)
3010 copy_rtx_if_shared_1 (last_ptr);
3011 last_ptr = &XEXP (x, i);
3012 break;
3013
3014 case 'E':
3015 if (XVEC (x, i) != NULL)
3016 {
3017 int j;
3018 int len = XVECLEN (x, i);
3019
3020 /* Copy the vector iff I copied the rtx and the length
3021 is nonzero. */
3022 if (copied && len > 0)
3023 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3024
3025 /* Call recursively on all inside the vector. */
3026 for (j = 0; j < len; j++)
3027 {
3028 if (last_ptr)
3029 copy_rtx_if_shared_1 (last_ptr);
3030 last_ptr = &XVECEXP (x, i, j);
3031 }
3032 }
3033 break;
3034 }
3035 }
3036 *orig1 = x;
3037 if (last_ptr)
3038 {
3039 orig1 = last_ptr;
3040 goto repeat;
3041 }
3042 return;
3043 }
3044
3045 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3046
3047 static void
3048 mark_used_flags (rtx x, int flag)
3049 {
3050 int i, j;
3051 enum rtx_code code;
3052 const char *format_ptr;
3053 int length;
3054
3055 /* Repeat is used to turn tail-recursion into iteration. */
3056 repeat:
3057 if (x == 0)
3058 return;
3059
3060 code = GET_CODE (x);
3061
3062 /* These types may be freely shared so we needn't do any resetting
3063 for them. */
3064
3065 switch (code)
3066 {
3067 case REG:
3068 case DEBUG_EXPR:
3069 case VALUE:
3070 CASE_CONST_ANY:
3071 case SYMBOL_REF:
3072 case CODE_LABEL:
3073 case PC:
3074 case CC0:
3075 case RETURN:
3076 case SIMPLE_RETURN:
3077 return;
3078
3079 case DEBUG_INSN:
3080 case INSN:
3081 case JUMP_INSN:
3082 case CALL_INSN:
3083 case NOTE:
3084 case LABEL_REF:
3085 case BARRIER:
3086 /* The chain of insns is not being copied. */
3087 return;
3088
3089 default:
3090 break;
3091 }
3092
3093 RTX_FLAG (x, used) = flag;
3094
3095 format_ptr = GET_RTX_FORMAT (code);
3096 length = GET_RTX_LENGTH (code);
3097
3098 for (i = 0; i < length; i++)
3099 {
3100 switch (*format_ptr++)
3101 {
3102 case 'e':
3103 if (i == length-1)
3104 {
3105 x = XEXP (x, i);
3106 goto repeat;
3107 }
3108 mark_used_flags (XEXP (x, i), flag);
3109 break;
3110
3111 case 'E':
3112 for (j = 0; j < XVECLEN (x, i); j++)
3113 mark_used_flags (XVECEXP (x, i, j), flag);
3114 break;
3115 }
3116 }
3117 }
3118
3119 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3120 to look for shared sub-parts. */
3121
3122 void
3123 reset_used_flags (rtx x)
3124 {
3125 mark_used_flags (x, 0);
3126 }
3127
3128 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3129 to look for shared sub-parts. */
3130
3131 void
3132 set_used_flags (rtx x)
3133 {
3134 mark_used_flags (x, 1);
3135 }
3136 \f
3137 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3138 Return X or the rtx for the pseudo reg the value of X was copied into.
3139 OTHER must be valid as a SET_DEST. */
3140
3141 rtx
3142 make_safe_from (rtx x, rtx other)
3143 {
3144 while (1)
3145 switch (GET_CODE (other))
3146 {
3147 case SUBREG:
3148 other = SUBREG_REG (other);
3149 break;
3150 case STRICT_LOW_PART:
3151 case SIGN_EXTEND:
3152 case ZERO_EXTEND:
3153 other = XEXP (other, 0);
3154 break;
3155 default:
3156 goto done;
3157 }
3158 done:
3159 if ((MEM_P (other)
3160 && ! CONSTANT_P (x)
3161 && !REG_P (x)
3162 && GET_CODE (x) != SUBREG)
3163 || (REG_P (other)
3164 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3165 || reg_mentioned_p (other, x))))
3166 {
3167 rtx temp = gen_reg_rtx (GET_MODE (x));
3168 emit_move_insn (temp, x);
3169 return temp;
3170 }
3171 return x;
3172 }
3173 \f
3174 /* Emission of insns (adding them to the doubly-linked list). */
3175
3176 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3177
3178 rtx_insn *
3179 get_last_insn_anywhere (void)
3180 {
3181 struct sequence_stack *seq;
3182 for (seq = get_current_sequence (); seq; seq = seq->next)
3183 if (seq->last != 0)
3184 return seq->last;
3185 return 0;
3186 }
3187
3188 /* Return the first nonnote insn emitted in current sequence or current
3189 function. This routine looks inside SEQUENCEs. */
3190
3191 rtx_insn *
3192 get_first_nonnote_insn (void)
3193 {
3194 rtx_insn *insn = get_insns ();
3195
3196 if (insn)
3197 {
3198 if (NOTE_P (insn))
3199 for (insn = next_insn (insn);
3200 insn && NOTE_P (insn);
3201 insn = next_insn (insn))
3202 continue;
3203 else
3204 {
3205 if (NONJUMP_INSN_P (insn)
3206 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3207 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3208 }
3209 }
3210
3211 return insn;
3212 }
3213
3214 /* Return the last nonnote insn emitted in current sequence or current
3215 function. This routine looks inside SEQUENCEs. */
3216
3217 rtx_insn *
3218 get_last_nonnote_insn (void)
3219 {
3220 rtx_insn *insn = get_last_insn ();
3221
3222 if (insn)
3223 {
3224 if (NOTE_P (insn))
3225 for (insn = previous_insn (insn);
3226 insn && NOTE_P (insn);
3227 insn = previous_insn (insn))
3228 continue;
3229 else
3230 {
3231 if (NONJUMP_INSN_P (insn))
3232 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3233 insn = seq->insn (seq->len () - 1);
3234 }
3235 }
3236
3237 return insn;
3238 }
3239
3240 /* Return the number of actual (non-debug) insns emitted in this
3241 function. */
3242
3243 int
3244 get_max_insn_count (void)
3245 {
3246 int n = cur_insn_uid;
3247
3248 /* The table size must be stable across -g, to avoid codegen
3249 differences due to debug insns, and not be affected by
3250 -fmin-insn-uid, to avoid excessive table size and to simplify
3251 debugging of -fcompare-debug failures. */
3252 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3253 n -= cur_debug_insn_uid;
3254 else
3255 n -= MIN_NONDEBUG_INSN_UID;
3256
3257 return n;
3258 }
3259
3260 \f
3261 /* Return the next insn. If it is a SEQUENCE, return the first insn
3262 of the sequence. */
3263
3264 rtx_insn *
3265 next_insn (rtx_insn *insn)
3266 {
3267 if (insn)
3268 {
3269 insn = NEXT_INSN (insn);
3270 if (insn && NONJUMP_INSN_P (insn)
3271 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3272 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3273 }
3274
3275 return insn;
3276 }
3277
3278 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3279 of the sequence. */
3280
3281 rtx_insn *
3282 previous_insn (rtx_insn *insn)
3283 {
3284 if (insn)
3285 {
3286 insn = PREV_INSN (insn);
3287 if (insn && NONJUMP_INSN_P (insn))
3288 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3289 insn = seq->insn (seq->len () - 1);
3290 }
3291
3292 return insn;
3293 }
3294
3295 /* Return the next insn after INSN that is not a NOTE. This routine does not
3296 look inside SEQUENCEs. */
3297
3298 rtx_insn *
3299 next_nonnote_insn (rtx uncast_insn)
3300 {
3301 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3302 while (insn)
3303 {
3304 insn = NEXT_INSN (insn);
3305 if (insn == 0 || !NOTE_P (insn))
3306 break;
3307 }
3308
3309 return insn;
3310 }
3311
3312 /* Return the next insn after INSN that is not a NOTE, but stop the
3313 search before we enter another basic block. This routine does not
3314 look inside SEQUENCEs. */
3315
3316 rtx_insn *
3317 next_nonnote_insn_bb (rtx_insn *insn)
3318 {
3319 while (insn)
3320 {
3321 insn = NEXT_INSN (insn);
3322 if (insn == 0 || !NOTE_P (insn))
3323 break;
3324 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3325 return NULL;
3326 }
3327
3328 return insn;
3329 }
3330
3331 /* Return the previous insn before INSN that is not a NOTE. This routine does
3332 not look inside SEQUENCEs. */
3333
3334 rtx_insn *
3335 prev_nonnote_insn (rtx uncast_insn)
3336 {
3337 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3338
3339 while (insn)
3340 {
3341 insn = PREV_INSN (insn);
3342 if (insn == 0 || !NOTE_P (insn))
3343 break;
3344 }
3345
3346 return insn;
3347 }
3348
3349 /* Return the previous insn before INSN that is not a NOTE, but stop
3350 the search before we enter another basic block. This routine does
3351 not look inside SEQUENCEs. */
3352
3353 rtx_insn *
3354 prev_nonnote_insn_bb (rtx uncast_insn)
3355 {
3356 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3357
3358 while (insn)
3359 {
3360 insn = PREV_INSN (insn);
3361 if (insn == 0 || !NOTE_P (insn))
3362 break;
3363 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3364 return NULL;
3365 }
3366
3367 return insn;
3368 }
3369
3370 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3371 routine does not look inside SEQUENCEs. */
3372
3373 rtx_insn *
3374 next_nondebug_insn (rtx uncast_insn)
3375 {
3376 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3377
3378 while (insn)
3379 {
3380 insn = NEXT_INSN (insn);
3381 if (insn == 0 || !DEBUG_INSN_P (insn))
3382 break;
3383 }
3384
3385 return insn;
3386 }
3387
3388 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3389 This routine does not look inside SEQUENCEs. */
3390
3391 rtx_insn *
3392 prev_nondebug_insn (rtx uncast_insn)
3393 {
3394 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3395
3396 while (insn)
3397 {
3398 insn = PREV_INSN (insn);
3399 if (insn == 0 || !DEBUG_INSN_P (insn))
3400 break;
3401 }
3402
3403 return insn;
3404 }
3405
3406 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3407 This routine does not look inside SEQUENCEs. */
3408
3409 rtx_insn *
3410 next_nonnote_nondebug_insn (rtx uncast_insn)
3411 {
3412 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3413
3414 while (insn)
3415 {
3416 insn = NEXT_INSN (insn);
3417 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3418 break;
3419 }
3420
3421 return insn;
3422 }
3423
3424 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3425 This routine does not look inside SEQUENCEs. */
3426
3427 rtx_insn *
3428 prev_nonnote_nondebug_insn (rtx uncast_insn)
3429 {
3430 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3431
3432 while (insn)
3433 {
3434 insn = PREV_INSN (insn);
3435 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3436 break;
3437 }
3438
3439 return insn;
3440 }
3441
3442 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3443 or 0, if there is none. This routine does not look inside
3444 SEQUENCEs. */
3445
3446 rtx_insn *
3447 next_real_insn (rtx uncast_insn)
3448 {
3449 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3450
3451 while (insn)
3452 {
3453 insn = NEXT_INSN (insn);
3454 if (insn == 0 || INSN_P (insn))
3455 break;
3456 }
3457
3458 return insn;
3459 }
3460
3461 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3462 or 0, if there is none. This routine does not look inside
3463 SEQUENCEs. */
3464
3465 rtx_insn *
3466 prev_real_insn (rtx uncast_insn)
3467 {
3468 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3469
3470 while (insn)
3471 {
3472 insn = PREV_INSN (insn);
3473 if (insn == 0 || INSN_P (insn))
3474 break;
3475 }
3476
3477 return insn;
3478 }
3479
3480 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3481 This routine does not look inside SEQUENCEs. */
3482
3483 rtx_call_insn *
3484 last_call_insn (void)
3485 {
3486 rtx_insn *insn;
3487
3488 for (insn = get_last_insn ();
3489 insn && !CALL_P (insn);
3490 insn = PREV_INSN (insn))
3491 ;
3492
3493 return safe_as_a <rtx_call_insn *> (insn);
3494 }
3495
3496 /* Find the next insn after INSN that really does something. This routine
3497 does not look inside SEQUENCEs. After reload this also skips over
3498 standalone USE and CLOBBER insn. */
3499
3500 int
3501 active_insn_p (const_rtx insn)
3502 {
3503 return (CALL_P (insn) || JUMP_P (insn)
3504 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3505 || (NONJUMP_INSN_P (insn)
3506 && (! reload_completed
3507 || (GET_CODE (PATTERN (insn)) != USE
3508 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3509 }
3510
3511 rtx_insn *
3512 next_active_insn (rtx uncast_insn)
3513 {
3514 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3515
3516 while (insn)
3517 {
3518 insn = NEXT_INSN (insn);
3519 if (insn == 0 || active_insn_p (insn))
3520 break;
3521 }
3522
3523 return insn;
3524 }
3525
3526 /* Find the last insn before INSN that really does something. This routine
3527 does not look inside SEQUENCEs. After reload this also skips over
3528 standalone USE and CLOBBER insn. */
3529
3530 rtx_insn *
3531 prev_active_insn (rtx uncast_insn)
3532 {
3533 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3534
3535 while (insn)
3536 {
3537 insn = PREV_INSN (insn);
3538 if (insn == 0 || active_insn_p (insn))
3539 break;
3540 }
3541
3542 return insn;
3543 }
3544 \f
3545 /* Return the next insn that uses CC0 after INSN, which is assumed to
3546 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3547 applied to the result of this function should yield INSN).
3548
3549 Normally, this is simply the next insn. However, if a REG_CC_USER note
3550 is present, it contains the insn that uses CC0.
3551
3552 Return 0 if we can't find the insn. */
3553
3554 rtx_insn *
3555 next_cc0_user (rtx uncast_insn)
3556 {
3557 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3558
3559 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3560
3561 if (note)
3562 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3563
3564 insn = next_nonnote_insn (insn);
3565 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3566 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3567
3568 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3569 return insn;
3570
3571 return 0;
3572 }
3573
3574 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3575 note, it is the previous insn. */
3576
3577 rtx_insn *
3578 prev_cc0_setter (rtx_insn *insn)
3579 {
3580 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3581
3582 if (note)
3583 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3584
3585 insn = prev_nonnote_insn (insn);
3586 gcc_assert (sets_cc0_p (PATTERN (insn)));
3587
3588 return insn;
3589 }
3590
3591 #ifdef AUTO_INC_DEC
3592 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3593
3594 static int
3595 find_auto_inc (const_rtx x, const_rtx reg)
3596 {
3597 subrtx_iterator::array_type array;
3598 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3599 {
3600 const_rtx x = *iter;
3601 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3602 && rtx_equal_p (reg, XEXP (x, 0)))
3603 return true;
3604 }
3605 return false;
3606 }
3607 #endif
3608
3609 /* Increment the label uses for all labels present in rtx. */
3610
3611 static void
3612 mark_label_nuses (rtx x)
3613 {
3614 enum rtx_code code;
3615 int i, j;
3616 const char *fmt;
3617
3618 code = GET_CODE (x);
3619 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3620 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3621
3622 fmt = GET_RTX_FORMAT (code);
3623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3624 {
3625 if (fmt[i] == 'e')
3626 mark_label_nuses (XEXP (x, i));
3627 else if (fmt[i] == 'E')
3628 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3629 mark_label_nuses (XVECEXP (x, i, j));
3630 }
3631 }
3632
3633 \f
3634 /* Try splitting insns that can be split for better scheduling.
3635 PAT is the pattern which might split.
3636 TRIAL is the insn providing PAT.
3637 LAST is nonzero if we should return the last insn of the sequence produced.
3638
3639 If this routine succeeds in splitting, it returns the first or last
3640 replacement insn depending on the value of LAST. Otherwise, it
3641 returns TRIAL. If the insn to be returned can be split, it will be. */
3642
3643 rtx_insn *
3644 try_split (rtx pat, rtx_insn *trial, int last)
3645 {
3646 rtx_insn *before = PREV_INSN (trial);
3647 rtx_insn *after = NEXT_INSN (trial);
3648 rtx note;
3649 rtx_insn *seq, *tem;
3650 int probability;
3651 rtx_insn *insn_last, *insn;
3652 int njumps = 0;
3653 rtx_insn *call_insn = NULL;
3654
3655 /* We're not good at redistributing frame information. */
3656 if (RTX_FRAME_RELATED_P (trial))
3657 return trial;
3658
3659 if (any_condjump_p (trial)
3660 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3661 split_branch_probability = XINT (note, 0);
3662 probability = split_branch_probability;
3663
3664 seq = split_insns (pat, trial);
3665
3666 split_branch_probability = -1;
3667
3668 if (!seq)
3669 return trial;
3670
3671 /* Avoid infinite loop if any insn of the result matches
3672 the original pattern. */
3673 insn_last = seq;
3674 while (1)
3675 {
3676 if (INSN_P (insn_last)
3677 && rtx_equal_p (PATTERN (insn_last), pat))
3678 return trial;
3679 if (!NEXT_INSN (insn_last))
3680 break;
3681 insn_last = NEXT_INSN (insn_last);
3682 }
3683
3684 /* We will be adding the new sequence to the function. The splitters
3685 may have introduced invalid RTL sharing, so unshare the sequence now. */
3686 unshare_all_rtl_in_chain (seq);
3687
3688 /* Mark labels and copy flags. */
3689 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3690 {
3691 if (JUMP_P (insn))
3692 {
3693 if (JUMP_P (trial))
3694 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3695 mark_jump_label (PATTERN (insn), insn, 0);
3696 njumps++;
3697 if (probability != -1
3698 && any_condjump_p (insn)
3699 && !find_reg_note (insn, REG_BR_PROB, 0))
3700 {
3701 /* We can preserve the REG_BR_PROB notes only if exactly
3702 one jump is created, otherwise the machine description
3703 is responsible for this step using
3704 split_branch_probability variable. */
3705 gcc_assert (njumps == 1);
3706 add_int_reg_note (insn, REG_BR_PROB, probability);
3707 }
3708 }
3709 }
3710
3711 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3712 in SEQ and copy any additional information across. */
3713 if (CALL_P (trial))
3714 {
3715 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3716 if (CALL_P (insn))
3717 {
3718 rtx_insn *next;
3719 rtx *p;
3720
3721 gcc_assert (call_insn == NULL_RTX);
3722 call_insn = insn;
3723
3724 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3725 target may have explicitly specified. */
3726 p = &CALL_INSN_FUNCTION_USAGE (insn);
3727 while (*p)
3728 p = &XEXP (*p, 1);
3729 *p = CALL_INSN_FUNCTION_USAGE (trial);
3730
3731 /* If the old call was a sibling call, the new one must
3732 be too. */
3733 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3734
3735 /* If the new call is the last instruction in the sequence,
3736 it will effectively replace the old call in-situ. Otherwise
3737 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3738 so that it comes immediately after the new call. */
3739 if (NEXT_INSN (insn))
3740 for (next = NEXT_INSN (trial);
3741 next && NOTE_P (next);
3742 next = NEXT_INSN (next))
3743 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3744 {
3745 remove_insn (next);
3746 add_insn_after (next, insn, NULL);
3747 break;
3748 }
3749 }
3750 }
3751
3752 /* Copy notes, particularly those related to the CFG. */
3753 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3754 {
3755 switch (REG_NOTE_KIND (note))
3756 {
3757 case REG_EH_REGION:
3758 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3759 break;
3760
3761 case REG_NORETURN:
3762 case REG_SETJMP:
3763 case REG_TM:
3764 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3765 {
3766 if (CALL_P (insn))
3767 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3768 }
3769 break;
3770
3771 case REG_NON_LOCAL_GOTO:
3772 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3773 {
3774 if (JUMP_P (insn))
3775 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3776 }
3777 break;
3778
3779 #ifdef AUTO_INC_DEC
3780 case REG_INC:
3781 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3782 {
3783 rtx reg = XEXP (note, 0);
3784 if (!FIND_REG_INC_NOTE (insn, reg)
3785 && find_auto_inc (PATTERN (insn), reg))
3786 add_reg_note (insn, REG_INC, reg);
3787 }
3788 break;
3789 #endif
3790
3791 case REG_ARGS_SIZE:
3792 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3793 break;
3794
3795 case REG_CALL_DECL:
3796 gcc_assert (call_insn != NULL_RTX);
3797 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3798 break;
3799
3800 default:
3801 break;
3802 }
3803 }
3804
3805 /* If there are LABELS inside the split insns increment the
3806 usage count so we don't delete the label. */
3807 if (INSN_P (trial))
3808 {
3809 insn = insn_last;
3810 while (insn != NULL_RTX)
3811 {
3812 /* JUMP_P insns have already been "marked" above. */
3813 if (NONJUMP_INSN_P (insn))
3814 mark_label_nuses (PATTERN (insn));
3815
3816 insn = PREV_INSN (insn);
3817 }
3818 }
3819
3820 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3821
3822 delete_insn (trial);
3823
3824 /* Recursively call try_split for each new insn created; by the
3825 time control returns here that insn will be fully split, so
3826 set LAST and continue from the insn after the one returned.
3827 We can't use next_active_insn here since AFTER may be a note.
3828 Ignore deleted insns, which can be occur if not optimizing. */
3829 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3830 if (! tem->deleted () && INSN_P (tem))
3831 tem = try_split (PATTERN (tem), tem, 1);
3832
3833 /* Return either the first or the last insn, depending on which was
3834 requested. */
3835 return last
3836 ? (after ? PREV_INSN (after) : get_last_insn ())
3837 : NEXT_INSN (before);
3838 }
3839 \f
3840 /* Make and return an INSN rtx, initializing all its slots.
3841 Store PATTERN in the pattern slots. */
3842
3843 rtx_insn *
3844 make_insn_raw (rtx pattern)
3845 {
3846 rtx_insn *insn;
3847
3848 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3849
3850 INSN_UID (insn) = cur_insn_uid++;
3851 PATTERN (insn) = pattern;
3852 INSN_CODE (insn) = -1;
3853 REG_NOTES (insn) = NULL;
3854 INSN_LOCATION (insn) = curr_insn_location ();
3855 BLOCK_FOR_INSN (insn) = NULL;
3856
3857 #ifdef ENABLE_RTL_CHECKING
3858 if (insn
3859 && INSN_P (insn)
3860 && (returnjump_p (insn)
3861 || (GET_CODE (insn) == SET
3862 && SET_DEST (insn) == pc_rtx)))
3863 {
3864 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3865 debug_rtx (insn);
3866 }
3867 #endif
3868
3869 return insn;
3870 }
3871
3872 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3873
3874 static rtx_insn *
3875 make_debug_insn_raw (rtx pattern)
3876 {
3877 rtx_debug_insn *insn;
3878
3879 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3880 INSN_UID (insn) = cur_debug_insn_uid++;
3881 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3882 INSN_UID (insn) = cur_insn_uid++;
3883
3884 PATTERN (insn) = pattern;
3885 INSN_CODE (insn) = -1;
3886 REG_NOTES (insn) = NULL;
3887 INSN_LOCATION (insn) = curr_insn_location ();
3888 BLOCK_FOR_INSN (insn) = NULL;
3889
3890 return insn;
3891 }
3892
3893 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3894
3895 static rtx_insn *
3896 make_jump_insn_raw (rtx pattern)
3897 {
3898 rtx_jump_insn *insn;
3899
3900 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3901 INSN_UID (insn) = cur_insn_uid++;
3902
3903 PATTERN (insn) = pattern;
3904 INSN_CODE (insn) = -1;
3905 REG_NOTES (insn) = NULL;
3906 JUMP_LABEL (insn) = NULL;
3907 INSN_LOCATION (insn) = curr_insn_location ();
3908 BLOCK_FOR_INSN (insn) = NULL;
3909
3910 return insn;
3911 }
3912
3913 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3914
3915 static rtx_insn *
3916 make_call_insn_raw (rtx pattern)
3917 {
3918 rtx_call_insn *insn;
3919
3920 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3921 INSN_UID (insn) = cur_insn_uid++;
3922
3923 PATTERN (insn) = pattern;
3924 INSN_CODE (insn) = -1;
3925 REG_NOTES (insn) = NULL;
3926 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3927 INSN_LOCATION (insn) = curr_insn_location ();
3928 BLOCK_FOR_INSN (insn) = NULL;
3929
3930 return insn;
3931 }
3932
3933 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3934
3935 static rtx_note *
3936 make_note_raw (enum insn_note subtype)
3937 {
3938 /* Some notes are never created this way at all. These notes are
3939 only created by patching out insns. */
3940 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3941 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3942
3943 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3944 INSN_UID (note) = cur_insn_uid++;
3945 NOTE_KIND (note) = subtype;
3946 BLOCK_FOR_INSN (note) = NULL;
3947 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3948 return note;
3949 }
3950 \f
3951 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3952 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3953 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3954
3955 static inline void
3956 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3957 {
3958 SET_PREV_INSN (insn) = prev;
3959 SET_NEXT_INSN (insn) = next;
3960 if (prev != NULL)
3961 {
3962 SET_NEXT_INSN (prev) = insn;
3963 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3964 {
3965 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3966 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3967 }
3968 }
3969 if (next != NULL)
3970 {
3971 SET_PREV_INSN (next) = insn;
3972 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3973 {
3974 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3975 SET_PREV_INSN (sequence->insn (0)) = insn;
3976 }
3977 }
3978
3979 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3980 {
3981 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3982 SET_PREV_INSN (sequence->insn (0)) = prev;
3983 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3984 }
3985 }
3986
3987 /* Add INSN to the end of the doubly-linked list.
3988 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3989
3990 void
3991 add_insn (rtx_insn *insn)
3992 {
3993 rtx_insn *prev = get_last_insn ();
3994 link_insn_into_chain (insn, prev, NULL);
3995 if (NULL == get_insns ())
3996 set_first_insn (insn);
3997 set_last_insn (insn);
3998 }
3999
4000 /* Add INSN into the doubly-linked list after insn AFTER. */
4001
4002 static void
4003 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4004 {
4005 rtx_insn *next = NEXT_INSN (after);
4006
4007 gcc_assert (!optimize || !after->deleted ());
4008
4009 link_insn_into_chain (insn, after, next);
4010
4011 if (next == NULL)
4012 {
4013 struct sequence_stack *seq;
4014
4015 for (seq = get_current_sequence (); seq; seq = seq->next)
4016 if (after == seq->last)
4017 {
4018 seq->last = insn;
4019 break;
4020 }
4021 }
4022 }
4023
4024 /* Add INSN into the doubly-linked list before insn BEFORE. */
4025
4026 static void
4027 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4028 {
4029 rtx_insn *prev = PREV_INSN (before);
4030
4031 gcc_assert (!optimize || !before->deleted ());
4032
4033 link_insn_into_chain (insn, prev, before);
4034
4035 if (prev == NULL)
4036 {
4037 struct sequence_stack *seq;
4038
4039 for (seq = get_current_sequence (); seq; seq = seq->next)
4040 if (before == seq->first)
4041 {
4042 seq->first = insn;
4043 break;
4044 }
4045
4046 gcc_assert (seq);
4047 }
4048 }
4049
4050 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4051 If BB is NULL, an attempt is made to infer the bb from before.
4052
4053 This and the next function should be the only functions called
4054 to insert an insn once delay slots have been filled since only
4055 they know how to update a SEQUENCE. */
4056
4057 void
4058 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4059 {
4060 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4061 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4062 add_insn_after_nobb (insn, after);
4063 if (!BARRIER_P (after)
4064 && !BARRIER_P (insn)
4065 && (bb = BLOCK_FOR_INSN (after)))
4066 {
4067 set_block_for_insn (insn, bb);
4068 if (INSN_P (insn))
4069 df_insn_rescan (insn);
4070 /* Should not happen as first in the BB is always
4071 either NOTE or LABEL. */
4072 if (BB_END (bb) == after
4073 /* Avoid clobbering of structure when creating new BB. */
4074 && !BARRIER_P (insn)
4075 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4076 BB_END (bb) = insn;
4077 }
4078 }
4079
4080 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4081 If BB is NULL, an attempt is made to infer the bb from before.
4082
4083 This and the previous function should be the only functions called
4084 to insert an insn once delay slots have been filled since only
4085 they know how to update a SEQUENCE. */
4086
4087 void
4088 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4089 {
4090 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4091 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4092 add_insn_before_nobb (insn, before);
4093
4094 if (!bb
4095 && !BARRIER_P (before)
4096 && !BARRIER_P (insn))
4097 bb = BLOCK_FOR_INSN (before);
4098
4099 if (bb)
4100 {
4101 set_block_for_insn (insn, bb);
4102 if (INSN_P (insn))
4103 df_insn_rescan (insn);
4104 /* Should not happen as first in the BB is always either NOTE or
4105 LABEL. */
4106 gcc_assert (BB_HEAD (bb) != insn
4107 /* Avoid clobbering of structure when creating new BB. */
4108 || BARRIER_P (insn)
4109 || NOTE_INSN_BASIC_BLOCK_P (insn));
4110 }
4111 }
4112
4113 /* Replace insn with an deleted instruction note. */
4114
4115 void
4116 set_insn_deleted (rtx insn)
4117 {
4118 if (INSN_P (insn))
4119 df_insn_delete (as_a <rtx_insn *> (insn));
4120 PUT_CODE (insn, NOTE);
4121 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4122 }
4123
4124
4125 /* Unlink INSN from the insn chain.
4126
4127 This function knows how to handle sequences.
4128
4129 This function does not invalidate data flow information associated with
4130 INSN (i.e. does not call df_insn_delete). That makes this function
4131 usable for only disconnecting an insn from the chain, and re-emit it
4132 elsewhere later.
4133
4134 To later insert INSN elsewhere in the insn chain via add_insn and
4135 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4136 the caller. Nullifying them here breaks many insn chain walks.
4137
4138 To really delete an insn and related DF information, use delete_insn. */
4139
4140 void
4141 remove_insn (rtx uncast_insn)
4142 {
4143 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4144 rtx_insn *next = NEXT_INSN (insn);
4145 rtx_insn *prev = PREV_INSN (insn);
4146 basic_block bb;
4147
4148 if (prev)
4149 {
4150 SET_NEXT_INSN (prev) = next;
4151 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4152 {
4153 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4154 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4155 }
4156 }
4157 else
4158 {
4159 struct sequence_stack *seq;
4160
4161 for (seq = get_current_sequence (); seq; seq = seq->next)
4162 if (insn == seq->first)
4163 {
4164 seq->first = next;
4165 break;
4166 }
4167
4168 gcc_assert (seq);
4169 }
4170
4171 if (next)
4172 {
4173 SET_PREV_INSN (next) = prev;
4174 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4175 {
4176 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4177 SET_PREV_INSN (sequence->insn (0)) = prev;
4178 }
4179 }
4180 else
4181 {
4182 struct sequence_stack *seq;
4183
4184 for (seq = get_current_sequence (); seq; seq = seq->next)
4185 if (insn == seq->last)
4186 {
4187 seq->last = prev;
4188 break;
4189 }
4190
4191 gcc_assert (seq);
4192 }
4193
4194 /* Fix up basic block boundaries, if necessary. */
4195 if (!BARRIER_P (insn)
4196 && (bb = BLOCK_FOR_INSN (insn)))
4197 {
4198 if (BB_HEAD (bb) == insn)
4199 {
4200 /* Never ever delete the basic block note without deleting whole
4201 basic block. */
4202 gcc_assert (!NOTE_P (insn));
4203 BB_HEAD (bb) = next;
4204 }
4205 if (BB_END (bb) == insn)
4206 BB_END (bb) = prev;
4207 }
4208 }
4209
4210 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4211
4212 void
4213 add_function_usage_to (rtx call_insn, rtx call_fusage)
4214 {
4215 gcc_assert (call_insn && CALL_P (call_insn));
4216
4217 /* Put the register usage information on the CALL. If there is already
4218 some usage information, put ours at the end. */
4219 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4220 {
4221 rtx link;
4222
4223 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4224 link = XEXP (link, 1))
4225 ;
4226
4227 XEXP (link, 1) = call_fusage;
4228 }
4229 else
4230 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4231 }
4232
4233 /* Delete all insns made since FROM.
4234 FROM becomes the new last instruction. */
4235
4236 void
4237 delete_insns_since (rtx_insn *from)
4238 {
4239 if (from == 0)
4240 set_first_insn (0);
4241 else
4242 SET_NEXT_INSN (from) = 0;
4243 set_last_insn (from);
4244 }
4245
4246 /* This function is deprecated, please use sequences instead.
4247
4248 Move a consecutive bunch of insns to a different place in the chain.
4249 The insns to be moved are those between FROM and TO.
4250 They are moved to a new position after the insn AFTER.
4251 AFTER must not be FROM or TO or any insn in between.
4252
4253 This function does not know about SEQUENCEs and hence should not be
4254 called after delay-slot filling has been done. */
4255
4256 void
4257 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4258 {
4259 #ifdef ENABLE_CHECKING
4260 rtx_insn *x;
4261 for (x = from; x != to; x = NEXT_INSN (x))
4262 gcc_assert (after != x);
4263 gcc_assert (after != to);
4264 #endif
4265
4266 /* Splice this bunch out of where it is now. */
4267 if (PREV_INSN (from))
4268 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4269 if (NEXT_INSN (to))
4270 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4271 if (get_last_insn () == to)
4272 set_last_insn (PREV_INSN (from));
4273 if (get_insns () == from)
4274 set_first_insn (NEXT_INSN (to));
4275
4276 /* Make the new neighbors point to it and it to them. */
4277 if (NEXT_INSN (after))
4278 SET_PREV_INSN (NEXT_INSN (after)) = to;
4279
4280 SET_NEXT_INSN (to) = NEXT_INSN (after);
4281 SET_PREV_INSN (from) = after;
4282 SET_NEXT_INSN (after) = from;
4283 if (after == get_last_insn ())
4284 set_last_insn (to);
4285 }
4286
4287 /* Same as function above, but take care to update BB boundaries. */
4288 void
4289 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4290 {
4291 rtx_insn *prev = PREV_INSN (from);
4292 basic_block bb, bb2;
4293
4294 reorder_insns_nobb (from, to, after);
4295
4296 if (!BARRIER_P (after)
4297 && (bb = BLOCK_FOR_INSN (after)))
4298 {
4299 rtx_insn *x;
4300 df_set_bb_dirty (bb);
4301
4302 if (!BARRIER_P (from)
4303 && (bb2 = BLOCK_FOR_INSN (from)))
4304 {
4305 if (BB_END (bb2) == to)
4306 BB_END (bb2) = prev;
4307 df_set_bb_dirty (bb2);
4308 }
4309
4310 if (BB_END (bb) == after)
4311 BB_END (bb) = to;
4312
4313 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4314 if (!BARRIER_P (x))
4315 df_insn_change_bb (x, bb);
4316 }
4317 }
4318
4319 \f
4320 /* Emit insn(s) of given code and pattern
4321 at a specified place within the doubly-linked list.
4322
4323 All of the emit_foo global entry points accept an object
4324 X which is either an insn list or a PATTERN of a single
4325 instruction.
4326
4327 There are thus a few canonical ways to generate code and
4328 emit it at a specific place in the instruction stream. For
4329 example, consider the instruction named SPOT and the fact that
4330 we would like to emit some instructions before SPOT. We might
4331 do it like this:
4332
4333 start_sequence ();
4334 ... emit the new instructions ...
4335 insns_head = get_insns ();
4336 end_sequence ();
4337
4338 emit_insn_before (insns_head, SPOT);
4339
4340 It used to be common to generate SEQUENCE rtl instead, but that
4341 is a relic of the past which no longer occurs. The reason is that
4342 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4343 generated would almost certainly die right after it was created. */
4344
4345 static rtx_insn *
4346 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4347 rtx_insn *(*make_raw) (rtx))
4348 {
4349 rtx_insn *insn;
4350
4351 gcc_assert (before);
4352
4353 if (x == NULL_RTX)
4354 return safe_as_a <rtx_insn *> (last);
4355
4356 switch (GET_CODE (x))
4357 {
4358 case DEBUG_INSN:
4359 case INSN:
4360 case JUMP_INSN:
4361 case CALL_INSN:
4362 case CODE_LABEL:
4363 case BARRIER:
4364 case NOTE:
4365 insn = as_a <rtx_insn *> (x);
4366 while (insn)
4367 {
4368 rtx_insn *next = NEXT_INSN (insn);
4369 add_insn_before (insn, before, bb);
4370 last = insn;
4371 insn = next;
4372 }
4373 break;
4374
4375 #ifdef ENABLE_RTL_CHECKING
4376 case SEQUENCE:
4377 gcc_unreachable ();
4378 break;
4379 #endif
4380
4381 default:
4382 last = (*make_raw) (x);
4383 add_insn_before (last, before, bb);
4384 break;
4385 }
4386
4387 return safe_as_a <rtx_insn *> (last);
4388 }
4389
4390 /* Make X be output before the instruction BEFORE. */
4391
4392 rtx_insn *
4393 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4394 {
4395 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4396 }
4397
4398 /* Make an instruction with body X and code JUMP_INSN
4399 and output it before the instruction BEFORE. */
4400
4401 rtx_jump_insn *
4402 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4403 {
4404 return as_a <rtx_jump_insn *> (
4405 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4406 make_jump_insn_raw));
4407 }
4408
4409 /* Make an instruction with body X and code CALL_INSN
4410 and output it before the instruction BEFORE. */
4411
4412 rtx_insn *
4413 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4414 {
4415 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4416 make_call_insn_raw);
4417 }
4418
4419 /* Make an instruction with body X and code DEBUG_INSN
4420 and output it before the instruction BEFORE. */
4421
4422 rtx_insn *
4423 emit_debug_insn_before_noloc (rtx x, rtx before)
4424 {
4425 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4426 make_debug_insn_raw);
4427 }
4428
4429 /* Make an insn of code BARRIER
4430 and output it before the insn BEFORE. */
4431
4432 rtx_barrier *
4433 emit_barrier_before (rtx before)
4434 {
4435 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4436
4437 INSN_UID (insn) = cur_insn_uid++;
4438
4439 add_insn_before (insn, before, NULL);
4440 return insn;
4441 }
4442
4443 /* Emit the label LABEL before the insn BEFORE. */
4444
4445 rtx_code_label *
4446 emit_label_before (rtx label, rtx_insn *before)
4447 {
4448 gcc_checking_assert (INSN_UID (label) == 0);
4449 INSN_UID (label) = cur_insn_uid++;
4450 add_insn_before (label, before, NULL);
4451 return as_a <rtx_code_label *> (label);
4452 }
4453 \f
4454 /* Helper for emit_insn_after, handles lists of instructions
4455 efficiently. */
4456
4457 static rtx_insn *
4458 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4459 {
4460 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4461 rtx_insn *last;
4462 rtx_insn *after_after;
4463 if (!bb && !BARRIER_P (after))
4464 bb = BLOCK_FOR_INSN (after);
4465
4466 if (bb)
4467 {
4468 df_set_bb_dirty (bb);
4469 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4470 if (!BARRIER_P (last))
4471 {
4472 set_block_for_insn (last, bb);
4473 df_insn_rescan (last);
4474 }
4475 if (!BARRIER_P (last))
4476 {
4477 set_block_for_insn (last, bb);
4478 df_insn_rescan (last);
4479 }
4480 if (BB_END (bb) == after)
4481 BB_END (bb) = last;
4482 }
4483 else
4484 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4485 continue;
4486
4487 after_after = NEXT_INSN (after);
4488
4489 SET_NEXT_INSN (after) = first;
4490 SET_PREV_INSN (first) = after;
4491 SET_NEXT_INSN (last) = after_after;
4492 if (after_after)
4493 SET_PREV_INSN (after_after) = last;
4494
4495 if (after == get_last_insn ())
4496 set_last_insn (last);
4497
4498 return last;
4499 }
4500
4501 static rtx_insn *
4502 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4503 rtx_insn *(*make_raw)(rtx))
4504 {
4505 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4506 rtx_insn *last = after;
4507
4508 gcc_assert (after);
4509
4510 if (x == NULL_RTX)
4511 return last;
4512
4513 switch (GET_CODE (x))
4514 {
4515 case DEBUG_INSN:
4516 case INSN:
4517 case JUMP_INSN:
4518 case CALL_INSN:
4519 case CODE_LABEL:
4520 case BARRIER:
4521 case NOTE:
4522 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4523 break;
4524
4525 #ifdef ENABLE_RTL_CHECKING
4526 case SEQUENCE:
4527 gcc_unreachable ();
4528 break;
4529 #endif
4530
4531 default:
4532 last = (*make_raw) (x);
4533 add_insn_after (last, after, bb);
4534 break;
4535 }
4536
4537 return last;
4538 }
4539
4540 /* Make X be output after the insn AFTER and set the BB of insn. If
4541 BB is NULL, an attempt is made to infer the BB from AFTER. */
4542
4543 rtx_insn *
4544 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4545 {
4546 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4547 }
4548
4549
4550 /* Make an insn of code JUMP_INSN with body X
4551 and output it after the insn AFTER. */
4552
4553 rtx_jump_insn *
4554 emit_jump_insn_after_noloc (rtx x, rtx after)
4555 {
4556 return as_a <rtx_jump_insn *> (
4557 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4558 }
4559
4560 /* Make an instruction with body X and code CALL_INSN
4561 and output it after the instruction AFTER. */
4562
4563 rtx_insn *
4564 emit_call_insn_after_noloc (rtx x, rtx after)
4565 {
4566 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4567 }
4568
4569 /* Make an instruction with body X and code CALL_INSN
4570 and output it after the instruction AFTER. */
4571
4572 rtx_insn *
4573 emit_debug_insn_after_noloc (rtx x, rtx after)
4574 {
4575 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4576 }
4577
4578 /* Make an insn of code BARRIER
4579 and output it after the insn AFTER. */
4580
4581 rtx_barrier *
4582 emit_barrier_after (rtx after)
4583 {
4584 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4585
4586 INSN_UID (insn) = cur_insn_uid++;
4587
4588 add_insn_after (insn, after, NULL);
4589 return insn;
4590 }
4591
4592 /* Emit the label LABEL after the insn AFTER. */
4593
4594 rtx_insn *
4595 emit_label_after (rtx label, rtx_insn *after)
4596 {
4597 gcc_checking_assert (INSN_UID (label) == 0);
4598 INSN_UID (label) = cur_insn_uid++;
4599 add_insn_after (label, after, NULL);
4600 return as_a <rtx_insn *> (label);
4601 }
4602 \f
4603 /* Notes require a bit of special handling: Some notes need to have their
4604 BLOCK_FOR_INSN set, others should never have it set, and some should
4605 have it set or clear depending on the context. */
4606
4607 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4608 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4609 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4610
4611 static bool
4612 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4613 {
4614 switch (subtype)
4615 {
4616 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4617 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4618 return true;
4619
4620 /* Notes for var tracking and EH region markers can appear between or
4621 inside basic blocks. If the caller is emitting on the basic block
4622 boundary, do not set BLOCK_FOR_INSN on the new note. */
4623 case NOTE_INSN_VAR_LOCATION:
4624 case NOTE_INSN_CALL_ARG_LOCATION:
4625 case NOTE_INSN_EH_REGION_BEG:
4626 case NOTE_INSN_EH_REGION_END:
4627 return on_bb_boundary_p;
4628
4629 /* Otherwise, BLOCK_FOR_INSN must be set. */
4630 default:
4631 return false;
4632 }
4633 }
4634
4635 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4636
4637 rtx_note *
4638 emit_note_after (enum insn_note subtype, rtx_insn *after)
4639 {
4640 rtx_note *note = make_note_raw (subtype);
4641 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4642 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4643
4644 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4645 add_insn_after_nobb (note, after);
4646 else
4647 add_insn_after (note, after, bb);
4648 return note;
4649 }
4650
4651 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4652
4653 rtx_note *
4654 emit_note_before (enum insn_note subtype, rtx_insn *before)
4655 {
4656 rtx_note *note = make_note_raw (subtype);
4657 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4658 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4659
4660 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4661 add_insn_before_nobb (note, before);
4662 else
4663 add_insn_before (note, before, bb);
4664 return note;
4665 }
4666 \f
4667 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4668 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4669
4670 static rtx_insn *
4671 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4672 rtx_insn *(*make_raw) (rtx))
4673 {
4674 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4675 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4676
4677 if (pattern == NULL_RTX || !loc)
4678 return last;
4679
4680 after = NEXT_INSN (after);
4681 while (1)
4682 {
4683 if (active_insn_p (after)
4684 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4685 && !INSN_LOCATION (after))
4686 INSN_LOCATION (after) = loc;
4687 if (after == last)
4688 break;
4689 after = NEXT_INSN (after);
4690 }
4691 return last;
4692 }
4693
4694 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4695 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4696 any DEBUG_INSNs. */
4697
4698 static rtx_insn *
4699 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4700 rtx_insn *(*make_raw) (rtx))
4701 {
4702 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4703 rtx_insn *prev = after;
4704
4705 if (skip_debug_insns)
4706 while (DEBUG_INSN_P (prev))
4707 prev = PREV_INSN (prev);
4708
4709 if (INSN_P (prev))
4710 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4711 make_raw);
4712 else
4713 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4714 }
4715
4716 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4717 rtx_insn *
4718 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4719 {
4720 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4721 }
4722
4723 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4724 rtx_insn *
4725 emit_insn_after (rtx pattern, rtx after)
4726 {
4727 return emit_pattern_after (pattern, after, true, make_insn_raw);
4728 }
4729
4730 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4731 rtx_jump_insn *
4732 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4733 {
4734 return as_a <rtx_jump_insn *> (
4735 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4736 }
4737
4738 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4739 rtx_jump_insn *
4740 emit_jump_insn_after (rtx pattern, rtx after)
4741 {
4742 return as_a <rtx_jump_insn *> (
4743 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4744 }
4745
4746 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4747 rtx_insn *
4748 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4749 {
4750 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4751 }
4752
4753 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4754 rtx_insn *
4755 emit_call_insn_after (rtx pattern, rtx after)
4756 {
4757 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4758 }
4759
4760 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4761 rtx_insn *
4762 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4763 {
4764 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4765 }
4766
4767 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4768 rtx_insn *
4769 emit_debug_insn_after (rtx pattern, rtx after)
4770 {
4771 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4772 }
4773
4774 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4775 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4776 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4777 CALL_INSN, etc. */
4778
4779 static rtx_insn *
4780 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4781 rtx_insn *(*make_raw) (rtx))
4782 {
4783 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4784 rtx_insn *first = PREV_INSN (before);
4785 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4786 insnp ? before : NULL_RTX,
4787 NULL, make_raw);
4788
4789 if (pattern == NULL_RTX || !loc)
4790 return last;
4791
4792 if (!first)
4793 first = get_insns ();
4794 else
4795 first = NEXT_INSN (first);
4796 while (1)
4797 {
4798 if (active_insn_p (first)
4799 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4800 && !INSN_LOCATION (first))
4801 INSN_LOCATION (first) = loc;
4802 if (first == last)
4803 break;
4804 first = NEXT_INSN (first);
4805 }
4806 return last;
4807 }
4808
4809 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4810 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4811 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4812 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4813
4814 static rtx_insn *
4815 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4816 bool insnp, rtx_insn *(*make_raw) (rtx))
4817 {
4818 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4819 rtx_insn *next = before;
4820
4821 if (skip_debug_insns)
4822 while (DEBUG_INSN_P (next))
4823 next = PREV_INSN (next);
4824
4825 if (INSN_P (next))
4826 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4827 insnp, make_raw);
4828 else
4829 return emit_pattern_before_noloc (pattern, before,
4830 insnp ? before : NULL_RTX,
4831 NULL, make_raw);
4832 }
4833
4834 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4835 rtx_insn *
4836 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4837 {
4838 return emit_pattern_before_setloc (pattern, before, loc, true,
4839 make_insn_raw);
4840 }
4841
4842 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4843 rtx_insn *
4844 emit_insn_before (rtx pattern, rtx before)
4845 {
4846 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4847 }
4848
4849 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4850 rtx_jump_insn *
4851 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4852 {
4853 return as_a <rtx_jump_insn *> (
4854 emit_pattern_before_setloc (pattern, before, loc, false,
4855 make_jump_insn_raw));
4856 }
4857
4858 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4859 rtx_jump_insn *
4860 emit_jump_insn_before (rtx pattern, rtx before)
4861 {
4862 return as_a <rtx_jump_insn *> (
4863 emit_pattern_before (pattern, before, true, false,
4864 make_jump_insn_raw));
4865 }
4866
4867 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4868 rtx_insn *
4869 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4870 {
4871 return emit_pattern_before_setloc (pattern, before, loc, false,
4872 make_call_insn_raw);
4873 }
4874
4875 /* Like emit_call_insn_before_noloc,
4876 but set insn_location according to BEFORE. */
4877 rtx_insn *
4878 emit_call_insn_before (rtx pattern, rtx_insn *before)
4879 {
4880 return emit_pattern_before (pattern, before, true, false,
4881 make_call_insn_raw);
4882 }
4883
4884 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4885 rtx_insn *
4886 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4887 {
4888 return emit_pattern_before_setloc (pattern, before, loc, false,
4889 make_debug_insn_raw);
4890 }
4891
4892 /* Like emit_debug_insn_before_noloc,
4893 but set insn_location according to BEFORE. */
4894 rtx_insn *
4895 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4896 {
4897 return emit_pattern_before (pattern, before, false, false,
4898 make_debug_insn_raw);
4899 }
4900 \f
4901 /* Take X and emit it at the end of the doubly-linked
4902 INSN list.
4903
4904 Returns the last insn emitted. */
4905
4906 rtx_insn *
4907 emit_insn (rtx x)
4908 {
4909 rtx_insn *last = get_last_insn ();
4910 rtx_insn *insn;
4911
4912 if (x == NULL_RTX)
4913 return last;
4914
4915 switch (GET_CODE (x))
4916 {
4917 case DEBUG_INSN:
4918 case INSN:
4919 case JUMP_INSN:
4920 case CALL_INSN:
4921 case CODE_LABEL:
4922 case BARRIER:
4923 case NOTE:
4924 insn = as_a <rtx_insn *> (x);
4925 while (insn)
4926 {
4927 rtx_insn *next = NEXT_INSN (insn);
4928 add_insn (insn);
4929 last = insn;
4930 insn = next;
4931 }
4932 break;
4933
4934 #ifdef ENABLE_RTL_CHECKING
4935 case JUMP_TABLE_DATA:
4936 case SEQUENCE:
4937 gcc_unreachable ();
4938 break;
4939 #endif
4940
4941 default:
4942 last = make_insn_raw (x);
4943 add_insn (last);
4944 break;
4945 }
4946
4947 return last;
4948 }
4949
4950 /* Make an insn of code DEBUG_INSN with pattern X
4951 and add it to the end of the doubly-linked list. */
4952
4953 rtx_insn *
4954 emit_debug_insn (rtx x)
4955 {
4956 rtx_insn *last = get_last_insn ();
4957 rtx_insn *insn;
4958
4959 if (x == NULL_RTX)
4960 return last;
4961
4962 switch (GET_CODE (x))
4963 {
4964 case DEBUG_INSN:
4965 case INSN:
4966 case JUMP_INSN:
4967 case CALL_INSN:
4968 case CODE_LABEL:
4969 case BARRIER:
4970 case NOTE:
4971 insn = as_a <rtx_insn *> (x);
4972 while (insn)
4973 {
4974 rtx_insn *next = NEXT_INSN (insn);
4975 add_insn (insn);
4976 last = insn;
4977 insn = next;
4978 }
4979 break;
4980
4981 #ifdef ENABLE_RTL_CHECKING
4982 case JUMP_TABLE_DATA:
4983 case SEQUENCE:
4984 gcc_unreachable ();
4985 break;
4986 #endif
4987
4988 default:
4989 last = make_debug_insn_raw (x);
4990 add_insn (last);
4991 break;
4992 }
4993
4994 return last;
4995 }
4996
4997 /* Make an insn of code JUMP_INSN with pattern X
4998 and add it to the end of the doubly-linked list. */
4999
5000 rtx_insn *
5001 emit_jump_insn (rtx x)
5002 {
5003 rtx_insn *last = NULL;
5004 rtx_insn *insn;
5005
5006 switch (GET_CODE (x))
5007 {
5008 case DEBUG_INSN:
5009 case INSN:
5010 case JUMP_INSN:
5011 case CALL_INSN:
5012 case CODE_LABEL:
5013 case BARRIER:
5014 case NOTE:
5015 insn = as_a <rtx_insn *> (x);
5016 while (insn)
5017 {
5018 rtx_insn *next = NEXT_INSN (insn);
5019 add_insn (insn);
5020 last = insn;
5021 insn = next;
5022 }
5023 break;
5024
5025 #ifdef ENABLE_RTL_CHECKING
5026 case JUMP_TABLE_DATA:
5027 case SEQUENCE:
5028 gcc_unreachable ();
5029 break;
5030 #endif
5031
5032 default:
5033 last = make_jump_insn_raw (x);
5034 add_insn (last);
5035 break;
5036 }
5037
5038 return last;
5039 }
5040
5041 /* Make an insn of code CALL_INSN with pattern X
5042 and add it to the end of the doubly-linked list. */
5043
5044 rtx_insn *
5045 emit_call_insn (rtx x)
5046 {
5047 rtx_insn *insn;
5048
5049 switch (GET_CODE (x))
5050 {
5051 case DEBUG_INSN:
5052 case INSN:
5053 case JUMP_INSN:
5054 case CALL_INSN:
5055 case CODE_LABEL:
5056 case BARRIER:
5057 case NOTE:
5058 insn = emit_insn (x);
5059 break;
5060
5061 #ifdef ENABLE_RTL_CHECKING
5062 case SEQUENCE:
5063 case JUMP_TABLE_DATA:
5064 gcc_unreachable ();
5065 break;
5066 #endif
5067
5068 default:
5069 insn = make_call_insn_raw (x);
5070 add_insn (insn);
5071 break;
5072 }
5073
5074 return insn;
5075 }
5076
5077 /* Add the label LABEL to the end of the doubly-linked list. */
5078
5079 rtx_code_label *
5080 emit_label (rtx uncast_label)
5081 {
5082 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5083
5084 gcc_checking_assert (INSN_UID (label) == 0);
5085 INSN_UID (label) = cur_insn_uid++;
5086 add_insn (label);
5087 return label;
5088 }
5089
5090 /* Make an insn of code JUMP_TABLE_DATA
5091 and add it to the end of the doubly-linked list. */
5092
5093 rtx_jump_table_data *
5094 emit_jump_table_data (rtx table)
5095 {
5096 rtx_jump_table_data *jump_table_data =
5097 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5098 INSN_UID (jump_table_data) = cur_insn_uid++;
5099 PATTERN (jump_table_data) = table;
5100 BLOCK_FOR_INSN (jump_table_data) = NULL;
5101 add_insn (jump_table_data);
5102 return jump_table_data;
5103 }
5104
5105 /* Make an insn of code BARRIER
5106 and add it to the end of the doubly-linked list. */
5107
5108 rtx_barrier *
5109 emit_barrier (void)
5110 {
5111 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5112 INSN_UID (barrier) = cur_insn_uid++;
5113 add_insn (barrier);
5114 return barrier;
5115 }
5116
5117 /* Emit a copy of note ORIG. */
5118
5119 rtx_note *
5120 emit_note_copy (rtx_note *orig)
5121 {
5122 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5123 rtx_note *note = make_note_raw (kind);
5124 NOTE_DATA (note) = NOTE_DATA (orig);
5125 add_insn (note);
5126 return note;
5127 }
5128
5129 /* Make an insn of code NOTE or type NOTE_NO
5130 and add it to the end of the doubly-linked list. */
5131
5132 rtx_note *
5133 emit_note (enum insn_note kind)
5134 {
5135 rtx_note *note = make_note_raw (kind);
5136 add_insn (note);
5137 return note;
5138 }
5139
5140 /* Emit a clobber of lvalue X. */
5141
5142 rtx_insn *
5143 emit_clobber (rtx x)
5144 {
5145 /* CONCATs should not appear in the insn stream. */
5146 if (GET_CODE (x) == CONCAT)
5147 {
5148 emit_clobber (XEXP (x, 0));
5149 return emit_clobber (XEXP (x, 1));
5150 }
5151 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5152 }
5153
5154 /* Return a sequence of insns to clobber lvalue X. */
5155
5156 rtx_insn *
5157 gen_clobber (rtx x)
5158 {
5159 rtx_insn *seq;
5160
5161 start_sequence ();
5162 emit_clobber (x);
5163 seq = get_insns ();
5164 end_sequence ();
5165 return seq;
5166 }
5167
5168 /* Emit a use of rvalue X. */
5169
5170 rtx_insn *
5171 emit_use (rtx x)
5172 {
5173 /* CONCATs should not appear in the insn stream. */
5174 if (GET_CODE (x) == CONCAT)
5175 {
5176 emit_use (XEXP (x, 0));
5177 return emit_use (XEXP (x, 1));
5178 }
5179 return emit_insn (gen_rtx_USE (VOIDmode, x));
5180 }
5181
5182 /* Return a sequence of insns to use rvalue X. */
5183
5184 rtx_insn *
5185 gen_use (rtx x)
5186 {
5187 rtx_insn *seq;
5188
5189 start_sequence ();
5190 emit_use (x);
5191 seq = get_insns ();
5192 end_sequence ();
5193 return seq;
5194 }
5195
5196 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5197 Return the set in INSN that such notes describe, or NULL if the notes
5198 have no meaning for INSN. */
5199
5200 rtx
5201 set_for_reg_notes (rtx insn)
5202 {
5203 rtx pat, reg;
5204
5205 if (!INSN_P (insn))
5206 return NULL_RTX;
5207
5208 pat = PATTERN (insn);
5209 if (GET_CODE (pat) == PARALLEL)
5210 {
5211 /* We do not use single_set because that ignores SETs of unused
5212 registers. REG_EQUAL and REG_EQUIV notes really do require the
5213 PARALLEL to have a single SET. */
5214 if (multiple_sets (insn))
5215 return NULL_RTX;
5216 pat = XVECEXP (pat, 0, 0);
5217 }
5218
5219 if (GET_CODE (pat) != SET)
5220 return NULL_RTX;
5221
5222 reg = SET_DEST (pat);
5223
5224 /* Notes apply to the contents of a STRICT_LOW_PART. */
5225 if (GET_CODE (reg) == STRICT_LOW_PART)
5226 reg = XEXP (reg, 0);
5227
5228 /* Check that we have a register. */
5229 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5230 return NULL_RTX;
5231
5232 return pat;
5233 }
5234
5235 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5236 note of this type already exists, remove it first. */
5237
5238 rtx
5239 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5240 {
5241 rtx note = find_reg_note (insn, kind, NULL_RTX);
5242
5243 switch (kind)
5244 {
5245 case REG_EQUAL:
5246 case REG_EQUIV:
5247 if (!set_for_reg_notes (insn))
5248 return NULL_RTX;
5249
5250 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5251 It serves no useful purpose and breaks eliminate_regs. */
5252 if (GET_CODE (datum) == ASM_OPERANDS)
5253 return NULL_RTX;
5254
5255 /* Notes with side effects are dangerous. Even if the side-effect
5256 initially mirrors one in PATTERN (INSN), later optimizations
5257 might alter the way that the final register value is calculated
5258 and so move or alter the side-effect in some way. The note would
5259 then no longer be a valid substitution for SET_SRC. */
5260 if (side_effects_p (datum))
5261 return NULL_RTX;
5262 break;
5263
5264 default:
5265 break;
5266 }
5267
5268 if (note)
5269 XEXP (note, 0) = datum;
5270 else
5271 {
5272 add_reg_note (insn, kind, datum);
5273 note = REG_NOTES (insn);
5274 }
5275
5276 switch (kind)
5277 {
5278 case REG_EQUAL:
5279 case REG_EQUIV:
5280 df_notes_rescan (as_a <rtx_insn *> (insn));
5281 break;
5282 default:
5283 break;
5284 }
5285
5286 return note;
5287 }
5288
5289 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5290 rtx
5291 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5292 {
5293 rtx set = set_for_reg_notes (insn);
5294
5295 if (set && SET_DEST (set) == dst)
5296 return set_unique_reg_note (insn, kind, datum);
5297 return NULL_RTX;
5298 }
5299 \f
5300 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5301 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5302 is true.
5303
5304 If X is a label, it is simply added into the insn chain. */
5305
5306 rtx_insn *
5307 emit (rtx x, bool allow_barrier_p)
5308 {
5309 enum rtx_code code = classify_insn (x);
5310
5311 switch (code)
5312 {
5313 case CODE_LABEL:
5314 return emit_label (x);
5315 case INSN:
5316 return emit_insn (x);
5317 case JUMP_INSN:
5318 {
5319 rtx_insn *insn = emit_jump_insn (x);
5320 if (allow_barrier_p
5321 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5322 return emit_barrier ();
5323 return insn;
5324 }
5325 case CALL_INSN:
5326 return emit_call_insn (x);
5327 case DEBUG_INSN:
5328 return emit_debug_insn (x);
5329 default:
5330 gcc_unreachable ();
5331 }
5332 }
5333 \f
5334 /* Space for free sequence stack entries. */
5335 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5336
5337 /* Begin emitting insns to a sequence. If this sequence will contain
5338 something that might cause the compiler to pop arguments to function
5339 calls (because those pops have previously been deferred; see
5340 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5341 before calling this function. That will ensure that the deferred
5342 pops are not accidentally emitted in the middle of this sequence. */
5343
5344 void
5345 start_sequence (void)
5346 {
5347 struct sequence_stack *tem;
5348
5349 if (free_sequence_stack != NULL)
5350 {
5351 tem = free_sequence_stack;
5352 free_sequence_stack = tem->next;
5353 }
5354 else
5355 tem = ggc_alloc<sequence_stack> ();
5356
5357 tem->next = get_current_sequence ()->next;
5358 tem->first = get_insns ();
5359 tem->last = get_last_insn ();
5360 get_current_sequence ()->next = tem;
5361
5362 set_first_insn (0);
5363 set_last_insn (0);
5364 }
5365
5366 /* Set up the insn chain starting with FIRST as the current sequence,
5367 saving the previously current one. See the documentation for
5368 start_sequence for more information about how to use this function. */
5369
5370 void
5371 push_to_sequence (rtx_insn *first)
5372 {
5373 rtx_insn *last;
5374
5375 start_sequence ();
5376
5377 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5378 ;
5379
5380 set_first_insn (first);
5381 set_last_insn (last);
5382 }
5383
5384 /* Like push_to_sequence, but take the last insn as an argument to avoid
5385 looping through the list. */
5386
5387 void
5388 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5389 {
5390 start_sequence ();
5391
5392 set_first_insn (first);
5393 set_last_insn (last);
5394 }
5395
5396 /* Set up the outer-level insn chain
5397 as the current sequence, saving the previously current one. */
5398
5399 void
5400 push_topmost_sequence (void)
5401 {
5402 struct sequence_stack *top;
5403
5404 start_sequence ();
5405
5406 top = get_topmost_sequence ();
5407 set_first_insn (top->first);
5408 set_last_insn (top->last);
5409 }
5410
5411 /* After emitting to the outer-level insn chain, update the outer-level
5412 insn chain, and restore the previous saved state. */
5413
5414 void
5415 pop_topmost_sequence (void)
5416 {
5417 struct sequence_stack *top;
5418
5419 top = get_topmost_sequence ();
5420 top->first = get_insns ();
5421 top->last = get_last_insn ();
5422
5423 end_sequence ();
5424 }
5425
5426 /* After emitting to a sequence, restore previous saved state.
5427
5428 To get the contents of the sequence just made, you must call
5429 `get_insns' *before* calling here.
5430
5431 If the compiler might have deferred popping arguments while
5432 generating this sequence, and this sequence will not be immediately
5433 inserted into the instruction stream, use do_pending_stack_adjust
5434 before calling get_insns. That will ensure that the deferred
5435 pops are inserted into this sequence, and not into some random
5436 location in the instruction stream. See INHIBIT_DEFER_POP for more
5437 information about deferred popping of arguments. */
5438
5439 void
5440 end_sequence (void)
5441 {
5442 struct sequence_stack *tem = get_current_sequence ()->next;
5443
5444 set_first_insn (tem->first);
5445 set_last_insn (tem->last);
5446 get_current_sequence ()->next = tem->next;
5447
5448 memset (tem, 0, sizeof (*tem));
5449 tem->next = free_sequence_stack;
5450 free_sequence_stack = tem;
5451 }
5452
5453 /* Return 1 if currently emitting into a sequence. */
5454
5455 int
5456 in_sequence_p (void)
5457 {
5458 return get_current_sequence ()->next != 0;
5459 }
5460 \f
5461 /* Put the various virtual registers into REGNO_REG_RTX. */
5462
5463 static void
5464 init_virtual_regs (void)
5465 {
5466 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5467 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5468 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5469 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5470 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5471 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5472 = virtual_preferred_stack_boundary_rtx;
5473 }
5474
5475 \f
5476 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5477 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5478 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5479 static int copy_insn_n_scratches;
5480
5481 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5482 copied an ASM_OPERANDS.
5483 In that case, it is the original input-operand vector. */
5484 static rtvec orig_asm_operands_vector;
5485
5486 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5487 copied an ASM_OPERANDS.
5488 In that case, it is the copied input-operand vector. */
5489 static rtvec copy_asm_operands_vector;
5490
5491 /* Likewise for the constraints vector. */
5492 static rtvec orig_asm_constraints_vector;
5493 static rtvec copy_asm_constraints_vector;
5494
5495 /* Recursively create a new copy of an rtx for copy_insn.
5496 This function differs from copy_rtx in that it handles SCRATCHes and
5497 ASM_OPERANDs properly.
5498 Normally, this function is not used directly; use copy_insn as front end.
5499 However, you could first copy an insn pattern with copy_insn and then use
5500 this function afterwards to properly copy any REG_NOTEs containing
5501 SCRATCHes. */
5502
5503 rtx
5504 copy_insn_1 (rtx orig)
5505 {
5506 rtx copy;
5507 int i, j;
5508 RTX_CODE code;
5509 const char *format_ptr;
5510
5511 if (orig == NULL)
5512 return NULL;
5513
5514 code = GET_CODE (orig);
5515
5516 switch (code)
5517 {
5518 case REG:
5519 case DEBUG_EXPR:
5520 CASE_CONST_ANY:
5521 case SYMBOL_REF:
5522 case CODE_LABEL:
5523 case PC:
5524 case CC0:
5525 case RETURN:
5526 case SIMPLE_RETURN:
5527 return orig;
5528 case CLOBBER:
5529 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5530 clobbers or clobbers of hard registers that originated as pseudos.
5531 This is needed to allow safe register renaming. */
5532 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5533 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5534 return orig;
5535 break;
5536
5537 case SCRATCH:
5538 for (i = 0; i < copy_insn_n_scratches; i++)
5539 if (copy_insn_scratch_in[i] == orig)
5540 return copy_insn_scratch_out[i];
5541 break;
5542
5543 case CONST:
5544 if (shared_const_p (orig))
5545 return orig;
5546 break;
5547
5548 /* A MEM with a constant address is not sharable. The problem is that
5549 the constant address may need to be reloaded. If the mem is shared,
5550 then reloading one copy of this mem will cause all copies to appear
5551 to have been reloaded. */
5552
5553 default:
5554 break;
5555 }
5556
5557 /* Copy the various flags, fields, and other information. We assume
5558 that all fields need copying, and then clear the fields that should
5559 not be copied. That is the sensible default behavior, and forces
5560 us to explicitly document why we are *not* copying a flag. */
5561 copy = shallow_copy_rtx (orig);
5562
5563 /* We do not copy the USED flag, which is used as a mark bit during
5564 walks over the RTL. */
5565 RTX_FLAG (copy, used) = 0;
5566
5567 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5568 if (INSN_P (orig))
5569 {
5570 RTX_FLAG (copy, jump) = 0;
5571 RTX_FLAG (copy, call) = 0;
5572 RTX_FLAG (copy, frame_related) = 0;
5573 }
5574
5575 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5576
5577 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5578 switch (*format_ptr++)
5579 {
5580 case 'e':
5581 if (XEXP (orig, i) != NULL)
5582 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5583 break;
5584
5585 case 'E':
5586 case 'V':
5587 if (XVEC (orig, i) == orig_asm_constraints_vector)
5588 XVEC (copy, i) = copy_asm_constraints_vector;
5589 else if (XVEC (orig, i) == orig_asm_operands_vector)
5590 XVEC (copy, i) = copy_asm_operands_vector;
5591 else if (XVEC (orig, i) != NULL)
5592 {
5593 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5594 for (j = 0; j < XVECLEN (copy, i); j++)
5595 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5596 }
5597 break;
5598
5599 case 't':
5600 case 'w':
5601 case 'i':
5602 case 's':
5603 case 'S':
5604 case 'u':
5605 case '0':
5606 /* These are left unchanged. */
5607 break;
5608
5609 default:
5610 gcc_unreachable ();
5611 }
5612
5613 if (code == SCRATCH)
5614 {
5615 i = copy_insn_n_scratches++;
5616 gcc_assert (i < MAX_RECOG_OPERANDS);
5617 copy_insn_scratch_in[i] = orig;
5618 copy_insn_scratch_out[i] = copy;
5619 }
5620 else if (code == ASM_OPERANDS)
5621 {
5622 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5623 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5624 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5625 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5626 }
5627
5628 return copy;
5629 }
5630
5631 /* Create a new copy of an rtx.
5632 This function differs from copy_rtx in that it handles SCRATCHes and
5633 ASM_OPERANDs properly.
5634 INSN doesn't really have to be a full INSN; it could be just the
5635 pattern. */
5636 rtx
5637 copy_insn (rtx insn)
5638 {
5639 copy_insn_n_scratches = 0;
5640 orig_asm_operands_vector = 0;
5641 orig_asm_constraints_vector = 0;
5642 copy_asm_operands_vector = 0;
5643 copy_asm_constraints_vector = 0;
5644 return copy_insn_1 (insn);
5645 }
5646
5647 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5648 on that assumption that INSN itself remains in its original place. */
5649
5650 rtx_insn *
5651 copy_delay_slot_insn (rtx_insn *insn)
5652 {
5653 /* Copy INSN with its rtx_code, all its notes, location etc. */
5654 insn = as_a <rtx_insn *> (copy_rtx (insn));
5655 INSN_UID (insn) = cur_insn_uid++;
5656 return insn;
5657 }
5658
5659 /* Initialize data structures and variables in this file
5660 before generating rtl for each function. */
5661
5662 void
5663 init_emit (void)
5664 {
5665 set_first_insn (NULL);
5666 set_last_insn (NULL);
5667 if (MIN_NONDEBUG_INSN_UID)
5668 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5669 else
5670 cur_insn_uid = 1;
5671 cur_debug_insn_uid = 1;
5672 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5673 first_label_num = label_num;
5674 get_current_sequence ()->next = NULL;
5675
5676 /* Init the tables that describe all the pseudo regs. */
5677
5678 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5679
5680 crtl->emit.regno_pointer_align
5681 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5682
5683 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5684
5685 /* Put copies of all the hard registers into regno_reg_rtx. */
5686 memcpy (regno_reg_rtx,
5687 initial_regno_reg_rtx,
5688 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5689
5690 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5691 init_virtual_regs ();
5692
5693 /* Indicate that the virtual registers and stack locations are
5694 all pointers. */
5695 REG_POINTER (stack_pointer_rtx) = 1;
5696 REG_POINTER (frame_pointer_rtx) = 1;
5697 REG_POINTER (hard_frame_pointer_rtx) = 1;
5698 REG_POINTER (arg_pointer_rtx) = 1;
5699
5700 REG_POINTER (virtual_incoming_args_rtx) = 1;
5701 REG_POINTER (virtual_stack_vars_rtx) = 1;
5702 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5703 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5704 REG_POINTER (virtual_cfa_rtx) = 1;
5705
5706 #ifdef STACK_BOUNDARY
5707 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5708 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5709 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5710 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5711
5712 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5713 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5714 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5715 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5716 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5717 #endif
5718
5719 #ifdef INIT_EXPANDERS
5720 INIT_EXPANDERS;
5721 #endif
5722 }
5723
5724 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5725
5726 static rtx
5727 gen_const_vector (machine_mode mode, int constant)
5728 {
5729 rtx tem;
5730 rtvec v;
5731 int units, i;
5732 machine_mode inner;
5733
5734 units = GET_MODE_NUNITS (mode);
5735 inner = GET_MODE_INNER (mode);
5736
5737 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5738
5739 v = rtvec_alloc (units);
5740
5741 /* We need to call this function after we set the scalar const_tiny_rtx
5742 entries. */
5743 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5744
5745 for (i = 0; i < units; ++i)
5746 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5747
5748 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5749 return tem;
5750 }
5751
5752 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5753 all elements are zero, and the one vector when all elements are one. */
5754 rtx
5755 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5756 {
5757 machine_mode inner = GET_MODE_INNER (mode);
5758 int nunits = GET_MODE_NUNITS (mode);
5759 rtx x;
5760 int i;
5761
5762 /* Check to see if all of the elements have the same value. */
5763 x = RTVEC_ELT (v, nunits - 1);
5764 for (i = nunits - 2; i >= 0; i--)
5765 if (RTVEC_ELT (v, i) != x)
5766 break;
5767
5768 /* If the values are all the same, check to see if we can use one of the
5769 standard constant vectors. */
5770 if (i == -1)
5771 {
5772 if (x == CONST0_RTX (inner))
5773 return CONST0_RTX (mode);
5774 else if (x == CONST1_RTX (inner))
5775 return CONST1_RTX (mode);
5776 else if (x == CONSTM1_RTX (inner))
5777 return CONSTM1_RTX (mode);
5778 }
5779
5780 return gen_rtx_raw_CONST_VECTOR (mode, v);
5781 }
5782
5783 /* Initialise global register information required by all functions. */
5784
5785 void
5786 init_emit_regs (void)
5787 {
5788 int i;
5789 machine_mode mode;
5790 mem_attrs *attrs;
5791
5792 /* Reset register attributes */
5793 reg_attrs_htab->empty ();
5794
5795 /* We need reg_raw_mode, so initialize the modes now. */
5796 init_reg_modes_target ();
5797
5798 /* Assign register numbers to the globally defined register rtx. */
5799 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5800 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5801 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5802 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5803 virtual_incoming_args_rtx =
5804 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5805 virtual_stack_vars_rtx =
5806 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5807 virtual_stack_dynamic_rtx =
5808 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5809 virtual_outgoing_args_rtx =
5810 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5811 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5812 virtual_preferred_stack_boundary_rtx =
5813 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5814
5815 /* Initialize RTL for commonly used hard registers. These are
5816 copied into regno_reg_rtx as we begin to compile each function. */
5817 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5818 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5819
5820 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5821 return_address_pointer_rtx
5822 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5823 #endif
5824
5825 pic_offset_table_rtx = NULL_RTX;
5826 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5827 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5828
5829 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5830 {
5831 mode = (machine_mode) i;
5832 attrs = ggc_cleared_alloc<mem_attrs> ();
5833 attrs->align = BITS_PER_UNIT;
5834 attrs->addrspace = ADDR_SPACE_GENERIC;
5835 if (mode != BLKmode)
5836 {
5837 attrs->size_known_p = true;
5838 attrs->size = GET_MODE_SIZE (mode);
5839 if (STRICT_ALIGNMENT)
5840 attrs->align = GET_MODE_ALIGNMENT (mode);
5841 }
5842 mode_mem_attrs[i] = attrs;
5843 }
5844 }
5845
5846 /* Initialize global machine_mode variables. */
5847
5848 void
5849 init_derived_machine_modes (void)
5850 {
5851 byte_mode = VOIDmode;
5852 word_mode = VOIDmode;
5853
5854 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5855 mode != VOIDmode;
5856 mode = GET_MODE_WIDER_MODE (mode))
5857 {
5858 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5859 && byte_mode == VOIDmode)
5860 byte_mode = mode;
5861
5862 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5863 && word_mode == VOIDmode)
5864 word_mode = mode;
5865 }
5866
5867 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5868 }
5869
5870 /* Create some permanent unique rtl objects shared between all functions. */
5871
5872 void
5873 init_emit_once (void)
5874 {
5875 int i;
5876 machine_mode mode;
5877 machine_mode double_mode;
5878
5879 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5880 CONST_FIXED, and memory attribute hash tables. */
5881 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5882
5883 #if TARGET_SUPPORTS_WIDE_INT
5884 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5885 #endif
5886 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5887
5888 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5889
5890 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5891
5892 #ifdef INIT_EXPANDERS
5893 /* This is to initialize {init|mark|free}_machine_status before the first
5894 call to push_function_context_to. This is needed by the Chill front
5895 end which calls push_function_context_to before the first call to
5896 init_function_start. */
5897 INIT_EXPANDERS;
5898 #endif
5899
5900 /* Create the unique rtx's for certain rtx codes and operand values. */
5901
5902 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5903 tries to use these variables. */
5904 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5905 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5906 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5907
5908 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5909 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5910 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5911 else
5912 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5913
5914 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5915
5916 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5917 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5918 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5919
5920 dconstm1 = dconst1;
5921 dconstm1.sign = 1;
5922
5923 dconsthalf = dconst1;
5924 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5925
5926 for (i = 0; i < 3; i++)
5927 {
5928 const REAL_VALUE_TYPE *const r =
5929 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5930
5931 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5932 mode != VOIDmode;
5933 mode = GET_MODE_WIDER_MODE (mode))
5934 const_tiny_rtx[i][(int) mode] =
5935 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5936
5937 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5938 mode != VOIDmode;
5939 mode = GET_MODE_WIDER_MODE (mode))
5940 const_tiny_rtx[i][(int) mode] =
5941 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5942
5943 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5944
5945 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5946 mode != VOIDmode;
5947 mode = GET_MODE_WIDER_MODE (mode))
5948 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5949
5950 for (mode = MIN_MODE_PARTIAL_INT;
5951 mode <= MAX_MODE_PARTIAL_INT;
5952 mode = (machine_mode)((int)(mode) + 1))
5953 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5954 }
5955
5956 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5957
5958 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5959 mode != VOIDmode;
5960 mode = GET_MODE_WIDER_MODE (mode))
5961 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5962
5963 for (mode = MIN_MODE_PARTIAL_INT;
5964 mode <= MAX_MODE_PARTIAL_INT;
5965 mode = (machine_mode)((int)(mode) + 1))
5966 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5967
5968 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5969 mode != VOIDmode;
5970 mode = GET_MODE_WIDER_MODE (mode))
5971 {
5972 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5973 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5974 }
5975
5976 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5977 mode != VOIDmode;
5978 mode = GET_MODE_WIDER_MODE (mode))
5979 {
5980 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5981 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5982 }
5983
5984 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5985 mode != VOIDmode;
5986 mode = GET_MODE_WIDER_MODE (mode))
5987 {
5988 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5989 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5990 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5991 }
5992
5993 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5994 mode != VOIDmode;
5995 mode = GET_MODE_WIDER_MODE (mode))
5996 {
5997 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5998 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5999 }
6000
6001 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6002 mode != VOIDmode;
6003 mode = GET_MODE_WIDER_MODE (mode))
6004 {
6005 FCONST0 (mode).data.high = 0;
6006 FCONST0 (mode).data.low = 0;
6007 FCONST0 (mode).mode = mode;
6008 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6009 FCONST0 (mode), mode);
6010 }
6011
6012 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6013 mode != VOIDmode;
6014 mode = GET_MODE_WIDER_MODE (mode))
6015 {
6016 FCONST0 (mode).data.high = 0;
6017 FCONST0 (mode).data.low = 0;
6018 FCONST0 (mode).mode = mode;
6019 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6020 FCONST0 (mode), mode);
6021 }
6022
6023 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6024 mode != VOIDmode;
6025 mode = GET_MODE_WIDER_MODE (mode))
6026 {
6027 FCONST0 (mode).data.high = 0;
6028 FCONST0 (mode).data.low = 0;
6029 FCONST0 (mode).mode = mode;
6030 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6031 FCONST0 (mode), mode);
6032
6033 /* We store the value 1. */
6034 FCONST1 (mode).data.high = 0;
6035 FCONST1 (mode).data.low = 0;
6036 FCONST1 (mode).mode = mode;
6037 FCONST1 (mode).data
6038 = double_int_one.lshift (GET_MODE_FBIT (mode),
6039 HOST_BITS_PER_DOUBLE_INT,
6040 SIGNED_FIXED_POINT_MODE_P (mode));
6041 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6042 FCONST1 (mode), mode);
6043 }
6044
6045 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6046 mode != VOIDmode;
6047 mode = GET_MODE_WIDER_MODE (mode))
6048 {
6049 FCONST0 (mode).data.high = 0;
6050 FCONST0 (mode).data.low = 0;
6051 FCONST0 (mode).mode = mode;
6052 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6053 FCONST0 (mode), mode);
6054
6055 /* We store the value 1. */
6056 FCONST1 (mode).data.high = 0;
6057 FCONST1 (mode).data.low = 0;
6058 FCONST1 (mode).mode = mode;
6059 FCONST1 (mode).data
6060 = double_int_one.lshift (GET_MODE_FBIT (mode),
6061 HOST_BITS_PER_DOUBLE_INT,
6062 SIGNED_FIXED_POINT_MODE_P (mode));
6063 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6064 FCONST1 (mode), mode);
6065 }
6066
6067 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6068 mode != VOIDmode;
6069 mode = GET_MODE_WIDER_MODE (mode))
6070 {
6071 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6072 }
6073
6074 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6075 mode != VOIDmode;
6076 mode = GET_MODE_WIDER_MODE (mode))
6077 {
6078 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6079 }
6080
6081 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6082 mode != VOIDmode;
6083 mode = GET_MODE_WIDER_MODE (mode))
6084 {
6085 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6086 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6087 }
6088
6089 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6090 mode != VOIDmode;
6091 mode = GET_MODE_WIDER_MODE (mode))
6092 {
6093 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6094 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6095 }
6096
6097 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6098 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6099 const_tiny_rtx[0][i] = const0_rtx;
6100
6101 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6102 if (STORE_FLAG_VALUE == 1)
6103 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6104
6105 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6106 mode != VOIDmode;
6107 mode = GET_MODE_WIDER_MODE (mode))
6108 {
6109 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6110 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6111 }
6112
6113 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6114 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6115 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6116 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6117 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6118 /*prev_insn=*/NULL,
6119 /*next_insn=*/NULL,
6120 /*bb=*/NULL,
6121 /*pattern=*/NULL_RTX,
6122 /*location=*/-1,
6123 CODE_FOR_nothing,
6124 /*reg_notes=*/NULL_RTX);
6125 }
6126 \f
6127 /* Produce exact duplicate of insn INSN after AFTER.
6128 Care updating of libcall regions if present. */
6129
6130 rtx_insn *
6131 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6132 {
6133 rtx_insn *new_rtx;
6134 rtx link;
6135
6136 switch (GET_CODE (insn))
6137 {
6138 case INSN:
6139 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6140 break;
6141
6142 case JUMP_INSN:
6143 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6144 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6145 break;
6146
6147 case DEBUG_INSN:
6148 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6149 break;
6150
6151 case CALL_INSN:
6152 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6153 if (CALL_INSN_FUNCTION_USAGE (insn))
6154 CALL_INSN_FUNCTION_USAGE (new_rtx)
6155 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6156 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6157 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6158 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6159 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6160 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6161 break;
6162
6163 default:
6164 gcc_unreachable ();
6165 }
6166
6167 /* Update LABEL_NUSES. */
6168 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6169
6170 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6171
6172 /* If the old insn is frame related, then so is the new one. This is
6173 primarily needed for IA-64 unwind info which marks epilogue insns,
6174 which may be duplicated by the basic block reordering code. */
6175 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6176
6177 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6178 will make them. REG_LABEL_TARGETs are created there too, but are
6179 supposed to be sticky, so we copy them. */
6180 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6181 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6182 {
6183 if (GET_CODE (link) == EXPR_LIST)
6184 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6185 copy_insn_1 (XEXP (link, 0)));
6186 else
6187 add_shallow_copy_of_reg_note (new_rtx, link);
6188 }
6189
6190 INSN_CODE (new_rtx) = INSN_CODE (insn);
6191 return new_rtx;
6192 }
6193
6194 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6195 rtx
6196 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6197 {
6198 if (hard_reg_clobbers[mode][regno])
6199 return hard_reg_clobbers[mode][regno];
6200 else
6201 return (hard_reg_clobbers[mode][regno] =
6202 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6203 }
6204
6205 location_t prologue_location;
6206 location_t epilogue_location;
6207
6208 /* Hold current location information and last location information, so the
6209 datastructures are built lazily only when some instructions in given
6210 place are needed. */
6211 static location_t curr_location;
6212
6213 /* Allocate insn location datastructure. */
6214 void
6215 insn_locations_init (void)
6216 {
6217 prologue_location = epilogue_location = 0;
6218 curr_location = UNKNOWN_LOCATION;
6219 }
6220
6221 /* At the end of emit stage, clear current location. */
6222 void
6223 insn_locations_finalize (void)
6224 {
6225 epilogue_location = curr_location;
6226 curr_location = UNKNOWN_LOCATION;
6227 }
6228
6229 /* Set current location. */
6230 void
6231 set_curr_insn_location (location_t location)
6232 {
6233 curr_location = location;
6234 }
6235
6236 /* Get current location. */
6237 location_t
6238 curr_insn_location (void)
6239 {
6240 return curr_location;
6241 }
6242
6243 /* Return lexical scope block insn belongs to. */
6244 tree
6245 insn_scope (const rtx_insn *insn)
6246 {
6247 return LOCATION_BLOCK (INSN_LOCATION (insn));
6248 }
6249
6250 /* Return line number of the statement that produced this insn. */
6251 int
6252 insn_line (const rtx_insn *insn)
6253 {
6254 return LOCATION_LINE (INSN_LOCATION (insn));
6255 }
6256
6257 /* Return source file of the statement that produced this insn. */
6258 const char *
6259 insn_file (const rtx_insn *insn)
6260 {
6261 return LOCATION_FILE (INSN_LOCATION (insn));
6262 }
6263
6264 /* Return expanded location of the statement that produced this insn. */
6265 expanded_location
6266 insn_location (const rtx_insn *insn)
6267 {
6268 return expand_location (INSN_LOCATION (insn));
6269 }
6270
6271 /* Return true if memory model MODEL requires a pre-operation (release-style)
6272 barrier or a post-operation (acquire-style) barrier. While not universal,
6273 this function matches behavior of several targets. */
6274
6275 bool
6276 need_atomic_barrier_p (enum memmodel model, bool pre)
6277 {
6278 switch (model & MEMMODEL_BASE_MASK)
6279 {
6280 case MEMMODEL_RELAXED:
6281 case MEMMODEL_CONSUME:
6282 return false;
6283 case MEMMODEL_RELEASE:
6284 return pre;
6285 case MEMMODEL_ACQUIRE:
6286 return !pre;
6287 case MEMMODEL_ACQ_REL:
6288 case MEMMODEL_SEQ_CST:
6289 return true;
6290 default:
6291 gcc_unreachable ();
6292 }
6293 }
6294 \f
6295 #include "gt-emit-rtl.h"