dbxout.c: Follow spelling conventions.
[gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconstm1;
112
113 /* All references to the following fixed hard registers go through
114 these unique rtl objects. On machines where the frame-pointer and
115 arg-pointer are the same register, they use the same unique object.
116
117 After register allocation, other rtl objects which used to be pseudo-regs
118 may be clobbered to refer to the frame-pointer register.
119 But references that were originally to the frame-pointer can be
120 distinguished from the others because they contain frame_pointer_rtx.
121
122 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
123 tricky: until register elimination has taken place hard_frame_pointer_rtx
124 should be used if it is being set, and frame_pointer_rtx otherwise. After
125 register elimination hard_frame_pointer_rtx should always be used.
126 On machines where the two registers are same (most) then these are the
127 same.
128
129 In an inline procedure, the stack and frame pointer rtxs may not be
130 used for anything else. */
131 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
132 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
133 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
134 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
135 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
136
137 /* This is used to implement __builtin_return_address for some machines.
138 See for instance the MIPS port. */
139 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
140
141 /* We make one copy of (const_int C) where C is in
142 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
143 to save space during the compilation and simplify comparisons of
144 integers. */
145
146 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
147
148 /* A hash table storing CONST_INTs whose absolute value is greater
149 than MAX_SAVED_CONST_INT. */
150
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
152 htab_t const_int_htab;
153
154 /* A hash table storing memory attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
156 htab_t mem_attrs_htab;
157
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
161
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_linenum (cfun->emit->x_last_linenum)
166 #define last_filename (cfun->emit->x_last_filename)
167 #define first_label_num (cfun->emit->x_first_label_num)
168
169 static rtx make_jump_insn_raw PARAMS ((rtx));
170 static rtx make_call_insn_raw PARAMS ((rtx));
171 static rtx find_line_note PARAMS ((rtx));
172 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
173 int));
174 static void unshare_all_rtl_1 PARAMS ((rtx));
175 static void unshare_all_decls PARAMS ((tree));
176 static void reset_used_decls PARAMS ((tree));
177 static void mark_label_nuses PARAMS ((rtx));
178 static hashval_t const_int_htab_hash PARAMS ((const void *));
179 static int const_int_htab_eq PARAMS ((const void *,
180 const void *));
181 static hashval_t const_double_htab_hash PARAMS ((const void *));
182 static int const_double_htab_eq PARAMS ((const void *,
183 const void *));
184 static rtx lookup_const_double PARAMS ((rtx));
185 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
186 static int mem_attrs_htab_eq PARAMS ((const void *,
187 const void *));
188 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
189 rtx, unsigned int,
190 enum machine_mode));
191 static tree component_ref_for_mem_expr PARAMS ((tree));
192 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
193
194 /* Probability of the conditional branch currently proceeded by try_split.
195 Set to -1 otherwise. */
196 int split_branch_probability = -1;
197 \f
198 /* Returns a hash code for X (which is a really a CONST_INT). */
199
200 static hashval_t
201 const_int_htab_hash (x)
202 const void *x;
203 {
204 return (hashval_t) INTVAL ((struct rtx_def *) x);
205 }
206
207 /* Returns nonzero if the value represented by X (which is really a
208 CONST_INT) is the same as that given by Y (which is really a
209 HOST_WIDE_INT *). */
210
211 static int
212 const_int_htab_eq (x, y)
213 const void *x;
214 const void *y;
215 {
216 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
217 }
218
219 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
220 static hashval_t
221 const_double_htab_hash (x)
222 const void *x;
223 {
224 rtx value = (rtx) x;
225 hashval_t h;
226
227 if (GET_MODE (value) == VOIDmode)
228 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
229 else
230 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
231 return h;
232 }
233
234 /* Returns nonzero if the value represented by X (really a ...)
235 is the same as that represented by Y (really a ...) */
236 static int
237 const_double_htab_eq (x, y)
238 const void *x;
239 const void *y;
240 {
241 rtx a = (rtx)x, b = (rtx)y;
242 size_t i;
243
244 if (GET_MODE (a) != GET_MODE (b))
245 return 0;
246 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
247 if (XWINT (a, i) != XWINT (b, i))
248 return 0;
249
250 return 1;
251 }
252
253 /* Returns a hash code for X (which is a really a mem_attrs *). */
254
255 static hashval_t
256 mem_attrs_htab_hash (x)
257 const void *x;
258 {
259 mem_attrs *p = (mem_attrs *) x;
260
261 return (p->alias ^ (p->align * 1000)
262 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
263 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
264 ^ (size_t) p->expr);
265 }
266
267 /* Returns nonzero if the value represented by X (which is really a
268 mem_attrs *) is the same as that given by Y (which is also really a
269 mem_attrs *). */
270
271 static int
272 mem_attrs_htab_eq (x, y)
273 const void *x;
274 const void *y;
275 {
276 mem_attrs *p = (mem_attrs *) x;
277 mem_attrs *q = (mem_attrs *) y;
278
279 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
280 && p->size == q->size && p->align == q->align);
281 }
282
283 /* Allocate a new mem_attrs structure and insert it into the hash table if
284 one identical to it is not already in the table. We are doing this for
285 MEM of mode MODE. */
286
287 static mem_attrs *
288 get_mem_attrs (alias, expr, offset, size, align, mode)
289 HOST_WIDE_INT alias;
290 tree expr;
291 rtx offset;
292 rtx size;
293 unsigned int align;
294 enum machine_mode mode;
295 {
296 mem_attrs attrs;
297 void **slot;
298
299 /* If everything is the default, we can just return zero. */
300 if (alias == 0 && expr == 0 && offset == 0
301 && (size == 0
302 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
303 && (align == BITS_PER_UNIT
304 || (STRICT_ALIGNMENT
305 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
325 don't attempt to share with the various global pieces of rtl (such as
326 frame_pointer_rtx). */
327
328 rtx
329 gen_raw_REG (mode, regno)
330 enum machine_mode mode;
331 int regno;
332 {
333 rtx x = gen_rtx_raw_REG (mode, regno);
334 ORIGINAL_REGNO (x) = regno;
335 return x;
336 }
337
338 /* There are some RTL codes that require special attention; the generation
339 functions do the raw handling. If you add to this list, modify
340 special_rtx in gengenrtl.c as well. */
341
342 rtx
343 gen_rtx_CONST_INT (mode, arg)
344 enum machine_mode mode ATTRIBUTE_UNUSED;
345 HOST_WIDE_INT arg;
346 {
347 void **slot;
348
349 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
350 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
351
352 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
353 if (const_true_rtx && arg == STORE_FLAG_VALUE)
354 return const_true_rtx;
355 #endif
356
357 /* Look up the CONST_INT in the hash table. */
358 slot = htab_find_slot_with_hash (const_int_htab, &arg,
359 (hashval_t) arg, INSERT);
360 if (*slot == 0)
361 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
362
363 return (rtx) *slot;
364 }
365
366 rtx
367 gen_int_mode (c, mode)
368 HOST_WIDE_INT c;
369 enum machine_mode mode;
370 {
371 return GEN_INT (trunc_int_for_mode (c, mode));
372 }
373
374 /* CONST_DOUBLEs might be created from pairs of integers, or from
375 REAL_VALUE_TYPEs. Also, their length is known only at run time,
376 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
377
378 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
379 hash table. If so, return its counterpart; otherwise add it
380 to the hash table and return it. */
381 static rtx
382 lookup_const_double (real)
383 rtx real;
384 {
385 void **slot = htab_find_slot (const_double_htab, real, INSERT);
386 if (*slot == 0)
387 *slot = real;
388
389 return (rtx) *slot;
390 }
391
392 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
393 VALUE in mode MODE. */
394 rtx
395 const_double_from_real_value (value, mode)
396 REAL_VALUE_TYPE value;
397 enum machine_mode mode;
398 {
399 rtx real = rtx_alloc (CONST_DOUBLE);
400 PUT_MODE (real, mode);
401
402 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
403
404 return lookup_const_double (real);
405 }
406
407 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
408 of ints: I0 is the low-order word and I1 is the high-order word.
409 Do not use this routine for non-integer modes; convert to
410 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
411
412 rtx
413 immed_double_const (i0, i1, mode)
414 HOST_WIDE_INT i0, i1;
415 enum machine_mode mode;
416 {
417 rtx value;
418 unsigned int i;
419
420 if (mode != VOIDmode)
421 {
422 int width;
423 if (GET_MODE_CLASS (mode) != MODE_INT
424 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
425 /* We can get a 0 for an error mark. */
426 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
427 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
428 abort ();
429
430 /* We clear out all bits that don't belong in MODE, unless they and
431 our sign bit are all one. So we get either a reasonable negative
432 value or a reasonable unsigned value for this mode. */
433 width = GET_MODE_BITSIZE (mode);
434 if (width < HOST_BITS_PER_WIDE_INT
435 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
436 != ((HOST_WIDE_INT) (-1) << (width - 1))))
437 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
438 else if (width == HOST_BITS_PER_WIDE_INT
439 && ! (i1 == ~0 && i0 < 0))
440 i1 = 0;
441 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
442 /* We cannot represent this value as a constant. */
443 abort ();
444
445 /* If this would be an entire word for the target, but is not for
446 the host, then sign-extend on the host so that the number will
447 look the same way on the host that it would on the target.
448
449 For example, when building a 64 bit alpha hosted 32 bit sparc
450 targeted compiler, then we want the 32 bit unsigned value -1 to be
451 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
452 The latter confuses the sparc backend. */
453
454 if (width < HOST_BITS_PER_WIDE_INT
455 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
456 i0 |= ((HOST_WIDE_INT) (-1) << width);
457
458 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
459 CONST_INT.
460
461 ??? Strictly speaking, this is wrong if we create a CONST_INT for
462 a large unsigned constant with the size of MODE being
463 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
464 in a wider mode. In that case we will mis-interpret it as a
465 negative number.
466
467 Unfortunately, the only alternative is to make a CONST_DOUBLE for
468 any constant in any mode if it is an unsigned constant larger
469 than the maximum signed integer in an int on the host. However,
470 doing this will break everyone that always expects to see a
471 CONST_INT for SImode and smaller.
472
473 We have always been making CONST_INTs in this case, so nothing
474 new is being broken. */
475
476 if (width <= HOST_BITS_PER_WIDE_INT)
477 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
478 }
479
480 /* If this integer fits in one word, return a CONST_INT. */
481 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
482 return GEN_INT (i0);
483
484 /* We use VOIDmode for integers. */
485 value = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (value, VOIDmode);
487
488 CONST_DOUBLE_LOW (value) = i0;
489 CONST_DOUBLE_HIGH (value) = i1;
490
491 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
492 XWINT (value, i) = 0;
493
494 return lookup_const_double (value);
495 }
496
497 rtx
498 gen_rtx_REG (mode, regno)
499 enum machine_mode mode;
500 unsigned int regno;
501 {
502 /* In case the MD file explicitly references the frame pointer, have
503 all such references point to the same frame pointer. This is
504 used during frame pointer elimination to distinguish the explicit
505 references to these registers from pseudos that happened to be
506 assigned to them.
507
508 If we have eliminated the frame pointer or arg pointer, we will
509 be using it as a normal register, for example as a spill
510 register. In such cases, we might be accessing it in a mode that
511 is not Pmode and therefore cannot use the pre-allocated rtx.
512
513 Also don't do this when we are making new REGs in reload, since
514 we don't want to get confused with the real pointers. */
515
516 if (mode == Pmode && !reload_in_progress)
517 {
518 if (regno == FRAME_POINTER_REGNUM
519 && (!reload_completed || frame_pointer_needed))
520 return frame_pointer_rtx;
521 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
522 if (regno == HARD_FRAME_POINTER_REGNUM
523 && (!reload_completed || frame_pointer_needed))
524 return hard_frame_pointer_rtx;
525 #endif
526 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
527 if (regno == ARG_POINTER_REGNUM)
528 return arg_pointer_rtx;
529 #endif
530 #ifdef RETURN_ADDRESS_POINTER_REGNUM
531 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
532 return return_address_pointer_rtx;
533 #endif
534 if (regno == PIC_OFFSET_TABLE_REGNUM
535 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
536 return pic_offset_table_rtx;
537 if (regno == STACK_POINTER_REGNUM)
538 return stack_pointer_rtx;
539 }
540
541 #if 0
542 /* If the per-function register table has been set up, try to re-use
543 an existing entry in that table to avoid useless generation of RTL.
544
545 This code is disabled for now until we can fix the various backends
546 which depend on having non-shared hard registers in some cases. Long
547 term we want to re-enable this code as it can significantly cut down
548 on the amount of useless RTL that gets generated.
549
550 We'll also need to fix some code that runs after reload that wants to
551 set ORIGINAL_REGNO. */
552
553 if (cfun
554 && cfun->emit
555 && regno_reg_rtx
556 && regno < FIRST_PSEUDO_REGISTER
557 && reg_raw_mode[regno] == mode)
558 return regno_reg_rtx[regno];
559 #endif
560
561 return gen_raw_REG (mode, regno);
562 }
563
564 rtx
565 gen_rtx_MEM (mode, addr)
566 enum machine_mode mode;
567 rtx addr;
568 {
569 rtx rt = gen_rtx_raw_MEM (mode, addr);
570
571 /* This field is not cleared by the mere allocation of the rtx, so
572 we clear it here. */
573 MEM_ATTRS (rt) = 0;
574
575 return rt;
576 }
577
578 rtx
579 gen_rtx_SUBREG (mode, reg, offset)
580 enum machine_mode mode;
581 rtx reg;
582 int offset;
583 {
584 /* This is the most common failure type.
585 Catch it early so we can see who does it. */
586 if ((offset % GET_MODE_SIZE (mode)) != 0)
587 abort ();
588
589 /* This check isn't usable right now because combine will
590 throw arbitrary crap like a CALL into a SUBREG in
591 gen_lowpart_for_combine so we must just eat it. */
592 #if 0
593 /* Check for this too. */
594 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
595 abort ();
596 #endif
597 return gen_rtx_raw_SUBREG (mode, reg, offset);
598 }
599
600 /* Generate a SUBREG representing the least-significant part of REG if MODE
601 is smaller than mode of REG, otherwise paradoxical SUBREG. */
602
603 rtx
604 gen_lowpart_SUBREG (mode, reg)
605 enum machine_mode mode;
606 rtx reg;
607 {
608 enum machine_mode inmode;
609
610 inmode = GET_MODE (reg);
611 if (inmode == VOIDmode)
612 inmode = mode;
613 return gen_rtx_SUBREG (mode, reg,
614 subreg_lowpart_offset (mode, inmode));
615 }
616 \f
617 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
618 **
619 ** This routine generates an RTX of the size specified by
620 ** <code>, which is an RTX code. The RTX structure is initialized
621 ** from the arguments <element1> through <elementn>, which are
622 ** interpreted according to the specific RTX type's format. The
623 ** special machine mode associated with the rtx (if any) is specified
624 ** in <mode>.
625 **
626 ** gen_rtx can be invoked in a way which resembles the lisp-like
627 ** rtx it will generate. For example, the following rtx structure:
628 **
629 ** (plus:QI (mem:QI (reg:SI 1))
630 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
631 **
632 ** ...would be generated by the following C code:
633 **
634 ** gen_rtx (PLUS, QImode,
635 ** gen_rtx (MEM, QImode,
636 ** gen_rtx (REG, SImode, 1)),
637 ** gen_rtx (MEM, QImode,
638 ** gen_rtx (PLUS, SImode,
639 ** gen_rtx (REG, SImode, 2),
640 ** gen_rtx (REG, SImode, 3)))),
641 */
642
643 /*VARARGS2*/
644 rtx
645 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
646 {
647 int i; /* Array indices... */
648 const char *fmt; /* Current rtx's format... */
649 rtx rt_val; /* RTX to return to caller... */
650
651 VA_OPEN (p, mode);
652 VA_FIXEDARG (p, enum rtx_code, code);
653 VA_FIXEDARG (p, enum machine_mode, mode);
654
655 switch (code)
656 {
657 case CONST_INT:
658 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
659 break;
660
661 case CONST_DOUBLE:
662 {
663 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
664 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
665
666 rt_val = immed_double_const (arg0, arg1, mode);
667 }
668 break;
669
670 case REG:
671 rt_val = gen_rtx_REG (mode, va_arg (p, int));
672 break;
673
674 case MEM:
675 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
676 break;
677
678 default:
679 rt_val = rtx_alloc (code); /* Allocate the storage space. */
680 rt_val->mode = mode; /* Store the machine mode... */
681
682 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
683 for (i = 0; i < GET_RTX_LENGTH (code); i++)
684 {
685 switch (*fmt++)
686 {
687 case '0': /* Unused field. */
688 break;
689
690 case 'i': /* An integer? */
691 XINT (rt_val, i) = va_arg (p, int);
692 break;
693
694 case 'w': /* A wide integer? */
695 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
696 break;
697
698 case 's': /* A string? */
699 XSTR (rt_val, i) = va_arg (p, char *);
700 break;
701
702 case 'e': /* An expression? */
703 case 'u': /* An insn? Same except when printing. */
704 XEXP (rt_val, i) = va_arg (p, rtx);
705 break;
706
707 case 'E': /* An RTX vector? */
708 XVEC (rt_val, i) = va_arg (p, rtvec);
709 break;
710
711 case 'b': /* A bitmap? */
712 XBITMAP (rt_val, i) = va_arg (p, bitmap);
713 break;
714
715 case 't': /* A tree? */
716 XTREE (rt_val, i) = va_arg (p, tree);
717 break;
718
719 default:
720 abort ();
721 }
722 }
723 break;
724 }
725
726 VA_CLOSE (p);
727 return rt_val;
728 }
729
730 /* gen_rtvec (n, [rt1, ..., rtn])
731 **
732 ** This routine creates an rtvec and stores within it the
733 ** pointers to rtx's which are its arguments.
734 */
735
736 /*VARARGS1*/
737 rtvec
738 gen_rtvec VPARAMS ((int n, ...))
739 {
740 int i, save_n;
741 rtx *vector;
742
743 VA_OPEN (p, n);
744 VA_FIXEDARG (p, int, n);
745
746 if (n == 0)
747 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
748
749 vector = (rtx *) alloca (n * sizeof (rtx));
750
751 for (i = 0; i < n; i++)
752 vector[i] = va_arg (p, rtx);
753
754 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
755 save_n = n;
756 VA_CLOSE (p);
757
758 return gen_rtvec_v (save_n, vector);
759 }
760
761 rtvec
762 gen_rtvec_v (n, argp)
763 int n;
764 rtx *argp;
765 {
766 int i;
767 rtvec rt_val;
768
769 if (n == 0)
770 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
771
772 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
773
774 for (i = 0; i < n; i++)
775 rt_val->elem[i] = *argp++;
776
777 return rt_val;
778 }
779 \f
780 /* Generate a REG rtx for a new pseudo register of mode MODE.
781 This pseudo is assigned the next sequential register number. */
782
783 rtx
784 gen_reg_rtx (mode)
785 enum machine_mode mode;
786 {
787 struct function *f = cfun;
788 rtx val;
789
790 /* Don't let anything called after initial flow analysis create new
791 registers. */
792 if (no_new_pseudos)
793 abort ();
794
795 if (generating_concat_p
796 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
797 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
798 {
799 /* For complex modes, don't make a single pseudo.
800 Instead, make a CONCAT of two pseudos.
801 This allows noncontiguous allocation of the real and imaginary parts,
802 which makes much better code. Besides, allocating DCmode
803 pseudos overstrains reload on some machines like the 386. */
804 rtx realpart, imagpart;
805 int size = GET_MODE_UNIT_SIZE (mode);
806 enum machine_mode partmode
807 = mode_for_size (size * BITS_PER_UNIT,
808 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
809 ? MODE_FLOAT : MODE_INT),
810 0);
811
812 realpart = gen_reg_rtx (partmode);
813 imagpart = gen_reg_rtx (partmode);
814 return gen_rtx_CONCAT (mode, realpart, imagpart);
815 }
816
817 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
818 enough to have an element for this pseudo reg number. */
819
820 if (reg_rtx_no == f->emit->regno_pointer_align_length)
821 {
822 int old_size = f->emit->regno_pointer_align_length;
823 char *new;
824 rtx *new1;
825 tree *new2;
826
827 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
828 memset (new + old_size, 0, old_size);
829 f->emit->regno_pointer_align = (unsigned char *) new;
830
831 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
832 old_size * 2 * sizeof (rtx));
833 memset (new1 + old_size, 0, old_size * sizeof (rtx));
834 regno_reg_rtx = new1;
835
836 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
837 old_size * 2 * sizeof (tree));
838 memset (new2 + old_size, 0, old_size * sizeof (tree));
839 f->emit->regno_decl = new2;
840
841 f->emit->regno_pointer_align_length = old_size * 2;
842 }
843
844 val = gen_raw_REG (mode, reg_rtx_no);
845 regno_reg_rtx[reg_rtx_no++] = val;
846 return val;
847 }
848
849 /* Identify REG (which may be a CONCAT) as a user register. */
850
851 void
852 mark_user_reg (reg)
853 rtx reg;
854 {
855 if (GET_CODE (reg) == CONCAT)
856 {
857 REG_USERVAR_P (XEXP (reg, 0)) = 1;
858 REG_USERVAR_P (XEXP (reg, 1)) = 1;
859 }
860 else if (GET_CODE (reg) == REG)
861 REG_USERVAR_P (reg) = 1;
862 else
863 abort ();
864 }
865
866 /* Identify REG as a probable pointer register and show its alignment
867 as ALIGN, if nonzero. */
868
869 void
870 mark_reg_pointer (reg, align)
871 rtx reg;
872 int align;
873 {
874 if (! REG_POINTER (reg))
875 {
876 REG_POINTER (reg) = 1;
877
878 if (align)
879 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
880 }
881 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
882 /* We can no-longer be sure just how aligned this pointer is */
883 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
884 }
885
886 /* Return 1 plus largest pseudo reg number used in the current function. */
887
888 int
889 max_reg_num ()
890 {
891 return reg_rtx_no;
892 }
893
894 /* Return 1 + the largest label number used so far in the current function. */
895
896 int
897 max_label_num ()
898 {
899 if (last_label_num && label_num == base_label_num)
900 return last_label_num;
901 return label_num;
902 }
903
904 /* Return first label number used in this function (if any were used). */
905
906 int
907 get_first_label_num ()
908 {
909 return first_label_num;
910 }
911 \f
912 /* Return the final regno of X, which is a SUBREG of a hard
913 register. */
914 int
915 subreg_hard_regno (x, check_mode)
916 rtx x;
917 int check_mode;
918 {
919 enum machine_mode mode = GET_MODE (x);
920 unsigned int byte_offset, base_regno, final_regno;
921 rtx reg = SUBREG_REG (x);
922
923 /* This is where we attempt to catch illegal subregs
924 created by the compiler. */
925 if (GET_CODE (x) != SUBREG
926 || GET_CODE (reg) != REG)
927 abort ();
928 base_regno = REGNO (reg);
929 if (base_regno >= FIRST_PSEUDO_REGISTER)
930 abort ();
931 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
932 abort ();
933
934 /* Catch non-congruent offsets too. */
935 byte_offset = SUBREG_BYTE (x);
936 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
937 abort ();
938
939 final_regno = subreg_regno (x);
940
941 return final_regno;
942 }
943
944 /* Return a value representing some low-order bits of X, where the number
945 of low-order bits is given by MODE. Note that no conversion is done
946 between floating-point and fixed-point values, rather, the bit
947 representation is returned.
948
949 This function handles the cases in common between gen_lowpart, below,
950 and two variants in cse.c and combine.c. These are the cases that can
951 be safely handled at all points in the compilation.
952
953 If this is not a case we can handle, return 0. */
954
955 rtx
956 gen_lowpart_common (mode, x)
957 enum machine_mode mode;
958 rtx x;
959 {
960 int msize = GET_MODE_SIZE (mode);
961 int xsize = GET_MODE_SIZE (GET_MODE (x));
962 int offset = 0;
963
964 if (GET_MODE (x) == mode)
965 return x;
966
967 /* MODE must occupy no more words than the mode of X. */
968 if (GET_MODE (x) != VOIDmode
969 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
970 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
971 return 0;
972
973 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
974 if (GET_MODE_CLASS (mode) == MODE_FLOAT
975 && GET_MODE (x) != VOIDmode && msize > xsize)
976 return 0;
977
978 offset = subreg_lowpart_offset (mode, GET_MODE (x));
979
980 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
981 && (GET_MODE_CLASS (mode) == MODE_INT
982 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
983 {
984 /* If we are getting the low-order part of something that has been
985 sign- or zero-extended, we can either just use the object being
986 extended or make a narrower extension. If we want an even smaller
987 piece than the size of the object being extended, call ourselves
988 recursively.
989
990 This case is used mostly by combine and cse. */
991
992 if (GET_MODE (XEXP (x, 0)) == mode)
993 return XEXP (x, 0);
994 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
995 return gen_lowpart_common (mode, XEXP (x, 0));
996 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
997 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
998 }
999 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1000 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1001 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1002 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1003 from the low-order part of the constant. */
1004 else if ((GET_MODE_CLASS (mode) == MODE_INT
1005 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1006 && GET_MODE (x) == VOIDmode
1007 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1008 {
1009 /* If MODE is twice the host word size, X is already the desired
1010 representation. Otherwise, if MODE is wider than a word, we can't
1011 do this. If MODE is exactly a word, return just one CONST_INT. */
1012
1013 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1014 return x;
1015 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1016 return 0;
1017 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1018 return (GET_CODE (x) == CONST_INT ? x
1019 : GEN_INT (CONST_DOUBLE_LOW (x)));
1020 else
1021 {
1022 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1023 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1024 : CONST_DOUBLE_LOW (x));
1025
1026 /* Sign extend to HOST_WIDE_INT. */
1027 val = trunc_int_for_mode (val, mode);
1028
1029 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1030 : GEN_INT (val));
1031 }
1032 }
1033
1034 /* The floating-point emulator can handle all conversions between
1035 FP and integer operands. This simplifies reload because it
1036 doesn't have to deal with constructs like (subreg:DI
1037 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1038 /* Single-precision floats are always 32-bits and double-precision
1039 floats are always 64-bits. */
1040
1041 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1042 && GET_MODE_BITSIZE (mode) == 32
1043 && GET_CODE (x) == CONST_INT)
1044 {
1045 REAL_VALUE_TYPE r;
1046 long i = INTVAL (x);
1047
1048 real_from_target (&r, &i, mode);
1049 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1050 }
1051 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1052 && GET_MODE_BITSIZE (mode) == 64
1053 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1054 && GET_MODE (x) == VOIDmode)
1055 {
1056 REAL_VALUE_TYPE r;
1057 HOST_WIDE_INT low, high;
1058 long i[2];
1059
1060 if (GET_CODE (x) == CONST_INT)
1061 {
1062 low = INTVAL (x);
1063 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1064 }
1065 else
1066 {
1067 low = CONST_DOUBLE_LOW (x);
1068 high = CONST_DOUBLE_HIGH (x);
1069 }
1070
1071 if (HOST_BITS_PER_WIDE_INT > 32)
1072 high = low >> 31 >> 1;
1073
1074 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1075 target machine. */
1076 if (WORDS_BIG_ENDIAN)
1077 i[0] = high, i[1] = low;
1078 else
1079 i[0] = low, i[1] = high;
1080
1081 real_from_target (&r, i, mode);
1082 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1083 }
1084 else if ((GET_MODE_CLASS (mode) == MODE_INT
1085 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1086 && GET_CODE (x) == CONST_DOUBLE
1087 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1088 {
1089 REAL_VALUE_TYPE r;
1090 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1091 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1092
1093 /* Convert 'r' into an array of four 32-bit words in target word
1094 order. */
1095 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1096 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1097 {
1098 case 32:
1099 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1100 i[1] = 0;
1101 i[2] = 0;
1102 i[3 - 3 * endian] = 0;
1103 break;
1104 case 64:
1105 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1106 i[2 - 2 * endian] = 0;
1107 i[3 - 2 * endian] = 0;
1108 break;
1109 case 96:
1110 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1111 i[3 - 3 * endian] = 0;
1112 break;
1113 case 128:
1114 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1115 break;
1116 default:
1117 abort ();
1118 }
1119 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1120 and return it. */
1121 #if HOST_BITS_PER_WIDE_INT == 32
1122 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1123 #else
1124 if (HOST_BITS_PER_WIDE_INT != 64)
1125 abort ();
1126
1127 return immed_double_const ((((unsigned long) i[3 * endian])
1128 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1129 (((unsigned long) i[2 - endian])
1130 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1131 mode);
1132 #endif
1133 }
1134
1135 /* Otherwise, we can't do this. */
1136 return 0;
1137 }
1138 \f
1139 /* Return the real part (which has mode MODE) of a complex value X.
1140 This always comes at the low address in memory. */
1141
1142 rtx
1143 gen_realpart (mode, x)
1144 enum machine_mode mode;
1145 rtx x;
1146 {
1147 if (WORDS_BIG_ENDIAN
1148 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1149 && REG_P (x)
1150 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1151 internal_error
1152 ("can't access real part of complex value in hard register");
1153 else if (WORDS_BIG_ENDIAN)
1154 return gen_highpart (mode, x);
1155 else
1156 return gen_lowpart (mode, x);
1157 }
1158
1159 /* Return the imaginary part (which has mode MODE) of a complex value X.
1160 This always comes at the high address in memory. */
1161
1162 rtx
1163 gen_imagpart (mode, x)
1164 enum machine_mode mode;
1165 rtx x;
1166 {
1167 if (WORDS_BIG_ENDIAN)
1168 return gen_lowpart (mode, x);
1169 else if (! WORDS_BIG_ENDIAN
1170 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1171 && REG_P (x)
1172 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1173 internal_error
1174 ("can't access imaginary part of complex value in hard register");
1175 else
1176 return gen_highpart (mode, x);
1177 }
1178
1179 /* Return 1 iff X, assumed to be a SUBREG,
1180 refers to the real part of the complex value in its containing reg.
1181 Complex values are always stored with the real part in the first word,
1182 regardless of WORDS_BIG_ENDIAN. */
1183
1184 int
1185 subreg_realpart_p (x)
1186 rtx x;
1187 {
1188 if (GET_CODE (x) != SUBREG)
1189 abort ();
1190
1191 return ((unsigned int) SUBREG_BYTE (x)
1192 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1193 }
1194 \f
1195 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1196 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1197 least-significant part of X.
1198 MODE specifies how big a part of X to return;
1199 it usually should not be larger than a word.
1200 If X is a MEM whose address is a QUEUED, the value may be so also. */
1201
1202 rtx
1203 gen_lowpart (mode, x)
1204 enum machine_mode mode;
1205 rtx x;
1206 {
1207 rtx result = gen_lowpart_common (mode, x);
1208
1209 if (result)
1210 return result;
1211 else if (GET_CODE (x) == REG)
1212 {
1213 /* Must be a hard reg that's not valid in MODE. */
1214 result = gen_lowpart_common (mode, copy_to_reg (x));
1215 if (result == 0)
1216 abort ();
1217 return result;
1218 }
1219 else if (GET_CODE (x) == MEM)
1220 {
1221 /* The only additional case we can do is MEM. */
1222 int offset = 0;
1223 if (WORDS_BIG_ENDIAN)
1224 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1225 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1226
1227 if (BYTES_BIG_ENDIAN)
1228 /* Adjust the address so that the address-after-the-data
1229 is unchanged. */
1230 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1231 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1232
1233 return adjust_address (x, mode, offset);
1234 }
1235 else if (GET_CODE (x) == ADDRESSOF)
1236 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1237 else
1238 abort ();
1239 }
1240
1241 /* Like `gen_lowpart', but refer to the most significant part.
1242 This is used to access the imaginary part of a complex number. */
1243
1244 rtx
1245 gen_highpart (mode, x)
1246 enum machine_mode mode;
1247 rtx x;
1248 {
1249 unsigned int msize = GET_MODE_SIZE (mode);
1250 rtx result;
1251
1252 /* This case loses if X is a subreg. To catch bugs early,
1253 complain if an invalid MODE is used even in other cases. */
1254 if (msize > UNITS_PER_WORD
1255 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1256 abort ();
1257
1258 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1259 subreg_highpart_offset (mode, GET_MODE (x)));
1260
1261 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1262 the target if we have a MEM. gen_highpart must return a valid operand,
1263 emitting code if necessary to do so. */
1264 if (result != NULL_RTX && GET_CODE (result) == MEM)
1265 result = validize_mem (result);
1266
1267 if (!result)
1268 abort ();
1269 return result;
1270 }
1271
1272 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1273 be VOIDmode constant. */
1274 rtx
1275 gen_highpart_mode (outermode, innermode, exp)
1276 enum machine_mode outermode, innermode;
1277 rtx exp;
1278 {
1279 if (GET_MODE (exp) != VOIDmode)
1280 {
1281 if (GET_MODE (exp) != innermode)
1282 abort ();
1283 return gen_highpart (outermode, exp);
1284 }
1285 return simplify_gen_subreg (outermode, exp, innermode,
1286 subreg_highpart_offset (outermode, innermode));
1287 }
1288
1289 /* Return offset in bytes to get OUTERMODE low part
1290 of the value in mode INNERMODE stored in memory in target format. */
1291
1292 unsigned int
1293 subreg_lowpart_offset (outermode, innermode)
1294 enum machine_mode outermode, innermode;
1295 {
1296 unsigned int offset = 0;
1297 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1298
1299 if (difference > 0)
1300 {
1301 if (WORDS_BIG_ENDIAN)
1302 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1303 if (BYTES_BIG_ENDIAN)
1304 offset += difference % UNITS_PER_WORD;
1305 }
1306
1307 return offset;
1308 }
1309
1310 /* Return offset in bytes to get OUTERMODE high part
1311 of the value in mode INNERMODE stored in memory in target format. */
1312 unsigned int
1313 subreg_highpart_offset (outermode, innermode)
1314 enum machine_mode outermode, innermode;
1315 {
1316 unsigned int offset = 0;
1317 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1318
1319 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1320 abort ();
1321
1322 if (difference > 0)
1323 {
1324 if (! WORDS_BIG_ENDIAN)
1325 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1326 if (! BYTES_BIG_ENDIAN)
1327 offset += difference % UNITS_PER_WORD;
1328 }
1329
1330 return offset;
1331 }
1332
1333 /* Return 1 iff X, assumed to be a SUBREG,
1334 refers to the least significant part of its containing reg.
1335 If X is not a SUBREG, always return 1 (it is its own low part!). */
1336
1337 int
1338 subreg_lowpart_p (x)
1339 rtx x;
1340 {
1341 if (GET_CODE (x) != SUBREG)
1342 return 1;
1343 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1344 return 0;
1345
1346 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1347 == SUBREG_BYTE (x));
1348 }
1349 \f
1350
1351 /* Helper routine for all the constant cases of operand_subword.
1352 Some places invoke this directly. */
1353
1354 rtx
1355 constant_subword (op, offset, mode)
1356 rtx op;
1357 int offset;
1358 enum machine_mode mode;
1359 {
1360 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1361 HOST_WIDE_INT val;
1362
1363 /* If OP is already an integer word, return it. */
1364 if (GET_MODE_CLASS (mode) == MODE_INT
1365 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1366 return op;
1367
1368 /* The output is some bits, the width of the target machine's word.
1369 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1370 host can't. */
1371 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1372 && GET_MODE_CLASS (mode) == MODE_FLOAT
1373 && GET_MODE_BITSIZE (mode) == 64
1374 && GET_CODE (op) == CONST_DOUBLE)
1375 {
1376 long k[2];
1377 REAL_VALUE_TYPE rv;
1378
1379 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1380 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1381
1382 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1383 which the words are written depends on the word endianness.
1384 ??? This is a potential portability problem and should
1385 be fixed at some point.
1386
1387 We must exercise caution with the sign bit. By definition there
1388 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1389 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1390 So we explicitly mask and sign-extend as necessary. */
1391 if (BITS_PER_WORD == 32)
1392 {
1393 val = k[offset];
1394 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1395 return GEN_INT (val);
1396 }
1397 #if HOST_BITS_PER_WIDE_INT >= 64
1398 else if (BITS_PER_WORD >= 64 && offset == 0)
1399 {
1400 val = k[! WORDS_BIG_ENDIAN];
1401 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1402 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1403 return GEN_INT (val);
1404 }
1405 #endif
1406 else if (BITS_PER_WORD == 16)
1407 {
1408 val = k[offset >> 1];
1409 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1410 val >>= 16;
1411 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1412 return GEN_INT (val);
1413 }
1414 else
1415 abort ();
1416 }
1417 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1418 && GET_MODE_CLASS (mode) == MODE_FLOAT
1419 && GET_MODE_BITSIZE (mode) > 64
1420 && GET_CODE (op) == CONST_DOUBLE)
1421 {
1422 long k[4];
1423 REAL_VALUE_TYPE rv;
1424
1425 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1426 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1427
1428 if (BITS_PER_WORD == 32)
1429 {
1430 val = k[offset];
1431 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1432 return GEN_INT (val);
1433 }
1434 #if HOST_BITS_PER_WIDE_INT >= 64
1435 else if (BITS_PER_WORD >= 64 && offset <= 1)
1436 {
1437 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1438 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1439 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1440 return GEN_INT (val);
1441 }
1442 #endif
1443 else
1444 abort ();
1445 }
1446
1447 /* Single word float is a little harder, since single- and double-word
1448 values often do not have the same high-order bits. We have already
1449 verified that we want the only defined word of the single-word value. */
1450 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1451 && GET_MODE_BITSIZE (mode) == 32
1452 && GET_CODE (op) == CONST_DOUBLE)
1453 {
1454 long l;
1455 REAL_VALUE_TYPE rv;
1456
1457 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1458 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1459
1460 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1461 val = l;
1462 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1463
1464 if (BITS_PER_WORD == 16)
1465 {
1466 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1467 val >>= 16;
1468 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1469 }
1470
1471 return GEN_INT (val);
1472 }
1473
1474 /* The only remaining cases that we can handle are integers.
1475 Convert to proper endianness now since these cases need it.
1476 At this point, offset == 0 means the low-order word.
1477
1478 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1479 in general. However, if OP is (const_int 0), we can just return
1480 it for any word. */
1481
1482 if (op == const0_rtx)
1483 return op;
1484
1485 if (GET_MODE_CLASS (mode) != MODE_INT
1486 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1487 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1488 return 0;
1489
1490 if (WORDS_BIG_ENDIAN)
1491 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1492
1493 /* Find out which word on the host machine this value is in and get
1494 it from the constant. */
1495 val = (offset / size_ratio == 0
1496 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1497 : (GET_CODE (op) == CONST_INT
1498 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1499
1500 /* Get the value we want into the low bits of val. */
1501 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1502 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1503
1504 val = trunc_int_for_mode (val, word_mode);
1505
1506 return GEN_INT (val);
1507 }
1508
1509 /* Return subword OFFSET of operand OP.
1510 The word number, OFFSET, is interpreted as the word number starting
1511 at the low-order address. OFFSET 0 is the low-order word if not
1512 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1513
1514 If we cannot extract the required word, we return zero. Otherwise,
1515 an rtx corresponding to the requested word will be returned.
1516
1517 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1518 reload has completed, a valid address will always be returned. After
1519 reload, if a valid address cannot be returned, we return zero.
1520
1521 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1522 it is the responsibility of the caller.
1523
1524 MODE is the mode of OP in case it is a CONST_INT.
1525
1526 ??? This is still rather broken for some cases. The problem for the
1527 moment is that all callers of this thing provide no 'goal mode' to
1528 tell us to work with. This exists because all callers were written
1529 in a word based SUBREG world.
1530 Now use of this function can be deprecated by simplify_subreg in most
1531 cases.
1532 */
1533
1534 rtx
1535 operand_subword (op, offset, validate_address, mode)
1536 rtx op;
1537 unsigned int offset;
1538 int validate_address;
1539 enum machine_mode mode;
1540 {
1541 if (mode == VOIDmode)
1542 mode = GET_MODE (op);
1543
1544 if (mode == VOIDmode)
1545 abort ();
1546
1547 /* If OP is narrower than a word, fail. */
1548 if (mode != BLKmode
1549 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1550 return 0;
1551
1552 /* If we want a word outside OP, return zero. */
1553 if (mode != BLKmode
1554 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1555 return const0_rtx;
1556
1557 /* Form a new MEM at the requested address. */
1558 if (GET_CODE (op) == MEM)
1559 {
1560 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1561
1562 if (! validate_address)
1563 return new;
1564
1565 else if (reload_completed)
1566 {
1567 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1568 return 0;
1569 }
1570 else
1571 return replace_equiv_address (new, XEXP (new, 0));
1572 }
1573
1574 /* Rest can be handled by simplify_subreg. */
1575 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1576 }
1577
1578 /* Similar to `operand_subword', but never return 0. If we can't extract
1579 the required subword, put OP into a register and try again. If that fails,
1580 abort. We always validate the address in this case.
1581
1582 MODE is the mode of OP, in case it is CONST_INT. */
1583
1584 rtx
1585 operand_subword_force (op, offset, mode)
1586 rtx op;
1587 unsigned int offset;
1588 enum machine_mode mode;
1589 {
1590 rtx result = operand_subword (op, offset, 1, mode);
1591
1592 if (result)
1593 return result;
1594
1595 if (mode != BLKmode && mode != VOIDmode)
1596 {
1597 /* If this is a register which can not be accessed by words, copy it
1598 to a pseudo register. */
1599 if (GET_CODE (op) == REG)
1600 op = copy_to_reg (op);
1601 else
1602 op = force_reg (mode, op);
1603 }
1604
1605 result = operand_subword (op, offset, 1, mode);
1606 if (result == 0)
1607 abort ();
1608
1609 return result;
1610 }
1611 \f
1612 /* Given a compare instruction, swap the operands.
1613 A test instruction is changed into a compare of 0 against the operand. */
1614
1615 void
1616 reverse_comparison (insn)
1617 rtx insn;
1618 {
1619 rtx body = PATTERN (insn);
1620 rtx comp;
1621
1622 if (GET_CODE (body) == SET)
1623 comp = SET_SRC (body);
1624 else
1625 comp = SET_SRC (XVECEXP (body, 0, 0));
1626
1627 if (GET_CODE (comp) == COMPARE)
1628 {
1629 rtx op0 = XEXP (comp, 0);
1630 rtx op1 = XEXP (comp, 1);
1631 XEXP (comp, 0) = op1;
1632 XEXP (comp, 1) = op0;
1633 }
1634 else
1635 {
1636 rtx new = gen_rtx_COMPARE (VOIDmode,
1637 CONST0_RTX (GET_MODE (comp)), comp);
1638 if (GET_CODE (body) == SET)
1639 SET_SRC (body) = new;
1640 else
1641 SET_SRC (XVECEXP (body, 0, 0)) = new;
1642 }
1643 }
1644 \f
1645 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1646 or (2) a component ref of something variable. Represent the later with
1647 a NULL expression. */
1648
1649 static tree
1650 component_ref_for_mem_expr (ref)
1651 tree ref;
1652 {
1653 tree inner = TREE_OPERAND (ref, 0);
1654
1655 if (TREE_CODE (inner) == COMPONENT_REF)
1656 inner = component_ref_for_mem_expr (inner);
1657 else
1658 {
1659 tree placeholder_ptr = 0;
1660
1661 /* Now remove any conversions: they don't change what the underlying
1662 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1663 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1664 || TREE_CODE (inner) == NON_LVALUE_EXPR
1665 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1666 || TREE_CODE (inner) == SAVE_EXPR
1667 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1668 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1669 inner = find_placeholder (inner, &placeholder_ptr);
1670 else
1671 inner = TREE_OPERAND (inner, 0);
1672
1673 if (! DECL_P (inner))
1674 inner = NULL_TREE;
1675 }
1676
1677 if (inner == TREE_OPERAND (ref, 0))
1678 return ref;
1679 else
1680 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1681 TREE_OPERAND (ref, 1));
1682 }
1683
1684 /* Given REF, a MEM, and T, either the type of X or the expression
1685 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1686 if we are making a new object of this type. BITPOS is nonzero if
1687 there is an offset outstanding on T that will be applied later. */
1688
1689 void
1690 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
1691 rtx ref;
1692 tree t;
1693 int objectp;
1694 HOST_WIDE_INT bitpos;
1695 {
1696 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1697 tree expr = MEM_EXPR (ref);
1698 rtx offset = MEM_OFFSET (ref);
1699 rtx size = MEM_SIZE (ref);
1700 unsigned int align = MEM_ALIGN (ref);
1701 HOST_WIDE_INT apply_bitpos = 0;
1702 tree type;
1703
1704 /* It can happen that type_for_mode was given a mode for which there
1705 is no language-level type. In which case it returns NULL, which
1706 we can see here. */
1707 if (t == NULL_TREE)
1708 return;
1709
1710 type = TYPE_P (t) ? t : TREE_TYPE (t);
1711
1712 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1713 wrong answer, as it assumes that DECL_RTL already has the right alias
1714 info. Callers should not set DECL_RTL until after the call to
1715 set_mem_attributes. */
1716 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1717 abort ();
1718
1719 /* Get the alias set from the expression or type (perhaps using a
1720 front-end routine) and use it. */
1721 alias = get_alias_set (t);
1722
1723 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1724 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1725 RTX_UNCHANGING_P (ref)
1726 |= ((lang_hooks.honor_readonly
1727 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1728 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1729
1730 /* If we are making an object of this type, or if this is a DECL, we know
1731 that it is a scalar if the type is not an aggregate. */
1732 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1733 MEM_SCALAR_P (ref) = 1;
1734
1735 /* We can set the alignment from the type if we are making an object,
1736 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1737 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1738 align = MAX (align, TYPE_ALIGN (type));
1739
1740 /* If the size is known, we can set that. */
1741 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1742 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1743
1744 /* If T is not a type, we may be able to deduce some more information about
1745 the expression. */
1746 if (! TYPE_P (t))
1747 {
1748 maybe_set_unchanging (ref, t);
1749 if (TREE_THIS_VOLATILE (t))
1750 MEM_VOLATILE_P (ref) = 1;
1751
1752 /* Now remove any conversions: they don't change what the underlying
1753 object is. Likewise for SAVE_EXPR. */
1754 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1755 || TREE_CODE (t) == NON_LVALUE_EXPR
1756 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1757 || TREE_CODE (t) == SAVE_EXPR)
1758 t = TREE_OPERAND (t, 0);
1759
1760 /* If this expression can't be addressed (e.g., it contains a reference
1761 to a non-addressable field), show we don't change its alias set. */
1762 if (! can_address_p (t))
1763 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1764
1765 /* If this is a decl, set the attributes of the MEM from it. */
1766 if (DECL_P (t))
1767 {
1768 expr = t;
1769 offset = const0_rtx;
1770 apply_bitpos = bitpos;
1771 size = (DECL_SIZE_UNIT (t)
1772 && host_integerp (DECL_SIZE_UNIT (t), 1)
1773 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1774 align = DECL_ALIGN (t);
1775 }
1776
1777 /* If this is a constant, we know the alignment. */
1778 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1779 {
1780 align = TYPE_ALIGN (type);
1781 #ifdef CONSTANT_ALIGNMENT
1782 align = CONSTANT_ALIGNMENT (t, align);
1783 #endif
1784 }
1785
1786 /* If this is a field reference and not a bit-field, record it. */
1787 /* ??? There is some information that can be gleened from bit-fields,
1788 such as the word offset in the structure that might be modified.
1789 But skip it for now. */
1790 else if (TREE_CODE (t) == COMPONENT_REF
1791 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1792 {
1793 expr = component_ref_for_mem_expr (t);
1794 offset = const0_rtx;
1795 apply_bitpos = bitpos;
1796 /* ??? Any reason the field size would be different than
1797 the size we got from the type? */
1798 }
1799
1800 /* If this is an array reference, look for an outer field reference. */
1801 else if (TREE_CODE (t) == ARRAY_REF)
1802 {
1803 tree off_tree = size_zero_node;
1804
1805 do
1806 {
1807 tree index = TREE_OPERAND (t, 1);
1808 tree array = TREE_OPERAND (t, 0);
1809 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1810 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1811 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1812
1813 /* We assume all arrays have sizes that are a multiple of a byte.
1814 First subtract the lower bound, if any, in the type of the
1815 index, then convert to sizetype and multiply by the size of the
1816 array element. */
1817 if (low_bound != 0 && ! integer_zerop (low_bound))
1818 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1819 index, low_bound));
1820
1821 /* If the index has a self-referential type, pass it to a
1822 WITH_RECORD_EXPR; if the component size is, pass our
1823 component to one. */
1824 if (! TREE_CONSTANT (index)
1825 && contains_placeholder_p (index))
1826 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t);
1827 if (! TREE_CONSTANT (unit_size)
1828 && contains_placeholder_p (unit_size))
1829 unit_size = build (WITH_RECORD_EXPR, sizetype,
1830 unit_size, array);
1831
1832 off_tree
1833 = fold (build (PLUS_EXPR, sizetype,
1834 fold (build (MULT_EXPR, sizetype,
1835 index,
1836 unit_size)),
1837 off_tree));
1838 t = TREE_OPERAND (t, 0);
1839 }
1840 while (TREE_CODE (t) == ARRAY_REF);
1841
1842 if (DECL_P (t))
1843 {
1844 expr = t;
1845 offset = NULL;
1846 if (host_integerp (off_tree, 1))
1847 {
1848 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1849 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1850 align = DECL_ALIGN (t);
1851 if (aoff && aoff < align)
1852 align = aoff;
1853 offset = GEN_INT (ioff);
1854 apply_bitpos = bitpos;
1855 }
1856 }
1857 else if (TREE_CODE (t) == COMPONENT_REF)
1858 {
1859 expr = component_ref_for_mem_expr (t);
1860 if (host_integerp (off_tree, 1))
1861 {
1862 offset = GEN_INT (tree_low_cst (off_tree, 1));
1863 apply_bitpos = bitpos;
1864 }
1865 /* ??? Any reason the field size would be different than
1866 the size we got from the type? */
1867 }
1868 else if (flag_argument_noalias > 1
1869 && TREE_CODE (t) == INDIRECT_REF
1870 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1871 {
1872 expr = t;
1873 offset = NULL;
1874 }
1875 }
1876
1877 /* If this is a Fortran indirect argument reference, record the
1878 parameter decl. */
1879 else if (flag_argument_noalias > 1
1880 && TREE_CODE (t) == INDIRECT_REF
1881 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1882 {
1883 expr = t;
1884 offset = NULL;
1885 }
1886 }
1887
1888 /* If we modified OFFSET based on T, then subtract the outstanding
1889 bit position offset. Similarly, increase the size of the accessed
1890 object to contain the negative offset. */
1891 if (apply_bitpos)
1892 {
1893 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1894 if (size)
1895 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1896 }
1897
1898 /* Now set the attributes we computed above. */
1899 MEM_ATTRS (ref)
1900 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1901
1902 /* If this is already known to be a scalar or aggregate, we are done. */
1903 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1904 return;
1905
1906 /* If it is a reference into an aggregate, this is part of an aggregate.
1907 Otherwise we don't know. */
1908 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1909 || TREE_CODE (t) == ARRAY_RANGE_REF
1910 || TREE_CODE (t) == BIT_FIELD_REF)
1911 MEM_IN_STRUCT_P (ref) = 1;
1912 }
1913
1914 void
1915 set_mem_attributes (ref, t, objectp)
1916 rtx ref;
1917 tree t;
1918 int objectp;
1919 {
1920 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1921 }
1922
1923 /* Set the alias set of MEM to SET. */
1924
1925 void
1926 set_mem_alias_set (mem, set)
1927 rtx mem;
1928 HOST_WIDE_INT set;
1929 {
1930 #ifdef ENABLE_CHECKING
1931 /* If the new and old alias sets don't conflict, something is wrong. */
1932 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1933 abort ();
1934 #endif
1935
1936 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1937 MEM_SIZE (mem), MEM_ALIGN (mem),
1938 GET_MODE (mem));
1939 }
1940
1941 /* Set the alignment of MEM to ALIGN bits. */
1942
1943 void
1944 set_mem_align (mem, align)
1945 rtx mem;
1946 unsigned int align;
1947 {
1948 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1949 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1950 GET_MODE (mem));
1951 }
1952
1953 /* Set the expr for MEM to EXPR. */
1954
1955 void
1956 set_mem_expr (mem, expr)
1957 rtx mem;
1958 tree expr;
1959 {
1960 MEM_ATTRS (mem)
1961 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1962 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1963 }
1964
1965 /* Set the offset of MEM to OFFSET. */
1966
1967 void
1968 set_mem_offset (mem, offset)
1969 rtx mem, offset;
1970 {
1971 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1972 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1973 GET_MODE (mem));
1974 }
1975
1976 /* Set the size of MEM to SIZE. */
1977
1978 void
1979 set_mem_size (mem, size)
1980 rtx mem, size;
1981 {
1982 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1983 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1984 GET_MODE (mem));
1985 }
1986 \f
1987 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1988 and its address changed to ADDR. (VOIDmode means don't change the mode.
1989 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1990 returned memory location is required to be valid. The memory
1991 attributes are not changed. */
1992
1993 static rtx
1994 change_address_1 (memref, mode, addr, validate)
1995 rtx memref;
1996 enum machine_mode mode;
1997 rtx addr;
1998 int validate;
1999 {
2000 rtx new;
2001
2002 if (GET_CODE (memref) != MEM)
2003 abort ();
2004 if (mode == VOIDmode)
2005 mode = GET_MODE (memref);
2006 if (addr == 0)
2007 addr = XEXP (memref, 0);
2008
2009 if (validate)
2010 {
2011 if (reload_in_progress || reload_completed)
2012 {
2013 if (! memory_address_p (mode, addr))
2014 abort ();
2015 }
2016 else
2017 addr = memory_address (mode, addr);
2018 }
2019
2020 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2021 return memref;
2022
2023 new = gen_rtx_MEM (mode, addr);
2024 MEM_COPY_ATTRIBUTES (new, memref);
2025 return new;
2026 }
2027
2028 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2029 way we are changing MEMREF, so we only preserve the alias set. */
2030
2031 rtx
2032 change_address (memref, mode, addr)
2033 rtx memref;
2034 enum machine_mode mode;
2035 rtx addr;
2036 {
2037 rtx new = change_address_1 (memref, mode, addr, 1);
2038 enum machine_mode mmode = GET_MODE (new);
2039
2040 MEM_ATTRS (new)
2041 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2042 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2043 (mmode == BLKmode ? BITS_PER_UNIT
2044 : GET_MODE_ALIGNMENT (mmode)),
2045 mmode);
2046
2047 return new;
2048 }
2049
2050 /* Return a memory reference like MEMREF, but with its mode changed
2051 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2052 nonzero, the memory address is forced to be valid.
2053 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2054 and caller is responsible for adjusting MEMREF base register. */
2055
2056 rtx
2057 adjust_address_1 (memref, mode, offset, validate, adjust)
2058 rtx memref;
2059 enum machine_mode mode;
2060 HOST_WIDE_INT offset;
2061 int validate, adjust;
2062 {
2063 rtx addr = XEXP (memref, 0);
2064 rtx new;
2065 rtx memoffset = MEM_OFFSET (memref);
2066 rtx size = 0;
2067 unsigned int memalign = MEM_ALIGN (memref);
2068
2069 /* ??? Prefer to create garbage instead of creating shared rtl.
2070 This may happen even if offset is nonzero -- consider
2071 (plus (plus reg reg) const_int) -- so do this always. */
2072 addr = copy_rtx (addr);
2073
2074 if (adjust)
2075 {
2076 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2077 object, we can merge it into the LO_SUM. */
2078 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2079 && offset >= 0
2080 && (unsigned HOST_WIDE_INT) offset
2081 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2082 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2083 plus_constant (XEXP (addr, 1), offset));
2084 else
2085 addr = plus_constant (addr, offset);
2086 }
2087
2088 new = change_address_1 (memref, mode, addr, validate);
2089
2090 /* Compute the new values of the memory attributes due to this adjustment.
2091 We add the offsets and update the alignment. */
2092 if (memoffset)
2093 memoffset = GEN_INT (offset + INTVAL (memoffset));
2094
2095 /* Compute the new alignment by taking the MIN of the alignment and the
2096 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2097 if zero. */
2098 if (offset != 0)
2099 memalign
2100 = MIN (memalign,
2101 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2102
2103 /* We can compute the size in a number of ways. */
2104 if (GET_MODE (new) != BLKmode)
2105 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2106 else if (MEM_SIZE (memref))
2107 size = plus_constant (MEM_SIZE (memref), -offset);
2108
2109 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2110 memoffset, size, memalign, GET_MODE (new));
2111
2112 /* At some point, we should validate that this offset is within the object,
2113 if all the appropriate values are known. */
2114 return new;
2115 }
2116
2117 /* Return a memory reference like MEMREF, but with its mode changed
2118 to MODE and its address changed to ADDR, which is assumed to be
2119 MEMREF offseted by OFFSET bytes. If VALIDATE is
2120 nonzero, the memory address is forced to be valid. */
2121
2122 rtx
2123 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2124 rtx memref;
2125 enum machine_mode mode;
2126 rtx addr;
2127 HOST_WIDE_INT offset;
2128 int validate;
2129 {
2130 memref = change_address_1 (memref, VOIDmode, addr, validate);
2131 return adjust_address_1 (memref, mode, offset, validate, 0);
2132 }
2133
2134 /* Return a memory reference like MEMREF, but whose address is changed by
2135 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2136 known to be in OFFSET (possibly 1). */
2137
2138 rtx
2139 offset_address (memref, offset, pow2)
2140 rtx memref;
2141 rtx offset;
2142 HOST_WIDE_INT pow2;
2143 {
2144 rtx new, addr = XEXP (memref, 0);
2145
2146 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2147
2148 /* At this point we don't know _why_ the address is invalid. It
2149 could have secondary memory refereces, multiplies or anything.
2150
2151 However, if we did go and rearrange things, we can wind up not
2152 being able to recognize the magic around pic_offset_table_rtx.
2153 This stuff is fragile, and is yet another example of why it is
2154 bad to expose PIC machinery too early. */
2155 if (! memory_address_p (GET_MODE (memref), new)
2156 && GET_CODE (addr) == PLUS
2157 && XEXP (addr, 0) == pic_offset_table_rtx)
2158 {
2159 addr = force_reg (GET_MODE (addr), addr);
2160 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2161 }
2162
2163 update_temp_slot_address (XEXP (memref, 0), new);
2164 new = change_address_1 (memref, VOIDmode, new, 1);
2165
2166 /* Update the alignment to reflect the offset. Reset the offset, which
2167 we don't know. */
2168 MEM_ATTRS (new)
2169 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2170 MIN (MEM_ALIGN (memref),
2171 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2172 GET_MODE (new));
2173 return new;
2174 }
2175
2176 /* Return a memory reference like MEMREF, but with its address changed to
2177 ADDR. The caller is asserting that the actual piece of memory pointed
2178 to is the same, just the form of the address is being changed, such as
2179 by putting something into a register. */
2180
2181 rtx
2182 replace_equiv_address (memref, addr)
2183 rtx memref;
2184 rtx addr;
2185 {
2186 /* change_address_1 copies the memory attribute structure without change
2187 and that's exactly what we want here. */
2188 update_temp_slot_address (XEXP (memref, 0), addr);
2189 return change_address_1 (memref, VOIDmode, addr, 1);
2190 }
2191
2192 /* Likewise, but the reference is not required to be valid. */
2193
2194 rtx
2195 replace_equiv_address_nv (memref, addr)
2196 rtx memref;
2197 rtx addr;
2198 {
2199 return change_address_1 (memref, VOIDmode, addr, 0);
2200 }
2201
2202 /* Return a memory reference like MEMREF, but with its mode widened to
2203 MODE and offset by OFFSET. This would be used by targets that e.g.
2204 cannot issue QImode memory operations and have to use SImode memory
2205 operations plus masking logic. */
2206
2207 rtx
2208 widen_memory_access (memref, mode, offset)
2209 rtx memref;
2210 enum machine_mode mode;
2211 HOST_WIDE_INT offset;
2212 {
2213 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2214 tree expr = MEM_EXPR (new);
2215 rtx memoffset = MEM_OFFSET (new);
2216 unsigned int size = GET_MODE_SIZE (mode);
2217
2218 /* If we don't know what offset we were at within the expression, then
2219 we can't know if we've overstepped the bounds. */
2220 if (! memoffset)
2221 expr = NULL_TREE;
2222
2223 while (expr)
2224 {
2225 if (TREE_CODE (expr) == COMPONENT_REF)
2226 {
2227 tree field = TREE_OPERAND (expr, 1);
2228
2229 if (! DECL_SIZE_UNIT (field))
2230 {
2231 expr = NULL_TREE;
2232 break;
2233 }
2234
2235 /* Is the field at least as large as the access? If so, ok,
2236 otherwise strip back to the containing structure. */
2237 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2238 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2239 && INTVAL (memoffset) >= 0)
2240 break;
2241
2242 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2243 {
2244 expr = NULL_TREE;
2245 break;
2246 }
2247
2248 expr = TREE_OPERAND (expr, 0);
2249 memoffset = (GEN_INT (INTVAL (memoffset)
2250 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2251 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2252 / BITS_PER_UNIT)));
2253 }
2254 /* Similarly for the decl. */
2255 else if (DECL_P (expr)
2256 && DECL_SIZE_UNIT (expr)
2257 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2258 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2259 && (! memoffset || INTVAL (memoffset) >= 0))
2260 break;
2261 else
2262 {
2263 /* The widened memory access overflows the expression, which means
2264 that it could alias another expression. Zap it. */
2265 expr = NULL_TREE;
2266 break;
2267 }
2268 }
2269
2270 if (! expr)
2271 memoffset = NULL_RTX;
2272
2273 /* The widened memory may alias other stuff, so zap the alias set. */
2274 /* ??? Maybe use get_alias_set on any remaining expression. */
2275
2276 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2277 MEM_ALIGN (new), mode);
2278
2279 return new;
2280 }
2281 \f
2282 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2283
2284 rtx
2285 gen_label_rtx ()
2286 {
2287 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2288 NULL, label_num++, NULL);
2289 }
2290 \f
2291 /* For procedure integration. */
2292
2293 /* Install new pointers to the first and last insns in the chain.
2294 Also, set cur_insn_uid to one higher than the last in use.
2295 Used for an inline-procedure after copying the insn chain. */
2296
2297 void
2298 set_new_first_and_last_insn (first, last)
2299 rtx first, last;
2300 {
2301 rtx insn;
2302
2303 first_insn = first;
2304 last_insn = last;
2305 cur_insn_uid = 0;
2306
2307 for (insn = first; insn; insn = NEXT_INSN (insn))
2308 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2309
2310 cur_insn_uid++;
2311 }
2312
2313 /* Set the range of label numbers found in the current function.
2314 This is used when belatedly compiling an inline function. */
2315
2316 void
2317 set_new_first_and_last_label_num (first, last)
2318 int first, last;
2319 {
2320 base_label_num = label_num;
2321 first_label_num = first;
2322 last_label_num = last;
2323 }
2324
2325 /* Set the last label number found in the current function.
2326 This is used when belatedly compiling an inline function. */
2327
2328 void
2329 set_new_last_label_num (last)
2330 int last;
2331 {
2332 base_label_num = label_num;
2333 last_label_num = last;
2334 }
2335 \f
2336 /* Restore all variables describing the current status from the structure *P.
2337 This is used after a nested function. */
2338
2339 void
2340 restore_emit_status (p)
2341 struct function *p ATTRIBUTE_UNUSED;
2342 {
2343 last_label_num = 0;
2344 }
2345 \f
2346 /* Go through all the RTL insn bodies and copy any invalid shared
2347 structure. This routine should only be called once. */
2348
2349 void
2350 unshare_all_rtl (fndecl, insn)
2351 tree fndecl;
2352 rtx insn;
2353 {
2354 tree decl;
2355
2356 /* Make sure that virtual parameters are not shared. */
2357 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2358 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2359
2360 /* Make sure that virtual stack slots are not shared. */
2361 unshare_all_decls (DECL_INITIAL (fndecl));
2362
2363 /* Unshare just about everything else. */
2364 unshare_all_rtl_1 (insn);
2365
2366 /* Make sure the addresses of stack slots found outside the insn chain
2367 (such as, in DECL_RTL of a variable) are not shared
2368 with the insn chain.
2369
2370 This special care is necessary when the stack slot MEM does not
2371 actually appear in the insn chain. If it does appear, its address
2372 is unshared from all else at that point. */
2373 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2374 }
2375
2376 /* Go through all the RTL insn bodies and copy any invalid shared
2377 structure, again. This is a fairly expensive thing to do so it
2378 should be done sparingly. */
2379
2380 void
2381 unshare_all_rtl_again (insn)
2382 rtx insn;
2383 {
2384 rtx p;
2385 tree decl;
2386
2387 for (p = insn; p; p = NEXT_INSN (p))
2388 if (INSN_P (p))
2389 {
2390 reset_used_flags (PATTERN (p));
2391 reset_used_flags (REG_NOTES (p));
2392 reset_used_flags (LOG_LINKS (p));
2393 }
2394
2395 /* Make sure that virtual stack slots are not shared. */
2396 reset_used_decls (DECL_INITIAL (cfun->decl));
2397
2398 /* Make sure that virtual parameters are not shared. */
2399 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2400 reset_used_flags (DECL_RTL (decl));
2401
2402 reset_used_flags (stack_slot_list);
2403
2404 unshare_all_rtl (cfun->decl, insn);
2405 }
2406
2407 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2408 Assumes the mark bits are cleared at entry. */
2409
2410 static void
2411 unshare_all_rtl_1 (insn)
2412 rtx insn;
2413 {
2414 for (; insn; insn = NEXT_INSN (insn))
2415 if (INSN_P (insn))
2416 {
2417 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2418 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2419 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2420 }
2421 }
2422
2423 /* Go through all virtual stack slots of a function and copy any
2424 shared structure. */
2425 static void
2426 unshare_all_decls (blk)
2427 tree blk;
2428 {
2429 tree t;
2430
2431 /* Copy shared decls. */
2432 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2433 if (DECL_RTL_SET_P (t))
2434 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2435
2436 /* Now process sub-blocks. */
2437 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2438 unshare_all_decls (t);
2439 }
2440
2441 /* Go through all virtual stack slots of a function and mark them as
2442 not shared. */
2443 static void
2444 reset_used_decls (blk)
2445 tree blk;
2446 {
2447 tree t;
2448
2449 /* Mark decls. */
2450 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2451 if (DECL_RTL_SET_P (t))
2452 reset_used_flags (DECL_RTL (t));
2453
2454 /* Now process sub-blocks. */
2455 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2456 reset_used_decls (t);
2457 }
2458
2459 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2460 placed in the result directly, rather than being copied. MAY_SHARE is
2461 either a MEM of an EXPR_LIST of MEMs. */
2462
2463 rtx
2464 copy_most_rtx (orig, may_share)
2465 rtx orig;
2466 rtx may_share;
2467 {
2468 rtx copy;
2469 int i, j;
2470 RTX_CODE code;
2471 const char *format_ptr;
2472
2473 if (orig == may_share
2474 || (GET_CODE (may_share) == EXPR_LIST
2475 && in_expr_list_p (may_share, orig)))
2476 return orig;
2477
2478 code = GET_CODE (orig);
2479
2480 switch (code)
2481 {
2482 case REG:
2483 case QUEUED:
2484 case CONST_INT:
2485 case CONST_DOUBLE:
2486 case CONST_VECTOR:
2487 case SYMBOL_REF:
2488 case CODE_LABEL:
2489 case PC:
2490 case CC0:
2491 return orig;
2492 default:
2493 break;
2494 }
2495
2496 copy = rtx_alloc (code);
2497 PUT_MODE (copy, GET_MODE (orig));
2498 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2499 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2500 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2501 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2502 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2503
2504 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2505
2506 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2507 {
2508 switch (*format_ptr++)
2509 {
2510 case 'e':
2511 XEXP (copy, i) = XEXP (orig, i);
2512 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2513 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2514 break;
2515
2516 case 'u':
2517 XEXP (copy, i) = XEXP (orig, i);
2518 break;
2519
2520 case 'E':
2521 case 'V':
2522 XVEC (copy, i) = XVEC (orig, i);
2523 if (XVEC (orig, i) != NULL)
2524 {
2525 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2526 for (j = 0; j < XVECLEN (copy, i); j++)
2527 XVECEXP (copy, i, j)
2528 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2529 }
2530 break;
2531
2532 case 'w':
2533 XWINT (copy, i) = XWINT (orig, i);
2534 break;
2535
2536 case 'n':
2537 case 'i':
2538 XINT (copy, i) = XINT (orig, i);
2539 break;
2540
2541 case 't':
2542 XTREE (copy, i) = XTREE (orig, i);
2543 break;
2544
2545 case 's':
2546 case 'S':
2547 XSTR (copy, i) = XSTR (orig, i);
2548 break;
2549
2550 case '0':
2551 /* Copy this through the wide int field; that's safest. */
2552 X0WINT (copy, i) = X0WINT (orig, i);
2553 break;
2554
2555 default:
2556 abort ();
2557 }
2558 }
2559 return copy;
2560 }
2561
2562 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2563 Recursively does the same for subexpressions. */
2564
2565 rtx
2566 copy_rtx_if_shared (orig)
2567 rtx orig;
2568 {
2569 rtx x = orig;
2570 int i;
2571 enum rtx_code code;
2572 const char *format_ptr;
2573 int copied = 0;
2574
2575 if (x == 0)
2576 return 0;
2577
2578 code = GET_CODE (x);
2579
2580 /* These types may be freely shared. */
2581
2582 switch (code)
2583 {
2584 case REG:
2585 case QUEUED:
2586 case CONST_INT:
2587 case CONST_DOUBLE:
2588 case CONST_VECTOR:
2589 case SYMBOL_REF:
2590 case CODE_LABEL:
2591 case PC:
2592 case CC0:
2593 case SCRATCH:
2594 /* SCRATCH must be shared because they represent distinct values. */
2595 return x;
2596
2597 case CONST:
2598 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2599 a LABEL_REF, it isn't sharable. */
2600 if (GET_CODE (XEXP (x, 0)) == PLUS
2601 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2602 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2603 return x;
2604 break;
2605
2606 case INSN:
2607 case JUMP_INSN:
2608 case CALL_INSN:
2609 case NOTE:
2610 case BARRIER:
2611 /* The chain of insns is not being copied. */
2612 return x;
2613
2614 case MEM:
2615 /* A MEM is allowed to be shared if its address is constant.
2616
2617 We used to allow sharing of MEMs which referenced
2618 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2619 that can lose. instantiate_virtual_regs will not unshare
2620 the MEMs, and combine may change the structure of the address
2621 because it looks safe and profitable in one context, but
2622 in some other context it creates unrecognizable RTL. */
2623 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2624 return x;
2625
2626 break;
2627
2628 default:
2629 break;
2630 }
2631
2632 /* This rtx may not be shared. If it has already been seen,
2633 replace it with a copy of itself. */
2634
2635 if (RTX_FLAG (x, used))
2636 {
2637 rtx copy;
2638
2639 copy = rtx_alloc (code);
2640 memcpy (copy, x,
2641 (sizeof (*copy) - sizeof (copy->fld)
2642 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2643 x = copy;
2644 copied = 1;
2645 }
2646 RTX_FLAG (x, used) = 1;
2647
2648 /* Now scan the subexpressions recursively.
2649 We can store any replaced subexpressions directly into X
2650 since we know X is not shared! Any vectors in X
2651 must be copied if X was copied. */
2652
2653 format_ptr = GET_RTX_FORMAT (code);
2654
2655 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2656 {
2657 switch (*format_ptr++)
2658 {
2659 case 'e':
2660 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2661 break;
2662
2663 case 'E':
2664 if (XVEC (x, i) != NULL)
2665 {
2666 int j;
2667 int len = XVECLEN (x, i);
2668
2669 if (copied && len > 0)
2670 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2671 for (j = 0; j < len; j++)
2672 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2673 }
2674 break;
2675 }
2676 }
2677 return x;
2678 }
2679
2680 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2681 to look for shared sub-parts. */
2682
2683 void
2684 reset_used_flags (x)
2685 rtx x;
2686 {
2687 int i, j;
2688 enum rtx_code code;
2689 const char *format_ptr;
2690
2691 if (x == 0)
2692 return;
2693
2694 code = GET_CODE (x);
2695
2696 /* These types may be freely shared so we needn't do any resetting
2697 for them. */
2698
2699 switch (code)
2700 {
2701 case REG:
2702 case QUEUED:
2703 case CONST_INT:
2704 case CONST_DOUBLE:
2705 case CONST_VECTOR:
2706 case SYMBOL_REF:
2707 case CODE_LABEL:
2708 case PC:
2709 case CC0:
2710 return;
2711
2712 case INSN:
2713 case JUMP_INSN:
2714 case CALL_INSN:
2715 case NOTE:
2716 case LABEL_REF:
2717 case BARRIER:
2718 /* The chain of insns is not being copied. */
2719 return;
2720
2721 default:
2722 break;
2723 }
2724
2725 RTX_FLAG (x, used) = 0;
2726
2727 format_ptr = GET_RTX_FORMAT (code);
2728 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2729 {
2730 switch (*format_ptr++)
2731 {
2732 case 'e':
2733 reset_used_flags (XEXP (x, i));
2734 break;
2735
2736 case 'E':
2737 for (j = 0; j < XVECLEN (x, i); j++)
2738 reset_used_flags (XVECEXP (x, i, j));
2739 break;
2740 }
2741 }
2742 }
2743 \f
2744 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2745 Return X or the rtx for the pseudo reg the value of X was copied into.
2746 OTHER must be valid as a SET_DEST. */
2747
2748 rtx
2749 make_safe_from (x, other)
2750 rtx x, other;
2751 {
2752 while (1)
2753 switch (GET_CODE (other))
2754 {
2755 case SUBREG:
2756 other = SUBREG_REG (other);
2757 break;
2758 case STRICT_LOW_PART:
2759 case SIGN_EXTEND:
2760 case ZERO_EXTEND:
2761 other = XEXP (other, 0);
2762 break;
2763 default:
2764 goto done;
2765 }
2766 done:
2767 if ((GET_CODE (other) == MEM
2768 && ! CONSTANT_P (x)
2769 && GET_CODE (x) != REG
2770 && GET_CODE (x) != SUBREG)
2771 || (GET_CODE (other) == REG
2772 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2773 || reg_mentioned_p (other, x))))
2774 {
2775 rtx temp = gen_reg_rtx (GET_MODE (x));
2776 emit_move_insn (temp, x);
2777 return temp;
2778 }
2779 return x;
2780 }
2781 \f
2782 /* Emission of insns (adding them to the doubly-linked list). */
2783
2784 /* Return the first insn of the current sequence or current function. */
2785
2786 rtx
2787 get_insns ()
2788 {
2789 return first_insn;
2790 }
2791
2792 /* Specify a new insn as the first in the chain. */
2793
2794 void
2795 set_first_insn (insn)
2796 rtx insn;
2797 {
2798 if (PREV_INSN (insn) != 0)
2799 abort ();
2800 first_insn = insn;
2801 }
2802
2803 /* Return the last insn emitted in current sequence or current function. */
2804
2805 rtx
2806 get_last_insn ()
2807 {
2808 return last_insn;
2809 }
2810
2811 /* Specify a new insn as the last in the chain. */
2812
2813 void
2814 set_last_insn (insn)
2815 rtx insn;
2816 {
2817 if (NEXT_INSN (insn) != 0)
2818 abort ();
2819 last_insn = insn;
2820 }
2821
2822 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2823
2824 rtx
2825 get_last_insn_anywhere ()
2826 {
2827 struct sequence_stack *stack;
2828 if (last_insn)
2829 return last_insn;
2830 for (stack = seq_stack; stack; stack = stack->next)
2831 if (stack->last != 0)
2832 return stack->last;
2833 return 0;
2834 }
2835
2836 /* Return the first nonnote insn emitted in current sequence or current
2837 function. This routine looks inside SEQUENCEs. */
2838
2839 rtx
2840 get_first_nonnote_insn ()
2841 {
2842 rtx insn = first_insn;
2843
2844 while (insn)
2845 {
2846 insn = next_insn (insn);
2847 if (insn == 0 || GET_CODE (insn) != NOTE)
2848 break;
2849 }
2850
2851 return insn;
2852 }
2853
2854 /* Return the last nonnote insn emitted in current sequence or current
2855 function. This routine looks inside SEQUENCEs. */
2856
2857 rtx
2858 get_last_nonnote_insn ()
2859 {
2860 rtx insn = last_insn;
2861
2862 while (insn)
2863 {
2864 insn = previous_insn (insn);
2865 if (insn == 0 || GET_CODE (insn) != NOTE)
2866 break;
2867 }
2868
2869 return insn;
2870 }
2871
2872 /* Return a number larger than any instruction's uid in this function. */
2873
2874 int
2875 get_max_uid ()
2876 {
2877 return cur_insn_uid;
2878 }
2879
2880 /* Renumber instructions so that no instruction UIDs are wasted. */
2881
2882 void
2883 renumber_insns (stream)
2884 FILE *stream;
2885 {
2886 rtx insn;
2887
2888 /* If we're not supposed to renumber instructions, don't. */
2889 if (!flag_renumber_insns)
2890 return;
2891
2892 /* If there aren't that many instructions, then it's not really
2893 worth renumbering them. */
2894 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2895 return;
2896
2897 cur_insn_uid = 1;
2898
2899 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2900 {
2901 if (stream)
2902 fprintf (stream, "Renumbering insn %d to %d\n",
2903 INSN_UID (insn), cur_insn_uid);
2904 INSN_UID (insn) = cur_insn_uid++;
2905 }
2906 }
2907 \f
2908 /* Return the next insn. If it is a SEQUENCE, return the first insn
2909 of the sequence. */
2910
2911 rtx
2912 next_insn (insn)
2913 rtx insn;
2914 {
2915 if (insn)
2916 {
2917 insn = NEXT_INSN (insn);
2918 if (insn && GET_CODE (insn) == INSN
2919 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2920 insn = XVECEXP (PATTERN (insn), 0, 0);
2921 }
2922
2923 return insn;
2924 }
2925
2926 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2927 of the sequence. */
2928
2929 rtx
2930 previous_insn (insn)
2931 rtx insn;
2932 {
2933 if (insn)
2934 {
2935 insn = PREV_INSN (insn);
2936 if (insn && GET_CODE (insn) == INSN
2937 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2938 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2939 }
2940
2941 return insn;
2942 }
2943
2944 /* Return the next insn after INSN that is not a NOTE. This routine does not
2945 look inside SEQUENCEs. */
2946
2947 rtx
2948 next_nonnote_insn (insn)
2949 rtx insn;
2950 {
2951 while (insn)
2952 {
2953 insn = NEXT_INSN (insn);
2954 if (insn == 0 || GET_CODE (insn) != NOTE)
2955 break;
2956 }
2957
2958 return insn;
2959 }
2960
2961 /* Return the previous insn before INSN that is not a NOTE. This routine does
2962 not look inside SEQUENCEs. */
2963
2964 rtx
2965 prev_nonnote_insn (insn)
2966 rtx insn;
2967 {
2968 while (insn)
2969 {
2970 insn = PREV_INSN (insn);
2971 if (insn == 0 || GET_CODE (insn) != NOTE)
2972 break;
2973 }
2974
2975 return insn;
2976 }
2977
2978 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2979 or 0, if there is none. This routine does not look inside
2980 SEQUENCEs. */
2981
2982 rtx
2983 next_real_insn (insn)
2984 rtx insn;
2985 {
2986 while (insn)
2987 {
2988 insn = NEXT_INSN (insn);
2989 if (insn == 0 || GET_CODE (insn) == INSN
2990 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2991 break;
2992 }
2993
2994 return insn;
2995 }
2996
2997 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2998 or 0, if there is none. This routine does not look inside
2999 SEQUENCEs. */
3000
3001 rtx
3002 prev_real_insn (insn)
3003 rtx insn;
3004 {
3005 while (insn)
3006 {
3007 insn = PREV_INSN (insn);
3008 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3009 || GET_CODE (insn) == JUMP_INSN)
3010 break;
3011 }
3012
3013 return insn;
3014 }
3015
3016 /* Find the next insn after INSN that really does something. This routine
3017 does not look inside SEQUENCEs. Until reload has completed, this is the
3018 same as next_real_insn. */
3019
3020 int
3021 active_insn_p (insn)
3022 rtx insn;
3023 {
3024 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3025 || (GET_CODE (insn) == INSN
3026 && (! reload_completed
3027 || (GET_CODE (PATTERN (insn)) != USE
3028 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3029 }
3030
3031 rtx
3032 next_active_insn (insn)
3033 rtx insn;
3034 {
3035 while (insn)
3036 {
3037 insn = NEXT_INSN (insn);
3038 if (insn == 0 || active_insn_p (insn))
3039 break;
3040 }
3041
3042 return insn;
3043 }
3044
3045 /* Find the last insn before INSN that really does something. This routine
3046 does not look inside SEQUENCEs. Until reload has completed, this is the
3047 same as prev_real_insn. */
3048
3049 rtx
3050 prev_active_insn (insn)
3051 rtx insn;
3052 {
3053 while (insn)
3054 {
3055 insn = PREV_INSN (insn);
3056 if (insn == 0 || active_insn_p (insn))
3057 break;
3058 }
3059
3060 return insn;
3061 }
3062
3063 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3064
3065 rtx
3066 next_label (insn)
3067 rtx insn;
3068 {
3069 while (insn)
3070 {
3071 insn = NEXT_INSN (insn);
3072 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3073 break;
3074 }
3075
3076 return insn;
3077 }
3078
3079 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3080
3081 rtx
3082 prev_label (insn)
3083 rtx insn;
3084 {
3085 while (insn)
3086 {
3087 insn = PREV_INSN (insn);
3088 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3089 break;
3090 }
3091
3092 return insn;
3093 }
3094 \f
3095 #ifdef HAVE_cc0
3096 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3097 and REG_CC_USER notes so we can find it. */
3098
3099 void
3100 link_cc0_insns (insn)
3101 rtx insn;
3102 {
3103 rtx user = next_nonnote_insn (insn);
3104
3105 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3106 user = XVECEXP (PATTERN (user), 0, 0);
3107
3108 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3109 REG_NOTES (user));
3110 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3111 }
3112
3113 /* Return the next insn that uses CC0 after INSN, which is assumed to
3114 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3115 applied to the result of this function should yield INSN).
3116
3117 Normally, this is simply the next insn. However, if a REG_CC_USER note
3118 is present, it contains the insn that uses CC0.
3119
3120 Return 0 if we can't find the insn. */
3121
3122 rtx
3123 next_cc0_user (insn)
3124 rtx insn;
3125 {
3126 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3127
3128 if (note)
3129 return XEXP (note, 0);
3130
3131 insn = next_nonnote_insn (insn);
3132 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3133 insn = XVECEXP (PATTERN (insn), 0, 0);
3134
3135 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3136 return insn;
3137
3138 return 0;
3139 }
3140
3141 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3142 note, it is the previous insn. */
3143
3144 rtx
3145 prev_cc0_setter (insn)
3146 rtx insn;
3147 {
3148 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3149
3150 if (note)
3151 return XEXP (note, 0);
3152
3153 insn = prev_nonnote_insn (insn);
3154 if (! sets_cc0_p (PATTERN (insn)))
3155 abort ();
3156
3157 return insn;
3158 }
3159 #endif
3160
3161 /* Increment the label uses for all labels present in rtx. */
3162
3163 static void
3164 mark_label_nuses (x)
3165 rtx x;
3166 {
3167 enum rtx_code code;
3168 int i, j;
3169 const char *fmt;
3170
3171 code = GET_CODE (x);
3172 if (code == LABEL_REF)
3173 LABEL_NUSES (XEXP (x, 0))++;
3174
3175 fmt = GET_RTX_FORMAT (code);
3176 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3177 {
3178 if (fmt[i] == 'e')
3179 mark_label_nuses (XEXP (x, i));
3180 else if (fmt[i] == 'E')
3181 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3182 mark_label_nuses (XVECEXP (x, i, j));
3183 }
3184 }
3185
3186 \f
3187 /* Try splitting insns that can be split for better scheduling.
3188 PAT is the pattern which might split.
3189 TRIAL is the insn providing PAT.
3190 LAST is nonzero if we should return the last insn of the sequence produced.
3191
3192 If this routine succeeds in splitting, it returns the first or last
3193 replacement insn depending on the value of LAST. Otherwise, it
3194 returns TRIAL. If the insn to be returned can be split, it will be. */
3195
3196 rtx
3197 try_split (pat, trial, last)
3198 rtx pat, trial;
3199 int last;
3200 {
3201 rtx before = PREV_INSN (trial);
3202 rtx after = NEXT_INSN (trial);
3203 int has_barrier = 0;
3204 rtx tem;
3205 rtx note, seq;
3206 int probability;
3207
3208 if (any_condjump_p (trial)
3209 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3210 split_branch_probability = INTVAL (XEXP (note, 0));
3211 probability = split_branch_probability;
3212
3213 seq = split_insns (pat, trial);
3214
3215 split_branch_probability = -1;
3216
3217 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3218 We may need to handle this specially. */
3219 if (after && GET_CODE (after) == BARRIER)
3220 {
3221 has_barrier = 1;
3222 after = NEXT_INSN (after);
3223 }
3224
3225 if (seq)
3226 {
3227 /* Sometimes there will be only one insn in that list, this case will
3228 normally arise only when we want it in turn to be split (SFmode on
3229 the 29k is an example). */
3230 if (NEXT_INSN (seq) != NULL_RTX)
3231 {
3232 rtx insn_last, insn;
3233 int njumps = 0;
3234
3235 /* Avoid infinite loop if any insn of the result matches
3236 the original pattern. */
3237 insn_last = seq;
3238 while (1)
3239 {
3240 if (INSN_P (insn_last)
3241 && rtx_equal_p (PATTERN (insn_last), pat))
3242 return trial;
3243 if (NEXT_INSN (insn_last) == NULL_RTX)
3244 break;
3245 insn_last = NEXT_INSN (insn_last);
3246 }
3247
3248 /* Mark labels. */
3249 insn = insn_last;
3250 while (insn != NULL_RTX)
3251 {
3252 if (GET_CODE (insn) == JUMP_INSN)
3253 {
3254 mark_jump_label (PATTERN (insn), insn, 0);
3255 njumps++;
3256 if (probability != -1
3257 && any_condjump_p (insn)
3258 && !find_reg_note (insn, REG_BR_PROB, 0))
3259 {
3260 /* We can preserve the REG_BR_PROB notes only if exactly
3261 one jump is created, otherwise the machine description
3262 is responsible for this step using
3263 split_branch_probability variable. */
3264 if (njumps != 1)
3265 abort ();
3266 REG_NOTES (insn)
3267 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3268 GEN_INT (probability),
3269 REG_NOTES (insn));
3270 }
3271 }
3272
3273 insn = PREV_INSN (insn);
3274 }
3275
3276 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3277 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3278 if (GET_CODE (trial) == CALL_INSN)
3279 {
3280 insn = insn_last;
3281 while (insn != NULL_RTX)
3282 {
3283 if (GET_CODE (insn) == CALL_INSN)
3284 CALL_INSN_FUNCTION_USAGE (insn)
3285 = CALL_INSN_FUNCTION_USAGE (trial);
3286
3287 insn = PREV_INSN (insn);
3288 }
3289 }
3290
3291 /* Copy notes, particularly those related to the CFG. */
3292 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3293 {
3294 switch (REG_NOTE_KIND (note))
3295 {
3296 case REG_EH_REGION:
3297 insn = insn_last;
3298 while (insn != NULL_RTX)
3299 {
3300 if (GET_CODE (insn) == CALL_INSN
3301 || (flag_non_call_exceptions
3302 && may_trap_p (PATTERN (insn))))
3303 REG_NOTES (insn)
3304 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3305 XEXP (note, 0),
3306 REG_NOTES (insn));
3307 insn = PREV_INSN (insn);
3308 }
3309 break;
3310
3311 case REG_NORETURN:
3312 case REG_SETJMP:
3313 case REG_ALWAYS_RETURN:
3314 insn = insn_last;
3315 while (insn != NULL_RTX)
3316 {
3317 if (GET_CODE (insn) == CALL_INSN)
3318 REG_NOTES (insn)
3319 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3320 XEXP (note, 0),
3321 REG_NOTES (insn));
3322 insn = PREV_INSN (insn);
3323 }
3324 break;
3325
3326 case REG_NON_LOCAL_GOTO:
3327 insn = insn_last;
3328 while (insn != NULL_RTX)
3329 {
3330 if (GET_CODE (insn) == JUMP_INSN)
3331 REG_NOTES (insn)
3332 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3333 XEXP (note, 0),
3334 REG_NOTES (insn));
3335 insn = PREV_INSN (insn);
3336 }
3337 break;
3338
3339 default:
3340 break;
3341 }
3342 }
3343
3344 /* If there are LABELS inside the split insns increment the
3345 usage count so we don't delete the label. */
3346 if (GET_CODE (trial) == INSN)
3347 {
3348 insn = insn_last;
3349 while (insn != NULL_RTX)
3350 {
3351 if (GET_CODE (insn) == INSN)
3352 mark_label_nuses (PATTERN (insn));
3353
3354 insn = PREV_INSN (insn);
3355 }
3356 }
3357
3358 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
3359
3360 delete_insn (trial);
3361 if (has_barrier)
3362 emit_barrier_after (tem);
3363
3364 /* Recursively call try_split for each new insn created; by the
3365 time control returns here that insn will be fully split, so
3366 set LAST and continue from the insn after the one returned.
3367 We can't use next_active_insn here since AFTER may be a note.
3368 Ignore deleted insns, which can be occur if not optimizing. */
3369 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3370 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3371 tem = try_split (PATTERN (tem), tem, 1);
3372 }
3373 /* Avoid infinite loop if the result matches the original pattern. */
3374 else if (rtx_equal_p (PATTERN (seq), pat))
3375 return trial;
3376 else
3377 {
3378 PATTERN (trial) = PATTERN (seq);
3379 INSN_CODE (trial) = -1;
3380 try_split (PATTERN (trial), trial, last);
3381 }
3382
3383 /* Return either the first or the last insn, depending on which was
3384 requested. */
3385 return last
3386 ? (after ? PREV_INSN (after) : last_insn)
3387 : NEXT_INSN (before);
3388 }
3389
3390 return trial;
3391 }
3392 \f
3393 /* Make and return an INSN rtx, initializing all its slots.
3394 Store PATTERN in the pattern slots. */
3395
3396 rtx
3397 make_insn_raw (pattern)
3398 rtx pattern;
3399 {
3400 rtx insn;
3401
3402 insn = rtx_alloc (INSN);
3403
3404 INSN_UID (insn) = cur_insn_uid++;
3405 PATTERN (insn) = pattern;
3406 INSN_CODE (insn) = -1;
3407 LOG_LINKS (insn) = NULL;
3408 REG_NOTES (insn) = NULL;
3409 INSN_SCOPE (insn) = NULL;
3410 BLOCK_FOR_INSN (insn) = NULL;
3411
3412 #ifdef ENABLE_RTL_CHECKING
3413 if (insn
3414 && INSN_P (insn)
3415 && (returnjump_p (insn)
3416 || (GET_CODE (insn) == SET
3417 && SET_DEST (insn) == pc_rtx)))
3418 {
3419 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3420 debug_rtx (insn);
3421 }
3422 #endif
3423
3424 return insn;
3425 }
3426
3427 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3428
3429 static rtx
3430 make_jump_insn_raw (pattern)
3431 rtx pattern;
3432 {
3433 rtx insn;
3434
3435 insn = rtx_alloc (JUMP_INSN);
3436 INSN_UID (insn) = cur_insn_uid++;
3437
3438 PATTERN (insn) = pattern;
3439 INSN_CODE (insn) = -1;
3440 LOG_LINKS (insn) = NULL;
3441 REG_NOTES (insn) = NULL;
3442 JUMP_LABEL (insn) = NULL;
3443 INSN_SCOPE (insn) = NULL;
3444 BLOCK_FOR_INSN (insn) = NULL;
3445
3446 return insn;
3447 }
3448
3449 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3450
3451 static rtx
3452 make_call_insn_raw (pattern)
3453 rtx pattern;
3454 {
3455 rtx insn;
3456
3457 insn = rtx_alloc (CALL_INSN);
3458 INSN_UID (insn) = cur_insn_uid++;
3459
3460 PATTERN (insn) = pattern;
3461 INSN_CODE (insn) = -1;
3462 LOG_LINKS (insn) = NULL;
3463 REG_NOTES (insn) = NULL;
3464 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3465 INSN_SCOPE (insn) = NULL;
3466 BLOCK_FOR_INSN (insn) = NULL;
3467
3468 return insn;
3469 }
3470 \f
3471 /* Add INSN to the end of the doubly-linked list.
3472 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3473
3474 void
3475 add_insn (insn)
3476 rtx insn;
3477 {
3478 PREV_INSN (insn) = last_insn;
3479 NEXT_INSN (insn) = 0;
3480
3481 if (NULL != last_insn)
3482 NEXT_INSN (last_insn) = insn;
3483
3484 if (NULL == first_insn)
3485 first_insn = insn;
3486
3487 last_insn = insn;
3488 }
3489
3490 /* Add INSN into the doubly-linked list after insn AFTER. This and
3491 the next should be the only functions called to insert an insn once
3492 delay slots have been filled since only they know how to update a
3493 SEQUENCE. */
3494
3495 void
3496 add_insn_after (insn, after)
3497 rtx insn, after;
3498 {
3499 rtx next = NEXT_INSN (after);
3500 basic_block bb;
3501
3502 if (optimize && INSN_DELETED_P (after))
3503 abort ();
3504
3505 NEXT_INSN (insn) = next;
3506 PREV_INSN (insn) = after;
3507
3508 if (next)
3509 {
3510 PREV_INSN (next) = insn;
3511 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3512 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3513 }
3514 else if (last_insn == after)
3515 last_insn = insn;
3516 else
3517 {
3518 struct sequence_stack *stack = seq_stack;
3519 /* Scan all pending sequences too. */
3520 for (; stack; stack = stack->next)
3521 if (after == stack->last)
3522 {
3523 stack->last = insn;
3524 break;
3525 }
3526
3527 if (stack == 0)
3528 abort ();
3529 }
3530
3531 if (GET_CODE (after) != BARRIER
3532 && GET_CODE (insn) != BARRIER
3533 && (bb = BLOCK_FOR_INSN (after)))
3534 {
3535 set_block_for_insn (insn, bb);
3536 if (INSN_P (insn))
3537 bb->flags |= BB_DIRTY;
3538 /* Should not happen as first in the BB is always
3539 either NOTE or LABEL. */
3540 if (bb->end == after
3541 /* Avoid clobbering of structure when creating new BB. */
3542 && GET_CODE (insn) != BARRIER
3543 && (GET_CODE (insn) != NOTE
3544 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3545 bb->end = insn;
3546 }
3547
3548 NEXT_INSN (after) = insn;
3549 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3550 {
3551 rtx sequence = PATTERN (after);
3552 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3553 }
3554 }
3555
3556 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3557 the previous should be the only functions called to insert an insn once
3558 delay slots have been filled since only they know how to update a
3559 SEQUENCE. */
3560
3561 void
3562 add_insn_before (insn, before)
3563 rtx insn, before;
3564 {
3565 rtx prev = PREV_INSN (before);
3566 basic_block bb;
3567
3568 if (optimize && INSN_DELETED_P (before))
3569 abort ();
3570
3571 PREV_INSN (insn) = prev;
3572 NEXT_INSN (insn) = before;
3573
3574 if (prev)
3575 {
3576 NEXT_INSN (prev) = insn;
3577 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3578 {
3579 rtx sequence = PATTERN (prev);
3580 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3581 }
3582 }
3583 else if (first_insn == before)
3584 first_insn = insn;
3585 else
3586 {
3587 struct sequence_stack *stack = seq_stack;
3588 /* Scan all pending sequences too. */
3589 for (; stack; stack = stack->next)
3590 if (before == stack->first)
3591 {
3592 stack->first = insn;
3593 break;
3594 }
3595
3596 if (stack == 0)
3597 abort ();
3598 }
3599
3600 if (GET_CODE (before) != BARRIER
3601 && GET_CODE (insn) != BARRIER
3602 && (bb = BLOCK_FOR_INSN (before)))
3603 {
3604 set_block_for_insn (insn, bb);
3605 if (INSN_P (insn))
3606 bb->flags |= BB_DIRTY;
3607 /* Should not happen as first in the BB is always
3608 either NOTE or LABEl. */
3609 if (bb->head == insn
3610 /* Avoid clobbering of structure when creating new BB. */
3611 && GET_CODE (insn) != BARRIER
3612 && (GET_CODE (insn) != NOTE
3613 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3614 abort ();
3615 }
3616
3617 PREV_INSN (before) = insn;
3618 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3619 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3620 }
3621
3622 /* Remove an insn from its doubly-linked list. This function knows how
3623 to handle sequences. */
3624 void
3625 remove_insn (insn)
3626 rtx insn;
3627 {
3628 rtx next = NEXT_INSN (insn);
3629 rtx prev = PREV_INSN (insn);
3630 basic_block bb;
3631
3632 if (prev)
3633 {
3634 NEXT_INSN (prev) = next;
3635 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3636 {
3637 rtx sequence = PATTERN (prev);
3638 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3639 }
3640 }
3641 else if (first_insn == insn)
3642 first_insn = next;
3643 else
3644 {
3645 struct sequence_stack *stack = seq_stack;
3646 /* Scan all pending sequences too. */
3647 for (; stack; stack = stack->next)
3648 if (insn == stack->first)
3649 {
3650 stack->first = next;
3651 break;
3652 }
3653
3654 if (stack == 0)
3655 abort ();
3656 }
3657
3658 if (next)
3659 {
3660 PREV_INSN (next) = prev;
3661 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3662 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3663 }
3664 else if (last_insn == insn)
3665 last_insn = prev;
3666 else
3667 {
3668 struct sequence_stack *stack = seq_stack;
3669 /* Scan all pending sequences too. */
3670 for (; stack; stack = stack->next)
3671 if (insn == stack->last)
3672 {
3673 stack->last = prev;
3674 break;
3675 }
3676
3677 if (stack == 0)
3678 abort ();
3679 }
3680 if (GET_CODE (insn) != BARRIER
3681 && (bb = BLOCK_FOR_INSN (insn)))
3682 {
3683 if (INSN_P (insn))
3684 bb->flags |= BB_DIRTY;
3685 if (bb->head == insn)
3686 {
3687 /* Never ever delete the basic block note without deleting whole
3688 basic block. */
3689 if (GET_CODE (insn) == NOTE)
3690 abort ();
3691 bb->head = next;
3692 }
3693 if (bb->end == insn)
3694 bb->end = prev;
3695 }
3696 }
3697
3698 /* Delete all insns made since FROM.
3699 FROM becomes the new last instruction. */
3700
3701 void
3702 delete_insns_since (from)
3703 rtx from;
3704 {
3705 if (from == 0)
3706 first_insn = 0;
3707 else
3708 NEXT_INSN (from) = 0;
3709 last_insn = from;
3710 }
3711
3712 /* This function is deprecated, please use sequences instead.
3713
3714 Move a consecutive bunch of insns to a different place in the chain.
3715 The insns to be moved are those between FROM and TO.
3716 They are moved to a new position after the insn AFTER.
3717 AFTER must not be FROM or TO or any insn in between.
3718
3719 This function does not know about SEQUENCEs and hence should not be
3720 called after delay-slot filling has been done. */
3721
3722 void
3723 reorder_insns_nobb (from, to, after)
3724 rtx from, to, after;
3725 {
3726 /* Splice this bunch out of where it is now. */
3727 if (PREV_INSN (from))
3728 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3729 if (NEXT_INSN (to))
3730 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3731 if (last_insn == to)
3732 last_insn = PREV_INSN (from);
3733 if (first_insn == from)
3734 first_insn = NEXT_INSN (to);
3735
3736 /* Make the new neighbors point to it and it to them. */
3737 if (NEXT_INSN (after))
3738 PREV_INSN (NEXT_INSN (after)) = to;
3739
3740 NEXT_INSN (to) = NEXT_INSN (after);
3741 PREV_INSN (from) = after;
3742 NEXT_INSN (after) = from;
3743 if (after == last_insn)
3744 last_insn = to;
3745 }
3746
3747 /* Same as function above, but take care to update BB boundaries. */
3748 void
3749 reorder_insns (from, to, after)
3750 rtx from, to, after;
3751 {
3752 rtx prev = PREV_INSN (from);
3753 basic_block bb, bb2;
3754
3755 reorder_insns_nobb (from, to, after);
3756
3757 if (GET_CODE (after) != BARRIER
3758 && (bb = BLOCK_FOR_INSN (after)))
3759 {
3760 rtx x;
3761 bb->flags |= BB_DIRTY;
3762
3763 if (GET_CODE (from) != BARRIER
3764 && (bb2 = BLOCK_FOR_INSN (from)))
3765 {
3766 if (bb2->end == to)
3767 bb2->end = prev;
3768 bb2->flags |= BB_DIRTY;
3769 }
3770
3771 if (bb->end == after)
3772 bb->end = to;
3773
3774 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3775 set_block_for_insn (x, bb);
3776 }
3777 }
3778
3779 /* Return the line note insn preceding INSN. */
3780
3781 static rtx
3782 find_line_note (insn)
3783 rtx insn;
3784 {
3785 if (no_line_numbers)
3786 return 0;
3787
3788 for (; insn; insn = PREV_INSN (insn))
3789 if (GET_CODE (insn) == NOTE
3790 && NOTE_LINE_NUMBER (insn) >= 0)
3791 break;
3792
3793 return insn;
3794 }
3795
3796 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3797 of the moved insns when debugging. This may insert a note between AFTER
3798 and FROM, and another one after TO. */
3799
3800 void
3801 reorder_insns_with_line_notes (from, to, after)
3802 rtx from, to, after;
3803 {
3804 rtx from_line = find_line_note (from);
3805 rtx after_line = find_line_note (after);
3806
3807 reorder_insns (from, to, after);
3808
3809 if (from_line == after_line)
3810 return;
3811
3812 if (from_line)
3813 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3814 NOTE_LINE_NUMBER (from_line),
3815 after);
3816 if (after_line)
3817 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3818 NOTE_LINE_NUMBER (after_line),
3819 to);
3820 }
3821
3822 /* Remove unnecessary notes from the instruction stream. */
3823
3824 void
3825 remove_unnecessary_notes ()
3826 {
3827 rtx block_stack = NULL_RTX;
3828 rtx eh_stack = NULL_RTX;
3829 rtx insn;
3830 rtx next;
3831 rtx tmp;
3832
3833 /* We must not remove the first instruction in the function because
3834 the compiler depends on the first instruction being a note. */
3835 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3836 {
3837 /* Remember what's next. */
3838 next = NEXT_INSN (insn);
3839
3840 /* We're only interested in notes. */
3841 if (GET_CODE (insn) != NOTE)
3842 continue;
3843
3844 switch (NOTE_LINE_NUMBER (insn))
3845 {
3846 case NOTE_INSN_DELETED:
3847 case NOTE_INSN_LOOP_END_TOP_COND:
3848 remove_insn (insn);
3849 break;
3850
3851 case NOTE_INSN_EH_REGION_BEG:
3852 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3853 break;
3854
3855 case NOTE_INSN_EH_REGION_END:
3856 /* Too many end notes. */
3857 if (eh_stack == NULL_RTX)
3858 abort ();
3859 /* Mismatched nesting. */
3860 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3861 abort ();
3862 tmp = eh_stack;
3863 eh_stack = XEXP (eh_stack, 1);
3864 free_INSN_LIST_node (tmp);
3865 break;
3866
3867 case NOTE_INSN_BLOCK_BEG:
3868 /* By now, all notes indicating lexical blocks should have
3869 NOTE_BLOCK filled in. */
3870 if (NOTE_BLOCK (insn) == NULL_TREE)
3871 abort ();
3872 block_stack = alloc_INSN_LIST (insn, block_stack);
3873 break;
3874
3875 case NOTE_INSN_BLOCK_END:
3876 /* Too many end notes. */
3877 if (block_stack == NULL_RTX)
3878 abort ();
3879 /* Mismatched nesting. */
3880 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3881 abort ();
3882 tmp = block_stack;
3883 block_stack = XEXP (block_stack, 1);
3884 free_INSN_LIST_node (tmp);
3885
3886 /* Scan back to see if there are any non-note instructions
3887 between INSN and the beginning of this block. If not,
3888 then there is no PC range in the generated code that will
3889 actually be in this block, so there's no point in
3890 remembering the existence of the block. */
3891 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3892 {
3893 /* This block contains a real instruction. Note that we
3894 don't include labels; if the only thing in the block
3895 is a label, then there are still no PC values that
3896 lie within the block. */
3897 if (INSN_P (tmp))
3898 break;
3899
3900 /* We're only interested in NOTEs. */
3901 if (GET_CODE (tmp) != NOTE)
3902 continue;
3903
3904 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3905 {
3906 /* We just verified that this BLOCK matches us with
3907 the block_stack check above. Never delete the
3908 BLOCK for the outermost scope of the function; we
3909 can refer to names from that scope even if the
3910 block notes are messed up. */
3911 if (! is_body_block (NOTE_BLOCK (insn))
3912 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3913 {
3914 remove_insn (tmp);
3915 remove_insn (insn);
3916 }
3917 break;
3918 }
3919 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3920 /* There's a nested block. We need to leave the
3921 current block in place since otherwise the debugger
3922 wouldn't be able to show symbols from our block in
3923 the nested block. */
3924 break;
3925 }
3926 }
3927 }
3928
3929 /* Too many begin notes. */
3930 if (block_stack || eh_stack)
3931 abort ();
3932 }
3933
3934 \f
3935 /* Emit insn(s) of given code and pattern
3936 at a specified place within the doubly-linked list.
3937
3938 All of the emit_foo global entry points accept an object
3939 X which is either an insn list or a PATTERN of a single
3940 instruction.
3941
3942 There are thus a few canonical ways to generate code and
3943 emit it at a specific place in the instruction stream. For
3944 example, consider the instruction named SPOT and the fact that
3945 we would like to emit some instructions before SPOT. We might
3946 do it like this:
3947
3948 start_sequence ();
3949 ... emit the new instructions ...
3950 insns_head = get_insns ();
3951 end_sequence ();
3952
3953 emit_insn_before (insns_head, SPOT);
3954
3955 It used to be common to generate SEQUENCE rtl instead, but that
3956 is a relic of the past which no longer occurs. The reason is that
3957 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3958 generated would almost certainly die right after it was created. */
3959
3960 /* Make X be output before the instruction BEFORE. */
3961
3962 rtx
3963 emit_insn_before (x, before)
3964 rtx x, before;
3965 {
3966 rtx last = before;
3967 rtx insn;
3968
3969 #ifdef ENABLE_RTL_CHECKING
3970 if (before == NULL_RTX)
3971 abort ();
3972 #endif
3973
3974 if (x == NULL_RTX)
3975 return last;
3976
3977 switch (GET_CODE (x))
3978 {
3979 case INSN:
3980 case JUMP_INSN:
3981 case CALL_INSN:
3982 case CODE_LABEL:
3983 case BARRIER:
3984 case NOTE:
3985 insn = x;
3986 while (insn)
3987 {
3988 rtx next = NEXT_INSN (insn);
3989 add_insn_before (insn, before);
3990 last = insn;
3991 insn = next;
3992 }
3993 break;
3994
3995 #ifdef ENABLE_RTL_CHECKING
3996 case SEQUENCE:
3997 abort ();
3998 break;
3999 #endif
4000
4001 default:
4002 last = make_insn_raw (x);
4003 add_insn_before (last, before);
4004 break;
4005 }
4006
4007 return last;
4008 }
4009
4010 /* Make an instruction with body X and code JUMP_INSN
4011 and output it before the instruction BEFORE. */
4012
4013 rtx
4014 emit_jump_insn_before (x, before)
4015 rtx x, before;
4016 {
4017 rtx insn, last = NULL_RTX;
4018
4019 #ifdef ENABLE_RTL_CHECKING
4020 if (before == NULL_RTX)
4021 abort ();
4022 #endif
4023
4024 switch (GET_CODE (x))
4025 {
4026 case INSN:
4027 case JUMP_INSN:
4028 case CALL_INSN:
4029 case CODE_LABEL:
4030 case BARRIER:
4031 case NOTE:
4032 insn = x;
4033 while (insn)
4034 {
4035 rtx next = NEXT_INSN (insn);
4036 add_insn_before (insn, before);
4037 last = insn;
4038 insn = next;
4039 }
4040 break;
4041
4042 #ifdef ENABLE_RTL_CHECKING
4043 case SEQUENCE:
4044 abort ();
4045 break;
4046 #endif
4047
4048 default:
4049 last = make_jump_insn_raw (x);
4050 add_insn_before (last, before);
4051 break;
4052 }
4053
4054 return last;
4055 }
4056
4057 /* Make an instruction with body X and code CALL_INSN
4058 and output it before the instruction BEFORE. */
4059
4060 rtx
4061 emit_call_insn_before (x, before)
4062 rtx x, before;
4063 {
4064 rtx last = NULL_RTX, insn;
4065
4066 #ifdef ENABLE_RTL_CHECKING
4067 if (before == NULL_RTX)
4068 abort ();
4069 #endif
4070
4071 switch (GET_CODE (x))
4072 {
4073 case INSN:
4074 case JUMP_INSN:
4075 case CALL_INSN:
4076 case CODE_LABEL:
4077 case BARRIER:
4078 case NOTE:
4079 insn = x;
4080 while (insn)
4081 {
4082 rtx next = NEXT_INSN (insn);
4083 add_insn_before (insn, before);
4084 last = insn;
4085 insn = next;
4086 }
4087 break;
4088
4089 #ifdef ENABLE_RTL_CHECKING
4090 case SEQUENCE:
4091 abort ();
4092 break;
4093 #endif
4094
4095 default:
4096 last = make_call_insn_raw (x);
4097 add_insn_before (last, before);
4098 break;
4099 }
4100
4101 return last;
4102 }
4103
4104 /* Make an insn of code BARRIER
4105 and output it before the insn BEFORE. */
4106
4107 rtx
4108 emit_barrier_before (before)
4109 rtx before;
4110 {
4111 rtx insn = rtx_alloc (BARRIER);
4112
4113 INSN_UID (insn) = cur_insn_uid++;
4114
4115 add_insn_before (insn, before);
4116 return insn;
4117 }
4118
4119 /* Emit the label LABEL before the insn BEFORE. */
4120
4121 rtx
4122 emit_label_before (label, before)
4123 rtx label, before;
4124 {
4125 /* This can be called twice for the same label as a result of the
4126 confusion that follows a syntax error! So make it harmless. */
4127 if (INSN_UID (label) == 0)
4128 {
4129 INSN_UID (label) = cur_insn_uid++;
4130 add_insn_before (label, before);
4131 }
4132
4133 return label;
4134 }
4135
4136 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4137
4138 rtx
4139 emit_note_before (subtype, before)
4140 int subtype;
4141 rtx before;
4142 {
4143 rtx note = rtx_alloc (NOTE);
4144 INSN_UID (note) = cur_insn_uid++;
4145 NOTE_SOURCE_FILE (note) = 0;
4146 NOTE_LINE_NUMBER (note) = subtype;
4147 BLOCK_FOR_INSN (note) = NULL;
4148
4149 add_insn_before (note, before);
4150 return note;
4151 }
4152 \f
4153 /* Helper for emit_insn_after, handles lists of instructions
4154 efficiently. */
4155
4156 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4157
4158 static rtx
4159 emit_insn_after_1 (first, after)
4160 rtx first, after;
4161 {
4162 rtx last;
4163 rtx after_after;
4164 basic_block bb;
4165
4166 if (GET_CODE (after) != BARRIER
4167 && (bb = BLOCK_FOR_INSN (after)))
4168 {
4169 bb->flags |= BB_DIRTY;
4170 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4171 if (GET_CODE (last) != BARRIER)
4172 set_block_for_insn (last, bb);
4173 if (GET_CODE (last) != BARRIER)
4174 set_block_for_insn (last, bb);
4175 if (bb->end == after)
4176 bb->end = last;
4177 }
4178 else
4179 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4180 continue;
4181
4182 after_after = NEXT_INSN (after);
4183
4184 NEXT_INSN (after) = first;
4185 PREV_INSN (first) = after;
4186 NEXT_INSN (last) = after_after;
4187 if (after_after)
4188 PREV_INSN (after_after) = last;
4189
4190 if (after == last_insn)
4191 last_insn = last;
4192 return last;
4193 }
4194
4195 /* Make X be output after the insn AFTER. */
4196
4197 rtx
4198 emit_insn_after (x, after)
4199 rtx x, after;
4200 {
4201 rtx last = after;
4202
4203 #ifdef ENABLE_RTL_CHECKING
4204 if (after == NULL_RTX)
4205 abort ();
4206 #endif
4207
4208 if (x == NULL_RTX)
4209 return last;
4210
4211 switch (GET_CODE (x))
4212 {
4213 case INSN:
4214 case JUMP_INSN:
4215 case CALL_INSN:
4216 case CODE_LABEL:
4217 case BARRIER:
4218 case NOTE:
4219 last = emit_insn_after_1 (x, after);
4220 break;
4221
4222 #ifdef ENABLE_RTL_CHECKING
4223 case SEQUENCE:
4224 abort ();
4225 break;
4226 #endif
4227
4228 default:
4229 last = make_insn_raw (x);
4230 add_insn_after (last, after);
4231 break;
4232 }
4233
4234 return last;
4235 }
4236
4237 /* Similar to emit_insn_after, except that line notes are to be inserted so
4238 as to act as if this insn were at FROM. */
4239
4240 void
4241 emit_insn_after_with_line_notes (x, after, from)
4242 rtx x, after, from;
4243 {
4244 rtx from_line = find_line_note (from);
4245 rtx after_line = find_line_note (after);
4246 rtx insn = emit_insn_after (x, after);
4247
4248 if (from_line)
4249 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4250 NOTE_LINE_NUMBER (from_line),
4251 after);
4252
4253 if (after_line)
4254 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4255 NOTE_LINE_NUMBER (after_line),
4256 insn);
4257 }
4258
4259 /* Make an insn of code JUMP_INSN with body X
4260 and output it after the insn AFTER. */
4261
4262 rtx
4263 emit_jump_insn_after (x, after)
4264 rtx x, after;
4265 {
4266 rtx last;
4267
4268 #ifdef ENABLE_RTL_CHECKING
4269 if (after == NULL_RTX)
4270 abort ();
4271 #endif
4272
4273 switch (GET_CODE (x))
4274 {
4275 case INSN:
4276 case JUMP_INSN:
4277 case CALL_INSN:
4278 case CODE_LABEL:
4279 case BARRIER:
4280 case NOTE:
4281 last = emit_insn_after_1 (x, after);
4282 break;
4283
4284 #ifdef ENABLE_RTL_CHECKING
4285 case SEQUENCE:
4286 abort ();
4287 break;
4288 #endif
4289
4290 default:
4291 last = make_jump_insn_raw (x);
4292 add_insn_after (last, after);
4293 break;
4294 }
4295
4296 return last;
4297 }
4298
4299 /* Make an instruction with body X and code CALL_INSN
4300 and output it after the instruction AFTER. */
4301
4302 rtx
4303 emit_call_insn_after (x, after)
4304 rtx x, after;
4305 {
4306 rtx last;
4307
4308 #ifdef ENABLE_RTL_CHECKING
4309 if (after == NULL_RTX)
4310 abort ();
4311 #endif
4312
4313 switch (GET_CODE (x))
4314 {
4315 case INSN:
4316 case JUMP_INSN:
4317 case CALL_INSN:
4318 case CODE_LABEL:
4319 case BARRIER:
4320 case NOTE:
4321 last = emit_insn_after_1 (x, after);
4322 break;
4323
4324 #ifdef ENABLE_RTL_CHECKING
4325 case SEQUENCE:
4326 abort ();
4327 break;
4328 #endif
4329
4330 default:
4331 last = make_call_insn_raw (x);
4332 add_insn_after (last, after);
4333 break;
4334 }
4335
4336 return last;
4337 }
4338
4339 /* Make an insn of code BARRIER
4340 and output it after the insn AFTER. */
4341
4342 rtx
4343 emit_barrier_after (after)
4344 rtx after;
4345 {
4346 rtx insn = rtx_alloc (BARRIER);
4347
4348 INSN_UID (insn) = cur_insn_uid++;
4349
4350 add_insn_after (insn, after);
4351 return insn;
4352 }
4353
4354 /* Emit the label LABEL after the insn AFTER. */
4355
4356 rtx
4357 emit_label_after (label, after)
4358 rtx label, after;
4359 {
4360 /* This can be called twice for the same label
4361 as a result of the confusion that follows a syntax error!
4362 So make it harmless. */
4363 if (INSN_UID (label) == 0)
4364 {
4365 INSN_UID (label) = cur_insn_uid++;
4366 add_insn_after (label, after);
4367 }
4368
4369 return label;
4370 }
4371
4372 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4373
4374 rtx
4375 emit_note_after (subtype, after)
4376 int subtype;
4377 rtx after;
4378 {
4379 rtx note = rtx_alloc (NOTE);
4380 INSN_UID (note) = cur_insn_uid++;
4381 NOTE_SOURCE_FILE (note) = 0;
4382 NOTE_LINE_NUMBER (note) = subtype;
4383 BLOCK_FOR_INSN (note) = NULL;
4384 add_insn_after (note, after);
4385 return note;
4386 }
4387
4388 /* Emit a line note for FILE and LINE after the insn AFTER. */
4389
4390 rtx
4391 emit_line_note_after (file, line, after)
4392 const char *file;
4393 int line;
4394 rtx after;
4395 {
4396 rtx note;
4397
4398 if (no_line_numbers && line > 0)
4399 {
4400 cur_insn_uid++;
4401 return 0;
4402 }
4403
4404 note = rtx_alloc (NOTE);
4405 INSN_UID (note) = cur_insn_uid++;
4406 NOTE_SOURCE_FILE (note) = file;
4407 NOTE_LINE_NUMBER (note) = line;
4408 BLOCK_FOR_INSN (note) = NULL;
4409 add_insn_after (note, after);
4410 return note;
4411 }
4412 \f
4413 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4414 rtx
4415 emit_insn_after_scope (pattern, after, scope)
4416 rtx pattern, after;
4417 tree scope;
4418 {
4419 rtx last = emit_insn_after (pattern, after);
4420
4421 after = NEXT_INSN (after);
4422 while (1)
4423 {
4424 if (active_insn_p (after))
4425 INSN_SCOPE (after) = scope;
4426 if (after == last)
4427 break;
4428 after = NEXT_INSN (after);
4429 }
4430 return last;
4431 }
4432
4433 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4434 rtx
4435 emit_jump_insn_after_scope (pattern, after, scope)
4436 rtx pattern, after;
4437 tree scope;
4438 {
4439 rtx last = emit_jump_insn_after (pattern, after);
4440
4441 after = NEXT_INSN (after);
4442 while (1)
4443 {
4444 if (active_insn_p (after))
4445 INSN_SCOPE (after) = scope;
4446 if (after == last)
4447 break;
4448 after = NEXT_INSN (after);
4449 }
4450 return last;
4451 }
4452
4453 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4454 rtx
4455 emit_call_insn_after_scope (pattern, after, scope)
4456 rtx pattern, after;
4457 tree scope;
4458 {
4459 rtx last = emit_call_insn_after (pattern, after);
4460
4461 after = NEXT_INSN (after);
4462 while (1)
4463 {
4464 if (active_insn_p (after))
4465 INSN_SCOPE (after) = scope;
4466 if (after == last)
4467 break;
4468 after = NEXT_INSN (after);
4469 }
4470 return last;
4471 }
4472
4473 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4474 rtx
4475 emit_insn_before_scope (pattern, before, scope)
4476 rtx pattern, before;
4477 tree scope;
4478 {
4479 rtx first = PREV_INSN (before);
4480 rtx last = emit_insn_before (pattern, before);
4481
4482 first = NEXT_INSN (first);
4483 while (1)
4484 {
4485 if (active_insn_p (first))
4486 INSN_SCOPE (first) = scope;
4487 if (first == last)
4488 break;
4489 first = NEXT_INSN (first);
4490 }
4491 return last;
4492 }
4493 \f
4494 /* Take X and emit it at the end of the doubly-linked
4495 INSN list.
4496
4497 Returns the last insn emitted. */
4498
4499 rtx
4500 emit_insn (x)
4501 rtx x;
4502 {
4503 rtx last = last_insn;
4504 rtx insn;
4505
4506 if (x == NULL_RTX)
4507 return last;
4508
4509 switch (GET_CODE (x))
4510 {
4511 case INSN:
4512 case JUMP_INSN:
4513 case CALL_INSN:
4514 case CODE_LABEL:
4515 case BARRIER:
4516 case NOTE:
4517 insn = x;
4518 while (insn)
4519 {
4520 rtx next = NEXT_INSN (insn);
4521 add_insn (insn);
4522 last = insn;
4523 insn = next;
4524 }
4525 break;
4526
4527 #ifdef ENABLE_RTL_CHECKING
4528 case SEQUENCE:
4529 abort ();
4530 break;
4531 #endif
4532
4533 default:
4534 last = make_insn_raw (x);
4535 add_insn (last);
4536 break;
4537 }
4538
4539 return last;
4540 }
4541
4542 /* Make an insn of code JUMP_INSN with pattern X
4543 and add it to the end of the doubly-linked list. */
4544
4545 rtx
4546 emit_jump_insn (x)
4547 rtx x;
4548 {
4549 rtx last = NULL_RTX, insn;
4550
4551 switch (GET_CODE (x))
4552 {
4553 case INSN:
4554 case JUMP_INSN:
4555 case CALL_INSN:
4556 case CODE_LABEL:
4557 case BARRIER:
4558 case NOTE:
4559 insn = x;
4560 while (insn)
4561 {
4562 rtx next = NEXT_INSN (insn);
4563 add_insn (insn);
4564 last = insn;
4565 insn = next;
4566 }
4567 break;
4568
4569 #ifdef ENABLE_RTL_CHECKING
4570 case SEQUENCE:
4571 abort ();
4572 break;
4573 #endif
4574
4575 default:
4576 last = make_jump_insn_raw (x);
4577 add_insn (last);
4578 break;
4579 }
4580
4581 return last;
4582 }
4583
4584 /* Make an insn of code CALL_INSN with pattern X
4585 and add it to the end of the doubly-linked list. */
4586
4587 rtx
4588 emit_call_insn (x)
4589 rtx x;
4590 {
4591 rtx insn;
4592
4593 switch (GET_CODE (x))
4594 {
4595 case INSN:
4596 case JUMP_INSN:
4597 case CALL_INSN:
4598 case CODE_LABEL:
4599 case BARRIER:
4600 case NOTE:
4601 insn = emit_insn (x);
4602 break;
4603
4604 #ifdef ENABLE_RTL_CHECKING
4605 case SEQUENCE:
4606 abort ();
4607 break;
4608 #endif
4609
4610 default:
4611 insn = make_call_insn_raw (x);
4612 add_insn (insn);
4613 break;
4614 }
4615
4616 return insn;
4617 }
4618
4619 /* Add the label LABEL to the end of the doubly-linked list. */
4620
4621 rtx
4622 emit_label (label)
4623 rtx label;
4624 {
4625 /* This can be called twice for the same label
4626 as a result of the confusion that follows a syntax error!
4627 So make it harmless. */
4628 if (INSN_UID (label) == 0)
4629 {
4630 INSN_UID (label) = cur_insn_uid++;
4631 add_insn (label);
4632 }
4633 return label;
4634 }
4635
4636 /* Make an insn of code BARRIER
4637 and add it to the end of the doubly-linked list. */
4638
4639 rtx
4640 emit_barrier ()
4641 {
4642 rtx barrier = rtx_alloc (BARRIER);
4643 INSN_UID (barrier) = cur_insn_uid++;
4644 add_insn (barrier);
4645 return barrier;
4646 }
4647
4648 /* Make an insn of code NOTE
4649 with data-fields specified by FILE and LINE
4650 and add it to the end of the doubly-linked list,
4651 but only if line-numbers are desired for debugging info. */
4652
4653 rtx
4654 emit_line_note (file, line)
4655 const char *file;
4656 int line;
4657 {
4658 set_file_and_line_for_stmt (file, line);
4659
4660 #if 0
4661 if (no_line_numbers)
4662 return 0;
4663 #endif
4664
4665 return emit_note (file, line);
4666 }
4667
4668 /* Make an insn of code NOTE
4669 with data-fields specified by FILE and LINE
4670 and add it to the end of the doubly-linked list.
4671 If it is a line-number NOTE, omit it if it matches the previous one. */
4672
4673 rtx
4674 emit_note (file, line)
4675 const char *file;
4676 int line;
4677 {
4678 rtx note;
4679
4680 if (line > 0)
4681 {
4682 if (file && last_filename && !strcmp (file, last_filename)
4683 && line == last_linenum)
4684 return 0;
4685 last_filename = file;
4686 last_linenum = line;
4687 }
4688
4689 if (no_line_numbers && line > 0)
4690 {
4691 cur_insn_uid++;
4692 return 0;
4693 }
4694
4695 note = rtx_alloc (NOTE);
4696 INSN_UID (note) = cur_insn_uid++;
4697 NOTE_SOURCE_FILE (note) = file;
4698 NOTE_LINE_NUMBER (note) = line;
4699 BLOCK_FOR_INSN (note) = NULL;
4700 add_insn (note);
4701 return note;
4702 }
4703
4704 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4705
4706 rtx
4707 emit_line_note_force (file, line)
4708 const char *file;
4709 int line;
4710 {
4711 last_linenum = -1;
4712 return emit_line_note (file, line);
4713 }
4714
4715 /* Cause next statement to emit a line note even if the line number
4716 has not changed. This is used at the beginning of a function. */
4717
4718 void
4719 force_next_line_note ()
4720 {
4721 last_linenum = -1;
4722 }
4723
4724 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4725 note of this type already exists, remove it first. */
4726
4727 rtx
4728 set_unique_reg_note (insn, kind, datum)
4729 rtx insn;
4730 enum reg_note kind;
4731 rtx datum;
4732 {
4733 rtx note = find_reg_note (insn, kind, NULL_RTX);
4734
4735 switch (kind)
4736 {
4737 case REG_EQUAL:
4738 case REG_EQUIV:
4739 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4740 has multiple sets (some callers assume single_set
4741 means the insn only has one set, when in fact it
4742 means the insn only has one * useful * set). */
4743 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4744 {
4745 if (note)
4746 abort ();
4747 return NULL_RTX;
4748 }
4749
4750 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4751 It serves no useful purpose and breaks eliminate_regs. */
4752 if (GET_CODE (datum) == ASM_OPERANDS)
4753 return NULL_RTX;
4754 break;
4755
4756 default:
4757 break;
4758 }
4759
4760 if (note)
4761 {
4762 XEXP (note, 0) = datum;
4763 return note;
4764 }
4765
4766 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4767 return REG_NOTES (insn);
4768 }
4769 \f
4770 /* Return an indication of which type of insn should have X as a body.
4771 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4772
4773 enum rtx_code
4774 classify_insn (x)
4775 rtx x;
4776 {
4777 if (GET_CODE (x) == CODE_LABEL)
4778 return CODE_LABEL;
4779 if (GET_CODE (x) == CALL)
4780 return CALL_INSN;
4781 if (GET_CODE (x) == RETURN)
4782 return JUMP_INSN;
4783 if (GET_CODE (x) == SET)
4784 {
4785 if (SET_DEST (x) == pc_rtx)
4786 return JUMP_INSN;
4787 else if (GET_CODE (SET_SRC (x)) == CALL)
4788 return CALL_INSN;
4789 else
4790 return INSN;
4791 }
4792 if (GET_CODE (x) == PARALLEL)
4793 {
4794 int j;
4795 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4796 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4797 return CALL_INSN;
4798 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4799 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4800 return JUMP_INSN;
4801 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4802 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4803 return CALL_INSN;
4804 }
4805 return INSN;
4806 }
4807
4808 /* Emit the rtl pattern X as an appropriate kind of insn.
4809 If X is a label, it is simply added into the insn chain. */
4810
4811 rtx
4812 emit (x)
4813 rtx x;
4814 {
4815 enum rtx_code code = classify_insn (x);
4816
4817 if (code == CODE_LABEL)
4818 return emit_label (x);
4819 else if (code == INSN)
4820 return emit_insn (x);
4821 else if (code == JUMP_INSN)
4822 {
4823 rtx insn = emit_jump_insn (x);
4824 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4825 return emit_barrier ();
4826 return insn;
4827 }
4828 else if (code == CALL_INSN)
4829 return emit_call_insn (x);
4830 else
4831 abort ();
4832 }
4833 \f
4834 /* Space for free sequence stack entries. */
4835 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4836
4837 /* Begin emitting insns to a sequence which can be packaged in an
4838 RTL_EXPR. If this sequence will contain something that might cause
4839 the compiler to pop arguments to function calls (because those
4840 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4841 details), use do_pending_stack_adjust before calling this function.
4842 That will ensure that the deferred pops are not accidentally
4843 emitted in the middle of this sequence. */
4844
4845 void
4846 start_sequence ()
4847 {
4848 struct sequence_stack *tem;
4849
4850 if (free_sequence_stack != NULL)
4851 {
4852 tem = free_sequence_stack;
4853 free_sequence_stack = tem->next;
4854 }
4855 else
4856 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4857
4858 tem->next = seq_stack;
4859 tem->first = first_insn;
4860 tem->last = last_insn;
4861 tem->sequence_rtl_expr = seq_rtl_expr;
4862
4863 seq_stack = tem;
4864
4865 first_insn = 0;
4866 last_insn = 0;
4867 }
4868
4869 /* Similarly, but indicate that this sequence will be placed in T, an
4870 RTL_EXPR. See the documentation for start_sequence for more
4871 information about how to use this function. */
4872
4873 void
4874 start_sequence_for_rtl_expr (t)
4875 tree t;
4876 {
4877 start_sequence ();
4878
4879 seq_rtl_expr = t;
4880 }
4881
4882 /* Set up the insn chain starting with FIRST as the current sequence,
4883 saving the previously current one. See the documentation for
4884 start_sequence for more information about how to use this function. */
4885
4886 void
4887 push_to_sequence (first)
4888 rtx first;
4889 {
4890 rtx last;
4891
4892 start_sequence ();
4893
4894 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4895
4896 first_insn = first;
4897 last_insn = last;
4898 }
4899
4900 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4901
4902 void
4903 push_to_full_sequence (first, last)
4904 rtx first, last;
4905 {
4906 start_sequence ();
4907 first_insn = first;
4908 last_insn = last;
4909 /* We really should have the end of the insn chain here. */
4910 if (last && NEXT_INSN (last))
4911 abort ();
4912 }
4913
4914 /* Set up the outer-level insn chain
4915 as the current sequence, saving the previously current one. */
4916
4917 void
4918 push_topmost_sequence ()
4919 {
4920 struct sequence_stack *stack, *top = NULL;
4921
4922 start_sequence ();
4923
4924 for (stack = seq_stack; stack; stack = stack->next)
4925 top = stack;
4926
4927 first_insn = top->first;
4928 last_insn = top->last;
4929 seq_rtl_expr = top->sequence_rtl_expr;
4930 }
4931
4932 /* After emitting to the outer-level insn chain, update the outer-level
4933 insn chain, and restore the previous saved state. */
4934
4935 void
4936 pop_topmost_sequence ()
4937 {
4938 struct sequence_stack *stack, *top = NULL;
4939
4940 for (stack = seq_stack; stack; stack = stack->next)
4941 top = stack;
4942
4943 top->first = first_insn;
4944 top->last = last_insn;
4945 /* ??? Why don't we save seq_rtl_expr here? */
4946
4947 end_sequence ();
4948 }
4949
4950 /* After emitting to a sequence, restore previous saved state.
4951
4952 To get the contents of the sequence just made, you must call
4953 `get_insns' *before* calling here.
4954
4955 If the compiler might have deferred popping arguments while
4956 generating this sequence, and this sequence will not be immediately
4957 inserted into the instruction stream, use do_pending_stack_adjust
4958 before calling get_insns. That will ensure that the deferred
4959 pops are inserted into this sequence, and not into some random
4960 location in the instruction stream. See INHIBIT_DEFER_POP for more
4961 information about deferred popping of arguments. */
4962
4963 void
4964 end_sequence ()
4965 {
4966 struct sequence_stack *tem = seq_stack;
4967
4968 first_insn = tem->first;
4969 last_insn = tem->last;
4970 seq_rtl_expr = tem->sequence_rtl_expr;
4971 seq_stack = tem->next;
4972
4973 memset (tem, 0, sizeof (*tem));
4974 tem->next = free_sequence_stack;
4975 free_sequence_stack = tem;
4976 }
4977
4978 /* This works like end_sequence, but records the old sequence in FIRST
4979 and LAST. */
4980
4981 void
4982 end_full_sequence (first, last)
4983 rtx *first, *last;
4984 {
4985 *first = first_insn;
4986 *last = last_insn;
4987 end_sequence ();
4988 }
4989
4990 /* Return 1 if currently emitting into a sequence. */
4991
4992 int
4993 in_sequence_p ()
4994 {
4995 return seq_stack != 0;
4996 }
4997 \f
4998 /* Put the various virtual registers into REGNO_REG_RTX. */
4999
5000 void
5001 init_virtual_regs (es)
5002 struct emit_status *es;
5003 {
5004 rtx *ptr = es->x_regno_reg_rtx;
5005 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5006 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5007 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5008 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5009 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5010 }
5011
5012 \f
5013 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5014 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5015 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5016 static int copy_insn_n_scratches;
5017
5018 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5019 copied an ASM_OPERANDS.
5020 In that case, it is the original input-operand vector. */
5021 static rtvec orig_asm_operands_vector;
5022
5023 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5024 copied an ASM_OPERANDS.
5025 In that case, it is the copied input-operand vector. */
5026 static rtvec copy_asm_operands_vector;
5027
5028 /* Likewise for the constraints vector. */
5029 static rtvec orig_asm_constraints_vector;
5030 static rtvec copy_asm_constraints_vector;
5031
5032 /* Recursively create a new copy of an rtx for copy_insn.
5033 This function differs from copy_rtx in that it handles SCRATCHes and
5034 ASM_OPERANDs properly.
5035 Normally, this function is not used directly; use copy_insn as front end.
5036 However, you could first copy an insn pattern with copy_insn and then use
5037 this function afterwards to properly copy any REG_NOTEs containing
5038 SCRATCHes. */
5039
5040 rtx
5041 copy_insn_1 (orig)
5042 rtx orig;
5043 {
5044 rtx copy;
5045 int i, j;
5046 RTX_CODE code;
5047 const char *format_ptr;
5048
5049 code = GET_CODE (orig);
5050
5051 switch (code)
5052 {
5053 case REG:
5054 case QUEUED:
5055 case CONST_INT:
5056 case CONST_DOUBLE:
5057 case CONST_VECTOR:
5058 case SYMBOL_REF:
5059 case CODE_LABEL:
5060 case PC:
5061 case CC0:
5062 case ADDRESSOF:
5063 return orig;
5064
5065 case SCRATCH:
5066 for (i = 0; i < copy_insn_n_scratches; i++)
5067 if (copy_insn_scratch_in[i] == orig)
5068 return copy_insn_scratch_out[i];
5069 break;
5070
5071 case CONST:
5072 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5073 a LABEL_REF, it isn't sharable. */
5074 if (GET_CODE (XEXP (orig, 0)) == PLUS
5075 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5076 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5077 return orig;
5078 break;
5079
5080 /* A MEM with a constant address is not sharable. The problem is that
5081 the constant address may need to be reloaded. If the mem is shared,
5082 then reloading one copy of this mem will cause all copies to appear
5083 to have been reloaded. */
5084
5085 default:
5086 break;
5087 }
5088
5089 copy = rtx_alloc (code);
5090
5091 /* Copy the various flags, and other information. We assume that
5092 all fields need copying, and then clear the fields that should
5093 not be copied. That is the sensible default behavior, and forces
5094 us to explicitly document why we are *not* copying a flag. */
5095 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5096
5097 /* We do not copy the USED flag, which is used as a mark bit during
5098 walks over the RTL. */
5099 RTX_FLAG (copy, used) = 0;
5100
5101 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5102 if (GET_RTX_CLASS (code) == 'i')
5103 {
5104 RTX_FLAG (copy, jump) = 0;
5105 RTX_FLAG (copy, call) = 0;
5106 RTX_FLAG (copy, frame_related) = 0;
5107 }
5108
5109 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5110
5111 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5112 {
5113 copy->fld[i] = orig->fld[i];
5114 switch (*format_ptr++)
5115 {
5116 case 'e':
5117 if (XEXP (orig, i) != NULL)
5118 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5119 break;
5120
5121 case 'E':
5122 case 'V':
5123 if (XVEC (orig, i) == orig_asm_constraints_vector)
5124 XVEC (copy, i) = copy_asm_constraints_vector;
5125 else if (XVEC (orig, i) == orig_asm_operands_vector)
5126 XVEC (copy, i) = copy_asm_operands_vector;
5127 else if (XVEC (orig, i) != NULL)
5128 {
5129 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5130 for (j = 0; j < XVECLEN (copy, i); j++)
5131 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5132 }
5133 break;
5134
5135 case 't':
5136 case 'w':
5137 case 'i':
5138 case 's':
5139 case 'S':
5140 case 'u':
5141 case '0':
5142 /* These are left unchanged. */
5143 break;
5144
5145 default:
5146 abort ();
5147 }
5148 }
5149
5150 if (code == SCRATCH)
5151 {
5152 i = copy_insn_n_scratches++;
5153 if (i >= MAX_RECOG_OPERANDS)
5154 abort ();
5155 copy_insn_scratch_in[i] = orig;
5156 copy_insn_scratch_out[i] = copy;
5157 }
5158 else if (code == ASM_OPERANDS)
5159 {
5160 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5161 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5162 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5163 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5164 }
5165
5166 return copy;
5167 }
5168
5169 /* Create a new copy of an rtx.
5170 This function differs from copy_rtx in that it handles SCRATCHes and
5171 ASM_OPERANDs properly.
5172 INSN doesn't really have to be a full INSN; it could be just the
5173 pattern. */
5174 rtx
5175 copy_insn (insn)
5176 rtx insn;
5177 {
5178 copy_insn_n_scratches = 0;
5179 orig_asm_operands_vector = 0;
5180 orig_asm_constraints_vector = 0;
5181 copy_asm_operands_vector = 0;
5182 copy_asm_constraints_vector = 0;
5183 return copy_insn_1 (insn);
5184 }
5185
5186 /* Initialize data structures and variables in this file
5187 before generating rtl for each function. */
5188
5189 void
5190 init_emit ()
5191 {
5192 struct function *f = cfun;
5193
5194 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5195 first_insn = NULL;
5196 last_insn = NULL;
5197 seq_rtl_expr = NULL;
5198 cur_insn_uid = 1;
5199 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5200 last_linenum = 0;
5201 last_filename = 0;
5202 first_label_num = label_num;
5203 last_label_num = 0;
5204 seq_stack = NULL;
5205
5206 /* Init the tables that describe all the pseudo regs. */
5207
5208 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5209
5210 f->emit->regno_pointer_align
5211 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5212 * sizeof (unsigned char));
5213
5214 regno_reg_rtx
5215 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5216 * sizeof (rtx));
5217
5218 f->emit->regno_decl
5219 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5220 * sizeof (tree));
5221
5222 /* Put copies of all the hard registers into regno_reg_rtx. */
5223 memcpy (regno_reg_rtx,
5224 static_regno_reg_rtx,
5225 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5226
5227 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5228 init_virtual_regs (f->emit);
5229
5230 /* Indicate that the virtual registers and stack locations are
5231 all pointers. */
5232 REG_POINTER (stack_pointer_rtx) = 1;
5233 REG_POINTER (frame_pointer_rtx) = 1;
5234 REG_POINTER (hard_frame_pointer_rtx) = 1;
5235 REG_POINTER (arg_pointer_rtx) = 1;
5236
5237 REG_POINTER (virtual_incoming_args_rtx) = 1;
5238 REG_POINTER (virtual_stack_vars_rtx) = 1;
5239 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5240 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5241 REG_POINTER (virtual_cfa_rtx) = 1;
5242
5243 #ifdef STACK_BOUNDARY
5244 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5245 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5246 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5247 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5248
5249 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5250 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5251 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5252 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5253 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5254 #endif
5255
5256 #ifdef INIT_EXPANDERS
5257 INIT_EXPANDERS;
5258 #endif
5259 }
5260
5261 /* Generate the constant 0. */
5262
5263 static rtx
5264 gen_const_vector_0 (mode)
5265 enum machine_mode mode;
5266 {
5267 rtx tem;
5268 rtvec v;
5269 int units, i;
5270 enum machine_mode inner;
5271
5272 units = GET_MODE_NUNITS (mode);
5273 inner = GET_MODE_INNER (mode);
5274
5275 v = rtvec_alloc (units);
5276
5277 /* We need to call this function after we to set CONST0_RTX first. */
5278 if (!CONST0_RTX (inner))
5279 abort ();
5280
5281 for (i = 0; i < units; ++i)
5282 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5283
5284 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5285 return tem;
5286 }
5287
5288 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5289 all elements are zero. */
5290 rtx
5291 gen_rtx_CONST_VECTOR (mode, v)
5292 enum machine_mode mode;
5293 rtvec v;
5294 {
5295 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5296 int i;
5297
5298 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5299 if (RTVEC_ELT (v, i) != inner_zero)
5300 return gen_rtx_raw_CONST_VECTOR (mode, v);
5301 return CONST0_RTX (mode);
5302 }
5303
5304 /* Create some permanent unique rtl objects shared between all functions.
5305 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5306
5307 void
5308 init_emit_once (line_numbers)
5309 int line_numbers;
5310 {
5311 int i;
5312 enum machine_mode mode;
5313 enum machine_mode double_mode;
5314
5315 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5316 tables. */
5317 const_int_htab = htab_create (37, const_int_htab_hash,
5318 const_int_htab_eq, NULL);
5319
5320 const_double_htab = htab_create (37, const_double_htab_hash,
5321 const_double_htab_eq, NULL);
5322
5323 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
5324 mem_attrs_htab_eq, NULL);
5325
5326 no_line_numbers = ! line_numbers;
5327
5328 /* Compute the word and byte modes. */
5329
5330 byte_mode = VOIDmode;
5331 word_mode = VOIDmode;
5332 double_mode = VOIDmode;
5333
5334 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5335 mode = GET_MODE_WIDER_MODE (mode))
5336 {
5337 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5338 && byte_mode == VOIDmode)
5339 byte_mode = mode;
5340
5341 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5342 && word_mode == VOIDmode)
5343 word_mode = mode;
5344 }
5345
5346 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5347 mode = GET_MODE_WIDER_MODE (mode))
5348 {
5349 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5350 && double_mode == VOIDmode)
5351 double_mode = mode;
5352 }
5353
5354 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5355
5356 /* Assign register numbers to the globally defined register rtx.
5357 This must be done at runtime because the register number field
5358 is in a union and some compilers can't initialize unions. */
5359
5360 pc_rtx = gen_rtx (PC, VOIDmode);
5361 cc0_rtx = gen_rtx (CC0, VOIDmode);
5362 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5363 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5364 if (hard_frame_pointer_rtx == 0)
5365 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5366 HARD_FRAME_POINTER_REGNUM);
5367 if (arg_pointer_rtx == 0)
5368 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5369 virtual_incoming_args_rtx =
5370 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5371 virtual_stack_vars_rtx =
5372 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5373 virtual_stack_dynamic_rtx =
5374 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5375 virtual_outgoing_args_rtx =
5376 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5377 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5378
5379 /* Initialize RTL for commonly used hard registers. These are
5380 copied into regno_reg_rtx as we begin to compile each function. */
5381 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5382 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5383
5384 #ifdef INIT_EXPANDERS
5385 /* This is to initialize {init|mark|free}_machine_status before the first
5386 call to push_function_context_to. This is needed by the Chill front
5387 end which calls push_function_context_to before the first call to
5388 init_function_start. */
5389 INIT_EXPANDERS;
5390 #endif
5391
5392 /* Create the unique rtx's for certain rtx codes and operand values. */
5393
5394 /* Don't use gen_rtx here since gen_rtx in this case
5395 tries to use these variables. */
5396 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5397 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5398 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5399
5400 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5401 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5402 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5403 else
5404 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5405
5406 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5407 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5408 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5409 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5410
5411 for (i = 0; i <= 2; i++)
5412 {
5413 REAL_VALUE_TYPE *r =
5414 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5415
5416 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5417 mode = GET_MODE_WIDER_MODE (mode))
5418 const_tiny_rtx[i][(int) mode] =
5419 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5420
5421 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5422
5423 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5424 mode = GET_MODE_WIDER_MODE (mode))
5425 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5426
5427 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5428 mode != VOIDmode;
5429 mode = GET_MODE_WIDER_MODE (mode))
5430 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5431 }
5432
5433 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5434 mode != VOIDmode;
5435 mode = GET_MODE_WIDER_MODE (mode))
5436 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5437
5438 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5439 mode != VOIDmode;
5440 mode = GET_MODE_WIDER_MODE (mode))
5441 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5442
5443 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5444 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5445 const_tiny_rtx[0][i] = const0_rtx;
5446
5447 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5448 if (STORE_FLAG_VALUE == 1)
5449 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5450
5451 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5452 return_address_pointer_rtx
5453 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5454 #endif
5455
5456 #ifdef STRUCT_VALUE
5457 struct_value_rtx = STRUCT_VALUE;
5458 #else
5459 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5460 #endif
5461
5462 #ifdef STRUCT_VALUE_INCOMING
5463 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5464 #else
5465 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5466 struct_value_incoming_rtx
5467 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5468 #else
5469 struct_value_incoming_rtx = struct_value_rtx;
5470 #endif
5471 #endif
5472
5473 #ifdef STATIC_CHAIN_REGNUM
5474 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5475
5476 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5477 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5478 static_chain_incoming_rtx
5479 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5480 else
5481 #endif
5482 static_chain_incoming_rtx = static_chain_rtx;
5483 #endif
5484
5485 #ifdef STATIC_CHAIN
5486 static_chain_rtx = STATIC_CHAIN;
5487
5488 #ifdef STATIC_CHAIN_INCOMING
5489 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5490 #else
5491 static_chain_incoming_rtx = static_chain_rtx;
5492 #endif
5493 #endif
5494
5495 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5496 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5497 }
5498 \f
5499 /* Query and clear/ restore no_line_numbers. This is used by the
5500 switch / case handling in stmt.c to give proper line numbers in
5501 warnings about unreachable code. */
5502
5503 int
5504 force_line_numbers ()
5505 {
5506 int old = no_line_numbers;
5507
5508 no_line_numbers = 0;
5509 if (old)
5510 force_next_line_note ();
5511 return old;
5512 }
5513
5514 void
5515 restore_line_number_status (old_value)
5516 int old_value;
5517 {
5518 no_line_numbers = old_value;
5519 }
5520
5521 /* Produce exact duplicate of insn INSN after AFTER.
5522 Care updating of libcall regions if present. */
5523
5524 rtx
5525 emit_copy_of_insn_after (insn, after)
5526 rtx insn, after;
5527 {
5528 rtx new;
5529 rtx note1, note2, link;
5530
5531 switch (GET_CODE (insn))
5532 {
5533 case INSN:
5534 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5535 break;
5536
5537 case JUMP_INSN:
5538 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5539 break;
5540
5541 case CALL_INSN:
5542 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5543 if (CALL_INSN_FUNCTION_USAGE (insn))
5544 CALL_INSN_FUNCTION_USAGE (new)
5545 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5546 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5547 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5548 break;
5549
5550 default:
5551 abort ();
5552 }
5553
5554 /* Update LABEL_NUSES. */
5555 mark_jump_label (PATTERN (new), new, 0);
5556
5557 INSN_SCOPE (new) = INSN_SCOPE (insn);
5558
5559 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5560 make them. */
5561 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5562 if (REG_NOTE_KIND (link) != REG_LABEL)
5563 {
5564 if (GET_CODE (link) == EXPR_LIST)
5565 REG_NOTES (new)
5566 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5567 XEXP (link, 0),
5568 REG_NOTES (new)));
5569 else
5570 REG_NOTES (new)
5571 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5572 XEXP (link, 0),
5573 REG_NOTES (new)));
5574 }
5575
5576 /* Fix the libcall sequences. */
5577 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5578 {
5579 rtx p = new;
5580 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5581 p = PREV_INSN (p);
5582 XEXP (note1, 0) = p;
5583 XEXP (note2, 0) = new;
5584 }
5585 return new;
5586 }
5587
5588 #include "gt-emit-rtl.h"